

Release Team[oR] 2001
[x] Database

 - 2 -

DB2 Developer's Guide, Fourth Edition
by Craig S. Mullins ISBN: 0672318288

Sams © 2000, 1639 pages

A new edition of an important book on DB2. An absolute
must for all DB2 programmers.

Table of Contents Colleague Comments
Back Cover

Synopsis

DB2 Developer's Guide, Fourth Edition is a new and updated edition that
includes the hot new features in DB2 version 6 for OS/390. Not only do the
authors explain the changes, but they detail how the new features affect use
of DB2. The book delves into the technical underpinnings of DB2, while
explaining practical performance and implementation issues. This new edition
also covers Internet-related Java features.

Table of Contents

 DB2 Developer's Guide, Fourth Edition - 4
 Introduction - 7
 Preface - 8
 Part I SQL Tools, Tips, and Tricks
 Chapter 1 - The Magic Words - 12
 Chapter 2 - Data Manipulation Guidelines - 43
 Chapter 3 - Using DB2 Functions - 70
 Chapter 4 - Using DB2 User-Defined Functions and Data Types - 81
 Chapter 5 - Data Definition Guidelines - 99
 Chapter 6 - Using DB2 Triggers for Integrity - 159
 Chapter 7 - Large Objects and Object/Relational Databases - 169
 Chapter 8 - Miscellaneous Guidelines - 181
 Part II DB2 Application Development
 Chapter 9 - Using DB2 in an Application Program - 198
 Chapter 10 - Dynamic SQL Programming - 238
 Chapter 11 - Program Preparation - 255
 Chapter 12 - Alternative DB2 Application Development Methods - 293
 Chapter 13 - Using DB2 Stored Procedures - 306
 Chapter 14 - The Procedural DBA - 325
 Chapter 15 - DB2 and the Internet - 329
 Part III DB2 In-Depth
 Chapter 16 - The Doors to DB2 - 348

 - 3 -

 Chapter 17 - Data Sharing - 401
 Chapter 18 - DB2 Behind the Scenes - 412
 Chapter 19 - The Optimizer - 425
 Chapter 20 - The Table-Based Infrastructure of DB2 - 458
 Chapter 21 - Locking DB2 Data - 467
 Part IV DB2 Performance Monitoring
 Chapter 22 - Traditional DB2 Performance Monitoring - 492
 Chapter 23 - Using EXPLAIN - 523
 Chapter 24 - DB2 Object Monitoring Using the DB2 Catalog - 545
 Part V DB2 Performance Tuning
 Chapter 25 - Tuning DB2's Environment - 567
 Chapter 26 - Tuning DB2's Components - 581
 Chapter 27 - DB2 Resource Governing - 618
 Part VI DB2 Utilities and Commands
 Chapter 28 - An Introduction to DB2 Utilities - 625
 Chapter 29 - Data Consistency Utilities - 629
 Chapter 30 - Backup and Recovery Utilities - 649
 Chapter 31 - Data Organization Utilities - 674
 Chapter 32 - Catalog Manipulation Utilities - 706
 Chapter 33 - Miscellaneous Utilities - 720
 Chapter 34 - DB2 Commands - 741
 Chapter 35 - DB2 Utility and Command Guidelines - 760
 Chapter 36 - DB2 Contingency Planning - 766
 Part VII The Ideal DB2 Environment
 Chapter 37 - Components of a Total DB2 Solution - 775
 Chapter 38 - Organizational Issues - 807
 Part VIII Distributed DB2
 Chapter 39 - DRDA - 826
 Chapter 40 - Distributed DB2 - 833
 Chapter 41 - Distribution Guidelines - 844
 Chapter 42 - Data Warehousing with DB2 - 858
 Part IX Appendixes
 Appendix A - DB2 SQLCODE and SQLSTATE Values - 878
 Appendix B - The DB2 Catalog Tables - 892
 Appendix C - The QMF Administrative Tables - 1026
 Appendix D - DB2 Sample Tables - 1031
 Appendix E - DB2 Manuals - 1036
 Appendix F - Type 1 Indexes - 1040
 Appendix G - Valid DB2 Data Types - 1045
 Appendix H - DB2 Limits - 1047
 Appendix I - DB2 on Other Platforms - 1052
 Appendix J - Summary of DB2 Version 4, Version 5, and Version 6

Changes - 1055

 - 4 -

 List of Figures
 List of Tables
 List of Listings
 List of Sidebars

Back Cover
Learn the best techniques and tricks from expert author, Craig Mullins. Apply
these real-world pieces of advice, undocumented tips, solutions, projects, and
techniques to your own database management system. Mullins gives you
what you need to take your DB2 development to the next level.

Learn the concepts and build the applications

• Implement innovative shortcuts, tips, tricks, techniques, and
development guidelines to optimize all facets of DB2 development
and administration

• Understand the guidelines for binding DB2 application plans and
packages

• Use expert advice to implement distributed DB2 applications
• Connect your DB2 databases to the World Wide Web
• Learn how and why to use the new EXPLAIN tables -

DSN_STATEMENT_TABLE and DSN_FUNCTION_TABLE
• Discover how to implement a procedural DBA function to manage

triggers, stored procedures, and UDFs

About the Author

Craig Mullins is Director of DB2 Technology Planning for BMC Solutions, Inc.
He has extensive experience in all facets of database systems development,
including systems analysis and design, database and system administration,
data analysis, and developing and teaching DB2 and Sybase classes. Craig is
a regular lecturer at industry conferences and also frequently writed for
computer industry publications.

DB2 Developer's Guide, Fourth Edition
Craig Mullins
DB2® Developer's Guide, Fourth Edition
Copyright © 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-31828-8

Library of Congress Catalog Card Number: 99-66225
Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

DB2 is a registered trademark of International Business Machines (IBM), Inc.
Warning and Disclaimer

 - 5 -

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.
Associate Publisher
Michael Stephens
Acquisitions Editor
Carol Ackerman
Development Editors
Beverly Murray Scherf
Gus A. Miklos
Managing Editor
Charlotte Clapp
Project Editor
Andy Beaster
Copy Editor
Patricia Kinyon
Indexer
Rebecca Salerno
Proofreaders
Julie Cook
Steve Geiselman
Gene Redding
Tony Reitz
Technical Editors
Chuck Kosin
Willie Favero
Team Coordinator
Pamalee Nelson
Interior Designer
Anne Jones
Cover Designer
Anne Jones
Copywriter
Eric Borgert
Production
Ayanna Lacey
Heather Hiatt Miller
Stacey Richwine-DeRome
About the Author
Craig S. Mullins is Director of DB2 Technology Planning for BMC Software, Inc. He has extensive
experience in all facets of database systems development, including systems analysis and design,
database and system administration, data analysis, and developing and teaching DB2 and Sybase
classes. Craig has worked with DB2 since Version 1 and has experience in multiple roles, including
programmer, DBA, instructor, and analyst. His experience spans industries, having worked for
companies in the following fields: manufacturing (USX Corporation), banking (Mellon Bank), utilities
(Duquesne Light Company), commercial software development (BMC Software, PLATINUM
Technology, Inc.), consulting (ASSET, Inc.), and computer industry analysis (Gartner Group).
Additionally, Craig authored many of the popular "Platinum Monthly DB2 Tips" and worked on
Platinum's DB2 system catalog and access path posters.

Craig is a regular lecturer at industry conferences. You may have seen him present at such events as
the International DB2 Users Group (IDUG), the IBM DB2 Technical Conference, SHARE, DAMA, or at
one of many regional DB2 user groups.
Craig is also a frequent contributor to computer industry publications, having over 100 articles published
during the past few years. His articles have been published in magazines like Byte, DB2 Update, DB2
Magazine, Database Programming & Design, DBMS, Data Management Review, Relational Database
Journal, Enterprise Systems Journal, IDUG Solutions Journal, and others. Craig has a regular column
covering the database industry in Database Trends magazine. Complete information on Craig's
published articles and books can be found on the World Wide Web at
http://www.craigsmullins.com.
Craig graduated cum laude with a degree in computer science and economics from the University of
Pittsburgh.

 - 6 -

Dedication
This book is dedicated to my mom, Donna Mullins, and to the memory of my father, Giles R. Mullins.
Without the constant support and guidance my parents provided, I would not have the success I enjoy
today.
Acknowledgments

The writing and production of a technical book is a time-consuming and laborious task. Luckily, I had
many understanding and helpful people to make the process much easier. First, I would like to thank the
many folks who have reviewed and commented upon the text for each of the four editions. Chuck Kosin
has served as the main technical editor for the last three editions of this book, and I am sure it is a much
better text thanks to his eagle eye, technical acumen, and excellent suggestions. I would also like to
thank Willie Favero at BMC Software for helping out on the spur of the moment with some of the
technical editing. Sheryl Larsen has been especially helpful in reviewing the access path and complex
SQL components of the book. Bill Backs and Roger Miller have reviewed various incarnations and
editions of the manuscript, and this book is much better thanks to their expert contributions.

I would also like to thank the many people who provided suggestions for improvements on the first three
editions of the book. I do read the email suggestions and comments sent to me by readers, so keep
them coming.

Additionally, many thanks to the understanding and patient folks at Sams who have worked with me on
each of the four editions. I'd like to specifically thank Carol Ackerman, Rosemarie Graham, Andy
Beaster, Beverly Murray Scherf, and Patricia Kinyon for their hard work in producing this fourth edition.

And finally, a thank-you to all of the people with whom I have come in contact professionally at USX
Corporation, Mellon Bank, ASSET, Inc., Barnett Technologies, Duquesne Light Company, Gartner
Group, PLATINUM Technology, Inc. and BMC Software. This book is surely a better one due to the fine
quality of my co-workers, each of whom has expanded my horizons in many different and satisfying
ways.
If you have any questions or comments about this text, you can contact me at
CMullins@compuserve.com or Craig_Mullins@BMC.com. You can also write to me in care of the
publisher.
Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can fax, email, or write me directly
to let me know what you did or didn't like about this book—as well as what we can do to make our
books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or fax number. I will carefully review your comments and share them with the author and editors who
worked on the book.

Fax: 317-581-4770

Email: michael.stephens@macmillanUSA.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

What's New in This Edition?

This book is completely revised and updated for DB2 Version 6 and includes coverage of
 How to effectively implement DB2 user-defined functions and user-defined distinct types.
 Using triggers to create active DB2 databases and to enforce data integrity.
 How to create and use stored procedures with the improvements and changes made by

IBM for stored procedures in DB2 Version 6.

 - 7 -

 Using the new object/relational capabilities to store, manage and access complex,
unstructured, and multimedia data using DB2.

 Using DB2 Type Extenders to ease the transition to object/relational databases.
 Using DB2 with the Internet and where to find information about DB2 on the World Wide

Web.
 Using Java to build DB2 applications.
 Capacity improvements including support for 16-terabyte tables, larger secondary

quantities, and using data spaces for bufferpools.
 Application development and SQL programming changes, such as more than 50 new

built-in functions, additional tables permitted in a single SQL statement, predictive
governing, and more EXPLAIN information.

 Administration changes such as altering VARCHAR columns, data sharing improvements,
and using new data types.

 Changes to performance issues such as statement cost estimation, optimization hints,
and parallelism improvements.

 How to effectively manage logic stored in DB2 databases in the form of stored
procedures, user-defined functions, and triggers.

Additional revisions were made to the entire book to expand the techniques that were previously
covered and to add new tips, tricks, and techniques for developing performance-oriented, stable DB2
application systems. New and revised SQL and DDL tips, dynamic SQL usage considerations, and DB2
subsystem performance and reporting techniques will prove to be invaluable to DB2 Version 6 sites.
The sections on DB2 tools and vendors was completely revised to take mergers and acquisitions and
new products into account. Although these changes include five new chapters, the entire text has been
expanded and completely revised.

Introduction
Welcome to the fourth edition of DB2 Developer's Guide. I have been overwhelmed by the success of the
first three editions of this book. The IT community obviously needs a practitioner's view of DB2 development
issues and concerns. The second edition covered DB2 through V3; the third edition expanded that coverage
to include DB2 V4 and V5; this fourth edition brings the book up-to-date with the latest release of DB2,
Version 6. For a summary of the changes made to DB2 for each of these releases, please refer to Appendix
J, "Summary of Version 4, Version 5, and Version 6 Changes."

Other books about DB2 are available, but most of them discuss the same tired subjects: SQL syntax,
basic relational database design, normalization, and embedded SQL programming with COBOL. DB2
Developer's Guide, 4E unlocks the secrets of DB2, picking up where the DB2 tutorial books leave off. It
delves into subjects not covered adequately elsewhere—not even in IBM's DB2 manuals. This book
clarifies complex DB2 topics, provides performance and procedural advice for implementing well-
designed DB2 applications, and describes what DB2 does behind the scenes. Using DB2 Developer's
Guide, 4E as a blueprint, your administration and development staff can implement optimized DB2
application systems.

This is not an introductory text on DB2 and SQL, but much of the advice contained herein is useful to
the beginner as well as to the advanced user. It does not teach SQL syntax, relational theory,
normalization, or logical database design, but it does provide suggestions on how and when to use
these and other techniques. If you are interested in the intricacies of complex SQL instead of syntax
diagrams, this book is for you. Other areas covered include the following:

 Comprehensive coverage of new DB2 V6 features, including object/relational large
objects, user-defined functions, user-defined distinct types, triggers, using SQLJ and
JDBC for Java access to DB2, the World Wide Web, and more

 Tips, tricks, and guidelines for coding efficient SQL
 Guidelines for building performance-oriented DB2 databases
 Environmental options for developing DB2 applications using TSO, CICS, IMS/TM, CAF,

and RRSAF
 Description of what goes on in DB2 behind the scenes, including logging, locking, and a

roadmap for using the System Catalog and Directory
 Comprehensive techniques for achieving and maintaining optimal DB2 performance
 In-depth performance monitoring and tuning guidelines from both an application and a

system perspective
 Using EXPLAIN and interpreting its output, including how to use optimizer hints and the

V6 estimation and function resolution tables
 Procedures for using the DB2 Catalog to monitor DB2
 DB2 application development guidelines

 - 8 -

 In-depth advice on using the DB2 utilities
 Guidelines for assigning bufferpool sizes and strategies for implementing multiple

bufferpools and hiperpools
 DB2 disaster recovery scenarios and recommendations
 How and when to use DB2 views
 How to use DB2 in a client/server environment, including discussion of stored

procedures, access to DB2 over the Internet, and ODBC
 How to combine DBA skills and development skills to effectively manage logic stored in

DB2 databases in the form of triggers, user-defined functions, and stored procedures
 Coverage of DB2's support for distributed databases, including a discussion of DRDA

and distributed two-phase commit
 In-depth coverage of how to deploy DB2-based data warehouses
 Comprehensive coverage of add-on tools for DB2, including a description of the types of

tools and a listing of vendors and their offerings (useful if you must evaluate DB2 tools)
 Discussion of DB2 organizational issues, including roles and responsibilities, design

review guidelines, and political issues

How to Use This Book
This book serves as a tour guide for your adventurous journey through the world of DB2. Of course, you can
read the book from cover to cover. The book's usefulness does not diminish after your initial reading,
however. It is probably best used as a reference text for your daily workings with DB2.

The book is organized to function in both capacities. Each chapter deals with a particular subject and
references other chapters or DB2 manuals when appropriate. In short, the book is designed to optimize
the performance of both planned and ad hoc access, much like DB2!

So turn the page and let's begin our exploration of the inner depths of DB2 together.
All the code for this book can be found electronically on Sams website at
http://www.samspublishing.com. To locate this book, search for it with its ISBN (0672318288).

Preface
Preparing for DB2 Version 6

DB2 Version 6 was officially released in June 1999. This new release includes many new and exciting
features, including large objects, triggers, user-defined functions, user-defined data types, and more.
However, the item that is most important for every DB2 shop to understand is what is not in DB2 V6. For the
first time, IBM has removed features from DB2. As such, your organization must prepare its DB2 subsystems
for V6 by removing the soon-to-be-unsupported features from your installation.

Let's examine each of the features that will be removed as of DB2 V6.
Type 1 Indexes

Prior to DB2 Version 6 there were two types of indexes available to DB2: type 1 and type 2. Type 2 indexes
were introduced with DB2 Version 4 and should be the standard index type implemented in your shop. Even
prior to V6, most organizations favored creating type 2 indexes over type 1 indexes because they provide the
following benefits:

 Eliminate index locking (the predominant cause of contention in most pre-V4 DB2
applications).

 Type 2 indexes do not use index subpages.
 Type 2 indexes are the only type supported for ASCII encoded tables.
 Many newer DB2 features cannot be used unless type 2 indexes are used; these

features include row level locking, data sharing, full partition independence,
uncommitted reads (ISOLATION(UR)), UNIQUE WHERE NOT NULL, and CPU and
Sysplex parallelism.

As of DB2 V6, type 1 indexes will no longer be supported by DB2. All of your shop's indexes must be
type 2 before migrating to DB2 V6. It is wise to begin this migration as soon as possible because of the
benefits outlined earlier. If you are on DB2 V3 or an earlier release, you cannot implement type 2
indexes because they are not supported. In that case, you should move to DB2 V4 or a later release as
soon as possible to begin migrating your indexes to type 2 in preparation for DB2 V6.

 - 9 -

To find all type 1 indexes in your DB2 subsystems, issue the following SQL statement:
SELECT CREATOR, NAME
FROM SYSIBM.SYSINDEXES
WHERE INDEXTYPE = ' ';
For DB2 V4 and V5 subsystems, type 1 indexes are still supported. However, you should convert to
type 2 indexes as soon as possible because of the benefits they provide. Additionally, you can set the
DSNZPARM parameter DEFIXTP=2 to make type 2 indexes the default index type.
Shared Read Only Data

Shared read only data (SROD) was provided as a new feature of DB2 in Version 2.3. SROD provided a way
for the same DB2 database to be read by multiple DB2 subsystems without implementing distributed data or
Sysplex data sharing. However, the shared object must be started ACCESS(RO), and all data access is read
only. When the data needs to be updated, only one of the subsystems, the one marked as the owner, can
update the data.

SROD is complex to implement, limited in functionality, and not frequently implemented. Subsequent
functionality, such as data sharing and more functional distributed data support, has supplanted the
need for SROD capability. As of DB2 V6, SROD support is removed. To support SROD-like
functionality, you will need to convert to data distribution or data sharing.

To find all databases defined as shared read only, execute the following SQL statement:
SELECT NAME, BPOOL, ROSHARE
FROM SYSIBM.SYSDATABASE
WHERE ROSHARE IN ('O', 'R');

RECOVER INDEX

Through DB2 V5, the RECOVER INDEX utility is used to re-create indexes from current data. RECOVER
INDEX scans the table on which the index is based and regenerates the index based on the actual data.
Indexes are always recovered from actual table data, not from image copy and log data.

DB2 Version 6 changes the functionality of the RECOVER INDEX utility changes. Instead of rebuilding
indexes from the current data, RECOVER INDEX will, instead, actually recover the index data by reading
an image copy of the index data set. So, with DB2 V6, you can use the COPY utility to make backups of
DB2 indexes and the RECOVER utility to restore them.
To provide equivalent functionality for re-creating an index from the current data, IBM provides a new
utility called REBUILD INDEX. The REBUILD INDEX utility works exactly like RECOVER INDEX used
to.
Organizations should begin changing all of their current RECOVER INDEX jobs to use REBUILD INDEX
syntax instead. The REBUILD INDEX syntax is available in DB2 V5 and V4 (with PTF PQ09842) and
will work exactly like RECOVER INDEX. After you migrate to DB2 V6, the RECOVER INDEX utility will
cease to function if the proper index backup copies are not available to use during recovery.

Host Variables Without Colons

All DB2 programmers should know that host variables used in SQL statements in a program should be
preceded by a colon. So, if a host variable is named HV, it should be coded in the SQL statement as :HV.
However, most programmers do not know that through V5, DB2 programs tolerate host variables that are not
preceded by a colon. DB2 will spit out a warning message, but will process the SQL containing the offending
host variable. This "feature" is no longer supported as of DB2 V6.

The reason IBM has eliminated this feature is the rising complexity of SQL. It is getting too difficult for
DB2 to differentiate host variables from SQL when it parses the SQL to be prepared for execution. With
all of the new features being added to DB2, the rising complexity of the SQL language will continue
unabated. As such, for DB2 V6 and onward, all host variable must be prefixed with a colon, or the
statement will fail to execute.

This change should not affect many programs because most organizations have DB2 standards that
dictate all host variables must begin with a colon. However, because DB2 has tolerated host variables
without a colon for many years (through DB2 V5), you should inspect all DB2 SQL statements in
application programs to ensure compliance prior to migrating to DB2 V6.

 - 10 -

This is the most difficult problem to find and fix as a result of moving to DB2 Version 6. If you do not fix
the problem prior to migrating to V6, any programs containing offending host variables will fail the next
time they are rebound.

Data Set Passwords

A little-used feature of DB2 is the ability to provide security via data set passwords. Using the DSETPASS key
word of the CREATE TABLESPACE and CREATE INDEX statements, it is possible to password protect DB2
data sets.

This feature disappears with DB2 V6. If you need to protect your DB2 data sets outside of DB2 security,
you can use RACF, ACF2, Top Secret, or whatever security package you have installed at your site to
accomplish this.
To find data sets that are password protected using DSETPASS, issue the following SQL statement:
SELECT 'INDEX ', CREATOR, NAME
FROM SYSIBM.SYSINDEXES
WHERE DSETPASS <> ' '
UNION ALL
SELECT 'TSPACE', DBNAME, NAME
FROM SYSIBM.SYSTABLESPACE
WHERE DSETPASS <> ' '

Stored Procedure Registration

Prior to DB2 Version 6, after coding a stored procedure, you must register information about that stored
procedures in the DB2 System Catalog. This process is in sharp contrast to the manner in which other
database objects are recorded in the system catalog. Typically, when an object is created, DB2 automatically
stores the metadata description of that object in the appropriate DB2 Catalog tables. For example, to create
a new table, the CREATE TABLE statement is issued, and DB2 automatically records the information in
multiple System Catalog tables (SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABLESPACE,
and possibly SYSIBM.SYSFIELDS, SYSIBM.SYSCHECKS, SYSIBM.SYSCHECKDEP, SYSIBM.SYSRELS,
and SYSIBM.SYSFOREIGNKEYS). Because stored procedures were not created within DB2, nor were they
created using DDL, the database administrator had to use SQL INSERT statements to populate the
SYSIBM.SYSPROCEDURES System Catalog table with the metadata for the stored procedure.

The following SQL provides an example of an INSERT to register a stored procedure:
INSERT INTO SYSIBM.SYSPROCEDURES
 (PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE,
 COLLID, LANGUAGE, ASUTIME, STAYRESIDENT,
 IBMREQD, RUNOPTS, PARMLIST, RESULT_SETS,
 WLM_ENV, PGM_TYPE, EXTERNAL_SECURITY,
 COMMIT_ON_RETURN)
 VALUES
 ('PROCNAME', ' ', ' ', 'LOADNAME', ' ',
 'COLL0001', 'COBOL', 0, 'Y',
 'N', ' ', 'NAME CHAR(20) INOUT', 1,
 ' ', 'M', 'N', 'N');
This SQL statement registers a stored procedure written in COBOL and named PROCNAME with a load
module named LOADNAME. It uses a package with a collection ID of COLL0001. Any location can
execute this procedure. The program stays resident and uses the DB2 SPAS (not Workload Manager),
and no limit is set on the amount of time it can execute before being canceled. Furthermore, the stored
procedure uses one input/output parameter, and the parameter cannot be null.
This method of registering stored procedures changes in DB2 V6. Instead of the INSERT statement,
CREATE and ALTER statements are provided for registering stored procedures to the DB2 System
Catalog. Additionally, a new Catalog table named SYSIBM.SYSROUTINES replaces
SYSIBM.SYSPROCEDURES. This new table will store information on triggers, user-defined functions, and

 - 11 -

stored procedures. The metadata for all of these "routines" will be provided to the System Catalog by
means of DDL statements.

A number of organizations have implemented processes for creating and updating stored procedures
that include registration. These processes will need to be modified for DB2 V6. Additionally, if your
organization uses a third-party tool to register or change stored procedure information, be sure that it
will be changed to support the new DB2 V6 DDL syntax.

Other Concerns—DB2 Private Protocol Distributed Data

Distributed data support was added to DB2 as of V2.2. At that point in time, IBM had not yet formulated its
DRDA framework. In DB2 V2.2, distributed unit of work (DUW) capability was provided solely through a
private protocol that did not support any industry standards. As of DB2 V3, both the private protocol DUW
and full DRDA DUW are supported. Private protocol is also referred to as system-directed access, and
DRDA protocol is also referred to as application-directed access.

Application-directed data access is the more powerful of the two options. With application-directed
access, explicit connections are required. Furthermore, application-directed distributed access conforms
to the DRDA standard.

But, DB2 also provides system-directed access to distributed DB2 data. The system-directed access is
less flexible than application-directed access because

 It does not use the open DRDA protocol, but, instead, uses a DB2 only, private
protocol.

 It is viable for DB2-to-DB2 distribution only.
 Connections cannot be explicitly requested, but are implicitly performed when

distributed requests are initiated.

Although system-directed access does not conform to DRDA, it does provide the same levels of
distributed support as application-directed access: remote request, RUW, and DUW. System-directed
access is requested using three-part table names.

As of DB2 V6, three-part names can be used with DRDA. This provides static SQL support for
distributed requests using three-part names. DB2 private protocol distribution is still available with DB2
V6, but IBM has indicated that it will be removed in a future release. As such, consider migrating away
from DB2 private protocol distribution as of V6.

Feature by APAR

Do you have a favorite feature of Version 6 of DB2 for OS/390 that you simply cannot wait to have, but your
shop is at Version 5 and is waiting for several months before implementing DB2 Version 6? What can you
do?

Well, many of the new features announced for V6 are being added to V5 via APARs. An APAR is IBM's
terminology for a program fix. The acronym APAR stands for Authorized Program Analysis Report.

So you might not have to wait until your site has installed V6 to use your favorite new feature. For
example, APAR #PQ15682 allows DB2 utilities to be run as a WLM-managed stored procedure. And
APAR #PQ18543 increases the DSMAX limit to be greater than 10,000. You can check for yourself
what new functionality has been added to DB2 through APARs by going to IBM's Web site. The
following URLs provide the details:

http://www.software.ibm.com/data/db2/os390/v5apar.html
http://techsupport.services.ibm.com/support/s390

Note Because of IBM's new-found propensity for adding new features to older
releases, this book will serve only as a rough guide as to which features are in
which release. The features of DB2 are accurately covered, but each reader will
have to determine which features are active in his shop at any given time. Consult
with your system programmer to determine the version of DB2 your site is running
and which, if any, APARs have been applied.

For example, if this book indicates that a feature is available with DB2 Version 6,
it is possible that IBM has issued an APAR to provide that functionality in prior
releases. Because IBM is providing new functionality with APAR program fixes
and refreshes, it is impossible for a book to keep up-to-date with which feature is

 - 12 -

available in which release.

Synopsis
Version 6 is the first release of DB2 to take features out of the product. As such, organizations must
understand what is being removed, know how to provide similar functionality with other DB2 features, and
develop a plan to migrate away from the non-supported features. To minimize surprises, organizations
should plan their migration strategy well in advance of migrating to DB2 Version 6. The sooner you remove
the old technology, the sooner you can move to the latest and greatest version of DB2 that is available.

Part I: SQL Tools, Tips, and Tricks
Chapter List

Chapter 1: The Magic Words
Chapter 2: Data Manipulation Guidelines
Chapter 3: Using DB2 Functions
Chapter 4: Using DB2 User-Defined Functions and Data Types
Chapter 5: Data Definition Guidelines
Chapter 6: Using DB2 Triggers for Integrity
Chapter 7: Large Objects and Object/Relational Databases
Chapter 8: Miscellaneous Guidelines

Part Overview
Part I provides a bag of SQL tools and tricks that will help you squeeze every bit of performance out of the
SQL code in your DB2 applications.

Chapter 1, "The Magic Words," introduces SQL and provides tools for the SQL practitioner. The
remaining chapters in Part I provide five categories of SQL tricks. Chapter 2, "Data Manipulation
Guidelines," provides a collection of simple suggestions to speed data access and modification; it
suggests tips for both simple and complex SQL statements.
Chapters 3 and 4 cover DB2 functions and how they can be used to convert data from one state to
another. Chapter 3, "Using DB2 Functions," covers the built-in functions, and Chapter 4, "Using DB2
User-Defined Functions and Data Types," discusses how to implement and deploy user-defined
function and user-defined distinct types.
Chapter 5, "Data Definition Guidelines," guides you through the maze of physical parameters that you
must choose when implementing DB2 databases, tablespaces, tables, and indexes with DDL
statements.
Chapters 6 and 7 expand on newer DDL features. Chapter 6, "Using DB2 Triggers for Integrity," covers
DB2's implementation of database triggers, how to implement and deploy them, and techniques for
using them appropriately to create active databases. Chapter 7, "Large Objects and Object/Relational
Databases," covers DB2's large object support including BLOBs, CLOBs, and DBCLOBs and the way in
which they are supported and deployed. This chapter also covers DB2 type extenders and discusses
how large objects can be used in conjunction with other DB2 V6 features for object/relational database
support.
In Chapter 8, "Miscellaneous Guidelines," the "Authorization Guidelines" section provides tips on
effective security implementation. Additionally, the benefits and pitfalls of DB2 view creation and use are
covered in Chapter 8 under "View Guidelines." Finally, Chapter 8 provides general hints (not easily
categorized) that assist you in achieving an optimal DB2 environment.

Chapter 1: The Magic Words
Overview

Once upon a time there was a kingdom called Userville. The people in the kingdom were impatient and
wanted to know everything about everything—they could never get enough information. Life was difficult and
the people were unhappy because data was often lost, and even when it was available, it was often
inaccurate and not easy to access.

The King decided to purchase DB2, an advanced tool for storing and retrieving data that could be
processed by the Users and turned into information. "This," he thought, "should keep the people happy.

 - 13 -

DB2 will solve all my problems." But he soon found out that special knowledge was necessary to make
DB2 work its wonders. Nobody in Userville knew how to use it.

Luckily, a grand Wizard living in a nearby kingdom knew many mystical secrets for retrieving data.
These secrets were a form of magic called SQL. The King of Userville summoned the Wizard, offering
him many great treasures if only he would help the poor Users in Userville.

The Wizard soon arrived, determined to please. Armed with nothing more than SQL and a smile, the
Wizard strode to the terminal and uttered the magic words:
SELECT E.EMPNO, E.EMPNAME, D.DEPTNO, D.DEPTNAME
FROM DSN8610.DEPT D,
 DSN8610.EMP E
WHERE E.WORKDEPT = D.DEPTNO

A crowd gathered and applauded as the desired information began pumping out of the terminal. "More,
more," shouted the data-starved masses. The Wizard gazed into the screen, and with amazing speed
effortlessly produced report after report. The King was overheard to say, "You know, this is just too
good to be true!" Everybody was happy. The Users had their share of information, the King had a
peaceful kingdom, and the Wizard had his treasures and the respect of the Users.

For many months, the Users were satisfied with the magic of the great Wizard. Then, one day, the
Wizard disappeared…in a jet to the West Coast for 130 grand a year. The people of the kingdom began
to worry. "How will we survive without the magic of the Wizard? Will we have to live, once again, without
our precious information?" The Wizard's apprentice tried to silence the crowd by using his magic, but it
wasn't the same. The information was still there, but it wasn't coming fast enough or as effortlessly. The
apprentice was not yet as skilled as the great Wizard who had abandoned the kingdom. But, as luck
would have it, one day he stumbled upon the great Wizard's diary. He quickly absorbed every page and
soon was invoking the Wizard's magic words. And all was well again.

Well, life is not always that simple. Departing Wizards do not often leave behind documentation of their
secrets. The first part of this book can be used as a "Wizard's diary" for efficient SQL. This chapter is an
overview of SQL, not from a syntactic viewpoint, but from a functional viewpoint. This chapter is not
intended to teach SQL, but to provide a framework for the advanced issues discussed in the remainder
of this text. This framework delineates the differences between SQL and procedural languages and
outlines the components and types of SQL. Chapters 2 through 4 delve into the performance and
administrative issues surrounding the effective implementation of SQL for DB2.

So continue and take the next step toward becoming a DB2 Wizard…

An Overview of SQL
Structured Query Language, better known as SQL (and pronounced "sequel" or "ess-cue-el"), is a powerful
tool for manipulating data. It is the de facto standard query language for relational database management
systems (RDBMSs) and is used not just by DB2, but also by the other leading RDBMS products such as
Oracle, Sybase, Informix, and Microsoft SQL Server. Indeed, every relational database management
system—and many nonrelational DBMS products—provide support for SQL. Why is this so? What benefits
are accrued by using SQL rather than some other language?

There are many reasons. Foremost is that SQL is a high-level language that provides a greater degree
of abstraction than do procedural languages. Third-generation languages (3GLs), such as COBOL, and
older fourth-generation languages (4GLs), such as FOCUS, require that the programmer navigate data
structures. Program logic must be coded to proceed record-by-record through the data stores in an
order determined by the application programmer or systems analyst. This information is encoded in the
high-level language and is difficult to change after it has been programmed.
SQL, on the other hand, is fashioned so that the programmer can specify what data is needed but
cannot specify how to retrieve it. SQL is coded without embedded data-navigational instructions. The
DBMS analyzes SQL and formulates data-navigational instructions "behind the scenes." These data-
navigational instructions are called access paths. By forcing the DBMS to determine the optimal access
path to the data, a heavy burden is removed from the programmer. In addition, the database can have a
better understanding of the state of the data it stores, and thereby can produce a more efficient and
dynamic access path to the data. The result is that SQL, used properly, provides a quicker application
development and prototyping environment than is available with corresponding high-level languages.

 - 14 -

Another feature of SQL is that it is not merely a query language. The same language used to query data
is used also to define data structures, control access to the data, and insert, modify, and delete
occurrences of the data. This consolidation of functions into a single language eases communication
between different types of users. DBAs, systems programmers, application programmers, systems
analysts, systems designers, and end users all speak a common language: SQL. When all the
participants in a project are speaking the same language, a synergy is created that can reduce overall
system-development time.

Arguably, though, the single most important feature of SQL that has solidified its success is its capability
to retrieve data easily using English-like syntax. It is much easier to understand
SELECT LASTNAME
FROM EMP
WHERE EMPNO = '000010';

than it is to understand pages and pages of COBOL, C, or PL/I source code or the archaic instructions
of Assembler. Because SQL programming instructions are easier to understand, they are easier also to
learn and maintain—thereby making users and programmers more productive in a shorter period of
time.

The remainder of this chapter focuses more fully on the features and components of SQL touched on in
this overview.

The Nature of SQL
SQL is, by nature, a flexible creature. It uses a free-form structure that gives the user the ability to develop
SQL statements in a way best suited to the given user. Each SQL request is parsed by the DBMS before
execution to check for proper syntax and to optimize the request. Therefore, SQL statements do not need to
start in any given column and can be strung together on one line or broken apart on several lines. For
example, the following SQL statement:

SELECT * FROM DSN8610.EMP WHERE SALARY < 25000;

is equivalent to this SQL statement:
SELECT *
FROM DSN8610.EMP
WHERE SALARY < 25000;

Another flexible feature of SQL is that a single request can be formulated in a number of different and
functionally equivalent ways. This flexibility is possible because SQL provides the ability to code a single
feature in several ways. One example of this SQL capability is that it can join tables or nest queries. A
nested query always can be converted to an equivalent join. Other examples of this flexibility can be
seen in the vast array of functions and predicates. Examples of features with equivalent functionality are

 BETWEEN versus <= / >=
 IN versus a series of predicates tied together with AND
 INNER JOIN versus tables strung together in the FROM clause separated by

commas
 OUTER JOIN versus a simple SELECT, with a UNION, and a correlated subselect
 CASE expressions versus complex UNION ALL statements
 Single-column function versus multiple-column functions (for example, AVG versus

SUM and COUNT)

This flexibility exhibited by SQL is not always desirable as different but equivalent SQL formulations can
result in extremely differing performance. The ramifications of this flexibility are discussed in the next
few chapters, which provide guidelines for developing efficient SQL.
As mentioned, SQL specifies what data to retrieve or manipulate, but does not specify how you
accomplish these tasks. This keeps SQL intrinsically simplistic. If you can remember the set-at-a-time
orientation of a relational database, you will begin to grasp the essence and nature of SQL. The
capability to act on a set of data coupled with the lack of need for establishing how to retrieve and
manipulate data defines SQL as a non-procedural language.

 - 15 -

A procedural language is based, appropriately enough, on procedures. One procedure is coded to
retrieve data record-by-record. Another procedure is coded to calculate percentages based on the
retrieved data. More procedures are coded to modify the data, rewrite the data, check for errors, and so
on. A controlling procedure then ties together the other procedures and invokes them in a specific and
non-changing order. COBOL is a good example of a procedural language.

SQL is a non-procedural language. A single statement can take the place of a series of procedures.
Again, this is possible because SQL uses set-level processing and DB2 optimizes the query to
determine the data-navigation logic. Sometimes one or two SQL statements can accomplish what entire
procedural programs were required to do.

Note Several major RDBMS vendors have extended SQL to support procedural logic,
but until very recently, DB2 provided procedural language support through
traditional 3GL programs. IBM now provides a stored procedure language for
DB2, but this was not a core feature of Version 6 of DB2 for OS/390.
Microsoft SQL Server provides procedural support in Transact-SQL; Oracle in
PL/SQL. Procedural SQL will look familiar to anyone who has ever written any
type of SQL or coded using any type of programming language. Typically,
procedural SQL dialects contain constructs to support looping (while), exiting
(return), branching (goto), conditional processing (if...then...else), blocking
(begin...end), and variable definition and usage. Procedural extensions enable
more of the application to be written using only SQL.

SQL was extended to enable stored procedures and triggers to be written and
deployed using SQL alone. Up through Version 5, DB2 avoided procedural SQL
requiring that stored procedures be written using a 3GL or 4GL. DB2 triggers are
supported using SQL extensions and calls to stored procedures.
With Version 6, and through a retrofit to Version 5, IBM provides a procedural
language based on the SQL standard known as PSM, or Persistent Stored
Modules. DB2 supports a subset of the ANSI standard version of SQL/PSM. More
details on PSM and DB2 can be found in Chapter 13, "Using DB2 Stored
Procedures."

Set-at-a-Time Processing
Every SQL manipulation statement operates on a table and results in another table. All operations native to
SQL, therefore, are performed at a set level. One retrieval statement can return multiple rows; one
modification statement can modify multiple rows. This feature of relational databases is called relational
closure. Relational closure is the major reason that relational databases such as DB2 generally are easier to
maintain and query.

Refer to Figure 1.1 for a further explanation of relational closure. As the figure shows, a user of DB2
issues the SQL request, which is sent to the DBMS. (This request may need to access one or many
DB2 tables.) The DBMS analyzes the SQL request and determines which pieces of information are
necessary to resolve the user's request. This information then is presented to the user as a table: one or
more columns in zero, one, or many rows. This is important. Set-level processing means that a set
always is used for input and a set always is returned as output. Sometimes the set is empty or consists
of only one row or column. This is appropriate and does not violate the rules of set-level processing.
The relational model and set-level processing are based on the laws of the mathematics of set theory,
which permits empty or single-valued sets.

Figure 1.1: Relational closure.

Contrast the set-at-a-time processing of SQL with record-at-a-time processing as depicted in Figure 1.2.
Record-level processing requires multiple reads to satisfy a request, which is hard-coded data
navigation. Set-level processing, on the other hand, satisfies the same request with a single, non-
navigational statement. Because fewer distinct operations (read, write, and so on) are required, set-
level processing is simpler to implement.

 - 16 -

Figure 1.2: Record-at-a-time processing versus set-at-a-time processing.

The power of SQL becomes increasingly evident when you compare SQL to COBOL (and flat files to
relational databases). Consider the following SQL statement:
UPDATE DSN8610.EMP
SET BONUS = 1000
WHERE EMPNO = '000340';

This single SQL statement accomplishes the same job as the following, comparably complex COBOL
psuedocode program:
Must set up IDENTIFICATION and
 ENVIRONMENT DIVISIONS.
DATA DIVISION.
FILE-SECTION.
 Must define input and output files.
WORKING-STORAGE SECTION.
 Must declare all necessary variables.
01 EMPLOYEE-LAYOUT.
 05 EMPNO PIC X(6).
 05 FIRSTNME PIC X(12).
 05 MIDINIT PIC X.
 05 LASTNAME PIC X(15).
 05 WORKDEPT PIC X(3).
 05 PHONENO PIC X(4).
 05 HIREDATE PIC X(10).
 05 JOB PIC X(8).
 05 EDLEVEL PIC S9(4) COMP.
 05 SEX PIC X.
 05 BIRTHDATE PIC X(10).
 05 SALARY PIC S9(7)V99 COMP-3.

 - 17 -

 05 BONUS PIC S9(7)V99 COMP-3.
 05 COMM PIC S9(7)V99 COMP-3.
77 EOF-FLAG PIC X VALUE 'N'.
PROCEDURE DIVISION.
MAIN-PARAGRAPH.
 PERFORM OPEN-FILES.
 PERFORM PROCESS-UPDATE
 UNTIL EOF-FLAG = 'Y'.
 PERFORM CLOSE-FILES.
 STOP RUN.
OPEN-FILES.
 OPEN INPUT INPUT-DATASET.
 OPEN OUTPUT OUTPUT-DATASET.
PROCESS-UPDATE.
 READ INPUT-DATASET
 INTO EMPLOYEE-LAYOUT
 AT END MOVE 'Y' TO EOF-FLAG.
 IF EOF-FLAG = 'Y'
 GO TO PROCESS-UPDATE-EXIT.
 IF EMPNO = '000340'
 MOVE +1000.00 TO BONUS.
 WRITE OUTPUT-DATASET
 FROM EMPLOYEE-LAYOUT.
PROCESS-UPDATE-EXIT.
 EXIT.
CLOSE-FILES.
 CLOSE INPUT-DATASET
 OUTPUT-DATASET.

Indeed, many required lines in the COBOL program have been eliminated. Both the SQL statement and
the sample COBOL program change the bonus of employee number 000340 to $1,000.00. The SQL
example obviously is easier to code and maintain because of the limited size of the statement and the
set-level processing inherent in SQL. The COBOL example, though straightforward to a COBOL
programmer, is more difficult for most beginning users to code and understand.

Notes Set-level processing differs from record-level processing because:
 All operations act on a complete set of rows.
 Fewer operations are necessary to retrieve the desired information.
 Data manipulation and retrieval instructions are simpler.

The set-level processing capabilities of SQL have an immediate and favorable impact on DB2's
capability to access and modify data. For example, a single SQL SELECT statement can produce an
entire report. With the assistance of a query-formatting tool, such as QMF, a general SQL processor,
such as DSNTEP2, or one of many Windows-based query tools, such as Crystal Reports or Forest &
Trees, hours of coding report programs can be eliminated.
In addition, all of the data-modification capabilities of DB2 act on a set of data, not row by row. So a
single UPDATE or DELETE statement can impact zero, one, or many rows. For example, consider the
following statement:
UPDATE DSN8510.PROJACT
 SET PROJNO = '222222'
WHERE PROJNO = '111111';

 - 18 -

This statement will change the PROJNO for every row where the PROJNO is currently set to the value
111111. The value will be changed whether there is only 1 row that applies or 1 million rows. If the
WHERE clause were not specified, every row would be changed to the value 222222, regardless of its
current value.
The set-level benefits of SQL provide great power to the SQL UPDATE and DELETE statements.
Because UPDATE and DELETE can act on sets of data, a single SQL statement can be used to update
or delete all rows meeting certain conditions. Great care must be taken always to provide the
appropriate WHERE clause or more data may be changed than desired.
Another benefit of the set-level processing capabilities of DB2 is that SQL can append rows to one table
based on data retrieved from another table. The following statement assigns every employee of
department E21 to activity 1 of project 222222.
INSERT
INTO DSN8610.EMPPROJACT
 (SELECT EMPNO, '222222', 1, 0.10,
 '1991-12-30', '1991-12-31'
 FROM DSN8610.EMP
 WHERE WORKDEPT = 'E21');

Types of SQL
SQL is many things to many people. The flexibility of SQL can make it difficult to categorize. Definitive SQL
types or categories, however, can be used to group the components of SQL.

Perhaps the most obvious categorization of SQL is based on its functionality. SQL can be used to
control, define, and manipulate data, as follows:

 The Data Control Language (DCL) provides the control statements that govern data
security with the GRANT and REVOKE verbs.

 The Data Definition Language (DDL) creates and maintains the physical data
structure with the CREATE, DROP, and ALTER SQL verbs.

 The Data Manipulation Language (DML) accesses and modifies data with the
SELECT, INSERT, DELETE, and UPDATE verbs.

Figure 1.3 depicts this breakdown of SQL statements by functionality.

Figure 1.3: SQL statement types.

Another way to categorize SQL is by execution type. SQL can be planned and executed as embedded
SQL in an application program, or it can be unplanned (ad hoc). The execution of planned SQL usually
is referred to as a production environment. The production environment is stable and well-defined, and
can be planned before the execution of the SQL. This approach to data processing is the traditional
one, and SQL fits into it nicely. Batch processing, on-line transaction processing (OLTP), canned
reporting, and administrative jobs typify the common production SQL environment. Typical applications
in the production environment include accounts receivable, order entry, and inventory control systems.

 - 19 -

Ad hoc SQL, on the other hand, usually is undefined until an immediate need is identified. Upon
identification, an unplanned or, at best, hastily planned query is composed and executed. Decision-
support processing, data warehouse queries, on-line analytical processing (OLAP), power user queries,
new query testing, and critical unplanned reporting needs typify the common ad hoc SQL environment.
The ad hoc environment is just as critical, if not more so in some cases, to the ongoing business of the
organization as the production environment.

Another type of SQL can be thought of as existential SQL. SQL has an existence that relies on the
vehicle that maintains and supports it. SQL statements can exist either embedded in an application
program or as stand-alone entities.
Yet another way to categorize SQL is according to its dynamism. This fourth and final category is
probably the most difficult to define, and provides the greatest flexibility of all the categories. SQL can
be either static or dynamic. Static SQL is embedded in an application program written in a high-level
language. Dynamic SQL is either typed in at a terminal for real-time execution or constructed in an
application program's algorithms at runtime. This complex type of SQL is examined in greater detail
later in this chapter (and in Chapter 10, "Dynamic SQL Programming").

As you can see, categorization of SQL is not straightforward. Four categories define the nature of SQL.
Every SQL statement belongs to a component in every one of these categories. For example, a given
SQL statement can be used to manipulate data functionally in a planned production environment
embedded in a COBOL program coded as static SQL. Or, it could be used to control data security in an
ad hoc QMF environment as stand-alone dynamic SQL. At any rate, every SQL statement has four
defining features, as shown in the following groupings:
Functionality

DCL Control
of data
and
security

DDL Data
definition

DML Data
manipula
tion

Execution Type

Production Planned

Ad hoc Unplanned
Existence

Embedded Requires
a
program

Stand-alone No
program
used

Dynamism

Dynamic SQL Changeable
at runtime

Static SQL Unchangeable
at runtime

SQL Tools of the Trade

SQL, as a relational data sublanguage, must support certain basic functions. These functions, or tools of the
trade, implement the basic features of set-theory functions. You must have a basic understanding of the
capabilities of SQL before you can explore the deeper issues of efficiency, development environments,
performance, and tuning.

 - 20 -

The basic functions of SQL are described in the following sections. Use these sections as a refresher
course; they are not meant to teach SQL syntax or provide in-depth coverage of its use.

Selection and Projection
The selection operation retrieves a specified subset of rows from a DB2 table. You use predicates in a
WHERE clause to specify the search criteria. The SQL implementation for selection is shown in the following
example:

SELECT *
FROM DSN8610.PROJ
WHERE DEPTNO = 'D01';
To retrieve all rows from the PROJ table, simply eliminate the WHERE clause from the statement.
The projection operation retrieves a specified subset of columns from a given DB2 table. A DB2 query
can provide a list of column names to limit the columns that are retrieved. Projection retrieves all of the
rows but only the specified columns. The following statement illustrates the SQL implementation for
projection:
SELECT DEPTNO, PROJNO, PROJNAME
FROM DSN8610.PROJ;

Simply, the selection operation determines which rows are retrieved, and the projection operation
determines which columns are retrieved.
The SQL SELECT statement is used to implement both the selection and projection operations. In most
cases, queries combine selection and projection to retrieve data. The following SQL statement
combines the selection and projection operations of the preceding two examples:
SELECT DEPTNO, PROJNO, PROJNAME
FROM DSN8610.PROJ
WHERE DEPTNO = 'D01';

Joins and Subqueries
The capability to query data from multiple tables using a single SQL statement is one of the nicer features of
DB2. The more tables involved in a SELECT statement, however, the more complex the SQL. Complex SQL
statements sometimes cause confusion. Therefore, a basic understanding of the multiple table capabilities of
SQL is essential for all users.

Joining Tables
The capability of DB2 to combine data from multiple tables is called joining. A standard join, also referred to
as an inner join, matches the data from two or more tables, based on the values of one or more columns in
each table. All matches are combined, creating a resulting row that is the concatenation of the columns from
each table where the specified columns match.

The most common method of joining DB2 tables requires SQL SELECT statements to have the
following:

 A string of table names separated by commas in the FROM clause
 A WHERE clause comparing the value of a column in one of the joined tables to the

value of a column in the other joined table (this is usually an equality comparison)

For example, to query employees and their department names, the EMP table is joined to the DEPT
table as follows:
SELECT EMPNO, LASTNAME, DEPTNO, DEPTNAME
FROM DSN8610.EMP,
 DSN8610.DEPT
WHERE WORKDEPT = DEPTNO;
This method of coding joins, however, has confused many novice SQL programmers. No join verb need
be coded explicitly in the SQL SELECT statement to implement table joining. A join can be specified by
the presence of more than one table in the FROM clause of the SELECT statement. It is sometimes
difficult to grasp the concept of joining tables without a specific JOIN keyword being used in the SQL
join statement.

 - 21 -

DB2 Version 4 introduced the JOIN keyword and an alternate method of coding joins. The following two
join statements are equivalent to the previous join statement:
SELECT EMPNO, LASTNAME, DEPTNO, DEPTNAME
FROM DSN8610.EMP JOIN DSN8610.DEPT
ON WORKDEPT = DEPTNO;

or:
SELECT EMPNO, LASTNAME, DEPTNO, DEPTNAME
FROM DSN8610.EMP INNER JOIN DSN8610.DEPT
ON WORKDEPT = DEPTNO;
Note that the comma delimited list of tables is replaced with the keyword JOIN or INNER JOIN. The
INNER keyword is used to differentiate a standard, or inner, join from an outer join. Outer joins will be
discussed in a moment. The INNER keyword is implicit and will be assumed if not explicitly coded.
Likewise, note that using the JOIN keyword requires the join clause to be coded specifying ON instead
of WHERE. Additional local predicates can be applied with an additional WHERE clause if so desired.

Note Although both types of joins are supported by DB2, consider adopting a SQL
coding standard using the explicit [INNER] JOIN keyword. Using the JOIN
keyword makes it more difficult to forget to code the join columns (because it
requires the special ON clause). Furthermore, when using the JOIN keyword it is
easier for novices to learn and effectively code join statements.

When coding joins, remember to keep in mind that SQL is a set-level language. If the value of the data
in the columns being matched is not unique, multiple matches might be found for each row in each
table. Even if the data is unique, many rows could still match if the operation specified in the join criteria
is not an equality operation. For example:
SELECT EMPNO, LASTNAME
FROM DSN8610.EMP INNER JOIN
 DSN8610.DEPT
ON WORKDEPT > DEPTNO;

(Admittedly, this example is contrived.) Many rows will match, and could result in the join returning more
rows than either table originally contained.

You do not have to join tables based only on equal values. Matching can be achieved with any of the
following operations:
= Equal to
> Greater than
>= Greater than

or equal to
<> Not equal to
< Less than
<= Less than or

equal to

Take care to ensure that the proper join criteria are specified for the columns you are joining. Base the
predicates of a join on columns drawn from the same logical domain. For example, consider the
following join:
SELECT EMPNO, LASTNAME, DEPTNO, DEPTNAME
FROM DSN8610.EMP JOIN
 DSN8610.DEPT
ON WORKDEPT = DEPTNO;
This is a good example of a join. The employee table is joined to the department table using a logical
department code that exists physically as a column in both tables (WORKDEPT in the employee table and

 - 22 -

DEPTNO in the department table). Both these columns are pooled from the same domain: the set of valid
departments for the organization. Remember, there are two ways of coding join statements and this join
statement could alternately be coded as follows:
SELECT EMPNO, LASTNAME, DEPTNO, DEPTNAME
FROM DSN8610.EMP,
 DSN8610.DEPT
WHERE WORKDEPT = DEPTNO;
You must consider the possible size of the results table before deciding to join tables. Generally, the
more data that must be accessed to accomplish the join, the less efficient the join will be. Note that this
does not necessarily mean that joining larger tables will result in poorer performance than joining
smaller tables. It all depends on the formulation of the query, the design of the database, the amount of
data that must be accessed, the organization of the data, and the amount of data that will be returned
as the result set for the query. Guidelines for the efficient coding of SQL joins are presented in Chapter
2, "Data Manipulation Guidelines."

More than two tables can be joined in a single SQL statement. As of Version 6, up to 225 DB2 tables
can be joined in one SQL statement. Prior to Version 6 the limit was 15. It is not usually practical to
code such a large number of tables into a single statement. From both a performance and a
maintainability standpoint, the limit is probably about a dozen tables. But it is possible to code very large
SQL statements that access hundreds of tables.
The order of magnitude for the join is determined by the number of tables specified in the FROM clause;
or by counting the number of JOIN keywords and adding 1. For example, the following join is a three-
table join because three tables—EMP, DEPT, and PROJ—are specified:
SELECT P.PROJNO, E.EMPNO, E.LASTNAME, D.DEPTNAME
FROM DSN8610.EMP E,
 DSN8610.DEPT D,
 DSN8610.PROJ P
WHERE E.EMPNO = P.RESPEMP
AND D.DEPTNO = E.WORKDEPT;
This example of an equijoin involves three tables. DB2 matches rows in the EMP table with rows in the
PROJ table where the two rows match on employee number. Likewise, rows in the EMP table are
matched with rows in the DEPT table where the department number is the same. This example
produces a results table listing each project number along with information about the employee
responsible for the project including his or her department name.
The following is an equivalent formulation of the prior statement using the [INNER] JOIN keyword
(and it would perform similarly):
SELECT P.PROJNO, E.EMPNO, E.LASTNAME, D.DEPTNAME
FROM (DSN8610.EMP E JOIN
 DSN8610.DEPT D
ON D.DEPTNO = E.WORKDEPT) JOIN
 DSN8610.PROJ P
ON E.EMPNO = P.RESPEMP;
The join criteria are specified in the ON clause immediately following the table join specification. Contrast
this with the looser, comma-delimited formulation. It is much easier to determine which predicate applies
to which join specification when the INNER JOIN syntax is used. To determine the magnitude of the
join in this example count the JOIN keywords and add 1. There are two JOIN keywords specified, so
the magnitude of the join is 2+1, or 3.

Tables can be joined to themselves also. Consider the following query:
SELECT A.DEPTNO, A.DEPTNAME, A.ADMRDEPT, B.DEPTNAME
FROM DSN8610.DEPT A,
 DSN8610.DEPT B
WHERE A.ADMRDEPT = B.DEPTNO;

 - 23 -

This join returns a listing of all department numbers and names, along with the associated department
number and name to which the department reports. Self-referencing lists such as this one would not be
possible without the capability to join a table to itself.
Joins are possible because all data relationships in DB2 are defined by values in columns instead of by
other methods (such as pointers). DB2 can check for matches based solely on the data in the columns
specified in the predicates of the WHERE clause in the SQL join statement. When coding a join, you must
take extra care to code a proper matching predicate for each table being joined. Failure to do so can
result in a Cartesian product, the subject of the next section.

Cartesian Products
A Cartesian product is the result of a join that does not specify matching columns. Consider the following
query:

SELECT *
FROM DSN8610.DEPT,
 DSN8610.EMP;
This query lacks a WHERE clause. To satisfy the query DB2 combines every row from the DEPT table
with every row in the EMP table. An example of the output from this statement follows:
DEPTNO DEPTNAME MGRNO ADMRDEPT EMPNO FIRSTNAME MIDINIT LASTNAME
WORKDEPT ...
A00 SPIFFY CO. 000010 A00 000010 CHRISTINE I HAAS A00 ...
A00 SPIFFY CO. 000010 A00 000020 MICHAEL L THOMPSON B01 ...
A00 SPIFFY CO. 000010 A00 000030 SALLY A KWAN C01 ...
A00 SPIFFY CO. 000010 A00 000040 JOHN B GEYER E01 ...
A00 SPIFFY CO. 000010 A00 000340 JASON R GOUNOT E21 ...
B01 PLANNING 000020 A00 000010 CHRISTINE I HAAS A00 ...
B01 PLANNING 000020 A00 000020 MICHAEL L THOMPSON B01 ...
B01 PLANNING 000020 A00 000030 SALLY A KWAN C01 ...
B01 PLANNING 000020 A00 000040 JOHN B GEYER E01 ...
E21 SOFTWARE SUP. 000100 E01 000340 JASON R GOUNOT E21 ...
All the columns of the DEPT table and all the columns of the EMP table are included in the Cartesian
product. For brevity, the example output does not show all of the columns of the EMP table. The output
shows the first four rows of the output followed by a break and then additional rows and breaks. A break
indicates data that is missing but is irrelevant for this discussion.
By analyzing this output, you can see some basic concepts about the Cartesian product. For example,
the first row looks okay. Christine I. Haas works in department A00, and the information for department
A00 is reported along with her employee information. This is a coincidence. Notice the other rows of the
output. In each instance, the DEPTNO does not match the WORKDEPT because we did not specify this in
the join statement.

When a table with 1,000 rows is joined as a Cartesian product with a table having 100 rows, the result is
1,000 * 100 rows, or 100,000 rows. These 100,000 rows, however, contain no more information than the
original two tables because no criteria were specified for combining the table. In addition to containing
no new information, the result of a Cartesian product is more difficult to understand because the
information is now jumbled, whereas before it existed in two separate tables. In general, avoid Cartesian
products.

Note Although Cartesian products should be avoided in practice, there are certain
circumstances where DB2 can use Cartesian products "behind the scenes" for
practical benefit. These circumstances are always the result of DB2 determining a
better access path using Cartesian products. You, as a user, should never
attempt to create and execute a Cartesian product because the performance is
usually atrocious and no additional information is gained by running such a query.
The DB2 optimizer may determine that a Cartesian product should be performed
for a portion of a join. This may happen in data warehousing queries where a star
join is used to build a Cartesian product for the dimension tables. The result of the
dimension table Cartesian join is then joined with the fact table. Because the fact
table is usually many times larger than the dimension tables, processing the fact

 - 24 -

table only once can significantly improve performance. For more information on
star joins consult Chapter 42 "Data Warehousing With DB2."

Subqueries
SQL provides the capability to nest SELECT statements. When one or more SELECT statements are nested
in another SELECT statement, the query is referred to as a subquery. (Many SQL and DB2 users refer to
subqueries as nested SELECTs.) A subquery enables a user to base the search criteria of one SELECT
statement on the results of another SELECT statement.

Although you can formulate subqueries in different fashions, they typically are expressed as one
SELECT statement connected to another in one of four ways:

 Using the IN (or NOT IN) predicate
 Using the EXISTS (or NOT EXISTS) predicate
 Specifying the equality predicate (=) or the inequality predicate (<>)
 Specifying a predicate using a comparative operator (<, <=, >, or >=)

The following SELECT statement is an example of a SQL subquery:
SELECT DEPTNAME
FROM DSN8610.DEPT
WHERE DEPTNO IN
 (SELECT WORKDEPT
 FROM DSN8610.EMP
 WHERE SALARY > 50000);
DB2 processes this SQL statement by first evaluating the nested SELECT statement to retrieve all
WORKDEPTs where the SALARY is over 50,000. It then matches rows in the DEPT table that correspond
to the WORKDEPT values retrieved by the nested SELECT. This match produces a results table that lists
the name of all departments where any employee earns more than $50000. Of course, if more than one
employee earns over $50000 per department, the same DEPTNAME may be listed multiple times in the
results set. To eliminate duplicates, the DISTINCT clause must be used, as in the following:
SELECT DISTINCT DEPTNAME
FROM DSN8610.DEPT
WHERE DEPTNO IN
 (SELECT WORKDEPT
 FROM DSN8610.EMP
 WHERE SALARY > 50000);
The preceding statements use the IN operator to connect SELECT statements. The following example
shows an alternative way of nesting SELECT statements, by means of an equality predicate:
SELECT EMPNO, LASTNAME
FROM DSN8610.EMP
WHERE WORKDEPT =
 (SELECT DEPTNO
 FROM DSN8610.DEPT
 WHERE DEPTNAME = 'PLANNING');
DB2 processes this SQL statement by retrieving the proper DEPTNO with the nested SELECT statement
that is coded to search for the PLANNING department. It then matches rows in the EMP table that
correspond to the DEPTNO of the PLANNING department. This match produces a results table that lists
all employees in the PLANNING department. Of course, it also assumes that there is only one
PLANNING department. If there were more, the SQL statement would fail because the nested SELECT
statement can only return a single row when the = predicate is used.
The capability to express retrieval criteria on nested SELECT statements gives the user of SQL
additional flexibility for querying multiple tables. A specialized form of subquery, called a correlated
subquery, provides a further level of flexibility by permitting the nested SELECT statement to refer back
to columns in previous SELECT statements, as shown in the following:
SELECT A.WORKDEPT, A.EMPNO, A.FIRSTNME, A.MIDINIT,

 - 25 -

 A.LASTNAME, A.SALARY
FROM DSN8610.EMP A
WHERE A.SALARY >
 (SELECT AVG(B.SALARY)
 FROM DSN8610.EMP B
 WHERE A.WORKDEPT = B.WORKDEPT)
ORDER BY A.WORKDEPT, A.EMPNO;
Look closely at this correlated subquery. It differs from a normal subquery in that the nested SELECT
statement refers back to the table in the first SELECT statement. The preceding query returns
information for all employees who earn a SALARY greater than the average salary for that employee's
given department. This is accomplished by the correlation of the WORKDEPT column in the nested
SELECT statement to the WORKDEPT column in the first SELECT statement.
The following example illustrates an alternative form of correlated subquery using the EXISTS
predicate:
SELECT A.EMPNO, A.LASTNAME, A.FIRSTNME
FROM DSN8610.EMP A
WHERE EXISTS
 (SELECT '1'
 FROM DSN8610.DEPT B
 WHERE B.DEPTNO = A.WORKDEPT
 AND B.DEPTNAME = 'OPERATIONS');
This query returns the names of all employees who work in the OPERATIONS department.
A non-correlated subquery is processed in bottom-to-top fashion. The bottom-most query is materialized
and, based on the results, the top-most query is resolved. A correlated subquery works in a top-bottom-
top fashion. The top-most query is analyzed, and based on the analysis, the bottom-most query is
initiated. The bottom-most query, however, relies on the top-most query to evaluate its predicate. After
processing for the first instance of the top-most query, therefore, DB2 must return to that query for
another value and repeat the process until the results table is complete.

Both forms of subqueries enable you to base the qualifications of one retrieval on the results of another.

Joins Versus Subqueries
A subquery can be converted to an equivalent join. The concept behind both types of queries is to retrieve
data from multiple tables based on search criteria matching data in the tables.

Consider the following two SELECT statements. The first is a subquery:
SELECT EMPNO, LASTNAME
FROM DSN8610.EMP
WHERE WORKDEPT IN
 (SELECT DEPTNO
 FROM DSN8610.DEPT
 WHERE DEPTNAME = 'PLANNING');
The second SELECT statement is a join:
SELECT EMPNO, LASTNAME
FROM DSN8610.EMP,
 DSN8610.DEPT
WHERE WORKDEPT = DEPTNO
AND DEPTNAME = 'PLANNING';
Both of these queries return the employee numbers and last names of all employees who work in the
PLANNING department.
Let's first discuss the subquery formulation of this request. The list of valid DEPTNOs is retrieved from
the DEPT table for the DEPTNAME of 'PLANNING'. This DEPTNO list then is compared against the

 - 26 -

WORKDEPT column of the EMP table. Employees with a WORKDEPT that matches any DEPTNO are
retrieved.
The join operates in a similar manner. In fact, the DB2 optimizer can be intelligent enough to transform
a subquery into its corresponding join format before optimization; optimization is covered in depth in
Chapter 19, "The Optimizer."

The decision to use a subquery, a correlated subquery, or a join usually is based on performance. In
early releases of DB2, the performance of logically equivalent queries could vary greatly depending
upon whether they were coded as a subquery or a join. With the performance changes made to DB2
from V4 through V6, worrying about the performance of joins and subqueries is usually not worth the
effort.
As a general rule, I suggest using joins over the other two types of multi-table data retrieval. This
provides a consistent base from which to operate. By promoting joins over subqueries, you can meet
the needs of most users and diminish confusion. If you need to squeeze the most performance from a
system, however, try rewriting multi-table data retrieval SQL SELECT statements as both a join and a
subquery. Test the performance of each SQL formulation and use the one that performs best.

Union
The union operation combines two sets of rows into a single result set composed of all the rows in both of
the two original sets. The two original sets must be union-compatible. For union compatibility

 The two sets must contain the same number of columns.
 Each column of the first set must be either the same data type as the corresponding

column of the second set or convertible to the same data type as the corresponding
column of the second set.

In purest set-theory form, the union of two sets contains no duplicates, but DB2 provides the option of
retaining or eliminating duplicates. The UNION verb eliminates duplicates; UNION ALL retains them.
An example SQL statement using UNION follows:
SELECT CREATOR, NAME, 'TABLE '
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'T'
UNION
SELECT CREATOR, NAME, 'VIEW '
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'V'
UNION
SELECT CREATOR, NAME, 'ALIAS '
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'A'
UNION
SELECT CREATOR, NAME, 'SYNONYM'
FROM SYSIBM.SYSSYNONYMS;
This SQL UNION retrieves all the tables, views, aliases, and synonyms in the DB2 Catalog. Notice that
each SELECT statement tied together using the UNION verb has the same number of columns, and
each column has the same data type and length. This statement could be changed to use UNION ALL
instead of UNION because you know that none of the SELECTs will return duplicate rows. (A table
cannot be a view, a view cannot be an alias, and so on.) Because duplicates need not be eliminated,
the UNION ALL construct is usually more efficient than simply using UNION (without ALL).
The ability to use UNION to construct results data is essential to formulating some of the more complex
forms of SQL. This is demonstrated in the next section.
One last comment about unions: When results from two SELECT statements accessing the same table
are combined using UNION, remember that the same result can be achieved using the OR clause.
Moreover, the use of OR is preferable to the use of UNION because the OR formulation:

 Is generally easier for most users to understand
 Tends to out-perform UNION

 - 27 -

There are times when UNION ALL can outperform the OR formulation, but you must make sure that the
OR and UNION ALL return the same results. Duplicates can be returned if the row satisfies both queries
in the UNION ALL, whereas duplicate rows would not be returned with the OR formulation.

Consider the following two queries:
SELECT EMPNO
FROM DSN8610.EMP
WHERE LASTNAME = 'HAAS'
UNION
SELECT EMPNO
FROM DSN8610.EMP
WHERE JOB = 'PRES';

and
SELECT EMPNO
FROM DSN8610.EMP
WHERE LASTNAME = 'HAAS'
OR JOB = 'PRES';
After scrutinizing these queries, you can see that the two statements are equivalent. If the two SELECT
statements were accessing different tables, however, the UNION could not be changed to an equivalent
form using OR.

Note A literal can be used in the UNION query to indicate which predicate was satisfied
for each particular row—for example:
 SELECT EMPNO, 'NAME=HAAS'
 FROM DSN8610.EMP
 WHERE LASTNAME = 'HAAS'
 UNION
 SELECT EMPNO, 'JOB =PRES'
 FROM DSN8610.EMP
 WHERE JOB = 'PRES';
The result set from the query using OR cannot include a literal. However, if rows
exists that satisfy both predicates, the results of the UNION query will not match
the results of the OR query because the literal will cause the duplicates to remain
(when the literal is added, the row is no longer a duplicate).

Outer Join
As discussed previously, when tables are joined, the rows that are returned contain matching values for the
columns specified in the join predicates. Sometimes, however, it is desirable to return both matching and
non-matching rows for one or more of the tables being joined. This is known as an outer join. Prior to Version
4, DB2 did not explicitly support outer joins. Instead, users were forced to accommodate outer join
processing by combining a join and a correlated subquery with the UNION verb.

Before we progress to discussing how to code an outer join, let's first clarify the concept of an outer join.
Suppose that you want a report on the departments in your organization, presented in department
number (DEPTNO) order. This information is in the DEPT sample table. You also want the last name of
the manager of each department. Your first attempt at this request might look like this:
SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, E.LASTNAME
FROM DSN8610.DEPT D,
 DSN8610.EMP E
WHERE D.MGRNO = E.EMPNO;
This example, using an inner join, appears to satisfy your objective. However, if a department does not
have a manager or if a department has been assigned a manager who is not recorded in the EMP table,
your report would not list every department. The predicate D.MGRNO = E.EMPNO is not met for these
types of rows. In addition, a MGRNO is not assigned to the DEVELOPMENT CENTER department in the
DEPT sample table. That department therefore is not listed in the result set for the preceding query.
The following query corrects the problem by using UNION to concatenate the non-matching rows:

 - 28 -

SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, E.LASTNAME
FROM DSN8610.DEPT D,
 DSN8610.EMP E
WHERE D.MGRNO = E.EMPNO
UNION
SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, '* No Mgr Name *'
FROM DSN8610.DEPT D
WHERE NOT EXISTS
 (SELECT 1
 FROM DSN8610.EMP E
 WHERE D.MGRNO = E.EMPNO)
ORDER BY 1;
By providing the constant '* No Mgr Name *' in place of the nonexistent data, and by coding a
correlated subquery with the NOT EXISTS operator, the rows that do not match are returned. UNION
appends the two sets of data, returning a complete report of departments regardless of whether the
department has a valid manager.
Using the OUTER JOIN syntax introduced with DB2 Version 4 simplifies this query significantly:
SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, E.LASTNME
FROM DSN8610.EMP E LEFT OUTER JOIN DSN8610.DEPT D
 ON E.EMPNO = D.MGRNO;
The keywords LEFT OUTER JOIN cause DB2 to invoke an outer join, returning rows that have
matching values in the predicate columns, but also returning unmatched rows from the table on the left
side of the join. In the case of the left outer join example shown, this would be the EMP table because it
is on the left side of the join clause.
Note that the WHERE keyword is replaced with the ON keyword for the outer join statement. Additionally,
the missing values in the result set are filled with nulls (not a sample default as shown in the previous
example). Use the VALUE (or COALESCE) function to fill in the missing values with a default, as shown in
the following SQL query:
SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, VALUE(E.LASTNME, '* No Mgr Name *')
FROM DSN8610.EMP E LEFT OUTER JOIN DSN8610.DEPT D
 ON E.EMPNO = D.MGRNO;

Types of Outer Joins
There are three types of outer joins supported by DB2 for OS/390:

 LEFT OUTER JOIN
 RIGHT OUTER JOIN
 FULL OUTER JOIN

The keywords LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN can be used in
place of the INNER JOIN keyword to indicate an outer join.
As you might guess, the keywords RIGHT OUTER JOIN cause DB2 to return rows that have matching
values in the predicate columns but also return unmatched rows from the table on the right side of the
join. So the following outer join is 100 percent equivalent to the previous query:
SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, E.LASTNAME
FROM DSN8610.DEPT D RIGHT OUTER JOIN DSN8610.EMP E
 ON E.EMPNO = D.MGRNO;
The only code change was swapping the position of the DEPT and EMP table in the FROM clause and
changing from a LEFT OUTER JOIN to a RIGHT OUTER JOIN. In general practice, it is wise to avoid
RIGHT OUTER JOIN statements, instead converting them to LEFT OUTER JOIN statements.
The remaining outer join option is the FULL OUTER JOIN. It, like all previous outer joins, returns
matching rows from both tables, but it also returns non-matching rows from both tables; left and right. A
FULL OUTER JOIN can use only the equal (=) comparison operator. Left and right outer joins are able
to use all the comparison operators. An example of the FULL OUTER JOIN follows:

 - 29 -

SELECT E.EMPNO, E.WORKDEPT, D.DEPTNAME
FROM DSN8610.EMP E FULL OUTER JOIN DSN8610.DEPT D
 ON E.WORKDEPT = D.DEPTNO;

In this example, all of the following will be returned in the results set:
 Rows where there are matches indicating that the employee works in a specific

department (for example, where WORKDEPT in EMP matches DEPTNO in DEPT).
 Employee rows where there is no matching department in the DEPT table (for

example, where a WORKDEPT in EMP has no matching DEPTNO in DEPT). This
could occur when an employee is temporarily unassigned to a department or the
employee is assigned to an invalid department.

 Department rows where there is no matching work department in the EMP table
(for example, where a DEPTNO in DEPT has no matching WORKDEPT in EMP). This
could occur when a department has no employees assigned to it.

This section outlines the basics of the outer join. For suggestions on proper implementation, refer to
Chapter 2.

Sorting and Grouping
SQL also can sort and group retrieved data. The ORDER BY clause sorts the results of a query in the
specified order (ascending or descending) for each column. The GROUP BY clause collates the resultant
rows to apply functions that consolidate the data. By grouping data, users can use statistical functions on a
column (discussed later) and eliminate non-pertinent groups of data with the HAVING clause.

For example, the following query groups employee data by department, returning the aggregate salary
for each department:
SELECT WORKDEPT, SUM(SALARY)
FROM DSN8610.EMP
GROUP BY WORKDEPT;
By adding a HAVING clause to this query, you can eliminate aggregated data that is not required. For
example, if you're interested in departments with an average salary of less than $19,500, you can code
the following query:
SELECT WORKDEPT, SUM(SALARY)
FROM DSN8610.EMP
GROUP BY WORKDEPT
HAVING AVG(SALARY) < 19500 ;
Note that the report is not necessarily returned in any specific order. The GROUP BY clause does not
sort the data for the result set; it only consolidates the data values for grouping. To return the results of
this query in a particular order, you must use the ORDER BY clause. For example, to order the resultant
data into descending department number order, code the following:
SELECT WORKDEPT, SUM(SALARY)
FROM DSN8610.EMP
GROUP BY WORKDEPT
HAVING AVG(SALARY) < 17500
ORDER BY WORKDEPT ;
The ORDER BY, GROUP BY, and HAVING clauses are important SQL features that can increase
productivity. They are the only means of sorting and grouping data in SQL.
The Difference Between HAVING and WHERE

The WHERE and HAVING clauses are similar in terms of functionality. However, they operate on different
types of data.

Any SQL statement can use a WHERE clause to indicate which rows of data that are to be returned. The
WHERE clause operates on "detail" data rows from tables, views, synonyms, and aliases.
The HAVING clause, on the other hand, operates on "aggregated" groups of information. Only SQL
statements that specify the GROUP BY clause can use the HAVING clause. The predicates in the
HAVING clause are applied after the GROUP BY has been applied.

 - 30 -

If both a WHERE clause and a HAVING clause are coded on the same SQL statement, the following
occurs:

 The WHERE clause is applied to the "detail" rows.
 The GROUP BY is applied to aggregate the data.
 The HAVING clause is applied to the "aggregate" rows.

Consider the following SQL:
SELECT WORKDEPT, AVG(BONUS), MAX(BONUS), MIN(BONUS)
FROM DSN8610.EMP
WHERE WORKDEPT NOT IN ('D11', 'D21')
GROUP BY WORKDEPT
HAVING COUNT(*) > 1;
This query will return the average, maximum, and minimum bonus for each department except 'D11'
and 'D12' as long as the department has more than 1 employee. The steps DB2 takes to satisfy this
query are:

 Apply the WHERE clause to eliminate departments 'D11' and 'D12'.
 Apply the GROUP BY clause to aggregate the data by department.
 Apply the HAVING clause to eliminate any department groups consisting of only one

employee.

Relational Division
A very useful, though somewhat complex SQL statement is relational division. Because of its complexity,
developers often avoid relational division, but it is wise to understand relational division because of its power
and usefulness. The relational division of two tables is the operation of returning rows whereby column
values in one table match column values for every corresponding row in the other table.

For example, look at the following query:
SELECT DISTINCT PROJNO
FROM DSN8610.PROJACT P1
WHERE NOT EXISTS
 (SELECT 1
 FROM DSN8610.ACT A
 WHERE NOT EXISTS
 (SELECT 1
 FROM DSN8610.PROJACT P2
 WHERE P1.PROJNO = P2.PROJNO
 AND A.ACTNO = P2.ACTNO));

Division is implemented in SQL using a combination of correlated subqueries. This query is
accomplished by coding three correlated subqueries that match projects and activities. It retrieves all
projects that require every activity listing in the activity table.

Note If you execute this query, no rows are returned because no projects in the sample
data require all activities.

Relational division is a powerful operation and should be utilized whenever practical. Implementing
relational division using a complex query such as the one depicted above will almost always out-perform
an equivalent application program using separate cursors processing three individual SELECT
statements. However, this query is complicated and may be difficult for novice programmers to
understand and maintain as your application changes.
CASE Expressions

The CASE expression, introduced to DB2 in Version 5, is similar to CASE statements used by many popular
programming languages. A CASE statement uses the value of a specified expression to select one statement
among several for execution. A common application of the CASE statement will be to eliminate a multi-table
UNION statement, for example:

SELECT CREATOR, NAME, 'TABLE'

 - 31 -

FROM SYSIBM.SYSTABLES
WHERE TYPE = 'T'
UNION ALL
SELECT CREATOR, NAME, 'VIEW '
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'V'
UNION ALL
SELECT CREATOR, NAME, 'ALIAS'
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'A';

can be coded more simply as
SELECT CREATOR, NAME,
CASE TYPE
 WHEN 'T' THEN 'TABLE'
 WHEN 'G' THEN 'TEMP '
 WHEN 'V' THEN 'VIEW '
 WHEN 'A' THEN 'ALIAS' ELSE 'OTHER'
END
FROM SYSIBM.SYSTABLES;
The WHEN clause of the CASE expression replaces the predicates from each of the SELECT statements
in the UNION. When CASE is used in place of multiple UNIONs, performance most likely will be improved
because DB2 will make fewer passes against the data to return a result set. In the preceding example,
one pass is required instead of three.
There are two types of CASE expressions: those with a simple WHEN clause and those with a searched
WHEN clause. The previous example depicts a simple WHEN clause. Simple WHEN clauses only test for
equality of an expression. Searched WHEN clauses provide more complex expression testing. An
example follows:
SELECT EMPNO, LASTNAME,
 CASE WHEN SALARY < 0. THEN 'ERROR'
 WHEN SALARY = 0.00 THEN 'NONE '
 WHEN SALARY BETWEEN 0.01 AND 20000.00 THEN 'LOW '
 WHEN SALARY BETWEEN 20000.99 AND 50000.00 THEN 'MID '
 WHEN SALARY BETWEEN 50000.99 AND 99999.99 THEN 'HIGH '
 ELSE '100+ '
 END
FROM DSN8610.EMP;
In this case, the SALARY column is examined by the CASE expression to place it into a specific, pre-
defined category. CASE expressions also can be specified in a WHERE clause, for example:
SELECT EMPNO, FIRSTNAME, LASTNME,
 SALARY, BONUS, COMM
FROM DSN8610.EMP
WHERE (CASE
 BONUS = 0.00 THEN 0.00
 ELSE
 SALARY/BONUS
 END) < 3;

 - 32 -

This query returns data for employees who earn a bonus that is more than one third of their salary. The
CASE expression is used to avoid division by zero. Dividing the BONUS column into the SALARY column
produces a ratio of bonus to salary. When BONUS is zero, the CASE expression substitutes zero and
avoids the calculation.
Another valuable usage of the CASE expression is to perform table pivoting. A common requirement is
to take a normalized table and produce denormalized query results. For example, consider the following
table containing monthly sales numbers:
CREATE TABLE SALES
 (SALES_MGR INTEGER NOT NULL,
 MONTH INTEGER NOT NULL,
 YEAR CHAR(4) NOT NULL,
 SALES_AMT DECIMAL(11,2) NOT NULL WITH DEFAULT);
The table contains 12 rows, one for each month, detailing the amount of product sold by the specified
sales manager. A standard query can be produced using a simple SELECT statement. However, many
users prefer to see the months strung out as columns showing one row per sales manager with a
bucket for each month. This is known as table pivoting and can be produced using the following SQL
statement using the CASE expression in the SELECT-list:
SELECT SALES_MGR,
 MAX(CASE MONTH WHEN 1 THEN SALES_AMT ELSE NULL END) AS JAN,
 MAX(CASE MONTH WHEN 2 THEN SALES_AMT ELSE NULL END) AS FEB,
 MAX(CASE MONTH WHEN 3 THEN SALES_AMT ELSE NULL END) AS MAR,
 MAX(CASE MONTH WHEN 4 THEN SALES_AMT ELSE NULL END) AS APR,
 MAX(CASE MONTH WHEN 5 THEN SALES_AMT ELSE NULL END) AS MAY,
 MAX(CASE MONTH WHEN 6 THEN SALES_AMT ELSE NULL END) AS JUN,
 MAX(CASE MONTH WHEN 7 THEN SALES_AMT ELSE NULL END) AS JUL,
 MAX(CASE MONTH WHEN 8 THEN SALES_AMT ELSE NULL END) AS AUG,
 MAX(CASE MONTH WHEN 9 THEN SALES_AMT ELSE NULL END) AS SEP,
 MAX(CASE MONTH WHEN 10 THEN SALES_AMT ELSE NULL END) AS OCT,
 MAX(CASE MONTH WHEN 11 THEN SALES_AMT ELSE NULL END) AS NOV,
 MAX(CASE MONTH WHEN 12 THEN SALES_AMT ELSE NULL END) AS DEC
FROM SALES
WHERE SALES_MGR = ?
AND YEAR = ?;
The results will be spread out across a single row for the year specified. Other uses for CASE include
rounding numeric data (containing positive and negative numbers), performing different calculations
based on type indicators, and converting two-digit dates.

SQL Functions
Functions can be specified in SQL statements to transform data from one state to another. Two types of
functions can be applied to data in a DB2 table using SQL: column functions and scalar functions. Column
functions compute, from a group of rows, a single value for a designated column or expression. For example,
the SUM function can be used to add, returning the sum of the values instead of each individual value. By
contrast, scalar functions are applied to a column or expression and operate on a single value. For example,
the CHAR function converts a single date or time value into its character representation.

As of Version 6, DB2 for OS/390 supports user-defined functions in addition to the base, system-defined
functions. With user-defined functions the user can develop customized functions that can then be
specified in SQL. A user-defined function can be specified anywhere a system-defined function can be
specified.

There are two categories of user-defined functions that can be created:
 User-defined scalar functions
 User-defined table functions

 - 33 -

Similar to system-defined scalar functions, user-defined scalar functions return a single-value answer
each time it is invoked. A user-defined table function returns a complete table to the SQL statement that
references it. A user-defined table function can be referenced in SQL statements in place of a DB2
table.
Using SQL functions can simplify the requirements of complex data access. For more details on using
functions in DB2, both user-defined and system-defined, column and scalar, refer to Chapter 3, "Using
DB2 Functions" and Chapter 4, "Using DB2 User-Defined Functions and Data Types."

Definition of DB2 Data Structures
You can use SQL also to define DB2 data structures. DB2 data structures are referred to as objects. Each
DB2 object is used to support the structure of the data being stored. There are DB2 objects to support
groups of DASD volumes, VSAM data sets, table representations, and data order, among others. A
description of each type of DB2 object follows:

ALIAS A locally defined name for a table or view in the same local DB2
subsystem or in a remote DB2 subsystem. Aliases give DB2
location independence because an alias can be created for a
table at a remote site, thereby freeing the user from specifying
the site that contains the data. Aliases can be used also as a type
of global synonym because they can be accessed by anyone, not
only by their creator.

COLUMN A single, non-decomposable data element in a DB2 table.
DATABASE A logical grouping of DB2 objects related by common

characteristics, such as logical functionality, relation to an
application system or subsystem, or type of data. A database
holds no data of its own, but exists to group DB2 objects. A
database can function also as a unit of start and stop for the DB2
objects defined to it or as a unit of control for the administration of
DB2 security.

INDEX A DB2 object that consists of one or more VSAM data sets. To
achieve more efficient access to DB2 tables, these data sets
contain pointers ordered based on the value of data in specified
columns of that table. For partitioned tablespaces, an index is
required to assign rows to the appropriate partition.

STOGROUP A series of DASD volumes assigned a unique name and used to
allocate VSAM data sets for DB2 objects.

SYNONYM An alternative, private name for a table or view. A synonym can
be used only by the individual who creates it.

TABLE A DB2 object that consists of columns and rows that define the
physical characteristics of the data to be stored.

TABLESPACE A DB2 object that defines the physical structure of the data sets
used to house the DB2 table data.

VIEW A virtual table consisting of a SQL SELECT statement that
accesses data from one or more tables or views. A view never
stores data. When you access a view, the SQL statement that
defines it is executed to derive the requested data.

These objects are created with the DCL verbs of SQL, and must be created in a specific order. See
Figure 1.4 for the hierarchy of DB2 objects.

 - 34 -

Figure 1.4: The DB2 object hierarchy.

Also, DB2 supports the ability to create user-defined data types. Each column of a DB2 table must be
assigned to a data type. Appropriately enough, the data type defines the type of data that can be stored
in the column. DB2 supports the following native data types:
CHAR fixed length alphanumeric data
VARCHAR variable length alphanumeric data
GRAPHIC fixed length graphical data
VARGRAPHIC variable length graphical data
SMALLINT small integer numbers
INTEGER larger integer numbers
DECIMAL(p,s) numeric data
FLOAT(n) or FLOAT single precision floating point (if n>21)
FLOAT(n) or REAL double precision floating point (if n<21)
DATE calendar date data
TIME time data
TIMESTAMP combination date and time data
ROWID unique row identifier (internally generated by DB2)
BLOB binary large object
CLOB character large object
DBCLOB double byte character large object

The last three data types, BLOB, CLOB, and DBCLOB, are used to store object/relational data. Using DB2
Extenders rich data types such as audio, video, image, and character can be supported. Although there
are many native DB2 data types, DB2 also supports user-defined data types.

Security Control over DB2 Data Structures
The data-control feature of SQL provides security for DB2 objects, data, and resources with the GRANT and
REVOKE verbs. The hierarchy of DB2 security types and levels is complicated, and can be confusing at first
glance (see Figure 1.5).

 - 35 -

Figure 1.5: DB2 security levels.

You can administer group and individual levels of DB2 security. A group-level security specification is
composed of other group-level and individual security specifications. Individual security is a single
authorization for a single object or resource.
The group-level authorizations are enclosed in boxes in Figure 1.5. This list shows these authorizations:
INSTALL SYSADM Authority for the entire system at installation time
SYSADM Authority for the entire system
INSTALL SYSOPR Authority for the entire system at installation time
SYSOPR Authority for the entire system
SYSCTRL Authority for the entire system
BINDAGENT Authority for the entire system
PACKADM Authority for all packages in a specific collection or

collections
DBADM Authority for a specific database
DBCTRL Authority for a specific database
DBMAINT Authority for a specific database

Each group-level authorization is composed of the group and individual security levels connected by
arrows in Figure 1.5. For example, INSTALL SYSOPR is composed of IMAGCOPY authority for the DB2
Catalog and SYSOPR authority, which in turn is composed of the DISPLAY, RECOVER, STOPALL, and
TRACE authorities.
The effective administration of these levels of security often is a job in itself. Most organizations simplify
authorization to DB2 objects using secondary authids. With secondary authids, sets of similar users can
be assigned to an authorization group, and security can be granted to the group. In this way, fewer
GRANT and REVOKE statements are required to administer DB2 security.

 - 36 -

Guidelines for the efficient utilization and administration of DB2 security are in Chapter 8.

Static SQL
Most DB2 application programs use static SQL to access DB2 tables. A static SQL statement is a complete,
unchanging statement hard-coded into an application program. It cannot be modified during the program's
execution except for changes to the values assigned to host variables.

Static SQL is powerful and more than adequate for most applications. Any SQL statement can be
embedded in a program and executed as static SQL. The following listing shows several examples of
static SQL statements embedded in a COBOL program.
WORKING-STORAGE SECTION.
 .
 .
 .
 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 EXEC SQL TABLE
 INCLUDE EMP DECLARE
 END-EXEC.
 .
 .
 .
 EXEC SQL CURSOR
 DECLARE CSR1 FOR
 SELECT EMPNO, COMM STATIC
 FROM EMP SQL
 WHERE SALARY > 60000 SELECT
 FOR UPDATE OF COMM STATEMENT
 END-EXEC.
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 PERFORM OPEN-CSR1.
 IF SQLCODE < +0
 PERFORM ERROR_ROUTINE.
 MOVE 'N' TO END-OF-DATA.
 PERFORM FETCH-AND-MODIFY
 UNTIL END-OF-DATA = 'Y'.
 PERFORM CLOSE-CSR1.
 IF SQLCODE < +0
 PERFORM ERROR_ROUTINE.
 STOP RUN.

 - 37 -

FETCH-AND-MODIFY.
 EXEC SQL
 FETCH CSR1 INTO :HOST-EMPNO, EMBEDDED
 :HOST-COMM FETCH
 END-EXEC.
 IF SQLCODE < +0
 PERFORM ERROR-ROUTINE
 ELSE
 IF SQLCODE = +100
 MOVE 'Y' TO END-OF-DATA
 ELSE
 PERFORM MODIFY-COMM.
MODIFY-COMM.
 IF HOST-COM < 1000
 COMPUTE HOST-COMM = HOST-COMM + 100.
 EXEC SQL
 UPDATE EMP STATIC
 SET COMM = :HOST-COMM SQL
 WHERE CURRENT OF CSR1 UPDATE
 END-EXEC. STATEMENT
 IF SQLCODE < 0
 PERFORM ERROR_ROUTINE.
OPEN-CSR.
 EXEC SQL
 OPEN CSR1
 END-EXEC. OPEN &
CLOSE-CSR. CLOSE
 EXEC SQL CURSOR
 CLOSE CSR1 STATEMENTS
 END-EXEC.
To embed static SQL in a host program, you must prepare for the impedance mismatch between a high-
level language and SQL. Impedance mismatch refers to the difference between set-at-a-time
processing and record-at-a-time processing. High-level languages access data one record at a time,
whereas SQL accesses data at a set level. Although DB2 always accesses data at the set level, the
host program uses a structure called a cursor to access the set-level data one row at a time. SQL
statements are coded with cursors that are opened, fetched from, and closed during the execution of
the application program.
Static SQL is flexible enough that most application programmers never need to know any other means
of embedding SQL in a program using a high-level language. Coding methods and guidelines are
covered comprehensively in Chapter 9, "Using DB2 in an Application Program," where embedded SQL
programming is discussed.
Sometimes, static SQL cannot satisfy an application's access requirements. For these types of dynamic
applications, you can use another type of SQL: dynamic SQL.

Dynamic SQL

Dynamic SQL is embedded in an application program and can change during the program's execution.
Dynamic SQL statements are coded explicitly in host-language variables, prepared by the application
program, and then executed. DSNTEP2, DSNTIAUL, QMF, and SPUFI are examples of programs that execute
dynamic SQL statements.

 - 38 -

Recall that the two types of SQL are static SQL and dynamic SQL. The primary difference between
static and dynamic SQL is described capably by their names. A static SQL statement is hard-coded and
unchanging. The columns, tables, and predicates are known beforehand and cannot be changed. Only
host variables that provide values for the predicates can be changed.

A dynamic SQL statement, conversely, can change throughout a program's execution. The algorithms
in the program can alter the SQL before issuing it. Based on the class of dynamic SQL being used, the
columns, tables, and complete predicates can be changed "on-the-fly."

As might be expected, dynamic SQL is dramatically different than static SQL in the way you code it in
the application program. Additionally, when dynamic SQL is bound, the application plan or package that
is created does not contain the same information as a plan or package for a static SQL program.
The access path for dynamic SQL statements cannot be determined before execution. When you think
about it, this statement makes sense. If the SQL is not completely known until the program executes,
how can it be verified and optimized beforehand? For this reason, dynamic SQL statements are not
bound, but are prepared at execution. The PREPARE statement is functionally equivalent to a dynamic
BIND. The program issues a PREPARE statement before executing dynamic SQL (with the exception of
EXECUTE IMMEDIATE, which implicitly prepares SQL statements). PREPARE verifies, validates, and
determines access paths dynamically.

A program containing dynamic SQL statements still must be bound into an application plan or package.
The plan or package, however, does not contain access paths for the dynamic SQL statements.
DB2 provides four classes of dynamic SQL: EXECUTE IMMEDIATE, non-SELECT PREPARE, and
EXECUTE, fixed-list SELECT, and varying-list SELECT. The first two classes do not allow SELECT
statements, whereas the last two are geared for SELECT statements.
Dynamic SQL is a complex topic that can be difficult to comprehend and master. It is important that you
understand all aspects of dynamic SQL before deciding whether to use it. Dynamic SQL is covered in
depth in Chapter 10.

SQL Performance Factors

This first chapter discusses SQL basics, but little has been covered pertaining to SQL performance. You
need at least a rudimentary knowledge of the factors affecting SQL performance before reading a discussion
of the best ways to achieve optimum performance. This section is an introduction to DB2 optimization and
some DB2 performance features. These topics are discussed in depth in Part V, "DB2 Performance Tuning."

Introduction to the Optimizer
The DB2 optimizer is integral to the operation of SQL statements. The optimizer, as its name implies,
determines the optimal method of satisfying a SQL request. For example, consider the following statement:

 SELECT EMPNO, WORKDEPT, DEPTNAME
 FROM DSN8610.EMP,
 DSN8610.DEPT
 WHERE DEPTNO = WORKDEPT;

This statement, whether embedded statically in an application program or executed dynamically, must
be passed through the DB2 optimizer before execution. The optimizer parses the statement and
determines the following:

 Which tables must be accessed
 Whether or not the tables are in partitioned tablespaces
 Which columns from those tables need to be returned
 Which columns participate in the SQL statement's predicates
 Whether or not there are any indexes for this combination of tables and columns
 What statistics are available in the DB2 Catalog

Based on this information (and system information), the optimizer analyzes the possible access paths
and chooses the best one for the given query. An access path is the navigation logic used by DB2 to
access the requisite data. A "tablespace scan using sequential prefetch" is an example of a DB2 access
path. Access paths are discussed in greater detail in Part V.

The optimizer acts like a complex expert system. Based on models developed by IBM for estimating the
cost of CPU and I/O time, the impact of uniform and non-uniform data distribution, and the state of

 - 39 -

tablespaces and indexes, the optimizer usually arrives at a good estimate of the optimal access path.
Remember, though, that it is only a "best guess." Several factors can cause the DB2 optimizer to
choose the wrong access path, such as incorrect or outdated statistics in the DB2 Catalog, an improper
physical or logical database design, an improper use of SQL (for example, record-at-a-time processing),
or bugs in the logic of the optimizer (although this occurs infrequently).

The optimizer usually produces a better access path than a programmer or analyst could develop
manually. Sometimes, the user knows more than DB2 about the nature of the data being accessed. If
this is the case, there are ways to influence DB2's choice of access path. The best policy is to allow
DB2 initially to choose all access paths automatically, and then challenge its decision only when
performance suffers. Although the DB2 optimizer does a good job for most queries, you might need to
periodically examine, modify, or influence the access paths for some SQL statements.

Note As a general rule of thumb, be sure to review and tune all SQL statements prior to
migrating the SQL to the production environment.

Influencing the Access Path
DB2's optimizer determines the best access method based on the information discussed previously.
However, users can influence the DB2 optimizer to choose a different access path if they know a few tricks.

To influence access path selection, users can tweak the SQL statement being optimized or update the
statistics in the DB2 Catalog. Both of these methods are problematic and not recommended, but can be
used as a last resort. If a SQL statement is causing severe performance degradation, you could
consider using these options.

Note As of DB2 Version 6, though, there is another option for bypassing the DB2
optimizer's access path choices. IBM calls the feature optimizer "hints." Optimizer
hints are covered briefly in the next section, and in more depth in Chapter 26.

If your DB2 subsystem is at a level where optimizer "hints" are supported, using
"hints" to modify access paths is preferable to updating DB2 Catalog statistics.

One option is to change the SQL statement. Some SQL statements function more efficiently than others
based on the version of DB2. As you learned previously, SQL is flexible; you can write functionally
equivalent SQL in many ways. Sometimes, by altering the way in which a SQL statement is written, you
can influence DB2 to choose a different access path.
Furthermore, data in your DB2 tables may change dramatically over time. It is not always feasible or
practical to re-run RUNSTATS and rebind plans every time data changes. In cases such as these, SQL
tweaking may be a valid technique.

The danger in coding SQL to take advantage of release-dependent features lies in the fact that DB2
continues to be enhanced and upgraded. If a future DB2 release changes the performance feature you
took advantage of, your SQL statement may degrade. It usually is unwise to take advantage of a
product's undocumented features, unless it is as a last resort. If this is done, be sure to document and
retain information about the workaround. At a minimum, keep the following data:

 The reason for the workaround (for example, for performance or functionality).
 A description of the workaround (what exactly was changed and why).
 If SQL is modified, keep a copy of the old SQL statement and a copy of the new SQL

statement.
 The version and release of DB2 at the time of the workaround.

The second method of influencing DB2's choice of access path is to update the statistics in the DB2
Catalog on which the optimizer relies. DB2 calculates a filter factor for each possible access path based
on the values stored in the DB2 Catalog and the type of predicates in the SQL statement to be
optimized. Filter factors estimate the number of accesses required to return the desired results. The
lower the filter factor, the more rows filtered out by the access path and the more efficient the access
path.
There are two methods of modifying DB2 Catalog statistics. The first is with the RUNSTATS utility.
RUNSTATS can be executed for each tablespace that requires updated statistics. This approach is
recommended because it populates the DB2 Catalog with accurate statistics based on a sampling of the
data currently stored in the tablespaces. Sometimes, however, accurate statistics produce an
undesirable access path. To get around this, DB2 allows SYSADM users to modify the statistics stored in
the DB2 Catalog. Most, but not all, of these statistical columns can be changed using SQL update

 - 40 -

statements. By changing the statistical information used by the optimization process, you can influence
the access path chosen by DB2. This method can be used to

 Mimic production volumes in a test system to determine production access paths
before migrating a system to production

 Favor certain access paths over others by specifying either lower or higher cardinality
for specific tables or columns

 Favor indexed access by changing index statistics
Examples of this are shown in Chapter 19, "The Optimizer," along with additional information on access
paths and influencing DB2.
Directly updating the DB2 Catalog, however, generally is not recommended. You may get unpredictable
results because the values being changed will not accurately reflect the actual tablespace data.
Additionally, if RUNSTATS is executed any time after the DB2 Catalog statistics are updated, the values
placed in the DB2 Catalog by SQL update statements are overwritten. It usually is very difficult to
maintain accurate statistics for some columns and inaccurate, tweaked values for other columns. To do
so, you must reapply the SQL updates to the DB2 Catalog immediately after you run the RUNSTATS
utility and before you run any binds or rebinds.
To update DB2 Catalog statistics, you must have been granted the authority to update the specific DB2
Catalog tables (or columns) or have SYSADM authority.
As a general rule, updating the DB2 Catalog outside the jurisdiction of RUNSTATS should be considered
only as a last resort. If SQL is used to update DB2 Catalog statistics, be sure to record and maintain the
following information:

 The reason for the DB2 Catalog updates
 A description of the updates applied:

Applied once; RUNSTATS never run again
Applied initially; RUNSTATS run without reapplying updates
Applied initially; RUNSTATS run and updates immediately reapplied

 The version and release of DB2 when the updates were first applied
 The SQL UPDATE and INSERT statements used to modify the DB2 Catalog
 A report of the DB2 Catalog statistics overlaid by the UPDATE statements (must be

produced before the initial updates)

DB2 Optimizer "Hints"
Starting with DB2 Version 6, it is possible to use optimizer "hints" to achieve more control over the access
paths chosen by DB2. Similar to the techniques just discussed for influencing access paths, optimizer "hints"
should be used only as a final approach when more traditional methods do not create optimal access paths.
Optimizer "hints" are also useful when you need to temporarily choose an alternate access path, and later
revert back to the access path chosen by DB2.

IBM uses the term "hints," but I choose to place it in quotes because the technique is not literally a hint;
instead it is a directive for DB2 to use a pre-determined specified access path. IBM probably chose the
term "hints" because Oracle provides optimizer hints and IBM is competing quite heavily with Oracle
these days.
The typical scenario for using an optimizer "hint" follows. Over time, a query that was previously
performing well begins to experience severe performance degradation. The performance problem
occurs even though the DB2 Catalog statistics are kept up-to-date using RUNSTATS, and the package
and/or plan containing the SQL is rebound using the new and accurate statistics. Upon further
examination, the performance analyst determines that DB2 has chosen a new access path that does
not perform as well as the old access path.
Faced with a choice between poor performance, modifying DB2 Catalogs statistics manually, and
optimizer "hints," the performance analyst chooses to use "hints." Querying the PLAN_TABLE that
contains the access path information for the offending statement, the analyst finds the older access path
that performed well. The analyst then uses BIND to use the "hint" in the PLAN_TABLE, redirecting DB2
to use the old access path instead of calculating a new one. More details on access path "hints" are
provided in Chapter 19.

Note Be sure to thoroughly test and analyze the results of any query using optimizer
"hints." If the environment has changed since the optimizer "hint" access path
was chosen, the "hint" may be ignored by DB2, or only partially implemented.

 - 41 -

DB2 Performance Features
Finally, it is important to understand the performance features that IBM has engineered into DB2.
Performance features have been added with each successive release of DB2. This section is a synopsis of
the DB2 performance features discussed in depth throughout this book.

Sequential Prefetch
Sequential prefetch is a look-ahead read engine that enables DB2 to read many data pages in large chunks
of pages, instead of one page at a time. It usually is invoked when a sequential scan of pages is needed.
The overhead associated with I/O can be reduced with sequential prefetch because many pages are read
before they must be used. Then, when the pages are needed, they are available without additional I/O.

Sequential Detection
DB2 can dynamically detect sequential processing and invoke sequential prefetch even if the optimizer did
not specify its use.

List Prefetch
When the DB2 optimizer determines that an index will increase the efficiency of access to data in a DB2
table, it may decide also to invoke list prefetch. List prefetch sorts the index entries into order by record
identifier (RID). This sorting ensures that two index entries that must access the same page will require more
than one I/O because they now are accessed contiguously by record identifier. This reduction in I/O can
increase performance.

Index Lookaside
The index lookaside feature is a method employed by DB2 to traverse indexes in an optimal manner. When
using an index, DB2 normally traverses the b-tree structure of the index. This can involve significant
overhead in checking root and nonleaf index pages when DB2 is looking for the appropriate leaf page for the
given data. When using index lookaside, DB2 checks for the RID of the desired row on the current leaf page
and the immediately higher nonleaf page. For repetitive index lookups, it is usually more efficient to check
recently accessed pages (that are probably still in the bufferpool), than traversing the b-tree from the root.
Index lookaside, therefore, generally reduces the path length of locating rows.

Index Only Access
If all the data being retrieved is located in an index, DB2 can satisfy the query by accessing the index without
accessing the table. Because additional reads of table pages are not required, I/O is reduced and
performance is increased.

RDS Sorting
DB2 sorting occurs in the Relational Data Services (RDS) component of DB2. (See Part III for in-depth
descriptions of DB2's components.) DB2's efficient sort algorithm uses a tournament sort technique.
Additionally, with the proper hardware, DB2 can funnel sort requests to routines in microcode that
significantly enhance the sort performance.

Synergy with System/390 and OS/390
DB2 is tightly integrated with System/390 and is designed to operate efficiently with OS/390. DB2 for OS/390
understands System/390 and is designed to work in synergy with its processors, Parallel Sysplex, storage
controllers, and disk systems. DB2 understands and uses the Workload Manager to honor the importance of
the business processing, even in mixed workloads. Hiperspaces enable up to 9GB of buffers using
Asynchronous Data Mover Facility, and data spaces can be used for bufferpools and dynamic statement
caching.

Stage 1 and Stage 2 Processing
Sometimes referred to as sargable and nonsargable processing, Stage 1 and Stage 2 processing effectively
splits the processing of SQL into separate components of DB2. Stage 1 processing is more efficient than
Stage 2 processing.

 - 42 -

Join Methods
When tables must be joined, the DB2 optimizer chooses one of three methods based on many factors,
including all the information referred to in the discussion on optimization. The join methods are a merge
scan, a nested loop join, and a hybrid join. A merge scan requires reading sorted rows and merging them
based on the join criteria. A nested loop join repeatedly reads from one table, matching rows from the other
table based on the join criteria. A hybrid join uses list prefetch to create partial rows from one table with RIDs
from an index on the other table. The partial rows are sorted, with list prefetch used to complete the partial
rows.

Lock Escalation
During application processing, if DB2 determines that performance is suffering because an inordinate
number of locks have been taken, the granularity of the lock taken by the application might be escalated.
Simply stated, if a program is accessing DB2 tables using page locking, and too many page locks are being
used, DB2 might change the locking strategy to tablespace locking. This reduces the concurrency of access
to the tables being manipulated, but significantly reduces overhead and increases performance for the
application that was the beneficiary of the lock escalation.

Data Compression
DB2 provides Lempel Ziv data compression employing hardware-assist for specific high-end CPU models or
software compression for other models. Additionally, data compression can be directly specified in the
CREATE TABLESPACE and ALTER TABLESPACE DDL, thereby avoiding the overhead and restrictions of an
EDITPROC.

Data Sharing
DB2 provides the ability to couple DB2 subsystems together enabling data to be shared between multiple
DB2s. This allows application running on more than one DB2 subsystem to read from and write to the same
DB2 tables simultaneously. This was not possible in prior releases without using DB2's distributed data
capabilities. Additionally, data sharing enables nonstop DB2 processing. If one subsystem becomes
unavailable, workload can be shifted to other subsystems participating in the data sharing group. Refer to
Chapter 17, "Data Sharing," for an in-depth discussion of data sharing.

Query Parallelism
DB2 can utilize multiple read tasks to satisfy a single SQL SELECT statement. By running multiple,
simultaneous read engines the overall elapsed time for an individual query can be substantially reduced.
This will aid I/O-bound queries.

DB2 V4 improves on query I/O parallelism by enabling queries to utilize CPU in parallel. When CPU
parallelism is engaged, each concurrent read engine will utilize its own portion of the central processor.
This will aid processor-bound queries.

DB2 V5 improves parallelism even further with Sysplex query parallelism. With Sysplex query
parallelism DB2 can spread the work for a single query across multiple DB2 subsystems in a data
sharing group. This will further aid intensive, processor-bound queries.

DB2 V6 further improves parallelism by enabling data accessed in a non-partitioned tablespace to use
query parallelism.

Partition Independence
Using resource serialization, DB2 has the ability to process a single partition while permitting concurrent
access to independent partitions of the same tablespace by utilities and SQL. This partition independence
enhances overall data availability by enabling users concurrent access to data in separate partitions.

Limited Partition Scanning
When processing against a partitioned tablespace, DB2 can enhance the performance of tablespace scans
by limiting the partitions that are read. A limited partition tablespace scan will only read the specific range of
partitions required based on the specified predicates in the WHERE clause.

DB2 V5 further modified partition scanning to enable skipping partitions in the middle of a range.

 - 43 -

Uncommitted, or "Dirty," Read
When data integrity is not an issue, DB2 can bypass locking and enable readers to access data regardless of
its state. The "UR" isolation level provides a dirty read by allowing a SELECT statement to access data that is
locked, in the process of being deleted, inserted but not yet committed, or, indeed in any state. This can
greatly enhance performance in certain situations.

Caution Never use DB2's dirty read capability without a complete understanding of its
ramifications on data integrity. For more information on uncommitted read
processing refer to Chapter 2 for statement level usage; and Chapter 11,
"Program Preparation," for plan and package level usage.

For DB2 V4 and V5 subsystems where type 1 indexes can still exist, do not specify ISOLATION(UR)
where only type 1 indexes exist on the tables. DB2 will ignore the indexes and use a tablespace scan
because "dirty read" capability is incompatible with type 1 indexes.

Runtime Reoptimization
DB2 can reoptimize static and dynamic SQL statements that rely on input variables in the WHERE clause
during processing. This feature enables DB2 to optimize SQL statements after the host variable, parameter
marker, and special register values are known. Runtime reoptimization can result in better access paths
(albeit at a cost).

Instrumentation Facility Interface (IFI)
DB2 provides the Instrumentation Facility Interface, better known to DB2 professionals as IFI. The IFI is a
facility for gathering trace data enabling users to better monitor and tune the DB2 environment. Using the
DB2 IFI users can submit DB2 commands, obtain trace information, and pass data to DB2.

Summary
Now that you have obtained a basic understanding of SQL and the performance features of DB2, proceed
with this guide to DB2 development!

Chapter 2: Data Manipulation Guidelines
Overview

In Chapter 1, "The Magic Words," you learned the basics of SQL, but you can gain a deeper body of
knowledge on the proper way to code SQL statements. Any particular method of coding an SQL statement is
not wrong, per se, as long as it returns the correct results. But, often, you can find a better way. By better, I
mean

 SQL that understands and interacts appropriately with its environment.
 SQL that executes more efficiently and therefore enhances performance.
 SQL that is clearly documented and therefore easily understood.

You should pursue each of these goals. The guidelines introduced in the following sections are based
on these three goals. These guidelines enable you to write efficient SQL and thereby limit the time
programmers, analysts, and DBAs must spend correcting performance problems and analyzing poorly
documented SQL and application code.

A Bag of Tricks

Understanding the ins and outs of DB2 performance can be an overwhelming task. DB2 tuning options are
numerous and constantly changing. Even the number of SQL tuning options is staggering. And the
differences in efficiency can be substantial. For example, coding a query as a join instead of as a correlated
subquery sometimes results in a query that performs better. The same query, however, might result in
degraded performance. Plus, to make matters worse, a new version or release of DB2 can cause completely
different results.

The release level of DB2 is not the only factor that can cause performance problems. Changes to the
OS/390 operating system, the DB2 database environment, the application code, or the application
database can cause performance fluctuations. The following is a sample list of system changes that can
affect DB2 query performance:

 - 44 -

 Enterprise-wide changes

Distributing data

Moving data from site to site

Replicating and propagating data

Downsizing, upsizing, and rightsizing

Integrating legacy applications to the web

Changing to a new hardware environment
 MVS system-level changes

Modifying DB2 dispatching priorities

Modifying CICS, IMS/TM, or TSO dispatching priorities

Implementing Workload Manager

Installing a new release of OS/390, CICS, IMS/TM, or TSO

Implementing parallel sysplex

Modifying TSO parameters

Adding or removing memory

Installing additional hardware that consumes memory

Increasing system throughput
 DB2 system-level changes

Installing a new DB2 version or release

Applying maintenance to the DB2 software

Changing DSNZPARMs

Modifying IRLM parameters

Incurring DB2 growth, causing the DB2 Catalog to grow without resizing or reorganizing

Ensuring proper placement of the active log data sets

Implementing data sharing
 Application-level changes

Increasing the application workload

Adding rows to a table

Deleting rows from a table

Increasing the volume of inserts, causing unclustered data or data set extents

Increasing the volume of updates to indexed columns

Updating variable character columns or compressed rows, possibly causing storage space
to expand and additional I/O to be incurred

Changing the distribution of data values in the table

 - 45 -

Updating RUNSTATS information (see Chapters 1 and 32 for more information on
RUNSTATS)

Rebinding application packages and plans

Implementing or changing stored procedures or user-defined functions

Enabling parallel processing
 Database-level changes

Adding or removing indexes

Changing the clustering index

Altering a table to add a column

Adding or removing triggers from a table

Reorganizing tablespaces and indexes

Compressing data

Moving physical data sets for tablespaces or indexes to different volumes

Luckily, you can prepare yourself to deal with performance problems by understanding the dynamic
nature of DB2 performance features and keeping abreast of SQL tricks of the trade. Use caution when
implementing these tips and tricks, though, because the cardinal rule of relational database
development always applies—what is this cardinal rule?

Note The cardinal rule of RDBMS development is "It Depends!" Most DBAs and SQL
experts resist giving a straight or simple answer to a general question because
there is no simple and standard implementation that exists. Every situation is
different, and every organization is unique in some way.

Don't be discouraged when you ask the local expert which statement will perform
better, and the answer given is "It depends." The expert is just doing his or her
job. The key to optimizing DB2 performance is being able to answer the follow-up
question to "it depends"—"what does it depend on?"

The key is to document each SQL change along with the reason for the change.
Follow up by monitoring the effectiveness of every change to your SQL
statements before moving them into a production environment.

This chapter is divided into three major sections. In the first section, you learn SQL guidelines for simple
SQL statements. The second section covers guidelines for complex SQL statements such as joins and
unions. The third section provides guidelines for the efficient use of the INSERT, DELETE, and UPDATE
statements.

SQL Access Guidelines

The SQL access guidelines will help you develop efficient data retrieval SQL for DB2 applications. Test them
to determine their usefulness and effectiveness in your environment.

Pretest All Embedded SQL

Before embedding SQL in an application program, you should test it using SPUFI, QMF, or whatever ad
hoc query tool you have available. This way, you can reduce the amount of program testing by ensuring
that all SQL code is syntactically correct and efficient. Only after the SQL statements have been
thoroughly tested and debugged should they be placed in an application program.
Use EXPLAIN
Use the EXPLAIN command to gain further insight into the performance potential for each SQL
statement in an application. When EXPLAIN is executed on an SQL statement or application plan,
information about the access path chosen by the optimizer is provided. This information is inserted into
a DB2 table called the PLAN_TABLE. By querying the PLAN_TABLE, an analyst can determine the

 - 46 -

potential efficiency of SQL queries. Part V, "DB2 Performance Tuning," provides a complete description
of the EXPLAIN command and guidelines for interpreting its output.
Use EXPLAIN and analyze the results for each SQL statement before it is migrated to the production
application. Following this procedure is important not only for SQL statements in application programs,
but also for canned QMF queries, and any other, predictable, dynamic SQL queries. For application
programs, EXPLAIN can be used with the EXPLAIN option of the BIND command. Specifying
EXPLAIN(YES) when you use BIND on an application plan or package provides the access path
information necessary to determine the efficiency of the statements in the program. For a QMF (or ad
hoc) query, use EXPLAIN on it before allowing the statement to be used in production procedures.
The following is an example of running EXPLAIN for a SELECT statement:
 EXPLAIN PLAN SET QUERYNO = 1 FOR
 SELECT *
 FROM DSN8610.DEPT
 WHERE DEPTNO = 'D21';
EXPLAIN enables a programmer or DBA to analyze the chosen access path by studying the
PLAN_TABLE.
Because EXPLAIN provides access path information based on the statistics stored in the DB2 Catalog,
you should keep these statistics current and accurate. Sometimes you must "fudge" the DB2 Catalog
statistics to produce production access paths in a test environment. (See the "Influencing the Access
Path" section in Chapter 1 for more information.)
Use All PLAN_TABLE Columns Available
Each new release or version of DB2 adds new columns to the PLAN_TABLE. These new columns are
used to report on new access paths and features. Sometimes shops fail to add the new PLAN_TABLE
columns after a new release is installed. Be sure to verify that the PLAN_TABLE actually contains every
column that is available for the current DB2 release being run. For more information on the
PLAN_TABLE and the columns available for each DB2 release please refer to Chapter 23, "Using
EXPLAIN."
Use the DSN_STATEMNT_TABLE
As of DB2 Version 6, EXPLAIN also can determine an estimated cost of executing SQL SELECT,
INSERT, UPDATE, or DELETE statements. EXPLAIN will populate DSN_STATEMNT_TABLE, also known
as the statement table, at the same time it populates the PLAN_TABLE. After running EXPLAIN, the
statement table will contain cost estimates, in service units and in milliseconds, for the SQL statements
being bound or prepared (both static and dynamic SQL).

The estimates can be used to help determine the cost of running SQL statements. However, keep in
mind that the cost numbers are just estimates. Factors that can cause the estimates to be inaccurate
include cost adjustments caused by parallel processing, the use of triggers and user-defined functions,
and inaccurate statistics.
For more information on statement tables and cost estimates, see Chapter 23.
Consider Using the DSN_FUNCTION_TABLE for User-Defined Functions
If you have implemented user-defined functions (UDFs), be sure to create DSN_FUNCTION_TABLE,
also known as the function table. DB2 inserts data into DSN_FUNCTION_TABLE for each function
referenced in an SQL statement when EXPLAIN is executed on an SQL statement containing a UDF or
when a program bound with EXPLAIN(YES) executes an SQL statement containing a UDF.

The data DB2 inserts to the function table contains information on how DB2 resolves the user-defined
function references. This information can be quite useful when tuning or debugging SQL that specifies a
UDF.
Enable EXPLAIN for AUTO REBIND
EXPLAIN during AUTO REBIND can be enabled if you set an appropriate DSNZPARM. An AUTO
REBIND occurs when an authorized user attempts to execute an invalid plan or package. To re-validate
the plan or package, DB2 will automatically rebind it. Plans and packages are invalidated when an
object that an access path in the plan or package is using is dropped. Be sure that a proper
PLAN_TABLE exists before enabling the EXPLAIN during AUTO REBIND option.

Utilize Visual Explain and Query Analysis Tools
Visual Explain is a tool provided by IBM as a free feature of DB2 for OS/390. Visual Explain will display
graphical representations of the DB2 access paths and advice on how to improve SQL performance.

 - 47 -

The display can be for access paths stored in a PLAN_TABLE or for EXPLAIN output from dynamic SQL
statements.
One of the nice features of Visual Explain is its ability to display pertinent DB2 Catalog statistics for
objects referenced in an access path. It is much easier to understand access paths from the visual
representations of Visual Explain, than it is to interpret PLAN_TABLE output. Refer to Figure 2.1 for a
sample Visual Explain screen shot.

Figure 2.1: Visual Explain graphically depicts an EXPLAIN.

You must run Visual Explain from a client workstation.

To isolate potential performance problems in application plans or single SQL statements, utilize all
available analysis tools, such as BMC Software's Patrol SQL-Explorer or Computer Associates' Plan
Analyzer. These products analyze the SQL code, provide a clear, textual description of the access path
selected by the DB2 optimizer, and recommend alternative methods of coding your queries. They are
similar in function to Visual Explain, but provide an ISPF interface and more complex tuning
recommendations.
Avoid SELECT *
As a general rule, a query should never ask DB2 for anything more than is required to satisfy the
desired task. Each query should access only the columns needed for the function to be performed.
Following this dictum results in maximum flexibility and efficiency.
The gain in flexibility is the result of decreased maintenance on application programs. Consider a table
in which columns are modified, deleted, or added. Only programs that access the affected columns
need to be changed. When a program uses SELECT *, however, every column in the table is
accessed. The program must be modified when any of the columns change, even if the program doesn't
use the changed columns. This use complicates the maintenance process.

For example, consider a program that contains the following statement:
 EXEC SQL
 SELECT *
 INTO :DEPTREC
 FROM DSN8610.DEPT
 WHERE DEPTNO = :HV-DEPT
 END-EXEC.
Suppose that the program is developed, tested, and migrated to the production environment. You then
add a column to the DEPT table. The program then fails to execute the preceding statement because
the DEPTREC layout does not contain the new column. (This program was compiled with the old
DCLGEN.) The program must be recompiled with the new DCLGEN, a step that is not required when the
program asks for only the columns it needs.

Additionally, by limiting your query to only those columns necessary
 The programmer does not need extra time to code for the extraneous columns.
 You avoid the DB2 overhead required to retrieve the extraneous columns.
 DB2 might be able to use an index-only access path that is unavailable for SELECT *.

 - 48 -

Singleton SELECT Versus the Cursor
To return a single row, an application program can use a cursor or a singleton SELECT. A cursor
requires an OPEN, FETCH, and CLOSE to retrieve one row, whereas a singleton SELECT requires only
SELECT...INTO. Usually, the singleton SELECT outperforms the cursor.
When the selected row must be updated after it is retrieved, however, using a cursor with the FOR
UPDATE OF clause is recommended over a singleton SELECT. The FOR UPDATE OF clause ensures
the integrity of the data in the row because it causes DB2 to hold an X lock on the page containing the
row to be updated. If you use a singleton SELECT, the row can be updated by someone else after the
singleton SELECT but before the subsequent UPDATE, thereby causing the intermediate modification to
be lost.
Use FOR READ ONLY
When a SELECT statement is used only for retrieval, you should code the FOR READ ONLY clause. This
clause enables DB2 to use block fetch, which returns fetched rows more efficiently for distributed DB2
requests. Efficient row fetches are important for dynamic SQL in an application program or SPUFI.
Furthermore, judicious use of the FOR READ ONLY clause helps to identify read-only cursors, which
can encourage DB2 to use lock avoidance techniques.
QMF automatically appends FOR READ ONLY to SELECT statements. Static SQL embedded in an
application program automatically uses block fetch if the BIND process determines it to be feasible.

Allowing block fetch is important in a distributed DB2 environment. If data is blocked, less overhead is
required as data is passed over the communication lines.

Note The FOR FETCH ONLY clause provides the same function as FOR READ ONLY,
but FOR READ ONLY is preferable because it is ODBC-compliant.

Avoid Using DISTINCT
The DISTINCT verb removes duplicate rows from an answer set. If duplicates will not cause a problem,
do not code DISTINCT because it might add to overhead if it must invoke a sort to remove the
duplicates.
However, do not avoid DISTINCT for performance reasons if you must remove duplicates from your
result set. It is usually better for DB2 to remove the duplicates than it is for the results to be passed to
the program and then have the duplicates removed by application logic. One major benefit is that DB2
will not make any mistakes, but the application logic could contain bugs.

Limit the Data Selected
Return the minimum number of columns and rows needed by your application program. Do not code
generic queries (such as SELECT statements without a WHERE clause) that return more rows than
necessary, and then filter the unnecessary rows with the application program. Doing so wastes disk I/O
by retrieving useless data and wastes CPU and elapsed time by returning the additional, unneeded
rows to your program.
Allowing DB2 to use WHERE clauses to limit the data to be returned is more efficient than filtering data
programmatically after it has been returned.

Code Predicates on Indexed Columns

DB2 usually performs more efficiently when it can satisfy a request using an existing index rather than
no index. However, indexed access is not always the most efficient access method. For example, when
you request most of the rows in a table or access by a non-clustered index, indexed access can result in
a poorer performing query than non-indexed access.
You can find comprehensive guidelines for the efficient creation of DB2 indexes in Chapter 5, "Data
Definition Guidelines."

Multicolumn Indexes
If a table has only multicolumn indexes, try to specify the high-level column in the WHERE clause of your
query. This action results in an index scan with at least one matching column.

Consider Several Indexes Instead of a Multicolumn Index

Because DB2 can utilize multiple indexes in an access path for a single SQL statement, multiple
indexes might be more efficient (from a global perspective) than a single multicolumn index. If access to
the columns varies from query to query, multiple indexes might provide better overall performance for all
your queries, at the expense of an individual query.

 - 49 -

If you feel that multiple indexes might be of benefit for your specific situation, test their effectiveness first
in a test environment by

 Dropping the multicolumn index
 Creating a single index for each of the columns in the multicolumn index
 Updating DB2 Catalog statistics to indicate production volume
 Running EXPLAIN on all the affected queries and analyzing the results

Use ORDER BY When the Sequence Is Important
You cannot guarantee the order of the rows returned from a SELECT statement without an ORDER BY
clause. At times SQL developers get confused when DB2 uses an index to satisfy a query and the
results are returned in the desired order even without the ORDER BY clause. But, due to the nature of
the DB2 optimizer, the access path by which the data is retrieved might change from execution to
execution of an application program. If the access path changes, and ORDER BY is not specified, the
results can be returned in a different (non-desired) order. For this reason, always code the ORDER BY
clause when the sequence of rows being returned is important.
Limit the Columns Specified in ORDER BY
When you use ORDER BY to sequence retrieved data, DB2 ensures that the data is sorted in order by
the specified columns. Doing so usually involves the invocation of a sort (unless an appropriate index is
available). The more columns that are sorted, the less efficient the query will be. Therefore, use ORDER
BY on only those columns that are absolutely necessary.

Increase the Possibility of Stage 1 Processing

For SQL statements, you must consider at which stage the predicate is applied: Stage 1 or Stage 2.
Note Stage 1 predicates were previously known as sargable predicates. Sargable is an

IBM-defined term that stands for search arguable. The term simply defines in
which portion of DB2 a predicate can be satisfied. The term sargable is ostensibly
obsolete and has been replaced in the IBM literature by the term Stage 1
processing.

A predicate that can be satisfied by Stage 1 processing can be evaluated by the Data Manager portion
of DB2, not the Relational Data System. The Data Manager component of DB2 is at a level closer to the
data than the Relational Data System. You can find a more complete description of the components of
DB2 in Chapter 18, "DB2 Behind the Scenes."

Because a Stage 1 predicate can be evaluated at an earlier Stage of data retrieval, you avoid the
overhead of passing data from component to component of DB2. Try to use Stage 1 predicates rather
than Stage 2 predicates because Stage 1 predicates are more efficient. The following list shows the
predicates that can be satisfied by Stage 1 processing:

COLUMN_NAME operator value
COLUMN_NAME IS NULL
COLUMN_NAME BETWEEN val1 AND val2
COLUMN_NAME IN (list of columns)
COLUMN_NAME IN (non-correlated subquery)
COLUMN_NAME LIKE pattern
COLUMN_NAME LIKE :host-variable
A.COLUMN_NAME1 operator B.COLUMN_NAME2
COLUMN_NAME operator (non-correlated subquery)
COLUMN_NAME operator (non-column expression)

All other predicate formulations are Stage 2.
Note that you can replace operator with =, <=, >=, <, >, or <>. Additionally, note that the seventh item
in this list refers to the comparison of two columns from different tables. It is indicated by the A and B
before the column names. If both columns were from the same table, the predicate would not be Stage
1. Additionally, a LIKE predicate ceases to be Stage 1 if the column is defined using a field procedure.

A non-column expression is any expression in which a column of a table is not specified. Examples of
such expressions include

CURRENT TIMESTAMP - 10 DAYS
:HOST-VARIABLE + 20
FLOAT(8.5)
Stage 1 predicates combined with AND, combined with OR, or preceded by NOT are also Stage 1. All
others are Stage 2.

 - 50 -

However, you should not view use of Stage 1 predicates as a panacea. For example, a predicate
defined such that it conforms to the syntax specified for stage 1 might in fact be Stage 2 because it
contains constants whose data type or length does not match. Additionally, adherence to Stage 1 is only
one aspect of efficient query writing and does not guarantee the most effective way to code your query.
Follow the rest of the advice in this chapter to create efficient SQL code.

Caution This information is accurate as of DB2 V6. Determine which predicates are
Stage 1 with care because IBM tends to change which predicates are Stage 1
versus Stage 2 with each release of DB2.

Increase the Possibility of Indexed Processing

A query that can use an index has more access path options, so it can be more efficient than a query
that cannot use an index. The DB2 optimizer can use an index or indexes in a variety of ways to speed
the retrieval of data from DB2 tables. For this reason, try to use indexable predicates rather than those
that are not. The following list shows predicates that can be satisfied by using indexes:

COLUMN_NAME operator value
COLUMN_NAME IS NULL
COLUMN_NAME BETWEEN val1 AND val2
COLUMN_NAME IN (list of columns)
COLUMN_NAME IN (non-correlated subquery)
COLUMN_NAME LIKE pattern
COLUMN_NAME LIKE host-variable
A.COLUMN_NAME1 operator B.COLUMN_NAME2
COLUMN_NAME operator (non-correlated subquery)
COLUMN_NAME operator (non-column expression)

Note All indexable predicates are also Stage 1. The reverse, however, is not true: All
Stage 1 predicates are not necessarily indexable.

All other predicate formulations are non-indexable.
Note that you can replace operator with =, <=, >=, <, or >. Additionally, note that the seventh item in
this list refers to the comparison of two columns from different tables. It is indicated by the A and B
before the column names. If both columns were from the same table, the predicate would not be
indexable.
Predicates formulated as shown combined with AND or OR are also indexable. However, note that
predicates preceded by NOT are not indexable. Finally, DB2 considers predicates using LIKE with a
host variable to be indexable unless the column has a field procedure defined on it or the host-variable
begins with _ or %. Consider this example:
COLUMN_NAME LIKE host-variable
The preceding is indexable unless the host-variable begins with _ or %.

Using indexable predicates is not always the most efficient way to code your query. Indexability, like
Stage 1 consideration, is only one aspect of efficient query writing. Follow the rest of the advice in this
chapter to formulate efficient SQL code.

Caution This information is accurate as of DB2 V6. Determine which predicates are
indexable with care because IBM tends to change the specification of
indexable predicates with each release of DB2.

Use Equivalent Data Types

Use the same data types and lengths when comparing column values to host variables or literals. This
way, you can eliminate the need for data conversion. Because the data type or length does not match,
DB2 evaluates the predicate as Stage 2 (even if the predicate could be Stage 1 if the data type and
length matched).
For example, comparing a column defined as INTEGER to another column defined as INTEGER is more
efficient than comparing an INTEGER column to a column defined as DECIMAL(5,2). When DB2 must
convert data, available indexes are not used.

DB2 also does not use an index if the host variable or literal is longer than the column being compared,
or if the host variable has a greater precision or a different data type than the column being compared.
This situation adversely affects performance and should be avoided.

Note As of DB2 V6, and via a retrofit APAR to V5, DB2 partially alleviates the data type
and length mismatch performance problem. When two character columns are
specified in an equi-join predicate, they no longer need to be of the same length

 - 51 -

to be considered Stage 1 and indexable.
Please note that this applies only to columns, not host variables or string literals.
Also, note that the two columns being compared must be of CHAR or VARCHAR
data type. For example, you cannot join an INTEGER column to a SMALLINT
column and expect it to be Stage 1 or indexable.

Use BETWEEN Instead of <= and >=
The BETWEEN predicate is easier to understand and code than the equivalent combination of the less
than or equal to predicate (<=) and the greater than or equal to predicate (>=). In past releases it was
also more efficient, but now the optimizer recognizes the two formulations as equivalent and there is no
performance benefit one way or the other. Performance reasons aside, one BETWEEN predicate is much
easier to understand and maintain than multiple <= and >= predicates. For this reason, favor using
BETWEEN.
However, there is one particular instance where this guideline does not apply—when comparing a host
variable to two columns. Usually, BETWEEN is used to compare one column to two values using host
variables, as shown in the following:
WHERE COLUMN1 BETWEEN :HOST-VAR1 AND :HOST-VAR2
However, it is possible to use BETWEEN to compare one value to two columns, as shown:
WHERE :HOST-VAR BETWEEN COLUMN1 AND COLUMN2

This statement should be changed to
WHERE :HOST_VAR >= COLUMN1 and :HOST-VAR <= COLUMN2
The reason for this exception is that a BETWEEN formulation comparing a host variable to two columns
is a Stage 2 predicate, whereas the preferred formulation is Stage 1.
Specify Appropriate Low and High Values for BETWEEN
When using the BETWEEN predicate, it is important that the low value in the range is specified before the
high value in the range. For example,
BETWEEN low AND high

If the values are switched, the result will be unpredictable.
Use IN Instead of LIKE
Whenever feasible, use IN or BETWEEN instead of LIKE in the WHERE clause of a SELECT. If you know
that only a certain number of occurrences exist, using IN with the specific list usually is more efficient
than using LIKE. For example, use

 IN ('VALUE1', 'VALUE2', 'VALUE3')

instead of
 LIKE 'VALUE_'
The functionality of LIKE can be imitated using a range of values. For example, if you want a query to
retrieve all employees with a last name beginning with K, you know that last names between
KAAAAAAAAAAA and KZZZZZZZZZZZZ also satisfy the request. To optimize performance, favor using
 BETWEEN :VALUE_LO AND :VALUE_HI

instead of
 LIKE 'VALUE_'
Formulate LIKE Predicates with Care
Avoid using the LIKE predicate when the percentage sign (%) or the underscore (_) appears at the
beginning of the comparison string because they prevent DB2 from using a matching index. The LIKE
predicate can produce efficient results, however, when you use the percentage sign or underscore at
the end or in the middle of the comparison string.

Not Okay Okay
LIKE %NAME LIKE

NAME
%

LIKE _NAME LIKE
NA_M
E

 - 52 -

DB2 does not use direct index lookup when a wildcard character is supplied as the first character of a
LIKE predicate. DB2 can determine when a host variable contains a wildcard character as the first
character of a LIKE predicate. The optimizer therefore does not assume that an index cannot be used;
rather, it indicates that an index might be used. At runtime, DB2 determines whether the index will be
used based on the value supplied to the host variable. When a wildcard character is specified for the
first character of a LIKE predicate, DB2 uses a non-matching index scan or a tablespace scan to satisfy
the search.
Avoid Using NOT (Except with EXISTS)
Prior to DB2 V4, predicates using NOT were non-indexable and Stage 2. Predicates formed using NOT
are evaluated at Stage 1 as of V4, but they are still non-indexable. Therefore, when possible, you
should recode queries to avoid the use of NOT (<>). Take advantage of your understanding of the data
being accessed. For example, if you know that no values are less than the value that you are testing for
inequality, you could recode
 COLUMN1 <> value

as
 COLUMN1 >= value
See the section on complex SQL guidelines for guidance in the use of the EXISTS predicate.

Code the Most Restrictive Predicate First

DB2 uses a predefined method for evaluating SQL predicates. The sequence in which predicates are
evaluated is dependent upon four different factors:

 The indexes being used
 Whether the predicate is Stage 1 or Stage 2
 The type of the predicate (e.g. =, >, <, BETWEEN, etc.)
 The sequence in which the predicates are physically coded in the SQL statement

First, DB2 will apply the predicates that match the indexes selected in the access path. The sequence in
which these predicates are applied is based on the order of the column in the index. So, you must
design efficient indexes to impact performance (see Chapter 5 for more information on efficient index
design).

After applying matching index predicates, DB2 then applies
1. Stage 1 predicates that were not chosen as matching predicates but still refer to

index columns, followed by
2. Stage 1 predicates in columns that were not in the indexes being used, and then
3. any Stage 2 predicates.

Within each of these three groups, the sequence in which predicates are evaluated is based on the
predicate type and the sequence in which the predicate appears in the SQL statement.

Predicate types are applied in the following sequence:
1. All equality predicates (including column IN-list, where list has only one element)
2. All range predicates and predicates specifying column IS NOT NULL
3. All other predicate types

Due to the preceding set of rules, when you code predicates in your SELECT statement, place the
predicate that will eliminate the greatest number of rows first. For example, consider the following
statement:
 SELECT EMPNO, FIRSTNME, LASTNAME
 FROM DSN8610.EMP
 WHERE WORKDEPT = 'D21'
 AND SEX = 'F';
Suppose that the WORKDEPT has 10 distinct values. The SEX column obviously has only 2 distinct
values. Because both are equality predicates, the predicate for the WORKDEPT column should be coded
first (as shown) because it eliminates more rows than the predicate for the SEX column. The
performance gain from predicate placement is usually minimal, but sometimes every little performance
gain is significant.

Caution Remember, this guideline is true only for like predicate types. If the predicates
are not of the same type, the guideline is not applicable.

 - 53 -

Use Predicates Wisely

By reducing the number of predicates on your SQL statements, you might be able to achieve better
performance in two ways:

1. Reduced BIND time due to fewer options that must be examined by the DB2
optimizer.

2. Reduced execution time due to a smaller path length caused by the removal of
redundant search criteria from the optimized access path. DB2 processes each
predicate coded for the SQL statement. Removing predicates removes work, and
less work equals less time to process the SQL.

However, if you remove predicates from SQL statements, you run the risk of changing the data access
logic. Therefore, remove predicates only when you're sure that their removal will not have an impact on
the query results. For example, consider the following query:
 SELECT FIRSTNME, LASTNAME, EDLEVEL
 FROM DSN8610.EMP
 WHERE JOB = 'DESIGNER'
 AND EDLEVEL >= 16;

This statement retrieves all rows for designers who are at an education level of 16 or above. But what if
you know that the starting education level for all designers in an organization is 16? No one with a lower
education level can be hired as a designer. In this case, the second predicate is redundant. Removing
this predicate does not logically change the results, but it might enhance performance.
On the other hand, performance possibly can degrade when you remove predicates. The DB2 optimizer
analyzes correlation statistics when calculating filter factors. Examples of correlated columns include
CITY and STATE (Chicago and Illinois are likely to occur together); FIRST_NAME and GENDER
(Robert and male are likely to occur together).

Because the filter factor might change when a predicate is changed or removed, a different access path
can be chosen. That access path might be more (or less) efficient than the one it replaces. The basic
rule is to test the SQL both ways to determine which will perform better for each specific statement.
Truly "knowing your data," however, is imperative. For example, it is not sufficient to merely note that for
current rows in the EMP table no designers are at an EDLEVEL below 16. This may just be a data
coincidence. Do not base your knowledge of your data on the current state of the data, but on business
requirements. You must truly know that a correlation between two columns (such as between JOB and
EDLEVEL) actually exists before you modify your SQL to take advantage of this fact.

In any case, whenever you make changes to SQL statements based on your knowledge of the data, be
sure to document the reason for the change in the actual SQL statement using SQL comments. Good
documentation practices make future tuning, maintenance, and debugging easier.

Be Careful with Arithmetic Precision

When you select columns using arithmetic expressions, be careful to ensure that the result of the
expression has the correct precision. When an arithmetic expression operates on a column, DB2
determines the data type of the numbers in the expression and decides the correct data type for the
result. Remember the following rules for performing arithmetic with DB2 columns:

 DB2 supports addition, subtraction, multiplication, and division.
 DATE, TIME, and TIMESTAMP columns can be operated on only by means of addition

and subtraction. (See the section "Use Date and Time Arithmetic with Care" later in
this chapter.)

 Floating-point numbers are displayed in scientific notation. Avoid using floating-point
numbers because scientific notation is difficult for some users to comprehend.
DECIMAL columns can contain as many as 31 bytes of precision, which is adequate for
most users.

 When an arithmetic expression operates on two numbers of different data types, DB2
returns the result using the data type with the highest precision. The only exception to
this rule is that an expression involving two SMALLINT columns is returned as an
INTEGER result.

 - 54 -

The last rule may require additional clarification. When DB2 operates on two numbers, the result of the
operation must be returned as a valid DB2 data type. Consult the following chart to determine the result
data type for operations on any two numbers in DB2:

Statement Yields
SMALLINT operator SMALLINT INTEGER
SMALLINT operator INTEGER INTEGER
SMALLINT operator DECIMAL DECIMAL
SMALLINT operator FLOAT FLOAT
INTEGER operator SMALLINT INTEGER
INTEGER operator INTEGER INTEGER
INTEGER operator DECIMAL DECIMAL
INTEGER operator FLOAT FLOAT
DECIMAL operator SMALLINT DECIMAL
DECIMAL operator INTEGER DECIMAL
DECIMAL operator DECIMAL DECIMAL
DECIMAL operator FLOAT FLOAT
FLOAT operator ANY DATA TYPE FLOAT

For example, consider the following SELECT:
 SELECT EMPNO, EDLEVEL/2, SALARY/2
 FROM DSN8610.EMP
 WHERE EMPNO BETWEEN '000250' AND '000290';

This statement returns the following results:
EMPNO COL1 COL2
000250 7 9590.00000000
000260 8 8625.00000000
000270 7 13690.00000000
000280 8 13125.00000000
000290 6 7670.00000000
Because EDLEVEL is an INTEGER and 2 is specified as an INTEGER, the result in COL1 is truncated
and specified as an INTEGER. Because SALARY is a DECIMAL column and 2 is specified as an
INTEGER, the result is a DECIMAL. If you must return a more precise number for COL1, consider
specifying EDLEVEL/2.0. The result is a DECIMAL because 2.0 is specified as a DECIMAL.

Use Column Renaming with Arithmetic Expressions and Functions
You can use the AS clause to give arithmetic expressions a column name, as follows:
 SELECT EMPNO, EDLEVEL/2 AS HALF_EDLEVEL, SALARY/2 AS HALF_SALARY
 FROM DSN8610.EMP
 WHERE EMPNO BETWEEN '000250' AND '000290';
If you give expressions a descriptive name, SQL becomes easier to understand and maintain. Likewise,
when specifying functions in the SELECT list, use the AS clause to give the new column a name.

Decimal Precision and Scale

The precision of a decimal number is the total number of digits in the number (do not count the decimal
point). For example, the number 983.201 has a precision of 6. The scale of a decimal number is equal
to the number of digits to the right of the decimal point. In the previous example, the scale is 3.

Avoid Arithmetic in Column Expressions

An index is not used for a column when the column participates in an arithmetic expression. For
example, the predicate in the following statement is non-indexable:
 SELECT PROJNO

 - 55 -

 FROM DSN8610.PROJ
 WHERE PRSTDATE-10 DAYS = :HV-DATE;

You have two options to make the predicate indexable. First, you can switch the arithmetic to the non-
column side of the predicate, as shown in the following:
 SELECT PROJNO
 FROM DSN8610.PROJ
 WHERE PRSTDATE = :HV-DATE+10 DAYS;

It makes no logical difference whether you subtract 10 days from the column on the left side of the
predicate, or add 10 days to the host variable on the right side of the predicate. However, it may make a
big performance difference because DB2 can use an index to evaluate non-column arithmetic
expressions.

Alternately, you can perform calculations before the SQL statement and then use the result in the query.
For example, you could recode the previous SQL statement as this sequence of COBOL and SQL
 ADD +10 TO HV-DATE. COBOL
 SELECT PROJNO SQL
 FROM DSN8610.PROJ
 WHERE PRSTDATE = :HV-DATE

In general, though, it is wise to avoid arithmetic in predicates altogether, if possible. The fewer
arithmetic expressions in the SQL statement, the easier it is to understand the SQL. Furthermore, if
arithmetic is avoided in SQL, you do not need to remember the exact formulations which are indexable
and Stage 1. For these reasons, perform arithmetic outside of the SQL when possible.

Use Date and Time Arithmetic with Care
DB2 enables you to add and subtract DATE, TIME, and TIMESTAMP columns. In addition, you can add
date and time durations to or subtract them from these columns.

Use date and time arithmetic with care. If users understand the capabilities and features of date and
time arithmetic, they should have few problems implementing it. Keep the following rules in mind:

 When you issue date arithmetic statements using durations, do not try to establish a
common conversion factor between durations of different types. For example, the date
arithmetic statement

 DATE(1999/04/03) - 1 MONTH
is not equivalent to statement
 DATE(1999/04/03) - 30 DAYS

April has 30 days, so the normal response would be to subtract 30 days to subtract one month. The
result of the first statement is 1999/03/03, but the result of the second statement is 1999/03/04. In
general, use like durations (for example, use months or use days, but not both) when you issue date
arithmetic.

 If one operand is a date, the other operand must be a date or a date duration. If one
operand is a time, the other operand must be a time or a time duration. You cannot mix
durations and data types with date and time arithmetic.

 If one operand is a timestamp, the other operand can be a time, a date, a time
duration, or a date duration. The second operand cannot be a timestamp. You can mix
date and time durations with timestamp data types.

 Date durations are expressed as a DECIMAL(8,0) number. The valid date durations
are

 DAY DAYS

 MONTH MONTHS

YEAR YEARS
 Time durations are expressed as a DECIMAL(6,0) number. The valid time durations

are
 HOUR HOURS

 - 56 -

 MINUTE MINUTES
 SECOND SECONDS

MICROSECOND MICROSECONDS

Use Built-in Functions Where Available

DB2 V6 provides 90 built-in functions that can be used in SQL statements to transform data from one
state to another. Use the built-in functions instead of performing similar functionality in your application
programs.

Prior to Version 6, DB2 provided only a minimal set of built-in functions. As such, developers needed to
write their own work-arounds to achieve certain functionality. For example, previous editions of this book
recommended using the following logic to return a day of the week
 DAYS(CURRENT DATE) - (DAYS(CURRENT DATE)/7) * 7
However, DB2 now provides a DAYOFWEEK function that is easier to use and understand than this
expression. I do not recommend going back to your old programs and retrofitting them to use the new
functions because the manpower required would be excessive and the return would be marginal.
However, for all new and future SQL, use the built-in functions. For more information on the built-in
functions available to DB2 consult Chapter 3 "Using DB2 Functions."

Limit the Use of Scalar Functions
If you can avoid scalar functions in WHERE clauses without much trouble, do so. Use scalar functions,
however, to offload work from the application to the database management system. Remember that an
index is not used for columns to which scalar functions are applied. Scalar functions typically can be
used in the SELECT list of SQL statements with no performance degradation.

Specify the Number of Rows to Be Returned
When you code a cursor to fetch a predictable number of rows, consider specifying the number of rows
to be retrieved in the OPTIMIZE FOR n ROWS clause of the CURSOR. This way, DB2 can select the
optimal access path for the statement based on actual use.
Coding the OPTIMIZE FOR n ROWS clause of the CURSOR does not limit your program from fetching
more than the specified number of rows.

This statement can cause your program to be inefficient, however, when many more rows or many
fewer rows than specified are retrieved. So be sure you specify a reasonable estimate for the number of
rows to be returned if you code this clause.
Disable List Prefetch Using OPTIMIZE FOR 1 ROW
If a particular query experiences sub-optimal performance due to list prefetch, specifying OPTIMIZE
FOR 1 ROW disables list prefetch. This capability might be of particular use in an online environment in
which data is displayed to the end user a screen at a time.
Appending OR OPTIMIZE FOR 1 ROW to a predicate is a useful technique to deploy in the following
situations:

 To favor the Nested Loop Join method
 To modify the order in which tables are joined
 To request index access
 To turn off list prefetch, sequential prefetch, and parallelism

Before applying the OPTIMIZE FOR 1 ROW clause to the predicate, be sure that the original SQL
statement is coded properly and returns the correct data.
Disable Index Access Using OR 0 = 1
During the tuning process, you can append OR 0 = 1 to a predicate to eliminate index access. For
example, consider a query against the EMP table on which two indexes exist: one on EMPNO and one on
WORKDEPT.
 SELECT EMPNO, WORKDEPT, EDLEVEL, SALARY
 FROM DSN8610.EMP
 WHERE EMPNO BETWEEN '000020' AND '000350'
 AND (WORKDEPT > "A01" OR 0 = 1);
In this case, the OR 0 = 1 clause prohibits DB2 from choosing the WORKDEPT index, thus forcing DB2
to use either the index on EMPNO or a tablespace scan. Similar techniques include adding 0 to a
numeric column or appending a null string to a character column to avoid indexed access.
Appending OR 0 = 1 to a predicate is a useful technique to deploy in the following situations:

 - 57 -

 To coerce the DB2 optimizer to ignore the predicate
 To modify the order in which tables are joined
 To request a tablespace scan
 To remove an index from a multiple index access path

Before applying the OR 0 = 1 clause to the predicate, be sure that the original SQL statement is
correctly coded and returns the right data.

Be Aware of Tablespace Partitioning Key Ranges
When you access data in partitioned tablespaces, be aware of the values used for the partitioning
scheme. Prior to V4, DB2 scanned the entire table in a tablespace scan of a partitioned table. As of DB2
V4, you can limit a tablespace scan to accessing a subset of the partitions if the predicates of the
WHERE clause can be used to limit the key ranges that need to be scanned.

Specify Isolation Level for Individual SQL Statements
You can use the WITH clause to specify an explicit isolation level at the SQL statement level. Four
options are available:

WITH RR: Repeatable Read
WITH RS: Read Stability
WITH CS: Cursor Stability
WITH UR: Uncommitted Read (can be specified only if the result table is read-only)
Sometimes it makes sense to change the isolation level of a SQL statement within a program, without
changing the isolation level of the other SQL statements in the program. For example, one query might
be able to tolerate a dirty read because the data is being aggregated and only an estimated result is
required. In this case, that query can be specified as WITH UR, even though the package for the
program is bound as ISOLATION(CS).
Use the WITH clause when you need to change the isolation level for specific SQL statements within a
package or plan.
Consider KEEP UPDATE LOCKS to Serialize Updates
As of DB2 V5, the KEEP UPDATE LOCKS clause can be specified for RR and RS isolation levels. With
KEEP UPDATE LOCKS, DB2 acquires X locks instead of U or S locks on all qualified rows or pages.
Use this option to serialize updates when concurrency is not an issue.

Use SQL "Tricks" to Influence the Optimizer

Although non-column expressions are indexable as of DB2 V5, IBM has excepted certain expressions
because they were used as tricks to fool the optimizer. The following "trick SQL" expressions are still
non-indexable:

 Multiplication or division by 1
 Addition or subtraction of 0
 Concatenating an empty string

IBM did not include these expressions because these tricks have been deployed by DB2 developers to
avoid indexed access for more than a decade. An example SQL statement using one of these tricks
follows:
 SELECT EMPNO, WORKDEPT, EDLEVEL, SALARY
 FROM DSN8610.EMP
 WHERE EMPNO < (:HOST-VAR CONCAT '');

In this case, a tablespace scan is used because an empty string is concatenated to the host variable in
the predicate and no other predicates are available for indexed access.

Complex SQL Guidelines

The preceding section provided guidelines for simple SQL SELECT statements. These statements retrieve
rows from a single table only. Complex SQL can use a single SQL SELECT statement to retrieve rows from
different tables. The four categories of complex SQL statements are

 Joins
 Subqueries
 Unions
 Grouping

 - 58 -

UNION Versus UNION ALL
The UNION operator always results in a sort. When the UNION operator connects two SELECT
statements, both SELECT statements are issued, the rows are sorted, and all duplicates are eliminated.
If you want to avoid duplicates, use the UNION operator.
The UNION ALL operator, by contrast, does not invoke a sort. The SELECT statements connected by
UNION ALL are executed, and all rows from the first SELECT statement are appended to all rows from
the second SELECT statement. Duplicate rows might exist. Use UNION ALL when duplicate rows are
required or, at least, are not a problem. Also use UNION ALL when you know that the SELECT
statements will not return duplicates.
Use NOT EXISTS Instead of NOT IN
When you code a subquery using negation logic, use NOT EXISTS instead of NOT IN to increase the
efficiency of your SQL statement. When you use NOT EXISTS, DB2 must verify only nonexistence.
Doing so can reduce processing time significantly. With the NOT IN predicate, DB2 must materialize
the complete results set.

Use a Constant for Existence Checking
When you use EXISTS to test for the existence of a particular row, specify a constant in the subquery
SELECT list. The SELECT list of the subquery is unimportant because the statement checks for
existence only, and does not actually return columns. For example, you can code SQL to list all
employees who are responsible for at least one project, as follows:
 SELECT EMPNO
 FROM DSN8610.EMP E
 WHERE EXISTS
 (SELECT 1
 FROM DSN8610.PROJ P
 WHERE P.RESPEMP = E.EMPNO);

Be Aware of Predicate Transitive Closure Rules
Predicate transitive closure refers to the capability of the DB2 optimizer to use the rule of transitivity (if
A=B and B=C, then A=C) to determine the most efficient access path for queries. The optimizer did not
always have the capability to use the rule of transitivity.
In older releases of DB2, you produced a more efficient query by providing redundant information in the
WHERE clause of a join statement, as in this example:
 SELECT A.COL1, A.COL2, B.COL1
 FROM TABLEA A, TABLEB B
 WHERE A.COL1 = B.COL1
 AND A.COL1 = :HOSTVAR;

This query could process more efficiently in pre-V2.1 releases of DB2 by coding a redundant predicate,
as follows:
 SELECT A.COL1, A.COL2, B.COL1
 FROM TABLEA A, TABLEB B
 WHERE A.COL1 = B.COL1
 AND A.COL1 = :HOSTVAR
 AND B.COL1 = :HOSTVAR;
The need to code redundant predicates for performance no longer exists for equality and range
predicates. However, predicate transitive closure is not applied with LIKE or IN predicates. Consider
this example:
 SELECT A.COL1, A.COL2, B.COL1
 FROM TABLEA A,
 TABLEB B
 WHERE A.COL1 = B.COL1
 AND A.COL1 LIKE 'ABC%';

 - 59 -

The preceding can be more efficiently coded as follows:
 SELECT A.COL1, A.COL2, B.COL1
 FROM TABLEA A,
 TABLEB B
 WHERE A.COL1 = B.COL1
 AND A.COL1 LIKE 'ABC%'
 AND B.COL1 LIKE 'ABC%';
Unless you're using an IN or LIKE clause, or you are running on an ancient version of DB2 (pre V2.3)
do not code redundant predicates; doing so is unnecessary and might cause the query to be less
efficient.

Use a Correlated Subselect to Determine "Top Ten"

In some situations, returning only a portion of the actual result set for a query is desirable. This situation
most frequently manifests itself in the "Top Ten" problem (for example, returning the top-ten highest
salaries in the company). Consider the following SQL:
 SELECT SALARY, EMPNO, LASTNAME
 FROM DSN8610.EMP E1
 WHERE 10 > (SELECT COUNT(*)
 FROM DSN8610.EMP E2
 WHERE E1.SALARY < E2.SALARY);
The top-ten highest salaries are returned. You can alter the actual number by changing the literal value
10 to whatever number you want.

Minimize the Number of Rows in a Join

Joining many tables in one query can adversely affect performance. Although the maximum number of
tables that can be joined in a single SQL statement is 225, the practical limit is usually fewer.

Caution Prior to DB2 V6, the limit for tables in a SQL statement was 15. The limit was
raised to such a high number to accommodate ERP vendors such as
Peoplesoft and SAP, whose applications were designed originally for other
RDBMS packages, such as Oracle, that have higher limits than DB2. Just
because the limit has been increased does not mean you should write queries
that access such a large number of tables. The performance of such queries
will likely be poor and difficult to manage.

However, setting an artificial limit on the standard number of tables per join is not a wise course of
action. In some situations, avoiding large, complex joins in an online environment may be necessary.
But the same statement might be completely acceptable in a batch job or ad hoc request.

The number of tables to be joined in any application should be based on the following:
 The total number of rows participating in the join
 The results you want to obtain from the query
 The level of performance you want
 The anticipated throughput of the application
 The type of application (OLTP versus OLAP or DSS)
 The environment in which the application will operate (online versus batch)
 The availability you want (for example, 24x7)

In general, however, always eliminate unnecessary tables from your join statement.

Consider Denormalizing to Reduce Joins
To minimize the need for joins, consider denormalization. Remember, however, that denormalization
usually implies redundant data, dual updating, and extra DASD usage. Normalization optimizes data
modification at the expense of data access; denormalization optimizes data access at the expense of
data modification. You can find additional denormalization assistance in Chapter 5.

 - 60 -

Reduce the Number of Rows to Be Joined

The number of rows participating in a join is the single most important determinant in predicting the
response time of a join. To reduce join response time, reduce the number of rows to be joined in the
join's predicates.
For example, when you try to determine which males in all departments reporting to department D01
make a salary of $40,000 or more, you can code the predicates for both SEX and SALARY as follows:
 SELECT E.LASTNAME, E.FIRSTNME
 FROM DSN8610.DEPT D,
 DSN8610.EMP E
 WHERE D.ADMRDEPT = 'D01'
 AND D.DEPTNO = E.WORKDEPT
 AND E.SEX = 'M'
 AND E.SALARY >= 40000.00;
The predicates on the SEX and SALARY columns can be used to reduce the amount of data that needs
to be joined. If you fail to code either of the last two predicates, deciding instead to scan the results and
pull out the information you need, more rows qualify for the join and the join is less efficient.

Join Using SQL Instead of Program Logic

Coding a join using SQL instead of COBOL or another high-level language is almost always more
efficient. The DB2 optimizer has a vast array of tools in its arsenal to optimize the performance of SQL
queries. Usually, a programmer will fail to consider the same number of possibilities as DB2.
If a specific SQL join is causing high overhead, consider the tuning options outlined in this chapter
before deciding to implement the join using a program. To further emphasize the point, consider the
results of a recent test. A three table join using GROUP BY and the COUNT(*) function similar to the one
below was run:
 SELECT A.EMPNO, LASTNAME, COUNT(*)
 FROM DSN8610.EMP E,
 DSN8610.EMPPROJACT A,
 DSN8610.PROJ P
 WHERE E.EMPNO = A.EMPNO
 AND P.PROJNAME IN ('PROJECT1', 'PROJECT7', 'PROJECT9')
 AND A.PROJNO = P.PROJNO
 AND A.EMPTIME > 40.0
 GROUP BY A.EMPNO, LASTNAME
Additionally, an equivalent program was coded using three cursors (one for each join), internal sorting
(using Syncsort, DFSORT, or a similar utility), and programmatic counting. Performance reports were
run on both, and the SQL statement outperformed the equivalent application program by more than 800
percent in terms of elapsed time and more than 600 percent in terms of CPU time.

Programming your own application joins should always be a very last resort and should not be
considered unless you have exhausted all other tuning techniques. In practice, application joins are
hardly ever needed for performance reasons.

Use Joins Instead of Subqueries
A join can be more efficient than a correlated subquery or a subquery using IN. For example, this query
joins two tables:
 SELECT EMPNO, LASTNAME
 FROM DSN8610.EMP,
 DSN8610.PROJ
 WHERE WORKDEPT = DEPTNO
 AND EMPNO = RESPEMP;

 - 61 -

The preceding example is usually more efficient than the following query, which is formulated as a
correlated subquery accessing the same two tables:
 SELECT EMPNO, LASTNAME
 FROM DSN8610.EMP X
 WHERE WORKDEPT =
 (SELECT DEPTNO
 FROM DSN8610.PROJ
 WHERE RESPEMP = X.EMPNO);

The preceding two queries demonstrate how to turn a correlated subquery into a join. You can translate
non-correlated subqueries into joins in the same manner. For example, the join
 SELECT EMPNO, LASTNAME
 FROM DSN8610.EMP,
 DSN8610.DEPT
 WHERE WORKDEPT = DEPTNO
 AND DEPTNAME = 'PLANNING';

is usually more efficient than the subquery
 SELECT EMPNO, LASTNAME
 FROM DSN8610.EMP
 WHERE WORKDEPT IN
 (SELECT DEPTNO
 FROM DSN8610.DEPT
 WHERE DEPTNAME = 'PLANNING');
Note that these two queries do not necessarily return the same results. If DEPTNO is not unique, the first
SELECT statement could return more rows than the second SELECT statement, and some of the values
for EMPNO could appear more than once in the results table.

Be aware, however, that with each new release of DB2, subqueries (both correlated and non-correlated)
are becoming more and more efficient. Yet, performance concerns aside, standardizing on joins instead
of subqueries (when possible) can make development and maintenance easier because fewer query
formulations need to be considered during implementation, or modified during maintenance cycles.

Join on Clustered Columns

When you join large tables, use clustered columns in the join criteria if possible. This way, you can
reduce the need for intermediate sorts. Note that doing so might require clustering of the parent table by
primary key and the child table by foreign key.

Join on Indexed Columns

The efficiency of your program improves when tables are joined based on indexed columns rather than
on non-indexed ones. To increase the performance of joins, consider creating indexes specifically for
the predicates being joined.
Use Caution When Specifying ORDER BY with a Join
When the results of a join must be sorted, limiting the ORDER BY to columns of a single table can cause
DB2 to avoid a sort. Whenever you specify columns from multiple tables in the ORDER BY clause of a
join statement, DB2 invokes a sort.

Avoid Cartesian Products

Never use a join statement without a predicate. A join without a predicate generates a results table in
which every row from the first table is joined with every row from the other table: a Cartesian product.
For example, joining—without a predicate—a 1,000 row table with another 1,000 row table results in a
table with 1,000,000 rows. No additional information is provided by this join, so a lot of machine
resources are wasted.

 - 62 -

Note Although you should never specify a Cartesian product in your SQL queries, the
DB2 optimizer may decide to use a Cartesian product for a portion, or portions of
a join. For example, when a star join is being used, the DB2 optimizer will choose
to implement Cartesian products for portions of the join. This may happen in data
warehousing queries and other ad hoc queries where multiple dimension tables
are joined to a very large fact table. Because the fact table is usually many times
larger than the dimension tables, processing the fact table only once against the
Cartesian product of the fact tables can enhance query performance. As many as
six dimension tables (five prior to DB2 V6) can be joined as a Cartesian product
for a star join in DB2.
For more information on star joins consult Chapter 42 "Data Warehousing With
DB2."

Provide Adequate Search Criteria
When possible, provide additional search criteria in the WHERE clause for every table in a join. These
criteria are in addition to the join criteria, which are mandatory to avoid Cartesian products. This
information provides DB2 with the best opportunity for ranking the tables to be joined in the most
efficient manner (that is, for reducing the size of intermediate results tables). In general, the more
information you provide to DB2 for a query, the better the chances that the query will perform
adequately.
Consider Using Explicit INNER JOINs
Instead of specifying joins by using a comma-delimited list of tables in the FROM clause, use INNER
JOIN with the ON clause. Explicit INNER JOIN syntax might help when you're training new
programmers in SQL because it provides a join keyword. Likewise, the join predicates must be isolated
in the ON clause when you're using an explicit INNER JOIN. This way, reading, tuning, and maintaining
the SQL code are easier.
Use Explicit OUTER JOINs
Avoid coding the old style of outer join requiring a simple SELECT, UNION, and correlated subselect.

Note Prior to DB2 V4, this was the only way of coding an outer join.

Instead use the SQL outer join syntax which is easier to code, easier to maintain, and more efficient to
execute. An explicit OUTER JOIN uses one pass against the tables and as such usually outperforms an
outer join using UNION or UNION ALL. Using explicit OUTER JOIN statements reduces the number of
bugs and speeds application development time due solely to the significant reduction in lines of code
required. Furthermore, as IBM improves the optimizer over time, techniques designed to make outer
joins more efficient will most likely focus only on the new, explicit outer join syntax and not on the old,
complex SQL formulation.

Exception Reporting

You can use the bottom half of the old style of outer join to report just the exceptions when you don't
need a full-blown outer join. Consider this example:
 SELECT D.DEPTNO, D.DEPTNAME, D.MGRNO, '* No Mgr Name *'
 FROM DSN8610.DEPT D
 WHERE NOT EXISTS
 (SELECT 1
 FROM DSN8610.EMP E
 WHERE D.MGRNO = E.EMPNO)
 ORDER BY 1;

This SQL returns only the departments without a manager name.
Never Code a RIGHT OUTER JOIN
Favor coding LEFT OUTER JOIN over RIGHT OUTER JOIN. The choice is truly arbitrary, but the
manner in which DB2 shows EXPLAIN information makes left outer joins easier to tune. EXPLAIN
populates the JOIN_TYPE column to describe the outer join method (FULL, RIGHT, or LEFT). The
column contains the value F for a FULL OUTER JOIN, L for a LEFT OUTER JOIN or RIGHT OUTER
JOIN, or a blank for an INNER JOIN or no join. EXPLAIN always converts right outer joins to left outer
joins, so there is no R value for JOIN_TYPE. Therefore, deciphering the PLAN_TABLE data is more
difficult for a RIGHT OUTER JOIN than for a LEFT OUTER JOIN.

 - 63 -

Use COALESCE with FULL OUTER JOINs
At times, you might need the COALESCE function to avoid nulls in the result columns of OUTER JOIN
statements. The COALESCE function is a synonym for the VALUE function. To understand how
COALESCE can be useful in an outer join, consider the following query:
 SELECT EMP.EMPNO, EMP.WORKDEPT, DEPT.DEPTNAME
 FROM EMP FULL OUTER JOIN DEPT
 ON EMP.WORKDEPT = DEPT.DEPTNO;

A portion of the results for this query looks like the following:
EMPNO WORKDEPT DEPTNAME
200330 E21 SOFTWARE

SUPPORT
200340 E21 SOFTWARE

SUPPORT
------ --- DEVELOPMENT

CENTER
Note that the department code for DEVELOPMENT CENTER is not displayed, even though you know by
simple browsing of the DEPT table that the code is D01. The value is not returned because the query
selects the WORKDEPT column from EMP, not the DEPTNO column from DEPT. You can rectify this
situation by using the COALESCE function. The COALESCE function notifies DB2 to look for a value in
both of the listed columns, one from each table in the outer join (in this case, EMP and DEPT). If a value
is found in either table, it can be returned in the result set. Consider the following example:
 SELECT EMP.EMPNO,
 COALESCE(EMP.WORKDEPT, DEPT.DEPTNO) AS DEPTNUM,
 DEPT.DEPTNAME
 FROM EMP FULL OUTER JOIN DEPT
 ON EMP.WORKDEPT = DEPT.DEPTNO;

The results are changed as follows:
EMPNO DEPTNUM DEPTNAME
200330 E21 SOFTWARE

SUPPORT
200340 E21 SOFTWARE

SUPPORT
------ D01 DEVELOPMENT

CENTER
In this case, the last row of the result set contains the correct department code. The COALESCE function
determines that the department code is stored in the DEPT.DEPTNO column and returns that value
instead of the null because there is no corresponding WORKDEPT number.
OUTER JOINs and Inline Views
Be aware that you might need to combine inline views with the COALESCE function to return the
appropriate results. Consider adding a local predicate to the preceding example:
 SELECT EMP.EMPNO,
 COALESCE(EMP.WORKDEPT, DEPT.DEPTNO) AS DEPTNUM,
 DEPT.DEPTNAME
 FROM EMP FULL OUTER JOIN DEPT
 ON EMP.WORKDEPT = DEPT.DEPTNO
 WHERE EMP.WORKDEPT = 'D01';
In this case, no rows are returned. The 'D01' department number is aligned with the "DEVELOPMENT
CENTER" in the DEPT table as DEPTNO, not in the EMP table as WORKDEPT. The solution is to use an
inline view as follows:
 SELECT EMPNO, DEPTNUM, DEPTNAME

 - 64 -

 FROM (SELECT EMPNO,
 COALESCE(EMP.WORKDEPT, DEPT.DEPTNO) AS DEPTNUM,
 DEPT.DEPTNAME
 FROM EMP FULL OUTER JOIN DEPT
 ON EMP.WORKDEPT = DEPT.DEPTNO) AS OJ_EMP_DEPT
 WHERE DEPTNUM = 'D01';
This example finds the row for 'D01' because COALESCE is applied to the inline view before the local
predicate is applied.
OUTER JOINs and Predicate Placement
Prior to DB2 V6 inline views were required to achieve optimal outer join performance. This restriction no
longer exists. Consider the following OUTER JOIN with a local predicate:
 SELECT EMP.EMPNO, EMP.LASTNAME, DEPT.DEPTNAME
 FROM EMP LEFT OUTER JOIN DEPT
 ON EMP.WORKDEPT = DEPT.DEPTNO
 WHERE EMP.SALARY > 50000.00;

Running under DB2 V6, this query will execute quite efficiently. However, in past releases, if thousands
or millions of rows were filtered out by additional predicates, this method of coding outer joins performed
quite poorly because the outer join was performed first, before any rows were filtered out. To resolve
this problem in V5 and earlier DB2 subsystems, ensure that the local predicate is applied before the
outer join takes place, using an inline view as follows:
 SELECT E.EMPNO, E.LASTNAME, DEPT.DEPTNAME
 FROM (SELECT EMPNO, LASTNAME
 FROM EMP
 WHERE SALARY > 50000.00) AS E
 LEFT OUTER JOIN DEPT
 ON E.WORKDEPT = DEPT.DEPTNO;
By moving the local predicate into the FROM clause as an inline view, the local predicate is evaluated
before the outer join, thereby reducing the number of rows to be joined and enhancing performance.

If additional local predicates are required, you can specify additional inline views. If you want to return
rows only for which a domestic resource has responsibility, you can change the sample query as
shown:
 SELECT E.EMPNO, E.LASTNAME, DEPT.DEPTNAME
 FROM (SELECT EMPNO, LASTNAME
 FROM EMP
 WHERE SALARY > 50000.00) AS E
 LEFT OUTER JOIN
 (SELECT DEPTNO, DEPTNAME
 FROM DEPT
 WHERE MGRNO IS NOT NULL) AS D
 ON E.WORKDEPT = DEPT.DEPTNO;

Caution To reiterate, this tuning technique is applicable only to DB2 V4 and V5. Do not
code outer joins with inline views in the manner described for DB2 V6
because the query will be more difficult to code, explain, and maintain.

Limit the Columns Grouped
When you use a GROUP BY clause to achieve data aggregation, specify only the columns that need to
be grouped. Do not provide extraneous columns in the SELECT list and GROUP BY list. To accomplish
data grouping, DB2 must sort the retrieved data before displaying it. The more columns that need to be
sorted, the more work DB2 must do, and the poorer the performance of the SQL statement.

 - 65 -

GROUP BY and ORDER BY Are Not Equivalent
Although the GROUP BY clause typically sorts data to aggregate, the results are not necessarily in order
by the GROUP BY. If you want to ensure that the results are displayed in a specific order, you must use
the ORDER BY clause. When you specify both GROUP BY and ORDER BY, and the ordering
requirements are compatible, DB2 can avoid the redundant sort.
ORDER BY and Columns Selected
In DB2 V6, and via a retrofit APAR to V5, for the first time it is possible to ORDER BY columns not
specified in the SELECT-list. However, you cannot eliminate columns from the SELECT-list if they are
specified in an ORDER BY if you also are using a column function, UNION, UNION ALL, GROUP BY, or
DISTINCT.

Use Inline Views to Your Advantage
Inline views, sometimes called nested tables, allow the FROM clause of a SELECT statement to contain
another SELECT statement. You can write any table expression in the FROM clause.
Why would you want to use an inline view instead of simply creating an actual view prior to issuing the
SELECT statement? The first potential benefit is that an inline view expression can be easier to
understand. Instead of attempting to query the DB2 Catalog to extract the SQL definition of a view, the
SQL is clearly displayed in the body of the SELECT statement. Second, inline views do not require
object management because no DB2 object is created. Finally, inline views provide direct SQL support
for certain complex queries that required a view prior to DB2 V4.
Inline views are useful, for example, when detail and aggregated information from a single table must be
returned by a single query. A prime example is reporting on column length information from the DB2
Catalog. Consider a request to provide column details for each table, and on each row also report the
maximum, minimum, and average column lengths for that table. One solution is to create a view.
Consider the COL_LENGTH view based on SYSIBM.SYSCOLUMNS, as shown here:
 CREATE VIEW COL_LENGTH
 (TABLE_NAME, MAX_LENGTH,
 MIN_LENGTH, AVG_LENGTH)
 AS SELECT TBNAME, MAX(LENGTH),
 MIN(LENGTH), AVG(LENGTH)
 FROM SYSIBM.SYSCOLUMNS
 GROUP BY TBNAME
After the view is created, you can issue the following SELECT statement joining the view to the base
table, thereby providing both detail and aggregate information on each report row:
 SELECT TBNAME, NAME, COLNO, LENGTH,
 MAX_LENGTH, MIN_LENGTH, AVG_LENGTH
 FROM SYSIBM.SYSCOLUMNS C,
 authid.COL_LENGTH V
 WHERE C.TBNAME = V.TABLE_NAME
 ORDER BY 1, 3

The solution using inline views is to skip the view-creation step and simply execute the following SQL
statement:
 SELECT C.TBNAME, C.NAME, C.COLNO, C.LENGTH,
 V.MAX_LENGTH, V.MIN_LENGTH, V.AVG_LENGTH
 FROM SYSIBM.SYSCOLUMNS C,
 (SELECT TBNAME,
 MAX(LENGTH) AS MAX_LENGTH,
 MIN(LENGTH) AS MIN_LENGTH,
 AVG(LENGTH) AS AVG_LENGTH
 FROM SYSIBM.SYSCOLUMNS
 GROUP BY 1) AS V

 - 66 -

 WHERE C.TBNAME = V.TABLE_NAME
 ORDER BY 1,3
The same result is returned in a single SQL statement, but without using a view. You must enclose
inline view expressions in parentheses and must use a correlation name. You cannot refer to the
correlation name for the inline view expression elsewhere in the same FROM clause, but you can use it
outside the FROM clause (just like any other table or view name) as the qualifier of a column name.

Date and Time Guidelines

DB2 provides sophisticated facilities for processing date and time data. First, DB2 provides native data types
for storing date and time data. By storing date and time data directly using data types specifically designed
for the data, the user does not need to transform the data to and from another data type. This simplifies
program development and makes processing the data more efficient. Whenever you want to store date
and/or time data in a DB2 table, always use the appropriate date or time data type, instead of a character or
numeric data type.

The date and time data types are:
DATE A date stored as 4 bytes
TIME A time stored as 3 bytes
TIMESTAMP A combination of date and time stored as 10 bytes

Using TIMESTAMP Versus TIME and DATE
It is obvious when to use DATE and TIME data types: DATE for storing dates and TIME for storing times.
But what if you must store both date and time information on a single row in DB2. Is it better to use a
single TIMESTAMP column or two columns, one stored as DATE and the other as TIME?

The answer to this question depends on the specific situation. Consider the following points before
making your decision:

 With DATE and TIME you must use two columns. TIMESTAMP uses one column,
thereby simplifying data access and modification.

 The combination of DATE and TIME columns requires 7 bytes of storage, while a
TIMESTAMP column requires 10 bytes of storage. Using the combination of DATE and
TIME columns will save space.

 TIMESTAMP provides greater time accuracy, down to the microsecond level. TIME
provides accuracy only to the second level. If precision is important, use TIMESTAMP.
Use TIME if you do not need the time value stored to the microsecond level.

 Date and time arithmetic is easier to implement using TIMESTAMP data instead of a
combination of DATE and TIME. Subtracting one TIMESTAMP from another results in
a TIMESTAMP duration. To calculate a duration using DATE and TIME columns, two
subtraction operations must occur: one for the DATE column and one for the TIME
column.

 It is easier to format DATE and TIME columns via local DATE and TIME exits, the
CHAR function, and the DATE and TIME precompiler options. These facilities are not
available for TIMESTAMP columns. If the date and time information is to be extracted
and displayed on a report or by an online application, the availability of these DB2-
provided facilities for DATE and TIME columns should be considered when making
your decision.

Displaying Dates and Times

DB2 provides four built-in options for displaying dates and times:

Format Date Display Time
Display

ISO YYYY-MM-
DD

HH.MM.SS

USA MM/DD/YYYY HH:MM
(AM or
PM)

EUR DD.MM.YYYY HH.MM.SS

 - 67 -

JIS YYYY-MM-
DD

HH:MM:SS

Date and time values will display, and be returned to your programs, as character string data formatted
according to the format chosen by your site. The default is ISO. It is also possible to define your own
installation-specific defined formats using a LOCAL format exit.
You can also change the display format by using built-in functions (to be discussed in Chapter 3).

Date and Time Arithmetic
Another nice feature of DATE and TIME data is the ability to perform arithmetic functions. The plus (+)
and minus (-) operations can be used on date and time values and durations. A duration is a number
used to represent an interval of time. DB2 recognizes four types of durations.

 A labeled duration explicitly specifies the type of duration. An example of a labeled
duration is 15 MINUTES. Labeled durations can specify the duration in years, months,
days, hours, minutes, seconds, or microseconds. A labeled duration can only be used
as an operand of an arithmetic operator, and the other operand must have a data type
of DATE, TIME, or TIMESTAMP.

 A DATE duration is a DECIMAL(8,0) number that has the format YYYYMMDD. The
YYYY represents the number of years in the duration, MM the number of months, and
DD the number of days. When you subtract one date from another, the result is a date
duration in this format.

 Similar to DATE durations, DB2 also supports TIME durations. A TIME duration is a
DECIMAL(6,0) number with the format HHMMSS. The HH represents the number of
hours, MM the number of minutes, and SS the number of seconds. When you subtract
one time from another, the result is a time duration in this format.

 A TIMESTAMP duration is more complex than date and time durations. The
TIMESTAMP duration is a DECIMAL(20,6) number having the format
YYYYXXDDHHMMSSZZZZZZ. The duration represents YYYY years, XX months, DD
days, HH hours, MM minutes, SS seconds, and ZZZZZZ microseconds. When you
subtract a TIMESTAMP from a TIMESTAMP, you get a TIMESTAMP duration.

The rules for date and time arithmetic are somewhat complex. Remember that only addition and
subtraction can be performed on data and time data (no division or multiplication). For addition, one of
the two operands must be a duration. This stands to reason. For example, two dates cannot be added
together, but a duration can be added to a date. The same goes for two times.
For addition, use the matrix in Table 2.1 to determine what type of duration is valid for which data type.
For example, for TIME data types, a labeled duration or a TIME duration can be specified in the addition
expression.

Table 2.1: Date and Time Addition Table

Date Type Labeled Date Time Timestamp
DATE YES YES NO NO
TIME YES NO NO NO
TIMESTAMP YES YES YES YES

For labeled durations, they must be appropriate durations. For DATE, the labeled duration must specify
years, months, or days only; for TIME, the label duration must specify hours, minutes, or seconds only.
The result of adding a DATE and a duration is another DATE; a TIME and a duration is another TIME;
and a TIMESTAMP and a duration is another TIMESTAMP.

For subtraction, the rules are different. A duration cannot be subtracted from a date or time value.
Instead, the result of subtracting one date or time value from another date or time value results in a
duration.
For DATE columns, you can subtract another DATE, a DATE duration, an appropriate labeled duration
(years, months, or days), or a character representation of a DATE. The result is a DATE duration.
For TIME columns, you can subtract another TIME, a TIME duration, an appropriate labeled duration
(hours, minutes, or seconds), or a character representation of a TIME. The result is a TIME duration.
For TIMESTAMP columns, you can subtract another TIMESTAMP, a TIMESTAMP duration, any labeled
duration, or a character representation of a TIMESTAMP.

 - 68 -

Do Not Mix DB2 Dates With Non-Dates in Arithmetic Expressions
Consider an example where you decide to store dates using a column defined as DECIMAL(8,0),
instead of as a DATE. If you mix this column with a DATE column in arithmetic expressions, the results
will be incorrect. For example, subtracting the column (in this example, DATE_COL) from a DB2 date (in
this example, the current date), as follows
CURRENT DATE – DATE_COL
will not return a date duration, as you might expect. Instead, DB2 will interpret the DATE_COL value as a
duration. Consider, for example, the value of DATE_COL being 19720212, which is meant to represent
February 12, 1972. Instead, DB2 interprets it as a duration of 1,972 years, 2 months, and 12 days.

Data Modification Guidelines

All of the guidelines thus far in this chapter have explored ways to make retrieving data more efficient. But
data also must be modified, and you need to ensure that data modification is performed efficiently, too.
Under normal circumstances, you can modify data in a DB2 table in six ways:

 Using an SQL UPDATE statement
 Using an SQL INSERT statement
 Using an SQL DELETE statement
 Because of a referential constraint specifying ON DELETE CASCADE or ON DELETE

SET NULL
 Because a trigger is fired as the result of an UPDATE, INSERT, or DELETE, and the

trigger issues a SQL data modification statement
 Using the DB2 LOAD utility

This section provides tips for the efficient implementation of the first three methods. You can find
guidelines for the others as follows:

 For referential integrity, in Chapter 5
 For triggers, in Chapter 6, "Using DB2 Triggers for Integrity"
 For using the LOAD utility as well as the other DB2 utilities, in Chapter 31, "Data

Organization Utilities"

Limit Updating Indexed Columns

When you update columns in indexes, a corresponding update is applied to all indexes in which the
columns participate. Updating can have a substantial impact on performance due to the additional I/O
overhead.
Use FOR UPDATE OF Correctly
Specify only those columns that actually will or can be updated in the FOR UPDATE OF column list of a
cursor. DB2 does not use any index that contains columns listed in the FOR UPDATE OF clause.
Consider Using DELETE/INSERT Instead of FOR UPDATE OF
If all columns in a row are being updated, use DELETE on the old row and use INSERT on the new one
rather than using the FOR UPDATE OF clause.

Update Multiple Rows
You have two options for updating data using the SQL UPDATE verb:

 A cursor UPDATE using WHERE CURRENT OF
 A direct SQL UPDATE

If the data does not have to be retrieved by the application before the update, use the direct SQL
UPDATE statement.
A cursor UPDATE with the WHERE CURRENT OF option performs worse than a direct UPDATE for
two reasons. First, the rows to be updated must be retrieved from the cursor a row at a time. Each row
is fetched and then updated. A direct UPDATE affects multiple rows with one statement. Second, when
using a cursor, you must add the overhead of the OPEN and CLOSE statement.

Update Only Changed Columns
UPDATE statements should specify only columns in which the value will be modified. For example, if
only the ACSTAFF column of the DSN8610.PROJACT table should be changed, do not code the
following:
 EXEC SQL
 FETCH C1

 - 69 -

 INTO :HV-PROJNO, :HV-ACTNO, :HV-ACSTAFF,
 :HV-ACSTDATE, :HV-ACENDATE
 END-EXEC.
 MOVE 4.5 TO HV-ACSTAFF.
 UPDATE DSN8610.PROJACT
 SET PROJNO = :HV-PROJNO,
 SET ACTNO = :HV-ACTNO,
 SET ACSTAFF = :HV-ACSTAFF,
 SET ACSTDATE = :HV-ACSTDATE,
 SET ACENDATE = :HV-ACENDATE
 WHERE CURRENT OF C1;
Although the host variables contain the same data currently stored in the table, you should avoid this
type of coding. DB2 checks to see whether the data is different before performing the update. If none of
the values are different than those already stored in the table, the update does not take place.
Performance may suffer, though, because DB2 has to perform the value checking. You can avoid this
situation by coding the UPDATE statement as follows:
 UPDATE DSN8610.PROJACT
 SET ACSTAFF = :HV-ACSTAFF
 WHERE CURRENT OF C1;

Disregard this guideline when the application you are developing requires you to code a complicated
check algorithm that DB2 can perform automatically. Because of the complexity of the code needed to
check for current values, implementing this type of processing is not always feasible. Nevertheless, try
to avoid specifying useless updates of this type when issuing interactive SQL.

Consider Dropping Indexes Before Large Insertions
When you execute a large number of INSERTs for a single table, every index must be updated with the
columns and the appropriate RIDs (row IDs) for each inserted row. For very large insertions, the
indexes can become disorganized, causing poor performance. Dropping all indexes for the table,
performing the INSERTs, and then re-creating the indexes might be more efficient. The trade-off to
consider is the overhead of updating indexes versus the index re-creation plus the rebinding of all
application plans that used the indexes.
If you do drop indexes before large INSERT jobs, keep in mind that a unique index is used to enforce
uniqueness. If that index is dropped, you will need to enforce uniqueness programmatically or invalid
data may be inserted. Furthermore, be sure to execute RUNSTATS immediately after the dropped
indexes are rebuilt.
Exercise Caution When Issuing Ad Hoc DELETE Statements
Be extremely careful when issuing SQL DELETE statements outside the control of an application
program. Remember that SQL acts on a set of data, not just one row. All rows that qualify based on the
SQL WHERE clause are updated or deleted. For example, consider the following SQL statement:
 DELETE
 FROM DSN8610.DEPT;
This SQL statement, called a mass DELETE, effectively deletes every row from the DEPT table.
Normally, this result is undesirable.
Exercise Caution When Issuing Ad Hoc UPDATE Statements
When issuing an ad hoc UPDATE, take care to specify an appropriate WHERE clause. Consider the
following SQL statement:
 UPDATE DSN8610.DEPT
 SET DEPTNAME = 'NEW DEPARTMENT';
This SQL statement changes the value of the DEPTNAME column for every row in the table to the
value 'NEW DEPARTMENT'. This result occurs because no WHERE clause is coded to limit the scope
of the UPDATE. Requests of this nature are not usually desirable and should be avoided.
Mass DELETE versus LOAD
Sometimes you need to empty a table. You can do so by issuing a mass DELETE or by loading an
empty data set. A mass DELETE usually is more efficient when you're using segmented tablespaces.
Loading an empty data set usually is more efficient when you're using simple or partitioned tablespaces.

 - 70 -

Use INSERT and UPDATE to Add Long Columns
The maximum length of a string literal that can be inserted into DB2 is 255 characters. This restriction
poses a problem when you must insert a LONG VARCHAR column in an ad hoc environment.
To get around this limitation, issue an INSERT followed immediately by an UPDATE. For example, if
you need to insert 260 bytes of data into a LONG VARCHAR column, begin by inserting the first 255
bytes as shown:
 INSERT INTO your.table
 COLUMNS (LONG_COL,
 other columns)

 VALUES ('← first 254 bytes of LONG_COL →',
 other values);
Follow the INSERT with an UPDATE statement to add the rest of the data to the column, as in the
following example:
 UPDATE your.table

 SET LONG_COL = LONG_COL || '← remaining 5 bytes of LONG_COL →',
 WHERE KEY_COL = 'key value';
For this technique to be successful, a unique key column (or columns) must exist for the table. If each
row cannot be uniquely identified, the UPDATE cannot be issued because it might update more data
than you want.

Caution Prior to DB2 V6, and DB2 V5 with a retrofit APAR, the maximum length of a
string literal that could be inserted into DB2 was limited to 254 characters,
instead of 255. This change was made to enable DB2 to support ERP
applications (such as SAP R/3) better.

List Columns for INSERT
When you are coding an INSERT statement in an application program, list the column names for each
value you are inserting. Although you could merely align the values in the same order as the column
names in the table, doing so only leads to confusion. Furthermore, if ALTER is used to add new
columns to the table, every INSERT statement that does not explicitly list the columns being inserted
will fail. The proper format is
INSERT INTO DSN8610.DEPT
 (DEPTNO,
 DEPTNAME,
 MGRNO,
 ADMRDEPT)
 VALUES
 ('077',
 'NEW DEPARTMENT',
 '123456',
 '123') ;

Summary

Manipulating data in DB2 tables using SQL can be a daunting task. Using the preceding guidelines will
greatly ease this burden. Now that you understand how to access DB2 data efficiently, you're ready to learn
how to use functions to further refine the data returned from your DB2 queries. Chapter 3 discusses built-in
functions, and Chapter 4 covers user-defined functions.

Chapter 3: Using DB2 Functions
Overview

Two types of built-in functions can be applied to data in a DB2 table using SQL: column functions and scalar
functions. You can use these functions to further simplify the requirements of complex data access.

Note DB2 also provides the capability for users to create their own functions. This
capability, called user-defined functions, is discussed in-depth in Chapter 4,

 - 71 -

"Using DB2 User-Defined Functions and Data Types."

Functions are called by specifying the function name and any required operands. A built-in function can
be used any place an expression can be used (with some exceptions).

Column Functions

Column functions compute, from a group of rows, a single value for a designated column or expression. This
provides the capability to aggregate data, thereby enabling you to perform statistical calculations across
many rows with one SQL statement. To fully appreciate the column functions, you must understand SQL's
set-level processing capabilities.

This list shows some rules for the column functions:
 Column functions can be executed only in SELECT statements.
 A column function must be specified for an explicitly named column or expression.
 Each column function returns only one value for the set of selected rows.
 If you apply a column function to one column in a SELECT statement, you must apply

column functions to any other columns specified in the same SELECT statement,
unless you also use the GROUP BY clause.

 Use GROUP BY to apply a column function to a group of named columns. Any other
column named in the SELECT statement must be operated on by a column function.

 The result of any column function (except the COUNT and COUNT_BIG functions) will
have the same data type as the column to which it was applied. The COUNT function
returns an integer number; COUNT_BIG returns a decimal number.

 The result of any column function (except the COUNT and COUNT_BIG functions) can
be null. COUNT and COUNT_BIG always return a numeric result.

 Columns functions will not return a SQLCODE of +100 if the predicate specified in the
WHERE clause finds no data. Instead, a null is returned. For example, consider the
following SQL statement:

 SELECT MAX(SALARY)

 FROM DSN8610.EMP

WHERE EMPNO = '999999';
There is no employee with an EMPNO of '999999' in the DSN8610.EMP table. This
statement therefore returns a null for the MAX(SALARY). Of course, this does not apply to
COUNT and COUNT_BIG, both of which always return a value, never a null.

 When using the AVG, MAX, MIN, STDDEV, SUM, and VARIANCE functions on nullable
columns, all occurrences of null are eliminated before applying the function.

 You can use the DISTINCT keyword with all column functions to eliminate duplicates
before applying the given function. DISTINCT has no effect, however, on the MAX and
MIN functions.

 You can use the ALL keyword to indicate that duplicates should not be eliminated. ALL
is the default.

A column function can be specified in a WHERE clause only if that clause is part of a subquery of a
HAVING clause. Additionally, every column name specified in the expression of the column function
must be a correlated reference to the same group.
The column functions are AVG, COUNT, COUNT_BIG, MAX, MIN, STDDEV, SUM, and VARIANCE.
The AVG Function

The AVG function computes the average of the values for the column or expression specified as an
argument. This function operates only on numeric arguments. The following example calculates the average
salary of each department:

SELECT WORKDEPT, AVG(SALARY)
FROM DSN8610.EMP
GROUP BY WORKDEPT;
The AVG function is the preferred method of calculating the average of a group of values. Although an
average, in theory, is nothing more than a sum divided by a count, DB2 may not return equivalent
values for AVG(COL_NAME) and SUM(COL_NAME)/COUNT(*). The reason is that the COUNT
function will count all rows regardless of value, whereas SUM ignores nulls.

 - 72 -

The COUNT Function
The COUNT function counts the number of rows in a table, or the number of distinct values for a given
column. It can operate, therefore, at the column or row level. The syntax differs for each. To count the
number of rows in the EMP table, issue this SQL statement:

SELECT COUNT(*)
FROM DSN8610.EMP;
It does not matter what values are stored in the rows being counted. DB2 will simply count the number
of rows and return the result. To count the number of distinct departments represented in the EMP
table, issue the following:
SELECT COUNT(DISTINCT WORKDEPT)
FROM DSN8610.EMP;
The keyword DISTINCT is not considered an argument of the function. It simply specifies an operation
to be performed before the function is applied. When DISTINCT is coded, duplicate values are
eliminated.
If DISTINCT is not specified, then ALL is implicitly specified. ALL also can be explicitly specified in the
COUNT function. When ALL is specified, duplicate values are not eliminated.

Note The argument of the COUNT function can be of any built-in data type other than a
large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no
longer than 255 bytes, and graphic string arguments can be no longer than 127
bytes.
The result of the COUNT function cannot be null. COUNT always returns an
INTEGER value greater than or equal to zero.

The COUNT_BIG Function
The COUNT_BIG function is similar to the COUNT function. It counts the number of rows in a table or the
number of distinct values for a given column. However, the COUNT_BIG function return a result of data type
DECIMAL(31,0), whereas COUNT can return a result only as large as the largest DB2 integer value, namely
+2,147,483,647.

The COUNT_BIG function works the same as the COUNT function, except it returns a decimal value.
Therefore, the example SQL for COUNT is applicable to COUNT_BIG. Simply substitute COUNT_BIG
for COUNT. For example, the following statement counts the number of rows in the EMP table
(returning a decimal value, instead of an integer):
SELECT COUNT_BIG(*)
FROM DSN8610.EMP;

Note The COUNT_BIG function has the same restrictions as the COUNT function. The
argument of the COUNT_BIG function can be of any built-in data type other than a
large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no
longer than 255 bytes, and graphic string arguments can be no longer than 127
bytes.
The result of the COUNT_BIG function cannot be null. COUNT_BIG returns a
decimal value greater than or equal to zero.

The MAX Function
The MAX function returns the largest value in the specified column or expression. The following SQL
statement determines the project with the latest end date:

SELECT MAX(ACENDATE)
FROM DSN8610.PROJACT;

Note The result of the MAX function is of the same data type as the column or
expression on which it operates.
The argument of the MAX function can be of any built-in data type other than a
large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no
longer than 255 bytes, and graphic string arguments can be no longer than 127
bytes.

A somewhat more complicated example using MAX is shown below. It returns the largest salary paid to
a man in department D01:
SELECT MAX(SALARY)
FROM DSN8610.EMP
WHERE WORKDEPT = 'D01'

 - 73 -

AND SEX = 'M';
The MIN Function

The MIN function returns the smallest value in the specified column or expression. To retrieve the smallest
bonus given to any employee, issue this SQL statement:

SELECT MIN(BONUS)
FROM DSN8610.EMP;

Note The result of the MIN function is of the same data type as the column or
expression on which it operates.
The argument of the MIN function can be of any built-in data type other than a
large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no
longer than 255 bytes, and graphic string arguments can be no longer than 127
bytes.

The STDDEV Function
The STDDEV function returns the standard deviation of a set of numbers. The standard deviation is
calculated as the square root of the variance. For example

SELECT STDDEV(SALARY)
FROM DSN8610.EMP
WHERE WORKDEPT = 'D01';

Note The argument of the STDDEV function can be any built-in numeric data type. The
resulting standard deviation is a double precision floating point number.

The SUM Function
The accumulated total of all values in the specified column or expression is returned by the SUM column
function. For example, the following SQL statement calculates the total yearly monetary output for the
corporation:

SELECT SUM(SALARY+COMM+BONUS)
FROM DSN8610.EMP;

This SQL statement adds each employee's salary, commission, and bonus. It then aggregates these
results into a single value representing the total amount of compensation paid to all employees.

Notes The argument of the SUM function can be any built-in numeric data type. The
resulting sum must be within the range of acceptable values for the data type.
For example, the sum of an INTEGER column must be within the range -
2,147,483,648 to +2,147,483,647. This is because the data type of the
result is the same as the data type of the argument values, except

 The sum of SMALLINT values returns an INTEGER result.
 The sum of single precision floating point values returns a double

precision floating-point result.
The VARIANCE Function

The VARIANCE function returns the variance of a set of numbers. The result is the biased variance of the set
of numbers. The variance is calculated as follows:

VARIANCE = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2
Note The argument of the VARIANCE function can be any built-in numeric data type.

The resulting variance is a double precision floating point number.
For brevity and ease of coding, VARIANCE can be shortened to VAR.

Scalar Functions

Scalar functions are applied to a column or expression and operate on a single value. Contrast this with the
column functions, which are applied to a set of data.

There are 80 scalar functions, each of which can be applied to a column value or expression.
Caution DB2 Version 6 significantly improves IBM's support for built-in scalar

functions. Prior to DB2 V6 there were only 22 built-in scalar functions.

The result of a scalar function is a transformed version of the column or expression being operated on.
The transformation of the value is based on the scalar function being applied and the value itself.
Consult the following descriptions of the DB2 scalar functions:

 - 74 -

ABSVAL or ABS Converts a value of any numeric data type to its absolute value.
ACOS Returns the arc-cosine of the argument as an angle expressed in

radians.
ASIN Returns the arc-sine of the argument as an angle expressed in

radians.
ATAN Returns the arc-tangent of the argument as an angle expressed

in radians.
ATANH Returns the hyperbolic arc-tangent of the argument as an angle

expressed in radians.
ATAN2 Returns the arc-tangent of the specified x and y coordinates as

an angle expressed in radians.
BLOB Converts a string or ROWID data type into a value of data type

BLOB.
CEILING or CEIL Converts the argument, represented as any numeric data type, to

the smallest integer value greater than or equal to the argument
value.

CHAR Converts a DB2 date, time, timestamp, ROWID, floating point,
integer, or decimal value to a character value. For example
SELECT CHAR(HIREDATE, USA)
FROM DSN8610.EMP
WHERE EMPNO = '000140';
This SQL statement returns the value for HIREDATE, in USA
date format, of the employee with the EMPNO of '000140'.

CLOB Converts a string or ROWID data type into a value of data type
CLOB.

COALESCE For nullable columns, returns a value instead of a null (equivalent
to VALUE function).

CONCAT Converts two strings into the concatenation of the two strings.
COS Returns the cosine of the argument as an angle expressed in

radians.
COSH Returns the hyperbolic cosine of the argument as an angle

expressed in radians.
DATE Converts a value representing a date to a DB2 date. The value to

be converted can be a DB2 timestamp, a DB2 date, a positive
integer, or a character string.

DAY Returns the day portion of a DB2 date or timestamp.
DAYOFMONTH Similar to DAY except DAYOFMONTH cannot accept a date

duration or time duration as an argument.
DAYOFWEEK Converts a date, timestamp, or string representation of a date or

timestamp into an integer that represents the day of the week.
The value 1 represents Sunday, 2 Monday, 3 Tuesday, 4
Wednesday, 5 Thursday, 6 Friday, and 7 Saturday.

DAYOFYEAR Converts a date, timestamp, or string representation of a date or
timestamp into an integer that represents the day within the year.
The value 1 represents January 1, 2 January 2, and so on.

DAYS Converts a DB2 date or timestamp into an integer value
representing one more than the number of days since January 1,
0001.

DBCLOB Converts a string or ROWID data type into a value of data type
DBCLOB.

 - 75 -

DECIMAL or DEC Converts any numeric value, or character representation of a
numeric value, to a decimal value.

DEGREES Returns the number of degrees for the number of radians
supplied as an argument.

DIGITS Converts a number to a character string of digits. Be aware that
the DIGITS function will truncate the negative sign for negative
numbers.

DOUBLE or FLOAT Converts any numeric value, or character representation of a
numeric value, into a double precision floating point value.
Another synonym for this function is DOUBLE-PRECISION.

EXP Returns the exponential function of the numeric argument. The
EXP and LOG functions are inverse operations.

FLOOR Converts the argument, represented as any numeric data type, to
the largest integer value less than or equal to the argument
value.

GRAPHIC Converts a string data type into a value of data type GRAPHIC.
HEX Converts any value other than a long string to hexadecimal.
HOUR Returns the hour portion of a time, a timestamp, or a duration.
IFNULL Returns the first argument in a set of two arguments that is not

null. For example
SELECT EMPNO, IFNULL(WORKDEPT,'N/A')
FROM DSN8610.EMP;
This SQL statement returns the value for WORKDEPT for all
employees, unless WORKDEPT is null, in which case it returns the
string 'N/A'.

INSERT Accepts four arguments. Returns a string with the first argument
value inserted into the fourth argument value at the position
specified by the second argument value. The third argument
value indicates the number of bytes to delete (starting at the
position indicated by the third argument value). For example
SELECT INSERT('FLAMING', 2, 1, 'R')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the value 'FRAMING'. Another
example
SELECT INSERT('BOSTON CHOWDER', 8, 0, 'CLAM ')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the value 'BOSTON CLAM
CHOWDER'.

Caution Both the value of the argument being inserted into and the

value of the argument that is being inserted must have the
same string data type. That is, both expressions must be
character strings, or both expressions must be graphic
strings. If the expressions are character strings, neither can
be a CLOB. If the expressions are graphic strings, neither
can be a DBCLOB.

INTEGER or INT Converts any number or character representation of a
number to an integer by truncating the portion of the
number to the right of the decimal point. If the whole
number portion of the number is not a valid integer (for
example, the value is out of range), an error results.

JULIAN_DAY Converts a DB2 date or timestamp, or character
representation of a date or timestamp, into an integer
value representing the number of days from January 1,
4712 B.C., to the date specified in the argument.

 - 76 -

Note January 1, 4712 B.C., is the start date
of the Julian calendar.

LEFT Returns a string containing only the leftmost characters of the
string in the first argument, starting at the position indicated by
the second argument. For example
SELECT LEFT('RETURN ONLY THIS', 4)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns "THIS", which is the four leftmost
characters of the first argument.

LENGTH Returns the length of any column, which may be null. Does not
include the length of null indicators or variable character-length
control values but does include trailing blanks for character
columns.

LOCATE Returns the position of the first occurrence of the first string the
second string. For example
SELECT LOCATE('I', 'CRAIG MULLINS')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the value 4, because the value
'I' first appears in position four within the searched string. It
also appears in the eleventh position, but that is of no concern
to the LOCATE function. Optionally, a third argument can be
supplied indicating where the search should start. For example
SELECT LOCATE('I', 'CRAIG MULLINS', 7)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the value 11, because after
position 7, the value 'I' first appears in the eleventh position.
When the third argument is not specified, LOCATE defaults to
the beginning of the second string.

LOG or LN Returns the natural logarithm of the numeric argument. The
EXP and LOG functions are inverse operations.

LOG10 Returns the base 10 logarithm of the numeric argument.
LOWER or LCASE Converts a character string into all lowercase characters.
LTRIM Removes the leading blanks from a character string.
MICROSECOND Returns the microsecond component of a timestamp or the

character representation of a timestamp.
MIDNIGHT_SECONDS Returns the number of seconds since midnight for the specified

argument, which must be a time, timestamp, or character
representation of a time or timestamp.

MINUTE Returns the minute portion of a time, a timestamp, a character
representation of a time or timestamp, or a duration.

MOD Returns the remainder of the division of the first argument by
the second argument. Both arguments must be numeric.

MONTH Returns the month portion of a date, a timestamp, a character
representation of a date or timestamp, or a duration.

NULLIF Returns a null when two specified expressions are equal; if not
equal, the first expression is returned.

POSSTR Similar to the LOCATE function, but with the arguments
reversed. POSSTR returns the position of the first occurrence of
the second argument within the first argument. For example
SELECT POSSTR('DATABASE ADMINISTRATION',
'ADMIN')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the value 10; the value 'ADMIN'

 - 77 -

first appears in the tenth position.
POWER Returns the value of the first argument raised to the power of

the second argument.
QUARTER Converts a date, timestamp, or string representation of a date

or timestamp into an integer that represents the quarter within
the year. The value 1 represents first quarter, 2 second
quarter, 3 third quarter, and 4 fourth quarter.

RADIANS Returns the number of radians for the numeric argument
expressed in degrees.

RAND Returns a random floating point number between 0 and 1.
Optionally, an integer value can be supplied as a seed value
for the random value generator. For example
SELECT (RAND() * 100)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns a random number between 0 and
100.

REAL Converts any numeric value or character representation of a
numeric value into a single precision floating point value.

REPEAT Returns a character string that consists of the first argument
repeated the number of times specified in the second
argument. For example
SELECT REPEAT('HO ', 3)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the character string 'HO HO HO
'.

REPLACE Returns a character string with the value of the second
argument replacing each instance of the third argument in the
first argument. For example
SELECT REPLACE('BATATA', 'TA', 'NA')
FROM SYSIBM.SYSDUMMY1;
This SQL statement replaces all instances of 'TA' with 'NA'
changing the character string 'BATATA' into 'BANANA'.

Caution Neither the first nor the second argument may be empty

strings. The third argument, however, can be an empty
string. If the third argument is an empty string, the
REPLACE function will simply replace each instance of the
second argument with an empty string.

RIGHT Returns a string containing only the rightmost characters of
the string in the first argument, starting at the position
indicated by the second argument. For example
SELECT RIGHT('THIS IS RETURNED', 4)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns THIS, which is the four rightmost
characters of the first argument.

ROUND Rounds the first numeric argument to the number of places
specified in the second argument.

ROWID Casts the specified argument to a ROWID data type.
Although the argument can be any character string, it should
be a row ID value that was previously generated by DB2.
Otherwise, the value may not be an accurate DB2 ROWID.

RTRIM Removes the trailing blanks from a character string.
SECOND Returns the seconds portion of a time, a timestamp, a

character representation of a time or timestamp, or a
duration.

SIGN Returns a value that indicates the sign of the numeric

 - 78 -

argument. The returned value will be -1 if the argument is
less than zero, +1 if the argument is greater than zero, and 0
if the argument equals zero.

SIN Returns the sine of the argument as an angle expressed in
radians.

SINH Returns the hyperbolic sine of the argument as an angle
expressed in radians.

SMALLINT Converts any number or character representation of a
number to an integer by truncating the portion of the number
to the right of the decimal point. If the whole number portion
of the number is not a valid integer (for example, the value is
out of range), an error results.

SPACE Returns a string of blanks whose length is specified by the
numeric argument. The string of blanks is an SBCS character
string.

SQRT Returns the square root of the numeric argument.
STRIP Removes leading, trailing, or both leading and trailing blanks

(or any specific character) from a string expression.
SUBSTR Returns the specified portion of a character column from any

starting point to any ending point.
TAN Returns the tangent of the argument as an angle expressed

in radians.
TANH Returns the hyperbolic tangent of the argument as an angle

expressed in radians.
TIME Converts a value representing a valid time to a DB2 time.

The value to be converted can be a DB2 timestamp, a DB2
time, or a character string.

TIMESTAMP Obtains a timestamp from another timestamp, a valid
character-string representation of a timestamp, or a
combination of date and time values.

TRANSLATE Translates characters from one expression to another. There
are two forms of the TRANSLATE function. If only one
argument is specified, the character string is translated to
uppercase. Alternately, three arguments can be supplied. In
this case, the first argument is transformed by replacing the
character string specified in the second argument with the
character string specified in the third argument. For
example
SELECT TRANSLATE('BACK', 'C', 'R')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns "BARK", because the character
string "C" is replaced with the character string "R".
Optionally, a fourth argument can be specified. This is the
pad character. If the length of the third argument is less than
the length of the second argument, the third argument will be
padded with the pad character (or blanks) to make up the
difference in size. For example
SELECT TRANSLATE('BACK', 'ACK', 'Y', '.')
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns "BY..", because the character
string "ACK" is replaced with the character string "Y", and is
padded with "." characters to make up the difference in
size.
The string to be translated must be a character string not

 - 79 -

exceeding 255 bytes or a graphic string of no more than 127
bytes. The string cannot be a CLOB or DBCLOB.

TRUNCATE or TRUNC Converts the first numeric argument by truncating it to the
right of the decimal point by the integer number specified in
the second numeric argument. For example
SELECT TRUNC(3.014015,2)
FROM SYSIBM.SYSDUMMY1;
This SQL statement returns the number 3.010000, because
the second argument specified that only 2 significant digits
are required. The rest was truncated.

UPPER or UCASE Converts a character string into all uppercase characters.
VALUE For nullable columns, returns a value instead of a null

(equivalent to COALESCE function).
VARCHAR Converts a character string, date, time, timestamp, integer,

decimal, floating point, or ROWID value into a corresponding
variable character string representation.

VARGRAPHIC Converts a character string to a graphic string.
WEEK Converts a date, timestamp, or string representation of a

date or timestamp into an integer that represents the week
within the year. The value 1 represents the first week, 2 the
second week, and so on.

YEAR Returns the year portion of a date, a timestamp, or a
duration.

Some rules for the scalar functions follow:
 Scalar functions can be executed in the select-list of the SQL SELECT statement or as

part of a WHERE or HAVING clause.
 A scalar function can be used wherever an expression can be used.
 The argument for a scalar function can be a column function.

The RAISE_ERROR Function

The RAISE_ERROR function is a different type of function than we have discussed so far. It is not a column
function because it does not take a group of rows and return a single value. Nor is RAISE_ERROR a scalar
function because it does not transform column data from one state to another.

Instead, the RAISE_ERROR function is used to raise an error condition in the SQLCA. The user supplies
the SQLSTATE and error description for the error to be raised. The error will be raised with the specified
SQLSTATE and a SQLCODE of -438.
The RAISE_ERROR function can be used to signal application program and data problems. One
situation where RAISE_ERROR may prove useful is in a CASE statement such as

SELECT EMPNO,
 CASE WHEN SEX = 'M' THEN 'MALE '
 WHEN SEX = 'F' THEN 'FEMALE'
 ELSE RAISE_ERROR('70SX1', 'INVALID DATA, SEX IS NEITHER F NOR M.')
 END
 FROM DSN8610.EMP;
The value specified for SQLSTATE must conform to the following rules:

 The value must be a character string of exactly five characters in length.
 Only the characters '0' through '9' and upper case 'A' through 'Z' may be used.
 The first two characters cannot be '00', '01', or '02'.
 If the first character is '0' through '6' or 'A' through 'H', the last three characters

must start with a letter from 'I' through 'Z'.
 If the first character is '7', '8', '9', or 'I' though 'Z', the last three characters can

be any valid character.
Note Technically, the RAISE_ERROR function does return a value. It always returns

NULL with an undefined data type. You must use the CAST function to cast it to a

 - 80 -

defined data type to return the value to a program.

Built-In Function Guidelines
Use the following guidelines to implement an effective strategy for deploying built-in functions in your DB2
applications.

Use Functions Instead of Program Logic
Use the built-in functions provided by DB2 instead of coding your own application logic to perform the same
tasks. You can be sure the DB2 built-in functions will perform the correct tasks with no bugs. But you will
have to take the time to code, debug, and test your application code. This is time you can better spend on
developing application specific functionality.

Avoid Synonyms
Several of the built-in functions have synonymous names that perform the same function. For example,
VALUES and COALESCE perform the same exact function. You should standardize on one of the forms in
your applications. By using only one of the forms, you will make your SQL easier to understand and
maintain. Of course, your purchased applications may use any of the forms.

The following are my recommendations, but of course, yours may differ:

Use This Instead of
This

CEILING CEIL
COALESCE VALUES
DAY DAYOFMONTH
DECIMAL DEC
DOUBLE FLOAT
INTEGER INT
LOG LN
LOWER LCASE
TRUNCATE TRUNC
UPPER UCASE
VARIANCE VAR

In general, it is better to use the long form of the function instead of the abbreviated form because it is
easier to understand the purpose of the function. For example, one might easily assume that VAR is
short for the VARCHAR function, instead of the VARIANCE function.
I suggest using DAY instead of DAYOFMONTH because DAYOFMONTH does not support using a date
duration or a timestamp duration as an argument. However, if you do not use durations in your
applications, you might want to standardize on DAYOFMONTH instead of DAY because it is similar in
name to other related functions such as DAYOFWEEK and DAYOFYEAR.
I suggest using DOUBLE instead of FLOAT because one might confuse FLOAT with REAL. If there were a
synonym for REAL, such as SINGLE, I would suggest using SINGLE. But there is not.
Use UPPER instead of TRANSLATE

Using the TRANSLATE function with a single argument serves the same purpose as the UPPER function—to
convert a character string into uppercase. However, the UPPER function should be used for this purpose
instead of TRANSLATE because

 The UPPER function can be used only for the purpose of converting character strings
to uppercase.

 The TRANSLATE function is not as easily identified by developers as converting text
to uppercase and is therefore more difficult to debug, maintain, and test SQL
changes.

 - 81 -

Use HAVING to Search Column Function Results
When using column functions, remember that the WHERE clause applies to the data prior to modification. To
remove results after the data has been modified by the function, you must use the HAVING clause in
conjunction with a GROUP BY clause.

The GROUP BY clause collates the resultant rows after the column function(s) have been applied. When
the data is grouped, users can eliminate non-pertinent groups of data with the HAVING clause.

For example, the following query groups employee data by department, returning the aggregate salary
for each department, unless the average salary is $10,000 or less:
SELECT WORKDEPT, SUM(SALARY)
FROM DSN8610.EMP
GROUP BY WORKDEPT
HAVING AVG(SALARY) > 10000 ;
The HAVING clause eliminates groups of unrequired data after the data is summarized.

Summary

Now that you have obtained a basic understanding of the functions that are built in to DB2, it is time to
discover how to extend DB2 by creating your own user-defined functions. Turn to the next chapter to uncover
the secrets of user-defined function creation and usage.

Chapter 4: Using DB2 User-Defined Functions and Data
Types
Overview

As of DB2 Version 6, it is possible to create additional functions and data types to supplement the built-in
function and data types supplied with DB2. User-defined functions and types give users the ability to
effectively customize DB2 to their shop requirements. The ability to customize is potentially very powerful. It
also can be quite complex and requires detailed knowledge, additional application development skills, and
administrative dexterity.

What Is a User-Defined Function?
A user-defined function, or UDF for short, is procedural functionality added to DB2 by the user. The UDF,
after it is coded and implemented, extends the functionality of DB2 SQL by enabling users to specify the
UDF in SQL statements just like built-in SQL functions.

User-defined functions are ideal for organizations wanting to utilize DB2 and SQL to perform specialized
corporate routines performing business logic and data transformation.

Types of User-Defined Functions (UDFs)

There are two ways of creating a user-defined function: You can code your own function program from
scratch or you can edit an existing function.

Two types of user-defined functions can be written from scratch: scalar functions and table functions.
Recall from Chapter 3, "Using DB2 Functions," that scalar functions are applied to a column or
expression and operate on a single value. Table functions are a different type of function that, when
invoked, returns an entire table. A table function is specified in the WHERE clause of a SELECT
statement, taking the place of a table, view, synonym, or alias.
Scalar and table user-defined functions are referred to as external functions because they are written
and developed outside of (or external to) DB2. External UDFs must be written in a host programming
language. DB2 user-defined functions can be written in Assembler, C, C++, COBOL, or PL/I.
A third type of user-defined function can be created from another existing function. This is a sourced
function. A sourced function is based on a function that already exists—it can be based on a built-in
function or another user-defined function that has already been created. A sourced function can be
based on an existing scalar or column function.

 - 82 -

User-defined functions are similar in functionality to application subroutines, but user-defined functions
are different because they can be used inside SQL statements. In fact, the only way that user-defined
functions can be executed is from within an SQL statement. This gives them great power. A user-
defined function is not a substitute for an application subroutine, subprogram, or procedure. Instead,
user-defined functions are used to extend the functionality of the SQL language.

The Schema
User-defined functions, user-defined distinct types, stored procedures, and triggers all are associated with a
schema. By default, the schema name is the authid of the process that issues the CREATE FUNCTION,
CREATE DISTINCT TYPE, CREATE PROCEDURE, or CREATE TRIGGER statement.

A schema, therefore, is simply a logical grouping of procedural database objects (user-defined
functions, user-defined distinct types, stored procedures, and triggers).
You can specify a schema name when you create a user-defined function, type, or trigger. If the
schema name is not the same as the SQL authorization ID, the issuer of the statement must have either
SYSADM or SYSCTRL authority, or the authid of the issuing process has the CREATEIN privilege on the
schema.
For example, the following statement creates a user-defined function named NEWFUNC in the schema
named MYSCHEMA:
CREATE FUNCTION MYSCHEMA.NEWFUNC ...
If the MYSCHEMA component was not included in the CREATE statement, the schema would default to
the authid of the person (or process) that executed the CREATE statement. In short, the schema is set to
the owner of the function. If the CREATE statement was embedded in a program, the owner is the authid
of the owner of the plan or package; if the statement is dynamically prepared, the owner is the authid in
the CURRENT SQLID special register.

Creating User-Defined Functions
Before using DDL to create a user-defined function, the function program should be coded and prepared.
This requires the developer to write the program, precompile, compile, link-edit the program, BIND the
DBRM for the program (if the function contains SQL statements), and then test the program to be sure it is
free of bugs.

Then, before the user-defined function can be used, it must be registered to DB2 using the CREATE
FUNCTION DDL statement. For example, assume that you have written a user-defined function
program. Further assume that the program returns the number of days in the month for a given date.
The following is a simplified version of the CREATE FUNCTION statement that could be used to register
the UDF to DB2:
CREATE FUNCTION DAYSINMONTH(DATE)
 RETURNS INTEGER
 EXTERNAL NAME 'DAYMTH'
 LANGUAGE COBOL;
This statement creates a UDF named DAYSINMONTH, with one parameter of DATE data type that
returns a single value of INTEGER data type. The external name for the function program is DAYMTH,
and it is coded in COBOL.

Note Most of the parameters have been omitted from this simple CREATE FUNCTION
example. The parameters available for the CREATE FUNCTION statement are
discussed in depth later in this chapter.

After the user-defined function has been created and the appropriate authority has been GRANTed, the
UDF can be used in an SQL statement as follows:
SELECT EMPNO, LASTNME, BIRTHDATE, DAYSINMONTH(BIRTHDATE)
FROM DSN8610.EMP
WHERE DAYSINMONTH(BIRTHDATE) < 31;
The result of this statement would be a list of employees whose birth date falls in a month having fewer
than 31 days (that is, February, April, June, September, and November). This assumes that the
program for the user-defined function DAYSINMONTH is correctly coded to examine the date specified as
input and return the actual number of days in the month.

 - 83 -

There are many different characteristics that need to be determined and specified when creating UDFs.
Table 4.1 outlines the characteristics and whether each applies to external functions, sourced functions,
or both.

Table 4.1: Characteristics of DB2 User-Defined Functions

Characteristic Definition Validity

UDF name
(input parameter types)

Name of the UDF and its B parameters. B

RETURNS [TABLE] Output parameter types. B
SPECIFIC Specific name. B
EXTERNAL NAME Name of the UDF program. X
LANGUAGE Programming language used to write the

UDF program
X

[NOT] DETERMINISTIC Whether the UDF program is deterministic
or not.

X

...SQL... Whether or not SQL is issued in the UDF
program and if SQL modifies or just reads
DB2 data.

X

SOURCE Name of the source function S
PARAMETER STYLE The linkage convention used by the UDF

program. DB2SQL indicates parameters for
indicator variables are associated with each
input value and the return value to allow for
NULLs.

X

FENCED Address space used for UDFs X
...NULL... Whether the function is called if any input

arguments are NULL at execution time.
X

[NO] EXTERNAL ACTION Whether the UDF performs and changes the
state of objects that DB2 does not manage
(such as files).

X

[NO] SCRATCHPAD Whether or not a scratchpad is used to save
information from one invocation of the UDF
to the next.

X

[NO] FINAL CALL Whether or not a final call is made to the
UDF program to free system resources.

X

[DIS]ALLOW PARALLEL Whether or not parallel processing is
permitted.

X

[NO] COLLID Package collection ID of UDF package. NO
indicates same as calling program.

X

WLM ENVIRONMENT The name of the WLM environment. X
ASUTIME [NO] LIMIT CPU resource limit for an invocation of a

UDF.
X

STAY RESIDENT Whether or not the UDF load module stays
in memory.

X

PROGRAM TYPE Whether the program runs as a main
routine(MAIN) or as a subroutine (SUB).

X

SECURITY Type of security to be used: DB2, USER,
or DEFINER

X

RUN OPTIONS LE/370 runtime options. X

 - 84 -

CARDINALITY An estimate of the expected number of rows
returned by a table function.

X

[NO] DBINFO Whether or not an additional argument is
passed when the UDF is invoked.

X

Note If the Validity column of

Table 4.1 contains the
value X, the characteristic
applies to external
functions only; S means it
applies to a sourced
functions only; and B
means it applies to both
external and sourced
functions.

How Functions Are Executed
User-defined functions run in WLM-managed stored procedure address spaces. To execute a user-defined
function, simply reference the function in an SQL statement. The SQL statement can be issued dynamically
or statically, as part of an application program or via ad hoc SQL—anywhere SQL can be run, the UDF can
be coded.

When a function is invoked in an SQL statement, DB2 must choose the correct function to run to satisfy
the request. DB2 will check for candidate functions to satisfy the function request. The manner in which
DB2 chooses which function to run is based on the following criteria:

 First of all, the schema must match. If the function being invoked is fully qualified, the
schema must match for the function to be considered as a candidate for execution.
If the function being invoked is not fully qualified, DB2 will check the SQL path of the
invoking process to find a function with a matching schema.

 Of course, the name must match the function being invoked for the user-defined
function to be considered a candidate for execution.

 The number of parameters for the user-defined function must match the number of
parameters specified by the invoked function. Additionally, the data type of each
parameter must match, or be promotable to, the data types specified for each
parameter in the function being invoked. Refer to Table 4.2 for a list of which data
types are promotable to other data types. The data types in the first column can be
promoted to the data types in the second column. When performing function
resolution, the earlier the data type in the second column appears, the more
preferable it is to the other promotable data types.

To clarify this requirement, consider the following example:

SELECT XSCHEMA.FUNCX(COLA)

FROM TABLE;
The data type of COLA is SMALLINT. Furthermore, two user-defined functions named
FUNCX have been created, both in the same schema, XSCHEMA. Both FUNCX UDFs require
one parameter, but one is defined with an INTEGER data type and the other with a data
type of REAL. The SMALLINT data type is promotable to both INTEGER and REAL but,
because INTEGER appears first in the promotion list, the FUNCX with the INTEGER
parameter will be used instead of the one with the REAL parameter.

 The appropriate authority must exist. That is, the invoking authid must have the
authority to execute the user-defined function.

 Finally, the timestamp of the BIND for the user-defined function must be older than
the timestamp of the BIND for the package or plan that invokes the function.

Note For a function that passes a transition table, the data type, length, precision, and
scale of each column in the transition table must match the data type, length,
precision, and scale of each column of the table specified in the function
definition.

 - 85 -

For unqualified UDFs, it is possible that two or more candidate functions will fit equally well. In this case,
the user-defined function whose schema name is earliest in the SQL path will be chosen for execution.
For example, suppose functions XSCHEMA.FUNC1 and YSCHEMA2.FUNC1 both fit the function
resolution criteria equally well. Both have the same function name but different schema names. Both
also fit the rest of the criteria regarding number of parameters, parameter data types, and requisite
authority. If the SQL path is
"ZSCHEMA"; "YSCHEMA"; "SYSPROC"; "SYSIBM"; "XSCHEMA";
DB2 will select function YSCHEMA.FUNC1 because YSCHEMA is before XSCHEMA in the SQL path.
The SQL path is specified to DB2 in one of two ways. The SQL path is determined by the CURRENT
PATH special register for dynamically prepared SQL statements. For dynamic SQL, the SQL path can
be set by issuing the SET CURRENT PATH statement. The PATH parameter of the BIND and REBIND
commands is used to specify the SQL path for SQL containing UDFs in plans and packages.
DB2 supports function overloading. This means that multiple functions can have the same name, and
DB2 will decide which one to run based on the parameters. Consider an example where an application
developer writes a UDF that overloads the addition operator +. The UDF is created to concatenate text
strings together. The + function is overloaded because, if it is acting on numbers, it adds them together;
if the function is acting on text, it concatenates the text strings.

Table 4.2: Data Type Promotability

Data Type Can Be
Promoted
To

CHAR or GRAPHIC CHAR or
GRAPHIC
VARCHAR or
VARGRAPHI
C
CLOB or
DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or
VARGRAPHI
C
CLOB or
DBCLOB

CLOB or DBCLOB CLOB or
DBCLOB

BLOB BLOB
SMALLINT SMALLINT

INTEGER
DECIMAL
REAL
DOUBLE

INTEGER INTEGER
DECIMAL
REAL
DOUBLE

DECIMAL DECIMAL
REAL
DOUBLE

REAL REAL
DOUBLE

DOUBLE DOUBLE
DATE DATE
TIME TIME
TIMESTAMP TIMESTAMP
ROWID ROWID
UDT UDT (with

the same

 - 86 -

name)
The process of following these steps to determine which function to execute is called function
resolution.

Note When automatic rebind is invoked on a package or plan that contains UDFs, DB2
will not consider any UDF created after the original BIND or REBIND was issued.
In other words, only those UDFs that existed at the time of the original BIND or
REBIND are considered during function resolution for plans and packages bound
as a result of automatic rebind.

DSN_FUNCTION_TABLE and EXPLAIN
You can use EXPLAIN to obtain information about DB2 function resolution. To use EXPLAIN to obtain
function resolution information, you must create a special table called DSN_FUNCTION_TABLE. When
EXPLAIN is executed and UDFs are used, DB2 will store function resolution details for each UDF in the
statement, package, or plan, in DSN_FUNCTION_TABLE.
Information will be populated in DSN_FUNCTION_TABLE when you execute an EXPLAIN on an SQL
statement that contains one or more UDFs, or when you run a program whose plan is bound with
EXPLAIN(YES), and the program executes an SQL statement that contains one or more UDFs.

Note EXPLAIN actually can be used to return a lot more information about SQL
statements, including the actual access paths used by DB2 to run the SQL. Refer
to Chapter 23, "Using EXPLAIN," for an in-depth exploration of using EXPLAIN
and interpreting its results.

Remember, you must create a table named DSN_FUNCTION_TABLE before you can use EXPLAIN to
obtain function resolution details. A sample CREATE statement for this table follows:
CREATE TABLE userid.DSN_FUNCTION_TABLE
 (QUERYNO INTEGER NOT NULL WITH DEFAULT,
 QBLOCKNO INTEGER NOT NULL WITH DEFAULT,
 APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
 PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
 COLLID CHAR(18) NOT NULL WITH DEFAULT,
 GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
 EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
 SCHEMA_NAME CHAR(8) NOT NULL WITH DEFAULT,
 FUNCTION_NAME CHAR(18) NOT NULL WITH DEFAULT,
 SPEC_FUNC_NAME CHAR(18) NOT NULL WITH DEFAULT,
 FUNCTION_TYPE CHAR(2) NOT NULL WITH DEFAULT,
 VIEW_CREATOR CHAR(8) NOT NULL WITH DEFAULT,
 VIEW_NAME CHAR(18) NOT NULL WITH DEFAULT,
 PATH VARCHAR(254) NOT NULL WITH DEFAULT,
 FUNCTION_TEXT VARCHAR(254) NOT NULL WITH DEFAULT
) IN database.tablespace;
After executing EXPLAIN for an SQL statement that uses a UDF, each of these columns will contain
information about the UDF chosen during function resolution. The actual definition of the information
contained in the columns of DSN_FUNCTION_TABLE is shown in Table 4.3.

Table 4.3: DSN_FUNCTION_TABLE Columns

Column Name Description
QUERYNO Indicates an integer value assigned by the user issuing the

EXPLAIN or by DB2. Enables the user to differentiate between
EXPLAIN statements.

QBLOCKNO Indicates an integer value enabling the identification of
subselects or a union in a given SQL statement. The first
subselect is numbered 1; the second, 2; and so on.

APPLNAME Contains the plan name for rows inserted as a result of
running BIND PLAN specifying EXPLAIN(YES). Contains the

 - 87 -

package name for rows inserted as a result of running BIND
PACKAGE with EXPLAIN(YES). Otherwise, contains blanks
for rows inserted as a result of dynamic EXPLAIN statements.

PROGNAME Contains the name of the program in which the SQL statement
is embedded.

COLLID Contains the collection ID for the package.
GROUP_MEMBER Indicates the member name of the DB2 that executed

EXPLAIN. The column is blank if the DB2 subsystem was not
in a data sharing environment when EXPLAIN was executed.

EXPLAIN_TIME Contains a TIMESTAMP value indicating when the EXPLAIN
that created this row was executed.

SCHEMA_NAME Contains the name of the schema for the invoked function.
FUNCTION_NAME Contains the name of the UDF to be invoked.
SPEC_FUNC_NAME Contains the specific name of the UDF to be invoked.
FUNCTION_TYPE Contains a value indicating the type of function to be invoked:

SU Scalar Function
TU Table Function

VIEW_CREATOR If the function is referenced in a CREATE VIEW statement, this
column contains the creator name for the view. If not, the
column is left blank.

VIEW_NAME If the function is referenced in a CREATE VIEW statement, this
column contains the name for the view. If not, the column is
left blank.

PATH Contains the value of the SQL path at the time DB2 performed
function resolution for this statement.

FUNCTION_TEXT Contains the first 100 bytes of the actual text used to invoke
the UDF, including the function name and all parameters.

Caution For UDFs specified in infix notation, the

FUNCTION_TEXT column of DSN_FUNCTION_TABLE
will contain the function name only. For example,
suppose that * is UDF in the following reference:
 COL1*COL6
In this case, the FUNCTION_TEXT column will
contain only the value * and not the entire reference
(COL1*COL6).

Table Functions
Table functions are different in nature from scalar functions. A table function is designed to return multiple
columns and rows. Its output is a table. An example using a table function follows:

SELECT WINNER, WINNER_SCORE, LOSER, LOSER_SCORE
FROM FOOTBALL_RESULTS(5)
WHERE LOSER_SCORE = 0;
In this case, the table function FOOTBALL_RESULTS() is used to return the win/loss statistics for
football games. The table function can be used in SQL statements, just like a regular DB2 table. The
function program is designed to fill the rows and columns of the table. The input parameter is an
INTEGER value corresponding to the week the game was played; if 0 is entered, all weeks are
considered. The previous query would return all results where the losing team was shut out (had 0
points) during the fifth week of the season.
The following or similar CREATE FUNCTION statement could be used to define the
FOOTBALL_RESULTS() function:
CREATE FUNCTION FOOTBALL_RESULTS(INTEGER)
 RETURNS TABLE (WEEK INTEGER,

 - 88 -

 WINNER CHAR(20),
 WINNER_SCORE INTEGER,
 LOSER CHAR(20),
 LOSER_SCORE INTEGER)
 EXTERNAL NAME FOOTBALL
 LANGUAGE C
 PARAMETER STYLE DB2SQL
 NO SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 FENCED
 SCRATCHPAD
 FINAL CALL
 DISALLOW PARALLEL
 CARDINALITY 300;
The key parameter is the RETURNS TABLE parameter, which is used to define the columns of the table
function. The function program must create these rows itself or from another data source, such as a flat
file.
The value supplied for the CARDINALITY parameter is only an estimate. It is provided to help DB2
optimize statements using the table function. It is possible to return more or fewer rows than is specified
in CARDINALITY.

Sourced Functions
Sourced functions are created from already existing built-in (scalar and column) and user-defined (scalar)
functions. The primary reason to create a sourced function is to enable functions for user-defined distinct
data types. This is required because DB2 implements strong typing.

More information on sourced functions and strong typing is provided later in this chapter in the "User-
Defined Data Types (UDTs) and Strong Typing" section. For now, though, the following is an example
of creating a sourced UDF:
CREATE FUNCTION FINDWORD (DOCUMENT, VARCHAR(50))
 RETURNS INTEGER
 SPECIFIC FINDWORDDOC
SOURCE SPECIFIC FINDWORDCLOB;
In this example, a new function, FINDWORD, is created from an existing function, FINDWORDCLOB. The
function finds the location of the supplied word (expressed as a VARCHAR(50) value) in the supplied
DOCUMENT. The function returns an INTEGER indicating the location of the word in the DOCUMENT.
DOCUMENT is a user-defined type based on a CLOB data type.

User-Defined Function Guidelines
The following guidelines can be used to help you implement effective and efficient user-defined functions for
your organization.

Naming User-Defined Functions

The rules for naming user-defined functions are somewhat complex. The UDF name can be the same
as another UDF, even if it is in the same schema. However, to give one function the same name as
another function in the same schema, the number of parameters and the data type of the parameters
must differ. DB2 will not allow a UDF to be created if the schema, UDF name, number of parameters,
and data type of each parameter match another existing UDF.

Furthermore, the name of the user-defined function cannot be any of the following system-defined key
words:

 - 89 -

ALL AND
ANY BETWEEN
DISTINCT EXCEPT
EXISTS FALSE
FOR FROM
IN IS
LIKE MATCH
NOT NULL
ONLY OR
OVERLAPS SIMILAR
SOME TABLE
TRUE TYPE
UNIQUE UNKNOWN
= ¬=
< <=
> >=
¬< ¬>
<>

External UDF Program Restrictions

When you develop programs for external user-defined functions, DB2 places certain restrictions on the
type of services and functions that can be used. Keep the following restrictions in mind as you code
your external UDF programs:

 COMMIT and ROLLBACK statements cannot be issued in a user-defined function. The
UDF is part of the unit of work of the issuing SQL statement.

 RRSAF calls cannot be used in user-defined functions. DB2 uses the RRSAF as its
interface to user-defined functions. Therefore, any RRSAF calls made within the
UDF code will be rejected.

 If your user-defined function does not specify either the EXTERNAL ACTION or
SCRATCHPAD parameter, the UDF may not execute under the same task each
time it is invoked.

 All open cursors in user-defined scalar functions must be closed before the function
completes, or DB2 will return an SQL error.

 The host language that is used to write UDF programs can impose restrictions on
UDF development as well. Each programming language has its own restrictions and
limits on the number of parameters that can be passed to a routine in that language.
Be sure to read the programming guide for the language being used (before you
begin coding) to determine the number of parameters allowed.

Note The limitation on the number of parameters for the programming language to be
used can affect table UDFs because table functions often require a large number
of parameters (that is, at least one output parameter for every column of the
table).

Keep It Simple

Each user-defined function program should be coded to perform one and only one task. The UDF
program should be as simple as possible while still performing the desired task. Do not create overly
complex UDF programs that perform multiple tasks based on the input. It is far better to have multiple
UDFs, each performing one simple task, than to have a single, very complex UDF that performs multiple
tasks. The UDF program will be easier to code, debug, understand, and maintain when it needs to be
modified.
Use DSN_FUNCTION_TABLE
To be sure that the right UDF is being chosen during function resolution, be sure to use EXPLAIN to
populate DSN_FUNCTION_TABLE. It is only by reading the contents of DSN_FUNCTION_TABLE that you
can ascertain which UDF was chosen for execution by DB2 during function resolution.

 - 90 -

Promote UDF Reusability

User-defined functions should be developed with reusability in mind. After the UDF has been coded and
registered to DB2, it can be shared by multiple applications. It is wise to code your UDFs such that they
perform simple, useful tasks that can be used by many applications at your site.

Reusing UDFs in multiple applications is better than creating multiple UDFs having the same (or similar)
functionality for each application. You should promote reusability while at the same time keeping the
UDF code as simple as possible.

Handle UDF Abends
When an external UDF abends, the invoking statement in the calling program receives an error code,
namely SQLCODE -430. The unit of work containing the invoking statement must be rolled back. The
calling program should check for the -430 SQLCODE and issue a ROLLBACK when it is received.

Invoke UDFs Using Qualified Names

Use the qualified name of a function in the invoking SQL statement. By doing so, you simplify function
resolution. DB2 will only search for functions in the specific schema you code. Therefore, DB2 is more
likely to choose the function you intend, and the function resolution process will take less time to
complete, because fewer functions will qualify as candidates.
CAST Parameters to the Right Data Type
Use the CAST function to cast the parameters of the invoked UDF to the data types specified in the
user-defined function definition. This assists the function resolution process to choose the correct
function for execution.
For example, consider a sample UDF named TAXAMT. It requires one input parameter, which is defined
as DECIMAL(9,2). If you want to pass a column defined as INTEGER to the UDF, use the CAST
function as follows to cast the value of the integer column to a DECIMAL(9,2) value:
SELECT TAXAMT(CAST (INT_COL AS DECIMAL(9,2)))
FROM TABLE;

Define UDF Parameter Data Types Efficiently
Avoid defining UDF parameters using the following data types: CHAR, GRAPHIC, SMALLINT, and REAL.
Instead, use VARCHAR, VARGRAPHIC, INTEGER, and DOUBLE, respectively.
To clarify this guideline, consider a UDF named FUNCX that is defined with a parameter of data type
SMALLINT. To invoke this UDF, the parameter must be of data type SMALLINT. Using a data type of
INTEGER will not suffice. For example, the following statement will not resolve to FUNCX, because the
constant 500 is of type INTEGER, not SMALLINT:
SELECT FUNCX(500)
FROM TABLE;
The same line of thinking applies to CHAR, GRAPHIC, and REAL data types. Of course, you could use
the CAST function as described previously to resolve this problem. But it is better to avoid the problem
altogether by specifying VARCHAR, VARGRAPHIC, INTEGER, and DOUBLE as parameter data types
instead.

Choosing Parameter Data Types for Portability
If you need to ensure that your UDFs are portable across platforms other than DB2 for OS/390, avoid
defining UDFs with parameter data types of FLOAT or NUMERIC. Instead, use DOUBLE or REAL in place
of FLOAT, and DECIMAL in place of NUMERIC.

UDFs Do Not Require Parameters
It is possible to code user-defined functions that have no parameters. However, when creating and
executing the UDF, you still need to specify the parentheses with no value supplied for a parameter. For
example, to create a procedure named FLOWERS() that requires no parameters, you should code the
following:
CREATE FUNCTION FLOWERS(). . .

Similarly, to execute the UDF, you would code it in an SQL statement with the parentheses, but without
specifying any parameter values, as shown in the following:
SELECT FLOWERS()

 - 91 -

FROM TABLE;

Use the Sample User-Defined Functions as Templates

IBM provides quite a few sample programs for user-defined functions. Examine these samples for
examples of how to implement effective DB2 user-defined functions. There are sample function
programs for

 Converting date and time formats
 Returning the name of the day or month for a specific date
 Formatting floating point data as a currency value
 Returning DB2 Catalog information for DB2 objects
 Returning a table of weather data

These functions can be used as samples to learn how to code function programs for your specific needs
and requirements.

SQL Usage Options Within External UDFs

There are four options for external functions regarding their usage of SQL:
 NO SQL Indicates that the function cannot execute SQL statements. However, non-

executable SQL statements, such as DECLARE CURSOR, are not restricted.
 MODIFIES SQL DATA Indicates that the function can execute any legal SQL

statement that can be issued by a UDF.
 READS SQL DATA Indicates that the function can execute SQL statements that

access data but cannot modify data (this is the default SQL usage option for UDFs).
 CONTAINS SQL Indicates that the function can execute SQL statements as long as

data is neither read nor modified, and the SQL statement is legal for issuance by a
UDF.

Table 4.4 indicates which SQL statements are valid for each type of SQL usage just described.
Table 4.4: Using SQL Within User-Defined Functions

SQL Statement

NO
SQ
L

CONTAINS
SQL

READS
SQL

MODIFIES
SQL

ALLOCATE CURSOR N N Y Y
ALTER N N N Y
ASSOCIATE LOCATORS N N Y Y
BEGIN DECLARE SECTION Y Y Y Y
CALL N Y Y Y
CLOSE N N Y Y
COMMENT ON N N N Y
COMMIT N N N N
CONNECT N N N N
CREATE N N N Y
DECLARE CURSOR
DECLARE GLOBAL Y Y Y Y

TEMPORARY TABLE N Y Y Y
DECLARE STATEMENT Y Y Y Y
DECLARE TABLE Y Y Y Y
DELETE N N N Y
DESCRIBE N N Y Y

 - 92 -

DESCRIBE CURSOR N N Y Y
DESCRIBE INPUT N N Y Y
DESCRIBE PROCEDURE N N Y Y
DROP N N N Y
END DECLARE SECTION Y Y Y Y
EXECUTE N Y Y Y
EXECUTE IMMEDIATE N Y Y Y
EXPLAIN N N N Y
FETCH N N Y Y
FREE LOCATOR N Y Y Y
GRANT N N N Y
HOLD LOCATOR N Y Y Y
INCLUDE Y Y Y Y
INSERT N N N Y
LABEL ON N N N Y
LOCK TABLE N Y Y Y
OPEN N N Y Y
PREPARE N Y Y Y
RELEASE N N N N
RENAME N N N Y
REVOKE N N N Y
ROLLBACK N N N N
SELECT N N Y Y
SELECT INTO N N Y Y
SET N Y Y Y
SET CONNECTION N N N N
SIGNAL SQLSTATE N Y Y Y
UPDATE N N N Y
VALUES N N Y Y
VALUES INTO N Y Y Y
WHENEVER Y Y Y Y

Caution When a stored procedure is called from a user-defined
function, it must allow for the same or more restrictive
data access as the calling UDF. For example, a UDF
defined as READS SQL DATA can call a procedure
defined as READS SQL DATA or CONTAINS SQL. It
cannot call a procedure defined as MODIFIES SQL
DATA. The hierarchy of data access from least to most
restrictive is
 MODIFIES SQL DATA
 READS SQL DATA

 - 93 -

 CONTAINS SQL
When to DISALLOW PARALLEL Operations
A table function cannot operate in parallel, so the DISABLE PARALLEL parameter should be specified
when issuing a CREATE FUNCTION statement for a table UDF.
Some functions that are NOT DETERMINISTIC can receive incorrect results if the function is executed
by parallel tasks. Specify the DISALLOW PARALLEL option for these functions.
Likewise, some functions that rely on a SCRATCHPAD to store data between UDF invocations might not
function correctly in parallel. Specify the DISALLOW PARALLEL option for these functions, too.
DETERMINISTIC Versus NOT DETERMINISTIC
Be sure to specify accurately whether the UDF will always return the same result for identical input
arguments. If the UDF always returns the same result for identical input arguments, the UDF is
DETERMINISTIC. If not, the UDF should be identified as NOT DETERMINISTIC. Any UDF that relies
on external data sources that can change should be specified as NOT DETERMINISTIC. Other
examples of functions that are not deterministic include any UDF that contains SQL SELECT, INSERT,
UPDATE, or DELETE statements or a random number generator.
DB2 uses the NOT DETERMINISTIC parameter to optimize view processing for SQL SELECT, INSERT,
UPDATE, or DELETE statements that refer to the UDF. If the UDF is NOT DETERMINISTIC, view merge
will be disabled when the UDF is specified.
Choose the UDF SECURITY Option Wisely
The SECURITY parameter indicates how the UDF will interact with an external security product, such as
ACF2 or RACF. If SECURITY DB2 is specified, the UDF does not require an external security
environment. This is the default value for SECURITY. If the UDF accesses resources protected by an
external security product, the access is performed using the authid that is associated with the WLM-
established stored procedure address space.
If SECURITY USER is specified, an external security environment should be established for the function.
If the function accesses resources that the external security product protects, the access is performed
using the primary authid of the process that invoked the UDF.
The third and final option for SECURITY is DEFINER. If this option is chosen and the UDF accesses
resources protected by an external security product, the access is performed using the primary authid of
the owner of the UDF.

Handling Null Input Arguments
There are two options for handling null input arguments in user-defined functions: RETURNS NULL ON
NULL INPUT and CALLED ON NULL INPUT. If nulls are to be allowed to be specified as input to a
UDF, the UDF must be programmed to test for and handle null inputs.
If RETURNS NULL ON INPUT is specified when the UDF is created, the function is not called if any of
the input arguments are null. The result of the function call is null.
If CALLED ON NULL INPUT is specified when the UDF is created, the function is called whether any
input arguments are null or not. In this case, the UDF must test for null input arguments in the function
program.

UDF Scratchpads
The [NO] SCRATCHPAD clause should be specified to indicate whether DB2 provides a scratchpad for
the UDF to utilize. In general, external UDFs should be coded as re-entrant, and a scratchpad can help
to store data between invocations of the UDF. A scratchpad provides a storage area for the UDF to use
from one invocation to the next.

If a scratchpad is specified, a length should be provided. The length can be from 1 to 32767; the default
is 100 if no length is specified.
The first time the UDF is invoked, DB2 allocates memory for the scratchpad and initializes it to contain
all binary zeroes. The scope of a scratchpad is a single SQL statement. A separate scratchpad is
allocated for each reference to the UDF in the SQL statement. So, if the UDF is specified once in the
SELECT list and once in the WHERE clause, two scratchpads would be allocated. Furthermore, if the
UDF is run in parallel, one scratchpad is allocated for each parallel task.

Note Take care when using SCRATCHPAD with ALLOW PARALLEL because results can
be difficult to predict. Consider, for example, a UDF that uses the scratchpad to
count the number of times it is invoked. The count would be thrown off if run in
parallel because the count would be for the parallel task, not the UDF. For this
reason, be sure to specify DISALLOW PARALLEL for UDFs that will not operate in
parallel.

 - 94 -

If the UDF acquires system resources, be sure to specify the FINAL CALL clause to make sure that
DB2 calls the UDF one last time, so the UDF can free the system resources it acquired.
Specify EXTERNAL ACTION UDFs in SELECT-List to Ensure Processing
To make sure that DB2 executes a UDF with external actions for each row of the result set, the UDF
should be in the SELECT-list of the SQL statement. The access path chosen by DB2 determines
whether UDFs in predicates are executed. Therefore, to be sure the external actions in a UDF are
processed, the UDF should be invoked in the SELECT-list, not just in a predicate.

What Is a User-Defined Data Type?

A user-defined data type, or UDT for short, provides a mechanism for extending the type of data that can be
stored in DB2 databases and the way that the data is treated. The UDT, after defined and implemented,
extends the functionality of DB2 by enabling users to specify the UDT in DDL CREATE TABLE statements,
just like built-in DB2 data types.

User-Defined Data Types (UDTs) and Strong Typing
User-defined data types allow you to create custom data types based on existing DB2 data types. UDTs can
be beneficial when you need specific data types geared toward your organization's data processing
requirements. One example where UDTs may prove useful is to define new data types for foreign currencies,
for example

CREATE DISTINCT TYPE AUSTALIAN_DOLLAR AS DECIMAL(11,2)
CREATE DISTINCT TYPE EURO AS DECIMAL(11,2)
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL(11,2)
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(15,2)

DB2 enforces strong typing on user-defined data types. Strong typing prohibits non-defined operations
between different types. For example, the following operation will not be allowed due to strong typing:
TOTAL = AUSTRALIAN_DOLLAR + EURO

Strong typing, in this case, helps to avoid an error. Adding two different currencies together, without
converting one currency to the other, will always result in nonsense data. Think about it; You can not
add a handful of Australian coins to a handful of U.S. coins and come up with anything meaningful (or,
perhaps more importantly, spendable).
Consider another example where UDFs have been defined to convert currency amounts. If a specific
conversion function is defined that accepts US_DOLLAR data types as input, you would not want to
accept other currencies as input. Doing so would most likely cause the UDF to convert the currency
amount incorrectly. For example, consider the UDF USDTOYEN() created as follows:
CREATE FUNCTION USDTOYEN(US_DOLLAR)
 RETURNS JAPANESE_YEN . . .
This function accepts a US_DOLLAR amount and converts it to JAPANESE_YEN. Consider the problems
that could occur if, instead of a US_DOLLAR input, an AUSTRALIAN_DOLLAR amount was allowed to be
specified. Without strong typing, the function would use the conversion routines for US_DOLLAR and
arrive at the wrong JAPANESE_YEN amount for the input argument, which was actually specified as an
AUSTRALIAN_DOLLAR. With strong typing, the function will reject the request as an error.

When using UDTs, you can define only those operations that are pertinent for the UDT. For example,
not all numbers should be available for math operations like addition, subtraction, multiplication, and
division. A Social Security number, for example, should always be numeric, but never needs to
participate in mathematical equations. Other examples include credit card numbers, account numbers,
and vehicle identification numbers. By assigning these type of data items to UDTs, you can eliminate
operations that do not make sense for the data type.

To summarize, strong typing ensures that only functions, procedures, comparisons, and assignments
that are defined for a data type can be used.

 - 95 -

User-Defined Distinct Types and LOBs
One of the most important uses for UDTs is to better define the contents of LOB columns. LOB columns
allow large multimedia objects, such as audio, video, and large text documents, to be stored in DB2 columns.
DB2 supports three types of LOB data types:

 BLOB Binary large object
 CLOB Character large object
 DBCLOB Double-byte character large object

For more details on DB2's object/relational support, refer to Chapter 7, "Large Objects and
Object/Relational Databases." For the purposes of this chapter, it is sufficient to know that these types
of columns can be created to house complex, unstructured data.
Let's look at a quick example. Suppose you want to create a DB2 table that contains an audio data
column. You could define the column as a BLOB, such as in the following statement:
CREATE TABLE userid.MOVIE
 (MOVIE_ID INTEGER NOT NULL,
 MOVIE_NAME VARCHAR(50) NOT NULL,
 MOVIE_REVIEW BLOB(1M),
 ROW_ID ROWID GENERATED ALWAYS
) IN database.tablespace;

Note A ROWID must appear in every table that contains a LOB column or a UDT based
on a LOB data type.

However, this does not help us to know that the column contains audio. All we know is that the column
contains a BLOB—which might be audio, video, graphic, and so on. We might surmise from the column
name that the contents are audio, but it might be a video review. To rectify the potential confusion, you
can create a UDT of type AUDIO as follows:
CREATE DISTINCT TYPE AUDIO AS BLOB(1M);
Then create the table specifying the column as the new UDT, instead of just as a BLOB. In fact, you
could also create a video user-defined data type and store the actual video contents of the movie in the
table as well, as shown in the following:
CREATE DISTINCT TYPE VIDEO AS BLOB(2G);
CREATE TABLE userid.MOVIE
 (MOVIE_ID INTEGER NOT NULL,
 MOVIE_NAME VARCHAR(50) NOT NULL,
 MOVIE_REVIEW AUDIO,
 MOVIE VIDEO
) IN database.tablespace;
This table DDL is much easier to read and understand than if both the MOVIE_REVIEW and the MOVIE
columns were defined only as BLOBs.
The AUDIO and VIDEO UDTs that you created can now be used in the same way that you use DB2's
built-in data types.

Using UDTs for Business Requirements
Another good use of UDTs is to take advantage of strong typing in applications. Remember that strong
typing means that only those functions, comparisons, and assignments that are defined for a particular UDT
can be executed. How is this an advantage? Consider the scenario where two table are defined, one
containing an INTEGER column named SHOE_SIZE, and the other table containing an INTEGER column
named IQ_RATING. Because both are defined as INTEGER data types, it is permissible to compare
SHOE_SIZE to IQ_RATING. There really is no reason to permit this, and the results will be meaningless. To
disable this ability, you could create two UDTs as follows:

CREATE DISTINCT TYPE SHOESIZE AS INTEGER
CREATE DISTINCT TYPE IQ AS INTEGER DECIMAL(11,2)
The SHOE_SIZE column can then be created as a SHOESIZE data type, and the IQ_RATING column
can be created as the IQ data type. Then it will be impossible to compare the two columns because
they are of different data types, and DB2 enforces strong typing. Furthermore, when a UDT is used as

 - 96 -

an argument to a function, that function must be defined to accept that UDT. For example, if you needed
to determine average shoe sizes, the AVG function could not be used. But, you could create a sourced
UDF that accepts the SHOESIZE data type as input, as shown in the following:
CREATE FUNCTION AVG(SHOESIZE)
 RETURNS INTEGER
 SOURCE SYSIBM.AVG(INTEGER);

Note The built-in functions are within the SYSIBM schema.

An alternative to creating sourced functions is to use casting functions in your expressions. Casting
allows you to convert a source data type into a target data type. Whenever a UDT is created, two
casting functions are created: one to convert the UDT to the base data type, and another to convert the
base data type to the new UDT. For example, when we created two UDTs named SHOESIZE and IQ,
four casting functions were created as follows:
IQ(INTEGER) Accepts an INTEGER and converts it to IQ
INTEGER(IQ) Accepts an IQ and converts it to INTEGER
SHOESIZE(INTEGER) Accepts an INTEGER and converts it to SHOESIZE
INTEGER(SHOESIZE) Accepts a SHOESIZE and converts it to INTEGER

The casting functions have the same names as the target data types. These casting functions are
created automatically by DB2 behind the scenes. You do not need to do anything in order for them to
exist other than to create the UDT.
So, to use casting functions to provide an average SHOE_SIZE, you could code the following instead of
creating a sourced AVG function:
SELECT AVG(INTEGER(SHOE_SIZE))...
You must understand, though, that strong typing applies not only to user-defined functions and built-in
scalar and column functions, but also to DB2's built-in operators, also referred to as the infix operators.
These are plus (+), minus (-), multiply (*), divide (/), and concatenation (|| or CONCAT). It is best to
create sourced functions for these operations, instead of casting, if you want to use them with UDTs.
For example
CREATE FUNCTION '+' (SHOESIZE, SHOESIZE)
 RETURNS SHOESIZE
 SOURCE SYSIBM.'+' (INTEGER, INTEGER);

Note The built-in operators are within the SYSIBM schema.

Without this sourced function, it would not be possible to add two SHOESIZE columns using SQL. This
is probably fine, because there is no real need to add two shoe sizes together in the real world. Of what
possible value would the result be? So, it is best to create sourced functions only for those built-in infix
operators that make sense and are required for business reasons.
For example, it would be wise to create sourced infix operator functions for the AUSTRALIAN_DOLLAR,
EURO, US_DOLLAR, and JAPANESE_YEN data types we discussed earlier, because it makes sense to
add, subtract, multiply, and divide currencies. Using sourced functions is easier and more effective than
casting. Consider which is easier
USD_AMT1 * USD_AMT2

or
DECIMAL(USD_AMT1) * DECIMAL(USD_AMT2)

Clearly the first alternative is better.
This same problem does not exist for comparison operators, because the CREATE DISTINCT TYPE
statement has a clause to automatically create comparison operators for UDTs. The clause is WITH
COMPARISONS. For example, if the EURO UDT is defined as follows
CREATE DISTINCT TYPE EURO AS DECIMAL(11,2) WITH COMPARISONS
you will be able to use the following comparison operators on columns defined as the EURO data type:

BETWEEN
NOT BETWEEN
IN

 - 97 -

NOT IN
IS NULL
IS NOT NULL
> >= ¬>
< <= ¬<
= <> ¬=
Always specify the WITH COMPARISONS clause when creating UDTs unless

 The UDT is based on a BLOB, CLOB, or DBCLOB.

or
 The UDT is not based on VARCHAR or VARGRAPHIC and has a length greater than

255 bytes.

Assigning Values and UDTs
When assigning values to columns, the value must be of the data type of the column or of a compatible data
type. For UDTs, you must use the casting functions to assign values to columns of a UDT.

For example, if you wanted to assign the value of a column named YEN_AMT, which is defined as a
JAPANESE_YEN, to a column named EURO_AMT, which is defined as EURO, you must create a UDF that
converts yen to euros. If one does not exist, you cannot assign a yen amount to the EURO column. Think
about it: If the value of YEN_AMT was 50000, simply assigning 50000 to EURO_AMT would result in a lot
more value because 50000 yen is a much smaller amount of money than is 50000 euro's.

The bottom line is that a conversion UDF is required for assignment of one UDT data type to another
UDT data type.
If you are using host variables, DB2 makes the task a bit easier. You can assign the value of a column
defined as a UDT to a host variable, if DB2 allows you to the underlying source data type to the host
variable. For example, consider that a host variable, :HV-1, is defined in a COBOL program as a valid
DECIMAL (that is PIC S9(7)V9(2) COMP-3). You can assign a column of type US_DOLLAR,
USD_AMT, to a host variable underlying data type of US_DOLLAR is DECIMAL(9,2).
SELECT USD_AMT
INTO :HV-1
FROM TAB-USD;
But, when you assign a value in a host variable to a column defined as a UDT, the type of the host
variable can be cast to the UDT. So, a host variable defined as PIC S9(7)V9(2) COMP-3 in a
COBOL program is fine for the USD_DOLLAR column. However, if the host variable were of a non-
compatible data type, the assignment would fail. So the following statement is valid only if :HV-1 is
defined appropriately:
INSERT INTO TAB-USD
VALUES (. . ., :HV-1, . . .) ;

User-Defined Distinct Type Guidelines
The following guidelines can be used to help you implement effective and efficient user-defined functions for
your organization.

Naming User-Defined Functions

The rules for naming user-defined distinct types are similar to those for naming user-defined functions.
However, the UDT name in combination with the schema name must be unique. DB2 will not allow a
UDT to be created if the schema and UDT name matches another existing data type.

Furthermore, the name of the user-defined distinct type cannot be any of the following system-defined
key words:
ALL AND
ANY BETWEEN
DISTINCT EXCEPT
EXISTS FALSE

 - 98 -

FOR FROM
IN IS
LIKE MATCH
NOT NULL
ONLY OR
OVERLAPS SIMILAR
SOME TABLE
TRUE TYPE
UNIQUE UNKNOWN
= ¬=
< <=
> >=
¬< ¬>
<>

Comparing UDTs to Base Data Types
DB2 does not let you compare data of a UDT to data of its source type. However, you can compare a
UDT to its source data type by using a cast function. For example, to compare a US_DOLLAR column,
namely USD_AMT, to a DECIMAL column, namely DEC_AMT, you could use the following SQL:
WHERE USD_AMT > US_DOLLAR(DEC_AMT)

Cast Constants and Host Variables to UDTs
Constants and host variables will not be defined as user-defined distinct types. They will generally be
specified in the underlying base data type of the UDT. For example, consider a UDF that is created to
convert JAPANESE_YEN to EURO values. This UDF might look like the following:
CREATE FUNCTION CONVERT_YEN_EURO(JAPANESE_YEN)
 RETURNS EURO
 EXTERNAL NAME 'YENEURO'
 PARAMETER STYLE DB2SQL
 LANGUAGE C;
This UDF will accept only the JAPANESE_YEN data type as an input parameter. To use this UDF with a
host variable or constant, you must use casting functions. For example, to convert 50,000 Japanese yen
to euros, you could call the UDF with the following code:
CONVERT_YEN_EURO(JAPANESE_YEN(50000.00)
In this case, the underlying base data type as defined for JAPANESE_YEN is DECIMAL(11,2). The
same basic idea can be used for host variables, substituting the host variable name for the constant
50000.00.

For dynamic SQL statements, if you want to use a parameter marker with a UDT, you can cast it to the
data type of the UDT as follows:
WHERE CAST (? AS US_DOLLAR) > USD_AMT

Of course, you also could code the inverse of this operation as follows:
WHERE ? > DECIMAL(USD_AMT)
Using UNION with UDTs
DB2 enforces strong typi0ng of UDTs in UNION statements. When you use a UNION to combine column
values from several tables, the columns still must be UNION-compatible as described in Chapter 1, "The
Magic Words." Recall that UNION compatibility means that for the two sets of columns being UNIONed

 The two sets must contain the same number of columns.
 Each column of the first set must be either the same data type as the corresponding

column of the second set or convertible to the same data type as the corresponding
column of the second set.

So, if you were to UNION data from a USD_SALES table and a YEN_SALES table, the following
statement would not work because the data types are not compatible:
SELECT YEN_AMT

 - 99 -

FROM YEN_SALES
UNION
SELECT USD_AMT
FROM USD_SALES;

Instead, you would have to ensure that the amounts were cast to the same data type. This can be done
by using the automatic casting functions built by DB2 when the UDTs were created, or by using UDFs
you may have created for converting currencies. A valid example using the casting functions follows:
SELECT DECIMAL(YEN_AMT)
FROM YEN_SALES
UNION
SELECT DECIMAL(USD_AMT)
FROM USD_SALES;
The results are all returned as decimal values. However, the results may not be useful because you will
not know which amounts represent yen and which represent US dollars. It would be better to use
conversion functions to convert one currency to the other, for example, creating a UDF named
CONVERT_YEN_USD to convert yen amounts to U.S. dollar amounts and using it as follows:
SELECT CONVERT_YEN_USD(YEN_AMT)
FROM YEN_SALES
UNION
SELECT USD_AMT
FROM USD_SALES;

In this case, the results are all returned in U.S. dollars. This makes the results easier to interpret and
understand.

Summary

User-defined functions and user-defined data types can be used to handle non-traditional and multimedia
data, as well as to build DB2 databases that are customized to your business requirements.

Now that you have obtained a basic understanding of using SQL to access DB2 data, as well as built-in
functions, user-defined functions, and user-defined distinct types, it is time to discover data definition
language and how it can be used to create DB2 database objects. Turn to the next chapter to explore
the statements required to create efficient DB2 databases.

Chapter 5: Data Definition Guidelines
Overview

You must make many choices when implementing DB2 objects. The large number of alternatives can
intimidate the beginning user. By following the data definition guidelines in this chapter, you can ensure that
you make the proper physical design decisions. Rules are provided for selecting the appropriate DB2 DDL
parameters, choosing the proper DB2 objects for your application, and implementing a properly designed
physical database.

Naming Conventions
Before issuing DDL, standard names must be identified for all objects that will be created. As such,
guidelines for DB2 naming conventions are discussed before DDL guidelines.

Develop and Enforce DB2 Naming Conventions

The first step in creating an optimal DB2 environment is the development of rigorous naming standards
for all DB2 objects. This standard should be used with all other IT naming standards in your shop.
Where possible, the DB2 naming conventions should be developed to peacefully coexist with your other

 - 100 -

standards, but not at the expense of impairing the DB2 environment. In all cases, naming standards
should be approved by the corporate data administration department (if one exists).

Do not impose unnecessary restrictions on the names of objects accessed by end users. DB2 is
supposed to be a user-friendly database management system. Strict, limiting naming conventions, if not
developed logically, can be the antithesis of what you are striving to achieve with DB2.

For example, many shops impose an eight-character encoded table-naming convention on their
environment. DB2 provides for 18-character table names, and there is no reason to restrict your table
names to eight characters. There is even less reason for these names to be encoded. A reasonable
table-naming convention is a two- or three-character application identifier prefix, followed by an
underscore, and then a clear, user-friendly name.

For example, consider the customer name and address table in a customer maintenance system. The
name of this table could be:
CMS_CUST_NAME_ADDR
The application identifier is CMS (for Customer Maintenance System), followed by an underscore and a
clear table name, CUST_NAME_ADDR. If this table were named following an eight-character encoded
name convention, it might appear as TCMSNMAD. This clearly is not a user-friendly name, and should be
avoided.
In general, a standard naming convention should allow the use of all characters provided by DB2. (See
Appendix H for a listing of DB2 size limitations for each type of object.) By using all available characters,
the DB2 environment is easier to use and understand. All information pertaining to which indexes are
defined for which tables, which tables are in which tablespaces, which tablespaces are in which
databases, and so on can be found by querying the DB2 Catalog.

The only valid exception to using all available characters is when naming indexes. An index name can
be 18 characters, but there are advantages to limiting it to eight characters. Indexes are unknown to
most end users, so a limiting index name is not as great a blow to user friendliness as a limiting table
name.

The problem with 18-character index names is the result of the strict data set naming convention
required by DB2. This convention is

vcat.DSNDBx.dddddddd.ssssssss.I0001.Annn

where
vcat High-level

qualifier,
indicating an
ICF catalog

x C if VSAM
cluster
component
D if VSAM
data
component

dddddddd Database
name

ssssssss Tablespace
name or
index name

nnn Partition
number or
the data set
number

Note A non-partitioned index can

cover 32 2GB data sets. The
first data set ends with 001, the
second data set ends with 002,

 - 101 -

and so on.
If you use more than eight characters to name an index defined using a STOGROUP, or storage group,
DB2 creates a unique, eight-character string to be used when defining the underlying data set for the
index. If the index is created using native VSAM, the first eight characters of the name must be unique
and must be used when defining the underlying VSAM data set. These two constraints can make the
task of correlating indexes to data set names an administrative nightmare when indexes have names
greater than 8 bytes.

Establish Naming Conventions for All DB2 Objects

Be sure to create and publish naming standards for all DB2 objects. A comprehensive list of objects
follows:
STOGROUP PLAN and PACKAGE
DATABASE STORED PROCEDURE
TABLESPACE PROGRAM
LOB TABLESPACE TRIGGER
STORED PROCEDURE USER-DEFINED

FUNCTION
TABLE DBRM
AUXILIARY TABLE GLOBAL TEMPORARY

TABLE
REFERENTIAL CONSTRAINT CHECK CONSTRAINT
VIEW UTILITY ID
ALIAS INDEX
SYNONYM COLUMNCOLLECTION

VERSION
USER-DEFINED DISTINCT TYPE

You might also consider creating naming standards for other related objects such as FIELDPROCs,
EDITPROCs, image copy data set names, PDS library names, and so on. Creating a naming standard
for cursors inside of DB2 programs is also recommended.

Sample DB2 naming standards follow. These standards are only suggestions. Your shop standards are
likely to vary from these standards. Valid characters are all alphabetic characters, the underscore, and
numbers.

DB2 Database Names
Format: Daaadddd

aaa Application
identifier

dddd Unique
description

DB2 Tablespace Names
Format: Saaadddd

aaa Application
identifier

dddd Unique
description

DB2 LOB Tablespace Names
Format: Laaadddd

aaa Application
identifier

 - 102 -

dddd Unique
description

Table, View, Alias, and Synonym Names
Format: aaa_dddddddddddddd

aaa Application identifier
dddddddddddddd Unique description up

to 14 characters long

Auxiliary Table Names
Format: Xaaa_ddddddddddddd

aaa Application identifier
dddddddddddddd Unique description up

to 13 characters long

Temporary Table Names
Format: TMP_dddddddddddddd

TMP Constant temporary
indicator (consider an
alternate shop
standard if you already
use TMP as an
application identifier)

dddddddddddddd Unique description up
to 14 characters long

DB2 Index Names
Format: Xaaadddd

aaa Application
identifier

dddd Unique
description

Index names should be limited to 8 characters, even though DB2 allows up to 18-character index
names. This is important because you can explicitly name DB2 indexes, but you cannot explicitly name
DB2 indexspaces. Yet, every DB2 index requires an indexspace name. The indexspace name is
implicitly generated by DB2 from the index name. If the index name is 8 characters or less in length, the
indexspace name will be the same as the index name. If the index name is greater than 8 characters
long, DB2 will use an internal, proprietary algorithm to generate a unique, 8-byte indexspace name. It is
difficult to match indexes to indexspaces when the names do not match, so it is wise to limit the length
of index names to 8 characters.
STOGROUP Names
Format: Gaaadddd

aaa Application
identifier

dddd Unique
description

 - 103 -

Referential Constraint Names (Foreign Keys)
Format: Raaadddd

aaa Application
identifier

dddd Unique
description

Check Constraint Names
Format: Caaadddd

aaa Application
identifier

dddd Unique
description
(e.g., first
four
characters
of column
name)

DB2 Trigger Names
Format: Raaadddd

aaa Application
identifier

dddd Unique
description
(for
example,
characters
that tie
back to the
table on
which the
triggers is
defined, if
possible)

DB2 Stored Procedure Names
Format: Up to

18
charac
ters

DB2 stored procedure names should be as descriptive as possible to define the purpose of the stored
procedure. Use as many of the 18 characters as needed to help identify the functionality of the stored
procedure. For example, RETURN_ALL CUSTS is a better stored procedure name than is RTALLCST.

DB2 User-Defined Function Names
Format: Up to 8 characters; should be as descriptive as possible to

define the purpose of the function

DB2 Column Names
Format: Up to

18
charac

 - 104 -

ters

DB2 column names should be as descriptive as possible to provide documentation, so try to use all 18
characters. When you use abbreviations to name a column in the 18-character limit, use the standard
Data Management abbreviations. This ensures a consistent and effective database environment.

Columns that define the same attribute should be named the same. Additionally, the same name should
never be used for different attributes. In other words, a column used as a primary key in one table
should be named identically when used as a foreign key in other tables. The only valid exception is
when the same attribute exists in one table multiple times. In this case, specify a substitute column
name; you usually can use the attribute name with a descriptive suffix or prefix. For code supplied by
vendors, you might have to make exceptions to this guideline of singular column names per attribute.

DB2 Distinct Type Names
Format: Up to

18
charac
ters

DB2 distinct types should be defined with a similar mindset as defining DB2 columns. The distinct type
name should be as descriptive as possible within the 18 character limitation.

DB2 Plan Names
Format: Up to

eight
charac
ters

The convention is that the name of the plan should be the same as the name of the application program
to which it applies. If multiple program DBRMs (Data Base Request Modules) are bound to a single
large plan, or if one plan is composed of many packages, the name should be assigned by the database
administration department such that the name successfully identifies the application, is not an actual
program name, and is unique in the DB2 subsystem.

DB2 Package Names
Format: Up to

eight
charac
ters

Packages are named the same as the DBRM.

DBRM Names
Format: Up to

eight
charac
ters

DBRMs generally are named the same as the program. If a single program is used to create multiple
DBRMs, consult with the database administration department for an acceptable name.

Collection Names
Format: aaa_dddddddd_eeeee

aaa Application identifier
eeeee Environment(BATCH,

CAF, CICS, DLI,
IMSDC, BMP, TSO, and

 - 105 -

so on)

Explicit Version Names
Format: uuuuuuuu_date_tttt_s

uuuuuuuu authid (of person
performing
precompile)

date Date of precompile
(ISO format)

tttt Type of program
(TEST, TEMP, PROD,
QUAL, and so on)

s Sequence number (if
required)

The explicit version name should be used when the programmer is to specify the version instead of
having DB2 supply the version automatically at precompile time. An example of an explicit version name
would be DBAPCSM_1999-01-01_TEMP_3, indicating that on New Year's Day user DBAPCSM
precompiled this version as a temporary fix (at least) three times.

Automatic Version Names
The automatic version name must be permitted when DB2 is to assign the version name automatically
at precompile time. In this case, the version name is a 26-byte ISO timestamp, for example, 1993-07-
21-15.04.26.546405.

Utility ID

DB2 utility IDs should be unique for each utility to be executed. No two utilities can be run concurrently
with the same ID.

The utility ID for all regularly scheduled DB2 utilities should be allowed to default to the name of the job.
Because MVS does not permit two identically named jobs to execute at the same time, DB2 utility IDs
will be forced to be unique.

DCLGEN Declare Members
Format: oaaadddd

o Object identifier:
 T

V
A
S

table
view
alias
synonym

aaa Application
identifier

dddd unique
description

The unique description, dddd, should be the same as the tablespace to which the table has been
defined. If more than one of any object type exists per tablespace, the database administration
department should assign a unique name and provide that name to the appropriate application
development staff.

Compliance

All DB2 object names should be assigned by the database administration department. It is also the
database administration department's responsibility to enforce DB2 naming conventions. Database
administration should work in conjunction with the corporate data administration group to ensure that
naming conventions are consistent throughout the organization.

 - 106 -

Database, Tablespace, and Table Guidelines

When creating DB2 objects, an efficient environment can be created by heeding the following guidelines.

Define Useful Storage Groups
A storage group, known to DB2 as a STOGROUP, is an object used to identify a set of DASD volumes
associated with an ICF catalog, or VCAT. Storage groups and user-defined VSAM are the two storage
allocation options for DB2 data set definition. A STOGROUP can be assigned to a database, a
tablespace, or an index. DB2 uses the volumes of the STOGROUP to assign tablespace and indexspace
data sets to a device.
Define more than one volume per storage group to allow for growth and to minimize out-of-space abend
situations. A data set extend failure causes DB2 to check the STOGROUP volume entries and issue a
VSAM ALTER ADDVOLUMES for the data set.
When defining multiple volumes to a storage group, DB2 keeps track of which volume was specified first
in the list and tries to use that volume first. DB2 does not attempt to balance the load on the DASD
volumes. Data set allocation is performed by IBM's Data Facility Product (DFP). The order in which the
volumes are coded in the CREATE STOGROUP statement determines the order in which the volumes are
used by DB2. When the first volume is full, or if for any reason DFP determines that it cannot allocate a
data set on that volume, DB2 (through DFP) moves to the next volume.

Caution You cannot retrieve the ordering information for volumes in a STOGROUP from
the DB2 Catalog, so make sure you have documentation detailing the order in
which the volumes were defined to the storage group. This requires the DBA
to explicitly document the order of the volumes in the CREATE STOGROUP
statements by saving the DDL or by creating a word processing document or
spreadsheet with the details. Without this information, it is impossible to
determine the ordering of volumes in the STOGROUP.

If you would rather not administer multiple volume STOGROUPs, specifying only a single volume to a
STOGROUP instead, you must be prepared to handle abends resulting from a volume being out of space.
Handling out-of-space conditions usually involves one of the following:

 Moving the data set to a volume with more space by altering the STOGROUP and then
recovering or reorganizing the tablespace

 Adding a volume to the STOGROUP to accommodate additional data set extents
Of course, you can also choose to use SMS to manage DB2 data sets. This option is discussed in the
next section.
A good method of maintaining DB2 objects on multiple volumes is to define multiple STOGROUPs, each
with a different volume as the first listed volume. For example, consider a new application assigned two
volumes, called VOL1 and VOL2. Create two STOGROUPs as follows:
CREATE STOGROUP TESTSG1
 VOLUMES('VOL1', 'VOL2') VCAT appl ;
CREATE STOGROUP TESTSG2
 VOLUMES('VOL2', 'VOL1') VCAT appl ;
After creating these STOGROUPs, you can balance the load on the volumes by assigning some of the
tablespaces to TESTSG1 and some to TESTSG2. If one volume runs out of space, the other can serve
as the backup.
The maximum number of volumes used by a storage group is 133 (even though DB2 allows more than
133 volumes to be defined to a storage group). It usually is difficult to monitor more than 3 or 4 volumes
to a STOGROUP, however. All volumes in a storage group must be of the same type (for example, 3380,
3390, and so on).

Using DFSMS With DB2

Another solution for avoiding multi-volume storage groups is to use DFSMS, or SMS for short. SMS
stands for System Managed Storage. With SMS, the system determines where data sets are to be
placed, easing the burden of data set creation and management on database administration.
You can define a DB2 STOGROUP with VOLUMES("*") to indicate SMS managed storage. When the
"*" is specified in the VOLUMES clause, SMS will be used to assign a volume to the tablespace and
indexspace data sets in that STOGROUP.

 - 107 -

Using SMS, you can define storage and management classes to identify differing data set requirements.
Storage and management classes are grouped into SMS storage groups.

ACS routines are used to assign DB2 tablespace and index data sets to SMS classes and Storage
Groups. ACS stands for Automatic Class Selection. ACS is used to define policies for data set naming,
volume naming, restrictions on usage, and other policies for data set creation and management.

ACS uses the data set name to decide where to place the data set. Many methods can be devised with
specific naming standards to assign SMS classes based on the names of the DB2 data sets.

Caution Do not confuse DB2 STOGROUPs with SMS Storage Groups. An SMS Storage
Group refers to a set of volumes in an installation, a DB2 STOGROUP refers to
a set of volumes containing a set of data. Different STOGROUPs can share the
same disk volume or volumes. One disk volume can only belong to one SMS
Storage Group.

With the new efficient DASD that is available, SMS is a more viable option than it was for past releases
of DB2. However, if you want to ensure specific data set placement for all DB2 data sets, avoid SMS.

When using SMS, use ACS to differentiate between tablespace and index data sets and place them on
different devices. This requires more setup work, but is required for achieving acceptable performance.

One possible scenario is to let SMS handle the majority of your DB2 data set placement, but, use non-
SMS data set placement techniques for high volume data sets, to separate data from indexes on
separate volumes, or to ensure parallelism. In this way, SMS can be used to minimize the effort for the
bulk of your data set placement tasks, while allowing you to target your "high need" data sets to specific
devices.

SMS and Partitioned Tablespaces

One of the benefits of partitioning a tablespace is that data is spread across multiple physical devices. If
you turn over data set placement to SMS, this benefit may be lost. There are three options for using
SMS with partitioned tablespaces:

 SMS manages everything—If the number of volumes in the Storage Group is much
larger than the number of partitions in the tablespace, SMS might place each partition
on a separate volume. However, this is by no means assured. To be certain that each
partition is placed on a different volume, use another option.

If each partition is more than half a volume in size, however, you can be sure that SMS will
place each partition on a separate volume, because two partitions will not fit on one volume.
In this scenario, allowing SMS to manage everything may be an acceptable choice.

Caution Be aware that space fragmentation on the volumes might result in a lack of
volumes with sufficient free space, possibly resulting in REORGs failing due to
lack of space.

 One SMS storage group assigned per partition—An SMS storage group consisting of
only one volume can be defined for each tablespace partition. The ACS routine then
assigns an SMS storage group to each partition. This method is similar to creating a
DB2-defined partitioned tablespace using one STOGROUP for each partition.

The advantage of this method is strict data set placement. The disadvantage is the
complexity of the ACS routines required and the need for many SMS storage groups to be
defined.

 One SMS storage group assigned per partitioned tablespace—The third and final
alternative to be discussed here is to define one SMS storage group for each
partitioned tablespace. Be sure to assign sufficient volumes to the SMS storage group
for all partitions in the tablespace. SMS will distribute the partitions onto those
volumes. Be sure to assign no other tablespaces or indexes to this SMS storage
group. That way, no other data sets will ever be allocated on these volumes, practically
reserving the space for this tablespace.

This discussion of SMS and DB2 has been brief. A comprehensive study of SMS is beyond the scope of
this book. However, if you are implementing SMS with DB2, I recommend that you acquire a good
understanding of SMS before proceeding. To do so, obtain and read (at a minimum) the following IBM
manuals:

 - 108 -

 SG24-5462: Storage Management with DB2 for OS/390
 SG24-4892: DFSMS/MVS Technical Overview
 SG24-5272: DFSMShsm Primer
 SC26-3123: DFSMS/MVS Implementing System-Managed Storage

Never Use SYSDEFLT
The default DB2 storage group is SYSDEFLT. SYSDEFLT is created when DB2 is installed, and is used
when a storage group is not explicitly stated (and VCAT is not used) in a database, a tablespace, or an
index CREATE statement. I recommend that you never use SYSDEFLT. Objects created using
SYSDEFLT are hard to maintain and track. Additionally, creating many different DB2 objects from
diverse applications on the same DASD volumes degrades performance and, eventually, no more
space will remain on the volumes assigned to SYSDEFLT. If you grant the use of SYSDEFLT only to
SYSADMs, you can limit its use.

User-Defined VSAM Data Set Definitions
When creating DB2 objects with the VCAT option instead of the STOGROUP option, you must create
user-defined VSAM data sets explicitly using the VSAM Access Method Services utility, IDCAMS. You
can use two types of VSAM data sets for representing DB2 tablespaces and indexspaces: VSAM ESDS
and VSAM LDS.

VSAM ESDS is an entry-sequenced data set, and VSAM LDS is a linear data set. A linear data set has
a 4K CI size and does not contain the control information that entry-sequenced data sets normally
contain. VSAM LDS and ESDS data sets are not used as plain VSAM data sets. DB2 uses the VSAM
Media Manager to access these data sets. DB2 performs additional formatting of the VSAM data sets,
causing them to operate differently than standard VSAM. Therefore, a direct VSAM read and write to a
DB2 VSAM data set will fail.

Create DB2 data sets as VSAM linear data sets instead of as VSAM entry-sequenced data sets
because DB2 can use LDS more efficiently.

An example of the IDCAMS data set definition specification follows:
DEFINE CLUSTER --
 (NAME (vcat.DSNDBC.dddddddd.ssssssss.I0001.Annn) --
 LINEAR --
 REUSE --
 VOLUMES (volume list) --
 CYLINDER (primary secondary) --
 SHAREOPTIONS (3 3) --
) --
DATA --
 (NAME (vcat.DSNDBD.dddddddd.ssssssss.I0001.Annn)) --

where
vcat high-level qualifier, indicating an ICF catalog
dddddddd database name
ssssssss tablespace name or index name
nnn partition number or data set number
volume list listing of physical DASD devices
primary primary space allocation quantity
secondary secondary space allocation quantity

Favor STOGROUP-defined Data Sets Over User-Defined VSAM
The need for specific VSAM data set definition has diminished as DB2 and disk devices have become
more efficient. In general, unless you have very specific data set placement needs, favor using
STOGROUPs (with or without SMS) over user-defined VSAM data set definition.

 - 109 -

Alias and Synonym Definitions
A DB2 ALIAS is an alternate name defined for a table. It was introduced to simplify distributed
processing, but aliases can be used in any context, not just for easing data distribution. Remote tables
add a location prefix to the table name. However, you can create an ALIAS for a remote table, thereby
giving it a shorter, local name because it no longer requires the location prefix.
A DB2 SYNONYM is also an alternate name for a table. Aliases can be accessed by users other than
their creator, but synonyms can be accessed only by their creator. When a table is dropped, its
synonyms are dropped but its aliases are retained.

The recommendation is to use synonyms for program development, use aliases for distributed
applications, and use views for security, performance, and ease of use.

Database Definitions
Physically, a DB2 database is nothing more than a defined grouping of DB2 objects. One database per
logical application system (or subsystem) is a good rule of thumb. A database contains no data, but acts as a
high-level identifier for tracking other DB2 objects. The START and STOP commands can be issued at the
database level, thereby affecting all objects grouped under that database.

Logically, a database should be used to group like tables. You can do this for all tables in an application
system or for tables in a logical subsystem of a larger application. It makes sense to combine tables
with similar functions and uses in a single database because it simplifies DB2 security and the starting
and stopping of the application tablespaces and indexes.

As a general rule, though, place no more than 30 or 40 tables in a single database. More tables than
this usually are too difficult to administer and monitor. For applications that have multiple tables per
tablespace, define no more than 30 or 40 tablespaces to a single database.
When DDL is issued to drop or create objects in an existing database, the database descriptor (DBD)
for the affected database must be modified. The DBD is a control structure used by DB2 to manage the
objects under the control of a given database. For DB2 to modify the DBD, a lock must be taken. A DBD
lock will cause contention, which can result in the failure of the DDL execution.

If the DDL is submitted when there is little or no activity, however, application users may be locked out
while the DDL is being executed. An X lock will be taken on the DBD while the DDL executes. For very
active databases, there may not be a dormant window in which a lock of this kind can be taken. This
can cause undue stress on the system when new objects must be added—a good reason to limit the
number of objects defined to a single database.

Note An additional consideration is the size of the DBD. A DBD contains a mapping of
the tablespaces, tables, and indexes defined to a database. When a request for
data is made, the DBD is loaded into an area of main storage called the EDM
pool. The DBD should be small enough that it does not cause problems with EDM
pool storage. Problems generally will not occur if your databases are not
outrageously large and your EDM pool is well-defined. For a further discussion of
DBDs and their effect on the EDM pool, see Chapters 20, "The Table-Based
Infrastructure of DB2," and 26, "Tuning DB2's Components."

Specify Database Parameters
Specify a storage group and buffer pool for every database that you create. If you do not define a
STOGROUP, the default DB2 storage group, SYSDEFLT, is assigned to the database. This is undesirable
because the volumes assigned to SYSDEFLT become unmanageable if too many DB2 data sets are
defined to them.
If you do not define a buffer pool, BP0 is used. As of DB2 V6, a default bufferpool is assigned for
indexes, too. Depending on shop standards, this may be desirable, but explicitly coding the buffer pool
still is recommended to avoid confusion.

Note A good rule is to explicitly code every pertinent parameter for every DB2
statement. DB2's default values are rarely the best choice, and even when they
are, the precision of explicitly coded parameters is preferable for debugging and
tuning situations.

Never Use DSNDB04
The default DB2 database is DSNDB04. DSNDB04 is created during installation and is used when a
database is not explicitly stated in a tablespace CREATE statement, or when a database and tablespace
combination is not explicitly stated in a table CREATE statement. I recommend that you never use

 - 110 -

DSNDB04. Objects created in DSNDB04 are hard to maintain and track. To limit the use of DSNDB04,
grant its use only to SYSADMs.
An additional caveat regarding usage of the default database—the REPAIR DROP DATABASE
statement cannot be used on DSNDB04.

Caution Some organizations choose to use DSNDB04 for QMF users to create objects.
Even this usage is discouraged. It is better to create a specific database for
each QMF user needing to create objects. These databases can then be
used, managed, and maintained more effectively without impacting other
users.

Be Aware of the Impact of Drops on DBDs
When an object is dropped, the related entry in the DBD is marked as logically deleted, but not
physically deleted. Certain types of changes, such as removing a column, reordering columns, or
changing a data type necessitate dropping and recreating tables. Each time the table is dropped and
recreated, the DBD will grow. Very large DBDs can result in -904 SQLCODEs specifying the
unavailable resource as the EDM Pool (resource 0600).

To reduce the size of the DBD, you must follow these steps:
1. REORG the tablespaces for tables which have been dropped and recreated. The

log RBA recorded in SYSCOPY for this REORG will indicate to DB2 that the
dropped tables are no longer in the tablespace.

2. Run MODIFY RECOVERY to remove the old image copy information for the
dropped table. The preferred method with the least amount of down time is to run
MODIFY RECOVERY DELETE AGE(*). This will shrink your DBD and delete all
old SYSCOPY and SYSLGRNX information.

3. Run an image copy for each tablespace to ensure recoverability.

Use Proper Tablespace Definitions

Explicitly define tablespaces. If a tablespace is not specified in the table creation statement, DB2
creates an implicit tablespace for new tables and sets all tablespace parameters to the default values.
These values are unacceptable for most applications.

There are four types of DB2 tablespaces, each one useful in different circumstances:
 Simple tablespaces
 Segmented tablespaces
 Partitioned tablespaces
 LOB tablespaces

In general, use segmented tablespaces except as follows:
 Use partitioned tablespaces when you want to encourage parallelism (non-partitioned

tablespaces can be accessed in parallel, but partitioned tablespaces are preferred
for performance and data set placement reasons).

 Use partitioned tablespaces when the amount of data to be stored is very large (more
than several million pages).

 Use partitioned tablespaces to reduce utility processing time and decrease
contention.

 Use partitioned tablespaces to isolate specific data areas in dedicated data sets.
 Use partitioned tablespaces to improve data availability. If the data is partitioned by

region, the partitions for the eastern, southern, and northern regions can be made
available while the western region partition is being reorganized.

 Use partitioned tablespaces to improve recoverability. If the data is partitioned by
region and an error impacts data for the eastern region only, only the eastern
partition needs to be recovered.

 LOB tablespaces are to be used only in conjunction with LOB columns. One LOB
tablespace is required per LOB column in a table. If the tablespace containing the
LOB column is partitioned, one LOB tablespace per partition per column is required.
The LOB tablespace is used to stored the large object data. Comprehensive
coverage of LOB tablespaces is provided in Chapter 7, "Large Objects and
Object/Relational Databases."

 Use a simple tablespace only when you need to mix data from different tables on one
page.

 - 111 -

The next three sections provide more in-depth guidelines for each of the tablespace types.

Using Simple Tablespaces
Simple tablespaces are found mostly in old DB2 applications (those developed before 1989). A simple
tablespace can contain one or more tables, but in general only one table should be defined per simple
tablespace. This is because a single page of a simple tablespace can contain rows from all the tables
defined to the tablespace. Having multiple tables in a simple tablespace adversely affects concurrent data
access, data availability, space management, and load utility processing. The LOAD utility with the REPLACE
option obliterates all data in a tablespace, not just the data for the table being loaded. This usually is
unacceptable for most application processing. Additionally, the compression ratio can be adversely impacted
by storing multiple tables in a single tablespace.

Prior to DB2 V2.1, most DB2 tablespaces were defined as simple tablespaces because the only other
option was a partitioned tablespace. Most applications developed on a version of DB2 after V1.3 use
segmented tablespaces because of their enhanced performance and improved methods of handling
multiple tables. Segmented tablespaces make simple tablespaces almost obsolete.

If an application must read rows from multiple tables in a predefined sequence, however, mixing the
rows of these tables together in a single simple tablespace could prove beneficial. The rows should be
mixed together on the page in a way that clusters the keys by which the rows will be accessed. This can
be done by inserting the rows using a "round robin" approach, switching from table to table, as follows:

1. Create a tablespace as a simple tablespace; do not specify a SEGSIZE or
NUMPARTS clause.

2. Create the two tables (for example, Table1 and Table2), assigning them both to
the simple tablespace you just created.

3. Sort the input data set of values to be inserted into Table1 into key sequence
order.

4. Sort the input data set of values to be inserted into Table2 into sequence by the
foreign key that refers to the primary key of Table1.

5. Code a program that inserts a row into Table1, and then inserts all corresponding
foreign key rows into Table2.

6. Continue this pattern until all primary keys have been inserted.

When the application reads the data in this predefined sequence, the data from these two tables is
clustered on the same (or a neighboring) page. Great care must be taken to ensure that the data is
inserted in the proper sequence and that subsequent insertions do not alter the mix of data, or
performance will suffer. Also, remember that mixing data rows from multiple tables on the same
tablespace page adversely affects the performance of all queries, utilities, and applications that do not
access the data in this manner. Be sure that the primary type of access to the data is by the predefined
mixing sequence before implementing a simple tablespace in this manner.

Unless data-row mixing is being implemented, define no more than one table to each simple
tablespace. Also, consider defining all your non-partitioned tablespaces as segmented instead of
simple.

Using Segmented Tablespaces
A segmented tablespace is the preferred type of tablespace for most DB2 development efforts. A segmented
tablespace provides most of the benefits of a simple tablespace, plus:

 Multiple tables can be defined to one segmented tablespace without the problems
encountered when using simple tablespaces. Tables are stored in separate
segments. Because data rows never are mixed on the same page, concurrent
access to tables in the same segmented tablespace is not a problem.

 Segmented tablespaces handle free space more efficiently, which results in less
overhead for inserts and for variable-length row updates.

 Mass delete processing is more efficient because only the space map—not the data
itself—is updated. A mass delete of rows from a table in a simple tablespace causes
every row to be physically read and deleted. The following is an example of a mass
delete:

 DELETE

 - 112 -

FROM DSN8610.DEPT;
If DSN8610.DEPT is defined in a simple tablespace, all of its rows are read and deleted. If it
is defined in a segmented tablespace, however, only the space map is updated to indicate
that all the rows have been deleted.

 Space can be reclaimed from dropped tables immediately. This reduces the need for
reorganization.

Most of your application tablespaces should be segmented. All tablespaces that contain multiple tables
(and do not need to mix data from multiple tables on a page) should be segmented. Even when you're
defining one table for each tablespace, the performance advantage of the more efficient space
utilization should compel you to use segmented tablespaces.

Choose the segment size carefully. Consider each of the following when selecting the segment size:
 SEGSIZE is defined as an integer representing the number of pages to be assigned

to a segment. The size of a segment can be any multiple of 4, from 4 to 64,
inclusive.

 DASD space is allocated based on the PRIQTY and SECQTY specifications for
STOGROUP-defined tablespaces, or on the VSAM IDCAMS definition for user-defined
VSAM tablespaces. However, this space can never be smaller than a full segment.
The primary extent and all secondary extents are rounded to the next full segment
before being allocated.

 Space cannot be allocated at less than a full track. Consult the
"PRIQTY and SECQTY" section later in this chapter for additional information.

 When defining multiple tables in a segmented tablespace, keep tables of like size in
the same tablespace. Do not combine large tables with small tables in a single
segmented tablespace. Defining small tables in a tablespace with a large segment
size could result in wasted DASD space.

 When a segmented tablespace contains multiple tables large enough to be
processed using sequential prefetch, be sure to define the SEGSIZE according to
the following chart. The segment size should be at least as large as the maximum
number of pages that can be read by sequential prefetch. Otherwise, sequential
prefetch could read pages that do not apply to the table being accessed, causing
inefficient sequential prefetch processing.

Bufferpool Range Segment
Size

1 through 500 16

501 through 999 32

1000 and over 64

Using LOB Tablespaces
A discussion of how and when to use LOB tablespaces is deferred to Chapter 7.

Using Partitioned Tablespaces
A partitioned tablespace is divided into components called partitions. Each partition resides in a separate
physical data set. Partitioned tablespaces are designed to increase the availability of data in large tables by
spreading it across multiple physical disk devices.

There are two types of partitioned tablespaces: LARGE and non-LARGE. DB2 permits from 1 to 254
partitions per LARGE tablespace; from 1 to 64 partitions for non-LARGE tablespaces.

Note Prior to DB2 Version 5 there were no LARGE tablespaces. The limit for all
partitioned tablespaces created prior to DB2 V5 was from 1 to 64 partitions.

For partitioned tablespaces not specified as LARGE or without the DSSIZE parameter, the number of
partitions impacts the maximum size of the data set partition as follows:

Number of Partitions Maximum
Data Set
Size

1 to 16 4 GB

 - 113 -

17 to 32 2 GB

33 to 64 1 GB
For partitioned and LOB tablespaces, the DSSIZE parameter can be used to specify the maximum size
for each partition. The following are valid DSSIZE values:

 1GB (1 gigabyte)
 2GB (2 gigabytes)
 4GB (4 gigabytes)
 8GB (8 gigabytes)
 16GB (16 gigabytes)
 32GB (32 gigabytes)
 64GB (64 gigabytes)

To specify a value greater than 4GB, you must be running DB2 with DFSMS V1.5, and the data sets for
the tablespace must be associated with a DFSMS data class defined with extended format and
extended addressability. DFSMS's extended addressability function is necessary to create data sets
larger than 4GB in size. The term used by IBM to define data sets that are enabled for extended
addressability is EA-enabled.

A commonly held belief among DB2 DBAs is that partitioned tablespaces should be defined with evenly
distributed data across partitions. However, maintaining evenly distributed partitions may not be
desirable when partitions are used to isolate data "hot spots." Indeed, it is better to design tablespace
partitions with the needs of the application in mind. Therefore, the best approach is to define tablespace
partitions based on the access requirements of the applications accessing the data. Keep in mind that
parallel processing can benefit from properly partitioned tablespaces placed on separate volumes.

Deciding to use a partitioned tablespace is not as simple as merely determining the size of the table.
Application-level details, such as data contention, performance requirements, and the volume of
updates to columns in the partitioning index must factor into the decision to use partitioned tablespaces.
Never attempt to avoid a partitioned tablespace by implementing several smaller tablespaces, each
containing a subset of the total amount of data. When proceeding in this manner, the designer places
separate tables, each with the same data characteristics, into each of the smaller tablespaces. This
usually is a bad design decision because it introduces an uncontrolled and unneeded denormalization.
(See the section in this chapter on "Denormalization" for more information.)

When data that logically belongs in one table is separated into multiple tables, SQL operations to
access the data as a logical whole are made needlessly complex. One example of this complexity is the
difficulty in enforcing unique keys across multiple tables. Although partitioned tablespaces can introduce
additional complexities into your environment, these complexities never outweigh those introduced by
mimicking partitioning with several smaller, identical tablespaces.

Before deciding to partition a tablespace, weigh the pros and cons. Consult the following list of
advantages and disadvantages before implementation:

Advantages of a partitioned tablespace:
 Each partition can be placed on a different DASD volume to increase access

efficiency.
 Partitioned tablespaces are the only type of tablespace that can hold more than

64GB of data (the maximum size of simple and segmented tablespaces). A
partitioned tablespace can hold up to 1TB of data (254 partitions each containing
4GB of data is approximately equal to one terabyte). An EA-enabled partitioned
tablespace can contain up to 16TB of data (254 partitions each containing 64GB of
data is approximately equal to 16 terabytes).

 Start and stop commands can be issued at the partition level. By stopping only
specific partitions, the remaining partitions are available to be accessed thereby
promoting higher availability.

 Free space (PCTFREE and FREEPAGE) can be specified at the partition level enabling
the DBA to isolate data "hot spots" to a specific partition and tune accordingly.

 Query I/O, CPU, and Sysplex parallelism enable multiple engines to access different
partitions in parallel, usually resulting in reduced elapsed time. DB2 can access non-
partitioned tablespaces in parallel, too, but partitioning can optimize parallelism by
removing disk contention.

 - 114 -

 Tablespace scans on partitioned tablespaces can skip partitions that are excluded
based on the query predicates. Skipping entire partitions can improve overall query
performance for tablespace scans.

 The clustering index used for partitioning can be set up to decrease data contention.
For example, if the tablespace will be partitioned by DEPT, each department (or
range of compatible departments) could be placed in separate partitions. Each
department is in a discrete physical data set, thereby reducing interdepartmental
contention due to multiple departments coexisting on the same data page. Note that
some contention remains for data in non-partitioned indexes. If you define a
nonpartitioning index on a table in a partitioned tablespace, you lose some of the
benefits of partition-level independence for utility operations because access to a
nonpartitioning index is sequential.

 DB2 creates a separate compression dictionary for each tablespace partition.
Multiple dictionaries tend to cause better overall compression ratios. In addition, it is
more likely that the partition-level compression dictionaries can be rebuilt more
frequently than non-partitioned dictionaries. Frequent rebuilding of the compression
dictionary can lead to a better overall compression ratio.

 The REORG, COPY, and RECOVER utilities can execute on tablespaces at the partition
level. If these utilities are set to execute on partitions instead of on the entire
tablespace, valuable time can be saved by processing only the partitions that need
to be reorganized, copied, or recovered. Partition independence and resource
serialization further increase the availability of partitions during utility processing.

Disadvantages of a partitioned tablespace:
 Only one table can be defined in a partitioned tablespace. This is not really a

disadvantage, merely a limitation.
 The columns of the partitioning index cannot be updated. To change a value in one

of these columns, you must delete the row and then reinsert it with the new values.
For this reason, you cannot specify a nullable column of a foreign key that has a
delete rule of SET NULL in the index partitioning key. However, you can overcome
this disadvantage by using an APAR from IBM that enables updates to the columns
of a partitioning index.

 The range of key values for which data will be inserted into the table should be
known and stable before you create the partitioning index. To define a partition, a
range of values must be hard coded into the partitioning index definition. These
ranges should distribute the data throughout the partitions according to the access
needs of the applications using the data. If you provide a stop-gap partition to catch
all the values lower (or higher) than the defined range, monitor that partition to
ensure that it does not grow dramatically or cause performance problems if it is
smaller or larger than most other partitions.

Caution For tablespaces created with either the LARGE or DSSIZE option, the values
specified after the VALUES clause are strictly enforced. The highest value
specified is the highest value that can be placed in the table. Any values
greater than the value specified for the last partition are out of range and
cannot be inserted.

Note As of DB2 V6, you can change partition key ranges using ALTER INDEX without
having to drop and redefine the partitioned tablespace and index. This capability
greatly increases data availability when partition key ranges need to be changed.

Reconsider Partitioning Tablespaces

To optimize query parallelism it is wise to reevaluate your basic notions regarding partitioning. The
common "rule of thumb" regarding whether to create a partitioned tablespace instead of a segmented
tablespace was to use partitioning only for larger tablespaces. This strategy is outdated.

Consider partitioning tablespaces that are accessed in a read-only manner by long running batch
programs. Of course, very small tablespaces are rarely viable candidates for partitioning, even with
DB2's advanced I/O, CPU, and Sysplex parallelism features. This is true because the smaller the
amount of data to access, the more difficult it is to break it into pieces large enough such that
concurrent, parallel processing will be helpful.

 - 115 -

Place Partitions on Separate DASD Devices

Move each partition of the same partitioned tablespace to separate DASD volumes. Failure to do so will
negatively affect the performance of query parallelism performed against those partitions. Disk drive
head contention will occur because concurrent access is being performed on separate partitions that
coexist on the same device.

Tablespace Parameters
Many parameters must be considered when creating a tablespace. Each of these parameters is discussed in
this section.
LARGE

The LARGE parameter is available for partitioned tablespaces only. When LARGE is specified more than
64GB of data can be stored in the tablespace. A large tablespace can have up to 254 partitions, each
containing up to 4GB; if EA-enabled, each can contain up to 64GB. Refer to Table 5.1 for definitions of
storage abbreviations such as GB and TB.
Table 5.1: Storage Abbreviations

Abbreviation Term Amount

KB Kilobyte 1,024
bytes

GB Gigabyte 1,024
KB

TB Terabyte 1,024
GB

PB Petabyte 1,024
TB

EB Exabyte 1,024
PB

ZB Zettabyte 1,024
EB

YB Yottabyte 1,024
ZB

When LARGE (or DSSIZE) is not specified, the maximum storage amount is limited to 64GB; the
maximum number of partitions to 64.

Caution If the NUMPARTS parameter is defined to be greater than 64, the tablespace
will automatically be defined as a large tablespace even if the LARGE
parameter is omitted.

Create LARGE Tablespaces Sparingly
Although it may be tempting to define every tablespace as LARGE, space considerations and resource
requirements need to be taken into account. RIDs in a large tablespace are 5 bytes instead of 4 bytes. As
such, indexspace usage will increase. Additionally, large tablespaces can use more data sets and increase
resource consumption of utility processing. Therefore, a large tablespace should be used only under the
following conditions:

 When more than 16 partitions are required and more than 1 GB must be stored
per partition; or

 More than 64 partitions are required; or
 More than 64 GB of data must be stored in a single tablespace

Caution Use the DSSIZE clause instead of LARGE to specify a maximum partition size
of 4GB and larger. The LARGE clause is retained for compatibility with
releases of DB2 prior to Version 6.

DSSIZE
The DSSIZE parameter is used to specify the maximum size for each partition or, for LOB tablespaces, each
data set. If you specify DSSIZE, you must also specify NUMPARTS or LOB. Remember that to specify a value
greater than 4GB, the tablespace must be EA-enabled.

 - 116 -

The same cautions regarding the use of LARGE should be adhered to regarding specifying a DSSIZE
greater than 4GB.
LOCKSIZE

The LOCKSIZE parameter indicates the type of locking DB2 performs for the given tablespace. The choices
are

ROW Row-level locking
PAGE Page-level locking
TABLE Table-level locking (for segmented tablespaces only)
TABLESPACE Tablespace-level locking
LOB LOB locking; valid only for LOB tablespaces
ANY Lets DB2 decide, starting with PAGE

In general, it is fine to let DB2 handle the level of locking required. DB2 will usually use LOCKSIZE
PAGE and LOCKMAX SYSTEM unless it is a LOB tablespace, in which case DB2 will usually choose
LOCKSIZE LOB and LOCKMAX SYSTEM. When the number of locks acquired for the tablespace
exceeds the maximum number of locks allowed for a tablespace, the page or LOB locks are released
and locking escalates to the next higher level. If the tablespace is segmented, the next higher level is
the table. If the tablespace is nonsegmented, the next higher level is the tablespace.
A good general locking strategy would be to implement LOCKSIZE ANY, except in the following
circumstances:

 A read-only table defined in a single tablespace should be specified as
LOCKSIZE TABLESPACE. There rarely is a reason to update the table, so page
locks should be avoided.

 A table that does not require shared access should be placed in a single
tablespace specified as LOCKSIZE TABLESPACE. Shared access refers to
multiple users (or jobs) accessing the table simultaneously.

 A grouping of tables in a segmented tablespace used by a single user (for
example, a QMF user) should be specified as LOCKSIZE TABLE. If only one user
can access the tables, there is no reason to take page-level locks.

 Specify LOCKSIZE PAGE for production systems that cannot tolerate a lock
escalation, but for which row locking would be overkill. When many accesses are
made consistently to the same data, you must maximize concurrency. If lock
escalation can occur (that is, a change from page locks to tablespace locks),
concurrency is eliminated. If a particular production system always must support
concurrent access, use LOCKSIZE PAGE and set the LOCKMAX parameter for the
tablespace to 0.

 For LOB tablespaces, always specify LOCKSIZE LOB.
 Consider specifying LOCKSIZE ROW only when concurrency is of paramount

importance. When multiple updates must occur to the same page at absolutely
the same time, LOCKSIZE ROW may prove to be beneficial. But row locking can
cause performance problems because a row lock requires about the same
amount of resources as a page lock. And, because there are usually multiple rows
on a page, row locking will typically consume more resources. Do not implement
LOCKSIZE ROW, though, unless you are experiencing a locking problem with
page locking. Often, at design time, developers believe multiple transactions will
be updating the same page simultaneously, but it is not very commonplace. An
alternative to LOCKSIZE ROW is LOCKSIZE PAGE with MAXROWS 1, which will
achieve the same purpose by forcing one row per page.

LOCKSIZE ANY is preferred in situations other than those just outlined because it allows DB2 to
determine the optimal locking strategy based on actual access patterns. Locking begins with PAGE locks
and escalates to TABLE or TABLESPACE locks when too many page locks are being held. The
LOCKMAX parameter controls the number of locks that can be taken before escalation occurs.
LOCKSIZE ANY generally provides an efficient locking pattern because it allows the DBMS to actively
monitor and manage the locking strategy.
Avoid Row Locking Using LOCKSIZE ROW

The resources required to acquire, maintain and release a lock at the row level are about the same as
required for locking at the page level. When row locking is used and a table or tablespace scan is required,

 - 117 -

DB2 will lock every row on every page accessed. The number of locks required to successfully accomplish a
scan can have a detrimental impact on performance. If a table has 100 rows per page, a tablespace scan
could possibly require nearly 100 times as many resources for row locks as it would for page locks.

Switch Locking Strategies Based on Processing
Some tables have different access patterns based upon the time of the day. For example, many applications
are predominantly OLTP during work hours and predominantly batch during off hours. OLTP is usually
characterized by short, indexed access to tables. Batch processing typically requires more intensive data
access and table scans.

To take advantage of these situations, use the ALTER TABLESPACE statement to change the
LOCKSIZE parameter to ROW for daylight processing. Before the nightly batch jobs and after online
processing diminishes, alter the LOCKSIZE parameter back to ANY or PAGE.

By changing the locking strategy to conform to the type of processing, contention can be reduced,
thereby enhancing application performance.
LOCKMAX

The LOCKMAX parameter specifies the maximum number of page or row locks that any one process can hold
at any one time for the tablespace. When the threshold is reached, the page or row locks are escalated to a
table or tablespace lock.

Three options are available for setting the LOCKMAX parameter:
 The literal SYSTEM can be specified indicating that LOCKMAX should default to

the system-wide value as specified in DSNZPARMs.
 The value 0 can be specified indicating that lock escalation should never occur for

this tablespace.
 An integer value ranging from 1 to 2,147,483,647 can be specified indicating the

actual number of row or page locks to tolerate before lock escalation.

Use Caution Before Disabling Lock Escalation
Specify LOCKMAX 0 only when you are absolutely sure of the impact it will have on your processing mix. A
very high value for LOCKMAX can have a similar effect to LOCKMAX 0 with the added benefit of an escape if
the number of locks becomes intolerable. Large batch jobs running against a tablespace specified as
LOCKMAX 0 can severely constrain concurrent access if a large number of locks are held without an
intelligent commit strategy. When volumes fluctuate (e.g. monthly processing cycles), lock patterns can
deviate from the norm potentially causing concurrency problems.
USING

The method of storage allocation for the tablespace is defined with the USING parameter. You can specify
either a STOGROUP name combined with a primary and secondary quantity for space allocation or a VCAT
indicating the high-level ICF catalog identifier for user-defined VSAM data sets.

In most cases, you should create the majority of your tablespaces and indexes as STOGROUP-defined.
This allows DB2 to do most of the work of creating and maintaining the underlying VSAM data sets,
which contain the actual data.
Tablespaces and indexes defined using STOGROUPs provide the additional advantage of automatic data
set creation as new data sets are needed. This is more beneficial than simply having DB2 create the
initial data sets when the objects are defined. When a tablespace exceeds the maximum VSAM data set
size, DB2 will automatically create additional data sets as needed to store the additional data. If you
were using user-defined VSAM data sets instead, you would have to manually add new data sets when
new VSAM data sets were needed. It is very difficult to predict when new data sets are needed, and
even if you can predict this need, it is difficult to manage and create the data sets when they are
needed.
Some DBAs believe that explicitly creating user-defined VSAM data sets for VCAT-defined tablespaces
gives them more control over the physical allocation, placement, and movement of the VSAM data sets.
Similar allocation, placement, and movement techniques, however, can be achieved using STOGROUPs
if the STOGROUPs are properly created and maintained and the tablespaces are assigned to the
STOGROUPs in a planned and orderly manner.
Another perceived advantage of user-defined VSAM data sets is the capability of recovering them if
they inadvertently are dropped. The underlying, user-defined VSAM data sets for VCAT-defined objects
are not deleted automatically when the corresponding object is dropped. You can recover the data for
the tablespace using the DSN1COPY utility with the translate option. When you intentionally drop
tablespaces, however, additional work is required to manually delete the data sets.

 - 118 -

There is one large exception to this scenario: If a segmented tablespace is dropped erroneously, the
data cannot be recovered regardless of whether it was VCAT- or STOGROUP-defined. When a table is
dropped from a segmented tablespace, DB2 updates the space map for the tablespace to indicate that
the data previously in the table has been deleted, and the corresponding space is available immediately
for use by other tables. When a tablespace is dropped, DB2 implicitly drops all tables in that tablespace.
A DBA can attempt to recover from an inadvertent drop of a segmented tablespace, and will appear to
be successful with one glaring problem: DB2 will indicate that there is no data in the tablespace after the
recovery. As you can see, the so-called advantage of easy DSN1COPY recovery of dropped tables
disappears for user-defined VSAM data sets when you use segmented tablespaces. This is crucial
because more users are using segmented tablespaces instead of simple tablespaces to take advantage
of their enhanced features.
Another perceived advantage of user-defined VSAM data sets was avoiding deleting and redefining the
underlying data sets during utility processing. With STOGROUP-defined data sets, certain utilities, such
as REORG, will delete and define the underlying data sets as part of the REORG process. As of DB2 V6
(and V5 with a retrofit APAR), the REUSE option can be specified indicating that STOGROUP-defined data
sets should be reused instead of being deleted and redefined. The utilities impacted are LOAD,
REBUILD, RECOVER, and REORG. See Table 5.2 for a comparison of VCAT- and STOGROUP-defined
data sets.

Table 5.2: User-Defined VSAM Data Sets Versus STOGROUPs

VCAT STOGROUP

Need to know VSAM Yes No

User physically must create the underlying data sets Yes No

Can ALTER storage requirements using SQL No Yes

Can use AMS Yes No[*]

Confusing when data sets are defined on more than one DASD
volume

No Yes

After dropping the table or the tablespace, the underlying data
set is not deleted

Yes No[**]

[*]A tablespace initially created as a user-defined VSAM later can be altered to use STOGROUPs. A
STOGROUP-defined tablespace can be altered to user-defined VSAM as well.

[**]Data in a segmented tablespace is unavailable after dropping the tablespace because the space map
pages are modified to indicate that the tablespace is empty after a DROP.

PRIQTY and SECQTY
If you are defining your tablespaces using the STOGROUP method, you must specify primary and secondary
space allocations. The primary allocation is the amount of physical storage allocated when the tablespace is
created. As the amount of data in the tablespace grows, secondary allocations of storage are taken. To
accurately calculate the DASD space requirements, you must know the following:

Number of columns in each row

Data type for each column

Nullability of each column

Average size of variable columns

Number of rows in the table

Growth statistics

Growth horizon

Row compression statistics (if compression is used)

 - 119 -

The values specified for PRIQTY and SECQTY are in kilobytes. Most DB2 pages are 4K in size, so you
usually should specify PRIQTY and SECQTY in multiples of four. DB2 also supports page sizes of 8KB,
16KB, and 32KB. For tablespaces with these page sizes, always specify the PRIQTY and SECQTY
amounts in multiples of the page size: 8, 16, or 32 respectively.
Additionally, you should specify PRIQTY and SECQTY amounts in terms of the type of DASD defined to
the STOGROUP being used. For example, a tablespace with 4KB pages defined on an IBM 3390 DASD
device uses 48KB for each physical track of storage. This corresponds to 12 pages. A data set cannot
be allocated at less than a track, so it is wise to specify the primary and secondary allocations to at least
a track boundary. For an IBM 3390 DASD device, specify the primary and secondary quantities in
multiples of 48. Here are the physical characteristics of the two most popular IBM DASD devices:
 Track Cylinder Cylinders/Device Bytes/Track

3380 Device 40KB 600KB 885 47,476
3390 Device 48KB 720KB 1113 56,664

For segmented tablespaces, be sure to specify these quantities such that neither the primary nor the
secondary allocation is less than a full segment. If you indicate a SEGSIZE of 12, for instance, do not
specify less than four times the SEGSIZE, or 48K, for PRIQTY or SECQTY.
If you are allocating multiple tables to a single tablespace, calculate the PRIQTY and SECQTY
separately for each table using the formulas in Table 5.3. When the calculations have been completed,
add the totals for PRIQTY to get one large PRIQTY for the tablespace. Do the same for the SECQTY
numbers. You might want to add approximately 10 percent to both PRIQTY and SECQTY when defining
multiple tables to a simple tablespace. This additional space offsets the space wasted when rows of
different lengths from different tables are combined on the same tablespace page. (See the section in
this chapter called "Avoid Wasted Space" for more information.) Remember, however, that the practice
of defining multiple tables to a single, simple tablespace is not encouraged.

Table 5.3: Lengths for DB2 Data Types
Data Type Internal

Length
COBOL
WORKI
NG
STORA
GE

CHAR(n) n 01
ident
ifier

PIC
X(n)

VARCHAR(n) max=n+2 01
ident
ifier
49
ident
ifier
49
ident
ifier

PIC
S9(4)
COMP
PIC
X(n)

LONG VARCHAR ! 01
ident
ifier
49
ident
ifier
49
ident
ifier

PIC
S9(4)
COMP
PIC
X(n)

GRAPHIC(n) 2*n 01
ident
ifier

PIC
G(n)
DISPLAY
-1

VARGRAPHIC(n) (2*n)+2 01

 - 120 -

ident
ifier
49
ident
ifier
49
ident
ifier

PIC
S9(4)
COMP
PIC
G(n)
DISPLAY
-1

LONG
VARGRAPHIC ! 01

ident
ifier
49
ident
ifier
49
ident
ifier

PIC
S9(4)
COMP
PIC
G(n)
DISPLAY
-1

SMALLINT 2 01
ident
ifier

PIC
S9(4)
COMP

INTEGER 4 01
ident
ifier

PIC
S9(9)
COMP

DECIMAL(p,s) INTEGER (p/2)+1 01
ident
ifier

PIC
S9(p)V9
(s)
COMP-3

FLOAT(n) or REAL 8 (SINGLE
PRECISION if
n>21)

01
ident
ifier

COMP-2

FLOAT(n) or FLOAT 4 (DOUBLE
PRECISION if
n<21)

01
ident
ifier

COMP-1

DATE 4 01
ident
ifier

PIC
X(10)

TIME 3 01
ident
ifier

PIC
X(8)

TIMESTAMP 10 01
ident
ifier

PIC
X(26)

[a]
[a]! See text following this table to calculate this length

To calculate the internal length of a long character column, use these formulas:

Modified row size = (max row size) – (size of all other cols) – (nullable long char cols)
Internal length = 2 * INTEGER((INTEGER((modified row size) / (long cols in table)) / 2))

Next, calculate the number of rows per page and the total number of pages necessary. To do this, use
the following formula:

Rows per page = (((page size) – 22) * ((100* PCTFREE) / 100) / row length)

Total pages = (number of rows) / (rows per page)
Finally, the PRIQTY is calculated as follows:

 - 121 -

PRIQTY = total pages * 4

To accurately calculate the primary quantity for a table, you must make a series of calculations.
First, calculate the row length. To do this, add the length of each column, using Table 5.3 to determine
each column's internal stored length. Remember to add one byte for each nullable column and two
bytes for each variable column.

If the rows are compressed, determine the average compressed row size and use this for the following
formulas.
To calculate SECQTY, you must estimate the growth statistics for the tablespace and the horizon over
which this growth will occur.
For example, assume that you need to define the SECQTY for a tablespace that grows by 100 rows
(growth statistics) over two months (growth horizon). If free space has been defined in the tablespace
for 1,000 rows and you will reorganize this tablespace yearly (changing PRIQTY and SECQTY), you
must provide for 200 rows in your SECQTY.
Divide the number of rows you want to provide for (in this case 200) by the number of rows per page.
Round this number up to the next whole number divisible by 4 (to the track or cylinder boundary). Then
specify this number as your SECQTY.
You may want to provide for secondary allocation in smaller chunks, not specifying the total number of
rows in the initial SECQTY allocation. In the preceding example, you provided for 200 rows. By defining
SECQTY large enough for 100 rows, you allocate three secondary extents before your yearly
reorganization.
You may ask: why three? If each SECQTY can contain 100 rows and you must provide for 200 rows,
shouldn't only two extents be allocated? No, there will be three. A secondary allocation is made when
the amount of available space in the current extent reaches 50 percent of the next extent to be taken.
So there are three allocations, but the third one is empty, or nearly empty.

As a general rule, avoid a large number of secondary extents. They decrease the efficiency of I/O, and
I/O is the most critical bottleneck in most DB2 application systems.

Consider using DB2 Estimator to calculate space requirements for DB2 tablespace and index data sets.
DB2 Estimator is standalone tool provided by IBM at no cost with DB2 for OS/390. DB2 Estimator can
be used to estimate the cost of running DB2 applications.
DB2 Estimator also provides a space calculation feature. To calculate space for a table, highlight the
table and choose the Space Requirements option in the Tables menu, as shown in Figure 5.1. This will
take you to the screen shown in Figure 5.2, which can be used to determine the space requirements for
the selected table. This allows the DBA to save time by avoiding the manual space calculations we just
covered.

Figure 5.1: DB2 Estimator and Space Requirements.

 - 122 -

Figure 5.2: Using DB2 Estimator to Calculate Space.

Allocate Space on Cylinder Boundaries

Performance can be significantly affected based upon the choice of allocation unit. As an application inserts
data into a table, DB2 will preformat space within the index and/or tablespace page set as necessary. This
process will be more efficient if DB2 can preformat cylinders instead of tracks, because more space will be
preformatted at once using cylinder allocation.

DB2 determines whether to use allocation units of tracks or cylinders based upon the value of PRIQTY
and SECQTY. If either of these quantities is less than one cylinder, space for both primary and
secondary will be allocated in tracks. For this reason, it is wise to specify both PRIQTY and SECQTY
values of at least one cylinder for most tablespaces and indexes.

Allocating space in tracks is a valid option, however, under any of the following conditions:
 For small tablespaces and indexes that consume less than one cylinder of

DASD.
 For stable objects that are never updated, SECQTY can be set to 0 causing DB2

to consider only PRIQTY when determining the allocation unit.
Default Values for PRIQTY and SECQTY

If the PRIQTY parameter is not specified, and the data set is STOGROUP-defined, a default primary quantity
value will be chosen by DB2. The default value is based on the page size of the data set:

 The default is 12 for a 4KB page size.
 The default is 24 for a 8KB page size.
 The default is 48 for a 16KB page size.
 The default is 96 for a 32KB page size.

If the SECQTY parameter is not specified, but the PRIQTY parameter is specified, the default value for
SECQTY is 10 percent of the PRIQTY value or 3 times the page size of the tablespace, whichever value
is greater.
If both the SECQTY and PRIQTY parameters are not specified, the default value for SECQTY follows the
same pattern as for PRIQTY as indicated earlier.

Once again, avoid relying on default values. They are rarely, if ever, the correct choice. Even if the
default happens to be the best choice, it is always better to explicitly specify the value to ensure that you
are choosing the correct option.
SECQTY 0 Versus No SECQTY Specified

Specifying SECQTY 0 means that no secondary extents will be taken. This is not the same as failing to
specify the SECQTY option (which causes DB2 to use the default value). Be sure you understand the
difference and only specify SECQTY 0 if you want to avoid extents. If you try to INSERT data and no room is
found in the tablespace and the tablespace is defined with SECQTY 0, the INSERT will fail. This is rarely
desirable.

Free Space (PCTFREE and FREEPAGE)
The specification of free space in a tablespace or index can reduce the frequency of reorganization, reduce
contention, and increase the efficiency of insertion. The PCTFREE parameter specifies what percentage of
each page should remain available for future inserts. The FREEPAGE parameter indicates the specified
number of pages after which a completely empty page is available.

 - 123 -

Increasing free space decreases the number of rows per page and therefore decreases the efficiency of
the bufferpool because fewer rows are retrieved per I/O. Increasing free space can improve concurrent
processing, however, by reducing the number of rows on the same page. For example, consider a
tablespace that contains a table clustered on the DEPARTMENT column. Each department must access
and modify its data independent of other departments. By increasing free space, you decrease the
occurrences of departments coexisting on tablespace pages because fewer rows exist per page.

Space can be used to keep areas of the tablespace available for the rows to be inserted. This results in
a more efficient insert process, as well as more efficient access—with less unclustered data—after the
rows have been inserted.

Understanding how insert activity affects DB2 data pages will aid in understanding how optimal free
space specification can aid performance. When a row is inserted, DB2 will perform a space search
algorithm to determine the optimal placement of the new row in the tablespace. This algorithm is
different for segmented and non-segmented (simple and partitioned) tablespaces. For segmented
tablespaces DB2 will:

 Identifies the page to which the row should be inserted using the clustering index
(if no clustering index exists, DB2 will search all segments for available space to
insert the row).

 If space is available on that page, the row will be inserted; if space is not
available, DB2 will search within the segment containing the target page for
available space.

 If space is available in the segment, the row will be inserted; if space is not
available, DB2 will search the last segment allocated in the tablespace for that
specific table.

 If space is available, insert the row; otherwise DB2 will allocate a new segment.

For non-segmented tablespace DB2 searches for space as follows:
 Identify the page to which the row should be inserted using the clustering index.
 If space is available on that page, the row will be inserted; if space is not

available, DB2 will search 16 contiguous pages before and after the target page.
 If space is available on any of those 32 pages, the row will be inserted; if space is

not available, DB2 will scan from the beginning of the tablespace (or partition).
 If space is available, insert the row; otherwise DB2 will request a secondary

extent.

For both segmented and non-segmented tablespaces, DB2 will bypass locked pages even if they
contain sufficient free space to hold the row to be inserted.
If insert activity is skewed, with inserts clustered at certain locations in the tablespace, you may want to
increase the free space to offset the space used for the heavily updated portions of the tablespaces.
This increases the overall DASD usage but may provide better performance by decreasing the amount
of unclustered data. Additionally, you could partition the tablespace such that the data area having the
highest insert activity is isolated in its own partition. Free space could then be assigned by partition such
that the insert "hot spot" has a higher PCTFREE and/or FREEPAGE specified. The other partitions could
be assigned a lower free space.

If more than one table is assigned to a tablespace, calculate the free space for the table with the highest
insert activity. This provides for more free space for tables with lower insert activity, but results in the
best performance. Also, if the rows are compressed, calculate free space based on the average
compressed row size.

When calculating free space, you must take into account that a certain amount of each page is wasted.
DB2 uses 4K page sizes (of which 4,074 bytes are usable for data), and a maximum of 255 rows can be
placed on one page. Consider a tablespace containing a single table with 122-byte rows. A single page
can contain 33 rows. This leaves 48 bytes wasted per page, as follows:

4074 / 122 = 33.39

4074 – (122 * 33) = 48
Suppose that you want 10 percent free space in this tablespace. To specify that 10 percent of each
page will be free space, you must factor the wasted space into the calculation. By specifying PCTFREE
10, 407 bytes are set aside as free space. However, 48 of those bytes can never be used, leaving 359

 - 124 -

bytes free. Only two rows can fit in this space, whereas three would fit into 407 bytes. Factor the wasted
space into your free-space calculations.
As a general rule, free space allocation depends on knowing the growth rate for the table, the frequency
and impact of reorganization, and the concurrency needs of the application. Remember, PCTFREE is not
the same as growth rate. Consider a tablespace that is allocated with a primary quantity of 7200K. If
PCTFREE was set to 10, 720K is left free, with 6480K remaining for data storage. However, this provides
a growth rate of 720/6480, or just over 11 percent, which is clearly a larger number than the PCTFREE
specified. The general formula for converting growth rate to PCTFREE is:

PCTFREE = (growth rate) / (1 + growth rate)

To accommodate a 15 percent growth rate, only 13 percent (.15/1.15) of free space is necessary.
The other free space parameter is FREEPAGE. Specifying PCTFREE is sufficient for the free space
needs of most tablespaces. If the tablespace is heavily updated, however, consider specifying
FREEPAGE in conjunction with PCTFREE. See Table 5.4 for free space suggestions based on update
frequency. Modify these numbers to include wasted space, as described previously. These numbers
should be used as rough guidelines only. You should always consider the growth rate for data used in
your applications when specifying DB2 free space.

Table 5.4: Free Space Allocation Chart

Type of Table Processing FREEPAGE PCTFREE

Read only 0 0

Less than 20 percent of table volume inserted between
REORGs

0 10 to 20

20 to 60 percent of table volumes inserted between REORGs 0 20 to 30

Greater than 60 percent of table volumes inserted between
REORGs

0 or
(SEGSIZE
–1)

20 to 30

Most inserts done in sequence by the clustering index 0 0 to 10

Tablespace with variable length rows being updated 0 10 to 20
BUFFERPOOL

DB2 provides eighty bufferpool options for tablespace and index objects:
 50 4KB bufferpools—BP0 through BP49
 10 8KB bufferpools—BP8K0 through BP8K9
 10 16KB bufferpools—BP16K0 through BP16K9
 10 32KB bufferpools—BP32K through BP32K9.

Data accessed from a DB2 table is first read from DASD, and finally moved into a bufferpool, and then
returned to the requester. Data in the bufferpool can remain resident in memory, avoiding the expense
of I/O for future queries that access the same data. There are many strategies for specifying
bufferpools, and each is discussed fully in Part V. For now, it's sufficient to mention the following rules:

 Some small to medium DB2 shops use a single bufferpool, namely BP0. For
these types of shops, DB2 does an adequate job of managing I/O using a single,
large BP0 containing most (or all) of a shop's tablespaces and indexes.

 As usage of DB2 grows, you should specify additional bufferpools tuned for
specific applications, tablespaces, indexes, or activities. The majority of mature
DB2 shops fall into this category. Several bufferpool allocation and usage
approaches are discussed in Part V.

 Avoid using BP32K for application tablespaces. DB2 arranges a tablespace
assigned to a 32K bufferpool as eight single 4K pages per 32K page. Therefore,
every logical I/O to a 32K tablespace requires eight physical I/Os. To avoid using
BP32K, consider denormalizing your tables, if necessary. (See the
"Denormalization" section later in this chapter for more information.) With the
addition of 8KB and 16KB bufferpools in DB2 V6, it is easier to manage DB2
tablespaces having a page size greater than 4KB.

The number of bufferpools in use at your shop depends on the DB2 workload and the amount of real
and extended memory that can be assigned to the DB2 bufferpools. These topics are covered in greater
detail in Part V.

 - 125 -

Always Specify a Bufferpool
If you do not specify the BUFFERPOOL clause, the default bufferpools for the database are used (one for
tablespaces and one for indexes). Do not allow the BUFFERPOOL to default to the bufferpool of the database.
It is better to explicitly specify the BUFFERPOOL clause on all tablespace and index CREATE statements.

BP32 and BP32K
Remember that BP32 and BP32K are two different sizes. BP32 is one of the fifty 4K bufferpools. BP32K is
one of the ten 32K bufferpools. If you miss, or add, an erroneous "K" you may be using or allocating the
wrong bufferpool.

Tip Any bufferpool that contains a "K" in it is not a 4KB bufferpool; instead it is an 8KB,
16KB, or 32KB bufferpool. If the bufferpool does not contain a "K" it is a 4KB
bufferpool.

CLOSE YES or NO
Prior to DB2 V2.3, the CLOSE option specified whether the underlying VSAM data sets for the tablespace (or
indexspace) should be closed each time the table was used. CLOSE YES indicated that the underlying data
set was to be closed after use; CLOSE NO indicated the opposite. A performance gain was usually realized
when you specified CLOSE NO. For tablespaces accessed infrequently (only once or twice daily), CLOSE
YES might have been appropriate.

DB2 V2.3 introduced deferred close processing, sometimes referred to as slow close. Deferred close
provided relief from the overhead associated with opening and closing data sets by closing the data sets
only when the maximum number of open data sets was reached regardless of whether CLOSE YES or
CLOSE NO was specified. However, DB2 V2.3 will also update SYSLGRNG every time the data set is not
in use. This speeds the recovery because DB2 has a record of when updates could have occurred. But
the constant SYSLGRNG updating can be a performance detriment during normal processing. Also,
deferred close is a mixed blessing because DB2 V2.3 tablespaces that need to be closed after each
access will remain open regardless of the CLOSE parameter specified.
DB2 V3 introduced a new open/close scenario referred to as pseudo close. Pseudo close offers the
following features:

 A page set is not physically opened until it is first accessed, such as when an SQL
statement or utility is executed against it.

 The VSAM open-for-update timestamp is not modified until data in the page set is
updated. Previously, it was modified when the page set was first opened. This
timestamp can be used by some types of software to determine when the updated
page set needs to be backed-up. If an updated page set has not been modified
for a specified number of DB2 checkpoints (DSNZPARM PCLOSEN) or a specified
amount of time (DSNZPARM PCLOSET), it is switched to a read-only state.

 Page sets specified as CLOSE NO are candidates for physical close when either
the DDLIMIT or DSMAX limit has been reached.

 SYSLGRNX records are updated for CLOSE YES data sets and are maintained by
partition instead of at the data set level.

 The performance problems associated updating SYSLGRNX are eliminated;
SYSLGRNX entries will be written only when a data set (or partition) is converted to
read only state, not every time the data set is not in use.

Tip Favor the use of CLOSE YES when operating with DB2 V3 and greater, because
the SYSLGRNX modification performance problems have been eliminated.

The maximum number of data sets that can be open in MVS at one time is 10,000.
ERASE YES or NO

The ERASE option specifies whether or not the physical DASD where the tablespace data set resides should
be written over with binary zeroes when the table-space is dropped. Sensitive data that should never be
accessed without proper authority should be set to ERASE YES.

This ensures that the data in the table is erased when the table is dropped. Most tablespaces, however,
should be specified as ERASE NO.
NUMPARTS and SEGSIZE

See the "Use Proper Tablespace Definitions" section earlier in this chapter for NUMPARTS and SEGSIZE
recommendations. The NUMPARTS option is used only for partitioned tablespaces; SEGSIZE only for
segmented tablespaces.

 - 126 -

Defining Multiple Tables per Segmented Tablespace
A valuable and underutilized feature of DB2 is the capability to assign multiple tables to a single segmented
tablespace. Doing so in the wrong situation, however, has several disadvantages. Consider the following
advantages and disadvantages before proceeding with more than one table assigned to a segmented
tablespace.

The advantages to defining multiple tables to a segmented tablespace include:
 There are fewer open data sets, causing less system overhead.
 There are fewer executions of the COPY, REORG, and RECOVER utilities per

application system because these utilities are executed at the tablespace level.
 It is easier to group like tables for administrative tasks because the tables reside in

the same physical tablespace.

Disadvantages to defining multiple tables to a segmented tablespace are as follows:
 When only one table needs to be reorganized, all must be REORGed because they

coexist in a single data set or group of data sets.
 If compression is used, the compression ratio will be impacted by multiple tables

instead of being optimized for the data patterns of a single table.
 The LOAD REPLACE utility will replace all data for all tables defined to the

tablespace.
 There may be confusion about which tables are in which tablespaces, making

monitoring and administration difficult.

As a very rough general guideline, define small to medium-size tables (less than 1 million pages) to a
single, segmented tablespace. Create a partitioned tablespace for each large table (more than 1 million
pages). If you decide to group tables in a segmented tablespace, group only small tables (less than 32
pages). Provide a series of segmented tablespaces per application such that tables in the ranges
defined in the following chart are grouped together. This will save space. Avoid grouping larger tables
(more than 32 pages) with other tables.

Number of Pages Tablespace
Segment
Size

1 to 4 4

5 to 8 8

9 to 12 12

12 to 16 16

17 to 20 20

21 to 24 24

25 to 28 28

29 to 32 32
When the tablespace contains tables with the number of pages in the range on the left, assign to the
tablespace the SEGSIZE indicated on the right.
Consider grouping tables related by referential integrity into a single, segmented tablespace. This is not
always feasible because the size and access criteria of the tables may not lend themselves to multi-
table segmented tablespaces. Grouping referentially related tables, however, simplifies your QUIESCE
processing.

Caution Use caution when dropping and creating large numbers of tables in a single
segmented tablespace, because over time, the DBD for the database
containing the segmented tablespace will grow. There may be a high volume
of tables being created and dropped in test environments, ad hoc
environments, and any environment where end users have control over the
creation and removal of DB2 tables.

Remember that a large DBD can impact storage and processing by
consuming a large amount of EDM pool space.

 - 127 -

Compression
Data compression can be specified directly in a DB2 tablespace. Compression is indicated in the DDL by
specifying COMPRESS YES for the tablespace. Likewise, it can be turned off in the DDL by specifying
COMPRESS NO. When compression is specified, DB2 builds a static dictionary to control compression. It
saves from 2 to 17 dictionary pages in the tablespace. These pages are stored after the header and first
space map page.

DB2 compression provides two very clear benefits:
 Hardware-assisted compression
 Provided free of charge with the base DB2 product

Hardware-assisted compression is available only to those users owning IBM's high-end CPU models.
This does not mean that DB2 compression features are only available to those with high-end CPUs.
Hardware-assisted compression simply speeds up the compression and decompression of data—it is
not a requirement for the inherent data compression features of DB2.

Overall, users who never looked at compression before it was provided with DB2 (Version 3) because of
the cost of third party products should reevaluate their compression needs.

DDL Data Compression Versus Edit Procedures
DB2 data compression definitely should be used instead of the DSN8HUFF routine that is also supplied with
DB2. But how does it compare to third party tools? Most third party vendors provide compression using
EDITPROCs. However, these products are waning in popularity because of the excellent compression
available to DB2 and the hardware-assist. Most users will find that DB2 can handle most of their
compression requirements without needing a third party compression tool.

However, before completely refusing to evaluate third party solutions consider the following:
 IBM compression supplies only a single compression routine (based on the Ziv-

Lempel algorithm) whereas several third party tools provide many different
compression routines. This enables the user to better fit the algorithm to the
composition of the data—using different compression algorithms for different
types of data.

 The cost in time and effort to convert from prior compression methods to
internal DB2 compression may not be cost justifiable when compared to other
tasks facing your enterprise.

 Third-party tool vendors are constantly enhancing their products to take better
advantage of the operating system and the hardware environment. To ensure
that you are getting the best "bang for your buck" in terms of data compression,
it is wise to evaluate all of your options before settling on any given one.
However, most of the third parties have fallen behind in updating their
compression routines because of DB2's "out of the box" compression
functionality.

Caution For smaller tablespaces, it is possible that the dictionary used by DB2 for
compression could use more space than compression saves. For this reason,
avoid compressing smaller tablespaces.

General Data Compression Considerations

Why compress data? Consider an uncompressed table with a very large row size of 800 bytes. Five rows of
this table fit on a 4K page. If the compression routine achieves 30 percent compression, on average, the
800-byte row uses only 560 bytes, because 800–(800*.3) = 560. Now seven rows fit on a 4K page. Because
I/O occurs at the page level, the cost of I/O is reduced because fewer pages must be read for tablespace
scans. Also, the data is more likely to be in the bufferpool because more rows fit on a physical page.

This can be a significant reduction. Consider the following scenarios. A 10,000-row table with 800-byte
rows requires 2,000 pages. Using a compression routine as outlined previously, the table would require
only 1,429 pages. Another table also with 800-byte rows but now having 1 million rows would require
200,000 pages without a compression routine. Using the compression routine, you would reduce the
pages to 142,858—a reduction of more 50,000 pages.

Of course, there is always a trade-off: DASD savings for CPU cost of compressing and decompressing
data. However, the cost should be minimal with hardware-assisted compression. Indeed, overall

 - 128 -

elapsed time for certain I/O heavy processes may decrease when data is compressed. Furthermore,
DB2 may require fewer buffer pages to process compressed data versus fully-expanded data.

Encoding Scheme
The CCSID parameter is used to specify the data encoding scheme to use for the tablespace: ASCII or
EBCDIC. The default is specified when DB2 is installed and is usually, but not always, EBCDIC. All data
stored within a tablespace must use the same encoding scheme.

Note The ability to specify ASCII as an encoding scheme for DB2 was provided by IBM
primarily to support third-party ERP applications, such as SAP R/3 and
Peoplesoft, that were originally designed to run on UNIX platforms.

LOCKPART
Specifying LOCKPART YES enables selective partition locking (SPL). With SPL individual partitions of a
partitioned tablespace are locked only when accessed. SPL provides the following benefits:

 When SPL is enabled, applications accessing different partitions of a partitioned
tablespace can enjoy greater concurrency.

 In a data sharing environment, DB2 and the IRLM can detect and optimize locking
for situations in which no inter-subsystem activity exists by partition.

The default is LOCKPART NO, which indicates that locks are taken on the entire partitioned tablespace,
not partition by partition.
MAXROWS

The MAXROWS parameter indicates the maximum number of rows that can be stored on a tablespace page.
The default is 255. Specify MAXROWS 255 unless there is a compelling reason to limit the number of rows per
page, such as to limit contention for page locking.

Caution Do not use MAXROWS for a LOB tablespace or a tablespace in a work file
database.

Use MAXROWS 1 Instead of Using Dummy Columns
A common design technique for older DB2 systems was to append dummy columns to DB2 tables to
arbitrarily extend the row length. This was done to coerce DB2 into storing 1 row per page, effectively forcing
a kludged type of row locking. However, this technique is invasive and undesirable because dummy columns
will show up in DCLGENs and might not always be recognized as "dummies." The same effect can be
accomplished by specifying MAXROWS 1.
MAXROWS 1 also can be a viable alternative to LOCKSIZE ROW.
MEMBER CLUSTER

The MEMBER CLUSTER parameter is used to indicate that inserted data is to ignore the clustering index
(whether implicit or explicit). Instead, DB2 will choose where to put the data based on the space available in
the tablespace.

Use this option with great care and only in certain specific situations. For example, if INSERTs are
applied during batch processing and then the tablespace is always immediately reorganized, inserting
the data by clustering index just slows down the INSERT processing. In this scenario, specifying
MEMBER CLUSTER will speed up the batch jobstream and the subsequent REORG will recluster the data.

Caution Do not use MEMBER CLUSTER for an LOB tablespace or a tablespace in a
work file database.

TRACKMOD
The TRACKMOD parameter indicates whether DB2 should track modified pages in the space map pages of
the tablespace or tablespace partition. If you specify TRACKMOD YES, DB2 tracks changed pages in the
space map pages to improve the performance of incremental image copy. The default value is YES.

You can specify TRACKMOD NO to turn off the tracking of changed pages in the space map pages.
Consider specifying TRACKMOD NO if you never take incremental image copies.

Caution Do not use the TRACKMOD clause for an LOB tablespace.

General Tablespace Guidelines

For larger tablespaces (100K pages and more) that are very active, consider defining a single tablespace per
database. This can reduce contention. To increase efficiency, assign very active tablespaces to volumes with
low activity.

Table Definition Guidelines
In general, define one table for each entity for which you will be storing data. A table can be thought of as a
grouping of attributes that identify a physical entity. The table name should conform to the entity name. For

 - 129 -

example, consider the sample table for employees, DSN8610.EMP. EMP is the name of the table that
represents an entity known as "employee." An employee has many attributes, some of which are EMPNO,
FIRSTNME, and LASTNME. These attributes are columns of the table.

When you create one table for each entity, the tables are easy to identify and use because they
represent real-world "things."

Changing the Name of a Table
The RENAME statement enables DBAs to change the name of a DB2 table without dropping and recreating
the table. All table characteristics, data, and authorization is maintained. This feature is not available prior to
DB2 Version 5.

Global Temporary Tables
Temporary tables can be created to store intermediate SQL results. A temporary table exists only as long as
the process that uses it. Temporary tables are created using the CREATE GLOBAL TEMPORARY TABLE
statement. When created, the schema for the table is stored in SYSIBM.SYSTABLES just like any other
table, but the TYPE column is set to 'G' to indicate a global temporary table.

A temporary table is instantiated when it is referenced in an OPEN, SELECT INTO, INSERT, or DELETE
statement, not when it is created. Each application process that uses the temporary table creates a new
instance of the table for its use. When using a temporary table, keep the following in mind:

 Because they are not persistent, locking, logging, and recovery do not apply to
temporary tables.

 Indexes cannot be created on temporary tables, so all access is by a complete table
scan.

 Constraints cannot be created on temporary tables.
 A null is the only default value permitted for columns of a temporary table.
 Temporary tables cannot be referenced by DB2 utilities.
 Temporary tables cannot be specified as the object of an UPDATE statement.
 When deleting from a temporary table, all rows must be deleted.
 Although views can be created on temporary tables, the WITH CHECK OPTION

cannot be specified.
Temporary tables are most useful when a large result set must be returned from a stored procedure.
Refer to Chapter 13, "Using DB2 Stored Procedures," for in-depth guidelines on using stored
procedures.

Temporary tables also are useful for enabling non-relational data to be processed using SQL. For
example, you can create a global temporary table that is inserted with IMS data programmatically. Then,
during the course of that program, the temporary table containing the IMS data can be accessed by
SQL statements and even joined to other DB2 tables.

Normalization
Normalization is the process of putting one fact in one appropriate place. This optimizes updates at the
expense of retrievals. When a fact is stored in only one place, retrieving many different but related facts
usually requires going to many different places. This tends to slow the retrieval process. Updating is quicker,
however, because the fact that you're updating exists in only one place.

Your DB2 tables should be based on a normalized logical data model. With a normalized data model,
one fact is stored in one place, related facts about a single entity are stored together, and every column
of each entity refers non-transitively to only the unique identifier for that entity.

Although an in-depth discussion of normalization is beyond the scope of this book, brief definitions of
the first three normal forms follow.

 In first normal form, all entities must have a unique identifier, or key, that can be
composed of one or more attributes. In addition, all attributes must be atomic and
non-repeating. (Atomic means that the attribute must not be composed of multiple
attributes. For example, EMPNO should not be composed of SSN and FIRSTNAME
because these are separate attributes.)

 In second normal form, all attributes that are not part of the key must depend on the
entire key for that entity.

 - 130 -

 In third normal form, all attributes that are not part of the key must not depend on any
other non-key attributes.

Denormalization
Speeding the retrieval of data from DB2 tables is a frequent requirement for DBAs and performance
analysts. One way to accomplish this is to denormalize DB2 tables. The opposite of normalization,
denormalization is the process of putting one fact in many places. This speeds data retrieval at the expense
of data modification. This is not necessarily a bad decision, but should be undertaken only when a
completely normalized design will not perform optimally. Consider these issues before denormalizing:

 Can the system achieve acceptable performance without denormalizing?
 Will denormalization render the database design unusable for ad hoc queries

(specialized expertise required to code queries against the denormalized design)?
 Will the performance of the system still be unacceptable after denormalizing?
 Will the system be less reliable due to denormalization?

If the answer to any of these questions is "yes," you should not denormalize your tables because the
benefit will not exceed the cost. If, after considering these issues, you decide to denormalize, there are
rules you should follow.

 If enough DASD is available, create the fully normalized tables and populate
denormalized versions using the normalized tables. Access the denormalized tables
in a read-only fashion. Create a controlled and scheduled population function to
keep denormalized and normalized tables synchronized.

 If sufficient DASD does not exist, maintain denormalized tables programmatically. Be
sure to update each denormalized table representing the same entity at the same
time; alternatively, provide a rigorous schedule whereby table updates are
synchronized. If you cannot avoid inconsistent data, inform all users of the
implications.

 When updating any column that is replicated in many tables, update all copies
simultaneously, or as close to simultaneously as possible given the physical
constraints of your environment.

 If denormalized tables are ever out of sync with the normalized tables, be sure to
inform users that batch reports and online queries may not show up-to-date
information.

 Design the application so that it can be easily converted from denormalized tables to
normalized tables.

There is only one reason to denormalize a relational design: performance. Several indicators help
identify systems and tables that are candidates for denormalization. These indicators follow:

 Many critical queries and reports rely on data from more than one table. Often these
requests must be processed in an online environment.

 Repeating groups must be processed in a group instead of individually.
 Many calculations must be applied to one or many columns before queries

successfully can be answered.
 Tables must be accessed in different ways by different users during the same

timeframe.
 Many large, primary keys are clumsy to query and use a large amount of DASD

when carried as foreign key columns in related tables.
 Certain columns are queried a large percentage of the time. (Consider 60 percent or

greater as a cautionary number flagging denormalization as an option.)
Many types of denormalized tables work around the problems caused by these indicators. Table 5.5
summarizes the types of denormalization, with a short description of when each type is useful. The
sections that follow describe these denormalization types in greater detail.

Table 5.5: Types of Denormalization

Denormalization Use

Prejoined Tables When the cost of joining is prohibitive

Report Tables When specialized critical reports are needed

Mirror Tables When tables are required concurrently by two types of
environments

 - 131 -

Split Tables When distinct groups use different parts of a table

Combined Tables When one-to-one relationships exist

Redundant Data To reduce the number of table joins required

Repeating Groups To reduce I/O and (possibly) DASD

Derivable Data To eliminate calculations and algorithms

Speed Tables To support hierarchies

Denormalization: Prejoined Tables

If two or more tables need to be joined on a regular basis by an application, but the cost of the join is too
prohibitive to support, consider creating tables of prejoined data. The prejoined tables should:

 Contain no redundant columns
 Contain only the columns necessary for the application to meet its processing

needs
 Be created periodically using SQL to join the normalized tables

The cost of the join is incurred only once, when the prejoined tables are created. A prejoined table can
be queried efficiently because every new query does not incur the overhead of the table join process.

Denormalization: Report Tables
Reports requiring special formatting or manipulation often are impossible to develop using SQL or QMF
alone. If critical or highly visible reports of this nature must be viewed in an online environment, consider
creating a table that represents the report. The table then can be queried using SQL or QMF.

Create the report using the appropriate mechanism in a batch environment. Then the report data can be
loaded into the report table in the appropriate sequence. The report table should:

 Contain one column for every column of the report
 Have a clustering index on the columns that provide the reporting sequence
 Not subvert relational tenets (for example, atomic data elements)

Report tables are ideal for storing the results of outer joins or other complex SQL statements. If an outer
join is coded and then loaded into a table, you can retrieve the results of the outer join using a simple
SELECT statement instead of using the UNION technique discussed in Chapter 1.

Denormalization: Mirror Tables
If an application system is very active, you may need to split processing into two (or more) distinct
components. This requires the creation of duplicate, or mirror, tables.

Consider an application system that has heavy online traffic during the morning and early afternoon.
The traffic consists of querying and updating data. Decision-support processing also is performed on the
same application tables during the afternoon. The production work in the afternoon disrupts the
decision-support processing, resulting in frequent timeouts and deadlocks.

These disruptions could be corrected by creating mirror tables: a foreground set of tables for the
production traffic and a background set of tables for the decision-support reporting. To keep the
application data-synchronized, you must establish a mechanism to migrate the foreground data
periodically to the background tables. (One such mechanism is a batch job executing the UNLOAD
sample program and the LOAD utility.) Migrate the information as often as necessary to ensure efficient
and accurate decision-support processing.

Note that because the access needs of decision support and the production environment often are
considerably different, different data definition decisions such as indexing and clustering may be
chosen.

Denormalization: Split Tables
If separate pieces of one normalized table are accessed by different and distinct groups of users or
applications, consider splitting the table into one denormalized table for each distinct processing group.

 - 132 -

Retain the original table if other applications access the entire table; in this scenario, the split tables should
be handled as a special case of the mirror table.

Tables can be split in two ways: vertically or horizontally (see Figure 5.3). A vertical split cuts a table
column-wise, such that one group of columns is placed into a new table and the remaining columns are
placed in another new table. Both of the split tables should retain the primary key columns. A
horizontally split table is a row-wise split. To split a table horizontally, rows are classified into groups by
key ranges. The rows from one key range are placed in one table, those from another key range are
placed in a different table, and so on.

Figure 5.3: Two methods of splitting tables.

When splitting tables, designate one of the two tables as the parent table for referential integrity. If the
original table still exists, it should be the parent table in all referential constraints. In this case, do not set
up referential integrity for the split tables; they are derived from a referentially intact source.

When you split a table vertically, include one row per primary key in both tables to ease retrieval across
tables. Do not eliminate rows from either of the two tables. Otherwise, updating and retrieving data from
both tables will be unnecessarily complicated.
When you split a table horizontally, try to split the rows between the new tables to avoid duplicating any
one row in each new table. Simply stated, the operation of UNION ALL, when applied to the horizontally
split tables, should not add more rows than those in the original, unsplit tables.

Denormalization: Combined Tables
If tables have a one-to-one relationship, consider combining them into a single table. Sometimes, one-to-
many relationships can be combined into a single table, but the data update process is significantly
complicated because of the increase in redundant data.

For example, consider combining the sample tables DSN8610.DEPT and DSN8610.EMP into a large
table called DSN8610.EMP_WITH_DEPT. (Refer to Appendix D, "DB2 Sample Tables," for a definition of
the sample tables.) This new table would contain all the columns of both tables, except the DEPTNO
column of DSN8610.DEPT. This column is excluded because it contains the same data as the
ADMRDEPT column.

Each employee row therefore contains all the employee information, in addition to all the department
information, for each employee. The department data is duplicated throughout the combined table
because a department can employ many people. Tables of this sort should be considered prejoined
tables, not combined tables, and treated accordingly. Only tables with one-to-one relationships should
be considered combined tables.

Denormalization: Redundant Data
Sometimes one or more columns from one table are accessed whenever data from another table is
accessed. If these columns are accessed frequently with tables other than those in which they were initially
defined, consider carrying them in the other tables as redundant data. By carrying the additional columns,
you can eliminate joins and increase the speed of data retrieval. Because this technique violates a tenet of
database design, it should be attempted only if the normal access cannot efficiently support your business.

Consider, once again, the DSN8610.DEPT and DSN8610.EMP tables. If most employee queries require
the name of the employee's department, this column could be carried as redundant data in the
DSN8610.EMP table. (Do not remove the column from the DSN8610.DEPT table, though.)

Columns you want to carry as redundant data should have the following attributes:
 Only a few columns are necessary to support the redundancy.
 The columns are stable, that is, updated infrequently.
 The columns are used by many users or a few important users.

 - 133 -

Denormalization: Repeating Groups
When repeating groups are normalized, they are implemented as distinct rows instead of distinct columns.
This usually results in higher DASD use and less efficient retrieval because there are more rows in the table
and more rows must be read to satisfy queries that access the entire repeating group (or a subset of the
repeating group).

Sometimes you can achieve significant performance gains when you de-normalize the data by storing it
in distinct columns. These gains, however, come at the expense of flexibility.

For example, consider an application that stores repeating group information in the following normalized
table:
CREATE TABLE USER.PERIODIC_BALANCES
 (CUSTOMER_NO CHAR(11) NOT NULL,
 BALANCE_PERIOD SMALLINT NOT NULL,
 BALANCE DECIMAL(15,2),

 PRIMARY KEY (CUSTOMER_NO, BALANCE_PERIOD)
)
Available storage and DB2 requirements are the only limits to the number of balances per customer that
you can store in this table. If you decided to string out the repeating group, BALANCE, into columns
instead of rows, you must limit the number of balances to be carried in each row. The following is an
example of stringing out repeating groups into columns after denormalization:
CREATE TABLE USER.PERIODIC_BALANCES
 (CUSTOMER_NO CHAR(11) NOT NULL,
 PERIOD1_BALANCE DECIMAL(15,2),
 PERIOD2_BALANCE DECIMAL(15,2),
 PERIOD3_BALANCE DECIMAL(15,2),
 PERIOD4_BALANCE DECIMAL(15,2),
 PERIOD5_BALANCE DECIMAL(15,2),
 PERIOD6_BALANCE DECIMAL(15,2),

 PRIMARY KEY (CUSTOMER_NO)
)
IN SAMPLE.BALANCE;

In this example, only six balances can be stored for each customer. The number six is not important, but
the limit on the number of values is important—it reduces the flexibility of data storage and should be
avoided unless performance needs dictate otherwise.

Before you decide to implement repeating groups as columns instead of rows, be sure that the data:
 Rarely—preferably never—is aggregated, averaged, or compared in the row
 Occurs in a statistically well-behaved pattern
 Has a stable number of occurrences
 Usually is accessed collectively
 Has a predictable pattern of insertion and deletion

If any of the preceding criteria is not met, some SQL statements could be difficult to code—making the
data less available due to inherently unsound data-modeling practices. This should be avoided because
you usually denormalize data to make it more readily available.

 - 134 -

Denormalization: Derivable Data
If the cost of deriving data with complicated formulas is prohibitive, consider storing the derived data instead
of calculating it. When the underlying values that comprise the calculated value change, the stored derived
data must be changed also; otherwise, inconsistent information could be reported.

Sometimes you cannot immediately update derived data elements when the columns on which they rely
change. This can occur when the tables containing the derived elements are offline or are being
operated on by a utility. In this situation, time the update of the derived data so that it occurs
immediately after the table is available for update. Outdated derived data should never be made
available for reporting and queries.

Denormalization: Hierarchies
A hierarchy is easy to support using a relational database such as DB2, but difficult to retrieve information
from efficiently. For this reason, applications that rely on hierarchies often contain denormalized tables to
speed data retrieval. Two examples of these types of systems are a Bill of Materials application and a
Departmental Reporting system. A Bill of Materials application typically records information about parts
assemblies, in which one part is composed of other parts. A Departmental Reporting system typically records
the departmental structure of an organization, indicating which departments report to which other
departments.

An effective way to denormalize a hierarchy is to create speed tables. Figure 5.4 depicts a department
hierarchy for a given organization. The hierarchic tree is built so that the top node is the entire
corporation. The other nodes represent departments at various levels in the corporation.

Figure 5.4: A department hierarchy.

Department 123456 is the entire corporation. Departments 1234 and 56 report directly to 123456.
Departments 12, 3, and 4 report directly to 1234 and indirectly to department 123456, and so on. This
can be represented in a DB2 table as follows:
DEPTNO PARENT_DEPTNO …other

column
s

 Department
Table

123456 ------

1234 123456

56 123456

12 1234

3 1234

4 1234

1 12

2 12

5 56

6 56

 - 135 -

This DB2 table is a classic relational implementation of a hierarchy. There are two department columns:
one for the parent and one for the child. The table's data is an accurately normalized version of this
hierarchy, containing everything represented in Figure 5.4. The complete hierarchy can be rebuilt with
the proper data retrieval instructions.

Even though the implementation effectively records the entire hierarchy, a query to report all the
departments under any other department is time consuming to code and inefficient to process. A
sample query that returns all the departments reporting to the corporate node, 123456, is illustrated by
this rather complex SQL statement:
SELECT DEPTNO
FROM DEPARTMENT
WHERE PARENT_DEPTNO = '123456'
UNION
SELECT DEPTNO
FROM DEPARTMENT
WHERE PARENT_DEPTNO IN
 (SELECT DEPTNO
 FROM DEPARTMENT
 WHERE PARENT_DEPTNO = '123456')
UNION
SELECT DEPTNO
FROM DEPARTMENT
WHERE PARENT_DEPTNO IN
 (SELECT DEPTNO
 FROM DEPARTMENT
 WHERE PARENT_DEPTNO IN
 (SELECT DEPTNO
 FROM DEPARTMENT
 WHERE PARENT_DEPTNO = '123456');
This query can be built only if you know in advance the total number of possible levels the hierarchy can
achieve. If there are n levels in the hierarchy, you need n-1 UNIONs. The previous SQL statement
assumes that only three levels are between the top and bottom of the department hierarchy. For every
possible level of the hierarchy, you must add a more complex SELECT statement to the query in the
form of a UNION. This implementation works, but is difficult to use and inefficient.
A faster way to query a hierarchy is to use a speed table. A speed table contains a row for every
combination of the parent department and all its dependent departments, regardless of the level. Data is
replicated in a speed table to increase the speed of data retrieval. The speed table for the hierarchy
presented in Figure 5.4 is:
PARENT
DEPTNO

CHILD
DEPTNO

LEVEL

DETAIL

…other
column
s

123456 1234 1 N

123456 56 1 N

123456 12 2 N

123456 1 3 Y

123456 2 3 Y

123456 3 2 Y

123456 4 2 Y

 - 136 -

123456 5 2 Y

123456 6 2 Y

1234 12 1 N

1234 1 2 Y

1234 2 2 Y

1234 3 1 Y

1234 4 1 Y

3 3 1 Y

4 4 1 Y

12 1 1 Y

12 2 1 Y

1 1 1 Y

2 2 1 Y

56 5 1 Y

56 6 1 Y

5 5 1 Y

6 6 1 Y

Contrast this to the previous table, which recorded only the immediate children for each parent. The
PARENT_DEPTNO column is the top of the hierarchy. The CHILD_DEPTNO column represents all the
dependent nodes of the parent. The LEVEL column records the level in the hierarchy. The DETAIL
column contains Y if the row represents a node at the bottom of the hierarchy, or N if the row represents
a node that is not at the bottom. A speed table commonly contains other information needed by the
application. Typical information includes the level in the hierarchy for the given node and, if the order
within a level is important, the sequence of the nodes at the given level.

After the speed table has been built, you can write speed queries. The following are several informative
queries. They would be inefficient if executed against the classical relational hierarchy, but are efficient
when run against a speed table.

To retrieve all dependent departments for department 123456, do the following:
SELECT CHILD_DEPTNO
FROM DEPARTMENT_SPEED
WHERE PARENT_DEPTNO = '123456';

To retrieve only the bottom-most, detail departments that report to department 123456, do the following:
SELECT CHILD_DEPTNO
FROM DEPARTMENT_SPEED
WHERE PARENT_DEPTNO = '123456'
AND DETAIL = 'Y';

To return the complete department hierarchy for department 123456, do the following:
SELECT PARENT_DEPTNO, CHILD_DEPTNO, LEVEL
FROM DEPARTMENT_SPEED
WHERE PARENT_DEPTNO = '123456'
ORDER BY LEVEL;

 - 137 -

A speed table commonly is built using a program written in COBOL or another high-level language. SQL
alone usually is too inefficient to handle the creation of a speed table.
Denormalization to Avoid Large Page Sizes

You can denormalize your tables to avoid using page sizes greater than 4KB. If a tablespace is so large as
to have pages that require more than 4KB, DB2 will force the use of a larger bufferpool (8KB, 16KB, or
32KB). This can increase overhead. For example, DB2 arranges a tablespace assigned to the BP32K
bufferpool as 8 single 4KB pages per 32KB page. Every logical I/O to a 32KB tablespace requires 8 physical
I/Os. You can use the vertical split technique to denormalize tables which would otherwise require pages
greater than 4KB.

Periodically Test the Validity of Denormalization
The decision to denormalize never should be made lightly: Denormalization involves a lot of administrative
dedication. This dedication takes the form of documenting denormalization decisions, ensuring valid data,
scheduling migration, and keeping end users informed about the state of the tables. An additional category
of administrative overhead is periodic analysis.

When an application has denormalized data, you should review the data and the environment
periodically. Changes in hardware, software, and application requirements can alter the need for
denormalization. To verify whether denormalization still is a valid decision, ask the following questions:

 Have the application-processing requirements changed such that the join
criteria, the timing of reports, or the transaction throughput no longer require
denormalized data?

 Did a new software release change performance considerations? For example,
does the introduction of 8KB and 16KB page sizes in DB2 Version 6 alleviate
the need for denormalization to avoid 32K page sizes? Or did the introduction
of a new join method or faster join processing undo the need for prejoined
tables?

 Did a new hardware release change performance considerations? For
example, does a CPU upgrade reduce the amount of CPU consumption such
that denormalization no longer is necessary?

In general, periodically test whether the extra cost related to processing with normalized tables justifies
the benefit of denormalization. Monitor and reevaluate all denormalized applications by measuring the
following criteria:

 I/O saved
 CPU saved
 Complexity of update programming
 Cost of returning to a normalized design

Notes To summarize, remember these basic rules:
 All things being equal, always favor a normalized design over a

denormalized design.
 Normalization optimizes data modification at the expense of data

access.
 Denormalization optimizes data access at the expense of data

modification.

Row and Column Guidelines
As you create DB2 tables, you should be aware of their composition (rows and columns) and how this affects
performance. This section outlines several guidelines that ensure efficient row and column specification.

Avoid Wasted Space

If you do not use very large and very small row sizes, you can reduce the amount of space wasted by
unusable bytes on the pages of a tablespace. Keep these rules in mind:

 A maximum of 255 rows can be stored on one tablespace page.
 A row length larger than 4056 will not fit on a 4KB page. DB2 allows 8KB, 16KB, and

32KB page sizes as of Version 6.
 For pre-V3 subsystems, a row length less than 31 bytes wastes space because only

127 rows can fit on a page, regardless of the size of the row.
 A row length of 2029 results in only one row per page because the second row will be

too large to exist on the same page.

 - 138 -

Determine row size carefully to avoid wasting space. If you can combine small tables or split large
tables to avoid wasting a large amount of space, do so. It usually is impossible to avoid wasting some
space, however.

Choose Meaningful Column Names

In many data processing shops, common names for data elements have been used for years.
Sometimes these names seem arcane because they comply with physical constraints that have long
since been overcome.
DB2 provides 18 characters for column names. You can enhance the usability of your applications if you
use as many of these 18 characters as necessary to achieve easy-to-understand column names. For
example, use CUSTOMER_NAME instead of CNA0 for a customer name column. Do not use column
names simply because people are accustomed to them.

This may be a tough sell in your organization, but it's well worth the effort. If you must support the older,
non-descriptive names, consider creating tables with the fully descriptive names, and then creating
views of these tables with the old names. Eventually, people will convert to use the tables instead of the
views.

Standardize Abbreviations
Every shop uses abbreviated data names. This isn't a bad practice—unless the specification of
abbreviations is random, uncontrolled, or unplanned. Document and enforce strict abbreviation
standards for data names in conjunction with your data-naming standards. For example, the
CUSTOMER_NAME column mentioned in the previous section can be abbreviated in many ways
(CST_NME, CUST_NM, CUST_NAME, and so on). Choose one standard abbreviation and stick to it.

Many shops use a list of tokens to create data abbreviation standards. This is fine as long as each
token represents only one entity and each entity has only one abbreviation. For example:

Entity Standard
Abbrevia
tion

CUSTOMER CUST
NAME NME

Sequence Columns to Achieve Optimal Performance

The sequencing of columns in a table is not important from a functionality perspective because the
relational model states that columns must be non-positional. Columns and rows do not need to be
sequenced for the retrieval commands to work on tables.
When you create a table, however, you must supply the columns in a particular order which becomes
the order in which they physically are stored. The columns then can be retrieved in any order using the
appropriate SQL SELECT statement.

When creating your tables, you will get better performance if you follow these rules for column
sequencing:

 Place the primary key columns first to ease identification.
 Place frequently read columns next.
 Place infrequently read and infrequently updated columns next.
 Place VARCHAR and VARGRAPHIC columns next.
 Place very frequently updated columns after variable columns. For varying length

rows, DB2 logs updates from the point of the change to the end of the row. For fixed
length rows (i.e. no VARCHAR or VARGRAPHIC columns), frequently updated columns
can be placed anywhere in the table because DB2 will log updates from the begin
point of the change to the end point.

 Consider placing columns that are frequently modified at the same time next to one
another in sequence in the table. This can help to reduce the amount of data that is
logged.

 Given the preceding constraints, try to sequence the columns in an order that makes
sense to the users of the table.

Note A varying length row is any row that contains a VARCHAR column or any row that
is compressed.

 - 139 -

Avoid Special Sequencing for Nullable Columns

Treat nullable columns the same as you would any other column. Some DBAs advise you to place
nullable columns of the same data type after non-nullable columns. This is supposed to assist in
administering the null columns, but in my opinion it does not. Sequencing nulls in this manner provides
no clear benefit and should be avoided.
See the "DB2 Table Parameters" section later in this chapter for additional advice on nullable columns.

Define Columns Across Tables in the Same Way
When a column that defines the same attribute as another column is given a different column name, it is
referred to by data administrators as a column synonym. In general, column synonyms should be
avoided except in the situations detailed in this section.

Every attribute should be defined in one way, that is, with one distinct name and one distinct data type
and length. The name should be different only if the same attribute needs to be represented as a
column in one table more than once, or if the practical meaning of the attribute differs as a column from
table to table. For example, suppose that a database contains a table that holds the colors of items.
This column is called Color. The same database has a table with a Preferred Color column for
customers. This is the same logical attribute, but its meaning changes based on the context. It is not
clear to simply call the column Color in the Customer table, because it would imply that the customer is
that color!
An attribute must be defined twice in self-referencing tables and in tables requiring multiple foreign key
references to a single table. In these situations, create a standard prefixing or suffixing mechanism for
the multiple columns. After you define the mechanism, stick to it. For example, the DSN8610.DEPT table
in Appendix D is a self-referencing table that does not follow these recommendations. The ADMRDEPT
column represents the same attribute as the DEPTNO column, but the name is not consistent. A better
name for the column would have been ADMR_DEPTNO. This adds the ADMR prefix to the attribute name,
DEPTNO.
The practical meaning of columns that represent the same attribute may differ from table to table as
well. In the sample tables, for example, the MGRNO column in the DSN8610.DEPT table represents the
same attribute as the EMPNO column in the DSN8610.EMP table. The two columns can be named
differently in this situation because the employee number in the DEPT table represents a manager,
whereas the employee number in the EMP table represents any employee. (Perhaps the MGRNO column
should have been named MGR_EMPNO.)
The sample tables provide another example of when this guideline should have been followed, but
wasn't. Consider the same two tables: DSN8610.DEPT and DSN8610.EMP. Both contain the
department number attribute. In the DEPT table, the column representing this attribute is DEPTNO, but in
the EMP table, the column is WORKDEPT. This is confusing and should be avoided. In this instance, both
should have been named DEPTNO.
Never use homonyms. A homonym, in DB2-column terminology, is a column that is spelled and
pronounced the same as another column, but represents a different attribute.

Avoid Duplicate Rows

To conform to the relational model, every DB2 table should prohibit duplicate rows. Duplicate rows
cause ambiguity and add no value.

If duplicates exist for an entity, either the entity has not been rigorously defined and normalized or a
simple counter column can be added to the table. The counter column would contain a number
indicating the number of duplicates for the given row.

Define a Primary Key
To assist in the unique identification of rows, define a primary (or unique) key for every DB2 table. The
preferred way to define a primary key is with the PRIMARY KEY clause of the CREATE TABLE
statement.

Sometimes the primary key for a table is too large to implement. The length of the primary key columns
could be larger than DB2's maximum primary key length (254 bytes) or performance might suffer with
the larger index. In these circumstances, consider defining a surrogate key for the table.

 - 140 -

Use Appropriate DB2 Data Types
Use the appropriate DB2 data type when defining table columns. (Recall the list of valid DB2 data types
in Table 5.3.) Some people may advise you to avoid certain DB2 data types—this is unwise. Follow
these rules:

 Use the DB2 DATE data type to represent all dates. Do not use a character or numeric
representation of the date.

 Use the DB2 TIME data type to represent all times. Do not use a character or numeric
representation of the time.

 Use the DB2 TIMESTAMP data type when the date and time are always needed
together, but rarely needed alone. Do not use a character or numeric representation of
the timestamp.

 Using INTEGER and SMALLINT data types is interchangeable with using the DECIMAL
data type without scale. Specifying DECIMAL without scale sometimes is preferable to
INTEGER and SMALLINT because it provides more control over the domain of the
column. However, DECIMAL without scale might use additional DASD. For additional
insight, see the tradeoffs listed in the upcoming "Consider All Options when Defining
Columns as INTEGER" section.

 If the data is only numeric, use a numeric-data type. Even if leading zeroes must be
stored or reported, using the character data type is rarely acceptable. You can use
program logic and reporting software to display any numeric data with leading blanks.
Storing the data as a numeric data type has the benefit of providing automatic DB2
data integrity checking (non-numeric data can never be stored in a column defined with
a numeric data type).

 Remember, DB2 uses the cardinality of a column to determine its filter factors used
during access path selection. The specification of column data types can influence this
access path selection.

There are more possible character (alphanumeric) values than there are numeric values for columns of
equal length. For example, consider the following two columns:
COLUMN1 SMALLINT NOT NULL
COLUMN2 CHAR(5) NOT NULL
COLUMN1 can contain values only in the range -32,768 to 32,767, for a total of 65,536 possible values.
COLUMN2, however, can contain all the permutations and combinations of legal alphabetic characters,
special characters, and numerals. So you can see how defining numeric data as a numeric-data type
usually results in a more accurate access path selection by the DB2 optimizer; the specified domain is
more accurate for filter factor calculations.
Analyze DATE and TIME Columns Versus TIMESTAMP Columns

When defining tables that require a date and time stamp, two solutions are available:
 Coding two columns, one as a DATE data type and the other as a TIME data type
 Coding one column specifying the TIMESTAMP data type

Each option has its benefits and drawbacks. Before choosing an approach, consider the following
issues:

 With DATE and TIME you must use two columns. TIMESTAMP uses one column,
thereby simplifying data access and modification.

 The combination of DATE and TIME columns requires 7 bytes of storage, while a
TIMESTAMP column always requires 10 bytes of storage. Using the combination of
DATE and TIME columns can save space.

 TIMESTAMP provides greater time accuracy, down to the microsecond level. TIME
provides accuracy only to the second level. If precision is important, use TIMESTAMP,
otherwise consider the combination of DATE and TIME.

 Date and time arithmetic can be easier to implement using TIMESTAMP data instead of
a combination of DATE and TIME. Subtracting one TIMESTAMP from another results in
a TIMESTAMP duration. To calculate a duration using DATE and TIME columns, two
subtraction operations must occur: one for the DATE column and one for the TIME
column.

 DB2 provides for the formatting of DATE and TIME columns via local DATE and TIME
exits, the CHAR function, and the DATE and TIME precompiler options. These facilities
are not available for TIMESTAMP columns. If the date and time information is to be

 - 141 -

extracted and displayed on a report or by an online application, the availability of these
DB2-provided facilities for DATE and TIME columns should be considered when
making your decision.

Consider the Display Format for DATE and TIME Data
DB2 provides four options for displaying DATE and TIME data, as shown in Table 5.6. Each format
conforms to a standard means of displaying date and time data: EUR is European Standard, ISO is the
International Standards Organization format, JIS is Japanese Industrial Standard, and USA is IBM
United States of America Standard.

Table 5.6: DB2 Date and Time Formats

Format Date Time
EUR DD.MM.YYYY HH.MM.SS
ISO YYYY-MM-DD HH.MM.SS
JIS YYYY-MM-DD HH:MM:SS
USA MM/DD/YYYY HH:MM AM

or PM
One of these formats is chosen as the default standard for your DB2 subsystem at installation time. The
default is ISO. Any format can be displayed using the CHAR() function (previously described in Chapter
3, "Using DB2 Functions").

Caution Avoid choosing the USA format as the default. The USA format causes TIME
data to be displayed without the seconds component, instead appending an
AM or PM. EUR, ISO, and JIS all display TIME in military format specifying 1
through 24 for the hour. The USA format does not, instead specifying 1
through 12 for the hour, and using AM and PM to designate morning and
evening times.
If the default format is USA, TIME columns will be displayed without seconds
and with the AM or PM extension. When data is unloaded using DSNTIAUL, the
seconds information is lost. This can result in data integrity problems if the
unloaded data is subsequently loaded to another table or used as input for
other processes.

Consider Optimization When Choosing Data Type

The impact on optimization is another consideration when deciding whether to use a character or a
numeric data type for a numeric column.
Consider, for example, a column that must store four byte integers. This can be supported using a
CHAR(4) data type or a SMALLINT data type. Often times, the desire to use CHAR(4) is driven by the
need to display leading zeroes on reports.

Data integrity will not be an issue assuming that all data is edit checked prior to insertion to the column
(a big assumption). But even if edit checks are coded, DB2 is not aware of these and assumes that all
combinations of characters are permitted. For access path determination on character columns, DB2
uses base 37 math. This assumes that usually one of the 26 alphabetic letters or the 10 numeric digits
or a space will be used. This adds up to 37 possible characters. For a four-byte character column there
are 374 or 1,874,161 possible values.
A SMALLINT column can range from -32,768 to 32,767 producing 65,536 possible small integer values.
The drawback here is that negative or 5 digit product codes could be entered. However, if we adhere to
our proper edit check assumption, the data integrity problems will be avoided here, as well.
DB2 will use the HIGH2KEY and LOW2KEY values to calculate filter factors. For character columns, the
range between HIGH2KEY and LOW2KEY is larger than numeric columns because there are more total
values. The filter factor will be larger for the numeric data type than for the character data type which
may influence DB2 to choose a different access path. For this reason, favor the SMALLINT over the
CHAR(4) definition.

Choose a Data Type Closest to the Desired Domain
It is always best to choose the data type for each column to be the one that is closest to its domain. By
doing so, DB2 will perform data integrity checking that otherwise would need to be coded into
application programs or CHECK constraints. For example, if you are storing numeric data in the column,
do not choose a character data type. In general, adhere to the following rules:

 If the data is numeric, favor SMALLINT, INTEGER, or DECIMAL data types. FLOAT is
also an option.

 - 142 -

 If the data is character, use CHAR or VARCHAR data types.
 If the data is date and time, use DATE, TIME, and TIMESTAMP data types.
 If the data is multimedia, use GRAPHIC, VARGRAPHIC, BLOB, CLOB, or DBCLOB data

types.
Choose VARCHAR Columns Carefully

You can save DASD storage space by using variable columns instead of placing small amounts of data
in a large fixed space. Each variable column carries a 2-byte overhead, however, for storing the length
of the data. Additionally, variable columns tend to increase CPU usage and can cause the update
process to become inefficient. When a variable column is updated with a larger value, the row becomes
larger; if not enough space is available to store the row, it must be moved to another page. This makes
the update and any subsequent retrieval slower.

Follow these rules when defining variable character columns:
 Avoid variable columns if a sufficient DASD is available to store the data using fixed

columns.
 Do not define a variable column if its maximum length is less than 30 bytes.
 Do not define a variable column if its maximum length is within 10 bytes of the average

length of the column.
 Do not define a variable column when the data does not vary from row to row.
 Place variable columns at the end of the row, but before columns that are frequently

updated.
 Consider redefining variable columns by placing multiple rows of fixed length columns

in another table or by shortening the columns and placing the overflow in another
table.

Compression Versus VARCHAR Columns
Using DB2 compression you can achieve similar results as with VARCHAR columns. However, DB2
compression avoids the two bytes of overhead and requires no programmatic intervention for handling
the two byte column length information.
On the other hand, VARCHAR columns impact data for the column only. With compression, the entire
row is impacted. Therefore, there is a greater chance that an UPDATE of a compressed row will need to
be relocated to another page because its size has increased.
Altering VARCHAR Columns
As of DB2 V6, you can ALTER the length of a VARCHAR column to a greater length. However, you
cannot ALTER the length of a VARCHAR column to a smaller length.

Monitor the Effectiveness of Variable Columns
Using views and SQL it is possible to query the DB2 Catalog to determine the effectiveness of using
VARCHAR for a column instead of CHAR. Consider, for example, the PROJNAME column of the
DSN8610.PROJ table. It is defined as VARCHAR(24).
To gauge whether VARCHAR is appropriate, follow these steps:

1. Create a view that returns the length of the NAME column for every row, for example:
2. CREATE VIEW PROJNAME_LENGTH
3. (COL_LGTH)
4. AS SELECT LENGTH(PROJNAME)

 FROM DSN8610.PROJ;
5. Then, issue the following query using SPUFI to produce a report detailing the

LENGTH and number of occurrences for that length:
6. SELECT COL_LGTH, COUNT(*)
7. FROM PROJNAME_LENGTH
8. GROUP BY COL_LGTH

ORDER BY COL_LGTH;

This query will produce a report listing the lengths (in this case, from 1 to 24, excluding those lengths
which do not occur) and the number of times that each length occurs in the table. These results can be
analyzed to determine the range of lengths stored within the variable column.

If you are not concerned about this level of detail, the following query can be used instead to summarize
the space characteristics of the variable column in question:
SELECT 24*COUNT(*),

 - 143 -

 24,
 SUM(2+LENGTH(PROJNAME)),
 AVG(2+LENGTH(PROJNAME)),
 24*COUNT(*)-SUM(2+LENGTH(PROJNAME)),
 24-AVG(2+LENGTH(PROJNAME))
FROM DSN8610.PROJ;

The constant 24 will need to be changed in the query to indicate the maximum length of the variable
column as defined in the DDL. The individual columns returned by this report are defined in the
following list:

Definition Calculation
Space Used As CHAR(24) 24*COUNT(*)
Average Space Used As CHAR(24) 24
Space Used As VARCHAR(24) SUM(2+LENGTH(PROJNAME))
Average Space Used As VARCHAR(24) AVG(2+LENGTH(PROJNAME))

Total Space Saved 24*COUNT(*)-
SUM(2+LENGTH(PROJNAME))

Average Space Saved 24-
AVG(2+LENGTH(PROJNAME))

Use Odd DECIMAL Precision
Consider making the precision of all DECIMAL columns odd. This can provide an extra digit for the
column being defined without using additional storage. For example, consider a column that must have
a precision of 6 with a scale of 2. This would be defined as DECIMAL(6,2). By defining the column as
DECIMAL(7,2) instead, numbers up to 99999.99 can be stored instead of numbers up to 9999.99.
This can save future expansion efforts.

However, if you must ensure that the data in the column conforms to the specified domain (that is, even
precision), specify even precision.
Consider All Options when Defining Columns as INTEGER
Use SMALLINT instead of INTEGER when the -32,768 to 32,767 range of values is appropriate. This
data type usually is a good choice for sequencing type columns. The range of allowable values for the
INTEGER data type is -2,147,483,648 to 2,147,483,647. These ranges may seem arbitrary, but are
designed to store the maximum amount of information in the minimum amount of space. A SMALLINT
column occupies 2 bytes, and an INTEGER column occupies only 4 bytes.
The alternative to SMALLINT and INTEGER data types is DECIMAL with a 0 scale. DECIMAL(5,0)
supports the same range as SMALLINT, and DECIMAL(10,0) supports the same range as INTEGER.
The DECIMAL equivalent of SMALLINT occupies 3 bytes of storage but permits values as large as
99,999 instead of only 32,767. The DECIMAL equivalent of INTEGER occupies 6 bytes but permits
values as large as 9,999,999,999 instead of 2,147,483,647.
When deciding whether to use DECIMAL without scale to represent integer columns, another factor is
control over the domain of acceptable values. The domain of SMALLINT and INTEGER columns is
indicated by the range of allowable values for their respective data type. If you must ensure
conformance to a domain, DECIMAL without scale provides the better control.
Suppose that you code a column called DAYS_ABSENT that indicates the number of days absent for
employees in the DSN8610.EMP table. Suppose too that an employee cannot miss more than five days
per year without being disciplined and that no one misses ten or more days. In this case, a single digit
integer column could support the requirements for DAYS_ABSENT. A DECIMAL(1,0) column would
occupy 2 bytes of physical storage and provide for values ranging from -9 to 9. By contrast, a
SMALLINT column would occupy two bytes of physical storage and provide for values ranging from -
32768 to 32,767. The DECIMAL(1,0) column, however, more closely matches the domain for the
DAYS_ABSENT columns.
One final consideration: A decimal point is required with DECIMAL data, even when the data has no
scale. For example, the integer 5 is 5. when expressed as a decimal. This can be confusing to
programmers and users who are accustomed to dealing with integer data without a decimal point.
Consider all these factors when deciding whether to implement SMALLINT, INTEGER, or DECIMAL data
types for integer columns.

 - 144 -

ROWID
The ROWID data type is used to generate a unique value for every row in a table. The value is internally-
generated by DB2. A table can have only one ROWID column. The values in a ROWID column are null.
An additional parameter, GENERATED, must be specified for a column defined as a ROWID. The
GENERATED parameter is reserved for ROWID columns only (as of DB2 Version 6). It indicates that the
values for the columns are to be generated by DB2. There are two options for GENERATED, one of
which must be supplied:

 The ALWAYS parameter indicates that DB2 will always generate a value for the column
when a row is inserted into the table. Most ROWID columns should be defined with this
option.

 The BY DEFAULT parameter indicates that DB2 will generate a value for the column
when a row is inserted into the table unless a value is specified. The BY DEFAULT
option can be useful if you are using data propagation to move ROWID values from one
table to another. If you specify BY DEFAULT, the ROWID column must have a unique,
single-column index. Until this index is created, you cannot add rows to the table
regardless of whether you are using INSERT or LOAD.

Caution DB2 will use an explicitly specified value for a ROWID only if it is a valid
ROWID value that was previously generated by DB2.

Large Multimedia Objects
DB2 Version 6 supports large multimedia data types. Using LOB, CLOB, and DBCLOB data types, DB2
can be used to store complex, unstructured data such as images, audio, text, and video. For more
details on the object/relational capabilities of DB2, consult Chapter 7.

DB2 Table Parameters

The preceding section concentrated on the rows and columns of a DB2 table. Other parameters also must
be considered when creating DB2 tables. This section provides guidelines to assist you in your table creation
endeavors.

Specify Appropriate Defaults

When a row is inserted or loaded into a table and no value is specified other than the default, the
column will be set to the value that has been identified in the column default specification. Two types of
defaults are available: system-defined and user-defined.
As of DB2 V4 each column can have a default value specifically tailored to it. These are known as user-
defined defaults. Prior to V4, DB2 provided specific system-defined defaults for each data type. System-
defined column default values are still used if an explicit default value is not specified and these values
are outlined in Table 5.7. For existing rows, when a non-nullable column is added to a table, DATE,
TIME, and TIMESTAMP data types default to the lowest possible value instead of the current value.
DATE types will default to January 1, 0001; TIME types will default to 0:00:00; and timestamp
types will default to a date of January 1, 0001 and a time of 0:00:00:00.

Table 5.7: System-Defined Column Default Values

Data Type Default Value

Numeric Zero

Fixed-length String Blanks

Varying-length String String of length zero

Row identifier Actual ROWID for the row

Date Current date

Time Current time

Timestamp Current timestamp
Four options are available for user-defined defaults: a constant value, USER, CURRENT SQLID, and
NULL. When specifying a constant, the value must conform to the column on which it is defined.
Specifying USER causes the column to default to the contents of the USER special register. When

 - 145 -

CURRENT SQLID is specified, the default value will be the SQL authid of the process performing the
INSERT. NULL is self-explanatory.
In general, it is best to explicitly define the default value to be used for each column. If the system-
defined default values are adequate for your application, it is fine to use them by not providing a value
following the DEFAULT clause. Consider the following column definitions:
BONUS DECIMAL(9,2) DEFAULT 500.00,
COMM DECIMAL(9,2) NOT NULL WITH DEFAULT,
If a row is inserted without specifying BONUS and COMM, BONUS will default to 500.00 and COMM will
default to zero.

Use Nulls with Care

A null is DB2's attempt to record missing or unknown information. When you assign a null to a column
instance, it means that a value currently does not exist for the column. It's important to understand that
a column assigned to null logically means one of two things: The column does not apply to this row, or
the column applies to this row, but the information is not known at present.
For example, suppose that a table contains information on the hair color of employees. The
HAIR_COLOR column is defined in the table as being capable of accepting nulls. Three new employees
are added today: a man with black hair, a woman with unknown hair color, and a bald man. The woman
with the unknown hair color and the bald man both could be assigned null HAIR_COLOR, but for
different reasons. The hair column color for the woman would be null because she has hair but the color
presently is unknown. The hair color column for the bald man would be null also, but this is because he
has no hair. Therefore, hair color does not apply.

DB2 does not differentiate between nulls that signify unknown data and those that signify inapplicable
data. This distinction must be made by the program logic of each application.
DB2 represents null in a special hidden column known as an indicator variable. An indicator variable is
defined to DB2 for each column that can accept nulls. The indicator variable is transparent to an end
user, but must be provided for when programming in a host language (such as COBOL or PL/I). Every
column defined to a DB2 table must be designated as either allowing or disallowing nulls.
The default definition for columns in a DB2 table is to allow nulls. Nulls can be prohibited for a column
by specifying the NOT NULL or NOT NULL WITH DEFAULT option in the CREATE TABLE statement.
Avoid nulls in columns that must participate in arithmetic logic (for example, DECIMAL money values).
The AVG, COUNT DISTINCT, SUM, MAX, and MIN functions omit column occurrences set to null. The
COUNT(*) function, however, does not omit columns set to null because it operates on rows. Thus, AVG
is not equal to SUM/COUNT(*) when the average is being computed for a column that can contain
nulls. If the COMM column is nullable, the result of the following query:
SELECT AVG(COMM)
FROM DSN8610.EMP;

is not the same as for this query:
SELECT SUM(COMM)/COUNT(*)
FROM DSN8610.EMP;

For this reason, avoid nulls in columns involved in math functions.
When DATE, TIME, and TIMESTAMP columns can be unknown, assign them as nullable. DB2 checks to
ensure that only valid dates, times, and timestamps are placed in columns defined as such. If the
column can be unknown, it must be defined to be nullable because the default for these columns is the
current date, current time, and current timestamp (unless explicitly defined otherwise using the
DEFAULT clause). Null, therefore, is the only available option for the recording of missing dates, times,
and timestamps.

For every other column, determine whether nullability can be of benefit before allowing nulls. Consider
these rules:

 When a nullable column participates in an ORDER BY or GROUP BY clause, the
returned nulls are grouped at the high end of the sort order.

 Nulls are considered to be equal when duplicates are eliminated by SELECT
DISTINCT or COUNT (DISTINCT column).

 - 146 -

 A unique index considers nulls to be equivalent and disallows duplicate entries
because of the existence of nulls, unless the WHERE NOT NULL clause is specified in
the index.

 For comparison in a SELECT statement, two null columns are not considered equal.
When a nullable column participates in a predicate in the WHERE or HAVING clause,
the nulls that are encountered cause the comparison to evaluate to UNKNOWN.

 When a nullable column participates in a calculation, the result is null.
 Columns that participate in a primary key cannot be null.
 To test for the existence of nulls, use the special predicate IS NULL in the WHERE

clause of the SELECT statement.
 You cannot simply state WHERE column = NULL. You must state

WHERE column IS NULL.
 It is invalid to test if a column is < NULL, <= NULL, > NULL, or >= NULL. These are all

meaningless because null is the absence of a value.
 You can assign a column to null using the = predicate in the SET clause of the

UPDATE statement.
Examine these rules closely. ORDER BY, GROUP BY, DISTINCT, and unique indexes consider nulls to
be equal and handle them accordingly. The SELECT statement, however, deems that the comparison of
null columns is not equivalence, but unknown. This inconsistent handling of nulls is an anomaly that you
must remember when using nulls. The following are several sample SQL queries and the effect nulls
have on them.
SELECT JOB, SUM(SALARY)
FROM DSN8610.EMP
GROUP BY JOB;
This query returns the average salary for each type of job. All instances in which JOB is null will group at
the bottom of the output.
SELECT EMPNO, PROJNO, ACTNO, EMPTIME
 EMSTDATE, EMENDATE
FROM DSN8610.EMPPROJACT
WHERE EMSTDATE = EMENDATE;

This query retrieves all occurrences in which the project start date is equal to the project end date. This
information is clearly erroneous, as anyone who has ever worked on a software development project
can attest. The query does not return any rows in which either dates or both dates are null for two
reasons: (1) two null columns are never equal for purposes of comparison, and (2) when either column
of a comparison operator is null, the result is unknown.
UPDATE DSN8610.DEPT
 SET MGRNO = NULL
WHERE MGRNO = '000010';
This query sets the MGRNO column to null wherever MGRNO is currently equal to '000010' in the DEPT
table.

Note Nulls sometimes are inappropriately referred to as null values. Using the term
value to describe a null column is incorrect because the term null implies the lack
of a value. The relational model has abandoned the idea of nulls in favor of a
similar concept called marks. The two types of marks are an A-mark and an I-
mark. An A-mark refers to information that is applicable but presently unknown,
whereas an I-mark refers to inapplicable information (information that does not
apply). If DB2 would implement marks rather than nulls, the problem of
differentiating between inapplicable and unknown data would disappear.

No commercial DBMS products support A-marks and I-marks.

Encoding Scheme
The CCSID parameter can be used to specify ASCII or EBCDIC encoding at the table level as well as
at the tablespace level. All data stored within a tablespace must use the same encoding scheme. Any
indexes defined for tables in the tablespace will have the same encoding scheme as the tablespace.

 - 147 -

Use DROP Restriction
To prohibit inadvertent table drops use the WITH RESTRICT ON DROP clause of the CREATE TABLE
statement. When WITH RESTRICT ON DROP is specified, drops cannot be issued for the table, its
tablespace, and its database. To subsequently drop the table, it must first be altered to remove the
RESTRICT ON DROP specification.
Use LIKE To Duplicate a Table's Schema
Use the LIKE clause to create a table with the same columns as another table. The following SQL
creates a new table OLD_PROJ using the PROJ table as a template
CREATE TABLE DSN8610.OLD_PROJ
LIKE DSN8610.PROJ;
The LIKE clause is particularly useful in the following instances

 When creating exception tables required by the CHECK utility
 When multiple instances of a similar table must be created
 When creating a PLAN_TABLE
 When creating the same table for multiple users

Use DB2 Referential Integrity
Referential integrity (RI) can be defined as a means of ensuring data integrity between tables related by
primary and foreign keys. As of DB2 V5, foreign keys can refer to both primary keys and unique keys
that are not explicitly defined as primary keys. The table with the primary key is called the parent table
and the table with the foreign key is called the dependent table (or child table).
Referential constraints are defined using the FOREIGN KEY clause. A referential constraint consists of
three components: a constraint name, the columns comprising the foreign key and a references clause.
The same constraint name cannot be specified more than once for the same table. If a constraint name
is not explicitly coded, DB2 will automatically create a unique name for the constraint derived from the
name of the first column in the foreign key.
For example, consider the relationship between the DSN8610.DEPT and DSN8610.EMP tables. The
diagram in Appendix D graphically depicts this relationship.
CREATE TABLE DSN8610.EMP
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3),
 PHONENO CHAR(4) CONSTRAINT NUMBER CHECK
 (PHONENO >= '0000' AND
 PHONENO <= '9999'),
 HIREDATE DATE,
 JOB CHAR(8),
 EDLEVEL SMALLINT,
 SEX CHAR(1),
 BIRTHDATE DATE,
 SALARY DECIMAL(9,2),
 BONUS DECIMAL(9,2),
 COMM DECIMAL(9,2),
 PRIMARY KEY (EMPNO)
 FOREIGN KEY RED (WORKDEPT)
 REFERENCES DSN8610.DEPT ON DELETE SET NULL
)
EDITPROC DSN8EAE1
IN DSN8D51A.DSN8S51E;

 - 148 -

CREATE TABLE DSN8610.DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16),
 PRIMARY KEY (DEPTNO)
)
IN DSN8D51A.DSN8S51D;
ALTER TABLE DSN8610.DEPT
 FOREIGN KEY RDD (ADMRDEPT)
 REFERENCES DSN8610.DEPT ON DELETE CASCADE;
ALTER TABLE DSN8610.DEPT
 FOREIGN KEY RDE (MGRNO)
 REFERENCES DSN8610.EMP ON DELETE SET NULL;
The primary key of EMP is EMPNO; the primary key of DEPT is DEPTNO. Several foreign keys exist, but
let's examine the foreign key that relates EMP to DEPT. The foreign key, named RDE, in the DEPT table
relates the MGRNO column to a specific EMPNO in the EMP table. This referential constraint ensures that
no MGRNO can exist in the DEPT table before the employee exists in the EMP table. The MGRNO must
take on a value of EMPNO. Additionally, the foreign key value in DEPT cannot subsequently be updated
to a value that is not a valid employee value in EMP, and the primary key of EMP cannot be deleted
without the appropriate check for corresponding values in the DEPT foreign key column or columns.

To ensure that this integrity remains intact, DB2 has a series of rules for inserting, deleting, and
updating:

 When inserting a row with a foreign key, DB2 checks the values of the foreign key
columns against the values of the primary key columns in the parent table. If no
matching primary key columns are found, the insert is disallowed. A new primary key
can be inserted as long as it is unique.

 When updating foreign key values, DB2 performs the same checks as when it is
inserting a row with a foreign key.

 Deleting a row with a foreign key is permitted. When deleting a row with a primary key,
DB2 takes action as indicated in the DDL; it either restricts deletion, cascades deletes
to foreign key rows, or sets all referenced foreign keys to null.

Three basic options can be specified when deleting a foreign key: RESTRICT, CASCADE, and SET
NULL. RESTRICT disallows the deletion of the primary key row if any foreign keys relate to the row.
CASCADE allows the deletion of the primary key row and also deletes the foreign key rows that relate to
it. SET NULL allows the deletion of the primary key row and, instead of deleting all related foreign key
rows, sets the foreign key columns to NULL. The processing needs of the application dictate which
delete option should be specified in the table create statements.

Notes DB2 V5 added a fourth delete rule: NO ACTION. The behavior of NO ACTION is
similar to RESTRICT. The only difference between RESTRICT and NO ACTION
is when the referential constraint is enforced.

 RESTRICT enforces the delete rule immediately.
 NO ACTION enforces the delete rule at the end of the statement.

When deleting multiple rows from a table with a self-referencing constraint,
RESTRICT would prohibit the DELETE, whereas NO ACTION can allow it to
complete. To specify ON DELETE NO ACTION in a referential constraint the
CURRENT RULES special register must be set to 'STD', not 'DB2'.

All of these options are valid and use nearly the same resources. If efficiency is your primary goal, the
RESTRICT option usually uses fewer resources because data modification of dependent tables is not
performed. If data modification is necessary, however, allowing DB2 to perform it is usually preferable to
writing cascade or setting null logic in a high-level language.

 - 149 -

The general rule for implementing referential integrity is to use DB2's inherent features instead of coding
RI with application code. DB2 usually has a more efficient means of implementing RI than the
application. Also, why should a programmer code what already is available in the DBMS?

The exceptions to this rule are the subject of the rest of this section. DB2 does a referential integrity
check for every row insertion. You can increase efficiency if your application does a single check of a
row from the parent table and then makes multiple inserts to the child table.

Do not use DB2 RI on tables built from another system that already is referentially intact. If the tables
are updated after being built or loaded from the external data source, consider building the RI into the
application code where appropriate and ignoring the RI when building or updating the tables from the
referentially intact source.

Do not use DB2 RI if tables are read only. If you need to scrub the data when loading, you still may want
to use DB2 RI. If application code is used to load the tables, base your decision for implementing RI
with DB2 DDL according to the other guidelines in this chapter.

If the application processing needs are such that the parent table is read before even one child is
inserted, consider not implementing DB2 RI. In this case, DB2 would repeat the read process that the
application must do anyway to satisfy its processing needs.

Define a primary (or unique) key to prohibit duplicate table rows. This should be done to ensure entity
integrity regardless of whether dependent tables are related to the table being defined. Entity integrity
ensures that each row in a table represents a single, real-world entity.

Avoid large referential sets. Try not to tie together all tables in a large system; otherwise, recovery,
quiesce, and other utility processing will be difficult to develop and administer.

You should follow some general rules when deciding how to limit the scope of DB2-defined referential
integrity:

 Limit referential structures to no more than three to five levels in any one direction. For
example, consider the following structure:

A → B → C ← D ← E ← F

Consider breaking this structure into the following two structures and supporting the
referential constraint from C ← D with application logic.

A → B → C

D ← E ← F

This reduces the potential performance degradation caused by DB2's automatic RI checks.
Additionally, it makes it easier to keep track of the RI defined to DB2 and the rules that are
in effect.

However, it also opens the door to data integrity problems caused by updates outside the
scope of the application programs that enforce the integrity. Weigh the performance impact
against the possible loss of integrity before deciding to bypass DB2-enforced RI.

 Try to control the number of cycles in a referential set. A cycle is a referential path that
connects a table to itself. Table A is connected to itself in this sample cycle:

A → B → C → A

Furthermore, a table cannot be delete-connected to itself in a cycle. A table is delete-
connected to another table if it is a dependent of a table specified with a CASCADE delete
rule.

 Whether RI is checked by DB2 or by an application program, overhead is incurred.
Efficiency cannot be increased simply by moving RI from DB2 to the program. Be sure
that the application program can achieve better performance than DB2 (by taking
advantage of innate knowledge of the data that DB2 does not have) before eliminating
DB2-enforced RI.

 If updates to tables are permitted in an uncontrolled environment (for example, QMF,
SPUFI, or third-party table editors like File-Aid for DB2), implement DB2-enforced RI if

 - 150 -

data integrity is important. Otherwise, you cannot ensure that data is correct from a
referential integrity standpoint.

Beware of Self-Referencing Constraints

A self-referencing constraint is one in which the parent table is also the dependent table. The sample
table, DSN8610.PROJ contains a self-referencing constraint specifying that the MAJPROJ column must
be a valid PROJNO.
Self-referencing constraints must be defined using the DELETE CASCADE rule. Exercise caution when
deleting rows from these types of tables because a single delete could cause all of the table data to be
completely wiped out!
Beware of RI Implementation Restrictions

Take the following restrictions into consideration when implementing RI on your DB2 tables:
 A self-referencing constraint must specify DELETE CASCADE.
 A table cannot be delete-connected to itself.
 Tables that are delete-connected to another table through multiple referential paths

must employ the same DELETE rule and it must be either CASCADE or RESTRICT.

Use Check Constraints
Check constraints can be used to place specific data value restrictions on the contents of a column
through the specification of an expression. The expression is explicitly defined in the table DDL and is
formulated in much the same way that SQL WHERE clauses are formulated. Any attempt to modify the
column data (e.g. during INSERT or UPDATE processing) will cause the expression to be evaluated. If
the modification conforms to the Boolean expression, the modification is permitted to continue. If not,
the statement will fail with a constraint violation.

Check constraints consist of two components: a constraint name and a check condition. The same
constraint name cannot be specified more than once for the same table. If a constraint name is not
explicitly coded, DB2 will automatically create a unique name for the constraint derived from the name
of the first column in the check condition.
The check condition defines the actual constraint logic. The check condition can be defined using any of
the basic predicates (>, <, =, <>, <=, >=), as well as BETWEEN, IN, LIKE, and NULL. Furthermore, AND
and OR can be used to string conditions together. However, please note the following restrictions:

 The entire length of the check condition can be no greater than 3800 total bytes.
 The constraint can only refer to columns in the table in which it is created. Other tables

cannot be referenced in the constraint.
 Subselects, column functions, host variables, parameter markers, special registers and

columns defined with field procedures cannot be specified in a check constraint.
 The NOT logical operator cannot be used.
 The first operand must be the name of a column contained in the table. The second

operand must be either another column name or a constant.
 If the second operand is a constant, it must be compatible with the data type of the first

operand. If the second operand is a column, it must be the same data type as the first
column specified.

The EMP table contains the following check constraint:
PHONENO CHAR(4) CONSTRAINT NUMBER CHECK
 (PHONENO >= '0000' AND
 PHONENO <= '9999'),
This constraint defines the valid range of values for the PHONENO column. The following are examples
of check constraints which could be added to the EMP table:
CONSTRAINT CHECK_SALARY
CHECK (SALARY < 50000.00)
CONSTRAINT COMM_VS_SALARY
CHECK (SALARY > COMM)
CONSTRAINT COMM_BONUS
CHECK (COMM > 0 OR BONUS > 0)

 - 151 -

The first check constraint ensures that no employee can earn a salary greater than $50,000; the second
constraint ensures that an employee's salary will always be greater than his or her commission; and the
third constraint ensures that each employee will have either a commission or a bonus set up.

The primary benefit of check constraints is the ability to enforce business rules directly in each database
without requiring additional application logic. Once defined, the business rule is physically implemented
and cannot be bypassed. Check constraints also provide the following benefits:

 Because there is no additional programming required, DBAs can implement check
constraints without involving the application programming staff. However, the
application programming staff should be consulted on what type of check constraints
are required because they may have more knowledge of the data. Additionally, the
application programming staff must be informed whenever check constraints have
been implemented to avoid duplication of effort in the programs being developed.

 Check constraints provide better data integrity because a check constraint is always
executed whenever the data is modified. Without a check constraint critical business
rules could be bypassed during ad hoc data modification.

 Check constraints promote consistency. Because they are implemented once, in the
table DDL, each constraint is always enforced. Constraints written in application logic,
on the other hand, must be executed by each program that modifies the data to which
the constraint applies. This can cause code duplication and inconsistent maintenance
resulting in inaccurate business rule support.

 Typically check constraints coded in DDL will outperform the corresponding application
code.

Notes The ALTER TABLE statement can be used to add CHECK constraints to
existing tables. When adding a CHECK constraint to a table that is already
populated with data, the data values are checked against the constraint
depending on the value of the CURRENT RULES special register.

 If CURRENT RULES is set to 'STD' (for SQL standard), the constraint
is checked immediately and, if the data does not conform to the
constraint, the ALTER fails and the table definition is unchanged.

 If CURRENT RULES is set to 'DB2', however, the constraint is not
immediately checked. Instead, the table is placed into check pending
status and the CHECK utility must be run to ascertain if the data
conforms to the newly added CHECK constraint.

Beware of Semantics with Check Constraints

DB2 performs no semantic checking on constraints and defaults. It will allow the DBA to define defaults
that contradict check constraints. Furthermore, DB2 will allow the DBA to define check constraints that
contradict one another. Care must be taken to avoid creating this type of problem. The following are
examples of contradictory constraints:
CHECK (EMPNO > 10 AND EMPNO <9)

In this case, no value is both greater than 10 and less than 9, so nothing could ever be inserted.
However, DB2 will allow this constraint to be defined.
EMP_TYPE CHAR(8) DEFAULT 'NEW'
CHECK (EMP_TYPE IN ('TEMP', 'FULLTIME', 'CONTRACT'))
In this case, the default value is not one of the permitted EMP_TYPE values according to the defined
constraint. No defaults would ever be inserted.
CHECK (EMPNO > 10)
CHECK (EMPNO >= 11)

In this case, the constraints are redundant. No logical harm is done, but both constraints will be
checked, thereby impacting the performance of applications that modify the table in which the
constraints exist.

Other potential semantic problems could occur:
 When the parent table indicates ON DELETE SET NULL but a rule is defined on the

child table stating CHECK (COL1 IS NOT NULL)
 When two constraints are defined on the same column with contradictory conditions

 - 152 -

 When the constraint requires that the column be NULL, but the column is defined as
NOT NULL

Code Constraints at the Table-Level

Although single constraints (primary keys, unique keys, foreign keys, and check constraints) can be
specified at the column-level, avoid doing so. In terms of functionality, there is no difference between an
integrity constraint defined at the table-level and the same constraint defined at the column-level. All
constraints can be coded at the table-level; only single column constraints can be coded at the column-
level. By coding all constraints at the table-level maintenance will be easier and clarity will be improved.

Code this (table-level):
CREATE TABLE ORDER_ITEM
 (ORDERNO CHAR(3) NOT NULL,
 ITEMNO CHAR(3) NOT NULL,
 AMOUNT_ORD DECIMAL(7,2) NOT NULL,
 PRIMARY KEY (ORDERNO, ITEMNO)
 FOREIGN KEY ORD_ITM (ORDERNO)
 REFERENCES ORDER ON DELETE CASCADE
)

instead of this (column-level):
CREATE TABLE ORDER_ITEM
 (ORDERNO CHAR(3) NOT NULL
 REFERENCES ORDER ON DELETE CASCADE,
 ITEMNO CHAR(3) NOT NULL,
 AMOUNT_ORD DECIMAL(7,2) NOT NULL,
 PRIMARY KEY (ORDERNO, ITEMNO)
)

Use DB2 Triggers for Additional Data Integrity
DB2 triggers can be useful for enforcing complex integrity rules, maintaining redundant data across
multiple tables, and ensuring proper data derivation. There are many considerations that must be
addressed to properly implement triggers. For complete coverage of how and why to use DB2 triggers,
consult Chapter 6, "Using DB2 Triggers for Integrity."

Consider Using Field Procedures
Field procedures are programs that transform data on insertion and convert the data to its original
format on subsequent retrieval. You can use a FIELDPROC to transform character columns, as long as
the columns are 254 bytes or less in length.
No FIELDPROCs are delivered with DB2, so they must be developed by the DB2 user. They are ideal
for altering the sort sequence of values.

Consider Using Edit Procedures
An EDITPROC is functionally equivalent to a FIELDPROC, but it acts on an entire row instead of a
column. Edit procedures are simply programs that transform data on insertion and convert the data to its
original format on subsequent retrieval. Edit procedures are not supplied with DB2, so they must be
developed by the user of DB2. They are ideal for implementing data compression routines.

Consider Using Validation Routines
A VALIDPROC receives a row and returns a value indicating whether LOAD, INSERT, UPDATE, or
DELETE processing should proceed. A validation procedure is similar to an edit procedure but it cannot
perform data transformation; it simply assesses the validity of the data.
A typical use for a VALIDPROC is to ensure valid domain values. For example, to enforce a Boolean
domain, you could write a validation procedure to ensure that a certain portion of a row contains only T
or F.

 - 153 -

Consider DB2-Enforced Table Auditing
If you must audit user access to DB2 tables, you can specify an audit rule for your tables. Although the
auditing features of DB2 are rudimentary, sometimes they are useful. DB2 has three table audit options:
NONE, CHANGES, and ALL.
DB2 table auditing is done on a unit-of-work basis only. DB2 audits only the first table access of any
particular type for each unit of work, not every table access. AUDIT CHANGES writes an audit trace
record for the first insert, update, and delete made by each unit of work. AUDIT ALL writes an audit
trace record for the first select, insert, update, and delete made by each unit of work. By specifying
AUDIT NONE or by failing to code an audit parameter, table auditing is inactivated.
Before deciding to audit DB2 table access, consider that table auditing incurs overhead—each time a
table is accessed in a new unit of work, an audit trace record is written. Additionally, even if auditing has
been specified for a given table, no audit trace records are written unless the appropriate DB2 audit
trace classes are activated. For AUDIT CHANGES, activate audit trace classes 1, 2, 3, 4, 7, and 8. For
AUDIT ALL, activate audit trace classes 1 through 8.

In general, do not audit table access unless your application absolutely requires it.

Consider Using Comments
Consider using the COMMENT ON statement to document the entities you create. As many as 254
characters of descriptive text can be applied to each column, table, and alias known to DB2. The
comment text is stored in a column named REMARKS in the SYSIBM.SYSTABLES and
SYSIBM.SYSCOLUMNS tables of the DB2 Catalog.
If useful descriptions are maintained for all columns and tables, the DB2 Catalog can function as a
crude data dictionary for DB2 objects. However, be aware that comments are stored in a VARCHAR
column in each of the preceding tables.

Caution When comments are specified, the overall size of the DB2 Catalog will expand
and may grow to be larger than expected. Weigh the benefits of added
documentation against the impact on the DB2 Catalog before automatically
commenting on all columns and tables.

Consider Specifying Labels
Where appropriate, designate a label for each column in the table using the LABEL ON statement. The
maximum length for a column name is 18 characters, but a column label can have up to 30 characters.
The label is stored in the DB2 Catalog in the SYSIBM.SYSCOLUMNS tables.

The column label provides a more descriptive name than the column name. QMF users can specify that
they want to use labels rather than column names, thereby providing better report headings.

Caution Once again, be aware that labels add to the overall size of the DB2 Catalog,
specifically to the SYSIBM.SYSCOLUMNS table. However, labels will not
cause the same amount of growth as comments because labels have a
maximum size of 30 characters (as opposed to 254 for comments).

Index Guidelines
An index is a balanced B-tree structure that orders the values of columns in a table. When you index a table
by one or more of its columns, you can access data directly and more efficiently because the index is
ordered by the columns to be retrieved.

You also can create a DB2 index as a unique index. This forces the columns specified for the index to
be unique within the table. If you try to insert or update these columns with non-unique values, an error
code is displayed and the request fails.

Before creating any indexes, consider the following:
 Percentage of table access versus table update
 Performance requirements of accessing the table
 Performance requirements of modifying the table
 Frequency of INSERT, UPDATE, and DELETE operations
 Storage requirements
 Impact on recovery
 Impact of reorganization
 Impact on the LOAD utility

Remember that indexes are created to enhance performance. Keep the following in mind as you create
indexes:

 - 154 -

 Consider indexing on columns used in UNION, DISTINCT, GROUP BY, ORDER BY, and
WHERE clauses.

 Limit the indexing of frequently updated columns.
 If indexing a table, explicitly create a clustering index. Failure to do so will result in DB2

clustering data by the first index created. If indexes are subsequently dropped and
recreated, this can change the clustering sequence if the indexes are created in a
different order.

 Cluster on columns in GROUP BY, ORDER BY, and WHERE clauses.
 Choose the first column of multicolumn indexes wisely, based on the following

hierarchy. First, choose columns that will be specified most frequently in SQL WHERE
clauses (unless cardinality is very low). Second, choose columns that will be
referenced most often in ORDER BY and GROUP BY clauses (once again, unless
cardinality is very low). Third, choose columns with the highest cardinality.

 The biggest payback from an index comes from DB2's capability to locate and retrieve
referenced data quickly. DB2's capability to do this is reduced when cardinality is low
because multiple RIDs satisfy a given reference. Balance the cardinality of a column
against the amount of time it is accessed, giving preference to data access over
cardinality.

 There are no hard and fast rules for index creation. Experiment with different index
combinations and gauge the efficiency of the results.

 As of DB2 V5, it is not necessary to treat the creation of indexes on partitioned
tablespaces any different than other indexes. In past releases, when partition
independence was non-existent or limited, it was wise to restrict the number of non-
partitioning indexes on a partitioned tablespace.

 Keep the number of columns in an index to a minimum. If only three columns are
needed, index on only those three columns.

 Sometimes, however, it can be advantageous to include additional columns in an index
to increase the chances of index-only access. (Index-only access is discussed further
in Chapters 14 and 18.) For example, suppose that there is an index on the DEPTNO
column of the DSN8610.DEPT table. The following query may use this index:

 SELECT DEPTNAME

 FROM DSN8610.DEPT

WHERE DEPTNO > 'D00';
DB2 could use the index to access only those columns with a DEPTNO greater than D00,
and then access the data to return the DEPT.

 Avoid indexing on variable (VARCHAR, VARGRAPHIC) columns. DB2 expands the
variable column to the maximum length specified for the column, thereby increasing
overall DASD use.

Type 2 Indexes Are Required

Prior to DB Version 6, there were two types of indexes available to DB2: Type 1 and Type 2. Type 2
indexes were introduced with DB2 Version 4. Type 1 indexes have been available since Version 1 of
DB2. However, with DB2 Version 6, Type 1 indexes are obsolete and no longer supported. Type 2
indexes are the only type of index that can be defined. Type 2 indexes provide the following benefits
over Type 1 indexes:

 Type 2 indexes eliminate index locking (the predominant cause of contention in most
pre-V4 DB2 applications).

 Type 2 indexes do not use index subpages.
 Type 2 indexes are the only type supported for ASCII encoded tables.
 Many newer DB2 features cannot be used unless Type 2 indexes are used; these

features include row level locking, data sharing, full partition independence,
uncommitted reads, UNIQUE WHERE NOT NULL, and CPU and Sysplex parallelism.

Note The 'TYPE 2' clause can be explicitly specified in the CREATE INDEX
statement. However, if it is not specified, DB2 will create a Type 2 index anyway.
As of DB2 Version 6, it does not matter whether 'TYPE 2' is explicitly specified
in the CREATE INDEX statement or not—Type 2 indexes are the only indexes
that will be created by DB2.

 - 155 -

Create a Unique Index for Each Primary Key

Every primary key explicitly defined for a table must be associated with a corresponding unique index. If
you do not create a unique index for a primary key, an incomplete key is defined for the table, making
the table inaccessible.
Use WHERE NOT NULL to Allow Multiple Nulls in a UNIQUE Index
Specify the UNIQUE WHERE NOT NULL clause to enable multiple nulls to exist in a unique index. This
is useful when an index contains at least one nullable column, but all non-null entries must be unique.

Create Indexes for Foreign Keys

Unless an index already exists for access reasons or the table is too small to be indexed, create an
index for each foreign key defined for a table. Because DB2's referential integrity feature accesses data
defined as a foreign key "behind the scenes," it's a good idea to enhance the efficiency of this access by
creating indexes.

Uniqueness Recommendations

You can enforce the uniqueness of a column or a group of columns by creating a unique index on those
columns. You can have more than one unique index per table.

It usually is preferable to enforce the uniqueness of columns by creating unique indexes, thereby
allowing the DBMS to do the work. The alternative is to code uniqueness logic in an application program
to do the same work that DB2 does automatically. Remember, if security is liberal for application tables,
ad hoc SQL users can modify table data without the application program, and thereby insert or update
columns that should be unique to non-unique values. However, this cannot happen if a unique index is
defined on the columns.

When to Avoid Indexing

There are only a few situations when you should consider not defining indexes for a table. Consider
avoiding indexing when the table is very small, that is, less than 10 pages. However, there are
scenarios where even a small table can benefit from being indexed (for example, for uniqueness or for
specific, high-performance access requirements).

Another scenario where indexing might not be advantageous is when the table has heavy insert and
delete activity but is relatively small, that is, less than 20 pages.

A table also should not be indexed if it always is accessed with a scan—in other words, if there is no
conditional predicate access to the table.

When to Avoid Placing Columns in an Index

Sometimes you should not define indexes for columns. If the column is updated frequently and the table
is less than 20 pages, do not place the column in an index.
Avoid defining an index for a column if an index on the column exists that would make the new index
redundant. For example, if an index exists on COL1, COL2 in TABLE1, a second index on COL1 only is
redundant. An index on COL2 alone is not redundant because it is not the first column in the index.

When to Specify Extra Index Columns
When the column or columns to be indexed contain non-unique data, consider adding an extra column
to increase the cardinality of the index. This reduces the index RID list and avoids chaining—an
inefficient method of processing index entries. Uniqueness can be gauged by determining the cardinality
for the columns in the index. The cardinality for the columns is nothing more than the number of distinct
values stored in the columns. If this number is small (for example, less than 10 percent of the total
number of rows for the table), consider adding extra columns to the index. (A column's cardinality can
be found in the DB2 Catalog using queries presented in Part IV, "DB2 Performance Monitoring.")

Caution There is a limit on the length of the index key. The sum of the length of the
columns specified in the index must not be greater than 255 minus the
number of columns that are nullable. So, if an index contains 5 columns, 3 of
which can be set to null, the total length of the 5 columns can be no greater
than 252 (255–3 = 252).

 - 156 -

Indexing Large and Small Tables

For tables over 100 pages, always define at least one index. If the table is larger (over 1,000 pages), try
to limit the indexes to those that are absolutely necessary for adequate performance. When a large
table has multiple indexes, update performance usually suffers. When large tables lack indexes,
however, access efficiency usually suffers. This fragile balance must be monitored closely. In most
situations, more indexes are better than fewer indexes because most applications are query-intensive
rather than update-intensive.

For tables containing a small number of pages, for example up to 50 pages, create appropriate indexes
for the following reasons:

 To satisfy uniqueness criteria or if the table frequently is joined to other tables
 Create indexes also when the performance of queries that access the table suffers
 Test the performance of the query after the index is created, though, to ensure that the

index helps.

When you index a small table, increased I/O (due to index accesses) may cause performance to suffer
when compared to a complete scan of all the data in the table.

Index Overloading

Consider overloading an index when the row length of the table to be indexed is very short. A DB2
tablespace can fit 255 rows on each page, but a DB2 index is not limited in the number of rows that
each page can contain.

You can take advantage of this by overloading the index with columns. This is achieved by placing
every column of a small table in an index. A better data-to-page ratio is achieved in the index than in the
tablespace because more rows exist on each index leaf page. Scanning the leaf pages of the index
requires fewer I/O operations than scanning the corresponding tablespace.

Multi-Index Access
DB2 can use more than one index to satisfy a data retrieval request. For example, consider two indexes
on the DSN8610.DEPT table: one index for DEPTNO and another index for ADMRDEPT. If you
executed the following query, DB2 could use both of these indexes to satisfy the request:
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8610.DEPT
WHERE DEPTNO > 'D00'
AND ADMRDEPT = 'D01';
If multi-index access is used, the index on DEPTNO is used to retrieve all departments with a DEPTNO
greater than 'D00', and the index on ADMRDEPT is used to retrieve only rows containing 'D01'. Then
these rows are intersected and the correct result is returned.
An alternative to the multi-index access just described is a single multicolumn index. If you create one
index for the combination of columns ADMRDEPT, DEPTNO, DB2 could use this index, as well. When
deciding whether to use multiple indexes or multicolumn indexes, consider the following guidelines:

 Multi-index access is usually less efficient than access by a single multicolumn index.
 Many multicolumn indexes require more DASD than multiple single-column indexes.
 Consider the access criteria for all applications that will be querying the table that must

be indexed. If the indexing needs are light, a series of multicolumn indexes is usually
the best solution. If the indexing needs are heavy and many combinations and
permutations of columns are necessary to support the access criteria, multiple single-
column indexes could be a better solution.

 Sometimes one multicolumn index can fit the needs of many different access criteria.
For example, suppose that the DSN8610.EMP table (see Appendix D) has three
access needs, as follows:

LASTNAME only
LASTNAME and FIRSTNME
LASTNAME, FIRSTNME, and BONUS
One index on the concatenation of the LASTNAME, FIRSTNME, and BONUS columns
would efficiently handle the access needs for this table. When only LASTNAME is required,
only the first column of the index is used. When both LASTNAME and FIRSTNME are
specified in a query, only the first two columns are used. Finally, if all three columns are
specified in a query, the index uses all three columns.

 - 157 -

With index screening, DB2 also could use the same three column index to satisfy a query
specifying only LASTNAME and BONUS. A matching index scan would be performed on
LASTNAME, and then DB2 could screen the index for the BONUS values.

 Consider the tradeoff of DASD versus performance, and weigh the access criteria to
determine the best indexing scenario for your implementation.

Specify Appropriate Index Parameters

The first design decision to be made when defining an indexing strategy for a table is to choose a useful
clustering strategy. Clustering reduces I/O. The DB2 optimizer usually tries to use an index on a
clustered column before using other indexes. Choose your clustering index wisely—in general, use the
index accessed most often or accessed by the most critical SQL statements.
Specify index free space the same as the tablespace free space. The same reason for the free space in
the tablespace applies to the free space in the index. Remember that index "row" sizes are smaller than
table row sizes, so plan accordingly when calculating free space. Also, as PCTFREE increases, the
frequency of page splitting decreases and the efficiency of index updates increases.
When an index page is completely filled and a new entry must be inserted, DB2 splits the index leaf
page involved in two, moving half the data to a new page. Splits can cause DB2 to lock at many levels
of the index, possibly causing splits all the way back to the root page. This splitting activity is inefficient
and should be avoided by prudent use of free space and frequent index reorganizations. DB2 also uses
a free page for splits if one is available within 64 pages of the original page being split. Use the
suggestions in Table 5.8 as a rough guideline for specifying PCTFREE and FREEPAGE based on insert
and update frequency.

Table 5.8: Index Free Space Allocation Chart

Type of Index Processing FREEPAGE PCTFREE

Read only 0 0
Less than 20 percent of volume inserted or updated
between REORGs 0 10 to 20

Twenty to 60 percent of volume inserted or updated
between REORGs 63 20 to 30

Greater than 60 percent of volume inserted or updated
between REORGs 15 20 to 30

See the VCAT versus STOGROUP considerations presented in Table 5.2. The considerations for
tablespace allocation also apply to index allocation.

Create Indexes Before Loading Tables
The LOAD utility update indexes efficiently. Usually, the LOAD utility is more efficient than building
indexes for tables that already contain data. The data being loaded should be sorted into the order of
the clustering index before execution.

Use Deferred Index Creation
The DEFER option on the CREATE INDEX statement allows the index to be created but not populated.
The RECOVER INDEX utility can then be executed to populate the index. This will speed the index
creation process because RECOVER INDEX usually populates index entries faster than CREATE
INDEX.
Creating an STOGROUP-defined index with DEFER YES causes the underlying VSAM data set for the
index to be allocated.
Additionally, the DB2 catalog is updated to record that the index exists. But, if the table being indexed
currently contains data, DB2 will turn on the recover pending flag for the indexspace and issue a +610
SQLCODE. Subsequent execution of RECOVER INDEX will turn off the recover pending flag and
populate the index.

Let DB2 Tell You What Indexes to Create
Consider using CREATE INDEX with the DEFER YES option to create many different indexes for new
applications. The indexes will be recorded in the DB2 catalog, but will not be populated. Then, update
the statistics in the DB2 catalog to indicate anticipated production volumes and run EXPLAIN on your
performance-sensitive queries.
Use REBUILD INDEX to populate the indexes that were used and drop the indexes that were not used.
In this way DB2 can help you choose which indexes will be useful.

 - 158 -

Store Index and Tablespace Data Sets Separately
You should assign indexes to different STOGROUPs or different volumes than the tablespaces
containing the tables to which the indexes apply. This reduces head contention and increases I/O
efficiency. This is especially important for tables and indexes involved in parallel queries.

Consider Separate Index Bufferpools
Consider placing critical indexes in a different bufferpool than your tablespaces. For more in-depth
bufferpool consideration, see Chapter 18, "DB2 Behind the Scenes."
PRIQTY and SECQTY
If you are defining indexes using the STOGROUP method, you must specify primary and secondary
space allocations. The primary allocation is the amount of physical storage allocated when the index is
created. As the amount of data in the index grows, secondary allocations of storage are taken. Use the
guidelines specified for tablespace space allocations to guide your indexspace allocation efforts.
The default values for index PRIQTY and SECQTY are the same as the 4KB page size defaults for
tablespace PRIQTY and SECQTY.

Explicitly Define Index Dataset Size
Use the PIECESIZE clause to specify the largest data set size for a non-partitioned index, for example:
CREATE TYPE 2 UNIQUE INDEX DSN8610.XACT2
 ON DSN8610.ACT (ACTKWD ASC)
 USING STOGROUP DSN8G510
 PRIQTY 65536K
 SECQTY 8192K
 ERASE NO
 BUFFERPOOL BP0
 CLOSE NO
 PIECESIZE 256M;
This statement will limit the size of individual data sets for the XACT2 index (on DSN8610.ACT) to
256MB.

Caution Avoid setting the PIECESIZE too small. A new data set will be allocated each
time the PIECESIZE threshold is reached. DB2 will increment the A001
component of the data set name each time. This makes the physical limit 999
data sets (A001 through A999). If PIECESIZE is set too small, the data set
name can limit the overall size of the tablespace.

Index Image Copies
As of DB2 Version 6, it is possible to use the COPY utility to make backup image copies of index data
sets. You also can use the RECOVER utility on index image copies to recover indexes. To use COPY
on indexes, the COPY parameter must be set to YES. The default value for the COPY parameter is NO.

Note The REBUILD utility can be used to rebuild indexes from the underlying data in
the table. REBUILD can be executed on any index regardless of the value of the
COPY parameter.

Indexing Auxiliary Tables
Only one index can be specified on an auxiliary table. The index cannot specify any columns. The
default key for an index on an auxiliary table is implicitly defined as a ROWID, which is a unique 19-
byte, DB2-generated value. For more information on auxiliary tables consult Chapter 7.

Miscellaneous DDL Guidelines

This section contains guidelines that are not easily categorized. They provide SQL guidance from an overall
perspective of DB2 development.

Avoid Using DDL in an Application Program

Do not issue DDL from an application program. DDL statements should be planned by a database
administrator and issued when they cause the least disruption to the production system.
When DROP, ALTER, and CREATE statements are used, DB2 must update its system catalog tables.
These statements also place a lock on the database DBD being affected by the DDL. This can affect the

 - 159 -

overall performance of the DB2 system. When DDL is issued from an application program, DB2 object
creation is difficult to control and schedule, potentially causing lockout conditions in production systems.

Plan the Execution of DDL

Because of the potential impact on the application system (such as locking, new functionality, or new
access paths), schedule the execution of DDL statements during off-peak hours.

Strive for Relational Purity

Learn and understand the relational model and let your design decisions be influenced by it. Assume
that DB2 eventually will support all features of the relational model and plan accordingly. For example, if
a procedural method can be used to implement outer joins, favor this method over the implementation
of physical tables containing outer join data. This provides for an orderly migration to the features of the
relational model as they become available in DB2.

Create Views with Care
Do not blindly create one view per base table. Many "experts" give this erroneous advice, but practice
has proven that automatically creating views when tables are created provides little or no insulation
against table changes. It usually creates more problems than it solves. See Chapter 8, "Miscellaneous
Guidelines," for more information on creating and using views.

Favor Normalized Tables

Taking all the previous suggestions into account, avoid denormalization unless performance reasons
dictate otherwise. Normalized tables, if they perform well, provide the optimal environment and should
be favored over tables that are not normalized.

Summary

The selection you make as you define your DB2 object will have a definite impact on the performance of your
DB2 applications. Make sure that you understand the DDL specifications and recommendations made in this
chapter before implementing any DB2 database objects. Before designing and creating any DB2 objects,
you also should read and understand Chapters 6 and 7, which discuss DB2 triggers and DB2's
object/relational capabilities.

Chapter 6: Using DB2 Triggers for Integrity
Overview

As of DB2 Version 6, it is possible to extend the functionality of DB2 databases using triggers. By creating
triggers, you can create active databases that take action based on naturally occurring database activities.
Most of the other major relational database management systems have provided trigger support for a
number of years. DB2 is late to the game with triggers, but IBM has provided very in-depth, functional
implementation of triggers.

If you have not had the opportunity to use triggers, their power may elude you at first. However, once
you have used them, living without triggers can be unthinkable.

What Is a Trigger?

Simply stated, a trigger is a piece of code that is executed in response to an SQL data modification
statement; that is, an INSERT, UPDATE, or DELETE. To be a bit more precise: Triggers are event-driven
specialized procedures that are stored in and managed by the RDBMS. Each trigger is attached to a single,
specified table. Triggers can be thought of as an advanced form of "rule" or "constraint" written using an
extended form of SQL. A trigger cannot be directly called or executed; it is automatically executed (or "fired")
by DB2 as the result of an action—a data modification to the associated table.

After a trigger is created, it is always executed when its "firing" event occurs (INSERT, UPDATE, or
DELETE). Therefore, triggers are automatic, implicit, and non-bypassable.

 - 160 -

The Schema
Recall from Chapter 4, "Using DB2 User-Defined Functions and Data Types," that user-defined functions,
user-defined distinct types, stored procedures, and triggers are all associated with a schema. By default, the
schema name is the authid of the process that issues the CREATE FUNCTION, CREATE DISTINCT TYPE,
CREATE PROCEDURE, or CREATE TRIGGER statement.

A schema, therefore, is simply a logical grouping of procedural database objects (user-defined
functions, user-defined distinct types, stored procedures, and triggers).
You can specify a schema name when you create a user-defined function, type, or trigger. If the
schema name is not the same as the SQL authorization ID, the issuer of the statement must have either
SYSADM or SYSCTRL authority, or the authid of the issuing process has the CREATEIN privilege on the
schema.

Triggers Are Like Other DB2 Objects
Triggers are like other database objects, such as tables and indexes, in that they are created using DDL,
stored in the database, and documented as entries in the DB2 Catalog.

Triggers also are like stored procedures and check constraints in that they contain code, or logic, and
can be used to control data integrity.

Triggers Versus Stored Procedures
Triggers are similar in functionality to stored procedures. Both consist of procedural logic that is stored
at the database level. However, stored procedures are not event driven and are not attached to a
specific table. A stored procedure is explicitly executed by invoking a CALL to the procedure (instead of
implicitly being executed like triggers). Additionally, a stored procedure can access many tables without
being specifically associated to any of them.

Triggers Versus Check Constraints

Triggers are similar to table check constraints because triggers can be used to control integrity when
data is changed in a DB2 table. However, triggers are much more powerful than simple check
constraints because they can be coded to accomplish more types of actions. A check constraint is used
to specify what data is allowable in a column, but a trigger can do that, plus make changes to data.
Furthermore, a trigger can act on data in other tables, whereas a check constraint cannot.

Furthermore, triggers have more knowledge of the database change. A trigger can view both the old
value and the new value of a changed column and take action based on that information.

Note When deciding whether to use a constraint or a trigger, keep in mind that triggers
are more expensive than an equivalent constraint. You should always consider
the relative cost of executing each. If the task at hand can be completed with
either a trigger or a constraint, favor constraints because they are cheaper than
triggers, and it is always better to use the less expensive alternative.

Why Use Triggers?
Triggers are useful for implementing code that must be executed on a regular basis due to a pre-defined
event. By utilizing triggers, scheduling and data integrity problems can be eliminated because the trigger will
be fired whenever the triggering event occurs. You need not remember to schedule or code an activity to
perform the logic in the trigger. It happens automatically by virtue of it being in the trigger. This is true of both
static and dynamic SQL; planned and ad hoc. Simply stated: Whenever the triggering event occurs, the
trigger is fired.

Triggers can be implemented for many practical uses. Quite often, it is impossible to code business
rules into the database using only DDL. For example, DB2 does not support complex constraints (only
value-based CHECK constraints) or various types of referential constraints (such as pendant DELETE
processing or ON UPDATE CASCADE). Using triggers, a very flexible environment is established for
implementing business rules and constraints in the DBMS. This is important because having the
business rules in the database ensures that everyone uses the same logic to accomplish the same
process.

Triggers can be coded to access and/or modify other tables, print informational messages, and specify
complex restrictions. For example, consider the standard suppliers and parts application used in most

 - 161 -

introductory database texts. A part can be supplied by many suppliers, and a supplier can supply many
parts. Triggers can be used to support the following scenarios:

 What if a business rule exists specifying that no more than three suppliers are
permitted to supply any single part? A trigger can be coded to check that rows
cannot be inserted if the data violates this requirement.

 A trigger can be created to allow orders only for parts that are already in stock, or
maybe for parts that are already in stock or are on order and planned for availability
within the next week.

 Triggers can be used to perform calculations such as ensuring that the order amount
for the parts is calculated appropriately, given the suppliers chosen to provide the
parts. This is especially useful if the order purchase amount is stored in the
database as redundant data.

 Triggers can be used to automatically generate values for newly inserted rows. For
example, you could generate customer profile information whenever a new row is
inserted into a customer table.

 To curb costs, a business decision may be made that the low cost supplier will
always be used. A trigger can be implemented to disallow any order that is not the
current low cost order.

The number of business rules that can be implemented using triggers is truly limited only by your
imagination (or, more appropriately, your business needs).

After you define a trigger on a table, it is stored in the database, and any application or ad hoc SQL that
modifies that table uses it. Triggers can help ease application development and maintenance tasks. For
example, if a business rule changes, you only have to update the trigger, not the application code.
Furthermore, if ad hoc updates are allowed, triggers will enforce integrity rules that otherwise would
have been bypassed because the update was ad hoc. Therefore, you should code business rules into
triggers instead of application program logic whenever possible.

Additionally, triggers can access non-DB2 resources. This can be accomplished by invoking a stored
procedure or a user-defined function that takes advantage of the OS/390 resource recovery services
(RRS). Data stored in the non-DB2 resource can be accessed or modified in the stored procedure or
user-defined function that is called from the trigger.

When Does a Trigger Fire?
At the basic level, we have already discussed when a trigger fires: that is, whenever its triggering activity
occurs. For example, an UPDATE trigger will fire whenever an UPDATE is issued on the table on which the
trigger is defined. But there is another, more subtle, question. Does the logic in the trigger get executed
before the firing UPDATE or after?

Two options exist for when a trigger can fire: before the firing activity occurs or after the firing activity
occurs. DB2 supports both "before" and "after" triggers. A "before" trigger executes before the firing
activity occurs; an "after" trigger executes after the firing activity occurs. In DB2 V6, "before" triggers are
restricted because they cannot perform updates.

Knowing how the triggers in your databases function is imperative. Without this knowledge, properly
functioning triggers cannot be coded, supported, or maintained effectively. Why is this?
Consider, for example, if the firing activity occurs before the trigger is fired. In other words, the INSERT,
UPDATE, or DELETE occurs first; then, as a result of this action, the trigger logic is executed. If
necessary, the trigger code can change transition variables. What if the trigger is fired before the actual
firing event occurs? In this situation, DB2 disallows modification of transition variables.
Another interesting feature of DB2 V6 triggers is the order in which they are fired. If multiple triggers are
coded on the same table, which trigger is fired first? It can make a difference as to how the triggers
should be coded, tested, and maintained. The rule for order of execution is basically simple to
understand, but can be difficult to maintain. For triggers of the same type, they are executed in the order
in which they were created. For example, if two DELETE triggers are coded on the same table, the one
that was created first is executed first. Keep this in mind as you make changes to your database objects
and triggers. If you need to DROP the table and re-create it to implement a database change, make sure
you create the triggers in the same order as they originally were created to keep the functionality the
same.
To understand why this is important, consider this simple example. Two INSERT triggers are created on
TABLE1, as follows:

 - 162 -

 TRIGGER1 adds +5 to COL1 of TABLE2.
 TRIGGER2 multiplies COL1 of TABLE2 by 2.

The triggers are of the same type so, because TRIGGER1 was created first, it will fire first whenever an
INSERT occurs to TABLE1. If COL1 of TABLE2 is initially set to 1, after the triggers fire, the value will be
(1 + 5) * 2 = 12
However, if you later make changes requiring the triggers to be dropped and re-created, but
inadvertently created them in reverse order, TRIGGER2 then TRIGGER1, the actions would change,
causing the following to occur:
(1 * 2) + 5 = 7

You can see that this can cause drastically different results. Determining the procedural activity that is
required when triggers are present can be a complicated task. It is of paramount importance that all
developers are schooled in the firing methods utilized for triggers in DB2 V6.

To determine the order in which the triggers were created for a table, issue the following query,
substituting the table owner and table name in place of the question marks:
SELECT DISTINCT SCHEMA, NAME, CREATEDTS
FROM SYSIBM.SYSTRIGGERS
WHERE TBOWNER = ?
AND TBNAME = ?
ORDER BY CREATEDTS;
The results will be returned in the order the triggers were created, earliest to latest. The DISTINCT is
required because trigger definitions may require multiple rows in SYSIBM.SYSTRIGGERS.

Creating Triggers
Triggers are created using the CREATE TRIGGER DDL statement. Before creating any triggers, be sure you
know

 The business rule you are trying to enforce with the trigger
 Whether or not the trigger will modify data in other tables
 What other triggers exist on the table
 What actions those triggers perform
 The order in which those triggers were created
 The referential integrity implemented on any affected tables
 The RI rules for those referential constraints
 The firing activity (UPDATE, DELETE, or INSERT) for the new trigger
 Whether the trigger fires BEFORE or AFTER the firing event

The DDL statement issued to CREATE a trigger requires the following details:
 Trigger Name—The name of the trigger
 Triggering Table—The table for which the trigger exists
 Activation—Whether the trigger fires BEFORE or AFTER the data modification
 Triggering Event—The statement that causes the trigger to fire, that is INSERT,

UPDATE, or DELETE
 Granularity—Whether the trigger fires FOR EACH ROW or FOR EACH STATEMENT
 Transition Variables or Table—The names to be used to reference the information

prior to and after the data modification
 Triggered Action—The actual code that runs when the trigger is fired

Furthermore, like any program you write, you should have the basic logic and flow of the trigger code
mapped out before you sit down to write it.
So, let's examine the basic things that you must know before coding a trigger. The first consideration, of
course, is the table for which the trigger should be defined. The trigger must be defined for the table that
you want to monitor for inserts, updates, or deletes. Next, you must decide what the triggering event
should be: INSERT, UPDATE, or DELETE.
The next decision is to determine when the trigger is to be activated—before or after the triggering
activity occurs. Keep in mind that BEFORE triggers are activated before DB2 makes any changes to the
triggering table and cannot activate other triggers. AFTER triggers are activated after DB2 makes
changes to the triggering table and can potentially activate other triggers.

 - 163 -

The granularity of the trigger must be determined. Because SQL is a set-level language, any single SQL
statement can affect multiple rows of data. For example, one DELETE statement can actually cause
zero, one, or many rows to be removed. You must take this into account as you build triggers.
Therefore, there are two levels of granularity that a trigger can have: statement-level or row-level. A
statement-level trigger is executed once on firing, regardless of the actual number of rows inserted,
deleted, or updated. A statement-level trigger is coded by specifying the FOR EACH STATEMENT
clause. A row-level trigger, once fired, is executed once for each and every row that is inserted, deleted,
or updated. A row-level trigger is coded by specifying the FOR EACH ROW clause. Different business
requirements will drive what type of trigger granularity should be chosen.

Caution Only AFTER triggers can be defined with the FOR EACH STATEMENT clause;
both BEFORE and AFTER triggers can be defined with the FOR EACH ROW
clause.

Caution Performance problems can ensue when triggers are defined with the FOR
EACH ROW clause. Consider the impact of issuing a mass delete against a
table with a FOR EACH ROW trigger defined on it. A DELETE trigger would fire
once for every row that is deleted.

For row-level triggers, you might need to refer to the values of columns in each updated row of the
triggering table. To do this, you can use specialized transition variables that provide, in essence, before
and after views of the changed data. Each trigger can have one NEW view of the table and one OLD view
of the table available. These "views" are accessible only from triggers. They provide access to the
modified data by viewing information in the transaction log.
The OLD transition variables contain the values of columns before the triggering SQL statement updates
them. This information is particularly useful if you need to access the prior value of a column before a
triggering UPDATE or DELETE statement. The NEW transition variables contain the values of columns
after the triggering SQL statement updates them. You can define NEW transition variables for UPDATE
and INSERT triggers.
Refer to Figure 6.1 for a graphic representation of the OLD and NEW transition variables. When an
INSERT occurs, the NEW table contains the rows that were just inserted into the table to which the
trigger is attached. When a DELETE occurs, the OLD table contains the rows that were just deleted from
the table to which the trigger is attached. An UPDATE statement logically functions as a DELETE
followed by an INSERT. Therefore, after an UPDATE, the NEW table contains the new values for the rows
that were just updated in the table to which the trigger is attached; the OLD table contains the old values
for the updated rows.

Figure 6.1: Trigger transition variables: NEW and OLD.

You can also use transition tables to refer to the entire set of rows that a triggering SQL statement
modifies, rather than individual rows.
Transition variables and transition tables are specified in the REFERENCING clause of the CREATE
TRIGGER statement. Transition variables are defined using the OLD AS and NEW AS clauses; transition
tables are defined using the OLD_TABLE AS and NEW_TABLE AS clauses.
Each trigger can include two correlation names (one for OLD and one for NEW) and two table names
(one for the OLD_TABLE and one for the NEW_TABLE). Each of the correlation names must be unique
from the others. Table 6.1 outlines the transition variables that are permitted for each type of trigger. In
the table, N/A indicates not allowed.

Table 6.1: Permitted Trigger Transition Variables

 - 164 -

Activation
Time

Triggering
SQL

Granularity Transition
Variables

Transition
Tables

BEFORE INSERT Row NEW N/A
 UPDATE Row OLD, NEW N/A
 DELETE Row OLD N/A
AFTER INSERT Row NEW NEW_TABLE

 Statement N/A NEW_TABLE

 UPDATE Row OLD, NEW OLD_TABLE,
NEW_TABLE

 Statement N/A OLD_TABLE,
NEW_TABLE

 DELETE Row OLD OLD_TABLE

 Statement N/A OLD_TABLE,
NEW_TABLE

So, transition tables can be specified only for AFTER triggers. Similarly, transition variables are
allowable only for triggers with row granularity (that is, triggers specifying FOR EACH ROW).

Note Keep in mind that the scope of the transition variables and transition tables is the
triggered action. Do not refer to transition variables or transition tables outside of
the trigger.

The final consideration is how to code the actual logic that is to be performed when the trigger fires. This
logic is placed inside of a BEGIN and END grouping as follows:
BEGIN ATOMIC
 triggered-SQL-statements
END
Like any "program," the SQL statements are executed in the order they are specified. You must code
the keywords BEGIN ATOMIC and END only if you code more than one SQL statement. Each SQL
statement must end with a semicolon (;).
Only certain types of SQL can be issued from certain types of triggers. Table 6.2 outlines the type of
SQL statements that can be coded inside DB2 triggers.

Table 6.2: Allowable SQL Statements by Trigger Type

Trigger Type
SQL Statement

BEFORE

AFTER

fullselect Yes Yes
CALL stored procedure Yes Yes
SIGNAL SQLSTATE Yes Yes
VALUES Yes Yes
SET transition variable Yes No
INSERT No Yes
DELETE (searched) No Yes
UPDATE (searched) No Yes

Note SQL statements in
triggers cannot
refer to host
variables,
parameter
markers, or
undefined
transition
variables. The

 - 165 -

statements can
refer only to tables
and views at the
current server.

The WHEN Clause
The WHEN clause is used to control the conditions under which the trigger will fire. A search condition
consists of one or more predicates. Search conditions for the WHEN clause are formulated just like search
conditions in an SQL WHERE clause. A search condition always evaluates to true, false, or unknown. If a
condition is coded into the WHEN clause, the triggered SQL statements are executed only if the search
condition evaluates to TRUE.

The WHEN clause is optional. If the WHEN clause is omitted, the triggered action always is executed.
Now let's take a look at some sample triggers to see how these clauses can be used in CREATE
TRIGGER statements.

Trigger Examples
The following is an example of using the CREATE TRIGGER statement to create a very simple trigger:

CREATE TRIGGER SALARY_UPDATE
 BEFORE UPDATE OF SALARY
 ON DSN8610.EMP
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW.SALARY > (OLD.SALARY * 1.5))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Raise exceeds 50%');
 END;
This statement creates an UPDATE trigger named SALARY_UPDATE. The trigger will fire before the
actual UPDATE that fires it occurs. The trigger will execute for every row affected by the UPDATE. If the
new value for the SALARY column exceeds 50% of the old value, an error is raised, giving an SQLSTATE
code and message.

Note This is a very simple trigger to impose a business rule on the database. It does
not affect data in any other tables.

After the trigger has been created, it will automatically be fired any time the firing event (an UPDATE to
the SALARY column in the EMP table) occurs.

When creating triggers, you can call stored procedures to deliver more trigger functionality. Consider the
following trigger, for example:
CREATE TRIGGER ORDER_STOCK
 AFTER UPDATE OF PRENDATE ON PROJ
 REFERENCING NEW AS NEW
 FOR EACH ROW MODE DB2SQL
WHEN (NEW.PRENDATE < CURRENT DATE + 14 DAYS)
BEGIN ATOMIC
 CALL PROJCRIT(NEW.PROJNO);
END
In this case, if the date the project is to end is modified to be within the next two weeks (14 days), call
the PROJCRIT stored procedure to perform functionality required for critical projects. This can be as
simple as creating a report for management or as complex as modifying project status information in
multiple tables (or, really, whatever you can do within a stored procedure).
The following is another example of creating a trigger, this time an INSERT trigger:
CREATE TRIGGER TOT_COMP
 AFTER UPDATE OF SALARY, BONUS, COMM ON EMP
 REFERENCING NEW AS INSERTED, OLD AS DELETED
 FOR EACH ROW MODE DB2SQL

 - 166 -

WHEN (INSERTED.SALARY <> DELETED.SALARY OR
 INSERTED.BONUS <> DELETED.BONUS OR
 INSERTED.COMM <> DELETED.COMM)
 BEGIN ATOMIC
 UPDATE EMP_SALARY
 SET TOT_COMP = INSERTED.SALARY + INSERTED.BONUS + INSERTED.COMM
 WHERE EMP_SALARY.EMPNO = INSERTED.EMPNO;
 END
This trigger is used to check for changes to the components of an employee's total compensation. The
trigger keeps derived data in synch with its components. In this case, whenever SALARY, BONUS, or
COMM is changed in the EMP table, a table named EMP_SALARY has its TOT_COMP column modified to
be the new sum of salary, bonus, and commission information. Triggers can be used in this manner to
maintain data integrity across tables when derived data is stored physically. Whenever any value in the
three components of total compensation changes, the trigger automatically calculates a new TOT_COMP
and updates it in the table.

Trigger Packages
When a trigger is created, DB2 creates a trigger package for the statements in the triggered action. The
trigger package is recorded in SYSIBM.SYSPACKAGE and has the same name as the trigger. The trigger
package is always accessible and can be executed only when a trigger is activated by a triggering operation.

Trigger packages do not follow the same rules as regular DB2 packages. For example, it is not possible
to maintain multiple versions of a trigger package. Additionally, the user executing the triggering SQL
operation does not need to have the authority to execute the trigger package. Furthermore, the trigger
package does not need to be in the package list for the plan that is associated with the program that
contains the SQL statement.
The only way to delete the trigger package is to use the DROP TRIGGER statement. Of course, if you
issue a DROP TABLE and the table has a trigger, the trigger will be dropped, too.
The trigger package is implicitly bound when the trigger is created. When the trigger package is
implicitly bound by DB2, it will use the following BIND attributes:

ACTION(ADD)
CURRENTDATA(YES)
DBPROTOCOL(DRDA)
DEGREE(1)
DYNAMICRULES(BIND)
ENABLE(*)
EXPLAIN(NO)
FLAG(I)
ISOLATION(CS)
NOREOPT(VARS)
NODEFER(PREPARE)
OWNER(authid)
QUERYOPT(1)
PATH(path)
RELEASE(COMMIT)
SQLERROR(NOPACKAGE)
QUALIFIER(authid)
VALIDATE(BIND)
Of course, you can REBIND the trigger package after it is created. In many instances, you will want to
change the default options. By rebinding the trigger package right after it is created, you can specify
EXPLAIN(YES) or CURRENTDATA(NO), for example. Be sure to use REBIND to ensure you are using
the BIND options that you choose—instead of the default options foisted on you by DB2.

Triggers Can Fire Other Triggers
As we've already learned, a trigger is fired by an INSERT, UPDATE, or DELETE statement. However, a trigger
can also contain INSERT, UPDATE, or DELETE logic within itself. Therefore, a trigger is fired by a data
modification, but can also cause another data modification, thereby firing yet another trigger. When a trigger
contains INSERT, UPDATE, or DELETE logic, the trigger is said to be a nested trigger.

 - 167 -

DB2 places a limit on the number of nested triggers that can be executed within a single firing event. If
this were not done, it could be quite possible to have triggers firing triggers ad infinitum until all of the
data was removed from an entire database.
If referential integrity is combined with triggers, additional cascading updates or deletes can occur. If a
DELETE or UPDATE results in a series of additional UPDATEs or DELETEs that need to be propagated to
other tables, the UPDATE or DELETE triggers for the second table also will be activated.

This combination of multiple triggers and referential integrity constraints is capable of setting a
cascading effect into motion, which can result in multiple data changes. DB2 V6 limits this cascading
effect to 16 levels to prevent endless looping. If more than 16 levels of nesting occur, the transaction is
aborted.

The ability to nest triggers provides an efficient method for implementing automatic data integrity.
Because triggers generally can not be bypassed, they provide an elegant solution to the enforced
application of business rules and data integrity.

Caution Use caution to ensure that the maximum trigger nesting level is not reached.
Failure to heed this advice can cause an environment where certain types of
data modification cannot occur because the number of nested calls will always
be exceeded.

Trigger Guidelines

Triggers are a powerful feature of DB2 for OS/390. They enable non-bypassable, event-driven logic to be
intrinsically intermingled with data. The following guidelines can be used to help you implement effective and
efficient triggers for your DB2 databases and applications.

Naming Triggers
A trigger name, along with its schema, must be unique within the DB2 subsystem. The schema name
that qualifies the trigger is the owner of the trigger. The schema name for the trigger cannot begin with
the letters SYS, unless the schema name is SYSADM.

Because the trigger name is also used for the trigger package name, the trigger name cannot be the
name of a package that already exists. For trigger packages, the schema of the trigger is used as the
collection of the trigger package. The combination of schema.trigger must not be the same as an
independently existing collection.package combination.

Keep It Simple

Each trigger should be coded to perform one and only one task. The trigger should be as simple as
possible while still performing the desired task. Do not create overly complex triggers that perform
multiple, complex tasks. It is far better to have multiple triggers, each performing one simple task, than
to have a single, very complex trigger that performs multiple tasks. A simple trigger will be easier to
code, debug, understand, and maintain when it needs to be modified.

Implement Triggers with Care

After a trigger is created, it affects change processing for every user and program that modifies data in
the table on which the trigger is defined. Because of this global nature of triggers, take great care to
implement only thoroughly tested and debugged triggers.

Test Trigger Logic Outside the Trigger First

Whenever possible, test the SQL to be included in the trigger outside the trigger first. After the bugs and
syntax errors have been eliminated, create the trigger using the debugged SQL.
This technique is not always possible—for example, if the SQL requires the NEW and OLD transition
values or a transition table.

Try to Create Only One Trigger Per Type Per Table
Avoid creating multiple triggers of the same type for the same table—for example, two INSERT triggers
both having an AFTER activation time defined on the same table.

This guideline is necessary because you cannot specify the order in which the triggers will fire. Instead,
DB2 will execute multiple triggers of the same type on the same table in the order in which the triggers

 - 168 -

were created. This order can be difficult to maintain if changes are required that cause the triggers to be
dropped and re-created.
However, this guideline can go against the "Keep It Simple" guideline. You need to determine, on a
case-by-case basis, whether having multiple triggers of the same type in the same table is easier to
understand and maintain than a single, more complex trigger.

Trigger Limitations

As of DB2 V6, there are limits on how triggers can be used. For example, you cannot define triggers on:
 A DB2 system Catalog table
 A view
 An alias
 A synonym
 Any table with a three-part name

You can create triggers on your PLAN_TABLE, DSN_STATEMNT_TABLE, or DSN_FUNCTION_TABLE.
But you should not define INSERT triggers on these tables, because the triggers will not be fired when
DB2 adds rows to the tables.
BEFORE Versus AFTER Triggers
Assign the trigger activation specification carefully. Remember that a BEFORE trigger cannot cascade
and fire other triggers because it cannot UPDATE data.
FOR EACH ROW Versus FOR EACH STATEMENT
Understand the implication of the granularity of the trigger. A statement-level trigger, one specifying FOR
EACH STATEMENT, will only fire once. If you need to examine the contents of affected columns, you will
need a row-level trigger, one specifying FOR EACH ROW.
Also, remember that you cannot specify FOR EACH STATEMENT for a BEFORE trigger.

Using Triggers to Implement Referential Integrity
One of the primary uses for triggers is to support referential integrity (RI). Although DB2 supports a very
robust form of declarative RI, no current DBMS fully supports all possible referential constraints. This is
true of DB2, as well. Refer to Table 6.3 for a listing of the possible types of referential integrity.
Triggers can be coded, in lieu of declarative RI, to support all of the RI rules in Table 6.3. Of course,
when you use triggers, it necessitates writing procedural code for each rule for each constraint, whereas
declarative RI constraints are coded in the DDL that is used to create relational tables.

Table 6.3: Types of Referential Integrity

RI Description
DELETE RESTRICT If any rows exist in the dependent table, the primary

key row in the parent table cannot be deleted.
DELETE CASCADE If any rows exist in the dependent table, the primary

key row in the parent table is deleted, and all
dependent rows are also deleted.

DELETE NEUTRALIZE If any rows exist in the dependent table, the primary
key row in the parent table is deleted, and the foreign
key column(s) for all dependent rows is set to NULL as
well.

UPDATE RESTRICT If any rows exist in the dependent table, the primary
key column(s) in the parent table cannot be updated.

UPDATE CASCADE If any rows exist in the dependent table, the primary
key column(s) in the parent table is updated, and all
foreign key values in the dependent rows are updated
to the same value.

UPDATE NEUTRALIZE If any rows exist in the dependent table, the primary
key row in the parent table is deleted, and all foreign
key values in the dependent rows are updated to NULL
as well.

INSERT RESTRICT A foreign key value cannot be inserted into the
dependent table unless a primary key value already
exists in the parent table.

 - 169 -

FK UPDATE RESTRICTION A foreign key cannot be updated to a value that does
not already exist as a primary key value in the parent
table.

PENDANT DELETE When the last foreign key value in the dependent table
is deleted, the primary key row in the parent table is
also deleted.

Note DB2 does not provide native declarative RI

support for pendant delete or update cascade
referential constraint processing.

To use triggers to support RI rules, it is sometimes necessary to know the values affected by the action
that fired the trigger. For example, consider the case where a trigger is fired because a row was deleted.
The row and all of its values have already been deleted, because the trigger is executed after its firing
action occurs. The solution is to use transition variables to view the NEW and OLD data values.
Using the VALUES Statement with Triggers
The VALUES statement can be used to introduce expressions to be evaluated, but without assigning the
results to output variables. The VALUES statement can be used to invoke a user-defined function from a
trigger. For example
CREATE TRIGGER NEWPROJ
 AFTER INSERT ON PROJ
 REFERENCING NEW AS P
 FOR EACH ROW
 MODE DB2SQL
BEGIN ATOMIC
 VALUES(NEWPROJ(P.PROJNO));
END
This trigger invokes the UDF named NEWPROJ whenever a new project is inserted into the PROJ table.
Using the VALUES statement eliminates the need to use a SELECT statement to invoke the UDF. This
can deliver a performance gain.

Note If a negative SQLCODE is returned when the function is invoked, DB2 stops
executing the trigger and rolls back any triggered actions that were performed.

Use Declarative RI

In general, if DB2 supports the declarative referential integrity processing that you require, use
declarative RI DDL instead of triggers. It will be easier to develop and support. Use triggers to
implement RI only when DB2 does not support the type of RI you require (for example, to implement RI
processing).

Name Transition Variables Appropriately
The transition variables for accessing OLD and NEW data values can be changed to any value you want.
For example, you might use INSERTED for NEW and DELETED for OLD, to mimic the way Microsoft SQL
Server and SYBASE use transition variables. This is especially useful if you have staff members who
understand triggers on a DBMS other than DB2.

Summary

Now that you understand how to use triggers to create active DB2 databases, it is time to discover the
object/relational capabilities of DB2 for OS/390. Turn to the next chapter to explore how LOBs can be used
to store multimedia data in DB2 databases.

Chapter 7: Large Objects and Object/Relational Databases
Overview

Traditionally, database management systems were designed to manage simple, structured data types.
Almost any database can be used to store numbers, alphabetic characters, and basic date and time

 - 170 -

constructs. But modern database management systems must be able to store and manipulate complex,
unstructured data, including multimedia data such as images, video, sound, and long documents.

As of Version 6, it is possible to use DB2 to manage complex data types using large objects.

Defining the Term "Object/Relational"
Object/relational is one term that is used to describe database management systems that provide extensible
data types to manage untraditional data. IBM describes the term object/relational to encompass not just large
objects, but also support for triggers, user-defined distinct types, and user-defined functions. These three
topics are covered in Chapter 4, "Using DB2 User-Defined Functions," and Chapter 6, "Using DB2 Triggers
for Integrity." This chapter covers DB2's implementation of large objects.

Do not be confused by the usage of the term "object" in the phrase object/relational. An object/relational
database management system has little to do with object-oriented (OO) technology or object-oriented
programming and development.

 Note
Object-oriented technology is fundamentally based on the concept of an object. Objects are defined
based on object classes that determine the structure (variables) and behavior (methods) for the object.
True objects, in traditional object-oriented parlance, cannot be easily represented using a relational
database. In the RDBMS, a logical entity is transformed into a physical representation of that entity
solely in terms of its data characteristics. In DB2, you create a table that can store the data elements
(in an underlying VSAM data file represented by a tablespace). The table contains rows that represent
the current state of that entity. The table does not store all of the encapsulated logic necessary to act
upon that data. By contrast, an object would define an entity in terms of both its state and its behavior.
In other words, an object encapsulates both the data (state) and the valid procedures that can be
performed upon the object's data (behavior). With stored procedures, triggers, and UDFs, relational
databases are "getting closer" to supporting OO techniques, but the implementation is significantly
different.

Another term used in the industry when referring to extensible data type support is "universal." IBM went
so far as to rename and brand DB2 as DB2 Universal Database for OS/390 as of Version 6. Large
object support is the primary factor governing the applicability of the term "universal" to DB2.

What Is a Large Object?

A large object is a data type used by DB2 to manage unstructured data. DB2 provides three built-in data
types for storing large objects:

 BLOBs (Binary Large OBjects)—Up to 2GB of binary data. Typical uses for BLOB data
include photographs and pictures, audio and sound clips, and video clips.

 CLOBs (Character Large OBjects)—Up to 2GB of single-byte character data. CLOBs
are ideal for storing large documents in a DB2 database.

 DBCLOBs (Double Byte Character Large OBjects)—Up to 1GB of double-byte
character data (total of 2GB). DBCLOBs are useful for storing documents in languages
that require double-byte characters, such as Kanji.

Caution Actually, the three LOB data types can be used to store 1 byte less than 2GB
of data.

BLOBs, CLOBs, and DBCLOBs are collectively referred to as LOBs. The three LOB data types are
designed to efficiently store and access large amounts of unstructured data. DB2 understands that it is
expensive to move and manipulate large objects. Therefore, LOBs are treated differently than the other
standard built-in data types.

LOBs are not stored in the same structure as the rest of the data in the DB2 table. Instead, the table
contains a descriptor that points to the actual LOB value. The LOB value itself is stored in separate LOB
tablespace in an auxiliary table.

Application programs are written using LOB locators. A LOB locator represents the value of a LOB but
does not actually contain the LOB data. This method is used because LOBs are typically very large and
therefore expensive in terms of the resources required to move and store the LOB value. By using LOB
locators, programs can avoid the expense associated with materializing LOBs.

 - 171 -

When LOBs are created, the DBA can specify whether LOBs are to be logged or not. Once again,
because LOBs are very large, logging them can be quite expensive and consume a large amount of log
storage.
LOB Columns Versus VARCHAR and VARGRAPHIC Columns

It has been possible to store multimedia data in DB2 databases since Version 1 using VARCHAR and
VARGAPHIC columns. But these data types provide limited functionality and usefulness when compared to
LOBs.

The maximum size of a VARCHAR or VARGRAPHIC column is 32KB. This limitation may not pose a
problem for smaller databases, but modern (often Web-enabled) applications usually require larger
multimedia data. A 32KB text document is not very large at all. And 32KB is miniscule when it comes to
storing multimedia data types such as audio, video, graphics, and images.

Note For comparative purposes, consider that the Word document used to produce the
Preface of this book, "Preparing for DB2 Version 6," is approximately 32KB in
size. In practice, many business documents are much larger.
Once again, for comparative purposes, the Powerpoint file used to produce
Figure 20.4 is approximately 32KB in size. The graphic contained in that file is
quite simple compared to many other types of business graphics.

When you are sure that the text or graphic you want to store will always consume less than 32KB of
storage, you can use a VARCHAR or VARGRAPHIC data type instead of one of the LOB data types.
However, LOB data types might still be preferable because of the efficient manner in which they are
handled by DB2. Remember, VARCHAR and VARGRAPHIC data is stored with the rest of the data in
the tablespace, as opposed to LOB data, which is stored in an auxiliary LOB tablespace.

Creating Tables That Contain LOB Columns
There are four basic steps required to create and populate a table that uses LOB data types.

The first step is to define the appropriate columns in the DB2 table. Define one ROWID column and as
many LOB columns as needed. Only one ROWID column is required, regardless of the number of LOB
columns you specify. The ROWID and LOB columns are defined using the CREATE TABLE or ALTER
TABLE statement. The definition of the LOB column must specify whether the column is a BLOB,
CLOB, or DBCLOB. Furthermore, you must specify a size for the LOB. Failure to specify a size causes
DB2 to use the following default:

 For BLOBs—1MB (or 1,048,576 bytes)
 For CLOBs—1,048,576 single-byte characters
 For DBCLOBs—524,288 double-byte characters

Note Regardless of the length you specify, a BLOB column is stored as a long string
column of varying length.

The LOB column in the DB2 table will contain only information about the LOB, not the actual data value.
The table containing the LOB definition is referred to as the base table.
The ROWID column is used by DB2 to locate the LOB data. A ROWID is a unique 19-byte system-
generated value. If you are adding a LOB column and a ROWID column to an existing table, you must
use two ALTER TABLE statements. Add the ROWID with the first ALTER TABLE statement and the
LOB column with the second ALTER TABLE statement.
In the second step, you will need to create a table and a tablespace to store the LOB data. The table is
referred to as an auxiliary table; the tablespace is called a LOB tablespace. The base table can be in a
partitioned tablespace, but the LOB tablespace cannot be partitioned.

Note The LOB tablespace must be created in the same database as the base table.

If the base table is not partitioned, you must create one LOB tablespace and one auxiliary table for each
LOB column. If the tablespace containing the base table is partitioned, you must create one LOB
tablespace and one auxiliary table for each partition for each LOB. For example, if your base table has
six partitions, you must create six LOB tablespaces and six auxiliary tables for each LOB column. To
further illustrate the base table to auxiliary table relationship, refer to Figure 7.1.

 - 172 -

Figure 7.1: Base table to auxiliary table relationship for storing LOBs.

Use the CREATE LOB TABLESPACE statement to create LOB tablespaces and the CREATE
AUXILIARY TABLE statement to create auxiliary tables.
The third step is to create a unique index on the auxiliary table. Each auxiliary table must have exactly
one index. The CREATE INDEX statement is used to create the auxiliary table index. Do not specify
any columns for the index key. When a CREATE INDEX is issued against an auxiliary table, DB2 will
implicitly define the index key on the ROWID column.
The final step is to populate the LOB data into the table. Though we know that the actual LOB data is
stored in an auxiliary table in a LOB tablespace and not in the base table, when you populate the LOB
data you must reference the base table. If the total length of the LOB column and the base table row is
less than 32KB, you can use the LOAD utility to populate the data into DB2. If the LOB column is
greater in size you must use INSERT or UPDATE statements. When using INSERT to populate the
LOB data, you must ensure that your application has access to adequate storage to hold the entire LOB
value that is to be inserted.

A Sample Table Using LOB Columns
Consider the steps you would need to take to add an organization chart to the DSN8610.DEPT sample table.
The organization chart is a BLOB of no more than 5MB in size. The first step would be to alter the table to
add two columns: a ROWID column and a BLOB column, as shown in the following example:

ALTER TABLE DSN8610.DEPT
 ADD ROW_ID ROWID GENERATED ALWAYS;
COMMIT;
ALTER TABLE DSN8610.DEPT
 ADD DEPT_ORG_CHART BLOB(5M);
COMMIT;

The next step would be to create the LOB tablespace and auxiliary table for the LOB column, as shown
in the following:
CREATE LOB TABLESPACE TDORGCHT
 IN DSN8D61A
 LOG NO;
COMMIT;
CREATE AUXILIARY TABLE DEPT_ORGCHART_TAB
 IN DSN8D61A. TDORGCHT
 STORES DSN8610.DEPT
 COLUMN DEPT_ORG_CHART;
COMMIT;
Following this, you must create the index on the auxiliary table. Remember, you do not need to specify
columns for the index key when an index is defined on an auxiliary table. The following SQL CREATE
statement defines the auxiliary table index:
CREATE UNIQUE INDEX XDEPTORG

 - 173 -

 ON DEPT_ORGCHART_TAB;
COMMIT;

Note If the BIND parameter SQLRULES is set to STD, or if special register CURRENT
RULES has been set to STD, DB2 will automatically create the LOB tablespace,
auxiliary table, and auxiliary index when you issue the ALTER TABLE statement
to add the LOB column.

Accessing LOB Data
In most cases, LOB columns can be accessed using SQL just like other columns. For example, you can
code an SQL SELECT statement to retrieve the resume information stored in the EMP_RESUME column of
the DSN8610.EMP table as follows:

SELECT EMPNO, EMP_RESUME
FROM DSN8610.EMP;
When embedding SQL in application programs, you need to take the size of LOBs into consideration.
By using a LOB locator, you can manipulate LOB data without actually moving the data into a host
variable. A LOB locator is a reference to the large object and not the LOB data itself. Figure 7.2
illustrates this principle.

Figure 7.2: Using LOB locators.

A LOB locator is associated with a LOB data value or LOB expression, not with a row in a DB2 table or
an actual physical storage location in a DB2 tablespace. Once you SELECT the LOB value using a LOB
locator, the value of the locator should not change, but the actual value of the LOB might change.

DB2 provides two statements to work with LOB locators:
FREE LOCATOR Removes the association between the LOB locator and its LOB

value before a unit of work ends.
HOLD LOCATOR Maintains the association between a LOB locator and its LOB value

after the unit of work ends. After issuing the HOLD LOCATOR
statement, the LOB locator will keep its association with the LOB
data value until the program ends or FREE LOCATOR is issued.

Note You cannot use EXECUTE IMMEDIATE with the HOLD LOCATOR
or FREE LOCATOR statements when issuing dynamic SQL.

By using LOB locators, your application programs will require significantly less memory than would be
required if entire LOB values were returned to the program. The LOB locator can be returned from
queries, inserted into new tables, and used by the application code like any other host variable. LOB
locators enable the application to defer actually accessing the large object itself until the application
needs the contents of that object.
You will need to DECLARE host variables to hold the LOB data or LOB locators. The host variables
must be declared of SQL type BLOB, CLOB, or DBCLOB. DB2 will generate an appropriate declaration
for the host language. For example, review Tables 7.1 and 7.2 for COBOL host variable declarations for
LOB variables and LOB locators. In SQL statements you must refer to the LOB host variable or locator
variable specified in the SQL type declaration. In host language statements (such as COBOL) you must
use the variable generated by DB2.

Table 7.1: LOB Variable Declarations

Declared in the Program Generated by DB2

 - 174 -

01 BLOB-VAR USAGE IS
SQL TYPE IS BLOB(1M).

01 BLOB-VAR.
02 BLOB-VAR-LENGTH PIC 9(9) COMP.
02 BLOB-VAR-DATA.
49 FILLER PIC X(32767).
Repeat above line 31 times.
 49 FILLER PIC X(32).

01 CLOB-VAR USAGE IS
SQL TYPE IS CLOB(40000K).

01 CLOB-VAR.
02 CLOB-VAR-LENGTH PIC 9(9) COMP.
02 CLOB-VAR-DATA.
49 FILLER PIC X(32767).
Repeat above line 1249 times.
 49 FILLER PIC X(1250).

01 DBCLOB-VAR USAGE IS
SQL TYPE IS CLOB(40000K).

01 DBCLOB-VAR.
02 DBCLOB-VAR-LENGTH PIC 9(9) COMP.
02 DBCLOB-VAR-DATA.
49 FILLER PIC G(32767)
USAGE DISPLAY-1.
Repeat above 2 lines 1249 times.
 49 FILLER PIC G(1250).

The size limitation for COBOL variables is 32,767 bytes. This is a limit of the COBOL compiler. That is
why DB2 generates multiple declarations of 32,767 bytes until it reaches the 1MB specification.

Table 7.2: LOB Locator Variable Declarations

Declared in the Program Generated by
DB2

01 BLOB-LOC USAGE
IS SQL TYPE IS BLOB-LOCATOR.

01 BLOB-LOC
PIC S9(9)
USAGE IS
BINARY.

01 CLOB-LOC USAGE
IS SQL TYPE IS CLOB-LOCATOR.

01 CLOB-LOC
PIC S9(9)
USAGE IS
BINARY.

01 DBCLOB-LOC USAGE
IS SQL TYPE IS DBCLOB-LOCATOR.

01 DBBLOB-
LOC PIC S9(9)
USAGE IS
BINARY.

Note The sizes of the LOBs you can

declare and manipulate depend
on the limits of the host
language and the amount of
storage available to your
program. LOB host variables
can be defined for the C, C++,
COBOL, Assembler, PL/I, and
FORTRAN programming
languages.

LOB Materialization

When DB2 materializes a LOB, it places the LOB value into contiguous storage in a data space. The amount
of storage that is used in data spaces for LOB materialization depends on the size of the LOB data and the
number of LOBs in being materialized.

Because LOBs are usually quite large, LOB materialization should be avoided until it is absolutely
required. DB2 will perform LOB materialization under the following circumstances:

 When a LOB host variable is assigned to a LOB locator host variable in an
application program

 When a program calls a UDF that specifies a LOB as at least one of the
arguments

 - 175 -

 When a LOB is moved into or out of a stored procedure
 When a LOB is converted from one CCSID to another

By reducing the number of times you take these actions in your programs, you can minimize LOB
materialization and enhance the performance of applications that access LOB data. You cannot
completely eliminate LOB materialization. However, you can minimize its impact on your applications by
using LOB locators.

LOBs and Locking
A lock that is held on a LOB value is referred to as a LOB lock.

When a row is read or modified in a table containing LOB columns, the application will obtain a normal
transaction lock on the base table. The locks on the base table also control concurrency for the LOB
tablespace. When locks are not acquired on the base table (because of ISOLATION(UR), for example),
DB2 maintains data consistency by using locks on the LOB tablespace.
Regardless of the isolation level, DB2 also obtains locks on the LOB tablespace and the LOB values
stored in that LOB tablespace for other reasons. For more details on LOB locking, refer to Chapter 21,
"Locking DB2 Data."

LOB Guidelines

The following guidelines can be used to help you implement multimedia object/relational databases using
LOBs with DB2.

Do Not Edit the ROWID
The ROWID columns required for implementing LOBs should be generated by DB2. The ROWID column
cannot be modified. When supplying a value to a ROWID column in a LOAD, the value should have been
previously generated by DB2 and then unloaded at some point. Do not attempt to create a ROWID value;
it should always be generated by DB2 to ensure accuracy.

Note You cannot use LOAD to load ROWID values if the ROWID column was created
with the GENERATED ALWAYS clause.

Define the ROWID Columns as NOT NULL
A ROWID column cannot be null. You should explicitly indicate NOT NULL when defining the column. If
you do not, DB2 will implicitly create the column as NOT NULL. This is the exact opposite of what DB2
will do for other columns that do not specify NOT NULL. That is, when NOT NULL is specified, DB2 will
make the column nullable (except for a ROWID column). This is another good reason for never relying
on defaults—because defaults can be confusing.

Implement LOBs with Care

When LOB columns are implemented and populated, they can consume a large amount of space. Be
absolutely certain that the large objects are required by your applications before storing them using
DB2.
Using LOBs Versus VARCHAR and VARGRAPHIC Data Types
A column defined as a VARCHAR data type holds alphanumeric data. The size of a VARCHAR column
can range from 1 byte to a maximum of 8 bytes less than the record size. The record size depends on
the size of the tablespace page and whether or not an EDITPROC is being used. Table 7.3 outlines the
maximum size of a VARCHAR column based on the page size of the tablespace.

Table 7.3: Maximum Size of a VARCHAR Column

EDITPROC
Used?

Page
4KB

Page
8KB

Page
16KB

Page
32KB

YES 4046 8128 16320 32704

NO 4056 8138 16330 32714
If the VARCHAR specifies a size greater than 255, it is considered a LONG VARCHAR column.
Similar to VARCHAR columns, VARGRAPHIC columns are variable in size, but they are used to store
binary data. The size of a VARGRAPHIC column can range from 1 byte to a maximum of 2 bytes less
than one half the record size. If the VARGRAPHIC specifies a size greater than 127, it is considered a
LONG VARGRAPHIC column.
In general, BLOBs are preferable to VARGRAPHIC data types, and CLOBs or DBCLOBs are preferable to
VARCHAR data types. The LOB data types can be used to store larger amounts of data and have less

 - 176 -

impact on the other data elements of the table because LOBs are not stored in the same physical
tablespace.
However, for smaller amounts of data, VARCHAR and VARGRAPHIC data types can be easier to
implement, administer, and manage. When dealing with character data less than 255 bytes or graphic
data less than 127 bytes, consider using VARCHAR and VARGRAPHIC data types.

Use LOBs with User-Defined Distinct Types

Usually, you should not create tables with the LOB data types. Instead, for each LOB you want to store,
create a user-defined distinct type to use. Failure to do so can make it difficult to understand the type of
data being stored in the table. For example, if you want to store audio sound bites, consider creating a
UDT such as
CREATE DISTINCT TYPE SOUND_BITE AS BLOB(1M)
Then, when you create the table, you can use the UDT instead of specifying BLOB(1M) as the data
type, and you can specify SOUND_BITE, such as
CREATE TABLE CAMPAIGN_DETAILS
(CANDIDATE_LNAME CHAR(40) NOT NULL,
 CANDIDATE_FNAME CHAR(25) NOT NULL,
 ELECTION_YR INTEGER,
 SPEECH_SAMPLE SOUND_BITE)
Isn't it easier to determine that the SPEECH_SAMPLE column is actually audio because you used the
SOUND_BITE data type? If you specified the underlying type, BLOB(1M) instead, it might be a photo of
the speech or some other binary object.

Use LOB Locators to Save Program Storage

By using LOB locators instead of directly accessing the actual LOB data, you can manipulate LOB data
in your programs without retrieving the data from the DB2 table. This is a good technique because it
reduces the amount of storage required by your program.

Defer Evaluation of LOB Expressions
LOB data is not moved until the program assigns a LOB expression to a target destination. So, when
you use a LOB locator with string functions and operators, you can create an expression that DB2 does
not evaluate until the time of assignment. This is called deferring evaluation of a LOB expression.
Deferring evaluation can improve LOB I/O performance.

Use the Sample LOB Applications Shipped with DB2

DB2 ships with several sample applications that use LOB columns. Use these samples as templates to
assist you when writing applications that use LOB columns. The sample applications include the
following:

 DSN8DLPL A C program that uses LOB locators and UPDATE statements to move
binary data into a column of type BLOB.

 DSN8DLRV A C program that uses a LOB locator to manipulate CLOB data.
 DSNTEP2 The dynamic SQL sample program written in PL/I allocates an SQLDA for

rows that include LOB data and uses that SQLDA to describe an SQL statement and
fetch data from LOB columns

Consider Using UDFs to Limit LOB Overhead

You can create and use UDFs designed to return only a portion of a LOB, thereby limiting the transfer of
LOB data to only the portion that the application requires. This can greatly reduce the amount of traffic
required between a client application and the database server.
For example, consider a query designed to return a CLOB column, for example the EMP_RESUME
column in DSN8610.EMP. The CLOB column contains character text. You can select the
CLOB_LOCATOR into a host variable and then use the POSSTR() function to find the offset of a specific
string within the CLOB. The CLOB_LOCATOR in the host variable is passed as the argument to
POSSTR(). Finally, the SUBSTR() function can be used to select a portion of the CLOB.

 - 177 -

Use Indicator Variables with LOB Locators for Nullable LOBs
DB2 uses indicator variables differently for LOB locators. When you SELECT a column that is null into a
host variable (other than a LOB locator), an associated indicator variable is assigned a negative value to
indicate that this column is set to NULL. But DB2 uses indicator variables a little differently for LOB
locators because a LOB locator can never be NULL.
When you SELECT a LOB column using a LOB locator, and the LOB column is set to NULL, DB2 will
assign a negative value to the associated indicator variable, but the LOB locator value does not change.
So, when using use LOB locators to retrieve data from columns that can contain nulls, always define
indicator variables for the LOB locators. After fetching data into the LOB locators, check the indicator
variables. If the indicator variable indicates that the LOB column is NULL, do not use the value in the
LOB locator. It is not valid because the LOB column is NULL.

Avoid Logging Large LOBs
Because LOBs are typically very large, logging changes to LOBs can become quite inefficient. Avoid
logging by specifying LOG NO when creating the LOB tablespace. The default is LOG YES. If the size of
the LOB is greater than 1MB, always specify LOG NO. For smaller LOBs, specifying LOG NO still can be
beneficial.
When LOG NO is specified for the LOB tablespace, changes to the LOB column are not written to the
log. LOG NO has no effect on a commit or rollback operation; the consistency of the database is
maintained, regardless of whether the LOB value is logged. When LOG NO is specified, changes to
system pages and to the auxiliary index are still logged.

Isolate LOBs in Their Own Bufferpool
Take special care when assigning LOBs to a bufferpool. Use a bufferpool that is not shared with other,
non-LOB data. Additionally, assign the deferred write threshold (DWQT) to 0 for the LOB bufferpool(s).
For LOBs that are not logged, changed pages are written at COMMIT. With DWQT set to 0, the writes will
be processed in the background, continually, instead of all at once when committed. For LOBs that are
logged, setting DWQT to 0 avoids a huge amount of data being written at DB2 checkpoints.
For more information on bufferpools and DWQT, refer to Chapter 26, "Tuning DB2's Components."

DB2 Extenders

LOB data types (BLOB, CLOB, and DBCLOB) provide an easy way to store large, unstructured data in DB2
databases. But LOBs are nondescript. The only thing you know about them is a general idea of the type of
data:

 A BLOB is binary data
 A CLOB is character data
 A DBCLOB is double-byte character data

But DB2 comes equipped with Extenders that can be used to provide additional meaning and
functionality to LOBs. DB2 Extenders are available for image, audio, video, and text data. A DB2
Extender provides a distinct type for the LOB and a set of user-defined functions for use with objects of
its distinct type. Additionally, the DB2 Extenders automatically capture and maintain attribute information
about the objects being stored. They also provide APIs for your applications to use.

Basically, the DB2 Extenders provide the functionality to make LOBs useful for your applications. With
the DB2 Extenders, you could store LOBs, but doing anything very useful with them would be difficult
and require a lot of work.
The DB2 Extenders use the MMDBSYS schema for all objects, including UDTs and UDFs. The following
UDTs are created by the DB2 Extenders to support image, audio, and video data:
DB2AUDIO A variable-length string containing information needed to access

an audio object, also called an audio handle
DB2IMAGE A variable-length string containing information needed to access

an image object, also called an image handle
DB2TEXTH A variable-length string containing information needed to access

a text document, also called a text handle
DB2TEXTFH A variable length string containing information required for

indexing an external text file, also referred to as a file handle
DB2VIDEO A variable-length string containing information needed to access

a video object, also known as a video handle

 - 178 -

The DB2AUDIO, DB2IMAGE, and DB2VIDEO UDTs are based on a VARCHAR(250) data type. The
DB2TEXTH UDT is based on a VARCHAR(60) data type with FOR BIT DATA.

The information in a text handle includes a document ID, the name of the server where the text is to be
indexed, the name of the index, information about the text file, and information about the location of the
file. File handles are stored in columns that Text Extender creates and associates with each group of
external files. The audio, image, and video handles are stored in columns created by each specific
Extender for handling that type of data—audio, image, or video.

When enabled, each of the DB2 Extenders—audio, image, text, and video—also creates user-defined
functions for use on columns defined as the UDT. The UDFs created by each of the DB2 Extenders are
outlined in Tables 7.4, 7.5, 7.6, and 7.7.

Table 7.4: UDFs Created by the Audio Extender

UDF Name Purpose of the UDF
AlignValue Gets the bytes per sample value of the audio
BitsPerSample Returns the number of bits used to represent the audio
BytesPerSec Returns the average number of bytes-per-second of audio
Comment Retrieves or modifies user comments
Content Retrieves or modifies the audio content
ContentA Updates the audio content with user-supplied attributes
DB2Audio Stores the audio content
DB2AudioA Stores the audio content with user-supplied attributes
Duration Retrieves the audio playing time
Filename Retrieves the name of the file that contains the audio
FindInstrument Retrieves the number of the audio track that records a

specific instrument in an audio
FindTrackName Retrieves the track number of a named track in an audio

recording
Format Retrieves the audio format
GetInstruments Retrieves the names of the instruments in the audio recording
GetTrackNames Retrieves the track names in an audio recording
Importer Retrieves the user ID of the importer of an audio recording
ImportTime Retrieves the timestamp when an recording audio was

imported
NumAudioTracks Retrieves the number of recorded tracks in an audio

recording
NumChannels Retrieves the number of audio channels
Replace Modifies the content and user comments for an audio

recording
ReplaceA Modifies the content and user comments for an audio

recording with user-supplied attributes
SamplingRate Retrieves the sampling rate of the audio
Size Retrieves the size of an audio recording in bytes
TicksPerQNote Retrieves the number of clock ticks per-quarter-note used in

recording an audio recording

 - 179 -

TicksPerSec Retrieves the number of clock ticks per-second used in
recording an audio

Updater Retrieves the user ID of the updater of an audio recording
UpdateTime Retrieves the timestamp when an audio recording was

updated
Table 7.5: UDFs Created by the Image Extender

UDF Name Purpose of the UDF
Comment Retrieves or modifies user comments
Content Retrieves or modifies the image content
ContentA Updates the image content with user-supplied attributes
DB2Image Stores the image content
DB2ImageA Stores the image content with user-supplied attributes
Filename Retrieves the name of the file that contains an image
Format Retrieves the image format (for example, GIF)
Height Retrieves the height of an image in pixels
Importer Retrieves the user ID of the importer of an image
ImportTime Retrieves the timestamp when an image was imported
NumColors Retrieves the number of colors used in an image
Replace Updates the content and user comments for an image
ReplaceA Updates the content and user comments for an image with

user-supplied attributes
Size Retrieves the size of an image in bytes
Thumbnail Retrieves a thumbnail-size version of an image
Updater Retrieves the user ID of the updater of an image
UpdateTime Retrieves the timestamp when an image was updated
Width Retrieves the width of an image in pixels

Table 7.6: UDFs Created by the Text Extender

UDF Name Purpose of the UDF
CCSID Returns the CCSID from a handle
Contains Searches for text in a particular document
File Retrieves or modifies the path and name of a file in an existing

handle
Format Retrieves or modifies the document format setting in a handle
Init_Text_Handle Retrieves a partially initialized handle containing information such

as format and language settings
Language Retrieves or modifies the language setting in a handle
NO_of_Matches Searches for matches and returns the number of matches found
Rank Retrieves the rank value of a found text document
Refine Returns a combined search argument from a specified search

argument and refining search argument

 - 180 -

Search_Result Returns an intermediate table with the search result of the specified
search string

Table 7.7: UDFs Created by the Video Extender

UDF Name Purpose of the UDF
AlignValue Gets the bytes per sample value of the audio track of the video
AspectRatio Returns the aspect ratio of the first track of an MPEG1 and MPEG2

video
BitsPerSample Returns the number of bits used to represent the audio
BytesPerSec Returns the average number of bytes per second of the audio track of

the video
Comment Retrieves or modifies user comments
CompressType Returns the compression format of a video (for example, MPEG-2)
Content Retrieves or modifies the video content
ContentA Updates the video content with user-supplied attributes
DB2Video Stores the video content
DB2VideoA Stores the video content with user-supplied attributes
Duration Retrieves the video playing time
Filename Retrieves the name of the file that contains the video
Format Retrieves the video format
Importer Retrieves the user ID of the importer of the video
ImportTime Retrieves the timestamp when the video was imported
MaxBytesPerSec Retrieves the maximum throughput of a video in bytes-per-second
NumAudioTracks Retrieves the number of audio tracks in the video
NumChannels Retrieves the number of audio channels in the audio track of the

video
NumFrames Retrieves the number of frames in the video
NumVideoTracks Retrieves the number of video tracks in a video
Replace Modifies the content and user comments for the video
ReplaceA Modifies the content and user comments for the video with user-

supplied attributes
SamplingRate Retrieves the sampling rate for an audio track of the video
Size Retrieves the size of the video in bytes
Updater Retrieves the user ID of the updater of a video
UpdateTime Retrieves the timestamp when a video was updated
Width Retrieves the width in pixels of a video frame

DB2 Extender Guidelines
The following guidelines cover the additional issues you may encounter as you implement and plan for DB2
Extender usage.

 - 181 -

Be Aware of WLM Requirements for DB2 Extenders

The system administrator must enable the DB2 Extenders you want to use at your site. When the
Extender is enabled, it creates the UDTs, UDFs, administrative tables, and supporting APIs for the
Extender. The Extenders require the use of WLM (Work Load Manager) application environments for
the UDFs and stored procedures that are created. The Extenders use stored procedures to process API
requests. After the DB2 Extenders are installed, you need to establish WLM environments for the
Extender UDFs and stored procedures.

Be Aware of Security Implications

Before you use the DB2 Extenders, you need to consider the security and authorization issues you will
encounter. First, you must decide how to secure access to the actual content of the audio, image, text,
and video data. Additionally, the DB2 Extenders create administrative support tables to store additional
information about the Extenders. Some administrative support tables identify user tables and columns
that are enabled for an Extender. Other administrative support tables contain attribute information about
objects in enabled columns. One example is the QBIC tables created by the Image Extender (QBIC
stands for Query By Image Content). You must decide who should have access to the metadata in the
administrative support tables.
Secondly, you need to determine how to manage the privileges that are automatically granted when the
DB2 Extender is enabled. For example, when a DB2 Extender is enabled, USE privilege is granted to
PUBLIC for the UDT, its related CAST functions, and all the UDFs for the Extender. This may or may not
be acceptable in your shop. If you REVOKE the privileges and GRANT them to specific authids, be
prepared for the potential headache of administering the list of authorized users of the Extender's
functionality.

Your audio, image, and video data can be stored in files external to DB2. In that case, you can also
control access to the content in external files. This can be achieved using operating system security
commands, which are usually performed by a separate security group. By limiting access to the external
files, you limit the ability to retrieve the objects for the Extender's data type.

Caution The files must be in a file system that is compatible with OS/390 UNIX System
Services (USS), for example, a hierarchical file system. OS/390 USS was
previously known as MVS Open Edition.

Another consideration is MMDBSYS. All of the DB2 Extenders use the MMDBSYS SQLID. The UDT and all
of the UDFs created by the DB2 Extender will be created in the MMDBSYS schema. You should consider
creating the MMDBSYS user ID to manage the administrative support tables. Use an appropriate external
security package (such as ACF2 or RACF) to create an MMDBSYS user ID.
The DB2 Extenders also create administrative APIs, many of which require special authority. For
example, SYSADM or the SELECT privilege on audio columns in all searched tables is required for the
DBaAdminGetInaccessibleFiles API. This API returns the names of inaccessible files that are
referenced in audio columns of user tables.
Finally, you must consider who can issue administration commands to the db2ext command-line
processor for DB2 Extenders.

The administrative APIs and administration commands are documented in the DB2 Extenders manuals:

SC26-9650 DB2 UDB V6 Image, Audio, and Video Extenders:
Administration and Programming

SC26-9651 DB2 UDB V6 Text Extender: Administration and
Programming

Summary

Now that you understand how to create DB2 databases that manage complex, multimedia data types, turn to
the next chapter for additional guidelines on DB2 security and authorization, as well as other miscellaneous
implementation tips that were not already covered in Chapters 1 through 7.

Chapter 8: Miscellaneous Guidelines

 - 182 -

Overview
This chapter provides SQL tips and techniques for the aspects of SQL not covered in the first three chapters.
I've broken down these guidelines into three categories:

 DB2 security and authorization (DCL)
 View usage and implementation
 General SQL coding techniques

Security and Authorization Guidelines

The proper application of DB2 security can have a significant impact on the usability and performance of
DB2 programs. The capability to access and modify DB2 objects and resources is authorized with SQL
GRANT statements and removed with SQL REVOKE statements. The complete security picture, however, is
not this simple.

Many features of DB2 security can complicate security administration, such as
 The cascading effect of the DB2 REVOKE statement
 Secondary authorization IDs
 PUBLIC access
 Use of dynamic SQL

To enable authorization, the GRANT statement is used to bestow privileges on authids. There are 10
different classes of privileges that can be granted:

 COLLECTION To GRANT the ability to BIND packages into specified collections or to
GRANT PACKADM authority for specified collections

 DATABASE To GRANT database-related privileges such as DBADM, DBCTRL,
DBMAINT, or the ability to CREATE or DROP objects, display, start, and stop objects,
or execute utilities for specified databases

 DISTINCT TYPE To GRANT the ability to use user-defined distinct types (UDTs) in
DB2 tables

 FUNCTION or STORED PROCEDURE To GRANT the ability to execute specified
functions and stored procedures

 PACKAGE To GRANT the ability to BIND and REBIND specified packages, to use the
COPY option of BIND for specified packages, or to run application programs that use
specified packages

 PLAN To GRANT the ability to BIND, REBIND, FREE, or EXECUTE specified plans
 SCHEMA To GRANT the ability to ALTER, CREATE, or DROP user-defined distinct

types, user-defined functions, stored procedures, and triggers in the specified schema
or schemata

 SYSTEM To GRANT system management-related abilities including ARCHIVE,
BINDADD, BINDAGENT, BSDS, CREATEALIAS, CREATEDBA, CREATEDBC,
CREATESG, CREATETMTAB, DISPLAY, MONITOR1, MONITOR2, RECOVER,
STOPALL, STOSPACE, SYSADM, SYSCTRL, SYSOPR, and TRACE

 TABLE or VIEW To GRANT the ability to ALTER, CREATE, or DROP triggers,
indexes, and referential constraints, or to SELECT, INSERT, UPDATE, and DELETE
data from the specified views or tables

 USE To GRANT the ability to create objects in specific bufferpools, storage groups,
and tablespaces

Likewise, there are 10 different classes of REVOKE statements that can be issued—one for each class
of GRANT that can be issued. As might be expected, the REVOKE statement removes authority from
authids.
Guidelines for using GRANT and REVOKE to properly implement DB2 security are addressed in this
section on authorization guidelines.
Use Care when Granting PUBLIC Access
Administering security can be a complex duty. Simply allowing blanket access to certain DB2 objects
and resources often appears easier. The PUBLIC authority of DB2 gives the security administrator this
option, but it is usually an unwise choice.
For example, when many shops install DB2, they grant PUBLIC access to the default database,
DSNDB04. Inevitably, users assign tablespaces to this database. Because the tablespaces are in a
default area, they are difficult to monitor and control. The area quickly becomes overused. The DBA unit
is unaware of some tables that exist. If an error occurs, recovery might be impossible. Additionally, the
only way to move a tablespace to a different database is by dropping the tablespace and redefining it,
specifying another database name.

 - 183 -

The only valid uses for PUBLIC access are for objects and resources that should be available to
everyone who has access to the DB2 subsystem or if another security mechanism is in place. An
example of the first use is granting the BINDADD privilege to PUBLIC in a test environment to allow all
DB2 programmers to create DB2 application plans and packages. An example of the second use is
granting EXECUTE authority for CICS transactions to PUBLIC and using CICS transaction security to
control access. Other exceptions to avoiding PUBLIC access follow.
In some installations, the security is thought to be adequately provided by application programs, so
PUBLIC access is implemented for objects. Implementing this access is unwise unless ad hoc access to
these objects is forbidden. If ad hoc use is allowed, users have access to the data through SPUFI or
QMF and could corrupt the data. In general, you should grant PUBLIC access only as a last resort.
Even when ad hoc access is forbidden, objects granted PUBLIC access can be accessed by hackers or
folks who "bend the rules."
Grant SELECT Authority on SYSIBM.SYSDUMMY1 to PUBLIC
Be sure to grant SELECT authority to PUBLIC for the SYSIBM.SYSDUMMY1 table. SYSIBM.SYSDUMMY1
contains a single row. It is designed to be used with SQL statements in which a table reference is
needed but the table contents are unimportant.
Grant DISPLAY Authority to PUBLIC
Consider granting DISPLAY authority for each DB2 subsystem to PUBLIC. PUBLIC DISPLAY authority
will not pose a security threat, but can improve productivity. Application developers can use DISPLAY to
identify active programs and utilities affecting performance without requiring DBA assistance.

Do Not Repeat Security Grants

DB2 allows authorization to be granted multiple times to the same grantee for the same object or
resource. As of DB2 V3, duplicate grants from the same grantor are not recorded in the DB2 Catalog.
However, if the grants are from different grantors, duplicate authorizations still can occur. You should
avoid duplicate authorizations because they cause confusion and clutter the DB2 Catalog with useless
entries.
Duplicate authority is recorded in the DB2 Catalog most commonly when SQL GRANT statements have
been coded in a common CLIST, REXX EXEC, or standard job. An example is a CLIST used by
application programmers to BIND a plan and then GRANT EXECUTE authority to a list of users
automatically. You should not use this method because it can lead to duplicate authorization entries in
the DB2 Catalog.

Consolidate Security Grants
SELECT, INSERT, UPDATE, and DELETE authority should be granted using a single GRANT statement,
rather than two to four separate statements. If one statement is used, one catalog row is created,
instead of multiple rows (one for each GRANT statement that is issued).

Do Not Grant More Security than Necessary
Secure your DB2 application environment. Using group-level authority (for example, SYSADM or
SYSOPR) is tempting because coding and maintaining it is easier. Group authorities, however, often
provide more security than is required. SYSADM authority is the most powerful level of authorization
provided by DB2 and should be reserved only for those DBAs and system programmers who need the
authority and know how to use it wisely.
If system-development staff members are allowed to access and modify table data but are not allowed
to create indexes and tables, do not grant them DBADM authority. Simply grant them the appropriate
authority for the appropriate tables—in this case, SELECT, UPDATE, INSERT, and DELETE.

Plan DCL when Issuing DDL

Remember that when DB2 objects are dropped, the security for the objects is dropped as well. If you
plan to drop and re-create a database, for example, be prepared to re-create the security for the
database and all subordinate objects (such as tablespaces, tables, views, and indexes).

Remember also that when plans are freed, all security is removed for the freed plans. Take this fact into
account before freeing plans that you might need later.

Use Group-Level Security and Secondary Authids
When possible, use group-level security (for example, DBADM and DBCTRL) and secondary authids to
reduce administrative tasks. Do not use group-level security, however, if the group will provide
unwanted authority to users.

 - 184 -

An alternative authorization ID is provided when you use the secondary authid extension, a useful
timesaving feature of DB2 security. Each primary authid can have secondary authids associated with it.
You can create these associations by using an external security package such as RACF or a hard-
coded table of IDs. You can then grant security to a secondary authid assigned to a functional group of
users.
For example, if all users in the Finance department have been assigned a secondary authid of
FINANCE, you can provide them with blanket query access by granting the SELECT authority to
FINANCE for all financial tables. No additional security at the primary authid level is necessary when
personnel leave or are hired. This feature eases the administrative burden of security allocation.

Additionally, secondary authids can reduce the workload of the DBA staff by offloading authorization
tasks to the corporate security group. Security administration groups typically can support adding and
deleting authids from a RACF group, but are not usually capable of issuing appropriate DB2 DCL
statements.

Create All DB2 Objects Using Secondary Authid
When objects are created, implicit authority is automatically granted to the object owner. By using
secondary authids when creating DB2 objects, administrative burden can be reduced. This is important
when DBAs do not have SYSADM authority or when the DBA staff changes. If a secondary authid is not
used as the object owner, it may be necessary to drop and re-create entire object structures to revoke
implicit authorization.

Use External Security with Caution

DB2 provides the ability to replace its internal security mechanism with an external security package,
such as RACF. When doing this, all security to DB2 objects is handled outside of DB2 instead of inside
of DB2. The advantage of this approach is the ability to offload DB2 security administration from the
DBA staff to in-house security experts.

To determine who has the ability to access DB2 objects, DBAs will need to access the external security
package instead of querying DB2 Catalog tables. Before replacing DB2 security with an external
security package, be sure that your policies and procedures are changed to enable DB2 DBAs to, at
least, review the authorizations as managed in the external security package.

Furthermore, be sure that any third-party DB2 products used by your shop can operate without requiring
DB2 authority to be stored in the DB2 Catalog.
Restrict SYSADM Authority
SYSADM is a powerful group authority that you should use sparingly. You should restrict its use to the
corporate DBA function and the appropriate system programming support staff. End users, managers,
and application development personnel should never need SYSADM authority. In general, no more than
a half dozen technical support personnel should have SYSADM authority.
Use SYSCTRL for Additional Control
You can limit SYSADM authority even further by granting SYSCTRL instead of SYSADM to database
administration and technical support personnel who play a backup role. SYSCTRL gives the same
authority as SYSADM without access to data in application tables that were not created by the SYSCTRL
user. End users, managers, and application development personnel should never be granted SYSCTRL
authority.
SYSCTRL authority is one of the most misunderstood security features of DB2. It cannot be used to
completely ensure that the SYSCTRL user will never have access to end user data. A primary objective
of the SYSCTRL authority is to enable a user—who has no general requirement to manipulate table
data—to administer a DB2 environment. In essence, you can think of SYSCTRL as SYSADM without
explicit DB2 data authority.
Basically, SYSCTRL authority implies that the user can exercise DBCTRL authority over tables in any
database. However, CREATEDBA authority is also implicit under SYSCTRL. Therefore, the SYSCTRL user
can create databases and obtain DBADM authority over them, thereby enabling the SYSCTRL user to
access and modify the data in any table within that database.
To get around this problem, you should implement procedures or standards to ensure that the SYSCTRL
user never creates databases. You must do so manually because there is no systematic way of
prohibiting SYSCTRL from creating databases. Assign the database creation function to a SYSADM user.
After the database is created by another user, the SYSCTRL user can administer the database without
accessing the data. As long as the SYSCTRL user has not created the database in question and has not

 - 185 -

been granted any other authority (that is, SELECT, DBADM, and so on), he or she cannot access the data
in user tables.
Use BINDAGENT for Package and Plan Administration
Use the BINDAGENT authority to permit the binding of plans and packages without the ability to execute
them. BINDAGENT authority is sometimes called "assigning" authority. BINDAGENT authority enables
one user to assign another user the capability of performing tasks (in this case, plan and package
binding) on his or her behalf.
A centralized area in your organization should be responsible for binding production plans and
packages. This area can be granted the BINDAGENT authority from all production plan and package
owners. This approach is preferable to granting SYSADM or SYSCTRL because only bind operations are
enabled when you grant BINDAGENT. BINDAGENT provides all the authority necessary to administer the
bind function effectively.

Bind Plans from a Restricted User ID

You can acquire a greater level of control over the bind function by using a restricted user ID for all
production binding. This user ID should have no logon capability so that the only access to the user ID
is through a batch job rather than online access. You can provide external security with RACF (or any
other security tool) to prohibit the unauthorized use of this user ID.
Batch jobs that bind the application plans and packages as necessary should be created. The restricted
user ID should have BINDAGENT authority to allow successful binding with the OWNER parameter. The
batch jobs are then submitted with the restricted user ID by the group in your organization responsible
for binding. This solution permits multiple authorized individuals to submit batch binds from the same
user ID. This solution also can ease the administrative burden associated with plan and package
ownership, the attrition of binding agent personnel, and plan monitoring.

This scenario may not be feasible if your data security standards prohibit restricted user IDs. Some data
security shops think that restricted user IDs have a propensity to fall into unauthorized hands. If this
situation cannot be prevented, restricted user IDs for binding might not be appropriate for your shop.

Do Not Issue DCL from Application Programs
Avoid issuing GRANT and REVOKE statements from an application program. Security is granted ideally
by an agent who understands the authorization needs of the organization.

Although you can set up a parameter-driven program to administer security, you generally cannot
automate the task completely. Also, your program must avoid granting duplicate privileges, which is
allowed by DB2. Otherwise, many duplicate privileges could be granted for your system, impeding
overall system performance.
Additionally, an application program that grants security must be executed by a user who has the
appropriate security to issue the GRANTs and REVOKEs coded in the application program. This could be
a loophole in the security structure.
Finally, a program that issues REVOKE and GRANT statements can have a great impact on the overall
scheme of your operating environment. Consider the following problems that can be caused by a
program issuing DCL:

 The program tries to REVOKE a privilege from a user who is currently executing a
transaction that would no longer be valid after the REVOKE.

 The program REVOKEs a privilege, causing numerous cascading REVOKEs that are
difficult to trace after invocation. After the program is finished, the potential for many
missing authorizations exists. This situation can wreak havoc on a production DB2
subsystem.

 What should the COMMIT and ROLLBACK structure of the program be? If the
program abends, should all security be committed or rolled back and reapplied? The
answer to these questions may not be immediately obvious in the absence of in-depth
system documentation. It is better to avoid these types of questions by mandating that
all DCLs be issued by skilled technicians that understand the ramifications of each
GRANT and REVOKE statement.

Be Careful when Granting Access to a Synonym

Avoid granting others access to a synonym. A synonym, by definition, can be used only by its creator.
Granting access to a synonym grants access to the underlying base table for which the synonym was
created.

 - 186 -

For example, consider a synonym called USER1.DEPARTMENT for the DSN8610.DEPT table. If USER1
wants to grant USER2 the authority to query this synonym, USER1 could code the following:
SELECT
 ON TABLE USER1.DEPARTMENT
 TO USER2;
In this case, USER2 now has SELECT authority on the DSN8610.DEPT table, not on the synonym
created by USER1. Because this situation can be confusing, you should avoid granting access to
synonyms.

Be Aware of Automatic Security

When you create a DB2 object, DB2 automatically grants you full security to
 Use the object in any way
 Grant others the use of the object

If users need access to an object they did not create, they must get the creator, a SYSADM, a SYSCTRL,
or someone else with the proper authority to grant them access. Additionally, the only way to change
implicit authority is to drop the object and re-create it (and all dependent objects).

Be Aware of Package and Plan Security Differences
A user with the BIND privilege on a plan can free that plan, but a user with the BIND privilege on a
package cannot free that package. To free a package, the user must meet one of the following
conditions:

 Be the owner of the package
 Have SYSADM or SYSCTRL authority
 Have BINDAGENT privilege granted by the package owner

Avoid WITH GRANT OPTION
Be careful with the multilevel security of DB2. When a privilege is granted to a user using WITH GRANT
OPTION, the user can also grant that privilege. This capability can create an administrative nightmare
for DB2 security agents. Consider the following scenario:

1. SYSADM grants a privilege to USER1 with the GRANT option.
2. USER1 grants this privilege to USER2 without the GRANT option.
3. USER1 grants this privilege to USER3 with the GRANT option.
4. SYSADM grants this privilege to USER5 with the GRANT option.
5. USER5 grants this privilege to PUBLIC.
6. USER3 grants this privilege to USER9.
7. SYSADM revokes the privilege from USER1.

Who has this privilege now? When SYSADM revokes the privilege from USER1, DB2 cascades the
revokes to all the users who were granted this privilege directly or indirectly by USER1. This effectively
revokes the privilege from everybody except USER5. However, USER5 granted this privilege to PUBLIC,
so everybody—including USER1—still has this privilege. WITH GRANT OPTION is the only privilege
removed by the SYSADM REVOKE.
As a general rule, never allow the WITH GRANT OPTION in a production environment, and control and
limit the availability of the WITH GRANT OPTION in a test environment. Consider purchasing an add-on
security maintenance tool to monitor and minimize the effects of DB2's cascading revoke. Security tools
are described further in Part VII, "The Ideal DB2 Environment."
Revoking a SYSADM
Use caution when revoking a SYSADM from the system. Simply revoking the SYSADM authority from a
user can cause cascading revokes. To revoke a SYSADM without causing cascading revokes, follow this
procedure:

1. Create a DSNZPARM member specifying the SYSADM user ID to be revoked as an
Install SYSADM. If both Install SYSADM parameters are currently being used, simply
remove one of them and place the SYSADM user ID to be revoked in its place.
Removing an Install SYSADM does not cause cascading revokes.

2. Revoke the SYSADM authority from the user.
3. Modify the DSNZPARM member to remove the user ID as an Install SYSADM.

Replace the old Install SYSADM user ID (if one was removed).
Caution If, after you revoke SYSADM, the user ID is still valid in the system, its

associated user can revoke privileges that were previously granted when the
user was a SYSADM. This user has this capability because the user ID remains
as the GRANTOR of the authority in the DB2 Catalog.

 - 187 -

Avoid Explicit DELETE, UPDATE, and INSERT Authority
Consider not permitting users to have DELETE, UPDATE, and INSERT authority on production tables.
You can enable users to modify data through application programs by granting them EXECUTE authority
on an application plan that performs the desired type of updates. This way, you can effectively limit data
modification to a controlled environment.

You should strictly control data modification because DB2 set-level processing can cause entire tables
to be destroyed with a single SQL statement. Consider this example:
UPDATE DSN8610.DEPT
 SET DEPT = 'YYY';
This statement sets every department in the DEPT table to 'YYY', which is probably not required. If
uncontrolled deletion, insertion, and modification are permitted, data almost certainly will be lost
because of careless SQL modification statements.

Be Aware of Package and Plan Authorization Differences
Granting BIND PLAN authority to a user ID implicitly grants the ability to free that plan. However, the
same is not true of BIND PACKAGE authority. Only the package owner can free or drop a package.

Consider DCE Security

DB2 V5 and later releases can use the Distributed Computing Environment (DCE) security services to
authenticate remote users. Users can access any DCE-based server (including DB2 on OS/390) using
a single DCE user ID and password. DCE and DCE security are complex systems management topics
for distributed, interconnected networks, and in-depth coverage is beyond the scope of this book.
Limit Alter Authority with the REFERENCES Privilege
The REFERENCES privilege grants a user authority to CREATE or DROP referential constraints in which
the named table is the parent table. Grant the REFERENCES privilege to administrators needing to
maintain RI but not needing general ALTER authority on DB2 objects.

Consider Dynamic Authority
As of DB2 V4, authorization for dynamic SQL in application programs can be treated the same as static
SQL. For more details, refer to Chapter 10, "Dynamic SQL Programming."

Consider Using Stored Procedures to Implement Security
You can create stored procedures to provide specific, tailored security. You can do so by coding specific
SQL statements within a stored procedure and granting specific access to that procedure. The users
need not have authorization to the underlying tables accessed by the stored procedure. This approach
allows you to hide complex authorization rules in the details of a stored procedure.

View Usage and Implementation Guidelines

DB2 enables you to create a virtual table known as a view. Often the dubious recommendation is made to
create one view for each base table in a DB2 application system. The reasoning behind such a suggestion
usually involves the desire to insulate application programs from database changes, which is supposedly
achieved by writing all programs to access views instead of base tables. Although this idea sounds good, I
explain why you should avoid indiscriminate view creation in the following sections.

All operations on a DB2 table result in another table. This is a requirement of the relational model. A
view is a representation of data stored in one or more tables. It is defined using the select, project, and
join operations.

A view is represented internally to DB2 by SQL statements, not by stored data. You therefore can define
views using the same SQL statements that access data in base tables. The SQL comprising the view is
executed only when the view is accessed. This allows the creation of logical tables that consist of a
subset of columns from a base table or tables. When the data in the underlying base tables changes,
the changes are reflected in any view that contains the base table. You also can create views based on
multiple tables by using joins.

One of the most fertile grounds for disagreement between DB2 professionals is the appropriate use of
views. Some analysts promote the liberal creation and use of views, whereas others preach a more
conservative approach. Usually, their recommendations are based on notions of reducing a program's
dependency on a DB2 object's data structure.

 - 188 -

This section delineates the best philosophy for the creation and use of views based on my experience.
By following each of the guidelines in this section, you can establish a sound framework for view
creation and use in your organization.

The View Usage Rule
Create a view only when a specific, stated, and rational goal can be achieved by the view.

Each view must have a specific and logical use before it is created. (Do not simply create a view for
each base table.) Views excel for the following seven basic uses:

 To provide row and column level security
 To ensure efficient access paths
 To ensure proper data derivation
 To mask complexity from the user
 To provide limited domain support
 To rename columns
 To provide solutions that cannot be accomplished without views

If you're creating a view that does not apply to one of these seven categories, you should re-examine
your view requirements. Chances are, the use is not a good one.

Using Views to Implement Security
Views created to provide security on tables effectively create a logical table that is a subset of rows,
columns, or both from the base table. By eliminating restricted columns from the column list and
providing the proper predicates in the WHERE clause, you can create views to limit a user's access to
portions of a table.

Using Views to Ensure Optimal Access
When you create a view for access, you can guarantee efficient access to the underlying base table by
specifying indexed columns and proper join criteria. For efficient access, you can code views so that
they specify columns indexed in the WHERE clause. Coding join logic into a view also increases the
efficiency of access because the join is always performed properly. To code a proper join, use the
WHERE clause to compare the columns from like domains.

Using Views for Data Derivation
Data derivation formulas can be coded into the SELECT list of a view, thereby ensuring that everyone is
using the same calculation. Creating a view that contains a column named TOTAL_COMP that is defined
by selecting SALARY + COMMISSION + BONUS is a good example of derived data in a view. Instead
of trying to ensure that all queries requiring total compensation add the three component columns, the
queries can use the view containing the TOTAL_COMP column instead and not worry about how it is
calculated.

Using Views to Mask Complexity

Somewhat akin to coding appropriate access into views, coding complex SQL into views can mask the
complexity from the user. Coding this way can be extremely useful when your shop employs novice
DB2 users (whether they are programmers, analysts, managers, or typical end users).

Consider the following rather complex SQL that implements relational division:
SELECT DISTINCT PROJNO
FROM DSN8610.PROJACT P1
WHERE NOT EXISTS
 (SELECT ACTNO
 FROM DSN8610.ACT A
 WHERE NOT EXISTS
 (SELECT PROJNO
 FROM DSN8610.PROJACT P2
 WHERE P1.PROJNO = P2.PROJNO

 - 189 -

 AND A.ACTNO = P2.ACTNO);
This query uses correlated subselects to return a list of all projects in the PROJACT table that require
every activity listed in the ACT table. If you code this SQL into a view called ALL_ACTIVITY_PROJ, for
example, the end user need only issue the following simple SELECT statement instead of the more
complicated query:
SELECT PROJNO
FROM ALL_ACTIVTY_PROJ

Using Views to Support Domains
Most relational database management systems do not support domains, and DB2 is no exception.
Domains are instrumental components of the relational model and, in fact, were in the original relational
model published by Ted Codd in 1970—over three decades ago! A domain basically identifies the valid
range of values that a column can contain.

Note Domains are more complex than this simple definition, of course. For example,
the relational model states that only columns pooled from the same domain
should be able to be compared within a predicate (unless explicitly overridden).

Views and table check constraints can be used to create crude domains. In general, table check
constraints should be preferred over views for creating domain-like functionality because check
constraints are easier to implement and maintain. However, using views with the WITH CHECK OPTION
can provide domain-like functionality combined with other view features (such as securing data by
eliminating columns).
You can implement some of the functionality of domains by using views and the WITH CHECK OPTION
clause. The WITH CHECK OPTION clause ensures the update integrity of DB2 views. It guarantees that
all data inserted or updated using the view adheres to the view specification. For example, consider the
following view:
CREATE VIEW EMPLOYEE
 (EMP_NO, EMP_FIRST_NAME, EMP_MID_INIT,
 EMP_LAST_NAME, DEPT, JOB, SEX, SALARY)
AS
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 WORKDEPT, JOB, SEX, SALARY
 FROM DSN8610.EMP
 WHERE SEX IN ('M', 'F')
WITH CHECK OPTION;
The WITH CHECK OPTION clause, in this case, ensures that all updates made to this view can specify
only the values 'M' or 'F' in the SEX column. Although this example is simplistic, you can easily
extrapolate from this example where your organization can create views with predicates that specify
code ranges using BETWEEN, patterns using LIKE, or a subselect against another table to identify the
domain of a column.

Although you can create similar functionality by using check constraints, views can limit the columns
and rows while providing data value checking. Consider the following example:
CREATE VIEW HIGH_PAID_EMP
 (EMP_NO, EMP_FIRST_NAME, EMP_MID_INIT,
 EMP_LAST_NAME, DEPT, JOB, SALARY)
AS
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 WORKDEPT, JOB, SALARY
 FROM DSN8610.EMP
 WHERE SALARY > 75000.00
WITH CHECK OPTION;
This view eliminates several columns (for example, PHONENO, HIREDATE, SEX, and so on) and multiple
rows (where SALARY is less than or equal to $75,000). The view is updateable because all the columns

 - 190 -

not included in the view are nullable. However, only rows in which the salary conforms to the predicate
can be modified. This combined functionality cannot be provided by check constraints alone.

Let me add these words of caution, however: When inserts or updates are performed using these types
of views, DB2 evaluates the predicates to ensure that the data modification conforms to the predicates
in the view. Be sure to perform adequate testing prior to implementing domains in this manner to
safeguard against possible performance degradation.
You can specify the WITH CHECK OPTION clause for updateable views. This way, you can ensure that
all data inserted or updated using the view adheres to the view specification. Consider the following
view:
CREATE VIEW HIGH_PAID_EMP
 (EMPLOYEE_NO, FIRST_NAME, MIDDLE_INITIAL,
 LAST_NAME, DEPARTMENT, JOB, SEX, SALARY)
AS
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 WORKDEPT, JOB, SEX, SALARY
 FROM DSN8610.EMP
 WHERE SALARY > 75000.00;
Without the WITH CHECK OPTION clause, you can use this view to add data about employees who
make less than $75,000. Because this approach is probably not desirable, add WITH CHECK OPTION
to the view to ensure that all added data is appropriate given the view definition.
There are two forms of the WITH CHECK OPTION:

 WITH CASCADED CHECK OPTION specifies that all search conditions are checked
for the view in which the clause exists and any views it accesses regardless of the
check options specified.

 WITH LOCAL CHECK OPTION specifies that search conditions on underlying views
are checked conditionally. If a check option exists in underlying views, it is checked;
otherwise, it is not.

Prior to DB2 V5, the CASCADED and LOCAL keywords were not provided. The WITH CHECK OPTION
clause provided the equivalent functionality of WITH LOCAL CHECK OPTION. To confuse matters,
views created specifying WITH CHECK OPTION for DB2 V5 and higher will provide WITH CASCADED
CHECK OPTION functionality. Therefore, the general rule of thumb is never to specify WITH CHECK
OPTION only as of V5; instead, you should specify either WITH CASCADED CHECK OPTION or WITH
LOCAL CHECK OPTION.

Using Views to Rename Columns

You can rename columns in views. This capability is particularly useful if a table contains arcane or
complicated column names. Sometimes, particularly for application packages purchased from third-
party vendors, renaming columns using a view is useful to make the names more user-friendly. Good
examples of such tables are the DB2 Catalog tables.

Consider the following view:
CREATE VIEW PLAN_DEPENDENCY
 (OBJECT_NAME, OBJECT_CREATOR, OBJECT_TYPE,
 PLAN_NAME, IBM_REQD)
AS
 SELECT BNAME, BCREATOR, BTYPE,
 DNAME, IBMREQD
 FROM SYSIBM.SYSPLANDEP
Not only does this view rename the entity from SYSPLANDEP to the more easily understood name
PLAN_DEPENDENCY, but it also renames each of the columns. Understanding PLAN_NAME as the name
of the plan is easier than understanding DNAME. You can create views on each of the DB2 Catalog
tables in this manner so that your programmers can better determine which columns contain the
information that they require. Additionally, if you have other tables with clumsy table and/or column

 - 191 -

names, views can provide an elegant solution to renaming without your having to drop and re-create
anything.
As of DB2 V4, you can rename columns in queries by using the AS clause. However, the AS clause
does not provide the same function as column renaming using views because you must still specify the
original name of the column in the query.

Using Views when a Single SQL Statement Will Not Suffice

Prior to the introduction of inline views in DB2 V4, views were the only solution in some situations. Inline
views have effectively eliminated the case in which you cannot code complex data access requests
using SQL alone. Consider a scenario in which you want to report on detail information and summary
information from a single table—for example, if you want to report on column length information from the
DB2 Catalog. For each table, you want to provide all column details and, on each row, you also want to
report the maximum, minimum, and average column lengths for that table. Additionally, you want to
report the difference between the average column length and each individual column length.
Views provide one solution to this dilemma. Consider the COL_LENGTH view based on
SYSIBM.SYSCOLUMNS shown here:
CREATE VIEW COL_LENGTH
 (TABLE_NAME, MAX_LENGTH, MIN_LENGTH, AVG_LENGTH)
AS
 SELECT TBNAME, MAX(LENGTH),
 MIN(LENGTH), AVG(LENGTH)
 FROM SYSIBM.SYSCOLUMNS
 GROUP BY TBNAME
After you create the view, you can issue the following SELECT statement joining the view to the base
table, thereby providing both detail and aggregate information on each report row:
SELECT TBNAME, NAME, COLNO, LENGTH,
 MAX_LENGTH, MIN_LENGTH, AVG_LENGTH,
 LENGTH - AVG_LENGTH
FROM SYSIBM.SYSCOLUMNS C,
 authid.COL_LENGTH V
WHERE C.TBNAME = V.TABLE_NAME
ORDER BY 1, 3

However, with inline views, you can code an equivalent solution using one SQL statement, as follows:
SELECT TBNAME, NAME, COLNO, LENGTH,
 MAX_LENGTH, MIN_LENGTH, AVG_LENGTH,
 LENGTH - AVG_LENGTH
FROM SYSIBM.SYSCOLUMNS INNER JOIN
 (SELECT TBNAME AS TABLE_NAME,
 MAX(LENGTH) AS MAX_LENGTH,
 MIN(LENGTH) AS MIN_LENGTH,
 AVG(LENGTH) AS AVG_LENGTH
 FROM SYSIBM.SYSCOLUMNS
 GROUP BY TABLE_NAME) AS T1
ON TBNAME = TABLE_NAME
ORDER BY 1, 3;

The one SQL statement solution is the preferred method because it is easier to understand, tune, and
debug.

 - 192 -

Reasons Not to Create One View Per Base Table
Often, the dubious recommendation is made to create one view for each base table in a DB2 application
system. The reason behind such a suggestion usually involves the desire to insulate application programs
from database changes. This insulation is purported to be achieved by mandating that all programs access
views instead of base tables. Although this idea sounds good, you should avoid indiscriminate view creation.

The following is an example of a base table and the view that would be created for it. Here is the base
table:
CREATE TABLE user ID.BASE_TABLE
 (COLUMN1 CHAR(10) NOT NULL,
 COLUMN2 DATE NOT NULL WITH DEFAULT,
 COLUMN3 SMALLINT,
 COLUMN4 VARCHAR(50)
) IN DATABASE db_name;

And here is the base view:
CREATE VIEW user ID.BASE_VIEW
 (COL1, COL2, COL3, COL4)
AS
 SELECT COLUMN1, COLUMN2, COLUMN3, COLUMN4
 FROM user ID.BASE_TABLE;

Because a base table view does not break any of the rules for view updateability, all SQL statements
can be executed against it. The basic reasoning behind creating base table views is the erroneous
belief that it provides increased data independence.

For every reason that can be given to create one view per base table, a better reason can be given to
avoid doing so. This section details all the arguments for creating one view per base table and explains
why the reasoning is not sound.

Adding Columns and the Impact on DB2 Programs
The first argument in favor of base table views is typically, "If I add a column to a table, I will not have to
change any programs accessing that table." The reasoning behind this assertion is that you can write
programs that are independent of the table columns. If a program retrieves data using SELECT * or
INSERTs rows, no knowledge of new columns would be required if the column is added correctly.
The SELECT * statement returns all the columns in the table. If a column is added to a table after the
program is coded, the program does not execute because the variable needed to store the newly
retrieved column is not coded in the program. If the program uses a view, however, the program
executes because the view has only the old columns, not including the new column just added.
If the program is coded to update views instead of base tables, the INSERT statement continues to work
as well. However, the column added to the base table must allow default values. The default value can
be either the null value or the DB2 default when a column is defined as NOT NULL WITH DEFAULT.
The INSERT to the view continues to work even though the view does not contain the new column. The
row is inserted, and the new column is assigned the appropriate default value.
It is not a good idea to use base table views to insulate programs from the impact of new columns. If
you code your application programs properly, you do not have to make changes when a column is
added. Proper program coding refers to coding all SQL statements with column names. If column
names can be supplied in an SQL statement, the columns should always be explicitly specified in the
SQL statement. This rule applies in particular to the INSERT and SELECT * statement and is true
whether you are using views or base tables.
The SELECT * statement should never be permitted in an application program. Every DB2 manual and
text issues this warning—and with good reason. All DB2 objects can be dropped and re-created and/or
altered. If a DB2 object upon which a program relies is modified, a SELECT * in that program ceases to
function.
This caveat does not change because you're using views. Even views can be dropped and re-created. If
the program uses SELECT * on a view and the view has changed, the program does not work until it is
modified to reflect the changes made to the view.

 - 193 -

Do not think that you will never modify a view. Some companies establish a policy of keeping views
inline with their base tables. Doing so causes the view to change when the table changes. Others use
views for security. As security changes, so do the views.
If you eliminate the SELECT * statement, you eliminate this reason for using views. An INSERT
statement works against a base table the same as a base table view if the column names are provided
in the INSERT statement. As long as you add the new column allowing a default value, the program
continues to work.

Removing Columns and the Impact on DB2 Programs

When you remove a column from a DB2 table, you must drop and re-create the table without the
column. You can re-create views that access the table being modified, substituting a constant value in
place of the removed column. Application programs that access the views then return the constant
rather than the column that was dropped.

It is not a good idea to use base table views to insulate programs from the impact of removing columns
from a table. The thinking that if you remove a column from a table, you do not have to change the
application program is untrue. If you remove the column from the base table, you must remove it from
the view. If you do not remove it from the view and you add a constant to the view, the view can no
longer be updated. Also, all queries and reports return a constant instead of the old column value, and
the integrity of the system is jeopardized.

Users must be able to rely on the data in the database. If constants are returned on screens and
reports, confusion will arise. Also, if the data (that is now a constant) is used in any calculations, these
values are also unreliable. These unreliable calculation results could be generated and then inserted
into the database, propagating bad data.

The removal of data from a database must be analyzed in the same manner as any change. Simply
returning constants is not a solution and will cause more problems than it solves.

Splitting Tables and the Impact on DB2 Programs

Another popular argument in favor of using base table views centers on anticipating the need to split a
DB2 table into two tables. The argument is that if you split a table into two tables, you can change the
base table view and thereby avoid changing any program accessing the table. Sometimes one DB2
table must be split into two tables. This is usually done based on access requirements to increase the
efficiency of retrieval. For example, consider a table with 10 columns. Fifty percent of the queries
against the table access the first six columns. The remaining 50% of the queries access the other four
columns and the key column. This table could be a candidate for splitting into two tables to improve
access: one new table containing the first six columns and the second new table containing the
remaining four columns and the key column.

If the programs use a view, you can recode the view to be a join of the two new tables. You do not have
to change the programs to reflect the modification; only the view changes.

It is not a good idea to use base table views to insulate programs from the impact of splitting tables. If
you must split a table into two tables, you must have a very good reason for doing so. As I indicated,
this action is usually driven by performance considerations. To increase efficiency, you must change the
underlying SQL to take advantage of the tables that have been split. Queries accessing columns in only
one of the new tables must be modified to access only that table.
Using the logic given by the view supporters, no changes are made to programs. If no changes are
made, performance suffers because of the view changes, though. The views are now joins instead of
straight SELECT *s. No SQL code changes. Every straight SELECT * now creates a join, which is less
efficient than a straight SELECT *.
A change of this magnitude requires a thorough analysis of your application code. When table column
definitions change, SQL changes and programs change; these changes cannot be avoided. A trained
analyst or DBA must analyze the application's SQL, including SQL in application PLANs, QMF queries,
and dynamic SQL. Queries that access columns from both of the new tables must be made into a join.
You do not want to create indiscriminate joins, however. Queries that access columns from only one of
the two tables must be recoded as a straight SELECT * against that table to increase performance.
Also, any programs that update the view must be changed. Remember, views that join tables cannot be
updated.

 - 194 -

If, after investigating, you determine that some queries require joining the two new tables, you can
create a view to accommodate these queries. The view can even have the same name as the old table
so that you can minimize program changes. The two new tables can be given new names. The view is
created only when it is needed—a more reasonable approach to change management.

A change of this magnitude is rarely attempted after an application has been moved to production. This
fact is usually not considered when the recommendation is made to use views.

Combining Tables and the Impact on DB2 Programs
Base table view proponents also advocate using views to insulate programs from the effects of
combining two tables into a single table. This situation is the inverse of the preceding situation. If two
tables are almost always joined, you can increase efficiency by creating a "prejoined" table. The
overhead incurred by joining the two tables is avoided. Instead of a join, a straight SELECT * can now
be issued against the new table.

If the application programs use views in this instance, you can modify the views to subsets of the new
combination table. In this way, you can avoid program changes.

Once again, base table views do not provide the level of insulation desired. The two tables are
combined because most queries must access both of the tables. If you simply combine the two tables
into one table and change the views to subsets of the new prejoined table without changing the SQL,
you degrade performance. The queries that were joins are still joins, but now they join the new views.
Remember that the views are just subsets of one table now, so these queries join this one table to itself.
This approach is usually less efficient than joining the two tables as they were previously defined.

Again, you must perform a great deal of analysis for a change of this magnitude. You must investigate
all application SQL. If you determine that some queries access only one of the two old tables, you can
define views with the same name as the old tables. You can give the new prejoined table a new name.
This way, you can minimize program modification.

Additional Base Table View Reasoning

One final reason used by some DBAs for creating base table views is that some folks believe base table
views give them a "feeling" of safety over using just the base tables. I can think of no valid reasoning to
support this "feeling." Base table views do not provide a layer of protection between the application and
the data. If one view is created for each base table, all types of SQL can be performed on the views.
You can perform update and retrieval SQL in the same manner on the views as you can on the base
tables.

The advice to create one view per base table is rooted in the fallacious assertion that applications can
be ignorant of underlying changes to the database. Change impact analysis must be performed when
tables are modified. Failure to do so results in a poorly performing application.

Miscellaneous View Guidelines
To ensure appropriate view usage, implement the following tips, techniques, and guidelines.

Follow the Synchronization Rule

Keep all views logically pure by synchronizing them with their underlying base tables.
When you make a change to a base table, you should analyze all views dependent on the base table to
determine whether the change affects them. The view was created for a reason (see "The View Usage
Rule" section earlier in this chapter) and should remain useful for that reason. You can accomplish this
goal only by ensuring that subsequent changes pertinent to a specified use are made to all views that
satisfy that use.
Consider a view that is based on the sample tables DSN8610.EMP and DSN8610.DEPT. The view is
created to satisfy an access use; it provides information about departments, including the name of the
department's manager. If you add a column specifying the employee's middle initial to the EMP table,
you should add the column also to the EMP_DEPT view because it is pertinent to that view's use: to
provide information about each department and each department's manager. You must drop and re-
create the view.
The synchronization rule requires you to have strict procedures for change impact analysis. Every
change to a base table should trigger the use of these procedures. You can create simple SQL queries

 - 195 -

to assist in the change impact analysis. These queries should pinpoint QMF queries, application plans,
and dynamic SQL users that could be affected by specific changes. The following queries should assist
your change impact analysis process.

To find all views dependent on the table to be changed, use the following:
SELECT DCREATOR, DNAME
FROM SYSIBM.SYSVIEWDEP
WHERE BCREATOR = 'Table Creator'
AND BNAME = 'Table Name';
To find all QMF queries that access the view, use the following:
SELECT DISTINCT OWNER, NAME, TYPE
FROM Q.OBJECT_DATA
WHERE APPLDATA LIKE '%View Name%';

To find all plans dependent on the view, use the following:
SELECT DNAME
FROM SYSIBM.SYSPLANDEP
WHERE BCREATOR = 'View Creator'
AND BNAME = 'View Name';

To find all potential dynamic SQL users, use the following:
SELECT GRANTEE
FROM SYSIBM.SYSTABAUTH
WHERE TCREATOR = 'View Creator'
AND TTNAME = 'View Name';

Always execute these queries to determine what views might be affected by changes to base tables.

Be Aware of Non-Updateable Views
If you adhere to the preceding guidelines, most of your views will not be updateable. Views that join
tables, use functions, use DISTINCT, or use GROUP BY and HAVING cannot be updated, deleted from,
or inserted to. Views that contain derived data using arithmetic expressions, contain constants, or
eliminate columns without default values cannot be inserted to. Keep this information in mind when
you're creating and using views.

Specify Column Names

When you're creating views, DB2 provides the option of specifying new column names for the view or
defaulting to the same column names as the underlying base table or tables. Explicitly specify view
column names rather than allow them to default, even when you plan to use the same names as the
underlying base tables. This approach provides more accurate documentation and minimizes confusion
when using views.

Be Aware of View Restrictions
Almost any SQL that can be issued natively can be coded into a view, except SQL that contains the
FOR UPDATE OF clause, an ORDER BY specification, or the UNION operation.
Views can be accessed by SQL in the same way that tables are accessed by SQL. However, you must
consider the rules about the types of views that can be updated. Table 8.1 lists the restrictions on view
updating.

Table 8.1: Non-Updateable View Types

View Type Restriction

Views that join tables Cannot delete, update, or insert

Views that use functions Cannot delete, update, or insert
Views that use DISTINCT Cannot delete, update, or insert

 - 196 -

Views that use GROUP BY and HAVING Cannot delete, update, or insert

Views that contain derived data using
arithmetic expression

Cannot insert

Views that contain constants Cannot insert

Views that eliminate columns without a default
value

Cannot insert

General SQL Coding Guidelines

This final section on SQL guidelines contains advice for creating understandable and easily maintained SQL.
When developing an application, you might be tempted to "let it be if it works." This advice is not good. You
should strive for well-documented, structured code. The following miscellaneous guidelines will help you
achieve that goal with your SQL statements.

Code SQL Statements in Block Style
You should code all SQL in block style. This standard should apply to all SQL code, whether embedded
in a COBOL program, coded as a QMF query, or implemented using another tool. Use the following
examples as standard templates for the SELECT, INSERT, UPDATE, and DELETE statements:
The following is the SELECT statement:
EXEC SQL
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME
 WORKDEPT, PHONENO, EDLEVEL
 FROM EMP
 WHERE BONUS = 0
 OR SALARY < 10000
 OR (BONUS < 500
 AND SALARY > 20000)
 OR EMPNO IN ('000340', '000300', '000010')
 ORDER BY EMPNO, LASTNAME
END-EXEC.
The following is the INSERT statement:
EXEC SQL
 INSERT
 INTO DEPT
 (DEPTNO,
 DEPTNAME,
 MGRNO,
 ADMRDEPT
)
 VALUES
 (:HOSTVAR-DEPTNO,
 :HOSTVAR-DEPTNAME,
 :HOSTVAR-MGRNO:NULLVAR-MGRNO,
 :HOSTVAR-ADMRDEPT
)
END-EXEC.
The following is the DELETE statement:
EXEC SQL

 - 197 -

 DELETE
 FROM DEPT
 WHERE DEPTNO = 'E21'
END-EXEC.
The following is the UPDATE statement:
EXEC SQL
 UPDATE EMP
 SET JOB = 'MANAGER',
 EDLEVEL = :HOSTVAR-EDLEVEL,
 COMM = NULL,
 SALARY = :HOSTVAR-SALARY:NULLVAR-SALARY,
 BONUS = 1000
 WHERE EMPNO = '000220'
END-EXEC.

These examples demonstrate the following rules:
 Code keywords such as SELECT, WHERE, FROM, and ORDER BY so that they are easily

recognizable and begin at the far left of a new line.
 For SQL embedded in a host program, code the EXEC SQL and END-EXEC clauses

on separate lines.
 Use parentheses where appropriate to clarify the intent of the SQL statement.
 Use indentation to show the levels in the WHERE clause.

Note that these examples are embedded SQL syntax because this shows more detail for coding in the
block style. You can easily convert these examples to interactive SQL by removing the EXEC SQL,
END_EXEC, and host variable references.

Comment All SQL Liberally

Comment ad hoc SQL statements using SQL comment syntax. Comment all embedded SQL
statements using the syntax of the host language. Code all comments above the SQL statement.
Specify the reason for the SQL and the predicted results.

Maintain Standard Libraries
Create standard libraries for BIND parameters, utility JCL, utility parameters, VSAM IDCAMS delete and
define parameters for user-defined VSAM tablespaces, GRANT and REVOKE DCL, and DDL for all DB2
objects.
To maintain these libraries, ensure that all subsequent alterations to DDL are reflected in the DDL
stored in the standard library. For example, if a table is altered to add a new column, be sure that the
CREATE DDL table in the standard library is modified to also contain the new column. Because this task
is time-consuming and error-prone, your shop should have an add-on utility from a secondary vendor
that queries the DB2 Catalog and automatically creates DDL. Having this utility negates the need to
store and maintain DDL in a standard library. For information on these (and other) types of add-on tools
for DB2, consult Part VII.

Follow the Proliferation Avoidance Rule

Do not needlessly proliferate DB2 objects and security. Every DB2 object creation and authorization
grant requires additional entries in the DB2 Catalog. Granting unneeded authority and creating needless
tables, views, and synonyms causes Catalog clutter—extraneous entries strewn about the DB2 Catalog
tables. The larger the DB2 Catalog tables become, the less efficient your entire DB2 system will be.

The proliferation avoidance rule is based on common sense. Why create something that is not needed?
It just takes up space that could be used for something that you do need.

Summary

SQL, although logically simple, is practically complex. The SQL tools, tips, and tricks presented in Part I can
help you navigate the SQL seas. But what is that on the horizon? SQL alone often is insufficient for

 - 198 -

accessing your important production data. Application programs are required. Wonder how you can write
them? You can find out in Part II, "DB2 Application Development."

Part II: DB2 Application Development
Chapter List

Chapter 9: Using DB2 in an Application Program
Chapter 10: Dynamic SQL Programming
Chapter 11: Program Preparation
Chapter 12: Alternative DB2 Application Development Methods
Chapter 13: Using DB2 Stored Procedures
Chapter 14: The Procedural DBA
Chapter 15: DB2 and the Internet

Part Overview
Part I, "SQL Tools, Tips, and Tricks," described the nature and features of SQL and introduced guidelines for
its efficient and effective use. Part II provides information on the development of DB2 applications.

Chapter 9, "Using DB2 in an Application Program," the first chapter in this section, discusses the
components of embedded static SQL programming and provides guidelines for the proper
implementation of DB2 programs. Dynamic SQL is covered in depth in Chapter 10, "Dynamic SQL
Programming," complete with examples and coding guidelines.
Chapter 11, "Program Preparation," discusses the steps to take to prepare DB2 programs for execution.
Chapter 12, "Alternative DB2 Application Development Methods," discusses guidelines for programming
methods other than embedding SQL in a third-generation language.
Chapter 13, "Using DB2 Stored Procedures," presents how to implement efficient stored procedures.
Chapter 14, "The Procedural DBA," discusses how to manage procedural logic that is stored in the
database in the form of user-defined functions, triggers, and stored procedures. To manage these
objects requires a special mix of developer and DBA skills and talents.
Finally, Chapter 15, "DB2 and the Internet," discusses how to connect DB2 databases to the Internet
and where to find DB2 information using the Web.

Chapter 9: Using DB2 in an Application Program
Overview

DB2 application development consists of the construction of DB2 application programs. This statement begs
the question: What is a DB2 application program? Let me begin to answer this question by reviewing
standard application program development.

The development of an application system usually requires the use of a high-level language to encode
the processing requirements of the application. A high-level language is any language that you can use
to operate on data. You can break down high-level languages into the following categories:

 Database sublanguages, such as SQL
 3GLs (third-generation languages), such as COBOL and FORTRAN, which are

procedural
 4GLs (fourth-generation languages), such as RAMIS and FOCUS, which are

procedural but raise the level of abstraction a notch, often enabling non-MIS personnel
to develop applications

 GUI-based programming languages, such as Visual Basic and PowerBuilder, which
are used to build distributed, client/server applications.

 Internet and Web-based programming languages, using CGI scripts or Java applets
and programs

 CASE (computer-aided software engineering) tools, which enable analysts to analyze
and specify application models and parameters (upper CASE) and automatically
generate application programs (lower CASE)

 Productivity tools, such as report writers and QMF, which are wonderful for developing
portions of an application but usually not robust enough to be used for the
development of a complete application

Sometimes you can develop a complete application system entirely with SQL, 4GLs, code generators,
or productivity tools. However, these systems are rare (although code generation is gaining approval

 - 199 -

and support in many DP shops). Even though an application system can be coded without the use of a
true programming language (3GL or GUI programming language), often a 3GL is still used because it
generally out-performs the other application development tools just mentioned. This case is particularly
true with code generators because the SQL that is generated is basic and not optimized for
performance.

Back to the initial question: What is a DB2 application program? I consider a DB2 application program to
be any program—developed using any of the preceding methods—that accesses data stored in DB2.
Most of the information in Part II of this book covers developing DB2 programs using third-generation
languages, which constitute the bulk of DB2 applications. This is true for many reasons. Third-
generation languages have been around longer than other application development tools and therefore
have a larger installed base and a wider selection of professional programmers who understand them.
Batch interfaces abound, but few online interfaces (CICS and IMS/TM) exist for most 4GLs and report
writer tools.
Of course, GUI-based programming is on the rise, and many client/server applications are being
developed to access DB2 data using these tools. The issues surrounding GUI-based DB2 programming
are covered in Chapter 12, "Alternative DB2 Application Development Methods."
3GLs have proliferated for several other reasons. Their procedural nature eases the coding of complex
logic structures (for example, IF-THEN-ELSE logic and looping). Other methods cannot usually meet
complex reporting needs, such as the explosion of a hierarchy or side-by-side reporting of multiple,
joined repeating groups. In addition, the performance of applications developed using alternative
methods usually does not compare to the superb performance that you can achieve using 3GLs.

Embedded SQL Basics

To develop application programs that access DB2 tables, you must embed SQL statements in the program
statements of the high-level language being used. Embedded DB2 SQL statements are supported in the
following high-level languages: ADA, APL2, Assembler, BASIC, C, C++, COBOL, FORTRAIN, Java, PL/I,
PROLOG, REXX, and Smalltalk. Refer to the IBM manuals for the specific release and version numbers for
the compiler or runtime environment supported for each language.

These programs can be run in the following execution environments:

MVS batch using CAF

TSO batch

DL/I batch

CICS

IMS/TM (previously known as IMS/DC)

IMS BMP

TSO (interactive)

RRSAF (Recovery Resource Manager Services Attachment Facility)

In this chapter, I focus on the rules for embedding SQL in COBOL application programs because
COBOL is the most widely used language in the business data processing community. Much of the
information is similar for the other languages. For language-specific information and syntax, consult the
appropriate IBM manuals.
Additionally, this chapter will focus on embedded static SQL because this is the predominant method
used to develop DB2 application programs. Other methods include embedded dynamic SQL, ODBC,
and JDBC. Chapter 10, "Dynamic SQL Programming," focuses on dynamic SQL, and Chapter 12
discusses ODBC and JDBC.

To embed SQL statements in an application program, you must follow strict rules. These rules have
been established for a few reasons. One, they enable parsing programs (a DB2 precompiler) to identify
embedded SQL statements easily in application code. Two, they ensure that the impedance mismatch
between the non-procedural, set-level processing of SQL and the procedural, record-level processing of
the high-level language has been taken into account. Three, these rules provide programs with the

 - 200 -

capability to change variables in the predicates of the embedded SQL at processing time. And four, they
enable communication between the DB2 DBMS and the application program (for example, the reception
of error and warning messages).

The capability to embed SQL statements in an application program allows high-level programming
languages to access DB2 data. This capability provides the mechanism for the development of just
about any type of DB2 application system.
All DB2 statements can be embedded in an application program. The list of SQL statements supported
for embedding in an application program is presented in Table 9.1.

Table 9.1: Types of Embedded SQL Statements

SQL Type SQL Statements

DCL GRANT and REVOKE

DDL ALTER, CREATE, DROP, COMMENT ON, and LABEL ON

DML DELETE, INSERT, SELECT, and UPDATE

Dynamic SQL DESCRIBE, EXECUTE, EXECUTE IMMEDIATE, and PREPARE

Distributed control CONNECT, RELEASE

Stored Procedures/LOBs CALL, ALLOCATE CURSOR, ASSOCIATE LOCATORS, FREE
LOCATOR, HOLD LOCATOR

Triggers VALUES, SQL/PSM features

Definition control BEGIN DECLARE SECTION, INCLUDE

Embedding control CLOSE, DECLARE, FETCH, and OPEN

Transaction control COMMIT and ROLLBACK

Assignment SET, VALUES INTO

General EXPLAIN*[*], LOCK TABLE

Error handling WHENEVER, SIGNAL SQLSTATE
[*]You can embed EXPLAIN only in TSO programs.

A DB2 program with embedded SQL statements is somewhat similar to an application program issuing
reads and writes against a flat file or VSAM data set. The SQL statements are similar in function to file
I/O. With a little basic understanding of embedded SQL rules and constructs, you, as an application
programmer, can learn the methods necessary to embed SQL in a third-generation language, such as
COBOL.

In the following sections, I discuss the techniques used to embed SQL statements in DB2 application
programs.

Embedded SQL Guidelines

Table 9.2 outlines the differences between a DB2 program with embedded SQL statements and an
application program accessing flat files. Flat files and DB2 tables, however, are not synonymous. The
functionality of the two types of data storage objects are quite dissimilar.
Table 9.2: DB2 Programming Versus Flat File Programming

DB2 Programming
Considerations

Flat File Programming Considerations

No FD required for DB2 tables; DB2 tables
must be declared

FD is required for each flat file to be processed
by the program

No DD card needed in execution JCL for
programs accessing DB2 tables

DD card required (unless the flat file is
allocated dynamically)

DB2 tables need not be opened; instead,
cursors are opened for each SQL

Flat files must be opened before being
processed

 - 201 -

statement[*]

DB2 tables need not be closed; instead,
cursors are closed for each SQL
statement[*]

Flat files must be closed (if opened)

Set-level processing Record-level processing

Access to tables can be specified at the
column (field element) level

Access to files based on reading a full record;
all fields are always read or written

Success or failure of data is indicated by
SQL return code

VSAM return code indicates success or failure

No more data indicated by +100 SQL return
code

End of file is reported to the program

Cursors used to mimic record-level
processing (see the section on cursors)

READ and WRITE statements are used to
implement record-level processing

[*]DB2 opens and closes the VSAM data sets that house DB2 tablespaces "behind the scenes."

Delimit All SQL Statements
You must enclose all embedded SQL statements in an EXEC SQL block. This way, you can delimit the
SQL statements so that the DB2 precompiler can efficiently parse the embedded SQL. The format of
this block is
EXEC SQL
 put text of SQL statement here
END-EXEC.
For COBOL programs, you must code the EXEC SQL and END-EXEC delimiter clauses in your
application program starting in column 12.

Explicitly Declare All DB2 Tables
Although you are not required to declare DB2 tables in your application program, doing so is good
programming practice. Therefore, explicitly DECLARE all tables to be used by your application program.
You should place the DECLARE TABLE statements in the WORKING-STORAGE section of your program,
and they should be the first DB2-related variables defined in WORKING-STORAGE. This way, you can
reduce the precompiler's work and make the table definitions easier to find in the program source code.
Additionally, standard DECLARE TABLE statements should be generated for every DB2 table. Create
them with the DCLGEN command (covered in Chapter 11, "Program Preparation"), and then include
them in your application program.

Comment Each SQL Statement

Make liberal use of comments to document the nature and purpose of each SQL statement embedded
in your program. You should code all comments pertaining to embedded SQL in the comment syntax of
the program's host language. Code COBOL comments as shown in the following example:
Column Numbers
 111
123456789012
 **
 ** Retrieve department name and manager from the
 ** DEPT table for a particular department number.
 **
 EXEC SQL
 SELECT DEPTNAME, MGRNO
 INTO :HOSTVAR-DEPTNAME,
 :HOSTVAR-MGRNO
 FROM DEPT

 - 202 -

 WHERE DEPTNO = :HOSTVAR-DEPTNO
 END-EXEC.
Include the SQLCA
You must include a structure called the SQLCA (SQL Communication Area) in each DB2 application
program. You do so by coding the following statement in your WORKING-STORAGE section:
EXEC SQL
 INCLUDE SQLCA
END-EXEC.
The COBOL layout of the expanded SQLCA follows:
01 SQLCA.
 05 SQLCAID PIC X(8).
 05 SQLCABC PIC S9(9) COMPUTATIONAL.
 05 SQLCODE PIC S9(9) COMPUTATIONAL.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) COMPUTATIONAL.
 49 SQLERRMC PIC X(70).
 05 SQLERRP PIC X(8).
 05 SQLERRD OCCURS 6 TIMES
 PIC S9(9) COMPUTATIONAL.
 05 SQLWARN.
 10 SQLWARN0 PIC X(1).
 10 SQLWARN1 PIC X(1).
 10 SQLWARN2 PIC X(1).
 10 SQLWARN3 PIC X(1).
 10 SQLWARN4 PIC X(1).
 10 SQLWARN5 PIC X(1).
 10 SQLWARN6 PIC X(1).
 10 SQLWARN7 PIC X(1).
 05 SQLEXT.
 10 SQLWARN8 PIC X(1).
 10 SQLWARN9 PIC X(1).
 10 SQLWARNA PIC X(1).
 10 SQLSTATE PIC X(5).
The SQLCA is used to communicate information describing the success or failure of the execution of an
embedded SQL statement. The following list defines each SQLCA field:
SQLCAID Set to the constant value SQLCA to enable easy location of the

SQLCA in a dump.
SQLCABC Contains the value 136, the length of the SQLCA.
SQLCODE Contains the return code passed by DB2 to the application program.

The return code provides information about the execution of the last
SQL statement. A value of zero indicates successful execution, a
positive value indicates successful execution but with an exception,
and a negative value indicates that the statement failed.

SQLERRM This group-level field consists of a length and a message. SQLERRML
contains the length of the message in SQLERRMC. The message
contains additional information about any encountered error
condition. Usually, only technical support personnel use this field for
complex debugging situations, when the value of SQLCODE is not
sufficient.

 - 203 -

SQLERRP Contains the name of the CSECT that detected the error reported by
the SQLCODE. This information is not typically required by application
programmers.

SQLERRD This array contains six values used to diagnose error conditions. Only
SQLERRD(3) and SQLERRD(5) are of use to most application
programmers:

SQLERRD(1) is the relational data system error code.
SQLERRD(2) is the Data Manager error code.
SQLERRD(3) is the number of rows inserted, deleted, or updated
by the SQL statement.
SQLERRD(4) is the estimate of resources required for the SQL
statement (timerons).
SQLERRD(5) is the column (position) of the syntax error for a
dynamic SQL statement.
SQLERRD(6) is the Buffer Manager error code.

SQLWARN0 Contains W if any other SQLWARN field is set to W.
SQLWARN1 Contains W if a character column is truncated when it is assigned to a

host variable by the SQL statement.
SQLWARN2 Contains W when a null-valued column is eliminated by built-in

function processing.
SQLWARN3 Contains W when the number of columns retrieved does not match

the number of fields in the host variable structure into which they are
being selected.

SQLWARN4 Contains W when the SQL statement is an UPDATE or DELETE
without a WHERE clause.

SQLWARN5 Contains W when an SQL statement that applies only to SQL/DS is
issued.

SQLWARN6 Contains W when a DATE or TIMESTAMP conversion is performed
during date arithmetic. For example, if 4 months are added to 1997-
01-31, the result is 1997-04-31. Because April does not have 31
days, the results are converted to 1997-04-30.

SQLWARN7 Contains W when non-zero digits are dropped from the fractional part
of a number used as the operand of a divide or multiply operation.

SQLWARN8 Contains W if a substitute character is used when a conversion
routine cannot convert the character.

SQLWARN9 Contains W when COUNT DISTINCT processing ignores an
arithmetic exception.

SQLWARNA Contains W when any form of character conversion error is
encountered.

SQLSTATE Contains a return code indicating the status of the most recent SQL
statement.

Check SQLCODE or SQLSTATE
SQLCODE contains the SQL return code, which indicates the success or failure of the last SQL
statement executed. SQLSTATE is similar to SQLCODE but is consistent across DB2 (and ANSI-
compliant SQL) platforms.
Code a COBOL IF statement immediately after every SQL statement to check the value of the
SQLCODE. In general, gearing your application programs to check for SQLCODEs is easier because a
simple condition can be employed to check for negative values.
If the SQLCODE returned by the SQLCA is less than zero, an SQL "error" was encountered. The term
error, in this context, is confusing. A value less than zero could indicate a condition that is an error using
SQL's terminology but is fine given the nature of your application. Thus, certain negative SQL codes are
acceptable depending on their context.
For example, suppose that you try to insert a row into a table and receive an SQL code of -803,
indicating a duplicate key value. (The row cannot be inserted because it violates the constraints of a
unique index.) In this case, you might want to report the fact (and some details) and continue
processing. You can design your application programs to check SQLCODE values like this instead of first

 - 204 -

checking to make sure that the insert does not violate a unique constraint, and only then inserting the
row.
Check the SQLSTATE value, however, when you must check for a group of SQLCODEs associated with a
single SQLSTATE or when your program runs on multiple platforms. SQLSTATE values consist of five
characters: a two-character class code and a three-character subclass code. The class code indicates
the type of error, and the subclass code details the explicit error within that error type.
You can find a complete listing of SQLCODEs, SQLSTATEs, and SQLSTATE class codes in Appendix A,
"DB2 SQLCODE and SQLSTATE Values."

Standardize Your Shop's Error Routine

Consider using a standardized error handling paragraph, one that can be used by all DB2 programs in
your shop. The programs should load values to an error record that can be interpreted by the error
handling paragraph. When a severe error is encountered, the programs invoke the error handling
paragraph.

The error handling paragraph should do the following:
1. Call the DSNTIAR module, a program provided with DB2 that returns standard,

textual error messages for SQLCODEs.
2. Display, print, or record the following information: the error record identifying the

involved table, the paragraph, and pertinent host variables; the error text returned by
DSNTIAR; and the current values in the SQLCA.

3. Issue a ROLLBACK. (This action is not absolutely required because an implicit
rollback occurs if one is not requested.)

4. Call an ABEND module to generate a dump.
Your error handling paragraph can be as complex and precise as you want. Depending on the SQL
code, different processing can occur; for example, you might not want to abend the program for every
SQLCODE.
Listing 9.1 shows sample COBOL code with an error handling paragraph as just described. You can
tailor this code to meet your needs.

Listing 9.1: COBOL Error Handling Paragraph

 .

 .

 .

WORKING-STORAGE SECTION.

 .

 .

 .

77 ERROR-TEXT-LENGTH PIC S9(9) COMP VALUE +960.

01 ERROR-RECORD.

 05 FILLER PIC X(11) VALUE 'SQLCODE IS '.

 05 SQLCODE-DISP PIC -999.

 05 FILLER PIC X(05) VALUE SPACES.

 05 ERROR-TABLE PIC X(18).

 05 ERROR-PARA PIC X(30).

 - 205 -

 05 ERROR-INFO PIC X(40).

01 ERROR-MESSAGE.

 05 ERROR-MSG-LENGTH PIC S9(9) COMP VALUE +960.

 05 ERROR-MSG-TEXT PIC X(120) OCCURS 8 TIMES

 INDEXED BY ERROR-INDEX.

01 ERROR-ROLLBACK.

 05 FILLER PIC X(20) VALUE 'ROLLBACK SQLCODE IS '.

 05 SQLCODE-ROLLBACK PIC -999.

 .

 .

PROCEDURE DIVISION.

 .

 .

1000-SAMPLE-PARAGRAPH.

 EXEC SQL
 SQL statement here
 END-EXEC.
 IF SQLCODE IS LESS THAN ZERO
 MOVE SQLCODE TO SQLCODE-DISP
 MOVE 'Table_Name' TO ERR-TABLE
 MOVE '1000-SAMPLE-PARAGRAPH' TO ERR-PARA
 MOVE 'Misc info, host variables, etc.' TO ERR-INFO
 PERFORM 9999-SQL-ERROR
 ELSE
 Resume normal processing.
 .
 .
9990-SQL-ERROR.
 DISPLAY ERR-RECORD.
 CALL 'DSNTIAR' USING SQLCA,
 ERROR-MESSAGE,
 ERROR-TEXT-LENGTH.
 IF RETURN-CODE IS EQUAL TO ZERO
 PERFORM 9999-DISP-DSNTIAR-MSG
 VARYING ERROR-INDEX FROM 1 BY 1
 UNTIL ERROR-INDEX > 8
 ELSE
 DISPLAY 'DSNTIAR ERROR'
 CALL 'abend module'.
 DISPLAY 'SQLERRMC ', SQLERRMC.
 DISPLAY 'SQLERRD1 ', SQLERRD(1).
 DISPLAY 'SQLERRD2 ', SQLERRD(2).
 DISPLAY 'SQLERRD3 ', SQLERRD(3).
 DISPLAY 'SQLERRD4 ', SQLERRD(4).
 DISPLAY 'SQLERRD5 ', SQLERRD(5).
 DISPLAY 'SQLERRD6 ', SQLERRD(6).
 DISPLAY 'SQLWARN0 ', SQLWARN0.
 DISPLAY 'SQLWARN1 ', SQLWARN1.

 - 206 -

 DISPLAY 'SQLWARN2 ', SQLWARN2.
 DISPLAY 'SQLWARN3 ', SQLWARN3.
 DISPLAY 'SQLWARN4 ', SQLWARN4.
 DISPLAY 'SQLWARN5 ', SQLWARN5.
 DISPLAY 'SQLWARN6 ', SQLWARN6.
 DISPLAY 'SQLWARN7 ', SQLWARN7.
 DISPLAY 'SQLWARN8 ', SQLWARN8.
 DISPLAY 'SQLWARN9 ', SQLWARN9.
 DISPLAY 'SQLWARNA ', SQLWARNA.
 EXEC SQL
 ROLLBACK
 END-EXEC.
 IF SQLCODE IS NOT EQUAL TO ZERO
 DISPLAY 'INVALID ROLLBACK'
 MOVE SQLCODE TO SQLCODE-ROLLBACK
 DISPLAY ERROR-ROLLBACK.
 CALL 'abend module'.

9990-EXIT.
 EXIT.
9999-DISP-DSNTIAR-MSG.
 DISPLAY ERROR-MSG-TEXT(ERROR-INDEX).
9999-EXIT.
 EXIT.

When an error is encountered—in paragraph 1000, for example—an error message is formatted and an
error paragraph is performed. The error paragraph displays the error message returned by DSNTIAR,
dumps the contents of the SQLCA, and rolls back all updates, deletes, and inserts since the last COMMIT
point.

Note Use a formatted WORKING-STORAGE field to display the SQLCODE; otherwise, the
value will be unreadable.

You can code the error handling paragraph in Listing 9.1 in a copy book that can then be included in
each DB2 program. This way, you can standardize your shop's error processing and reduce the amount
of code that each DB2 programmer must write.
Avoid Using WHENEVER
SQL has an error trapping statement called WHENEVER that you can embed in an application program.
When the WHENEVER statement is processed, it applies to all subsequent SQL statements issued by the
application program in which it is embedded. WHENEVER directs processing to continue or to branch to
an error handling routine based on the SQLCODE returned for the statement. Several examples follow.
The following example indicates that processing will continue when an SQLCODE of +100 is
encountered:
EXEC SQL
 WHENEVER NOT FOUND
 CONTINUE
END-EXEC.
When a warning is encountered, the second example of the WHENEVER statement causes the program
to branch to a paragraph (in this case, ERROR-PARAGRAPH) to handle the warning:
EXEC SQL
 WHENEVER SQLWARNING
 GO TO ERROR-PARAGRAPH
END-EXEC.
When any negative SQLCODE is encountered, the next WHENEVER statement branches to a paragraph
(once again, ERROR-PARAGRAPH) to handle errors:
EXEC SQL
 WHENEVER SQLERROR

 - 207 -

 GO TO ERROR-PARAGRAPH
END-EXEC.
Each of the three types of the WHENEVER statement can use the GO TO or CONTINUE option, at the
discretion of the programmer. These types of the WHENEVER statements trap three "error" conditions:
NOT FOUND The SQLCODE is equal to +100
SQLWARNING The SQLCODE is positive but not +100 or SQLWARN0 equal to W
SQLERROR The SQLCODE is negative

Avoid using the WHENEVER statement. It is almost always safer to code specific SQLCODE checks after
each SQL statement and process accordingly. Additionally, you should avoid coding the GO TO verb as
used by the WHENEVER statement. The GO TO construct is generally avoided in structured application
programming methodologies.

Name DB2 Programs, Plans, Packages, and Variables Cautiously

Use caution when naming DB2 programs, plans, packages, and variables used in SQL statements. Do
not use the following:

 The characters DB2, SQL, DSN, and DSQ
 SQL reserved words

You should avoid the listed character combinations for the following reasons. DB2 is too generic and
could be confused with a DB2 system component. Because SQLCA fields are prefixed with SQL, using
these letters with another variable name can cause confusion with SQLCA fields. IBM uses the three-
character prefix DSN to name DB2 system programs and DSQ to name QMF system programs.
If SQL reserved words are used for host variables (covered in the next section) and are not preceded by
a colon, an error is returned. However, you should not use these words even if all host variables are
preceded by a colon. Avoiding these words in your program, plan, and variable names reduces
confusion and ambiguity. Table 9.3 lists all SQL reserved words.

Table 9.3: SQL Reserved Words
ADD AFTER ALL ALLOW
ALTER AND ANY AS
ASUTIME AUDIT AUX AUXILIARY
BEFORE BEGIN BETWEEN BUFFERPOOL
BY CALL CAPTURE CASCADED
CASE CAST CCSID CHAR
CHARACTER CHECK CLUSTER COLLECTION
COLLID COLUMN CONCAT CONNECTION
CONSTRAINT CONTAINS CURRENT CURRENT_DATE
CURRENT_LC_CTYPE CURRENT_PATH CURRENT_TIME CURRENT_TIMESTAMP
CURSOR DATA DATABASE DAY
DAYS DBINFO DB2SQL DEFAULT
DELETE DESCRIPTOR DETERMINISTIC DISALLOW
DISTINCT DOUBLE DROP DSSIZE
EDITPROC ELSE END END-EXEC
ERASE ESCAPE EXCEPT EXISTS
EXTERNAL FENCED FIELDPROC FINAL
FOR FROM FULL FUNCTION
GENERAL GENERATED GO GOTO
GRANT GROUP HAVING HOUR
HOURS IMMEDIATE IN INDEX
INNER INOUT INSERT INTO
IS ISOBID JOIN KEY
LANGUAGE LC_CTYPE LEFT LIKE
LOCAL LOCALE LOCATOR LOCATORS
LOCKMAX LOCKSIZE LONG MICROSECOND
MICROSECONDS MINUTE MINUTES MODIFIES

 - 208 -

MONTH MONTHS NAME NO
NOT NULL NULLS NUMPARTS
OBID OF ON OPTIMIZATION
OPTIMIZE OR ORDER OUT
OUTER PACKAGE PARAMETER PART
PATH PIECESIZE PLAN PRECISION
PRIQTY PRIVILEGES PROCEDURE PROGRAM
PSID QUERYNO READS REFERENCES
RENAME RESTRICT RESULT RETURN
RETURNS RIGHT RUN SCHEMA
SCRATCHPAD SECOND SECONDS SECQTY
SECURITY SELECT SET SIMPLE
SOME SOURCE SPECIFIC STANDARD
STAY STOGROUP STORES STYLE
SUBPAGES SYNONYM SYSFUN SYSIBM
SYSPROC SYSTEM TABLE TABLESPACE
THEN TO TRIGGER TYPE
UNION UNIQUE UPDATE USER
USING VALIDPROC VALUES VARIANT
VCAT VIEW VOLUMES WHEN
WHERE WITH WLM YEAR
YEARS

IBM SQL also reserves additional words. Using these words will not result in an error, but you should
avoid their use to eliminate confusion. In addition, these words are good candidates for future status as
DB2 SQL reserved words when functionality is added to DB2. Table 9.4 lists all IBM SQL reserved
words that are not also SQL reserved words. Therefore, Tables 9.3 and 9.4 collectively list all the IBM
and DB2 SQL database reserved words.

Table 9.4: IBM SQL Reserved Words
ACQUIRE ALLOCATE ASC AUTHORIZATION
AVG BIND BINDADD BIT
CASCADE COMMENT COMMIT CONNECT
CONTROL CREATE CREATETAB DATE
DBA DBADM DBSPACE DEC
DECIMAL DESC EXCLUSIVE EXPLAIN
FETCH FLOAT FOREIGN GRAPHIC
IDENTIFIED INDICATOR INT INTEGER
INTERSECT LABEL LOCK MAX
MIN MIXED MODE NAMED
NHEADER NUMERIC ONLY OPTION
PAGE PAGES PCTFREE PCTINDEX
PRIMARY PRIVATE PUBLIC REAL
RELEASE RESET RESOURCE REVOKE
ROLLBACK ROW ROWS SBCS
SCHEDULE SHARE SMALLINT STATISTICS
STORPOOL SUM TIME TIMESTAMP
TRANSLATE VARCHAR VARGRAPHIC VARIABLE
WORK

Note You also should avoid using any ANSI SQL reserved
words (that are not already included in the previous two
lists) in your program, plan, and variable names. Refer to
the ANSI SQL standard for a list of the ANSI reserved
words.

 - 209 -

You can search for and order documentation on the
ANSI SQL standard (and any other ANSI standard) at
http://web.ansi.org/default.htm.

The guidelines in this section are applicable to every type of DB2 application program. Chapters 10
through 12 present guidelines for programming techniques used by specific types of DB2 application
programs. Additionally, Chapter 13, "Using DB2 Stored Procedures," contains programming guidelines
for each type of DB2 program environment.

Host Variables

When embedding SQL in an application program, you, as the programmer, rarely know every value that
needs to be accessed by SQL predicates. Often you need to use variables to specify the values of
predicates. For example, when a program reads a flat file for data or accepts user input from a terminal, a
mechanism is needed to hold these values in an SQL statement. This is the function of host variables.

A host variable is an area of storage allocated by the host language and referenced in an SQL
statement. You define and name host variables using the syntax of the host language. For COBOL, you
must define host variables in the DATA DIVISION of your program in the WORKING-STORAGE section
or the LINKAGE section. Additionally, when you're using INCLUDE, you must delimit the host variable
specifications by using EXEC SQL and END-EXEC (as previously discussed).
When you use host variables in SQL statements, prefix them with a colon (:). For example, a COBOL
variable defined in the DATA DIVISION as
EXAMPLE-VARIABLE PIC X(5)

should be referenced as follows when used in an embedded SQL statement:
:EXAMPLE-VARIABLE

When the same variable is referenced by the COBOL program outside the context of SQL, however, do
not prefix the variable with a colon. If you do so, a compilation error results.

Caution Prior to DB2 Version 6, DB2 allowed users to "forget" to prefix host variables
with a colon. If a colon was not specified, an informational warning was
generated, but the SQL statement was still processed. As of V6, this is no
longer the case. If the colon is missing, an error message will be generated
and the SQL will not execute.

Host variables are the means of moving data from the program to DB2 and from DB2 to the program.
Data can be read from a file, placed into host variables, and used to modify a DB2 table (through
embedded SQL). For data retrieval, host variables are used to house the selected DB2 data. You also
can use host variables to change predicate values in WHERE clauses. You can use host variables in the
following ways:

 As output data areas in the INTO clause of the SELECT and FETCH statements
 As input data areas for the SET clause of the UPDATE statement
 As input data areas for the VALUES clause of the INSERT statement
 As search fields in the WHERE clause for SELECT, INSERT, UPDATE, and DELETE

statements
 As literals in the SELECT list of a SELECT statement

Several examples of host variables used in SQL statements follow. In the first example, host variables
are used in the SQL SELECT statement as literals in the SELECT list and as output data areas in the
INTO clause:
EXEC SQL
 SELECT EMPNO, :INCREASE-PCT,
 SALARY * :INCREASE-PCT
 INTO :HOSTVAR-EMPNO,
 :HOSTVAR-INCRPCT,
 :HOSTVAR-SALARY
 FROM EMP
 WHERE EMPNO = '000110'
END-EXEC.

 - 210 -

In the second example, host variables are used in the SET clause of the UPDATE statement and as a
search field in the WHERE clause:
EXEC SQL
 UPDATE EMP
 SET SALARY = :HOSTVAR-SALARY
 WHERE EMPNO = :HOSTVAR-EMPNO
END-EXEC.
A third example shows a host variable used in the WHERE clause of an SQL DELETE statement. In this
statement every row that refers to a WORKDEPT equal to the host variable value will be deleted from the
table:
EXEC SQL
 DELETE FROM EMP
 WHERE WORKDEPT = :HOSTVAR-WORKDEPT
END-EXEC.
The final example depicts host variables used in the VALUES clause of an SQL INSERT statement:
EXEC SQL
 INSERT INTO DEPT
 VALUES (:HOSTVAR-DEPTNO,
 :HOSTVAR-DEPTNAME,
 :HOSTVAR-MGRNO,
 :HOSTVAR-ADMRDEPT)
END-EXEC.

Host Structures
In addition to host variables, SQL statements can use host structures. Host structures enable SQL
statements to specify a single structure for storing all retrieved columns. A host structure, then, is a COBOL
group-level data area composed of host variables for all columns to be returned by a given SELECT
statement.

The following is a host structure for the DSN8610.DEPT table:
01 DCLDEPT.
 10 DEPTNO PIC X(3).
 10 DEPTNAME.
 49 DEPTNAME-LEN PIC S9(4) USAGE COMP.
 49 DEPTNAME-TEXT PIC X(36).
 10 MGRNO PIC X(6).
 10 ADMRDEPT PIC X(3).
 10 LOCATION PIC X(16).
DCLDEPT is the host structure name in this example. You could write the following statement using this
host structure:
EXEC SQL
 SELECT DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION
 FROM DEPT
 INTO :DCLDEPT
 WHERE DEPTNO = 'A00'
END-EXEC.
This statement populates the host variables for all columns defined under the DCLDEPT group-level data
area.

 - 211 -

Null Indicator Variables and Structures
Before you select or insert a column that can be set to null, it must have an indicator variable defined for it.
You can use indicator variables also with the UPDATE statement to set columns to null. A third use for null
indicators occurs when any column (defined as either nullable or not nullable) is retrieved using the built-in
column functions AVG, MAX, MIN, and SUM. Finally, null indicators should be used in outer join statements for
each column that can return a null result (even if the column is defined as not null).

If you fail to use an indicator variable, a -305 SQLCODE is returned when no rows meet the
requirements of the predicates for the SQL statement containing the column function. For example,
consider the following statement:
SELECT MAX(SALARY)
FROM DSN8610.EMP
WHERE WORKDEPT = 'ZZZ';
Because no ZZZ department exists, the value of the maximum salary that is returned is null.
You should define null indicators in the WORKING-STORAGE section of your COBOL program as
computational variables, with a picture clause specification of PIC S9(4). The null indicator variables
for the DSN8610.EMP table look like the following:
01 EMP-INDICATORS.
 10 WORKDEPT-IND PIC S9(4) USAGE COMP.
 10 PHONENO-IND PIC S9(4) USAGE COMP.
 10 HIREDATE-IND PIC S9(4) USAGE COMP.
 10 JOB-IND PIC S9(4) USAGE COMP.
 10 EDLEVEL-IND PIC S9(4) USAGE COMP.
 10 SEX-IND PIC S9(4) USAGE COMP.
 10 BIRTHDATE-IND PIC S9(4) USAGE COMP.
 10 SALARY-IND PIC S9(4) USAGE COMP.
 10 BONUS-IND PIC S9(4) USAGE COMP.
 10 COMM-IND PIC S9(4) USAGE COMP.
This structure contains the null indicators for all the nullable columns of the DSN8610.EMP table.
To associate null indicator variables with a particular host variable for a column, code the indicator
variable immediately after the host variable, preceded by a colon. For example, to retrieve information
regarding SALARY (a nullable column) from the DSN8610.EMP table, you can code the following
embedded SQL statement:
EXEC SQL
 SELECT EMPNO, SALARY
 INTO :EMPNO,
 :SALARY:SALARY-IND
 FROM EMP
 WHERE EMPNO = '000100'
END-EXEC.

The null indicator variable is separate from both the column to which it pertains and the host variable for
that column. To determine the value of any nullable column, a host variable and an indicator variable
are required. The host variable contains the value of the column when it is not null. The indicator
variable contains one of the following values to indicate a column's null status:

 A negative number indicates that the column has been set to null.
 The value -2 indicates that the column has been set to null as a result of a data

conversion error.
 A positive or zero value indicates that the column is not null.
 If a column defined as a CHARACTER data type is truncated on retrieval because

the host variable is not large enough, the indicator variable contains the original
length of the truncated column.

You can use null indicator variables with corresponding host variables in the following situations:

 - 212 -

 SET clause of the UPDATE statement
 VALUES clause of the INSERT statement
 INTO clause of the SELECT or FETCH statement

You can code null indicator structures in much the same way you code the host structures discussed
previously. Null indicator structures enable host structures to be used when nullable columns are
selected. A null indicator structure is defined as a null indicator variable with an OCCURS clause. The
variable should occur once for each column in the corresponding host structure, as shown in the
following section of code:
01 IDEPT PIC S9(4) USAGE COMP OCCURS 5 TIMES.
This null indicator structure defines the null indicators needed for retrieving rows from the
DSN8610.DEPT table using a host structure. The DCLDEPT host structure has five columns, so the
IDEPT null indicator structure occurs five times. When you're using a host structure for a table in which
any column is nullable, one null indicator per column in the host structure is required.

You can use the host structure and null indicator structure together as follows:
EXEC SQL
 SELECT DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION
 FROM DEPT
 INTO :DCLDEPT:DEPT-IND
 WHERE DEPTNO = 'A00'
END-EXEC.
Based on the position in the null indicator structure, you can determine the null status of each column in
the retrieved row. If the nth null indicator contains a negative value, the nth column is null. So, in this
example, if DEPT-IND(3) is negative, MGRNO is null.

Caution Always use a null indicator variable when referencing a nullable column.
Failure to do so results in a -305 SQLCODE. If you fail to check the null status
of the column being retrieved, your program may continue to execute, but the
results will be questionable.

Note You can avoid using null indicator variables by using the VALUE or COALESCE
function. Both of these functions can be used to supply a value whenever DB2
would return a null. For example, VALUE(MANAGER_NAME,'*** No Manager
Name ***') will return the actual value of MANAGER_NAME when the column is
not null and the literal '*** No Manager Name ***' when the MANAGER_NAME
column is null.
COALESCE works the same as VALUES and uses the same syntax—
COALESCE(MANAGER_NAME,'*** No Manager Name ***').

Host Variable Guidelines
Practice the following tips and techniques to ensure proper host variable usage.

Use Syntactically Valid Variable Names

Host variables can use any naming scheme that is valid for the definition of variables in the host
language being used. For host variables defined using COBOL, underscores are not permitted. As a
general rule, use hyphens instead of underscores.

Avoid Certain COBOL Clauses
COBOL host variable definitions cannot specify the JUSTIFIED or BLANK WHEN ZERO clauses.
You can specify the OCCURS clause only when you're defining a null indicator structure. Otherwise, you
cannot use OCCURS for host variables.

Using Host Structures
In general, favor individual host variables over host structures. Individual host variables are easier to
understand, easier to support, and less likely to cause errors as a result of changes to tables.
Additionally, using individual host variables promotes proper SQL usage. When using host structures,
too often developers try to fit every SQL SELECT to the host structure. Instead of limiting each SQL
SELECT statement to retrieve only the columns required, developers sometimes will force every

 - 213 -

SELECT statement in a program to fit a single host structure. To optimize performance, this must be
avoided.

However, when it is necessary to squeeze every last bit of performance out of an application, consider
using host structures. When a host structure is used, a minimal number of instructions are saved
because DB2 does not have to move each column separately to an individual host variable. Instead,
one move is required to move the columns into the host structure.

Caution When host structures are used, be sure not to fall into the trap of making
every SELECT statement use a single host structure, or performance will
suffer.

Avoid Null Indicator Structures

Favor individual null indicator variables over null indicator structures. Individual null indicator variables
can be named appropriately for each column to which they apply. Null indicator structures have a single
common name and a subscript. Tying a subscripted variable name to a specific column can be tedious
and error-prone.
For example, consider the host structure and its corresponding null indicator structure shown previously.
The fact that IDEPT(2) is the null indicator variable for the DEPTNAME host variable is not obvious. If
you had used separate null indicators for each nullable column, the null indicator for DEPTNAME could
be called DEPTNAME-IND. With this naming convention, you can easily see that DEPTNAME-IND is the
null indicator variable for DEPTNAME.
Be forewarned that null indicator structures can be generated by DCLGEN (as of DB2 V4), whereas
individual indicator variables must be explicitly coded by hand. Even so, individual null indicator
variables are easier to use and therefore recommended over null indicator structures.

Define Host Variables Precisely
Define all your host variables correctly. Consult Appendix G, "Valid DB2 Data Types," for a complete list
of valid DB2 data types and their corresponding COBOL definitions. Failure to define host variables
correctly results in precompiler errors or poor performance due to access path selection based on non-
equivalent data types, data conversions, and data truncation.
Use DCLGEN for Host Variable Generation
Use DCLGEN to generate host variables automatically for each column of each table to be accessed.
DCLGEN ensures that the host variables are defined correctly.
Avoid DCLGEN for Null Indicator Generation
As I mentioned earlier, DCLGEN can optionally generate null indicator host structures. However, host
structures are more difficult to use than individual null indicator variables and generally should be
avoided.
Embedded SELECT Statements
The two types of embedded SQL SELECT statements are singleton SELECTs and cursor SELECTs. So
far, all examples in the book have been singleton SELECTs.
Remember, SQL statements operate on a set of data and return a set of data. Host language programs,
however, operate on data a row at a time. A singleton SELECT is simply an SQL SELECT statement that
returns only one row. As such, it can be coded and embedded in a host language program with little
effort: The singleton SELECT returns one row and the application program processes one row.
You code a singleton SELECT as follows:
EXEC SQL
 SELECT DEPTNAME, MGRNO
 INTO :HOSTVAR-DEPTNAME,
 :HOSTVAR-MGRNO
 FROM DEPT
 WHERE DEPTNO = 'A11'
END-EXEC.
The singleton SELECT statement differs from a normal SQL SELECT statement in that it must contain
the INTO clause. In the INTO clause, you code the host variables that accept the data returned from the
DB2 table by the SELECT statement.
Singleton SELECTs are usually quite efficient. Be sure, however, that the singleton SELECT returns only
one row. If more than one row is retrieved, the first one is placed in the host variables defined by the
INTO clause, and the SQLCODE is set to -811.

 - 214 -

If your application program must process a SELECT statement that returns multiple rows, you must use
a cursor, which is an object designed to handle multiple row results tables.

Programming with Cursors

Recall from Chapter 1, "The Magic Words," that an impedance mismatch occurs between SQL and the host
language, such as COBOL. COBOL operates on data a row at a time; SQL operates on data a set at time.
Without a proper vehicle for handling this impedance mismatch (such as arrays in APL2), using embedded
SELECT statements would be impossible. IBM's solution is the structure known as a symbolic cursor, or
simply cursor.

DB2 application programs use cursors to navigate through a set of rows returned by an embedded SQL
SELECT statement. A cursor can be likened to a pointer. As the programmer, you declare a cursor and
define an SQL statement for that cursor. After that, you can use the cursor in much the same manner as
a sequential file. The cursor is opened, rows are fetched from the cursor one row at a time, and then the
cursor is closed.

You can perform four distinct operations on cursors:
DECLARE Defines the cursor, gives it a name unique to the program in which it

is embedded, and assigns an SQL statement to the cursor name.
The DECLARE statement does not execute the SQL statement; it
merely defines the SQL statement.

OPEN Readies the cursor for row retrieval. OPEN is an executable
statement. It reads the SQL search fields, executes the SQL
statement, and sometimes builds the results table. It does not assign
values to host variables, though.

FETCH Returns data from the results table one row at a time and assigns the
values to specified host variables. If the results table is not built at
cursor OPEN time, it is built FETCH by FETCH.

CLOSE Releases all resources used by the cursor.
Whether the results table for the SQL statement is built at cursor OPEN time or as rows are fetched
depends on the type of SQL statement and the access path. You will learn about access paths in
Chapter 19, "The Optimizer."

When you're processing with cursors, an SQL statement can return zero, one, or many rows. The
following list describes the cursor processing that occurs for the different number of retrieved rows:

One row Use of the cursor is optional. A result set of one row occurs either
because the SQL predicates provided specific qualifications to make
the answer set distinct or because a unique index exists for a column
or columns specified in the predicates of the WHERE clause.

Many rows Cursor processing is mandatory. When multiple rows are returned by
an SQL statement, a cursor must be coded. If multiple rows are
returned by a SELECT statement not coded using a cursor, DB2
returns a -811 SQLCODE (the SQLSTATE value is 21000).

Zero rows No rows exist for the specified conditions, or the specified conditions
are improperly coded. When no rows are returned, the SQL return
code is set to +100.

When cursors are used to process multiple rows, a FETCH statement is typically coded in a loop that
reads and processes each row in succession. When no more rows are available to be fetched, the
FETCH statement returns an SQLCODE of +100, indicating no more rows. For an example of cursor
processing, consult Listing 9.2.

Listing 9.2: Cursor Processing

WORKING-STORAGE SECTION.

 .

 .

 - 215 -

 .

 EXEC SQL

 DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPT

 WHERE ADMRDEPT = :ADMRDEPT

 END-EXEC.

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE 'A00' TO ADMRDEPT.

 EXEC SQL

 OPEN C1

 END-EXEC.

IF SQLCODE < 0

 PERFORM 9999-ERROR-PARAGRAPH.

 MOVE 'YES' TO MORE-ROWS.

 PERFORM 200-PROCESS-DEPTS

 UNTIL MORE-ROWS = 'NO'.

 EXEC SQL

 CLOSE C1

 END-EXEC.

 GOBACK.

200-PROCESS-DEPTS.

 .

 - 216 -

 .

 .

 EXEC SQL

 FETCH C1

 INTO :DEPTNO,

 :DEPTNAME,

 :MGRNO

 END-EXEC.

 IF SQLCODE < 0

 PERFORM 9999-ERROR-PARAGRAPH.

 IF SQLCODE = +100

 MOVE 'NO' TO MORE-ROWS

 ELSE
 perform required processing.

In Listing 9.2, a cursor is declared for an SQL SELECT statement in WORKING-STORAGE. Values are
moved to the host variables, and the cursor is opened. A loop fetches and processes information until
no more rows are available; then the cursor is closed.

Using a Cursor for Data Modification
Often an application program must read data and then, based on its values, either update or delete the data.
You use the UPDATE and DELETE SQL statements to modify and delete rows from DB2 tables. These
statements, like the SELECT statement, operate on data a set at a time. How can you then first read the data
before modifying it?

You do so by using a cursor and a special clause of the UPDATE and DELETE statements that can be
used only by embedded SQL: WHERE CURRENT OF. You declare the cursor with a special FOR
UPDATE OF clause.
Refer to Listing 9.3, which declares a cursor named C1 specifying the FOR UPDATE OF clause. The
cursor is opened and a row is fetched. After examining the contents of the retrieved data, the program
updates or deletes the row using the WHERE CURRENT OF C1 clause.

Listing 9.3: Updating with a Cursor

WORKING-STORAGE SECTION.

 EXEC SQL

 DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPT

 - 217 -

 WHERE ADMRDEPT = :ADMRDEPT

 FOR UPDATE OF MGRNO

 END-EXEC.

PROCEDURE DIVISION.

 .

 .

 .

 MOVE 'A00' TO ADMRDEPT.

 EXEC SQL

 OPEN C1

 END-EXEC.

 MOVE 'YES' TO MORE-ROWS.

 PERFORM 200-MODIFY-DEPT-INFO

 UNTIL MORE-ROWS = 'NO'.

 EXEC SQL

 CLOSE C1

 END-EXEC.

 GOBACK.

 200-MODIFY-DEPT-INFO.

 .

 .

 .

 EXEC SQL

 FETCH C1

 INTO :DEPTNO,

 :DEPTNAME,

 :MGRNO

 - 218 -

 END-EXEC.

 IF SQLCODE < 0

 PERFORM 9999-ERROR-PARAGRAPH.

 IF SQLCODE = +100

 MOVE 'NO' TO MORE-ROWS

 ELSE

 EXEC SQL

 UPDATE DEPT

 SET MGRNO = '000060'

 WHERE CURRENT OF C1

 END-EXEC.

These features enable you to perform row-by-row operations on DB2 tables, effectively mimicking
sequential file processing.

Embedded SELECT and Cursor Coding Guidelines

Ensure efficient and accurate embedded SQL by following the subsequent guidelines.
Use Singleton SELECTs to Reduce Overhead
Whenever possible, try to use singleton SELECTs rather than cursors because the definition and
processing of cursors adds overhead to a DB2 application program. However, be sure that the singleton
SELECT returns only one row. Ensuring that only a single row is to be returned can be accomplished by
selecting data only by the primary key column(s) or by columns defined in a unique index for that table.
If the program requires a SELECT statement that returns more than one row, you must use cursors. In
other words, a singleton SELECT cannot be used to return more than one row.
If your program must issue a SELECT statement that returns more than one row but needs to process
only the first row returned, consider coding a singleton SELECT instead of a cursor if performance is
critical. Code the program to accept -811 as a successful SQL call and process the returned row.

Caution Use care when implementing this technique though, because it may not work
in future releases of DB2.

Consider Cursor-Free Browsing

When a program needs to browse through the rows of a table based on a single column where a unique
index exists, consider avoiding a cursor in favor of the following two SQL statements:
SELECT VALUE(MIN(SALARY),0)
INTO :NEW-SAL-HVAR
FROM EMP
WHERE SALARY > :OLD-SAL-HVAR
SELECT EMPNO, LASTNAME, SALARY, BONUS
INTO :HV-EMPNO, :HV-LASTNAME, :HV-SALARY, :HV-BONUS
FROM EMP
WHERE SALARY = :NEW-SAL-HVAR

 - 219 -

The first time through the program, the host variable OLD-SAL-HVAR should be set to a value just lower
than the lowest value that needs to be retrieved. By looping through the preceding two SQL statements,
the program can avoid a cursor and browse the table rows until no more rows exist or the highest value
is obtained. This technique can outperform a cursor in some situations.

Declare as Many Cursors as Needed

You can declare and open more than one cursor in any given program at any time. No limit is placed on
the number of cursors permitted per application program.

Avoid Using Certain Cursors for Data Modification
You cannot use a cursor for updates or deletes if the DECLARE CURSOR statement includes any of the
following:

UNION clause
DISTINCT clause
GROUP BY clause
ORDER BY clause

Joins

Subqueries

Correlated subqueries
Tables in read-only mode, ACCESS(RO)
Tables in utility mode, ACCESS(UT)

Read-only views
Place the DECLARE CURSOR Statement First
The DECLARE CURSOR statement must precede any other commands (such as OPEN, CLOSE, and
FETCH) relating to the cursor because of the way the DB2 precompiler parses and extracts the SQL
statements from the program.
The DECLARE CURSOR statement is not an executable statement and should not be coded in the
PROCEDURE DIVISION of an application program. Although doing so does not cause a problem, it
makes your program difficult to understand and could cause others to think that DECLARE is an
executable statement.
You should place all cursor declarations in the WORKING-STORAGE section of the application program,
immediately before PROCEDURE DIVISION. All host variable declarations must precede the DECLARE
CURSOR statement in the application program.

Include Only the Columns Being Updated
When you're coding the FOR UPDATE OF clause of the DECLARE CURSOR statement, you should
specify only the columns that will be updated. Coding more columns than is necessary can degrade
performance.
In the FOR UPDATE OF clause of the DECLARE CURSOR statement, you must include all columns to be
modified. Otherwise, subsequent UPDATE...WHERE CURRENT OF statements will not be allowed for
those columns.
Always Use FOR UPDATE OF When Updating with a Cursor
Although doing so is not mandatory, you should code the FOR UPDATE OF clause of a DECLARE
CURSOR statement used for deleting rows. This technique effectively locks the row before it is deleted so
that no other process can access it. If rows earmarked for deletion are accessible by other programs
and ad hoc users, the integrity of the data could be compromised.
Use WHERE CURRENT OF to Delete Single Rows Using a Cursor
Use the WHERE CURRENT OF clause on UPDATE and DELETE statements that are meant to modify only
a single row. Failure to code the WHERE CURRENT OF clause results in the modification or deletion of
every row in the table being processed.
Avoid the FOR UPDATE OF Clause on Non-Updatable Cursors
You cannot code the FOR UPDATE OF clause on cursors that access read-only data. These cursors
contain SELECT statements that

 Access read-only views
 Join any tables
 Issue subqueries for two or more tables

 - 220 -

 Access two or more tables using UNION
 Use built-in functions
 Use ORDER BY, GROUP BY, or HAVING
 Specify DISTINCT
 Specify literals or arithmetic expressions in the SELECT list

Open Cursors Before Fetching

Similar to a sequential file, a cursor must be opened before it can be fetched from or closed. You also
cannot open a cursor twice without first closing it.

Initialize Host Variables
Initialize all host variables used by the cursor before opening the cursor. All host variables used in a
cursor SELECT are evaluated when the cursor is opened, not when the cursor is declared or fetched
from.
Use Care when Specifying Host Variables Used with FETCH
The FETCH statement retrieves data one row at a time only in a forward motion. In other words, rows
that have already been retrieved cannot be retrieved again.
Synchronize the host variables fetched (or selected) with the SELECT list specified in the cursor
declaration (or singleton SELECT). If the data type of the columns does not match the host variable, and
the data cannot be converted, a compilation error results. This error can occur if host variables are
transposed as follows:
EXEC SQL
 DECLARE C1 CURSOR
 SELECT DEPTNO, ADMRDEPT
 FROM DEPT
END-EXEC.
EXEC SQL
 FETCH C1
 INTO :ADMRDEPT, :DEPTNO
END-EXEC.
The DEPTNO host variable is switched with the ADMRDEPT host variable in the FETCH statement. This
switch does not cause a compilation error because both columns are the same data type and length,
but it does cause data integrity problems.

Explicitly Close Cursors
When a DB2 program is finished, DB2 implicitly closes all cursors opened by the program. To increase
performance, however, you should explicitly code the CLOSE statement for each cursor when the cursor
is no longer required. The CLOSE statement can be executed only against previously OPENed cursors.
Use the WITH HOLD Clause to Retain Cursor Position
When a COMMIT is issued by the program, open cursors are closed unless the WITH HOLD option is
coded for the cursor.
You can add the WITH HOLD parameter to a cursor as shown in the following example:
EXEC SQL
 DECLARE CSR1 CURSOR WITH HOLD FOR
 SELECT EMPNO, LASTNAME
 FROM EMP
 WHERE SALARY > 30000
END-EXEC.
WITH HOLD prevents subsequent COMMITs from destroying the intermediate results table for the
SELECT statement, thereby saving positioning within the cursor. This technique will not hold the cursor
position over separate tasks in pseudo-conversational programs.

 - 221 -

Open Cursors Only When Needed
Do not open a cursor until just before you need it. Close the cursor immediately after your program
receives an SQLCODE of +100, which means that the program has finished processing the cursor. This
way, you can reduce the consumption of system resources.

Modifying Data with Embedded SQL

Previously, I discussed the capability to update and delete single rows based on cursor positioning. You can
also embed pure set-level processing UPDATE, DELETE, and INSERT SQL statements into a host language
program.

Simply code the appropriate SQL statement, and delimit it with EXEC SQL and END-EXEC. The
statement can contain host variables. When issued in the program, the statement is processed as
though it were issued interactively. Consider the following example:
EXEC SQL
 UPDATE EMP
 SET SALARY = SALARY * 1.05
 WHERE EMPNO = :EMPNO
END-EXEC.
EXEC SQL
 DELETE FROM PROJACT
 WHERE ACENDATE < CURRENT DATE
END-EXEC.
EXEC SQL
 INSERT INTO DEPT
 (DEPTNO,
 DEPTNAME,
 MGRNO,
 ADMRDEPT)
 VALUES
 (:DEPTNO,
 :DEPTNAME,
 :MGRNO,
 :ADMRDEPT)
END-EXEC.
These three SQL statements are examples of coding embedded data modification statements (UPDATE,
DELETE, and INSERT) using host variables.

Embedded Modification SQL Guidelines
The following guidelines should be followed to ensure that optimal SQL data modification techniques are
being deployed in your DB2 applications.

Favor Cursor-Controlled UPDATE and DELETE
Favor UPDATE and DELETE with a cursor specifying the FOR UPDATE OF clause over individual
UPDATE and DELETE statements that use the set-level processing capabilities of SQL.
Set-level processing is preferable, however, when an OPEN, a FETCH, and a CLOSE are performed for
each UPDATE or DELETE. Sometimes, performing these three actions cannot be avoided (for example,
when applying transactions from a sequential input file).
Use FOR UPDATE OF to Ensure Data Integrity
If a program is coded to SELECT or FETCH a row and then, based on the row's contents, issue an
UPDATE or DELETE, use a cursor with FOR UPDATE OF to ensure data integrity. The FOR UPDATE OF
clause causes a lock to be taken on the data page when it is fetched, ensuring that no other process
can modify the data before your program processes it. If the program simply SELECTs or FETCHs
without the FOR UPDATE OF specification and then issues an SQL statement to modify the data,

 - 222 -

another process can modify the data in between, thereby invalidating your program's modification,
overwriting your program's modification, or both.

Caution When programming psuedo-conversation CICS transactions, FOR UPDATE
OF is not sufficient to ensure integrity. A save and compare must be done prior
to any update activity.

Specify a Primary Key in the WHERE Clause of UPDATE and DELETE Statements
Never issue independent, embedded, non-cursor controlled UPDATE and DELETE statements without
specifying a primary key value or unique index column values in the WHERE clause unless you want to
affect multiple rows. Without the unique WHERE clause specification, you might be unable to determine
whether you have specified the correct row for modification. In addition, you could mistakenly update or
delete multiple rows.
Of course, if your desired intent is to delete multiple rows, by all means, issue the embedded, non-
cursor controlled UPDATE and DELETE statement. Just be sure to test the statement thoroughly to
ensure that the results you desire are actually achieved.
Use Set-at-a-Time INSERTs
If your program issues INSERT statements, try to use the statement's set-level processing capabilities.
Using the set-level processing of INSERT is usually possible only when rows are being inserted into one
table based on a SELECT from another table.
Use LOAD Rather than Multiple INSERTs
Favor the LOAD utility over an application program performing many insertions in a table. If the inserts
are not dependent on coding constraints, format the input records to be loaded and use the LOAD utility.
If the inserts are dependent on application code, consider writing an application program that writes a
flat file that can subsequently be loaded using the LOAD utility. In general, LOAD outperforms a program
issuing INSERTs.

Application Development Guidelines

The guidelines in this section aid you in coding more efficient DB2 application programs by
 Coding efficient embedded SQL
 Coding efficient host language constructs to process the embedded SQL
 Reducing concurrency
 Promoting the development of easily maintainable code

When you're designing a DB2 program, you can easily get caught up in programming for efficiency,
thereby compromising the effectiveness of the program. Efficiency can be defined as "doing things
right," whereas effectiveness can be defined as "doing the right thing."

Design embedded SQL programs to be as efficient as possible (following the guidelines in this book)
without compromising the effectiveness of the program. Gauge program efficiency by the following
criteria:

 CPU time
 Elapsed time
 Number and type of I/Os
 Lock wait time
 Transaction throughput

For a thorough discussion of DB2 performance monitoring and tuning, consult Parts IV and V. Gauge
program effectiveness by the following criteria:

 User satisfaction
 Expected results versus actual results
 Integrity of the processed data
 Capability to meet prearranged service-level requirements

Avoid "Black Boxes"

Often, DB2 professionals are confronted with the "black box" approach to database access. The basic
idea behind a black box is that instead of having programs issue direct requests to the database, they
will make requests of a black box data engine. This black box program is designed to accept parameter-
driven requests and then issue common SQL statements to return results to the program.
Proponents of the black box solution believe that access to data by calling a program with parameters is
easier than learning SQL. But the black box approach is complete rubbish and should be avoided at all
costs. The proper way to formulate requests for DB2 data is by formulating well-designed, efficient SQL

 - 223 -

statements. A black box will never be able to completely mimic the functionality of SQL. Furthermore,
the black box approach is sure to cause performance problems because it will have been coded for
multiple users and will forgo the efficient SQL design techniques discussed in Chapter 2, "Data
Manipulation Guidelines."

For example, what if the data access requirements of the programs calling the black box require the
following:

 One program requires three columns from TABLE1.
 A second program requires two columns from TABLE1.
 Two additional programs require four columns from TABLE1.
 A fifth program requires all of the columns from TABLE1.

In this case, the black box is almost sure to be designed with a single SQL SELECT that returns all of
the columns from TABLE1. But, depending on which program calls the black box, only the required rows
would be returned. We know this is bad SQL design because we should always return the absolute
minimum number of columns and rows per SQL SELECT statement to optimize performance. But even if
four different SELECT statements were used by the black box, if requirements change, so must the
black box. The additional maintenance required for the black box program adds unneeded
administrative overhead. Furthermore, the black box program is a single-point-of-failure for any
application that uses it.

All in all, black boxes provide no benefit at a significant cost. Application programs should be designed
using SQL to access DB2 data. Black boxes should not be allowed.

Code Modular DB2 Programs

You should design DB2 programs to be modular. One program should accomplish a single, well-defined
task. If you need to execute multiple tasks, structure the programs so that tasks can be strung together
by having the programs call one another. This approach is preferable to a single, large program that
accomplishes many tasks for two reasons. One, single tasks in separate programs make the programs
easier to understand and maintain. Two, if each task can be executed either alone or with other tasks,
isolating the tasks in a program enables easier execution of any single task or list of tasks.

Minimize the Size of DB2 Programs

Code DB2 programs to be as small as possible. Streamlining your application code to remove
unnecessary statements results in better performance. This recommendation goes hand-in-hand with
the preceding one.

Consider Stored Procedures for Reusability

When you're modularizing a DB2 application, do so with an eye toward reusability. Whenever a
particular task must be performed across many programs, applications, or systems, consider developing
a stored procedure. A stored procedure, after it is created, can be called from multiple applications.
However, when you modify the code, you need to modify only the stored procedure code, not each
individual program.
For more information on stored procedures, refer to Chapter 13.

Consider User-Defined Functions for Reusability

If your organization relies on business rules that transform data, consider implementing user-defined
functions. Data transformation tasks that are performed by many programs, applications, or systems,
can benefit from the reusability aspects of user-defined functions. Consider developing user-defined
functions for the business rule and then using them in subsequent SQL statements. This reuse is
preferable to coding the business rule into multiple applications because

 You can be sure the same code is being used in all programs.
 You can optimize the performance of the UDF and impact multiple programs at once,

instead of requiring massive logic changes in many programs.
 When the rule changes, you need to modify the UDF once, not in each individual

program.
For more information on user-defined functions, refer to Chapter 4, "Using DB2 User-Defined Functions
and Data Types."

 - 224 -

Be Aware of Active Database Constructs
You can create active DB2 databases using features such as referential integrity and triggers. An active
database takes action based on changes to the state of the data stored in it. For example, if a row is
deleted, subsequent activity automatically occurs (such as enforcing a DELETE CASCADE referential
constraint or an INSERT trigger firing that causes other data to be modified).

You need to be aware of the active database features that have been implemented to appropriately
code DB2 application programs. This awareness is required because you need to know the processes
that the database itself will automatically perform so your application programs do not repeat the
process.

Use Unqualified SQL

Use unqualified table, view, synonym, and alias names in application programs. This way, you can ease
the process of moving programs, plans, and packages from the test environment to the production
environment. If tables are explicitly qualified in an application program, and tables are qualified
differently in test DB2 than they are in production DB2, programs must be modified before they are
turned over to an operational production application.

When the program is bound, the tables are qualified by one of the following:
 If neither the OWNER nor QUALIFIER parameter is specified, tables are qualified by

the userid of the binding agent.
 If only the OWNER is specified, tables are qualified by the token specified in the OWNER

parameter.
 If a QUALIFIER is specified, all tables are qualified by the token specified to that

parameter.
Avoid SELECT *
Never use SELECT * in an embedded SQL program. Request each column that needs to be accessed.
Also, follow the SQL coding recommendations in Chapter 2.
Filter Data Using the SQL WHERE Clause
Favor the specification of DB2 predicates to filter rows from a desired results table instead of the
selection of all rows and the use of program logic to filter those not needed. For example, coding the
embedded SELECT
SELECT EMPNO, LASTNAME, SALARY
FROM EMP
WHERE SALARY > 10000
is preferred to coding the same SELECT statement without the WHERE clause and following the SELECT
statement with an IF statement:
IF SALARY < 10000
 NEXT SENTENCE
ELSE
 Process data.
The WHERE clause usually outperforms the host language IF statement because I/O is reduced.

Use SQL to Join Tables

To join tables, favor SQL over application logic, except when the data retrieved by the join must be
updated. In this situation, consider coding multiple cursors to mimic the join process. Base the
predicates of one cursor on the data retrieved from a fetch to the previous cursor.
Listing 9.4 presents pseudocode for retrieving data from a cursor declared with an SQL join statement.

Listing 9.4: Pseudocode for retrieving data from an SQL join

EXEC SQL

 DECLARE JOINCSR CURSOR FOR

 SELECT D.DEPTNO, D.DEPTNAME, E.EMPNO, E.SALARY

 - 225 -

 FROM DEPT D,

 EMP E

 WHERE D.DEPTNO = E.WORKDEPT

END-EXEC.

EXEC SQL

 OPEN JOINCSR

END-EXEC.
Loop until no more rows returned or error
EXEC SQL
 FETCH JOINCSR
 INTO :DEPTNO, :DEPTNAME, :EMPNO, :SALARY
 END-EXEC
 Process retrieved data
end of loop

The criteria for joining tables are in the predicates of the SQL statement. Compare this method to the
application join example in Listing 9.5. The pseudocode in this listing employs two cursors, each
accessing a different table, to join the EMP table with the DEPT table using application logic.

Listing 9.5: Pseudocode for Retrieving Data from an Application Join

EXEC SQL

 DECLARE DEPTCSR CURSOR FOR

 SELECT DEPTNO, DEPTNAME

 FROM DEPT

END-EXEC.

EXEC SQL

 DECLARE EMPCSR CURSOR FOR

 SELECT EMPNO, SALARY

 FROM EMP

 WHERE WORKDEPT = :HV-WORKDEPT

END-EXEC.

EXEC SQL

 OPEN DEPTCSR

END-EXEC.
Loop until no more department rows or error
 EXEC SQL
 FETCH DEPTCSR
 INTO :DEPTNO, :DEPTNAME

 - 226 -

 END-EXEC.
 MOVE DEPTNO TO HV-WORKDEPT.
 EXEC SQL
 OPEN EMPCSR
 END-EXEC.
 Loop until no more employee rows or error
 EXEC SQL
 FETCH EMPCSR
 INTO :EMPNO, :SALARY
 END-EXEC.
 Process retrieved data
 end of loop
end of loop

Joining tables by application logic requires additional code and is usually less efficient than an SQL join.
When data will be updated in a cursor-controlled fashion, favor application joining over SQL joining
because the results of an SQL join are not always updated directly. When you're updating the result
rows of an application join, remember to code FOR UPDATE OF on each cursor, specifying every
column that can be updated. When you're only reading the data without subsequent modification,
remember to code FOR READ ONLY (or FOR FETCH ONLY) on the cursor.

Avoid Host Structures
Avoid selecting or fetching INTO a group-level host variable structure. Your program is more
independent of table changes if you select or fetch into individual data elements. For example, code
EXEC SQL
 FETCH C1
 INTO :DEPTNO,
 :DEPTNAME:DEPTNAME-IND,
 :MGRNO:MGRNO-IND,
 :ADMDEPT:ADMRDEPT-IND
END-EXEC.

instead of
EXEC SQL
 FETCH C1
 INTO :DCLDEPT:DEPT-IND
END-EXEC.

Although the second example appears easier to code, the first example is preferred. Using individual
host variables instead of host structures makes programs easier to understand, easier to debug, and
easier to maintain.
Use ORDER BY to Ensure Sequencing
Always use ORDER BY when your program must ensure the sequencing of returned rows. Otherwise,
the rows are returned to your program in an unpredictable sequence.
Use FOR READ ONLY for Read-Only Access
Code all read-only SELECT cursors with the FOR READ ONLY (or FOR FETCH ONLY) cursor clause.

Explicitly Code Literals

When possible, code literals explicitly in the SQL statement rather than moving the literals to host
variables and then processing the SQL statement using the host variables. This technique gives the
DB2 optimization process the best opportunity for arriving at an optimal access path.

Although DB2, as of V5, offers an option to re-optimize SQL statements on the fly, explicit literal coding
still should be considered when feasible. It should not, however, be a forced standard.

 - 227 -

Use Global Temporary Tables to a Simulate Host Variable List
Sometimes the need arises to check a column for equality against a list of values. This can be difficult to
do efficiently without using global temporary tables. For example, suppose you have a list of twelve
employee numbers for which you want names. You could code a loop that feeds the twelve values, one-
by-one, into a host variable, say HVEMPNO, and execute the following SQL
SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMP
WHERE EMPNO = :HVEMPNO;

Of course, this requires twelve executions of the SQL statement. Wouldn't it be easier if you could
supply the twelve values in a single SQL statement, as shown in the following?
SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMP
WHERE EMPNO IN (:HV1, :HV2, :HV3, :HV4, :HV5, :HV6, :HV7, :HV8, :HV9, :HV10, :HV11, :HV12);

Well, that SQL is valid, but it requires twelve host variables. What if the number of values is not
constant? If fewer than twelve values are supplied, you can put a non-existent value (low values, for
example) in the remaining host variables and still be able to execute the SQL. But if more than twelve
values are supplied, the statement has to be run multiple times—exactly the situation we are trying to
avoid.

Instead, declare and use a global temporary table. Insert all the values for the list into the global
temporary table (GTT) and issue the following SQL:
SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMP
WHERE EMPNO IN (SELECT column FROM GTT);

Of course, each of the previous SQL statements should be embedded in a cursor because multiple
rows can be retrieved.

Remember that access to a global temporary table is by a full table scan because indexes cannot be
created on a GTT. In this case, though, the GTT SQL formulation is the most flexible of the choices and
should perform well.

Joining Non-Relational Data Using SQL
Consider using global temporary tables when you need to join non-relational data to DB2 data. For
example, consider an application that needs to join employee information stored in an IMS database to
employee information in the a DB2 table, such as the EMP table. One approach, of course, would be to
retrieve the required data from the IMS database and join it using program logic to the DB2 data.
However, you could also create a GTT and INSERT the IMS data as it is retrieved into the GTT. After
the GTT is populated, it can be joined to the EMP table using a standard SQL join.

This technique is not limited to IMS data. Any non-relational data source can be read and inserted into a
GTT, which can then be accessed using SQL for the duration of the unit of work.

Avoid Cursors If Possible

Whenever doing so is practical, avoid the use of a cursor. Cursors add overhead to an application
program. You can avoid cursors, however, only when the program retrieves a single row from an
application table or tables.

Code Cursors to Retrieve Multiple Rows
If you do not check for -811 SQLCODEs, always code a cursor for each SELECT statement that does
not access tables either by the primary key or by columns specified in a unique index.

Specify Isolation Level by SQL Statement
Individual SQL statements can specify a different, appropriate isolation level. Although each DB2 plan
and package has an isolation level, you can override it for individual SQL statements by using the WITH
clause. You can specify the WITH clause for the following types of SQL statements:

 SELECT INTO

 - 228 -

 DECLARE CURSOR
 INSERT
 Searched DELETE
 Searched UPDATE

Valid options are as follow:
 RR and RR KEEP UPDATE LOCKS (Repeatable Read)
 RS and RS KEEP UPDATE LOCKS (Read Stability)
 CS (Cursor Stability)
 UR (Uncommitted Read)

The KEEP UPDATE LOCKS clause was added as of DB2 V5. It indicates that DB2 is to acquire X locks
instead of U or S locks on all qualifying rows or pages. Use KEEP UPDATE LOCKS sparingly. Although it
can better serialize updates, it can reduce concurrency.
In Chapter 11, "Program Preparation," you can find additional guidance for each of the isolation levels.

Use the Sample Programs for Inspiration
IBM provides source code in several host languages for various sample application programs. This
source code is in a PDS library named SYS1.DB2V6R1.DSNSAMP (or something similar) supplied with
the DB2 system software. Samples of COBOL, PL/I, FORTRAN, Assembler, and C programs for TSO,
CICS, and IMS are available in the previously library.

Favor Complex SQL

When embedding SQL in application programs, developers are sometimes tempted to break up
complex SQL statements into smaller, easier-to-understand SQL statements and combine them
together using program logic. Avoid this approach. When SQL is properly coded, DB2 is almost always
more efficient than equivalent application code when it comes to accessing and updating DB2 data.

Batch Programming Guidelines

When coding batch DB2 programs the following tips and tricks can be used to create effective and useful
applications.

Favor Clustered Access

Whenever sequential access to table data is needed, process the table rows in clustered sequence.
This reduces I/O cost because pages need not be re-read if the data is processed by the clustering
sequence.

Increase Parallel Processing

The architecture of IBM mainframes is such that multiple engines are available for processing. A batch
program executing in a single, standard batch job can be processed by only a single engine. To
maximize performance of CPU-bound programs, increase the parallelism of the program in one of two
ways:

 Program Cloning—Clone the program and stratify the data access. Stratifying data
access refers to dividing data access into logical subsets that can be processed
independently.

 Query Parallelism—Utilize partitioned tablespaces and bind the application program
specifying DEGREE(ANY) to indicate that DB2 should try to use query I/O, CPU, and
Sysplex parallelism.

Using the first method, you, as the application developer, must physically create multiple clone
programs. Each program clone must be functionally identical but will process a different subset of the
data. For example, you could split a program that reads DSN8610.EMP to process employees into a
series of programs that performs the same function, but each processes only a single department. The
data can be stratified based on any consistent grouping of data that is comprehensive (all data to be
processed is included) and non-overlapping (data in one subset does not occur in a different subset).
For example, you can accomplish data stratification based on the following:

 Unique key ranges
 Tablespace partitions
 Functional groupings (for example, departments or companies)

 - 229 -

Ensure that the data is stratified both programmatically and in the structure of the database. For
example, if you're stratifying using partitioned tablespaces, ensure that each job operates only on data
from a single partition. If data from multiple partitions can be accessed in concurrent jobs, timeout and
deadlock problems might occur. Refer to Chapter 5, "Data Definition Guidelines," for DDL
recommendations for increasing concurrency.
Also note that concurrency problems can still occur. When data from one subset physically coexists with
data from another subset, lockout and timeout can take place. DB2 locks at the page level (usually). If
data is stratified at any level other than the tablespace partition level, data from one subset can coexist
on the same tablespace page as data from another subset.
Using the second method, DB2's inherent query parallelism feature, you can develop a single program.
DB2 determines whether parallelism is of benefit. If you specify DEGREE(ANY), DB2 formulates the
appropriate degree of parallelism for each query in the program. The primary benefits accrued from
allowing DB2 to specify parallelism are as follow:

 The avoidance of code duplication. Only one program is required. DB2 itself handles
the parallel query execution.

 The ability of DB2 to determine the appropriate number of parallel engines per query
(not per program).

 The ability of DB2 to change the degree of parallelism on the fly. If the resources are
not available to process parallel queries, DB2 can automatically "turn off" parallelism at
runtime.

 The ability of DB2 to enable Sysplex parallelism. With data sharing, when capacity
requirements increase you can add extra engines. The cost to add additional engines
is minimal and DB2 will automatically take advantage of additional engines.

 Finally, if the nature of the data changes such that a change to the degree of
parallelism is warranted, all that is required is a new bind. DB2 automatically
formulates the degree of parallelism at bind time.

However, potential problems arise when you're using query parallelism instead of program cloning:
 DB2 controls the number of parallel engines. The developer can exert no control.

When program cloning is used, the number of parallel jobs is fixed and unchanging.
 One program can contain multiple queries, each with a different degree. Although this

can be considered a benefit, it can also be confusing to novice programmers.
 DB2 I/O, CPU, and Sysplex parallelism are for read-only SQL. Updates, inserts, and

deletes cannot be performed in parallel yet.
 DB2 can "turn off" parallelism at runtime. Once again, though, this can be considered a

benefit because DB2 is smart enough to disengage parallelism because of an
overexerted system.

Both methods of achieving parallelism are viable as of DB2 V6 (for CPU parallelism, V4 is required; for
Sysplex parallelism V5 is required). Whenever possible, favor DB2 parallelism over program cloning
because it represents IBM's stated direction for achieving parallelism. Program cloning, although still
useful for some applications, will become an obsolete method of data stratification as IBM improves
DB2's parallel capabilities.
Use LOCK TABLE with Caution
As a general rule, use the LOCK TABLE command with caution. Discuss the implications of this
command with your DBA staff before deciding to use it.
Issuing a LOCK TABLE statement locks all tables in the tablespace containing the table specified. It
holds all locks until COMMIT or DEALLOCATION. This statement reduces concurrent access to all tables
in the tablespace affected by the command.
The preceding rule notwithstanding, LOCK TABLE can significantly decrease an application program's
processing time. If a significant number of page locks are taken during program execution, the addition
of LOCK TABLE eliminates page locks, replacing them with table (or tablespace) locks. It thereby
enhances performance by eliminating the overhead associated with page locks.
Balance the issuing of the LOCK TABLE command with the need for concurrent data access, the locking
strategies in the DDL of the tablespaces, and the plans being run.

Note You can use LOCK TABLE to explicitly limit concurrent access. For example,
issuing a LOCK TABLE statement in a batch program can prevent online
transactions from entering data before the batch cycle has completed.

Parameterize Lock Strategies

If a batch window exists wherein concurrent access is not required, but a high degree of concurrency is
required after the batch window, consider coding batch programs with dynamic lock-switching

 - 230 -

capabilities. For example, if the batch window extends from 2:00 a.m. to 6:00 a.m., and a batch DB2
update program must run during that time, make the locking parameter-driven or system-clock-driven.
The program can read the system clock and determine whether it can complete before online
processing begins at 6:00 a.m. This decision should be based on the average elapsed time required for
the program to execute. If possible, the program should issue the LOCK TABLE statement. If this is not
possible, the program should use the normal locking strategy as assigned by the tablespace DDL. A
flexible locking strategy increases performance and reduces the program's impact on the online world.
An alternative method is to let the program accept a parameter to control locking granularity. For
example, the value TABLE or NORMAL can be passed as a parameter. If TABLE is specified as a
parameter, the program issues LOCK TABLE statements. Otherwise, normal locking ensues. If NORMAL
is specified, normal locking requires manual intervention and is not as easily implemented as the
system time method.
Periodically COMMIT Work in Batch Update Programs
Favor issuing COMMITs in all medium to large batch update programs. A COMMIT externalizes all
updates that occurred in the program since the beginning of the program or the last COMMIT.

Note COMMIT does not flush data from the DB2 bufferpool and physically apply the
data to the table. It does, however, ensure that all modifications have been
physically applied to the DB2 log, thereby ensuring data integrity and
recoverability.

Any batch program that issues more than 500 updates is a candidate for COMMIT processing. Note that
the number of updates issued by a program is not the most critical factor in determining whether
COMMITs will be useful. The most important factor is the amount of elapsed time required for the
program to complete. The greater the amount of time needed, the more you should consider using
COMMITs (to reduce rollback time and reprocessing time in the event of program failure). You can safely
assume, however, that the elapsed time increases as the number of updates increases.
Issuing COMMITs in an application program is important for three reasons. First, if the program fails, all
the updates are backed out to the last COMMIT point. This process could take twice the time it took to
perform the updates in the first place if you are near the end of a program without COMMITs that
performs hundreds of updates.
Second, if you resubmit a failing program that issues no COMMITs, the program redoes work
unnecessarily.
Third, programs bound using the repeatable read page locking strategy or the RELEASE(COMMIT)
tablespace locking strategy hold their respective page and tablespace locks until a COMMIT is issued. If
no COMMITs are issued during the program, locks are never released, thereby negatively affecting
concurrent access.
Given these considerations for COMMIT processing, the following situations should compel you to code
COMMIT logic in your batch programs:

 The update program must run in a small batch processing window.
 Concurrent batch or online access must occur during the time the batch update

program is running.
Note If the concurrent batch or online access uses ISOLATION(UR), COMMIT

processing is irrelevant. However, most processing requires accurate data and as
such does not use ISOLATION(UR).

If the preceding does not describe your situation, consider avoiding COMMITs. When update programs
without COMMITs fail, you can generally restart them from the beginning because database changes
have not been committed. Additionally, COMMITs require resources. By reducing or eliminating
COMMITs, you can enhance performance (albeit at the expense of concurrency due to additional locks
being held for a greater duration). Before you decide to avoid COMMIT processing, remember that all
cataloged sequential files must be deleted, any updated VSAM files must be restored, and any IMS
updates must be backed out before restarting the failing program. If the outlined situations change, you
might need to retrofit your batch programs with COMMIT processing—a potentially painful process.
I recommend that you plan to issue COMMITs in every batch program. You can structure the logic so
that the COMMIT processing is contingent on a parameter passed to the program. This approach
enables an analyst to turn off COMMIT processing but ensures that all batch programs are prepared if
COMMIT processing is required in the future.
Use Elapsed Time to Schedule COMMITs
Base the frequency of COMMITs on the information in Table 9.5 or on the elapsed time since the last
COMMIT. Doing so provides a more consistent COMMIT frequency. If you insist on basing COMMIT
processing on the number of rows processed instead of the elapsed time, estimate the elapsed time

 - 231 -

required to process a given number of rows and then correlate this time to Table 9.5 to determine the
optimal COMMIT frequency.

Table 9.5: Recommendations for COMMIT Frequency

Application Requirement COMMIT Recommendations

No concurrent access required
and unlimited time for
reprocessing in the event of an
abend

Code program for COMMITs, but consider processing
without COMMITs (using a parameter).

No concurrency required but
limited reprocessing time
available

COMMIT in batch approximately every 15 minutes.

Limited batch concurrency
required; no concurrent online
activity

COMMIT in batch every 1 to 5 minutes (more frequently to
increase concurrency).

Online concurrency required COMMIT in batch every 5 to 15 seconds.

Choose Useful Units of Work
A unit of work is a portion of processing that achieves data integrity, is logically complete, and creates a
point of recovery. Units of work are defined by the scope of the COMMITs issued by your program. (All
data modification that occurs between COMMITs is considered to be in a unit of work.) Use care in
choosing units of work for programs that issue INSERT, UPDATE, or DELETE statements.
Choosing a unit of work that provides data integrity is of paramount importance for programs that issue
COMMITs. For example, consider an application program that modifies the project start and end dates in
tables DSN8610.PROJACT and DSN8610.EMPPROJACT. The start and end DSN8610.PROJACT
columns are
ACSTDATE Estimated start date for the activity recorded in this row of the project

activity table
ACENDATE Estimated end date for the activity recorded in this row of the project

activity table
The columns for DSN8610.EMPPROJACT are
EMSTDATE Estimated start date when the employee will begin work on the activity

recorded in this row of the employee project
EMENDATE Estimated end date when the employee will have completed the activity

recorded in this row of the employee project activity

The start and end dates in these two tables are logically related. A given activity for a project begins on
a specified date and ends on a specified date. A given employee is assigned to work on each activity
and is assigned also a start date and an end date for the activity.

Many employees can work on a single activity, but each employee can start and end his or her
involvement with that activity at different times. The only stipulation is that the employees must begin
and end their involvement within the start and end dates for that activity. Therein lies the relationship
that ties these four columns together.

The unit of work for the program should be composed of the modifications to both tables. In other
words, the program should not commit the changes to one table without committing the changes to the
other table at the same time. If it does commit the changes to one but not the other, the implicit
relationship between the dates in the two tables can be destroyed.
Consider the following situation. A project has a start date of 1999-12-01 and an end date of 2000-03-
31. This information is recorded in the DSN8610.PROJACT table. Employees are assigned to work on
activities in this project with start and end dates in the stated range. These dates are recorded in the
DSN8610.EMPPROJACT table.
Later, you must modify the end date of the project to 2000-01-31. This new end date is earlier than the
previous end date. Consider the status of the data if the program updates the end date in the
DSN8610.PROJACT table, commits the changes, and then abends. The data in the

 - 232 -

DSN8610.EMPPROJACT table has not been updated, so the end dates are not synchronized. An
employee can still be assigned an activity with the old end date. For this reason, you should be sure to
group related updates in the same unit of work.

Make Programs Restartable
In time-critical applications, DB2 batch programs that modify table data should be restartable if a system
error occurs. To make a batch program restartable, you first create a DB2 table to control the
checkpoint and restart processing for all DB2 update programs. A checkpoint is data written by an
application program during its execution that identifies the status and extent of processing. This
checkpoint is usually accomplished by storing the primary key of the table row being processed. The
program must update the primary key as it processes before each COMMIT point. During restart
processing, the primary key information is read, enabling the program to continue from where it left off.

The following DDL illustrates a DB2 table (and an associated index) that can be used to support
checkpoint and restart processing:
CREATE TABLE CHKPT_RSTRT
 (PROGRAM_NAME CHAR(8) NOT NULL,
 ITERATION CHAR(4) NOT NULL,
 COMMIT_FREQUENCY SMALLINT NOT NULL,
 NO_OF_COMMITS SMALLINT NOT NULL WITH DEFAULT,
 CHECKPOINT_TIME TIMESTAMP NOT NULL WITH DEFAULT,
 CHECKPOINT_AREA CHAR(254) NOT NULL WITH DEFAULT.

 PRIMARY KEY (PROGRAM_NAME, ITERATION)
)
IN DATABASE.TBSPACE
;
CREATE UNIQUE INDEX XCHKPRST
 (PROGRAM_NAME, ITERATION)
 CLUSTER
 other parameters
;
When a batch program is restarted after an abend, it can continue where it left off if it follows certain
steps. This is true because a checkpoint row was written indicating the last committed update, the time
that the employee was processed, and the key of the processed employee table (ACTNO).

The following steps show you the coding necessary to make a program restartable:
1. Declare two cursors to SELECT rows to be updated in the PROJACT table. Code an

ORDER BY for the columns of the unique index (PROJNO, ACTNO, and ACSTDATE).
The first cursor should select the rows you want. It is used the first time the request
is processed. For example

2. EXEC SQL DECLARE CSR1
3. SELECT PROJNO, ACTNO, ACSTDATE,
4. ACSTAFF, ACENDATE
5. FROM PROJACT
6. ORDER BY PROJNO, ACTNO, ACSTDATE

END-EXEC.

This statement reflects the needs of your application. The second cursor is for use after
issuing COMMITs and for restart processing. It must reposition the cursor at the row
following the last row processed. You can reposition the cursor by using WHERE clauses
that reflect the ORDER BY on the primary key (or the unique column combination), for
example
EXEC SQL DECLARE CSR2
 SELECT PROJNO, ACTNO, ACSTDATE,

 - 233 -

 ACSTAFF, ACENDATE
 FROM PROJACT
 WHERE ((PROJNO = :CHKPT-PROJNO
 AND ACTNO = :CHKPT-ACTNO
 AND ACSTDATE > :CHKPT-ACSTDATE)
 OR (PROJNO = :CHKPT-PROJNO
 AND ACTNO > :CHKPT-ACTNO)
 OR (PROJNO > :CHKPT-PROJNO))
 AND PROJNO >= :CHKPT-PROJNO
 ORDER BY PROJNO, ACTNO, ACSTDATE
END-EXEC.

This cursor begins processing at a point other than the beginning of the ORDER BY list.
Although, technically you can use only the second cursor by coding low values for the
host variables the first time through, doing so is not recommended. The first cursor
usually provides better performance than the second, especially when the second cursor
is artificially constrained by bogus host variable values. However, if you can determine
(using EXPLAIN or other performance monitoring techniques) that the first cursor
provides no appreciable performance gain over the second, use only one cursor.
7. SELECT the row from the CHKPT-RESTRT table for the program and iteration being

processed. You can hard-code the program name into the program. Or, if the
program can run parallel with itself, it should be able to accept as parameter-driven
input an iteration token, used for identifying a particular batch run of the program.

8. If it is the first time through and CHECKPOINT_AREA contains data, the program is
restarted. Move the appropriate values from the CHECKPOINT_AREA to the host
variables used in the second cursor and OPEN it. If it is the first time through and
the program is not restarted, OPEN the first PROJACT cursor.

9. FETCH a row from the opened cursor.
10. If the FETCH is successful, increment a WORKING-STORAGE variable that counts

successful fetches.
11. Perform the UPDATE for the PROJACT row that was fetched.
12. If the fetch counter is equal to COMMIT_FREQUENCY, perform a commit paragraph.

This paragraph should increment and update NO_OF_COMMITS and the
CHECKPOINT_AREA column with the PROJNO, ACTNO, and ACSTDATE of the
PROJACT row retrieved, and set CHECKPOINT_TIME to the current timestamp. It
should then issue a COMMIT and reset the fetch counter to zero.

13. After a COMMIT, cursors are closed unless you specified the WITH HOLD option. If
the WITH HOLD option is not used, the cursor must change after the first COMMIT
is executed (unless only the second cursor shown previously is used). Remember,
the first time through, the program can use the C1 cursor above; subsequently, it
should always use C2.

14. When update processing is complete, reset the values of the columns in the
CHKPT_RSTRT table to their original default values.

If the CHKPT_RSTRT row for the program is reread after each COMMIT, you can modify
the COMMIT_FREQUENCY column on the fly. If you determine that too few or too many
checkpoints have been taken, based on the state of the data and the time elapsed and
remaining, he or she can update the COMMIT_FREQUENCY (using QMF, SPUFI, or some
other means) for that program only. Doing so dynamically changes the frequency at
which the program COMMITs.

Incurring the extra read usually causes little performance degradation since the page
containing the row usually remains in the bufferpool due to of its frequent access rate.

Following these nine steps enables you to restart your programs after a program failure. During
processing, the CHKPT_RSTRT table is continually updated with current processing information. If the
program abends, all updates—including updates to the CHKPT_RSTRT table—are rolled back to the last
successful checkpoint. This way, the CHKPT_RSTRT table is synchronized with the updates made to the
table. You can then restart the update program after you determine and correct the cause of the abend.
On restart, the CHKPT_RSTRT table is read, and the CHECKPOINT_AREA information is placed into a
cursor that repositions the program to the data where the last update occurred.

 - 234 -

Additional Notes on Restartability
If a restartable program uses the WITH HOLD option to prohibit cursor closing at COMMIT time, it can
avoid the need to reposition the cursor constantly, thereby enabling more efficient processing. To be
restartable, however, the program still requires a repositioning cursor so that it can bypass the work
already completed.
When you specify the WITH HOLD option, the repositioning cursor is used only when the program is
restarted, not during normal processing. Additional code and parameters are required to signal to the
program when to use the repositioning cursors.
Restartable programs using sequential input files can reposition the input files using one of two
methods. The first way is to count the records read and place the counter in the CHKPT_RSTRT table.
On restart, the table is read and multiple reads are issued (number of reads equals READ_COUNTER).
Alternatively, for input files sorted by the checkpoint key, the program can use the information in the
CHECKPOINT_AREA to read to the appropriate record.
Restartable programs writing sequential output files must handle each output file separately. Most
sequential output files can have their disposition modified to MOD in the JCL, allowing the restarted
program to continue writing to them. For the following types of output files, however, you must delete or
modify output file records before restarting:

 Headers for report files with control break processing
 Output files with different record types
 Any output file requiring specialized application processing

Hold Cursors Rather Than Reposition
You also can use the concept of cursor repositioning for programs not coded to be restartable. If
COMMITs are coded in a program that updates data using cursors, you have two options for
repositioning cursors. You can use the WITH HOLD option of the cursor, or you can code two cursors,
an initial cursor and a repositioning cursor, as shown in the previous example.
The best solution is to code the WITH HOLD clause for each cursor that needs to be accessed after a
COMMIT. WITH HOLD prohibits the closing of the cursor by the COMMIT statement and maintains the
position of the cursor.

Online Programming Guidelines

Utilize the following techniques to create efficient online DB2 applications.

Limit the Number of Pages Retrieved

To achieve subsecond transaction response time, try to limit the number of pages retrieved or modified.
When subsecond response time is not required, the number of pages to be accessed can be increased
until the service level agreement is met. In general, try to avoid having an impact on more than 100
pages in online transactions.

Limit Online Joins

When you're joining rows, try to limit the number of rows returned by the transaction. There is a practical
limit to the amount of data that a user can assimilate while sitting in front of a computer screen.
Whenever possible, set a low limit on the number of rows returned (for example, approximately 125
rows, or 5 screens of data). For data intensive applications, adjust this total, as required, with the
understanding that performance may suffer as additional data is accessed and returned to the screen.

As of Version 6, DB2 enables up to 225 tables to be referenced in a single SQL statement. This limit
was driven by ERP vendors who developed their applications on other DBMS platforms. Just because
DB2 supports up to 225 tables in a SQL statement does not mean you should code such SQL
statements, particularly online. As indicated previously, limit online joins to retrieve only the amount of
data that actually can be consumed by an online user.

Limit Online Sorts
To reduce online data sorting, try to avoid using GROUP BY, ORDER BY, DISTINCT, and UNION unless
appropriate indexes are available.
Issue COMMITs Before Displaying
Always issue commits (CICS SYNCPOINT, TSO COMMIT, or IMS CHKP) before sending information to
a terminal.

 - 235 -

Modularize Transactions

When possible, design separate transactions for selecting, updating, inserting, and deleting rows. This
way, you can minimize page locking and maximize modular program design.
Minimize Cascading DELETEs
Avoid online deletion of parent table rows involved in referential constraints specifying the CASCADE
delete rule. When a row in the parent table is deleted, multiple deletes in dependent tables can occur.
This result degrades online performance.

Keep in mind that as of V6, triggers also can cause cascading data modification. Be sure to include the
impact of triggers when analyzing the overall impact referential integrity-invoked cascading deletes can
cause.

Be Aware of Overactive Data Areas
An overactive data area is a portion of a table or index that is accessed and updated considerably more
than other tables (or portions thereof) in the online application. Be aware of overactive data areas.

Overactive data areas are characterized by the following features: a relatively small number of pages
(usually 10 pages or fewer, and sometimes only 1 row), and a large volume of retrievals and updates
(usually busy more than half the time that the online application is active).

Overactive data areas can be caused, for example, by using a table with one row (or a small number of
rows) to assign sequential numbers for columns in other tables or files; or by using a table to store
counters, totals, or averages of values stored in other tables or files. You also can cause overactive
data areas when you use tables to implement domains that are volatile or heavily accessed by the
online system. These situations cause many different programs to access and modify a small amount of
data over and over. An inordinate number of resource unavailable and timeout abends can be caused
by overactive data areas unless they are monitored and maintained.

Reduce the impact of overactive data areas by designing transactions with the following characteristics:
 Issue OPEN, FETCH, UPDATE, and CLOSE cursor statements (hereafter referred to as

update sequences) as close to each other as possible.
 Invoke update sequences as rapidly as possible in the transaction; in other words, do

not place unrelated operations in the series of instructions that update the overactive
data area.

 Code as few intervening instructions as possible between the OPEN, FETCH, and
CLOSE statements.

 Place the update sequence as close to the transaction commit point as possible (that
is, near the end of the transaction code).

 Isolate the active range to a single partition (or several partitions). Assign the partitions
to a dedicated buffer pool (perhaps with a related hiperspace) and to a device and
controller that has excess capacity during peak periods.

 Use DDL to reduce the impact of overactive data areas and increase concurrent
access. You can do so in four ways: For each table containing overactive data areas,
you can convert type 1 indexes to type 2, increase the number of subpages for the
type 1 indexes on the tables, increase free space on the tablespace and indexes for
the tables, and increase the MAXROWS tablespace parameter (or add a large column
to the end of the row for each table thus reducing the number of rows per page).

Consider Using TIMESTAMP for Sequencing
For columns, consider using TIMESTAMP data types instead of sequentially assigned numbers. You can
generate timestamps automatically using the CURRENT TIMESTAMP special register (or the NOT NULL
WITH DEFAULT option). A timestamp column has the same basic functionality as a sequentially
assigned number, without the requirement of designing a table to assign sequential numbers.
Remember, a table with a sequencing column can cause an overactive data area.
A column defined with the TIMESTAMP data type is marked by the date and time (down to the
microsecond) that the row was inserted or updated. These numbers are serial unless updates occur
across multiple time zones. Although duplicate timestamps can be generated if two transactions are
entered at the same microsecond, this circumstance is rare. You can eliminate this possibility by coding
a unique index on the column and checking for a -803 SQLCODE (duplicate index entry).

The only other drawback is the size of the timestamp data type. Although physically stored as only 10
bytes, the timestamp data is presented to the user as a 26-byte field. If users must remember the key, a
timestamp usually does not suffice.

 - 236 -

A common workaround for numbers that must be random is to use the microsecond portion of the
timestamp as a random number generator to create keys automatically, without the need for a table to
assign them. Note, though, that these numbers will not be sequenced by order of input.

Note At the time this book was being written, IBM indicated that a new IDENTITY
feature would be released for DB2 in a future refresh of the DB2 V6 code. The
IDENTITY feature allows for the automatic generation of sequential, numeric
keys. Before using another approach, investigate whether the IDENTITY
functionality has been delivered and implemented at your shop.

Use ROWID For Direct Row Access
When the table you need to access contains a ROWID column, you can use that column to directly
access a row without using an index or a tablespace scan. DB2 can directly access the row because the
ROWID column contains the location of the row. Direct row access is very efficient.
To use direct row access, you must first SELECT the row using traditional methods. DB2 will either use
an index or a scan to retrieve the row the first time. Be sure to retrieve the ROWID column and store it in
a host variable. After the row has been accessed once, the ROWID column can be used to directly
access the row again. Simply include a predicate in the WHERE clause for the ROWID column, such as
the following:
WHERE ROWID_COL = :HVROWID
Of course, DB2 may revert to an access type other than direct row access if it determines that the row
location has changed. You must plan for the possibility that DB2 will not choose to use direct row
access, even if it indicates its intent to do so during EXPLAIN. If the predicate you are using to do direct
row access is not indexable, and if DB2 is unable to use direct row access, a tablespace scan will be
used instead. This can negatively impact performance.

For a query to qualify for direct row access, the search condition must be a stage 1 predicate of one of
the following forms:

 A simple Boolean predicate formulated as
COLUMN = non-column expression
where COLUMN is a ROWID data type and non-column expression contains a ROWID
value

 A simple Boolean predicate formulated as

COLUMN IN 'list'
where COLUMN is a ROWID data type and the values in the list are ROWID values and an
index is defined on the COLUMN

 A compound predicate using AND where one of the component predicates fits one of
the two previous descriptions

Caution Do not attempt to "remember" ROWID values between executions of an
application program because the ROWID value can change, due to a
REORG, for example.
Additionally, do not attempt to use ROWID values across tables, even if those
tables are exact shadow copies. The ROWID values will not be the same
across tables.

Do Not INSERT into Empty Tables

Avoid inserting rows into empty tables in an online environment. Doing so causes multiple I/Os when
you're updating indexes and causes index page splits. If you must insert rows into an empty table,
consider one of the following options. You can format the table by prefilling it with index keys that can be
updated online instead of inserted to. This way, you can reduce I/O and eliminate index page splitting
because the index is not updated.

Another option is to partition the table so that inserts are grouped into separate partitions. This method
does not reduce I/O, but it can limit page splitting because the index updates are spread across multiple
index data sets instead of confined to just one.

Increase Concurrent Online Access
Limit deadlock and timeout situations by coding applications to increase their concurrency. One option
is to code all transactions to access tables in the same order. For example, do not sequentially access
departments in alphabetic order by DEPTNAME in one transaction, from highest to lowest DEPTNO in
another, and from lowest to highest DEPTNO in yet another. Try to limit the sequential access of a table
to a single method.

 - 237 -

Another option is to update and delete using the WHERE CURRENT OF cursor option instead of using
independent UPDATE and DELETE statements. A third option for increasing online throughput is to plan
batch activity in online tables during inactive or off-peak periods.

Consider Saving Data Modification Statements Until the End of the Program

You can write an application program so that all modifications occur at the end of each unit of work
instead of spreading them throughout the program. Because modifications do not actually occur until the
end of the unit of work, the placement of the actual SQL modification statements is of no consequence
to the eventual results of the program. If you place inserts, updates, and deletes at the end of the unit of
work, the duration of locks held decreases. This technique can have a significant positive impact on
concurrency and application performance.
Use OPTIMIZE FOR 1 ROW to Disable List Prefetch
Turning off list prefetch for online applications that display data on a page-by-page basis is often
desirable. When you use list prefetch, DB2 acquires a list of RIDs from matching index entries, sorts the
RIDs, and then accesses data pages using the RID list. The overhead associated with list prefetch
usually causes performance degradation in an online, paging environment. OPTIMIZE FOR 1 ROW
disables list prefetch and enhances performance.

Implement a Repositioning Cursor for Online Browsing

Use repositioning techniques, similar to those discussed for repositioning batch cursors, to permit online
browsing and scrolling of retrieved rows by a primary key. Implement this cursor to reposition using a
single column key:
EXEC SQL
 DECLARE SCROLL0 FOR
 SELECT PROJNO, PROJNAME, MAJPROJ
 FROM PROJ
 WHERE PROJNO > :LAST-PROJNO
 ORDER BY PROJNO
END-EXEC.

You have two options for repositioning cursors when browsing data online. Both are efficient if indexes
appear on columns in the predicates. Test both in your critical online applications to determine which
performs better.
The first uses predicates tied together with AND:
EXEC SQL
 DECLARE SCROLL1 FOR
 SELECT PROJNO, ACTNO, ACSTDATE,
 ACSTAFF, ACENDATE
 FROM PROJACT
 WHERE (PROJNO = :LAST-PROJNO
 AND ACTNO = :LAST-ACTNO
 AND ACSTDATE > :LAST-ACSTDATE)
 OR (PROJNO = :LAST-PROJNO
 AND ACTNO > :LAST-ACTNO)
 OR (PROJNO > :LAST-PROJNO)
 ORDER BY PROJNO, ACTNO, ACSTDATE
END-EXEC.
The second uses predicates tied together with OR:
EXEC SQL
 DECLARE SCROLL2 FOR
 SELECT PROJNO, ACTNO, ACSTDATE,

 - 238 -

 ACSTAFF, ACENDATE
 FROM PROJACT
 WHERE (PROJNO >= :LAST-PROJNO)
 AND NOT (PROJNO = :LAST-PROJNO AND ACTNO < :LAST-ACTNO)
 AND NOT (PROJNO = :LAST-PROJNO AND ACTNO = :LAST-ACTNO
 AND ACSTDATE <= :LAST-ACSTDATE)
 ORDER BY PROJNO, ACTNO, ACSTDATE
END-EXEC.

The rows being browsed must have a primary key or unique index that can be used to control the
scrolling and repositioning of the cursors. Otherwise, rows might be eliminated because the cursors
cannot identify the last row accessed and displayed. If all occurrences of a set of columns are not
displayed on a single screen, and more than one row has the same values, rows are lost when the
cursor is repositioned after the last value (a duplicate) on the previous screen.

Summary

In this chapter, you delved into the murky waters of application programming using DB2. You learned the
basics of embedded SQL and how to use cursors. Furthermore, you explored techniques for effective data
access and modification in both batch and online environments. It seems that smooth-sailing is ahead for
your DB2 application development efforts. But the calm is short-lived. An approaching storm of dynamic SQL
threatens to disturb the waters. To confront this storm, turn the page to Chapter 10.

Chapter 10: Dynamic SQL Programming
Overview

In Chapter 9, "Using DB2 in an Application Program," you learned about embedding static SQL into
application programs to access DB2 tables. As you may recall from Chapter 1, "The Magic Words," though,
you can embed another type of SQL in an application program: dynamic SQL.

Static SQL is hard-coded, and only the values of host variables in predicates can change. Dynamic SQL
is characterized by its capability to change columns, tables, and predicates during a program's
execution. This flexibility requires different techniques for embedding dynamic SQL in application
programs.

Before you delve into the details of these techniques, you should know up front that the flexibility of
dynamic SQL does not come without a price. In general, dynamic SQL is less efficient than static SQL.
Read on to find out why.

Dynamic SQL Performance

The performance of dynamic SQL is one of the most widely debated DB2 issues. Some shops avoid it, and
many of the ones that allow it place strict controls on its use. Completely avoiding dynamic SQL is unwise,
but placing controls on its use is prudent. As new and faster versions of DB2 are released, many of the
restrictions on dynamic SQL use will be eliminated.

You can find some good reasons for prohibiting dynamic SQL. You should avoid dynamic SQL when
the dynamic SQL statements are just a series of static SQL statements in disguise. Consider an
application that needs two or three predicates for one SELECT statement that is otherwise unchanged.
Coding three static SELECT statements is more efficient than coding one dynamic SELECT with a
changeable predicate. The static SQL takes more time to code but less time to execute. Another reason
for avoiding dynamic SQL is that it almost always requires more overhead to process than equivalent
static SQL. Dynamic SQL incurs overhead because the cost of the dynamic bind, or PREPARE, must be
added to the processing time of all dynamic SQL programs. However, this overhead is not quite as
costly as many people think it is. To determine the cost of a dynamic bind, consider running some
queries using SPUFI with the DB2 performance trace turned on. Then examine the performance reports
or performance monitor output to determine the elapsed and TCB time required to perform the
PREPARE. The results should show elapsed times less than 1 second and subsecond TCB times. The
actual time required to perform the dynamic PREPARE will vary with the complexity of the SQL

 - 239 -

statement. In general, the more complex the statement, the longer DB2 will take to optimize it. So be
sure to test SQL statements of varying complexity.
Of course, the times you get will vary based on your environment, the type of dynamic SQL you use,
and the complexity of the statement being prepared. Complex SQL statements with many joins, unions,
and subqueries take longer to PREPARE than simple queries. However, factors such as the number of
columns returned or the size of the table being accessed have little or no effect on the performance of
the dynamic bind.

Overhead issues notwithstanding, there are valid performance reasons for favoring dynamic SQL. For
example, dynamic SQL can enable better use of indexes, choosing different indexes for different SQL
formulations. Properly coded, dynamic SQL can use the column distribution statistics stored in the DB2
Catalog, whereas static SQL is limited in how it can use these statistics. Use of the distribution statistics
can cause DB2 to choose different access paths for the same query when different values are supplied
to its predicates.
The REOPT(VARS) bind parameter is available as of DB2 V5 to enable static SQL to make better use of
non-uniform distribution statistics. When dynamic reoptimization is activated, a dynamic bind similar to
what is performed for dynamic SQL is performed. For more information on reoptimization of static SQL,
refer to Chapter 11, "Program Preparation."
Additionally, DB2 V5 introduced the KEEPDYNAMIC bind option to enhance the performance of dynamic
SQL. When a plan or package is bound specifying KEEPDYNAMIC(YES), the prepared statement is
maintained across COMMIT points. Prior to V5, only cursors using the WITH HOLD option kept the
prepared statement after a COMMIT. Dynamic SQL usually provides the most efficient development
techniques for applications with changeable requirements (for example, numerous screen-driven
queries).

In addition, dynamic SQL generally reduces the number of SQL statements coded in your application
program, thereby reducing the size of the plan and increasing the efficient use of system memory. If you
have a compelling reason to use dynamic SQL, ensure that the reason is sound and complies with the
considerations listed in the following section.

Dynamic SQL Guidelines

The following tips, tricks, and guidelines should be followed to ensure that dynamic SQL is used in an
optimal manner in your shop.

Favor Static SQL
Static SQL might be more efficient than dynamic SQL because dynamic SQL requires the execution of
the PREPARE statement during program execution. Static SQL is prepared (bound) before execution.

Static SQL should be sufficient for the programming needs of at least 90% of the applications you
develop. If static SQL does not provide enough flexibility for the design of changeable SQL statements,
consider using dynamic SQL. In many cases, the perceived need for dynamic SQL is merely the need
for a series of static SQL statements in disguise.

Use the Appropriate Class of Dynamic SQL

After you decide to use dynamic SQL rather than static SQL, be sure to code the correct class of
dynamic SQL. Do not favor one class of dynamic SQL over another based solely on the difficulty of
coding. Consider both the efficiency of the program and the difficulty of maintenance, as well as the
difficulty of coding a dynamic SQL program. Performance is often the most important criterion. If a
dynamic SQL program does not perform adequately, you should convert it to either static SQL or
another class of dynamic SQL.
Favor non-select dynamic SQL over EXECUTE IMMEDIATE because the former gives the programmer
additional flexibility in preparing SQL statements, which usually results in a more efficient program. Also,
favor varying-list dynamic SQL over fixed-list dynamic SQL because the first gives the programmer
greater control over which columns are accessed. Additionally, varying-list dynamic SQL gives the DB2
optimizer the greatest amount of freedom in selecting an efficient access path (for example, a greater
opportunity for index-only access).
When you use varying-list dynamic SQL, overhead is incurred as the program determines the type of
SQL statement and uses the SQLDA to identify the columns and their data types. Weigh the cost of this
overhead against the opportunities for a better access path when you decide between fixed-list and
varying-list dynamic SQL.

 - 240 -

Do Not Fear Dynamic SQL

Dynamic SQL provides the DB2 programmer with a rich and useful set of features. The belief that
dynamic SQL always should be avoided in favor of static SQL is slowly but surely evaporating. Dynamic
SQL becomes more efficient with each successive release of DB2, thereby enticing users who have
been frustrated in their attempts to mold dynamic SQL into the sometimes rigid confines of static SQL.
If you design dynamic SQL programs with care and do not abuse SQL's inherent functionality, you can
achieve great results. Follow all the guidelines in this chapter closely. See Part V for a discussion of
tuning and resource governing for dynamic SQL applications.
By this guideline, I do not mean to imply that you should use dynamic SQL where it is not merited.
Simply apply common sense when deciding between static and dynamic SQL for your DB2 applications.
Remember, any rule with a "never" in it (such as "never use dynamic SQL") is usually unwise!

Avoid Dynamic SQL for Specific Statements

Not every SQL statement can be executed as dynamic SQL. Most of these types of SQL statements
provide for the execution of dynamic SQL or row-at-a-time processing. The following SQL statements
cannot be executed dynamically:

CLOSE
DECLARE
DESCRIBE
EXECUTE
EXECUTE IMMEDIATE
FETCH
INCLUDE
OPEN
PREPARE
WHENEVER

Use Parameter Markers Instead of Host Variables
Dynamic SQL statements cannot contain host variables. They must use instead a device called a
parameter marker. A parameter marker can be thought of as a dynamic host variable.

Consider Dynamic SQL when Accessing Non-Uniform Data
If you're accessing a table in which the data is not evenly distributed, dynamic SQL may perform better
than static SQL. Distribution statistics are stored in the DB2 Catalog in two tables:
SYSIBM.SYSCOLDISTSTAT and SYSIBM.SYSCOLDIST.
By default, RUNSTATS stores the 10 values that appear most frequently in the first column of an index
along with the percentage that each value occurs in the column. As of DB2 V5, the RUNSTATS utility
provides options for which distribution statistics can be collected for any number of values (and for any
number of columns).
In some cases, the optimizer uses this information only for dynamic SQL. Static SQL still assumes even
distribution unless the pertinent predicates use hard-coded values instead of host variables or dynamic
reoptimization was specified at bind time using the REOPT(VARS) parameter.

Use Bind-Time Authorization Checking
Prior to DB2 V4, users of dynamic SQL programs required explicit authorization to the underlying tables
accessed by the program being executed. For complex programs, the task of granting authority multiple
types (INSERT, UPDATE, DELETE) of security for multiple tables to multiple users is time consuming,
error prone, and difficult to administer.
The DYNAMICRULES parameter of the BIND command provides flexibility of authorization checking for
dynamic SQL programs. Specifying DYNAMICRULES(BIND) causes DB2 to check for authorization at
BIND time using the authority of the binding agent. Just like static SQL programs, no additional runtime
authorization checking is required.
Specifying DYNAMICRULES(RUN) causes dynamic SQL programs to check for authorization at runtime
(just like pre-V4 dynamic programs).

Consider Caching Prepared Statements

As of DB2 V5, prepared dynamic SQL statements can be cached in memory. This feature enables
programs to avoid redundant optimization and its associated overhead. Dynamic SQL caching must be
enabled by the system administrator and is either on or off at the subsystem level.

 - 241 -

When dynamic SQL caching is enabled, dynamic SELECT, INSERT, UPDATE, and DELETE statements
are eligible to be cached. The first PREPARE statement creates the dynamic plan and stores it in the
EDM pool. If a PREPARE is requested for the same SQL statement, DB2 can reuse the cached
statement. DB2 performs a character-by-character comparison of the SQL statement, rejecting reuse if
any differences are found between what is cached and what is being requested for execution. IBM has
published results indicating that the second execution of a dynamic SQL statement costs .012 more
than the same static SQL statement. For example, if the static SQL executes in 1 second, the second
execution of an equivalent, already optimized dynamic SQL statement should take about 1.012
seconds.

Note The performance results referenced above were published in the IBM redbook,
SG24-2213, DB2 for OS/390 Version 5 Performance Topics.

To ensure that dynamic statements are cached, the following two conditions must be met:
 Dynamic SQL cache is turned on by the system administrator. Dynamic SQL caching

is not the default; it must be explicitly specified to be turned on.
 Do not use the NOREOPT(VARS) BIND option for the plan or package. The purpose of

caching is to avoid having to reoptimize, so NOREOPT(VARS) is the compatible option
for dynamic SQL caching.

Cached statements can be shared among threads, plans, and packages. However, cached statements
cannot be shared across data sharing groups because each member has its own EDM pool.

Notes To share a cached dynamic SQL statement, the following must be the same for
both executions of the statement:

 BIND authority
 DYNAMICRULES value
 CURRENTDATA value
 ISOLATION level
 SQLRULES value
 QUALIFIER value
 CURRENT DEGREE special register
 CURRENT RULES special register

In general, for systems with heavy dynamic SQL use, especially where dynamic SQL programs issue
the same statement multiple times, dynamic SQL caching can improve performance by reducing the
overhead of multiple PREPAREs. However, dynamic SQL caching requires additional memory to
increase the size of the EDM pool and can cause performance degradation for dynamic SQL that does
not meet the preceding requirements because of the following:

 A cost is associated with caching an SQL statement. (DB2 must spend time moving
the dynamic plan to the EDM pool.)

 If the SQL statements do not match, a cost is associated with the comparison that DB2
performs.

 EDM pool contention can occur when caching is enabled for environments in which
dynamic SQL is used heavily.

The bottom line is that each shop must determine whether dynamic SQL caching will be beneficial given
its current and planned mix of static and dynamic SQL. At any rate, the DBA group must communicate
whether dynamic SQL caching is enabled to assist application developers in their decisions to use
dynamic or static SQL.

Caution Caching dynamically prepared statements can have a dramatic impact on
your EDM pool usage. Be sure to plan accordingly and ensure that you have
sized your EDM pool appropriately to accommodate the additional usage for
dynamic statement caching.

Reduce Prepares with KEEPDYNAMIC(YES)
Use the KEEPDYANMIC(YES) BIND option to save dynamic plans across COMMIT points. With
KEEPDYNAMIC(NO), dynamic SQL statements must be re-prepared after a COMMIT is issued. By
specifying KEEPDYNAMIC(YES), dynamic SQL programming is easier, and the resulting programs can
be efficient because fewer PREPAREs are required to be issued.

Encourage Parallelism
Use the SET CURRENT DEGREE = "ANY" statement within dynamic SQL programs to encourage the
use of query I/O, CPU, and Sysplex parallelism. When DB2 uses multiple, parallel engines to access
data, the result can be enhanced performance.

 - 242 -

Before you blindly place this statement in all dynamic SQL programs, however, be sure to analyze your
environment to ensure that adequate resources are available to support parallelism. For example,
ensure that adequate buffer space is available for multiple concurrent read engines.

Use Dynamic SQL to Access Dynamic Data
Dynamic SQL can prove beneficial for access to very active tables that fluctuate between many rows
and few rows between plan rebinding. If you cannot increase the frequency of plan rebinding, you can
use dynamic SQL to optimize queries based on current RUNSTATS.

Consider the QMFCI

Another reason to use dynamic SQL is to allow programs to take advantage of the capabilities of QMF
using the QMF Command Interface (QMFCI). Dynamic SQL is invoked when you use QMF to access
DB2 data. The functionality provided by the QMFCI includes left and right scrolling and data formatting.
The addition of these capabilities can offset any performance degradation that dynamic SQL might
cause.

Be Wary of Poorly Designed Dynamic SQL

Online transaction-based systems require well-designed SQL to execute with subsecond response time.
If you use dynamic SQL, the system is less likely to have well-designed SQL. If a program can change
the SQL "on-the-fly," the control required for online systems is relinquished, and performance can
suffer.
Do Not Avoid Varying-List SELECT
Often, application developers do not take the time to design a dynamic SQL application properly if it
requires variable SELECTs. Usually, a varying-list SELECT is needed for proper performance, but a
fixed-list SELECT is used to avoid using the SQLDA and pointer variables. This use limits the access
path possibilities available to the optimizer and can degrade performance.

Be Aware of Dynamic SQL Tuning Difficulties
Dynamic SQL is more difficult to tune because it changes with each program execution. Dynamic SQL
cannot be traced using the DB2 Catalog tables (SYSDBRM, SYSSTMT, SYSPLANREF, and SYSPLAN)
because the SQL statements are not hard-coded into the program and therefore are not in the
application plan.

Use DB2's Performance Governing Facilities

DB2 provides two types of resource governing: reactive and predictive. Predictive governing is available
only for DB2 V6 and later releases. Both types of governing can be used to control the amount of
resources consumed by dynamic SQL.

Proper administration of the Resource Limit Facility (RLF) is needed to control DB2 resources when
dynamic SQL is executed. Thresholds for CPU use are coded in the RLF on an application-by-
application basis.
When the RLF threshold is reached, the application program does not ABEND with reactive governing.
An SQL error code is issued when any statement exceeds the predetermined CPU usage. This
environment requires additional support from a DBA standpoint for RLF administration and
maintenance, as well as additional work from an application development standpoint for enhancing
error-handling procedures.

With predictive governing, you can code the RLF to stop a statement from even starting to execute. This
is not possible with reactive governing where the statement must execute until the threshold is reached,
at which point the RLF stops the query. By stopping a resource-hogging query before it begins to
execute, you can avoid wasting precious resources on a statement that will never finish anyway.
For details on using the RLF to set up reactive and predictive governing, refer to Chapter 27, "DB2
Resource Governing."

Use Dynamic SQL for Tailoring Access

If you need to tailor access to DB2 tables based on user input from a screen or pick list, using dynamic
SQL is the most efficient way to build your system. If you use static SQL, all possible rows must be
returned, and the program must skip those not requested. This method incurs additional I/O and usually
is less efficient than the corresponding dynamic SQL programs.

 - 243 -

Consider the following: What if, for a certain query, 20 predicates are possible? The user of the program
is permitted to choose up to 6 of these predicates for any given request. How many different static SQL
statements do you need to code to satisfy these specifications?
First, determine the number of different ways that you can choose 6 predicates out of 20. To do so, you
need to use combinatorial coefficients. So, if n is the number of different ways, then
 n = (20 x 19 x 18 x 17 x 16 x 15) / (6 x 5 x 4 x 3 x 2 x 1)
 n = (27,907,200) / (720)
 n = 38,760
You get 38,760 separate static SELECTs, which is quite a large number, but it is still not sufficient to
satisfy the request! The total number of different ways to choose 6 predicates out of 20 is 38,760 if the
ordering of the predicates does not matter (which, for all intents and purposes, it does not). However,
because the specifications clearly state that the user can choose up to six, you have to modify the
number. You therefore have to add in the following:

 The number of different ways of choosing 5 predicates out of 20
 The number of different ways of choosing 4 predicates out of 20
 The number of different ways of choosing 3 predicates out of 20
 The number of different ways of choosing 2 predicates out of 20
 The number of different ways of choosing 1 predicate out of 20

You can calculate this number as follows:
Ways to Choose 6 Predicates Out of 20
(20 x 19 x 18 x 17 x 16 x 15) / (6 x 5 x 4 x 3 x 2 x 1) = 38,760
Ways to Choose 5 Predicates Out of 20
(20 x 19 x 18 x 17 x 16) / (5 x 4 x 3 x 2 x 1) = 15,504
Ways to Choose 4 Predicates Out of 20
(20 x 19 x 18 x 17) / (4 x 3 x 2 x 1) = 4,845
Ways to Choose 3 Predicates Out of 20
(20 x 19 x 18) / (3 x 2 x 1) = 1,140
Ways to Choose 2 Predicates Out of 20
(20 x 19) / (2 x 1) = 190
Ways to Choose 1 Predicate Out of 20
20 / 1 = 20
Total Ways to Choose Up to 6 Predicates Out of 20
38,760 + 15,504 + 4,845 + 1,140 + 190 + 20 = 60,459

The grand total number of static SQL statements that must be coded comes actually to 60,459. In such
a situation, in which over 60,000 SQL statements must be coded if static SQL must be used, you have
one of two options:

 You can code for 40 days and 40 nights hoping to write 60,459 SQL statements
successfully.

 You can compromise on the design and limit the users' flexibility.

Of course, the appropriate solution is to abandon static SQL and use dynamic SQL in this situation.

Use Dynamic SQL for Flexibility

Dynamic SQL programs sometimes respond more rapidly to business rules that change frequently.
Because dynamic SQL is formulated as the program runs, the flexibility is greater than with static SQL
programs. Users can react more quickly to changing business conditions by changing their selection
criteria.

Using Dynamic SQL or Static SQL with Reoptimization
Both dynamic SQL and static SQL using the REOPT(VARS) BIND option can be used to reoptimize
SQL when host variables or parameter marker values change. The ability to reoptimize enables DB2 to
choose an appropriate access path for the SQL statement. When the values to be used in SQL
statements vary considerably and affect the access path, be sure to enable one of the reoptimization
strategies to optimize performance. But which is the better choice? It depends on the following factors:

 Dynamic SQL is more flexible but more complex.

 - 244 -

 Dynamic SQL is implemented at the statement level. A program can contain both
dynamic and static SQL statements.

 Static SQL with REOPT(VARS) is easy to specify because it is a simple BIND
parameter. The program does not need to be changed.

 The REOPT(VARS) parameter is specified at the plan or package level. It cannot be
specified at the statement level.

In general, favor dynamic SQL with the dynamic statement cache when the cost of the bind is high
compared to the cost of running the SQL. Use static SQL with reoptimization when the cost of the bind
is low compared to the cost of running the SQL.

Reasons You Should Know Dynamic SQL

You should understand what dynamic SQL is and what it can do for you for many reasons. As IBM improves
the efficiency and functionality of dynamic SQL, more applications will use dynamic SQL. A working
knowledge of dynamic SQL is necessary if you want to use DB2 fully and understand all its applications and
utility programs. This section should make abundantly clear the fact that dynamic SQL is here to stay.

Dynamic SQL makes optimal use of the distribution statistics accumulated by RUNSTATS. Because the
values are available when the optimizer determines the access path, it can arrive at a better solution for
accessing the data. Static SQL, on the other hand, cannot use these statistics unless all predicate
values are hard-coded or REOPT(VARS) is specified.

Distributed queries executed at the remote site using DB2 DUW private protocol use dynamic SQL.
Some current distributed applications systems are based on this requirement.
QMF, SPUFI, and many other DB2 add-on tools for table editing and querying use dynamic SQL. Also,
many fourth-generation language interfaces to DB2 support only dynamic SQL. Although the users of
these tools are not required to know dynamic SQL, understanding its capabilities and drawbacks can
help users develop efficient data access requests.
Using dynamic SQL is the only way to change SQL criteria such as complete predicates, columns in the
SELECT list, and table names during the execution of a program. As long as application systems require
these capabilities, dynamic SQL will be needed.

Dynamic SQL is optimized at runtime, and static SQL is optimized before execution. As a result,
dynamic SQL may perform slower than static SQL. Sometimes, however, the additional overhead of
runtime optimization is offset by the capability of dynamic SQL to change access path criteria based on
current statistics during a program's execution.
The four classes of dynamic SQL are EXECUTE IMMEDIATE, non-SELECT dynamic SQL, fixed-list
SELECT, and varying-list SELECT. The following sections cover each of these classes in depth.

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE implicitly prepares and executes complete SQL statements coded in host variables.
Only a subset of SQL statements is available when you use the EXECUTE IMMEDIATE class of
dynamic SQL. The most important SQL statement that is missing is the SELECT statement. Therefore,
EXECUTE IMMEDIATE dynamic SQL cannot retrieve data from tables.
If you don't need to issue queries, you can write the SQL portion of your program in two steps. First,
move the complete text for the statement to be executed into a host variable. Second, issue the
EXECUTE IMMEDIATE statement specifying the host variable as an argument. The statement is
prepared and executed automatically.
Listing 10.1 shows a simple use of EXECUTE IMMEDIATE that deletes rows from a table. The SQL
statement is moved to a string variable and then executed.

Listing 10.1: A COBOL Program Using EXECUTE IMMEDIATE

WORKING-STORAGE SECTION.

 .

 .

 .

 - 245 -

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 .

 .

 .

 01 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(100).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +45 TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN8310.PROJ WHERE DEPTNO = 'A00'"

 TO STRING-VARIABLE.

 EXEC SQL

 EXECUTE IMMEDIATE :STRING-VARIABLE

 END-EXEC.

 .

 .

 .

You can replace the DELETE statement in Listing 10.1 with any of the following supported statements:

ALTER
COMMENT ON
COMMIT
CREATE
DELETE
DROP
EXPLAIN
GRANT

 - 246 -

INSERT
LABEL ON
LOCK TABLE
REVOKE
ROLLBACK
SET
UPDATE
Despite the simplicity of the EXECUTE IMMEDIATE statement, it usually is not the best choice for
application programs that issue dynamic SQL for two reasons. One, as I mentioned, EXECUTE
IMMEDIATE does not support the SELECT statement. Two, performance can suffer when you use
EXECUTE IMMEDIATE in a program that executes the same SQL statement many times.
After an EXECUTE IMMEDIATE is performed, the executable form of the SQL statement is destroyed.
Thus, each time an EXECUTE IMMEDIATE statement is issued, it must be prepared again. This
preparation is automatic and can involve a significant amount of overhead. A better choice is to code
non-SELECT dynamic SQL using PREPARE and EXECUTE statements.
EXECUTE IMMEDIATE Guidelines

When developing dynamic SQL programs that use EXECUTE IMMEDIATE, observe the following guidelines.

Verify Dynamic SQL Syntax

Verify that the SQL statement to be executed with dynamic SQL uses the proper SQL syntax. This way,
you can reduce the overhead incurred when improperly formatted SQL statements are rejected at
execution time.
Use EXECUTE IMMEDIATE for Quick, One-Time Tasks
The EXECUTE IMMEDIATE class of dynamic SQL is useful for coding quick-and-dirty one-time
processing or DBA utility-type programs. Consider using EXECUTE IMMEDIATE in the following types of
programs:

 A DBA utility program that issues changeable GRANT and REVOKE statements
 A program that periodically generates DDL based on input parameters
 A parameter-driven modification program that corrects common data errors

Declare EXECUTE IMMEDIATE Host Variables Properly
The definition of the host variable used with EXECUTE IMMEDIATE must be in the correct format.
Assembler, COBOL, and C programs must declare a varying-length string variable. FORTRAN
programs must declare a fixed-list string variable. PL/I programs can declare either type of variable.

Non-SELECT Dynamic SQL

Non-SELECT dynamic SQL is the second of the four classes of dynamic SQL. You use it to explicitly prepare
and execute SQL statements in an application program.

This class of dynamic SQL uses PREPARE and EXECUTE to issue SQL statements. As its name implies,
non-SELECT dynamic SQL cannot issue the SELECT statement. Therefore, this class of dynamic SQL
cannot query tables.
Listing 10.2 shows a simple use of non-SELECT dynamic SQL that deletes rows from a table.

Listing 10.2: A COBOL Program Using Non-SELECT Dynamic SQL

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 - 247 -

 .

 .

 .

 01 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(100).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +45 TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN8310.PROJ WHERE DEPTNO = 'A00'"

 TO STRING-VARIABLE.

 EXEC SQL

 PREPARE STMT1 FROM :STRING-VARIABLE;

 END-EXEC.

 EXEC SQL

 EXECUTE STMT1;

 END-EXEC.

 .

 .

 .

As I noted before, you can replace the DELETE statement in this listing with any of the following
supported statements:

ALTER
COMMENT ON
COMMIT
CREATE
DELETE

 - 248 -

DROP
EXPLAIN
GRANT
INSERT
LABEL ON
LOCK TABLE
REVOKE
ROLLBACK
SET
UPDATE
Non-SELECT dynamic SQL can use a powerful feature of dynamic SQL called a parameter marker,
which is a placeholder for host variables in a dynamic SQL statement. In Listing 10.3, a question mark is
used as a parameter marker, replacing the 'A00' in the predicate. When the statement is executed, a
value is moved to the host variable (:TVAL) and is coded as a para-meter to the CURSOR with the
USING clause. When this example is executed, the host variable value replaces the parameter marker.

Listing 10.3: Non-SELECT Dynamic SQL Using Parameter Markers

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL INCLUDE SQLCA END-EXEC.

 .

 .

 .

 01 STRING-VARIABLE.

 49 STRING-VAR-LEN PIC S9(4) USAGE COMP.

 49 STRING-VAR-TXT PIC X(100).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MOVE +40 TO STRING-VAR-LEN.

 MOVE "DELETE FROM DSN8310.PROJ WHERE DEPTNO = ?"

 TO STRING-VARIABLE.

 EXEC SQL

 - 249 -

 PREPARE STMT1 FROM :STRING-VARIABLE;

 END-EXEC.

 MOVE 'A00' TO TVAL.

 EXEC SQL

 EXECUTE STMT1 USING :TVAL;

 END-EXEC.

Non-SELECT dynamic SQL can provide huge performance benefits over EXECUTE IMMEDIATE.
Consider a program that executes SQL statements based on an input file. A loop in the program reads a
key value from the input file and issues a DELETE, INSERT, or UPDATE for the specified key. The
EXECUTE IMMEDIATE class would incur the overhead of a PREPARE for each execution of each SQL
statement inside the loop.
Using non-SELECT dynamic SQL, however, you can separate PREPARE and EXECUTE, isolating
PREPARE outside the loop. The key value that provides the condition for the execution of the SQL
statements can be substituted using a host variable and a parameter marker. If thousands of SQL
statements must be executed, you can avoid having thousands of PREPAREs by using this technique.
This method greatly reduces overhead and runtime and increases the efficient use of system resources.
Non-SELECT Dynamic SQL Guidelines

When developing Non-SELECT dynamic SQL programs, heed the following guidelines.

Verify Dynamic SQL Syntax

Verify that the SQL statement to be executed with dynamic SQL uses the proper SQL syntax. This way,
you can reduce the overhead incurred when improperly formatted SQL statements are rejected at
execution time.

Use as Many Parameter Markers as Necessary

A prepared statement can contain more than one parameter marker. Use as many as necessary to
ease development.

Execute Prepared Statements Multiple Times in a Unit of Work
After a statement is prepared, you can execute it many times in one unit of work without issuing another
PREPARE. When you're using non-SELECT dynamic SQL, keep this guideline in mind and avoid the
PREPARE verb as much as possible because of its significant overhead.
Know the Difference Between EXECUTE IMMEDIATE and Non-SELECT Dynamic SQL
You must understand the difference between EXECUTE IMMEDIATE and non-SELECT dynamic SQL
before development. EXECUTE IMMEDIATE prepares the SQL statement each time it is executed,
whereas non-SELECT dynamic SQL is prepared only when the program explicitly requests it. Using non-
SELECT dynamic SQL can result in dramatic decreases in program execution time. For this reason,
favor non-SELECT dynamic SQL over EXECUTE IMMEDIATE when issuing an SQL statement multiple
times in a program loop.

Fixed-List SELECT

Until now, you have been unable to retrieve rows from DB2 tables using dynamic SQL. The next two classes
of dynamic SQL provide this capability. The first and simplest is fixed-list SELECT.

You can use a fixed-list SELECT statement to explicitly prepare and execute SQL SELECT statements
when the columns to be retrieved by the application program are known and unchanging. You need to
do so to create the proper working-storage declaration for host variables in your program. If you do not
know in advance the columns that will be accessed, you must use a varying-list SELECT statement.
Listing 10.4 shows a fixed-list SELECT statement. This example formulates a SELECT statement in the
application program and moves it to a host variable. Next, a cursor is declared and the SELECT

 - 250 -

statement is prepared. The cursor then is opened and a loop to FETCH rows is invoked. When the
program is finished, the cursor is closed.

Listing 10.4: Fixed-List SELECT Dynamic SQL

SQL to execute:

 SELECT PROJNO, PROJNAME, RESPEMP

 FROM DSN8310.PROJ

 WHERE PROJNO = ?

 AND PRSTDATE = ?
 Move the "SQL to execute" to STRING-VARIABLE
 EXEC SQL DECLARE CSR2 CURSOR FOR FLSQL;
 EXEC SQL PREPARE FLSQL FROM :STRING-VARIABLE;
 EXEC SQL OPEN CSR2 USING :TVAL1, :TVAL2;
 Loop until no more rows to FETCH
 EXEC SQL
 FETCH CSR2 INTO :PROJNO, :PROJNAME, :RESPEMP;
 EXEC SQL CLOSE CSR2;

This example is simple because the SQL statement does not change. The benefit of dynamic SQL is its
capability to modify the SQL statement. For example, you could move the SQL statement
 SELECT PROJNO, PROJNAME, RESPEMP
 FROM DSN8310.PROJ
 WHERE RESPEMP = ?
 AND PRENDATE = ?
to the STRING-VARIABLE as shown in Listing 10.4 without modifying the OPEN or FETCH logic. Note
that the second column of the predicate is different from the SQL statement as presented in Listing 10.4
(PRENDATE instead of PRSTDATE). Because both are the same data type (DATE), however, you can use
TVAL2 for both if necessary. The host variables passed as parameters in the OPEN statement must
have the same data type and length as the columns in the WHERE clause. If the data type and length of
the columns in the WHERE clause change, the OPEN statement must be recoded with new USING
parameters.
If parameter markers are not used in the SELECT statements, the markers could be eliminated and
values could be substituted in the SQL statement to be executed. No parameters would be passed in
the OPEN statement.
You can recode the OPEN statement also to pass parameters using an SQLDA (SQL Descriptor Area).
The SQLDA would contain value descriptors and pointers to these values. You can recode the OPEN
statement as follows:
 EXEC-SQL
 OPEN CSR2 USING DESCRIPTOR :TVAL3;
 END_EXEC.
DB2 uses the SQLDA to communicate information about dynamic SQL to an application program. The
SQLDA sends information such as the type of the SQL statement being executed and the number and
data type of columns being returned by a SELECT statement. It can be used by fixed-list SELECT and
varying-list SELECT dynamic SQL. The following code illustrates the fields of the SQLDA:

*** SQLDA: SQL DESCRIPTOR AREA FOR COBOL II ***

 - 251 -

01 SQLDA.
 05 SQLDAID PIC X(8) VALUE 'SQLDA'.
 05 SQLDABC COMP PIC S9(8) VALUE 13216.
 05 SQLN COMP PIC S9(4) VALUE 750.
 05 SQLD COMP PIC S9(4) VALUE 0.
 05 SQLVAR OCCURS 1 TO 750 TIMES DEPENDING ON SQLN. 10 SQLTYPE COMP PIC
S9(4).
 88 SQLTYPE-BLOB VALUE 404 405.
 88 SQLTYPE-CLOB VALUE 408 409.
 88 SQLTYPE-DBCLOB VALUE 412 413.
 88 SQLTYPE-FLOAT VALUE 480 481.
 88 SQLTYPE-DECIMAL VALUE 484 485.
 88 SQLTYPE-SMALLINT VALUE 500 501.
 88 SQLTYPE-INTEGER VALUE 496 497.
 88 SQLTYPE-DATE VALUE 384 385.
 88 SQLTYPE-TIME VALUE 388 389.
 88 SQLTYPE-TIMESTAMP VALUE 392 393.
 88 SQLTYPE-CHAR VALUE 452 453.
 88 SQLTYPE-VARCHAR VALUE 448 449.
 88 SQLTYPE-LONG-VARCHAR VALUE 456 457.
 88 SQLTYPE-VAR-ONUL-CHAR VALUE 460 461.
 88 SQLTYPE-GRAPHIC VALUE 468 469.
 88 SQLTYPE-VARGRAPH VALUE 464 465.
 88 SQLTYPE-LONG-VARGRAPH VALUE 472 473.
 88 SQLTYPE-ROWID VALUE 904 905.
 88 SQLTYPE-BLOB-LOC VALUE 961 962.
 88 SQLTYPE-CLOB-LOC VALUE 964 965.
 88 SQLTYPE-DBCLOB-LOC VALUE 968 969.
 10 SQLLEN COMP PIC S9(4).
 10 SQLDATA POINTER.
 10 SQLIND POINTER.
 10 SQLNAME.
 15 SQLNAMEL COMP PIC S9(4).
 15 SQLNAMEC COMP PIC X(30).
A description of the contents of the SQLDA fields is in the discussion of the next class of dynamic SQL,
which relies heavily on the SQLDA.
Quite a bit of flexibility is offered by fixed-list SELECT dynamic SQL. Fixed-list dynamic SQL provides
many of the same benefits for the SELECT statement as non-SELECT dynamic SQL provides for other
SQL verbs. An SQL SELECT statement can be prepared once and then fetched from a loop. The
columns to be retrieved must be static, however. If you need the additional flexibility of changing the
columns to be accessed while executing, use a varying-list SELECT.
Fixed-List SELECT Guidelines

Follow the guidelines provided in this section when developing fixed-list SELECT dynamic SQL programs.

Use as Many Parameter Markers as Necessary

A prepared statement can contain more than one parameter marker. Use as many as necessary to
ease development.

 - 252 -

Issue Prepared Statements Multiple Times in a Unit of Work
After a statement is prepared, you can execute it many times in one unit of work without issuing another
PREPARE.
Do Not Code the SQLDA in VS/COBOL
For fixed-list SELECT dynamic SQL, you cannot code the SQLDA in a VS/COBOL program.

Varying-List SELECT

Varying-list SELECT is the last class of dynamic SQL. You use it to explicitly prepare and execute SQL
SELECT statements when you do not know in advance which columns will be retrieved by an application
program.

Varying-list SELECT provides the most flexibility for dynamic SELECT statements. You can change
tables, columns, and predicates "on-the-fly."

Caution Because everything about the query can change during one invocation of the
program, the number and type of host variables needed to store the retrieved
rows cannot be known beforehand. The lack of knowledge regarding what is
being retrieved adds considerable complexity to your application programs.
(Note that FORTRAN and VS/COBOL programs cannot perform varying-list
SELECT dynamic SQL statements.)

The SQLDA, as I mentioned, is the vehicle for communicating information about dynamic SQL between
DB2 and the application program. It contains information about the type of SQL statement to be
executed, the data type of each column accessed, and the address of each host variable needed to
retrieve the columns. The SQLDA must be hard-coded into the COBOL II program's WORKING-STORAGE
area, as shown here:
 EXEC-SQL
 INCLUDE SQLDA
 END_EXEC.
Table 10.1 defines each item in the SQLDA when it is used with varying-list SELECT.

Table 10.1: SQLDA Data Element Definitions
SQLDA Field
Name

Use in DESCRIBE or PREPARE Statement

SQLDAID Descriptive only; usually set to the literal "SQLDA" to aid in program
debugging

SQLDABC Length of the SQLDA
SQLN Number of occurrences of SQLVAR available
SQLD Number of occurrences of SQLVAR used
SQLTYPE Data type and indicator of whether NULLs are allowed for the column; for

UDTs, SQLTYPE is set based on the base data type
SQLLEN External length of the column value; 0 for LOBs
SQLDATA Address of a host variable for a specific column
SQLIND Address of NULL indicator variable for the preceding host variable
SQLNAME Name or label of the column

The steps needed to code varying-list SELECT dynamic SQL to your application program vary according
to the amount of information known about the SQL beforehand. Listing 10.5 details the steps necessary
when you know that the statement to be executed is a SELECT statement. The code differs from fixed-
list SELECT in three ways: The PREPARE statement uses the SQLDA, the FETCH statement uses the
SQLDA, and a step is added to store host variable addresses in the SQLDA.

Listing 10.5: Varying-List SELECT Dynamic SQL

SQL to execute: SELECT PROJNO, PROJNAME, RESPEMP

 FROM DSN8310.PROJ

 WHERE PROJNO = 'A00'

 - 253 -

 AND PRSTDATE = '1988-10-10';
Move the "SQL to execute" to STRING-VARIABLE
EXEC SQL DECLARE CSR3 CURSOR FOR VLSQL;
EXEC SQL
 PREPARE VLSQL INTO SQLDA FROM :STRING-VARIABLE;
EXEC SQL OPEN CSR3;
Load storage addresses into the SQLDA
Loop until no more rows to FETCH
 EXEC SQL FETCH CSR3 USING DESCRIPTOR SQLDA;
EXEC SQL CLOSE CSR3;

When PREPARE is executed, DB2 returns information about the columns being returned by the SELECT
statement. This information is in the SQLVAR group item of the SQLDA. Of particular interest is the
SQLTYPE field. For each column to be returned, this field indicates the data type and whether NULLs are
permitted. Note that in the SQLDA layout presented previously, all possible values for SQLTYPE are
coded as 88-level COBOL structures. They can be used in the logic of your application program to test
for specific data types. The valid values for SQLTYPE are shown in Table 10.2.

Table 10.2: Valid Values for SQLTYPE

NULL Allowed NULL
Not
Allow
ed

Data
Typ
e

 SQLTYPE
Value

384 385 DATE
388 389 TIME
392 393 TIMESTAMP
400 401 null-

terminated
graphic
string

404 405 BLOB
408 409 CLOB
412 413 DBCLOB
448 449 Small

VARCHAR
452 453 Fixed CHAR
456 457 Long

VARCHAR
460 461 VARCHAR

optionally
null-
terminated

464 465 Small
VARGRAPHI
C

468 469 Fixed
GRAPHIC

472 473 Long
VARGRAPHI
C

480 481 FLOAT
484 485 DECIMAL

 - 254 -

496 497 INTEGER
500 501 SMALLINT
904 905 ROWID
961 962 BLOB

locator
964 965 CLOB

locator
968 969 DBCLOB

locator
972 973 result set

locator
976 977 table

locator
The first value listed is returned when NULLs are not permitted; the second is returned when NULLs are
permitted. These two codes aid in the detection of the data type for each column. The application
program issuing the dynamic SQL must interrogate the SQLDA, analyzing each occurrence of SQLVAR.
This information is used to determine the address of a storage area of the proper size to accommodate
each column returned. The address is stored in the SQLDATA field of the SQLDA. If the column can be
NULL, the address of the NULL indicator is stored in the SQLIND field of the SQLDA. When this analysis
is complete, data can be fetched using varying-list SELECT and the SQLDA information.
Note that the group item, SQLVAR, occurs 750 times. This number is the limit for the number of columns
that can be returned by one SQL SELECT. You can modify the column limit number by changing the
value of the SQLN field to a smaller number but not to a larger one. Coding a smaller number reduces
the amount of storage required. If a greater number of columns is returned by the dynamic SELECT, the
SQLVAR fields are not populated.
You can also code dynamic SQL without knowing anything about the statement to be executed. An
example is a program that must read SQL statements from a terminal and execute them regardless of
statement type. You can create this type of program by coding two SQLDAs: one full SQLDA and one
minimal SQLDA (containing only the first 16 bytes of the full SQLDA) that PREPAREs the statement and
determines whether it is a SELECT. If the statement is not a SELECT, you can simply EXECUTE the non-
SELECT statement. If it is a SELECT, PREPARE it a second time with a full SQLDA and follow the steps in
Listing 10.6.

Listing 10.6: Varying-List SELECT Dynamic SQL with Minimum SQLDA

EXEC SQL INCLUDE SQLDA

EXEC SQL INCLUDE MINSQLDA
Read "SQL to execute" from external source
Move the "SQL to execute" to STRING-VARIABLE
EXEC SQL DECLARE CSR3 CURSOR FOR VLSQL;
EXEC SQL
 PREPARE VLSQL INTO MINSQLDA FROM :STRING-VARIABLE;
IF SQLD IN MINSQLDA = 0
 EXECUTE IMMEDIATE (SQL statement was not a SELECT)
 FINISHED.
EXEC SQL
 PREPARE VLSQL INTO SQLDA FROM :STRING-VARIABLE;
EXEC SQL OPEN CSR3;
Load storage addresses into the SQLDA
Loop until no more rows to FETCH
 EXEC SQL FETCH CSR3 USING DESCRIPTOR SQLDA;
EXEC SQL CLOSE CSR3;

 - 255 -

In this section, I've provided a quick introduction to varying-list SELECT dynamic SQL. If you want to
code parameter markers or need further information on acquiring storage or COBOL II pointer variables,
consult the following IBM manuals:

VS COBOL II Application Programming Guide
DB2 Application Programming and SQL Guide
DB2 SQL Reference
Varying-List SELECT Guidelines

The following guidelines should be adhered to when developing varying-list SELECT dynamic SQL programs.
Use Varying-List SELECT with Care
Be sure that you understand the fundamental capabilities of varying-list SELECT dynamic SQL before
trying to use it. You should understand completely the SQLDA, pointer variables, and how the language
you're using implements pointers before proceeding.

Summary

Seriously consider using dynamic SQL under the following conditions:
 When the nature of the application program is truly changeable, not just a series of

static SQL statements
 When the columns to be retrieved can vary from execution to execution
 When the predicates can vary from execution to execution
 When benefit can be accrued from interacting with other dynamic SQL applications—

for example, using the QMF callable interface

Chapter 11: Program Preparation
Overview

A DB2 application program must go through a process known as program preparation before it can run
successfully. This chapter describes this procedure and its components. Accompanying guidelines for
program preparation are provided, including the following:

 Choosing program preparation options to achieve optimum performance
 Plan and package management
 Preparing programs with minimum down time

Program Preparation Steps

Your first question might be "Just what is DB2 program preparation?" Quite simply, it is a series of code
preprocessors that—when enacted in the proper sequence—create an executable load module and a DB2
application plan. The combination of the executable load module and the application plan is required before
any DB2 program can be run, whether batch or online. CICS programs require an additional preprocessing
step. This step is covered in Chapter 16, "The Doors to DB2."

Figure 11.1 shows DB2 program preparation graphically. This section outlines each program
preparation step and its function.

 - 256 -

Figure 11.1: DB2 program preparation.

Issue the DCLGEN Command
Issue the DCLGEN command for a single table. On a table-by-table basis, DCLGEN produces a module that
can be included in DB2 application programs. It reads the DB2 Catalog to determine the structure of the
table and builds a COBOL copybook. The copybook contains a SQL DECLARE TABLE statement along with
WORKING-STORAGE host variable definitions for each column in the table.
DCLGEN can be used to create table declarations for PL/I, C, and C++ programs, too.
DCLGEN is not a required step because the DECLARE TABLE statement and corresponding host
variables could be hard-coded in the application program. Skipping this step, however, is not
recommended. Run the DCLGEN command for every table that will be embedded in a COBOL program.
Then every program that accesses that table should be required to INCLUDE the generated copybook
as the only means of declaring that table for embedded use. For the DEPTTABL copybook, use the
following INCLUDE statement:

EXEC SQL
 INCLUDE DEPTTABL
END-EXEC.
DB2 must be running to invoke the DCLGEN command. See "Program Preparation Using DB2I" later in
this chapter and Chapter 34, "DB2 Commands," for more information on DCLGEN. A sample DCLGEN for
the DSN8610.DEPT table follows:
**
* DCLGEN TABLE(DSN8610.DEPT) *
* LIBRARY(DBAPCSM.DB2.CNTL(DCLDEPT)) *
* ACTION(REPLACE) *
* QUOTE *
* ... IS THE DCLGEN COMMAND THAT MADE THE *
* FOLLOWING STATEMENTS *
**
EXEC SQL DECLARE DSN8610.DEPT TABLE
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,

 - 257 -

 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16)
) END-EXEC.
**
* COBOL DECLARATION FOR TABLE DSN8610.DEPT *
**
01 DCLDEPT.
 10 DEPTNO PIC X(3).
 10 DEPTNAME.
 49 DEPTNAME-LEN PIC S9(4) USAGE COMP.
 49 DEPTNAME-TEXT PIC X(36).
 10 MGRNO PIC X(6).
 10 ADMRDEPT PIC X(3).
 10 LOCATION PIC X(16).
**
* THE NUMBER OF COLUMNS DESCRIBED BY THIS *
* DECLARATION IS 5 *
**
As the example shows, the DCLGEN command produces a DECLARE TABLE statement and a COBOL
field layout for DB2 host variables that can be used with the table.

Note The DCLGEN command produces qualified table names in the DECLARE TABLE
statement. You might need to edit these before embedding the DCLGEN output in
an application program. Alternately, setting the current SQLID to the table owner
will generate unqualified table names.

Column Prefixing
Column prefixing, awkwardly enough, is specified using the COLSUFFIX(YES) parameter and the
NAMES parameter. When these two options are specified, DCLGEN produces field names by appending
the column name to the literal prefix specified by the NAMES parameter. If the previous DCLGEN is
created specifying COLSUFFIX(YES) and NAMES(DPT), for example, the results would be as follows:

**
* DCLGEN TABLE(DEPT) *
* LIBRARY(DBAPCSM.DB2.CNTL(DCLDEPT)) *
* ACTION(REPLACE) *
* QUOTE *
* COLSUFFIX(YES) NAMES(DPT) *
* ... IS THE DCLGEN COMMAND THAT MADE THE *
* FOLLOWING STATEMENTS *
**
EXEC SQL DECLARE DEPT TABLE
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16)
) END-EXEC.
**

 - 258 -

* COBOL DECLARATION FOR TABLE DEPT *
**
01 DCLDEPT.
 10 DPT-DEPTNO PIC X(3).
 10 DPT-DEPTNAME.
 49 CPT-DEPTNAME-LEN PIC S9(4) USAGE COMP.
 49 DPT-DEPTNAME-TEXT PIC X(36).
 10 DPT-MGRNO PIC X(6).
 10 DPT-ADMRDEPT PIC X(3).
 10 DPT-LOCATION PIC X(16).
**
* THE NUMBER OF COLUMNS DESCRIBED BY THIS *
* DECLARATION IS 5 *
**
Note that each field defined in the COBOL declaration is prefixed with the value, DPT, which is specified
in the NAMES parameter.

Null Indicator Variables
You can use DCLGEN to create an array of null indicator variables by specifying INDVAR(YES).
However, use this feature with caution as null indicator arrays are more difficult to use than individual
null indicator variables (for more details, refer to Chapter 9, "Using DB2 in an Application Program").

Precompile the Program
DB2 programs must be parsed and modified before normal compilation. The DB2 precompiler performs this
task. When invoked, the precompiler performs the following functions:

 Searches for and expands DB2-related INCLUDE members
 Searches for SQL statements in the body of the program's source code
 Creates a modified version of the source program in which every SQL statement in

the program is commented out and a CALL to the DB2 runtime interface module,
along with applicable parameters, replaces each original SQL statement

 Extracts all SQL statements from the program and places them in a database
request module (DBRM)

 Places a timestamp token in the modified source and the DBRM to ensure that these
two items are inextricably tied

 Reports on the success or failure of the precompile process
The precompiler searches for SQL statements embedded in EXEC SQL and END-EXEC keywords. For
this reason, every SQL statement, table declaration, or host variable in an INCLUDE copybook must be
in an EXEC SQL block. DB2 does not need to be operational to precompile a DB2 program.
Issue the BIND Command

The BIND command is a type of compiler for SQL statements. In general, BIND reads SQL statements from
DBRMs and produces a mechanism to access data as directed by the SQL statements being bound.

You can use two types of BINDs: BIND PLAN and BIND PACKAGE. BIND PLAN accepts as input one
or more DBRMs produced from previous DB2 program precompilations, one or more packages
produced from previous BIND PACKAGE commands, or a combination of DBRMs and package lists.
The output of the BIND PLAN command is an application plan containing executable logic representing
optimized access paths to DB2 data. An application plan is executable only with a corresponding load
module. Before you can run a DB2 program, regardless of environment, an application plan name must
be specified.
The BIND PACKAGE command accepts as input a DBRM and produces a single package containing
optimized access path logic. You then can bind packages into an application plan using the BIND PLAN
command. A package is not executable and cannot be specified when a DB2 program is being run. You
must bind a package into a plan before using it.
BIND performs many functions to create packages and plans that access the requested DB2 data,
including the following:

 Reads the SQL statements in the DBRM and checks the syntax of those statements

 - 259 -

 Checks that the DB2 tables and columns being accessed conform to the
corresponding DB2 Catalog information

 Performs authorization validation (this task is optional)
 Optimizes the SQL statements into efficient access paths

The application packages and plans contain the access path specifications developed by the BIND
command. The BIND command invokes the DB2 optimizer (discussed in depth in Chapter 19, "The
Optimizer") to determine efficient access paths based on DB2 Catalog statistics (such as the availability
of indexes, the organization of data, and the table size) and other pertinent information (such as number
of processors, processor speed, and bufferpool specifications). The BIND command is performed in the
Relational Data Services component of DB2.

A package can be bound for only a single DBRM. A package, therefore, is nothing more than optimized
SQL from a single program. Although packages are discrete entities in the DB2 Catalog and Directory,
they cannot be executed until they are bound into a plan. Plans are composed of either one or more
DBRMs or one or more packages. A plan can contain both DBRMs and packages. Further discussion of
plans and packages is deferred until later in this chapter.

Note User-defined functions and triggers are an exception to the rule of packages
requiring a plan to execute. The CREATE FUNCTION and CREATE TRIGGER
statements also BIND a package, which is used by DB2 whenever the UDF or
trigger is executed. No plan need be bound by the user before the UDF or trigger
can be used. For more information, refer to Chapter 4, "Using DB2 User-Defined
Functions and Data Types," and Chapter 6, "Using DB2 Triggers for Integrity."

The DB2 subsystem must be operational so that you can issue the BIND command. See "Program
Preparation Using DB2I" later in this chapter and Chapter 34 for more information on the BIND
command.

Compile the Program
The modified COBOL source data set produced by the DB2 precompiler must then be compiled. Use the
standard VS/COBOL, COBOL II, or COBOL/370 compiler, depending on which version of COBOL you are
using. DB2 does not need to be operational so that you can compile your program.

If you are using a language other than COBOL, you will need to follow the same basic steps as you
would for COBOL. Of course, you would use the compiler for your language of choice.

Link the Program
The compiled source then is link-edited to an executable load module. The appropriate DB2 host language
interface module also must be included by the link edit step. This interface module is based on the
environment (TSO, CICS, or IMS/TM) in which the program will execute.

If you have a call attach product or use an environment other than TSO, CICS, or IMS/TM, consult your
shop standards to determine the appropriate language interface routine to include with your link edited
program. The output of the link edit step is an executable load module, which then can be run with a
plan containing the program's DBRM or package.

The link edit procedure does not require the services of DB2; therefore, the DB2 subsystem can be
inactive when your program is being link edited.

Running a DB2 Program

After a program has been prepared as outlined in Figure 11.1, two separate, physical components have
been produced: a DB2 plan and a link edited load module. Neither is executable without the other. The plan
contains the access path specifications for the SQL statements in the program. The load module contains
the executable machine instructions for the COBOL statements in the program.

If a load module is run outside the control of DB2, the program abends at the first SQL statement.
Furthermore, a load module is forever tied to a specific DBRM—the DBRM produced by the same
precompile that produced the modified source used in the link-edit process that produced the load
module in question.
When you run an application program containing SQL statements, you must specify the name of the
plan that will be used. The plan name must include the DBRM that was produced by the precompile

 - 260 -

process in the program preparation that created the load module being run. This is enforced by a
timestamp token placed into both the DBRM and the modified source by the DB2 precompiler. At
execution time, DB2 checks that the tokens indicate the compatibility of the plan and the load module. If
they do not match, DB2 will not allow the SQL statements in the program to be run. A -818 SQL code is
returned for each SQL call attempted by the program.

DB2 programs can be executed in one of following four ways:
 Batch TSO
 Call attach
 CICS
 IMS

Listing 11.1 provides the JCL to execute the program using TSO batch. For information about other
methods, see Chapter 16, "The Doors to DB2."

Listing 11.1: Running a DB2 Program in TSO Batch

//DB2JOBB JOB (BATCH),'DB2 BATCH',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* JCL TO RUN A DB2 PROGRAM IN BATCH

//* USING THE TSO TERMINAL MONITOR PROGRAM

//*

//**

//*

//JOBLIB DD DSN=SYS1.DB2V610.DSNLOAD,DISP=SHR

//BATCHPRG EXEC PGM=IKJEFT1B,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)
 RUN PROGRAM(Place program name here) -
 PLAN(Place plan name here) -
 LIB('SYS1.DB2V610.RUNLIB.LOAD')
 END
/*
//

Preparing a DB2 Program
You can prepare a DB2 program in many ways. Following are the most common methods:

 Using the DB2I panels
 Using a standard DB2 program preparation procedure

 - 261 -

 Using a DB2 program preparation CLIST or REXX EXEC
 Any combination of the preceding methods

Each shop has its own standards. Consult your shop standards for the supported method or methods of
DB2 program preparation. This section discusses each of the preceding methods.

Program Preparation Using DB2I
DB2I, or DB2 Interactive, is an online, TSO/ISPF-based interface to DB2 commands, DB2 administrative
functions, and CLISTs provided with DB2. It is a panel-driven application that enables a user to prepare a
DB2 program, among other things.

You can use eight DB2I panels to assist with DB2 program preparation. The DB2I main menu, shown in
Figure 11.2, appears when you select the DB2I option from the main menu.

Figure 11.2: The DB2I main menu.

Note Some installations require the user to execute a preallocation CLIST before
invoking DB2I. Consult your shop standards.

Before proceeding to the main task of program preparation using DB2I, you first must ensure that the
DB2I defaults have been properly set. Option D from the main menu displays the DB2I Defaults panel,
which is shown in Figure 11.3. The default values usually are adequate. When you first enter DB2I,
however, ensure that the correct DB2 subsystem name, application language, and delimiters are set.

Figure 11.3: The DB2I Defaults panel.

After checking the DB2I Defaults panel, you need to create DCLGEN members for all tables that will be
accessed in application programs. You should do this before writing any application code.
Choosing option 2 from the DB2I main menu displays the DCLGEN panel (see Figure 11.4). Specify the
name of the table in option 1 and the name of the data set in which the DBRM will be placed in option 2.
DB2 automatically creates the DCLGEN member, including WORKING-STORAGE fields and the
DECLARE TABLE statement. DCLGEN will not allocate a new data set, so you must preallocate the
data set specified in option 2 as a sequential data set with an LRECL of 80. Refer to the DCLGEN
member (presented earlier in this chapter) for the DSN8510.DEPT table.

 - 262 -

Figure 11.4: The DB2I DCLGEN panel.

You use option 3 of DB2I to precompile DB2 application programs. Figure 11.5 shows the Precompile
panel. To precompile a program, provide the following information in the specified locations on the
Precompile panel:

Figure 11.5: The DB2I Precompile panel.

 The name of the input data set containing the source code for the program you want
to precompile

 The name of the DCLGEN library that contains the table declarations to be used by
this program

 A DSNAME qualifier to be used by DB2I to build data set names for temporary work
files required by the precompiler

 The name of the DBRM library that the precompiler will write to (this must be a
partitioned data set with 80-byte records)

Note You can run the precompiler in the foreground or the background.

You can bind, rebind, and free DB2 plans and packages using DB2I option 5. In this section, I discuss
the BIND option because it is the only one needed for program preparation. Two bind panels are
available: one for binding plans, as shown in Figure 11.6, and one for binding packages, as shown in
Figure 11.7. The BIND process creates plans or packages or both from one or more DBRMs. You
should not attempt binding until the precompile successfully completes.

 - 263 -

Figure 11.6: The DB2I Bind Plan panel.

Figure 11.7: The DB2I Bind Package panel.

You may have noticed that the compile and link edit steps are missing from the previous discussions of
program preparation. DB2I option 3 takes you step-by-step through the entire DB2 program preparation
procedure, displaying the previous panels (and an additional one). By entering the appropriate
selections in the Program Preparation panel, shown in Figure 11.8, you can completely prepare and
then run a source program.

Figure 11.8: The DB2I Program Preparation panel.

After you enter the necessary information in the Program Preparation panel, you are navigated through
the Precompile panel (refer to Figure 11.5); a new panel for the specification of compilation, link edit,
and run parameters (see Figure 11.9), and the Bind panels (refer to Figures 11.6 and 11.7).

 - 264 -

Figure 11.9: The DB2I Compile, Prelink, Link, and Run panel.

The panels are prefilled with the information provided in the Program Preparation panel. This probably
is the easiest method of preparing a DB2 program. Following is a sample of the output generated by
DB2I program preparation:
 %DSNH parameters
 SOURCE STATISTICS
 SOURCE LINES READ: 459
 NUMBER OF SYMBOLS: 77
 SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 4928
THERE WERE 0 MESSAGES FOR THIS PROGRAM.
THERE WERE 0 MESSAGES SUPPRESSED BY THE FLAG OPTION.
101944 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.
RETURN CODE IS 0
 DSNH740I ======= PRECOMPILER FINISHED, RC = 0 ======
 LISTING IN TEMP.PCLIST ====================
 DSNT252I - BIND OPTIONS FOR PLAN planname
 ACTION ADD
 OWNER authid
 VALIDATE BIND
 ISOLATION CS
 ACQUIRE USE
 RELEASE COMMIT
 EXPLAIN YES
 DSNT253I - BIND OPTIONS FOR PLAN planname
 NODEFER PREPARE
 DSNH740I ======= BIND FINISHED, RC = 0 =============
 DSNH740I ======= COB2 FINISHED, RC = 0 ======
 LISTING IN TEMP.LIST ====================
 DSNH740I ======= LINK FINISHED, RC = 0 ======
 LISTING IN TEMP.LINKLIST ====================

When you're using the DB2I Program Preparation option, the status of the program preparation appears
onscreen. The italicized sections in the listing are replaced by the options you select when preparing
your programs. Additionally, if you set any return codes to a non-zero number, you will encounter
program preparation warnings or errors.

 - 265 -

You can run DB2 programs using DB2I only if they are TSO programs. You also can simply run a DB2
program from DB2I option 6 (see Figure 11.10). Before you can run the program, however, you must
first prepare it.

Figure 11.10: The DB2I Run panel.

Program Preparation Using Batch Procedures
Some shops prefer to handle all DB2 program preparation with a batch job. The batch procedure handles all
the steps required for DB2 program preparation, which results in an executable load module and plan.

Programmers often choose batch procedures to automate and standardize the specification of work
data set names; compile, link, and bind parameters; and source, DBRM, and DCLGEN library names. A
batch procedure invoked by common JCL with an override for the program name limits an application
programmer's exposure to these miscellaneous program preparation factors. Listing 11.2 shows a
common batch procedure. Note that the data set names and libraries for your shop may be different, as
may the COBOL compile step.

Listing 11.2: Sample Program Preparation Procedure

//COMPBAT PROC MBR='XXXXXXXX', ** MEMBER NAME **

// FLEVEL='APPL.ID' ** LIBRARY PREFIX **

// DB2='SYS1.DB2V510', ** DB2 SYSTEM PREFIX **

// WORK='SYSDA', ** WORK FILES UNIT **

// SOURCE='APPL.ID.SOURCE', ** SOURCE DATASET **

// SYSOUT='*'

//**

//* DB2 PRECOMPILE STEP FOR COBOL—BATCH

//**

//DB2PC EXEC PGM=DSNHPC,

// PARM='DATE(ISO),TIME(ISO),HOST(COB2),APOST'

//STEPLIB DD DSN=&DB2..DSNLOAD,DISP=SHR

//SYSLIB DD DSN=&FLEVEL..INCLUDE,DISP=SHR

// DD DSN=&FLEVEL..DCLGENLB,DISP=SHR

 - 266 -

//SYSCIN DD DSN=&&SRCOUT,DISP=(NEW,PASS,DELETE),

// UNIT=&WORK,

// DCB=BLKSIZE=800,SPACE=(800,(800,500))

//SYSIN DD DSN=&SOURCE(&MBR),DISP=SHR

//DBRMLIB DD DSN=&FLEVEL..DBRMLIB(&MBR),DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSTERM DD SYSOUT=&SYSOUT

//SYSUT1 DD SPACE=(800,(500,500)),UNIT=&WORK

//SYSUT2 DD SPACE=(800,(500,500)),UNIT=&WORK

//**

//* COBOL COMPILE

//**

//COB EXEC PGM=IGYCRCTL,

// COND=(5,LT,DB2PC),

// PARM=('NODYNAM,LIB,OBJECT,RENT,RES,APOST',

// 'DATA(24),XREF')

//STEPLIB DD DSN=SYS1.COB2LIB,DISP=SHR

//SYSPRINT DD DSN=&&SPRNT,DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(TRK,(175,20)),DCB=BLKSIZE=16093

//SYSTERM DD SYSOUT=&SYSOUT

//SYSUT1 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT2 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT3 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT4 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT5 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT6 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSUT7 DD UNIT=&WORK,SPACE=(CYL,(5,1))

//SYSLIN DD DSN=&&OBJECT,DISP=(NEW,PASS,DELETE),

// UNIT=&WORK,SPACE=(TRK,(25,10),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2960)

//SYSLIB DD DSN=&FLEVEL..COPYLIB,DISP=SHR

 - 267 -

//SYSIN DD DSN=&&SRCOUT,DISP=(OLD,DELETE,DELETE)

//**

//* PRINT THE SYSPRINT DATA SET IF THE RETURN CODE IS > 4

//**

//GEN1 EXEC PGM=IEBGENER,COND=(5,GT,COB)

//SYSPRINT DD SYSOUT=*

//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10)),DISP=NEW

//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(10)),DISP=NEW

//SYSIN DD DUMMY

//SYSUT1 DD DSN=&&SPRNT,DISP=(OLD,PASS)

//SYSUT2 DD SYSOUT=*

//**

//* LINK EDIT THE BATCH PROGRAM FOR DB2

//**

//LINKIT EXEC PGM=HEWL,

// COND=((5,LT,DB2PC),(5,LT,COB)),

// PARM='LIST,XREF'

//SYSLIB DD DSN=SYS1.COB2LIB,DISP=SHR

// DD DSN=SYS1.COB2COMP,DISP=SHR

// DD DSN=&DB2..DSNLOAD,DISP=SHR

// DD DSN=&FLEVEL..BATCH.LOADLIB,DISP=SHR

//DB2LOAD DD DSN=&DB2..DSNLOAD,DISP=SHR

//SYSLIN DD DSN=&&OBJECT,DISP=(OLD,PASS)

// DD DSN=&FLEVEL..LINKLIB(&MBR),DISP=SHR

//SYSLMOD DD DSN=&FLEVEL..BATCH.LOADLIB(&MBR),DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSUT1 DD UNIT=&WORK,SPACE=(CYL,(1,2))

//**

//* BIND PLAN FOR THE MODULE

//**

//BIND1 EXEC PGM=IKJEFT1B,DYNAMNBR=20,

 - 268 -

// COND=((5,LT,DB2PC),(5,LT,COB),(5,LT,LINKIT))

//STEPLIB DD DSN=&DB2..DSNLOAD,DISP=SHR

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//DBRMLIB DD DSN=&FLEVEL..DBRMLIB,DISP=SHR

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 BIND PLAN(&MEMBER.) MEMBER(&MEMBER.) -

 ACTION(REPLACE) RETAIN -

 VALIDATE(BIND) ACQUIRE(USE) -

 RELEASE(COMMIT) ISOLATION(CS) -

 DEGREE(ANY) EXPLAIN(YES)

 END

//

Program Preparation Using CLIST or REXX EXEC

Another common practice for some shops is to create a CLIST or REXX EXEC that can be invoked to
prompt the user to enter program preparation options. The CLIST or EXEC reads the options as specified by
the programmer and builds JCL to invoke program preparation using those parameters.

This method enables programmers to make quick changes to precompile, compile, and link edit
parameters without requiring them to explicitly change parameters in JCL that they do not always fully
understand. This method also can force specific options to be used, such as all binds must use
ISOLATION(CS) or all links must use RMODE=31, by not allowing users to change them.

Caution Be aware that "forcing" the use of specific BIND parameters can result in
subpar performance. The best approach for specifying BIND parameters is to
determine the type of program including the work to be done, its environment,
the number of times it will be executed, and the performance required. Only
after obtaining and analyzing all of these issues can you appropriately
determine the best parameters to use.

The CLIST or EXEC can use a standard procedure, as discussed in the preceding section, and
automatically submit the job.

Program Preparation Using Multiple Methods
When you develop program preparation standards, the following goals should be paramount:

 Increase the understanding and usability of program preparation procedures
 Disable dangerous and undesired program preparation parameters
 Standardize the program preparation procedure
 Enable fast turnaround for programmers using the procedures

To accomplish the preceding goals, using a combination of the techniques described in this chapter is
probably best. The only DB2 program preparation steps that require DB2 to be operational, for example,
are DCLGEN and BIND. DCLGEN is not a factor because it normally is invoked outside the program
preparation loop. The BIND command, however, usually is embedded in the procedure, CLIST, or

 - 269 -

REXX EXEC. If this is true, as shown in Listing 11.2, you could be inhibiting your program preparation
process.

If DB2 is not operational, all program preparation jobs will fail in the bind step. Additionally, if your shop
is configured with multiple CPUs, a job with a bind step must be run on the CPU containing the DB2
subsystem that will perform the bind. Without the bind step, the job is free to execute in any available
machine because DB2 resources are not required.
I recommend the establishment of a common procedure to run all program preparation, except the bind
step. You then should code CLIST or REXX EXEC to prompt only for the parameters your shop allows
to be changed. It then will build JCL using the common procedure (without the bind step). CLIST or
EXEC can ask whether a bind step should be added. This way, application programmers can
precompile, compile, and link edit programs when DB2 is not operational, but they also have the option
of binding when DB2 is operational. This can reduce the amount of down time because a single
machine containing test DB2 will not become a bottleneck due to a vast number of compiles being
submitted on a single CPU.
You can code a separate CLIST that enables programmers to bind after a successful execution of the
precompile, compile, and link or whenever a bind is required. It should accept only certain bind
parameters as input, thereby enforcing your shop's bind standards. Ideally, the CLIST should be able to
bind the program in the foreground or the background using batch JCL.
Listings 11.3 and 11.4 are sample CLISTs to accomplish DB2 program preparation. You can use these
samples as templates for creating your own program preparation CLISTs that follow your organization's
standards and procedures.

Listing 11.3: Precompile, Compile, and Link CLIST

PROC 1 PLANNAME JOB(BB)

/* THIS CLIST ACCEPTS A PROGRAM NAME AS INPUT, PROMPTS

/* FOR THE REQUIRED PROGRAM PREPARATION PARAMETERS,

/* AND SUBMITS A BATCH JOB TO PREPARE THE PROGRAM

/* FOR EXECUTION.

CONTROL PROMPT NOFLUSH END(DONE)

 K

 WRITE

ASKMSG:-

 WRITE

 WRITE ENTER OUTPUT MESSAGE CLASS:

 WRITENR =====>

 READ &MSG

 IF &MSG NE X AND &MSG NE A THEN DO-

 WRITE

 WRITE INVALID MESSAGE CLASS ENTERED

 GOTO ASKMSG

 DONE

 - 270 -

ASKSORC:-

 WRITE

 WRITE ENTER NAME OF PROGRAM SOURCE LIBRARY TO USE:

 WRITE (PRESS ENTER TO ACCEPT DEFAULT SOURCE LIBRARY)

 WRITENR =====>

 READ &SORC

 IF &SORC = THEN SET &SORCLB=&STR(DEFAULT.SORCLIB)

 ELSE SET &SORCLB=&SORC

ASKPREFX:-

 WRITE

 WRITE ENTER THE PREFIX FOR YOUR APPLICATION LINK

 WRITE AND DBRM LIBRARIES:

 WRITE (PRESS ENTER TO ACCEPT DEFAULT PREFIX)

 WRITENR =====>

 READ &PREF

 IF &PREF = THEN SET &PREFX=&STR(DEFAULT.PREFIX)

 ELSE SET &PREFX=&PREF

BUILDJCL:-

 K

 WRITE BUILDING PROGRAM PREPARATION JCL, PLEASE WAIT...

EDIT COMPLINK.CNTL NEW EMODE
10 //&SYSUID.&JOB JOB(job information),'PROG PREP &PROGNAME',
11 // MSGLEVEL=(1,1),NOTIFY=&SYSUID.,MSGCLASS=&MSG,CLASS=X
15 //JOBLIB DD DSN=SYS1.DB2V2R3.LINKLIB,DISP=SHR
20 //PROGPREP EXEC COMPBAT,MBR=&PROGNAME.,FLEVEL=&PREFIX.,
22 // SOURCE=&SORCLB.
24 /*
26 //
SUBM:-
 WRITE PROGRAM, &PROGNAME WILL BE
 WRITE PRECOMPILED, COMPILED, AND LINKED
 WRITE FROM &SORCLB
 SUBMIT
 END NO
EXIT

Listing 11.4: Bind CLIST

 - 271 -

PROC 1 PLANNAME JOB(BB)

/* THIS CLIST ACCEPTS A PLANNAME AS INPUT, PROMPTS FOR */

/* THE REQUIRED BIND PARAMETERS, AND SUBMITS A BATCH */

/* JOB TO BIND THE PLAN */

CONTROL PROMPT NOFLUSH END(DONE)

 K

 WRITE

ASKMSG:-

 WRITE

 WRITE ENTER OUTPUT MESSAGE CLASS:

 WRITENR =====>

 READ &MSG

 IF &MSG NE X AND &MSG NE A THEN DO-

 WRITE

 WRITE INVALID MESSAGE CLASS ENTERED

 GOTO ASKMSG

 DONE

ASKLIB:-

 WRITE

 WRITE ENTER NAME OF DBRM LIBRARY TO USE:

 WRITE (PRESS ENTER TO ACCEPT DEFAULT DBRMLIB)

 WRITENR =====>

 READ &LIB

 IF &LIB = THEN SET &DLIB=&STR(DEFAULT.DBRMLIB)

 ELSE SET &DLIB=&LIB

ASKEXPL:-

 WRITE

 WRITE DO YOU WANT TO DO AN EXPLAIN OF THIS PLAN (Y/N) ?

 WRITENR =====>

 READ &EXP

 IF &EXP NE Y AND &EXP NE N THEN DO-

 - 272 -

 WRITE

 WRITE INVALID RESPONSE PLEASE ENTER ONLY Y OR N

 GOTO ASKEXPL

 DONE

 IF &EXP = N THEN SET &EXPL=&STR(NO)

 ELSE SET &EXPL=&STR(YES)

ASKDBRM:-

 K

 WRITE

 WRITE ENTER THE NAME OF ALL DBRMS TO BE BOUND INTO THIS

 WRITE PLAN. BE SURE TO PLACE A COMMA BETWEEN EACH DBRM &

 WRITE INCLUDE QUOTATION MARKS IF THERE IS MORE THAN ONE

 WRITE DBRM. (FOR EXAMPLE:: &STR(')DBRM1,DBRM2&STR('))

 WRITE OR PRESS ENTER TO DEFAULT DBRM TO &PLANNAME

 WRITENR =====>

 READ &DLIST

 IF &DLIST = THEN SET &DBRM=&PLANNAME

 ELSE SET &DBRM=&LIST

BUILDJCL:-

 K

 WRITE BUILDING BIND JCL, PLEASE WAIT...

EDIT BIND.CNTL NEW EMODE
10 //&SYSUID.&JOB JOB(job information),'BIND &PLANNAME',
11 // MSGLEVEL=(1,1),NOTIFY=&SYSUID.,MSGCLASS=&MSG,CLASS=X
15 //JOBLIB DD DSN=SYS1.DB2V5R1.LINKLIB,DISP=SHR
20 //BIND EXEC PGM=IKJEFT1B,DYNAMBR=20
22 //SYSTSPRT DD SYSOUT=*
24 //SYSPRINT DD SYSOUT=*
26 //SYSABOUT DD SYSOUT=*
28 //SYSTSIN DD *
30 DSN SYSTEM(DSN)
32 BIND PLAN (&PLANNAME) &STR(-)
34 MEMBER (&DBRM) &STR(-)
36 LIBRARY (&DLIB) &STR(-)
38 ACTION (REPLACE) &STR(-)
40 VALIDATE (BIND) &STR(-)
42 ISOLATION (CS) &STR(-)
44 FLAG (I) &STR(-)
46 ACQUIRE (USE) &STR(-)
48 RELEASE (COMMIT) &STR(-)
50 DEGREE (ANY) &STR(-)

 - 273 -

52 EXPLAIN (&EXPL)
54 END
56 /*
58 //
SUBM:-
 WRITE &PLANNAME WILL BE BOUND
 WRITE USING &DBRM
 WRITE FROM &DLIB
 SUBMIT
 END NO
EXIT

What Is a DBRM?
Confusion often arises about the definition of a DBRM and its relationship to programs, plans, and packages.
A DBRM is nothing more than a module containing SQL statements extracted from a source program by the
DB2 precompiler. It is stored as a member of a partitioned data set. It is not stored in the DB2 Catalog or
DB2 Directory.

Although a DB2 Catalog table named SYSIBM.SYSDBRM exists, it does not contain the DBRM. It also
does not contain every DBRM created by the precompiler. It consists of information about DBRMs that
have been bound into application plans and packages. If a DBRM is created and never bound, it is not
referenced in this table.
When a DBRM is bound into a plan, all its SQL statements are placed into the SYSIBM.SYSSTMT DB2
Catalog table. When a DBRM is bound into a package, all its SQL statements are placed into the
SYSIBM.SYSPACKSTMT table.

What Is a Plan?

A plan is an executable module containing the access path logic produced by the DB2 optimizer. It can be
composed of one or more DBRMs and packages.

Plans are created by the BIND command. When a plan is bound, DB2 reads the following DB2 Catalog
tables:
SYSIBM.SYSCOLDIST SYSIBM.SYSCOLDISTSTATS
SYSIBM.SYSCOLSTATS SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES SYSIBM.SYSINDEXSTATS
SYSIBM.SYSPLAN SYSIBM.SYSPLANAUTH
SYSIBM.SYSTABLES SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABSTATS SYSIBM.SYSUSERAUTH

Note The
SYSIBM.SYSUSERAUT
H table (the last one in
the list) is read-only for
BIND ADD.

Information about the plan is then stored in the following DB2 Catalog tables:
SYSIBM.SYSDBRM SYSIBM.SYSPACKAUTH
SYSIBM.SYSPACKLIST SYSIBM.SYSPLAN
SYSIBM.SYSPLANAUTH SYSIBM.SYSPLANDEP
SYSIBM.SYSPLSYSTEM SYSIBM.SYSSTMT
SYSIBM.SYSTABAUTH

Note that the DB2 Catalog stores only information about the plans. The executable form of the plan,
called a skeleton cursor table, or SKCT, is stored in the DB2 Directory in the SYSIBM.SCT02 table. To
learn more about the way that DB2 handles SKCTs at execution time, see Chapter 20, "The Table-
Based Infrastructure of DB2."

What Is a Package?

A package is a single, bound DBRM with optimized access paths. By using packages, the table access logic
is "packaged" at a lower level of granularity, at the package (or program) level.

 - 274 -

To execute a package, you first must include it in the package list of a plan. Packages are not directly
executed—they are only indirectly executed when the plan in which they are contained executes (as
discussed previously, UDFs and triggers are exceptions to this rule). A plan can consist of one or more
DBRMs, one or more packages, or a combination of packages and DBRMs.

To help differentiate between plans and packages, consider a grocery store analogy. Before going to
the grocery store, you should prepare a shopping list. As you go through the aisles, when you find an
item on your list, you place the item in your shopping cart. After you pay for the items at the check-out
register, the clerk places your grocery items in a bag. You can think of the purchased items as DBRMs.
The bag is the plan. You have multiple DBRMs (grocery items) in your plan (shopping bag).

In a package environment, rather than actually removing the items from the shelf, you would mark on
your shopping list the location of each item in the store. Upon checking out, you would give the list to
the clerk at the counter. The clerk then would place the list in the bag—not the actual items. The plan
(bag) contains a list pointing to the physical location of the packages (grocery items) that are still on the
shelf. This approach is a good way to compare and contrast the two different environments.

Package information is stored in its own DB2 Catalog tables. When a package is bound, DB2 reads the
following DB2 Catalog tables:
SYSIBM.SYSCOLDIST SYSIBM.SYSCOLDISTSTATS
SYSIBM.SYSCOLSTATS SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES SYSIBM.SYSINDEXSTATS
SYSIBM.SYSPACKAGE SYSIBM.SYSPACKAUTH
SYSIBM.SYSTABLES SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABSTATS SYSIBM.SYSUSERAUTH

Note The
SYSIBM.SYSUSERAUT
H table (the last one in
the list) is read only for
BIND ADD.

Information about the package then is stored in the following DB2 Catalog tables:
SYSIBM.SYSPACKAGE SYSIBM.SYSPACKAUTH
SYSIBM.SYSPACKDEP SYSIBM.SYSPACKSTMT
SYSIBM.SYSPKSYSTEM SYSIBM.SYSTABAUTH

The DB2 Catalog stores only information about the packages. The executable form of the package is
stored as a skeleton package table in the DB2 Directory in the SYSIBM.SPT01 table.

A package also contains a location identifier, a collection identifier, and a package identifier. The
location identifier specifies the site at which the package was bound. If your processing is local, you can
forgo the specification of the location ID for packages.
The collection identifier represents a logical grouping of packages, and is covered in more detail in the
next section of this chapter. The package identifier is the DBRM name bound into the package. This ties
the package to the program to which it applies. A package is uniquely identified as follows when used in
a statement to bind packages into a plan:
LOCATION.COLLECTION.PACKAGE
One final consideration when using packages is versioning. A package can have multiple versions, each
with its own version identifier. The version identifier is carried as text in the DBRM, and is covered in
more depth in the "Package Version Maintenance" section.

Package Benefits
Reduced bind time is the package benefit most often cited. When you are utilizing packages and the SQL
within a program changes, only the package for that particular program needs to be rebound. If packages
are not used when multiple DBRMs are bound into a plan and the SQL within one of those programs
changes, the entire plan must be rebound. This wastes time because you must still rebind all the other
DBRMs in the plan that did not change.

Another benefit of packages involves the granularity of bind parameters. With packages, you can
specify your bind options at the program level because many of the bind parameters are now available

 - 275 -

to the BIND PACKAGE command, such as the isolation level and release parameters. By specifying
different parameters for specific packages and including these packages into a plan, many
combinations of isolation level and release are possible. You can, for example, create a single plan that
provides an isolation level of cursor stability (CS) for one of its packages and an isolation level of
repeatable read (RR) for another package. This combination of strategies is not possible in a plan-only
environment.

The third benefit probably is the biggest benefit of all—versioning. Packages can be versioned, thus
enabling you to have multiple versions of the same package existing at the same time in the DB2
Catalog. Simply by running the appropriate load module, DB2 chooses the correct package to execute.
DB2 uses a package selection algorithm to execute the correct access path.

Packages also provide improved support for mirror tables. Because a package has a high level qualifier
of collection, you can specify a collection for each of your mirror table environments. Suppose that you
have an environment in which you have current and history data in separate tables. Using only plans,
the following two options would be available:

 You could write a program that specifically selected the appropriate high-level
qualifier for each appropriate table, such as CURRENT or HISTORY, and hard-code
that qualifier into your program.

 You could BIND the program's DBRM into different plans, specifying a different
owner for each.

In a package environment, you can use separate collections for each of these environments. This
technique is discussed in detail in the "What is a Collection?" and "Bind Guidelines" sections later in this
chapter.
Additionally, packages provide for remote data access. If you are using a DB2 remote unit of work, you
can specify the location in which you want to bind the package. The DBRM will exist at the site from
which you are issuing the BIND, but the package is created at the remote site indicated by the high-
level qualifier of the package.

Package Administration Issues
Before deciding to implement packages, you will need to consider the potential administrative costs of
packages. This section covers several areas of administrative concern surrounding package implementation.

Systematic Rebinding
A concern that might not be obvious immediately is the approach to systematic rebinding. At some shops, a
production job is set up to rebind plans after executing a REORG and RUNSTATS. This setup ensures that
access paths are optimal given the current state of the DB2 tablespaces and indexes. In an environment in
which plans consist of multiple DBRMs, you can rebind a plan in a single job step. However, after migrating
to an environment in which multiple packages exist per plan (rather than multiple DBRMs) you need to rebind
each package individually. Remember that access paths exist at the package level, not at the plan level, so
packages must be rebound. This results in multiple job steps: one per package. The administration of this
environment will be more difficult because you will need to create and maintain additional job steps.

Package Version Maintenance
Another potential administrative headache is package version maintenance. Every time a DBRM with a
different version identifier is bound to a package, a new version is created. This can cause many unused
package versions to be retained. Additionally, when packages are freed, you must specify the location,
collection, package, and version of each package you want to free.

If your shop allows many versions of packages to be created, a method is required to remove versions
from the DB2 Catalog when their corresponding load modules no longer exist. Your shop, for example,
may institute a policy that specifies that the 5 most recent package versions are maintained in a
production environment. The number 5 is not important; your shop may support 2, 12, or whatever is
deemed appropriate. What is important is the notion that the number of versions be limited. Failure to do
so causes your DB2 environment to be inundated with a very large DB2 Catalog. To administer
versions, consider using a third party tool to manage package versions as required.
Whenever the need arises to drop an old package from the system, you must know the version name
associated with it. Consider the situation in which 100 versions exist and only 5 must be kept. To
accomplish this, you must know the 95 version names you want to drop. If you created these versions
using the VERSION(AUTO) option, you will need to remember versions named using a 26-byte
timestamp. Without a tool, remembering these names is a difficult task.

 - 276 -

Consider using DB2 Catalog queries to generate statements you can use to remove package versions.
By using the information in the DB2 Catalog and the power of SQL, you can eliminate many of the
tedious tasks associated with the freeing old package versions. The following SQL will generate the
commands required to free all but the most recently created package version, as in the following:
SELECT 'FREE PACKAGE(' || COLLID || '.' ||
 NAME || '.(' || VERSION || '))'
FROM SYSIBM.SYSPACKAGE A
WHERE TIMESTAMP < (SELECT MAX(TIMESTAMP)
 FROM SYSIBM.SYSPACKAGE B
 WHERE A.COLLID = B.COLLID
 AND A.NAME = B.NAME)
The result of this query is a series of FREE commands that can be submitted to DB2. Alternatively, you
can modify the query to generate DROP statements that can be submitted to DB2 via SPUFI. You can
add additional predicates to generate FREE commands for specific collections or packages.
Before executing the FREE commands, be sure that you really want to eliminate all package versions
except for the most recent one. Additionally, inspect the generated FREE commands to ensure that they
are syntactically correct. These statements may need to be modified prior to being executed. And, of
course, after the package versions have been freed, you cannot use them again.

Production and Test in Same Subsystem
There may be some easing of the overall administrative burden by moving to packages. Consider shops that
support both test and production application within the same DB2 subsystem. Although these types of shops
are becoming increasingly rare, some still do exist and they may have valid reasons for the continuing
coexistence of production and test with the same DB2 subsystem. In this case, converting to packages
eases the administrative burden by enabling the application developer to specify production and test
collections. An indicator, for example, can be embedded within the collection name specifying PROD or TEST.
By binding packages into the appropriate collection, the production environment is effectively separated from
the test environment.

Package Performance
Probably the biggest question that most shops have as they implement packages is "How will the packages
perform in comparison to my current environment?" By following the advice in this section you will
understand how to make packages perform every bit as well, if not better than, your current environment.

Usually, DB2 can retrieve the package quite easily because indexes exist on the DB2 Catalog tables
that contain package information. Indexes on the LOCATION, COLLID (collection), NAME (package), and
CONTOKEN columns make efficient package retrieval quite common.
Improper package list specification, however, can impact performance. Specifying the appropriate
package list can shave critical sub-seconds from performance-critical applications. Follow these general
rules of thumb when specifying your PKLIST:

 Make the PKLIST as short as possible, given the considerations and needs of your
application. Do not go to excessive lengths, however, to make the list contain only
one or two packages.

 Place the most frequently used packages first in the package list.
 Consider specifying collection.* to minimize plan binding. If you bind multiple

packages into a collection, you can include all those packages in the plan simply by
binding the plan with collection.*. Any package that is added to that collection
at a future point in time automatically is available to the plan.

 Avoid *.* because of the runtime authorization checking associated with that.

What Is a Collection?
A collection is a user-defined name from 1 to 18 characters that the programmer must specify for every
package. A collection is not an actual, physical database object.

You can compare collections to databases. A DB2 database is not actually a physical object (ignoring,
for the moment, the DBD). In much the same way that a database is a grouping of DB2 objects, a
collection is a grouping of DB2 packages.

 - 277 -

By specifying a different collection identifier for a package, the same DBRM can be bound into different
packages. This capability permits program developers to use the same program DBRM for different
packages, enabling easy access to tables that have the same structure (DDL) but different owners.
Assume, for example, that you have created copies of the DB2 sample tables and given them an authid
of DSNCLONE. You now have a DSN8510.DEPT table and a DSNCLONE.DEPT table with the same
physical construction (such as the same columns and keys). Likewise, assume that you have duplicated
all the other sample tables. You then could write a single program, using unqualified embedded SQL, to
access either the original or the cloned tables.
The trick is to use unqualified SQL. You could simply bind a program into one package with a collection
identifier of ORIG and into another package with a collection identifier of CLONE. The bind for the
package with the ORIG collection identifier specifies the DSN8510 qualifier, and the bind for the CLONE
collection package specifies the DSNCLONE qualifier. You would store both of these in the DB2 Catalog.
But how do you access these packages? Assume that both packages were generated from a DBRM
named SAMPPROG. This would give you packages named ORIG.SAMPPROG and CLONE.SAMPPROG.
You can bind both these packages into a plan called SAMPPLAN, for example, as in the following:
BIND PLAN (SAMPPLAN)
 PKLIST(ORIG.SAMPPROG, CLONE.SAMPPROG)
The program then specifies which collection to use with the SET CURRENT PACKAGESET statement. By
issuing the following statement, the plan is instructed to use the package identified by the value of the
host variable (in this example, either ORIG or CLONE).
EXEC SQL
 SET CURRENT PACKAGESET = :HOST-VAR
END-EXEC.
Another use of packages is to identify and relate a series of programs to a given plan. You can bind a
plan and specify a wildcard for the package identifier. This effectively ties to the plan all valid packages
for the specified collection. Consider the following BIND statement, for example:
BIND PLAN(SAMPLE) PKLIST(ORIG.*)
All valid packages in the ORIG collection are bound to the SAMPLE plan. If new packages are bound
specifying the ORIG collection identifier, they are included automatically in the SAMPLE plan; no bind or
rebind is necessary.

Collection Size
Do not concern yourself with collection size. Bind as many packages into a single collection as you want.
Remember, a collection is not a physical entity. It is merely a method of referencing packages.

Quite often people confuse collections with package lists. The size of a collection is irrelevant. The size
of a package list is relevant—the smaller the better.

Package List Size
You do not need to go to extraordinary means to limit the size of the package list as the performance gain
realized due to smaller package lists usually is not significant. One test shows that the difference between
accessing the first entry in a package list is only milliseconds faster than accessing the one hundredth entry
in the package list. Of course, milliseconds can sometimes make a difference.

A better reason to limit the size of the package list is to enhance maintainability. The fewer entries in the
package list, the easier maintenance will be.

Versions

When using packages, you can keep multiple versions of a single package that refer to different versions of
the corresponding application program. This way, the programmer can use a previous incarnation of a
program without rebinding. Before the availability of packages, when programmers wanted to use an old
version of a program, they were forced to rebind the program's plan using the correct DBRM. If the DBRM
was unavailable, they had to repeat the entire program preparation process.

 - 278 -

You can specify a version as a parameter to the DB2 precompiler identifier up to 64 characters long. If
so instructed, the precompiler can automatically generate a version identifier (which will be a
timestamp). The version identifier is stored, much like the consistency token, in the DBRM and the link
is generated from the precompile.

Other than the specification of the version at precompilation time, versioning is automatic and requires
no programmer or operator intervention. Consider the following:

 When a package is bound into a plan, all versions of that package are bound into the
plan.

 When a program is executed specifying that plan, DB2 checks the version identifier of
the link that is running and finds the appropriate package version in the plan.

 If that version does not exist in the plan, the program will not run.
 To use a previous version of the program, simply restore and run the load module.

Versioning is a powerful feature of DB2 packages. You must take care, however, to administer the
versions properly. Whenever a package is bound from a DBRM with a new version identifier, a new
version of the package is created. As old versions of a package accumulate, you must periodically clean
them up using the FREE command. Monitoring this accumulation is particularly important when the
version identifier defaults to a timestamp because every new bind creates a new version.

Program Preparation Objects

The program preparation process is composed of many objects. Each of these objects is described as
follows:

Source Every program starts as a series of host language statements, known as
the application source. The source gets run through the DB2 precompiler
to have its SQL statements removed and placed in a DBRM.

Modified source The DB2 precompiler creates the modified source module by stripping
the source module of all its SQL statements. The modified source is
passed to the host language compiler.

Load module The linkage editor creates a load module using the output of the host
language compiler. The load module contains the executable form of the
host language statements and is executable in conjunction with an
application plan.

DBRM The DBRM is created by the DB2 precompiler from the SQL statements
stripped from the program source code.

Plan A plan is created by the BIND statement. It consists of the access paths
required to execute the SQL statements for all DBRMs bound into the
plan (either explicitly or as packages). The plan is executable in
conjunction with the corresponding program load module.

Package A package also is created by the BIND statement. It contains the access
paths for a single DBRM.

Collection A collection is an identifier used to control the creation of multiple
packages from the same DBRM. (Technically, a collection is not an
object at all, but it is included in this list for completeness.)

Version A version is a token specified to the DB2 precompiler that enables
multiple versions of the same collection and package to exist.

Program Preparation Guidelines

Although the chapter has discussed DB2 program preparation, few guidelines have been provided for its
adequate implementation and administration. This section provides standard program preparation guidelines.
The sections that follow provide guidelines for each program preparation component.

Be Aware of Default Names

If DB2 program preparation options are allowed to default, the following data set names are created:
USERID.TEMP.PCLIST Precompiler

 - 279 -

listing
USERID.TEMP.COBOL Modified

COBOL
source from
the
precompiler

USERID.TEMP.LIST COBOL
compiler
listing

USERID.TEMP.LINKLIST Linkage
editor
listing

Prepare DB2 Programs in the Background

Avoid running DB2 program preparation in the foreground. Background submission prevents your
terminal from being tied up during program preparation. Additionally, if an error occurs during program
preparation, a background job can be printed to document the error and assist in debugging.

Use the CICS Preprocessor
When preparing online DB2 application programs for the CICS environment, an additional program
preparation step is required to preprocess CICS calls. Refer to Chapter 16 for additional information on
CICS program preparation.

DCLGEN Guidelines

Follow these guidelines when issuing DCLGEN statements at your shop.
Use the Appropriate DCLGEN Library
Most shops allocate DCLGEN libraries. They are usually either a partitioned data set or in the format
specified by your shop's change management tool.
Control Who Creates DCLGEN Members
The DBA usually is responsible for creating DCLGEN members for each table. This establishes a point of
control for managing change.
Avoid Modifying DCLGEN Members
Avoid modifying the code produced by the DCLGEN command. When the DECLARE TABLE code or
WORKING-STORAGE variables are manually changed after DCLGEN creates them, the risk of syntax
errors and incompatibilities increases.
Consider Prefixing DCLGEN Host Variables
The DCLGEN command produces WORKING-STORAGE fields with the same names as the DB2 column
names, except that underscores are converted to hyphens. It should be standard practice for shops to
use DCLGEN with COLSUFFIX and NAMES to produce prefixed field names. When COLSUFFIX is not
utilized, two tables having identical column names would have identical field names for each table.

Use Unqualified Table References
When you're using the DCLGEN command, set the current SQLID to the creator of the table to ensure
that DCLGEN does not generate a qualified table name. Then, when specifying the DCLGEN options,
provide an unqualified table name. This produces an unqualified DECLARE TABLE statement.
An alternative method can be used whereby a SYNONYM for every table is created for the DBA issuing
the DCLGEN. The SYNONYM must be named the same as the table for which it has been created. The
DBA should then specify the unqualified SYNONYM to DCLGEN. This produces an unqualified DECLARE
TABLE statement.
Unfortunately, because DCLGEN does not provide the option of producing a qualified or unqualified
DECLARE TABLE statement, DBAs must perform gyrations to unqualify their DECLARE TABLE
statements.
Avoid Breaking DCLGEN Host Variables into Components
Although doing so is not generally recommended, you can modify the WORKING-STORAGE variables
generated by DCLGEN to "break apart" columns into discrete components. Consider, for example, the
following DCLGEN-created WORKING-STORAGE variables for the DSN8610.PROJACT table:

01 DCLPROJACT.

 - 280 -

 10 PROJNO PIC X(6).
 10 ACTNO PIC S9(4) USAGE COMP.
 10 ACSTAFF PIC S999V99 USAGE COMP-3.
 10 ACSTDATE PIC X(10).
 10 ACENDATE PIC X(10).
The two date columns, ACSTDATE and ACENDATE, are composed of the year, the month, and the day.
By changing the structure to "break apart" these columns, you could reference each component
separately, as in the following example:
01 DCLPROJACT.
 10 PROJNO PIC X(6).
 10 ACTNO PIC S9(4) USAGE COMP.
 10 ACSTAFF PIC S999V99 USAGE COMP-3.
 10 ACSTDATE.
 15 ACSTDATE-YEAR.
 20 ACSTDATE-CC PIC X(2).
 20 ACSTDATE-YY PIC X(2).
 15 ACSTDATE-FILLER1 PIC X.
 15 ACSTDATE-MONTH PIC X(2).
 15 ACSTDATE-FILLER2 PIC X.
 15 ACSTDATE-DAY PIC X(2).
 10 ACENDATE.
 15 ACENDATE-YEAR PIC X(4).
 15 ACENDATE-FILLER1 PIC X.
 15 ACENDATE-MONTH PIC X(2).
 15 ACENDATE-FILLER2 PIC X.
 15 ACENDATE-DAY PIC X(2).
This approach is not favored because it is invasive to the generated DCLGEN code, which can result in
errors, as mentioned previously. Instead, you should code structures that can be used to "break apart"
these columns outside the DCLGEN, and then move the necessary columns to the structures outside the
DCLGEN variables.
Avoid the Field Name PREFIX
Avoid the field name PREFIX option of DCLGEN. This option generates WORKING-STORAGE variables
with a numeric suffix added to the PREFIX text. For example, if you ran DCLGEN for the
DSN8510.PROJACT table and specified a PREFIX of COL, the following WORKING-STORAGE variable
names would be generated:
01 DCLPROJACT.
 10 COL01 PIC X(6).
 10 COL02 PIC S9(4) USAGE COMP.
 10 COL03 PIC S999V99 USAGE COMP-3.
 10 COL04 PIC X(10).
 10 COL05 PIC X(10).
Note how each column begins with the supplied prefix and ends with a number that steadily increases
by 1. The COL01 column is used for the PROJNO column, COL02 for ACTNO, and so on. This type of
DCLGEN should be avoided because the generated column names are difficult to trace to the
appropriate WORKING-STORAGE variables.

Precompiler Guidelines

Follow these guidelines when precompiling DB2 programs.

 - 281 -

Use the Appropriate DBRM Library

Most shops allocate DBRM libraries. These libraries must be set up as partitioned data sets with 80-
byte records.

Retain DBRMs Only When Absolutely Necessary

Although the DBRM produced by the precompiler must be placed in a partitioned data set, DBRMs
sometimes do not need to be retained. If the DBRM will be temporary due to the replication of program
preparation during the testing process, it can be written to a temporary PDS. When the program is out of
the testing phase, the DBRM can be written to a permanent PDS before it is migrated to production
status.

Name the DBRM the Same as the Program

Ensure that the DBRM is named the same as the program from which it was created. This eases the
administration of objects created and modified by the program preparation process.

Precompile Only When Required

Precompilation is not required by BASIC and APL2 programs that contain SQL statements. Refer to the
appropriate BASIC and APL2 programming guides for additional information about these environments.
Use DEC31 to Impact Decimal Precision
DB2 supports decimal precision of either 15 or 31, depending upon the precompiler option. If decimal
numbers with a precision greater 15 are to be utilized, you must specify the DEC31 precompiler option.

When you're using this option, examine the application program to verify that the host variables can
accommodate 31-digit decimal precision.
Use LEVEL to Avoid Binding
LEVEL is a precompiler option that can be used when a program is modified but the SQL in the program
has not changed. LEVEL is specified as a character string to be used by DB2 for consistency checking
in place of the timestamp token. By precompiling a DBRM with the same level as before, a BIND can be
avoided. You do not need to bind because SQL has not changed, allowing DB2 to use the same access
paths and the program to use the same package or plan as before.
Using LEVEL, a programmer can change his program without modifying the embedded SQL, and avoid
worrying about having to bind. But care must be taken to ensure that the SQL is not changed. If the
SQL is changed but a bind does not occur, unpredictable results can occur.
If LEVEL is used, DB2 will use the level as the consistency token and the default for version (if no
version is specified).

Specify the Version with Care
Remember, you basically have two options for specifying the version name. Versions can be
automatically defined by DB2 by specifying VERSION(AUTO) or explicitly named using the
VERSION(name) precompile parameter. When versions are automatically assigned by DB2, a
timestamp will be used.

If you explicitly name your versions, they will be more difficult to implement but easier to administer. The
difficult part is providing a mechanism to ensure that programmers always specify an appropriate
version when precompiling a program.

On the other hand, if you use automatic versioning, packages are easier to implement but much more
difficult to administer, because DB2 is automatically naming the version for you. The administration
difficulty occurs because the auto timestamp version is unwieldy to manually enter when package
administration is necessary. Consider this when deciding how to name versions at your shop.

If your shop does not have an automated means of administering versions, consider explicitly specifying
the version when precompiling a program.

BIND Guidelines

Using the following tips and techniques will ensure effective execution of the BIND statement and the
creation of efficiently bound DB2 application programs.

 - 282 -

Administer Initial Binds Centrally
A centralized administration group (DBA, bind agent, and so on) should be responsible for all initial
binds of applications plans (BIND ADD). This provides a point of control for administering plan and
package use and freeing old or unused plans and packages when they are no longer required.

Keep Statistics Current for Binding
Before binding, ensure that the RUNSTATS utility has been executed recently for every table accessed
by the plan or package to be bound. This allows the bind process to base access path selections on the
most recent statistical information.

Avoid Default Parameters
Specify every bind parameter. Defaults are used for certain bind parameters when the BIND command
is issued without specifying them. This could be dangerous because the default options are not always
the best for performance and concurrency.

Group Like Programs into Collections
You should group like programs by binding them to packages and specifying the same collection
identifier. If a customer application is composed of 12 DB2 programs, for example, bind each into a
separate package with a collection identifier of CUSTOMER. This makes the administration of packages
belonging to the same application easy.

Use Wildcard Package Lists
When multiple packages must exist in the same plan, favor using the wildcard capability of the PKLIST
parameter of the BIND PLAN statement. To bind the 12-customer application packages (mentioned in
the last guideline) to a single plan, for example, you could specify PKLIST(CUSTOMER.*). Additionally,
all new packages bound in the CUSTOMER collection are automatically added to that plan.
Specify Collections and Packages Carefully in the PKLIST

Avoiding the following scenario will eliminate confusion between which package is actually being used
during program execution:

 Binding the same DBRM into different collections (such as C1 and C2)
 Binding a plan with a package list specifying both collections (C1.*,C2.*), both

packages (C1.PACKAGE, C2.PACKAGE), or a combination (C1.*,C2.PACKAGE or
C1.PACKAGE,C2.*)

 Failing to specify SET CURRENT PACKAGESET in the application program
If the current package set is blank, the package is in any collection in the EDM pool, and the
consistency tokens match, DB2 will return the package. It does not matter whether the package is from
C1 or C2. For this reason, specifying SET CURRENT PACKAGESET is imperative if you have a package
bound into more than one collection in the PKLIST of the same plan. Although many think that DB2
uses packages in the order specified in the package list, this is only true if none of the packages are in
the EDM Pool when the plan executes. If a matching package is in the EDM pool and can be used, DB2
will use it and the program might execute an improper package.

Specify Explicit Consistency Tokens
Favor the specification of an explicit consistency token for package versioning over allowing it to default
to a timestamp. If a new version with a new timestamp is created every time a package is bound, the
DB2 Catalog quickly becomes cluttered with unused versions. Explicitly specifying a consistency token
to control versions that must be saved is better. You could, for example, specify a release number such
as REL100, and then increment the number to REL101, REL102, REL200, and so on, to indicate
different versions of the software. In this manner, only one version, rather than many versions of each
release will exist.
Use the QUALIFIER Parameter
When binding packages, use the QUALIFIER parameter to specify an identifier to be used by the bind
process to qualify all tables referenced by SQL statements in the DBRM being bound. The
DSN8510.DEPT table, for example, is accessed if the following statement is embedded in a program
bound to a package specifying a QUALIFIER of DSN8510:
EXEC SQL
 SELECT DEPTNO, DEPTNAME
 INTO :DEPTNO, :DEPTNAME
 FROM DEPT

 - 283 -

END-EXEC.
Users can specify a qualifier different than their userid if they have the necessary authority to issue the
BIND command for the plan or package. The users do not need to be SYSADM or have a secondary
authid, as is required with the OWNER parameter.
Optionally, the OWNER parameter can be used to qualify tables at BIND time. When specifying an
OWNER, however, the binding agent must be either a SYSADM or set up with a secondary authid equal to
the owner being specified.

Strategically Implement Multiple Qualified Tables

If a single plan needs to access tables with different qualifiers, consider one of the following two
strategies. The first strategy is to create aliases or synonyms such that every table or view being
accessed has the same qualifier. The second method is to separate the tables being accessed into
logical processing groups by qualifier. Code a separate program to access each processing group.
Then bind each program to a separate package, specifying the qualifier of the tables in that program.
Finally, bind all the packages into a single plan.

Use One Program and Multiple Packages for Mirror Tables
When you use mirror tables, one program can access different tables. Suppose that you need an
employee table for every month of the year. Each employee table is modeled after DSN8610.EMP but
contains only the active employees for the month it supports. The following tables, for example, are
differentiated by their qualifier:

JANUARY.EMP
FEBRUARY.EMP
MARCH.EMP
 .
 .
 .
NOVEMBER.EMP
DECEMBER.EMP
Assume that you need 12 reports, each one providing a list of employees for a different month. One
program can be coded to access a generic, unqualified EMP table. You then could bind the program to
12 separate packages (or plans), each specifying a different qualifier (JANUARY through DECEMBER).
For more information on mirror tables, refer to Chapter 5, "Data Definition Guidelines."
Use the Correct ACTION Parameter
Specify the proper ACTION parameter for your bind. You can specify two types of actions: ADD or
REPLACE. ADD indicates that the plan is new. REPLACE indicates that an old plan by the same name will
be replaced. Specifying ACTION (REPLACE) for a new plan does not cause the bind to fail—it merely
causes confusion.
Establish BIND PLAN Parameter Guidelines

Favor the use of the following parameters when binding application plans:
ISOLATION (CS)
VALIDATE (BIND)
ACTION (REPLACE)
NODEFER (PREPARE)
FLAG (I)
ACQUIRE (USE)
RELEASE (COMMIT)
DEGREE (ANY)
CURRENTDATA (NO)
EXPLAIN (YES)
These BIND PLAN parameters usually produce the most efficient and effective DB2 plan. However, one
set of BIND parameters will not be applicable for every DB2 application program. Reasons for choosing
different options are discussed in other guidelines in this chapter.
Establish BIND PACKAGE Parameter Guidelines

Favor the use of the following parameters when binding packages:
ISOLATION (CS)
VALIDATE (BIND)
ACTION (REPLACE)
SQLERROR (NOPACKAGE)
FLAG (I)

 - 284 -

RELEASE (COMMIT)
DEGREE (ANY)
CURRENTDATA (NO)
EXPLAIN (YES)
These BIND PACKAGE parameters usually produce the most efficient and effective DB2 package. Once
again, one set of BIND parameters will not be applicable for every DB2 application program. Other
guidelines in this chapter cover the occasions when you should choose another option.

Take Care When Specifying Isolation Level
The ISOLATION parameter of the BIND command specifies the isolation level of the package or plan.
The isolation level determines the mode of page locking implemented by the program as it runs.
DB2 implements page and row locking at the program execution level, which means that all page or row
locks are acquired as needed during the program run. Page or row locks are released when the
program issues a COMMIT or ROLLBACK.

You can specify the following four isolation levels:
 Cursor stability (CS)
 Repeatable read (RR)
 Read stability (RS)
 Uncommitted read (UR)

They significantly affect how the program processes page locks.

Use Uncommitted Read with Caution

Anyone accustomed to application programming when access to a database is required understands
the potential for concurrency problems. To ensure data integrity when one application program attempts
to read data that is in the process of being changed by another, the DBMS must forbid access until the
modification is complete. Most DBMS products, DB2 included, use a locking mechanism for all data
items being changed. Therefore, when one task is updating data on a page, another task cannot access
data (read or update) on that same page until the data modification is complete and committed.
Programs that read DB2 data typically access numerous rows during their execution and are thus quite
susceptible to concurrency problems. DB2 provides read-through locks, also know as dirty read or
uncommitted read, to help overcome concurrency problems. When you're using an uncommitted read,
an application program can read data that has been changed but is not yet committed.
Dirty read capability is implemented at BIND time by specifying ISOLATION(UR). Application programs
bound using the UR isolation level will read data without taking locks. This way, the application program
can read data contained in the table as it is being manipulated. Consider the following sequence of
events:

1. To change a specific value, at 9:00 a.m. a transaction containing the following SQL is
executed:

2. UPDATE EMP
3. SET FIRSTNME = "MICHELLE"

WHERE EMPNO = 10020;

The transaction is a long-running one and continues to execute without issuing a
COMMIT.
4. At 9:01 a.m., a second transaction attempts to SELECT the data that was changed,

but not committed.
If the UR isolation level was specified for the second transaction, it would read the changed data even
though it had yet to be committed. Obviously, if the program doesn't need to wait to take a lock and
merely reads the data in whatever state it happens to be at that moment, the program will execute faster
than if it had to wait for locks to be taken and resources to be freed before processing.
The implications of reading uncommitted data, however, must be carefully examined before being
implemented. Several types of problems can occur. Using the previous example, if the long-running
transaction rolled back the UPDATE to EMPNO 10020, the program using dirty reads may have picked
up the wrong name ("MICHELLE") because it was never committed to the database.
Inaccurate column values are not the only problems that can be caused by using ISOLATION(UR). A
dirty read can cause duplicate rows to be returned where none exist. Alternatively, a dirty read can
cause no rows to be returned when one (or more) actually exists. Additionally, an ORDER BY clause
does not guarantee that rows will be returned in order if the UR isolation level is used. Obviously, these

 - 285 -

problems must be taken into consideration before using the UR isolation level. The following rules apply
to ISOLATION(UR):

 The UR isolation level applies to read-only operations: SELECT, SELECT INTO, and
FETCH from a read-only result table.

 Any application plan or package bound with an isolation level of UR will use
uncommitted read functionality for any read-only SQL. Operations contained in the
same plan or package and are not read-only will use an isolation level of CS.

 The isolation level defined at the plan or package level during BIND or REBIND can be
overridden as desired for each SQL statement in the program. You can use the WITH
clause to specify the isolation level for any individual SQL statement, as in the
following example:

 SELECT EMPNO, LASTNAME

 FROM EMP

WITH UR;

The WITH clause is used to allow an isolation level of RR, RS, CS, or UR to be used on a
statement-by-statement basis. The UR isolation level can be used only with read-only SQL
statements. This includes read-only cursors and SELECT INTO statements. The CS, RR,
and RS isolation levels can be specified for SELECT, INSERT, UPDATE, and DELETE
statements. The WITH clause, however, cannot be used with subselects.

 DB2 will not choose UR isolation with an access path that uses a Type-1 index. If the
plan or package is rebound to change to UR isolation, DB2 will not consider any access
paths that use a Type-1 index. If an acceptable Type-2 index cannot be found, DB2 will
choose a table scan. This applies only to DB2 V5 and older subsystems because Type
2 indexes are the only type of indexes supported as of DB2 V6.

When is it appropriate to use UR isolation? The general rule of thumb is to avoid UR whenever the
results must be 100 percent accurate. Following are examples of when this would be true:

 Calculations that must balance are being performed on the selected data.
 Data is being retrieved from one source to insert to or update another.
 Production, mission-critical work is being performed that cannot contain or cause data

integrity problems.
In general, most current DB2 applications will not be candidates for dirty reads. In a few specific
situations, however, the dirty read capability will be of major benefit. Consider the following cases in
which the UR isolation level could prove to be useful:

 Access is required to a reference, code, or look-up table that basically is static in
nature. Due to the non-volatile nature of the data, a dirty read would be no different
than a normal read the majority of the time. In those cases when the code data is
being modified, any application reading the data would incur minimum, if any,
problems.

 Statistical processing must be performed on a large amount of data. Your company, for
example, might want to determine the average age of female employees within a
certain pay range. The impact of an uncommitted read on an average of multiple rows
will be minimal because a single value changed will not greatly impact the result.

 Dirty reads can prove invaluable in a data warehousing environment that uses DB2 as
the DBMS. A data warehouse is a time-sensitive, subject-oriented, store of business
data that is used for online analytical processing. Other than periodic data propagation
and/or replication, access to the data warehouse is read-only. Because the data is
generally not changing, an uncommitted read is perfect in a read-only environment due
to the fact that it can cause little damage. More data warehouse projects are being
implemented in corporations worldwide and DB2 with dirty read capability is a very
wise choice for data warehouse implementation.

 In those rare cases when a table, or set of tables, is used by a single user only, UR
can make a lot of sense. If only one individual is modifying the data, the application
programs can be coded such that all (or most) reads are done using UR isolation level,
and the data will still be accurate.

 Finally, if the data being accessed already is inconsistent, little harm can be done
using a dirty read to access the information.

Caution Although the dirty read capability can provide relief to concurrency problems
and deliver faster performance in specific situations, it also can cause data

 - 286 -

integrity problems and inaccurate results. Be sure to understand the
implications of the UR isolation level and the problems it can cause before
diving headlong into implementing it in your production applications.

Use Caution Before Binding With Repeatable Read ISOLATION
With repeatable read, or RR, all page locks are held until they are released by a COMMIT. Cursor
stability, or CS, releases read-only page locks as soon as another page is accessed.
In most cases, you should specify CS to enable the greatest amount of application program
concurrency. RR, however, is the default isolation level.
Use the RR page locking strategy only when an application program requires consistency in rows that
may be accessed twice in one execution of the program, or when an application program requires data
integrity that cannot be achieved with CS. Programs of this nature are rare.
For an example of the first reason to use RR page locking, consider a reporting program that scans a
table to produce a detail report, and then scans it again to produce a summarized managerial report. If
the program is bound using CS, the results of the first report might not match the results of the second.

Suppose that you are reporting the estimated completion dates for project activities. The first report lists
every project and the estimated completion date. The second, managerial report lists only the projects
with a completion date greater than one year.

The first report indicates that two activities are scheduled for more than one year. After the first report
but before the second, however, an update occurs. A manager realizes that she underestimated the
resources required for a project. She invokes a transaction (or uses QMF) to change the estimated
completion date of one of her project's activities from 8 months to 14 months. The second report is
produced by the same program, but reports 3 activities.
If the program has used an isolation level of RR rather than CS, an update between the production of the
two reports would not have been allowed because the program would have maintained the locks it held
from the generation of the first report.
For an example of the second reason to use RR page locking, consider a program that is looking for
pertinent information about employees in the information center and software support departments who
make more than $30,000 in base salary. The program opens a cursor based on the following SELECT
statement:
 SELECT EMPNO, FIRSTNME, LASTNAME,
 WORKDEPT, SALARY
 FROM DSN8510.EMP
 WHERE WORKDEPT IN ('C01', 'E21')
 AND SALARY > 30000
The program then begins to fetch employee rows. Department 'C01' is the information center and
department 'E21' is software support. Assume further, as would probably be the case, that the
statement uses the DSN8510.XEMP2 index on the WORKDEPT column. An update program that
implements employee modifications is running concurrently. The program, for example, handles
transfers by moving employees from one department to another, and implements raises by increasing
the salary.

Assume that Sally Kwan, one of your employees, has just been transferred from the information center
to software support. Assume further that another information center employee, Heather Nicholls,
received a 10 percent raise. Both these modifications will be implemented by the update program
running concurrently with the report program.
If the report program were bound with an isolation level of CS, the second program could move Sally
from C01 to E21 after she was reported to be in department C01 but before the entire report was
finished. Thus, she could be reported twice: once as an information center employee and again as a
software support employee. Although this circumstance is rare, it can happen with programs that use
cursor stability. If the program were bound instead with RR, this problem could not happen. The update
program probably would not be allowed to run concurrently with a reporting program, however, because
it would experience too many locking problems.
Now consider Heather's dilemma. The raise increases her salary 10 percent, from $28,420 to $31,262.
Her salary now fits the parameters specified in the WHERE condition of the SQL statement. Will she be
reported? It depends on whether the update occurs before or after the row has been retrieved by the
index scan, which is clearly a tenuous situation. Once again, RR avoids this problem.

 - 287 -

You might be wondering, "If CS has the potential to cause so many problems, why are you
recommending its use? Why not trade the performance and concurrency gain of CS for the integrity of
RR?" The answer is simple: The types of problems outlined are rare. The expense of using RR, however,
is so great in terms of concurrency that the tradeoff between the concurrency expense of RR and the
efficiency of CS usually is not a sound one.
Consider Read Stability (RS) Over Repeatable Read (RR)
The RS isolation level is similar in functionality to the RR isolation level. It indicates that a retrieved row
or page is locked until the end of the unit of work. No other program can modify the data until the unit of
work is complete, but other processes can insert values that might be read by your application if it
accesses the row a second time.
Use read stability only when your program can handle retrieving a different set of rows each time a
cursor or singleton SELECT is issued. If using read stability, be sure your application is not dependent
on having the same number of rows returned each time.

Favor Acquiring Tablespace Locks When the Tablespace Is Used
In addition to a page locking strategy, every plan also has a tablespace locking strategy. This strategy is
implemented by two bind parameters: ACQUIRE and RELEASE.
Remember that a page lock is acquired when the page is requested, and is released after a COMMIT or
a ROLLBACK. Tablespace locking is different. DB2 uses a mixed tablespace locking strategy—the
programmer specifies when to acquire and release tablespace locks by means of the ACQUIRE and
RELEASE parameters. Tablespace locking is implemented only at the plan level; it is not implemented at
the package level.
The options for the ACQUIRE parameter are USE and ALLOCATE. When you specify USE, tablespace
locks are taken when the tablespace is accessed. With ALLOCATE, tablespace locks are taken when
the plan is first allocated.
The options for RELEASE are COMMIT and DEALLOCATE. When you specify the COMMIT option, locks
are released at commit or rollback time. When you specify DEALLOCATE, all locks are held until the plan
finishes and is deallocated.

In general, use the following tablespace locking allocation strategy:
ACQUIRE(USE)
RELEASE(COMMIT)

This provides your program with the highest degree of concurrency.

When you have conditional table access in your program, consider using the following lock and
resource allocation strategy:
ACQUIRE(USE)
RELEASE(DEALLOCATE)

With conditional table access, every invocation of the program does not cause that section of code to be
executed. By specifying that locks will be acquired only when used, and released only when
deallocated, you can increase the efficiency of a program because locks, once acquired, are held during
the entire course of the program. This does reduce concurrency, however.

For a batch update program in which you know that you will access every table coded in your program,
use the following lock and resource allocation strategy:
ACQUIRE(ALLOCATE)
RELEASE(DEALLOCATE)

All locks are acquired as soon as possible and are not released until they are absolutely not needed.
This strategy, too, will reduce concurrency.
For high-volume transactions (one or more transactions per second throughput), use a CICS protected
entry thread (RCT TYPE=ENTRY) with the following strategy:
ACQUIRE(ALLOCATE)
RELEASE(DEALLOCATE)

A high-volume transaction generally executes much faster if it is not bogged down with the
accumulation of tablespace locks.

 - 288 -

In all cases, you should obtain database administration approval before binding with parameters other
than ACQUIRE(USE) and RELEASE(COMMIT).
Specify Validation at BIND Time
A validation strategy refers to the method of checking for the existence and validity of DB2 tables and
DB2 access authorization. You can use two types of validation strategies: VALIDATE(BIND) or
VALIDATE(RUN).
VALIDATE(BIND), the preferred option, validates at bind time. If a table is invalid or proper access
authority has not been granted, the bind fails.
VALIDATE(RUN) validates DB2 table and security each time the plan is executed. This capability is
useful if a table is changed or authority is granted after the bind is issued. It does, however, impose a
potentially severe performance degradation because each SQL statement is validated each time it is
executed.
Always specify VALIDATE(BIND) for production plans. Use VALIDATE(RUN) only in a testing
environment.

Request All Error Information
Always specify FLAG(I), which causes the BIND command to return all information, warning, error,
and completion messages. This option provides the greatest amount of information pertaining to the
success or failure of the bind.
Specify an Appropriate CACHESIZE
The CACHESIZE parameter specifies the size of the authorization cache for a plan. The authorization
cache is a portion of memory set aside for a plan to store valid authids that can execute the plan. By
storing the authids in memory, the cost of I/O can be saved.

The cache can vary in size from 0 to 4096 bytes in 256 byte increments. For a plan with a small number
of users, specify the minimum size, 256. If the plan will have large number of users, calculate the
appropriate size as follows:
 CACHESIZE = ([number of concurrent users] * 8) + 32

Take the number returned by the formula and round up to the next 256 byte increment making sure not
to exceed 4096.

Note The number 32 is added because the authid cache always uses 32 control bytes.

One final suggestion—if the plan is executed only infrequently, or has been granted to PUBLIC, do not
cache authids. Specify a CACHESIZE of zero.
As of DB2 V5, authorization can be cached for packages as well as plans. However, no CACHESIZE
BIND parameter is available for packages. Instead, package caching must be enabled by the system
administrator at the subsystem level.
Consider Using CURRENTDATA(NO) for Lock Avoidance
DB2 uses the lock avoidance technique to reduce the number of locks that need to be taken for read
only processes. To enable lock avoidance for read-only and ambiguous cursors, NO must be specified
for the CURRENTDATA option. Unfortunately, YES is the default. By specifying CURRENTDATA(NO), you
indicate that currency is not required for cursors that are read only or ambiguous.
Do not use CURRENTDATA(NO) if your program dynamically prepares and executes a DELETE WHERE
CURRENT OF statement against an ambiguous cursor after that cursor is opened. DB2 returns a
negative SQLCODE to the program if it attempts a DELETE WHERE CURRENT OF statement for any of
the following cursors:

 Cursor uses block fetching
 Cursor uses query parallelism
 Cursor is positioned on a row that is modified by this or another application process

Specify DEGREE(ANY) to Encourage Parallelism
When DEGREE(ANY) is specified, DB2 will attempt to execute queries using parallel engines whenever
possible. Parallel queries are typically deployed against partitioned tablespaces, and can be used to
access non-partitioned tablespaces when specified in a join with at least one partitioned tablespace.
At optimization time, DB2 can be directed to consider parallelism by specifying DEGREE(ANY) at BIND
time for packages and plan. Following are the three types of parallelism:

 I/O—multiple read engines
 CPU—multiple processor and multiple read engines
 Sysplex—multiple data sharing subsystems

 - 289 -

Parallelism can significantly enhance the performance of queries against partitioned tablespaces. By
executing in parallel, elapsed time usually will decrease, even if CPU time does not. This results in an
overall perceived performance gain because the same amount of work will be accomplished in less
clock time.

Following are the types of queries that will benefit most from I/O parallelism:
 Access a large amount of data, but return only a few rows
 Use column functions (AVG, COUNT, COUNT_BIG, MIN, MAX, STDDEV, SUM,

VARIANCE)
 Access long rows

CPU parallelism extends the capabilities of I/O parallelism. When CPU parallelism is invoked, it is
always used in conjunction with I/O parallelism. The reverse of this is not necessarily true. Most of the
queries that benefit from I/O parallelism also will benefit from CPU parallelism because as the I/O
bottlenecks are reduced, the CPU bottlenecks become more apparent.
DB2 V5 extended the parallel capabilities of DB2 even further with Query Sysplex parallelism. When
Sysplex parallelism is employed, DB2 can spread a single query across multiple central processors
complexes within a data sharing group. For more information on data sharing and Sysplex parallelism,
refer to Chapter 17, "Data Sharing."
Specify NODEFER(PREPARE)
Specify NODEFER(PREPARE) rather than DEFER(PREPARE) unless your program contains SQL
statements that access DB2 tables at a remote location and are executed more than once during the
program's invocation. In this case, specifying DEFER(PREPARE) can reduce the amount of message
traffic by preparing each SQL statement only once at the remote location, when it is first accessed.
Subsequent execution of the same statement in the same unit of recovery does not require an
additional PREPARE.
Specify SQLERROR(CONTINUE | NOPACKAGE)
Two options for the SQLERROR parameter exist: NOPACKAGE and CONTINUE. NOPACKAGE is the
recommended option when not operating in a distributed environment. By specifying NOPACKAGE, a
package will not be created when an SQL error is encountered.
The other option is CONTINUE, which will create a package even if an error is encountered. Because
SQL syntax varies from environment to environment, CONTINUE is a viable option when operating in a
distributed environment. The package can be created, regardless of the error with the understanding
that the SQL will function properly at the remote location.
Specify EXPLAIN(YES) for Production BINDs
At a minimum, all production BINDs should be performed with the EXPLAIN(YES) option. This allows
the proper monitoring of the production access path selection made by DB2.
Use the ENABLE and DISABLE Parameters Effectively
You can use the ENABLE and DISABLE bind options to control the environment in which the plan or
package being bound can be executed. ENABLE ensures that the plan or package operates in only the
enabled environments. DISABLE permits execution of the plan or package by all subsystems except
those explicitly disabled. ENABLE and DISABLE are mutually exclusive parameters (only one can be
used per package or plan).
If a plan is bound specifying ENABLE(IMS), for example, only the IMS subsystem is permitted to
execute the plan. If a plan is bound with the DISABLE(CICS) option, the CICS subsystem is not
permitted to execute this plan.
Be careful when using ENABLE and DISABLE because they may function differently than one might
originally think. ENABLE explicitly enables an environment for execution. The enabled environment,
however, is the only environment that can execute the plan or package. So ENABLE limits the
environments in which a package or plan can execute. By contrast, specifying DISABLE actually is
more open because only one specific area is disabled, thereby implicitly enabling everything else. The
bottom line is that ENABLE is more limiting than DISABLE.
Table 11.1 shows valid ENABLE and DISABLE specifications:

Table 11.1: Environments that Can Be Enabled or Disabled

Specification Package or plan is executed only
BATCH As a batch job
DLIBATCH As an IMS batch job
DB2CALL With the Call Attach Facility

 - 290 -

CICS Online through CICS
IMS Under the control of IMS
IMSBMP As an IMS BMP (batch message processor)
IMSMPP As an online IMS message processing program (that is, a transaction)
RRSAF With the RRS Attachment Facility
REMOTE As a remote program

Retain Security when BINDing Existing Plans
Be sure to specify the RETAIN parameter for existing plans. RETAIN indicates that all bind and execute
authority granted for this plan will be retained. If you fail to specify the RETAIN parameter, all authority
for the plan is revoked.

Retain DBRMs Bound in Plans

Develop a consistent scheme for the maintenance and retention of DBRMs bound to application plans
and packages. Ensure that DBRMs are copied to the appropriate library (test, education, production,
and so on) before the binding of plans in the new environment. This applies to both new and modified
programs.

Consider Dynamic Reoptimization
When host variables or parameter markers are used in SQL statements in an application program, DB2
does not know the values that will be supplied at execution time. This lack of information causes DB2 to
guess at the best access path using the information available at BIND time.
By specifying the BIND parameter REOPT(VARS), DB2 will re-evaluate the access path at runtime
when the host variable and parameter marker values are known. This should result in a better-
formulated access path. Reoptimization, however, is not a panacea. Because DB2 must re-evaluate
access paths at execution time, additional overhead will be consumed. This overhead can negate any
performance gains achieved by the new access paths. Enabling reoptimization does not guarantee a
different access path; it only allows DB2 to formulate the access path based on the runtime values
used.

In general, reoptimization can be an easy-to-implement alternative to dynamic SQL. The overhead of
reoptimization will be less than that associated with dynamic SQL because reoptimization does not
require statement parsing, authorization checking, dependency checking, or table decomposition.

Do Not Blindly Enable Reoptimization for All Programs
In general, consider specifying REOPT(VARS) in the following situations:

 Application programs in which multiple SQL statements utilize host variables (or
parameter markers)

 SQL statements in which host variables (or parameter markers) are deployed against
columns with very skewed distribution statistics

 Application programs in which dynamic SQL was considered, but avoided because of
its complexity or overhead

Before implementing reoptimization, conduct performance tests to determine its impact on transaction
performance.

Consider Isolating Reoptimized Statements
The REOPT and NOREOPT parameters must be specified for an entire program when it is bound into a
plan or package. Most programs commonly contain multiple SQL statements, not all of which will benefit
from reoptimization.

Consider isolating specific SQL statements into a separate program, and binding it into a package. In
this manner, individual SQL statements can be set for reoptimization without impacting the rest of the
SQL in a program.
Consider Keeping Prepared Statements Past COMMIT
By specifying KEEPDYNAMIC(YES), dynamic SQL statements can be held past a COMMIT point.
Specify KEEPDYNAMIC(YES) for dynamic SQL programs in DB2 subsystems in which the dynamic
SQL prepare cache is enabled. This causes fewer dynamic binds and optimizes the performance of
dynamic SQL programs.
Note that when KEEPDYNAMIC(YES) is specified, you also must use NOREOPT(VARS).

 - 291 -

Specify the PATH Parameter
If UDTs, UDFs, or stored procedures are used in your program, be sure to specify the appropriate PATH
parameter. The PATH identifies the schema names in the SQL path to be used for function resolution.
Refer to Chapter 4 for more information on UDFs and UDTs; Chapter 13, "Using DB2 Stored
Procedures," for more information on stored procedures.
You can specify a SQL PATH of up to 254 bytes in length. To calculate the length of the SQL path, use
the following calculation:
 length of each schema name
+ (2 * total number of names) (for delimiters)
+ (total number of names – 1) (for commas)

For example, consider the following SQL path definition
SQLPATH('SCHEMA21', 'SCHZ', 'SYSPROC')

The length of this SQL path would be calculated

The length of each schema name added together: (8 + 4 + 7) = 19

Total number of schema names times two: (3 * 2) = 6

Total number of schema names minus one: (3 – 1) = 2

Added together is 19 + 6 + 2 = 27
Caution Be sure to specify the schema names in uppercase in the PATH definition.

Specify the Appropriate DYNAMICRULES Option for Dynamic SQL
The DYNAMICRULES parameter determines the characteristics of dynamic SQL. There are four types of
behavior that dynamic SQL can exhibit:

 BIND behavior
 DEFINE behavior
 INVOKE behavior
 RUN behavior

The following are the six options for the DYNAMICRULES parameter:
DYNAMICRULES(RUN) Dynamic SQL statements are processed using run behavior. Run

behavior means that DB2 uses the authid of the of the running
application and the SQL authid of the CURRENT SQLID special
register for authorization checking for dynamic SQL statements.
Furthermore, the CURRENT SQLID is used as the qualifier for
unqualified table, view, and alias names. When bound with this
option, the program can issue dynamic DCL (GRANT and REVOKE)
or dynamic DDL (ALTER, CREATE, DROP, and RENAME). Run
behavior is the only behavior that permits dynamic DCL and DDL.

DYNAMICRULES(BIND) Dynamic SQL statements are processed using bind behavior. Bind
behavior means that DB2 uses the authid of the plan or package
for dynamic SQL authorization checking. The QUALIFIER value of
the BIND is used as the qualifier for unqualified table, view, and
alias names. If QUALIFIER is not specified, the authid of the plan
or package owner is used to qualify table objects.

DYNAMICRULES
(DEFINEBIND)

Dynamic SQL statements are processed using define or bind
behavior. When the package is run as a standalone DB2 program,
it uses bind behavior as described previously for
DYNAMICRULES(BIND). When the package is run as a stored
procedure or UDF, DB2 processes dynamic SQL statements using
define behavior. Define behavior means that DB2 uses the authid
of the UDF or stored procedure owner for dynamic SQL
authorization checking. The owner of the UDF or stored procedure
is used as the qualifier for unqualified table, view, and alias names.

DYNAMICRULES
(DEFINERUN)

Dynamic SQL statements are processed using define or run
behavior. When the package is run as a standalone DB2 program,

 - 292 -

it uses run behavior as described previously for
DYNAMICRULES(RUN). When the package is run as a stored
procedure or UDF, DB2 processes dynamic SQL statements using
define behavior, as described under
DYNAMICRULES(DEFINEBIND).

DYNAMICRULES
(INVOKEBIND)

Dynamic SQL statements are processed using invoke or bind
behavior. When the package is run as a standalone DB2 program,
it uses bind behavior as described previously for
DYNAMICRULES(BIND). When the package is run as a stored
procedure or UDF, DB2 processes dynamic SQL statements using
invoke behavior. Invoke behavior means that DB2 uses the authid
of the UDF or stored procedure invoker for dynamic SQL
authorization checking. The invoker of the UDF or stored
procedure is to qualify any unqualified table, view, and alias
names.

DYNAMICRULES
(INVOKERUN)

Dynamic SQL statements are processed using invoke or run
behavior. When the package is run as a standalone DB2 program,
it uses run behavior as described previously for
DYNAMICRULES(RUN). When the package is run as a stored
procedure or UDF, DB2 processes dynamic SQL statements using
invoke behavior, as described under
DYNAMICRULES(INVOKEBIND).

Use OPTHINT to Change Access Paths
The OPTHINT parameter can be used "tell" DB2 what access paths to use for the plan or package. This
information is conveyed to DB2 using rows in a PLAN_TABLE. For more information on optimizer hints,
refer to Chapter 19.
Consider the IMMEDWRITE Parameter for Data Sharing
The IMMEDWRITE parameter indicates whether immediate writes will be done for updates made to
group buffer pool dependent page sets or partitions. This option applies to data sharing environments
only.
An immediate write means that the page is written to the group buffer pool (or to DASD for GBPCACHE
NO group buffer pools or GBPCACHE NONE or SYSTEM page sets) as soon as the buffer update
completes. To enable immediate write, specify IMMEDWRITE(YES).
Consider specifying IMMEDWRITE(YES) when one transaction can spawn another transaction that can
run on another DB2 member, and the spawned transaction depends on uncommitted updates made by
the original transaction. With immediate writes, the original transaction can write the updated data
immediately to the group bufferpool-dependent buffers to ensure that the spawned transaction retrieves
the correct, updated data.

Linkage Editor Guidelines

The following guideline is useful to know when link-editing DB2 programs.

Link the Appropriate Language Interface Module
You must link the proper language interface module with the program's compiled module. The modules
to use depend on the execution environment of the program being link edited. Table 11.2 shows a list of
modules required for different DB2 environments.

Table 11.2: Link-Edit Modules for DB2 Programs

Environment Language
Interface

TSO DSNELI (for
online ISPF
and TSO
batch)

CICS DSNCLI

IMS/DC DFSLI000

Call Attach DSNALI

 - 293 -

RRSAF DSNRLI

Summary

You now should be able to code and prepare a DB2 application program using a standard 3GL. Some
applications, however, do not rely solely on 3GL technology. Chapter 12, "Alternative DB2 Application
Development Methods," discusses alternative ways of coding DB2 programs.

Chapter 12: Alternative DB2 Application Development
Methods
Overview

Part II has dealt primarily with DB2 application development using embedded SQL in a third-generation
language such as COBOL. However, as I mentioned at the outset of Part II, you can use other methods to
develop DB2 applications. With the growing popularity of client/server computing, these methods are gaining
acceptance in the IT community.

In this chapter, I discuss the ramifications of using six alternative but perhaps complementary
development methods to build DB2 applications: using standalone SQL, client/server programming
languages, ODBC (Call Level Interface), fourth-generation languages, CASE tools, and report writers.

Developing Applications Using Only SQL

Although it is uncommon for an entire application to be developed with SQL alone, it is quite common for
components of an application to be coded using only SQL. Pure SQL is a good choice for the quick
development of code to satisfy simple application requirements. Examples include the following:

 Using the UPDATE statement to reset indicators in tables after batch processing
 Deleting every row from a table using a mass DELETE or deleting a predefined set of

rows from a table after batch processing
 Creating simple, unformatted table listings
 Performing simple data entry controlled by a CLIST or REXX EXEC

Additionally, now that DB2 supports code-based objects that enhance the functionality of SQL, more
processing can be accomplished using SQL alone. With triggers, stored procedures, and user-defined
functions, very powerful SQL-based "applications" can be developed.

Note You still need to write application code when you develop stored procedures and
user-defined functions. After the code is written, it is possible to write SQL-only
applications that call the stored procedures and utilize the user-defined functions.

SQL Application Guidelines
The following guidelines are helpful when developing an application using only SQL.

Use Native SQL Applications Sparingly

Although using native SQL in some circumstances is technically possible, avoid doing so unless the
application truly can be developed without advanced formatting features or procedural logic. Achieving
the level of professionalism required for most applications is difficult if you use SQL alone. For example,
you cannot use SQL alone to format reports, loop through data a row at a time, or display a screen of
data.

DB2 triggers can be coded using IBM's version of SQL/PSM, the procedural dialect of SQL. However,
standalone SQL statements cannot use SQL/PSM functionality.

Enforce Integrity Using DB2 Features
If you develop a complete application or major portions of an application using only SQL, be sure to use
the native features of DB2 to enforce the integrity of the application. For example, if data will be entered
or modified using SQL alone, enforce user-defined integrity rules using triggers, check constraints, or
VALIDPROCs coded for each column and specified in the CREATE TABLE DDL.

 - 294 -

Additionally, specify referential constraints for all relationships between tables and create unique
indexes to enforce uniqueness requirements. This approach is the only way to provide integrity when a
host language is not used.

Create Domains Using Check Constraints or Tables
Mimic the use of domains when possible using domain tables or check constraints. Domain tables are
two-column tables that contain all valid values (along with a description) for columns in other tables. Be
sure to use referential integrity to tie these "domain" tables to the main tables. For example, you can
create a domain table for the SEX column of the DSN8610.EMP table consisting of the following data:
SEX DESCRIPTION
M MALE
F FEMALE

The primary key of this domain table is SEX. You specify the SEX column in the DSN8610.EMP as a
foreign key referencing the domain table, thereby enforcing that only the values M or F can be placed in
the foreign key column. This way, you can reduce the number of data entry errors.

Check constraints provide an alternative approach to enforcing domain values. Instead of creating a
new table coupled with referential constraints, you can add a single check constraint to the column to
enforce the data content. Consider this example:
 SEX CHAR(1)
 CONSTRAINT GENDER CHECK (SEX IN ("M", "F"))

Whether to choose domain tables or check constraints depends on the circumstances. Each is useful in
different situations. Weigh the following benefits and drawbacks before choosing one method over the
other:

 Check constraints are simply SQL predicates and cannot carry description columns
(or any other columns), whereas domain tables can. Therefore, a domain table can
be more self-documenting.

 Check constraints should outperform referential integrity because DB2 does not need
to read data from multiple user tables to determine the validity of the data.

 Domain tables are easier to use when the domain is not static. Adding values to a
check constraint requires DDL changes; adding values to a domain table requires a
simple SQL INSERT.

 As the number of valid values increases, domain tables are easier to implement and
maintain. The full text of a check constraint can contain no more than 3,800 bytes.

 For smaller domains, check constraints are preferable not only for performance
reasons, but because no additional tablespace or index administration is required.

 When you're tying together domain tables using referential integrity, sometimes large
referential sets are created. They can be difficult to administer and control. Large
referential sets, however, may be preferable to program-enforced RI or, worse yet,
allowing inaccurate data. When you're deciding whether to enforce RI for domain
tables, balance performance and recoverability issues against possible data integrity
violations. When large referential sets are created, consider breaking them up using
check constraints for some of the simpler domains.

Follow SQL Coding Guidelines
When you're developing native SQL applications, follow the SQL coding guidelines presented in
Chapter 2, "Data Manipulation Guidelines," to achieve optimal performance.

Using Client/Server Programming Languages

Distributed processing and client/server processing are quite widespread in the data processing community.
Distributed processing describes the interaction of multiple computers working together to solve a business
problem. Client/server processing is a specific type of distributed processing in which a client computer
requests services from a server. The client is typically a personal computer with a graphical user interface
(GUI). DB2 is a popular candidate as a database server.

The popularity of client/server development has an impact on the DB2 application development
environment. Often, DB2 developers access DB2 using a client/server application development product
that communicates to DB2 using a gateway product. Popular client/server programming languages
include PowerBuilder, Visual Basic, Visual C++, and VisualAge.

 - 295 -

Connecting to DB2
Applications that run on a non-S/390 platform require DB2 Connect and CAE to access DB2 for OS/390
data. IBM's DB2 Connect is available to enable applications written for Windows, OS/2, and UNIX. You can
use this gateway product to connect client applications directly to DB2 for OS/390 and MVS. The Client
Application Enabler (CAE) is also required and available on Windows, OS/2, and multiple UNIX variants.

The application (or ODBC driver) calls CAE, which in turn sends the request to the DB2 Connect
gateway. DB2 Connect passes the call to DB2 for OS/390 in the form of a DRDA request, as illustrated
in Figure 12.1. CAE and DB2 Connect enable your applications or third-party products such as
Microsoft Access and Lotus Approach running on the Windows platform to access DB2 for OS/390
directly.

Figure 12.1: Using DB2 Connect and CAE to connect to DB2 for OS/390.

Actually, there are two options for client applications:
 Use CAE and DB2 Connect Personal Edition on the client machine.
 Use a server machine where DB2 Connect Enterprise Edition is installed. Then the

client machine requires only CAE. CAE is connected to the server machine through
NetBIOS, IPX, or TCP/IP.

Regardless of which of these options is deployed, the DB2 for OS/390 location name must be defined in
CAE.

Of course, DB2 Connect is not the only gateway product on the market. Other popular gateway
products exist for connecting DB2 for OS/390 to client/server applications, such as Neon Systems'
Shadow Direct gateway product.

Client/Server Guidelines
Building client/server applications requires knowledge of multiple platforms and the network used to connect
them. The following tips and tricks can be useful when building applications that span platforms.

Be Aware of SQL Anomalies

GUI-based client/server development tools may not offer SQL that is completely compatible with DB2
for OS/390. As such, certain features discussed in the DB2 manuals (and this book) may not be
available when you're using a client/server language.
Likewise, some client/server languages require a call-level interface to SQL (such as ODBC). This
requirement causes the application to use dynamic SQL with all the performance implications, as
discussed in Chapter 10, "Dynamic SQL Programming."

Bind and Block Properly for DB2 Connect
When you're binding client packages accessing data in DB2 for OS/390, you should use BLOCKING
ALL to optimize data retrieval.

Configure DB2 Connect for Connecting to DB2
Ensure that the block size between DB2 Connect and the CAE (Client Application Enabler) is configured
properly. Use the RQRIOBLK parameter to specify the maximum size of network I/O blocks. Use the
default DRDA block size (32,767) if it does not cause paging when your application executes. If paging
occurs, reduce RQRIOBLK until paging ceases. Paging typically causes significant application
performance degradation. Refer to Chapter 25, "Tuning DB2's Environment," for more information on
paging and its impact on performance.

 - 296 -

Consult the Documentation for the Tools Being Used
Some of the rules and advice laid out in the preceding three chapters of Part II may not hold true for
client/server programming with DB2. For example, the client/server development tool might build SQL
statements for you and submit them to DB2 through the gateway. Sometimes, odd constructs, such as
allowing SELECT ... INTO for multiple rows, can be permitted because the gateway provides
buffering services and automatically handles building cursors. It is imperative that you understand not
only how your client/server development tools work to create applications, but how they interface to the
database management system, which in this case is DB2 for OS/390.

Be Aware of the Complex Nature of Client/Server Computing
Additionally, the client/server environment relies upon a complex network of computing resources.
Mainframes, midranges, PCs, and workstations are commonly networked together, as illustrated in
Figure 12.2.

Figure 12.2: A complex client/server environment.

In a client/server environment, rely on the documentation that came with your application development
tool and middleware product(s).

Use Stored Procedures

Minimize network traffic by implementing stored procedures for frequently executed pieces of code. If
you concentrate multiple SQL statements within a stored procedure, less data needs to be sent across
the network. Network traffic is usually the single most important determinant of client/server application
performance.

Use Triggers

By using triggers to maintain database integrity, you can further minimize SQL requests over the
network. When data integrity routines exist within the database, application programs do not need to
check for invalid data, because the database will ensure only valid data is entered. By doing more work
within the DB2 database and requiring fewer program requests, the performance of a client/server
application can be improved.

Consolidate SQL Requests when Possible

Consolidate related SQL statements into a single request to reduce the number of requests and
responses transmitted across the network. For example, change
 SELECT EMPNO, LASTNAME FROM EMP WHERE EMPNO < '001000';
 SELECT EMPNO, LASTNAME FROM EMP WHERE EMPNO > '009000';

into
 SELECT EMPNO, LASTNAME
 FROM EMP
 WHERE EMPNO < '001000'
 OR EMPNO > '009000';
One SQL statement sends fewer requests across the network. You can use this technique on all SQL
statements, not just SELECT statements.

 - 297 -

Ensure FOR READ ONLY for Distributed Cursors
Be sure that FOR READ ONLY (or FOR FETCH ONLY) is used on each DECLARE CURSOR statement.
Failure to do so has a negative impact on performance by disabling efficient block fetching. The FOR
READ ONLY clause is ODBC-compliant and therefore more appropriate in a complex client/server
environment.
Consult Chapter 39, "DRDA," Chapter 40, "Distributed DB2," and Chapter 41, "Distribution Guidelines,"
for more information on the following topics:

 DB2 distributed database support
 The use of DB2 as a database server
 General distribution techniques and guidelines

Using Fourth-Generation Languages

Several fourth-generation languages (4GLs) are available at most IT shops. FOCUS, RAMIS, and NOMAD
are examples of popular 4GLs. 4GLs, which operate at a higher level of abstraction than the standard 3GLs,
can usually read, modify, process, and update data a set or a row at a time. For example, a 4GL can often
issue a single command to list and display the contents of data stores. A 3GL program, in contrast, must
read the data, test for the end of the file, move the data to an output format, and issue commands to control
the display of a screen of data (for example, backward and forward scrolling or counting the items per
screen).

Consider using 4GLs for two reasons. First, a single 4GL statement usually corresponds to many 3GL
statements. Because this capability provides a quicker programming cycle, production applications are
online faster than traditional 3GL-developed applications. Second, 4GLs have a greatly reduced
instruction set, which makes them easier to learn and master than 3GLs.

Be careful, though, because applications based on 4GLs rarely deliver the same level of performance
as applications based on traditional languages. As with using pure SQL, writing entire applications using
4GL is uncommon but possible. More often, you will use 4GL to develop only certain components, such
as

 Quick, one-time requests that are not run repeatedly in production.
 Specialized reports.
 Important portions of an application. (When critical components of an application are

not delivered with the first release of the application, you can use a 4GL to deliver the
most important portions of those components, thereby satisfying the users until you
can fully develop the components using a traditional language.)

4GL Application Guidelines
Apply the following guidelines to optimize your DB2-based 4GL development efforts.

Avoid 4GLs when Performance Is Crucial

Avoid coding performance-oriented DB2 systems using fourth-generation languages. You can usually
achieve a greater level of performance using traditional, third-generation languages.

Provide In-Depth 4GL Training

If you decide to use a 4GL, be sure that proper training is available. Although 4GLs can achieve similar
results as 3GLs, they do not use the same techniques or methods. Developers unfamiliar with 4GLs
usually do not produce the most efficient applications because of their tendency to use 3GL techniques
or poorly developed 4GL techniques.

Avoid Proprietary Storage Formats

When you're using 4GLs, try to query data directly from DB2 tables instead of extracts. Extracting the
data into the (sometimes proprietary) format of the 4GL can cause data consistency problems. By
avoiding extracts, you ensure that the data queried using the 4GL is consistent with the data queried
using conventional DB2 and SQL methods.

 - 298 -

Extract Data as a Last Resort

Consider moving the data from DB2 tables to the 4GL format only if the performance of the 4GL
program is unacceptable. (You should consider this approach only as a last resort.) If data will be
extracted from DB2, you must run a regularly scheduled extraction procedure to keep the 4GL data
current.

Use Embedded SQL if Possible

To retrieve DB2 data, try to use SQL embedded in the 4GL rather than use the language of the 4GL.
The reasons for doing so follow:

 SQL is a universally accepted standard. Many 4GL products are on the market, and
none is standard.

 Hiring SQL programmers who understand the SQL embedded in the 4GL is easier
than hiring programmers who understand the syntax of the 4GL.

 Embedding SQL in a host language is a common and well-understood practice.
Therefore, embedding SQL in a 4GL should, for the most part, correlate to
embedding SQL in COBOL or another traditional language.

Join Tables Using SQL Instead of 4GL

If the 4GL provides a technique of relating or joining data from two physical data sources, avoid using it
when accessing data from DB2 tables. Instead, create a DB2 view that joins the required tables, and
query that view using the 4GL. This approach almost always provides better performance. For example,
I converted one application using a 4GL "join" into a 4GL query of a view that joined tables. The
application reduced elapsed time by more than 250% after the conversion.

Understand the Weaknesses of Your Particular 4GL

Some 4GL products interface to DB2 in unusual ways. Be sure that you understand the interface
between the 4GL and DB2, as well as any potential "features" that could cause performance problems
or management difficulties. For example, one 4GL I worked with in the past created a DB2 view for
every query issued via the 4GL. The management of these views could become troublesome if the
number of queries issued using the 4GL grows.

Understand the Strengths of 4GL

Use the strong points of the 4GL and DB2. You should use DB2 to control the integrity of the data, the
modification of the data, and the access to the data. You should use the 4GL to generate reports,
perform complex processes on the data after it has been retrieved, and mix non-DB2 data with DB2
data.

Using CASE

Computer-aided software engineering (CASE) is the name given to software that automates the software
development process. CASE tools provide an integrated platform (or, more commonly, a series of non-
integrated platforms) that can be used to drive the application development process from specification to the
delivery of source code and an executable application system. The term CASE, however, has no universally
accepted definition and can comprise anything from a diagramming tool to a data dictionary to a code
generator. CASE tools usually are separated into two categories: upper CASE tools and lower CASE tools.

You use an upper CASE tool to develop system specifications and detail design. It generally provides a
front-end diagramming tool as well as a back-end dictionary to control the components of the application
design. CASE tools can also provide support for enforcing a system methodology, documenting the
development process, and capturing design elements from current application systems.

Lower CASE tools support the physical coding of the application. Tools in this category include system
and program testing tools, project management tools, and code generators. This section concentrates
on the code generation portion of CASE. An application code generator usually reads application
specifications input into the CASE tool in one or more of the following formats:

 A macro-level or English-like language that details the components of the application
system at a pseudo-code level

 Data flow diagrams generated by another component of the CASE tool (or sometimes
by a different CASE tool)

 - 299 -

 Reverse-engineered program specifications or flowcharts

Based on the input, the code generator develops a program or series of programs to accomplish the
specification of the application. IBM's VisualAge Generator, which replaced Cross System Product
(CSP), is an example of a code generator. The application programmer codes CSP instructions that can
be executed in 4GL fashion, or COBOL can be generated from CSP. CSP was a popular language for
use with DB2 in the early days of DB2. CSP is no longer very popular, but there are a number of legacy
DB2 applications written using CSP. Code-generating CASE tools try to provide the best portions of
both the 3GL and 4GL worlds. They provide a quick application development environment because they
raise the level of programming abstraction by accepting high-level designs or macro languages as input.
They generally provide better performance than 4GLs because they can generate true, traditional 3GL
source code.
Be careful when developing applications with this new method. Automatic code generation does not
always produce the most efficient code. To produce efficient CASE-generated applications, follow the
guidelines in the next section.

CASE Application Guidelines
The following guidelines are useful when using CASE tools to deploy DB2 applications.

Analyze Generated SQL Carefully
Code generators that develop embedded SQL programs usually produce functional SQL but do not
always produce the most efficient SQL. Analyze the embedded SQL to verify that it conforms to the
standards for efficient SQL outlined in Chapter 2.

Avoid Generalized I/O Routines

Sometimes a code generator produces source code that can be executed in multiple environments. This
code often requires the use of an I/O routine to transform application requests for data into VSAM reads
and writes, sequential file reads and writes, or database calls. When you use an I/O module,
determining what SQL is accessing the DB2 tables is difficult. In addition, I/O routines usually use
dynamic SQL instead of static SQL.

Favor code generators that produce true embedded SQL programs over products that use I/O routines.
The programs are easier to debug, easier to maintain, and easier to tune.

Avoid Runtime Modules

Some code generators require the presence of a runtime module when the programs it generates are
executed. Avoid these types of products, because a runtime module adds overhead and decreases the
efficiency of the generated application.

Favor Integrated CASE Tools

Choose a CASE tool that provides an integrated development platform instead of a wide array of
disparate products to automate the system development life cycle. When a CASE tool provides
integration of the system development life cycle, you can save a lot of time because the tool
automatically carries the application forward from stage to stage until it is finished. If the CASE tools are
not integrated, time is wasted performing the following tasks:

 Converting the data from one phase to a format that can be read by the tool that
supports the next phase.

 Verifying that the data in the tool that accepts data from another tool is accurate and
conforms to the expected results based on the status of the data in the sending tool.

 Moving data from one tool to another. (Time is wasted installing and learning these
tools, as well as debugging any problems that result from the migration process.)

To avoid these types of problems, choose a CASE tool that provides as many of the features listed in
Table 12.1 as possible. Use this chart to evaluate and rank CASE tools to support the complete DB2
program development life cycle.

Table 12.1: CASE Tool Features Checklist

Features Supported
(Y/N)?

Ranking

 Supports

 - 300 -

the
Business
Strategy

Enterprise data model capabilities

Business data modeling

Business decision matrices

 Supports
Prototypi
ng

Screen formatting

Report formatting

Rapidly developing executable modules

 Supports
Process
Modeling

Methodologies

Supports UML

Linked to the data model

Linked to the code generator

Documentation

 Supports
Data
Modeling

Entity relationship diagramming

Normalization

Conceptual data model

Supports subject areas

Logical data model

Physical data model

Provides physical design recommendations

Generates physical objects(such as tables or indexes)

Linked to process model

Documentation

 Supports
Diagramm
ing

Graphical interface

Linked to process model

Linked to data model

Multiple diagramming techniques

Documentation

 Supports
System
Testing

 - 301 -

Administers test plan

Creates test data

User simulation

Performance testing

Stress testing

 Supports
System
Testing

Acceptance testing

Documentation

Supports EXPLAIN
 Supports

Quality
Assuranc
e

System failure administration

Quality acceptance testing

Documentation

 Supports
Developm
ent

Automatically generates SQL

Supports override of automatic SQL

Automates precompile and bind

Supports plans

Supports collections

Supports packages

Supports versioning

 Supports
the
Technical
Environm
ent

Supports current hardware platforms

Supports current software platforms (such as DBMS or
languages)

Supports distributed data

Supports client/server processing

Supports required printer(s)

Interfaces with mainframes

Interfaces with midranges

Interfaces with PCs

Interfaces with NCs

 - 302 -

LAN capability

Web capability

 Supports
Input from
Multiple
Platforms

Word processors

Spreadsheets

Databases

HTML and XML

Other CASE tools

Using Report Writers

Report writers are development tools you can use to generate professional reports from multiple data
sources. You can consider a report writer as a specialized type of 4GL. Like 4GLs, they raise the level of
abstraction by using fewer statements to produce reports than 3GLs do. They differ from true 4GLs in that
they commonly are designed for one purpose: the generation of formatted reports.

For example, a report writer can often generate a report with a single command, whereas a 3GL must
read data, format the data, program control breaks, format headers and footers, and then write the
report record. IBM's Query Management Facility (QMF) and Computer Associates' Report Facility are
good examples of mainframe-based report writers for DB2.

PC-based report writers also are quite popular. They require a gateway setup as discussed earlier.
Examples of this type of tool include Seagate's Crystal Reports, Business Objects' namesake product,
and Cognos Powerplay.

Report Writer Application Guidelines
When using report writers to build DB2 applications, be sure to consider the following guidelines.

Follow Previous Guidelines
The rules for fourth-generation languages also apply to report writers. Refer to the "4GL Application
Guidelines" presented previously in this chapter.
Likewise, many popular report writers work in a client/server environment instead of completely on the
mainframe. For example, the user interface runs on a workstation but accesses data from DB2 tables
on the mainframe. When you're using a report writer in a client/server environment, refer to the
"Client/Server Guidelines" presented previously in this chapter for guidance.

Using ODBC (the DB2 Call Level Interface)

ODBC is another alternative development option. ODBC provides a Call Level Interface, or CLI, for
accessing DB2 data. ODBC provides an alternative to embedded dynamic SQL. It is an application
programming interface (API) that uses function calls to pass dynamic SQL statements as function
arguments. IBM's ODBC support in DB2 is based on the Microsoft Open Database Connectivity (ODBC)
specification and the X/Open Call Level Interface specification.

Note X/Open is an independent, worldwide open systems organization whose goal is to
increase the portability of applications by combining existing and emerging
standards.

Microsoft's ODBC is based on the X/Open CLI specification and is the most
popular CLI for relational database access.

ODBC for DB2 is designed to be used by C and C++ programs. ODBC can be used to make API calls
to DB2 instead of using embedded SQL.

 - 303 -

Note DB2 Version 5 introduced the DB2 Call Level Interface (CLI). In Version 6, the
DB2 CLI has been renamed DB2 ODBC (open database connectivity). By
renaming CLI to ODBC IBM does not affect functionality, so your CLI applications
will continue to function.

Additional ODBC functionality added for DB2 V6 includes support for LOBs and
object/relational functionality, performance improvements, and additional tracing
functionality.

ODBC applications differ from traditional DB2 programs using embedded, static SQL. When ODBC is
used, a specific set of function calls is used at runtime to execute SQL statements and access database
services. No precompilation is required. Contrast this system with a traditional embedded SQL program
that requires a precompiler to convert the SQL statements into executable code. The program is
compiled, the SQL executables are bound to the data source, and only then can the program be
executed.

Any statement that can be executed using dynamic SQL can be executed using the DB2 ODBC CLI.
Because the DB2 ODBC CLI is based on open specifications, DB2 applications using ODBC are more
portable than embedded SQL applications. Further, because a precompiler is not required, the code is
not bound to the data source (in this case, DB2). This capability gives the application a degree of
independence, allowing the code to connect directly to the appropriate data source at runtime without
changing or preparing (precompiling/compiling/binding) the program.
A DB2 ODBC application consists of three main tasks, as shown in Figure 12.3. The initialization task
allocates and initializes resources in preparation for the transaction processing task. The bulk of the
program is performed during the transaction processing task. It is here where SQL statements are
passed to ODBC to access and modify DB2 data. The final step is the termination phase, where
allocated resources are freed.

Figure 12.3: An ODBC application.

Listing 12.1 shows a brief code example using ODBC to access DB2 data. Note the use of functions
such as SQLAllocStmt() and SQLExecDirect() to issue SQL instead of explicitly embedded SQL
statements.

Listing 12.1: Sample DB2 CLI Code

 int

 process_stmt(SQLHENV henv,

 SQLHDBC hdbc,

 SQLCHAR * sqlstr)

 {

 SQLHSTMT hsql;

 SQLRETURN rc;

 - 304 -

 /* allocate a statement handle */

 SQLAllocStmt(hdbc, &hsql);

 /* execute the SQL statement in "sqlstr" */

 rc = SQLExecDirect(hsql, sqlstr, SQL_NTS);

 if (rc != SQL_SUCCESS)

 if (rc == SQL_NO_DATA_FOUND)

 {

 printf("\nThe SQL statement finished without an\n");

 printf("error but no data was found or modified\n");

 return (SQL_SUCCESS);

 } else

 /* perform error checking routine */

DB2 ODBC Guidelines
When building application programs using the DB2 CLI, keep the following tips and techniques in mind.

Be Aware of the Minimum Requirements for Using ODBC

The minimum requirements for a DB2 ODBC application are as follow:
 It must use C or C++—specifically, IBM C/C++ for MVS/ESA Version 3, Release 1, or

later, or IBM SAA AD/Cycle C/370 Version 1 Release 2 or later.
 It must use the IBM Language Environment Version 1, Release 5, or later for

language runtime support.
 Each ODBC program must be written and linked to execute AMODE(31) to indicate

31-bit addressing mode.

Increase Portability Using ASCII-Encoded Tables

When an application has a high probability of being ported to another environment, use ODBC and
ASCII-encoded tables to improve open data access.

Be Aware of DB2 ODBC Differences

DB2's support of ODBC is not 100% functionally equivalent to ODBC. The CLI contains most of ODBC
version 2.0 as well as IBM extensions for DB2-specific features.

DB2's ODBC support provides the following:
 All ODBC level 1 functions
 All ODBC level 2 functions, with the following four exceptions:

SQLBrowseConnect(), SQLSetPos(), and SQLSetScrollOptions()
 Some X/Open CLI functions
 Some DB2-specific functions (for example, SQLCA support)

Although using DB2's ODBC implementation eases the portability of applications from DB2 to other
ODBC-compliant DBMSs, you might need to make some modifications for the port to operate properly.

 - 305 -

Use ODBC to Reduce the Application Administration Burden

Using DB2 ODBC can reduce the amount of application management and administration. Each DB2
ODBC program does not need to be bound to each data source. Bind files provided with DB2 ODBC
need to be bound only once for all ODBC applications.

However, use of ODBC with DB2 requires dynamic SQL and C or C++ programming skills. Ensure that
this trade-off is effective before switching to ODBC programming for administrative reasons.

Understand That DRDA and ODBC Are Complementary Techniques

Developers sometimes confuse ODBC with DRDA. DRDA is a remote connectivity architecture; ODBC
is an API for data manipulation in relational databases. You should view DRDA and ODBC as
complementary to one another.

Consider Using Both Embedded SQL and ODBC

An application can use both embedded SQL and ODBC to its advantage. You can create a stored
procedure using embedded, static SQL. The stored procedure can then be called from within a DB2
ODBC application. After the stored procedure is created, any DB2 ODBC application can call it.
You also can write a mixed program that uses both DB2 ODBC and embedded SQL. For example, you
could write the bulk of the application using ODBC calls, but you could write critical components using
embedded static SQL for performance or security reasons. Deploy your applications using this scenario
only if static SQL stored procedures do not meet your application's needs. For more information on
stored procedures, consult Chapter 13, "Using DB2 Stored Procedures."

Do Not Code Cursors with ODBC
When you're using the DB2 ODBC, explicit cursor declaration is not required. ODBC automatically
creates cursors as needed, and the application can use the generated cursor in using fetches for
multiple row SELECT statements as well as positioned UPDATE and DELETE statements.
Likewise, the OPEN statement is not required when you're using ODBC. When SELECT is executed,
ODBC automatically opens the cursor.

Use Parameter Markers with ODBC
Unlike embedded SQL, ODBC allows the use of parameter markers when issuing the
SQLExecDirect() function. The SQLExecDirect() function is the ODBC equivalent of the
EXECUTE IMMEDIATE statement.
Code COMMIT and ROLLBACK Using SQLTransact()
A COMMIT or ROLLBACK in ODBC is issued via the SQLTransact() function call rather than by
passing it as an SQL statement.

Check the Basic ODBC Function Return Code

Each CLI function returns one of the following basic return codes:
 SQL_SUCCESS The function completed successfully.
 SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning or

other information.
 SQL_NO_DATA_FOUND The function returned successfully, but no relevant data was

found.
 SQL_NEED_DATA The application tried to execute an SQL statement, but required

parameter data is missing.
 SQL_ERROR The function failed.
 SQL_INVALID_HANDLE The function failed because of an invalid input handle.

These return codes provide only rudimentary success or failure information. For detailed information,
use the SQLError() function.
Use SQLError() to Check SQLSTATE
You can use the SQLError() function to obtain additional details that are not supplied by the basic
ODBC function return codes. Use SQLError() to check the success or failure of each call using the
CLI when error diagnostic checking must be performed by the program.
The SQLError() function returns the following information:

 SQLSTATE code.
 The native DB2 error code. If the error or warning was detected by DB2 for OS/390,

this code is the SQLCODE; otherwise, it is set to -99999.

 - 306 -

 The message text associated with the SQLSTATE.
The format and specification of most of the SQLSTATE values specified by ODBC are consistent with
the values used by DB2 for OS/390, but some differences do exist. Refer to Table A.3 in Appendix A,
"DB2 SQLCODE and SQLSTATE Values," for a listing of the DB2 ODBC-specific SQLSTATE values.

Using Java: SQLJ and JDBC

Java is another alternative programming technique. Java is an object-oriented programming language, is
based on C++, and is a popular choice for Web-enabled database applications.

Java applications access DB2 for OS/390 data using SQLJ or JDBC. Using SQLJ, SQL can be
embedded in Java programs; using JDBC closely resembles ODBC. Actually, JDBC is a subset of
ODBC.
For more details on Java, refer to Chapter 15, "DB2 and the Internet."

Summary

In this chapter you explored several non-traditional means of developing DB2 application programs. It is not
always best to institute and enforce rigid development standards that do not take advantage of all the
resources available to you. Contrast these alternative methods with the traditional DB2 application
development environment as discussed in Chapters 9, 10, and 11. Are there applications at your shop that
could benefit from techniques such as CLI, pure SQL, client/server technology, or 4GLs? If so, consider
utilizing the techniques outlined in this chapter for future development efforts.

Now that you have examined traditional and non-traditional DB2 application development techniques, it
is time to explore yet another way of writing DB2 programs—as stored procedures. Stored procedures
differ from other DB2 programs and require different development and management techniques. Turn
the page to begin learning about DB2 stored procedures.

Chapter 13: Using DB2 Stored Procedures
Overview

In the distant past, DBMS products were designed only to manage and store data in an optimal manner.
Although this core capability is still required of modern DBMS products, the purview of the DBMS is no
longer limited just to data. With the advent of client/server computing and active databases, procedural
business logic also is being stored and managed by the DBMS. DB2 is maturing and gaining more
functionality. The clear trend is that more and more procedural logic is being stored in the DBMS. DB2 stored
procedures enable you to write in-depth application programs and use them to extend the functionality of
DB2.

In Chapter 6, "Using DB2 Triggers for Integrity," we examined triggers, one example of business logic
that is stored in DB2 databases. Another example of business logic stored in the database is user-
defined functions, which we explored in Chapter 4, "Using DB2 User Defined Functions and Data
Types." In this chapter, we will learn about stored procedures including what they are, when to use
them, and guidelines for proper implementation.

Note One example of logic being stored in the DBMS is the exit routine. DB2 has
supported exit routines for many years, whereas stored procedure (V4), trigger
(V6), and UDF (V6) support is more recent. An exit routine, such as an
EDITPROC or VALIDPROC, is usually coded in Assembler language. This code is
then attached to a specific database object and is executed at a specified time,
such as when data is inserted or modified. Exit routines have been available in
DB2 for many years; typically, the DBA is responsible for coding and maintaining
them. Exit routines, however, are primitive when compared with the procedural
logic support provided by a modern RDBMS. The most popular RDBMS products
support additional forms of database-administered procedural logic. Triggers,
UDFs, and stored procedures are examples of this phenomenon.

What Is a Stored Procedure?

Stored procedures are specialized programs that are executed under the control of the relational database
management system. You can think of stored procedures as similar to other database objects such as
tables, views, and indexes because they are managed and controlled by the RDBMS. Depending on the

 - 307 -

particular implementation, stored procedures can also physically reside in the RDBMS. However, a stored
procedure is not "physically" associated with any other object in the database. It can access and/or modify
data in one or more tables. Basically, you can think of stored procedures as "programs" that "live" in the
RDBMS.

A stored procedure must be directly and explicitly invoked before it can be executed. In other words,
stored procedures are not event-driven. Contrast this concept with the concept of triggers, which are
event-driven and never explicitly called. Instead, triggers are automatically executed (sometimes
referred to as "fired") by the RDBMS as the result of an action. Stored procedures are never
automatically invoked.

DB2 has provided stored procedure support since V4, and IBM continues to enhance the functionality of
stored procedures with each successive DB2 release. The major motivating reason for stored procedure
support is to move SQL code off the client and on the database server. Implementing stored procedures
can result in less overhead than alternate development methods because one client request can invoke
multiple SQL statements.

DB2's Stored Procedure Implementation
DB2's implementation of stored procedures is quite different from the stored procedures available using
other RDBMS products. For example, both Microsoft SQL Server and Oracle require you to code stored
procedures using procedural extensions to SQL: Microsoft provides Transact-SQL, and Oracle provides
PL/SQL. DB2, on the other hand, enables you to write stored procedures using traditional programming
languages. You can use any LE/370-supported language to code stored procedures. The supported
languages are Assembler, C, C++, COBOL, OO COBOL, and PL/I. Additionally, through an APAR update,
IBM provides support for Java and procedural SQL options for developing stored procedures. A description
of the procedural SQL option is provided in the "Procedural SQL" section later in this chapter.

Note The language of the calling program can be different than the language used to
write the stored procedure. For example, a COBOL program can CALL a C stored
procedure.

DB2 stored procedures can issue both static and dynamic SQL statements with the exception of
COMMIT and SET CURRENT SQLID. Additionally, a stored procedure can issue DB2 commands and IFI
(Instrumentation Facility Interface) calls. Stored procedures can access flat files, VSAM files, and other
files, as well as DB2 tables. Additionally, stored procedures can access resources in CICS, IMS, and
other MVS address spaces, but no commit coordination exists between DB2 and the other resources.

Note DB2 stored procedures can connect to an IMS DBCTL or IMS DB/DC system
using IMS Open Database Access (ODBA) support. The stored procedure can
issue DL/I calls to access IMS databases. IMS ODBA supports the use of OS/390
RRSAF for syncpoint control of DB2 and IMS resources. Stored procedures that
use ODBA can run only in WLM-established stored procedures address spaces,
not a DB2-established address space.

DB2 stored procedures run in a separate address space, or set of address spaces, referred to
collectively as the stored procedure address space, or SPAS for short. The SPAS effectively fences off
user-developed code from running in DB2 address spaces with IBM developed code. This layer of
protection is useful to prohibit a stored procedure from causing an entire DB2 subsystem to fail.

Why Use Stored Procedures?
DB2 stored procedures have many potentially timesaving and useful applications. The major uses can be
broken down into six categories: reusability, consistency, data integrity, maintenance, performance, and
security, as described here.

 Reusability—The predominant reason for using stored procedures is to promote code
reusability. Instead of replicating code on multiple servers and in multiple programs,
stored procedures allow code to reside in a single place—the database server.
Stored procedures then can be called from client programs to access DB2 data.
This approach is preferable to cannibalizing sections of program code for each new
application system being developed. By developing a stored procedure, you can
invoke the logic from multiple processes as needed, instead of rewriting it directly
into each new process every time the code is required. When they are implemented
wisely, stored procedures are useful for reducing the overall code maintenance
effort. Because the stored procedure exists in one place, you can make changes
quickly without propagating the change to multiple applications or workstations.

 - 308 -

 Consistency—An additional benefit of stored procedures is increased consistency. If
every user with the same requirements calls the same stored procedures, the DBA
can be assured that everyone is running the same code. If each individual user uses
his or her own individual, separate code, no assurance can be given that the same
logic is being used by everyone. In fact, you can be almost certain that
inconsistencies will occur.

 Maintenance—Stored procedures are particularly useful for reducing the overall code
maintenance effort. Because the stored procedure exists in one place, you can
make changes quickly without propagating the change to multiple workstations.

 Data Integrity—Additionally, you can code stored procedures to support database
integrity constraints. You can code column validation routines into stored
procedures, which are called every time an attempt is made to modify the column
data. Of course, these routines catch only planned changes that are issued through
applications that use the stored procedure. Ad hoc changes are not checked.
Triggers provide better capabilities for enforcing data integrity constraints, but a
trigger can be coded to CALL a stored procedure.

 Performance—Another common reason to employ stored procedures is to enhance
performance. In a client/server environment, stored procedures can reduce network
traffic because multiple SQL statements can be invoked with a single execution of a
procedure instead of sending multiple requests across the communication lines. The
diagram in Figure 13.1 depicts a call to a DB2 stored procedure. The passing of
SQL and results occurs within the SPAS, instead of over the network as would be
necessary without the stored procedure. Only two network requests are required:
one to request that the stored procedure be run and one to pass the results back to
the calling agent.

Figure 13.1: Calling a stored procedure.

 Security—You can use stored procedures to implement and simplify data security
requirements. If a given group of users requires access to specific data items, you
can develop a stored procedure that returns only those specific data items. You can
then grant access to call the stored procedure to those users without giving them
any additional authorization to the underlying objects accessed within the body of
the stored procedure.

Stored procedures provide a myriad of other useful benefits including:
 Flexibility—Stored procedures can issue both static and dynamic SQL statements

and access DB2 and non-DB2 data.
 Ease of Training—DB2 stored procedures can be written in traditional programming

languages that application programmers already know, or in procedural SQL that is
easier for DBAs to learn and utilize.

 Database Protection—Stored procedures run in a separate address space from the
database engine, thereby eliminating the possibility of users corrupting the DBMS
installation.

 - 309 -

Implementing DB2 Stored Procedures
Now that you understand what stored procedures are and why you would want to use them, you're ready to
investigate how to implement stored procedures in DB2.

Developing a Stored Procedure
You can design and develop stored procedures in a similar manner to the way you develop any other
application program. However, stored procedures have some special design requirements that you need to
understand prior to developing them: using LE/370, coding parameters, returning result sets, and changing
the program preparation procedure.

Using LE/370
You must develop stored procedures using an LE/370 language. LE/370 is mandatory for the use of stored
procedures. LE/370 provides a common runtime environment for multiple, disparate programming
languages. The runtime services available to LE/370 include error handling, storage management, and
debugging. The benefit to DB2 is that the runtime services are the same for every programming language
used to deploy stored procedures.

Because many stored procedures can run in a stored procedure address space, DB2 can avoid
initializing, opening, and closing multiple runtime libraries for each new stored procedure. With LE/370,
only one runtime library is required, it works with all LE/370 languages, and library initialization occurs
only when the SPAS is started.

Coding Parameters
Parameters are essential to the effective use of stored procedures. Parameters allow data to be sent to and
received from a stored procedure.

Each stored procedure has a parameter list associated with it. This list must be static and predefined.
The parameter list defines the data type, size, and disposition (output, input, or both) of each parameter.
The complete process of registering stored procedures, including parameter lists, is outlined in the
upcoming section "Registering Stored Procedures."
You must define the parameters to the stored procedure using the appropriate technique for the
language you're using. For COBOL programs, you must define parameters in the LINKAGE SECTION.
Refer to Listing 13.1 for a sample stored procedure shell using COBOL.

Listing 13.1: COBOL Stored Procedure Shell

Must set up IDENTIFICATION and
 ENVIRONMENT DIVISIONS.

DATA DIVISION.
LINKAGE SECTION.
**
** PARAMETERS DEFINED IN LINKAGE SECTION **
**
01 IN-PARM PIC X(20).
01 OUT-PARM PIC X(30).

**
** INDICATOR VARIABLES USED ONLY IF PARMS CAN BE NULL **
**
01 NULL-INDVARS.
 05 INDVAR-1 PIC S9(4) COMP.
 05 INDVAR-2 PIC S9(4) COMP.

WORKING-STORAGE SECTION.

 Must declare all necessary variables.

 - 310 -

**
** PARAMETERS SPECIFIED TO THE PROCEDURE DIVISION **
**
PROCEDURE DIVISION USING PARM-A, PARM-B, NULL-INDVARS.

MAIN-PARAGRAPH.
 .
 .
 .
 IF INDVAR-1 < 0
 if input parameter is null perform an error-routine
 .
 .
 .
 MOVE "SOME VALUE" TO OUT-PARM.
 MOVE ZERO TO INDVAR-2.
PROGRAM-END.
 GOBACK.

Be sure to test all input parameters that can be null. If the input parameter is null, you must code the
program to handle that situation. Likewise, for output parameters that can be null, be sure to set the null
indicator variable to zero if not null or -1 if null.
Additionally, be sure to set all input parameters to an appropriate value in the calling program prior to
issuing the CALL to the stored procedure. The value of the stored procedure parameters is set at the
time of the procedure CALL.

Nesting Stored Procedure Calls
Prior to DB2 V6, a stored procedure could not issue the CALL statement, thereby forbidding one stored
procedure to call another stored procedure. This limitation is removed for DB2 V6.

When one stored procedure calls another stored procedure, it is referred to as a nested procedure call.
DB2 supports 16 levels of nesting. When more than 16 levels of nesting is attempted a -746 SQLCODE
is returned (SQLSTATE 57053).

The nesting level includes calls to stored procedure, as well as trigger and user-defined function
invocations. Nesting can occur within a single DB2 subsystem or when a stored procedure or user-
defined function is invoked at a remote server. If a stored procedure returns any query result sets, the
result sets are returned to the caller of the stored procedure.

Caution DB2 restricts certain procedures from being called from another stored
procedure, trigger, or UDF. A stored procedure, UDF, or trigger cannot call a
stored procedure that is defined with the COMMIT ON RETURN attribute.
Additionally, a stored procedure can CALL another stored procedure only if
both stored procedures execute in the same type of address space. In other
words, they must both execute in a DB2-established address space or both
execute in a WLM-established address space.

If the CALL statement is nested, the result sets generated by the stored procedure are visible only to the
program that is at the previous nesting level. Figure 13.2 depicts three levels of nested procedure calls.
The results set returned from PROCZ is only available to PROCY. The calling program and PROCX have
no access to the results set returned from PROCZ.

 - 311 -

Figure 13.2: Stored procedure nesting.

Furthermore, the results set from PROCY would be available only to PROCX, and the results set from
PROCX would be available to the calling program.

Returning Result Sets
As of DB2 V5, a stored procedure can return multiple row result sets back to the calling program. If you
enable result sets to be returned, stored procedures become more efficient and effective. Benefits include
the following:

 Reduced network traffic, because an entire result set requires only a single
network request

 Better application design, because stored procedures do not need to loop
artificially through cursors to return data one row at a time

 Better flexibility, because more work can be done using stored procedures
Figure 13.3 shows the impact of result sets on stored procedure processing.

Figure 13.3: A stored procedure returning result sets.

To implement stored procedures that return result sets, you must perform several steps. The first step is
to ensure that the RESULT_SETS parameter is specified correctly for the stored procedure. The
RESULT_SETS parameter is specified on the CREATE or ALTER PROCEDURE statement and indicates
the maximum number of result sets that can be returned by the stored procedure. To enable the stored
procedure to return result sets, you must set the RESULTS SET parameter to a value greater than 0.
The second step is to specify the WITH RETURN clause on each OPEN cursor statement for which result
sets are to be returned. The cursors must not be closed by the stored procedure. When the stored
procedure ends, the result sets are returned to the calling program.
The last step is coding the calling program to accept result sets from the stored procedure. Refer to
Figure 13.4 to view the interaction of a stored procedure with a calling program that accepts result sets.
The first step is to declare a result set locator variable. Next, the calling program issues the CALL to
execute the stored procedure. The stored procedure executes, opening a cursor that specifies the WITH
RETURN clause. The stored procedure ends without closing the cursor, causing DB2 to return the result
set automatically to the calling program. The calling program issues the ASSOCIATE LOCATOR
statement to assign a value to the result set locator that was previously defined. The calling program
then issues the ALLOCATE CURSOR statement to associate the query with the result set. Finally, the
program can execute a loop to FETCH the rows of the result set.

 - 312 -

Figure 13.4: Coding to return a result set.

The preceding outlines the tasks necessary when the calling program knows what result sets can be
returned by the stored procedure it is calling. However, special SQL statements—DESCRIBE
PROCEDURE and DESCRIBE CURSOR—are available when the calling program does not know in
advance the number of result sets that a stored procedure can return.
The DESCRIBE PROCEDURE statement returns the following information for a stored procedure that has
already been called. The information, which is returned to the SQLDA, includes

 The number of result sets to be returned
 The result set locator value for each result set
 The name of the SQL cursor used by the stored procedure for each result set

The DESCRIBE CURSOR statement also returns information to the SQLDA, but it describe the columns
accessed by the cursor.

Preparing Stored Procedure Programs
The program preparation process for stored procedures is essentially the same as for any program that
accesses DB2. The program code must be precompiled, compiled, and then link-edited into an executable
form. The DBRM must be bound into a package; no plan is required for the stored procedure.

When the program is link-edited, the LE/370 program library must be included. Likewise, the program
for the stored procedure must link-edit either DSNALI (for CAF) or DSNRLI (for RRSAF), depending on
which attachment facility is to be used.

No impact to the program preparation process is required for the calling program; you should use
normal DB2 program preparation steps.

Note A plan is still required for the calling program. Only the stored procedure (the
called program) does not require a plan.

Creating Stored Procedures
As of DB2 V6, stored procedures are registered and managed within DB2 like other DB2 objects, using
standard DDL statements—ALTER, CREATE and DROP. After a stored procedure has been developed and is
ready to be tested, the stored procedure must be created in the DB2 subsystem.

CREATE PROCEDURE SYSPROC.PROCNAME(INOUT CHAR(20))
 LANGUAGE COBOL
 EXTERNAL NAME LOADNAME
 PARAMETER STYLE GENERAL
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 WLM ENVIRONMENT WLMNAME
 STAY RESIDENT YES
 RESULT SETS 1;
This statement creates a stored procedure named PROCNAME in the SYSPROC schema using an
external load module name of LOADNAME. The stored procedure is written in COBOL and runs in a
WLM-managed SPAS. It returns one result set.

 - 313 -

The ALTER statement can be used to change most characteristics of the stored procedure (except the
stored procedure name, its schema, and parameters). The stored procedure can be removed from the
DB2 subsystem using the DROP statement.
Information about the stored procedures defined to DB2 is stored in the SYSIBM.SYSROUTINES table
in the DB2 Catalog. This table is used to store information about stored procedures, triggers, and user-
defined functions. When ALTER, CREATE, and DROP statements are issued for those objects, the
structural definition of those objects is stored in SYSIBM.SYSROUTINES. When parameters are used,
the parm lists are stored in SYSIBM.SYSPARMS. Refer to Appendix B, "The DB2 Catalog Tables," for a
definition of the SYSIBM.SYSPARMS and SYSIBM.SYSROUTINES tables.

Note Prior to DB2 V6, you had to manually register stored procedures in the DB2
Catalog using SQL. Because in past releases of DB2 stored procedures were not
created within DB2, nor were they created using DDL, the DBA had to use SQL
INSERT statements to populate a DB2 Catalog table,
SYSIBM.SYSPROCEDURES, that contained the metadata for the stored
procedure.
The SYSIBM.SYSPROCEDURES table still exists in the system catalog as of DB2
V6, but it is not used unless you are working with DB2 V4 or V5. Refer to
Appendix B for a description of this table. Note that the
SYSIBM.SYSPROCEDURES table is specifically designed for stored procedures
only, whereas the SYSIBM.SYSROUTINES table is designed for stored
procedures, triggers, and user-defined functions.
The following SQL provides an example of an INSERT to register a stored
procedure named PROCNAME:
 INSERT INTO SYSIBM.SYSPROCEDURES
 (PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE,
 COLLID, LANGUAGE, ASUTIME, STAYRESIDENT,
 IBMREQD, RUNOPTS, PARMLIST, RESULT_SETS,
 WLM_ENV, PGM_TYPE, EXTERNAL_SECURITY,
 COMMIT_ON_RETURN)
 VALUES
 ('PROCNAME', ' ', ' ', 'LOADNAME', ' ',
 'COLL0001', 'COBOL', 0, 'Y',
 'N', ' ', 'NAME CHAR(20) INOUT', 1,
 ' ', 'M', 'N', 'N');

Redefining Pre-V6 Stored Procedures
When you migrate to V6, in most cases DB2 automatically creates new definitions in
SYSIBM.SYSROUTINES and SYSIBM.SYSPARMS for any old stored procedures already defined in
SYSIBM.SYSPROCEDURES.

If you have stored procedures that specified values for AUTHID or LUNAME, DB2 is not able to create
new definitions for those stored procedures. You will need to redefine those stored procedures
manually. To check for stored procedures with an AUTHID or LUNAME specification, issue the following
SQL statement:
SELECT *
FROM SYSIBM.SYSPROCEDURES
WHERE AUTHID<>' ' OR LUNAME<>' ';
You must then redefine these stored procedures using the CREATE PROCEDURE statement, but you
cannot specify AUTHID or LUNAME using CREATE PROCEDURE. The AUTHID and LUNAME parameters
were used to define multiple versions of a stored procedure. This can be accomplished in DB2 V6 using
multiple schema names. Specify a unique schema name for each stored procedure with the same
name. For example, to create a test and production version of a stored procedure named PROC1, you
can define TEST.PROC1 and PROD.PROC1 respectively.

Configuring Parameter Lists
The parameters to be used by DB2 stored procedures must be specified in parentheses after the procedure
name in the CREATE PROCEDURE statement. You can define three types of parameters:

 IN An input parameter
 OUT An output parameter
 INOUT A parameter that is used for both input and output

 - 314 -

The type of the parameter must be predetermined and cannot be changed without dropping and
recreating the stored procedure.
Consider, for example, a stored procedure with three parameters: an employee number, bonus, and
total compensation. The stored procedure calculates the total compensation for a specified employee
and returns it to the calling program. The bonus parameter is either set to 0 (in which case, no
additional processing is performed) or to a percentage that the employee bonus is to be increased. If
total compensation is greater than $100,000, the bonus percentage is cut in half. In this case, you could
code the PARMLIST as follows:
CREATE PROCEDURE PROCNAME(IN EMPNO CHAR(6), INOUT BONUS DEC(5,2), OUT
COMPNSTN DEC(9,2)…

This way, the stored procedure receives the employee number; receives, modifies, and then returns the
bonus; and returns the total compensation.

Providing names for the parameters is optional.
An additional consideration when you're coding parameters for stored procedures is whether the
parameters can be null. You use the PARAMETER STYLE parameter to specify nullability. You have
three choices:

 DB2SQL In addition to the parameters on the CALL statement, the following are
also passed to the stored procedure: a null indicator for each parameter, the
SQLSTATE to be returned to DB2, the qualified name of the stored procedure,
the specific name of the stored procedure, and a SQL diagnostic string to be
returned to DB2.

 GENERAL Only the parameters on the CALL statement are passed to the stored
procedure, and the parameters are not allowed to be null.

 GENERAL WITH NULLS In addition to the parameters on the CALL statement, an
array of null indicators is passed to the stored procedure for each of the
parameters on the CALL statement and enables the stored procedure to accept or
return null parameter values.

Note The default PARAMETER STYLE is DB2SQL.

Listing 13.1 shows an example of the indicator variables being passed to the stored procedure as an
array.

Managing Stored Procedures
After you have registered the stored procedure to DB2, you must start it by using a new DB2 command:

 -START PROCEDURE(procedure name)

A stored procedure cannot be executed until it has first been started. Two additional administrative
commands for stored procedures have been added:
 -STOP PROCEDURE(procedure name) ACTION(REJECT | QUEUE)
The STOP command disables subsequent executions of the named stored procedure. You can specify
the ACTION parameter to indicate whether future attempts to run the stored procedure will be entirely
rejected or queued to be run when the stored procedure is started again.
 -DISPLAY PROCEDURE(procedure name)
You can use the DISPLAY command to monitor the status of stored procedures. This command shows

 Whether the named procedure is currently started or stopped
 How many requests are currently executing
 The high water mark for concurrently running requests
 How many requests are currently queued
 The high water mark for concurrently running requests
 How many times a request has timed out

To run a stored procedure, you must explicitly issue a CALL statement. For example, the following
statement calls a stored procedure named SAMPLE, sending a literal string as a parameter:
EXEC SQL
 CALL SAMPLE('ABC')
END-EXEC.

 - 315 -

Executing a Stored Procedure
Stored procedures run in a separate DB2 address space known, appropriately enough, as the Stored
Procedure Address Space (SPAS). IBM made a wise move in forcing stored procedures to run in their own
address space because it eliminates the possibility of potentially bug-ridden stored procedure code "stepping
on" the DB2 address spaces.

As of DB2 V5, you can use multiple stored procedure address spaces. Doing so requires the use of the
MVS Workload Manager (WLM). It allows stored procedures to be isolated in a particular address space
based on the type of processing being performed. For example, OLTP stored procedures can be
separated from data warehousing stored procedures. Using multiple SPAS, you can create an
environment with multiple physical address spaces for stored procedures executing at the same
dispatching priority as the calling program.

Using WLM to control multiple SPAS has the following benefits:
 It allows the creation of multiple environments to segregate stored procedures by

processing type.
 It isolates stored procedures by address space. (If a stored procedure bug brings

down one address space, others are still available.)
 It provides a two-phase commit for non-SQL resources using RRSAF.
 It allows individual MVS dispatching priorities.
 It enables RACF control over access to non-SQL resources.

What Happens When a Stored Procedure Is Called
To execute a stored procedure, a program must issue the SQL CALL statement. When the CALL is issued,
the name of the stored procedure, its schema name, and its list of parameters are sent to DB2. DB2
searches SYSIBM.SYSROUTINES for the appropriate row that defines the stored procedure to be executed.
If the row is not found, the stored procedure does not run.

If the row is found, DB2 retrieves the pertinent information, including the actual load module, to allow the
stored procedure to execute. DB2 then finds a TCB to use for the stored procedure in the appropriate
SPAS and indicates to the SPAS that the stored procedure is to be executed. The SPAS reuses the
thread of the calling program to run the stored procedure. The stored procedure runs, assigns values to
input/output and output parameters, and returns control to the calling program.
The calling program receives the input/output and output parameters and continues processing. The
entire processing within the stored procedure is within the same unit of work as the CALL in the calling
program. Locks acquired within the stored procedure continue to be held until released by the calling
program (with a COMMIT or ROLLBACK).

Stored Procedure Guidelines
On the surface, stored procedures appear to be simple and highly effective new devices for enabling better
application performance, enhancing database administration, and promoting code reusability. However, as
with every DB2 feature, you can find good and bad ways to proceed with implementing stored procedures.
Keep the following guidelines in mind as you develop stored procedures at your shop.

Minimize Nested Procedure Calls
When a procedure calls another procedure, the ensuing structure is called a nested procedure. Nested
procedures are difficult to test and modify. Furthermore, when one procedure calls another, the
likelihood of reuse decreases because the complexity increases.

However, in some cases, the benefits of nesting procedures can outweigh the problems. If you decide
to nest procedure calls, be sure to analyze the number of nested stored procedures, triggers, and user-
defined functions that can be executed for any given SQL statement and ensure that the limit of 16
levels of nesting is not exceeded.

Consider Using Subprograms

A stored procedure can call another program using the facilities of the programming language. The
program being called cannot be a stored procedure, though. The use of subprograms enables better
program reuse.

 - 316 -

If you use subprograms, be sure to document their use within the stored procedure that calls the
subprogram. The call statements used to execute the subprogram might be confused with the SQL
CALL statement used to execute a stored procedure unless the program makes liberal use of
comments.

Plan Stored Procedure Implementation
Design and implement only useful stored procedures. By useful, I mean only those stored procedures
that support a business rule and are robust enough to perform a complete task without being too small
to be trivial (a two-line procedure) or too large to be understood (a thousand-line procedure that
performs every customer function known to the organization). To be useful, a stored procedure must

 Perform one task and perform it very well
 Correspond to a useful business function
 Be documented (including a description of the input, output, and the process)

Specify Atomic Parameters

Always specify parameters at an atomic level. In other words, every stored procedure parameter must
be complete and non-divisible. For example, use
(IN FNAME CHAR(20), IN LNAME CHAR(30))

instead of
(IN FULLNAME CHAR(50))

When you code parameters as non-atomic variable blocks, the stored procedure logic must parse the
block. If changes occur to the data causing lengths or data type to change, procedures using atomic
parameters are easier to modify and test.

Learn LE/370

You must write DB2 stored procedures using an LE/370 language. Therefore, you cannot use VS
COBOL II to code stored procedures.

However, stored procedures can be called from any DB2-compatible programming language (even non-
LE/370 languages).

Consider Using CODE/370

IBM offers CODE/370, an integrated toolset consisting of editing, compilation, and debugging tools.
Without a tool such as CODE/370, testing and debugging DB2 stored procedures can be difficult. Both
mainframe and workstation interfaces are available for CODE/370.

Use Stored Procedures for Internal DBA Tools

If your shop has technical DBAs who like to code their own administration tools performance monitoring
applications, consider using stored procedures to issue DB2 commands and access trace records using
IFI (Instrumentation Facility Interface). You can develop generalized procedures that are maintained by
the DBA and accessed by multiple programs to start, stop, and display database objects or analyze
IFCIDs and display performance details.

Use Appropriate Data Types for Parameters

Make sure that the calling program and the stored procedure use the same data type and length for
each parameter. DB2 converts compatible data types, but by using the same data types and lengths,
you can ensure efficient and effective execution.

You can use user-defined distinct types for stored procedure parameters.
Do Not Use LONG VARCHAR and LONG VARGRAPHIC Parameters
You can use the same built-in and user-defined data types as for the CREATE TABLE statement except
for LONG VARCHAR and LONG VARGRAPHIC data types. Instead, specify the parameter as a VARCHAR
or VARGRAPHIC with an explicit length.
Consider Using Output Parameters for the SQLCA
The SQLCA information for SQL statements executed in stored procedures is not returned to the calling
program. Consider using output parameters to send SQLCA information to the calling program. This

 - 317 -

way, you can enable the calling program to determine the success or failure of SQL, as well as possibly
providing error resolution information.
A separate output parameter is required for each SQL statement in the stored procedure (because the
SQLCA of the stored procedure changes for each SQL statement execution).

Consider Using Global Temporary Tables

Stored procedures can make excellent use of global temporary tables to store intermediate results.
Consider the following uses:

 The stored procedure can INSERT data into a temporary table. A cursor can then be
opened for the table with the results sent back to the calling program.

 Because stored procedures can access non-DB2 resources, data from IMS or IDMS
can be accessed and stored in a temporary table. That data can then be accessed
by the stored procedure using SQL, effectively enabling DB2 to perform joins with
non-DB2 data sources, such as IMS or IDMS.

Promote Reusability

As I mentioned earlier, the predominant reason for using stored procedures is to increase reusability. By
reusing components—in this case, stored procedures—you can write applications more quickly using
code that is already developed, tested, and working.

However noble the goal of reusable components, though, simply mandating the use of stored
procedures does not ensure that goal. Documentation and management support (perhaps coercion) are
necessary to ensure successful reuse. The basic maxim applies: "How can I reuse it if I don't know it
exists or don't know what it does?"

Make Stored Procedures Reentrant
Stored procedures perform better if they are prepared to be reentrant. When a stored procedure is
reentrant, a single copy of the stored procedure is used by many clients. A reentrant stored procedure
does not have to be loaded into storage every time it is called. Compiling and link-editing your programs
as reentrant reduces the amount of virtual storage required for the stored procedure address space.
You can use the RENT compiler option to make a COBOL stored procedure reentrant. Link-edit the
program as reentrant and reusable.
Furthermore, to make a reentrant stored procedure remain resident in storage, specify the STAY
RESIDENT YES option in your CREATE or ALTER PROCEDURE statement.

Note For details on compiling programs coded in languages other than COBOL to be
reentrant, refer to the appropriate manual for the programming language you are
using.

Make Stored Procedures Resident
Better use of system resources occurs if stored procedures are made reusable and remain resident in
the SPAS. Specify the STAY RESIDENT parameter when creating stored procedures, and avoid the
NOREUS link-edit option. A program must be reentrant before it can be specified to stay resident.
Therefore, the general recommendation is to make all stored procedures reentrant, reusable, and
resident.
Accurately Specify DETERMINISTIC or NOT DETERMINISTIC
Be sure to specify accurately whether the stored procedure will always return the same result for
identical input arguments. If the stored procedure always returns the same result for identical input
arguments, it is DETERMINISTIC. If not, the stored procedure should be identified as NOT
DETERMINISTIC. Any stored procedure that relies on external data sources that can change should be
specified as NOT DETERMINISTIC. Other examples of stored procedures that are NOT
DETERMINISTIC include stored procedures that contain SQL SELECT, INSERT, UPDATE, or DELETE
statements or a random number generator.
DB2 will not check to ensure that the [NOT] DETERMINISTIC parameter is specified appropriately.
You must specify it accurately when you CREATE (or ALTER) the stored procedure.

Specifying Collection IDs
A specific collection ID can be assigned to a stored procedure using the COLLID parameter of the
CREATE PROCEDURE statement. If NO COLLID is specified, the collection ID defaults to that of the
package of the calling program. This result can be confusing. Explicitly specifying the collection ID is
usually the better alternative. The default is NO COLLID.

 - 318 -

Returning Column Names from Stored Procedure Results Sets
If the SELECT statements in your stored procedure are static, the DESCSTAT subsystem parameter
must be turned on to retrieve column names from your stored procedures results sets. Set the
subsystem parameter on the host DB2 where the procedure was compiled. After setting this parameter,
you will have to REBIND your stored procedure packages.
If the SELECT statements inside of the stored procedure are dynamic, the result-set column names
should be returned automatically.

The Procedural DBA

To implement and manage DB2 stored procedures effectively, a new type of DBA—a Procedural DBA—must
be created. The reasoning behind the Procedural DBA and the roles and responsibilities required of
Procedural DBAs can be found in Chapter 14, "The Procedural DBA."

Procedural SQL
The major difference between DB2's stored procedure support and the other RDBMS vendors is the manner
in which the stored procedure is coded. As I mentioned at the beginning of this chapter, other popular
RDBMS products require procedural dialects of SQL for stored procedure creation. Oracle uses PL/SQL and
Sybase, and Microsoft SQL Server uses Transact SQL. Each of these languages is proprietary, and they
cannot interoperate with one another.

With an APAR to V6 IBM supports a procedural dialect of SQL based on the ANSI standard. The IBM
DB2 version of procedural SQL is called SQL procedures language, or SPL for short.

Note SQL/PSM is the ANSI standard specification for developing stored procedures
and routines using SQL. PSM is an acronym for Persistent Stored Modules. IBM's
implementation of its SQL Stored Procedure Language is based on SQL/PSM,
but is not a complete implementation of the ANSI SQL/PSM standard.
To understand the precise details of SQL/PSM, I recommend Jim Melton's
excellent book Understanding SQL's Stored Procedures: A Complete Guide to
SQL/PSM (1998, Morgan Kaufmann, ISBN 1-55860-461-8).

But what is procedural SQL? One of the biggest benefits derived from SQL (and relational technology in
general) is the capability to operate on sets of data with a single line of code. By using a single SQL
statement, you can retrieve, modify, or remove multiple rows. However, this capability also limits SQL's
functionality. A procedural dialect of SQL eliminates this drawback through the addition of looping,
branching, and flow of control statements. Procedural SQL has major implications on database design.
Procedural SQL will look familiar to anyone who has ever written any type of SQL or coded using any
type of programming language. Typically, procedural SQL dialects contain constructs to support looping
(WHILE or REPEAT), exiting (LEAVE), conditional processing (IF...THEN...ELSE), blocking
(BEGIN...END), and variable definition and use.

IBM's SQL Stored Procedure Language
Stored procedure language for creating SQL stored procedures is available for both DB2 V5 and V6. This
support was added after the general availability of DB2 V6. You can download the support from the IBM Web
site at http://www.ibm.com/software/db2os390/sqlproc.

SQL stored procedures are like other stored procedures in that the SQL stored procedure must have a
name and a schema, as well as the definition of the stored procedure characteristics and the actual
code for the stored procedure. The code, however, is written in SQL alone—no 3GL program is
required.
SQL stored procedures differ from external stored procedures in the way that the code is defined. SQL
stored procedures include the actual SQL procedural source code in the CREATE PROCEDURE
statement, whereas external stored procedures specify only the definition of the stored procedure in the
CREATE PROCEDURE statement. The actual code of an external stored procedure is developed
independently and is not included in the CREATE statement.
SQL stored procedures are developed entirely in IBM's SQL procedures language but must be
converted to C before they can be executed. This process is described later in this chapter in the
section titled "Creating SQL Stored Procedures."
The actual SQL code in the SQL stored procedure is referred to as the body of the SQL stored
procedure. The body of an SQL stored procedure can include most valid SQL statements, but also
extended, procedural SQL statements. The procedure body consists of a single simple or compound
statement. The following statements can be included in an SQL stored procedure body.

 - 319 -

 Most regular SQL statements can be coded in an SQL stored procedure. Some SQL
statements are valid in a compound statement, but they are not valid if the SQL is
the only statement in the procedure body.

 Assignment statements can be used to assign a value (or null) to an output
parameter or an SQL variable. An SQL variable is defined and used only within the
body of an SQL stored procedure.

 CASE statements are used to select an execution path based on the evaluation of
one or more conditions. The SQL procedures language CASE statement is similar to
the SQL CASE expression previously described in Chapter 1, "The Magic Words."

 IF statements can be coded to select an execution path based on conditional logic.
 The LEAVE statement transfers program control out of a loop or a block of code.
 A LOOP statement is provided to execute a single statement or grouping of

statements multiple times.
 The REPEAT statement executes a single statement or group of statements until a

specified condition evaluates to true.
 The WHILE statement is similar to the REPEAT statement, but it executes a single

statement or group of statements while a specified condition is true.
 Compound statements that contain one or more of any of the other SQL procedures

language statements can be coded. In addition, a compound statement can contain
SQL variable declarations, condition handlers, and cursor declarations. Compound
statements cannot be nested.

Notes When coding a compound statement, you must code the component statements
in a specific order:

1. SQL variable and condition declarations
2. Cursor declarations
3. Handler declarations
4. Procedure body statements (CASE, IF, LOOP, REPEAT, WHILE,

other SQL statements)

Sample SQL Stored Procedures
The following SQL code implements an SQL stored procedure that accepts an employee number and a rate
as input. The stored procedure raises the salary of the specified employee by the specified rate. However,
using an IF statement, the stored procedure also checks to make sure that no raise exceeds 50 percent.

CREATE PROCEDURE UPDATE_SALARY
 (IN EMPLOYEE_NUMBER CHAR(10),
 IN RATE DECIMAL(6,2))
LANGUAGE SQL
WLM ENVIRONMENT SAMP1
COMMIT ON RETURN YES
IF RATE <= 0.50
THEN UPDATE EMP
 SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER;
ELSE UPDATE EMP
 SET SALARY = SALARY * 0.50
 WHERE EMPNO = EMPLOYEE_NUMBER;
END IF

Another sample stored procedure follows:
CREATE PROCEDURE PROC1(OUT NOROWS INT)
LANGUAGE SQL
BEGIN
 DECLARE var_firstnme VARCHAR(12);
 DECLARE var_midinit CHAR(1);

 - 320 -

 DECLARE var_lastname VARCHAR(15);
DECLARE at_end INT DEFAULT 0;
 DECLARE not_found CONDITION FOR '02000'
 DECLARE cempname CURSOR FOR
 SELECT FIRSTNME, MIDINIT, LASTNAME
 FROM EMP
 ORDER BY LASTNAME;
 DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;
 OPEN cempname;
 FETCH cempname INTO var_firstnme, var_midinit, var_lastname;
 CLOSE cempname;
END
This SQL stored procedure declares a cursor on the EMP table and fetches a row from the cursor. The
condition handler is used to handle the row-not-found condition. You could code a loop construct to
fetch all rows from a cursor until no more rows are found, for example,
 .
 .
 .
fetch_loop:
REPEAT
 FETCH cempname INTO
 var_firstnme, var_midinit, var_lastname;
UNTIL SQLCODE <> 0
END REPEAT fetch_loop
 .
 .
 .
Of course, a similar effect could be achieved using the LOOP construct with a LEAVE statement.

Creating SQL Stored Procedures
There are three steps to creating SQL stored procedures:

1. Write the procedural SQL source statements.
2. Create the executable form of the SQL procedure.
3. Define the SQL procedure to DB2.

There are two different ways for you to accomplish these three steps to create an SQL procedure:
 Use the IBM DB2 Stored Procedure Builder to guide you through the steps of

specifying the source statements for the SQL procedure, defining the SQL
procedure to DB2, and preparing the SQL procedure for execution.

 Code a CREATE PROCEDURE statement for the SQL procedure. Then use JCL or
DSNTPSMP to define the SQL procedure to DB2 and create an executable
procedure.

Using JCL to Create SQL Stored Procedures
Use the following steps to prepare an SQL procedure using JCL. This JCL is similar to the JCL used for
program preparation presented in Chapter 11, "Program Preparation," with an additional step to generate C
source code.

First, preprocess the CREATE PROCEDURE statement using the DSNHPSM program. The output from this
step is:

 A C language source program

 - 321 -

 An INSERT statement for defining the stored procedure in
SYSIBM.SYSPROCEDURES (for V5) or a CREATE PROCEDURE statement (for
V6)

Next, precompile the generated C language program. This produces a DBRM and modified C language
source statements. Ensure that the DBRM name is the same as the name of the load module for the
SQL procedure.
The third step is to compile and link-edit the modified C source statements, producing an executable C
language program. The default name for the C language program is the first eight bytes of the SQL
procedure name. Finally, BIND the DBRM into a package and define the stored procedure to DB2.
Using DSNTPSMP to Create SQL Stored Procedures

DSNTPSMP, also known as the SQL procedure processor, is a REXX stored procedure that you can use to
prepare an SQL procedure for execution. You can also use DSNTPSMP to perform selected steps in the
preparation process or delete an existing SQL procedure. The following sections contain information on
invoking DSNTPSMP.
DSNTPSMP can be executed only by issuing a CALL statement inside an application program or through
the DB2 Stored Procedure Builder product. Before you can run DSNTPSMP, you need to ensure that the
appropriate PTFs and APARs have been applied to DB2, install the REXX language support feature,
and code a program that issues a CALL statement for DSNTPSMP.

Use the Sample Programs Provided by IBM
IBM provides quite a few sample programs and jobs to assist you in developing SQL stored procedures. The
samples can be found in the SDSNSAMP data set. Examine these for examples of how to implement effective
DB2 SQL stored procedures. The SQL stored procedure samples that ship with DB2 are listed in Table 13.1.
Table 13.1: SQL Stored Procedure Samples

Name Description
DSNHSQL Sample JCL to preprocess, precompile, compile, prelink-edit, and link-edit

SQL stored procedures.
DSNTEJ63 Sample JCL to prepare the DSN8ES1 SQL stored procedure for

execution.
DSN8ES1 An example of an SQL stored procedure that uses the DB2 sample

tables. It accepts a department number as input and returns a result set
that contains salary information for each employee in that department.

DSNTEJ64 Sample JCL to prepare DSN8ED3 for execution.
DSN8ED3 A sample C program that calls the DSN8ES1 SQL stored procedure.

The SQL Procedures Language "Catalog"
SQL procedures language requires two additional supportive tables, similar to DB2 Catalog tables. These
tables contain information such as the source code of the SQL stored procedure code and the options used
to develop the SQL stored procedure. The two tables are SYSIBM.SYSPSM and SYSIBM.SYSPSMOPTS.
SYSIBM.SYSPSM holds the source code for SQL stored procedures. The table contains one or more
rows for each SQL stored procedure prepared by DSNTPSMP or the Stored Procedure Builder. If the
SQL stored procedure consists of more than 3800 bytes, more than one row is required to hold the
source code for the SQL procedure. Refer to Table 13.2 for a definition of SYSIBM.SYSPSM.

Table 13.2: SYSIBM.SYSPSM (SQL Procedure Source Table)

Column Name Column Definition
SCHEMA Schema of the SQL procedure. Blank if the SQL procedure was

created prior to DB2 V6.
PROCEDURENAME Name of the SQL stored procedure.
SEQNO Sequence number between 1 and CEILING(x/3800), where x is

the number of bytes in the SQL procedure source statement.
PSMDATE The date on which the SQL procedure was created.
PSMTIME The time at which the SQL procedure was created.

 - 322 -

PROCCREATESTMT A VARCHAR(3800) column containing all or part of an SQL
procedure source. If the SQL procedure statement is more than
3800 bytes, this column contains the portion of the source
statement indicated by SEQNO.

The SYSIBM.SYSPSM table has two indexes defined on it DSNPSMX1 (nonunique) and DSNPSMX2
(unique).
SYSIBM.SYSPSMOPTS holds the program preparation options for SQL stored procedures. The table
contains one row for each SQL stored procedure prepared by DSNTPSMP or the Stored Procedure
Builder. Refer to Table 13.3 for a definition of SYSIBM.SYSPSMOPTS.
The SYSIBM.SYSPSMOPTS table has one unique index, DSNPSMOX1 defined on it. This index must be
defined before DSNTPSMP is executed.

Table 13.3: SYSIBM.SYSPSMOPTS (SQL Procedure Options Table)

Column Name Column Definition
SCHEMA Schema of the SQL procedure. Blank if the SQL procedure was

created prior to DB2 V6.
PROCEDURENAME Name of the SQL stored procedure.
BUILDSCHEMA The schema name that qualifies the procedure name specified in the

BUILDNAME column.
BUILDNAME A procedure name associated with stored procedure DSNTPSMP. You

can create multiple definitions for the DSNTPSMP stored procedure to
run DSNTPSMP in different WLM environments.

BUILDOWNER The authorization ID used to create the SQL stored procedure.
PRECOMPILE_OPTS The options that were specified in the precompiler-options parameter

for the most recent invocation of DSNTPSMP for this SQL stored
procedure.

COMPILE_OPTS The options that were specified in the compiler-options parameter for
the most recent invocation of DSNTPSMP for this SQL stored procedure.

PRELINK_OPTS The options that were specified in the prelink-edit-options parameter for
the most recent invocation of DSNTPSMP for this SQL stored procedure.

LINK_OPTS The options that were specified in the link-edit-options parameter for
the most recent invocation of DSNTPSMP for this SQL stored procedure.

BIND_OPTS The options that were specified in the bind-options parameter in the
most recent invocation of DSNTPSMP for this SQL stored procedure.

SOURCEDSN The name of the data set that contains the source code for the SQL
stored procedure (if the SQL procedure source code was input to
DSNTPSMP stored in an external data set).

The Benefits of Procedural SQL
The most useful procedural extension to SQL is the addition of procedural flow control statements. Flow
control within procedural SQL is handled by typical programming constructs that you can mix with standard
SQL statements. These typical constructs enable programmers to

 Embed SQL statements within a loop
 Group SQL statements together into executable blocks
 Test for specific conditions and perform one set of SQL statements when the

condition is true, another set when the condition is false (IF ... ELSE)
 Perform branches to other areas of the procedural code

The addition of procedural commands to SQL provides a more flexible environment for application
developers. Often, major components of an application can be delivered using nothing but SQL. You
can code stored procedures and complex triggers using procedural SQL, thereby reducing the amount
of host language (COBOL, C, Visual Basic, and so on) programming required.

Additionally, when stored procedures can be written using just SQL, more users will be inclined to use
these features. DB2 requires stored procedures to be written in a host language. This requirement may

 - 323 -

scare off many potential developers. Most DBAs I know avoid programming (especially in COBOL) like
the plague.

In addition to SQL stored procedures, procedural SQL extensions also enable more complicated
business requirements to be coded using nothing but SQL. For example, an independent SQL
statement cannot examine each row of a result set during processing. Procedural SQL can accomplish
this task quite handily using cursors and looping.

The Drawbacks of Procedural SQL
The biggest drawback to procedural SQL is that it is late getting into the ANSI standard. Although DB2's
stored procedure support is based on the ANSI SQL3 standard, other DBMS vendors support different
flavors of procedural SQL because they were developed before the ANSI standard. If your shop has
standardized on one particular DBMS or does not need to scale applications across multiple platforms, you
may not have this problem. But, then again, how many shops does this description actually describe?
Probably not very many!

The bottom line is that scalability will suffer when applications are coded using non-standard
extensions—like procedural SQL. Recoding applications that were designed to use stored procedures
and triggers written using procedural SQL constructs is a non-trivial task. If an application needs to be
scaled to a platform which uses a DBMS that does not support procedural SQL, a complete re-write is
exactly what must be done.

Performance drawbacks can be realized when using procedural SQL if the developer is not careful. For
example, improper cursor specification can cause severe performance problems. Of course, this
problem can happen just as easily when cursors are used inside a host language. The problem is more
inherent to application design than it is to procedural SQL.

One final drawback is that even procedural SQL dialects are not computationally complete. Most
dialects of procedural SQL lack programming constructs to control the users' screens and mechanisms
for data input/output (other than to relational tables).

Stored Procedure Builder

IBM also provides Stored Procedure Builder, a free product for developing SQL and Java stored procedures.
The product is GUI-based and provides an easy-to-use interface for quickly developing and testing DB2
stored procedures written in Java or IBM's SQL Procedures Language.

DB2 Stored Procedure Builder provides a development environment for creating, installing, and testing
stored procedures, which enables developers to focus on creating stored procedure logic instead of the
mundane details of registering, building, and installing DB2 stored procedures. Additionally, with Stored
Procedure Builder, you can develop stored procedures on one operating system and build them on
other server operating systems.

Refer to Figures 13.5 for an example of using the Stored Procedure Builder to build a stored procedure.

Figure 13.5: Using the Stored Procedure Builder to create a stored procedure.

 - 324 -

You can launch the DB2 Stored Procedure Builder as a separate application, or from any of the
following application development applications:

 Microsoft Visual Studio
 Microsoft Visual Basic
 IBM VisualAge for Java

The Stored Procedure Builder can be downloaded from the IBM Web site at http://www-
4.ibm.com/software/data/db2/os390/sqlproc/.

Summary

Stored procedures are a powerful feature of DB2. They enable you to execute multiple data access
statements with a single request. Additionally, they are controlled and managed by DB2, providing a
consistent and reusable point of reference for frequently executed database code.

 - 325 -

Chapter 14: The Procedural DBA
Overview
In the past, DBMS products were designed only to manage and store data in an optimal manner.
Although these core capabilities are still required of modern DBMS products, the purview of the DBMS
is no longer limited just to data. With the advent of client/server computing and active databases,
procedural logic also is being stored and managed by the DBMS.

DB2 is maturing and gaining more functionality. The clear trend is that more and more procedural logic
is being stored in the DBMS. Triggers, user-defined functions, and stored procedures enable developers
to use the DBMS to accomplish programming tasks that used to be outside the domain of DB2.

Notes But DB2 has been able to store logic in its databases for years using exit
routines. How do the more modern procedural database techniques differ from
exit routines?
An exit routine, such as an EDITPROC, FIELDPROC, or VALIDPROC, is
usually coded in Assembler language. This code is then attached to a specific
database object and is executed at a specified time, such as when data is
inserted or modified. Exit routines have been available in DB2 for many years;
typically, the DBA or systems programmer is responsible for coding and
maintaining them. Exit routines, however, are primitive when compared with the
procedural logic support provided by a modern RDBMS. Exit routines are
structured to accomplish only one type of task.

 A FIELDPROC transforms data on insertion and converts the data to
its original format on subsequent retrieval.

 An EDITPROC is functionally equivalent to a FIELDPROC, but it acts
on an entire row instead of a column.

 A VALIDPROC receives a row and returns a value indicating whether
a data modification is valid and therefore should proceed. It simply
assesses the validity of the data.

Triggers, user-defined functions, and stored procedures, all examples of modern database-administered
procedural logic, can be programmed to accomplish many different types of tasks. They are not limited
in scope like exit routines.
This chapter discusses the management and administrative challenges of implementing and controlling
procedural logic in the database. For details on DB2's support and implementation for procedural
database objects, refer to Chapter 4, "Using DB2 User-Defined Functions and Data Types," for user-
defined functions, Chapter 6, "Using DB2 Triggers for Integrity," for triggers, and Chapter 13, "Using
DB2 Stored Procedures," for stored procedures. In this chapter, you will learn the reasoning and
requirements for the Procedural DBA.

The Classic Role of the DBA
Just about every database developer has his or her favorite curmudgeon DBA story. You
know, those famous anecdotes that begin with "I have a problem…" and end with "…and then
he told me to stop bothering him and read the (expletive-deleted) manual." DBAs do not have
a "warm and fuzzy" image. This image has more to do with the nature and scope of the job
than anything else. The DBMS spans the enterprise, effectively placing the DBA on call for the
applications of the entire organization.

To make matters worse, the role of the DBA has expanded over the years. In the pre-
relational days, both database design and data access were complex. Programmers were
required to explicitly code program logic to navigate through the database and access data.
Typically, the pre-relational DBA was assigned the task of designing the hierarchic or network
database design. This process usually consisted of both logical and physical database design,
although it was not always recognized as such at the time. After the database was planned,
designed, and implemented, and the DBA created backup and recovery jobs, little more than
space management and reorganization was required. Keep in mind that I don't want to belittle
these tasks. The pre-relational DBMS products such as IMS and IDMS required the DBA to
run a complex series of utility programs to perform backup, recovery, and reorganization.
These tasks consumed a large amount of time, energy, and effort.

 - 326 -

As relational products displaced older DBMS products, the role of the DBA expanded. Of
course, DBAs still designed databases, but increasingly these databases were generated from
logical data models created by data administration staffs. The up-front effort in designing the
physical database was reduced but not eliminated. Relational design still required physical
implementation decisions such as indexing, denormalization, and partitioning schemes.
Instead of merely concerning themselves with physical implementation and administration
issues, however, DBAs found that they were becoming more intimately involved with
procedural data access.
The nature of the RDBMS requires additional involvement during the design of data access
routines. No longer are programmers navigating through the data; the RDBMS is. Optimizer
technology embedded into the RDBMS is responsible for creating the access paths to the
data. The optimization choices must be reviewed by the DBA. Program and SQL design
reviews is now a vital component of the DBA's job. Furthermore, the DBA must take on
additional monitoring and tuning responsibilities. Backup, recovery, and reorganization are just
a starting point. Now, DBAs use EXPLAIN, performance monitors, and SQL analysis tools to
administer applications proactively.

Often, DBAs are not adequately trained in these areas, though. Programming is a distinctly
different skill than creating well-designed relational databases. DBAs, more often than not,
need to be able to understand application logic and programming techniques to succeed in a
relational world.

The Role of the Procedural DBA
Administering and managing data structures are the traditional duties of the DBA, and are well-defined
in the industry. But most DBAs are experts in database design, DDL implementation, and database
utilities. It is unreasonable to expect them to be able to code and debug procedures and functions
written in C, COBOL, or even procedural SQL. To implement and manage DB2 triggers, user-defined
functions, and stored procedures effectively, a new type of DBA—a Procedural DBA—should be
created.
The infrastructure required to manage procedural objects is different from that required to manage data
alone. These new, procedural objects are a mixture of application program and traditional database
objects (like tables and indexes). Procedural objects, therefore, need to be managed like both database
objects and application programs.

The creation of the new Procedural DBA role will have an impact on the roles and responsibilities of the
DBA and programming staff. But effective implementation of the Procedural DBA function will result in
an optimal environment for supporting procedural logic in the database.

The role of the DBA is expanding to encompass too many responsibilities for a single job function to
perform the job capably in most shops. The Procedural DBA can be used to offload some of the duties
of the traditional DBA. Start by splitting the DBA's job into two separate parts based on the database
object to be supported: data objects and procedural objects (like triggers, UDFs, and stored
procedures).
The traditional scope of the DBA role does not involve issues like debugging and testing. When triggers,
UDFs, and stored procedures are implemented, you must treat them like any other program and make
sure that they have been coded properly and then thoroughly tested and debugged. DBAs do not
normally perform these tasks when they create database objects. The DBA may need to tweak some
parameters or change syntax, but no testing and debugging is required of DDL CREATE statements for
databases, tables, tablespaces, and indexes.

The role of supporting procedural objects should fall to a group of professionals skilled in program
development and procedural logic, as well as SQL and database administration.

The manner in which your shop implements Procedural DBA functionality will depend on the size of
your organization and the degree to which you implement triggers, UDFs, and stored procedures. For
smaller shops or those not heavily implementing procedural code in the database, you may be able to
get by with current staff if you train them accordingly.

Procedural DBA Tasks

The Procedural DBA should be defined to support and manage stored procedures, triggers, and UDFs,
as well as other code-related DBA tasks, such as the following:

 - 327 -

 DBMS Logic Support—Reviewing, supporting, debugging, tuning, and possibly even
coding stored procedures, triggers, and user-defined functions. This task must include
"on call" support.

 Application Program Design Reviews—Reviewing every application program
completely before migrating the code to a production environment. This must include
both traditional application programs and program logic required to implement stored
procedures and user-defined functions.

 Access Path Review and Analysis—Using EXPLAIN and other tools to determine,
review, and tune the access paths chosen by DB2. Additionally, the procedural DBA
needs to understand how to tweak SQL for optimal performance and how to specify
optimization hints using PLAN_TABLE to direct DB2 to use different access paths.

 SQL Debugging—Assisting developers with difficult SQL syntax and structures.
 View Analysis and Design—Assisting DBAs in creating optimal SQL for view

definitions.
 Complex SQL Analysis and Rewrite—The Procedural DBA should be skilled in coding

and developing complex SQL statements.
This role of the Procedural DBA is depicted graphically in Figure 14.1. Preferable, the Procedural DBA
should report through the same management unit as the traditional DBA and not through the application
programming staff. Reporting this way enables better skills sharing between the two distinct DBA types.
Of course, your shop's needs may differ causing you to place the Procedural DBA functionality
elsewhere in the organization. At any rate, synergy is required between the Procedural DBA and the
application programmer/analyst. In fact, the typical job path for the Procedural DBA is most likely from
the application programming ranks because the coding skill base exists there.

Figure 14.1: Procedural DBA tasks.

When the procedural tasks are off-loaded from the traditional, data-oriented DBAs, the DBAs will be free
to concentrate on the actual physical design and implementation of databases. The result should be
much better database design and enhanced performance.

The Political Issues

After stored procedures and UDFs are coded and made available to DB2, applications and developers
will begin to rely on them. Now that procedural logic is being managed by DB2, DBAs must grapple with
the issues of quality, maintainability, and availability. How and when will these objects be tested? The
impact of a failure is enterprise wide, not relegated to a single application. This increases the visibility
and criticality of these objects. Who is responsible if objects fail? The answer must be "a DBA"—
preferably a Procedural DBA who understands the implementation and operation of procedural
database objects.

Establishing a Procedural DBA function ensures that the political aspects of trigger, stored procedure,
and UDF creation, use, and support have been adequately determined and documented prior to
implementation. Failure to do so will cause a multitude of questions that are not easy to answer without
a centralized support group.

For example, who will code stored procedures and UDFs, DBAs or application programmers? This
decision can vary from shop to shop based on the size of the organization, the number of DBAs, and
the commitment of the organization to stored procedures. A credible case can be made that the task
should be a centralized function in order to promote reusability and documentation.

 - 328 -

After the decision is made as to who develops the stored procedures and UDFs, the next decision that
needs to be made is who supports them. Stored procedure support must encompass design and code
review, QA testing, documentation review, reusability testing, and "on call" support.

If a centralized group is not "on call" for stored procedure failures, organizational in-fighting can occur.
Consider, for example, a stored procedure developed by a Marketing application staff that modifies
customer information. The stored procedure is developed, tested, documented, and migrated to
production. Because proper reusability guidelines were followed, the Sales application staff calls the
same stored procedure in their code. Once it is in production, the Sales application fails at 2:00 a.m.
Who gets called in to fix the problem? The Sales staff argues that the stored procedure was created by
Marketing and no one on the Sales staff understands how the stored procedure works. The Marketing
staff argues that their application did not bomb, the Sales application did. Without a centralized support
function, the argument could go on all night. These issues need to be addressed before reusable,
procedural logic is implemented in the database.

Procedural DBAs must be technically astute and aware of the intricate details of implementing triggers,
UDFs, and stored procedures. For example, the Procedural DBA must understand the firing order for
triggers.

The Technical Issues

The Procedural DBA is not just a political role. Technical acumen is required to do the role justice. A
thorough knowledge of DB2's implementation of procedural objects is required. Consider, for example,
managing schemas.
DB2 triggers, UDFs, and stored procedures are created within a schema. A schema is a logical
grouping of procedural database objects. By default, the schema name is the authid of the process that
issues the CREATE statement for the procedural object.

Note In addition to triggers, stored procedures, and UDFs, user-defined data types
(UDTs) also are created within a schema. For this reason, consider also
assigning the creation and management of UDTs to the Procedural DBA.

The Procedural DBA needs to understand schemas, including
 How procedural objects are created in a schema
 How the schema factors into execution of the procedural objects
 How to set the SQL path and how the SQL path influences execution
 How functions are resolved at runtime

But schemas are not the only technical issue complicating the Procedural DBA role. Recall from
Chapter 6 that when multiple triggers are coded on the same table, the order in which the triggers were
created can affect their operation and subsequently data integrity. The rule for order of execution is that
triggers of the same type are executed in the order in which they were created. So, when triggers are
dropped and re-created, the order of creation is important. This level of detail most likely will elude
programmers that do not specialize in procedural objects—another reason to implement Procedural
DBAs.

As DB2 matures, more and more procedural logic will be managed by, stored in, and administered by
the DBMS, causing database administration to become more complex. The role of the DBA is rapidly
expanding to the point at which no single professional can be reasonably expected to be an expert in all
facets of the job. Without a Procedural DBA function, supporting the DBMS-coupled logic used by DB2
applications will be difficult.

Procedural SQL

Procedural objects in DB2 are written using 3GL programming languages or a procedural dialect of
SQL. Most of the other major RDBMS vendors only support procedural SQL—Oracle uses PL/SQL,
Sybase and Microsoft use Transact-SQL, and Informix uses SPL. Each of these languages is
proprietary, and they cannot interoperate with one another.
But what is procedural SQL? One of the biggest benefits derived from SQL (and relational technology in
general) is the capability to operate on sets of data with a single line of code. By using a single SQL
statement, you can retrieve, modify, or remove multiple rows. However, this capability also limits SQL's
functionality. A procedural dialect of SQL eliminates this drawback through the addition of looping,
branching, and flow of control statements. Procedural SQL has major implications on database design.
For more details on SQL procedures language, DB2's version of procedural SQL, refer to Chapter 13.

 - 329 -

The Procedural DBA needs to understand the various methods of creating procedural objects in DB2.
Furthermore, the Procedural DBA must be ready to support all of these development methods.
Therefore, the Procedural DBA should understand the traditional programming languages in use at their
shop (such as COBOL, C, and Java), as well as procedural SQL.

In a heterogeneous environment, where more than one RDBMS is used, the Procedural DBA needs to
understand the methods for creating procedural objects in each of the RDBMSs being used. There are
many similarities between DB2 and Oracle triggers, for example, but there are also stark differences.
The Procedural DBA group needs to be knowledgeable about these differences in order to support
heterogeneous procedural database objects.

Summary
Triggers, user-defined functions, and stored procedures provide DB2 with powerful development
capabilities. However, without the proper administration and control, they can cause management
problems. Implementing a Procedural DBA role within your organization can help to solve these
problems before they occur.

Chapter 15: DB2 and the Internet

Overview

The data processing world is increasingly becoming an online world. This phenomenon is
being driven by the Internet, a large, international network of interconnected computer
systems.

How to Access the Internet

All of the large, commercial online service providers such as America Online,
CompuServe, and the Microsoft Network offer access to the Internet. If you are
accessing the Internet from home, you will probably access it from one of these
servers.

However, most corporations provide Internet access directly via an ISP (Internet
service provider). If this is the case, you will not have to set yourself up with an online
service. The best way to find out whether your corporation has an ISP is to do some
snooping. Ask your Help Desk, DBA, or manager whether your company is hooked up
to the Internet. If so, all you will need is a TCP/IP connection and some basic software
to begin surfing the Internet for DB2 nuggets!

The Internet Phenomenon
When discussing the Internet, most folks limit themselves to the World Wide Web. However, there are
many components that make up the Internet. For purposes of this book, I will discuss the three primary
components most useful to DB2 professionals: the World Wide Web, Usenet newsgroups, and mailing
lists.

 - 330 -

The World Wide Web
The World Wide Web (WWW) uses a graphical interface and hypertext protocol to display information in
a point and click environment. Using a Web browser (such as Netscape Navigator or Microsoft Internet
Explorer), you can navigate through the Internet, accessing Web pages and FTP and Gopher sites. A
vast array of multimedia information (text, audio, video, and more) can be accessed using the WWW.

Having secured access to a Web browser, the first thing to do is to access a Web page. Web sites on
the Internet provide a simple address that lets users access their site. That address, known as a URL
(or uniform resource locator), can be fed into a Web browser, thereby providing access to the site. The
address is always preceded by the following:
http://
HTTP stands for Hypertext Transfer Protocol, a communication protocol that understands that any
document it retrieves contains information about future links referenced by the user. Of course, other
Internet resources, such as Gopher or FTP, can be accessed using a Web browser. For example,
instead of typing http, the user can also specify the following:
ftp:// To access an FTP site
file:// To access a local (or networked) data file
gopher:// To access a Gopher site
mailto:// To send mail
news:// To access Usenet newsgroups

A Web page is a combination of text and graphics that provides hypertext links to other documents and
services. The hypertext links are coded in the standard language known as HTML. An example showing
my home page is depicted in Figure 15.1. The URL for this Web site is http://www.craigsmullins.com.
If you look closely, you can see the URL depicted in the Address box in Figure 15.1.

Figure 15.1: The Craig S. Mullins home page (http://www.craigsmullins.com).

A page is the basic unit of every Web site. A Web page contains text, links, and images, but can also
contain forms, frames, and tables.

Text on most WWW pages is formatted into multiple, layered headers and accompanying body text to
help organize the information on the page. A link, sometimes referred to as a hyperlink, takes you to
another page or to a graphic or other related file. Links can be textual or graphical. Textual links are
underlined and in color. When you roll the cursor over a link, it will change from an arrow into a pointing
finger.

Forms are Web pages that have been organized using input boxes, pull-down lists, and radio buttons to
enable easy data entry by users. Typically, forms are used to accept a user's demographic information
or to enter credit card information when buying products over the Web. Frames allow several windows
to be shown on a single Web page. The most common usage is to display a Table of Contents in one
frame while the user navigates through the Web site in another frame. Tables display information in
formatted rows and columns.

 - 331 -

After a Web page is accessed, hypertext links can be pointed to and clicked, leading the user through
layers of information. The Web browser allows the user to navigate through pages and pages of useful
information. The information can be printed, saved to disk, or simply browsed.

Usenet Newsgroups
A very fertile source of information on the Internet is found in various Usenet newsgroups. Usenet, an
abbreviation for User Network, is a large collection of discussion groups called newsgroups. Each
newsgroup is a collection of articles pertaining to a single, pre-determined topic. Newsgroup names
usually reflect their focus. For example, comp.databases.ibm-db2 contains discussions about the DB2
family of products.
Using News Reader software, any Internet user can access a newsgroup and read the information
contained therein. Refer to Figure 15.2 for an example using the Free Agent newsgroup reader to view
messages posted to comp.databases.ibm-db2.

Figure 15.2: A newsgroup reader.

Mailing Lists
Mailing lists are a sort of community bulletin board. You can think of a mailing list as equivalent to a
mass mailing. There are around 40,000 mailing lists available on the Internet, and they operate using
list servers. A list server is a program that automates the mailing list subscription requests and
messages. The two most common list servers are Listserv and Majordomo. Listserv is also a common
synonym for mailing list, but it is actually the name of a particular list server program.

Simply by subscribing to a mailing list, information is sent directly to your email inbox. After you
subscribe to a mailing list, articles will begin to arrive in your email box from a remote computer called a
list server. The information that you will receive varies—from news releases, to announcements, to
questions, to answers. This information is very similar to the information contained in a CompuServe
forum, except that it comes directly to you via email. Users can also respond to Listserv messages.
Responses are sent back to the list server as email, and the list server sends the response out to all
other members of the mailing list.

To subscribe to a mailing list, simply send an email to the appropriate subscription address requesting a
subscription.

Using the Internet with DB2
There are two main reasons for DB2 professionals to use the Internet:

 To develop applications that allow for Web-based access to DB2 data
 To search for DB2 product, technical, and training information

Now take a look at ways of doing both of these.

Accessing DB2 over the Internet

 - 332 -

Allowing for Web-based access to valuable corporate data stored in relational databases makes this
data more readily accessible to more people. Companies can obtain a competitive advantage by
making their data available to employees over an intranet, or to customers and partners over an
extranet.

Note An intranet is a special Internet adaptation that can only be accessed by internal
employees. Likewise, an extranet extends the accessibility in a secure manner
only to authorized individuals.

One option IBM provides for accessing DB2 data over the Web is called Net.Data.

Using Net.Data to Connect to the Internet
Net.Data is an IBM product that provides developers the ability to build Web applications using data
from DB2 and other enterprise databases. Using Net.Data, you can build interactive Web sites with data
included dynamically from a variety of data sources, including relational and non-relational data and flat
file data.

Net.Data is a macro processor that executes as middleware on a Web server. Using a Web browser
and Net.Data, it is possible to rapidly develop applications that use the Internet as a front-end to DB2
databases.

Net.Data applications are macro files containing named sections specifying Web page text, HTML, the
SQL statement to be executed, programs and scripts to be called, and application control logic.

Using Net.Data macros, you can develop programs that access and manipulate variables, call functions,
and use report-generating tools. Net.Data processes the macro and produces output that can be
displayed by a Web browser. Macros provide the developer with the simplicity of HTML coupled with the
advanced functionality of Web server programs.

Simply stated, developers can use Net.Data to present data stored in DB2 tables to users in the style of
a Web page. This lets savvy Internet users quickly come up to speed at accessing DB2 data.
Figure 15.3 outlines the flow of a Net.Data process. The entire flow can be broken down into a simple
eight-step process:

Figure 15.3: How Net.Data works.

1. A user issues a request by specifying a URL in his Web browser. The URL points
to a Net.Data macro.

2. The Web server receives the request for the URL and invokes Net.Data, passing
the name of the macro to be invoked.

3. Net.Data creates the HTML for the input form and sends it to the browser via the
Web server.

4. The person using the Web browser fills in the input form and submits it to the Web
server.

5. Net.Data receives the input form and interprets it to access the requested data.
6. Net.Data invokes the appropriate language environment. The language

environment, in turn, processes the information by accessing DB2. It then returns
the results to Net.Data.

 - 333 -

7. Net.Data creates the HTML for the output report form and sends it with the data
retrieved from the database through the Web server to the Web browser.

8. The results are formatted by the Web browser, and the requesting user has
retrieved DB2 data over the Web.

Because Net.Data applications use native HTML and SQL, developers do not need to learn complex
new languages and syntax to connect DB2 databases to the Web. Furthermore, SQL SELECT,
INSERT, UPDATE, and DELETE statements are supported for both data query and modification.

You can use Net.Data to support two-tier and three-tier client/server environments. In a two-tier
environment, the database resides on the Internet server and client Web browsers access the data. For
DB2 running on OS/390, this is applicable only if you use the mainframe as your Internet server. In a
two-tier OS/390 environment, Net.Data communicates with DB2 for OS/390 through RRS or the Call
Attach Facility (CAF).

In a three-tier environment, the data can reside on both the local Internet server and a remote platform.
This requires DB2 Connect, CAE (Client Application Enabler), or DataJoiner. The three-tier setup is
useful when your Internet server is a UNIX or Windows NT machine, and you need to access DB2 data
from the mainframe.

In a three-tier environment, Net.Data macros can access a variety of data sources such as DB2, Oracle,
Sybase, and ODBC. In a two-tier environment, Net.Data for OS/390 can access DB2 for OS/390 and
IMS.

Net.Data Guidelines
The following guidelines can help you to implement Net.Data effectively in your organization.

Consider Using Stored Procedures
In addition to regular SQL SELECT, INSERT, UPDATE, and DELETE statements, Net.Data can invoke
stored procedures. Consider calling stored procedures to quickly extend the functionality of Net.Data
applications. Furthermore, stored procedures use static SQL, which, at times, can provide enhanced
performance. Stored procedures also can be used to minimize network traffic.

Finally, remember that DB2 stored procedures can return result sets, if necessary.

Provide Net.Data Macro Language Training
Net.Data programs are written in Net.Data's macro language. A Net.Data macro is a mixture of HTML
and Net.Data–specific keywords. Although macros can be easy to develop, it is wise to provide an
appropriate level of Net.Data macro language training for your Net.Data developers before they develop
any Net.Data applications.

Net.Data macros can invoke programs written in other languages, such as Perl, REXX, and C. Net.Data
also can be used to invoke DB2 stored procedures. Keep in mind that these features can complicate
relatively simple Net.Data macros.

Java Applets and JavaScripts
Net.Data provides Java applet and JavaScript interfaces to enhance the Web client's ability to perform
client-side processing. You can use a Java applet to enhance the results of a Net.Data application with
graphical elements such as charts and graphs.
IBM provides sample Java applets and JavaScripts on the Net.Data Web site at http://www-
4.ibm.com/software/data/net.data/.

Use Direct Requests when Possible

Direct requests improve performance because Net.Data does not have to read and process a macro
file. The SQL, ODBC, System, Perl, and REXX Net.Data-supplied language environments support direct
requests.

 - 334 -

Consider Net.Data Live Connections

Before a query can be executed, the process must identify itself and connect to DB2. This can cause
performance problems.

Net.Data can be used to establish a live connection by continuously running processes to perform the
startup tasks. Once started, the process waits to execute subsequent requests.

Note Live connections are required for API connections, but can be used for CGI
connections, too.

Use Good Programming Techniques
Be sure to use your standard application development and programming techniques when developing
Net.Data macros. Make sure to include comments in the macro file indicating the purpose of the
program, as well as a log of changes.
Additionally, follow the SQL formulation guidelines covered in Chapters 1 and 2, and the application
programming techniques outlined in Chapter 9, "Using DB2 in an Application Program."

Design Web Applications with the User in Mind

Be aware that the equipment on which you are developing your Web-based applications is probably
more state-of-the-art than the equipment on which the application will be used. It is common for
developers to have access to high resolution monitors and a lot of memory. Be sure to test the
application on PC setups with less memory and on monitors of varying dot pitch and resolution.

Plan Your Security Requirements

When developing DB2 applications that are accessible using the Internet, be sure to plan adequate
security into the application. DB2 WWW and Net.Data each provide authorization features that should
be utilized to ensure that only authorized users are permitted access.

Using Java and DB2
Everybody has heard about Java and how it is going to transform the world of IT—unless you've been
living under a rock. But just because you've heard about it doesn't mean you understand it. And even if
you know a bit about it, there is always more to discover. Let's face it, there's a lot of hype out there
regarding anything that concerns the Internet. And now that DB2 for OS/390 fully supports Java, that
hype will surely increase for those of us using the mainframe. Is it all hype or is there some hope for a
brighter multi-platform world? Let's examine what Java means to the world of DB2.

What Is Java?
First and foremost, Java is an object-oriented programming language. Developed by Sun Microsystems
in 1991, Java was modeled after and most closely resembles C++. But Java requires a smaller footprint
and eliminates some of the more complex and error-prone features of C and C++ (such as pointer
management and the go to construct). Additionally, many tasks have been moved from language to the
JVM.

Java enables animation for and interaction with the World Wide Web. Although Web interaction is
Java's most touted feature, it is a fully functional programming language that can be used for developing
general purpose programs independent from the Web.

Using HTML, developers can run Java programs, called applets, over the Web. But Java is a completely
different language than HTML, and it does not replace HTML. Java applets are automatically
downloaded and executed by users as they surf the Web. The Java applet is run by the Web browser.

What makes Java special is that it was designed to be multi-platform. In theory, regardless of the
machine and operating system you are running, any Java program should be able to run. Many possible
benefits accrue because Java enables developers to write an application once and then distribute it to
be run on any platform. Benefits can include reduced development and maintenance costs, lower
systems management costs, and more flexible hardware and software configurations.

So, to summarize, the major qualities of Java are

 - 335 -

 Its similarity to other popular languages
 Its ability to enable Web interaction
 Its ability to enable executable Web content
 Its ability to run on multiple platforms

Now that DB2 for OS/390 supports application development using Java, all of these qualities are
available to DB2 applications.

Java Bytecodes and the Java Virtual Machine (JVM)
After the Java program is written, the source code is compiled into machine-independent constructs
called bytecodes using the Java compiler. Bytecodes are the manner in which Java achieves its
platform independence. Because the Java bytecode is in a machine-independent, architecture-neutral
format, it can run on any system with a standard Java implementation.

The Java bytecodes are then processed by the Java Virtual Machine (JVM). The JVM interprets the
bytecodes for the platform on which the Java program is to be run. The JVM loads and verifies the Java
bytecode. It is then passed to the Java interpreter to be executed. Alternately, the bytecodes can be
passed to a just-in-time (JIT) compiler to be compiled into machine code to be executed.

Caution Java has a reputation as a "slow" language. That is, the performance of Java
is questionable. The major disadvantage is that Java is an interpretive
language. Both the Java interpreter and the JIT compiler consume resources
and take time to process the Java bytecodes before execution.

The performance of a Java program will pale in comparison to a program
compiled and link-edited into object code (such as a COBOL program). As a
developer, you must decide whether the platform independence and Web
development capabilities offset the potential for performance degradation.

Java Applications, Applets, and Servlets

There are three types of Java implementation methods that you can implement when accessing DB2
data from Java—Java applications, applets, and servlets.
A Java application program is basically the same as a program written in any other programming
language. It can perform all of the tasks normally associated with programs, including many tasks that
Java applets cannot perform. Furthermore, a Java application does not need a browser to be executed.
It can be executed in a client or server machine.
A Java applet is a small application program that must be downloaded before it is run within a Java-
enabled Web browser. Java applets reside on a Web server. When the Web server returns an HTML
page that points to a Java applet, the Java-enabled Web browser requests the applet to be downloaded
from the Web server. After the applet is received at the browser, either the browser starts the applet
internally or an external JVM executes it.

Applets typically perform simple operations, such as editing input data, control screen interaction, and
other client functionality. Of course, Java applets can be written to perform more complex functionality,
but to load and run non-Java code in the client requires signed applets, which have the authority
needed to run code in the client machine.

Note You should be aware of the performance implications of the requirement for Java
applets to be downloaded before they can be run. In general, Java applets are
small, so the performance impact should be negligible. Additionally, Java applets
can be cached by the Web browser, further diminishing the performance impact.

A Java servlet is basically server-side Java. A Java servlet runs on the Web server, just like an applet
runs in the Web browser. Java servlets can be used to extend the functionality of the Web server. The
Web server hands requests to the servlet, which replies to them. Servlets can be used instead of CGI
applications.

Note To run Java servlets, your Web server must support the Java servlet API,
developed by JavaSoft. This API defines how the servlet communicates with the
server.

Java servlets have security advantages over client-side Java applets. A servlet that runs on a Web
server inside a firewall can control access to sensitive data and business logic. Java applets do not
inherently provide these security capabilities.

 - 336 -

Before choosing which Java development style to use, you must know the basics of the environment in
which the program must run. Ask the following questions when deciding what type of Java program is
required for your development needs:

 How will the program be executed? Must it run over the Internet, as an intranet or
extranet application, or merely as a standalone application?

 What is the business logic that this program must perform?
 How complicated is the program?
 How large (or small) is the program, and can it be quickly downloaded?
 What are the security requirements?
 Who are the target users and at what speed will they be connected to the Web?

Java applications, Java applets, and Java servlets are similar in nature. However, a different method is
used to invoke each of them. Java applets and servlets are started from an HTML page. Java
applications do not require a Web component but can be used as part of an intranet solution.

To implement any Java programs, you need to use the Java Developers Kit, or JDK for short. The JDK
is a development environment for writing Java programs conforming to the Java 1.1 Core API (Java 1.1
and later because that is the first JDK that included Java driver manager). The JDK includes the Java
Virtual Machine (JVM), Java classes, source files to create the classes in the JVM, documentation, and
the JDK tools required for building and testing Java bytecode. These tools include the Java compiler
and interpreter, the Java applet viewer, and the Java debugger.

Note At the time this book was being written, IBM indicated that the ability to create
Java-stored procedures would be released for DB2 in a future refresh of the DB2
V6 code. This would allow you to create DB2 stored procedures using the Java
language. If your organization wants to implement Java stored procedures, you
should investigate whether the capability has been delivered and implemented at
your shop.

JDBC Versus SQLJ

Access to DB2 for OS/390 data in Java applications is accomplished using JDBC or SQLJ.
Java Database Connectivity, or JDBC, is an API that enables Java to access relational databases.
Similar to ODBC, JDBC consists of a set of classes and interfaces that can be used to access relational
data. Anyone familiar with application programming and ODBC (or any call-level interface) can get up
and running with JDBC quickly. JDBC uses dynamic SQL to access DB2 data. The primary benefits of
JDBC include the following:

 The capability to develop an application once and execute it anywhere.
 JDBC enables the user to change between drivers and access a variety of

databases without recoding your Java program.
 JDBC applications do not require precompiles or binds.

Potential drawbacks of JDBC include the following:
 JDBC uses dynamic SQL, which can add overhead when the SQL is bound.
 Programs using JDBC can become quite large.

SQLJ enables developers to embed SQL statements in Java programs. SQLJ provides static SQL
support to Java. Developers can embed SQL statements into Java, and a precompiler is used to
translate SQL into Java code. Then the Java program can be compiled into bytecodes, and a bind can
be run to create a package for the SQL. Simply stated, SQLJ enables Java programs to be developed
the way most DB2 programs have been developed for years.

Of course, SQLJ does not allow dynamic SQL. But you can mix SQLJ and JDBC in a single Java
program, which effectively enables you to choose static or dynamic SQL for your Java programs. The
primary benefits of SQLJ include the following:

 The ability to code static, embedded SQL in Java programs.
 SQLJ source programs usually are smaller than equivalent JDBC programs.
 SQLJ does data type checking during the program preparation process and

enforces strong typing between table columns and Java host expressions. JDBC
passes values without compile-time data type checking.

Potential drawbacks of the SQLJ approach include the following:
 SQLJ programs must be precompiled and bound.

 - 337 -

 SQLJ is not yet a standard, but it has been proposed to ANSI for inclusion and
has the widespread support of the major RDBMS vendors.

To get a quick understanding of the differences between JDBC and SQLJ, review the code fragments in
Listings 15.1 and 15.2. These listings do not show complete programs, but you can use them to
understand the different means by which a SQL statement is issued with JDBC versus with SQLJ.

Listing 15.1: JDBC Code Fragment

// Create the connection

// change the following URL to match the location name

// of your local DB2 for OS/390.

// The URL format is: "jdbc:db2os390:location_name"

String url = "jdbc:db2os390:st11db2g";

Connection con = DriverManager.getConnection (url);

// Create the Statement

Statement stmt = con.createStatement();

System.out.println("**** JDBC Statement Created");

// Execute the query and generate a ResultSet instance

ResultSet rs = stmt.executeQuery("SELECT LASTNAME, HIREDATE FROM EMP");

System.out.println("**** JDBC Result Set Created");

// Close the statement

stmt.close();

// Close the connection

con.close();

Listing 15.2: SQLJ Code Fragment

{

#sql public iterator ByPos(String,Date);

 // Declare positioned iterator class ByPos

 - 338 -

ByPos positer; // Declare object of ByPos class

String name = null;

Date hrdate;

#sql positer = { SELECT LASTNAME, HIREDATE FROM EMP };

#sql { FETCH :positer INTO :name, :hrdate };

// Retrieve the first row from the result table

 while (!positer.endFetch())

 { System.out.println(name + " was hired in " + hrdate);

 #sql { FETCH :positer INTO :name, :hrdate };

// Retrieve the rest of the rows

 }

}

Note Be sure to check out the Java sections

of IBM's Web site for additional
information regarding Java support and
sample Java code. Two good URLs to
bookmark are
 http://www.ibm.com/developer/java/
 http://www-
4.ibm.com/software/data/db2/java/

Using Result Set Iterators to Retrieve Multiple Rows
Traditional DB2 application programs written in host languages use a DB2 cursor to retrieve individual
rows from a multi-row result set. The SQLJ equivalent of a cursor is a result set iterator. A result set
iterator can be passed as a parameter to a method.
The result set iterator is defined using an iterator declaration clause specifying a list of Java data types.
The Java data types represent columns of the table in the result set. The information in Table 15.1
shows the SQL data types and their equivalent SQLJ data types that can be specified in result set
iterator declarations. The SQLJ data type in the left column can be used for data retrieved that is of any
of the SQL data types listed in the right column.

Table 15.1: SQLJ and SQL Data Type Equivalents

SQLJ Data Type SQL Data Type
java.lang.String CHAR

VARCHAR
LONG VARCHAR
GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC

java.math.BigDecimal NUMERIC
INTEGER
DECIMAL
SMALLINT
FLOAT
REAL
DOUBLE

 - 339 -

Boolean INTEGER
SMALLINT

Integer INTEGER
SMALLINT
DECIMAL
NUMERIC
FLOAT
DOUBLE

Float INTEGER
SMALLINT
DECIMAL
NUMERIC
FLOAT
DOUBLE

Double INTEGER
SMALLINT
DECIMAL
NUMERIC
FLOAT
DOUBLE

byte[] CHARACTER
VARCHAR
LONG VARCHAR
GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC

java.sql.Date DATE
java.sql.Time TIME
java.sql.Timestamp TIMESTAMP

Note The byte[] SQLJ data type is equivalent to SQL data

type with a subtype of FOR BIT DATA.
The java.sql.Date, java.sql.Time, and
java.sql.Timestamp data types are part of the JDBC
API.

Finding DB2 Information Using the Internet
The Internet provides a wealth of easily accessible information for the DB2 professional. The days of
IBM-Link being the only place to turn for DB2 information are most decidedly over. Immediate access to
volumes of information is readily available for the asking. Now examine some of the best places to look
for DB2 information in cyberspace!

Internet Resources
A vast wealth of information is available through the Internet. However, it is rather difficult to learn what
is available. The most useful Internet resources for DB2 professionals are Usenet newsgroups, mailing
lists, and access to the World Wide Web (WWW).

DB2-Related Usenet Newsgroups
There are newgroups available to satisfy just about every interest, and DB2 usage is no foreigner to
Usenet. There are three primary newsgroups that DB2 users can access for DB2 news and information:
comp.databases
bit.listserv.db2-l
comp.databases.ibm-db2
Generic database information can be found on the comp.databases newsgroup. Some DB2 users post
questions, comments, and information to this newsgroup, but DB2-specific traffic is very light.

 - 340 -

The bit.listserv.db2-1 newsgroup is very active with DB2 discussions and information. But, this
newsgroup is a mirror copy of the DB2 mailing list. If you subscribe to the mailing list, you have already
seen the information in this newsgroup.
The third newsgroup is comp.databases.ibm-db2. It was instituted in early 1995 to provide a dedicated
newsgroup for DB2 users. However, the postings to this newsgroup predominantly pertain to non-
OS/390 DB2 platforms (such as OS/2, Windows NT, and AIX). For a listing of other Usenet newsgroups
that may be of interest to DB2 and RDBMS users, see Table 15.2.

Table 15.2: Interesting Usenet Newsgroups

Newsgroup Name Description
comp.client-server Information on client/server technology
comp.compression.research Information on research in data compression techniques
comp.databases Issues regarding databases and data management
comp.databases.ibm-db2 Information on IBM's DB2 family of products
comp.databases.informix Information on the Informix DBMS
comp.databases.ingres Information on the CA-Ingres DBMS
comp.databases.object Information on object-oriented database systems
comp.databases.oracle.server Information on the Oracle RDBMS
comp.databses.sybase Information on the Sybase Adaptive Server RDBMS
comp.databases.theory Discussions on database technology and theory
comp.edu Computer science education
comp.infosystems General discussion of information systems
comp.misc General computer-related topics not covered elsewhere
comp.os.os2.announce OS/2 related announcements
comp.os.os2.apps Information on OS/2 applications
comp.unix.admin UNIX administration discussions
comp.unix.aix Information pertaining to IBM's version of UNIX, AIX
comp.unix.questions Question and answer forum for UNIX novices
bit.listserv.aix-1 Information pertaining to AIX
bit.listserv.appc-1 Information pertaining to APPC
bit.listserv.cics-1 Information pertaining to CICS
bit.listserv.candle-1 Information on Candle Corporation products
bit.listserv.dasig Database administration special interest group
bit.listserv.db2-1 Information pertaining to DB2
bit.listserv.ibm-main IBM mainframe newsgroup
bit.listserv.power-1 Information pertaining to RS/6000 computers
bit.listserv.sqlinfo Information pertaining to SQL/DS (DB2 for VSE and VM)

The DB2 Mailing List
The DB2 mailing list is hosted by RYC, Inc. It can be subscribed to by sending a message to the
subscription address, LISTSERV@RYCI.COM. The message should read as follows:
SUBSCRIBE DB2-L

Note Because the subscription address begins with LISTSERV, the DB2 mailing list is
sometimes referred to as the DB2 Listserv, or list server. LISTSERV is also the

 - 341 -

name of the software that manages the mailing list on the server machine.

After issuing the preceding command, the list server will send you a message asking you to confirm the
subscription. Upon doing so, information will quickly begin flowing into your email box (perhaps at a
much quicker rate than you can reasonably digest). Literally hundreds of messages may be sent to you
every week.

To sign off of the newsgroup, send the following message to the same subscription address:
SIGNOFF DB2-L

In addition to a subscription address, mailing lists also have a posting address. This is the address to
which mailing list posts must be sent. Never send subscription requests to the list's posting address.
Correspondingly, never send a post to the subscription address.
The posting address for the DB2-L mailing list is DB2-L@RYCI.COM. When a message is sent to this
address, it will automatically be forwarded to everyone currently subscribed to the list.
Up-to-date information on the DB2-L mailing list always can be accessed on the Web at
http://jupiter.ryci.com/cgi/wa.exe.

Use this URL to access the archive of past DB2-L postings.
Note Another mailing list that contains useful DB2 and OS/390 information is the IBM

mainframe mailing list, known as IBM-MAIN. The email address to subscribe to
the mainframe list is LISTSERV@BAMA.UA.EDU. To post messages, use the
following email address: IBM-MAIN@BAMA.UA.EDU.

DB2 Information on the Web
There are many Web pages providing useful DB2 information. Foremost, of course, is IBM's Web site.
The DB2 for OS/390 Web page contains a plethora of useful information, and you should most definitely
bookmark this page for future reference. (See Figure 15.4.) From this page, you will be able to access
release information, technical information, DB2 manuals, and add-on product information.

Figure 15.4: The IBM DB2 for OS/390 page (http://www.software.ibm.com/data/db2/os390).

Another useful IBM site is the redbook site. IBM's International Technical Support Organization (ITSO)
publishes many books on technical topics. The IBM ITSO redbook site can be accessed at
http://www.redbooks.ibm.com/redbooks.

The redbook site provides a searchable online catalog and the ability to order redbooks directly from
IBM over the Web.

Three other Web sites that you should visit and bookmark are Ron Rabe's DB2 Info site, Eric Loriaux's
MVS site, and the JED-SP S/390 site. Refer to Figures 15.5, 15.6, and 15.7. These sites contain pages
of links to other related sites and are very useful.

 - 342 -

Figure 15.5: Ron Rabe's DB2 reference page (http://www.webcom.com/~raberd/db2info.html).

Figure 15.6: Eric Loriaux's MVS site (http://www.ping.be/~ping1475).

Figure 15.7: The JED-SP S/390 home page (http://www.jedsp.com/s390).

Many DB2 experts and consultants have their own Web sites that contain useful tips, tricks, and
techniques, as well as their speaking schedules and copies of their presentations. One of the best of
these sites is Richard Yevich's RYC, Inc., site. (See Figure 15.8.)

 - 343 -

Figure 15.8: The RYC, Inc. site (http://www.ryci.com).

Several of the many DB2 user groups also have Web sites. These sites contain many useful DB2
resources, such as meeting schedules, newsletters, DB2 tips, and presentations. The IDUG Web site
(see Figure 15.9) is one that every DB2 professional should visit regularly. It contains information on
upcoming conferences, as well as an online version of its DB2-related magazine, IDUG Solutions
Journal.

Figure 15.9: The International DB2 user group site (http://www.idug.org).

Another interesting site is provided by the U.K. DB2 Working Group (see Figure 15.10). This site
contains some useful DB2 shareware and informative hints and tips from DB2 experts.

Figure 15.10: The GSE U.K. DB2 Working Group site (http://www.gseukdb2.org.uk).

Another Web site worth reviewing on a regular basis is the DB2 Magazine site (see Figure 15.11). DB2
Magazine is published quarterly and the publisher makes the contents of each issue available online.
Articles from past issues are available as well. IBM is a sponsor of DB2 Magazine, but it is
independently published by Miller Freeman, so the content is usually up-to-date, technically accurate,
and mostly non-biased.

 - 344 -

Figure 15.11: DB2 Magazine online site (http://www.db2mag.com).

Finally, most of the third-party DB2 tool vendors also have Web sites. For an example, see Figure
15.12. In addition to information about their products, vendor sites often provide useful DB2 information
such as tips, white papers, and newsletters. Refer to Chapter 37, "Components of a Total DB2
Solution," for information on DB2 third-party tool vendors and their Web addresses.

Figure 15.12: The BMC software site (http://www.bmc.com).

Internet Guidelines
The following helpful guidelines can make your search for DB2 information on the Internet easier and
more rewarding.

Newsgroups Versus Mailing Lists

A newsgroup can only be viewed using news reader software. You only need to point and click with
most news readers to view the contents of a newsgroup. A mailing list is an email server. Notes are
automatically forwarded to everyone on the distribution list. All you have to do is read your email to
access the information.

When a mailing list is mirrored to a newsgroup, use the newsgroup instead of the mailing list. Managing
hundreds of emails from multiple mailing lists can be difficult. When the email is mixed in with other
email messages in your inbox, it is difficult to keep up-to-date with the mailings. However, you can use a
news reader to read the newsgroup at your convenience. Interesting posts can be saved as text files.

Consider Digesting Mailing Lists

Many mailing lists offer the capability to accumulate messages and send them as one big email. This is
known as a digest. The benefit is that instead of receiving multiple daily messages from a mailing list,
only one daily digest is sent.

 - 345 -

To request digesting, simply send an email to the subscription address requesting a digest. The digest
request must be made after you have successfully subscribed to the mailing list.
For the DB2 mailing list, send the following message to the subscription address,
LISTSERV@RYCI.COM:
SET DB2-L DIGEST

The drawbacks to digests are that threads can be hard to follow, it is difficult to respond to messages,
and they can become quite large.

Read the Archives
Contributions sent to the DB2 mailing list are automatically archived. You can get a list of the available
archive files by sending the following command to LISTSERV@RYCI.COM:
INDEX DB2-L

The files returned can be ordered using the following command:
GET DB2-L LOGxxxx

If Privacy Is an Issue, Conceal Your Identity
It is possible for others to determine that you are signed up to the DB2 mailing list by using the review
command. This command sends the email address and name of all subscribers to the requester. To
block your name and address from appearing in this list, issue the following command:
SET DB2-L CONCEAL

Exercise Caution Before Using Information from the Internet

Because the Internet provides access to anyone with a computer and a modem, the information
received can be less than reliable. It is quite common to post a question and receive multiple conflicting
answers (usually, the answers range from "yes," to "no," to "maybe, if…," to "that question is not
appropriate for this newsgroup").

Always use common sense before trying any posted tip, trick, or technique that seems dangerous. It
probably is.

Avoid Cross-Posting

Cross-posting is the act of posting a single message to multiple newsgroups. Cross-posting is
considered impolite and should be avoided. When a post is sent to multiple newsgroups, the cross-
posted threads are difficult to read, usually off-topic, increase network traffic, and reduce the quality of
the newsgroup discussions.

Know and Use Emoticons

Emoticons are drawings composed of text characters that are meant to look like a face expressing an
emotion (hence the name emoticon). They are used on the Internet because it is difficult to convey
emotions using text-based media like email and newsgroups. The following are a couple of the most
popularly used emoticons:
:) a smile
;) a wink

Read the FAQs

FAQs (Frequently Asked Questions) are documents defining the focus of a newsgroup and answering
the basic questions that most new users always ask. Be sure to read the FAQ for any newsgroup before
posting to it. Unfortunately, the DB2 newsgroups do not have FAQs.
Use the Internet FAQ Consortium Web page (shown in Figure 15.13) to find Usenet FAQs.

 - 346 -

Figure 15.13: Internet FAQ Consortium (http://www.faqs.org).

Avoid Flames

Flames are posts that are hostile, rude, or otherwise confrontational. Just as these things are not proper
to do in person, they are improper on the Internet, as well. It is usually best to ignore flame messages.

Do Not Respond to Spams
The term spam is used to describe junk emails and postings that are off-topic, commercial, or otherwise
violate good taste. When you receive a spam, just ignore it. Posting a long, nasty response to the spam
back to the newsgroup or mailing list is just as inconsiderate as the original spam.

Basic Newsgroup Tips

Before reading and responding to Internet newsgroups, you should familiarize yourself with the Internet
in general, and each newsgroup specifically. The following tips will ensure that you effectively utilize
Internet newsgroups:

 Read the messages in the newsgroup for a period before posting. This will enable
you to understand the dynamics of the newsgroup, helping you to conform to its
structure.

 Never post an off-topic message; be sure that it contains information pertinent to the
newsgroup readers. Postings that are not relevant to the readers of the newsgroup
are a waste of effort, time, and money.

 Always quote appropriate portions of messages to which you are responding. Do not
quote the entire message if you are only responding to a portion of it.

 Even readers who might otherwise appreciate your message will be upset if it
appears in the wrong group. Also, make sure that the subject of the message is
accurate, descriptive, and specific to help readers decide whether to view it.

 Consider replying with an email message if the response is not useful to the entire
population of newsgroup readers.

 Keep messages as short and concise as possible. Do not post large files, graphics,
or otherwise annoying messages.

Use the List of Lists

There are nearly 30,000 public mailing lists available over the Internet. Of course, there are many more
private mailing lists that are not open for public enrollment. The List of Lists is a Web page that provides
a searchable list of Internet mailing lists. It can be accessed at the following URL:
http://catalog.com/vivian/interest-group-search.html.

Other resources for mailing list information are
http://www.webcom.com/impulse/list.html
ftp://rtfm.mit.edu/pub/usenet-by-group/news.lists/
http://www.neosoft.com/internet/paml/
http://www.tile.net/tile/listserv/index.html
http://www.lsoft.com/catalist.html

 - 347 -

Additionally, you can subscribe to a mailing list for information about new and updated mailing lists. This
is called the new-list and can be subscribed to by sending the following to
listserv@vm1.nodak.edu:
subscribe new-list Craig Mullins

Substitute your name where I specified Craig Mullins.

Develop a List of Bookmarks

When you find a Web page that has useful information, use the bookmarking feature of your Web
browser to record the URL for later use.

Use Search Engines on the Web

There is a wealth of information available over the WWW that will make the job of a database
developer, database analyst, system programmer, or DBA much easier. However, finding all of it can be
quite a task. A list of bookmarks, while useful, can be difficult to create and even more difficult to
maintain. Web sites are constantly moving, dying, and coming online. It is impossible for a bookmark file
(which is a static file containing links to other sites) to remain accurate for any length of time.
Instead of hunting and guessing for information resources, you can use a Web search engine instead.
There are quite a few search sites available, including Yahoo!, Excite, Lycos, Snap!, GoTo, and
AltaVista. These sites are designed to accept search keywords as input and return links to Web sites
that contain information related to the keywords. With a search engine, the user types in a word or
phrase (such as database or DB2). The response will be a listing of links to sites that match the search.
The AltaVista search engine is shown in Figure 15.14.

Figure 15.14: The AltaVista search engine site (http://www.altavista.com).

Summary
The Internet is infiltrating every aspect of information technology. DB2 is most definitely affected,
whether it be by accessing DB2 data over the Web or by spreading DB2 information using newsgroups,
mailing lists, and the WWW.
Now that you know how to develop DB2 application programs, how can you run them? DB2 programs
can be run in several environments. Each of these is explored in Part III, "DB2 In-Depth"—as you peek
behind the doors to DB2.

Part III: DB2 In-Depth
Chapter List

Chapter 16: The Doors to DB2
Chapter 17: Data Sharing
Chapter 18: DB2 Behind the Scenes
Chapter 19: The Optimizer
Chapter 20: The Table-Based Infrastructure of DB2
Chapter 21: Locking DB2 Data

 - 348 -

Part Overview
On the surface, DB2 looks simple. Pump in SQL, and DB2 throws back data. But for all
the external simplicity of DB2, at its heart is a complex network of intricate code and
communicating address spaces. How does all this stuff work?

Most people do not bother to find out. This is a pity. When programmers, analysts, and
DBAs have the additional knowledge of the inner workings of DB2, application
development is smoother, the code is more efficient, and problem resolution is faster.

So venture on, brave soul, and explore DB2 in depth.

Chapter 16: The Doors to DB2
Overview
You have learned how to embed SQL in application programs to access DB2 data, but you
have yet to explore the possibilities when executing these programs. When accessing DB2
data, an application program is not limited to a specific technological platform. You can
choose from the following environments when developing DB2 application systems
(depending on their availability at your shop): TSO, CICS, IMS/VS, CAF, and RRSAF. You
can think of each of these environments as a door that provides access to DB2 data. This
chapter covers the advantages and disadvantages of each of these environments. First, I will
discuss the basics of DB2 program execution that apply to all operating environments.
Each DB2 program must be connected to DB2 by an attachment facility, which is the
mechanism by which an environment is connected to a DB2 subsystem. Additionally, a thread
must be established for each embedded SQL program that is executing. A thread is a control
structure used by DB2 to communicate with an application program. The thread is used to
send requests to DB2, to send data from DB2 to the program, and to communicate (through
the SQLCA) the status of each SQL statement after it is executed. Every program must
communicate with DB2 by means of a thread (see Figure 16.1).

Figure 16.1: Programs access DB2 using threads.

Now you can explore the process of invoking a DB2 application program. First, the program is
initiated and the attachment facility appropriate for the environment in which the program is
running is called. Next, security is checked (external MVS security, internal environment
security, and DB2 security). Finally, upon execution of the first SQL statement in the program,
a thread is created.

 - 349 -

After the thread is established, DB2 loads the executable form of the appropriate plan from the
DB2 Directory, where it is physically stored as a skeleton cursor table (SKCT). If the plan is
composed of packages, DB2 loads the package table for the required packages into an area
of memory reserved for DB2 program execution; this area is called the Environmental
Descriptor Management Pool, or the EDM Pool. All DBDs required by the plan are also loaded
into the EDM Pool from the DB2 Directory when the thread is established. Simply put, when a
thread is created, DB2 performs the necessary housekeeping to ensure that the application
program operates successfully.
Now that you have an overall picture of the way that an application program communicates
with DB2, you can explore the processing environments. DB2 programs can be run in the
foreground (also called online) or in the background (also called batch).

Online applications are characterized by interaction with an end user through a terminal. Most
online applications display a screen that prompts the user for input, accept data from that
screen, process the data, and display another screen until the user decides to end the
session. Online programs are generally used to provide real-time update and query
capabilities or to enter transactions for future batch processing.

Batch applications are characterized by their lack of user interactions. A batch program is
typically submitted using JCL. It can accept parameters as input, but it does not rely on an end
user being present during its execution. Batch programs are generally used to perform mass
updates, to create reports, and to perform complex non-interactive processes.
Each environment provides different modes of operation, depending on whether the
application is online or batch. For an overview of which environment supports which mode,
consult Table 16.1.

Table 16.1: DB2 Processing Environments

Environment Batch Online

TSO Yes Yes

CICS No Yes

IMS Yes Yes

CAF Yes Yes[*]

RRSAF Yes Yes
[*]Only when used with TSO

The boldface words are entered by the user. The other words are system prompts returned by TSO or
the DSN command processor.
Rather than using the DSN command directly from a terminal, as just discussed, embedding the
execution of a DB2 program in a CLIST or REXX EXEC is more common. A TSO user can invoke the
CLIST or EXEC either directly by entering its name from ISPF option 6 or the TSO READY prompt, or
as a selection from an ISPF panel. Figure 16.3 shows a common configuration for an online, TSO,
ISPF-driven DB2 application.

 - 350 -

Figure 16.3: A typical ISPF online DB2 application.

Online TSO/DB2 Design Techniques
Programmers can follow two basic scenarios for developing online TSO programs that access DB2
data. Each scenario provides a different level of runtime efficiency and support for application
development. These two scenarios provide either fast application development or efficient performance.

Using the fast application development scenario enables programmers to make full use of the
development tools provided by TSO and ISPF. The normal processing flow for this scenario is a seven-
step process:

1. An ISPF menu appears, containing options for one or more TSO/DB2 application
programs.

2. The user selects an option for the DB2 application he or she wants to execute.
3. The option invokes a CLIST that issues the DSN command and the RUN

subcommand for the selected option.
4. The program displays a panel, engaging in a dialog with the user whereby data

can be entered, validated, and processed. The user selects an option or function
key on the panel to signal when he or she has finished.

5. The user can process multiple panels but only for the selected program.
6. When the user indicates that he or she has finished, the program ends and

control is returned to the CLIST. The CLIST immediately issues the DSN END
subcommand, which ends the connection to DB2.

7. The original menu is then displayed so that the user can select another option.
This scenario provides maximum programming flexibility using minimum system resources. It has two
drawbacks, however. Each time the user selects a menu option, a large amount of overhead is involved
to load and run the CLIST, invoke DSN, issue the RUN command, load the program module, and create
the thread. Also, each menu option consists of a single load module and plan. This scenario effectively
eliminates the capability to switch from program to program using ISPLINK because one program and
its associated plan accomplish one task.

The scenario to process a TSO application achieving efficient performance is a nine-step process:
1. An ISPF menu appears, containing an option for one or more TSO/DB2

application programs.
2. The user selects an option for the DB2 application he or she wants to execute.
3. The option invokes a CLIST that issues the DSN command and the RUN

subcommand for the selected option.
4. The program displays a menu from which the user can select the programs that

make up the TSO/DB2 application.
5. When a menu option is chosen, the program calls another program. (All programs

are linked into a single load module.)

 - 351 -

6. The called program displays a panel, engaging in a dialog with the users whereby
data can be entered, validated, and processed. The user selects an option or
function key on the panel to signal when he or she has finished.

7. The user can process multiple panels in the program. You also can provide
options to run other programs in the application based on user input or function
keys.

8. When the user indicates that he or she has finished, the control program
redisplays the menu. The user can then back out of the menu that causes the
CLIST to issue the DSN END subcommand, ending the connection to DB2.

9. The original ISPF menu is then displayed so that the user can select another
option.

When you develop applications using this scenario, overhead is reduced significantly. The CLIST is
loaded and executed only once, DSN is invoked only once, the program modules are loaded only once,
and a single thread is established once and used for the duration of the user's stay in the application.

This scenario has some drawbacks, however. The application can contain one potentially very large
program load module. Each time a program is modified, the entire module must be link-edited again.
This process uses a lot of CPU time. Also, application downtime is required because the application
must wait for the link-edit process to complete. In addition, more virtual storage is required to store the
program load module as it executes.

Additionally, you must take extra care when determining how to bind the application. For applications
developed on releases of DB2 prior to V2.3, a single large plan consisting of every DBRM in the
application was required. This scenario caused the same types of problems as a large program load
module:

 Extra CPU time was used for a bind.
 Application downtime was increased while waiting for the bind.
 More virtual storage is required to hold the plan in the EDM Pool as the program ran.

The better application design option is for each program DBRM to be bound to a single package. All the
packages are then included in the package list of a plan (either explicitly or using wildcards). This
scenario reduces bind time, thereby decreasing CPU time and application downtime waiting for the bind
to complete.
A final drawback to this scenario is that when the DSN command is used to run online TSO programs,
the thread is created when the first SQL call is made. When the program is composed of many
programs that call one another, a thread can be tied up for an inordinate amount of time.
When the application is invoked, the DSN command is issued, specifying the online application's load
module and the composite plan. The thread created for this program's execution remains active until the
program ends. One thread is used for each user of the TSO/DB2 application for the duration of its
execution.

TSO is not a transaction-driven system. Users can enter a TSO application and leave a terminal inactive
in the middle of the application, thus tying up a DB2 thread. That thread is not necessary when the user
is thinking about what to do next or has walked away from the terminal.

An alternative solution is to use the Call Attach Facility to control the activation and deactivation of
threads. This technique is addressed in the upcoming section on CAF.

DB2I and SPUFI
DB2I is a TSO-based DB2 application. It consists of a series of ISPF panels, programs, and CLISTs
enabling rapid access to DB2 services and data. Using DB2I can increase the TSO DB2 developer's
productivity. DB2I provides many features that can be exploited by the TSO user to query and
administer DB2 data. To access DB2I, follow this sequence:

1. Log on to TSO as you normally would.
2. If the logon procedure does not automatically place you into ISPF, enter ISPF.

The ISPF main menu appears.
3. Choose the DB2I option. This option most often is available directly from the main

ISPF menu. However, DB2I could be on a different ISPF menu (for example, a
System Services, Database Options, or User menu), or it could be accessible only
through a CLIST. (Consult your shop standards, if necessary, to determine the
correct method of accessing DB2I.)

 - 352 -

After you select the DB2I option, the main menu appears, as shown in Figure 16.4. This figure shows all
DB2I features, including those used for program preparation and execution, as discussed in Chapter 11,
"Program Preparation." Each DB2I option is discussed in the following sections.

Figure 16.4: The DB2I menu.

SPUFI Option
The first option in the DB2I main menu is SPUFI, or SQL Processor Using File Input. It reads SQL
statements contained as text in a sequential file, processes those statements, and places you in an
ISPF browse session to view the results. Figure 16.5 shows the SPUFI panel.

Figure 16.5: The DB2I SPUFI panel.

By specifying an input and output data set and selecting the appropriate options, you can execute SQL
statements in an online mode. The SPUFI options follow:

Change Defaults When Y is specified, the SPUFI defaults panel appears, as shown in
Figure 16.6.

Edit Input When Y is specified, SPUFI places you in an ISPF edit session for the
input data set. This way, you can change the input SQL before its
execution. Never specify N in this field. When you want to bypass
editing your input file, place an asterisk (*) in this field; DB2I bypasses
the edit step but resets the field to its previous value the next time
SPUFI is invoked. If you use N and you forget to change the field back
to Y, your next invocation of SPUFI executes SQL without allowing you
to edit your SQL.

Execute When Y is specified, the SQL in the input file is read and executed.

Autocommit When Y is specified, a COMMIT is issued automatically after the
successful execution of the SQL in the input file. When you specify N,
SPUFI prompts you about whether a COMMIT should be issued. If the
COMMIT is not issued, all changes are rolled back.

Browse Output When Y is specified, SPUFI places you in an ISPF browse session for
the output data set. You can view the results of the SQL that was

 - 353 -

executed.

Figure 16.6: The DB2I SPUFI Defaults panel.

Specifying Y for all these options except Change Defaults is common. Typically, defaults are changed
only once—the first time someone uses SPUFI. ISPF saves the defaults entered from session to
session. Use these options—as you see fit—to control your SPUFI executions. The defaults panel is
shown in Figure 16.6.

The SPUFI input data set can contain multiple SQL statements, as long as they are separated by
semicolons. For example, you could successfully code the following statements in a SPUFI input data
set:
--
-- THIS SQL STATEMENT WILL SELECT ALL ROWS OF THE
-- SAMPLE TABLE, DSN8610.DEPT
 SELECT * FROM DSN8610.DEPT;
--
-- THIS SQL STATEMENT WILL SET THE SALARY FOR ALL EMPLOYEES
-- WITH THE LAST NAME OF 'KWAN' TO ZERO
 UPDATE DSN8610.EMP
 SET SALARY = 0
 WHERE LASTNAME = 'KWAN';
--
-- THIS SQL STATEMENT WILL ROLL BACK THE CHANGES MADE BY
-- THE PREVIOUS SQL STATEMENT
 ROLLBACK;

This sample input for the SPUFI processor contains three SQL statements. Each SQL statement is
separated from the others by the semicolon that terminates each statement. Comments are preceded
by two hyphens. When the SQL is executed and browsed, an output data set like the following appears:
--------+--------+--------+--------+--------+--------+-
-- THIS SQL STATEMENT WILL SELECT ALL ROWS OF THE
-- SAMPLE TABLE, DSN8610.DEPT
 SELECT * FROM DSN8610.DEPT;
--------+--------+--------+--------+--------+--------+-
DEPTNO DEPTNAME MGRNO ADMRDEPT
--------+--------+--------+--------+--------+--------+-
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00

 - 354 -

C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------- A00
E01 SUPPORT SERVICES 000050 A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E11 OPERATIONS 000090 E01
E21 SOFTWARE SUPPORT 000010 E01
DSNE610I NUMBER OF ROWS DISPLAYED IS 9
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
--------+--------+--------+--------+--------+--------+-
--
--THIS SQL STATEMENT WILL SET THE SALARY FOR ALL EMPLOYEES
--WITH THE LAST NAME OF 'KWAN' TO ZERO
 UPDATE DSN8610.EMP
 SET SALARY = 0
 WHERE LASTNAME = 'KWAN';
--------+--------+--------+--------+--------+--------+-
DSNE615I NUMBER OF ROWS AFFECTED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
--------+--------+--------+--------+--------+--------+-
--
-- THIS SQL STATEMENT WILL ROLL BACK THE CHANGES MADE BY
-- THE PREVIOUS SQL STATEMENT
 ROLLBACK;
--------+--------+--------+--------+--------+--------+-
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
--------+--------+--------+--------+--------+--------+-
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
--------+--------+--------+--------+--------+--------+-
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 3
DSNE621I NUMBER OF INPUT RECORDS READ IS 17
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 48

The data set used for input of SQL must be allocated before invoking SPUFI. The data set can be
empty and can be edited as part of the SPUFI session. It is recommended that each SPUFI user
maintain a partitioned data set containing his or her SPUFI input. This way, users can keep and
reference frequently used SQL statements. The SPUFI input data set should be defined as a fixed,
blocked data set with an LRECL of 80. You can write SQL statements in all but the last 8 bytes of each
input record; this area is reserved for sequence numbers.

You do not need to allocate the output data set before using SPUFI. If the output data set does not
exist, SPUFI creates a virtual, blocked sequential data set with an LRECL of 4092.
Set the proper SPUFI defaults. (Refer to Figure 16.6.) You can set these defaults the first time you use
SPUFI and then bypass them on subsequent SPUFI runs. Be sure to specify the following defaults:

Isolation Level Always set this option to CS. If you require an Isolation Level of
RR, you probably should be accessing the data programmatically
rather than with SPUFI.

 - 355 -

Max Select Lines Set to an appropriate number. If you will be selecting from large
tables that return more than 250 rows, the installation default
value of 250 is insufficient. SPUFI stops returning rows after
reaching the specified limit, and it issues a message indicating
so.

The other default values are appropriate for most situations.

DCLGEN Option
The DCLGEN option in the DB2I main menu automatically produces a data set containing a DECLARE
TABLE statement and valid WORKING-STORAGE host variables for a given DB2 table. You can
include the data set in a COBOL program to enable embedded SQL access. See Chapter 11 for more
details on DCLGEN.

Program Preparation Option
The Program Preparation option in the DB2I main menu prepares a program containing embedded SQL
for execution. See Chapter 11 for more details on DB2 program preparation.

Precompile Option
Precompile is the fourth option on the DB2I main menu. In precompilation, a program containing
embedded SQL is parsed to retrieve all SQL and replace it with calls to a runtime interface to DB2. See
Chapter 11 for more details on precompiling a DB2 program.

Bind/Rebind/Free Option
When you select Option 5 of the DB2I menu, the Bind/Rebind/Free menu shown in Figure 16.7 appears.

Figure 16.7: The DB2I Bind/Rebind/Free menu.

Option 1 on this menu provides the capability to bind a DB2 plan, and option 4 binds a package. These
options are discussed fully in Chapter 11.
The second option is Rebind Plan. When you choose this option, the panel in Figure 16.8 appears. A
plan can be rebound, thereby rechecking syntax, reestablishing access paths, and in general, redoing
the bind. However, rebind does not enable you to add a DBRM to the plan. In addition, if any of the
rebind parameters are not specified, they default to the options specified at bind time, not to the
traditional bind defaults. Rebind is particularly useful for determining new access paths after running the
RUNSTATS utility.

 - 356 -

Figure 16.8: The DB2I Rebind Plan panel.

Option 5 provides the capability to rebind a package. You rebind packages in much the same way you
rebind plans. Figure 16.9 shows the Rebind Package panel.

Figure 16.9: The DB2I Rebind Package panel.

There is a significant amount of confusion about the difference between the REBIND command and the
BIND REPLACE command. A REBIND simply reevaluates access paths for the DBRMs currently in a
plan (or the single DBRM in a package). BIND REPLACE, on the other hand, replaces all the DBRMs in
the plan. So, if you must use a different DBRM, BIND REPLACE is your only option. If you must simply
change access path selections based on current statistics, REBIND will do the trick.
On the Bind/Rebind/Free menu, Option 3, Free Plan, and Option 6, Free Package, enable you to
remove plans and packages from the system. Figure 16.10 shows the Free Plan panel, and Figure
16.11 shows the Free Package panel. You simply specify the names of the plans or packages to
remove from the system, and they are freed.

Figure 16.10: The DB2I Free Plan panel.

 - 357 -

Figure 16.11: The DB2I Free Package panel.

Packages and plans you no longer use should be freed from the DB2 subsystem. Doing so frees DB2
Directory and DB2 Catalog pages for use by other packages and plans.

Caution Never issue the FREE (*) command. This command drops every plan in the
DB2 subsystem, which is probably not your intention. Additionally, a large
amount of resources is used to execute this command.

Run Option
The sixth DB2I option enables you to run a DB2 application program. The Run option is rarely used.
More often, foreground DB2 programs are invoked by CLISTs, REXX EXECs, or ISPF panels, and
background DB2 programs are invoked through preexisting batch JCL. When you select this option, the
Run panel appears, as shown in Figure 16.12. You simply specify the load library data set (including the
member name) for the program to be run, along with any necessary parameters, the appropriate plan
name, and a WHERE TO RUN option. The three WHERE TO RUN options follow:

Figure 16.12: The DB2I Run panel.

FOREGROUND The program is run to completion, tying up the terminal from which
the run was submitted for the duration of the program's run.

BACKGROUND JCL is automatically built to run the program and is submitted in
batch for processing.

EDITJCL JCL is automatically built and displayed for you. You have the option
of editing the JCL. You then can submit the JCL.

DB2 Commands Option
When you select DB2I option 7, DB2 Commands, the panel in Figure 16.13 appears, enabling you to
submit DB2 commands using TSO. For example, the command shown in Figure 16.12 displays the
status of the sample database, DSN8D51A. In-depth coverage of DB2 commands is included in Part VI.

 - 358 -

Figure 16.13: The DB2I Commands panel.

Utilities Option
DB2I also provides panels that ease the administrative burdens of DB2 utility processing. Using option 8
of DB2I, the Utilities option, you can generate utility JCL, submit the utility JCL, display the status of
utilities, and terminate utilities using a panel-driven interface. For a complete discussion of the DB2
utilities and the use of DB2I to control DB2 utility processing, consult Part VI.

DB2I Defaults Option
The defaults panel, DB2I option D, lets you modify parameters that control the operation of DB2I. (Refer
to Figure 16.14.) Be sure that the proper DB2 subsystem is specified in the DB2 Name parameter. If
your production DB2 subsystem runs on the same central electronic complex as your test DB2
subsystem, disaster can result if the name is not coded properly. Also be sure that you supply the
proper language to be used for preparing DB2 programs in the Application Language parameter and a
valid job card for your shop in the DB2I Job Statement parameter. A second default panel (such as the
one shown in Figure 16.15) can be displayed for language defaults based on the Application Language
chosen.

Figure 16.14: The DB2I Defaults panel.

 - 359 -

Figure 16.15: The DB2I Defaults panel #2: COBOL Defaults.

QMF
IBM's Query Management Facility, or QMF, is an interactive query tool used to produce formatted query
output. QMF enables you to submit SQL queries dynamically, much like DB2I's SPUFI facility. QMF
goes much further, however. Using a mechanism called a QMF form, you can format the results of your
SQL queries into professional-looking reports.
To depict the basics of QMF, assume that you must produce a formatted report of all employees in the
company. You invoke QMF, generally by choosing an option from the ISPF main menu. The QMF
Home panel then appears, as shown in Figure 16.16. Notice the numbered options along the bottom
portion of the screen. These numbers correspond to QMF functions that you can invoke by pressing the
function key for the number indicated. For example, press F1 to request the first function, Help.

Figure 16.16: The QMF Home panel.

You can use three basic QMF objects to produce formatted reports of DB2 data: queries, forms, and
procs. You begin by creating a query. Press F6 to navigate to the QMF Query panel, which is initially
blank.
You will produce an employee report, so type the following statement at the COMMAND prompt:
COMMAND ===> DRAW SYSIBM.SYSPLAN
The panel shown in Figure 16.17 then appears.

 - 360 -

Figure 16.17: The QMF Query panel.

To run this query, press F2. Doing so produces the report shown in Figure 16.18. You can print this
report using F4 or format it using F9. When you press F9, the report form appears, as shown in Figure
16.19. A default form is generated for each query when it is run.

Figure 16.18: The QMF Report panel.

Figure 16.19: The QMF Form panel.

You can use a QMF Form to produce a formatted report for the query output. QMF Forms enable you to
perform the following:

 Code a different column heading
 Specify control breaks
 Code control-break heading and footing text
 Specify edit codes to transform column data (for example, suppress leading zeroes

or display a currency symbol)
 Compute averages, percentages, standard deviations, and totals for specific columns
 Display summary results across a row, suppressing the supporting detail rows
 Omit columns in the query from the report

 - 361 -

You can see how QMF gives you a great deal of power for creating quick, formatted reports from simple
SQL queries.

The third QMF object, the QMF Proc, is another important feature of QMF. A QMF query can contain
only one SQL statement. Contrast this capability with SPUFI, which can contain multiple SQL
statements as long as they are separated by a semicolon.
To execute multiple SQL statements at one time, you use a QMF Proc. QMF Procs contain QMF
commands that are tied together and executed serially. For an example, see Figure 16.20. This QMF
Proc runs one query, prints the results, and then runs another query and prints its results. You can
string together as many run statements as necessary and store them as a QMF Proc.

Figure 16.20: The QMF Proc panel.

Using QMF is a quick way to produce high-quality professional reports. Following is a typical QMF
user's session, shown also in Figure 16.21. If you type a single SQL statement and press a few function
keys, an end-user report is generated.

Figure 16.21: A typical QMF session.

1. Enter QMF, and the QMF Home panel appears.
2. Press F6 to display the QMF Query panel. Code the SQL SELECT statement.
3. Press F2 to display the QMF Report panel. Execute the SQL statement to

produce the report.
4. Press F9 to display the QMF Form panel. Modify the report parameters and

headings as necessary.
5. Press F12 to display the QMF Report panel. Print the final formatted report.

Because this section provides only a quick introduction to QMF, you can consult the IBM QMF manuals
listed in Appendix E, "DB2 Manuals," for additional guidance.

Other TSO-Based DB2 Tools
A host of vendor-supplied tools use TSO as their execution environment. In addition to QMF, IBM
provides other tools with a TSO interface such as DB2-PM. Additionally, most of the third-party tools for
DB2 database administration, analysis, and development are TSO-based. A comprehensive list of DB2

 - 362 -

tool vendors and the types of tools available is provided in Chapter 37, "Components of a Total DB2
Solution."

TSO Guidelines
When utilizing DB2 in conjunction with TSO, the following guidelines should be used to ensure effective
usage of DB2 and TSO.

Create MVS Performance Groups for DB2 Users

To ensure fast TSO response time, create separate MVS performance groups for TSO users who will
access DB2 applications. TSO is generally associated with three periods, designated here as period1,
period2, and period3. These periods dictate the amount of MVS resources assigned to a TSO user.
Period1 provides more resources than period2, which in turn provides more resources than period3. As
TSO users run DB2 applications, their address space is moved from an initial period to lower periods as
resources are used. As the address space is moved lower, the TSO response time becomes slower.

For DB2 and QMF users, you can create TSO performance groups with higher levels of resources in
period1 and period2. Also, you can prevent the lowering of their TSO sessions to period3. This way, you
can provide an optimal environment for high-priority TSO/DB2 applications.

Integrate All Resources into the DB2 Unit of Work When Using TSO
When COMMIT processing is performed in online, TSO-based applications, DB2 controls the
committing of its resources. The commit and recovery of any other resources, such as sequential input
and output files, must be controlled through a program. This is in contrast to the other online
environments, which control commit processing by commands native to the environment.
COMMIT processing in batch TSO/DB2 programs should follow the guidelines presented in Part II.
COMMIT Frequently in TSO/DB2 Applications

Online TSO/DB2 applications are subject to more frequent deadlocks and timeouts than DB2
applications using other transaction-oriented online environments. For this reason, you should commit
more frequently in an online TSO/DB2 application than in DB2 applications running in other
environments. Consider committing updates every row or two, rather than after a full screen.
Committing might affect the efficiency of the application and should be handled on a program-by-
program basis. Failure to commit frequently, however, can result in an unusable application because of
lock contention.

Use ISPF Panels to Validate Screen Input

To perform validation checking, use the native functionality of ISPF rather than code validation routines.
When ISPF performs the checking, the data is validated before it is processed by the application. This
approach can reduce the overhead of loading the program and allocating the thread and other overhead
related to program execution.

In addition, error checking is handled by the ISPF routines rather than by the application code. Code
provided by the system is generally more error free than functionally equivalent application code.
Finally, if you use the validation facilities of ISPF, you can greatly reduce the time it takes to develop
TSO/DB2 applications.

Avoid TSO in Performance-Critical Applications

As a development platform for DB2-based applications, TSO is limited in its functionality and efficiency.
You should follow these basic rules when deciding whether to use TSO as your online monitor. Do not
choose TSO as the development platform for an online DB2-based application if you need subsecond
response time or if more than 10 users will be accessing the application concurrently. However, you
should choose TSO if you need an environment that speeds up the application development cycle. TSO
provides a rich set of tools for developing and testing programs and ISPF screens.

Use ISPF Tables
Consider copying a DB2 table that must be browsed to an ISPF table at the beginning of the program
and processing from the ISPF table instead of the DB2 table. This way, you can dramatically increase
performance when an online TSO/DB2 program must continually reopen a cursor with an ORDER BY

 - 363 -

due to COMMIT processing. Instead, the ISPF table can be created from a cursor, sorted appropriately,
and COMMIT processing will not cause the program to lose cursor positioning on the ISPF table.

However, you must consider the update implications of using an ISPF table when programming and
executing programs using this technique. Updates made to the DB2 table by other users are not made
to the ISPF table because it is a copy of the DB2 table for your program's use only. These updates can
cause two problems.

One, updates made by other programs might be bypassed rather than processed by the program using
the ISPF table. For example, if another program updates data and an ISPF table-driven program
generates reports, the report might not contain the most current data.

Another potential problem is that the program using the ISPF table might make incorrect updates. For
example, if the program reads the ISPF table and then updates the DB2 table, the following scenario
could result:

Program 1 Time Program
2

Copy EMP table 1

to ISPF table 2

 3 Update
Emp
000010

 4 Commit

Read ISPF table 5 Update
Emp
000020

Update Emp 000010 6 Commit

Read ISPF table 7

Update Emp 000020 8 And so
on

At time 1, Program 1 begins executing. It copies the EMP table to the ISPF table before Program 2
begins. At time 3, Program 2 begins executing, serially processing employees and adding 100 to each
employee's bonus. After Program 1 copies the entire EMP table, it begins giving all employees in
department B01 a 10-percent raise in their bonus.

You can see how the employees in department B01 will be disappointed when their bonus paycheck
arrives. Program 2 adds 100, but Program 1, unaware of the additional 100, adds 10 percent to the old
bonus amount. Consider employee 000020, who works in department B01. He starts with a bonus of
$800. Program 2 adds 100, making his bonus $900. Then Program 1 processes employee 000020,
setting his bonus to 800x1.10, or $880. Instead of a $990 bonus, he receives only $880.

Avoid Running Batch Programs in TSO Foreground
A DB2 program developed to run as a batch program (that is, with no user interaction while the program
is running) can be run in the TSO foreground using the DSN command processor, but doing so is not
recommended. Running a DB2 batch program in this manner needlessly ties up a user's TSO session
and, more important, consumes a valuable foreground thread that could be used for true online
processing. (Remember that the IDFORE DSNZPARM value limits the number of foreground threads
available for use.)
Use IKJEFT1B
You must use the TSO Terminal Monitor Program (TMP) to invoke the DSN command and run a DB2
application program in batch mode. The generic program name is IKJEFT01. However, system errors
and user abends are not honored by IKJEFT01, making it difficult to perform error checking in
subsequent JCL steps. To rectify this problem, you can use IKJEFT1B instead of IKJEFT01. IKJEFT1B
is an alternate entry point to the TSO TMP.
If an ABEND occurs and you are using IKJEFT01, the result will be a dump of TSO and the ABEND
code will not be passed to the next step of your job. This is probably not the results you are looking for.

 - 364 -

The use of IKJEFT1B will give the same results as a standard MVS batch job because IKJEFT1B
passes non-zero return codes through to JES where they can be checked in the JCL job stream.

CICS (Customer Information Control System)
The second of the four "doors to DB2" is CICS (Customer Information Control System). CICS is a
teleprocessing monitor that enables programmers to develop online, transaction-based programs. By
means of BMS (Basic Mapping Support) and the data communications facilities of CICS, programs can
display formatted data on screens and receive formatted data from users for further processing. A
typical scenario for the execution of a CICS transaction follows:

1. The operator enters data on a terminal, including a transaction ID, and presses
Enter. The data can simply be a transaction ID entered by the operator or a
formatted BMS screen with the transaction ID.

2. CICS reads the data into the terminal I/O area, and a task is created.
3. CICS checks that the transaction ID is valid.
4. If the program for this transaction is not in main storage, the program is loaded.
5. The task is placed into the queue, waiting to be dispatched.
6. When the task is dispatched, the appropriate application program is run.
7. The program requests BMS to read data from the terminal.
8. BMS reads the data, and the program processes it.
9. The program requests BMS to display the data to a terminal.
10. BMS displays the data.
11. The task is terminated.

When DB2 data is accessed using CICS, multiple threads can be active simultaneously, giving multiple
users concurrent access to a DB2 subsystem of a single CICS region. Contrast this functionality with
the TSO environment, in which only one thread can be active for any given TSO address space.
A mechanism named the CICS Attach Facility connects CICS with DB2. Using the CICS Attach Facility,
you can connect each CICS region to only one DB2 subsystem at a time. You can connect each DB2
subsystem, however, to more than one CICS region at one time, as you can see in Figure 16.22.

Figure 16.22: CICS region to DB2 subsystem relationship.

DB2 provides services to CICS via MVS TCBs. All of these TCBs reside in the CICS address space and
perform cross-memory instructions to execute the SQL code in the DB2 database services address
space (DSNDBM1). Before you delve too deeply into the specifics of the CICS Attach Facility, you
should explore the basics of CICS further.

CICS Terminology and Operation
To fully understand the manner in which CICS controls the execution of an application program, you
must first understand the relationships among tasks, transactions, and programs. These three terms
define separate entities that function together, under the control of CICS, to create an online processing
environment.
A task is simply a unit of work scheduled by the operating system. CICS, a batch job, DB2, and TSO are
examples of tasks. CICS, however, can schedule tasks under its control, much like the way an
operating system schedules tasks. A CICS task, therefore, is a unit of work, composed of one or more
programs, scheduled by CICS.

 - 365 -

The purpose of a transaction is to initiate a task. A transaction is initiated by a 1- to 4-byte identifier that
is defined to CICS through a control table. Generally, a one-to-one correspondence exists between
CICS transactions and CICS tasks, but one transaction can initiate more than one task.
Finally, a program is an organized set of instructions that accomplishes an objective in a given unit of
work. A CICS program can perform one or many CICS tasks.

CICS Tables
CICS uses tables, usually maintained by a systems programmer, to administer its online environment.
These tables control the availability of CICS resources and direct CICS to operate in specific ways.
Based on the values registered in these tables, CICS can be customized for each user site. The major
tables that affect CICS/DB2 application programs are outlined in the subsections that follow.

PPT (Processing Program Table)
CICS programs and BMS maps must be registered in the PPT (Processing Program Table). If the
program or map has not been recorded in the PPT, CICS cannot execute the program or use the map.
This is true for all CICS programs, including those with embedded SQL. For programs, the name
recorded in the PPT must be the name of the program load module as it appears in the load library.

PCT (Program Control Table)
The PCT (Program Control Table) is used to register CICS transactions. CICS reads this table to
identify and initialize transactions. Therefore, all transactions must be registered in the PCT before they
can be initiated in CICS.

FCT (File Control Table)
Every file that will be read from or written to using CICS operations must be registered in the FCT (File
Control Table). This requirement does not apply to DB2 tables, however. The underlying VSAM data
sets for DB2 tablespaces and indexes do not need to be registered in the FCT before CICS/DB2
programs read from them. DB2 data access is accomplished through SQL, and the DB2 subsystem
performs the I/O necessary to access the data in DB2 data sets. A CICS/DB2 program that reads any
file using conventional methods (that is, non-SQL), however, must ensure that the file has been
registered in the FCT before accessing its data.

RCT (Resource Control Table)
When a DB2 program will be run under CICS, an additional table called the RCT (Resource Control
Table) must be populated. The RCT applies only to CICS transactions that access DB2 data; it defines
the manner in which DB2 resources will be used by CICS transactions. In particular, the RCT defines a
plan for each transaction that can access DB2. Additionally, it defines parameters detailing the number
and type of threads available for application plans and the DB2 command processor. You can find more
details about RCT and its parameters in "The RCT Parameters" section, later in this chapter.

Other Tables
Other tables used by CICS control resource security, terminal definitions, logging and journaling, and
the automatic invocation of program at CICS startup. A discussion of these tables is beyond the scope
of this book.

CICS/DB2 Program Preparation
Another consideration when you're using CICS is the program preparation process. When CICS
programs are prepared for execution, a step is added to the process to prepare the embedded CICS
commands: the execution of the CICS command language translator, (see Figure 16.23). You can think
of the CICS command language translator as a precompiler for CICS commands. The CICS command
language translator comments out the code embedded between EXEC CICS and END-EXEC and
replaces it with standard COBOL CALL statements.

 - 366 -

Figure 16.23: CICS/DB2 program preparation.

The rest of the program preparation procedure is essentially unchanged. One notable exception is that
you must link the CICS language interface (DSNCLI), rather than the TSO language interface (DSNELI),
to the load module.

When embedded CICS commands are encountered, the DB2 precompiler bypasses them, but the CICS
command language translator returns warning messages. Thus, you might want to run the DB2
precompiler before running the CICS command language translator. Functionally, which precompiler is
run first does not matter. Running the DB2 precompiler first, however, eliminates a host of unwanted
messages and speeds up program preparation somewhat because the CICS command language
translator needs to perform less work.

CICS Attach Facility
As mentioned, CICS must be attached to DB2 before any transaction can access DB2 data. This is
accomplished with the CICS Attach Facility. Figure 16.24 depicts the basic operation of the CICS Attach
Facility.

Figure 16.24: The CICS Attach Facility.

The CICS Attach Facility provides support for multiple transactions using multiple threads to access
data in a single DB2 subsystem. CICS transactions requiring DB2 resources are routed to DB2 by
DSNCLI each time an SQL statement is encountered. The routing is accomplished using the

 - 367 -

functionality of the CICS Task Related User Exit (TRUE). The TRUE formats the request for DB2 data
and passes it to the CICS Attach Facility, which creates a new thread or reuses an existing one.

The following activities occur when a thread is created:
1. A DB2 sign-on is initiated, whereby the authorization ID identifying the user of the

thread is established based on a parameter specified in the RCT.
2. A DB2 accounting record is written.
3. Authorization is checked for the user.
4. The executable form of the plan is loaded into memory as follows. The header

portion of the SKCT is loaded into the EDM Pool, if it is not already there. This
SKCT header is then copied to an executable form called a cursor table, which is
also placed in the EDM Pool. (These terms are fully defined in Chapter 20, "The
Table-Based Infrastructure of DB2.")

5. If VALIDATE(RUN) was specified at bind time for the plan, an incremental bind is
performed. Avoid incremental binds by specifying VALIDATE(BIND).

6. If ACQUIRE(ALLOCATE) was specified at bind time for the plan, the following
occurs. Locks are acquired for all tablespaces used by the plan, all DBDs are
loaded into memory (EDM Pool) referenced by the plan, and all data sets to be
used by the plan are opened, if they are not already open.

After the thread is created, the plan corresponding to the transaction being executed is allocated, and
the SQL statement is processed. When the request for DB2 resources is satisfied, the data is passed
back to the requesting CICS program through the TRUE. The thread is placed in an MVS-wait state until
it is needed again. When the next SQL statement is encountered, the CICS program repeats the entire
process except the thread creation because the thread has already been allocated and is waiting to be
used.
When the CICS task is terminated or a CICS SYNCPOINT is issued, the thread is terminated and the
following actions occur:

1. The CICS Attach Facility performs a two-phase commit, which synchronizes the
updates and commits made to all defined CICS resources (for example, IMS
databases, VSAM files, and sequential files) and DB2 tables. This process is
described in more detail in the "Two-Phase Commit" section, later in this chapter.

2. A DB2 accounting record is written.
3. Tablespace locks are released.
4. The executable form of the plan is freed from the EDM Pool.
5. Memory used for working storage is freed.
6. If CLOSE(YES) was specified for tablespaces or indexes used by the thread, the

underlying VSAM data sets are closed (provided no other resources are
accessing them).

The CICS Attach Facility is started using the DSNC STRT command, indicating the RCT to use.

The CICS attachment facility is provided on the CICS product tape starting with CICS V4. The CICS
attachment that shipped on the DB2 product tape is for versions of CICS prior to V4.
The CICS attachment facility programs are named like DSN2xxxx for CICS V4 and subsequent
releases; for prior versions of CICS the programs were named like DSNCxxxx.

Caution If you switch CICS attachment facilities due to moving to CICS V4, be sure to
check your CSD definitions, Program List Tables (PLTs), and CICS
application programs for references to all old attachment facility programs
named like DSNCxxxx, and change them to the new DSN2xxxx name.

Types of Threads
As I mentioned, you use the RCT to define the attachment of CICS and DB2. The RCT also assigns a
thread to each CICS/DB2 transaction. CICS transactions can use three types of threads to access DB2:
command threads, entry threads, and pool threads.
Command threads can be used only by the DSNC command processor. If no command threads are
available, pool threads are used.
Entry threads, also called dedicated threads, are associated with a single application plan. Multiple
transactions can be assigned to an entry thread grouping defined in the RCT, but each transaction must
use the same application plan. Subsequent CICS transactions that use the same application plan can
reuse entry threads. This can result in decreased runtime because you avoid the cost of establishing the
thread.

 - 368 -

You can define entry threads to be either protected or unprotected. A protected thread remains
available for a preset time, waiting for transactions that can reuse the thread to be run. An unprotected
thread is terminated upon completion unless another transaction is already waiting to use it.
Finally, if an entry thread is not available for a transaction's use, it may be diverted to the pool, where it
will utilize a pool thread. Any transaction specifically defined to the pool can use the pool threads. In
addition, you can define any transaction to be divertable. A divertable transaction is one defined to an
entry or command thread that, when no appropriate threads are available, will be diverted to use a pool
thread. A pool thread is not reusable and is always terminated when the transaction using it is finished.

You define command, entry, and pool threads by specifying the appropriate parameters in the RCT. The
following list summarizes the capabilities of the thread types:
COMD Used solely for DSNC commands.
ENTRY Used primarily for high-volume or high-priority transactions. Entry threads

can be protected, reused, or diverted to the pool.
POOL Used primarily for low-priority and low-volume transactions. Pool threads

cannot be protected and cannot be diverted. Very limited thread reuse is
available with pool threads (only when the first transaction in the queue
requests the same plan as the one used by the thread being released—a
rare occurrence indeed).

The RCT Parameters
The RCT defines the relationship environment between CICS transactions and DB2 plans. In essence,
it defines the working environment for CICS/DB2 applications.
Each CICS region can have only one RCT active at any time. Typically, the CICS or DB2 systems
programmer handles RCT changes, but application programmers, systems analysts, and DBAs should
understand what is contained in the RCT. A sample RCT is shown in Listing 16.2.

Listing 16.2: A sample Resource Control Table (RCT).

*

* DEFINE DEFAULTS IN INIT, A COMMAND MACRO, AND A POOL MACRO

*

 DSNCRCT TYPE=INIT,SUBID=DB2T,SUFFIX=1,SIGNID=XXXXXX, X

 THRDMAX=22,TOKENI=YES

 DSNCRCT TYPE=COMD,THRDM=2,THRDA=1,THRDS=1,TWAIT=POOL

 DSNCRCT TYPE=POOL,THRDM=4,THRDA=4,PLAN=POOLPLAN

*

* DEFINE AN ENTRY MACRO FOR PROTECTED THREADS

*

 DSNCRCT TYPE=ENTRY,TXID=TXN1,THRDM=4,THRDA=2, X

 THRDS=2,PLAN=TXN1PLAN,TWAIT=YES,AUTH=(TXID,*,*)

*

 - 369 -

* DEFINE AN ENTRY MACRO FOR HIGH-PRIORITY UNPROTECTED THREADS

*

 DSNCRCT TYPE=ENTRY,TXID=(TXN2,TXN3),THRDM=2,THRDA=2, X

 THRDS=0,PLAN=MULTPLAN,TWAIT=POOL,AUTH=(TXID,*,*)

*

* DEFINE AN ENTRY MACRO FOR LOW-PRIORITY UNPROTECTED THREADS

*

 DSNCRCT TYPE=ENTRY,TXID=TXN4,THRDM=1,THRDA=0, X

 THRDS=0,PLAN=TXN4PLAN,TWAIT=POOL,AUTH=(TXID,*,*)

*

* DEFINE AN ENTRY MACRO FOR A MENUING SYSTEM BOUND TO A

* SINGLE, LARGE PLAN

*

 DSNCRCT TYPE=ENTRY,TXID=(MENU,OPT1,OPT2,OPT3,OPT4), X

 THRDM=4,THRDA=4,THRDS=3,PLAN=APPLPLAN, X

 TWAIT=POOL,AUTH=(SIGNID,*,*)

*

* DEFINE AN ENTRY MACRO THAT WILL ABEND IF NO THREADS

* ARE AVAILABLE (TWAIT=NO)

*

 DSNCRCT TYPE=ENTRY,TXID=SAMP,THRDM=1,THRDA=1,THRDS=1, X

 PLAN=SAMPPLAN,TWAIT=NO,AUTH=(TXID,*,*)

*

* DEFINE AN ENTRY THREAD FOR DYNAMIC PLAN SELECTION

*

 DSNCRCT TYPE=ENTRY,TXID=TXNS,THRDM=1,THRDA=1, X

 PLNEXIT=YES,PLNPGME=DSNCUEXT,AUTH=(CONSTANT,*,*)

 DSNCRCT TYPE=FINAL

 END

 - 370 -

You can code five types of entries, known as macros, in the RCT. Each macro defines a portion of the
CICS-DB2 attachment. The valid RCT TYPE entries follow:
INIT Defines the basic parameters affecting the attachment of DB2 to CICS

and the setup of defaults for threads
COMD Defines the setup parameters for DSNC commands
ENTRY Defines the dedicated threads
POOL Defines the parameters for defining pool threads
FINAL Specifies that no more RCT entries follow

Consult Tables 16.2 through 16.6 for the parameters that you can code for the RCT INIT, COMD,
POOL, and ENTRY types of macros. No parameters are specified for the RCT FINAL macro.

Table 16.2: RCT INIT Macro Parameters
Parameter Default Valid

Valu
es

Description

 RCT INIT Macro
Parameters

DPMODI HIGH HIGH, EQ,
LOW

Specifies the
default for the
DPMODE
parameter if it is
not coded on
subsequent
ENTRY and
POOL macros.

ERRDEST (CSMT,*,*) Valid
transient Specifies

destinations data
destinations for
unsolicited
messages.

PCTEROP AEY9 AEY9, N906,
N906D Specifies the type

of processing to
occur following a
create thread
error.

PLANI Entry PLAN
or TXID

plan name Specifies the
default name of
any plan not using
dynamic plan
selection. If not
specified, the plan
name must be
specified in each
subsequent RCT
ENTRY macro;
otherwise, it will
default to the
transaction ID

PLNPGMI DSNCUEX
T - - - Specifies the

default value for
the PLNPGME
parameter if it is
not coded on

 - 371 -

subsequent
ENTRY and
POOL macros for
transactions using
the dynamic plan
selection.

PLNXTR1 193 1 to 200 Specifies the trace
ID for the dynamic
plan entry.

PLNXTR2 194 1 to 200 Specifies the trace
ID for the dynamic
plan exit.

PURGEC (0,30) (0,30) thru
(59,59) Specifies the

purge cycle for a
protected thread.
The first value
indicates minutes;
the second
indicates seconds.

ROLBI YES YES, NO Specifies the
default value for
the ROLBE
parameter if it is
not coded on
subsequent
ENTRY and
POOL macros.

SHDDEST CSSL Valid
transient Specifies a

destination data
destinations for
the statistical
report during
CICS shutdown.

SIGNID application
name of
CICS
subsystem

8-character
string

Specifies the
authorization ID
used by the CICS
Attach Facility
when signing on
to DB2.

SNAP A Valid SYSOU
T classes

Specifies the
SYSOUT class to
be used by the
CICS Attach
Facility for snap
dumps.

STANDBY ABEND ABEND,
SQLCODE

Indicates how the
CICS Attach
Facility will
respond to SQL
requests when it is
not connected to
DB2. ABEND
causes the
attachment to
disable the TRUE
when in stand by
mode (usually
results in AEY9

 - 372 -

abends);
SQLCODE
causes a -923 or -
924 SQLCODE to
be issued instead
of an ABEND.

STRTWT YES YES, NO,
AUTO

Specifies action to
be taken by the
CICS Attach
Facility during
startup if DB2 is
not operational.
YES directs the
CICS Attach
Facility to wait for
DB2 to come up
and then attach.
NO indicates that
the CICS Attach
Facility startup will
fail. AUTO
indicates that the
CICS Attach
Facility will be
automatically
restarted when
DB2 is stopped
and started.

SUBID DSN 4-character
DB2 ID Specifies the DB2

subsystem to
which this RCT
will be attached.

SUFFIX 0 1 byte Specifies an
identifier for the
RCT. It is the
identifier x, as
supplied in the
DSNC STRT x
command.

THRDMAX 12 Any integer Specifies the
absolute greater
than 4 maximum
number of threads
that can be
created by this
Attach Facility.

TRACEID 192 Any valid
CICS trace ID Specifies a userid

to be used by the
CICS Attach
Facility to be used
for tracing.

TWAITI YES YES, NO,
POOL

Specifies the
default for the
TWAIT parameter
if it is not coded
on subsequent
ENTRY and
POOL macros.

TOKENI NO YES, NO Specifies the

 - 373 -

default for the
TOKENE
parameter if it is
not coded on a
subsequent
ENTRY macro.

TXIDSO YES YES, NO Specifies whether
or not sign-ons
are to be
suppressed during
thread reuse for
pool threads and
threads with
multiple TXIDs.

Note The STANDBY option and the AUTO parameter of the
STARTWT option are available as of CICS Transaction
Server V1.1. You must specify STARTWT=AUTO to
specify STANDBY=SQLCODE.

Table 16.3: RCT COMD Macro Parameters
Parameter Default

Value
Valid
Valu
es

Description

 RCT COMD Macro
Parameters

AUTH (USER,TERM,
TXID)

Character
string,
GROUP, SIGN
ID,
TERM, TXID,
USER, USERI
D, * AUTH

Defines the authorization
scheme to be used for the
given transaction. As
many as three values can
be specified. The
attachment facility tries to
use them in the order
specified from left to right.
For the default values, it
first tries to use the CICS
sign-on ID, and then the
CICS transaction ID. For a
description of each AUTH
value, see Table 16.6.

ROLBE NO YES, NO Defines the action to be
taken if this transaction will
be the victim in the
resolution of a deadlock. If
YES is coded, a CICS
SYNCPOINT ROLLBACK
is issued and a -911
SQLCODE is returned to
the program. If NO is
coded, a CICS
SYNCPOINT ROLLBACK
is not issued and the
SQLCODE is set to -913.

THRDA 1 Positive
integer or zero

Defines the maximum
number of threads that
can be connected for the
transaction, group of
transactions, or pool.
When the limit is reached,
action is taken according
to the values coded in the
TWAIT parameter.

 - 374 -

THRDM 1 Positive
integer or zero

Defines the absolute
maximum number of
threads that can ever be
connected for the
transaction, group of
transactions, or the pool.
This number must be
equal to or greater than
the value of THRDA. If it is
greater than THRDA, you
can issue the DSNC
MODIFY TRANSACTION
command to change the
value of THRDA to a
greater value but not a
value greater than
THRDM.

THRDS 1 Positive
integer or zero

Specifies the number of
protected threads. The
value cannot exceed
THRDA or 99, whichever
is greater.

TWAIT YES YES, NO,
POOL*

Specifies the action to be
taken when a thread is
required but the limit
(THRDA) has been
reached. YES indicates
that the transaction should
wait until a thread is
available. NO causes the
transaction to abend.
POOL diverts the
transaction to the pool,
causing a pool thread to
be used.

TXID DSNC DSNC Specifies the transaction
ID for DB2 command
threads. It should always
be set to DSNC.

Table 16.4: RCT ENTRY Macro Parameters
Parameter Default

Value
Valid
Valu
es

Description

 RCT ENTRY Macro
Parameters

AUTH (USER,TERM,
TXID)

Character
string, SIGNI
D,
TERM, USE
RID, *

Defines the GROUP
authorization scheme to be
used for the given
transaction. You can specify
as many as three values.
The attachment facility tries
to use them in the order
specified from left to right.
For the default values, it
tries to use first the CICS
sign-on ID, and then the
CICS terminal ID, and then
the CICS transaction ID. For
a description of each AUTH
value, see Table 16.6.

 - 375 -

DPMODE HIGH HIGH, EQ,
LOW

Defines the dispatching
priority limit that can be
assigned to the task. This
limit overrides the DPMODI
parameter if it was coded on
the INIT macro.

PLAN TXID Plan name Defines the name of the
plan to use for the
transaction or transactions
being defined. If it is not
specified, the plan name
defaults to the transaction
ID.

PLNEXIT NO YES, NO Indicates whether the
dynamic plan selection will
be used.

PLNPGME DSNCUEXT Program
name

Specifies the name of the
exit program used to assign
a plan name when the
dynamic plan selection is
used. This name overrides
the PLNPGMI parameter if it
was coded on the INIT
macro.

ROLBE YES YES, NO Defines the action to be
taken if this transaction will
be the victim in the
resolution of a deadlock. If
YES is coded, a CICS
SYNCPOINT ROLLBACK is
issued and a -911
SQLCODE is returned to the
program. If NO is coded, a
CICS SYNCPOINT
ROLLBACK is not issued
and the SQLCODE is set to
-913.

TASKREQ - - - PA1-
PA3, PF1-
PF24, OPID,
LPA, MSRE

This parameter is used
when a transaction will be
started by a 3270 function
key.

THRDA 0 Positive
integer or
zero

Defines the maximum
number of threads that can
be connected for the
transaction, group of
transactions, or pool. When
the limit is reached, action is
taken according to the
values coded in the TWAIT
parameter.

THRDM 0 Positive
integer or
zero

Defines the absolute
maximum number of threads
that can ever be connected
for the transaction, group of
transactions, or the pool.
This number must be equal
to or greater than the value
of THRDA. If it is greater
than THRDA, you can issue
the DSNC MODIFY

 - 376 -

TRANSACTION command
to change the value of
THRDA to a greater value
but not a value greater than
THRDM.

THRDS 0 Positive
integer or
zero

Specifies the number of
protected threads. The value
cannot exceed THRDA or
99, whichever is greater.

TWAIT YES YES, NO,
POOL

Specifies the action to be
taken when a thread is
required but the limit
(THRDA) has been reached.
YES indicates that the
transaction should wait until
a thread is available. NO
causes the transaction to
abend. POOL diverts the
transaction to the pool,
causing a pool thread to be
used.

TOKENE NO NO, YES Specifies whether the CICS
attachment facility will
produce an accounting trace
record for every transaction.

TXID - - - Transaction
ID or list of
transaction
IDs

Specifies the transaction for
this entry.

Table 16.5: RCT POOL Macro Parameters
Parameter Default

Value
Valid
Valu
es

Description

 RCT POOL Macro
Parameters

AUTH (USER,TERM,
TXID)

Character
string, GROUP, SIG
NID, TERM, TXID,
USER, USERID, *
AUTH

Defines the authorization
scheme to be used for
the given transaction.
You can specify as many
as three values. The
attachment facility tries to
use them in the order
specified from left to right.
For the default values, it
tries to use first the CICS
sign-on ID, the CICS
terminal ID, and then the
CICS transaction ID. For
a description of each
value, see Table 16.6.

DPMODE HIGH HIGH, EQ, LOW Defines the dispatching
priority limit that can be
assigned to the task. This
limit overrides the
DPMODI parameter if it
was coded on the INIT
macro.

PLAN DEFAULT Plan name Defines the name of the
plan to use for the

 - 377 -

transaction or
transactions being
defined. If it is not
specified, the plan name
defaults to the character
string DEFAULT.

PLNEXIT NO YES, NO Indicates whether the
dynamic plan selection
will be used.

PLNPGME DSNCUEXT Program name Specifies the name of the
exit program used to
assign a plan name when
the dynamic plan
selection is used. This
name overrides the
PLNPGMI parameter if it
was coded on the INIT
macro.

ROLBE YES YES, NO Defines the action to be
taken if this transaction
will be the victim in the
resolution of a deadlock.
If YES is coded, a CICS
SYNCPOINT ROLLBACK
is issued and a -911
SQLCODE is returned to
the program. If NO is
coded, a CICS
SYNCPOINT ROLLBACK
is not issued and the
SQLCODE is set to -913.

TASKREQ - - - PA1-PA3, PF1-
PF24, OPID, LPA,
MSRE

This parameter is used
when a transaction will be
started by a 3270 function
key.

THRDA 3 Positive integer or
zero

Defines the maximum
number of threads that
can be connected for the
transaction, group of
transactions, or pool.
When the limit is reached,
action is taken according
to the values coded in the
TWAIT parameter.

THRDM 3 Positive integer or
zero

Defines the absolute
maximum number of
threads that can ever be
connected for the
transaction, group of
transactions, or the pool.
This number must be the
value of THRDA. If it is
greater than THRDA, you
can issue the DSNC
MODIFY TRANSACTION
command to change the
value of THRDA to a
greater value but not a
value greater than
THRDM.

 - 378 -

THRDS 0 Positive integer or
zero

Specifies the number of
protected threads. The
value cannot exceed
THRDA or 99, whichever
is greater.

TWAIT YES YES, NO Specifies the action to be
taken when a thread is
required but the limit
(THRDA) has been
reached. YES indicates
that the transaction
should wait until a thread
is available. NO causes
the transaction to abend.

TXID POOL Transaction ID or list
of transaction IDs Specifies the transaction

for this entry.
Table 16.6: RCT AUTH Values

AUTH Value Description
Character string The character string specified is used for the authorization ID.
GROUP The RACF group ID is used for the authorization ID.
SIGNID The SIGNID specified in the INIT RCT macro is used for the

authorization ID.
TERM The CICS terminal ID is used for the authorization ID.
TXID The CICS transaction ID is used for the authorization ID.
USER The CICS sign-on ID is used for the authorization ID.
USERID This value is similar to the USER option but can be extended using

DSN3@SGN to work with RACF to send a secondary authid.
* Null. You can specify this value only for the second and third values. It

indicates that no additional authorization scheme will be used.
New TXIDSO, PLANI, and PURGEC are all new RCT options with the CICS V4 version of the CICS
attachment facility.

RCT Guidelines
The following guidelines provide helpful advice for generating efficient CICS RCTs.
Explicitly Code a COMD Entry
A command thread is generated regardless of whether it is specified in the RCT. Coding a COMD
macro for command threads rather than using defaults, however, is a good idea. This way, you can
track and change the parameters for command threads more easily.
Code a Sufficient Number of Pool Threads
Be sure to plan for an appropriate number of pool threads on the POOL entry. The pool is used not only
for threads defined as TYPE=POOL, but also for entry threads defined as TWAIT=POOL. Protected
threads can also use the pool if no protected threads are available.

Use your knowledge of your transaction workflow to arrive at a reasonable number for THRDA for pool
threads. Attempt to determine the number of each of the following types of threads that will be running
at one time, and use that number (plus a little buffer) for pool threads:

 Explicitly defined pool threads (TYPE=POOL)
 Overflow threads

Favor TWAIT=POOL Over TWAIT=NO
When you're coding the ENTRY macro, favor the use of TWAIT=POOL to avoid an excessive wait time
or abends. Avoid the TWAIT=NO parameter because it increases the number of abends.
Code THRDM Greater Than THRDA
Code the THRDM parameter to be at least one greater than the THRDA parameter. This provides a
buffer of at least one additional thread for tuning if additional entry threads are required.

 - 379 -

Favor the Use of ROLBE=YES
Use ROLBE=YES to roll back changes automatically in the event of a deadlock or timeout. ROLBE=NO
places the onus on the application program to decide whether to back out changes. ROLBE=YES can
reduce the amount of coding needed in CICS programs.
Use DPMODE=EQ and DPMODE=HIGH
Use DPMODE=HIGH for only a few very high-priority transactions. Use DPMODE=EQ for most
transactions. Avoid DPMODE=LOW unless someone you hate will be using transactions assigned to
those threads.
Use TOKENE=YES
When CICS/DB2 threads are reused, accounting records are not cut unless the TOKENE=YES RCT
parameter is coded on an ENTRY macro (or TOKENI=YES is coded on the INIT macro). Failure to
specify TOKENE=YES might cause your performance monitor to report multiple transactions as a single
transaction. DB2 checks the token and, when the token changes, DB2 creates a new trace record.
Specifying TOKENE=YES also causes the CICS attachment facility to pass the CICS LU6.2 token to
the DB2 accounting trace record. This capability is important because CICS produces accounting
records at the transaction level, whereas DB2 produces accounting records at the thread level. If you
include the token in the accounting records, DB2 and CICS accounting records can be easily correlated.
This token is contained in the DB2 trace correlation header field (IFCID 148).

Consider Coding Threads to Avoid AEY9 Abends
Code STARTWT=AUTO and STANDBY=SQLCODE to avoid the AEY9 ABEND when the CICS
attachement is not available. You must be using CICS Transaction Server V1.1 or later to specify these
options.
Be sure to check for -923 and -924 SQLCODEs in your application programs that use threads defined
with STARTWT=AUTO and STANDBY=SQLCODE. A -923 indicates that the CICS Attachment Facility
is not up; a -924 indicates that the DB2 error translator is not at a late enough level.

Use the Appropriate Thread Type
Table 16.7 suggests the types of threads to use for different transaction requirements. These are
general rule of thumb guidelines only; define your transactions to achieve optimal performance in your
environment. In general, transactions requiring high availability or throughput should have dedicated
and protected threads. Low-volume or low-priority threads can be diverted to the pool.

Table 16.7: Thread Specification by the Type of Transaction

Transaction Thread
to Use

Other
Recommendati
ons

Very high volume
High priority

ENTRY

THRDM >
THRDA
THRDA > 3
THRDS > 1
TWAIT = POOL
(or YES)
DPMODE =
HIGH

Moderate to high volume
High priority

ENTRY

THRDM >
THRDA
THRDA > 0
THRDS > 0
TWAIT = POOL

Low volume
High priority

ENTRY

THRDM = 2
THRDA = 1
THRDS = 0
TWAIT = POOL
DPMODE =
HIGH

Low volume
Moderate priority

ENTRY

THRDM =
THRDA = 1

 - 380 -

THRDS = 0
TWAIT = POOL

Low volume
Low priority

ENTRY

THRDM =
THRDA =
THRDS = 0
TWAIT = POOL

Very low volume POOL THRDM > 3
THRDA > 2
TWAIT = YES

Consider specifying transactions explicitly to the pool if you cannot accurately gauge their volume and
priority. You can usually get better performance by explicitly defining ENTRY threads and specifying the
appropriate parameters for the performance and importance of the transactions. Even if all of your
transactions are defined as ENTRY threads, always define a pool macro to allow for overflow.
Use DSNC
Use the DSNC DISPLAY STATISTICS command to monitor the CICS environment. You can find details
on this command in Chapter 34, "DB2 Commands."

Plan Management and Dynamic Plan Selection

In the CICS environment, multiple programs can be executed in a single task. For CICS, the task
defines the unit of work. For DB2, the application plan defines the unit of work. The scope of the unit of
work for these two environments must be synchronized for them to operate in harmony. DB2 provides
this synchronization in two ways:

 You can bind all programs that can be initiated in a single CICS task to a single plan
specified in the RCT for each transaction that can invoke any of the programs. An
example was shown in Listing 16.2 for the menuing application.

 You can specify that dynamic plan selection is to be used. Listing 16.2 shows an
example of this synchronization.

Dynamic plan selection uses an exit routine, specified in the RCT by coding PLNEXIT=YES and
PLNPGME=exit-routine. The exit routine determines the plan that should be used for the program being
run. IBM supplies a sample exit routine called DSNCUEXT with DB2. This exit routine assigns the plan
name to be the same as the program name. This approach is usually adequate, but you can code exit
routines to assign plan names as your installation sees fit. Exit routines cannot contain SQL statements.
The first SQL statement executed after a CICS SYNCPOINT signals to DB2 that a new plan name
needs to be selected. When you're using dynamic plan selection, your CICS programs must heed the
following rules:

 Use the CICS LINK or XCTL command to call one program from another.
 Issue a CICS SYNCPOINT before the LINK or XCTL. Otherwise, the first SQL

statement in the new program receives an SQLCODE of -805.
 Design your programs so that a complete application unit of work is completed in a

single program. Failure to do so results in logical units of work that span physical
units of work. Data integrity problems can result.

The second option for the synchronization of DB2 plans to CICS tasks is to create large plans consisting
of the DBRMs or packages of all programs that can be called in a single CICS task. Prior to DB2 V2.3,
this could not be achieved with packages, so all DBRMs had to be bound into a single plan. This
approach had the following negative effects.
When a program changed, a new DBRM was created, which caused the large plan to be bound again.
You could not use the REBIND command, and you had no way of simply adding or replacing a single
DBRM. As the number of DBRMs added to a plan increased, the time to bind that plan increased. As
the plan was being bound, execution of the CICS transactions using that plan was not permitted.
Therefore, program changes effectively took the entire application offline. When dynamic plan selection
or packages were used, however, only the programs being changed were unavailable.

A second negative effect was that as the plan's size increased, it used more virtual storage. Even
though DB2 uses techniques to load only those portions of the plan needed to execute the SQL at hand,
performance suffers somewhat as plans increase in size. When you use dynamic plan selection,
however, plans are generally much smaller. When packages are used, the plan is broken into smaller
pieces that the system can manage more easily.

 - 381 -

The recommendation is to create plans using packages, not DBRMs. This technique should be easier to
manage and more efficient than either large plans composed of DBRMs or dynamic plan selection.
Packages, instead of DBRMs bound directly into plans, should be the standard for all DB2 shops. Yet,
many shops still avoid packages because they avoid (or fear) change or simply have not had the time to
convert older applications. So, if your installation is running a version of DB2 prior to V2.3 (or you have
just stubbornly shunned packages), the recommendations change. Use dynamic plan selection for very
large applications. Doing so decreases downtime due to program changes. For small applications (four
or fewer programs), use a large plan composed of the DBRMs of each program.

Two-Phase Commit
As I already mentioned, changes made in a CICS program are committed by the CICS SYNCPOINT
command. Likewise, you can invoke the SYNCPOINT ROLLBACK command to back out unwanted
changes. You code these commands as follows:
EXEC CICS
 SYNCPOINT
END-EXEC.

EXEC CICS
 SYNCPOINT
 ROLLBACK
END-EXEC.
The SQL COMMIT and ROLLBACK verbs are not valid in CICS programs. An implicit commit is
performed when a CICS transaction ends with the EXEC CICS RETURN command.
When a CICS SYNCPOINT is requested in a CICS/DB2 program, a two-phase commit is performed.
The commit is done in two phases because CICS must commit changes made to resources under its
jurisdiction (such as changes made to VSAM files), and DB2 must control the commit for changes made
with SQL UPDATE, INSERT, and DELETE statements.
Figure 16.25 shows the two-phase commit process for CICS. CICS acts as the coordinator of the
process, and DB2 acts as a participant. The first phase consists of CICS informing DB2 that a
SYNCPOINT was requested. DB2 updates its log but retains all locks because the commit is not
complete. When the log update is finished, DB2 informs CICS that it has completed phase 1. CICS then
updates its log, retaining all locks.

Figure 16.25: The CICS two-phase commit process.

CICS signals DB2 to begin phase 2, in which DB2 logs the commit and releases its locks. If successful,
DB2 sends control back to CICS so that CICS can release its locks and record the success of the
SYNCPOINT.
The two-phase commit process virtually ensures the integrity of DB2 data modified by CICS
transactions. If changes cannot be committed in either environment for any reason, they are rolled back
in both. In a connection failure or a system crash, however, the commit status of some transactions may

 - 382 -

be in doubt. These transactions are referred to as in-doubt threads. After a system failure, when DB2
and CICS are started and the connection is reestablished, most in-doubt threads are resolved
automatically. If any in-doubt threads exist, you can use the RECOVER INDOUBT command to commit
or roll back the changes pending for these threads.

CICS Design Guidelines
When designing CICS transactions that access DB2 data, keep the following tips, tricks, and techniques
in mind.

Bind CICS Plans for Performance
When you're binding plans for CICS transactions, follow these BIND guidelines:

High volume ACQUIRE(ALLOCATE),
RELEASE(DEALLOCA
TE)

All others ACQUIRE(USE),
RELEASE(COMMIT)

Binding high-volume transactions in this manner reduces overhead by ensuring that all resources are
acquired before they are accessed. High-volume transactions should have no built-in conditional table
access and should be as small as possible.

Decrease the Size of Your CICS Programs

The smaller the executable load module for a CICS program, the more efficient it will be. Therefore,
CICS programmers should strive to reduce the size of their code. One way to do so is to increase the
amount of reusable code. For example, modularize your program and use common modules rather than
recode modules everywhere they are needed.
A second way to increase your reusable code is to use the COBOL REDEFINES clause to reduce the
number of WORKING-STORAGE variables defined by the program. For example, consider a program
requiring three text variables all used by different portions of the code. The first variable is 3 bytes long,
the second is 8 bytes long, and another is 15 bytes long. Consider defining them as follows:
01 COMMON-VARS-1.
 05 THREE-BYTE-VAR PIC X(3).
 05 FILLER PIC X(12).
01 COMMON-VARS-2 REDEFINES COMMON-VARS-1.
 05 EIGHT-BYTE-VAR PIC X(8).
 05 FILLER PIC X(7).
01 COMMON-VARS-3 REDEFINES COMMON-VARS-1.
 05 FIFTEEN-BYTE-VAR PIC X(15).

This way, you can save space. Before deciding to use this approach, however, you should consider the
following factors:

 The readability of the code is reduced when you use REDEFINES.
 The program cannot use redefined variables concurrently. Ensure that any variable

redefined as another variable can never be used by the program at the same time
as another variable assigned for the same redefined group.

Another way to increase reusable code is to use explicit constants in the program code to reduce the
number of WORKING-STORAGE variables required. This approach can enhance performance, but it
usually makes maintaining the program more difficult.

Avoid COBOL File Processing
Do not use the COBOL file processing verbs READ, WRITE, OPEN, and CLOSE to access non-DB2
data sets required by your CICS/DB2 programs. If you use these functions in a CICS program, an MVS
wait results, causing severe performance degradation. Instead, use the corresponding CICS file
processing services. See Table 16.8.

Table 16.8: CICS File Processing Commands
 Random Access Commands

 - 383 -

READ Reads a specific record
WRITE Writes a specific record
REWRITE Updates a specific record
DELETE Deletes a specific record

 Sequential Access Commands
STARTBR Establishes sequential positioning in the file
READNEXT Reads the next record sequentially

 Sequential Access Commands
READPREV Reads the previous record sequentially
RESETBR Resets positioning in the file
ENDBR Ends sequential file access

Avoid Resource-Intensive COBOL Verbs

Avoid the following COBOL verbs and features in CICS programs because they use a large amount of
system resources:
ACCEPT SORT
DISPLAY TRACE
EXAMINE UNSTRING
EXHIBIT VARIABLE

MOVE
Use WORKING-STORAGE to Initialize Variables
To initialize variables, use the VALUES clause in WORKING-STORAGE rather than the MOVE and
INITIALIZE statements.
Avoid Excessive PERFORMs and GOTOs
Design your programs to execute paragraphs sequentially as much as possible. The fewer PERFORMs
and GOTOs you use, the better the program performance will be in CICS.

Avoid Conversational Programs

A conversational program receives data from a terminal, acts on the data, sends a response to the
terminal, and waits for the terminal operator to respond. This process ties up a thread for the duration of
the conversation.
Instead, use pseudoconversational techniques for your CICS/DB2 programs. Pseudoconversational
programs appear to the operator as a continuous "conversation" consisting of requests and responses,
but they are actually a series of separate tasks.

Favor Transfer Control Over Linking
Favor the use of the XCTL command over the LINK command to pass control from one program to
another. LINK acquires extra storage, and XCTL does not.

Reduce the Overhead of Sequential Number Assignment

Consider using counters in main storage to assign sequential numbers. This way, you can reduce the
overhead associated with other forms of assigning sequential numbers, such as reading a table
containing the highest number. Remember that a rollback does not affect main storage. Therefore,
rolling back a transaction can cause gaps in the numbering sequence.

Plan for Locking Problems
Plan for deadlocks and timeouts, and handle them accordingly in your program. If the RCT specifies
ROLBE=YES, all changes are backed out automatically and a -911 SQLCODE is returned to your
program. If ROLBE=NO is specified, -913 is passed to the SQLCODE and automatic backout does not
occur. In this case, the application program must decide whether to issue a CICS SYNCPOINT
ROLLBACK to back out the changes.

 - 384 -

Synchronize Programs and RCT Entries
You must know the RCT parameters for your transaction before coding your program. Specifically,
coding NO for the ROLBE or TWAIT parameters affects the program design significantly by adding a
great deal of code to handle rollbacks and abends.

Use Protected Entry Threads for Performance
Minimize thread creation as much as possible by using protected entry threads for high-volume
transactions and by using AUTH=(TXID,*,*) to encourage thread reuse.

Place SQL as Deep in the Program as Possible

Minimize thread use by placing all SQL statements as far as possible into the transaction. A thread is
initiated when the first SQL call is encountered. The later in the execution that the SQL statement is
encountered, the shorter the time during which the thread is used.

Avoid DDL

Never issue DDL from a CICS program. DDL execution is time intensive and acquires locks on the DB2
Catalog and DB2 Directory. Because CICS programs should be quick, they should avoid DDL.

Check the Availability of the Attach Facility
You must start the CICS Attach Facility for the appropriate DB2 subsystem before you execute CICS
transactions that will run programs requiring access to DB2 data. If the CICS-to-DB2 connection is
unavailable, the task abends with a CICS abend code of AEY9.
To avoid this type of abend, consider using the CICS HANDLE CONDITION command to check
whether DB2 is available, as shown in Listing 16.3. This COBOL routine tests whether the CICS-to-DB2
connection has been started before issuing any SQL.

Listing 16.3: Checking for DB2 Availability

WORKING-STORAGE.

 .

 .

 .

 77 WS-LGTH PIC 9(8) COMP.

 77 WS-PTR PIC 9(4) COMP.

 .

 .

 .

PROCEDURE DIVISION.

0000-MAINLINE.

 .

 .

 .

 EXEC CICS

 HANDLE CONDITION

 - 385 -

 INVEXITREQ(9900-DB2-UNAVAILABLE)

 END-EXEC.

 EXEC CICS

 EXTRACT EXIT

 PROGRAM('DSNCEXT1')

 ENTRYNAME('DSNCSQL')

 GASET(WS-PTR)

 GALENGTH(WS-LGTH)

 END-EXEC.

 .

 .

 .

9900-DB2-UNAVAILABLE.

 Inform the user that DB2 is unavailable

 Perform exception processing

Use Debugging Tools

Use CICS debugging facilities such as EDF to view CICS commands before and after their execution.

Implement Security Without Sacrificing Performance
While you're planning your security needs, keep performance in mind. If all security can be implemented
with CICS transaction security, specify AUTH=(TXID,*,*) in the RCT for each transaction. In DB2, grant
EXECUTE authority on the plan to the TXID name. This way, you can reduce the amount of
authorization checking overhead.

IMS (Information Management System)
IMS is IBM's pre-relational database management system offering. It is based on the structuring of
related data items in inverted trees or hierarchies. Although usually perceived as only a DBMS, IMS is a
combination of two components:

 IMS/DB, the database management system
 IMS/TM, the transaction management environment or data communications

component (previously known as IMS/DC, and still called by that name by many DBAs
and systems programmers)

You can use these IMS components separately or together. Online access to IMS databases is
achieved through IMS/TM or CICS. Access to IMS databases is provided also in a batch environment.
When an IMS database is accessed through IMS/TM, it is said to be online; when it is accessed in
batch, it is said to be offline. IMS/TM provides an online environment in which you can run application
programs that communicate with a terminal, much like CICS. Like CICS, IMS/TM can be used by
programs that access not only IMS databases but also DB2 tables.

 - 386 -

IMS and CICS are alike in many respects, but they also have significant differences, outlined in the
following paragraphs. For example, IMS uses a facility called MFS (Message Format Services) to format
messages to terminals and printers; CICS uses BMS (Basic Mapping Support). IMS/TM controls its
environment not through tables, but through a series of macros known as a SYSGEN. The SYSGEN
defines the terminals, programs, transactions, and the general online environment for IMS/TM. Another
difference is that all IMS programs require a program specification block (PSB), which defines the
access to IMS/DB databases and IMS/TM resources. Along with IMS DBDs that define the structure of
the IMS databases to be accessed, the PSBs are defined to control a program's scope of operation. An
additional control block, the ACB (application control block), is used in the online world (and optionally in
the batch environment) to combine the PSBs and DBDs into a single control block defining the control
structure and scope of all IMS programs.
All IMS/TM activity is processed through a region. There are two types of regions. One control region
manages IMS activity and processes commands. Application programs execute from dependent
regions. As many as 255 dependent regions can exist for each IMS/TM subsystem. See Figure 16.26
for clarification.

Figure 16.26: IMS/TM regions.

Types of IMS Programs
IMS programs are categorized, based on the environment in which they run and the types of databases
they can access. The four types of IMS programs are batch programs, batch message processors,
message processing programs, and fast path programs.
An IMS batch program is invoked by JCL and runs as an MVS batch job. IMS batch programs can
access only offline IMS databases, unless IMS Data Base Recovery Control (DBRC) is used. When
DB2 tables are accessed by IMS batch programs, they are commonly referred to as DL/I batch. DL/I
(Data Language/I) is the language used to access data in IMS databases, just as SQL is the language
used to access data in DB2 tables. Batch DL/I programs run independently of the IMS/TM environment.
The second type of IMS program is called a batch message processor, or BMP. BMPs are hybrid
programs combining elements of both batch and online programs. A BMP runs under the jurisdiction of
IMS/TM but is invoked by JES and operates as a batch program. All databases accessed by a BMP
must be online to IMS/TM. The following are the two types of BMPs:

 Terminal-oriented BMPs can access the IMS message queue to send or receive
messages from IMS/TM terminals.

 Batch-oriented BMPs do not access the message queue and cannot communicate
with terminals.

True online IMS programs are called message processing programs, or MPPs. They are initiated by a
transaction code, access online databases, and communicate with terminals through the message
queue.
The final type of IMS program is a fast path program. Fast path programs are very high performance
MPPs that access a special type of IMS database known as a fast path database.

The IMS Attach Facility
As with the other environments, a specialized attachment facility is provided with DB2 to enable IMS to
access DB2 resources. The IMS Attach Facility, due to the nature of IMS, provides more flexibility in
connecting to DB2 than the Attach Facilities for TSO or CICS.
In Figure 16.27, you can see that the following connections are supported using the IMS Attach Facility:

 - 387 -

Figure 16.27: The IMS Attach Facility.

 One DB2 subsystem can connect to multiple IMS subsystems.
 One IMS subsystem can connect to multiple DB2 subsystems.
 One IMS region can connect to multiple DB2 subsystems.
 One IMS application program can access only one DB2 subsystem.

DB2 is connected to IMS by a subsystem member (SSM). The SSM defines the parameters of the IMS
Attach Facility for both online and batch connections. The following list outlines the SSM parameters:
SSN The DB2 subsystem identifier (for example, DSN).
LIT The language interface token used to route SQL calls to the

appropriate DB2 subsystem. Usually equal to SYS1.
ESMT The name of the DB2 initialization module, which must be set to

DSNMIN10.
RTT The optional Resource Translation Table to be used. The RTT can be

used to override IMS region options, such as the capability to specify a
plan name different from the program name.

ERR The action IMS takes if the plan is not found or the DB2 subsystem is
unavailable. The ERR options follow:

 R IMS returns control to the application program and
sets the SQLCODE in the SQLCA to -923. R is the
default.

 Q IMS causes an abend when operating in DL/1 batch.
In an online environment, IMS PSTOPs the program
and issues a U3051 user abend code, backs out this
transaction's activity to the last checkpoint, and
requeues the input message.

 A IMS forces an abend with a U3047 abend code. If
executing in the online environment, the input
message is deleted.

CRC The command recognition character to be used to identify a DB2
command in the IMS/TM environment using /SSR. CRC is not used in the
DL/1 batch environment.

CONNECTION The connection name for a DL/1 batch program. This name must be
unique for each concurrent batch IMS program that will access DB2. If a
program is running with a given connection name, and another program
with the same name tries to execute at the same time, the second
program will fail. This parameter is invalid for the online attach.

 - 388 -

PLAN The name of the plan to be used by the batch IMS/DB2 application
program. This parameter is required only if the plan name is different
from the program name. This parameter is invalid for the online attach.

PROGRAM The name of the program to be run. This parameter is invalid for the
online attach.

Online Attach Considerations
Enabling the IMS Attach Facility for the online environment is the responsibility of a system
programmer. IMS-to-DB2 connections are defined by changing the JCL used to invoke the IMS
subsystem. The SSM is assigned to the JCL by a parameter on the EXEC card. The IMS SYSGEN
procedure is unaffected by the addition of an IMS-to-DB2 connection.

To establish the connection between IMS/TM and DB2, you must perform the following steps:
1. Code an SSM line for each DB2 subsystem that must be connected to this

IMS/TM region.
2. Place the SSM in the IMSVS.PROCLIB PDS defined to the IMS control region

and specify the name in the SSM parameter of the EXEC statement. For
example,

3. //IMS EXEC IMS . . . ,SSM=SSM1 . . .
4. //STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
5. // DD DSN=SYS1.DB2V510.DSNLOAD,DISP=SHR
6. // DD DSN=SYS1.DB2V510.DSNEXIT,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

The SSM defined to the control region is the default for all dependent regions. If you do not want this
default, code a separate SSM for each dependent region that has different IMS-to-DB2 connection
needs, and follow the preceding steps for each of the dependent regions.
If more than one DB2 subsystem will be connected to a single region (control or dependent), the SSM
for that region must contain a line for each of the DB2 subsystems. Then a second language interface
module must be generated. The standard language interface module is DFSLI000; it uses SYS1 as its
language interface token (LIT) in the SSM. You can create a second language interface module,
DFSLI002, for example, by using SYS2 for its LIT.
You can generate the second language interface module using the DFSLI macro provided with IMS/VS.
Consider this example:
DFSLI002 DFSLI TYPE=DB2,LIT=SYS2
A program executing in any region connected to more than one DB2 subsystem accesses the
appropriate DB2 subsystem based on which language interface module the program was link-edited
with at program preparation time. In this example, the module would be either DFSLI000 or DFSLI002.
CONNECTION, PLAN, and PROGRAM are batch parameters and, as such, are invalid when defining
the SSM for IMS/TM. Sample online SSM definitions follow. The first is a simple SSM connecting the
DB2P subsystem to IMS/TM:
DB2P,SYS1,DSNMIN10,,R,-

You use the second to connect two DB2 subsystems, DB2A and DB2B, to a single IMS/TM:
DB2A,SYS1,DSNMIN10,,R,-
DB2B,SYS2,DSNMIN10,,R,+
To access DB2A, INCLUDE the DFSLI000 module (because it is associated with LIT SYS1) in the link-
edit step for your programs. DFSLI002, on the other hand, is associated with LIT SYS2, so it is link-
edited into programs that must access DB2B resources.

An online IMS/TM program (BMP, MPP, or fast path) must follow standard DB2 program preparation
procedures (precompile, compile, link edit, and bind). However, a few special considerations apply:

 The appropriate language interface module (DFSLI000, DFSLI002, and so on) for the
DB2 subsystem to be accessed must be link-edited into the load module.

 A PSB must be generated for the program to define the IMS databases and online
resources that will be accessed by the program.

 - 389 -

 The PSB (and all DBDs accessed by the program) must be included in the ACB for
the online IMS/TM subsystem.

 The appropriate IMS SYSGEN macros must be coded for the transaction and
program before it can be executed online.

The Resource Translation Table
You can define a resource translation table (RTT) using the DSNMAPN assembler macro. An RTT is
necessary only when the plan name is not the same as the program name. Consider this example:
DSNMAPN APN=PROGRAMX,PLAN=PLANX, . . .
This statement assigns the plan name, PLANX, to the program PROGRAMX. This macro must be
linked to the DB2 load library with the name specified in the RTT parameter of the SSM being used.

IMS/TM Thread Use
Two types of threads are used by IMS/TM: command threads and transaction threads. The type of
thread is contingent on the type of region it has been created for. Each region can have only one thread
at any given time.

Threads emanating from IMS/TM are not created until they are needed, even though the IMS-to-DB2
connection has been established. The following process is for a command thread emanating from the
control region:

1. After IMS/TM is brought up, the first DB2 command is issued from a terminal
connected to IMS/TM using the /SSR IMS command.

2. IMS verifies that the user is permitted to issue the /SSR command.
3. IMS issues a SIGNON request using that user's userid, if available. If SIGNON

security is not used, the LTERM is used (or, for a non-message-driven BMP, the
PSB name is used).

4. IMS requests that DB2 create a thread.
5. When the thread has been created, the command is processed. Subsequent DB2

commands issued from IMS can reuse the thread. SIGNON is performed for
these subsequent commands.

Additional processing is required for transaction threads. Transaction threads are created from a
dependent region that was scheduled by the control region. The procedure for transaction thread
creation and its use is shown in Figure 16.28.

Figure 16.28: IMS/DB2 transaction threads.

Two-Phase Commit
Recall that CICS programs commit changes by means of CICS commands and not the normal DB2
COMMIT statement. Likewise, changes made in IMS/TM programs are committed and rolled back by

 - 390 -

means of IMS commands. You code the IMS checkpoint command, which implements a COMMIT, as
follows:
CALL 'CBLTDLI' USING NUM-OPS,
 'CHKP',
 IO-PCB,
 CHKP-LENGTH,
 CHKP-AREA.

You code the IMS rollback command as follows:
CALL 'CBLTDLI' USING NUM-OPS,
 'ROLB',
 IO-PCB,
 CHKP-LENGTH,
 CHKP-AREA.
The SQL verbs COMMIT and ROLLBACK are not valid in IMS/TM programs. An implicit commit is
performed when a GET UNIQUE is issued to the message queue.
When a checkpoint is requested in an IMS/TM program, a two-phase commit is performed much like the
two-phase commit discussed in the previous section on CICS. The commit is done in two phases to
synchronize the updates made to IMS databases with those made to DB2 tables.
The two-phase commit process for IMS/TM programs is outlined in Figure 16.29. A component of
IMS/TM called the syncpoint coordinator handles the coordination of commits.

Figure 16.29: The IMS/TM two-phase commit process.

Phase 1 of the commit process consists of IMS/TM informing each participant that a syncpoint has been
reached and that each participant should prepare to commit. The participants can include DB2, DL/I,
IMS/TM, and IMS Fast Path. Each participant performs the needed tasks to ensure that a commit is
possible for that environment. DB2 updates its log, retains all locks, and informs the IMS syncpoint
coordinator that phase 1 has been completed successfully.

If all other participants signal that the commit can proceed, phase 2 is initiated, whereby each
participant is responsible for completing the commit. If any participant signals that phase 1 cannot be
completed successfully, the entire unit of work is aborted and the updates are backed out. In phase 2,
DB2 logs the commit and releases all locks.
The two-phase commit process virtually ensures the integrity of DB2 data modified by IMS/TM. If
changes cannot be committed in either DB2 or IMS for any reason, they are rolled back in both. In a
connection failure of a system crash, however, the commit status of some transactions may be in doubt.
They are referred to as in-doubt threads. When DB2 and IMS/TM are started after a system failure, and
the IMS-to-DB2 connection is reestablished, most in-doubt threads are resolved automatically. If any in-

 - 391 -

doubt threads remain, you can use the RECOVER INDOUBT command to commit or roll back the
changes pending for these threads.

Restart
The restart capabilities of IMS/TM can be used by online programs. You code the IMS restart command,
XRST, as follows:
CALL 'CBLTDLI' USING 'XRST',
 IO-PCB,
 IO-LENGTH,
 IO-AREA,
 CHKP-LENGTH,
 CHKP-AREA.
XRST reads the last checkpoint from the IMS log and passes the data stored in the checkpoint area to
the program issuing the command. The program can use that information to reposition DB2 cursors and
reestablish IMS database positioning.

It is imperative, though, that each checkpoint call passes all requisite information for repositioning each
time it is issued. For DB2 cursors, this information should include the name of the cursor, the tables
being accessed, and the last key or keys retrieved. For IMS databases, this information includes the
name of the database, the segment being accessed, and the complete concatenated key. This
information should be saved for every DB2 cursor and IMS database PCB that must be repositioned.

IMS/DB2 Deadlocks
DB2 locks and IMS locks are managed independently. DB2 uses a lock manager called the IRLM. IMS
can use the IRLM to control locks, but it can also use a technique known as program isolation. Even if
both subsystems use an IRLM to control locks, IMS locks are issued independently from DB2 locks. As
a result, a deadlock can occur. A complete description of deadlocks is included in Chapter 21, "Locking
DB2 Data." An example of an IMS and DB2 deadlock is presented in the following processing sequence
for two concurrently executing application programs:

Program 1 Program 2

Update IMS DBD1 Update DB2
Table A

Lock established Lock
established

Intermediate processing Intermediate
processing

Update DB2 Table A Update IMS
DBD1

Lock (wait) Deadlock Lock (wait)

Program 1 requests a lock for DB2 resources that Program 2 holds, and Program 2 requests a lock for
IMS resources that Program 1 holds. This deadlock must be resolved before either program can
perform subsequent processing. One of the two programs must be targeted as the victim of the
deadlock; in other words, it either abends or is timed out.
The deadlock situation is resolved differently depending on the program and the resource. When an
MPP is the victim in a deadlock, it abends with a U777 abend. When a batch-oriented BMP is the victim
in a deadlock, the abend received depends on the type of resource that could not be locked:

 If only DL/I databases are affected, a U777 abend results.
 If DL/I databases are affected in conjunction with fast path databases or DB2 tables,

the PCB status field is set to FD.
 If fast path databases are involved, the PCB status field is set to FD.
 If DB2 tables are involved, the SQLCODE is set to -911.

 - 392 -

IMS SYSGEN Guidelines
The following guidelines are useful when performing an IMS SYSGEN for DB2.
Promote Thread Use with PROCLIM
Specify the PROCLIM parameter of the TRANSACT macro to be greater than 1 to encourage thread
reuse for IMS transactions that access DB2 tables. When multiple transactions are processed during
the same PSB schedule, DB2 can reuse the thread, thereby reducing overhead by avoiding thread
creation.

Use WFI and Fast Path Only for Critical Transactions
Threads are always reused by WFI (Wait For Input) transactions and Fast Path regions. The thread is
not terminated unless the WFI or Fast Path region is stopped, so these regions tie up a thread
indefinitely. For this reason, use WFI transactions and Fast Path regions for only high-volume, critical
transactions. For low-volume transactions, use the PROCLIM parameter to control thread reuse.

Define the Transaction Mode Carefully
You can define a transaction to operate in one of two modes: MODE=SNGL or MODE=MULTI.
MODE=SNGL transactions define a unit of work at the transaction level, whereas MODE=MULTI
transactions string multiple transactions together into a unit of work. Single mode transactions cause a
syncpoint when the transaction is completed. Multiple mode transactions do not reach a syncpoint until
the program is terminated.
As the programmer, you must know the mode of the transaction before coding to implement CHKP
processing effectively and to reestablish cursor and database positioning properly.
Use INQUIRY=YES for Read-Only Transactions
You can define read-only transactions by coding INQUIRY=YES for the TRANSACT macro.
Transactions defined to be read-only cannot update IMS databases. When the transaction accesses
DB2, it cannot modify data in DB2 tables. An attempt to issue the following SQL statements in a read-
only transaction results in a -817 SQLCODE:
ALTER GRANT
CREATE INSERT
DELETE REVOKE
DROP UPDATE

DL/I Batch Interface
The DL/I batch interface enables batch IMS programs to access DB2 data. DL/I batch programs access
DB2 data under the auspices of the IMS attach facility, which is defined by an SSM. When you're
establishing an IMS-to-DB2 connection for a batch program, the JCL used to execute the batch program
must contain the SSM parameters. It is assigned to the DDITV02 DD name, as shown in the following
example:
//DDITV02 DD *
DB2T,SYS1,DSNMIN10,,R,-,APPL01,,PGM01
/*
This SSM connects the PGM01 program to DB2T using a plan with the same name as the program.
The program does not abend if DB2 is unavailable. Another SSM example follows:
//DDITV02 DD *
DSN,SYS1,DSNMIN10,,A,-,APPL02,PLANNAME,PGM02
/*
This SSM uses plan PLANNAME to connect the PGM02 program to the DB2 subsystem named DSN.
An abend is forced if DB2 is unavailable. If the DDITV02 DD name is missing or specified incorrectly, a
connection is not made and the job abends.
Additionally, you can specify an output data set containing status and processing information by using
the DDOTV02 DD name. If you do not specify the DDOTV02 DD name, processing continues without
sending the status and processing information.
Sample JCL to run a DL/I batch program that accesses DB2 tables is shown in Listing 16.4. This JCL
runs the BTCHPROG program using the BTCHPLAN plan. Notice that the JCL contains two steps. The
first step runs the DL/I batch program, and the second step prints the contents of the DDOTV02 data
set. Printing the DDOTV02 data set is a good idea because it can contain pertinent information for
resolving any processing errors.

 - 393 -

Listing 16.4: JCL to Run a DL/I Batch DB2 Program

//DB2JOBB JOB (BATCH),'DL/I BATCH',MSGCLASS=X,CLASS=X,

// NOTIFY=USER,REGION=4096K

//*

//**

//*

//* JCL TO RUN AN IMS/DB2 PROGRAM IN BATCH

//*

//* PROGRAM NAME :: BTCHPROG

//* PLAN NAME :: BTCHPLAN

//* CONNECTION NAME :: DB2B0001

//*

//**

//*

//JOBLIB DD DSN=SYS1.DB2V510.DSNLOAD,DISP=SHR

//BATCHPRG EXEC DLIBATCH,DBRC=Y,LOGT=SYSDA,COND=EVEN,

// MSGCLASS='X',CLASS='X'

//G.STEPLIB DD

// DD

// DD Add a DD for each DB2, COBOL, and program

// load library

//G.IEFRDER DD DSN=IMSLOG,DISP=(NEW,CATLG,CATLG),. . .

//G.STEPCAT DD DSN=IMSCAT,DISP=SHR

//G.DDOTV02 DD DSN=&DDOTV02,DISP=(NEW,PASS,DELETE),

// UNIT=SYSDA,DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092),

// SPACE=(TRK,(1,1),RLSE)

//G.DDITV02 DD *

 DB2P,SYS1,DSNMIN10,,A,-,DB2B0001,BTCHPLAN,BTCHPROG

/*

//*

 - 394 -

//***

//*

//* PRINT THE DDOTV02 DATASET IF THERE ARE PROBLEMS

//*

//**

//*

//PRINTOUT EXEC PGM=DFSERA10,COND=EVEN

//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR

//SYSPRINT DD SYSOUT=X

//SYSUT1 DD DSN=&DDOTV02,DISP=(OLD,DELETE)

//SYSIN DD *

CONTROL CNTL K=000,H=8000

OPTION PRINT

/*

//

A DL/I batch program must follow standard DB2 program preparation procedures (precompile, compile,
link-edit, and bind). However, a few special considerations apply:

 All DL/I batch programs must be link-edited using the RMODE=24 and AMODE=24
parameters.

 The DFSLI000 language interface module must be link-edited to the load module.
 A PSB must be generated for the program to define the IMS databases to be

accessed.

IMS/TM Design Guidelines
The following techniques should be applied when designing IMS transactions that access DB2 data.

Avoid DDL

Never issue DDL in an IMS/TM program. DDL execution is time intensive and acquires locks on the
DB2 Catalog and the DB2 Directory. Because IMS/TM programs should be quick, they should avoid
DDL.

Copy PCBs Before Each Checkpoint
Application programs should save the PCBs for all IMS databases before invoking an IMS CHKP. After
the CHKP, copy the saved PCB back to the original to reestablish positioning in the IMS databases.
Otherwise, the IMS database positioning is lost, much like DB2 cursor positioning is lost when a
COMMIT is performed.

Be Aware of Cursor Closing Points
IMS closes all DB2 cursors in WFI and MODE=SINGL transactions when the program does a get
unique (GU) to the message queue (IOPCB). Cursors also are closed when the program issues a
CHKP call or when the program terminates.

 - 395 -

Use a Scratch Pad Area

Use the SPA (Scratch Pad Area) to store temporary work and to implement pseudoconversational
programs.

Use Fast Path for Sequential Number Assignment

Consider using IMS Fast Path database storage to assign sequential numbers. Accessing sequential
numbers for assignment using Fast Path databases is more efficient than other conventional means (for
example, reading a table containing the highest number).

Use Testing Tools

Use testing tools such as the Batch Terminal Simulator (BTS). The requirements for using BTS follow:
 The user must have MONITOR2 and TRACE authority.
 MONITOR Trace Class 1 must be activated for the plan being tested.
 The plan must be specified on the ./T control card.
 A new control card must be added as follows:

./P MBR=BTSCOM00 PA 000C14 PC=DB2T
Note that any valid DB2 subsystem ID can be substituted for DB2T.

Do Not Share IRLMs

The DBRC facility of IMS uses an IRLM to control locking when multiple jobs access shared databases.
Never share a single IRLM between DB2 and IMS because doing so results in inefficient locking for
both IMS and DB2. Also, a shared IRLM is difficult to monitor and tune. Specify a single IRLM for each
DB2 subsystem and an IRLM for the IMS subsystem.

Consider IMS/ESA Quick Reschedule
For very active, critical transactions, use the quick reschedule feature of IMS/ESA. Quick reschedule
creates a "hot region" for the execution of MPPs. When quick reschedule is implemented, the MPP
region does not terminate when the PROCLIM count is reached if the message queue holds a qualifying
transaction waiting to execute.

CAF (Call Attach Facility)
The next "door to DB2" is provided by the CAF, or Call Attach Facility. CAF differs from the previous
attach mechanisms in that it does not provide teleprocessing services. CAF is used to manage
connections between DB2 and batch and online TSO application programs, without the overhead of the
TSO terminal monitor program.

CAF programs can be executed as one of the following:
 An MVS batch job
 A started task
 A TSO batch job
 An online TSO application

CAF is used to control a program's connection to DB2, as shown in Figure 16.30. The DB2 program
communicates to DB2 through the CAF language interface, DSNALI. The primary benefit of using CAF
is that the application can control the connection with CAF calls. Five CAF calls are used to control the
connection:
CONNECT Establishes a connection between the program's MVS address

space and DB2
DISCONNECT Eliminates the connection between the MVS address space and

DB2
OPEN Establishes a thread for the program to communicate with DB2
CLOSE Terminates the thread
TRANSLATE Provides the program with DB2 error message information,

placing it in the SQLCA

 - 396 -

Typically, a control program is created to handle the establishment and termination of the DB2
connection. It is the CAF module shown in Figure 16.30. Although this module is not required, it is
recommended so that you can eliminate the repetitious coding of the tedious tasks associated with
connecting, disconnecting, opening, and closing.

Figure 16.30: The Call Attach Facility.

CAF programs must be link-edited with the CAF language interface module, DSNALI.

Thread Creation and Use
Two distinct methods for the creation of a CAF thread can be followed. In the first, shown in Figure
16.31, the application program explicitly requests a thread by using the CAF OPEN call. The application
uses the CLOSE call to explicitly terminate the thread. Explicit creation of CAF threads is particularly
useful for online TSO CAF programs.

Figure 16.31: Explicit CAF thread creation.

As I mentioned in the TSO section, an online TSO/DB2 program can tie up a thread for a long time
when the DSN command is used to attach to DB2. When users of this type of application spend time
thinking about their next action, or leave their terminal in the middle of the application, a program using
the TSO attach consumes an active thread.

If the program instead used CAF to create a thread, each time the user presses Enter, the thread is
terminated before the next screen appears. Although this use of DB2 resources is more effective
because a thread is not consumed when no activity occurs, it is also less efficient because the overhead
of thread termination and creation is added to each user action. Online TSO applications are not known
for their speed, though, so fewer dormant threads in return for a slower response time might not be a
bad trade-off.
The second method of thread creation is shown in Figure 16.32. This figure shows the implicit creation
and termination of CAF threads. If the OPEN and CLOSE calls are not used, a thread is created when
the first SQL statement is issued.

 - 397 -

Figure 16.32: Implicit CAF thread creation.

Benefits and Drawbacks of CAF
Before deciding to use CAF, you should consider all the ramifications of this decision. If used properly,
CAF can enhance the performance and resource utilization of a DB2 application. If used improperly,
CAF can cause problems.
One benefit of using CAF is that it provides explicit control of thread creation. In addition, CAF is more
efficient than DSN because of the elimination of overhead required by the TSO TMP, IKJEFT01
(or IKJEFT1B). Another benefit is that a program designed to use CAF can run when DB2 is down. It
cannot access DB2 resources, but it can perform other tasks. This capability can be useful when the
DB2 processing is optional, parameter driven, or contingent on other parts of the program.

CAF has its drawbacks too, though. For example, CAF requires more complex error handling
procedures. DSN automatically formats error messages for connection failures, but CAF returns only a
return code and a reason code. Another drawback is that DSN handles the connection automatically,
but CAF requires the program to handle the connection. These drawbacks can be eliminated, however,
if you modify the CAF interface module used at your site. Note that by modifying the CAF module your
shop must support logic that otherwise is provided with DB2 (and supported by IBM).

Vendor Tools
Some vendor tools provide an interface to the Call Attach Facility. They are generally used to enable
DB2 batch programs to run without the TSO TMP. By simply link-editing your DB2 program with the
vendor-supplied language interface module, you can run DB2 batch programs as MVS batch programs
instead of TSO batch programs. Although these tools do not usually provide the same level of flexibility
as true CAF (for example, control over thread creation and termination), they are useful for eliminating
the need for TSO in batch, thereby reducing overhead.

Sample CAF Code
You can use several sample CAF programs provided with DB2 as models for the development of your
own CAF applications. These programs follow:
DSN8CA Assembler interface to CAF
DSN8SPM CAF connection manager for ISPF
DSN8SP3 PL/I program that interfaces with CAF
DSN8SC2 COBOL program that interfaces with CAF

RRSAF (Recoverable Resource Manager Services Attach
Facility)
RRSAF, or the Recoverable Resource Manager Services Attach Facility, is the final "door to
DB2." RRSAF is available as of DB2 V5. RRSAF is similar in functionality to CAF but without
the implicit connection capabilities. However, RRSAF provides the following additional
capabilities and benefits:

 Applications can reuse DB2 threads for different userids (with SIGNON and AUTH
SIGNON; requires RACF or a similar system authorization product).

 - 398 -

 Applications (and stored procedures) can coordinate MVS-wide commitment of
recoverable resources through OS/390. To qualify for participation in the MVS-
wide commit, stored procedures must be executed in an MVS WLM-managed
SPAS.

 DB2 threads can run under different TCBs.

As with CAF, RRSAF controls program connections to DB2. Seven functions are used to
control the DB2 connections:

SIGNON Specifies a userid (and optionally a secondary authid) for the
connection

AUTH SIGNON Specifies a userid (and optionally a secondary authid) for the
connection and invokes the signon exit. The program must be APF
authorized to execute this function.

IDENTIFY Specifies that the program is a user of DB2 services.
CREATE THREAD Establishes a connection between the program's MVS address space

and DB2.
TERMINATE THREAD Deallocates DB2 resources from the program.
TERMINATE
IDENTIFY Deallocates DB2 resources.

TRANSLATE Provides the program with DB2 error message information, placing it
in the SQLCA.

Consider using RRSAF as an alternative to CAF when the performance benefits of thread
reuse are deemed necessary.
When you're preparing a program for RRSAF, you must link DSNRLI (the RRSAF interface) to
the load module.

Comparison of the Environments
Now that you have learned about each environment in which DB2 programs can execute, you can begin
to compare their features and capabilities. When choosing an operating environment for a DB2
application, you should ensure that it can support the data needs of the application. Typically, a
corporation's data is spread across disparate processing platforms and data storage devices.
Additionally, the data is stored in many different physical manifestations.

When you're choosing an environment for your application, consider the following:
 Do you have access to the environment that you want to use for a development

platform? If not, can you obtain access?
 Can you access data key to your enterprise in the format in which it exists today, or will

your choice of environment require that the data be duplicated and placed in a
readable format?

 Are the programmers who will be working on the project knowledgeable in the chosen
environment, or will extensive training be required?

Resource Availability
Table 16.9 presents resource availability categorized by each processing environment that has been
discussed. You can use this table as a reference when deciding on a processing environment for your
DB2 applications.

Table 16.9: A Comparison of Resource Availability

Resource

CICS

TSO
Onli
ne

TSO
Batc
h

CAF

RRSAF

IMS
MP
P

IMS
Fas
t
Pat
h

Flat file
access

Yes Yes Yes Yes Yes No No

 - 399 -

VSAM
access

Yes Yes Yes Yes Yes No No**

Online
IMS
database

Yes No No No No Yes Yes

Offline
IMS
database

Yes No No No Yes No No

Invoked
by JCL

No No Yes Yes Yes No No

Invoked
by
transactio
n

Yes No No No No Yes Yes

Invoked
by CLIST
or REXX
EXEC

No Yes No Yes Yes No No

Invoked
by ISPF

No Yes No No Yes No No

[*] IMS GSAM database
[**] IMS SHISAM database

You might find some of the entries in Table 16.9 confusing. The following explains these entries in more
detail:

 Yes indicates that the processing environment listed across the top can access the
resource defined along the left. Simply because the resource is accessible (as IBM
delivers the products that support the environment), however, does not mean that
you can use it in your shop. Some shops restrict and limit access, so consult your
shop standards before proceeding with development plans based on Table 16.9.

 Flat file access is available using IMS calls when a GSAM (Generalized Sequential
Access Method) database is defined for the flat file. IMS BMPs and batch programs
can access flat files as GSAM databases. Access to flat files using pure OS/VS
reads and writes is available only to IMS batch programs.

 All IMS programs can access VSAM KSDS data sets as a SHISAM (Simple
Hierarchic Indexed Sequential Access Method) database. Again, IMS batch
programs are the only type of IMS program that can access a VSAM file using
VSAM data set commands.

 IMS online databases are those defined to the IMS control region and started for
online access in IMS/TM. Conversely, an offline IMS database either is not defined
under the IMS control region and is thus not accessible by IMS/TM, or it is stopped
(sometimes referred to as DBRed) to IMS/TM.

Feasibility
After ensuring that what you want is possible, your next step is to ascertain whether it is feasible. An
application is feasible in a specified environment if the response time and availability requirements of
the application can be met satisfactorily by the environment. Typically, you should draw up a service-
level agreement for each new application, developing a price-to-performance matrix. Consider this
example:
The online portion of the system must provide an average response time of x seconds, y percent of the
time, for an average of z users. The cost per transaction is approxi-mately a.
Use the information in Table 16.10 to determine which online environment is feasible for your project.

Table 16.10: Comparison of Online Development Capabilities

Characteristic TSO CICS IMS/TM

 - 400 -

Response time Slow Fast Fast

Flexibility High Low Low

Number of concurrent users Fewer
than
10

Many Many

Overhead per user Very
high

Very low Low

Program linking Not
easy

XCTL/LINK Message
switching

Online screen language ISPF
Dialo
g

BMS MFS
Manager

Screen development Fast Cumbersome Cumbersome

Program development Fast Medium Slow

Prototyping and testing tools Many Some Few

As you ponder the choices of development environments for your DB2 applications, ask the following
questions:

 What is the deadline for system development? What programming resources are
available to meet this deadline? Do you have the requisite talent to develop the
system in the optimal environment? If not, should you hire programmers or settle for
a less than optimal solution?

 What are the performance requirements of the system? How many concurrent users
will be using the system during peak processing time, and can the given
environment support the workload?

Sometimes you have little or no choice. If a shop has only one environment, the decision is easy. If your
shop has more than one environment, the right decision is never to confine yourself to only one
environment. Each environment has its own strengths and weaknesses, and you should consider them
in your application development solution.

When multiple environments are used to access DB2 data, they become inextricably wound in a critical
mass. This situation can be difficult to administer and warrants consideration.

Batch Considerations
Although this chapter is primarily concerned with coverage of the online processing opportunities
available to DB2, a quick discussion of the various batch processing options is in order. DB2 batch
processing can be implemented using the following:

 DSN under TSO
 CAF or RRSAF
 Batch DL/I
 BMP under IMS/TM

In terms of performance, no significant differences exist among DSN, CAF, batch DL/I, and BMPs.
However, if you need to squeeze every last bit of performance out of a batch application, consider these
points:

 Because DSN uses TSO, you will have some additional overhead for TSO resources
when compared to an equivalent CAF program.

 Because BMPs execute in an IMS control region, initialization will take longer than an
equivalent DSN or CAF program.

 Commit processing tends to take longer for BMPs because they check for DB2 and
IMS update activity.

Although performance differences are minimal, you will discover several coding implications:
 CAF and RRSAF programs require connection logic and error handling not required

by DSN.

 - 401 -

 IMS SYNCPOINT must be used in lieu of COMMMIT for BMPs.
 DL/I batch programs require coding for the DDITV02 data set.

The Critical Mass
Prior to DB2 V4, when an application required DB2 access, the teleprocessing monitor (TSO,
CICS, or IMS/TM) had to reside on the same MVS system as DB2. This situation created a
critical mass, which is the set of subsystems tied by a single common attribute; they must
access DB2 resources. For example, if a data-processing shop uses both CICS and IMS/TM
to develop DB2 applications, the shop's critical mass would consist of the following:

 IMS/TM subsystem
 All CICS subsystems requiring DB2 access
 DB2 subsystem
 TSO subsystem if DB2I access is required

All of them had to operate on the same CPU. Additionally, when an error occurred, they could
not be moved independently without losing DB2 access. A large shop could quickly use up the
resources of its machine if all DB2 applications were developed on a single DB2 subsystem.

However, data sharing, introduced with DB2 V4, enables multiple DB2 subsystems to access
the same data, which frees up resources, enables flexible configuration and management,
expands capacity, and improves availability. Prior to data sharing, organizations had to slice
applications into disparate, independently operating units in one of the following ways:

 You could develop IMS/TM applications on one DB2 subsystem, develop CICS
applications on another, and develop TSO applications on yet another. This
approach reduced the critical mass so that IMS/TM and CICS were not married
together.

 Another method was to provide the separate DB2 subsystems with distributed
access to DB2 data that had to be shared.

 Yet another method was to choose a single teleprocessing environment for all
DB2 applications.

 Last, by avoiding DB2I and QMF access, you could eliminate TSO from the
critical mass. Instead, you submitted SQL and DSN commands as batch
invocations of TSO. Because this hampered ease of use and detracted from the
overall user-friendliness of DB2, doing so was not recommended.

However, since DB2 V4 the preferred method of avoiding the critical mass is to implement
data sharing.

Summary
In this chapter, you learned how to develop DB2 applications for five different environments: TSO,
CICS, IMS, CAF, and RRSAF. Each provide specific benefits, while also posing different types of
challenges. Furthermore, you examined the online and batch characteristics of each environment, and
how the environments can operate with each other. As more environments are used, the critical mass of
subsystems and allied agents required for a specific DB2 subsystems increases. Data sharing helps to
alleviate these concerns. Turn the page to Chapter 17, "Data Sharing," to explore the details and learn
the secrets of data sharing.

Chapter 17: Data Sharing

Overview
DB2 data sharing allows applications running on multiple DB2 subsystems to concurrently
read and write to the same data sets. Simply stated, data sharing enables multiple DB2
subsystems to behave as one.

DB2 data sharing is optional; it need not be implemented. Check with your DBA or system
administrator if you are not sure if data sharing is used in your organization.
Prior to DB2 V4, the only methods available for sharing DB2 data across subsystems were
through distributed DB2 connections or using shared read-only databases (using the

 - 402 -

ROSHARE option when creating databases). However, both of these options have drawbacks.
The distributed option requires coding changes and the ROSHARE option supports read-only
access (and is no longer available as of DB2 V6).

Data Sharing Benefits
DB2 data sharing, though somewhat complex to implement and administer, provides many benefits. In
the long run, most organizations will move to DB2 data sharing because of the many benefits outlined in
this section.

The primary benefit of data sharing is to provide increased availability to data. DB2 data sharing
provides a powerful technology for solving complex business problems in an optimal manner. Data is
available for direct access across multiple DB2 subsystems. Furthermore, applications can be run on
multiple smaller, more competitively priced microprocessor-based machines, thereby enhancing data
availability and the price/performance ratio.

An additional benefit is expanded capacity. Capacity is increased because more processors are
available to execute the DB2 application programs. Instead of a single DB2 subsystem on a single
logical partition, multiple CPCs can be used to execute a program (or even a single query).

Each data sharing group may consist of multiple members; application programs are provided with
enhanced data availability. There is no primary or "owner" DB2 subsystem. All DB2 subsystems in a
data sharing group are peers. One or more members of a group may fail without affecting application
programs because the workload will be spread across the remaining DB2 members. Therefore, failure
of one DB2 subsystem cannot cause the other subsystems to become unavailable.

Data sharing increases the flexibility of configuring DB2. New members can be added to a data sharing
group when it is necessary to increase the processing capacity of the group (for example, at month end
or year end to handle additional processing). The individual members that were added to increase the
processing capacity of the data sharing group are easily removed when it is determined that the
additional capacity is no longer required. Finally, prior to data sharing, larger organizations with multiple
MVS machines often devoted individual processors to groups of users. When a DB2 application needed
to span the organization, it was usually necessary to create a duplicate copy of the application for each
DB2 on each system image used by the organization. With data sharing, a single data sharing group
can be created for the entire organization (within the limit of 32 subsystems per group). This can
alleviate the need to create multiple copies of an application.

What Are Sysplex and Parallel Sysplex?
A Sysplex is a set of OS/390 images that are connected and coupled by sharing one or more Sysplex
timers. A Parallel Sysplex is a basic Sysplex that additionally shares a coupling facility whose
responsibility is to provide external shared memory and a set of hardware protocols that allow enabled
applications and subsystems to share data with integrity by using external shared memory. Parallel
Sysplex enhances scalability by extending the ability to increase the number of processors within a
single OS/390 image with the ability to have multiple OS/390 images capable of cooperatively
processing a shared workload.

Additionally, Parallel Sysplex enhances availability by providing customers with the ability to non-
disruptively remove one or more OS/390 images and/or CECs from a configuration to accommodate
hardware and software maintenance.

Data Sharing Requirements
Data sharing consists of a complex combination of hardware and software. To share data, DB2
subsystems must belong to a pre-defined data sharing group. Each DB2 subsystem contained in the
data sharing group is a member of that group. All members of the data sharing group access a common
DB2 Catalog and directory.

Each data sharing group is a OS/390 Cross-system Coupling Facility (XCF) group. XCF was introduced
in MVS/SP 4.1 with the MVS Sysplex. The group services provided by XCF enable DB2 data sharing
groups to be defined. In addition, XCF enables the data sharing environment to track all members

 - 403 -

contained in the data sharing group. A site may have multiple OS/390 Sysplexes, each consisting of
one or more OS/390 systems. Each individual Sysplex can consist of multiple data sharing groups.

DB2 data sharing requires a Sysplex environment that consists of the following:
 One or more central processor complexes (CPCs) that can attach to a coupling facility.

A CPC is a collection of hardware consisting of main storage, one or more central
processors, timers, and channels.

 At least one coupling facility. The coupling facility is the component that manages the
shared resources of the connected CPCs. DB2 uses the coupling facility to provide
data sharing groups with coordinated locking, bufferpools, and communication. MVS
V5 is required to install a DB2 coupling facility.

 At least one Sysplex timer. The Sysplex timer keeps the processor timestamps
synchronized for all DB2s in the data sharing group.

 Connection to shared DASD. The user data, system catalog and directory data, and
MVS Catalog data must all reside on shared DASD.

Note The DB2 logs and boot strap data sets (BSDS) belong to each DB2 member
individually. However, they too must reside on shared DASD.

Note It is recommended that your shop have a security facility that supports security in
a Parallel Sysplex environment before implementing DB2 data sharing. RACF
Version 2 Release 1 provides this capability.

Refer to Figure 17.1 for an overview of a DB2 data sharing environment consisting of two DB2
subsystems connected using a coupling facility.

Figure 17.1: A DB2 Data Sharing Environment.

DB2 Data Sharing Groups
Data sharing groups may span multiple MVS systems. A data sharing group consists of individual DB2
subsystems, called members. Data sharing group members must belong to the same MVS Sysplex.
Data sharing group members can only belong to one data sharing group.

Up to 32 DB2 subsystems can be members of a DB2 data sharing group. Each DB2 subsystem of the
data sharing group can access all of the data in each of the subsystems as if it were local. Any DB2
object (tablespace, index, table, and so on), in any of the DB2 subsystems in the data sharing group, is
available to all members of the group. This includes the shared DB2 Catalog and directory.

Data sharing is done within the members of the data sharing group; a request cannot span multiple
groups.
Certain DB2 objects must be shared between members, whereas other objects are owned by members.
Refer to Table 17.1 for a breakdown of the shared versus non-shared objects.

Table 17.1: Shared and Non-Shared Objects

Shared Objects Non-
Shared

 - 404 -

Objects

DB2 Catalog BSDS

DB2 Directory Archive
and
Active
Logs

Coupling Facility Structures DSNDB07

Lock Structures Sort, RID,
and EDM
Pools

Group Bufferpools Local
Bufferpool
s

Shared Communication Area Trace
Data

Application Impact
No special programming is required for applications to access data in a DB2 data sharing environment.
Each individual subsystem in the data sharing group uses the coupling facility to communicate with the
other subsystems. The intersystem communication provided by DB2 data sharing provides a system
image that resembles a single, standalone DB2 subsystem to the application.

No application programming changes are required. The only modifications that may need to be made to
current application programs to run in a data sharing environment is to provide additional error checking
for "data sharing" return codes.

There is a one-to-one relationship between OS/390 and data sharing transactions. The DB2 member
where the transaction was initiated keeps all of the information related to that transaction that is needed
to successfully execute it. Once a unit of work begins processing on a member, it is executed in its
entirety on that member.

Impact on Attachment Interfaces
Likewise, DB2 data sharing has no impact on existing attachment interfaces. The DB2 subsystem name
may still be used to attach to a particular DB2 subsystem. Application programs using the subsystem
name will only be able to attach to those DB2 subsystems that reside on the same OS/390 system as
they do.

TSO and CALL ATTACH support a new GROUP ATTACH name. This generic name is created during
the group's originating member installation. The GROUP ATTACH name allows TSO and batch jobs to
connect to any DB2 in the group. This eliminates the need to know the DB2 subsystem name on local
OS/390 systems.

IMS and CICS transaction managers are unable to take advantage of the group attach name. They
must remain sensitive to a specific DB2 subsystem to be able to resolve any in-doubt units of recovery.

Impact on DCL and DDL
Because all members of the data sharing group share a common catalog, security grants, table
definitions, and program definitions only need to be executed once. DDL and DCL do not need to be re-
run for each data sharing member.

 - 405 -

Sysplex and Distributed Access
Distributed access requests, using both public and private DB2 protocols, can be made to a data
sharing group. All members of the group have the same location name. This enables distributed
requests to be made in a data sharing environment transparent to the application program.

Application Support
Even though the impact of data sharing on applications is minimal, the impact on application support is
substantial. When DB2 subsystems are grouped together using data sharing, any application can
access any database in any of the data sharing member subsystems. This can make debugging,
supporting, and testing difficult.

Additionally, the software licensing impact of data sharing can also be quite problematic. Do not
implement data sharing without first considering what supporting software is necessary. In a data
sharing environment, software licenses that previously applied to a single machine only may have to be
renegotiated for multiple machines (those in the Sysplex).

The DB2 Coupling Facility
DB2 uses the coupling facility to provide inter-member communications. The primary function of the
coupling facility is to ensure data availability while maintaining data integrity across systems. This
requires the coupling facility to provide core services to the data sharing group such as locking and
caching of data. To do so, the CF requires three structures to synchronize the activities of the data
sharing group members:

 Lock structures are required to control global locking across the data sharing group
members. Global locks are required because multiple members can access the same
data. As such, each member needs to know the state of the data before it can be
modified. The lock structure propagates locks to all members of the data sharing
group.

 The list structure enables communication across the Sysplex environment.
 Cache structures provide common buffering for the systems in the Sysplex. When a

data page is updated by an individual data sharing member, a copy of that page is
written to one of the global bufferpools. If other members need to refresh their copy of
the data page in question, the copy is obtained from the coupling facility's global
bufferpool instead of from DASD. This requires the members to check the appropriate
coupling facility global bufferpool first, to determine if the desired page needs to be
read from DASD or not.

These structures ensure that data is synchronized between the member of the DB2 data sharing group.

Defining the Coupling Facility
A coupling facility is defined using Coupling Facility Resource Management (CFRM). CFRM is created
by the IXCMIAPU utility. The CFRM is used to identify

 Each individual coupling facility
 Each structure within the individual coupling facilities
 Space allocated to these structures
 Ordered preferences and which coupling facility is used to store this ordered

preference structure
 Unordered exclusion list, which defines the structures to keep separate from this

structure

Global Lock Management
Because data sharing group members can access any object from any member in the group, a global
locking mechanism is required. This is done by the lock structure defined in the coupling facility. The
lock structure is charged with managing inter-member locking. Without a global lock management
process, data integrity problems could occur when one member attempts to read (or change) data that
is in the process of being changed by another member.

 - 406 -

Data sharing groups utilize a global locking mechanism to preserve the integrity of the shared data. The
global locking mechanism enables locks to be recognized between members.
For more details on the lock management process for data sharing environments, refer to Chapter 21,
"Locking DB2 Data."

Global Inter-System Communication
The list structure component of the coupling facility contains status information used for inter-system
communications. The list structure is also referred to as the Shared Communication Area, or SCA. The
SCA maintains information about the state of databases, log files, and other details needed for DB2
recovery.

Global Data Buffering
Similar to the need for a global lock management technique, data sharing also requires global data
buffering. Once again, this is so because a data sharing environment consists of multiple member DB2
subsystems. Each of those members has its own separate bufferpools, and each member can access
and change data in any database on any subsystem within the data sharing group.

In a data sharing environment, data pages may be found in
 Local bufferpools
 Hiperpools
 Group bufferpools
 DASD (disk)

Updating and Reading Data
When data is modified, the changed data is stored in the bufferpool of the DB2 subsystem executing the
transaction. The change is not immediately available to transactions that are executing in other
members of the data sharing group. The coupling facility is used to provide all members of a data
sharing group with a set of global bufferpools.

When modifications occur in a data sharing environment, DB2 must use force-at-commit processing.
Force-at-commit writes pages changed by the transaction to the appropriate global bufferpools when a
commit point is reached. Force-at-commit processing is new and used solely in a data sharing
environment.

Caution The changed page may be written prior to commit if local bufferpool write
thresholds are reached.

Note In a non-data sharing environment, DB2 does not write changed pages at a
commit point. Instead, the buffer manager uses a deferred write algorithm that
moves the expensive buffer write operations outside of the transaction path
length.

During the write to the global bufferpool, the coupling facility notifies DB2 members that currently have
the page cached in their local bufferpool to invalidate it so that the next access will cause the page to be
read from the global bufferpool (or disk).

The read transaction tests the validity of all pages it finds in its local bufferpool. If the page is still valid,
the read transaction accesses the page from its local bufferpool. If the page is marked invalid (due to a
previous update by another member), the read transaction will refresh the changed page from the global
bufferpool (or disk).

Defining Data Sharing Bufferpools
Data sharing members must use the same name for the global bufferpool as is used for the local
bufferpool. For example, if BP5 is defined at the local subsystem level, BP5 must also be defined at the
group bufferpool level. A group bufferpool must be defined for each associated local bufferpool. If a
local bufferpool does not have a corresponding global bufferpool, resources utilizing the pool can only
be used locally and cannot be shared.
For more information on group bufferpool specification and tuning, refer to Chapter 26, "Tuning DB2's
Components."

 - 407 -

Group Bufferpool Duplexing
Prior to DB2 V6, if a group bufferpool failed, the only options for recovery were

 Recovering group bufferpools, whereby DB2 recovers data from its logs in case
the group bufferpool structure is damaged, or if all members lose connectivity to
the group bufferpool.

 Rebuilding group bufferpools, whereby DB2 copies pages from the group
bufferpool to a new allocation of the structure in an alternative coupling facility (or
to DASD, if DB2 cannot get enough storage in the alternate coupling facility).

However, with DB2 V6 or DB2 V5 with an APAR enhancement, when you more than one coupling
facility, you can duplex the group bufferpools. With group bufferpool duplexing, a secondary group
bufferpool is waiting on standby in another coupling facility. In the event of a connection failure or if the
primary group bufferpool fails, the secondary group bufferpool can take over (see Figure 17.2).

Figure 17.2: Group Bufferpool Duplexing.

With group bufferpool duplexing, you have two allocations of the same group bufferpool that use one
logical connection. Each group bufferpool structure must be allocated in a different coupling facility.

With group bufferpool, duplexing pages that need to be written are written to the secondary group
bufferpool structure asynchronously and to the primary group bufferpool structure synchronously. After
all the required pages are written to the primary group bufferpool structure, DB2 double-checks on the
writes to the secondary group bufferpool structure to ensure they have successfully completed. If any
writes were not completed, DB2 forces them to completion.

Data Sharing Naming Conventions
It is imperative that appropriate naming conventions are developed for data sharing
constructs. This is important to enable effective management of the data sharing environment.
Data sharing naming conventions fall into two categories:

 Group-level names for structures owned by the data sharing group. These names
are shared by all members of the data sharing group. Group-level names that
must be created include the following:

DB2 group name—The name that is used to define the DB2 data sharing group to
MVS. The group name can be no longer than 8 characters and can be comprised
of the characters A-Z, 0-9, $, #, and @. The group name must begin with an
alphabetic character.

Catalog alias—The name of the MVS catalog alias. This catalog alias can be up
to 8 characters long. The DB2 group name should be used for the catalog alias
name.

IRLM group name—The name used to define the IRLM to the data sharing group.

Location name—Each data sharing group has one DDF location name. This
location is used by remote requests to indicate the data sharing group. This name
can be up to 16 characters long.

 - 408 -

Generic LU name—This name allows remote requesters to configure their
systems to treat the data sharing group as a single LU. The generic LU name can
be up to 8 characters in length.

Group attach name—A generic four-character name that is used by applications
using TSO or CALL ATTACH. This enables the application to attach to any DB2
member that is contained in the data sharing group.

Coupling facility structure names—Names are required for the lock structure,
SCA, and group bufferpools. These names are pre-defined by DB2 as shown in
Table 17.2. In place of groupname, substitute the actual DB2 group name. For
group bufferpools, the only difference is the prefix "G" added to the bufferpool
name.

 Member-level names for structures owned by each DB2 data sharing member.
Member-level names that must be created include:
DB2 member name—The name that is used to identify the individual DB2
subsystem to OS/390 for inclusion into the data sharing group. Like the data
sharing group name, this name can be no longer than 8 characters and can be
comprised of the characters A-Z, 0-9, $, #, and @. The DB2 member name is
used by DB2 to form its OS/390 cross-system coupling facility (XCF) member
name.
Subsystem name—The name can be up to four characters long and is used by all
attachment interfaces.
LU name—Must be unique within the data sharing group and the network.
Work file database name—Each data sharing member must have its own work file
database. The work file database in the non-data sharing environment is known
as DSNDB07. The work file database name can be up to 8 characters long.
Command prefix—Up to 8-character prefix used for DB2 command execution.
IRLM subsystem name—Defines the IRLM subsystem.
IRLM procedure name—Defines the IRLM startup procedure.
ZPARM name—Each member of a data sharing group has its own DSNZPARM
load module.

Table 17.2: Coupling Facility Structure Naming Conventions

Structure Type Naming Standard

Lock Structure groupname_LOCK1

SCA groupname_SCA

Group Bufferpools groupname_Gbufferpool

Data Sharing Administration
One of the benefits of data sharing is that the entire environment can be administered from a single
MVS console. The DB2 command prefix, which as of DB2 V4 or later can be 8 characters long, is used
to differentiate between the different members of a data sharing group.

Note Individual data sharing group member names can be used as command prefixes.

In a Sysplex environment administrative DB2 commands can be routed to any DB2 member from a
single console. This eliminates the need to know the MVS system name to send DB2 commands. In
addition, there is no need to use ROUTE DB2 commands in this environment (see Figure 17.3).

 - 409 -

Figure 17.3: Administering the DB2 Data Sharing Environment.

Data Sharing Group Creation
To enable data sharing, a common DB2 Catalog is required. IBM does not provide an automated
mechanism for merging data from multiple existing DB2 subsystems. The process of merging systems
is complex and should not be undertaken lightly. Merging subsystems is not solely a physical data
movement problem but includes other administrative issues including the creation and enforcement of
naming standards, DB2 security and authorization, backup and recovery, utility execution, data
distribution, and on and on. Indeed, the decision to merge subsystems into a data sharing group will
affect almost every aspect of database administration for the subsystems involved.
If you are still interested in merging pre-existing DB2 subsystems into data sharing, an exhaustive 16-
step process for merging data from individual DB2 subsystems is available in the IBM manual Data
Sharing: Planning and Administration (SC26-9007).

Caution Watch for duplicate object names when merging multiple DB2 Catalogs into
the shared DB2 Catalog for the data sharing group. Because the objects were
originally created in isolation from one another, it is likely that duplicate object
names (for example, databases, tablespaces, indexes, and so on) may be
encountered when Catalogs are merged.

Backup and Recovery
Each DB2 member still maintains its own recovery logs and BSDS data sets. Each DB2 member must
be able to read the logs of every other data sharing group member. This is required because logs from
multiple members may be required to do media recovery for a single member. If logs are required from
multiple members, the multiple logs are merged together during the recovery process.

Log Record Sequence Numbers (LRSN) are used to provide common log record sequencing across
members. The LRSNs are used to control "redo"/"undo" for data sharing environments and are
identified by a 6-byte value derived from the DB2 timestamp. The RBA is still used during non-data
sharing recoveries.

Subsystem Availability
DB2 data sharing improves data availability by providing redundant failover capabilities. In the event of
a DB2 data sharing group member failure, the remaining members are used to process the data
requests. The workload is spread across the remaining DB2 members.

Uncommitted locks held by the failed member are retained. No member is permitted to obtain a lock that
is not compatible with the retained locks. All other (non-locked) data is still accessible to the remaining
DB2 members. Retained locks are purged during the restart process for the failed member.

The failed DB2 member can restart on the same or different OS/390 system.

 - 410 -

Monitoring Data Sharing Groups
The DISPLAY GROUP command can be issued from any active member of a group to determine
information about all members of a data sharing group. An example of issuing a DISPLAY GROUP
command follows:
-DB1G DISPLAY GROUP
The result of this command will be a listing of the group members, the status of all members in the
group, SCA, and lock structure sizes and percentage in use. The maximum number of lock and list
entries possible with the number of entries in use are shown. An example of the information returned by
DISPLAY GROUP is depicted in Listing 17.1.

Listing 17.1: Results of the DISPLAY GROUP Command

DSN7100I -DB1G DSN7GCMD

*** BEGIN DISPLAY OF GROUP(DSNDB0G)

--

DB2 SYSTEM IRLM

MEMBER ID SUBSYS CMDPREF STATUS NAME SUBSYS IRLMPROC

-------- --- ---- -------- ------- -------- ---- --------

DB1G 1 DB1G -DB1G ACTIVE MVS1 DJ1G DB1GIRLM

DB2G 2 DB2G -DB2G ACTIVE MVS2 DJ2G DB2GIRLM

DB3G 3 DB3G -DB3G ACTIVE MVS3 DJ3G DB3GIRLM

DB4G 4 DB4G -DB4G ACTIVE MVS4 DJ4G DB4GIRLM

--

SCA STRUCTURE SIZE: 2560 KB, STATUS= AC, SCA IN USE: 48 %

LOCK1 STRUCTURE SIZE: 16384 KB, LOCK1 IN USE: 1 %

NUMBER LOCK ENTRIES: 4194304, LOCK ENTRIES IN USE: 981

NUMBER LIST ENTRIES: 59770, LIST ENTRIES IN USE: 719

*** END DISPLAY OF GROUP(DSNDB0G)

DSN9022I -DB1G DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

Coupling Facility Recovery
Although unlikely, it is possible for the coupling facility to fail, causing its structures to be lost. A dynamic
rebuild of the coupling facility structures (lock, SCA) is executed during coupling facility recovery.
However, if the dynamic rebuild fails and the structures cannot be rebuilt on another coupling facility, all
DB2 members contained in the data sharing group are brought down.

To recover from this scenario, a group restart is required. Group restart rebuilds the information that
was lost from the SCA and/or lock structure using the logs of the DB2 group members. All of the logs for
every data sharing group member must be available during the group restart process.

 - 411 -

Note Group restart does not necessarily mean that all DB2s in the group start up again,
but information from all DB2s must be used to rebuild the lock structure or SCA.

Data Sharing Guidelines
When implementing data sharing in your shop, be sure to abide by the following guidelines.

Consider Multiple Coupling Facilities

To reduce the risk of downtime, deploy multiple coupling facilities. If one coupling facility fails, you can
always switch to another "backup" coupling facility.

A recommended implementation is to have one coupling facility to house the group bufferpools and a
second coupling facility for the SCA and lock structures.

Implement Group Bufferpool Duplexing

Duplex your group bufferpool structures to provide failover capability for buffering in your data sharing
environment. With group bufferpool duplexing, a secondary group bufferpool is waiting on standby to
take over buffering activity if the primary group bufferpool fails.

To start group bufferpool duplexing, at least one DB2 member must be actively connected to the group
bufferpool. When group bufferpool duplexing is started, all activity to the group bufferpools is quiesced
until duplexing is established. This usually lasts only a few seconds.

Caution Initiate group bufferpool duplexing during a period of low system activity to
avoid resource unavailable conditions while duplexing is being established.

You must use CFRM policies to activate group bufferpool duplexing. There are two ways to start
duplexing a group bufferpool:

 Activate a new CFRM policy specifying DUPLEX(ENABLED) for the structure. If the
group bufferpool is currently allocated, OS/390 can automatically initiate the process to
establish duplexing as soon as you activate the policy. If the group bufferpool is not
currently allocated, the duplexing process can be initiated when the group bufferpool is
allocated.

 Activate a new CFRM policy specifying DUPLEX(ALLOWED) for the structure. If the
group bufferpool is currently allocated, you must rebuild duplexing using the following
command:

SETXCF START,REBUILD,DUPLEX,STRNAME=strname
If the group bufferpool is not currently allocated, you need to wait until it is allocated before
using the SETXCF command to start the duplexing rebuild.

Take Action to Help Prevent Coupling Facility Failures

To limit down time due to coupling facility failure, consider taking the following actions:
 Configure multiple coupling facilities.
 Reserve space in an alternate coupling facility in case the lock and SCA structures

must be rebuilt.
 Use dedicated coupling facilities so that the MVS image is not lost during processor

failure.
 Use uninterruptable power supplies for all dedicated coupling facilities.
 Implement group bufferpool duplexing.
 Configure more than one Sysplex timer.

Avoid Confusing Names for Data Sharing Groups
Avoid names that IBM uses for its XCF groups by avoiding the letters A-I as the first character of the
group name (unless the first three characters are DSN). Additionally, avoid using SYS as the first three
characters, and do not use the string UNDESIG as your group name.

Avoid Using DSNDB07 as a Work File Database Name
Each data sharing group member must have a work file database defined for it. Although one of the
members of the data sharing group can use DSNDB07, this is not advisable. Instead, create a
descriptive name for each work file database, for example the string WK concatenated to the member
name.

 - 412 -

Caution You cannot specify a name that begins with DSNDB unless the name is
DSNDB07.

Be Aware of Sysplex Parallelism
The biggest change to data sharing in DB2 V5 was Sysplex query parallelism. With Sysplex Parallelism,
DB2 provides the ability to utilize the power of multiple DB2 subsystems on multiple CPCs to execute a
single query. Refer to Chapter 19, "The Optimizer," for more information on all forms of query
parallelism available with DB2.

Specify Lock Structure Size with Care

The size of the coupling facility's locking structure directly affects the number of false contentions
(collisions) that occur. If the hash table is too small, the propensity for false collisions increases. Any
contention, including false contention, requires additional asynchronous processing which negatively
affects performance.

Summary
In this chapter, you learned how to share data across multiple DB2 subsystems using the OS/390
Sysplex. Data sharing enables multiple DB2 subsystems to behave as one.
For additional information and guidelines on data sharing global locking, refer to Chapter 21, "Locking
DB2 Data." Additionally, tips and techniques for specifying and tuning bufferpools in a data sharing
environment are contained in Chapter 26.

Now that we have examined how to share data, let's move on to examine the behind-the-scenes
functionality of DB2.

Chapter 18: DB2 Behind the Scenes
Overview
After reading the first 17 chapters of this book, you should have a sound understanding of the
fundamental concepts of the DB2 database management system. You are familiar with the functionality
and nature of SQL, and you understand the process of embedding SQL in an application program and
preparing it for execution. Additionally, you learned many tips and techniques for achieving proper
performance.
But what is actually going on behind the scenes in DB2? When you create a table, how does DB2
create and store it? When you issue an SQL statement, what happens to it so that it returns your
answer? Where are these application plans kept? What is going on "under the covers"? The remainder
of Part III helps you answer these questions.

The Physical Storage of Data
The first segment of your journey behind the scenes of DB2 consists of learning the manner in which
DB2 data is physically stored. Before you proceed, however, recall the types of DB2 objects:
STOGROUPs, databases, tablespaces, tables, and indexes. Refer to Figure 18.1. A database can be
composed of many tablespaces, which in turn can contain one or more tables, which in turn can have
indexes defined for them. When LOB data types are used, LOB tablespaces are required. In addition,
databases, tablespaces, and indexes can all be assigned STOGROUPs.

 - 413 -

Figure 18.1: DB2 objects.

Of these five objects, only three represent actual physical entities. STOGROUPs represent one or more
physical DASD devices. Tablespaces and indexes relate to physical data sets. But tables and
databases have no actual physical representation. A table is assigned to a tablespace, and one
tablespace can have one or multiple tables assigned to it. Tablespaces are created within a database;
one database can have multiple tablespaces. Any tables created in a tablespace in the database, and
the indexes on that table, are said to be in the database. But the mere act of creating a database or
creating a table does not create a physical manifestation in the form of a data set or disk usage.

Note A DBD is created by DB2 for databases. The DBD is a component that is
managed in the EDM pool and contains the structure of the database objects in
that database. It is used by DB2 to help access the objects assigned to the
database.

When an object is created, DB2 assigns it an identifier that is stored in the DB2 Catalog. These
identifiers are known as OBIDs. Furthermore, tablespaces and index spaces are assigned PSIDs,
otherwise known as page set IDs, because these objects require a physical data set. Databases are
assigned DBIDs.

You should keep the following physical implementation guidelines in mind when you create DB2
objects:

 As many as 133 DASD volumes can be assigned to a single STOGROUP.
 A STOGROUP can turn over control to SMS.
 Usually only one VSAM data set is used for each non-partitioning index, simple

tablespace, and segmented tablespace defined to DB2. Also, each data set can be no
larger than 2 gigabytes. When the 2-gigabyte limit is reached, a new VSAM data set is
allocated. You can use as many as 32 VSAM data sets.

 Multiple VSAM data sets are used for partitioned tablespaces and partitioning indexes.
One data set is used per partition. The maximum size of each data set is based on the
number of defined partitions. If the partitioned tablespace is not defined with the
LARGE parameter, and the DSSIZE is less than 2GB, the maximum number of
partitions is 64 and the maximum size per partition is as follows:

Partitions Maximum
Size of
VSAM
Data Set

2 through 16 4GB

17 through 32 2GB

33 through 64 1GB
If the partitioned tablespace is defined with the LARGE parameter, the maximum number of
partitions is 254 and the maximum size per partition is 4GB.

 - 414 -

If the partitioned tablespace is defined with a DSSIZE greater than 2GB, the maximum number
of partitions is 254 and the maximum size per partition is 64GB.

 The DSSIZE parameter is used to specify the maximum size for each partition of
partitioned and LOB tablespaces. Valid DSSIZE values are 1GB, 2GB, 4GB, 8GB,
16GB, 32GB, or 64GB.

To specify a value greater than 4GB, you must be running DB2 with DFSMS V1.5, and the
data sets for the tablespace must be associated with a DFSMS data class defined with
extended format and extended addressability. DFSMS's extended addressability function is
necessary to create data sets larger than 4GB in size.

 Using DSSIZE, partitioned tablespaces can store up to approximately 16TB of data.
 For LOB data, up to 127TB of data per LOB column can be stored (using 254

partitions). For more information on LOBs, refer to Chapter 7, "Large Objects and
Object/Relational Databases."

 Data sets for partitioning indexes follow the same rules as those just outlined for
partitioned tablespaces. All other indexes follow the rules for non-partitioned
tablespaces.

Data sets used by DB2 can be either VSAM entry-sequenced data sets (ESDS) or VSAM linear data
sets (LDS). Linear data sets are more efficient because they do not contain the VSAM control interval
information that an ESDS does. Additionally, an LDS has control intervals with a fixed length of 4,096
bytes. Also, future releases of DB2 will probably require linear data sets (but this is not the case yet as
of DB2 V6).

Now that you know which data sets can be used, the next question is "How are these data sets
structured?"
Every VSAM data set used to represent a DB2 tablespace or index is composed of pages. A page
consists of 4,096 bytes, or 4KB. You therefore can think of a data set used by DB2 tablespaces or
indexes as shown in Figure 18.2.

Figure 18.2: DB2 uses data sets with 4KB pages.

What about tablespaces with larger page sizes? As you might recall, DB2 tablespaces can have page
sizes of 4KB, 8KB, 16KB, or 32KB. DB2 groups 4KB pages together to create virtual page sizes greater
than 4KB. For example, a tablespace defined with 32KB pages uses a logical 32KB page composed of
eight physical 4KB pages, as represented in Figure 18.3. A tablespace with 32KB pages is physically
structured like a tablespace with 4KB pages. It differs only in that rows of a 32KB page tablespace can
span 4K pages, thereby creating a logical 32KB page.

 - 415 -

Figure 18.3: 32KB pages are composed of eight 4KB pages.

DB2 uses different types of pages to manage data in data sets. Each type of page has its own purpose
and format. The type of page used is based on the type of tablespace or index for which it exists and
the location of the page in the data set defined for that object.
Before proceeding any further, I must introduce a new term, page set, which is a physical grouping of
pages. Page sets come in two types: linear and partitioned. DB2 uses linear page sets for simple
tablespaces, segmented tablespaces, and indexes. DB2 uses partitioned page sets when it implements
partitioned tablespaces.

Each page set is composed of several types of pages, as follows.
 Header page
 Space Map pages
 Dictionary pages
 Data pages

Figure 18.4 shows the basic layout of a DB2 tablespace.

Figure 18.4: DB2 tablespace layout.

The header page contains control information used by DB2 to manage and maintain the tablespace. For
example, the OBID and DBID (internal object and database identifiers used by DB2) of the tablespace
and database are maintained here, as well as information on logging. Each linear page set has one
header page; every partition of a partitioned page set has its own header page. The header page is the
first page of a VSAM data set.
Space map pages contain information pertaining to the amount of free space available on pages in a
page set. A space map page outlines the space available for a range of pages. Refer to Figure 18.5 for
the number of pages covered by a space map page based on the type of tablespace.

 - 416 -

Figure 18.5: Number of pages per space map page.

Dictionary pages are used for tablespaces that specify COMPRESS YES. Information is stored in the
dictionary pages to help DB2 control compression and decompression. The dictionary pages are stored
after the header page and first space map page, but before any data pages.

Note Each tablespace or tablespace partition that contains compressed data has a
compression dictionary that is used to control compression and decompression.
The dictionary contains a fixed number of entries, up to a maximum of 4096. The
dictionary content is based on the data at the time it was built, and it does not
change unless the dictionary is rebuilt or recovered, or compression is disabled
using ALTER with COMPRESS NO.

Data pages contain the user data for the tablespace or index page set. The layout of a data page
depends on whether it is an index data page or a tablespace data page.

Tablespace Data Pages
Each tablespace data page is formatted as shown in Figure 18.6. Each page begins with a 20-byte
header that records control information about the rest of the page. For example, the header contains the
page set page number, pointers to free space in the page, and information pertaining to the validity and
recoverability of the page.

Figure 18.6: Tablespace data page layout.

 - 417 -

At the very end of the page is a 1-byte trailer used as a consistency check token. DB2 checks the value
in the trailer byte against a single bit in the page header to ensure that the data page is sound.
The next-to-last byte of each page contains a pointer to the next available ID map entry. The ID map is
a series of contiguous 2-byte row pointers. One row pointer exists for every data row in the table. A
maximum of 255 of these pointers can be defined per data page. The maximum number of rows per
page is specified in each tablespace using the MAXROWS clause. Each row pointer identifies the
location of a data row in the data page.

Each data page can contain one or more data rows. One data row exists for each row pointer, thereby
enforcing a maximum of 255 data rows per data page. Each data row contains a 6-byte row header
used to administer the status of the data row.

LOB Pages
DB2 Version 6 adds large object, or LOB, support. LOB columns are stored in auxiliary tables, not with
the primary data. An auxiliary table is stored in a LOB tablespace. For complete details on large object
support, refer to Chapter 7.

The layout of data pages in a LOB tablespace differs from a regular DB2 tablespace. There are two
types of LOB pages:

 LOB map pages
 LOB data pages

LOB map pages contain information describing the LOB data. A LOB map page always precedes the
LOB data. Figure 18.7 describes the LOB map page. There are potentially five components of the LOB
map page.

Figure 18.7: LOB map page layout.

The LOB map page header connects the LOB page with the base table. The LOB map entries point to
the page number where LOB data exists, as well as containing information about the length of the LOB
data.

The final two components of the LOB map page exist only when the LOB map page also contains LOB
data. The LOB map page data header, LOB data, and page trailer exist when the last LOB map page
contains LOB data.
The LOB data page contains the actual LOB data. The layout of a LOB data page is depicted in Figure
18.8.

Figure 18.8: LOB data page layout.

 - 418 -

Index Pages
The data pages for a DB2 index are somewhat more complex than those for a DB2 tablespace. Before
you delve into the specifics of the layout of index data pages, you should examine the basic structure of
DB2 indexes.
A DB2 index is a modified b-tree (balanced tree) structure that orders data values for rapid retrieval. The
values being indexed are stored in an inverted tree structure, as shown in Figure 18.9.

Figure 18.9: DB2 index structure.

As values are inserted and deleted from the index, the tree structure is automatically balanced,
realigning the hierarchy so that the path from top to bottom is uniform. This realignment minimizes the
time required to access any given value by keeping the search paths as short as possible.
Every DB2 index resides in an index space. When an index is created, the physical space to hold the
index data is automatically created if STOGROUPs are used. This physical structure is called the index
space. Refer to Figure 18.10 for a depiction of the layout of an index space.

Figure 18.10: DB2 index space layout.

Index data pages are always 4KB in size. To implement indexes, DB2 uses the following types of index
data pages:

Space map pages Space map pages determine what space is available in the index
for DB2 to utilize. An index space map page is required every
32,632 index pages. Figure 18.11 shows the layout of an index
space map page.

Root page Only one root page is available per index. The third page in the
index space, after the header page and (first) space map page, is
the root page. The root page must exist at the highest level of the
hierarchy for every index structure. It is always structured as a non-
leaf page.

Non-leaf pages Non-leaf pages are intermediate-level index pages in the b-tree
hierarchy. Non-leaf pages need not exist. If they do exist, they
contain pointers to other non-leaf pages or leaf pages. They never

 - 419 -

point to data rows.

Leaf pages Leaf pages contain the most important information within the index.
Leaf pages contain pointers to the data rows of a table.

Figure 18.11: Index space map page layout.

The pointers in the leaf pages of an index are called a record ID, or RID. Each RID is a combination of
the tablespace page number and the row pointer for the data value, which together indicate the location
of the data value.

Note A RID is a record ID, not a row ID as is commonly assumed. A DB2 record is the
combination of the record prefix and the row. Each record prefix is 6 bytes long.
RIDs point to the record, not the row; therefore, a RID is a record ID. Don't let this
information change the way you think. The data returned by your SELECT
statements are still rows!

The level of a DB2 index indicates whether it contains non-leaf pages. The smallest DB2 index is a two-
level index. A two-level index does not contain non-leaf pages. The root page points directly to leaf
pages, which in turn point to the rows containing the indexed data values.
A three-level index, such as the one shown in Figure 18.9, contains one level for the root page, another
level for non-leaf pages, and a final level for leaf pages. The larger the number of levels for an index,
the less efficient it will be. You can have any number of intermediate non-leaf page levels. The more
levels that exist for the index, the less efficient the index becomes, because additional levels must be
traversed to find the index key data on the leaf page. Try to minimize the number of levels in your DB2
indexes; when more than three levels exist, indexes generally start to become inefficient.

Type 1 Index Data Pages
Type 1 indexes are DB2's legacy index type. The indexes that have been available with DB2 since V1
have been known as Type 1 indexes since the introduction of DB2 V4, which added a new type of index
(Type 2 indexes).
As of V6, DB2 uses only Type 2 indexes. Type 1 indexes are no longer supported. However, if you are
using a past release of DB2 and want to read more about Type 1 indexes, refer to Appendix F, "Type 1
Indexes."

Type 2 Index Data Pages
Non-leaf pages are physically formatted as shown in Figure 18.12. Each non-leaf page contains the
following:

Figure 18.12: Type 2 index non-leaf page layout.

 A 12-byte index page header that houses consistency and recoverability
information for the index.

 A 16-byte physical header that stores control information for the index page. For
example, the physical header controls administrative housekeeping, such as the
type of page (leaf or non-leaf), the location of the page in the index structure, and
the ordering and size of the indexed values.

 - 420 -

Each non-leaf page contains high keys with child page pointers. The last page pointer has no high key
because it points to a child page that has entries greater than the highest high key in the parent.
Additionally, Type 2 index non-leaf pages deploy suffix truncation to reduce data storage needs and
increase efficiency. Suffix truncation allows the non-leaf page to store only the most significant bytes of
the key. For example, consider an index in which a new value is being inserted. The value, ABCE0481,
is to be placed on a new index page. The last key value on the previous page was ABCD0398. Only the
significant bytes needed to determine that this key is new need to be stored—in this case, ABCE.

Note In the older, Type 1 indexes, the entire length of each key was stored. Truncation
helps to reduce index size, thereby possibly reducing the number of index levels
and incurring less I/O.

Entries on a Type 2 leaf page are not stored contiguously in order on the page. A collated key map
exists at the end of the Type 2 leaf page to order the entries. Type 2 index leaf pages are formatted as
shown in Figure 18.13. When an entry is added to the index, the collated key map grows backward from
the end of the page into the page. By traversing the key map within the page, DB2 can read entries in
order by the index key. Additionally, Type 2 indexes have no subpages.

Figure 18.13: Type 2 Index leaf page layout.

Type 2 leaf page entries add a flag byte. The flag byte indicates the status of the RID. The first bit
indicates whether the RID is pseudo-deleted. A pseudo-delete occurs when a RID has been marked for
deletion. The second bit indicates that the RID is possibly uncommitted, and the third bit indicates that a
RID hole follows. An array of RIDs is stored contiguously in ascending order to allow binary searching.
For non-unique indexes, each index entry is preceded by a count of the number of RIDs.

Note Type 2 indexes will need to be reorganized periodically to physically delete the
pseudo-deleted RIDS. It is difficult to determine how many pseudo-deleted RIDs
exist. Consider keeping a historical record of index size (using reports from the
DB2 Catalog) for indexes that are larger than normal and thus candidates for
reorganization.

The final physical index structure to explore is the index entry. You can create both unique and non-
unique indexes for each DB2 table. When the index key is of varying length, DB2 pads the columns to
their maximum length, making the index keys a fixed length. A unique index contains entries, and each
entry has a single RID. In a unique index, no two index entries can have the same value because the
values being indexed are unique (see Figure 18.14).

Figure 18.14: Index entries.

 - 421 -

You can add the WHERE NOT NULL clause to a unique index causing multiple nulls to be stored.
Therefore, an index specified as unique WHERE NOT NULL has multiple unique entries and possibly
one non-unique entry for the nulls.
If the index can point to multiple table rows containing the same values, however, the index entry must
support a RID list. In addition, a header is necessary to maintain the length of the RID list. This type of
index entry is also shown in Figure 18.9.

The Storage Impact of Type 2 Indexes
Type 2 indexes provide numerous benefits to a DB2 subsystem. The primary benefit is the elimination
of index locking. However, many newer DB2 features, such as row level locking and uncommitted
reads, require Type 2 indexes. With DB2 Version 6, Type 1 indexes are eliminated altogether, so you
will be forced to move to Type 2 indexes.

As you convert your Type 1 indexes to Type 2, you should consider the storage impact of the migration.

What will the impact of Type 2 indexes be with regard to storage requirements? The answer, not
surprisingly, is "it depends!" There are quite a few differences between Type 1 and Type 2 indexes that
affect storage. The first difference is in the amount of usable space on an index page. A Type 2 leaf
page has 4038 bytes of usable space; a Type 2 non-leaf page has 4046 bytes. Type 1 leaf and non-leaf
pages have 4050 useable bytes per page. So, Type 2 indexes have less usable space per page.

Additionally, Type 2 indexes require an additional one-byte RID prefix in addition to the four-byte RID
found in both Type 1 and Type 2 indexes. The new one-byte RID prefix found in a Type 2 index
contains three flags: pseudo-deleted, possibly uncommitted, and RID hole follows.

Because Type 2 indexes have a different internal structure, two pieces of header information needed on
Type 1 indexes are no longer required: the subpage header and the non-unique key header. Because
Type 2 indexes do not use subpages, the 17-byte logical subpage header required of a Type 1 index is
not in Type 2 indexes.
Non-unique Type 1 indexes have a six-byte header and will repeat an entry (header and key) if a key
has more than 255 RIDs. Type 2 indexes have a two-byte header and can have more than 255 RIDs in
each entry. The entry is only repeated if there is not enough room in a leaf page to hold all of the RIDs;
the same is true for a Type 1 index. Type 2 indexes also have a two-byte MAPID for each key at the
end of the page, so total savings per key is two bytes (six bytes for the Type 1 header, minus two bytes
for the Type 2 header and two bytes for the MAPID).

Type 2 indexes store truncated keys instead of the complete key. Only the portion of the key required to
make it uniquely identifiable is stored on non-leaf pages. However, if there are many duplicate keys so
that the same key is on more than one leaf page, a Type 2 index will have RIDs stored in the non-leaf
pages, causing more space to be used instead of less. This is due to Type 2 indexes keeping the RIDs
in sequence.
Finally, Type 2 indexes are required for LARGE tablespaces. In this case, the RID is five bytes (plus the
one-byte RID prefix, which is still required).

As you can see, there is no clear-cut answer as to whether a Type 1 or Type 2 index will utilize more
storage.

Taking all these points into consideration, here are some general rules of thumb on index storage
requirements that you can apply when developing DB2 databases:

 A Type 1 index with a subpage count of 16 usually wastes a lot of space. A
Type 2 index will almost always use less space than a Type 1 with 16
subpages (but so will a Type 1 index with a subpage of 1).

 A Type 1 with a subpage of 1 usually will use slightly less space than a Type 2
index for both unique and non-unique keys. For the average user, the space
difference is relatively small and usually should not be a factor.

 Beware of Type 2 space usage if numerous row deletes occur. Type 1 indexes
clean up after a delete, while DB2 pseudo-deletes index RID entries. A pseudo-
delete is when DB2 marks the index entry for deletion, but does not physically
delete it. When high levels of activity occur, you could encounter numerous
pages of nothing but pseudo-deleted RIDs. DB2 should periodically clean up
the pseudo-deleted entries, but in some cases, users report seeing them

 - 422 -

staying around for weeks at a time wasting space. A reorganization or rebuild
will clean up the pseudo-deleted RIDs and free the wasted space.

 Beware of space usage when numerous inserts occur. Type 1 index entries
move around in the page and finally, when a split occurs, one half of the index
entries are moved to another page, usually causing the one half page to be
wasted. This is known as the "half full" problem. Type 2 index pages will also
split, but provision has been made at the end of a data set to avoid the "half
full" problem. Also, Type 2 indexes with non-unique keys will chain RIDs within
a page. Each chain entry requires a chain pointer and the normal RID. The
additional overhead is two bytes plus the Type 2 RID. All these problems can
be solved by reorganizing or rebuilding the index.

 The user should monitor the disk space usage of indexes and reorganize the
indexes when they grow too large or when performance problems arise.

Be sure to factor all of these issues into your index storage requirement exercises.

Record Identifiers
A RID is a 4-byte record identifier that contains record location information. RIDs are used to locate any
piece of DB2 data. For large partitioned tablespaces, the RID is a 5-byte record identifier.

The RID stores the page number and offset within the page where the data can be found. For pages in
a partitioned tablespace, the high-order bits are used to identify the partition number.

Now that you know the physical structure of DB2 objects, you can explore the layout of DB2 itself.

What Makes DB2 Tick
Conceptually, DB2 is a relational database management system. Physically, DB2 is an
amalgamation of address spaces and intersystem communication links that, when adequately
tied together, provide the services of a relational database management system.

"What does all this information have to do with me?" you might wonder. Understanding the
components of a piece of software helps you use that software more effectively. By
understanding the physical layout of DB2, you can arrive at system solutions more quickly and
develop SQL that performs better.

The information in this section is not very technical and does not delve into the bits and bytes
of DB2. Instead, it presents the basic architecture of a DB2 subsystem and information about
each component of that architecture.
Each DB2 subsystem consists of from three to five tasks started from the operator console, as
shown in Figure 18.15. Each of these started tasks runs in a portion of the CPU called an
address space. A description of these five address spaces follows.

Figure 18.15: The DB2 address spaces.

The DBAS, or Database Services Address Space, provides the facility for the manipulation of
DB2 data structures. The default name for this address space is DSNDBM1. (The address
spaces may have been renamed at your shop.) This component of DB2 is responsible for the
execution of SQL and the management of buffers, and it contains the core logic of the DBMS.
The DBAS consists of three components, each of which performs specific tasks: the
Relational Data System (RDS), the Data Manager (DM), and the Buffer Manager (BM). (See
Figure 18.16.)

 - 423 -

Figure 18.16: The components of the Database Services Address Space.

The SSAS, or System Services Address Space, coordinates the attachment of DB2 to other
subsystems (CICS, IMS/TM, or TSO). SSAS is also responsible for all logging activities
(physical logging, log archival, and BSDS). DSNMSTR is the default name for this address
space. DSNMSTR is the started task which contains the DB2 log. The log should be
monitored regularly for messages indicating the errors or problems with DB2. Products are
available that monitor the log for problems and trigger an event to contact the DBA or systems
programmer when a problem is found.
The third address space required by DB2 is the IRLM, or Intersystem Resource Lock
Manager. The IRLM is responsible for the management of all DB2 locks (including deadlock
detection). The default name of this address space is IRLMPROC.

The next DB2 address space, DDF, or Distributed Data Facility, is optional. The DDF is
required only when you want distributed database functionality. If your shop must enable
remote DB2 subsystems to query data between one another, the DDF address space must be
activated.

The final address space (or series of address spaces) is devoted to the execution of stored
procedures and user-defined functions. These address spaces are known as the Stored
Procedure Address Spaces, or SPASs.

If you're running DB2 V4, only one SPAS is available. For DB2 V5 and later releases,
however, if you're using the MVS WorkLoad Manager (WLM), you can define multiple SPAS.
These five address spaces contain the logic to handle all DB2 functionality effectively. As I
mentioned previously, the DBAS is composed of three distinct elements. Each component
passes the SQL statement to the next component, and when results are returned, each
component passes the results back. Refer to Figure 18.17. The operations performed by the
components of the DBAS as an SQL statement progresses on its way toward execution are
discussed next.

 - 424 -

Figure 18.17: From RDS to DM to BM and back again.

The RDS is the component that gives DB2 its set orientation. When an SQL statement
requesting a set of columns and rows is passed to the RDS, the RDS determines the best
mechanism for satisfying the request. Note that the RDS can parse an SQL statement and
determine its needs. These needs, basically, can be any of the features supported by a
relational database (such as selection, projection, or join).

When the RDS receives an SQL statement, it performs the following procedures:
 Checks authorization
 Resolves data element names into internal identifiers
 Checks the syntax of the SQL statement
 Optimizes the SQL statement and generates an access path

The RDS then passes the optimized SQL statement to the Data Manager (DM) for further
processing. The function of the DM is to lower the level of data that is being operated on. In
other words, the DM is the DB2 component that analyzes rows (either table rows or index
rows) of data. The DM analyzes the request for data and then calls the Buffer Manager (BM)
to satisfy the request.

The Buffer Manager accesses data for other DB2 components. It uses pools of memory set
aside for the storage of frequently accessed data to create an efficient data access
environment.

When a request is passed to the BM, it must determine whether the data is in the bufferpool. If
the data is present, the BM accesses the data and sends it to the DM. If the data is not in the
bufferpool, it calls the VSAM Media Manager, which reads the data and sends it back to the
BM, which in turn sends the data back to the DM.
The DM receives the data passed to it by the BM and applies as many predicates as possible
to reduce the answer set. Only Stage 1 predicates are applied in the DM. (These predicates
are listed in Chapter 2, "Data Manipulation Guidelines.")

Finally, the RDS receives the data from the DM. All Stage 2 predicates are applied, the
necessary sorting is performed, and the results are returned to the requester.

Now that you have learned about these components of DB2, you should be able to
understand how this information can be helpful in developing a DB2 application. For example,
consider Stage 1 and Stage 2 predicates. Now you can understand more easily that Stage 1
predicates are more efficient than Stage 2 predicates because you know that they are
evaluated earlier in the process (in the DM instead of the RDS) and thereby avoid the
overhead associated with the passing of additional data from one component to another.

 - 425 -

Summary
This chapter presented you with a brief introduction inside DB2. You learned about the internal
composition of DB2 objects and how data is stored. Additionally, you examined each of the address
spaces that comprise a DB2 subsystem and learned the purpose of each. The next chapter leads you to
an in-depth discussion of a portion of the RDS (which is a component of the DBAS): the DB2 Optimizer.

Chapter 19: The Optimizer

Overview
The optimizer is the heart and soul of DB2. It analyzes an SQL statement and determines the
most efficient access path available for satisfying the statement. It accomplishes this by
parsing the SQL statement to determine which tables and columns must be accessed. It then
queries statistics stored in the DB2 Catalog to determine the best method of accomplishing
the tasks necessary to satisfy the SQL request.
A summary of the DB2 Catalog information that can be used by the optimizer is provided in
Table 19.1. The optimizer plugs this information into a series of complex formulas that it uses
as it builds optimized access paths, as shown in Figure 19.1. In addition to the DB2 Catalog
statistics, the optimizer will take into account other system information, such as the CPU being
used and the size of your bufferpools.

Figure 19.1: The DB2 optimizer.

The optimizer is equivalent in function to an expert system. An expert system is a set of
standard rules that when combined with situational data can return an expert opinion. For
example, a medical expert system takes the set of rules determining which medication is
useful for which illness, combines it with data describing the symptoms of ailments, and
applies that knowledge base to a list of input symptoms. The DB2 optimizer renders expert
opinions on data retrieval methods based on the situational data housed in the DB2 Catalog
and a query input in an SQL format.

Table 19.1: Statistics Analyzed During Query Optimization

Type of Information DB2 Catalog Table

Current status of the
table

SYSIBM.SYSTABLES
Number of rows
Number of rows containing table data
Percentage of rows that are compressed
Number of pages
Check whether the table uses an EDITPROC

Current status of the
tablespace

SYSIBM.SYSTABLESPACE
Number of active pages

Current status of the
index

SYSIBM.SYSINDEXES
Check whether there is a usable index for this query and table
Number of leaf pages used by the index

 - 426 -

Number of levels in index
Number of discrete values for the entire index key
Number of discrete values for the first column of the index key
Check whether there is a clustering index; if so, check whether it is
actually clustered
Portion of any index that is clustered

Partitioning
information

SYSIBM.SYSINDEXPART
The limit key for the partition
SYSIBM.SYSTABSTATS
Total number of rows per partition
Total number of pages on which rows of the partition exist

Column information SYSIBM.SYSCOLUMNS
Number of discrete values for the column
Range of values stored in the column

Distribution of values
in columns

SYSIBM.SYSCOLDIST
Number of distinct values for a column or group of columns
Percentage of data that is uniformly distributed

Column function
information

SYSIBM.SYSROUTINES
Estimated number of I/Os for a single invocation of the UDF
Estimated number of I/Os for the first and last time the UDF is
invoked
Estimated number of instructions to be executed for a single
invocation of the UDF
Estimated number of instructions to be executed the first and last
time the UDF is invoked
Estimated cardinality of the UDF

In this chapter, you discover the methods and strategies used by the optimizer as it creates
optimized access paths for SQL statements.

Physical Data Independence
The notion of optimizing data access in the DBMS, a piece of system software, is one of the most
powerful capabilities of DB2 (and other relational databases). Access to DB2 data is achieved by telling
DB2 what to retrieve, not how to retrieve it. DB2's optimizer is the component that accomplishes this
physical data independence.
Regardless of how the data is physically stored and manipulated, DB2 and SQL can still access that
data. This separation of access criteria from physical storage characteristics is called physical data
independence.

If indexes are removed, DB2 can still access the data (albeit less efficiently). If a column is added to the
table being accessed, the data can still be manipulated by DB2 without changing the program code.
This is all possible because the physical access paths to DB2 data are not coded by programmers in
application programs, but are generated by DB2.

Compare this with older, legacy data manipulation mechanisms (such as VSAM, IMS, and flat files), in
which the programmer must know the physical structure of the data. If there is an index, the
programmer must write appropriate code so that the index is used. If the index is removed, the program
will not work unless changes are made. Not so with DB2 and SQL. All this flexibility is attributable to
DB2's capability to optimize data manipulation requests automatically.

How the Optimizer Works
The optimizer performs complex calculations based on a host of information. To simplify the
functionality of the optimizer, you can picture it as performing a four-step process:

1. Receive and verify the SQL statement.
2. Analyze the environment and optimize the method of satisfying the SQL statement.
3. Create machine-readable instructions to execute the optimized SQL.
4. Execute the instructions or store them for future execution.

 - 427 -

The second step of this process is the most intriguing. How does the optimizer decide how to execute
the vast array of SQL statements that can be sent its way?

The optimizer has many types of strategies for optimizing SQL. How does it choose which of these
strategies to use in the optimized access paths? The details and logic used by the optimizer are not
published by IBM, but the optimizer is a cost-based optimizer. This means that the optimizer will always
attempt to formulate an access path for each query that reduces overall cost. To accomplish this, the
DB2 optimizer evaluates and weighs four factors for each potential access path: the CPU cost, the I/O
cost, the DB2 Catalog statistics, and the SQL statement.

CPU Cost
The optimizer tries to determine the cost of execution of each access path strategy for the query being
optimized. Based on the serial number of the CPU, the optimizer estimates the CPU time required to
accomplish the tasks associated with the access path it is analyzing. As it calculates this cost, it
determines the costs involved in applying predicates, traversing pages (index and tablespace), and
sorting.

I/O Cost
The optimizer estimates the cost of physically retrieving and writing the data. In so doing, the optimizer
estimates the cost of I/O by using a series of formulas based on the following data: DB2 Catalog
statistics, the size of the bufferpools, and the cost of work files used (sorting, intermediate results, and
so on). These formulas result in a filter factor, which determines the relative I/O cost of the query. Filter
factors are covered in more detail in the "Filter Factors" section, later in this chapter.

DB2 Catalog Statistics
Without the statistics stored in the DB2 Catalog, the optimizer would have a difficult time optimizing
anything. These statistics provide the optimizer with information pertinent to the state of the tables that
will be accessed by the SQL statement that is being optimized. The type of information available was
summarized in Table 19.1. A complete listing of the DB2 Catalog statistics and values used by the
optimizer is in Table 19.2. Partition-level statistics are used when determining the degree of parallelism
for queries using I/O, CP, and Sysplex parallelism.

Table 19.2: DB2 Catalog Columns Analyzed by the Optimizer

Catalog Table Column Description
SYSIBM.SYSTABLES CARDF Number of

rows for
the table

 NPAGES Number of
pages
used by
the table

 EDPROC Name of
the
EDITPRO
C exit
routine, if
any

 PCTROWCOMP Percentage
of active
rows
compresse
d for this
table

SYSIBM.SYSTABSTATS CARDF Number of
rows for
the
partition

 - 428 -

 NPAGES Number of
pages on
which rows
of the
partition
appear

SYSIBM.SYSTABLESPACE NACTIVEF Number of
allocated,
active
tablespace
pages

SYSIBM.SYSCOLUMNS LOW2KEY Second
lowest
value for
the column

 HIGH2KEY Second
highest
value for
the column

 COLCARDF Number of
distinct
values for
the column

SYSIBM.SYSINDEXES CLUSTERRATIOF Percentage
(multiplied
by 100) of
rows in
clustering
order

 CLUSTERING Whether
CLUSTER
YES was
specified
when the
index was
created

 FIRSTKEYCARDF Number of
distinct
values for
the first
column of
the index
key

 FULLKEYCARDF Number of
distinct
values for
the full
index key

 NLEAF Number of
active leaf
pages

 NLEVELS Number of
index b-
tree levels

SYSIBM.SYSINDEXPART LIMITKEY The limit

 - 429 -

key of the
partition

SYSIBM.SYSCOLDIST TYPE Type of
RUNSTAT
S
gathered;
frequent
value (F) or
cardinality
(C)

 COLVALUE Non-
uniform
distribution
column
value

 FREQUENCYF Percentage
(multiplied
by 100) of
rows that
contain the
value
indicated in
the
COLVALU
E column

 CARDF Number of
distinct
values for
the column

 COLGROUPCOLNO Set of
columns
for the
statistics
gathered

 STATSTIME Timestamp
when
statistics
were
collected

 NUMCOLUMNS The
number of
columns
associated
with the
statistics

SYSIBM.SYSROUTINES IOS_PER_INVOC Estimated
number of
I/Os per
invocation
of this
routine

 INSTS_PER_INVOC Estimated
number of
instructions
per
invocation
of this

 - 430 -

routine
 INITIAL_IOS Estimated

number of
I/Os for the
first and
last time
the routine
is invoked

 INITIAL_INSTS Estimated
number of
instructions
for the first
and last
time the
routine is
invoked

 CARDINALITY Predicted
cardinality
for a table
function

Note that several column names were changed as of DB2 V5. The columns that have an F at the end of
their names have been changed from INTEGER columns to FLOAT columns. This enables DB2 to store
larger values in these columns. The largest value that can be stored in an INTEGER column is
2,147,483,647. If the actual value for CARD, for example, was greater than this, DB2 was forced to
store this largest value. By using the FLOAT columns instead of INTEGER, DB2 can store larger values
in the Catalog. A floating point column can store values up to 7.2 x 10^75—a very large number indeed.
In V5 and later, RUNSTATS can also keep track of correlated columns. Correlated columns have values
that are related to one another. An example of a set of correlated columns is CITY, STATE, and
ZIP_CODE. For example, the combination of CHICAGO for CITY and IL for STATE is much more likely
to occur than CHICAGO and AK. As of V5, the RUNSTATS utility can keep track of these statistics.
As of DB2 V5 the RUNSTATS utility can generate more than ten frequent values. Previous versions of
DB2 were limited to just the top ten most frequently occurring values for distribution statistics.

SQL Statement
The formulation of the SQL statement also enters into the access path decisions made by the optimizer.
The complexity of the query, the number and type of predicates used (Stage 1 versus Stage 2), the
usage of column and scalar functions, and the presence of ordering clauses (ORDER BY, GROUP BY,
and DISTINCT) enter into the estimated cost that is calculated by the optimizer.

Filter Factors
Do you remember that Chapter 1, "The Magic Words," discussed filter factors? The optimizer
calculates the filter factor for a query's predicates based on the number of rows that will be
filtered out by the predicates.
The filter factor is a ratio that estimates I/O costs. The formulas used by the optimizer to
calculate the filter factor are proprietary IBM information, but Table 19.3 provides rough
estimates for the formulas based on the type of predicate. These formulas assume uniform
data distribution, so they should be used only when determining the filter factor for static SQL
queries or queries on tables having no distribution statistics stored in the DB2 Catalog. The
filter factor for dynamic SQL queries is calculated using the distribution statistics, in
SYSCOLDIST, if available.

Table 19.3: Filter Factor Formulas

Predicate Type Formula Default
FF

COL = value 1/FIRSTKEYCARDF [COL] .04
COL = :host-var 1/FIRSTKEYCARDF [COL] .04
COL <> value 1–(1/FIRSTKEYCARDF .96

 - 431 -

[COL])
COL <> :host-var 1–(1/FIRSTKEYCARDF

[COL])
.96

COL IN (list of values) (list
size)x(1/FIRSTKEYCARDF[C
OL])

.04x(list
size)

COL NOT IN (list of values) 1–[(list size)x
(1/FIRSTKEYCARDF[COL])]

1—
[.04x(lis
t size)]

COL IS NULL 1/FIRSTKEYCARDF [COL] .04
COL IS NOT NULL 1–(1/FIRSTKEYCARDF

[COL])
.96

COLA = COLB smaller of
1/FIRSTKEYCARDF [COLA]
1/FIRSTKEYCARDF [COLB]

.04

COLA <> COLB smaller of
1/FIRSTKEYCARDF [COLA]
1/FIRSTKEYCARDF [COLB]

.96

COL < value (LOW2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

COL <= value (LOW2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

COL ÿ> value (LOW2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

COL > value (HIGH2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

COL >= value (HIGH2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

COL ÿ< value (HIGH2KEY–value)/
(HIGH2KEY–LOW2KEY)

.33

Predicate Type Formula Default
FF

COL BETWEEN (val2–val1)/ .01
val1 AND val2 (HIGH2KEY–LOW2KEY)
COL LIKE 'char%' (val2–val1)/ (HIGH2KEY–

LOW2KEY)
.01

COL LIKE '%char' 1 1
COL LIKE '_char' 1 1
COL op ANY (non-corr. sub) - - - .83
COL op ALL (non-corr. sub) - - - .16
COL IN (non-corr. sub) FF(noncor. subquery) .90
COL NOT IN (non-corr. sub) 1–FF(noncor. subquery) .10
predicate1 AND predicate2 Multiply the filter factors of

the two predicates, FF1xFF2

predicate1 OR predicate2 Add filter factors and subtract
the product, FF1+FF2–
(FF1xFF2)

For example, consider the following query:

 - 432 -

SELECT EMPNO, LASTNAME, SEX
FROM DSN8610.EMP
WHERE WORKDEPT = 'A00';
The column has an index called DSN8610.XEMP2. If this query were being optimized by DB2,
the filter factor for the WORKDEPT predicate would be calculated to estimate the number of I/Os
needed to satisfy this request.
Using the information in Table 19.3, you can see that the filter factor for this predicate is
1/FIRSTKEYCARDF. So, if the value of the FIRSTKEYCARDF column in the
SYSIBM.SYSINDEXES DB2 Catalog table is determined to be 9, the filter factor for this query
is 1/9, or .1111. In other words, DB2 assumes that approximately 11 percent of the rows from
this table will satisfy this request.
You might be wondering how this information helps you. Well, with a bit of practical
knowledge, you can begin to determine how your SQL statements will perform before
executing them. If you remember nothing else about filter factors, remember this: The lower
the filter factor, the lower the cost, and, in general, the more efficient your query will be.

Therefore, you can easily see that as you further qualify a query with additional predicates,
you make it more efficient because the I/O requirements are reduced.

Access Path Strategies
The optimizer can choose from a wealth of solutions when selecting the optimal access path for an SQL
statement. These solutions, called strategies, range from the simple method of using a series of
sequential reads to the complex strategy of using multiple indexes to combine multiple tables. This
section describes the features and functionality of these strategies.

Scans
Of the many decisions that must be made by the optimizer, perhaps the most important decision is
whether an index will be used to satisfy the query. To determine this, the optimizer must first discover
whether an index exists. Remember that you can query any column of any table known to DB2. An
index does not have to be defined before SQL can be written to access that column. Therefore, it is
important that the optimizer provide the capability to access non-indexed data as efficiently as possible.

An index is not used in three circumstances:
 When no indexes exist for the table and columns being accessed.
 When type 2 indexes are required for a specific feature (such as uncommitted read

isolation), but only type 1 indexes exist. This is true only for pre-V6 subsystems
because type 1 indexes are no longer supported as of DB2 V6.

 When the optimizer determines that the query can be executed more efficiently
without using an index.

For any of these three circumstances, the query is satisfied by sequentially reading the tablespace
pages for the table being accessed.

Why would the optimizer determine that an index should not be used? Aren't indexes designed to make
querying tables more efficient? The optimizer decides that an index should not be used for one of two
reasons. The first reason is when the table being accessed has only a small number of rows. Using an
index to query a small table can decrease performance because additional I/O is required. For example,
consider a tablespace consisting of one page. Accessing this page without the index would require a
single I/O. If you used an index, at least one additional I/O is required to read the index page, and more
might be required if index root pages, index non-leaf pages, and additional index leaf pages must be
accessed.

The second reason for not using an index is that, for larger tables, the organization of the index could
require additional I/O to satisfy the query. Factors affecting this are the full and first key cardinality of the
index and the cluster ratio of the index.
When an index is not used to satisfy a query, the resulting access path uses a tablespace scan (see
Figure 19.2). A tablespace scan performs page-by-page processing, reading every page of a
tablespace (or table).

 - 433 -

Figure 19.2: A tablespace scan.

Following are the steps involved in a tablespace scan:
1. The RDS passes the request for a tablespace scan to the DM.
2. The DM asks the BM to read all the data pages of the accessed table, one by

one. Tablespace scans usually invoke a fast type of bulk read known as
sequential prefetch.

3. The BM determines whether the requested page is in the buffer and takes the
appropriate action to retrieve the requested page and return it to the DM.

4. The DM scans the page and returns the selected columns to the RDS row by row.
Predicates are applied by either the DM or the RDS, depending on whether the
predicate is a Stage 1 or Stage 2 predicate.

5. The results are returned to the requesting agent.

It was mentioned that a tablespace scan reads every page of the tablespace (or table). If the optimizer
indicates that a tablespace scan will occur, why do I bring up tables? There are two types of tablespace
scans, and the type of tablespace scan requested depends on the type of tablespace being scanned.
A simple tablespace uses a tablespace scan as shown in Figure 19.2. Every page of the tablespace
being scanned is read. This is true even if multiple tables are defined to the simple tablespace (which is
one of the reasons to avoid multi-table simple tablespaces).
When a segmented tablespace is scanned, a tablespace scan such as the one in Figure 19.3 is
invoked. A segmented tablespace scan reads pages from only those segments used for the table being
accessed. This could more appropriately be termed a table scan.

 - 434 -

Figure 19.3: A segmented tablespace scan.

Partitioned tablespace scans differ from simple and segmented tablespace scans because whole
partitions can be skipped. DB2 can limit the partitions scanned to only those partitions that contain data
relevant to the query. To do so, however, the query must specify a predicate that matches columns in
the partitioning index.
To understand how limited partition scans function, consider the following query in conjunction with
Figure 19.4:

Figure 19.4: Partitioned tablespace scans.

SELECT COL1, COLx
FROM T1
WHERE PART_KEY BETWEEN "H" AND "J"
AND PART_KEY = "T";
Table T1 is partitioned on the PART_KEY column C1. Note that there are five partitions in this
tablespace as depicted in Figure 19.4. As of V4, DB2 understands that only partitions 2 through 4
contain data that will satisfy this request. (Data values containing H through J are in partition 2; T is in
partition 4.) Therefore, DB2 can avoid scanning the data contained in partitions 1 and 5.

The V4 partitioned tablespace scan is still not as efficient as it can be. Note that partition 3 will be
scanned in V4, even though it contains no data that can satisfy the query. For V5, DB2 enables partition
skipping within a tablespace scan. So given the same example as before, partitions 1, 3, and 5 can be
skipped when running under DB2 V5 and subsequent releases.

 - 435 -

Limited partition scans can be combined with matching index scans when appropriate. A limited partition
scan can also be used for each table accessed in a join, as long as the access is sequential.

Note When host variables or parameter markers are used in the first column of a multi-
column partitioning key, DB2 will not limit the partitions scanned. In these
circumstances, DB2 doesn't know the qualified partition range at bind time.

Sequential Prefetch
Before discussing the various types of indexed data access, a discussion of sequential prefetch is in
order. Sequential prefetch can be thought of as a read-ahead mechanism invoked to prefill DB2's
buffers so that data is already in memory before it is requested. When sequential prefetch is requested,
DB2 can be thought of as playing the role of a psychic, predicting that the extra pages being read will
need to be accessed, because of the nature of the request.

The optimizer uses sequential prefetch when it determines that sequential processing is required. The
sequential page processing of a tablespace scan is a good example of a process that can benefit from
sequential prefetch. The optimizer requests sequential prefetch in one of three ways.

Static requests that the optimizer deems to be sequential cause the optimizer to request sequential
prefetch at bind time. Sequential dynamic requests invoke sequential prefetch at execution time.
The third way in which the optimizer requests sequential prefetch is called sequential detection.
Sequential detection can dynamically invoke sequential prefetch. Sequential detection "turns on"
sequential prefetch for static requests that were not thought to be sequential at bind time but resulted in
sequential data access during execution.
Sequential detection uses groupings of pages based on the size of the bufferpool to determine whether
sequential prefetch should be requested. The size of the bufferpool is called the sequential detection
indicator and is determined using the Normal Processing column of Table 19.4. The values in Table
19.4 apply to bufferpools with a 4KB page size (BP0 through BP49). Call the sequential detection
indicator D. Sequential detection will request prefetch when ((D/4)+1) out of (D/2) pages are accessed
sequentially within a grouping of D pages.

Table 19.4: Sequential Prefetch and Detection Values for 4KB Page Bufferpools

Bufferpool Size

Number
of
Pages
Read
(Normal
Processi
ng)

Number
of
Pages
Read
(Utility
Processi
ng)

0-223 8 16

224-999 16 32

1000+ 32 64

For example, in an environment having 500 buffers, the sequential detection indicator would be 16. If 4
out of 8 pages accessed are sequential within a 16-page grouping, sequential detection invokes
prefetch.

The sequential prefetch numbers are different for larger page sizes. DB2 will prefetch fewer pages
because the bufferpools are larger (a 32KB pages is 8 times larger than a 4K page). Tables 19.5
through 19.7 show the number of pages read by sequential prefetch when 8KB, 16KB, and 32KB page
bufferpools are involved. For utility processing, the number of pages read can be double the amount
specified in Tables 19.5, 19.6, and 19.7.

Table 19.5: Sequential Prefetch Values for 8KB Page Bufferpools

Bufferpool Size Number
of
Pages
Read

0-112 4

112-499 8

 - 436 -

500+ 16
Table 19.6: Sequential Prefetch Values for 16KB Page Bufferpools

Bufferpool Size Number
of
Pages
Read

0-56 2

57-249 4

250+ 8
Table 19.7: Sequential Prefetch Values for 32KB Page Bufferpools

Bufferpool Size Number
of
Pages
Read

0-16 0
(prefetc
h
disable
d)

17-99 2

100+ 4
Figure 19.5 shows the potential effect of sequential prefetch on a request. A normal DB2 I/O reads one
page of data at a time. By contrast, a sequential prefetch I/O can read up to 32 pages at a time, which
can have a dramatic effect on performance. Everything else being constant, sequential prefetch I/O can
enhance efficiency by as much as 32 times over standard I/O.

Figure 19.5: Sequential prefetch.

The number of pages that can be requested in a single I/O by sequential prefetch depends on the
number of pages allocated to the DB2 bufferpool, as shown in Tables 19.4 through 19.7.
As you plan your environment for the optimal use of sequential prefetch, keep a few of these final notes
in mind. If sequential prefetch is requested by the optimizer, it is invoked immediately after the first
single page I/O is performed. After this first I/O, DB2 kicks off two sequential prefetch I/Os—one for the
pages that must be processed almost immediately and another for the second set of prefetched pages.

 - 437 -

This is done to reduce I/O wait time. Thereafter, each successive prefetch I/O is requested before all the
currently prefetched pages have been processed. This scenario is shown in Figure 19.6.

Figure 19.6: Sequential prefetch processing.

Sequential prefetch is not the sole dominion of tablespace scans. Any process that relies on the
sequential access of data pages (either index pages or tablespace pages) can benefit from sequential
prefetch.

Sequential prefetch can be requested by DB2 under any of the following circumstances:
 A tablespace scan of more than one page
 An index scan in which the data is clustered and DB2 determines that eight or more

pages must be accessed
 An index-only scan in which DB2 estimates that eight or more leaf pages must be

accessed

Indexed Access
Generally, the fastest way to access DB2 data is with an index. Indexes are structured in such a way as
to increase the efficiency of finding a particular piece of data. However, the manner in which DB2 uses
an index varies from statement to statement. DB2 uses many different internal algorithms to traverse an
index structure. These algorithms are designed to elicit optimum performance in a wide variety of data
access scenarios.

Before DB2 will use an index to satisfy a data access request, the following criteria must be met:
 At least one of the predicates for the SQL statement must be indexable. Refer to

Chapter 2, "Data Manipulation Guidelines," for a list of indexable predicates.
 One of the columns (in any indexable predicate) must exist as a column in an

available index.

This is all that is required for DB2 to consider indexed access as a possible solution for a given access
path. As you progress further into the types of indexed access, you will see that more specific criteria
might be required before certain types of indexed access are permitted.
The first, and most simple, type of indexed access is the direct index lookup, shown in Figure 19.7. The
arrows on this diagram outline the processing flow. The following sequence of steps is performed during
a direct index lookup:

 - 438 -

Figure 19.7: Direct index lookup.

1. The value requested in the predicate is compared to the values in the root page of
the index.

2. If intermediate non-leaf pages exist, the appropriate non-leaf page is read, and
the value is compared to determine which leaf page to access.

3. The appropriate leaf page is read, and the RIDs of the qualifying rows are
determined.

4. Based on the index entries, DB2 reads the appropriate data pages.
For DB2 to perform a direct index lookup, values must be provided for each column in the index. For
example, consider an index on one of the sample tables, DSN8610.XPROJAC1 on
DSN8610.PROJACT. This index consists of three columns: PROJNO, ACTNO, and ACSTDATE. All
three columns must appear in the SQL statement for a direct index lookup to occur. For example,
consider the following:
SELECT ACSTAFF, ACENDATE
FROM DSN8610.PROJACT
WHERE PROJNO = '000100'
AND ACTNO = 1
AND ACSTDATE = '1991-12-31';

If only one or two of these columns were specified as predicates, a direct index lookup could not occur
because DB2 would not have a value for each column and could not match the full index key. Instead,
an index scan could be chosen.
There are two basic types of index scans: matching index scans and nonmatching index scans. A
matching index scan is sometimes called absolute positioning; a non-matching index scan is sometimes
called relative positioning.

Remember the previous discussion of tablespace scans? Index scans are similar. When you invoke an
index scan, the leaf pages of the index being used to facilitate access are read sequentially. Now I will
examine these two types of index scans more closely.
A matching index scan begins at the root page of an index and works down to a leaf page in much the
same manner as a direct index lookup does. However, because the complete key of the index is
unavailable, DB2 must scan the leaf pages using the values that it does have, until all matching values
have been retrieved. This is shown in Figure 19.8.

 - 439 -

Figure 19.8: A matching index scan.

To clarify, consider again a query of the DSN8610.PROJACT table. This time, the query is recoded
without the predicate for the ACSTDATE column:
SELECT ACSTAFF, ACENDATE
FROM DSN8610.PROJACT
WHERE PROJNO = '000100'
AND ACTNO = 1;
The matching index scan locates the first leaf page with the appropriate value for PROJNO and ACTNO
by traversing the index starting at the root. However, there can be multiple index entries with this
combination of values and different ACSTDATE values. Therefore, leaf pages are sequentially scanned
until no more valid PROJNO, ACTNO, and varying ACSTDATE combinations are encountered.
For a matching index scan to be requested, you must specify the high order column in the index key,
which is PROJNO in the preceding example. This provides a starting point for DB2 to traverse the index
structure from the root page to the appropriate leaf page.
What would happen, though, if you did not specify this high order column? Suppose that you alter the
sample query such that a predicate for PROJNO is not specified:
SELECT ACSTAFF, ACENDATE
FROM DSN8610.PROJACT
WHERE ACTNO = 1
AND ACSTDATE = '1991-12-31';
In this instance, a nonmatching index scan can be chosen. When a starting point cannot be determined
because the first column in the key is unavailable, DB2 cannot use the index tree structure, but it can
use the index leaf pages, as shown in Figure 19.9. A nonmatching index scan begins with the first leaf
page in the index and sequentially scans subsequent leaf pages, applying the available predicates.

Figure 19.9: A nonmatching index scan.

DB2 uses a nonmatching index scan instead of a tablespace scan for many reasons. A nonmatching
index scan can be more efficient than a tablespace scan, especially if the data pages that must be

 - 440 -

accessed are in clustered order. As discussed in Chapter 2, you can create clustering indexes that
dictate the order in which DB2 should attempt to store data. When data is clustered by a certain key, I/O
can be reduced.

Of course, a nonmatching index scan be done on a non-clustered index, also.
Compare the clustered index access shown in Figure 19.10 with the nonclustered index access in
Figure 19.11. Clustered index access, as it proceeds from leaf page to leaf page, never requests a read
for the same data page twice. It is evident from the figure that the same cannot be said for nonclustered
index access.

Figure 19.10: Clustered index access.

Figure 19.11: Nonclustered index access.

Another time when a nonmatching index might be chosen is to maintain data in a particular order to
satisfy an ORDER BY or GROUP BY.
Another indexed access technique that DB2 can deploy is index screening. With index screening, a
matching index scan is done on the leading columns of a composite index and then additional
predicates are applied to the composite index. This technique is useful if columns of a multi-column
index are not specified in the query. Consider our sample query once more
SELECT ACSTAFF, ACENDATE
FROM DSN8610.PROJACT
WHERE ACTNO = 1
AND ACSTDATE > '1991-12-31';
Consider, for example, that a composite index exists on the following—ACTNO, one or more other
columns, and then ACSTDATE. The index can be screened by applying a matching index scan on
ACTNO, and then a nonmatching scan for the specified ACSTDATE values less than '1991-12-31' only
for those rows that matched the ACTNO = 1 predicate.
DB2 can avoid reading data pages completely if all the required data exists in the index. This feature is
known as index-only access and is pictured in Figure 19.12.

 - 441 -

Figure 19.12: Index-only access.

Consider again the sample query. This time, it is recoded so that the only columns that must be
accessed are ACTNO and ACSTDATE for predicate evaluation and PROJNO, which is returned in the
select list:
SELECT PROJNO
FROM DSN8610.PROJACT
WHERE ACTNO = 1
AND ACSTDATE = '1991-12-31';
DB2 can satisfy this query by simply scanning the leaf pages of the index. It never accesses the
tablespace data pages. A nonmatching index-only scan is usually much faster than a tablespace scan
because index entries are generally smaller than the table rows that they point to. DB2 can use three
other methods to provide indexed access for optimized SQL. The first is list prefetch. As mentioned,
accessing nonclustered data with an index can be inefficient. However, if DB2 determines beforehand
that the degree of clustering is such that a high number of additional page I/Os might be requested, list
prefetch can be requested to sort the access requests before requesting the data page I/Os (see Figure
19.13).

Figure 19.13: List prefetch.

 - 442 -

List prefetch performs the following tasks:
1. The first leaf page is located using a matching index scan.
2. A list of RIDs for the matching index entries is acquired from the leaf pages as

they are scanned.
3. These RIDs can be sorted into sequence by data page number to reduce the

number of I/O requests. If the index is at least 80 percent clustered, the sort is
bypassed.

4. Using the ordered RID list, data pages are accessed to satisfy the request.
When the RIDs are sorted by list prefetch, the order in which they were retrieved from the index is
changed. Therefore, an additional sort of the results might be required if an ORDER BY clause was
specified. If an ORDER BY clause was not specified, the use of list prefetch will probably cause the
results to be unordered, even though an index was used.
The term skip sequential prefetch is used to categorize the type of access that list prefetch performs on
data pages. When the sorted RID list is used to retrieve data pages, list prefetch effectively performs a
type of sequential prefetch, whereby only the needed data pages are accessed. Those that are not
needed are skipped.
Multi-index access is another type of indexed access used by DB2. The idea behind multi-index access
is to use more than one index for a single access path. For example, consider the DSN8610.EMP table,
which has two indexes: DSN8610.XEMP1 on column EMPNO and DSN8610.XEMP2 on column
WORKDEPT.

Here is a valid query of employees who work in a certain department:
SELECT LASTNAME, FIRSTNME, MIDINIT
FROM DSN8610.EMP
WHERE EMPNO IN ('000100', '000110', '000120')
AND WORKDEPT = 'A00';

This query specifies predicates for two columns that appear in two separate indexes. Doesn't it stand to
reason that it might be more efficient to use both indexes than to estimate which of the two indexes will
provide more efficient access? This is the essence of multi-index access.
There are two types of multi-index access, depending on whether the predicates are tied together using
AND or OR. DB2 invokes the following sequence of tasks when multi-index access is requested:

1. The first leaf page for the first indexed access is located using a matching index
scan.

2. A list of RIDs for the matching index entries is acquired from the leaf pages as
they are scanned.

3. These RIDs are sorted into sequence by data page number to reduce the number
of I/O requests.

4. Steps 1, 2, and 3 are repeated for each index used.
5. If the SQL statement being processed concatenated its predicates using the AND

connector (such as in the sample query), the RID lists are intersected as shown in
Figure 19.14. RID intersection is the process of combining multiple RID lists by
keeping only the RIDs that exist in both RID lists.

 - 443 -

Figure 19.14: Multi-index access (AND).

6. If the SQL statement being processed concatenated its predicates using the OR
connector (such as the following query), the RID lists are combined using a
UNION, as shown in Figure 19.15.

Figure 19.15: Multi-index access (OR).

SELECT LASTNAME, FIRSTNME, MIDINIT
FROM DSN8610.EMP
WHERE EMPNO IN ('000100', '000110', '000120')
OR WORKDEPT = 'A00';
RID UNION is the process of combining multiple RID lists by appending all the RIDs into
a single list and eliminating duplicates.

7. Using the final, combined RID list, data pages are accessed to satisfy the request.
As with list prefetch, skip sequential prefetch is used to access these pages.

The final type of indexed access is index lookaside. Although index lookaside is technically not an
access path but a technique employed by DB2, it is still appropriate to discuss it in the context of

 - 444 -

indexed access. Index lookaside optimizes the manner in which index pages can be accessed (see
Figure 19.16).

Figure 19.16: Index lookaside.

Normally, DB2 traverses the b-tree structure of the index to locate an index entry. This can involve
significant overhead as DB2 checks the root and intermediate non-leaf index pages. When using index
lookaside, the path length required to find a particular leaf page can be reduced. The index lookaside
technique begins only after an initial index access has taken place. Using index lookaside, DB2 checks
for the RID of the desired row first on the current leaf page and next on the immediately higher non-leaf
page. If unsuccessful, DB2 then reverts to a standard index lookup.
By checking the current leaf page and the immediately higher non-leaf page, DB2 increases its chances
of locating the desired RID sooner and adds only a minimal amount of overhead (because the ranges of
values covered by the leaf and non-leaf pages are stored in cache memory upon first execution of the
SELECT).

Query Parallelism
Another technique that can be applied by the optimizer is query parallelism. There are three types of
query parallelism that DB2 can perform:

 Query I/O parallelism (as of DB2 V3)
 Query CP parallelism (as of DB2 V4)
 Query Sysplex parallelism (as of DB2 V5)

After the initial access path has been determined by the optimizer, an additional step can occur to
determine whether parallelism is appropriate. The initial access path (pre-parallelism) is referred to as
the sequential plan.

When query parallelism is invoked DB2 activates multiple parallel tasks to access the data. A separate
subtask MVS SRB is initiated for each parallel task. Both partitioned and nonpartitioned tablespaces
can take advantage of query parallelism.
Query I/O parallelism enables concurrent I/O streams to be initiated for a single query, as shown in
Figure 19.17. This can significantly enhance the performance of I/O bound queries. Breaking the data
access for the query into concurrent I/O streams executed in parallel should reduce the overall elapsed
time for the query. With query I/O parallelism, DB2 is limited to operating on a single processor for each
query.

Figure 19.17: Query I/O parallelism.

 - 445 -

Query CP parallelism enables multitasking of I/O streams and CPU processing within a query (see
Figure 19.18). CP parallelism always uses I/O parallelism; it cannot be invoked separately. In query CP
parallelism, a large query is decomposed into multiple smaller queries that can be executed
concurrently with one another on multiple processors. Query CP parallelism should further reduce the
elapsed time for a query.

Figure 19.18: Query CP parallelism.

Query Sysplex parallelism further enhances parallel operations by enabling a single query to be broken
up and run across multiple DB2 subsystems within a data sharing group (see Figure 19.19). By allowing
a single query to take advantage of the processing power of multiple DB2 subsystems, the overall
elapsed time for a complex query can be significantly decreased.

Figure 19.19: Query Sysplex parallelism.

Although not specifically depicted in the figure, multiple DB2 subsystems in a data-sharing group can
access the same physical partition when participating in a query Sysplex parallelism operation.
When parallelism is invoked, an access path can be broken up into parallel groups. Each parallel group
represents a series of concurrent operations with the same degree of parallelism. Degree of parallelism
refers to the number of concurrent tasks used to satisfy the query.
Figures 19.17, 19.18, and 19.19 showed a tablespace scan accessing a tablespace with a degree of
parallelism of 4. The degree of parallelism is determined by the optimizer based upon the estimated
CPU and I/O cost using partition-level statistics stored in the SYSIBM.SYSCOLSTATS table.

The degree of parallelism can be downgraded at runtime if host variables indicate that only a portion of
the data is to be accessed or if sufficient bufferpool space is not available.

It is particularly important to note that DB2 might choose not to issue one parallel task per partition for
partitioned tablespace access. Determination of the degree of parallelism is based upon the information
in the DB2 Catalog, the number of partitions for the accessed tablespaces, system resources, and the
nature of the query. Each parallel task can access the following:

 An entire partition
 A portion of a single partition
 Multiple partitions
 Portions of multiple partitions

 - 446 -

Likewise, DB2 can horizontally partition data in a non-partitioned tablespace to benefit from query
parallelism. Horizontal data partitioning is the process of creating range predicates for non-partitioned
tablespaces to mimic partitioning. For example, horizontal data partitioning is performed to enable query
parallelism to be maintained when data in a partitioned tablespace is being joined to data in a non-
partitioned tablespace. DB2 will not horizontally partition a non-partitioned tablespace for single table
access.

By processing queries in parallel, overall elapsed time should decrease significantly, even if CPU time
increases. This is usually a satisfactory trade-off, resulting in an overall performance gain because the
same amount of work is accomplished using less clock time. Additionally, the CPU usage can be spread
out across multiple CPUs within the same central processor complex (CPC) or even across CPCs with
data sharing and query Sysplex parallelism.

Query I/O parallelism is most beneficial for I/O bound queries. The types of queries that stand to benefit
most from query I/O parallelism are those that perform the following functions:

 Access large amounts of data but return only a few rows
 Use column functions (AVG, COUNT, MIN, MAX, SUM)
 Access long rows

Query CP parallelism is most beneficial for scans of large partitioned tablespaces, and query Sysplex
parallelism is most beneficial for complex queries that require a lot of processing power.

Query Sysplex Parallelism Terms and Issues
The DB2 subsystem that originates the SQL query is referred to as the parallelism coordinator. A
member that assists in the processing of a parallel query is called a parallelism assistant. Data must be
returned to the parallelism coordinator from each parallelism assistant. This is accomplished in one of
two ways. When work files are required (for example, for sorting), the parallelism coordinator can
access the data directly from the work files. Otherwise, the cross-system coupling facility is used to
return the data to the parallelism coordinator.

Restrictions on Query Parallelism Usage
Note the following query parallelism restrictions:

 For all types of query parallelism, a limited partition scan can be invoked for
queries against a single table only.

 Query CP parallelism and query Sysplex parallelism require Type 2 indexes.
 Query Sysplex parallelism cannot be used with multiple index access, list

prefetch, or queries using RR and RS isolation levels.
 For cursors defined using the WITH HOLD clause, the only type of parallelism

that can be deployed is query I/O parallelism.
 Parallelism is for queries only; as such, only SELECT statements can benefit from

parallelism. Furthermore, the SELECT statement must not be in an updateable or
ambiguous cursor.

 The CURRENTDATA(NO) bind parameter must be specified for parallelism to be
invoked.

 Parallelism cannot be used with multicolumn merge scan joins, type-N hybrid
joins, materialized views, or materialized nested table expressions, and it cannot
be used across UNION query blocks, when accessing a temporary table, or when
EXISTS is specified.

Note A type-N hybrid join retrieves the inner table RIDs using a clustered index (when
SORTN_JOIN="N" in the PLAN_TABLE).

Join Methods
The optimizer has a series of methods to enable DB2 to join tables. When more than one DB2 table is
referenced in the FROM clause of a single SQL SELECT statement, a request is being made to join
tables. Based on the join criteria, a series of instructions must be carried out to combine the data from
the tables.

How does DB2 do this? Multitable queries are broken down into several access paths. The DB2
optimizer selects two of the tables and creates an optimized access path for accomplishing that join.
When that join is satisfied, the results are joined to another table. This process continues until all
specified tables have been joined.

 - 447 -

When joining tables, the access path defines how each single table will be accessed and also how it will
be joined with the next table. Thus, each access path chooses not only an access path strategy (for
example, a tablespace scan versus indexed access) but also a join algorithm. The join algorithm, or join
method, defines the basic procedure for combining the tables.

DB2 has three methods for joining tables:
 Nested loop join
 Merge scan join
 Hybrid join

Each method operates differently from the others but achieves the same results—accessing multiple
tables to return the desired data. However, the choice of join method has an important effect on the
performance of the join. Each join method used by DB2 is engineered such that, given a set of statistics,
optimum performance can be achieved. Therefore, you should understand the different join methods
and the factors that cause them to be chosen.
How do these join methods operate? A basic series of steps is common to each join method. In general,
the first decision to be made is which table should be processed first. This table is referred to as the
outer table. After this decision is made, a series of operations are performed on the outer table to
prepare it for joining. Rows from that table are then combined to the second table, called the inner table.
A series of operations are also performed on the inner table either before the join occurs, as the join
occurs, or both. This general join procedure is depicted in Figure 19.20.

Figure 19.20: Generalized join process.

Although all joins are composed of similar steps, each of DB2's three join methods are strikingly
dissimilar when you get beyond the generalities.

The optimizer understands the advantages and disadvantages of each method and how the use of that
method can affect performance. Based on the current statistics in the DB2 Catalog, the optimizer
understands also which tables are best for the inner table and the outer table.

Nested Loop Join
The most common type of join method is the nested loop join, which is shown in Figure 19.21. A
qualifying row is identified in the outer table, and then the inner table is scanned searching for a match.
(A qualifying row is one in which the predicates for columns in the table match.) When the inner table
scan is complete, another qualifying row in the outer table is identified. The inner table is scanned for a
match again, and so on. The repeated scanning of the inner table is usually accomplished with an index
so as not to incur undue I/O costs.

 - 448 -

Figure 19.21: Nested loop join.

Merge Scan Join
The second type of join method that can be used by DB2 is the merge scan join. In a merge scan join,
the tables to be joined are ordered by the keys. This ordering can be the result of either a sort or
indexed access (see Figure 19.22). After ensuring that both the outer and inner tables are properly
sequenced, each table is read sequentially, and the join columns are matched. Neither table is read
more than once during a merge scan join.

Figure 19.22: Merge scan join.

Hybrid Join
The third type of join, is the hybrid join. In practice, relatively few joins turn out to be optimal as hybrid
joins. The hybrid join is a mixture of the other join methods and list prefetch. Figure 19.23 shows the
processing flow used by the hybrid join.

Figure 19.23: A hybrid join.

The hybrid join works as follows:
1. Using either indexed access or a sort, qualifying outer table rows are accessed

in order by the join columns of the inner table.
2. As the outer table rows are accessed in sequence, they are compared to an

appropriate index on the inner table. In a hybrid join, there must be an index on
the join columns of the inner table.

3. The index entry RIDs from the qualifying inner table are combined with the
required columns of the outer table, forming an intermediate table. This
intermediate table then consists of the selected outer table columns and the
RIDs of the matching rows from the index on the inner table. The RIDs are also
placed in the RID pool, forming a RID list.

 - 449 -

4. Both the RID list and the intermediate table are sorted.
5. The RID list in the intermediate table is resolved into a results table using list

prefetch. The appropriate inner table rows are returned by following the RIDs.
6. Finally, if an ORDER BY is specified in the join SQL, a sort is usually required

to order the results table.

The hybrid join method can provide modest performance gains for some applications that process
medium-sized table joins. However, most shops have few access paths that use this type of join.

Note Any of the three join methods can be used for both inner and outer joins.

Join Method Comparison

You might be wondering which join method DB2 uses in a given circumstance. Although there is no
foolproof method to determine which method will be used for every circumstance, there are some
general guidelines:

 Merge scan joins are usually chosen when an appropriate index is unavailable on
one of the tables. This involves sorting and can use a high amount of overhead.

 Nested loop joins are very effective when an index exists on the inner table,
thereby reducing the overhead of the repeated table scan.

 The smaller of the two tables being joined is usually chosen as the outer table in a
nested loop join. Actually, the size of the table is not as relevant as the amount of
data that needs to be accessed. The fewer rows accessed from the outer table
the more efficient the repeated inner table scan will be.

 The hybrid join is chosen only if an index exists on the inner table.
 Query parallelism can be combined with any of the join methods, enabling joins to

be processed in parallel.

Many shops are biased toward the nested loop join, feeling that nested loop joins almost always
outperform merge scan joins. However, the performance of the merge scan join has been significantly
enhanced over the life of DB2. Merge scan joins are a viable, production-quality join method.
See Figure 19.24 for an estimate of the performance of the join methods as a function of the number of
qualifying rows being joined.

Figure 19.24: Relative join performance.

In general, the guidelines are as follows:
 The nested loop join is preferred in terms of execution cost when a small number

of rows qualify for the join.
 The nested loop join is preferred whenever the OPTIMIZE FOR n ROWS clause

is used, regardless of the number of qualifying rows.
 As the number of qualifying rows increases, the merge scan join becomes the

preferred method.

 - 450 -

 Finally, for a small number of cases with a medium number of rows, the hybrid
join is the best performer.

These generalizations are purposefully vague. The exact number of qualifying rows for these cut-offs
depends on many influencing factors. These factors include, but are not limited to, the following:

 Database design
 Type of CPU
 Type of DASD device
 Use of DASD cache
 Version of DB2
 Data-sharing environment
 Amount of memory and size of the bufferpools
 Bufferpool tuning specifications
 Availability of hardware (microcode) sorting
 Compression settings and hardware-assisted compression availability
 Uniqueness of the join columns
 Cluster ratio

Parallel Joins
As mentioned in the earlier discussion of query I/O parallelism, it is possible for joins to be executed in
parallel. Parallel I/O processing during a join can occur for both the outer and the inner table of a join,
for only the outer table, or for only the inner table.

For any join method, the outer table can be separated into logical partitions. As is true with any query
executed in parallel, the optimizer determines the degree of parallelism, which can be adjusted at
runtime. The logical partitions are processed using multiple parallel I/O streams applying the outer table
predicates.

Subsequent inner table processing is based on the type of join being performed.

Nested Loop Join and Parallelism
To perform a nested loop join in parallel, the key ranges for the inner table logical partitions might need
to be adjusted to match the logical partitioning of the outer table. This ensures that the number of logical
partitions is equivalent for the outer and inner tables. Likewise, if the outer table was not processed
using parallelism, the filtered outer table rows will need to be logically partitioned to match the inner
table partitioning. In both cases, the logical partitioning is accomplished using the ESA sort assist. It is
possible, however, that the outer table rows need not be sorted. In this case, the ESA sort assist will
simply adjust the outer table key range to match the partitioning key range of the inner table.

Additionally, if the inner table is not partitioned, it can be horizontally partitioned to enable parallelism to
continue. Alternatively, the inner table can be passed to the ESA sort assist, causing sort output to be
partitioned to match outer table sort output.
Multiple parallel I/O streams are then used to join the filtered outer table rows to the inner table using
the nested loop procedure described previously. The rows are returned in random order unless an
additional sort is required for ORDER BY, GROUP BY, or DISTINCT.

Merge Scan Join and Parallelism
To enable parallel merge scan joining, outer table rows are passed into the ESA sort assist, causing the
sort output to be repartitioned to match the logical partitioning of the inner table. The outer table access
could have been either parallel or non-parallel. A single column merge scan join is then executed using
multiple parallel I/O streams. (Query I/O parallelism cannot sort all of the join columns for merge scan
join.)

If the inner table is not partitioned, it can be horizontally partitioned to enable parallelism to continue.
The rows are returned in random order unless an additional sort is required for ORDER BY, GROUP
BY, or DISTINCT.

 - 451 -

Hybrid Join and Parallelism
Hybrid join processing with query I/O parallelism also passes outer table rows to the ESA sort assist to
logically repartition the output to match the logical partitioning of the inner table.
After the outer table results are repartitioned to match the logical partitioning of the inner table, hybrid
join processing is executed using parallel I/O streams. The rows are returned in page number order
unless an additional sort is required for ORDER BY, GROUP BY, or DISTINCT.

For parallelism to be invoked on the inner table, a highly clustered index must exist on the join columns.
If such an index does not exist, the sort of the RID list and intermediate table will prevent parallel access
to the inner table.

Parallel Join Notes
In any case, remember that during join processing, parallel access can occur as follows:

 On just the inner table
 On just the outer table
 On both the inner and outer tables
 On neither the inner nor outer tables

Other Operations Performed by the Optimizer
So far, you have learned about sequential access methods, indexed access methods, and join
methods. The optimizer can perform other operations as well. For example, using a feature
known as predicate transitive closure, the optimizer can make a performance decision to
satisfy a query using a predicate that isn't even coded in the SQL statement being optimized.
Consider the following SQL statements:
SELECT D.DEPTNAME, E.LASTNAME
FROM DSN8610.DEPT D,
 DSN8610.EMP E
WHERE D.DEPTNO = E.WORKDEPT
AND D.DEPTNO = 'A00'

and
SELECT D.DEPTNAME, E.LASTNAME
FROM DSN8610.DEPT D,
 DSN8610.EMP E
WHERE D.DEPTNO = E.WORKDEPT
AND E.WORKDEPT = 'A00'
These two statements are functionally equivalent. Because DEPTNO and WORKDEPT are
always equal, you could specify either column in the second predicate. The query is usually
more efficient, however, if the predicate is applied to the larger of the two tables (in this case,
DSN8610.DEPT), thereby reducing the number of qualifying rows.

With predicate transitive closure, the programmer doesn't have to worry about this factor. DB2
considers the access path for both columns regardless of which is coded in the predicate.
Therefore, DB2 can optimize a query based on predicates that are not even coded by the
programmer.
Predicate transitive closure is not performed on every type of predicate. The IN and LIKE
predicates are excluded from predicate transitive closure. The DB2 optimizer is currently not
capable of determining when predicate transitive closure could be useful for the IN and LIKE
predicates.
The DB2 optimizer is responsible also for generating optimized access paths for subqueries.
Remember from Chapter 1 that there are two types of subqueries: non-correlated and
correlated. The type of subquery determines the type of access path that DB2 chooses.
The access path for a non-correlated subquery always processes the subselect first. This type
of processing is called inside-out subquery access. The table in the subselect is the inner

 - 452 -

table and is processed first. The table in the outer SELECT is the outer table and is processed
last, hence the name inside-out processing. Consider the following subquery:
SELECT LASTNAME
FROM DSN8610.EMP
WHERE WORKDEPT IN
 (SELECT DEPTNO
 FROM DSN8610.DEPT
 WHERE DEPTNAME = 'OPERATIONS');
The access path formulated by the optimizer for a non-correlated subquery is shown in Figure
19.25.

Figure 19.25: A non-correlated subquery.

The access path for a non-correlated subquery consists of the following steps:
1. Access the inner table, the one in the subselect (DSN8610.DEPT), using either

a tablespace scan or an index.
2. Sort the results and remove all duplicates.
3. Place the results in an intermediate table.
4. Access the outer table, comparing all qualifying rows to those in the

intermediate results table for a match.
A correlated subquery, on the other hand, is performed using outside-in-outside subquery
access. Consider the following correlated subquery:
SELECT LASTNAME, SALARY
FROM DSN8610.EMP E
WHERE EXISTS
 (SELECT 1
 FROM DSN8610.EMPPROJACT P
 WHERE P.EMPNO = E.EMPNO);

The access path formulated by the optimizer for this correlated subquery consists of the
following steps:

1. Access the outer table, which is the DSN8610.EMP table, using either a
tablespace scan or indexed access.

2. For each qualifying outer table row, evaluate the subquery for the inner table.
3. Pass the results of the inner table subquery to the outer SELECT one row at a

time. (In this case, the row is not returned because of the EXISTS predicate;
instead, a flag is set to true or false.)

4. Evaluate the outer query predicate using the inner query results (row by row).
This causes a round-robin type of access such as that shown in Figure 19.26.

 - 453 -

Figure 19.26: A correlated subquery.

Some further notes on subqueries follow. In general, the subselect portion of a correlated
subquery is reevaluated for each qualifying outer row. However, if the subquery returns a
single value, it can be saved in an intermediate work area such that it need not be reevaluated
for every qualifying outer table row. An example of a correlated subquery where this is
possible follows:
SELECT LASTNAME
FROM DSN8610.EMP E1
WHERE SALARY <
 (SELECT AVG(SALARY)
 FROM DSN8610.EMP E2
 WHERE E1.WORKDEPT = E2.WORKDEPT)

One average salary value is returned for each department. Thus, only a single inner table
evaluation is required for each department, instead of a continual reevaluation for each
qualifying outer table row.

Although subqueries are often the most obvious way to access data from multiple tables, they
might not be the most efficient. A good rule of thumb is to recode subqueries as joins and
perform tests to determine which formulation provides better performance results. The DB2
optimizer may choose more efficient access paths for joins than for subqueries. For example,
the following query
SELECT LASTNAME, SALARY
FROM DSN8610.EMP
WHERE WORKDEPT IN
 (SELECT DEPTNO
 FROM DSN8610.DEPT
 WHERE ADMRDEPT = 'A00')

can be recoded as a join:
SELECT E.LASTNAME, E.SALARY
FROM DSN8610.EMP E,
 DSN8610.DEPT D
WHERE E.WORKDEPT = D.DEPTNO
AND D.ADMRDEPT = 'A00'

One final type of operation that can be performed by the optimizer is the optimization of
queries based on views. DB2 employs one of two methods when accessing data in views:
view merge or view materialization.
View merge is the more efficient of the two methods. Using this technique, DB2 will merge the
SQL in the view DDL with the SQL accessing the view. The merged SQL is then used to

 - 454 -

formulate an access path against the base tables in the views. This process is depicted in
Figure 19.27.

Figure 19.27: View merge.

View materialization is chosen when DB2 determines that it is not possible to merge the SQL
in the view DDL with the SQL accessing the view. Instead of combining the two SQL
statements into a single statement, view materialization creates an intermediate work table
using the view SQL and then executes the SELECT from the view against the temporary table.
Figure 19.28 outlines the view materialization process.

Figure 19.28: View materialization.

Consult Table 19.8 to determine the circumstances under which view materialization is used
instead of view merge. If the SELECT from the view contains any of the components listed in
the left column, combined with the view DDL containing any of the components listed along
the top, analyze the column entry in the table. MAT represents view materialization; MER
represents view merge. If the view SELECT/view DDL combination does not appear in the
table, view merge will be used.

Table 19.8: When Does View Materialization Occur
 SELECT

in DDL

SELECT
from View

DISTINCT

GROUP
BY

Column
Function

Column
Function
w/DISTINCT

Join MAT MAT MAT MAT
DISTINCT MAT MER MER MAT
GROUP BY MAT MAT MAT MAT

Column Function MAT MAT MAT MAT
Column Function
w/DISTINCT

MAT MAT MAT MAT

SELECT subset of
View Cols

MAT MER MER MER

Summary
The optimizer combines access path strategies to form an efficient access path. However, not
all the strategies are compatible, as shown in Table 19.9. As you can plainly see, the
optimizer must follow a mountain of rules as it performs its optimization.
Here are some further notes on Table 19.9:

 - 455 -

 Each access path is composed of at least one strategy and possibly many. A Yes
in any block in the matrix indicates that the two strategies can be used together in
a single access path; a No indicates incompatibility.

 For the join methods, the matrix entries apply to any one portion of the join (that
is, the access path for either the inner table or the outer table).

 Sequential detection is always invoked in conjunction with sequential prefetch.
 Index-only access must be used in conjunction with one of the index access path

strategies.
 For the hybrid join method, the inner table is always accessed with an index using

a form of list prefetch; the outer table can be accessed using any access method
deemed by the optimizer to be most efficient.

You have covered a large number of topics under the heading of the DB2 optimizer. This
should drive home the point that the optimizer is a complex piece of software. Although we
know quite a bit about what the optimizer can do, we know little about how it decides what to
do. This is not surprising. IBM has invested a great amount of time, money, and effort in DB2
and has also staked a large portion of its future on DB2's success. IBM wouldn't want to
publish the internals of the optimizer, thus enabling competitors to copy its functionality.
The optimizer and the access paths it chooses are the most complex parts of DB2. Even
though the subject is complex, an understanding of the optimizer is crucial for every user. This
chapter fulfills this requirement. But where does the DB2 optimizer get the information to
formulate efficient access paths? Where else—from the DB2 Catalog, the subject of the next
chapter.

Table 19.9: Access Path Strategy Compatibility Matrix

 Sim
ple
Tabl

Part
ition
ed
Tabl

Seg
m

en
ted
Tabl

Seq
uent
ial
Pref
etch

 Q
ue

ry
Parll

l

D
ire

ct
Inde
x Loo
kup

M
at

chin
g Inde
x

Simple
Tables
pace
Scan

-

-

-

N
o

N
o

Yes Yes No No

Partiti
oned
Tables
pace
Scan

N
o

- -
-

Y
es

Yes Yes No No

Segm
ented
Tables
pace
Scan

N
o

N
o

- -
-

Yes Yes No No

Seque
ntial
Prefet
ch/
Detect
ion

Y
e
s

Y
es

Y
es

- - - Yes No Yes

Query
Parall
elism

N
o

Y
es

N
o

Yes - - - No Yes

Direct
Index
Looku
p

N
o

N
o

N
o

No No - - - Yes

Matchi N N N Yes Yes Yes - - -

 - 456 -

ng
Index
Scan

o o o

Nonm
atchin
g
Index
Scan

N
o

N
o

N
o

Yes Yes No No

Index
Looka
side

N
o

N
o

N
o

No No No Yes

Multi-
Index
Acces
s

N
o

N
o

N
o

Yes No No Yes

Index-
Only
Acces
s

N
o

N
o

N
o

Yes Yes Yes Yes

List
Prefet
ch

N
o

N
o

N
o

No No No Yes

Neste
d Loop
Join

Y
e
s

Y
es

Y
es

Yes Yes Yes Yes

Merge
Scan
Join

Y
e
s

Y
es

Y
es

Yes Yes Yes Yes

Hybrid
Join

Y
e
s

Y
es

Y
es

Yes Yes Yes Yes

 N
on

- M
at

Ind
ex
Loo

M
ul

ti-Ind

Ind
ex-
O

nl

List
Pref
etc
h N

es
ted
Loo
p M

er
ge
Sca
n H

yb
rid
Joi
n

Si
mp
le
Ta
ble
sp
ac
e
Sc
an

N
o

N
o

N
o

N
o

No Yes Y
es

Y
e
s

Par
titio
ne
d
Ta
ble
sp
ac
e

N
o

N
o

N
o

N
o

No Yes Y
es

Y
e
s

 - 457 -

Sc
an

Se
gm
ent
ed
Ta
ble
sp
ac
e
Sc
an

N
o

N
o

N
o

N
o

No Yes Y
es

Y
e
s

Se
qu
ent
ial
Pre
fet
ch/
Det
ecti
on

Y
e
s

N
o

N
o

Y
e
s

No Yes Y
es

Y
e
s

Qu
ery
Par
alle
lis
m

Y
e
s

N
o

N
o

Y
e
s

No Yes Y
es

Y
e
s

Dir
ect
Ind
ex
Lo
ok
up

N
o

N
o

N
o

Y
e
s

No Yes Y
es

Y
e
s

Ma
tchi
ng
Ind
ex
Sc
an

N
o

Y
e
s

Y
e
s

Y
e
s

Yes Yes Y
es

Y
e
s

No
nm
atc
hin
g
Ind
ex
Sc
an

-

-

-

Y
e
s

N
o

Y
e
s

No Yes Y
es

Y
e
s

Ind
ex
Lo
ok
asi
de

Y
e
s

-

-

-

N
o

Y
e
s

No Yes Y
es

Y
e
s

 - 458 -

Mu
lti-
Ind
ex
Ac
ces
s

N
o

N
o

-

-

-

N
o

Yes Yes Y
es

Y
e
s

Ind
ex-
Onl
y
Ac
ces
s

Y
e
s

Y
e
s

N
o

-

-

-

No Yes Y
es

Y
e
s

List
Pre
fet
ch

N
o

N
o

Y
e
s

N
o

- - - Yes Y
es

Y
e
s

Ne
ste
d
Lo
op
Joi
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Yes - - - - -
-

- -
-

Me
rge
Sc
an
Joi
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Yes - - - - -
-

- -
-

Hy
bri
d
Joi
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Yes - - - - -
-

- -
-

Chapter 20: The Table-Based Infrastructure of DB2
Overview
Appropriately enough for a relational database, DB2 has a set of tables that functions as a repository for
all DB2 objects. These tables define the infrastructure of DB2, enabling simple detection of and access
to DB2 objects. Two sets of tables store all the data related to DB2 objects: the DB2 Catalog and the
DB2 Directory.

The DB2 Catalog
The entire DBMS relies on the system catalog, or the DB2 Catalog. If the DB2 optimizer is the heart and
soul of DB2, the DB2 Catalog is its brain, or memory. The knowledge base of every object known to
DB2 is stored in the DB2 Catalog.

What Is the DB2 Catalog?
See Table 20.1 for a short description of each table in the DB2 Catalog. For a more complete
description, see Appendix B, "The DB2 Catalog Tables."

Table 20.1: Tables in the DB2 Catalog

 - 459 -

Table Contents
IPNAMES To set up distributed TCP/IP connections
LOCATIONS Contains distributed location information for every accessible

remote server
LULIST Contains the list of LUNAMEs for a given distributed location

(when multiple LUNAMEs are associated with a single location)
LUMODES Information on distributed conversation limits
LUNAMES Contains information for every SNA client or server that

communicates with the DB2 subsystem
MODESELECT Information assigning mode names to conversations supporting

outgoing SQL requests
SYSAUXRELS Information on the auxiliary tables required for LOB columns
SYSCHECKDEP Column references for CHECK constraints
SYSCHECKS CHECK constraint specifications
SYSCOLAUTH The UPDATE privileges held by DB2 users on table or view

columns
SYSCOLDIST The nonuniform distribution statistics for the 10 most frequently

occurring values in a column
SYSCOLDISTSTATS The nonuniform distribution statistics for the 10 most frequently

occurring values for the first key column in a partitioned index
SYSCOLSTATS The partition statistics for selected columns
SYSCOLUMNS Information about every column of every DB2 table and view
SYSCONSTDEP Information regarding columns that are dependent on check

constraints and user-defined defaults
SYSCOPY Information on the execution of DB2 utilities required by DB2

recovery
SYSDATABASE Information about every DB2 database
SYSDATATYPES Information about the user-defined distinct types defined to the

DB2 subsystem
SYSDBAUTH Database privileges held by DB2 users
SYSDBRM DBRM information only for DBRMs bound into DB2 plans
SYSDUMMY1 Contains no information; this table is for use in SQL statements

requiring a table reference without regard to data content

Table Contents
SYSFIELDS Information on field procedures implemented for DB2 tables
SYSFOREIGNKEYS Information about all columns participating in foreign keys
SYSINDEXES Information about every DB2 index
SYSINDEXPART Information about the physical structure and storage of every

DB2 index
SYSINDEXSTATS Partitioned index statistics by partition
SYSKEYS Information about every column of every DB2 index
SYSLINKS Information about the links between DB2 Catalog tables
SYSLOBSTATS Statistical information for LOB tablespaces

 - 460 -

SYSPACKAGE Information about every package known to DB2
SYSPACKAUTH Package privileges held by DB2 users
SYSPACKDEP A cross-reference of DB2 objects required for DB2 packages
SYSPACKLIST The package list for plans bound specifying packages
SYSPACKSTMT All SQL statements contained in each DB2 package
SYSPARMS Parameters for defined routines
SYSPKSYSTEM The systems (such as CICS, IMS, or batch) enabled for DB2

packages
SYSPLAN Information about every plan known to DB2
SYSPLANAUTH Plan privileges held by DB2 users
SYSPLANDEP A cross-reference of DB2 objects required by DB2 plans
SYSPLSYSTEM The systems (such as CICS, IMS, or batch) enabled for DB2

plans
SYSPROCEDURES The stored procedures available to the DB2 subsystem
SYSRELS The referential integrity information for every relationship

defined to DB2
SYSRESAUTH Resource privileges held by DB2 users
SYSROUTINEAUTH Privileges held by DB2 users on routines
SYSROUTINES Information about every routine (that is, user-defined

functions and stored procedures) defined to the DB2
subsystem

SYSSCHEMAAUTH Schema privileges granted to users

Table Contents
SYSSTMT All SQL statements contained in each DB2 plan bound from a DBRM
SYSSTOGROUP Information about every DB2 storage group
SYSSTRINGS Character conversion information
SYSSYNONYMS Information about every DB2 synonym
SYSTABAUTH Table privileges held by DB2 users
SYSTABLEPART Information about the physical structure and storage of every DB2

tablespace
SYSTABLES Information about every DB2 table
SYSTABLESPACE Information about every DB2 tablespace
SYSTABSTATS Partitioned tablespace statistics by partition
SYSTRIGGERS Information about every trigger defined to the DB2 subsystem
SYSUSERAUTH System privileges held by DB2 users
SYSVIEWDEP A cross-reference of DB2 objects required by DB2 views
SYSVIEWS The SQL CREATE VIEW statement for every DB2 view
SYSVLTREE A portion of the internal representation of complex or long views
SYSVOLUMES A cross-reference of DASD volumes assigned to DB2 storage groups
SYSVTREE The first 4000 bytes of the internal representation of the view; the

remaining portion of longer or complex views is stored in SYSVLTREE

 - 461 -

USERNAMES Outbound and inbound ID translation information
Note Three tables were added to the DB2 Catalog for DB2 V4—one to

house stored procedure information (SYSIBM.SYSPROCEDURES)
and two to store information on table check constraints
(SYSIBM.SYSCHECKS and SYSIBM.SYSCHECKDEP).
Eight tables were added to the DB2 Catalog for DB2 V5. Prior to DB2
V5, six of those tables were stored in the Communication Database,
also known as the CDB. The CDB was used to describe the
connections of a local DB2 subsystem to other systems. The CDB
tables were housed in a separate database—DSNDDF. As of V5, the
tables were renamed and moved into the DB2 Catalog. The CDB
tables that have been renamed and rolled into the DB2 Catalog since
DB2 V5 are as follows:

Old CDB Table Name V5 DB2 Catalog Table
Name

SYSIBM.SYSLOCATIONS SYSIBM.LOCATIONS
SYSIBM.SYSLULIST SYSIBM.LULIST
SYSIBM.SYSLUMODES SYSIBM.LUMODES
SYSIBM.SYSLUNAMES SYSIBM.LUNAMES
SYSIBM.SYSMODESELECT SYSIBM.MODESELECT
SYSIBM.SYSUSERNAMES SYSIBM.USERNAMES

The two other tables added to the DB2 Catalog for DB2 V5 are
SYSIBM.IPNAMES and SYSIBM.SYSDUMMY1.
Nine tables were added to the DB2 Catalog as of DB2 V6. These
tables are primarily to support triggers, user-defined functions, stored
procedures, and large objects (SYSAUXRELS, SYSCONSTDEP,
SYSDATATYPES, SYSLOBSTATS, SYSPARMS,
SYSROUTINEAUTH, SYSROUTINES, SYSSCHEMAAUTH, and
SYSTRIGGERS). Also, as of DB2 V6, SYSPROCEDURES is no
longer used; stored procedure information is recorded in
SYSROUTINES.

The DB2 Catalog is composed of 12 tablespaces and 63 tables all in a single database, DSNDB06.
Each DB2 Catalog table maintains data about an aspect of the DB2 environment. In that respect, the
DB2 Catalog functions as a data dictionary for DB2, supporting and maintaining data about the DB2
environment. (A data dictionary maintains metadata, or data about data.) The DB2 Catalog records all
the information required by DB2 for the following functional areas:

Objects STOGROUPS, databases, tablespaces, partitions, tables, auxiliary
tables, columns, user-defined distinct types, views, synonyms, aliases,
indexes, index keys, foreign keys, relationships, schemas, user-defined
functions, stored procedures, triggers, plans, packages, and DBRMs

Security Database privileges, plan privileges, schema privileges, system
privileges, table privileges, view privileges, and use privileges

Utility Image copy data sets, REORG executions, LOAD executions, and
object organization efficiency information

Distribution How DB2 subsystems are connected for data distribution and DRDA
usage

Environmental Links and relationships between the DB2 Catalog tables and other
control information

How does the DB2 Catalog support data about these areas? For the most part, the tables of the DB2
Catalog cannot be modified using standard SQL data manipulation language statements. You cannot
use INSERT statements, DELETE statements, or UPDATE statements (with a few exceptions) to
modify these tables. Instead, the DB2 Catalog operates as a semiactive, integrated, and nonsubvertible
data dictionary. The definitions of these three adjectives follow.
First, the DB2 Catalog is said to be semiactive. An active dictionary is built, maintained, and used as the
result of the creation of the objects defined to the dictionary. In other words, as the user is utilizing the
intrinsic functions of the DBMS, metadata is being accumulated and populated in the active data
dictionary.

 - 462 -

The DB2 Catalog, therefore, is active in the sense that when standard DB2 SQL is issued, the DB2
Catalog is either updated or accessed. All the information in the DB2 Catalog, however, is not
completely up-to-date, and some of the tables must be proactively populated (such as
SYSIBM.SYSPROCEDURES, used prior to DB2 V6). You can see where the DB2 Catalog operates as
an active data dictionary. Remember that the three types of SQL are DDL, DCL, and DML. When DDL
is issued to create DB2 objects such as databases, tablespaces, and tables, the pertinent descriptive
information is stored in the DB2 Catalog.
Figure 20.1 shows the effects of DDL on the DB2 Catalog. When a CREATE, DROP, or ALTER
statement is issued, information is recorded or updated in the DB2 Catalog. The same is true for
security SQL data control language statements. The GRANT and REVOKE statements cause
information to be added or removed from DB2 Catalog tables (see Figure 20.2). Data manipulation
language SQL statements use the DB2 Catalog to ensure that the statements accurately reference the
DB2 objects being manipulated (such as column names and data types).

Figure 20.1: The effect of DDL on the DB2 Catalog.

Figure 20.2: The effect of DCL on the DB2 Catalog.

Why then is the DB2 Catalog classified as only semiactive rather than completely active? The DB2
Catalog houses important information about the physical organization of DB2 objects. For example, the
following information is maintained in the DB2 Catalog:

 The number of rows in a given DB2 table or a given DB2 tablespace
 The number of distinct values in a given DB2 index
 The physical order of the rows in the table for a set of keys

This information is populated by means of the DB2 RUNSTATS utility. A truly active data dictionary
would update this information as data is populated in the application tablespaces, tables, and indexes.
This was deemed to be too costly, and rightly so. Therefore, the DB2 Catalog is only semiactive.
The DB2 Catalog is also described as being integrated. The DB2 Catalog and the DB2 DBMS are
inherently bound together, neither having purpose or function without the other. The DB2 Catalog
without DB2 defines nothing; DB2 without the DB2 Catalog has nothing defined that it can operate on.
The final adjective used to classify the DB2 Catalog is nonsubvertible. This simply means that the DB2
Catalog is updated as DB2 is used by standard DB2 features; the DB2 Catalog cannot be updated
behind DB2's back. Suppose that you created a table with 20 columns. You cannot subsequently
update the DB2 Catalog to indicate that the table has 15 columns instead of 20 without using standard
DB2 data definition language SQL statements to drop and re-create the table.

 - 463 -

An Exception to the Rule
As with most things in life, there are exceptions to the basic rule that the SQL data manipulation
language cannot be used to modify DB2 Catalog tables. You can modify columns (used by the DB2
optimizer) that pertain to the physical organization of table data. This topic is covered in depth in
Chapter 26, "Tuning DB2's Components."

The Benefits of an Active Catalog
The presence of an active catalog is a boon to the DB2 developer. The DB2 Catalog is synchronized to
each application database. You can be assured, therefore, that the metadata retrieved from the DB2
Catalog is 100% accurate. Because the DB2 Catalog is composed of DB2 tables (albeit modified for
performance), you can query these tables using standard SQL. The hassle of documenting physical
database structures is handled by the active DB2 Catalog and the power of SQL.

DB2 Catalog Structure
The DB2 Catalog is structured as DB2 tables, but they are not standard DB2 tables. Many of the DB2
Catalog tables are tied together hierarchically—not unlike an IMS database—using a special type of
relationship called a link. You can determine the nature of these links by querying the
SYSIBM.SYSLINKS DB2 Catalog table. This DB2 Catalog table stores the pertinent information defining
the relationships between other DB2 Catalog tables. To view this information, issue the following SQL
statement:
SELECT PARENTNAME, TBNAME, LINKNAME,
 CHILDSEQ, COLCOUNT, INSERTRULE
FROM SYSIBM.SYSLINKS
ORDER BY PARENTNAME, CHILDSEQ

The following data is returned:
 CHILD COL INSERT
PARENTNAME TBNAME LINKNAME SEQ COUNT RULE
SYSCOLUMNS SYSFIELDS DSNDF#FD 1 0 O
SYSDATABASE SYSDBAUTH DSNDD#AD 1 0 F
SYSDBRM SYSSTMT DSNPD#PS 1 0 L
SYSINDEXES SYSINDEXPART DSNDC#DR 1 1 U
SYSINDEXES SYSKEYS DSNDX#DK 2 1 U
SYSPLAN SYSDBRM DSNPP#PD 1 1 U
SYSPLAN SYSPLANAUTH DSNPP#AP 2 0 F
SYSPLAN SYSPLANDEP DSNPP#PU 3 0 F
SYSRELS SYSLINKS DSNDR#DL 1 0 O
SYSRELS SYSFOREIGNKEYS DSNDR#DF 2 1 U
SYSSTOGROUP SYSVOLUMES DSNSS#SV 1 0 L
SYSTABAUTH SYSCOLAUTH DSNAT#AF 1 0 F
SYSTABLES SYSCOLUMNS DSNDT#DF 1 1 U
SYSTABLES SYSRELS DSNDT#DR 2 1 U
SYSTABLES SYSINDEXES DSNDT#DX 3 0 F
SYSTABLES SYSTABAUTH DSNDT#AT 4 0 F
SYSTABLES SYSSYNONYMS DSNDT#DY 5 0 F
SYSTABLESPACE SYSTABLEPART DSNDS#DP 1 1 U
SYSTABLESPACE SYSTABLES DSNDS#DT 2 0 F
SYSVTREE SYSVLTREE DSNVT#VL 1 0 L
SYSVTREE SYSVIEWS DSNVT#VW 2 1 U

 - 464 -

SYSVTREE SYSVIEWDEP DSNVT#VU 3 0 F

This information can be used to construct the physical composition of the DB2 Catalog links. To
accomplish this, keep the following rules in mind:

 The PARENTNAME is the name of the superior table in the hierarchy. The TBNAME is
the name of the subordinate table, or child table, in the hierarchy.

 The CHILDSEQ and COLCOUNT columns refer to the clustering and ordering of the
data in the relationship.

 The INSERTRULE column determines the order in which data is inserted into the
relationship. This concept is similar to the insert rule for IMS databases. Valid insert
rules are shown in Table 20.2.

Table 20.2: DB2 Catalog Link Insert Rules

Insert Rule Meaning Description
F FIRST Inserts new

values as
the first
data value
in the
relationship

L LAST Inserts new
values as
the last
data value
in the
relationship

O ONE Permits
only one
data value
for the
relationship

U UNIQUE Does not
allow
duplicate
data values
for the
relationship

The newer DB2 Catalog tables do not use links; they use proper referential constraints. You can see
this by browsing the previous output and noting the lack of V2.3 and V3 DB2 Catalog tables.

Hierarchical diagrams of the DB2 Catalog depicting links and relationships are shown in Figures 20.3
through 20.7.

Figure 20.3: The DB2 Catalog: tablespaces, tables, and indexes.

 - 465 -

Figure 20.4: The DB2 Catalog: plans and packages.

Figure 20.5: The DB2 Catalog: views, STOGROUPs, and databases.

Figure 20.6: The DB2 Catalog: routines, UDFs, schemas, and procedures.

Figure 20.7: The DB2 Catalog: distributed information, the CDB.

The specifics of what information is stored in what portion of the DB2 Catalog are contained in Appendix
B, "The DB2 Catalog Tables." Consult this appendix for the answers to the following questions:

 Which tablespaces contain which DB2 Catalog tables?
 Which columns are in which DB2 Catalog tables?
 Which information is contained in which columns?
 Which indexes exist on which DB2 Catalog tables?

As you query the DB2 Catalog, remember that DB2 indexes are used only by SQL queries against the
DB2 Catalog, never by internal DB2 operations. For example, when the BIND command queries the
DB2 Catalog for syntax checking and access path selection, only the internal DB2 Catalog links are
used.

The DB2 Directory

 - 466 -

Many DB2 application developers are unaware that DB2 uses a second dictionary-like structure in
addition to the DB2 Catalog. This is the DB2 Directory. Used for storing detailed, technical information
about aspects of DB2's operation, the DB2 Directory is for DB2's internal use only.
The DB2 Directory is composed of five "tables." These "tables," however, are not true DB2 tables
because they are not addressable using SQL. From here on, they are referred to as structures instead
of tables. These structures control DB2 housekeeping tasks and house complex control structures used
by DB2. See Figure 20.8 for a summation of the relationships between the DB2 Catalog, the DB2
Directory, and DB2 operations. The objects in the DB2 Directory can be listed by issuing the following
command:

Figure 20.8: The DB2 Directory.

-DIS DB(DSNDB01) SPACE(*) LIMIT(*)

A quick rundown of the information stored in the DB2 Directory is in the following sections.
SCT02
The SCT02 structure holds the skeleton cursor tables (SKCTs) for DB2 application plans. These
skeleton cursor tables contain the instructions for implementing the access path logic determined by the
DB2 optimizer.
The BIND PLAN command causes skeleton cursor tables to be created in the SCT02 structure.
Executing the FREE PLAN command causes the appropriate skeleton cursor tables to be removed
from SCT02. When a DB2 program is run, DB2 loads the skeleton cursor table into an area of memory
called the EDM Pool to enable execution of the SQL embedded in the application program.
SPT01
Similar to the skeleton cursor tables are skeleton package tables, which are housed in the SPT01 DB2
Directory structure. The skeleton package tables contain the access path information for DB2 packages.
The BIND PACKAGE command causes skeleton package tables to be created in the SPT01 structure.
Executing the FREE PACKAGE command causes the appropriate skeleton package tables to be
removed from the DB2 Directory. When running a DB2 program that is based on a plan with a package
list, DB2 loads both the skeleton cursor table for the plan and the skeleton package tables for the
packages into memory to enable execution of the SQL embedded in the application program.
DBD01
Database descriptors, or DBDs, are stored in the DBD01 DB2 Directory structure. A DBD is an internal
description of all the DB2 objects that were defined subordinate to a database. DB2 uses the DBD as an
efficient representation of the information stored in the DB2 Catalog for these objects. Instead of
accessing the DB2 Catalog for DB2 object information, DB2 accesses the DBD housed in the DB2
Directory because it is more efficient to do so.
The DBD in the DB2 Directory can become out of sync with the physical DB2 objects that it represents,
but this is unlikely. If this does happen, you will encounter many odd and unexplainable abends. The
situation can be corrected using the REPAIR DBD utility, which is covered in Chapter 30, "Backup and
Recovery Utilities." Furthermore, the REPAIR DBD TEST DATABASE utility can be run to detect when
a DBD is out of sync with the actual physical objects.
SYSUTILX
DB2 monitors the execution of all online DB2 utilities. Information about the status of all started DB2
utilities is maintained in the SYSUTILX DB2 Directory structure. As each utility progresses, the step and
its status are recorded. Utility restart is controlled through the information stored in SYSUTILX.
Note that this structure maintains information only for started DB2 utilities. There are two "tables" within
the SYSUTILX tablespace: SYSUTIL and SYSUTILX. Each utility step consumes a separate row, or
record, in SYSUTIL, and in SYSUTILX when the amount of information exceeds the capacity of
SYSUTIL. When the utility finishes normally or is terminated, all information about that utility is purged
from SYSUTIL and SYSUTILX.

 - 467 -

SYSLGRNX
The RBA ranges from the DB2 logs are recorded on SYSLGRNX for tablespace updates. When
recovery is requested, DB2 can efficiently locate the required logs and quickly identify the portion of
those logs needed for recovery.

QMF Administrative Tables
Although technically QMF is not part of DB2, it is an integral part of the DB2 architecture in
most corporations. This book does not delve into the mechanics of QMF, except when you
can gain an insight into a DB2 feature. The QMF Administrative Tables are mentioned in this
chapter for insight into the mechanics of QMF as it relates to DB2 performance.

You can think of the QMF Administrative Tables as a DB2 Catalog for QMF—or the QMF
Catalog, if you will. They administer QMF housekeeping data, house control structures and
data, and maintain QMF object security. DB2 database administrators should remember the
following:

 The QMF Administrative Tables contain control data integral to the operation of
QMF. If QMF is relied on for production work, these tables should be protected
like any other DB2 tables.

 Because QMF Administrative Tables are DB2 tables, you can access and modify
them using SQL. In a pinch, quick changes can be made to QMF objects by DBA
(with the appropriate DB2 security).

 Monitor the space used by the QMF Administrative Tables and, whenever
necessary, expand the primary space allocation and REORG to remove secondary
extents.

 As the number of QMF users grows and the volume of queries, forms, and
procedures created by these users expands, the size of the QMF Administrative
Tables grows. This can degrade the performance of QMF. You should periodically
execute the RUNSTATS utility for all of the QMF Administrative Tables and rebind
the QMF plan (for example, called QMF310 or QMF311 for QMF V3.1) to optimize
the performance of QMF.

See Appendix C, "The QMF Administrative Tables," for a breakdown of the data housed in the
QMF Administrative Tables

Summary
The haze is lifting. Slowly but surely, the confusion surrounding the internal structure of DB2 is being
replaced by understanding. You know how DB2 data is accessed, where DB2 structural data is stored,
and how DB2 runs. But what happens when many people try to access the same data? How does DB2
provide for the concurrent updating of data? To find out, forge ahead to the next chapter.

Chapter 21: Locking DB2 Data

Overview
DB2 automatically guarantees the integrity of data by enforcing several locking strategies.
These strategies permit multiple users from multiple environments to access and modify data
concurrently.

DB2 combines the following strategies to implement an overall locking strategy:
 Table and tablespace locking
 IRLM page and row locking
 Internal page and row latching
 Claims and drains to achieve partition independence
 Checking commit log sequence numbers (CLSN) and PUNC bits to achieve lock

avoidance
 Global locking through the coupling facility in a data sharing environment

What exactly is locking? How does DB2 utilize these strategies to lock pages and guarantee
data integrity? Why does DB2 have to lock data before it can process it? What is the
difference between a lock and a latch? How can DB2 provide data integrity while operating on

 - 468 -

separate partitions concurrently? Finally, how can DB2 avoid locks and still guarantee data
integrity?

These questions are answered in this chapter. In addition, this chapter provides practical
information on lock compatibilities that can aid you in program development and scheduling.

How DB2 Manages Locking
Anyone accustomed to application programming when access to a database is required
understands the potential for concurrency problems. When one application program tries to
read data that is in the process of being changed by another, the DBMS must forbid access
until the modification is complete to ensure data integrity. Most DBMS products, DB2 included,
use a locking mechanism for all data items being changed. Therefore, when one task is
updating data on a page, another task cannot access data (read or update) on that same
page until the data modification is complete and committed.
When multiple users can access and update the same data at the same time, a locking
mechanism is required. This mechanism must be capable of differentiating between stable
data and uncertain data. Stable data has been successfully committed and is not involved in
an update in a current unit of work. Uncertain data is currently involved in an operation that
could modify its contents. Consider the example in Listing 21.1.

Listing 21.1: A Typical Processing Scenario

Program #1 Timeline Program #2

. T1 .

. .

. .

. .

SQL statement T2 .

accessing EMPNO '000010' .

. .

. .

SQL statement T3 .

updating '000010' .

. .

. .

. T4 SQL statement

 accessing EMPNO '000010'

. .

. .

Commit T5 .

. .

 - 469 -

. .

. .

. T6 SQL statement updating '000010'

. .

. .

. .

. T7 Commit

If program #1 updates a piece of data on page 1, you must ensure that program #2 cannot
access the data until program #1 commits the unit of work. Otherwise, a loss of integrity could
result. Without a locking mechanism, the following sequence of events would be possible:

1. Program #1 retrieves a row from DSN8610.EMP for EMPNO '000010'.
2. Program #1 issues an update statement to change that employee's salary to

55000.
3. Program #2 retrieves the DSN8610.EMP row for EMPNO '000010'. Because

the change was not committed, the old value for the salary, 52750, is retrieved.
4. Program #1 commits the change, causing the salary to be 55000.
5. Program #2 changes a value in a different column and commits the change.
6. The value for salary is now back to 52750, negating the change made by

program #1.
A DBMS can avoid this situation by using a locking mechanism. DB2 supports locking at four
levels, or granularities: tablespace-level locking, table-level locking, page-level locking and, as
of DB2 V4, row-level locking. DB2 also provides LOB locking for large objects.
More precisely, DB2 locks are enacted on data as shown in Figure 21.1.

Figure 21.1: The DB2 locking hierarchy.

These two charts are hierarchical. Locks can be taken at any level in the locking hierarchy
without taking a lock at the lower level. However, locks cannot be taken at the lower levels
without a compatible higher-level lock also being taken. For example, you can take a
tablespace lock without taking any other lock, but you cannot take a page lock without first
securing a tablespace-level lock (and a table lock as well if the page is part of a table in a
segmented tablespace containing more than one table).
Additionally, as illustrated in the diagrams in Figure 21.1, a page lock does not have to be
taken before a row lock is taken. Your locking strategy requires an "either/or" type of choice by
tablespace: either row locking or page locking. An in-depth discussion on the merits of both
follows later in this chapter. Both page locks and row locks escalate to a table level and then
to a tablespace level for segmented tables or straight to a tablespace level for simple or
partitioned tablespaces. A table or tablespace cannot have both page locks and row locks
held against it at the same time.

 - 470 -

Many modes of locking are supported by DB2, but they can be divided into two types:
 Locks to enable the reading of data
 Locks to enable the updating of data

This overview is too simplistic; DB2 uses varieties of these two types to indicate the type of
locking required. They are covered in more depth later in this chapter.

Locks Versus Latches
A true lock is handled by DB2 using the IRLM. However, whenever doing so is practical, DB2 tries to
lock pages without going to the IRLM. This type of lock is called a latch.

True locks are always set in the IRLM. Latches, by contrast, are set internally by DB2, without going to
the IRLM.
When a latch is taken instead of a lock, it is handled by internal DB2 code; so the cross-memory service
calls to the IRLM are eliminated. Latches are usually held for a shorter duration than locks. Also, a latch
requires about one-third the number of instructions as a lock. Therefore, latches are more efficient than
locks because they avoid the overhead associated with calling an external address space. Latches are
used when a resource serialization situation is required for a short time. Both latches and locks
guarantee data integrity. In subsequent sections, when I use the term lock generically, I am referring to
both locks and latches.

Lock Duration
Before you learn about the various types of locks that can be acquired by DB2, you should understand
lock duration, which refers to the length of time that a lock is maintained.
The duration of a lock is based on the BIND options chosen for the program requesting locks. Locks can
be acquired either immediately when the plan is requested to be run or iteratively as needed during the
execution of the program. Locks can be released when the plan is terminated or when they are no
longer required for a unit of work.
The BIND parameters affecting DB2 locking are covered in detail in Chapter 11, "Program Preparation."
They are repeated in the following sections as a reminder.

Bind Parameters Affecting Tablespace Locks
ACQUIRE(ALLOCATE) versus ACQUIRE(USE): The ALLOCATE option specifies that locks will be
acquired when the plan is allocated, which normally occurs when the first SQL statement is issued. The
USE option indicates that locks will be acquired only as they are required, SQL statement by SQL
statement.
RELEASE(DEALLOCATE) versus RELEASE(COMMIT): When you specify DEALLOCATE for a plan,
locks are not released until the plan is terminated. When you specify COMMIT, tablespace locks are
released when a COMMIT is issued.
BIND Parameters Affecting Page and Row Locks
ISOLATION level (CS, RR, RS, UR): There are four choices for isolation level.

 ISOLATION(CS), or Cursor Stability, acquires and releases page locks as pages are
read and processed. CS provides the greatest level of concurrency at the expense
of potentially different data being returned by the same cursor if it is processed twice
during the same unit of work.

 ISOLATION(RR), or Repeatable Read, holds page and row locks until a COMMIT
point; no other program can modify the data. If data is accessed twice during the
unit of work, the same exact data will be returned.

 ISOLATION(RS), or Read Stability, holds page and row locks until a COMMIT point,
but other programs can INSERT new data. If data is accessed twice during the unit
of work, new rows may be returned, but old rows will not have changed.

 ISOLATION(UR), or Uncommitted Read, is also known as dirty read processing. UR
avoids locking altogether, so data can be read that never actually exists in the
database.

Regardless of the ISOLATION level chosen, all page locks are released when a COMMIT is
encountered.
Implementing Dirty Reads Using ISOLATION(UR)
Programs that read DB2 data typically access numerous rows during their execution and are thus quite
susceptible to concurrency problems. DB2, as of version 4, provides read-through locks, also known as
"dirty reads" or "uncommitted reads," to help overcome concurrency problems. When using

 - 471 -

uncommitted reads, an application program can read data that has been changed but is not yet
committed.
Dirty read capability is implemented using the UR isolation level (UR stands for uncommitted read).
When an application program uses the UR isolation level, it reads data without taking locks. This way,
the application program can read data contained in the table as it is being manipulated.

How does "dirty read" affect data availability and integrity? Consider the following sequence of events:
1. At 9:00 a.m., a transaction is executed containing the following SQL to change

a specific value:
2. UPDATE DSN8610.EMP
3. SET FIRSTNME = "MICHELLE"

WHERE EMPNO = '010020';

The transaction, which is a long-running one, continues to execute without issuing a
COMMIT.

4. At 9:01 a.m., a second transaction attempts to SELECT the data that was
changed but not committed.

If the UR isolation level were specified for the second transaction, it would read the changed data even
though it had yet to be committed. Obviously, if the program does not wait to take a lock and merely
reads the data in whatever state it happens to be at that moment, the program will execute faster than if
it has to wait for locks to be taken and resources to be freed before processing.
However, you must carefully examine the implications of reading uncommitted data before
implementing such a plan. Several types of problems can occur. A dirty read can cause duplicate rows
to be returned where none exist. Also, a dirty read can cause no rows to be returned when one (or
more) actually exists. Obviously, you must take these problems into consideration before using the UR
isolation level. Guidelines for when and when not to choose UR are given later in this chapter.
ISOLATION(UR) Requirements
The UR isolation level applies to read-only operations: SELECT, SELECT INTO, and FETCH from a
read-only result table. Any application plan or package bound with an isolation level of UR uses
uncommitted read functionality for read-only SQL. Operations that are contained in the same plan or
package that are not read-only use an isolation level of CS.
You can override the isolation level that is defined at the plan or package level during BIND or REBIND
as you want for each SQL statement in the program by using the WITH clause, as shown in the
following SQL:
 SELECT EMPNO, FIRSTNME, LASTNAME
 FROM DSN8610.EMP
 WITH UR;
The WITH clause allows an isolation level to be specified at the statement level in an application
program. However, the restriction that the UR isolation level can be used with read-only SQL
statements only still applies.

Caution If you are running on a pre-V6 DB2 subsystem, be aware that dirty read
processing requires type-2 indexes. The UR isolation level is incompatible with
type-1 indexes. If the plan or package is rebound to change to UR isolation,
DB2 does not consider any access paths that use a type-1 index. If an
acceptable type-2 index cannot be found, DB2 chooses a tablespace scan.

When to Use Dirty Reads
When is using UR isolation appropriate? The general rule of thumb is to avoid UR whenever the results
must be 100% accurate. Examples would be when

 Calculations that must balance are performed on the selected data
 Data is retrieved from one source to insert to or update another
 Production, mission-critical work that cannot contain or cause data-integrity

problems is performed
In general, most current DB2 applications are not candidates for dirty reads. However, in a few specific
situations, the dirty read capability is of major benefit. Consider the following cases in which the UR
isolation level could prove to be useful:

 Access is required to a reference, code, or lookup table that is basically static in
nature. Due to the non-volatile nature of the data, a dirty read would be no
different than a normal read the majority of the time. In the cases in which the
code data is being modified, any application reading the data would incur
minimum, if any, problems.

 - 472 -

 Statistical processing must be performed on a large amount of data. For
example, your company may want to determine the average age of female
employees within a certain pay range. The impact of an uncommitted read on
an average of multiple rows is minimal because a single value changed usually
does not have a great impact on the result.

 Dirty reads can prove invaluable in a data warehousing environment that uses
DB2 as the DBMS. A data warehouse is a time-sensitive, subject-oriented store
of business data that is used for online analytical processing. Refer to Chapter
42, "Data Warehousing with DB2," for more information on DB2 data
warehouses. Other than periodic data propagation and/or replication, access to
the data warehouse is read only. An uncommitted read is perfect in a read-only
environment because it can cause little damage because the data is generally
not changing. More and more data warehouse projects are being implemented
in corporations worldwide, and DB2 with dirty read capability is a wise choice
for data warehouse implementation.

 In the rare cases in which a table, or set of tables, is used by a single user only,
UR can make a lot of sense. If only one individual can modify the data, the
application programs can be coded so that all (or most) reads are done using
UR isolation level, and the data will still be accurate.

 Dirty reads can be useful in pseudo-conversational transactions that use the
save and compare technique. A program using the save and compare
technique saves data for later comparison to ensure that the data was not
changed by other concurrent transactions.

Consider the following sequence of events: transaction 1 changes customer A on page 100.
A page lock will be taken on all rows on page 100. Transaction 2 requests customer C,
which is on page 100. Transaction 2 must wait for transaction 1 to finish. This wait is not
necessary. Even if these transactions are trying to get the same row, the save and compare
technique would catch this.

 Finally, if the data being accessed is already inconsistent, little harm can be
done by using a dirty read to access the information.

Tablespace Locks
A tablespace lock is acquired when a DB2 table or index is accessed. Note that I said
accessed, not updated. The tablespace is locked even when simple read-only access is
occurring.
Refer to Table 21.1 for a listing of the types of tablespace locks that can be acquired during
the execution of an SQL statement. Every tablespace lock implies two types of access: the
access acquired by the lock requester and the access allowed to other subsequent,
concurrent processes.

Table 21.1: Tablespace Locks

Lock

Meaning

Access
Acquired

Access
Allowe
d
to
Others

S SHARE Read
only

Read
only

U UPDATE Read
with
intent to
update

Read
only

X EXCLUSIVE Update No
access

IS INTENT SHARE Read
only

Update

IX INTENT
EXCLUSIVE Update Update

 - 473 -

SIX SHARE/INTENT
EXCLUSIVE Read or

update
Read
only

When an SQL statement is issued and first accesses data, it takes an intent lock on the
tablespace. Later in the process, actual S-, U-, or X-locks are taken. The intent locks (IS, IX,
and SIX) enable programs to wait for the required S-, U-, or X-lock that needs to be taken until
other processes have released competing locks.
The type of tablespace lock used by DB2 during processing is contingent on several factors,
including the tablespace LOCKSIZE specified in the DDL, the bind parameters chosen for the
plan being run, and the type of processing requested. Table 21.2 provides a synopsis of the
initial tablespace locks acquired under certain conditions.

Table 21.2: How Tablespace Locks Are Acquired

Type of
Processing

LOCKSIZE

Isolation
Initial
Lock
Acquired

MODIFY ANY CS IX
MODIFY PAGE/ROW CS IX
MODIFY TABLESPACE CS X
MODIFY ANY RR X
MODIFY PAGE/ROW RR X
MODIFY TABLESPACE RR X
SELECT ANY CS IS
SELECT PAGE/ROW CS IS
SELECT TABLESPACE CS S
SELECT ANY RR S
SELECT PAGE/ROW RR S
SELECT TABLESPACE RR S

A tablespace U-lock indicates intent to update, but an update has not occurred. This is caused
by using a cursor with the FOR UPDATE OF clause. A U-lock is non-exclusive because it can
be taken while tasks have S-locks on the same tablespace. More information on tablespace
lock compatibility follows in Table 21.3.
An additional consideration is that tablespace locks are usually taken in combination with table
and page locks, but they can be used on their own. When you specify the LOCKSIZE
TABLESPACE DDL parameter, tablespace locks alone are used as the locking mechanism for
the data in that tablespace. This way, concurrent access is limited and concurrent update
processing is eliminated.
Similar in function to the LOCKSIZE DDL parameter is the LOCK TABLE statement. The LOCK
TABLE statement requests an immediate lock on the specified table. The LOCK TABLE
statement has two forms—one to request a share lock and one to request an exclusive lock.
LOCK TABLE table_name IN SHARE MODE;
LOCK TABLE table_name IN EXCLUSIVE MODE;
Caution The LOCK TABLE statement locks all tables in a simple tablespace even

though only one table is specified.

A locking scheme is not effective unless multiple processes can secure different types of locks
on the same resource concurrently. With DB2 locking, some types of tablespace locks can be
acquired concurrently by discrete processes. Two locks that can be acquired concurrently on
the same resource are said to be compatible with one another.
Refer to Table 21.3 for a breakdown of DB2 tablespace lock compatibility. A Yes in the matrix
indicates that the two locks are compatible and can be acquired by distinct processes on the
same tablespace concurrently. A No indicates that the two locks are incompatible. In general,
two locks cannot be taken concurrently if they allow concurrent processes to negatively affect
the integrity of data in the tablespace.

Table 21.3: Tablespace Lock Compatibility Matrix
Locks for PGM2 Locks

for
PGM

 - 474 -

1

S U X IS IX SIX

S Yes Yes No Yes No No
U Yes No No Yes No No
X No No No No No No
IS Yes Yes No Yes Yes Yes
IX No No No Yes Yes No
SIX No No No Yes No No

Table Locks
DB2 can use table locks only when segmented tablespaces are involved in the process. Table
locks are always associated with a corresponding tablespace lock.
The same types of locks are used for table locks as are used for tablespace locks. S, U, X, IS,
IX, and SIX table locks can be acquired by DB2 processes when data in segmented
tablespaces is accessed. Table 21.1 describes the options available to DB2 for table locking.
The compatibility chart in Table 21.3 applies to table locks as well as tablespace locks.
For a table lock to be acquired, an IS-lock must first be acquired on the segmented
tablespace in which the table exists. The type of table lock to be taken depends on the
LOCKSIZE specified in the DDL, the bind parameters chosen for the plan being run, and the
type of processing requested. Table 21.4 is a modified version of Table 21.2, showing the
initial types of tablespaces and table locks acquired given a certain set of conditions. Table
locks are never acquired when the LOCKSIZE TABLESPACE parameter is used.

Table 21.4: How Table Locks Are Acquired

Type of
Processing

LOCKSIZE

Isolation
Tablespace
Lock
Acquired

Table
Lock
Acqui
red

MODIFY ANY CS IS IX
MODIFY PAGE CS IS IX
MODIFY TABLE CS IS X
MODIFY ANY RR IS X
MODIFY PAGE RR IS X
MODIFY TABLE RR IS X
SELECT ANY CS IS IS
SELECT PAGE CS IS IS
SELECT TABLE CS IS S
SELECT ANY RR IS S
SELECT PAGE RR IS S
SELECT TABLE RR IS S

Page Locks
The types of page locks that DB2 can take are outlined in Table 21.5. S-locks allow data to be
read concurrently but not modified. With an X-lock, data on a page can be modified (with
INSERT, UPDATE, or DELETE), but concurrent access is not allowed. U-locks enable X-locks
to be queued, whereas S-locks exist on data that must be modified.

Table 21.5: Page Locks

Lock

Meaning

Access

Access
Allowe

 - 475 -

Acquir
ed

d
to
Others

S SHARE Read
only

Read
only

U UPDATE Read
with
intent
to
update

Read
only

X EXCLUSIVE Update No
access

As with tablespace locks, concurrent page locks can be acquired but only with compatible
page locks. The compatibility matrix for page locks is shown in Table 21.6.

Table 21.6: Page Lock Compatibility Matrix

Locks for PGM2 Locks
for
PGM
1
S

U

X

S Yes Yes No
U Yes No No
X No No No

When are these page locks taken? Page locks can be acquired only under the following
conditions:

 The DDL for the object requesting a lock specifies LOCKSIZE PAGE or
LOCKSIZE ANY.

 If LOCKSIZE ANY was specified, the NUMLKTS threshold or the tablespace
LOCKMAX specification must not have been exceeded. You learn more about
these topics later in this section.

 If ISOLATION(RR) was used when the plan was bound, the optimizer might
decide not to use page locking.

If all these factors are met, page locking progresses as outlined in Table 21.7. The type of
processing in the left column causes the indicated page lock to be acquired for the scope of
pages identified in the right column. A page lock is held until it is released as specified by the
ISOLATION level of the plan requesting the particular lock.
Note Page locks can be promoted from one type of lock to another based on the type

of processing that is occurring. A program can FETCH a row using a cursor with
the FOR UPDATE OF clause, causing a U-lock to be acquired on that row's page.
Later, the program can modify that row, causing the U-lock to be promoted to an
X-lock.

Table 21.7: How Page Locks Are Acquired

Type of Processing Page
Lock
Acqui
red

Pages
Affect
ed

SELECT/FETCH S Page
by
page
as
they
are
fetche
d

 - 476 -

OPEN CURSOR for S All
pages
affect
ed
SELE
CT

SELECT/FETCH FOR UPDATE OF U Page
by
page
as
they
are
fetche
d

UPDATE X Page
by
page

INSERT X Page
by
page

DELETE X Page
by
page

Row Locks
The smallest piece of DB2 data that you can lock is the individual row. The types of row locks that DB2
can take are similar to the types of page locks that it can take. Refer to Table 21.8. S-locks allow data to
be read concurrently but not modified. With an X-lock, you can modify data in that row (using INSERT,
UPDATE, or DELETE), but concurrent access is not allowed. U-locks enable X-locks to be queued,
whereas S-locks exist on data that must be modified.

Table 21.8: Row Locks

Lock

Meaning

Access
Acquir
ed

Access
Allowe
d
to
Others

S SHARE Read
only

Read
only

U UPDATE Read
with
intent
to
update

Read
only

X EXCLUSIVE Update No
access

Once again, concurrent row locks can be acquired but only with compatible row locks. Table 21.9 shows
the compatibility matrix for row locks.

Table 21.9: Row Lock Compatibility Matrix

Locks for PGM2 Locks
for
PGM
1
S

U

X

S Yes Yes No

 - 477 -

U Yes No No
X No No No

When are these row locks taken? Row locks can be acquired when the DDL for the object requesting a
lock specifies LOCKSIZE ROW. (Although it is theoretically possible for LOCKSIZE ANY to choose row
locks, in practice I have yet to see this happen as of DB2 V5.) Row locking progresses as outlined in
Table 21.10. The type of processing in the left column causes the indicated row lock to be acquired for
the scope of rows identified in the right column. A row lock is held until it is released as specified by the
ISOLATION level of the plan requesting the particular lock.

Note Row locks can be promoted from one type of lock to another based on the type of
processing that is occurring. A program can FETCH a row using a cursor with the
FOR UPDATE OF clause, causing a U-lock to be acquired on that row. Later, the
program can modify that row, causing the U-lock to be promoted to an X-lock.

Table 21.10: How Row Locks Are Acquired

Type of
Processing

Row Lock
Acquired

Rows Affected

SELECT/FETCH S Row by row as they are fetched
OPEN CURSOR
for SELECT

S All rows affected

SELECT/FETCH
FOR UPDATE
OF

U Row by row as they are fetched

UPDATE X Row by row
INSERT X Row by row
DELETE X Row by row

Page Locks Versus Row Locks
The answer to the question of whether to use page locks or row locks is, of course, "It depends!" The
nature of your specific data and applications determine whether page or row locks are most applicable.

The resources required to acquire, maintain, and release a row lock are just about the same as the
resources required for a page lock. Therefore, the number of rows per page must be factored into the
row-versus-page locking decision. The more rows per page, the more resources will be consumed. For
example, a tablespace with a single table that houses 25 rows per page can consume as much as 25
times more resources for locking if row locks are chosen over page locks. However, contention can be
reduced by locking a row at a time instead of a page at a time. Of course, this estimate is very rough,
and other factors (such as lock avoidance) can reduce the number of locks acquired and thereby reduce
the overhead associated with row locking. However, row locking almost always consumes more
resources than page locking. Likewise, if two applications running concurrently access the same data in
different orders, row locking might actually decrease concurrent data access.

You must therefore ask these questions:
 What is the nature of the applications that access the objects in question? Of course,

the answer to this question differs not only from organization to organization, but
also from application to application within the same organization.

 Which is more important, reducing the resources required to execute an application
or increasing data availability? The answer to this question is, of course, "It
depends!"

As a general rule of thumb, favor specifying LOCKSIZE ANY and let DB2 decide for you. Also, if you're
experiencing contention on a tablespace that is currently using LOCKSIZE PAGE, consider changing to
LOCKSIZE ROW and gauging the impact on performance, resource consumption, and concurrent data
access.

Note A possible alternative to row locking is to specify MAXROWS 1 for the tablespace
and use LOCKSIZE ANY or LOCKSIZE PAGE instead of LOCKSIZE ROW.

Lock Suspensions, Timeouts, and Deadlocks

 - 478 -

The longer a lock is held, the greater the potential impact on other applications. When an
application requests a lock that is already held by another process, and the lock cannot be
shared, that application is suspended. A suspended process temporarily stops running until
the lock can be acquired. Lock suspensions can be a significant barrier to acceptable
performance and application availability.
When an application has been suspended for a predetermined period of time, it will be
terminated. When a process is terminated because it exceeds this period of time, it is said to
time out. In other words, a timeout is caused by the unavailability of a given resource. For
example, consider the following scenario:

Program 1 Program
2

Update Table A/Page 1

Lock established

Intermediate processing Update
Table
A/Page
1

. Lock
(wait)

. Lock
suspensi
on

. Timeout -911
received

If Program 2, holding no other competitive locks, requests a lock currently held by Program 1,
DB2 tries to obtain the lock for a period of time. Then it quits trying. This example illustrates a
timeout.
The length of time a user waits for an unavailable resource before being timed out is
determined by the IRLMRWT DSNZPARM parameter. The period of time also can be set by
using the RESOURCE TIMEOUT field on the DB2 installation panel DSNTIPI.
Note This timeout scenario is also applicable to row locks, not just page locks.

When a lock is requested, a series of operations is performed to ensure that the requested
lock can be acquired. (See Figure 21.2.) Two conditions can cause the lock acquisition
request to fail: a deadlock or a timeout.

 - 479 -

Figure 21.2: Processing a lock request.

A deadlock occurs when two separate processes compete for resources held by one another.
DB2 performs deadlock detection for both locks and latches. For example, consider the
following processing sequence for two concurrently executing application programs:

Program 1 Program 2

Update Table B/Page 1 Update
Table
A/Page 1

Lock established Lock
established

Intermediate processing Intermediate
processing

Update Table A/Page 1 Update
Table
B/Page 1

Lock (wait) Deadlock Lock (wait)
A deadlock occurs when Program 1 requests a lock for a data page held by Program 2 and
Program 2 requests a lock for a data page held by Program 1. A deadlock must be resolved
before either program can perform subsequent processing. DB2's solution is to target one of
the two programs as the victim of the deadlock and deny that program's lock request by
setting the SQLCODE to -911.
The length of time DB2 waits before choosing a victim of a deadlock is determined by the
DEADLOK IRLM parameter. This parameter also can be set by using the RESOURCE TIMEOUT
field on the DB2 installation panel DSNTIPJ.
Note This deadlocking scenario is also applicable to row locks, not just page locks.

Partition Independence
DB2 augments resource serialization using claims and drains in addition to transaction locking. The
claim and drain process enables DB2 to perform concurrent operations on multiple partitions of the
same tablespace.

 - 480 -

Claims and drains provide a new "locking" mechanism to control concurrency for resources between
SQL statements, utilities, and commands. Do not confuse the issue: DB2 continues to use transaction
locking, as well as claims and drains.

As with transaction locks, claims and drains can time out while waiting for a resource.

Claims
DB2 uses a claim to register that a resource is being accessed. The following resources can be
claimed:

 Simple tablespaces
 Segmented tablespaces
 A single data partition of a partitioned tablespace
 A non-partitioned index space
 A single index partition of a partitioned index

Think of claims as usage indicators. A process stakes a claim on a resource, telling DB2, in effect, "Hey,
I'm using this!"
Claims prevent drains from acquiring a resource. A claim is acquired when a resource is first accessed.
This is true regardless of the ACQUIRE parameter specified (USE or ALLOCATE). Claims are released
at commit time, except for cursors declared using the WITH HOLD clause or when the claimer is a
utility.

Multiple agents can claim a single resource. Claims on objects are acquired by the following:
 SQL statements (SELECT, INSERT, UPDATE, DELETE)
 DB2 restart on INDOUBT objects
 Some utilities (for example, COPY SHRLEVEL CHANGE, RUNSTATS SHRLEVEL

CHANGE, and REPORT)
Every claim has a claim class associated with it. The claim class is based on the type of access being
requested, as follows:

 A CS claim is acquired when data is read from a package or plan bound specifying
ISOLATION(CS).

 An RR claim is acquired when data is read from a package or plan bound specifying
ISOLATION(RR).

 A write claim is acquired when data is deleted, inserted, or updated.

Drains
Like claims, drains also are acquired when a resource is first accessed. A drain acquires a resource by
quiescing claims against that resource. Drains can be requested by commands and utilities.

Multiple drainers can access a single resource. However, a process that drains all claim classes cannot
drain an object concurrently with any other process.

To more fully understand the concept of draining, think back to the last time that you went to a movie
theater. Before anyone is permitted into the movie, the prior attendees must first be cleared out. In
essence, this example illustrates the concept of draining. DB2 drains make sure that all other users of a
resource are cleared out before allowing any subsequent access.

The following resources can be drained:
 Simple tablespaces
 Segmented tablespaces
 A single data partition of a partitioned tablespace
 A non-partitioned index space
 A single index partition of a partitioned index

A drain places drain locks on a resource. A drain lock is acquired for each claim class that must be
released. Drain locks prohibit processes from attempting to drain the same object at the same time.
The process of quiescing a claim class and prohibiting new claims from being acquired for the resource
is called draining. Draining allows DB2 utilities and commands to acquire partial or full control of a
specific object with a minimal impact on concurrent access.

Three types of drain locks can be acquired:
 A cursor stability drain lock

 - 481 -

 A repeatable read drain lock
 A write drain lock

A drain requires either partial control of a resource, in which case a write drain lock is taken, or
complete control of a resource, accomplished by placing a CS drain lock, an RR drain lock, and a write
drain lock on an object.
You can think of drains as the mechanism for telling new claimers, "Hey, you can't use this in that way!"
The specific action being prevented by the drain is based on the claim class being drained. Draining
write claims enables concurrent access to the resource, but the resource cannot be modified. Draining
read (CS and/or RR) and write claims prevents any and all concurrent access.

Drain locks are released when the utility or command completes. When the resource has been drained
of all appropriate claim classes, the drainer acquires sole access to the resource.

Claim and Drain Lock Compatibility
As with transaction locks, concurrent claims and drains can be taken, but only if they are compatible
with one another. Table 21.11 shows which drains are compatible with existing claims.

Table 21.11: Claim/Drain Compatibility Matrix

Existing Claim for PGM2 Drain
requi
red
by
PGM
1
Write

CS

RR

Write No No No
RR Yes No No
CS Yes No No

Table 21.12 shows which drains are compatible with existing drains.
Table 21.12: Drain/Drain Compatibility Matrix

Existing Drain for PGM2 Drain
requi
red
by
PGM
1
Write

CS

RR

Write Yes No No
RR No No No
CS No No No

When Is Transaction Locking Used?
You use transaction locks to serialize access to a resource between multiple claimers, such as two SQL
statements or an SQL statement and a utility that takes claims, such as RUNSTATS
SHRLEVEL(CHANGE).

When Are Claims and Drains Used?
Claims and drains serialize access between a claimer and a drainer. For example, an INSERT
statement is a claimer that must be dealt with by the LOAD utility, which is a drainer.

Drain locks are used to control concurrency when both a command and a utility try to access the same
resource.

Lock Avoidance

 - 482 -

Lock avoidance is a mechanism employed by DB2 to access data without locking while maintaining
data integrity. It prohibits access to uncommitted data and serializes access to pages. Lock avoidance
improves performance by reducing the overall volume of lock requests.

In general, DB2 avoids locking data pages if it can determine that the data to be accessed is committed
and that no semantics are violated by not acquiring the lock. DB2 avoids locks by examining the log to
verify the committed state of the data.

When determining if lock avoidance techniques will be practical, DB2 first scans the page to be
accessed to determine whether any rows qualify. If none qualify, a lock is not required.

For each data page to be accessed, the RBA of the last page update (stored in the data page header) is
compared with the log RBA for the oldest active unit of recovery. This RBA is called the Commit Log
Sequence Number, or CLSN. If the CLSN is greater than the last page update RBA, the data on the
page has been committed and the page lock can be avoided.

Additionally, a new bit is stored in the record header for each row on the page. The bit is called the
Possibly UNCommitted, or PUNC, bit. The PUNC bit indicates whether update activity has been
performed on the row. For each qualifying row on the page, the PUNC bit is checked to see whether it is
off. This indicates that the row has not been updated since the last time the bit was turned off.
Therefore, locking can be avoided.

Note IBM provides no method to determine whether the PUNC bit is on or off for each
row. Therefore, you should ensure that any table that can be modified should be
reorganized on a regularly scheduled basis.

If neither CLSN or PUNC bit testing indicates that a lock can be avoided, DB2 acquires the requisite
lock.

In addition to enhancing performance, lock avoidance increases data availability. Data that in previous
releases would have been considered locked, and therefore unavailable, is now considered accessible.

When Lock Avoidance Can Occur
Lock avoidance can be used only for data pages, not for type 1 index pages. (Type 2 indexes are never
locked.) Further, DB2 Catalog and DB2 Directory access do not use lock avoidance techniques.

You can avoid locks under the following circumstances:
 For any pages accessed by read-only or ambiguous queries bound with

ISOLATION(CS) and CURRENTDATA NO
 For any unqualified rows accessed by queries bound with ISOLATION(CS) or

ISOLATION(RS)
 When DB2 system-managed referential integrity checks for dependent rows caused

by either the primary key being updated or the parent row being deleted and the
DELETE RESTRICT rule is in effect

 For both COPY and RUNSTATS when SHRLEVEL(CHANGE) is specified

Data Sharing Global Lock Management
Because data sharing group members can access any object from any member in the group, a global
locking mechanism is required. It is handled by the lock structure defined in the coupling facility. The
lock structure is charged with managing inter-member locking. Without a global lock management
process, data integrity problems could occur when one member attempts to read (or change) data that
is in the process of being changed by another member.

Data sharing groups utilize a global locking mechanism to preserve the integrity of the shared data. The
global locking mechanism allows locks to be recognized between members.

Global Locking
All members of a data sharing group must be aware of locks that are held or requested by the other
members. The DB2 data sharing group utilizes the coupling facility to establish and administer global
locks.

 - 483 -

The IRLM performs locking within each member DB2 subsystem. Additionally, the IRLM communicates
with the coupling facility to establish global locks. Each member of the data sharing group
communicates lock requests to the coupling facility's lock structure. The manner in which a transaction
takes locks during execution does not change. The only difference is that, instead of being local locks,
the locks being taken are global in nature.

DB2 data sharing does not use message passing to perform global locking. The members DB2 IRLMs
use the coupling facility to do global locking. Contention can be identified quickly without having to
suspend the tasks to send messages around to the other DB2 members contained in the data sharing
group. The following list outlines the events that occur when transactions from different DB2 members
try to access the same piece of data:

1. TXN1 requests a lock that is handled by the local IRLM.
2. The local IRLM passes the request to the coupling facility global lock structures to

ensure that no other members have incompatible locks. No incompatible locks are
found, so the lock is taken.

3. TXN2 requests a lock that is handled by its local IRLM. The lock is for the same
data held by TXN1 executing in a different DB2 subsystem.

4. Once again, the local IRLM passes the request to the coupling facility global lock
structures to check for lock compatibility. In this case, an incompatible lock is
found, so the lock request cannot be granted. The task is suspended.

5. Eventually, TXN1 executes a COMMIT, which releases all local and global locks.
6. TXN2 now can successfully execute the lock and continue processing.

Lock Structures
The coupling facility contains several lock structures that are used for global locking purposes. The lock
lists contain names of modified resources. This information is used to notify members of the data
sharing group that the various resources have been changed.
Additionally, a hash table is used to identify compatible and incompatible lock modes. If the same hash
value is used for the same resource name from different systems (with incompatible lock modes), lock
contention will occur. If the same hash value is used for different resource names (called a hashing
collision), false contention will occur. Any contention requires additional asynchronous processing to
occur.

Hierarchical Locking
DB2 data sharing introduces the concept of explicit hierarchical locking to reduce global locking
overhead (which increases global locking performance). Explicit hierarchical locking allows data sharing
to differentiate between global and local locks. When no inter-DB2 interest occurs in a resource, the
local IRLM can grant locks locally on the resources that are lower in the hierarchy. This feature allows
the local DB2 to obtain local locks on pages or rows for that tablespace without notifying the coupling
facility. In a data sharing environment, locks on the top parents are always propagated to the coupling
facility lock structures. (These structures are detailed on the previous page.) In addition, the local DB2
propagates locks on children, depending on the compatibility of the maximum lock held on a tablespace
that also has other members of the DB2 data sharing group requesting locks on it.
P-Locks Versus L-Locks
DB2 data sharing introduces two new lock identifiers: P-locks and L-locks.
P-Locks
P-locks preserve inter-DB2 coherency of buffered pages. P-locks are owned by the member DB2
subsystem and are used for physical resources such as page sets. These physical resources can be
either data objects or index objects. P-locks are held for the length of time the pages are locally cached
in the local bufferpool. As such, data can be cached beyond a transaction commit point.
P-locks are negotiable. If multiple DB2 members hold incompatible P-locks, the IRLMs try to downgrade
lock compatibility. P-locks are never timed out. Because P-locks are not owned by transactions, they
cannot be deadlocked. The sole job of a P-lock is to ensure inter-DB2 coherency. P-locks notify the data
sharing group that a member of that group is performing work on that resource. This way, the coupling
facility can become involved and begin treating the resources globally.
L-Locks
L-locks are used for both intra- and inter-DB2 concurrency between transactions. L-locks can either be
local or global in scope. L-locks are owned by transactions and are held for COMMIT or allocation

 - 484 -

duration. L-locks are not negotiable and, as such, must wait for incompatible L-locks held by other DB2
members to be released before they can be taken. Suspended L-locks can be timed out by the IRLM.

LOBs and Locking
When a row is read or modified in a table containing LOB columns, the application will obtain a normal
transaction lock on the base table. Recall from Chapter 7, "Large Objects and Object/Relational
Databases," that the actual values for LOBs are stored in a separate tablespace from the rest of the
table data. The locks on the base table also control concurrency for the LOB tablespace. But DB2 uses
locking strategies for large objects, too. A lock that is held on a LOB value is referred to as a LOB lock.
LOB locks are deployed to manage the space used by LOBs and to ensure that LOB readers do not
read partially updated LOBs.

Note For applications reading rows using ISOLATION(UR) or lock avoidance, page or
row locks are not taken on the base table. However, DB2 takes S-locks on the
LOB to ensure that a partial or inconsistent LOB is not accessed.

One reason LOB locks are used is to determine whether space from a deleted LOB can be reused by
an inserted or updated LOB. DB2 will not reuse the storage for a deleted LOB until the DELETE has
been committed and there are no more readers on the LOB.
Another purpose for locking LOBs is to prevent deallocating space for a LOB that is currently being
read. All readers, including "dirty readers," acquire S-locks on LOBs to prevent the storage for the LOB
they are reading from being deallocated.

Types of LOB Locks
There are only two types of LOB locks:
S-locks, or SHARE—The lock owner and any concurrent processes can SELECT, DELETE, or
UPDATE the locked LOB. Concurrent processes can acquire an S-lock on the LOB.
X-locks, or EXCLUSIVE—The lock owner can read or change the locked LOB, but concurrent
processes cannot access the LOB.

Just like regular transaction locking, though, DB2 also takes LOB tablespace locks. If the LOB
tablespace has a gross lock, DB2 does not acquire LOB locks. The following lock modes can be taken
for a LOB tablespace:
S-lock, or SHARE—The lock owner and any concurrent processes can read and delete LOBs in the
LOB tablespace. The lock owner does not need to take individual LOB locks.
IS-lock, or INTENT SHARE—The lock owner can UPDATE LOBs to null or zero-length, or SELECT or
DELETE LOBs in the LOB tablespace. Concurrent processes can both read and modify LOBs in the
same tablespace. The lock owner acquires a LOB lock on any data that it reads or deletes.
X-lock, or EXCLUSIVE—The lock owner can read or change LOBs in the LOB tablespace. The lock
owner does not need to take individual LOB locks.
IX-lock, or INTENT EXCLUSIVE—The lock owner and any concurrent process can read and change
data in the LOB tablespace. The lock owner acquires an individual LOB lock for any LOB it accesses.
SIX-lock, or SHARE WITH INTENT EXCLUSIVE—The lock owner can read and change data in the
LOB tablespace. The lock owner obtains a LOB lock when inserting or updating. Concurrent processes
can SELECT or DELETE data in the LOB tablespace (or UPDATE the LOB to a null or zero length).
As with transaction locking, there is a hierarchical relationship between LOB locks and LOB tablespace
locks (see Figure 21.3). If the LOB tablespace is locked with a gross lock, LOB locks are not acquired.

Figure 21.3: The DB2 LOB locking hierarchy.

The type of locking used is controlled using the LOCKSIZE clause for the LOB tablespace. LOCKSIZE
TABLESPACE indicates that no LOB locks are to be acquired by processes that access the LOBs in the
tablespace. Specifying LOCKSIZE LOB indicates that LOB locks and the associated LOB tablespace
lock (IS or IX) are taken. The LOCKSIZE ANY specification allows DB2 to choose the size of the lock,
which is usually to do LOB locking.

 - 485 -

Duration of LOB Locks
The ACQUIRE option of BIND has no impact on LOB tablespace locking. DB2 will take locks on LOB
tablespaces as needed. However, the RELEASE option of BIND does control when LOB tablespace
locks are released. For RELEASE(COMMIT), the LOB tablespace lock is released at COMMIT (unless
WITH HOLD is specified or a LOB locator is held).
LOB locks are taken as needed and are usually released at COMMIT. If that LOB value is assigned to a
LOB locator, the S-lock on the LOB remains until the application commits. If the application uses HOLD
LOCATOR, the locator (and the LOB lock) is not freed until the first commit operation after a FREE
LOCATOR statement is issued, or until the thread is deallocated. If a cursor is defined WITH HOLD,
LOB locks are held through COMMIT operations.

LOB Tablespace Locking Considerations
Under some circumstances, DB2 can avoid acquiring a lock on a LOB tablespace. For example, when
deleting a row where the LOB column is null, DB2 need not lock the LOB tablespace.

DB2 does not access the LOB tablespace in the following instances:
 A SELECT of a LOB that is null or zero-length
 An INSERT of a LOB that is null or zero-length
 When a null or zero-length LOB is modified (UPDATE) to null or zero-length
 A DELETE for a row where the LOB is null or zero-length

DB2 Locking Guidelines
Locking is a complex subject, and it can take much time and effort to understand and master its
intricacies. Do not be frustrated if these concepts escape you after an initial reading of this chapter.
Instead, refer to the following guidelines to assist you in designing your application's locking needs. Let
this information settle for a while and then reread the chapter.

Be Aware of the Effect of Referential Integrity on Locking
When tablespace locks are acquired because of the processing of referential constraints, all locking
specifications, except the ACQUIRE bind parameter, are obeyed. Locks acquired because of referential
integrity always acquire locks when needed, acting as though ACQUIRE(USE) were specified,
regardless of the ACQUIRE parameter.
Establish Acceptable BIND Plan Parameters
This information is covered in more detail in Chapter 11, but it is repeated here because it affects DB2
locking. Favor the use of the following parameters when binding application plans because they usually
produce the most efficient and effective DB2 plan. In particular, the ISOLATION, ACQUIRE, and
RELEASE parameters specified in the following list create an efficient plan in terms of enabling a large
degree of concurrent processing.

Favor the use of the following parameters when binding application plans:
ISOLATION (CS)
VALIDATE (BIND)
ACTION (REPLACE)
NODEFER (PREPARE)
FLAG (I)
ACQUIRE (USE)
RELEASE (COMMIT)
DEGREE (ANY)
CURRENTDATA (NO)
EXPLAIN (YES)
These BIND PLAN parameters usually produce the most efficient and effective DB2 plan.
Establish Acceptable BIND Package Parameters
The ISOLATION parameter is the most important in terms of locking for DB2 packages. The following
list of parameters should be favored when binding packages:
ISOLATION (CS)
VALIDATE (BIND)
ACTION (REPLACE)
SQLERROR (NOPACKAGE)
FLAG (I)
RELEASE (COMMIT)

 - 486 -

DEGREE (ANY)
CURRENTDATA (NO)
EXPLAIN (YES)
Usually, these BIND PACKAGE parameters produce the most efficient and effective DB2 package.
Other guidelines in this chapter cover the occasions when you should choose another option.

Be Aware of Lock Promotion
When binding a plan with an ISOLATION level of RR, the optimizer sometimes decides that tablespace
locks will perform better than page locks. As such, the optimizer promotes the locking level to
tablespace locking, regardless of the LOCKSIZE specified in the DDL. This process is called lock
promotion.

Be Aware of Lock Escalation
When you set the LOCKSIZE bind parameter to ANY, DB2 processing begins with page-level locking.
As processing continues and locks are acquired, however, DB2 might decide that too many page (or
row) locks have been acquired, causing inefficient processing. The lock count includes locks for data
pages, plus type-1 index pages and subpages.
In this scenario, DB2 escalates the level of locking from page (or row) locks to table or tablespace
locks—a procedure called lock escalation. The threshold governing when lock escalation occurs is set
in one of two ways:

 The DSNZPARM start-up parameters for DB2
 The LOCKMAX parameter of the CREATE or ALTER TABLESPACE statement (which

is stored in the MAXROWS column of SYSIBM.SYSTABLESPACE)
Lock escalation applies only to objects defined with LOCKSIZE ANY in the DDL. A table lock can never
be escalated to a tablespace lock. Tablespace locks are the highest level of locking and, therefore,
cannot be escalated.

User Lock Escalation
If a single user accumulates more page locks than are allowed by the DB2 subsystem (as set in
DSNZPARMs), the program is informed via a -904 SQLCODE. The program can either issue a
ROLLBACK and produce a message indicating that the program should be modified to COMMIT more
frequently or, alternately, escalate the locking strategy itself by explicitly issuing a LOCK TABLE
statement within the code.
Prior to implementing the second approach, refer to the upcoming guideline, "Use LOCK TABLE with
Caution," for further clarification on the ramifications of using LOCK TABLE.
Use DSNZPARM Parameters to Control Lock Escalation
The two DSNZPARM parameters used to govern DB2 locking are NUMLKTS and NUMLKUS.
NUMLKTS defines the threshold for the number of page locks that can be concurrently held for any one
tablespace by any single DB2 application (thread). When the threshold is reached, DB2 escalates all
page locks for objects defined as LOCKSIZE ANY according to the following rules:

 All page locks held for data in segmented tablespaces are escalated to table locks.
 All page locks held for data in simple or partitioned tablespaces are escalated to

tablespace locks.
NUMLKUS defines the threshold for the total number of page locks across all tablespaces that can be
concurrently held by a single DB2 application. When any given application attempts to acquire a lock
that would cause the application to surpass the NUMLKUS threshold, the application receives a
resource unavailable message (SQLCODE of -904).
Use LOCKSIZE ANY
In general, letting DB2 handle the level of locking required is best. The recommended LOCKSIZE
specification is therefore ANY, unless a compelling reason can be given to use another LOCKSIZE.
Refer to Chapter 5, "Data Definition Guidelines," for possible reasons.
Use LOCKMAX to Control Lock Escalation by Tablespace
The LOCKMAX parameter specifies the maximum number of page or row locks that any one process
can hold at any one time for the tablespace. When the threshold is reached, the page or row locks are
escalated to a table or tablespace lock. The LOCKMAX parameter is similar to the NUMLKTS
parameter, but for a single tablespace only.

Set IRLM Parameters to Optimize Locking
When the IRLM is installed, you must code a series of parameters that affect the performance of DB2
locking. In particular, you should define the IRLM so that it effectively utilizes memory to avoid locking
performance problems. The IRLM parameters are detailed in Table 21.13.

Table 21.13: Recommended IRLM Parameters

Parameter Recommended Reason

 - 487 -

Value
SCOPE LOCAL The IRLM should be local.
DEADLOK (15,4) Every 15 seconds, the IRLM goes into a

deadlock detection cycle.
PC NO Cross-memory services are not used when

requesting IRLM functions; instead, the
locks are stored in ECSA and therefore are
directly addressable.

ITRACE NO Never turn on the IRLM trace because it
uses a vast amount of resources.

Use LOCK TABLE with Caution
Use the LOCK TABLE statement to control the efficiency of locking in programs that will issue many
page lock requests. The LOCK TABLE statement is coded as a standard SQL statement and can be
embedded in an application program.
There are two types of LOCK TABLE requests. The LOCK TABLE...IN SHARE MODE command
acquires an S-lock on the table specified in the statement. This locking strategy effectively eliminates
the possibility of concurrent modification programs running while the LOCK TABLE is in effect. Note:
The S-lock is obtained on the tablespace for tables contained in non-segmented tablespaces.
The LOCK TABLE...IN EXCLUSIVE MODE command acquires an X-lock on the table specified in the
statement. All concurrent processing is suspended until the X-lock is released. Note: The X-lock is
obtained on the tablespace for tables contained in non-segmented tablespaces.
The table locks acquired as a result of the LOCK TABLE statement are held until the next COMMIT
point unless ACQUIRE(DEALLOCATE) was specified for the plan issuing the LOCK TABLE statement.
In that situation, the lock is held until the program terminates.

Encourage Lock Avoidance

To encourage DB2 to avoid locks, try the following:
 Whenever practical, specify ISOLATION(CS) and CURRENTDATA NO when binding

packages and plans.
 Avoid ambiguous cursors by specifying FOR READ ONLY or FOR FETCH ONLY

when a cursor is not to be used for updating.

Be Aware of Concurrent Access with Partition Independence

Partition independence allows more jobs to be run concurrently. This capability can strain system
resources. You should monitor CPU usage and I/O when taking advantage of partition independence to
submit concurrent jobs that would have needed to be serialized with previous versions.

Use Type 2 Indexes

Using type 2 indexes instead of type 1 indexes decreases contention because locks are not taken on
type 1 indexes. Using type 2 indexes instead of type 1 indexes is almost always best. This is mandatory
for DB2 Version 6 because type 1 indexes are no longer supported.
Use Caution when Specifying WITH HOLD
Using the CURSOR WITH HOLD clause causes locks and claims to be held across commits. This
capability can increase the number of timeouts and affect availability. Before coding the WITH HOLD
clause on a cursor, be sure that the benefit gained by doing so is not negated by reduced availability.

Access Tables in the Same Order

Design all application programs to access tables in the same order. Doing so reduces the likelihood of
deadlocks. Consider the following:

Program 1 Program
2

Lock on DEPT Lock on
EMP

Request Lock on EMP Request
Lock on

 - 488 -

DEPT
In this scenario, a deadlock occurs. However, if both programs accessed DEPT, followed by EMP, the
deadlock situation could be avoided.

Design Application Programs with Locking in Mind

Minimize the effect of locking through proper application program design. Limit the number of rows that
are accessed by coding predicates to filter unwanted rows. Doing so reduces the number of locks on
pages containing rows that are accessed but not required, thereby reducing timeouts and deadlocks.

Also, you should design update programs so that the update is as close to the commit point as possible.
Doing so reduces the time that locks are held during a unit of work, which also reduces timeouts and
deadlocks.

Keep Similar Things Together

Place tables for the same application into the same database. Although minimizing the number of
databases used by an application can ease administration, it can negatively affect availability. For
example, while dynamic SQL is accessing a table in a database, another table cannot be added to that
database. When scheduled downtime is limited due to extreme availability requirements, such as is
common in data warehousing and e-business environments, consider using one database for each
large or active table.

Furthermore, each application process that creates private tables should have a dedicated private
database in which to create the tables. Do not use a database that is in use for other production
database objects.

Caution As with all advice, remember the cardinal rule of DB2: It depends! There are
legitimate reasons for storing similar things separately. For example, as
databases grow in size and activity increases, it might make sense to reduce
the database size by storing fewer tablespaces per database.

Use LOCKPART to Optimize Partition Independence
Enable selective partition locking by specifying LOCKPART YES when you create tablespaces. With
selective partition locking, DB2 will lock only those partitions that are accessed. If you specify
LOCKPART NO, the tablespace is locked with a single lock on the last partition. This has the effect of
locking all partitions in the tablespace.

Caution You cannot specify LOCKPART YES if you also specify LOCKSIZE
TABLESPACE.

Cluster Data

Use clustering to encourage DB2 to maintain data that is accessed together on the same page. If you
use page locking, fewer locks are required to access multiple rows if the rows are clustered on the same
page or pages.

Choose Segmented over Simple Tablespaces for Locking Efficiency

Both simple and segmented tablespaces can contain more than one table. A lock on a simple
tablespace locks all the data in every table because rows from different tables can be intermingled on
the same page. In a segmented tablespace, rows from different tables are contained in different pages.
Locking a page does not lock data from more than one table. Additionally, for segmented tablespaces
only, DB2 can acquire a lock on a single table.

Consider Increasing Free Space

If you increase free space, fewer rows are stored on a single page. Therefore, fewer rows are locked by
a single page lock. This approach can decrease contention. However, it consumes additional DASD,
and it can also decrease the performance of tablespace scans.

Consider Decreasing Number of Rows Per Page
The MAXROWS option of the CREATE TABLESPACE statement is new as of DB2 V5. It can be used
to decrease the number of rows stored on a tablespace page. The fewer rows per page, the less
intrusive page locking will be because fewer rows will be affected by a page lock.

 - 489 -

Control LOB Locking for INSERT with Subselects
Because LOB locks are held until COMMIT, it is possible that a statement, such as an INSERT, with a
subselect involving LOB columns can acquire and hold many more locks than if LOBs are not involved.
To prevent system problems caused by too many locks, consider the following tactics:

 Enable lock escalation by specifying a non-zero LOCKMAX parameter for LOB
tablespaces affected by the INSERT statement.

 Change the LOCKSIZE to LOCKSIZE TABLESPACE for the LOB tablespace prior to
executing the INSERT statement.

 Use the LOCK TABLE statement to lock the LOB tablespace.

Other DB2 Components
You are near the end of your excursion behind the scenes of DB2. Before you finish, however,
you should know about two other DB2 components that operate behind the scenes: the Boot
Strap Data Set (BSDS) and DB2 logging.
The BSDS is a VSAM KSDS data set utilized by DB2 to control and administer the DB2 log
data sets. It is an integral component of DB2, controlling the log data sets and managing an
inventory of those logs. The BSDS is also used to record the image copy backups taken for
the SYSIBM.SYSCOPY DB2 Catalog table. Because SYSIBM.SYSCOPY records all other DB2
image copies, another location must be used to record image copies of the SYSIBM.SYSCOPY
table.
DB2 logs every modification made to every piece of DB2 data. Log records are written for
every INSERT, UPDATE, and DELETE SQL statement that is successfully executed and
committed. DB2 logs each updated row from the first byte updated to the end of the row.
These log records are written to the active logs. DB2 usually has two active log data sets to
safeguard against physical DASD errors. The active logs must reside on DASD. (They cannot
reside on tape.) The active log data sets are managed by DB2 using the BSDS.
Note For tables defined using the DATA CAPTURE CHANGES option, an UPDATE

causes DB2 to log the entire updated row, even if only one column is changed.
As the active logs are filled, DB2 invokes a process called log offloading to move the log
information offline to archive log data sets. Refer to Figure 21.4. This process reduces the
chances of the active logs filling up during DB2 processing, which would stifle the DB2
environment. DB2 can access archive logs to evoke tablespace recovery. The BSDS
manages and administers the archive logs.

Figure 21.4: DB2 log offloading.

The Big Picture
Now that you have seen what is happening in DB2 "behind the scenes," I will tie all this information
together with a single picture. Figure 21.5 contains all the DB2 components that operate together to
achieve an effective and useful relational database management system.

 - 490 -

Figure 21.5: DB2: The big picture.

Summary
In this chapter, you learned how DB2 can guarantee the accuracy of its data by enacting data locks.
Locking is a complex subject with many intricate details that can be difficult to understand. There are
numerous types of locks, accompanied by a vast array of locking terms and strategies to learn. You
should consider reading this chapter several times to master all of the nuances of DB2 locking.

After you are comfortable with DB2 locking, turn the page to begin your journey into the world of DB2
performance monitoring.

Part IV: DB2 Performance Monitoring
Chapter List

Chapter 22: Traditional DB2 Performance Monitoring
Chapter 23: Using EXPLAIN
Chapter 24: DB2 Object Monitoring Using the DB2 Catalog
Part Overview
After you have established a DB2 environment and installed application systems that
access that environment, it is imperative that the environment be monitored regularly to
ensure optimal performance. The job of monitoring DB2 performance usually is
performed by a database administrator, performance analyst, or system administrator.

Many factors contribute to the performance level achieved by DB2 applications. Unless
an orderly and consistent approach to DB2 performance monitoring is implemented, an
effective approach to tuning cannot be achieved and the performance of DB2
applications might fluctuate wildly from execution to execution.
Let's examine the traits of DB2 that make performance monitoring a crucial component of
the DB2 environment. DB2 is an MVS subsystem composed of many intricate pieces.
Each of these pieces is responsible for different performance-critical operations. In
Chapters 10 and 11, you learned that DB2 itself is composed of several distinct address
spaces that communicate with one another. You learned also about the features of the
optimizer. Without a way to measure the relative performance of each of these pieces, it
is impossible to gauge factors affecting the overall performance of DB2 applications,
programs, and SQL statements.

In addition, DB2 applications regularly communicate with other MVS sub-systems, which
also require routine performance monitoring. The capability to monitor MVS batch, CICS,
IMS/TM, and TSO address spaces as well as other DB2 address spaces using

 - 491 -

distributed database capabilities is critical. Many factors influence not only the
performance of DB2, but also the performance of these other MVS subsystems. It is
important, therefore, to implement and follow a regular schedule of monitoring the
performance of all the interacting components of the DB2 environment.
Part IV presents a methodical approach to the evaluation of DB2 performance. This
section discusses the many elements that make up DB2 performance monitoring,
including DB2 traces, IBM's DB2 performance monitor, and other DB2 and allied agent
performance monitors. Remember, though, that this section covers the monitoring of DB2
performance. Methods of pinpointing potential performance problems are examined, but
guidelines for correcting them are not covered until Part V, "DB2 Performance Tuning."
Defining DB2 Performance
You must have a firm definition of DB2 performance before you learn ways to monitor it.
You can think of DB2 performance using the familiar concepts of supply and demand.
Users demand information from DB2. DB2 supplies information to those requesting it.
The rate at which DB2 supplies the demand for information can be termed DB2
performance.

Five factors influence DB2's performance: workload, throughput, resources, optimization,
and contention.

 The workload that is requested of DB2 defines the demand. It is a
combination of online transactions, batch jobs, and system commands
directed through the system at any given time. Workload can fluctuate
drastically from day to day, hour to hour, and even minute to minute.
Sometimes workload can be predicted (such as heavy month-end processing
of payroll, or very light access after 5:30 p.m., when most users have left for
the day), but other times it is unpredictable. The overall workload has a major
impact on DB2 performance.

 Throughput defines the overall capability of the computer to process data. It is
a composite of I/O speed, CPU speed, and the efficiency of the operating
system.

 The hardware and software tools at the disposal of the system are known as
the resources of the system. Examples of system resources include memory
(such as that allocated to bufferpools or address spaces), DASD, cache
controllers, and microcode.

 The fourth defining element of DB2 performance is optimization. All types of
systems can be optimized, but DB2 is unique in that optimization is (for the
most part) accomplished internal to DB2.

 When the demand (workload) for a particular resource is high, contention can
result. Contention is the condition in which two or more components of the
workload are attempting to use a single resource in a conflicting way (for
example, dual updates to the same data page). As contention increases,
throughput decreases.

Note DB2 performance can be defined as the optimization of resource use to increase
throughput and minimize contention, enabling the largest possible workload to be
processed.

How do we measure the performance of DB2? There are many methods, ranging from
waiting for a user to complain to writing a customized performance monitor for your shop.
Neither of these approaches is recommended, however. The first does not provide an
optimal environment for the user, and the second does not provide an optimal
environment for the systems professional. Instead, to monitor all aspects of your DB2
environment, you should use the capabilities of DB2 in conjunction with software tools
provided by IBM and other vendors.
Types of DB2 Performance Monitoring
There are many types of DB2 performance monitoring. It is wise to implement
procedures for all different types of DB2 performance monitoring. If you do not monitor
using all available methods, your environment has an exposure that might cause
performance degradation that cannot be quickly diagnosed and corrected.

DB2 performance monitoring can be broken down into the following seven categories:

 - 492 -

 DB2 traces and reporting
 Sampling DB2 control blocks
 Sampling application address spaces during program execution
 MVS-allied agent monitoring
 Distributed network monitoring
 Access path evaluation
 DB2 Catalog reporting
 Monitoring DB2 console messages

In the ensuing chapters, each of these performance monitoring categories is covered in
depth, complete with strategies for supporting them in your environment.

Chapter 22: Traditional DB2 Performance
Monitoring

Overview
The first part of any DB2 performance monitoring strategy should be to provide a
comprehensive approach to the monitoring of the DB2 subsystems operating at your shop.
This approach involves monitoring not only the threads accessing DB2, but also the DB2
address spaces. You can accomplish this task in three ways:

 Batch reports run against DB2 trace records. While DB2 is running, you can
activate traces that accumulate information, which can be used to monitor both
the performance of the DB2 subsystem and the applications being run.

 Online access to DB2 trace information and DB2 control blocks. This type of
monitoring also can provide information on DB2 and its subordinate applications.

 Sampling DB2 application programs as they run and analyzing which portions of
the code use the most resources.

I will examine these monitoring methods later in this chapter, but first I will outline some
performance monitoring basics. When you're implementing a performance monitoring
methodology, keep these basic caveats in mind:

 Do not overdo monitoring and tracing. DB2 performance monitoring uses a
tremendous amount of resources. Sometimes the associated overhead is
worthwhile because the monitoring (problem determination or exception
notification) can help alleviate or avoid a problem. However, absorbing a large
CPU overhead for monitoring a DB2 subsystem that is already performing within
the desired scope of acceptance is not worthwhile.

 Plan and implement two types of monitoring strategies at your shop: ongoing
performance monitoring to ferret out exceptions and procedures for monitoring
exceptions after they have been observed.

 Do not try to drive a nail with a bulldozer. Use the correct tool for the job, based
on the type of problem you're monitoring. You would be unwise to turn on a trace
that causes 200% CPU overhead to solve a production problem that could be
solved just as easily by other types of monitoring (using EXPLAIN or DB2 Catalog
reports, for example).

 Tuning should not consume your every waking moment. Establish your DB2
performance tuning goals in advance, and stop when they have been achieved.
Too often, tuning goes beyond the point at which reasonable gains can be
realized for the amount of effort exerted. (For example, if your goal is to achieve a
five-second response time for a TSO application, stop when you have achieved
that goal.)

DB2 Traces
The first type of performance monitoring I discuss here is monitoring based on reading trace
information. You can think of a DB2 trace as a window into the performance characteristics of aspects
of the DB2 workload. DB2 traces record diagnostic information describing particular events. As DB2
operates, it writes trace information that can be read and analyzed to obtain performance information.

 - 493 -

DB2 provides six types of traces, and each describes information about the DB2 environment. These six
types of traces are outlined in Table 22.1.

Table 22.1: DB2 Trace Types

Trace Started By Description

Accounting DSNZPARM or -START
TRACE Records performance information

about the execution of DB2
application programs

Audit DSNZPARM or -START
TRACE Provides information about DB2

DDL, security, utilities, and data
modification

Global DSNZPARM or -START
TRACE Provides information for the servicing

of DB2

Monitor DSNZPARM or -START
TRACE Records data useful for online

monitoring of the DB2 subsystem
and DB2 application programs

Performance -START TRACE Collects detailed data about DB2
events, enabling database and
performance analysts to pinpoint the
causes of performance problems

Statistics DSNZPARM or -START
TRACE Records information regarding the

DB2 subsystem's use of resources
Note that you start DB2 traces in two ways: by specifying the appropriate DSNZPARMs at DB2 startup
or by using the -START TRACE command to initiate specific traces when DB2 is already running.
Each trace is broken down further into classes, each of which provides information about aspects of that
trace. Classes are composed of IFCIDs. An IFCID (sometimes pronounced if-kid) is an Instrumentation
Facility Component Identifier. An IFCID defines a record that represents a trace event. IFCIDs are the
single smallest unit of tracing that can be invoked by DB2.

The six DB2 trace types are discussed in the following sections.

Accounting Trace
The accounting trace is probably the single most important trace for judging the performance of DB2
application programs. Using the accounting trace records, DB2 writes data pertaining to the following:

 CPU and elapsed time of the program
 EDM pool use
 Locks and latches requested for the program
 Number of get page requests, by bufferpool, issued by the program
 Number of synchronous writes
 Type of SQL issued by the program
 Number of COMMITs and ABORTs issued by the program
 Program's use of sequential prefetch and other DB2 performance features

Estimated overhead: DB2 accounting class 1 adds approximately 3% CPU overhead. DB2 accounting
classes 1, 2, and 3 together add approximately 5% CPU overhead. You cannot run class 2 or 3 without
also running class 1.

Accounting trace classes 7 and 8 provide performance trace information at the package level. Enabling
this level of tracing can cause significant overhead.

Audit Trace
The audit trace is useful for installations that must meticulously track specific types of DB2 events. Not
every shop needs the audit trace. However, those wanting to audit by authid, specific table accesses,
and other DB2 events will find the audit trace invaluable. Eight categories of audit information are
provided:

 - 494 -

 All instances in which an authorization failure occurs, for example, if USER1 attempts
to SELECT information from a table for which he or she has not been granted the
appropriate authority

 All executions of the DB2 data control language GRANT and REVOKE statements
 Every DDL statement issued for specific tables created by specifying AUDIT

CHANGES or AUDIT ALL
 The first DELETE, INSERT, or UPDATE for an audited table
 The first SELECT for only the tables created specifying AUDIT ALL
 DML statements encountered by DB2 when binding
 All authid changes resulting from execution of the SET CURRENT SQLID statement
 All execution of DB2 utilities

This type of data is often required of critical DB2 applications housing sensitive data, such as payroll or
billing applications.
Estimated overhead: Approximately 5% CPU overhead per transaction is added when all audit trace
classes are started. See the "Tracing Guidelines" section later in this chapter for additional information
on audit trace overhead.

Global Trace
Global trace information is used to service DB2. Global trace records information regarding entries and
exits from internal DB2 modules as well as other information about DB2 internals. It is not accessible
through tools that monitor DB2 performance. Most sites will never need to use the DB2 global trace.
You should avoid it unless an IBM representative requests that your shop initiate it.

Note IBM states that the global trace can add 100% CPU overhead to your DB2
subsystem.

Monitor Trace
An amalgamation of useful performance monitoring information is recorded by the DB2 monitor trace.
Most of the information is also provided by other types of DB2 traces. The primary reason for the
existence of the monitor trace type is to enable you to write application programs that provide online
monitoring of DB2 performance.

Information provided by the monitor trace includes the following:
 DB2 statistics trace information
 DB2 accounting trace information
 Information about current SQL statements

Estimated overhead: The overhead that results from the monitor trace depends on how it is used at your
site. If, as recommended, class 1 is always active, and classes 2 and 3 are started and stopped as
required, the overhead is minimal (approximately 2% to 5%, depending on the activity of the DB2
system and the number of times that the other classes are started and stopped). However, if your
installation makes use of the reserved classes (30 through 32) or additional classes (as some vendors
do), your site will incur additional overhead.

Performance Trace
The DB2 performance trace records an abundance of information about all types of DB2 events. You
should use it only after you have exhausted all other avenues of monitoring and tuning because it
consumes a great deal of system resources.

When a difficult problem persists, the performance trace can provide valuable information, including the
following:

 Text of the SQL statement
 Complete trace of the execution of SQL statements, including details of all events

(cursor creation and manipulation, actual reads and writes, fetches, and so on)
associated with the execution of the SQL statement

 All index accesses
 All data access due to referential constraints

Estimated overhead: When all DB2 performance trace classes are active, as much as 100% CPU
overhead can be incurred by each program being traced. The actual overhead might be greater if the

 - 495 -

system has a large amount of activity. Furthermore, due to the large number of trace records cut by the
DB2 performance trace, system-wide (DB2 and non-DB2) performance might suffer because of possible
SMF or GTF contention. The overhead when using only classes 1, 2, and 3, however, ranges from 20%
to 30% rather than 100%.

Statistics Trace
Information pertaining to the entire DB2 subsystem is recorded in statistics trace records. This
information is particularly useful for measuring the activity and response of DB2 as a whole. Information
on the utilization and status of the bufferpools, DB2 locking, DB2 logging, and DB2 storage is
accumulated.
Estimated overhead: An average of 2% CPU overhead per transaction.

Trace Destinations
When a trace is started, DB2 formats records containing the requested information. After the information
is prepared, it must be externalized. DB2 traces can be written to six destinations:

GTF (Generalized Trace Facility) is a component of MVS and is used for storing large volumes of trace
data.

RES RES is a wraparound table residing in memory.

SMF SMF (System Management Facility) is a source of data collection
used by MVS to accumulate information and measurements. This
destination is the most common for DB2 traces.

SRV SRV is a routine used primarily by IBM support personnel for
servicing DB2.

OPn OPn (where n is a value from 1 to 8) is an output buffer area used by
the Instrumentation Facility Interface (IFI).

OPX OPX is a generic output buffer. When used as a destination, OPX
signals DB2 to assign the next available OPn buffer (OP1 to OP8).

The Instrumentation Facility Interface, which is a DB2 trace interface, enables DB2 programs to read,
write, and create DB2 trace records and issue DB2 commands. Many online DB2 performance monitors
are based on the IFI.
Consult Table 22.2 for a synopsis of the available and recommended destinations for each DB2 trace
type. Y indicates that the specified trace destination is valid for the given type of trace; N indicates that it
is not.

Table 22.2: DB2 Trace Destinations

Type
of
Trace

G
T
F

R
E
S

S
M
F

S
R
V

O
P
n

O
P
X

Recommended
Destination

Statis
tics

Y N De
fau
lt

Y Y Y SMF

Acco
unting

Y N De
fau
lt

Y Y Y SMF

Audit Y N De
fau
lt

Y Y Y SMF

Perfor
manc
e

Y N De
fau
lt

Y Y Y GTF

Monit Y N Y Y Y D OPn

 - 496 -

or

Globa
l

Y D
e
f
a
u
l
t

Y Y Y Y SRV

Tracing Guidelines
Consider abiding by the following guidelines to implement an effective DB2 tracing strategy at your
shop.

Collect Basic Statistics

At a minimum, begin the DB2 accounting classes 1 and 2 and statistics class 1 traces at DB2 start-up
time. This way, you can ensure that basic statistics are accumulated for the DB2 subsystem and every
DB2 plan executed. These traces require little overhead. If you do not start these traces, you cannot use
traces to monitor DB2 performance (the method used by DB2-PM).

Consider starting accounting class 3 at DB2 start-up time as well. It tracks DB2 wait time and is useful
for tracking I/O and tracking problems external to DB2.

Note that accounting classes 2 and 3 cannot be activated unless accounting class 1 is active.

Use Accounting Trace Classes 7 and 8 with Caution

Accounting classes 7 and 8 cause DB2 to write trace records at the package level. Although monitoring
DB2 programs at the package level may seem to be appropriate, do so with caution to avoid undue
performance degradation.

If package level performance monitoring is absolutely essential for certain applications, consider starting
these trace classes for only those plans. This way, you can produce the requisite information with as
little overhead as possible.

Use the Audit Trace Wisely
If your shop has tables created with the AUDIT parameter, start all audit trace classes.
If your shop has no audited tables, use the DSNZPARMs at DB2 startup to start only audit classes 1, 2,
and 7 to audit authorization failures, DCL, and utility execution. Except for these types of processing,
audit classes 1, 2, and 7 add no additional overhead. Because most transactions do not result in
authorization failures or issue GRANTs, REVOKEs, or utilities, running these trace classes is cost
effective.

Let Your Performance Monitor Start Traces
Do not start the monitor trace using DSNZPARMs unless online performance monitors in your shop
explicitly require you to do so. It is best to start only monitor trace class 1 and to use a performance
monitor that starts and stops the other monitor classes as required.
Avoid starting the monitor trace through the use of the -START TRACE command under DB2I. When
this command is entered manually in this manner, a great degree of coordination is required to start and
stop the monitor trace according to the requirements of your online monitor.

Use Caution when Running Performance Traces
Use the performance trace with great care. Performance traces must be explicitly started with the -
START TRACE command. Starting the performance trace only for the plan (or plans) you want to
monitor by using the PLAN() parameter of the -START TRACE command is wise. Here's an example:
-START TRACE(PERFM) CLASS(1,2,3) PLAN(PLANNAME) DEST(GTF)

Failure to start the trace at the plan level can result in the trace being started for all plans, which causes
undue overhead on all DB2 plans that execute while the trace is active.

 - 497 -

Avoid Performance Trace Class 7

Never use performance trace class 7 unless directed by IBM. Lock detail trace records are written when
performance trace class 7 is activated. They can cause as much as a 100% increase in CPU overhead
per program being traced.

Avoid Global Trace

Avoid the global trace unless directed to use it by a member of your IBM support staff. This trace should
be used only for servicing DB2.

Use IFCIDs
Consider avoiding the trace classes altogether, and start traces specifying only the IFCIDs needed. This
way, you can reduce the overhead associated with tracing by recording only the trace events that are
needed. You can do so by using the -START TRACE command, as follows:
-START TRACE(PERFM) CLASS(1) IFCID(1,2,42,43,107,153)

This command starts only IFCIDs 1, 2, 42, 43, 107, and 153.
Because this task can be tedious, if you decide to trace only at the IFCID level, use a performance
monitor that starts these IFCID-level traces based on menu choices. For example, if you choose to trace
the elapsed time of DB2 utility jobs, the monitor or tool would have a menu option for this, initiating the
correct IFCID traces (for example, IFCIDs 023 through 025). For more information on the
Instrumentation Facility Interface and IFCIDs, consult the DB2 Administration Guide.
DB2-PM
IBM's DB2-PM is the most widely used batch performance monitor for DB2. Although DB2-PM also
provides an online component, it is not as widely used (though it has been significantly improved since
its initial release). I discuss the online portion of DB2-PM briefly in the next section. In this section, I
concentrate solely on the batch performance monitoring characteristics of DB2-PM.
DB2-PM permits performance analysts to review formatted trace records to assist in evaluating the
performance of not only the DB2 subsystem, but also DB2 applications. (See Figure 22.1.) As the DB2
subsystem executes, trace records are written to either GTF or SMF. Which trace records are written
depends on which DB2 traces are active. The trace information is then funneled to DB2-PM, which
creates requested reports and graphs.

Figure 22.1: DB2-PM operation.

DB2-PM can generate many categories of performance reports, known as report sets. A brief
description of each report set follows:

Accounting Summarizes the utilization of DB2 resources such as CPU and
elapsed time, SQL use, buffer use, and locking.

Audit Tracks the access of DB2 resources. Provides information on
authorization failures, GRANTs and REVOKEs, access to auditable
tables, SET SQLID executions, and utility execution.

I/O Activity Summarizes DB2 reads and writes to the bufferpool, EDM pool,

 - 498 -

active and archive logs, and the BSDS.

Locking Reports the level of lock suspension and contention in the DB2
subsystem.

Record Trace Displays DB2 trace records from the input source.

SQL Trace Reports on detailed activity associated with each SQL statement.

Statistics Summarizes the statistics for an entire DB2 subsystem. Useful for
obtaining a synopsis of DB2 activity.

Summary Reports on the activity performed by DB2-PM to produce the
requested reports.

System Parameters Creates a report detailing the values assigned by DSNZPARMs.

Transit Time Produces a report detailing the average elapsed time for DB2 units of
work by component.

Many types and styles of reports can be generated within each set. The following sections describe
each DB2-PM report set.

Accounting Report Set
The DB2-PM accounting report set provides information on the performance of DB2 applications. Two
basic layouts are provided for accounting reports: short and long.

The accounting reports provide the following type of information about the performance of DB2
applications:

 The start and stop time for each program
 The number of commits and aborts encountered
 The type of SQL statements used and how often each type was issued
 The number of buffer manager requests
 Use of locks
 Amount of CPU resources consumed
 Asynchronous and synchronous I/O wait time
 Lock and latch wait time
 RID pool processing
 Distributed processing
 Resource limit facility (RLF) statistics

For an example of the type of information provided on a short accounting report, refer to the accounting
report excerpt shown in Listing 22.1. This report provides a host of summarized performance data for
each plan, broken down by DBRM.

Listing 22.1: DB2-PM Accounting Report—Short

Each plan is reported in two rows. Refer to the first row of the report, the one for PRG00000. Two rows
of numbers belong to this plan. The first row corresponds to the first row of the header. For example,
this row shows 19 occurrences of this plan (#OCCUR), 0 rollback requests (#ROLLBK), 8.24 SELECTs,
and 2.39 INSERTs. The second row corresponds to the second row of the report header. For example,
it has no distributed requests, 27 COMMITs, and 2.35 FETCHes.

 - 499 -

The second component of this report details each of the packages and/or DBRMs for the plan. For each
package or DBRM, DB2-PM reports the number of occurrences and SQL statements, along with
elapsed, TCB, and suspension times and total number of suspensions. This information is provided only
if Accounting Trace Classes 7 and 8 are specified.
The report shown was generated by requesting DB2-PM to sort the output by PLANNAME only. The
following sort options are available:

 CONNECT Connection ID
 CONNTYPE Connection type
 CORRNAME Correlation name
 CORRNMBR Correlation number
 ORIGAUTH Original authorization ID
 PLANNAME Plan name
 PRIMAUTH/AUTHID Primary authorization ID/authorization ID
 REQLOC Requesting location

Likewise, you can combine these options together, such as PRIMAUTH-PLANNAME-REQLOC. This
combination would cause a report to be generated containing a row for each unique combination of
primary authorization ID, plan name, and requesting location.

The short accounting report is useful for monitoring the overall performance of your DB2 applications.
Using this report, you can perform the following functions:

 Determine how many times a plan was executed during a specific time frame. The
#OCCURS column specifies this information.

 With the appropriate request, determine how many times a given user executed a
given plan.

 Investigate basic performance statistics, such as elapsed and CPU time, at the
DBRM or package level.

 Spot-check plans for average SQL activity. If you know the basic operations
performed by your plans, you can use the short accounting report to determine
whether the SQL being issued by your plans corresponds to your expectations. For
example, you can determine whether update plans are actually updating. Columns 3
through 6 of this report contain basic SQL information. Remember, however, that
this information is averaged. For example, plan PRG00000 issued 2.39 inserts on
average, but the plan was executed 19 times. Obviously, the same number of
inserts does not occur each time the plan is executed.

 Determine dynamic SQL activity. By checking for PREPARE activity, you can
determine which plans are issuing dynamic SQL.

 Obtain an overall reflection of response time. The Class 1 and Class 2 Elapsed and
TCB Time columns report the overall average elapsed and CPU time for the given
plan. Class 1 is the overall application time; Class 2 is the time spent in DB2. If
these numbers are very large or outside the normal expected response time range,
further investigation might be warranted.

 Review average I/O characteristics. The average number of GETPAGEs
corresponds to requests for data from DB2. SYN.READ corresponds to a non-
sequential prefetch direct read. You can skim these numbers quickly to obtain an
overall idea of the efficiency of reading DB2 data.

 Monitor other information such as lock suspensions (LOCK SUS) and timeouts and
deadlocks (#LOCKOUT), using this report to determine whether contention
problems exist.

At the end of the short accounting report, a synopsis of the plans on the report is presented. The plans
are sorted in order by TCB time spent in DB2 and wait time spent in DB2. This synopsis is useful when
you're analyzing which plan takes the longest time to execute.

If the short accounting report signals that potential problems exist, a long accounting report can be
requested. This report provides much more detail for each entry on the short accounting report. The
long accounting report documents performance information in great depth and is one of the most useful
tools for performance analysis.

The long accounting report is composed of eight distinct sections:

Part 1 CPU and elapsed time information, broken down by class, at the plan
level

Part 2 Overall highlights for the particular plan

 - 500 -

Part 3 In-depth SQL activity for the plan

Part 4 Detailed locking statistics for the plan

Part 5 Program status information for the plan

Part 6 Miscellaneous plan information, including data sharing, query
parallelism information, and data capture processing

Part 7 Database code usage statistics (stored procedures, user-defined
functions, and triggers)

Part 8 In-depth bufferpool (virtual pool and hiperpool) usage statistics

Part 9 DBRM and package detail information

You should use the long accounting report to further analyze the performance of particular plans. The
detail on this report can appear intimidating at first, but reading it is simple after you get used to it.

The first step after producing this report is to scan it quickly for obvious problems. In the following
sections, you will examine each of the individual components of this report in more detail.

Long Accounting Report: CPU and Elapsed Time
The CPU and Elapsed Time portion of the long accounting report contains a breakdown of the amount
of time the plan took to execute. Elapsed time, CPU time, I/O time, and locking time are displayed in
great detail. Refer to Listing 22.2.

Listing 22.2: Accounting Report—Long (Part 1)

When you're analyzing this section, first compare the application times (Class 1) to the DB2 times
(Class 2). If a huge discrepancy exists between these numbers, the problem may be outside the realm
of DB2 (for example, VSAM opens and closes, application loops, or waiting for synchronous I/O). The
graphs at the very top of the report provide a rough estimate of where elapsed time was spent and how
Class 2 time breaks down.
Class 3 information reports wait time. Of particular interest is the amount of time spent waiting for I/O. If
the average SYNCHRON. I/O wait time is high, investigate the application for reasons that would cause
additional reads, such as the following:

 Was the program recently modified to perform more SELECT statements?
 Was the plan recently rebound, causing a different access path to be chosen?
 Was query I/O parallelism recently "turned on" for this plan using

DEGREE(ANY)?
 Was additional data added to the tables accessed by this plan?

If no additional data is being read, investigate other reasons such as insufficient buffers, insufficient
EDM pool storage, or disk contention.

 - 501 -

Turning your attention to locking, if LOCK/LATCH suspension time is higher than expected, review the
lock detail shown in Part 4 of the long accounting report.

The long accounting report also breaks out time spent processing stored procedures, user-defined
functions, and triggers.

Long Accounting Report: Highlights
After you peruse the execution times, a quick analysis of the highlights portion of the report is useful.
The highlights section is located just to the right of the section containing execution times. It contains
some basic details about the nature of the application that will be useful for subsequent performance
analysis. Refer to Listing 22.3.

Listing 22.3: Accounting Report—Long (Part 2)

HIGHLIGHTS

#OCCURENCES : 6

#ALLIEDS : 6

#ALLIEDS DISTRIB: 0

#DBATS : 0

#DBATS DISTRIB : 0

#NO PROGRAM DATA: 6

#NORMAL TERMINAT: 6

#ABNORMAL TERMIN: 0

#CP/X PARALLEL. : 6

#IO PARALLELISM : 0

#INCREMENT. BIND: 0

#COMMITS : 12

#ROLLBACKS : 0

MAX SQL CASE LVL: 0

UPDATE/COMMIT : N/C

SYNCH I/O AVG : 0.005408

You should review the following highlight fields:
 To determine the number of times a plan was executed during the reported time

frame, review the total number of occurrences (#OCCURENCES).
 If the number of commits is not higher than the number of normal terminations,

the program did not perform more than one commit per execution. You might
need to review the program to ensure that a proper commit strategy is in place.
This situation is not necessarily bad, but it warrants further investigation.

 - 502 -

 Analyze the number of normal and abnormal terminations for each plan. Further
investigation may be warranted if a particular plan has an inordinate number of
aborts.

 If the value for #INCREMENT. BIND is not 0, the plan is being automatically
rebound before it is executed. This situation is referred to as an incremental bind.
Either the plan is marked as invalid because an index was removed (or because
of some other DDL change), causing an automatic rebind, or the plan was bound
with VALIDATE(RUN). To optimize performance, avoid these situations when
possible.

 Two fields can be examined to determine if the reported process is using
parallelism. #CP/X PARALLEL shows CPU parallelism and #IO PARALLELISM
shows I/O parallelism.

Long Accounting Report: SQL Activity
An understanding of the type of SQL being issued by the application is essential during performance
analysis. The long accounting report provides a comprehensive summary of the SQL issued, grouped
into DML, DCL, and DDL sections. Refer to Listing 22.4.

Listing 22.4: Accounting Report—Long (Part 3)

Scan the DML section of the report to verify the type of processing that is occurring. You can quickly
uncover a problem if the application is thought to be read-only but INSERT, UPDATE, and/or DELETE
activity is not 0. Likewise, if DESCRIBE, DESC.TBL, or PREPARE is not 0, the application is performing
dynamic SQL statements and should be analyzed accordingly.

Additionally, DDL is not generally permitted in application programs. When you spot unplanned DDL
activity within an application program, you should consider it a problem.
I can say the same about DCL GRANT and REVOKE statements. They are not generally coded in
application programs, either. However, LOCK TABLE, SET, and CONNECT are valid and useful
statements that will show up from time to time. When they do, ensure that they are valid uses, as
follows:

 LOCK TABLE should be used with caution because it takes a lock on the entire
table (or tablespace) instead of page locking. It reduces concurrency but can
improve performance.

 SET CURR.DEGREE is specified for dynamic SQL query I/O parallelism.
 CONNECT indicates distributed activity.

Long Accounting Report: Locking Activity
The locking activity component of the long accounting report is useful for isolating the average and total
number of locks, timeouts, deadlocks, lock escalations, and lock/latch suspensions. Refer to Listing
22.5.

Listing 22.5: Accounting Report—Long (Part 4)

LOCKING AVERAGE TOTAL

--------------- ------- -----

 - 503 -

TIMEOUTS 0.06 1

DEADLOCKS 0.00 0

ESCAL.(SHARED) 0.00 0

ESCAL.(EXCLUS) 0.00 0

MAX LOCKS HELD 0.41 3

LOCK REQUEST 8.00 136

UNLOCK REQUEST 1.00 17

QUERY REQUEST 0.00 0

CHANGE REQUEST 0.00 0

OTHER REQUEST 0.00 0

LOCK SUSPENS. 0.00 0

LATCH SUSPENS. 0.06 1

OTHER SUSPENS. 0.00 0

TOTAL SUSPENS. 0.06 1

DRAIN/CLAIM AVERAGE TOTAL

--------------- ------- -----

DRAIN REQUESTS 0.00 0

DRAIN FAILED 0.00 0

CLAIM REQUESTS 3.00 51

CLAIM FAILED 0.00 0

Additionally, average and total claims and drains are detailed in this section.

Consider the following general rules of thumb for locking analysis:
 If the value for MAX LOCKS HELD is very high, it may be beneficial to consider

issuing LOCK TABLE.
 If the value for TIMEOUTS is very high, consider either reevaluating the type of

access being performed by the application or changing the DSNZPARM value for
the length of time to wait for a resource timeout. Factors that could increase the
number of timeouts include different programs accessing the same tables in a
different order, inappropriate locking strategies (RR versus CS), and heavy
concurrent ad hoc access.

 If ESCAL.(SHARED) and ESCAL.(EXCLUS) are not 0, lock escalation is
occurring. The plan therefore causes page locks to escalate to tablespace locks
(for those tablespaces defined as LOCKSIZE ANY). This situation could cause
lock contention for other plans requiring these tablespaces.

 If the value for TOTAL SUSPENS. is high (over 10,000), there is probably a great
deal of contention for the data that your plan requires. This situation usually

 - 504 -

indicates that index subpages should be increased or page locking specified
instead of ANY.

Long Accounting Report: Program Status
If a large number of abnormal terminations were reported in the long accounting report highlights
section, analysis of the program status section may be appropriate. Refer to Listing 22.6.

Listing 22.6: Accounting Report—Long (Part 5)

Long Accounting Report: Miscellaneous Information
The miscellaneous information reported in this section of the long accounting report can be crucial in
performance analysis. Refer to Listing 22.7. Six independent components are reported in this section:

 Data capture
 Data Sharing
 Query parallelism
 Stored procedures
 User-defined functions
 Triggers

Listing 22.7: Accounting Report—Long (Part 6)

Careful analysis of the query parallelism section is appropriate whenever you're analyzing performance
statistics for a plan or package bound with DEGREE(ANY):

 When RAN REDUCED is not zero (0), insufficient resources were available to
execute the application with the optimal number of read engines. You might need
to evaluate the overall mix of applications in the system at the same time.
Reducing concurrent activity may release resources that the program can use to
run with the planned number of parallel read engines.

 When any of the SEQUENTIAL categories is not zero (0), DB2 reverted to a
sequential plan. Therefore, I/O parallelism was "turned off." You might need to
analyze the program and the environment to determine why query I/O parallelism
was disabled.

Long Accounting Report: Database Code Usage Information
The database code usage section provides detailed statistics on the usage of stored procedures, UDFs,
and triggers. This section can be particularly helpful to track down performance problems caused by
triggers, UDFs, and stored procedures. Refer to Listing 22.8.

Listing 22.8: Accounting Report—Long (Part 7)

 - 505 -

Long Accounting Report: Bufferpool Information
The bufferpool information is probably the most important portion of the long accounting report. A poorly
tuned bufferpool environment can greatly affect the performance of a DB2 subsystem. Analysis of this
section of the report (refer to Listing 22.9) provides a performance analyst with a better understanding of
how the program utilizes available buffers.

Listing 22.9: Accounting Report—Long (Part 8)

The first step is to get a feeling for the overall type of I/O requested for this plan. You should answer the
following questions:

 How many bufferpools were accessed? Were more (or fewer) bufferpools used
than expected?

 Were any 32KB bufferpools accessed? Should they have been? Use of 32KB
bufferpools can greatly affect the performance by increasing I/O costs.

 Did the program read pages from an associated hiperpool?
 Was sequential prefetch used? Based on your knowledge of the program, should

it have been? Was dynamic prefetch enabled?
 Was list prefetch invoked? If so, be sure to analyze the RID List Processing in the

Miscellaneous Information section of this report (discussed in the preceding
section).

 How many pages were requested (GETPAGES)? The number of GETPAGES is a
good indicator of the amount of work being done by the program.

 Were any synchronous writes performed? A synchronous write is sometimes
called a non-deferred write. Synchronous writes occur immediately on request.
Most DB2 writes are deferred, which means that they are made in the bufferpool
and recorded in the log but not physically externalized to DASD until later.
Synchronous writes usually indicate that the bufferpool is over-utilized.

All the aforementioned information is broken down by bufferpool.
The next task when analyzing this report is to review the bufferpool hit ratio. It is reported in the BPOOL
HIT RATIO (%) field for each bufferpool accessed. The bufferpool hit ratio is calculated as follows:
BPOOL HIT RATIO = ((GETPAGES – PAGES READ FROM DASD) / GETPAGES) * 100
PAGES READ FROM DASD is the sum of synchronous reads, and the number of pages read using
prefetch (sequential prefetch, list prefetch, and dynamic prefetch). The bufferpool hit ratio gives you an
idea of how well the SQL in this plan has used the available bufferpools.

 - 506 -

In general, the higher the bufferpool hit ratio, the better. The highest possible value for the hit ratio
percentage is 100. When every page requested is always in the bufferpool, the hit ratio percentage is
100. The lowest bufferpool hit ratio happens when all of the requested pages are not in the bufferpool.
The bufferpool hit ratio will be 0 or less when that happens. A negative hit ratio means that prefetch
read pages into the bufferpool that were not referenced.

A low bufferpool hit ratio is not necessarily bad. The bufferpool hit ratio can vary greatly from program to
program. A program that accesses a large amount of data using tablespace scans could have a very
low hit ratio. But that does not mean the application is performing poorly. You should compare the
bufferpool hit ratio for different executions of the same program. If the percentage lowers significantly
over time, there may be a problem that needs correcting.

General guidelines for acceptable bufferpool hit ratios follow:
 For online transactions with significant random access, the bufferpool hit ratio can

be low while still providing good I/O utilization.
 For transactions that open cursors and fetch numerous rows, the bufferpool hit

ratio should be higher. However, it is not abnormal for online transactions to have
a low hit ratio.

 For batch programs, shoot for a high bufferpool hit ratio. The actual bufferpool hit
ratio each program can achieve is highly dependent on the functionality required
for that program. Programs with a large amount of sequential access should have
a much higher read efficiency than those processing randomly.

 When programs have very few SQL statements, or SQL statements returning a
single row, the bufferpool hit ratio is generally low. Because few SQL statements
are issued, the potential for using buffered input is reduced.

The bufferpool hit ratio also can be calculated by bufferpool for all processes. This hit ratio can be
compared to the hit ratio for the plan in question to determine its effectiveness versus other processes.
Remember, though, when the bufferpool hit ratio is calculated using the information from an accounting
report, it is for a single plan only. You can ascertain the overall effectiveness of each bufferpool by
calculating hit ratio based on information from a DB2-PM statistics report or from the -DISPLAY
BUFFERPOOL command.

Long Accounting Report: Package/DBRM Information
The final component of the long accounting report is detailed information for each package and DBRM
in the plan. Refer to Listing 22.10. To obtain this information, you must start the appropriate accounting
traces (Class 7 and Class 8).

Listing 22.10: Accounting Report—Long (Part 8)

This level of detail might be necessary for plans composed of multiple DBRMs and/or packages. For
example, if a locking problem is identified, determining which DBRM (or package) is experiencing the
problem may be difficult if you don't have the appropriate level of detail.

Long Accounting Report: Other Information
There are other portions of the long accounting report that can prove useful. For example, information
on RID list processing is provided before the bufferpool section. Refer to Listing 22.11.

Listing 22.11: Accounting Report—Long (Other)

 - 507 -

RID LIST AVERAGE

--------------- --------

USED 0.00

FAIL-NO STORAGE 0.00

FAIL-LIMIT EXC. 0.00

If any access path in the application program requires either list prefetch or a hybrid join, analysis of the
RID LIST performance statistics is essential. Of particular importance is the FAIL-NO STORAGE value.
Whenever this value is not zero (0), you should take immediate action either to increase the size of the
RID pool or to tweak the access path to eliminate RID list processing.
Other useful information you can obtain from the long accounting report includes ROWID access,
logging details, and reoptimization statistics.

Accounting Trace Reports
The accounting report set also contains two additional reports: the Short and Long Accounting Trace
reports. These reports produce similar information, but for a single execution of a plan. By contrast, the
short and long accounting reports provide performance information averaged for all executions of a plan
by a given user.

Audit Report Set
The DB2-PM audit report set shows DB2 auditing information. Although this data is generally not
performance oriented, you can use it to monitor usage characteristics of a DB2 subsystem. The Audit
Summary report, shown in Listing 22.12, is a synopsis of the eight audit trace categories (as outlined
previously in this chapter).

Listing 22.12: DB2-PM Audit Summary Report

If you require further audit detail, DB2-PM also provides an Audit Detail report and an Audit Trace
report. The Audit Detail report breaks each category into a separate report, showing the resource
accessed, the date and the time of the access, and other pertinent information. The Audit Trace report
displays each audit trace record in timestamp order.

The Explain Report Set
The explain report set describes the DB2 access path of selected SQL statements. DB2 uses the
EXPLAIN command and information from the DB2 Catalog to produce a description of the access path
chosen. Combining information from the PLAN_TABLE and the DB2 Catalog is the primary purpose of

 - 508 -

the DB2-PM explain report set. To execute reports in the explain report set, you must have access to
DB2. This requirement differs from most of the other DB2-PM reports.

I/O Activity Report Set
The I/O activity report set is somewhat misnamed. It does not report on the I/O activity of DB2
applications. Instead, it is relegated to reporting on the I/O activity of DB2 bufferpools, the EDM pool,
and the log manager. An example of the information provided on the I/O Activity Summary report is
shown in Listing 22.13.

Listing 22.13: DB2-PM I/O Activity Summary Report

 AET

BUFFER POOL TOTALS SSSS.THT

---------------------------- -------- ---------

TOTAL I/O REQUESTS 262 0.014

TOTAL READ I/O REQUESTS 247 0.012

NON-PREFETCH READS 171

PREFETCH REQUESTS

UNSUCCESSFUL 1

SUCCESSFUL 75

PAGES READ N/C

PAGES READ / SUCC READ N/C

TOTAL WRITE REQUESTS 68 0.164

SYNCH WRITES 1 0.021

PAGES WRITTEN PER WRITE 1.0

ASYNCH WRITES 67 0.164

PAGES WRITTEN PER WRITE 2.3

 CT/PT/DBD LOADS AET AVG LEN

EDM POOL REFERENCES FROM DASD SSSS.THT (BYTES)

--------------------------- ---------- -------- -------- --------

CURSOR TABLE - HEADER 1 1 0.000 2049.0

CURSOR TABLE - DIRECTORY 0 0 N/C 0.0

CURSOR TABLE - RDS SECTION 4 4 0.000 634.0

-- TOTAL PLANS -- 5 5 0.000 5474.0

-- TOTAL PLANS -- 5 5 0.000 5474.0

PACKAGE TABLE - HEADER 2 2 0.003 1208.0

 - 509 -

PACKAGE TABLE - DIRECTORY 2 2 0.001 156.0

PACKAGE TABLE - RDS SECTION 6 6 0.001 747.7

-- TOTAL PACKAGES -- 10 10 0.002 719.6

-- TOTAL PACKAGES -- 10 10 0.002 719.6

DATABASE DESCRIPTORS 1 1 0.000 4012.0

DATABASE DESCRIPTORS 1 1 0.000 4012.0

 AET

ACTIVE LOG TOTALS SSSS.THT

---------------------------- -------- --------

TOTAL WAITS 22 0.015

READ REQUESTS 0 N/C

WRITE REQUESTS 22 0.015

CONT. CI / WRITE 1.6

OTHER WAITS 0 N/C

ALLOCATE 0 N/C

DEALLOCATE 0 N/C

ARCHIVE UNAVAILABLE 0 N/C

BUFFERS UNAVAILABLE 0 N/C

DATASET UNAVAILABLE 0 N/C

OPEN 0 N/C

CLOSE 0 N/C

 AET

ARCHIVE LOG/BSDS TOTALS SSSS.THT

------------------ -------- --------

ARCHIVE WAITS 0 N/C

ARCHIVE READ REQ 0 N/C

DASD READ 0

TAPE READ 0

ARCHIVE WRITE REQ 0 N/C

BLOCK / WRITE N/C

BSDS READ REQ 2 0.089

 - 510 -

BSDS WRITE REQ 2 0.044

As with the other report sets, the I/O activity report set provides detail reports that show in greater detail
the I/O activity for each of these resources.

Locking Report Set
The locking report set provides reports that disclose lock contention and suspensions in the DB2
subsystem. These reports can be helpful when you're analyzing locking-related problems.
For example, if a long accounting report indicated a high number of timeouts or deadlocks, a Lock
Contention Summary report, such as the one shown in Listing 22.14, could be produced. This report
provides information on who was involved in the contention and what resource was unavailable
because of the lock.

Listing 22.14: DB2-PM Lock Contention Summary Report

You can use the Lock Suspension summary, shown in Listing 22.15, when an accounting report
indicates a high number of lock suspensions. This report details the cause of each suspension and
whether it was subsequently resumed or resulted in a timeout or deadlock.

Listing 22.15: DB2-PM Lock Suspension Summary Report

The locking report set provides detail reports that show in further detail the lock contentions and
suspensions, ordered by the time each lock event occurred.

Record Trace Report Set
The record trace report set provides not reports per se, but a dump of the trace records fed to it as
input. The record trace reports are not molded into a report format, as are the other DB2-PM reports.
They simply display DB2 trace records in a readable format.

The three record trace reports are the Record Trace Summary report, the Sort Record Trace report, and
the Long Record Trace report. The Record Trace Summary report lists an overview of the DB2 trace
records, without all the supporting detail. The Sort Record Trace report provides a listing of most of the
DB2 trace records you need to see, along with supporting detail. Several serviceability trace records are
not displayed. The Long Record Trace report lists all DB2 trace records.

The record trace reports are useful for determining what type of trace data is available for an input
source data set. If another DB2-PM execution (to produce, for example, an accounting detail report) is
unsuccessful or does not produce the data you want, you can run a record trace to ensure that the input
data set contains the needed trace records to produce the requested report.

 - 511 -

Note that the record trace reports might produce a large amount of output. You can specify which types
of DB2 trace records should be displayed. If you're looking for a particular type of trace record, be sure
to reduce your output by specifying the data for which you're looking.

SQL Trace Report Set
To monitor the performance of data manipulation language statements, you can use the SQL trace
report set. These reports are necessary only when a program has encountered a performance problem.
The SQL trace breaks down each SQL statement into the events that must occur to satisfy the request.
This information includes preparation, aborts, commits, the beginning and ending of each type of SQL
statement, cursor opens and closes, accesses due to referential integrity, I/O events, thread creation
and termination, and all types of indexed accesses.

You will find four types of SQL trace reports. The SQL Trace Summary report provides a synopsis of
each type of SQL statement and the performance characteristics of that statement.

The second type of SQL trace report is the SQL Short Trace report. It lists the performance
characteristics of each SQL statement, including the beginning and end of each statement and the work
accomplished in between. It does not provide I/O activity, locking, and sorting information.

The SQL Long Trace report provides the same information as the SQL Short Trace report but includes
I/O activity, locking, and sorting information.

Finally, the SQL DML report extends the SQL Trace Summary report, providing data for each SQL
statement, not just for each SQL statement type.

The SQL Short and Long Trace reports can be extremely long reports that are cumbersome to read.
Therefore, producing these reports only when a performance problem must be corrected is usually wise.
In addition, the SQL trace reports require the DB2 performance trace to be active. This trace carries a
large amount of overhead. Before you request this report, you would be wise to "eyeball" the offending
program for glaring errors (such as looping or Cartesian products) and to tinker with the SQL to see
whether you can improve performance.

Also, after you produce these reports, you should have more than one experienced analyst read them. I
have seen SQL trace reports that were six feet long. Be prepared for a lot of work to ferret out the
needed information from these reports.

Statistics Report Set
The second most popular DB2-PM report set (next to the accounting report set) is the statistics report
set. Statistics reports provide performance information about the DB2 subsystem. The data on these
reports can help you detect areas of concern when you're monitoring DB2 performance. Usually, these
reports point you in the direction of a problem; additional DB2-PM reports are required to fully analyze
the complete scope of the performance problem.
Listing 22.16, an example of the DB2-PM Statistics Short report, shows a summary of all DB2 activity
for the DB2 subsystem during the specified time.

Listing 22.16: DB2-PM Statistics Short Report

 - 512 -

You can use this report to monitor a DB2 subsystem at a glance. Pertinent system-wide statistics are
provided for bufferpool management, log management, locking, and EDM pool utilization.
The Statistics Short report is useful for monitoring the DB2 bufferpools, specifically regarding I/O activity
and bufferpool utilization. One statistic of interest is the DATA SET OPENS number, which indicates the
number of times a VSAM open was requested for a DB2 tablespace or index. In the example, the
number for BP0 is 10; for BP2, it is 8. A large number of data set opens could indicate that an object
was defined with CLOSE YES. This may not be a problem, however, because the number is relatively
low (in this example), and objects are also opened when they are first requested.

You should analyze the other bufferpool report items to get an idea of the overall efficiency of the
bufferpool. For example, you can calculate the overall efficiency of the bufferpool using this calculation:
GETPAGE REQUESTS / ((PREFETCH READ I/O OPERATIONS) + (TOTAL READ I/O
OPERATIONS))
In the example, the bufferpool read efficiency for BP0 is
2302 / [12 + 10] = 104.63

 - 513 -

This number is good. It is typically smaller for transaction-oriented environments and larger for batch-
oriented environments. Also, this number is larger if you have large bufferpools. Other factors affecting
read efficiency are the length of the sample, the amount of time since the last recycle of DB2, and the
mix of concurrent applications.
In addition, the following bufferpool report numbers should be zero (0):

Bufferpool Expansions

Synchronous Writes

HDW Threshold

VDW Threshold

DM Threshold

Work File Not Created—No Buffer
If these numbers are not zero, the bufferpools have not been specified adequately. Refer to Chapter 26,
"Tuning DB2's Components," for advice on setting up your bufferpools.

Information on group bufferpools for data sharing environments follows the local bufferpool information.
The Statistics reports also can assist you in monitoring log management. You can determine the types
of processing during this time frame from viewing the Log Activity section. If Reads Satisfied from Active
Log or Reads Satisfied from Archive Log is greater than zero, a recover utility was run during this time
frame. You can glean additional recovery information from the Subsystem Service portion of the report.
Also, ensure that the Unavailable Output Log Buffers is zero. If it is not, you should specify additional
log buffers in your DSNZPARM start-up parameters.

Another aspect of DB2 system-wide performance that the DB2 Statistics report helps to monitor is
locking. This report is particularly useful for monitoring the number of suspensions, deadlocks, and
timeouts in proportion to the total number of locks requested. Use the following calculation:
LOCK REQUESTS / (SUSPENSIONS-LOCK + SUSPENSIONS-OTHER + DEADLOCKS +
TIMEOUTS)

This calculation provides you with a ratio of troublesome locks to successful locks, as shown here:
351 / (2 + 0 + 0 + 0) = 175.5
The larger this number, the less lock contention your system is experiencing. Data sharing lock requests
(P-locks) are also displayed on the DB2 Statistics report.

EDM pool utilization is the final system-wide performance indicator that you can monitor using the DB2
Statistics Short report. To calculate the efficiency of the EDM pool, use the following formula:
((REQ FOR CT SECTIONS) + (REQUESTS FOR DBD)) / ((LOAD CT SECT FROM DASD) + (LOAD
DBD FROM DASD))

Using the example, here's the calculation:
(151 + 432) / (70 + 0) = 8.32

Therefore, on average, 8.32 cursor tables and DBDs were requested before DB2 had to read one from
DASD. This number should be as high as possible to avoid delays due to reading objects from the DB2
Directory.

In addition to the Statistics Summary report, a Statistics Detail report provides multiple pages of detail
supporting the summary information. Also, the Short and Long Statistics Trace reports are useful for
analyzing DB2 resource use in-depth.

Summary Report Set
The summary report set is used to provide a summarization of DB2-PM events. Three summary reports
are provided every time DB2-PM is run.

 - 514 -

The Job Summary Log details the traces that were started and stopped during the time frame that was
reported. Additionally, a summary of the requested DB2-PM reports is provided. The Message Log
contains any DB2-PM error messages. Finally, the Trace Record Distribution report provides a synopsis
of the types of DB2 trace records and the number of times they were encountered in this job.

These reports are not useful for evaluating DB2 performance. They are used solely to support DB2-PM
processing.

System Parameters Report Set
The DB2-PM System Parameters report provides a formatted listing of the DSNZPARM parameters
specified when DB2 was started. This two-page report shows information such as the following:

 Install SYSADM IDs and Install SYSOPR IDs
 EDM Pool Size
 Bufferpool Sizes and Information
 IRLM Information (IRLM Name, IRLMRWT, Auto Start)
 User Information (CTHREAD, IDFORE, IDBACK)
 Automatic Trace Start Information
 Lock Escalation
 Log Information (Number of Archive Logs, Archive Copy Prefixes, Checkpoint

Frequency)
 Data Definition Control Support
 Distributed Database Information (DDF)
 Stored Procedure Information (SPAS)
 DFHSM Usage
 Other System Parameters

The System Parameters report can be produced automatically in conjunction with any other DB2-PM
reports. It is produced only if a -START TRACE command was issued during the time frame for the
requested report. This report is useful for determining the parameters in use for the DB2 subsystem.

Transit Time Report Set
The final report set is the transit time report set. A transit report differs from other types of reports in that
it provides performance information for all events that occur between a create thread and a terminate
thread. A transit can be several plan executions due to thread reuse.
The Transit Time Summary report, shown in Listing 22.17, breaks down transit information into its
components. For example, the transit for the DSNUTIL plan is broken down into the time for each
separate phase of the REORG.

Listing 22.17: DB2-PM Transit Time Summary Report

Different levels of detail are provided by the three other types of transit time reports: Transit Time Detail
report, Short Transit Time Trace report, and Long Transit Time Trace report.

Transit time reports are useful for determining the performance of DB2 utility phases and SQL activity.
Like the SQL trace reports, they may contain a large amount of information and should be used only
when specific performance problems are encountered.

Using DB2-PM
Before you can run DB2-PM, you must have trace records produced by DB2 to feed into DB2-
PM. Each DB2-PM report set requires certain traces to be started. For a synopsis of which

 - 515 -

traces to start for which information, refer to Table 22.3. Note that DB2-PM will not fail if you
request a report for which no information or insufficient information is available. The report that
DB2-PM generates, however, will be empty or incomplete.

Table 22.3: Traces to Initiate for Each DB2-PM Report Type

Report Type Recommended Traces Information Provided

Accounting Accounting Class 1
(General)
Accounting Class 2
Accounting Class 3

General accounting information

In DB2 times
Suspension times, out of DB2 times,
system events

Accounting
Long

Accounting Class 1
Accounting Class 2
Accounting Class 3

Accounting Class 4
Accounting Class 5
Accounting Class 7

Accounting Class 8

General accounting information
In DB2 times
Suspension times, out of DB2 times,
system events
Installation-defined
Time spent processing IFI requests
Entry or exit from DB2 event signaling
for package and DBRM accounting
Package wait time

Audit Audit Class 1
Audit Class 2
Audit Class 3
Audit Class 4
Audit Class 5
Audit Class 6
Audit Class 7
Audit Class 8
Audit Class 9

Authorization failures
DCL
DDL
DML: First SELECT of audited table
DML: First UPDATE for audited tables
Bind
SET CURRENT SQLID
Utility executions
User-defined

I/O Activity Performance Class 4
Performance Class 5

Bufferpool and EDM pool statistics
Logging and BSDS statistics

Locking Performance Class 6 Lock suspensions, lock resumes, and
lock contention information

Record Trace No traces specifically
required

Formatted dump of all DB2 trace
records in the given input data set

SQL Trace Accounting Class 1
Accounting Class 2
Performance Class 2
Performance Class 3

Performance Class 4
Performance Class 6

Performance Class 8
Performance Class 13

General accounting information
In DB2 times
Aborts, commits, and thread-related
data
Sort, AMS, plan, cursor, static SQL,
and dynamic SQL statistics
Physical reads and writes
Lock suspensions, lock resumes, and
lock contention information
Index access and sequential scan data
EDITPROC and VALIDPROC access

Statistics Statistics Class 1
Statistics Class 2
Statistics Class 3
Statistics Class 4

System and database services
statistics
Installation-defined
Deadlock information
DB2 exception condition

Summary No traces specifically
required

Basic summary of the steps taken by
DB2- PM to produce other reports

System
Parameters
Transit Time

At least one type of trace
Performance Class 1
Performance Class 2

Installation parameters (DSNZPARMs)
Background events
Aborts, commits, and thread-related
data

 - 516 -

Performance Class 3

Performance Class 4
Performance Class 6

Performance Class 10
Performance Class 13

Sort, AMS, plans, cursor, static SQL,
and dynamic SQL statistics
Physical reads and writes
Lock suspensions, lock resumes, and
lock contention information
Optimizer and bind statistics
EDITPROC and VALIDPROC access

Be sure to start the appropriate traces as outlined in Table 22.3 before running DB2-PM. To
run a report indicated in the left column, you should start the recommended traces to get
useful information from DB2-PM. If a particular trace is not started, the DB2-PM report still
prints, but you do not get all the information the report can provide. Failure to start all these
traces may result in some report values being left blank or listed as N/C.
You should develop standards for the production of DB2-PM reports to monitor the
performance of DB2 and its applications at your shop. Use the chart in Table 22.4 as a
guideline for establishing a regular DB2-PM reporting cycle. You can modify and augment this
table based on your shop's DB2 performance monitoring requirements and standards.

Table 22.4: DB2-PM Monitoring Reference

Resource
to Monitor

DB2-PM Report

Frequency

DB2 Subsystem
Performance

Statistics Summary

Statistics Detail
I/O Activity Summary
I/O Bufferpool Activity Detail
I/O EDM Pool Activity Detail
I/O Log Manager Activity Detail
System Parameters
Audit Summary

Weekly

As needed
Monthly
As needed
As needed
As needed
When DB2
is recycled
Weekly

DB2 Application
Performance

Accounting Short
Accounting Long
Audited DML Access
Lock Contention
Lock Suspension

Daily
As needed
Weekly
As needed
As needed

Exception Transit Time Report Solving
SQL Trace
Record Trace
Summary Report
Lock Contention
Lock Suspension

Problem
monitoring
Problem
solving
DB2 or
DB2-PM
problem
solving
DB2-PM
problem
solving
Problem
solving
Problem
solving

Security Audit Authorization Failures
Audit Authorization Control
Audit Authorization Change
Audited DDL Access
Audited DML Access
Audit Utility Access

Weekly
Weekly
Weekly
Weekly
Weekly
Weekly

Some performance monitoring software from other vendors can provide the same batch
reporting functionality as DB2-PM. Because DB2-PM is not as mature an online performance
monitor as other products, you might want to reconsider whether you need DB2-PM. Before

 - 517 -

you decide to avoid DB2-PM in favor of the batch performance monitoring provided by another
tool, consider the following:

 When performance problems that require IBM intervention persist, IBM often
requests that you run a performance trace and generate DB2-PM reports for the
trace. To be sure that IBM will accept reports generated by the third-party tool,
compare the output from the vendor tool to the output from DB2-PM. If the reports
are almost identical, you usually will not have a problem. To be absolutely sure,
ask your IBM support center.

 DB2-PM is an industry standard for batch performance monitoring. Taking classes
on performance monitoring is easier when the monitoring is based on DB2-PM
reports. Classes offered by IBM (and others) on DB2 performance usually use
DB2-PM reports as examples. As such, having access to DB2-PM is helpful for
students. Additionally, if you need to add staff, DB2-PM trained personnel are
easier to find.

 DB2-PM is updated for new releases of DB2 more quickly than third-party
monitoring tools because IBM is closer than anyone else to the code of DB2. If
you need to migrate to new versions of DB2 rapidly, DB2-PM may be the only
monitor positioned for the new release at the same time as your shop.

Online DB2 Performance Monitors
In addition to a batch performance monitor such as DB2-PM, DB2 shops must also have an online
performance monitor, which is a tool that provides real-time reporting on DB2 performance statistics as
DB2 operates. In contrast, a batch performance monitor reads previously generated trace records from
an input data set.

With online DB2 performance monitors, you can usually perform proactive performance management
tasks. In other words, you can set up the monitor such that when it detects a problem it alerts a DBA
and possibly takes actions on its own to resolve the problem. The leading DB2 online performance
monitors are MainView from BMC Software, Omegamon from Candle Corporations, and TMON from
Landmark Systems.

Traditional VTAM Performance Monitors
The most common way to provide online performance monitoring capabilities is by online access to DB2
trace information in the MONITOR trace class. These tools are accessed directly through VTAM in the
same way that CICS or TSO is accessed through VTAM. You generally specify OPX or OPn for the
destination of the MONITOR trace. This way, you can place the trace records into a buffer that can be
read using the IFI.

Some online DB2 performance monitors also provide direct access to DB2 performance data by reading
the control blocks of the DB2 and application address spaces. This type of monitoring provides a
"window" to up-to-the-minute performance statistics while DB2 is running. This information is important
if quick reaction to performance problems is required.

Most online DB2 performance monitors provide a menu-driven interface accessible from TSO or VTAM.
It enables online performance monitors to start and stop traces as needed based on the menu options
chosen by the user. Consequently, you can reduce overhead and diminish the learning curve involved
in understanding DB2 traces and their correspondence to performance reports.
Following are some typical uses of online performance monitors. Many online performance monitors
can establish effective exception-based monitoring. When specified performance thresholds are
reached, triggers can offer notification and take action. For example, you could set a trigger when the
number of lock suspensions for the TXN00002 plan is reached; when the trigger is activated, a
message is sent to the console and a batch report is generated to provide accounting detail information
for the plan. You can set any number of triggers for many thresholds. Following are suggestions for
setting thresholds:

 When a bufferpool threshold is reached (PREFETCH DISABLED, DEFERRED
WRITE THRESHOLD, or DM CRITICAL THRESHOLD).

 For critical transactions, when predefined performance objectives are not met. For
example, if TXN00001 requires sub-second response time, set a trigger to notify a
DBA when the transaction receives a class 1 accounting elapsed time exceeding 1
second by more than 25%.

 - 518 -

 Many types of thresholds can be established. Most online monitors support this
capability. As such, you can customize the thresholds for the needs of your DB2
environment.

Online performance monitors can produce real-time EXPLAINs for long-running SQL statements. If an
SQL statement is taking a significant amount of time to process, an analyst can display the SQL
statement as it executes and dynamically issue an EXPLAIN for the statement. Even as the statement
executes, an understanding of why it is taking so long to run can be achieved.

Note A complete discussion of the EXPLAIN statement is provided in the next chapter.

Online performance monitors can also reduce the burden of monitoring more than one DB2 subsystem.
Multiple DB2 subsystems can be tied to a single online performance monitor to enable monitoring of
distributed capabilities, multiple production DB2s, or test and production DB2 subsystems, all from a
single session.

Some online performance monitors provide historical trending. These monitors track performance
statistics and store them in DB2 tables or in VSAM files with a timestamp. They also provide the
capability to query these stores of performance data to assist in the following:

 Analyzing recent history. Most SQL statements execute quickly, making difficult the
job of capturing and displaying information about the SQL statement as it executes.
However, you might not want to wait until the SMF data is available to run a batch
report. Quick access to recent past-performance data in these external data stores
provides a type of online monitoring that is as close to real time as is usually
needed.

 Determining performance trends, such as a transaction steadily increasing in its CPU
consumption or elapsed time.

 Performing capacity planning based on a snapshot of the recent performance of DB2
applications.

Some monitors also run when DB2 is down to provide access to the historical data accumulated by the
monitor.

A final benefit of online DB2 performance monitors is their capability to interface with other MVS
monitors for IMS/TM, CICS, MVS, or VTAM. This way, an analyst gets a view of the entire spectrum of
system performance. Understanding and analyzing the data from each of these monitors, however,
requires a different skill. Quite often, one person cannot master all these monitors.

Agent-Based Performance Management
The leading database performance monitoring software is increasingly becoming agent-based. An
agent-based performance management tool requires portions to be installed on both the server and the
client. The server component constantly monitors and polls for predefined events; the client component
provides console operations that accept alerts triggered by the server. In a DB2 environment, the MVS
or OS/390 machine is the server; the client is typically a PC running Windows 95, Windows 98,
Windows NT, or Windows 2000.

Agent-based technology provides several advantages over traditional monitoring technology. An agent
is continually operating and autonomous. It can communicate with end users and other agents to create
a proactive performance management environment. Agents do not require constant user interaction to
operate; they are self-contained and independently executing. Likewise, a good agent-based
performance management solution does not require a permanent link to the initiating event. The agent
therefore continues to operate even if the console is shut down.

Agent-based performance management tools became popular in the UNIX environment with the advent
of client/server application development. Examples of popular agent-based monitors include BMC
Software's Patrol and Computer Associates' DBVision. Both BMC and Computer Associates are
currently offering versions of their agent-based tools for DB2 on the mainframe.

Online Performance Monitoring Summary
Some vendors sell monitors in all these areas, providing a sort of seamless interface that can simplify
movement from one type of monitoring to another. For example, if a DB2 monitor reports that a CICS

 - 519 -

transaction is experiencing a performance problem, being able to switch to a CICS monitor to further
explore the situation would be beneficial.
In Chapter 37, "Components of a Total DB2 Solution," I discuss online performance monitors for DB2
further and list several vendors that supply them. You also can write your own DB2 performance
monitor using the Instrumentation Facility Interface (IFI) provided with DB2. However, you should not
undertake this task unless you are a skilled system programmer willing to retool your home-grown
monitor for every new release of DB2.

Viewing DB2 Console Messages
Another way to monitor DB2 performance is to view the DB2 console messages for the active
DSNMSTR address space. You can obtain a wealth of statistics from this log.
To view DB2 console messages, you must be able to view the DSNMSTR region either as it
executes or, for an inactive DB2 subsystem, from the spool. Most shops have a tool for
displaying the outlist of jobs that are executing or have completed but remain on the queue.
An example of such a tool is IBM's SDF.
Using your outlist display tool, select the DSNMSTR job. (This job may have been renamed at
your shop to something such as DB2TMSTR or DB2MSTR.) View the JES message log, which
contains DB2 messages that are helpful in determining problems.

Information in the DB2 message log can help you monitor many situations. Several examples
follow.
When you first view the console messages, a screen similar to Figure 22.2 is displayed. In the
DB2 start-up messages, look for the DSNZ002I message code. It shows you the DSNZPARM
load module name that supplied DB2 with its start-up parameters. From this first part of the
DB2 console log, you also can determine the following:

Figure 22.2: DB2 console messages.

 The time DB2 was started (in the example, 18:01:52)
 The name of the Boot Strap Data Set (BSDS) and associated information
 The name of the active log data sets and associated log RBA information

Sometimes, when DB2 performs a log offload, the overall performance of the DB2 subsystem
suffers. This outcome can be the result of the physical placement of log data sets and DASD
contention as DB2 copies data from the active logs to archive log tapes and switches active
logs.
In Figure 22.3, find the DB2 message DSNJ002I, which indicates the time an active log data
set is full (10:25:21 in the example). The DSNJ139I message is issued when the log offload
has completed successfully (10:26:47 in the example). This efficient log offload required a little
more than one minute to complete. If users complain about poor performance that can be
tracked back to log offload periods, investigate the DASD placement of your active logs.
Specify multiple active logs, and place each active log data set on a separate DASD device.
As an additional consideration, think about caching the DASD devices used for DB2 active
logs.

 - 520 -

Figure 22.3: Log offloading.

Resource unavailable messages are also in this message log. You can find them by searching
for DSNT501I messages. For example, refer to the portion of the log displayed in Figure 22.4.
It shows a resource unavailable message occurring at 10:17:26. From this message, you
can determine who received the unavailable resource message (correlation-ID), what
was unavailable, and why. In this case, a tablespace was unavailable for reason code
00C900A3, which is a check pending situation. (As you can see by scanning further
messages in the log, the check pending situation is cleared up approximately four minutes
later.)

Figure 22.4: Resource unavailable.

Another area that requires monitoring is locking contention. When a high degree of lock
contention occurs in a DB2 subsystem, you get many timeout and deadlock messages.
Message code DSNT375I is issued when a deadlock occurs, and DSNT376I is issued for
every timeout. Figure 22.5 shows two examples of timeouts due to lock contention. You can
determine who is timing out, who holds the lock that causes the timeout, and what resource
has been locked so that access is unavailable. In the example, the DSNDB01.DBD01 DB2
Directory database is locked, probably due to the concurrent execution of DDL by the
indicated correlation-ID.

 - 521 -

Figure 22.5: Locking contention and timeouts.

The final monitoring advice in this section concentrates on two internal plans used by DB2:
BCT (Basic Cursor Table) and BINDCT. DB2 uses the BCT plan to issue commands. For
example, assume that you issue a -STOP DATABASE command, but the database cannot be
stopped immediately because someone is holding a lock on the DBD. The database is placed
in stop pending (STOPP) status, and DB2 continues issuing the command using the BCT plan
until it is successful.
In Figure 22.6, the BCT plan is timed out at 14:58:26 and then again at 14:59:41. This timeout
occurred because an attempt was made to issue -STOP DATABASE while another job was
issuing DDL for objects in the database. The BCT plan tries to stop the database repeatedly
until it succeeds.

Figure 22.6: The BCT plan.

DB2 uses the BINDCT plan to bind packages and plans. If users have problems binding, the
cause of the problem can be determined by looking in the log for occurrences of BINDCT. In
the example in Figure 22.7, the bind failed because someone was using a vendor tool that
held a lock on the DB2 Catalog. Because the BIND command must update the DB2 Catalog
with plan information, the concurrent lock on the Catalog caused the BIND to fail.

 - 522 -

Figure 22.7: The BINDCT plan.

The situations covered here are a few of the most common monitoring uses for the DB2
console message log. Look for corroborating evidence in this log when you're trying to resolve
or track down the cause of a DB2 problem.

Displaying the Status of DB2 Resources
You can perform another method of performance monitoring by using the DB2 -DISPLAY
command. DB2 commands are covered in depth in Chapter 34, "DB2 Commands." At this
point, mentioning that you can monitor the status and general condition of DB2 databases,
threads, and utilities using the -DISPLAY command is sufficient.

Monitoring OS/390 and MVS
In addition to monitoring DB2, you must monitor the MVS system and its subsystems that
communicate with DB2. Most MVS shops already support this type of monitoring. In this
section, I outline the types of monitoring that should be established.

First, you should monitor memory use and paging system-wide for MVS, for the DB2 address
spaces, and for each DB2 allied agent address space (CICS, IMS/TM, and every TSO
address space accessing DB2—both batch and online). A memory monitoring strategy should
include guidelines for monitoring both CSA (common storage area) and ECSA (expanded
common storage area). You can do so by using IBM's RMF (Resource Measurement Facility).

You should also monitor the CPU consumption for the DB2 address spaces. RMF can do this
job.

You should also monitor the DASD space used by DB2 data. Underlying VSAM data sets
used by DB2 for tablespaces and indexes must be properly placed on multiple data sets to
avoid disk contention and increase the speed of I/O. They also must be monitored so that the
number of data set extents is minimized, preferably with each data set having a single extent.
This way, you can reduce seek time because multi-extent data sets rarely have their extents
physically contiguous (thereby causing additional I/O overhead).
CICS and IMS/TM performance monitors should be available for shops that use these
teleprocessing environments. IBM provides the CICS Monitoring Facility and CICSPARS for
monitoring CICS performance, and the IMS/TM Monitor and IMSPARS for monitoring IMS/TM
performance. Other vendors also supply these monitors for CICS and IMS/TM.

Another monitoring task is to use a VTAM network monitor to analyze communication traffic.
Finally, analysts can use other monitors to determine which statements in a single program
are consuming which resources. This tool can be a valuable adjunct to RMF.

Summary
In this chapter, you learned the basics of monitoring DB2 subsystems for performance
information. You learned about the DB2 traces that contain valuable performance data as well

 - 523 -

as methods of accessing and reporting on this information. But monitoring the DB2 subsystem
is only one component of an overall performance management strategy. The next step is to
use EXPLAIN to delve into the access paths used by DB2 to execute SQL statement. Turn the
page to being examining the use of EXPLAIN.

Chapter 23: Using EXPLAIN

Overview
You can use the EXPLAIN feature to detail the access paths chosen by the DB2

optimizer for SQL statements. EXPLAIN should be a key component of your

performance monitoring strategy. The information provided by EXPLAIN is invaluable
for determining the following:

 The work DB2 does "behind the scenes" to satisfy a single SQL statement
 Whether DB2 uses available indexes and, if indexes are used, how DB2 uses

them
 The order in which DB2 tables are accessed to satisfy join criteria
 Whether a sort is required for the SQL statement
 Intentional tablespace locking requirements for a statement
 Whether DB2 uses query parallelism to satisfy an SQL statement
 The performance of an SQL statement based on the access paths chosen
 The estimated cost of executing an SQL statement
 The manner in which user-defined functions are resolved in SQL statements

How EXPLAIN Works
To see how EXPLAIN works, refer to Figure 23.1. A single SQL statement, or a series of
SQL statements in a package or plan, can be the subject of an EXPLAIN. When
EXPLAIN is requested, the SQL statements are passed through the DB2 optimizer, and
the following three activities are performed:

Figure 23.1: How EXPLAIN works.

 The access paths that DB2 chooses are externalized, in coded format, into a
PLAN_TABLE.

 Cost estimates for the SQL statements are formulated and inserted into a
DSN_STATEMNT_TABLE.

 The user-defined functions that will be used are placed into a
DSN_FUNCTION_TABLE.

The PLAN_TABLE, DSN_STATEMNT_TABLE, and
DSN_FUNCTION_TABLE objects are nothing more than standard DB2 tables that
must be defined with predetermined columns, data types, and lengths.
To EXPLAIN a single SQL statement, precede the SQL statement with the EXPLAIN
command as follows:
EXPLAIN ALL SET QUERYNO = integer FOR
SQL statement ;

 - 524 -

It can be executed in the same way as any other SQL statement. QUERYNO, which you can
set to any integer, is used for identification in the PLAN_TABLE. For example, the
following EXPLAIN statement populates the PLAN_TABLE with the access paths
chosen for the indicated sample table query:
EXPLAIN ALL SET QUERYNO = 1 FOR
 SELECT FIRSTNME, MIDINIT, LASTNAME
 FROM DSN8610.EMP
 WHERE EMPNO = '000240';
Another method of issuing an EXPLAIN is as a part of the BIND command. If you
indicate EXPLAIN(YES) when binding a package or a plan, DB2 externalizes the
access paths chosen for all SQL statements in that DBRM (or DBRMs) to the
PLAN_TABLE.
The final method of issuing EXPLAIN is to use the Visual Explain tool to invoke
EXPLAIN for dynamic SQL statements. Visual Explain also provides an easy-to-use
interface for displaying access paths graphically and suggesting alternate SQL formulations.

Access Paths and the PLAN_TABLE
EXPLAIN populates the PLAN_TABLE with access path information. You can use the DDL in Listing
23.1 to create a PLAN_TABLE.

Listing 23.1: DDL to Create the PLAN_TABLE

CREATE TABLE userid.PLAN_TABLE

(

 QUERYNO INTEGER NOT NULL,

 QBLOCKNO SMALLINT NOT NULL,

 APPLNAME CHAR(8) NOT NULL,

 PROGNAME CHAR(8) NOT NULL,

 PLANNO SMALLINT NOT NULL,

 METHOD SMALLINT NOT NULL,

 CREATOR CHAR(8) NOT NULL,

 TNAME CHAR(18) NOT NULL,

 TABNO SMALLINT NOT NULL,

 ACCESSTYPE CHAR(2) NOT NULL,

 MATCHCOLS SMALLINT NOT NULL,

 ACCESSCREATOR CHAR(8) NOT NULL,

 ACCESSNAME CHAR(18) NOT NULL,

 INDEXONLY CHAR(1) NOT NULL,

 SORTN_UNIQ CHAR(1) NOT NULL,

 - 525 -

 SORTN_JOIN CHAR(1) NOT NULL,

 SORTN_ORDERBY CHAR(1) NOT NULL,

 SORTN_GROUPBY CHAR(1) NOT NULL,

 SORTC_UNIQ CHAR(1) NOT NULL,

 SORTC_JOIN CHAR(1) NOT NULL,

 SORTC_ORDERBY CHAR(1) NOT NULL,

 SORTC_GROUPBY CHAR(1) NOT NULL,

 TSLOCKMODE CHAR(3) NOT NULL,

 TIMESTAMP CHAR(16) NOT NULL,

 REMARKS VARCHAR(254) NOT NULL, (25 column format)

 PREFETCH CHAR(1) NOT NULL WITH DEFAULT,

 COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT,

 MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT, (28 column format)

 VERSION VARCHAR(64) NOT NULL WITH DEFAULT,

 COLLID CHAR(18) NOT NULL WITH DEFAULT, (30 column format)

 ACCESS_DEGREE SMALLINT,

 ACCESS_PGROUP_ID SMALLINT,

 JOIN_DEGREE SMALLINT,

 JOIN_PGROUP_ID SMALLINT, (34 column format)

 SORTC_PGROUP_ID SMALLINT,

 SORTN_PGROUP_ID SMALLINT,

 PARALLELISM_MODE CHAR(1),

 MERGE_JOIN_COLS SMALLINT,

 CORRELATION_NAME CHAR(18),

 PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT,

 JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT,

 GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,

 IBM_SERVICE_DATA VARCHAR(254) NOT NULL WITH DEFAULT, (43 column format)

 WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT,

 QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT,

 BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT, (46 column format)

 - 526 -

 OPTHINT CHAR(8) NOT NULL WITH DEFAULT,

 HINT_USED CHAR(8) NOT NULL WITH DEFAULT,

 PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT (49 column format)) IN
database.tablespace;

Note that the PLAN_TABLE will be created in the default database (DSNDB04) and STOGROUP
(SYSDEFLT) in a DB2-generated tablespace, unless a database and a tablespace are created for the
PLAN_TABLE and they are referenced in the IN clause of the CREATE TABLE statement.
The following seven PLAN_TABLE formats are supported by DB2 V6:

 The 25-column format, which includes all columns through REMARKS (pre-DB2 V2.2)
 The 28-column format, which includes all columns through MIXOPSEQ (DB2 V2.2)
 The 30-column format, which includes all columns through COLLID (DB2 V2.3)
 The 34-column format, which includes all columns through JOIN_PGROUP_ID (DB2

V3)
 The 34-column format, which includes all columns through IBM_SERVICE_DATA

(DB2 V4)
 The 46-column format, which includes all columns (DB2 V5)
 The complete 49-column format, which includes all columns (DB2 V6)

Note The general recommendation is to always use the complete 49-column format of
the PLAN_TABLE. The other formats exist to provide support for PLAN_TABLEs
built under older versions of DB2 that did not support all the current columns. If
you do not use the full, 49-column format, you will be unable to use some of the
newer features of DB2, such as optimization hints.

If a PLAN_TABLE already exists, you can use the LIKE clause of CREATE TABLE to create
PLAN_TABLEs for individual users based on a master PLAN_TABLE. Having a PLAN_TABLE for the
following users is a good idea:

 Every DB2 application programmer. This way, they can analyze and evaluate the
access paths chosen for the SQL embedded in their application programs.

 Every individual owner of every production DB2 plan. This way, an EXPLAIN can be
run on production DB2 packages and plans.

 Every DBA and system programmer. This way, they can analyze access paths for ad
hoc and dynamic SQL statements.

Querying the PLAN_TABLE
After you issue the EXPLAIN command on your SQL statements, the next logical step is to inspect the
results. Because EXPLAIN places the access path information in a DB2 table, you can use an SQL
query to retrieve this information, as follows:
SELECT QUERYNO, QBLOCKNO, QBLOCK_TYPE, APPLNAME, PROGNAME, PLANNO,
 METHOD, CREATOR, TNAME, TABNO, ACCESSTYPE, JOIN_TYPE,
 MATCHCOLS, ACCESSNAME, INDEXONLY, SORTN_PGROUP_ID,
 SORTN_UNIQ, SORTN_JOIN, SORTN_ORDERBY, SORTN_GROUPBY,
 SORTC_PGROUP_ID, SORTC_UNIQ, SORTC_JOIN,
 SORTC_ORDERBY, SORTC_GROUPBY, TSLOCKMODE,
 TIMESTAMP, PREFETCH, COLUMN_FN_EVAL, MIXOPSEQ,
 COLLID, VERSION, ACCESS_DEGREE, ACCESS_PGROUP_ID,
 JOIN_DEGREE, JOIN_PGROUP_ID, PARALLELISM_MODE,
 MERGE_JOIN_COLS, CORRELATION_NAME, PAGE_RANGE,
 GROUP_MEMBER, WHEN_OPTIMIZE, BIND_TIME,
 HINT_USED, PRIMARY_ACCESSTYPE
FROM ownerid.PLAN_TABLE
ORDER BY APPLNAME, COLLID, VERSION, PROGNAME,
 TIMESTAMP DESC, QUERYNO, QBLOCKNO, PLANNO

 - 527 -

Note The following columns were new as of DB2 V6. They cannot be accessed prior to
DB2 V6. These columns are not populated for EXPLAIN statistics accumulated
prior to V6—OPTHINT, HINT_USED, and PRIMARY_ACCESSTYPE.

A common method of retrieving access path data from the PLAN_TABLE is to use QMF or a GUI-
based query tool to format the results of a simple SELECT statement. This way, you can organize and
display the results of the query in a consistent and manageable fashion.
It is crucial that the TIMESTAMP column be in descending order. Because EXPLAINs are executed as
a result of the BIND command, access path data is added to the PLAN_TABLE with a different
timestamp. The old data is not purged from the PLAN_TABLE each time an EXPLAIN is performed. If
you specify the descending sort option on the TIMESTAMP column, you can ensure that the EXPLAIN
data in the report is sorted in order from the most recent to the oldest access path for each SQL
statement in the PLAN_TABLE. Sorting this way is important if the PLAN_TABLEs you are working
with are not purged.
If you want to retrieve information placed in the PLAN_TABLE for a single SQL statement, you can
issue the following query:
SELECT QUERYNO, QBLOCKNO, QBLOCK_TYPE, PLANNO, METHOD, TNAME,
 ACCESSTYPE, JOIN_TYPE, MATCHCOLS, ACCESSNAME,
 INDEXONLY, SORTN_PGROUP_ID, SORTN_UNIQ, SORTN_JOIN,
 SORTN_ORDERBY, SORTN_GROUPBY, SORTC_PGROUP_ID,
 SORTC_UNIQ, SORTC_JOIN, SORTC_ORDERBY, SORTC_GROUPBY,
 TSLOCKMODE, PREFETCH, COLUMN_FN_EVAL, MIXOPSEQ,
 ACCESS_DEGREE, ACCESS_PGROUP_ID, JOIN_DEGREE,
 JOIN_PGROUP_ID, PARALLELISM_MODE, MERGE_JOIN_COLS,
 CORRELATION_NAME, PAGE_RANGE, GROUP_MEMBER,
 WHEN_OPTIMIZE, BIND_TIME,
 HINT_USED, PRIMARY_ACCESSTYPE
FROM ownerid.PLAN_TABLE
ORDER BY QUERYNO, QBLOCKNO, PLANNO
The preceding eliminates from the query the package and plan information, as well as the name of the
table creator. Throughout the remainder of this chapter, I present PLAN_TABLE information for several
types of SQL statements. Variants of this query are used to show the PLAN_TABLE data for each
EXPLAIN statement.
The PLAN_TABLE Columns
Now that you have some basic PLAN_TABLE queries to assist you with DB2 performance monitoring,
you can begin to EXPLAIN your application's SQL statements and analyze their access paths. But
remember, because the access path information in the PLAN_TABLE is encoded, you must have a
type of decoder to understand this information. This information is provided in Table 23.1. A description
of every column of the PLAN_TABLE is provided.
The first column in Table 23.1 shows the name of the column in the PLAN_TABLE, and the second
column defines the data in the columns.

Table 23.1: PLAN_TABLE Columns

Column Description
QUERYNO Indicates an integer value assigned by the user issuing the EXPLAIN, or by

DB2. Enables the user to differentiate between EXPLAIN statements.
QBLOCKNO Indicates an integer value enabling the identification of subselects or a

union in a given SQL statement. The first subselect is numbered 1; the
second, 2; and so on.

APPLNAME Contains the plan name for rows inserted as a result of running BIND PLAN
specifying EXPLAIN(YES). Contains the package name for rows inserted
as a result of running BIND PACKAGE with EXPLAIN(YES). Otherwise,
contains blanks for rows inserted as a result of dynamic EXPLAIN
statements.

PROGNAME Contains the name of the program in which the SQL statement is
embedded. If a dynamic EXPLAIN is issued from QMF, this column
contains DSQIESQL.

 - 528 -

PLANNO Contains an integer value indicating the step of the plan in which
QBLOCKNO is processed (that is, the order in which plan steps are
undertaken).

METHOD Contains an integer value identifying the access method used for the given
step:

 0 First table
accessed
(can also
indicate an
outer table
or a
continuation
of the
previous
table
accessed)

 1 Nested loop
join

 2 Merge scan
join

 3 Independent
sort; Sort
happens as
a result of
ORDER BY,
GROUP
BY,
SELECT
DISTINCT,
a quantified
predicate, or
an IN
predicate

 4 Hybrid join

CREATOR Indicates the creator of the table identified by TNAME or is
blank when METHOD equals 3.

TNAME Indicates the name of the table being accessed or is blank
when METHOD equals 3.

TABNO IBM use only.
ACCESSTYPE Indicates the method of accessing the table:

 I Indexed access
 I1 One-fetch index scan
 R Tablespace scan
 N Index access with an IN predicate
 M Multiple index scan
 MX Specification of the index name for multiple index

access
 MI Multiple index access by RID intersection
 MU Multiple index access by RID union
 blank Row applies to QBLOCKNO 1 of an INSERT or

DELETE statement or an UPDATE statement

 - 529 -

using a cursor with the WHERE CURRENT OF
clause specified

MATCHCOLS Contains an integer value with the number of index columns
used in an index scan when ACCESSTYPE is I, I1, N, or MX.
Otherwise, contains 0.

ACCESSCREATOR Indicates the creator of the index when ACCESSTYPE is I,
I1, N, or MX. Otherwise, it is blank.

ACCESSNAME Indicates the name of the index used when ACCESSTYPE is
I, I1, N, or MX. Otherwise, it is blank.

INDEXONLY A value of Y indicates that access to the index is sufficient to
satisfy the query. N indicates that access to the tablespace is
also required.

SORTN_UNIQ A value of Y indicates that a sort must be performed on the
new table to remove duplicates.

SORTN_JOIN A value of Y indicates that a sort must be performed on the
new table to accomplish a merge scan join. Or a sort is
performed on the RID list and intermediate table of a hybrid
join.

SORTN_ORDERBY A value of Y indicates that a sort must be performed on the
new table to order rows.

SORTN_GROUPBY A value of Y indicates that a sort must be performed on the
new table to group rows.

SORTC_UNIQ A value of Y indicates that a sort must be performed on the
composite table to remove duplicates.

SORTC_JOIN A value of Y indicates that a sort must be performed on the
composite table to accomplish a join (any type).

SORTC_ORDERBY A value of Y indicates that a sort must be performed on the
composite table to order rows.

SORTC_GROUP A value of Y indicates that a sort must be performed on the
composite table to group rows.

TSLOCKMODE Contains the lock level applied to the new table, its
tablespace, or partitions. If the isolation level can be
determined at BIND time, the values can be as follow:

 IS Intent
share
lock

 IX Intent
exclusive
lock

 S Share
lock

 U Update
lock

 X Exclusive
lock

 SIX Share
with
intent
exclusive
lock

 N No lock
(UR
isolation
level)

 - 530 -

 If the
isolatio
n level
cannot
be
determi
ned at
BIND
time,
the lock
mode
values
can be
as
follow:

 NS For UR, no lock; for CS, RS, or RR, an
S-lock.

 NIS For UR, no lock; for CS, RS, or RR, an
IS-lock.

 NSS For UR, no lock; for CS or RS, an IS-
lock; for RR, an S-lock.

 SS For UR, CS, or RS, an IS-lock; for RR,
an S-lock.

TIMESTAMP Indicates
the date
and time
the
EXPLAIN
for this row
was
issued.
This
internal
representa
tion of a
date and
time is not
in DB2
timestamp
format.

REMARKS Contains a
254-byte
character
string for
commentin
g
EXPLAIN
results.

PREFETCH Contains
an
indicator of
which type
of prefetch
will be
used:

 S Sequential
prefetch
can be
used.

 - 531 -

 L List
prefetch
can be
used.

 blank Prefetch is
not used
initially, or
prefetch
use is
unknown.

COLUMN_FN_EVAL Indicates
when
the
column
function
is
evaluate
d:

 R Data
retrieval
time

 S Sort time
 blank Unknown

(runtime
division)

MIXOPSEQ Contains a small integer value indicating the sequence of the
multiple index operation.

VERSION Contains the version identifier for the package.
COLLID Contains the collection ID for the package.
ACCESS_DEGREE Indicates the number of parallel tasks utilized by the query. For

statements containing host variables, this column is set to 0.
(Although this column is set at bind time, it can be redetermined at
execution time.)

ACCESS_PGROUP_ID Contains a sequential number identifying the parallel group
accessing the new table. (Although this column is set at bind time,
it can be redetermined at execution time.)

JOIN_DEGREE Indicates the number of parallel tasks used in joining the composite
table with the new table. For statements containing host variables,
this column is set to 0. (Although this column is set at bind time, it
can be redetermined at execution time.)

JOIN_PGROUP_ID A sequential number identifying the parallel group joining the
composite table to the new table. (Although this column is set at
bind time, it can be redetermined at execution time.)

SORTC_PGROUP_ID Contains the parallel group identifier for the parallel sort of the
composite table.

SORTN_PGROUP_ID Contains the parallel group identifier for the parallel sort of the new
table.

PARALLELISM_MODE Indicates the type of parallelism that is used at bind time:

 I Query
I/O
paralleli

 - 532 -

sm
 C Query

CPU
paralleli
sm

 X Query
sysplex
paralleli
sm

 blank No
paralleli
sm, or
mode
will be
determi
ned at
runtime

MERGE_JOIN_COLS Indicates the number of columns joined during a merge scan join
(METHOD = 2).

CORRELATION_NAME Indicates the correlation name for the table or view specified in
the statement. Blank if no correlation name. A correlation name is
an alternate name for a table, view, or inline view. It can be
specified in the FROM clause of a query and in the first clause of
an UPDATE or DELETE statement. For example, D is the
correlation name in the following clause:
FROM DSN8510.DEPT D

PAGE_RANGE Indicates whether the table qualifies for page range tablespace
scans in which only a subset of the available partitions are
scanned:

 Y Yes
 blank No

JOIN_TYPE Indicates
the type
of join
being
implemen
ted:

 F Full
outer
join

 L Left
outer
join
(or a
conve
rted
right
outer
join)

 blank Inner
join
(or no
join)

GROUP_MEMBER Indicates

 - 533 -

the
member
name of
the DB2
that
executed
EXPLAI
N. The
column
is blank
if the
DB2
subsyste
m was
not in a
data
sharing
environ
ment
when
EXPLAI
N was
executed
.

IBM_SERVICE_DATA For IBM
use only.

WHEN_OPTIMIZE Specifies
when the
access
path was
determin
ed:

 blank At BIND
time

 B At BIND
time, but will
be
reoptimized
at runtime
[bound with
REOPT(VA
RS)]

 R At runtime
[bound with
REOPT(VA
RS)]

QBLOCK_TYPE Indicates
the type
of SQL
operatio
n
performe
d for the
query
block:

 SELECT SELECT
 SELUPD SELECT

with FOR

 - 534 -

UPDATE
OF

 INSERT INSERT
 UPDATE UPDATE
 UPDCUR UPDATE

WHERE
CURREN
T OF
CURSOR

 DELETE DELETE
 DELCUR DELETE

WHERE
CURREN
T OF
CURSOR

 CORSUB Correlated
subquery

 NCOSUB Non-
correlated
subquery

BIND_TIME Indicates
the time
the plan
or
package
for the
stateme
nt or
query
block
was
bound.

OPTHINT A string
used to
identify
this row
as an
optimizat
ion hint
for DB2.
DB2 will
use this
row as
input
when
choosing
an
access
path.

HINT_USED If an
optimizat
ion hint
is used,
the hint
identifier
is put in
this
column

 - 535 -

(that is,
the
value of
OPTHIN
T).

PRIMARY_ACCESSTYPE Indicates
if direct
row
access
will be
attempte
d:

 D DB2 will try
to use direct
row access.
At run time,
if DB2
cannot use
direct row
access, it
uses the
access path
described in
ACCESSTY
PE.

 blank DB2 will not
try to use
direct row
access.

Recall from Chapter 18, "DB2 Behind the Scenes," the access strategies that DB2 can choose in
determining the access path for a query. Understanding how these access path strategies relate to the
PLAN_TABLE columns is useful. The following sections provide a synopsis of the strategies and how
to recognize them based on particular PLAN_TABLE columns.
The specific type of operation to which the PLAN_TABLE row applies is recorded in the
QBLOCK_TYPE column. This column was added as of DB2 V5.
Tablespace scans are indicated by ACCESSTYPE being set to R. For a partitioned tablespace scan in
which specific partitions can be skipped, ACCESSTYPE is set to R and PAGE_RANGE is set to Y.
Index scans are indicated by ACCESSTYPE being set to any other value except a space.
When PREFETCH is set to S, sequential prefetch can be used; when it is set to L, list prefetch can be
used. Even if the PREFETCH column is not set to L or S, however, prefetch can still be used at
execution time. Whether sequential detection is used cannot be determined from the PLAN_TABLE
because it is specified for use only at execution time.
If an index is used to access data, it is identified by creator and name in the ACCESSCREATOR and
ACCESSNAME columns. A direct index lookup cannot be determined from the PLAN_TABLE alone. In
general, a direct index lookup is indicated when the MATCHCOLS column equals the same number of
columns in the index and the index is unique. For a non-unique index, this same PLAN_TABLE row can
indicate a matching index scan. This additional information must be retrieved from the DB2 Catalog.
A non-matching index scan is indicated when the MATCHCOLS=0. The INDEXONLY column is set to
Y for index-only access, or to [] when the tablespace data pages must be accessed in addition to the
index information. Finally, multiple-index access can be determined by the existence of M, MX, MI, or
MU in the ACCESSTYPE column.
Clustered and non-clustered index access cannot be determined using the PLAN_TABLE. Also, index
lookaside is generally available when DB2 indexes are used.
A parallel query is indicated by values in ACCESS_DEGREE indicating the number of parallel streams
to be invoked. It is the number of parallel tasks that BIND deems optimal. The degree can be decreased
at runtime. The type of parallelism (I/O, CPU, or Sysplex) is recorded in the PARALLELISM_MODE
column. Parallel tasks are grouped into parallel groups as indicated by the value(s) in
ACCESS_PGROUP_ID. JOIN_DEGREE and JOIN_PGROUP_ID are populated when tables are joined
in parallel.
For the different join methods, the METHOD column is set to 1 for a nested loop join, 2 for a merge
scan join, or 4 for a hybrid join.

 - 536 -

Now that you know what to look for, you can examine some sample access paths.

Sample Access Paths
The primary objective of EXPLAIN is to provide a means by which an analyst can "see" the access
paths chosen by DB2. This section provides some EXPLAIN examples showing the SQL statement,
rows from a PLAN_TABLE that were the result of an EXPLAIN being run for that SQL statement, and
an analysis of the output. Based on the results of the EXPLAIN, you might decide that a better access
path is available for that SQL statement. This process involves tuning, which is discussed in Part V. This
section concentrates solely on showing the EXPLAIN results for different types of accesses.
PLAN_TABLE rows for various types of accesses follow. You can use them as a guide to recognizing
access path strategies in the PLAN_TABLE. Italicized column data is unique to the access path
strategy being demonstrated. (For example, in the first row shown, the R in the TYP column is italicized,
indicating that a tablespace scan is used.)

 - 537 -

 - 538 -

Cost Estimates and the DSN_STATEMNT_TABLE
At the same time EXPLAIN populates the PLAN_TABLE with access path information, it also can
populate cost estimate information into another table, DSN_STATEMNT_TABLE. The
DSN_STATEMNT_TABLE is also referred to simply as the statement table. You can use the DDL in
Listing 23.2 to create a DSN_STATEMNT_TABLE.

Listing 23.2: DDL to Create the DSN_STATEMNT_TABLE

CREATE TABLE DSN_STATEMNT_TABLE

 (

 QUERYNO INTEGER NOT NULL WITH DEFAULT,

 APPLNAME CHAR(8) NOT NULL WITH DEFAULT,

 PROGNAME CHAR(8) NOT NULL WITH DEFAULT,

 COLLID CHAR(18) NOT NULL WITH DEFAULT,

 GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,

 EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,

 STMT_TYPE CHAR(6) NOT NULL WITH DEFAULT,

 COST_CATEGORY CHAR(1) NOT NULL WITH DEFAULT,

 PROCMS INTEGER NOT NULL WITH DEFAULT,

 PROCSU INTEGER NOT NULL WITH DEFAULT,

 REASON VARCHAR(254) NOT NULL WITH DEFAULT

) IN database.tablespace;

 - 539 -

An EXPLAIN provides cost estimates, in service units and in milliseconds, for static and dynamic
SELECT, INSERT, UPDATE, and DELETE statements. Keep in mind that the estimates are indeed just
estimates. DB2 does not factor parallel processing, triggers, or user-defined functions into the cost
estimation process.

The cost estimate information is useful in helping you to determine general performance characteristics
of an application. You can use the cost estimates to determine roughly whether or not your programs
can execute within planned service levels.
The cost estimates determined by DB2 will be tagged with a category. The category represents the
confidence DB2 has in the estimate. There are two categories—category A and category B. Category A
estimates were formulated based on sufficient information. Estimates in category A are more likely to be
closer to reality than estimates in category B. A cost estimate is tagged as category B if DB2 must use
default values when formulating the estimate. This can occur when RUNSTATS has not been run or
when host variables are used in a query.
The DSN_STATEMNT_TABLE Columns
When EXPLAIN is run and an appropriate statement table exists, DB2 populates that table with SQL
cost estimates. To review these estimates, you need to understand the meaning of the
DSN_STATEMNT_TABLE columns. A description of every column of the DSN_STATEMNT_TABLE is
provided in Table 23.2.

Table 23.2: DSN_STATEMNT_TABLE Columns

Column Description
QUERYNO Indicates an integer value assigned by the user issuing the

EXPLAIN, or by DB2. Enables the user to differentiate between
EXPLAIN statements.

APPLNAME Contains the plan name for rows inserted as a result of running
BIND PLAN specifying EXPLAIN(YES). Contains the package
name for rows inserted as a result of running BIND PACKAGE with
EXPLAIN(YES). Otherwise, contains blanks for rows inserted as a
result of dynamic EXPLAIN statements.

PROGNAME Contains the name of the program in which the SQL statement is
embedded. If a dynamic EXPLAIN is issued from QMF, this column
contains DSQIESQL.

COLLID Contains the collection ID for the package.
GROUP_MEMBER Indicates the member name of the DB2 that executed EXPLAIN.

The column is blank if the DB2 subsystem was not in a data
sharing environment when EXPLAIN was executed.

EXPLAIN_TIME Indicates the time the plan or package for the statement or query
block was explained. The time is the same as the BIND_TIME
column in the PLAN_TABLE.

STMT_TYPE The type of statement being explained. Possible values are as
follow:

 SELECT SELECT
 INSERT INSERT
 UPDATE UPDATE
 DELETE DELETE
 SELUPD SELECT

with
FOR
UPDATE
OF

 DELCUR DELETE
WHERE
CURRE
NT OF
CURSO
R

 UPDCUR UPDATE

 - 540 -

WHERE
CURRE
NT OF
CURSO
R

COST_CATEGORY Indicates
whether
the
estimate
is in
category
A or B.
Informs
as to
whether
DB2 had
to use
default
values
when
formulati
ng cost
estimate
s. Valid
values
are as
follow:

 A DB2
had
enough
informa
tion to
make a
cost
estimat
e
without
using
default
values.

 B At least
one
conditio
n
existed
forcing
DB2 to
use
default
values.
The
REAS
ON
column
outlines
why
DB2
was
unable
to put

 - 541 -

this
estimat
e in
cost
categor
y A.

PROCMS The cost estimate in milliseconds, for the SQL statement
(rounded up to the next whole integer). The maximum value is
2,147,483,647 milliseconds (the equivalent of about 24.8 days). If
the estimated value exceeds this maximum, the maximum value
is reported.

PROCSU The cost estimate in service units, for the SQL statement
(rounded up to the next whole integer). The maximum value for
this cost is 2,147,483,647 service units. If the estimated value
exceeds this maximum, the maximum value is reported.

REASON A character string representing the reasons a cost estimate was
tagged as category B.

 HOST
VARIABLES The

statement
uses host
variables,
parameter
markers,
or special
registers.

 TABLE
CARDINALITY

The
cardinality
statistics
are
missing for
one or
more of
the tables
that are
used in the
statement.

 UDF The
statement
uses user-
defined
functions.

 TRIGGERS Triggers
are
defined on
the target
table of an
INSERT,
UPDATE,
or
DELETE
statement.

 REFERENTIAL
CONSTRAINT
S

CASCADE
or SET
NULL
referential
constraints
exist on

 - 542 -

the target
table of a
DELETE
statement

Function Resolution and the DSN_FUNCTION_TABLE
In addition to cost estimates and access paths, EXPLAIN also can populate function resolution
information. Simply by defining an appropriate DSN_FUNCTION_TABLE, also known as the function
table, EXPLAIN will populate that function table with information about the UDFs used during the plan,
package, or SQL statement. Refer to Listing 23.3 for DSN_FUNCTION_TABLE DDL.

Listing 23.3: DDL to Create the DSN_FUNCTION_TABLE

CREATE TABLE userid.DSN_FUNCTION_TABLE
 (QUERYNO INTEGER NOT NULL WITH DEFAULT,
 QBLOCKNO INTEGER NOT NULL WITH DEFAULT,
 APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
 PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
 COLLID CHAR(18) NOT NULL WITH DEFAULT,
 GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
 EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
 SCHEMA_NAME CHAR(8) NOT NULL WITH DEFAULT,
 FUNCTION_NAME CHAR(18) NOT NULL WITH DEFAULT,
 SPEC_FUNC_NAME CHAR(18) NOT NULL WITH DEFAULT,
 FUNCTION_TYPE CHAR(2) NOT NULL WITH DEFAULT,
 VIEW_CREATOR CHAR(8) NOT NULL WITH DEFAULT,
 VIEW_NAME CHAR(18) NOT NULL WITH DEFAULT,
 PATH VARCHAR(254) NOT NULL WITH DEFAULT,
 FUNCTION_TEXT VARCHAR(254) NOT NULL WITH DEFAULT
) IN database.tablespace;

When a function is invoked in an SQL statement, DB2 must choose the correct function to run to satisfy
the request. DB2 will check for candidate functions to satisfy the function request. The manner in which
DB2 chooses which function to run is documented in Chapter 4, "Using DB2 User-Defined Functions
and Data Types."
The DSN_FUNCTION_TABLE Columns
A description and definition of the DSN_FUNCTION_TABLE columns is provided in Chapter 4. Please
refer to that chapter for the details.

EXPLAIN Guidelines
Implement the following guidelines to effectively EXPLAIN and optimize the SQL statements used in
your DB2 applications.

Influence the Optimizer to Obtain Efficient Access Paths
You can influence the optimizer to choose different access paths in a variety of ways. Methods for
accomplishing this task are outlined in Chapter 26, "Tuning DB2's Components." The best approach for
influencing the Optimizer is to use optimization hints. This approach uses the PLAN_TABLE to define
the access path you want DB2 to use.
Populate the EXPLAIN Tables in Production
Bind production packages and plans using EXPLAIN(YES). This way, you can create a trail of access
paths, cost estimates, and function resolution information that can be examined in the event of a
performance problem or UDF bug.
Educate All DB2 Technicians in the Use of EXPLAIN
Train all technical DB2 users in the use of EXPLAIN. Although not everyone will be able to analyze the
results in depth, all programmers, analysts, and systems programmers should understand, at a
minimum, how to issue EXPLAIN for plans, packages, and single SQL statements, the meaning of each
column in the PLAN_TABLE, and how to identify whether an index was used for a query.

 - 543 -

Identify Modifications with Care
Prior to DB2 V5, identifying INSERT, UPDATE, and DELETE statements in a PLAN_TABLE is
sometimes difficult. INSERT statements have a blank in the ACCESSTYPE column because no specific
access path strategies can be chosen for an INSERT. Because UPDATE and DELETE statements, on
the other hand, can use access path strategies, identifying them can be difficult. When the statement is
embedded in a program, it can be traced back to the program using the QUERYNO column. When it is
placed in the PLAN_TABLE as the result of an independent EXPLAIN, be sure to record which
QUERYNO applies to which query.
As of DB2 V5, the PLAN_TABLE contains the QBLOCK_TYPE column. This column contains a
description of the type of statement that was analyzed for each specific query block. Be sure to review
this column when you analyze PLAN_TABLE rows.
Use REMARKS for Documentation
Use the REMARKS column in the PLAN_TABLE to record historical information in the PLAN_TABLE
for specific access paths. One recommendation is to record in the REMARKS column the SQL
statement that was EXPLAINed to produce the given PLAN_TABLE rows. Another recommendation is
to record identifying comments. For example, if the rows represent the access path for a given query
after an index was added, set the REMARKS column to something like ADDED INDEX INDEXNAME.
Keep RUNSTATS Accurate
The EXPLAIN results are only as good as the statistics in the DB2 Catalog. Ensure that RUNSTATS
has been run before issuing any EXPLAIN commands. If RUNSTATS has not been run, verify that the
DB2 Catalog statistics are still appropriate before running EXPLAIN.

Be Aware of Missing Pieces
Keep in mind that to analyze SQL performance properly, you will require more than just the EXPLAIN
results in the PLAN_TABLE. Proper performance analysis requires the following:

 A listing of the actual SQL statement
 A listing of the actual DDL (or the DB2 Catalog information) for the objects being

accessed and/or modified
 The actual filter factors used when creating the access path
 The high-level code (3GL/4GL) in which the SQL statement is embedded
 The actual DB2 Catalog statistics that were in place at the time the EXPLAIN was

performed
 The DB2 release level and maintenance level at the time the EXPLAIN was run
 Knowledge of the bind parameters used for the plan(s) and/or package(s) in which the

SQL statement is embedded
 Knowledge of the DB2 subsystem(s) in which the SQL statement will be executed

(including settings for bufferpools, hiperpools, EDM Pool, locking parameters, and so
on)

 Knowledge of the hardware environment where the SQL is being run (including type of
mainframe, number and type of processors, amount of memory, and so on)

 Knowledge of concurrent activity in the system when the SQL statement was (or will
be) executed

This additional information can be used, along with the PLAN_TABLE output, to estimate the
performance of any given SQL statement.
Several other pieces of information are missing from the PLAN_TABLE, thus making the task of
performance estimation significantly more difficult. The first missing EXPLAIN component is that the
PLAN_TABLE does not show access paths for referentially accessed tables. For example, the following
statement accesses not only the DEPT table but also the EMP table and the PROJ table because they
are tied to DEPT by referential constraints:
DELETE
FROM DSN8610.EMP
WHERE EMPNO = '000100';
EXPLAIN should record the fact that these tables are accessed because of the RI defined on the EMP
table, but it does not. (This information should also be recorded in the DB2 Catalog in the
SYSIBM.SYSPLANDEP table, but it is not there either.) The only way to determine the extent of
referentially accessed data is with a performance monitoring tool.
When indexes are accessed as the result of a DELETE or UPDATE statement, EXPLAIN fails to record
this information. RID sorts invoked (or not invoked) by list PREFETCH also are not reported by
EXPLAIN.
Runtime modifications to the access path determined at bind time are not recorded in the
PLAN_TABLE. For example, simply by examining the PLAN_TABLE, you cannot determine whether
sequential detection will be invoked or whether the degree of parallelism will be reduced at runtime.

 - 544 -

Additionally, EXPLAIN cannot provide information about the high-level language in which it is
embedded. An efficient access path could be chosen for an SQL statement that is embedded
improperly in an application program. Examples of inefficient SQL embedding follow:

 The SQL statement is executed more than once unnecessarily.
 A singleton SELECT is embedded in a loop and executed repeatedly when fetching

from a cursor is more efficient.
 Cursor OPENs and CLOSEs are not evaluated as to their efficiency; a program might

perform many opens and closes on a single cursor unnecessarily, and EXPLAIN will
not record this fact.

EXPLAIN does not provide information on the order in which predicates are applied. For example,
consider the following statement:
SELECT DEPTNO, DEPTNAME
FROM DSN8610.DEPT
WHERE MGRNO > '000030'
AND ADMRDEPT = 'A00';

Which predicate does DB2 apply first?
MGRNO > '000030'

or
ADMRDEPT = 'A00'
EXPLAIN does not provide this data. Pieces of some of this data are available in the
DSN_STATEMNT_TABLE in the REASONS column. Of course, the statement table only contains
general indications to help you further analyze potential problems. It does not contain detailed
information. But it can help to indicate if referential constraints, UDFs, triggers, or host variables are
utilized for SQL statements.
Delete Unneeded PLAN_TABLE Rows
Periodically purge rows from your PLAN_TABLEs to remove obsolete access path information.
However, you might want to retain more than the most recent EXPLAIN data to maintain a history of
access path selection decisions made by DB2 for a given SQL statement. Move these "history" rows to
another table defined the same as the PLAN_TABLE but not used by EXPLAIN. This way, you can
ensure that the PLAN_TABLEs used by EXPLAIN are as small as possible, thus increasing the
efficiency of EXPLAIN processing.
Consider PLAN_TABLE Indexes
Create indexes for very large PLAN_TABLEs. Consider indexing on columns frequently appearing in
predicates or ORDER BY clauses. Of course, these indexes should be type 2 indexes to accrue all the
benefits not available to type 1 indexes.
Run RUNSTATS on All EXPLAIN Tables
Always run RUNSTATS on the tablespaces for the PLAN_TABLE, DSN_STATEMNT_TABLE, and
DSN_FUNCTION_TABLE. These tables are frequently updated and queried. As such, DB2 needs
current statistics to create optimal access paths for these queries. Furthermore, the statistics
accumulated by RUNSTATS can help to determine if a REORG of these tablespaces is required.

Note For PLAN_TABLEs that will grow to be very large, consider enabling compression
to reduce the amount of disk space required for EXPLAIN data.

Be aware, though, that indexes on these tables can slow down the BIND process when EXPLAIN(YES)
is specified because DB2 must update the three EXPLAIN tables and their indexes.

Specify EXPLAIN(YES) in Production
Be sure to specify EXPLAIN(YES) when binding production plans and packages. Doing so will ensure
that you have an accurate recording of the access paths and function resolution details for all production
programs.

Strive for the Most Efficient Access Path
As you analyze PLAN_TABLE results, remember that some access paths are more efficient than
others. Only three types of access paths can be chosen: direct index lookup, index scan, or tablespace
scan. However, these three types of accesses can be combined with other DB2 performance features
(refer to Chapter 19, "The Optimizer"). A basic hierarchy of efficient access paths from most efficient
(those incurring the least I/O) to least efficient (those incurring the most I/O) follows:

Index-only direct index lookup

 - 545 -

Direct index lookup with data access

Index-only matching index scan

Index-only non-matching index scan

Matching clustered index access

Matching non-clustered index access

Non-matching clustered index access

Non-matching non-clustered index access

Partitioned tablespace scan skipping multiple partitions (partition scan)

Segmented tablespace scan (table scan)

Simple tablespace scan
This list represents only general cases in which a limited number of rows are to be retrieved. The
hierarchy should be viewed in reverse order when most of the rows of a table are being accessed. For
example, a tablespace scan can outperform indexed access if as little as 25% of the rows of the table
are accessed to satisfy the query. Likewise, a tablespace scan almost always outperforms indexed
access for small tables (fewer than ten pages), regardless of the number of rows to be accessed.
Although keeping the preceding hierarchy in mind when evaluating EXPLAIN results is a good idea,
each SQL statement should be analyzed independently to determine the optimal access paths.

When determining which path is most efficient, the answer always comes down to the number of rows
required to be read and the number of rows that qualify.
In general, the optimizer does a great job for this complete task. The exceptional cases, however, will
compel you to become an EXPLAIN/access path expert so that you can tune the troublesome queries.
Use Tools to Assist in EXPLAIN Analysis
Several products that augment the functionality of the EXPLAIN command are available. Examples
include BMC Software's SQL-Explorer, Computer Associates' Plan Analyzer and Candle Corporation's
DB/Explain. Refer to Chapter 37, "Components of a Total DB2 Solution," for a discussion of SQL
access path analysis products.

Use Cost Estimate Information with Caution
The cost estimates provided by EXPLAIN are rough estimates. Although they can be used to provide a
general estimation of application performance, they are not 100% accurate. Additionally, other factors
impact the performance of application programs. The cost estimates are for SQL statements only. DB2
and EXPLAIN do not provide cost estimates for work done by programs outside of DB2.

Summary
In this chapter, you learned how to use the EXPLAIN statement to gather information on the
SQL statement access paths chosen by DB2. By carefully collecting and analyzing
PLAN_TABLE data, you can tweak SQL statements and your environment to optimize DB2
performance. You also learned about the cost estimates and function resolution information
that EXPLAIN can provide.
But you also learned that EXPLAIN does not tell the whole story. Much of the additional
information needed to tune DB2 performance is contained in the DB2 Catalog. The next
chapter covers how monitor DB2 objects using the DB2 Catalog.

Chapter 24: DB2 Object Monitoring Using the DB2
Catalog

Overview
To maintain efficient production DB2-based systems, you must periodically monitor the DB2
objects that make up those systems. This type of monitoring is an essential component of

 - 546 -

post-implementation duties because the production environment is dynamic. Fluctuations in
business activity, errors in the logical or physical design, or lack of communication can cause
a system to perform inadequately. An effective strategy for monitoring DB2 objects in the
production environment will catch and forestall problems before they affect performance.

Additionally, if you have a DB2 Catalog monitoring strategy in place, reacting to performance
problems becomes simpler. This chapter describes basic categories of DB2 Catalog queries,
along with SQL statements querying specific DB2 Catalog information. I present queries in the
following categories:

 Navigational queries, which help you maneuver through the sea of DB2 objects in
your DB2 subsystems

 Physical analysis queries, which depict the physical state of your application
tablespaces and indexes

 Queries that aid programmers (and other analysts) in identifying the components
of DB2 packages and plans

 Application efficiency queries, which combine DB2 Catalog statistics with the
PLAN_TABLE output from EXPLAIN to identify problem queries quickly

 Authorization queries, which identify the authority implemented for each type of
DB2 security

 Partition statistics queries, which aid the analysis of partitioned tablespaces for
parallel access

You can implement these queries using SPUFI or QMF. You should set them up to run as a
batch job; otherwise, your terminal will be needlessly tied up executing them. You also would
be wise to schedule these queries regularly and then save the output on paper, on microfiche,
or in a report storage facility with an online query facility.

Each category contains several DB2 Catalog queries you can use for performance monitoring.
Each query is accompanied by an analysis that highlights problems that can be trapped by
reviewing the output results of the query.

In implementing this DB2 Catalog monitoring strategy, I have made the following assumptions:
 All application plans are bound with the EXPLAIN(YES) option.
 Each application has its own PLAN_TABLE for the storage of the EXPLAIN

results.
 Scheduled production STOSPACE and RUNSTATS jobs are executed on a regular

basis to ensure that the statistical information in the DB2 Catalog is current;
otherwise, the queries might provide inaccurate information.

 Plans are rebound when RUNSTATS has been executed so that all access paths
are based on current statistical information. If you have not done so, you should
have a valid, documented reason. When the access paths for your packages and
plans are not based on current DB2 Catalog statistics, tuning SQL using the DB2
Catalog queries presented in this chapter is difficult.

Having a report of each PLAN_TABLE for each application is also useful. This way, you can
check the DB2 Catalog information against the optimizer access path selection information.
You can obtain these reports by using the following query (which was shown also in the
preceding chapter):

SELECT QUERYNO, QBLOCKNO, QBLOCK_TYPE, PLANNO, METHOD, TNAME,
 ACCESSTYPE, JOIN_TYPE, MATCHCOLS, ACCESSNAME,
 INDEXONLY, SORTN_PGROUP_ID, SORTN_UNIQ, SORTN_JOIN,
 SORTN_ORDERBY, SORTN_GROUPBY, SORTC_PGROUP_ID,
 SORTC_UNIQ, SORTC_JOIN, SORTC_ORDERBY, SORTC_GROUPBY,
 TSLOCKMODE, PREFETCH, COLUMN_FN_EVAL, MIXOPSEQ,
 ACCESS_DEGREE, ACCESS_PGROUP_ID, JOIN_DEGREE,
 JOIN_PGROUP_ID, PARALLELISM_MODE, MERGE_JOIN_COLS,
 CORRELATION_NAME, PAGE_RANGE, GROUP_MEMBER,
 WHEN_OPTIMIZE, BIND_TIME, HINT_USED
FROM ownerid.PLAN_TABLE

 - 547 -

ORDER BY QUERYNO, QBLOCKNO, PLANNO;

Navigational Queries
To perform database and system administration functions for DB2, often you must quickly
locate and identify objects and their dependencies. Suppose that a DBA must analyze a
poorly performing query. The DBA has the query and a report of the EXPLAIN for the query,
but no listing of available indexes and candidate columns for creating indexes. Or what if a
query accessing a view is performing poorly? An analyst must find the composition of the view
and the tables (or views) on which it is based. The navigational queries identified in this
section provide object listing capabilities and more.

The first navigational query provides a listing of the tables in your DB2 subsystem by
database, tablespace, and creator:
SELECT T.DBNAME, T.TSNAME, T.CREATOR, T.NAME, T.CREATEDTS,
 T.ALTEREDTS, C.COLNO, C.NAME, C.COLTYPE, C.LENGTH,
 C.SCALE, C.NULLS, C.DEFAULT, C.COLCARDF,
 HEX(C.HIGH2KEY), HEX(C.LOW2KEY), C.FLDPROC
FROM SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSTABLES T
WHERE T.CREATOR = C.TBCREATOR
AND T.NAME = C.TBNAME
AND T.TYPE = 'T'
ORDER BY T.DBNAME, T.TSNAME, T.CREATOR, T.NAME, C.COLNO;

This query is good for identifying the composition of your DB2 tables, down to the data type
and length of the columns.

Another useful navigational query presents an index listing:
SELECT T.DBNAME, T.TSNAME, T.CREATOR, T.NAME, I.CREATOR,
 I.NAME, I.INDEXTYPE, I.UNIQUERULE, I.CLUSTERING,
 I.CLUSTERRATIOF*100, I.CREATEDTS, I.ALTEREDTS,
 I.PIECESIZE, K.COLSEQ, K.COLNAME, K.ORDERING
FROM SYSIBM.SYSKEYS K,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSINDEXES I
WHERE (I.TBCREATOR = T.CREATOR AND I.TBNAME = T.NAME)
AND (K.IXCREATOR = I.CREATOR AND K.IXNAME = I.NAME)
ORDER BY 1, 2, 3, 4, 5, 6, 14;

This query lists all indexes in your DB2 subsystem by database, tablespace, table creator, and
table. It is similar to the table listing query and can be used to identify the columns that make
up each index.

By viewing the output from these two queries, you can ascertain the hierarchy of DB2 objects
(indexes in tables in tablespaces in databases). Additionally, these queries report the time the
table or index was initially created and the time each was last altered. This information can be
useful in an emergency situation when you need to determine what has been changed.

The output from these queries is superb for navigation. The DBA can easily get lost in a flood
of production objects. By periodically running these queries and saving the output, a DBA can
have a current profile of the environment in each DB2 subsystem that must be monitored.
Large installations might have thousands of tables and indexes, making the reports generated
by these queries unwieldy. If these queries produce too much information to be easily
digested for one report, consider adding a WHERE clause to query only the objects you're

 - 548 -

interested in at the time. For example, add the following clause to report on information
contained in specific databases only:
WHERE T.DBNAME IN ('DATABAS1', 'DATABAS2', DATABAS9')
Eliminating the sample databases (DSN8D61A, DSN8D61P), the DB2 Catalog database
(DSNDB06), and any extraneous databases (such as QMF and databases for third-party
products) is usually desirable. However, doing so is optional; you may want to monitor
everything known to DB2.

Although the primary purpose of these two queries is navigation, they also can aid in problem
determination and performance tuning. For example, note the following query:
SELECT A.COL1, A.COL2, B.COL3
FROM TABLE1 A,
 TABLE2 B
WHERE A.COL1 = B.COL4;
If this query is not performing properly, you would want to know the column types and lengths
for COL1 in TABLE1 and COL4 in TABLE2. The type and length for both columns should be the
same. If they are not, you can deduce that DB2 is performing a data conversion to make the
comparison, which affects performance.
If the data type and length are the same, you would want to see what indexes (if any) are
defined on these columns and then analyze the EXPLAIN output. Other significant data might
be the uniqueness of each index, the cluster ratio for the index (these items influence the
optimizer's choice of access path), and the number of tables in a tablespace (can cause
performance degradation for non-segmented tablespaces). You can obtain all this information
from these reports.

You also will need a list of user-defined distinct types (UDTs). UDTs can be used in tables and
it will be helpful to know how each UDT is defined as you peruse the table and column listing.
To obtain a list of UDTs defined to DB2, issue the following query:
SELECT SCHEMA, NAME, METATYPE, SOURCESCHEMA, SOURCETYPEID,
 LENGTH, SCALE, SUBTYPE, ENCODING_SCHEME, CREATEDBY
FROM SYSIBM.SYSDATATYPES
ORDER BY SCHEMA, NAME;
The output from this query shows all user-defined distinct types, along with the base data type
from which the UDT was sourced. If you need to find all of the UDTs sourced from a base
data type, you might want to change the ORDER BY clause as follows:
ORDER BY SOURCESCHEMA, SOURCETYPEID;

You might also need to examine a listing of the objects used to support your LOB columns.
The following query can be used to report on the LOB columns, auxiliary tables, and LOB
tablespaces used in your DB2 subsystem:
SELECT T.DBNAME, T.TSNAME, T.CREATOR, T.NAME,
 A.AUXTBOWNER, A.AUXTBNAME, A.COLNAME, S.LOG
FROM SYSIBM.SYSTABLESPACE S,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSAUXRELS A
WHERE T.DBNAME = S.DBNAME
AND T.TSNAME = S.NAME
AND S.TYPE = 'O'
AND A.TBNAME = T.NAME
AND A.TBOWNER = T.CREATOR
ORDER BY T.DBNAME, T.TSNAME, T.CREATOR, T.NAME,
 A.AUXTBOWNER, A.AUXTBNAME;

 - 549 -

The LOG column pertains specifically to LOB tablespaces. Examine this column to determine
which LOB columns are logged and which are not.

Another useful navigational report is the view listing query:
SELECT CREATOR, NAME, SEQNO, CHECK, TEXT
FROM SYSIBM.SYSVIEWS
ORDER BY CREATOR, NAME, SEQNO;

The output from this query identifies all views known to DB2 along with the SQL text used to
create the view. This information is useful when you're monitoring how SQL performs when it
accesses DB2 views.
Note This report may have multiple rows per view.

Monitoring the aliases and synonyms defined for DB2 tables also is desirable. The next query
provides a listing of all aliases known to the DB2 subsystem:
SELECT CREATOR, NAME, TBCREATOR, TBNAME, CREATEDBY
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'A'
ORDER BY CREATOR, NAME;

This one provides a listing of all synonyms:
SELECT CREATOR, NAME, TBCREATOR, TBNAME, CREATEDBY
FROM SYSIBM.SYSSYNONYMS
ORDER BY CREATOR, NAME;
By scanning the names returned by the table, view, alias, and synonym listing queries, you
can reference the complete repository of objects that can be specified in the FROM clause of
SQL SELECT statements. One additional table-related query reports on the temporary tables
defined to DB2:
SELECT CREATOR, NAME, TBCREATOR, TBNAME, CREATEDBY
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'G'
ORDER BY CREATOR, NAME;

Temporary tables are used to house temporary results in application programs that are
required only for the life of the program but can benefit from being accessed using SQL.

When referential integrity is implemented for a DB2 application, DBAs, programmers, and
analysts must have quick access to the referential constraints defined for the tables of the
application. This information is usually in the form of a logical data model depicting the
relationships between the tables. However, this information is not sufficient because physical
design decisions could have overridden the logical model. Although these design decisions
should be documented, having ready access to the physical implementation of the referential
integrity defined to your system is wise. This query provides a listing of referential constraints
by dependent table:
SELECT F.CREATOR, F.TBNAME, R.REFTBCREATOR, R.REFTBNAME,
 F.RELNAME, R.DELETERULE, F.COLSEQ, F.COLNAME
FROM SYSIBM.SYSFOREIGNKEYS F,
 SYSIBM.SYSRELS R
WHERE F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
ORDER BY F.CREATOR, F.TBNAME, R.REFTBCREATOR, R.REFTBNAME;

 - 550 -

This one provides a listing of all referential constraints by parent table:
SELECT R.REFTBCREATOR, R.REFTBNAME, F.CREATOR, F.TBNAME,
 F.RELNAME, R.DELETERULE, F.COLSEQ, F.COLNAME
FROM SYSIBM.SYSFOREIGNKEYS F,
 SYSIBM.SYSRELS R
WHERE F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
ORDER BY R.REFTBCREATOR, R.REFTBNAME, F.CREATOR, F.TBNAME;
These two queries provide the same information in two useful formats: the first by dependent
(or child) table and the second by parent table. For a refresher on these referential integrity
terms, refer to Figure 24.1.

Figure 24.1: Referential integrity terms.

The output from both of these referential integrity queries is useful when you're searching for
relationships between tables—both forward from the parent table and backward from the
dependent table. This query returns all the information that defines each referential constraint,
including the following:

 The creator and name of the parent and dependent tables that make up the
referential constraint

 The constraint name
 The DELETE RULE for each referential constraint
 The columns that make up the foreign key

This information is useful for programmers and analysts writing data modification programs.
The referential constraints affect both the functions that modify data in tables participating in
referential constraints and the SQLCODEs returned to the program. DBAs need this
information, with the index listing data described previously, to ensure that adequate indexes
are defined for all foreign keys.

Knowing all the check constraints used in the DB2 subsystem is also useful. The following
query displays all the check constraints and lists the columns to which each check constraint
applies:
SELECT TBOWNER, TBNAME, CHECKNAME, COLNAME
FROM SYSIBM.SYSCHECKDEP
ORDER BY TBOWNER, TBNAME, CHECKNAME;

To find the actual text of each check constraint, you can issue the following SQL:
SELECT TBOWNER, TBNAME, CHECKNAME, TIMESTAMP,
 CHECKCONDITION
FROM SYSIBM.SYSCHECKS
ORDER BY TBOWNER, TBNAME, CHECKNAME;

As of DB2 V6, you can also implement data integrity constraints using triggers. Triggers are
assigned to specific tables. The following query can help you to find the triggers on a table:
SELECT TBOWNER, TBNAME, SCHEMA, NAME,

 - 551 -

 TRIGTIME, TRIGEVENT, GRANULARITY, CREATEDTS
FROM SYSIBM.SYSTRIGGERS
WHERE SEQNO = 1
ORDER BY TBOWNER, TBNAME, SCHEMA, NAME;

The following query can help you to find the table if you know the trigger:
SELECT SCHEMA, NAME, TBOWNER, TBNAME,
 TRIGTIME, TRIGEVENT, GRANULARITY, CREATEDTS
FROM SYSIBM.SYSTRIGGERS
WHERE SEQNO = 1
ORDER BY SCHEMA, NAME, TBOWNER, TBNAME;
The previous two queries do not return the actual text of the trigger because it can be very
long. The column used to store the trigger code, TEXT, is defined as VARCHAR(3460).
Additionally, multiple rows can be required to store very long triggers. That is why the
SEQNO column is used to retrieve only one row per trigger instance. If you want to retrieve the
trigger text, use the following query:
SELECT SCHEMA, NAME, SEQNO, TBOWNER, TBNAME
 TRIGTIME, TRIGEVENT, GRANULARITY,
 TEXT
FROM SYSIBM.SYSTRIGGERS
ORDER BY SCHEMA, NAME, SEQNO;

Queries to obtain stored procedure and UDF information are presented later in this chapter.
The following is the STOGROUP listing query:
SELECT A.NAME, A.VCATNAME, A.SPACE,
 A.STATSTIME, A.CREATEDBY, B.VOLID
FROM SYSIBM.SYSSTOGROUP A,
 SYSIBM.SYSVOLUMES B
WHERE A.NAME = B.SGNAME
ORDER BY A.NAME;
This query shows each storage group defined to your DB2 subsystem, along with pertinent
information about the STOGROUP, such as

 The associated VCAT, used as the high-level qualifier for all data sets created for
objects assigned to this storage group

 The total space used by objects assigned to this STOGROUP
 The authorization ID of the storage group creator
 The IDs of the DASD volumes assigned to the STOGROUP or * if SMS is being

used
Use caution in reviewing the output from this query because the volumes are not returned in
the order in which they were specified when the storage group was created. DB2 does not
provide the capability of retrieving the order of the volumes in the STOGROUP.

Navigational monitoring is only one level of DB2 performance monitoring using the DB2
Catalog. The next level delves deeper into the physical characteristics of DB2 objects.

Physical Analysis Queries
Sometimes you must trace a performance problem in a DB2 query to the physical level.
Characteristics at the physical level are determined when DB2 objects are defined and can be
modified by SQL ALTER statements or the statistics that reflect the state of the data in the
physical objects. This section concentrates on tablespaces and indexes; these objects require
a physical data set.
You have many options for creating a DB2 object. If poor choices are made, performance is
affected. You can find an analysis of the proper DDL choices in Chapter 5, "Data Definition
Guidelines." You can use the physical statistics queries to monitor these options.

 - 552 -

The physical tablespace statistics query provides a listing of all tablespaces in each database
and lists the physical definitions and aggregate statistics detail for each tablespace:

SELECT T.DBNAME, T.NAME, T.IMPLICIT, T.LOCKMAX, T.BPOOL, T.LOCKRULE,
 T.ERASERULE, T.CLOSERULE, T.PARTITIONS, T.TYPE, T.SEGSIZE,
 T.DSSIZE,
 T.NTABLES, T.NACTIVEF, T.PGSIZE, T.MAXROWS,
 T.ENCODING_SCHEME,
 P.CARDF, P.FARINDREF, P.NEARINDREF, P.PERCACTIVE, P.PERCDROP,
 P.COMPRESS, P.PAGESAVE, P.FREEPAGE, P.PCTFREE, P.STORNAME,
 P.VCATNAME, P.STATSTIME, P.PARTITION, P.GBPCACHE
FROM SYSIBM.SYSTABLESPACE T,
 SYSIBM.SYSTABLEPART P
WHERE T.NAME = P.TSNAME
AND T.DBNAME = P.DBNAME
ORDER BY T.DBNAME, T.NAME, P.PARTITION;

Having reported on physical tablespace statistics, the next step is to analyze physical index
statistics. The physical index statistics query provides a report of all indexes grouped by
owner, along with the physical definitions and aggregate statistics supporting each index:

SELECT I.CREATOR, I.NAME, I.INDEXTYPE, I.UNIQUERULE, I.CLUSTERING,
 I.CLUSTERED, I.CLUSTERRATIOF*100, P.PQTY, P.SECQTYI,
 I.FIRSTKEYCARDF, I.FULLKEYCARDF, I.NLEAF, I.NLEVELS,
 I.PGSIZE,
 I.ERASERULE, I.CLOSERULE, P.CARDF,
 P.FAROFFPOSF, P.LEAFDIST, P.NEAROFFPOSF, P.FREEPAGE,
 P.PCTFREE, P.STORNAME, P.VCATNAME, P.STATSTIME,
 P.PARTITION
FROM SYSIBM.SYSINDEXES I,
 SYSIBM.SYSINDEXPART P
WHERE I.NAME = P.IXNAME
AND I.CREATOR = P.IXCREATOR
ORDER BY I.CREATOR, I.NAME, P.PARTITION;

These reports are invaluable tools for diagnosing performance problems when they happen.
Frequently, you also can use them to catch problems before they occur.
Review each tablespace and index to determine the CLOSE RULE for it. Objects accessed
infrequently or only once per day do not need to remain open. If you're using DB2 V3 or later
releases, monitoring the CLOSE RULE is not as important because DB2 performs a pseudo-
close, reducing the impact of the implicit, behind-the-scenes data set opening and closing.
Thus, you should modify most tablespaces and indexes to use CLOSE YES to take advantage
of DB2's improved data set OPEN and CLOSE management techniques.

The physical analysis queries are also useful in determining the frequency of reorganization.
Monitor the following information:
PERCDROP
NEAROFFPOSF
FAROFFPOSF
NEARINDREF
FARINDREF
LEAFDIST
CLUSTERRATIOF

 - 553 -

Note NEAROFFPOSF, FAROFFPOSF, and CLUSTERRATIOF apply to clustering
indexes only.

The PERCDROP column for tablespaces indicates the percentage of space occupied by rows
from dropped tables. Non-segmented tablespaces cannot reclaim this space until they are
reorganized.
The PAGESAVE column for tablespaces indicates the percentage of pages saved (per
partition) by using ESA compression.
Both the tablespace and index queries display the STATSTIME column. It is crucial because
STATSTIME provides a timestamp indicating when RUNSTATS was run to produce the
statistical information being reported.
Far-off and near-off pages indicate the degree of tablespace or index disorganization. For
non-segmented tablespaces, a page is near off if the difference between the page and the
next one is between 2 and 15 pages inclusive. For segmented tablespaces, a page is
considered near off the present page if the difference between the two pages is between 2
and the SEGSIZEx2. A page is far off if the difference is 16 or greater. NEAROFFPOSF for an
index indicates the number of times a different near-off page must be accessed when
accessing all the tablespace rows in indexed order. The definition of FAROFFPOSF is the same
except that far-off page is substituted for near-off page.
Note For segmented tablespaces only: After a REORG, the NEAROFFPOSF can be

greater than 0 if there are multiple space map pages.
NEAROFFPOSF and FAROFFPOSF are measures to gauge the organization of the data in the
underlying table. It assumes that the index in question is the clustering index. Given that
assumption, the values indicate how many of the rows in the table are ill-placed. If the index is
not the clustering index, FAROFFPOSF and NEAROFFPOSF are not useful as indicators of data
organization.
The NEARINDREF and FARINDREF columns for a tablespace indicate the number of rows that
have been relocated either near (2 to 15 pages) or far away (16 or more pages) from their
original location. This relocation can occur as the result of updates to variable length rows
(that is, rows with VARCHAR columns, tables with EDITPROCs, or compressed rows).
LEAFDIST helps determine the relative efficiency of each index. LEAFDIST indicates the
average number of pages between successive index leaf pages. The more intervening pages,
the less efficient the index will be.
Finally, you can use CLUSTERRATIOF to determine the overall condition of the index as it
corresponds to the physical order of the tablespace data. The more clustered an index is, the
greater its conformance to the order of the rows as they are physically aligned in the
tablespace. A cluster ratio of 100% indicates that the index and the tablespace ordering
matches exactly. As the cluster ratio diminishes, access that uses the index becomes less
efficient.
Note CLUSTERRATIOF for partitioned indexes can be found in

SYSIBM.SYSINDEXSTATS. This CLUSTERRATIOF is at the partition level and
can help to determine if only a subset of the partitions needs to be reorganized.

Table 24.1 is a guide to using this information to determine how frequently tablespaces and
indexes should be reorganized. A + indicates that you should REORG more frequently as the
value in that column gets larger. A – indicates that you should REORG more frequently as the
value gets smaller. As the number of + or – increases, the need to REORG becomes more
urgent. For example, as PERCDROP gets larger, the need to REORG is very urgent, as indicated
by five plus signs. For CLUSTERRATIOF, as the value gets smaller, the need to REORG
increases.

Table 24.1: Reorganization Indicators

Column Object Impact
PERCDROP Tablespace +++++
NEAROFFPOSF Tablespace +
FAROFFPOSF Tablespace ++++
NEARINDREF Index +
FARINDREF Index ++++
LEAFDIST Index +++

 - 554 -

CLUSTERRATIOF Index –––––

You also can use the physical analysis queries to learn at a glance the physical characteristics
of your tablespaces and indexes. For example, these queries return the following:

 Tablespace and index information about partitioning, page size, erase rule, close
rule, cardinality, and storage group or VCAT specification

 Information about tablespace lock rules, segment size, and whether the
tablespace was created implicitly (without explicit DDL)

 Index-specific statistics such as uniqueness and clustering information
Analyzing the tablespace and index space usage also is useful. By monitoring PERCACTIVE,
FREEPAGE, and PCTFREE and using a data set allocation report or a LISTCAT output, you
can review and modify space utilization. Generally, when PERCACTIVE is low, you should
redefine the tablespace or index with a smaller PRIQTY, a smaller SECQTY, or both. Free
space can be changed as well. In any event, you must monitor these reports with the data set
statistics. Also remember that changes to space characteristics do not take effect unless the
tablespace being altered is reorganized and the index is reorganized or recovered.
Following are notes on using LISTCAT with DB2 data sets. LISTCAT reads the ICF catalog
and displays pertinent values for data sets. The values returned by LISTCAT are generally
useful for determining the overall status of a data set. However, when the data set is a VSAM
data set used by DB2 for tablespaces or indexes, only some fields in the ICF catalog are
accurate. They are as follows:

High used RBA

Number of extents

High allocated RBA

Size of each extent

DFP indicators

Volumes for each extent
Caution If the PREFORMAT option is used, the high used RBA value can be

misleading.

You can analyze DB2 tablespace and index DASD use further with the following queries.

You can monitor tablespace DASD use by analyzing the results of this query:
SELECT T.DBNAME, T.NAME, T.PARTITIONS, T.NTABLES,
 T.NACTIVEF, T.SPACE,
 CASE NACTIVEF
 WHEN 0 THEN 0
 ELSE (100*T.NACTIVEF*T.PGSIZE)/T.SPACE,
 P.PARTITION, P.PQTY, P.SECQTYI, P.STORTYPE, P.STORNAME,
 P.VCATNAME
FROM SYSIBM.SYSTABLESPACE T,
 SYSIBM.SYSTABLEPART P
WHERE T.DBNAME = P.DBNAME
AND T.NAME = P.TSNAME
ORDER BY 1, 2, 3, 4, 5, 6, 7, 8;

Note For partitioned tablespaces, consider joining to the SYSIBM.SYSTABSTATS
table to get the statistics by partition.

You can monitor index DASD use by analyzing the results of the following query:
SELECT I.CREATOR, I.NAME, I.INDEXTYPE, I.INDEXSPACE, I.SPACE,

 - 555 -

 I.PGSIZE, P.PARTITION, P.PQTY, P.SECQTYI,
 P.STORTYPE, P.STORNAME, P.VCATNAME
FROM SYSIBM.SYSINDEXES I,
 SYSIBM.SYSINDEXPART P
WHERE I.NAME = P.IXNAME
AND I.CREATOR = P.IXCREATOR
ORDER BY 1, 2, 3, 4, 5, 6, 7;

These queries return information about only the particular object's DASD space use. The
index DASD use query simply repeats the information from the previous physical index
statistics query, presenting only DASD space use information. The tablespace DASD query
adds a calculation column:
 [(100*T.NACTIVEF*T.PGSIZE)/T.SPACE]
Caution Several factors can cause the previous queries to be inaccurate. The SPACE

values are only collected for STOGROUP-defined objects that have not been
archived by SMS. Furthermore, if the PREFORMAT option is used, the space
information might be misleading.
The CASE expression is used to eliminate the possibility of dividing by zero.
The SPACE column in SYSIBM.SYSTABLESPACE can be zero if the
STOSPACE utility has not been run or if the tablespace was not defined using
STOGROUPs.

This calculation shows the percentage of the tablespace being utilized. This number should be
monitored to determine a tablespace's DASD requirements. If this number remains below 75%
for an extended time, and little growth is expected, decrease the space and reorganize the
tablespace, or use DSN1COPY to migrate rows to a smaller data set. If the number is 100% or
close to it, and growth is expected, increase the space and reorganize.

The final physical statistics query presented here is the column value occurrence query. Three
versions are shown. The first is viable for DB2 V5 and greater:
SELECT T.DBNAME, T.TSNAME, D.TBOWNER, D.TBNAME,
 D.NAME, D.FREQUENCYF, D.COLVALUE, D.STATSTIME
FROM SYSIBM.SYSCOLDIST D,
 SYSIBM.SYSTABLES T
WHERE D.TBOWNER = T.CREATOR
AND D.TBNAME = T.NAME
AND D.TYPE = 'F'
ORDER BY T.DBNAME, T.TSNAME, D.TBOWNER, D.TBNAME, D.NAME;
Because DB2 V5 enables non-uniform distribution statistics to be collected for groups of
multiple columns, the information in the NAME column is the first column in the grouping of
columns in the "key." Also, FREQUENCY changed to FREQUENCYF (an integer column changed
to a floating-point column). The second query is viable for DB2 V3 and V4 only:
SELECT T.DBNAME, T.TSNAME, D.TBOWNER, D.TBNAME,
 D.NAME, D.FREQUENCY, D.COLVALUE, D.STATSTIME
FROM SYSIBM.SYSCOLDIST D,
 SYSIBM.SYSTABLES T
WHERE D.TBOWNER = T.CREATOR
AND D.TBNAME = T.NAME
ORDER BY T.DBNAME, T.TSNAME, D.TBOWNER, D.TBNAME, D.NAME;
Prior to DB2 V3, non-uniform distribution statistics were stored in SYSFIELDS instead of
SYSCOLDIST. This change necessitates a second column value occurrence query to be used
only by shops running DB2 V2.3 and earlier:
SELECT T.DBNAME, T.TSNAME, F.TBCREATOR, F.TBNAME,
 F.NAME, F.EXITPARML, F.EXITPARM

 - 556 -

FROM SYSIBM.SYSFIELDS F,
 SYSIBM.SYSTABLES T
WHERE F.TBCREATOR = T.CREATOR
AND F.TBNAME = T.NAME
AND F.FLDPROC = ' '
ORDER BY T.DBNAME, T.TSNAME, F.TBCREATOR, F.TBNAME, F.NAME;
Caution If SYSIBM.SYSFIELDS was never purged after moving to DB2 V3 (or later),

old non-uniform distribution statistics are probably still stored in SYSFIELDS,
but not used. These artifacts can be misleading if misconstrued to be current.
Further, the additional storage required to maintain the statistics might cause
performance problems by preventing SYSDBASE from being reduced in size
as much as possible.

These queries display the non-uniform distribution statistics stored in the DB2 Catalog for
specific columns of each table. The output is arranged in order by database, tablespace, table
creator, and table name. The output includes as many as 10 of the most frequently occurring
values for table columns that are the first column of the index key.

The data shows the column value along with the percentage of times (multiplied by 100) it
occurs for that column. This information is useful for tuning dynamic SQL queries. DB2 can
choose a different access path for the same SQL statement when predicates contain literals
for columns with distribution statistics. The optimizer uses this occurrence information to
calculate filter factors. The higher the number of occurrences, the fewer rows the optimizer
assumes it can filter out. Column values that appear in this report therefore could require SQL
tuning.

After this level of performance analysis has been exhausted, you must broaden the scope of
your tuning effort. Doing so involves analyzing SQL statements in application programs and
possibly building new indexes or changing SQL in application queries.

Partition Statistics Queries
Partition-level statistics are accumulated by RUNSTATS to enable the optimizer to make query
parallelism decisions.
SYSIBM.SYSCOLDISTSTATS contains partition-level, non-uniform distribution statistics.
RUNSTATS collects values for the key columns of each partitioned index. You can use the
following query in conjunction with the column value occurrence query presented earlier:
SELECT T.DBNAME, T.TSNAME, D.PARTITION, D.TBOWNER,
 D.TBNAME, D.NAME, D.FREQUENCYF, D.COLVALUE,
 D.STATSTIME
FROM SYSIBM.SYSCOLDISTSTATS D,
 SYSIBM.SYSTABLES T
WHERE D.TBOWNER = T.CREATOR
AND D.TBNAME = T.NAME
AND D.TYPE = 'F'
ORDER BY T.DBNAME, T.TSNAME, D.PARTITION,
 D.TBOWNER, D.TBNAME, D.NAME;
Note Once again, as of V5 DB2 can collect non-uniform distribution statistics for groups

of multiple columns. Therefore, the information in the NAME column is the first
column in the grouping of columns in the "key."

Be sure to label the results of the queries in this section as partition-level statistics so that they
are not confused with the equivalent non-partitioned reports I discussed in previous sections.
The results of the queries in the previous section depicted all tablespaces and indexes,
whether partitioned or not. Additional statistics are maintained at the partition level for
partitioned tablespaces and indexes. Partition-level physical statistics queries can be issued to
retrieve these statistics.

 - 557 -

The following query provides a report of partitioned tablespaces only, by database, listing the
partition-level statistics for each tablespace partition:
SELECT P.DBNAME, S.NAME, S.PARTITION, S.NACTIVE, S.CARDF,
 S.PCTPAGES, S.PCTROWCOMP, S.STATSTIME
FROM SYSIBM.SYSTABLEPART P,
 SYSIBM.SYSTABSTATS S
WHERE P.PARTITION = S.PARTITION
AND P.DBNAME = S.DBNAME
AND P.TSNAME = S.TSNAME
ORDER BY P.DBNAME, S.NAME, S.PARTITION;

You can issue a partition-level physical index statistics query to retrieve partition statistics for
partitioning indexes. The following query provides a report of partitioned indexes only, listing
the partition-level statistics for each partition:

SELECT OWNER, NAME, PARTITION, CLUSTERRATIOF, FIRSTKEYCARDF,
 FULLKEYCARDF, NLEAF, NLEVELS, KEYCOUNTF, STATSTIME
FROM SYSIBM.SYSINDEXSTATS
ORDER BY OWNER, NAME, PARTITION;

You can analyze the results of the tablespace and index partition-level statistics reports to
help you determine whether query parallelism could enhance performance of queries
accessing these partitioned tablespaces.

Programmer's Aid Queries
Often, you must determine which plans and packages are in a DB2 subsystem. The following
programmer's aid queries help you keep this information accurate. Plans can contain DBRMs,
packages, or both. The following query lists the plans that contain DBRMs and the DBRMs
they contain:

SELECT P.NAME, P.CREATOR, P.BOUNDTS, P.ISOLATION,
 P.VALID, P.OPERATIVE, P.ACQUIRE, P.RELEASE, P.EXPLAN,
 P.GROUP_MEMBER, P.DYNAMICRULES, P.REOPTVAR, P.KEEPDYNAMIC,
 D.NAME, D.PDSNAME, D.PRECOMPTS, D.HOSTLANG
FROM SYSIBM.SYSPLAN P,
 SYSIBM.SYSDBRM D
WHERE P.NAME = D.PLNAME
ORDER BY P.NAME, D.NAME, D.PRECOMPTS;

Note For SYSIBM.SYSPLAN, the BOUNDTS column replaces BINDDATE and
BINDTIME as of DB2 V5. Also, PRECOMPTS replaces PRECOMPTIME and
PRECOMPDATE in SYSIBM.SYSDBRM.

The next programmer's aid query lists all plans that contain packages and the packages they
contain. Remember that packages are composed of a single DBRM.
SELECT P.NAME, P.CREATOR, P.BINDDATE, P.BINDTIME,
 P.ISOLATION, P.VALID, P.OPERATIVE, P.ACQUIRE,
 P.RELEASE, P.EXPLAN, K.COLLID, K.NAME, K.TIMESTAMP
FROM SYSIBM.SYSPLAN P,
 SYSIBM.SYSPACKLIST K
WHERE P.NAME = K.PLANNAME
ORDER BY P.NAME, K.COLLID, K.NAME, K.TIMESTAMP;

 - 558 -

You can use the following query to track the DBRM libraries and packages. It details DBRM
information for all packages. Although the DBRM name and the package name are equivalent,
and a one-to-one correlation exists between packages and DBRMs, monitoring the DBRM
information for each package is useful.

SELECT COLLID, NAME, CREATOR, QUALIFIER, TIMESTAMP,
 BINDTIME, ISOLATION, VALID, OPERATIVE, RELEASE,
 EXPLAIN, PCTIMESTAMP, PDSNAME, VERSION,
 GROUP_MEMBER, DEFERPREPARE, DYNAMICRULES, REOPTVAR,
KEEPDYNAMIC
FROM SYSIBM.SYSPACKAGE
ORDER BY COLLID, NAME, VERSION;

You can use the output from these three queries to track the composition and disposition of all
DB2 plans and packages. For example, you can determine whether a plan or package is valid
and operative. Invalid and inoperative plans require rebinding (and possible program changes)
before execution. You can check on the parameters used to bind the plan or package, such as
the isolation level specified (for example, CS versus RR versus UR) or whether reoptimization
is available for dynamic SQL (REOPTVARS). You also can monitor the bind parameters.
Ensure that they are specified as outlined in Chapter 11, "Program Preparation." Finally, you
can trace -818 SQLCODEs by checking PRECOMPTS (or PRECOMPTIME and PRECOMPDATE)
against the date and time stored for the appropriate program load module.
Another query that may be useful is to determine which plan and packages have SQL
statements that use explicit, statement-level dirty reads (isolation UR). You can use the
following queries to find these plans and packages.
Use this query to find plans containing SQL using the WITH 'UR' clause:
SELECT DISTINCT S.PLNAME
FROM SYSIBM.SYSPLAN P,
 SYSIBM.SYSSTMT S
WHERE P.NAME = S.PLNAME
AND S.ISOLATION = 'U'
ORDER BY S.PLNAME;
Use this query to find packages containing SQL using the WITH 'UR' clause:
SELECT DISTINCT P.COLLID, P.NAME, P.VERSION
FROM SYSIBM.SYSPACKAGE P,
 SYSIBM.SYSPACKSTMT S
WHERE P.LOCATION = S.LOCATION
AND P.COLLID = S.COLLID
AND P.NAME = S.NAME
AND P.VERSION = S.VERSION
AND S.ISOLATION = 'U'
ORDER BY P.COLLID, P.NAME, P.VERSION;

Three other queries are useful as programmer's aids. The plan dependency query follows:
SELECT D.DNAME, P.CREATOR, P.QUALIFIER, P.VALID, P.ISOLATION,
 P.ACQUIRE, P.RELEASE, P.EXPLAN, P.PLSIZE, D.BCREATOR,
 D.BNAME, D.BTYPE
FROM SYSIBM.SYSPLANDEP D,
 SYSIBM.SYSPLAN P
WHERE P.NAME = D.DNAME
ORDER BY D.DNAME, D.BTYPE, D.BCREATOR, D.BNAME

Likewise, the package dependency query can be quite useful:

 - 559 -

SELECT P.COLLID, D.DNAME, P.CONTOKEN, P.CREATOR,
 P.QUALIFIER, P.VALID, P.ISOLATION, P.RELEASE,
 P.EXPLAIN, P.PKSIZE, D.BQUALIFIER, D.BNAME, D.BTYPE
FROM SYSIBM.SYSPACKDEP D,
 SYSIBM.SYSPACKAGE P
WHERE P.NAME = D.DNAME
AND P.COLLID = D.DCOLLID
AND P.CONTOKEN = D.DCONTOKEN
ORDER BY P.COLLID, D.DNAME, P.CONTOKEN, D.BTYPE, D.BQUALIFIER,
 D.BNAME

These queries detail the DB2 objects used by every DB2 plan and package. When database
changes are needed, you can analyze the output from these queries to determine which
packages and plans might be affected by structural changes.

Finally, programmers may need to know what stored procedures and user-defined functions
are available and how they are defined. Two stored procedure programmer's aid queries are
presented. The first can be used for DB2 V6:

SELECT SCHEMA, NAME, LANGUAGE, PROGRAM_TYPE, SPECIFICNAME,
 COLLID, PARAMETER_STYLE, ASUTIME, SQL_DATA_ACCESS,
 DBINFO, COMMIT_ON_RETURN, STAYRESIDENT, RUNOPTS,
 PARM_COUNT, EXTERNAL_ACTION, RESULT_SETS, WLM_ENVIRONMENT,
 WLM_ENV_FOR_NESTED, EXTERNAL_SECURITY
FROM SYSIBM.SYSROUTINES
WHERE ROUTINETYPE = 'P'
ORDER BY SCHEMA, NAME;

A second formulation for the stored procedure programmer's aid query is required for DB2 V4
and V5 because DB2 V6 uses a different DB2 Catalog table to manage stored procedures.
The following query is for DB2 V4 and V5 only:
SELECT PROCEDURE, LANGUAGE, PGM_TYPE, LOADMOD,
 COLLID, LINKAGE, AUTHID, LUNAME, ASUTIME,
 COMMIT_ON_RETURN, STAYRESIDENT, RUNOPTS,
 PARMLIST, RESULT_SETS, WLM_ENV, EXTERNAL_SECURITY
FROM SYSIBM.SYSPROCEDURES
ORDER BY PROCEDURE;
Note The preceding query executes under DB2 V5. To run it under DB2 V4, you can

remove the following columns from the SELECT list: RESULT_SETS, WLM_ENV,
PGM_TYPE, EXTERNAL SECURITY, and COMMIT_ON_RETURN.

For user-defined function information, execute the following query:
SELECT SCHEMA, NAME, LANGUAGE, SPECIFICNAME, FUNCTION_TYPE,
ORIGIN,
 SOURCESCHEMA, SOURCESPECIFIC, DETERMINISTIC, NULL_CALL,
 CAST_FUNCTION, SCRATCHPAD, SCRATCHPAD_LENGTH, FINAL_CALL,
 PARALLEL, PROGRAM_TYPE, COLLID, PARAMETER_STYLE,
SQL_DATA_ACCESS,
 DBINFO, STAYRESIDENT, RUNOPTS, PARM_COUNT, EXTERNAL_ACTION,
 WLM_ENVIRONMENT, WLM_ENV_FOR_NESTED, EXTERNAL_SECURITY,
 ASUTIME, IOS_PER_INVOC, INSTS_PER_INVOC, INITIAL_IOS, INITIAL_INSTS,

 - 560 -

 CARDINALITY, RESULT_COLS
FROM SYSIBM.SYSROUTINES
WHERE ROUTINETYPE = 'F'
ORDER BY SCHEMA, NAME;

The next section takes this form of DB2 performance monitoring to the next level,
incorporating DB2 Catalog monitoring with EXPLAIN.

Application Efficiency Queries
The application efficiency queries combine the best of EXPLAIN monitoring with the best of
DB2 Catalog monitoring. The reports produced by these queries show many potential
performance problems. By combining the DB2 Catalog information with the output from
EXPLAIN, you can identify a series of "problem queries."

These problem queries are grouped into two categories: tablespace scans and index scans.
DB2 scans data sets to satisfy queries using tablespace scans and index scans. A tablespace
scan reads every page in the tablespace and does not use an index. An index scan might or
might not read every index subpage.

The tablespace scan query follows:
SELECT E.APPLNAME, E.PROGNAME, E.QUERYNO, E.TNAME,
 T.NPAGES, E.TIMESTAMP, S.SEQNO, S.TEXT
FROM ownerid.PLAN_TABLE E,
 SYSIBM.SYSTABLES T,
 SYSIBM.SYSSTMT S
WHERE ACCESSTYPE = 'R'
AND (T.NPAGES > 50 OR T.NPAGES < 0)
AND T.NAME = E.TNAME
AND T.CREATOR = E.CREATOR
AND S.NAME = E.PROGNAME
AND S.PLNAME = E.APPLNAME
AND S.STMTNO = E.QUERYNO
ORDER BY E.APPLNAME, E.PROGNAME, E.TIMESTAMP DESC,
 E.QUERYNO, S.SEQNO;

The following is the index scan query:
SELECT E.APPLNAME, E.PROGNAME, E.QUERYNO, I.NAME, I.NLEAF,
 I.COLCOUNT, E.MATCHCOLS, E.INDEXONLY, E.TIMESTAMP,
 S.SEQNO, S.TEXT
FROM ownerid.PLAN_TABLE E,
 SYSIBM.SYSINDEXES I,
 SYSIBM.SYSSTMT S
WHERE E.ACCESSTYPE = 'I'
AND I.NLEAF > 100
AND E.MATCHCOLS < I.COLCOUNT
AND I.NAME = E.ACCESSNAME
AND I.CREATOR = E.ACCESSCREATOR
AND S.NAME = E.PROGNAME
AND S.PLNAME = E.APPLNAME
AND S.STMTNO = E.QUERYNO

 - 561 -

ORDER BY E.APPLNAME, E.PROGNAME, E.TIMESTAMP DESC,
 E.QUERYNO, S.SEQNO;
Because these queries usually take a long time to run, they should not be executed in parallel
with heavy production DB2 processing or during the online DB2 transaction window. To
ensure that the scan queries operate efficiently, make sure that the PLAN_TABLE used in
each query does not contain extraneous data. Strive to maintain only the most recent
EXPLAIN data from production BIND jobs in the table. Also, keep EXPLAIN information only
for plans that must be monitored. Executing RUNSTATS on your PLAN_TABLES also can
increase the performance of these queries.
The tablespace scan report lists queries that scan more than 50 pages and queries that
access tables without current RUNSTATS information. If NPAGES is -1 for any table,
RUNSTATS has not been run. A RUNSTATS job should be executed as soon as possible,
followed by a rebind of any plan that uses this table. Everything else on this report should be
monitored closely. For tables just over the 50-page threshold, the effect on performance is
uncertain. As the number of scanned pages increases, so does the potential for performance
problems.

The 50-page cutoff is arbitrary; you might want to redefine it as you gauge the usefulness of
the information returned. If you monitor only large tables, you might want to increase this
number to 100 (or larger). This number varies according to your shop's definition of a "large
table." If you have a small bufferpool (fewer than 1,000 buffers), you might want to reduce this
number.

For tables with 20 or more pages, try to create indexes to satisfy the predicates in your query.
(Creating an index for every predicate, however, is not always possible.) DB2 references
recommend that indexes be considered when the number of pages in a tablespace reaches 5,
6, or 15. I have found 20 pages to be a good number in practice.

The index scan query reports on all SQL statements that scan more than 100 index leaf pages
on which a match on the columns in the query is not a complete match on all index columns.
As the number of matching columns increases, performance problems decrease. The worst
case is zero matching columns, but even this number might be acceptable for an index-only
scan.

You might need to be modify the 100-page cutoff value for the index scan query too. You
might want to use the same number as the one chosen for the tablespace scan report.
Although every query listed in these reports is not necessarily a problem query, you should
closely monitor each one. Corrective actions for poorly performing queries are outlined in
Part V.

Authorization Queries
You can implement five types of security in DB2: database security, plan and package
security, system-level authorization, security on tables and views, and resource privileges:

Database security Controls database-level privileges. Anyone holding a database
privilege can perform actions on all dependent database objects.

Plan and package Dictates whether users can copy security packages and bind or
execute plans and packages.

System-level Indicates system-wide authority, authorization such as global
authority to create new objects, authority to trace, and the capability
to hold specific system-wide authorities, such as SYSADM, SYSCTRL,
and SYSOPR.

Security on tables Indicates whether the data in the tables and views can be accessed
or updated. This authorization is granted at the table, view, or column
level.

Resource privileges Indicates whether users can use DB2 resources such as bufferpools,
tablespaces, and storage groups.

Routine privileges Indicates whether users can execute stored routines, such as stored
procedures and user-defined functions.

 - 562 -

You can execute the following queries to ascertain the authority granted for each of these
types of security. Note that two forms of each query are provided; the authorization
information can be returned either in DB2 object (or DB2 resource) order or by the user who
possesses the authority.
Database authority query:
SELECT NAME, GRANTEE, GRANTOR, GRANTEDTS, GRANTEETYPE,
 CREATETABAUTH, CREATETSAUTH, DBADMAUTH,
 DBCTRLAUTH, DBMAINTAUTH, DISPLAYDBAUTH,
 DROPAUTH, IMAGCOPYAUTH, LOADAUTH, REORGAUTH,
 RECOVERDBAUTH, REPAIRAUTH, STARTDBAUTH,
 STATSAUTH, STOPAUTH, AUTHHOWGOT
FROM SYSIBM.SYSDBAUTH
ORDER BY NAME, GRANTEE, GRANTOR;
Table authority query:

SELECT TCREATOR, TTNAME, SCREATOR, STNAME, GRANTEE, GRANTOR,
 GRANTEETYPE, UPDATECOLS, ALTERAUTH, DELETEAUTH, GRANTEDTS,
 INDEXAUTH, INSERTAUTH, SELECTAUTH, UPDATEAUTH,
 REFCOLS, REFERENCESAUTH, AUTHHOWGOT
FROM SYSIBM.SYSTABAUTH
ORDER BY TCREATOR, TTNAME, GRANTEE, GRANTOR;

Column authority query:
SELECT CREATOR, TNAME, COLNAME, PRIVILEGE, GRANTEE, GRANTOR,
 GRANTEETYPE, TIMESTAMP, DATEGRANTED, TIMEGRANTED
FROM SYSIBM.SYSCOLAUTH
ORDER BY CREATOR, TNAME, COLNAME, GRANTEE;

Resource authority query:
SELECT QUALIFIER, NAME, OBTYPE, GRANTEE, GRANTOR,
 GRANTEDTS, USEAUTH, AUTHHOWGOT
FROM SYSIBM.SYSRESAUTH
ORDER BY GRANTEE, QUALIFIER, NAME, GRANTOR;
Routine authority query:
SELECT SCHEMA, SPECIFICNAME, ROUTINETYPE,
 GRANTEE, GRANTEETYPE, EXECUTEAUTH,
 GRANTEDTS, AUTHHOWGOT
FROM SYSIBM.SYSROUTINEAUTH
ORDER BY GRANTEE, SCHEMA, SPECIFICNAME, GRANTOR;
User authority query:
SELECT GRANTEE, GRANTOR, GRANTEDTS, ALTERBPAUTH,
 BINDADDAUTH, BSDSAUTH, CREATETMTABAUTH,
 CREATEDBAAUTH, CREATEDBCAUTH, CREATESGAUTH,
 CREATEALIASAUTH, DISPLAYAUTH, RECOVERAUTH,
 STOPALLAUTH, STOSPACEAUTH, SYSADMAUTH, SYSCTRLAUTH,
 SYSOPRAUTH, BINDAGENTAUTH, ARCHIVEAUTH,
 TRACEAUTH, MON1AUTH, MON2AUTH, AUTHHOWGOT
FROM SYSIBM.SYSUSERAUTH
ORDER BY GRANTEE, GRANTOR;
Plan authority query:

 - 563 -

SELECT NAME, GRANTEE, GRANTOR, GRANTEDTS,
 GRANTEETYPE,BINDAUTH, EXECUTEAUTH, AUTHHOWGOT
FROM SYSIBM.SYSPLANAUTH
ORDER BY NAME, GRANTEE, GRANTOR;
Package authority query:
SELECT COLLID, NAME, GRANTEE, GRANTOR, CONTOKEN,
 TIMESTAMP, GRANTEETYPE, AUTHHOWGOT,
 BINDAUTH, COPYAUTH, EXECUTEAUTH
FROM SYSIBM.SYSPACKAUTH
ORDER BY COLLID, NAME, GRANTEE, GRANTOR;
Note For DB2 V5, the GRANTEDTS column has been added to SYSCOLAUTH,

SYSDBAUTH, SYSPLANAUTH, SYSRESAUTH, SYSUSERAUTH, and
SYSTABAUTH. This column is used in place of the TIMEGRANTED and
DATEGRANTED columns. To make these queries operable for DB2 V4 and prior
releases, you can replace GRANTEDTS with TIMEGRANTED and
DATEGRANTED for each query.

Security is not often associated with performance monitoring, but it can help you determine
the following items. If certain types of authority are granted to many users, and security
checking becomes inefficient, you might want to grant the authority to PUBLIC. This way, you
can reduce the number of entries in the DB2 Catalog, thereby reducing the strain on the DB2
subsystem. Don't grant PUBLIC access, however, if audit regulations or data sensitivity is an
issue.

In addition, monitoring who can access data can help you determine the potential effect on
workload. As the number of users who can access a piece of data increases, the potential for
workload and capacity problems increases.

DB2 Catalog Query Guidelines
Heed the following advice when implementing DB2 Catalog queries to obtain information about your
DB2 environment.

Use Queries as a Starting Point

The queries in this chapter are only suggestions. If you want to change the sort order or alter the
columns being queried, you can use the queries in this chapter as templates. For example, to determine
the table authority granted to users, you can modify the sort order of the table authority query, as shown
in the following SQL statement:
SELECT TCREATOR, TTNAME, SCREATOR, STNAME, GRANTEE, GRANTOR,
 GRANTEETYPE, UPDATECOLS, ALTERAUTH, DELETEAUTH, GRANTEDTS,
 INDEXAUTH, INSERTAUTH, SELECTAUTH, UPDATEAUTH,
 REFCOLS, REFERENCESAUTH, AUTHHOWGOT
FROM SYSIBM.SYSTABAUTH
ORDER BY GRANTEE, TCREATOR, TTNAME, GRANTOR;

The reports in this chapter are suggestions that have worked well for me. Changing them to suit your
needs is easy because of the ad hoc nature of SQL.

Use QMF to Create Formatted Reports

The queries in this chapter were developed using QMF. You can run them weekly using a batch QMF
job. Using the batch job is easier than submitting the queries weekly from QMF or through SPUFI.
Simply build batch QMF JCL, incorporate all these queries and forms into a proc, and then run the proc.
You can create QMF forms for each query to present the output in a pleasing format. You can change
control breaks, different headings for columns, and the spacing between columns. A sample QMF form
for the table listing query is presented in Listing 24.1. To create a form for any of the queries in this

 - 564 -

chapter in QMF, simply type and execute the query. Press F9 to display the form panel and then modify
the form.

Listing 24.1: Sample QMF Form for the Table Listing Query

FORM.COLUMNS

Total Width of Report Columns: 189

NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ

1 _DATABASE BREAK1 1 8 C 1

2 TABLE_SPACE BREAK2 1 8 C 2

3 TABLE_CREATOR BREAK3 1 8 C 3

4 _TABLE BREAK3 1 18 C 4

5 CREATEDTS 1 26 TSI 5

6 ALTEREDTS 1 26 TSI 6

7 COL_NO 1 3 L 7

8 COLUMN_NAME 1 18 C 8

9 COLUMN_TYPE 1 8 C 9

10 COLUMN_LENGTH 1 6 L 10

11 SCALE 1 6 L 11

12 NU_LL 1 2 C 12

13 DF_LT 1 2 C 13

14 COL_CARD 1 8 L 14

15 HIGH2_KEY 1 8 C 15

16 LOW2_KEY 1 8 C 16

17 FLD_PROC 1 4 C 17

The table listing query is presented again to help you visualize how the QMF form helps to display the
query results:
SELECT T.DBNAME, T.TSNAME, T.CREATOR, T.NAME, T.CREATEDTS,
 T.ALTEREDTS, C.COLNO, C.NAME, C.COLTYPE, C.LENGTH,
 C.SCALE, C.NULLS, C.DEFAULT, C.COLCARDF,
 HEX(C.HIGH2KEY), HEX(C.LOW2KEY), C.FLDPROC
FROM SYSIBM.SYSCOLUMNS C,
 SYSIBM.SYSTABLES T
WHERE T.CREATOR = C.TBCREATOR

 - 565 -

AND T.NAME = C.TBNAME
AND T.TYPE = 'T'
ORDER BY T.DBNAME, T.TSNAME, T.CREATOR, T.NAME, C.COLNO;

Become Familiar with the Data in the DB2 Catalog

You can produce many reports from the DB2 Catalog to aid in performance monitoring. This chapter
details some of them. As you become more familiar with the DB2 Catalog and the needs of your
application, you can formulate additional queries geared to the needs of your organization.
Use the DECIMAL Function for Readability
When retrieving floating point data, such as the columns that end with the letter F, use the DECIMAL
function to display the results as a decimal number. For example,
SELECT … DECIMAL(NACTIVEF) …
This will produce more readable query results. Without the DECIMAL function, the results will be
displayed as an exponential expression, such as 2.013 * 10^12.

Summary
DB2 has a reputation of being easy for users to understand; they specify what data to retrieve,
not how to retrieve it. The layer of complexity removed for the users, however, had to be
relegated elsewhere: to the code of DB2.
DB2 also has a reputation as a large resource consumer. This reputation is largely because of
DB2's complexity. Because DB2 performance analysts must understand and monitor this
complexity, they require an array of performance monitoring tools and techniques. Part IV
outlines the majority of these tools. (Refer to Chapter 37, "Components of a Total DB2
Solution," for information on third-party performance monitoring tools.)

To review, an effective monitoring strategy includes the following:
 Scheduled batch performance monitor jobs to report on the recent performance of

DB2 applications and the DB2 subsystem
 An online monitor that executes when DB2 executes to enable quick monitoring of

performance problems as they occur
 Online monitors for all teleprocessing environments in which DB2 transactions

execute (for example, CICS, IMS/TM, or TSO)
 Regular monitoring of MVS for memory use and VTAM for network use
 Scheduled reports from the DB2 Catalog
 Access to the DB2 DSNMSTR address space to review console messages
 Use of the DB2 -DISPLAY command to view databases, threads, and utility

execution
Part V, "DB2 Performance Tuning," delves into tuning the performance of DB2.

Part V: DB2 Performance Tuning
Chapter List

Chapter 25: Tuning DB2's Environment
Chapter 26: Tuning DB2's Components
Chapter 27: DB2 Resource Governing
Part Overview
Now that you understand how to monitor the DB2 environment, you must develop a plan
to analyze the performance data you have accumulated and tune DB2 to boost
performance. As you will see in this section, diverse tuning strategies are involved in
making DB2 perform optimally.

It is not sufficient to merely monitor and tune DB2 alone. A comprehensive DB2 tuning
program involves monitoring and tuning the following five areas:

 The OS/390 (MVS) system
 The DB2 subsystem
 The teleprocessing and networking environments (including Internet

connectivity for Web applications)
 DB2 database design

 - 566 -

 DB2 application program design
Some areas require more DB2 tuning attention than others. The DB2 performance tuning
pie, although split into five pieces, is not split into five equal pieces. Figure V.1 shows the
percentage of tuning usually spent in each area. Each percentage represents a
comparative number encompassing the estimated number of incidences in the
environment requiring tuning.

Figure V.1: The DB2 performance tuning pie.

For example, the OS/390 system constitutes a small portion of the tuning pie. This does
not mean that there are few tuning options for MVS. Instead, it means that the number of
times a DB2 performance problem is due to an OS/390 factor is minimal.
As the size of the piece of pie increases, the opportunities for DB2 performance tuning
generally increase. But note that these numbers are estimates. Your tuning experiences
might vary, but if they vary significantly, be sure that you are concentrating your tuning
efforts wisely. The 80-20 rule applies here: 80% of performance gains accrue from 20%
of your tuning efforts, as shown in Figure V.2. In other words, do not expend undue
energy "tuning the life" out of an area if you expect only small gains. Instead, distribute
your tuning efforts across each area. Concentrate on problem areas or areas in which
you expect large performance gains.

Figure V.2: The 80-20 rule.

Return your attention to Figure V.1, and you can see that the majority of DB2
performance problems result from improper application design, such as inefficient SQL,
redundant SQL, or poor BIND options. The second most prominent area for tuning is in
the application's relational database design. Was it based on relational techniques or
converted from a nonrelational platform? Is it normalized, overnormalized, or
undernormalized? Can it support the application requirements? The final three areas—
the MVS, teleprocessing, and DB2 subsystems—should make up a small portion of your
tuning efforts.

Note For DB2 client/server applications, network tuning usually is a much larger
component of the tuning effort. This is true because the client/server architecture
relies heavily on networking to connect the clients to the server. So, plan for a
heavier network tuning load when running DB2 client/server applications.

Remember, though, that you must monitor and tune each area that affects DB2
performance. Simply because there are fewer MVS tuning opportunities, for example,

 - 567 -

does not mean that the impact of a poorly tuned MVS subsystem is less substantial than
a poorly tuned DB2 application program. Quite to the contrary! If MVS is not tuned to
enable optimal DB2 performance, no amount of application tuning will ever result in
proper performance. Implement a tuning strategy that encompasses all aspects of DB2
performance.

Chapter 25: Tuning DB2's Environment
Overview
System tuning for DB2 performance can be applied outside DB2—to the environment in which DB2
operates—or inside DB2—to the components of DB2 or under DB2's control. This chapter concentrates
on the tuning of DB2's environment.

Tuning the OS/390 and MVS Environment
MVS tuning is a complex task best accomplished by extensively trained technicians. All DB2 users,
however, should understand the basics of MVS resource exploitation and the avenues for tuning it. MVS
tuning, as it affects DB2 performance, can be broken down into four areas:

 Memory use
 CPU use
 I/O use
 Operating system environment parameters

Now turn your attention to each of these four areas. The sections that follow offer various tuning
guidelines and strategies along the way.

Tuning Memory Use
How does DB2 utilize available memory? Before answering this question, you need a basic
understanding of what memory is and how it is used by MVS. Memory is the working storage available
for programs and the data the programs use as they operate.
Storage is often used as a synonym for memory. MVS stands for Multiple Virtual Storage, which refers
to MVS's capability to manage virtual memory. To manage virtual memory, the operating system uses a
large pool of memory, known as virtual storage, to "back up" real storage. (Real storage is also called
central storage. Virtual storage is also called expanded storage.)
Real storage is addressable. Programs and their data must be placed in real storage before they can
run. Virtual memory management is the reason that multiple address spaces can execute concurrently,
regardless of the physical memory they eventually use. This way, the system can process more jobs
than can be held in real storage; information is swapped back and forth between virtual storage and real
storage, a process known as paging.

You'll discover two types of paging. The first, moving data between virtual and real storage, is
inexpensive in terms of resource consumption and occurs regularly. As more real storage is requested,
a second type of paging can result. This type of paging consists of moving portions of memory to DASD
temporarily. This type is expensive and should be avoided.

Tuning
Strategy

Use storage isolation to fence the DB2 address spaces. Doing so
prevents DB2 from paging to DASD. Storage isolation must be
implemented by MVS systems programmers.

MVS virtual storage can be broken down further in two ways:
 Common area versus private area
 Above the line versus below the line

The common area is the portion of virtual storage addressable from any address space. The private
area stores data that is addressable by only an individual address space. A common area and private
area exist both above and below the line. But what does that mean?
Above and below the line refer to an imaginary line in virtual storage at the 16-megabyte level. Memory
above the line is often called extended storage. In earlier versions of MVS, 16 megabytes was the upper
limit for virtual and real storage addressability. New releases of MVS add addressability above the 16-
megabyte line. The constraints imposed by the addressing schemes of older systems, however, can
cause dense packing of applications into memory below the line. Systems that use memory above the

 - 568 -

line provide more efficient memory management, as well as relief for systems requiring memory use
below the line.
How does DB2 fit into this memory structure? DB2 manages memory efficiently, making use of
extended storage when possible (see Figure 25.1). A well-tuned DB2 subsystem requires less than
2MB of virtual storage below the line. The things that affect below the line storage are the DSMAX and
number of threads using functions (such as AMS) that still run below the 16M line.

Figure 25.1: DB2 memory use.

What causes DB2 to use virtual storage above the line? Take a closer look at some of the factors
influencing DB2's use of memory.

Bufferpools
DB2 provides 80 virtual bufferpools and optional hiperpools for maintaining recently accessed table and
index pages in virtual storage. The Buffer Manager component of DB2 manages I/O and the use of
buffers to reduce the cost of I/O. If the Buffer Manager can satisfy a GETPAGE request from memory in
the bufferpool rather than from DASD, performance can increase significantly.

DB2 provides bufferpools as follows:
 50 bufferpools for 4KB pages (named BP0 through BP49)
 10 bufferpools for 8KB pages (named BP8K0 through BP8K9)
 10 bufferpools for 16KB pages (named BP16K0 through BP16K9)
 10 bufferpools for 32KB pages (named BP32K and BP32K1 through BP32K9).

The size of a bufferpool is specified to DB2 in pages.
Tuning DB2 bufferpools is a critical piece of overall DB2 subsystem tuning. Strategies for effective
bufferpool tuning are presented in Chapter 26, "Tuning DB2's Components," in the section on DB2
subsystem tuning.

In addition to the bufferpools, DB2 creates a RID pool and a sort pool. RIDs processed during the
execution of list prefetch are stored in the RID pool. Remember that hybrid joins and multiple-index
access paths use list prefetch. The RID pool should be increased as your application's use of list
prefetch increases.
The sort pool, sometimes called a sort work area, is used when DB2 invokes a sort. Before I discuss the
sort pool, examine the DB2 sorting process, which is shown in Figure 25.2. The RDS (Relational Data
Services) component of DB2 uses a tournament sort technique to perform internal DB2 sorting.

 - 569 -

Figure 25.2: How DB2 sorts.

The tournament sort works as follows:
 Rows to be sorted are passed through a tree structure like the one in Figure 25.2.

A row enters the tree at the bottom. It is compared to rows already in the tree, and
the lowest values (for ascending sequence) or the highest values (for descending
sequence) are moved up the tree.

 When a row emerges from the top of the tree, it is usually placed in an ordered
set of rows in memory. Sometimes, however, a value emerges from the top of the
tree but does not fit into the current ordered set because it is out of range.

 When a row does not fit into the current ordered set, the complete ordered set of
rows is written to a logical work file. This ordered set is then called a run.

 Logical work files are located in the bufferpool. As logical work files grow,
sometimes they are written to physical work files. DB2 uses the DSNDB07
database to store physical work files.

 After all the rows have passed through the tree, the accumulated runs are
merged, forming a sorted results set. This set is returned to the requester,
completely sorted.

How, then, does the sort pool affect RDS sorting? As the sort pool becomes larger, so does the tree
used for the tournament sort. As the tree becomes larger, fewer runs are produced. As fewer runs are
produced, less data must be merged and the likelihood of using DSNDB07 diminishes. The result is a
more efficient sort process.

The size of the RID and sort pools can be explicitly specified using DSNZPARMs for DB2 V3 and later
releases. In prior releases, the size of these pools was based on the bufferpool specifications. If the RID
and sort pools are not explicitly specified, they default to values using the pre-V3 formula. This formula
adds the total size of the BP0, BP1, BP2, and BP32K bufferpools together and allocates the RID and
sort pools as a percentage of this total. The percentage is defined as follows:
 Size Minimum Maximum

RID Pool 50% 0 250,000
pages

Sort Pool 10% 60 pages 16,000
pages

Explicitly specifying the RID and sort pool sizes is better than allowing them to default.

 - 570 -

EDM Pool
The EDM pool is used to maintain DBDs, plan cursor tables, and package tables needed by executing
SQL statements. The size of the EDM pool is specified in the DSNZPARMs and must be determined
before starting DB2. To estimate the size of the EDM pool, you must have the following information:

 The maximum number of concurrently executing plans and packages
 The average plan and package size
 The average cache size for plans
 The number of concurrently accessed DBDs
 The average DBD size

For new DB2 subsystems, letting the DB2 installation process use default values to calculate the size of
the EDM pool is best. For existing DB2 subsystems, you can arrive at the average plan and package
sizes by issuing the following SQL queries. For the average plan size, use this query:
SELECT AVG(PLSIZE)
FROM SYSIBM.SYSPLAN

For the average package size, use this query:
SELECT AVG(PKSIZE)
FROM SYSIBM.SYSPACKAGE

Add the two averages and divide by 2 to arrive at the total average plan and package size.
Tuning
Strategy

Binding with the ACQUIRE(USE) option results in smaller plan sizes
than binding with ACQUIRE(ALLOCATE). Additional code is stored with
the plan for ACQUIRE(ALLOCATE). To reduce the amount of storage
used by plans and packages in the EDM pool, specify ACQUIRE(USE)
at bind time. However, plan size should never be the determining factor
for the specification of the ACQUIRE parameter. Instead, follow the
guidelines presented in Chapter 11, "Program Preparation."

Another factor influencing the overall size of plans is the authorization cache. You can associate an
authid cache for each plan by setting the size in the CACHESIZE parameter of the BIND command.

Tuning
Strategy

Binding with the CACHESIZE(0) option also results in smaller plan
sizes. However, the caching of authids enhances performance. So,
once again, plan size should not be the determining factor in setting
CACHESIZE either. The default cache size is 1024KB, which is
probably overkill for many shops. Use the formula specified in Chapter
11 to calculate an appropriate CACHESIZE for each plan—instead of
relying on the default.

Note Authids are not checked for plans that can be executed by PUBLIC. Avoid
specifying a CACHESIZE for these plans.

For the average size of the plan authorization ID cache, use the following query:
SELECT AVG(CACHESIZE)
FROM SYSIBM.SYSPLAN

Package authorization caching, introduced with DB2 V5, is a system-wide option. Caching is either
enabled or disabled for the entire subsystem and a global cache is used. Therefore, package
authorization caching does not have an impact on package size.

To arrive at the average DBD size, you must know the average number of columns per table and the
average number of tables per database. A general formula for calculating the average DBD size follows:
average DBD size = [(average # of tables per database) x 1K]
 + [(average # of columns per table) x .5K]

You can use the following queries to arrive at the average number of tables per database and the
average number of columns per table. First, to determine the average number of tables per database,
issue the following query:
SELECT COUNT(*) / COUNT(DISTINCT(DBNAME))
FROM SYSIBM.SYSTABLES

 - 571 -

WHERE TYPE = 'T';

You can use the following query to arrive at the average number of columns per table:
SELECT AVG(COLCOUNT)
FROM SYSIBM.SYSTABLES
WHERE TYPE = 'T'

To arrive at the average number of concurrent plans, packages, and DBDs, you would be wise to
accumulate a series of DB2 accounting statistics for your peak processing time. Use these figures to
estimate the number of concurrent plans.

Determining the average number of concurrent packages is not easy. You must completely understand
your particular DB2 implementation to be successful at determining this number. Asking the following
questions can help:

 How many plans use packages instead of simply DBRMs? Issue the following two
queries to determine this information:

 SELECT COUNT(DISTINCT PLANNAME)
 FROM SYSIBM.SYSPACKLIST;
 SELECT COUNT(*)
 FROM SYSIBM.SYSPLAN
 WHERE OPERATIVE = 'Y'

AND VALID IN('Y','A');
 On average, how many versions of a package are permitted to remain in the DB2

Catalog? How many are used?

To determine the average number of concurrent DBDs, you must understand each application's
database use. If an application that typically uses three databases is much more active than another
that uses 12 databases, you must factor this information into your EDM pool sizing strategy. Obtaining
this information can be difficult, so you might need to estimate. A general calculation for the EDM pool
size follows:
EDM Pool Size = [(((#CPP) + (#TPP/4)) x PP-AVG) +
 (((#CPP) + (#TPP/4)) x C-AVG) +
 ((#DBD) x DBD-AVG) + 50K] x 1.25

Value Description
#CPP Number of concurrent plans and packages
#TPP Total number of plans and packages
#DBD Total number of concurrently used databases
PP-AVG Average size of all plans and packages
C-AVG Average authorization cache size
DBD-AVG Average authorization cache size

The systems programmer calculates the size of the EDM pool during DB2 installation based on
estimates of the values discussed in this section. The installation CLIST for DB2 contains the preceding
algorithm. The calculation used by the DB2 installation process is only as good as the information
supplied to it. The default values are adequate for most medium-sized shops. As DB2 use expands,
however, the EDM pool should expand proportionally. Additionally, as your DB2 usage patterns change,
plan and package sizes can grow, necessitating EDM pool growth. For example, using DEGREE(ANY)
instead of DEGREE(1) increases plan and package sizes.

Tuning
Strategy

Overestimate the size of the EDM pool. DB2 must be recycled to
change the size of the EDM pool. Having EDM pool memory available
as the number of DB2 plans, packages, and databases increases is
better than reacting to a problem after it occurs. Periodically monitor the
number of plans, packages, and databases in conjunction with usage
statistics, and increase the EDM pool as your DB2 use increases.

Tuning
Strategy

If your DSNDBM1 is storage-constrained, consider moving some of the
EDM pool into a data space. This is particularly helpful if you use

 - 572 -

dynamic statement caching. You can move some EDM storage into a
data space by specifying a non-zero value for EDMPOOL DATA SPACE
SIZE on the DSNTIPC installation panel.

DB2 Working Storage

DB2 working storage is memory (both above and below the line) used by DB2 as a temporary work
area. IBM recommends that you set aside 40KB of memory per concurrent DB2 user for working
storage, but this number is too small. The best way to estimate the working storage size for DB2 is to
separate the number of concurrent DB2 users into users of dynamic SQL and users of static SQL.
Dynamic SQL uses more working storage (but less of the EDM pool) than static SQL. Figure on
approximately 25KB per static SQL user and 75KB per dynamic SQL user. Additionally, DB2 itself uses
600K. Therefore, you can estimate DB2 working storage usage by using the following:
 (concurrent static SQL users x 25K) +
 (concurrent dynamic SQL users x 75K) + 600K

Tuning
Strategy

You cannot explicitly tune the amount of memory used by concurrent
static and dynamic SQL. Implicit control over the number of users can
be established by the DSNZPARM values specified for IDFORE,
IDBACK, and CTHREAD.

DB2 Code

The DB2 code itself requires approximately 4,300KB of storage. This value is inflexible.

IRLM
Locks are maintained in memory by the IRLM. This capability enables DB2 to process a lock request
quickly and efficiently without a physical read. The IRLM uses approximately 250 bytes per lock.

Tuning
Strategy

If the IRLM start-up parameters specify PC=Y, the locks are stored in
the private address space for the IRLM. PC=N stores the locks in
expanded memory, so this specification is more efficient than PC=Y.

Open Data Sets
Each open VSAM data set requires approximately 1.8KB for the VSAM control block that is created.
Refer to Chapter 5, "Data Definition Guidelines," for a discussion of the CLOSE parameter for DB2
tablespaces and indexes and its effect on performance.

Tuning
Strategy

Use segmented tablespaces with multiple tables to reduce the amount
of memory used by open data sets. When each table is assigned to a
unique tablespace, DB2 must manage more open data sets—one for
each tablespace and table combination. As the number of tables in a
tablespace increases, DB2 must manage fewer open data sets. (All
considerations for multi-table tablespaces, as outlined in Chapter 5, still
apply.)

Tuning
Strategy

The memory cost per open data set, approximately 1.8K, is small in
comparison to the performance gains associated with leaving the data
sets open to avoid VSAM open and close operations. Favor using
CLOSE YES for most of your tablespaces and indexes. Doing so leaves
data sets open until the maximum number of open data sets is reached.
At this point, the least recently used data sets are closed.

Total Memory Requirements

By adding the memory requirements, as specified in the preceding sections, for the EDM pool,
bufferpools, RID pool, sort pool, working storage, open data sets, and IRLM for each DB2 subsystem,
you can estimate the memory resources required for DB2. If insufficient memory is available, consider
limiting the availability of DB2 until more memory can be procured.

Tuning
Strategy

DB2 uses virtual and real storage. DB2's performance increases as you
assign more memory. If you intend to have very large DB2 applications,
do not be stingy with memory.

 - 573 -

Tuning CPU Use
Tuning CPU use is a factor in reducing DB2 resource consumption and providing an efficient
environment. The major factors affecting CPU cost are as follow:

 Amount and type of I/O
 Number of GETPAGE requests
 Number of columns selected in the SQL statement
 Number of predicates applied per SQL statement

The following paragraphs offer additional information about each of these factors, including suggested
tuning strategies.

By reducing physical I/O requests, you decrease CPU consumption. Similarly, the use of sequential
prefetch can decrease CPU cost because more data is returned per physical I/O.

Tuning
Strategy

Encourage the use of sequential prefetch when every (or almost every)
row in a table will be accessed. You can do so by coding SELECT
statements without predicates, by coding SELECT statements with
minimal predicates on columns that are not indexed, or sometimes, by
specifying a large number in the OPTIMIZE clause (for example,
OPTIMIZE FOR 1000000 ROWS). Because the OPTIMIZE FOR n
ROWS clause was originally designed to reduce the estimated number
of rows to be retrieved (not to increase that number), this trick does not
always work.

Each GETPAGE request causes the Data Manager to request a page from the Buffer Manager, which
causes additional CPU use.

Tuning
Strategy

If possible, serialize data requests in static applications so that requests
for the same piece of data are not duplicated. If a program requires the
same data more than once, the processes that act on that data can be
enacted contiguously, requiring a single I/O instead of multiple I/Os. For
example, if an employee's department number is required in three
separate parts of a transaction, select the information once and save it
for the other two times.

As the number of selected columns increases, DB2 must do more work to manipulate these columns,
thereby using excess CPU.

Tuning
Strategy

Code each SELECT statement (even ad hoc SQL) to return only
columns that are absolutely needed.

As your number of predicates increases, DB2 must do more work to evaluate the predicates and ensure
that the data returned satisfies the requirements of the predicates.

Tuning
Strategy

Avoid coding redundant predicates. Use your knowledge of the
application data in coding SQL. For example, if you know that
employees must have an EDLEVEL of 14 or higher to hold the title of
MANAGER, use this knowledge when you're writing SQL statements.
The EDLEVEL predicate in the following query should not be coded
because it is redundant, given the preceding qualification:
 SELECT EMPNO, LASTNAME
 FROM DSN8610.EMP
 WHERE JOB = 'MANAGER'
 AND EDLEVEL >= 14;

Document the removal of redundant predicates in case policy changes. For example, if managers can
have an education level of 10, the EDLEVEL predicate is no longer redundant and must be added to the
query again. Because tracking this information can be difficult, you should avoid removing predicates
that are currently redundant but that might not always be so.

Tuning I/O
I/O is probably the single most critical factor in the overall performance of your DB2 subsystem and
applications. This factor is due to the physical nature of I/O: It is limited by hardware speed. The
mechanical functionality of a storage device is slower and more prone to breakdown than the rapid,
chip-based technologies of CPU and memory. For this reason, paying attention to the details of tuning
the I/O characteristics of your environment is wise.

 - 574 -

What is I/O? Simply stated, I/O is a transfer of data by the CPU from one medium to another. I stands
for input, or the process of receiving data from a physical storage medium. O stands for output, which is
the process of moving data to a physical storage device. In every case, an I/O involves moving data
from one area to another.

In the strictest sense of the term, an I/O can be a movement of data from the bufferpool to a working
storage area used by your program. This type, however, is a trivial I/O with a lower cost than an I/O
requiring disk access, which is the type of I/O you must minimize and tune.

The best way to minimize the cost of I/O is to use very large bufferpools. This way, you can increase the
possibility that any requested page is already in memory, thereby tuning I/O by sometimes eliminating it.
In general, I/O decreases as the size of the bufferpools increases. This method, however, has
drawbacks. Bufferpools should be backed up with real and virtual memory, but your shop might not
have extra memory to give DB2. Also, DB2 basically takes whatever memory you give it and almost
always can use more.

Note Of course, another way to minimize the cost of I/O is to utilize faster hardware.
IBM recently introduced the Enterprise Storage System (ESS), sometimes
referred to as SHARK. The performance of the ESS storage system is much
better than its predecessors. The majority of improvements in ESS performance
come from improvements to the bus architecture, higher parallelism, improved
disk interconnection technology, and increased ESCON channel attachments.

Even with large bufferpools, data must be read from DASD at some point to place the data in the
bufferpools. Tuning I/O, therefore, is wise.

The number of all reads and writes makes up the I/O workload incurred for any single resource. The
cost of I/O, therefore, is affected by the DASD device, the number of pages retrieved per I/O, and the
type of write operation.

The characteristics of the DASD device that contains the data being read include the speed of the
device, the number of data sets on the device, the proximity of the device to the device controller, and
concurrent access to the device.

The second factor affecting I/O cost is the number of pages retrieved per I/O. As I indicated in the
preceding section, sequential prefetch can increase the number of pages read per I/O. Sequential
prefetch also functions as a read-ahead engine. Reads are performed in the background, before they
are needed and while other useful work is being accomplished. This way, I/O wait time can be
significantly reduced.

Refer to the following average response times. (Note that all times are approximate.) A single page
being read by sequential prefetch can be two to four times more efficient than a single page read by
synchronous I/O.

Device

Sequential
Prefetch

Sequential
Prefetch
(per page)

Synchronous
Read

3380 80ms 2.5ms 25ms

3390 40ms 1.5ms 10ms

Better response times can be achieved with modern storage devices. In a document titled "DB2 for
OS/390 Performance on IBM Enterprise Storage Server," IBM has published a prefetch rate of 11.8
MB/second with ESS and 5.8 MB/second with RAMAC-3.
The third factor in I/O cost is the type of write operation: asynchronous versus synchronous. DB2 cannot
only read data in the background but also write data in the background. In most cases, DB2 does not
physically externalize a data modification to DASD immediately following the successful completion of
the SQL DELETE, INSERT, or UPDATE statement. Instead, the modification is externalized to the log.
Only when the modified page is removed from DB2's buffers is it written to DASD. This process is called
an asynchronous, or deferred, write. Synchronous writes, on the other hand, are immediately written to
DASD. DB2 tries to avoid them, and it should. If you ensure that sufficient buffers are available,
synchronous writes can be avoided almost entirely.

Several types of I/O must be tuned. They can be categorized in the following five groups:

 - 575 -

Application I/O

Internal I/O

Sort I/O

Log I/O

Paging I/O

In the sections that follow, you will examine each of these types of I/O.

Application I/O
Application I/O is incurred to retrieve and update application data. As DB2 applications execute, they
read and modify data stored in DB2 tables. This process requires I/O.

You can apply the following strategies to tune all five types of I/O covered here, not just application I/O.
They are of primary importance, however, for application I/O.

Tuning
Strategy

Tune I/O by increasing the size of the bufferpools. With larger
bufferpools, application data can remain in the bufferpool longer. When
data is in the bufferpool, it can be accessed quickly by the application
without issuing a physical I/O.

Tuning
Strategy

Tune I/O speed by using the fastest disk drives available. For example,
replace older 3380 devices with newer, faster 3390 devices, RAMAC, or
ESS. Most applications require multiple I/Os as they execute. For each
I/O, you can save from 15ms to 40ms with 3390s instead of 3380s. The
performance gains can be tremendous for applications requiring
thousands (or even millions) of I/Os.

Tuning
Strategy

(For non-SMS users only): Use proper data set placement strategies to
reduce DASD contention. To do so, follow these basic rules:

 Avoid placing a table's indexes on the same DASD device as
the tablespace used for the table.

 Analyze the access pattern for each application. When tables
are frequently accessed together, consider placing them on
separate devices to minimize contention.

 Limit shared DASD. Putting multiple, heavily accessed data
sets from different applications on the same device is unwise.
Cross-application contention can occur, causing head
movement, undue contention, and I/O waits. Be cautious not
only of high-use DB2 tables sharing a single volume, but also
of mixing DB2 tables with highly accessed VSAM, QSAM,
and other data sets.

 Place the most heavily accessed tablespaces and indexes
closest to the DASD controller unit. The closer a DASD
device is on the string to the actual controller, the higher its
priority will be. The performance gain from this placement is
minimal (especially for 3390 devices), but consider this option
when you must squeeze out every last bit of performance.

 Avoid having tablespace and index data sets in multiple
extents. When the data set consists of more than a single
extent, excess head movement can result, reducing the
efficiency of I/O.

 Use the PIECESIZE parameter (new as of DB2 V5) to
explicitly distribute non-partitioned tablespaces and indexes
over multiple devices.

 Favor allocation of data sets in cylinders.

Another factor impacting the efficiency of accessing DB2 application data is partitioning. When data is
partitioned, it is more likely that DB2 can utilize query parallelism to read data.

Tuning
Strategy

Consider partitioning simple and segmented tablespaces to take
advantage of DB2's parallel I/O capabilities.

 - 576 -

Internal I/O

DB2 requires internal I/Os as it operates. Different types of data must be read and updated by DB2 as
applications, utilities, and commands execute. This type of I/O occurs during the following:

 Recording utility execution information in the DB2 Directory
 Updating the DB2 Catalog as a result of DCL, DDL, or utility executions
 Reading the DB2 Catalog and DB2 Directory when certain DB2 commands (for

example, -DISPLAY DATABASE) are issued
 Retrieving skeleton cursor tables, skeleton plan tables, and DBDs from the DB2

Directory to enable programs to execute
 Retrieving data from the DB2 Catalog during BIND, REBIND, and dynamic SQL

use
 Miscellaneous DB2 Catalog I/O for plans marked as VALIDATE(RUN) and for

other runtime needs
 Reading the Resource Limit Specification Table

Tuning
Strategy

Limit activities that incur internal I/O during heavy DB2 application
activity. This way, you can reduce the possibility of application timeouts
due to the unavailability of internal DB2 resources resulting from
contention.

Tuning
Strategy

To enhance the performance of I/O to the DB2 Catalog, consider
placing the DB2 Catalog in a solid-state device that uses memory chips
rather than mechanical DASD. Although solid-state devices are often
expensive, they can reduce I/O cost significantly. A power outage,
however, can cause the DB2 Catalog to be unavailable or damaged.
For many shops, this risk might be too great to take. You can find
additional tuning strategies for the DB2 Catalog and DB2 Directory in
Chapter 26.

Sort I/O
Sorting can cause an I/O burden on the DB2 subsystem. To sort very large sets of rows, DB2
sometimes uses physical work files in the DSNDB07 database to store intermediate sort results.
DSNDB07 consists of tablespaces stored on DASD. The use of disk-based work files for sorting can
dramatically affect performance.

Tuning
Strategy

Consider placing DSNDB07 on a solid-state device when applications in
your DB2 subsystem require large sorts of many rows or the sorting of a
moderate number of very large rows.

Tuning
Strategy

As I mentioned, you can reduce sort I/Os by increasing the size of
bufferpools not used for DB2 objects. Additional memory, as much as
10% of each bufferpool, is allocated to the sort pool. This additional
memory allocation increases the RDS sort pool and reduces the
possibility of I/Os to DSNDB07.

Tuning
Strategy

Tune DSNDB07 because you will probably use it eventually. Be sure
that multiple tablespaces are defined for DSNDB07 and that they are
placed on separate DASD devices. Furthermore, ensure that the
underlying VSAM data sets for the DSNDB07 tablespaces are not using
multiple extents.

Tuning
Strategy

If the cost of sorting is causing a bottleneck at your shop, ensure that
you are using the following sorting enhancements:

 The microcode sort feature can improve the cost of sorting by
as much as 50%. Microcode is very efficient software
embedded in the architecture of the operating system. The
microcode sort can be used only by DB2 V2.3 and higher and
only when DB2 is run on one of the following CPU models:
ES/9000 Model 190 and above, ES/3090-9000T, and
ES/3090 Models 180J, 200J, 280J, and above.

 Provide for unlimited logical work files based on the size of
the bufferpool. This capability can significantly reduce I/O
because more sort data can be contained in memory rather
than written out to DSNDB07.

 Define DSNDB07 in a separate bufferpool and tune it
accordingly for sorting.

 - 577 -

Tuning
Strategy

Be sure to create DSNDB07 work files appropriately. Define multiple
work files of equal size. You should consider allowing these files to go
into extents, as well. Secondary extents allow runaway queries to
complete. If you would rather have a runaway query fail than have it
acquire the storage for sort work files using extents, define the work files
without the ability to take extents. If you allow extents, define them on all
work files, not just the last one.

Log I/O
Log I/O occurs when changes are made to DB2 data. Log records are written to DB2's active log data
sets for each row that is updated, deleted, or inserted. Every modification (with the exception of REORG
LOG NO and LOAD LOG NO) is logged by DB2 to enable data recovery. In addition, when you run the
RECOVER utility to restore or recover DB2 tablespaces, an active log data set (and sometimes multiple
archive log data sets) must be read.

For these reasons, optimal placement of DB2 log data sets on DASD is critical.
Tuning
Strategy

Place log data sets on 3390 DASD volumes with the DASD fast write
feature. DASD fast write is a caching technique that significantly
enhances the speed of I/O for DB2 log data sets.
The two types of DB2 log data sets are active logs and archive logs. As
the active log data sets are filled, DB2 invokes a process called log
offloading to move information from the active logs to the archive logs.
Log offloading can have a severe impact on the throughput of a DB2
subsystem.

Tuning
Strategy

Never place more than one active log data set on the same DASD
volume. Otherwise, the overall performance of DB2 will be impaired
significantly during the log offloading process.

Optimal utilization of tapes and tape drives is critical for an efficient DB2 log offloading process. Recall
Chapter 21, "Locking DB2 Data," that log offloading is the process of writing entries from the active log
to the archive log.

Note Consider making the active log the same size as a full cartridge. When the log is
offloaded, it will utilize a full cartridge, resulting in fewer wasted tapes.

Paging I/O

Paging I/Os occur when memory is overutilized and pages of storage are relocated temporarily to
DASD. When needed, they will be read from DASD back into main storage. This process causes very
high overhead.

Tuning
Strategy

Avoid paging by fencing the DB2 address spaces as suggested in the
section titled "Tuning Memory Use" at the beginning of this chapter.

Tuning
Strategy

Increase the amount of real and virtual storage for your CPU. When you
increase the amount of memory, paging is less frequent.

In addition to the tuning of I/O at the data set level, you must monitor
and tune I/O at the DASD device level. The overall performance of I/O
depends on the efficiency of each DASD volume to which DB2 data sets
have been allocated.

Tuning
Strategy

Consistently monitor each DASD volume to ensure that contention is
minimal. You can do so with a third-party tool designed to report on the
usage characteristics of DASD devices. In general, if device contention
for any DASD volume is greater than 30%, an I/O problem exists. Each
shop should analyze its DASD usage patterns, reducing contention as
much as possible given the shop's budgetary constraints. When
contention is high, however, consider moving some data sets on the
device to other, less active volumes.

Some DASD devices offer hardware caching as an option for all data sets stored on the device. In these
cases, the actual disk drive can be used to cache data reads. These features are not usually effective
for reading DB2 data.

Tuning
Strategy

Avoid caching for DASD volumes containing DB2 application tablespace
and index data sets. The benefits of caching are greatly reduced for
most DB2 application processing because of the efficient, asynchronous
manner in which DB2 can read data (using sequential prefetch) and

 - 578 -

write data (using deferred write).

RAMAC Devices

Some of the conventional wisdom regarding data set placement and I/O changes with RAMAC storage
devices. A device is not a physical volume, it is a virtual volume that is spread across multiple physical
volumes on the RAMAC. For this reason, arm movement is not a concern.

With RAMAC, it is possible that you could place data sets on separate volumes only to have RAMAC
place them on the same physical volume. For this reason, consider using SMS to place the data, and
use DFDSS to move data sets when contention occurs.

Tuning Various MVS Parameters and Options
Because MVS is a complex operating system, it can be difficult to comprehend. In this section, I
discuss—in easy-to-understand language—some environmental tuning options for MVS.
The MVS environment is driven by the Systems Resource Manager (SRM). The SRM functions are
based on parameters coded by systems programmers in the SYS1.PARMLIB library. Three members of
this data set are responsible for defining most performance-oriented parameters for MVS: OPT, IPS,
and ICS. You can tune the items discussed in this chapter by modifying these members. However, I do
not discuss how to set these parameters in this book.

You should not take this type of tuning lightly. MVS tuning is complex, and a change made to benefit
DB2 might affect another MVS subsystem. All DB2 personnel in your shop (including management,
database administration, and DB2, IMS, CICS, and MVS systems programming) should discuss these
types of tuning options before implementing them. Only a trained systems programmer should make
these types of changes.
The first item to consider is whether a job is swappable. A swappable job can be temporarily swapped
out of the system by MVS. When a job is swapped out, it is not processed. It therefore is not using CPU,
cannot request I/O, and generally is dormant until it is swapped back into the system. Almost all of your
jobs should be swappable so that MVS can perform as it was designed—maximizing the number of jobs
that can be processed concurrently with a minimum of resources.

Because the DB2 address spaces, however, are non-swappable, DB2 itself is never swapped out.
Therefore, a DB2 application program requesting DB2 functions never has to wait for DB2 because it
has been swapped out. The following list outlines which components of your overall environment can be
swappable:

DB2 Non-
swappable

CICS Swappable
or non-
swappable

IMS Non-
swappable

TSO Swappable

QMF Swappable

Application Swappable
Tuning
Strategy

When a CICS subsystem is being used to access DB2, it
should be defined as nonswappable to enhance response
time (and thereby increase the performance) of the DB2/CICS
transactions.

Usually, an application address space is swapped out so that MVS can maintain even control over the
processing environment. MVS might determine that a job should be swapped out for the following
reasons:

 Too many jobs are running concurrently for all of them to be swapped in
simultaneously. The maximum number of address spaces that can be

 - 579 -

simultaneously swapped in is controlled by the SRM based on parameters and the
workload.

 Another job needs to execute.
 A shortage of memory.
 Terminal wait. A TSO user might be staring at the screen, thinking about what to do

next. Online TSO application programs do not need to be swapped in until the user
takes another action.

The dispatching priority of an address space is a means of controlling the rate at which the address
space can consume resources. A higher dispatching priority for an address space translates into faster
performance because resources are more readily available to jobs with higher dispatching priorities.
Controlling the dispatching priorities of jobs is an important tuning technique.
Normally, SRM controls the dispatching priority. Your shop may be using the Workload Manager (WLM)
to control priority. Systems programmers assign the dispatching priority of different address spaces. To
ensure optimal DB2 performance, arrange the dispatching priorities of your DB2-related address spaces
as shown in Figure 25.3. Batch application address spaces are generally dispatched below TSO (Long).
Some critical batch jobs could be dispatched higher than TSO (Long).

Figure 25.3: Dispatching priority hierarchy.

Tuning
Strategy

Increasing the dispatching priority of batch DB2 application jobs that are
critical or long-running increases their performance. However, this
increase is at the expense of other jobs running with lower dispatching
priorities. Tinkering with the dispatching priorities of application jobs is
not a good practice unless it is an emergency. The dispatching priority
of an address space can be changed "on-the-fly," but only by authorized
personnel.

When you're planning for a high amount of batch activity, ensure that an adequate number of initiators
is available for the batch jobs. Initiators are essentially servers, under the control of JES, that process
jobs as they are queued. In determining whether initiators are available, take the following into account:

 An initiator is assigned to a job class or classes, specified on the job card of your
batch JCL. If an initiator is not assigned to the job class that your DB2 jobs will be
using, that initiator will not be used.

 The number of initiators available for DB2 job classes dictates the number of DB2
batch jobs that can run concurrently from an MVS perspective. The IDBACK
DSNZPARM parameter determines the number of background DB2 jobs that can be
run concurrently from a DB2 perspective.

Tuning
Strategy

Synchronize the value of IDBACK to the number of initiators for the DB2
job classes at your site. If non-DB2 jobs can be run in DB2 job classes,
or if the initiator is available also for non-DB2 job classes, the value of
IDBACK should be less than the total number of initiators assigned to
DB2 job classes.

 - 580 -

 Jobs are removed from the job queue for execution by an initiator in order of their
selection priority. Selection priority is coded on the job card of your JCL (PRTY).
Most shops disable the PRTY parameter and place strict controls on the selection
priority of jobs and job classes.

Note that selection priority is different from dispatching priority. Selection priority controls
the order in which jobs are queued for processing. Dispatching priority controls the
resources available to a job after it is executing.

Tuning
Strategy

Where initiators are at a premium (for example, fewer initiators than
concurrent jobs), ensure that the DB2 jobs with the highest priority are
assigned a higher selection priority than other DB2 jobs. This way, you
can ensure that DB2 jobs are processed in order from most critical to
least critical by the system.

MVS tuning is an important facet of DB2 tuning. After the MVS environment has been tuned properly, it
should operate smoothly with little intervention (from DB2's perspective). Getting to the optimal MVS
environment, however, can be an arduous task.

Tuning MVS is only one component of DB2 environment tuning. Tuning the teleprocessing environment,
discussed next, is vital in achieving proper online performance.

Tuning the Teleprocessing Environment
Tuning your teleprocessing environment is essential to ensure that your online transactions are running
in an optimal fashion. DB2 can use any of the three teleprocessors supplied by IBM: CICS, IMS/TM,
and TSO. The tuning advice is different for each.

In this section, I do not provide in-depth tuning advice for your teleprocessing environments. An entire
book could be devoted to the tuning of CICS, IMS/TM, and TSO. Your shop should ensure that the
requisite level of tuning expertise is available. However, you should keep several basic online tuning
strategies in mind. The following guidelines are applicable for each teleprocessing environment
supported by DB2.

Limit Time on the Transaction Queue

Tune to limit the time that transactions spend on the input queue and the output queue. This way, you
can decrease overhead and increase response time.

Design Online Programs for Performance
Ensure that all the program design techniques presented in Chapter 16, "The Doors to DB2," are
utilized.

Store Frequently Used Data in Memory

Place into memory as many heavily used resources as possible. For example, consider using MVS/ESA
data spaces for CICS tables.

Make Critical Programs Resident

Consider making programs for heavily accessed transactions resident to reduce the I/O associated with
loading the program. A resident program remains in memory after the first execution, thereby
eliminating the overhead of loading it each time it is accessed.

Buffer All Non-DB2 Data Sets

Ensure that all access to non-DB2 data sets (such as VSAM or IMS) is buffered properly using the
techniques available for the teleprocessing environment.

Summary
In this chapter, you learned many techniques for tuning the DB2 environment to optimize performance.
There are many different components that impact the overall DB2 environment and that must be tuned.

 - 581 -

We examined how to tune MVS features, including memory, CPU, I/O, and system parameters.
Additionally, the allied agents that access DB2 must be tuned as well.
Now that you understand how to tune the DB2 environment, move on to the next chapter where you will
explore the many facets of tuning the DB2 subsystem itself.

Chapter 26: Tuning DB2's Components
Overview
After ensuring that the MVS and teleprocessing environments are tuned properly, you can turn your
attention to tuning elements integral to DB2. This chapter discusses the three main DB2 components
that can be tuned: the DB2 subsystem, the database design, and the application code.

Tuning the DB2 Subsystem
The first level of DB2 tuning to be discussed in this chapter is at the DB2 subsystem level. This type of
tuning is generally performed by a DB2 systems programmer or database administrator. Several
techniques can be used to tune DB2 itself. These techniques can be broken down into three basic
categories:

 DB2 Catalog tuning techniques
 Tuning DB2 system parameters
 Tuning the IRLM

Each of these tuning methods is covered in the following sections.

Tuning the DB2 Catalog
One of the major factors influencing overall DB2 subsystem performance is the physical condition of the
DB2 Catalog and DB2 Directory tablespaces. These tablespaces are not like regular DB2 tablespaces.
Prior to DB2 V4, you could not REORG the DB2 Catalog and DB2 Directory tablespaces.

Tuning
Strategy

Ensure that the DB2 Catalog data sets are not in multiple extents. When
a data set spans more than one extent, overhead accrues due to the
additional I/O needed to move from extent to extent. To increase the
size of DB2 Catalog data sets, you must invoke a DB2 Catalog
recovery. This procedure is documented in Chapter 6 of the DB2
Administration Guide.

Tuning
Strategy

Institute procedures to analyze the organization of the DB2 Catalog and
DB2 Directory tablespaces and indexes. Beginning with DB2 V4, you
can reorganize inefficient objects in the DB2 Catalog and DB2 Directory.
In-depth information on reorganizing the DB2 Catalog is provided in
Chapter 31, "Data Organization Utilities."
Regardless of which release of DB2 you are running, it is possible to
issue the REBUILD INDEX utility on the DB2 Catalog indexes, thereby
reorganizing them. Periodically recover these indexes when DB2 use
grows. Refer to Appendix B, "The DB2 Catalog Tables," for a listing of
the DB2 Catalog tables and indexes.

DB2 does not make use of indexes when it accesses the DB2 Catalog for internal use. For example,
binding, DDL execution, and authorization checking do not use DB2 indexes. Instead, DB2 traverses
pointers, or links, maintained in the DB2 Catalog. These pointers make internal access to the DB2
Catalog very efficient.

The DB2 Catalog indexes are used only by users issuing queries against DB2 Catalog tables. Whether
these indexes are used or not is based on the optimization of the DB2 Catalog queries and whether the
DB2 optimizer deems that they are beneficial.

Tuning
Strategy

Execute RUNSTATS on the DB2 Catalog tablespaces and indexes.
Without current statistics, DB2 cannot optimize DB2 Catalog queries.
Additionally, RUNSTATS provides statistics enabling DBAs to determine
when to reorganize the DB2 Catalog tablespaces.

 - 582 -

Although it is difficult to directly influence the efficiency of internal access to the DB2 Catalog and DB2
Directory, certain measures can be taken to eliminate obstructions to performance. For instance, follow
proper data set placement procedures to reduce DASD head contention.

Tuning
Strategy

Do not place other data sets on the volumes occupied by the DB2
Catalog and DB2 Directory data sets. Place the DB2 Catalog data sets
on different volumes than the DB2 Directory data sets. Place DB2
Catalog tablespaces on different volumes than the indexes on the DB2
Catalog.

Tuning
Strategy

If you have additional DASD, consider separating the DB2 Catalog
tablespaces by function, on distinct volumes.

On volume #1, place SYSPLAN, which is the tablespace used by
application programs for binding plans.

On volume #2, place SYSPKAGE, which is the tablespace used by
application programs for binding packages. Keep these tablespaces on
separate volumes. Because plans can be composed of multiple
packages, DB2 may read from SYSPKAGE and write to SYSPLAN
when binding plans. Failure to separate these two tablespaces can
result in head contention.

On volume #3, place SYSCOPY, which is the tablespace used by
utilities. This enhances the performance of DB2 utilities.
On volume #4, place the remaining DB2 Catalog tablespaces: SYSDDF,
SYSDBASE, SYSDBAUT, SYSOBJ, SYSGPAUT, SYSGROUP,
SYSSTATS, SYSSTR, SYSUSER, and SYSVIEWS. These tablespaces
can coexist safely on a single volume because they are rarely accessed
in a way that causes head contention.

The DB2 Catalog is central to most facets of DB2 processing. It records the existence of every object
used by DB2. As such, it is often queried by DBAs, programmers, and ad hoc users. Large queries
against the DB2 Catalog can cause performance degradation.

Tuning
Strategy

Consider isolating the DB2 Catalog tablespaces and indexes in a single
bufferpool. This bufferpool must be BP0 because DB2 forces the
catalog objects to be created in BP0. To isolate the system catalog
objects in BP0, ensure that all other objects are created in other
bufferpools (BP1 through BP49, BP8K0 through BP8K9, BP16K0
through BP16K9, BP32K, and BP32K1 through BP32K9).

Tuning
Strategy

Consider monitoring the SQL access to DB2 Catalog tables and
creating additional indexes on tables that are heavily accessed by non-
indexed columns.

The ability to add indexes to DB2 Catalog tables was introduced with
DB2 V4. If you are running DB2 V4 or V5, be aware that additional
indexes created on DB2 Catalog tables must be type 2 indexes.

Additionally, many DB2 add-on tools access the DB2 Catalog as they execute, which can result in a
bottleneck. Because the DB2 Catalog provides a centralized repository of information on all objects
defined to DB2, it is natural for programmers, analysts, and managers to request access to the DB2
Catalog tables for queries. This can cause contention and reduce performance.

Tuning
Strategy

Consider making a shadow copy of the DB2 Catalog for programmer
queries and use by vendor tools. This reduces DB2 Catalog contention.
If most external access to the DB2 Catalog is redirected to a shadow
copy, internal access is much quicker. The shadow DB2 Catalog tables
should never be allowed to get too outdated. Consider updating them
weekly.
To implement this strategy, you must plan a period of inactivity during
which the DB2 Catalog can be successfully copied to the shadow
tables. Consider using ISOLATION(UR) when unloading the DB2
Catalog rows for movement to the shadow copy. For assistance with
implementing this strategy, follow the guidelines presented in Chapter 5,
"Data Definition Guidelines," for denormalizing with shadow tables.

 - 583 -

Tuning
Strategy

If you don't use a shadow copy of the DB2 Catalog, consider limiting
access to the DB2 Catalog by allowing queries only through views. You
can create views so that users or applications can see only their own
data. Additionally, views joining several DB2 Catalog tables can be
created to ensure that DB2 Catalog tables are joined in the most
efficient manner.

Finally, remember that when DB2 objects are created, DB2 must read and update several DB2 Catalog
tables. This results in many locks on DB2 Catalog pages as the objects are being built. To reduce
contention and the resultant timeouts and deadlocks, schedule all DDL during off-peak processing
periods (for example, in the early morning after the batch cycle but before the first online use or over the
weekend).

Tuning
Strategy

Consider priming the DB2 Catalog with objects for each new
authorization ID that will be used as a creator. This avoids what some
people refer to as the "first-time effect." Whenever initial inserts are
performed for an authorization ID, additional overhead is involved in
updating indexes and pointers. So, for each new authorization ID,
consider creating a dummy database, tablespace, table, index,
synonym, view, package, and plan. As is the case with all DDL, you
should do this only at an off-peak time. These objects need never be
used and can be dropped or freed after actual DB2 objects have been
created for the authorization ID. This is not as much of a concern for a
test DB2 subsystem where performance is a less critical issue.

Tuning
Strategy

Keep the DB2 Catalog and Directory as small as possible. Do not use
the DB2 Catalog to retain historical objects, plans, packages, or
recovery information. If any of this information might be beneficial, use a
historical copy or version of the DB2 Catalog to retain this information.
For example,

 Delete the sample tables that do not apply to the current
release or prior DB2 release.

 If on V3 or later, delete the DSNDB01.SYSUTIL data sets.
 If on V4 or later, delete the DSNDB01.SYSLGRNG data sets

and issue the MODIFY utility to delete any obsolete
DSNDB01.SYSLGRNG rows from SYSIBM.SYSCOPY.

 If on V5 or later, delete the SYSDDF.SYSDDF data sets and
objects.

 If on V4 or later, delete the DSNCV objects. These objects
were used for Catalog Visibility.

 Always delete plans and packages that are not used. For
instance, V6 users should deleted DSNTEP2 plans that
invoke V5 or earlier programs.

 Delete SYSCOPY rows that are not useful.

DSNZPARMs
The makeup of the DB2 environment is driven by a series of system parameters specified when DB2 is
started. These system parameters are commonly referred to as DSNZPARMs, or ZPARMs for short.

The DSNZPARMs define the settings for many performance-related items. Several of the ZPARMs
influence overall system performance.

Note Prior to DB2 V3, bufferpool specifications were coded into the ZPARMs. As of
DB2 V3, they can be set using the DB2 command ALTER BUFFERPOOL.

Traces
Traces can be started automatically based on DSNZPARM specifications. Most shops use this feature
to ensure that certain DB2 trace information is always available to track performance problems. The
DSNZPARM options for automatically starting traces are AUDITST, TRACSTR, SMFACCT, SMFSTAT,
and MON.

Tuning
Strategy

Ensure that every trace that is automatically started is necessary. Recall
from Chapter 22, "Traditional DB2 Performance Monitoring," that traces
add overhead. Stopping traces reduces overhead, thereby increasing
performance.

 - 584 -

DB2 traces can be started by IFCID. The acronym IFCID stands for Instrumentation Facility Component
Identifier. An IFCID basically names a single traceable event in DB2. By specifying IFCIDs when
starting a trace, you can limit the amount of information collected to just those events you need to trace.

Locking
Lock escalation thresholds are set by the following DSNZPARM options of the system parameters:
NUMLKTS Maximum number of page or row locks for a single tablespace

before escalating them to a tablespace lock
NUMLKUS Maximum number of page or row locks held by a single user on all

tablespaces before escalating all of that user's locks to a
tablespace lock

Tuning
Strategy

To increase concurrency, set the NUMLKTS and NUMLKUS
thresholds high to minimize lock escalation. For some
environments, the default values are adequate
(NUMLKTS=1000 and NUMLKUS=10000). However, for very a
high-volume environment, these numbers may need to be
adjusted upward to avoid contention problems.

Lock escalation can also be controlled on a tablespace by tablespace basis using the LOCKMAX
parameter. Information on the LOCKMAX parameter can be found in Chapter 5. When specified, the
LOCKMAX parameter overrides NUMLKTS.

Logging
The parameters that define DB2's logging features are also specified in the DSNZPARMs. Options can
be used to affect the frequency of writing log buffers and the size of the log buffers. The DSNZPARM
options that affect DB2 logging are LOGLOAD, WRTHRSH, INBUFF, and OUTBUFF.

Tuning
Strategy

The frequency with which DB2 takes system checkpoints is based on
how many log records are written. The LOGLOAD parameter is used to
tell DB2 the number of log records that are to be written before a
checkpoint occurs. Restart time is directly affected by how many log
records are written after the latest system checkpoint. The more log
records, the longer the restart time.
Additionally, DB2 takes a checkpoint when an active log is switched.
The active log is switched when it becomes full or the ARCHIVE LOG
command is issued.
Prior to DB2 V6, the LOGLOAD parameter was specified as a DSNZPARM
only. Changing LOGLOAD required you to stop and restart the DB2
subsystem for the change to take effect.
As of V6, the SET LOG command can be used to change the
LOGLOAD parameter dynamically. The value of LOGLOAD can be 0, or
within the range of 200 to 16000000. A checkpoint will be taken
immediately if you specify 0 for the LOGLOAD value.

DB2 fills log buffers and eventually the log records are written to an active log data set. The write occurs
when the buffers fill up, when the write threshold is reached or when the DB2 subsystem forces the log
buffer to be written.

Tuning
Strategy

For moderate-to-large DB2 subsystems, increase the size of
WRTHRSH to decrease the frequency of physical I/Os being issued to
write log information to the log data sets. The default value is 20, which
indicates that 20 buffers must be filled before starting to write to the
logs. Setting the value to 20 is usually too low.
This number can vary from 1 to 256. Using 60 is a good place to start,
The goal is to balance performance against recovery. The larger the
WRTHRSH number, the more likely that DB2 data will be lost if DB2
terminates abnormally.

Tuning
Strategy

Many shops simply use the default log output buffer size of 4000KB.
This is adequate for small shops (those with only one or two small,
noncritical DB2 applications). The maximum value for OUTBUFF is
400MB. Shops with large, critical DB2 applications should probably
specify a very large OUTBUFF—up to the maximum of 400MB if
sufficient memory is available.

 - 585 -

By increasing the OUTBUFF size, DB2 can perform better because more
logging activity is performed in memory. Log writes can improve
because DB2 is less likely to need to wait for a buffer. Log reads can
improve because, if the information is in the log buffer, DB2 does not
need to read the information from disk storage.

Be aware that when the log buffer is full, the entire DB2 subsystem will
stop until writes have completed and log buffers are available again.

Timeouts
The amount of time to wait for an unavailable resource to become available before timing out is
controlled by the DSNZPARM value, IRLMRWT. When one user has a lock on a DB2 resource that
another user needs, DB2 waits for the time specified by IRLMRWT and then issues a—911 or —913
SQLCODE.

Tuning
Strategy

IRLMRWT controls the amount of time to wait before timing out both
foreground and background tasks. Therefore, you must balance a
reasonable amount of time for a batch job to wait versus a reasonable
amount of time for an online transaction to wait. If this value is too high,
transactions wait too long for unavailable resources before timing out. If
this value is too low, batch jobs abend with timeouts more frequently.
The default value of 60 seconds is a good compromise.

Tuning
Strategy

Sometimes it is impossible to find a compromise value for IRLMRWT.
Online transactions wait too long to time out, or batch jobs time out too
frequently. If this is the case, consider starting DB2 in the morning for
online activity with a modest IRLMRWT value (45 or 60 seconds) and
starting it again in the evening for batch jobs with a larger IRLMRWT
value (90 to 120 seconds). In this scenario, DB2 must go down and
come back up during the day. (This might be impossible for shops
running 24 hours a day, 7 days a week.)

Additionally, the UTIMOUT parameter can be used to indicate the number of resource timeout cycles
that a utility will wait for a drain lock before timing out.

Tuning
Strategy

The value of UTIMOUT is based on the value of IRLMRWT. If
UTIMOUT is set to 6 (which is the default), a utility will wait six times as
long as an SQL statement before timing out.

Active Users
The number of active users can be controlled by the DSNZPARM settings, including the following:
CTHREAD Controls the absolute number of maximum DB2 threads that can

be running concurrently
IDFORE Sets the maximum number of TSO users that can be connected

to DB2 simultaneously
IDBACK Controls the number of background batch jobs accessing DB2
MAXDBAT Specifies the maximum number of concurrent distributed threads

that can be active at one time
Tuning Strategy Use the CTHREAD parameter to ensure that no more

than the maximum number of DB2 users planned for
can access DB2 at a single time. Failure to keep this
number synchronized with other DB2 resources can
cause performance degradation. For example, if your
bufferpools and EDM pool are tuned to be optimal for
30 users, do not allow CTHREAD to exceed 30 until
you have reexamined these other areas. The same is
true for IDFORE to control TSO use, IDBACK to control
the proliferation of batch DB2 jobs, and MAXDBAT to
control distributed DB2 jobs.

 - 586 -

EDM Pool
The size of the EDM pool is specified in the DSNZPARM value named EDMPOOL. The use of the EDM
pool and its requirements are described in Chapter 20, "The Table-Based Infrastructure of DB2," in the
section titled "Tuning Memory Use."

Drowning in a Bufferpool of Tears
The single most critical system-related factor influencing DB2 performance is the setup of sufficient
bufferpools. A bufferpool acts as a cache between DB2 and the physical DASD devices on which the
data resides. After data has been read, the DB2 Buffer Manager places the page into a bufferpool page
stored in memory. Bufferpools, therefore, reduce the impact of I/O on the system by enabling DB2 to
read and write data to memory locations synchronously, while performing time-intensive physical I/O
asynchronously.
Through judicious management of the bufferpools, DB2 can keep the most recently used pages of data
in memory so that they can be reused without incurring additional I/O. A page of data can remain in the
bufferpool for quite some time, as long as it is being accessed frequently. Figure 26.1 shows pages of
data being read into the bufferpool and reused by multiple programs before finally being written back to
DASD. Processing is more efficient as physical I/Os decrease and bufferpool I/Os increase.

Figure 26.1: DB2 bufferpool processing.

How does the bufferpool work? DB2 performs all I/O-related operations under the control of its Buffer
Manager component. As pages are read, they are placed into 4K pages in the bufferpool using a
hashing algorithm. This algorithm is based on an identifier for the data set and the number of the page
in the data set. When data is subsequently requested, DB2 can check the bufferpool quickly using
hashing techniques. This provides efficient data retrieval. Additionally, DB2 data modification operations
write to the bufferpool, which is more efficient than writing directly to DASD.

How does DB2 keep track of what data is updated in the bufferpool? This is accomplished by attaching
a state to each bufferpool page: available or not available. An available buffer page meets the following
two criteria:

 The page does not contain data updated by an SQL statement, which means that the
page must be externalized to DASD before another page can take its place.

 The page does not contain data currently being used by a DB2 application.
An unavailable page is one that does not meet both of the criteria because it has either been updated
and not yet written to DASD, or it is currently in use. When a page is available, it is said to be available
for stealing. Stealing is the process whereby DB2 replaces the current data in a buffer page with a
different page of data. (The least recently used available buffer page is stolen first.) DB2 provide 80
bufferpools to monitor, tune, and tweak.
Although every shop's usage of bufferpools differs, some basic ideas can be used to separate different
types of processing into disparate bufferpools. Consult Table 26.1 for one possible bufferpool usage
scenario. This is just one possible scenario and is not a general recommendation for bufferpool
allocation.

Table 26.1: A Possible Bufferpool Usage Scenario

Bufferpool Usage

 - 587 -

BP0 Isolate system resources (DB2 Catalog and Directory, RLST, and
so on)

BP1 Dedicate to sorting (DSNDB07)

BP2 Sequential tablespace bufferpool (usually accessed sequentially)

BP3 Sequential index bufferpool (usually accessed sequentially)

BP4 Code tables, lookup tables, and sequential number generation
tables

BP5 Indexes for code tables, lookup tables, and sequential number
generation tables

BP6 Dedicated bufferpool (for an entire application)

BP7 Dedicated bufferpool (for a single, critical tablespace)

BP8 Dedicated bufferpool (for a single, critical index)

BP9 Random tablespace bufferpool (usually accessed randomly)

BP10 Random index bufferpool (usually accessed randomly)

BP11 Reserve for tuning and special testing

BP12-BP49 Additional dedicated bufferpools (per tablespace, index, partition,
application, or any combination thereof)

BP8Ks and BP16Ks Only if 8KB and 16KB tablespaces have been defined

BP32Ks At least one BP32K for large joins; more if 32KB tablespaces are
permitted; be sure to separate 32KB user tablespaces from 32KB
DSNDB07 tablespaces

I will examine several aspects of this scenario. The first bufferpool, BP0, can be reserved for system
data sets such as the DB2 Catalog, QMF control tables, and Resource Limit Specification Tables. By
isolating these resources into a separate bufferpool, system data pages will not contend for the same
bufferpool space as application data pages.
Likewise, a single bufferpool (for example, BP1) can be set aside for sorting. If your environment
requires many large sorts that use physical work files, isolating DSNDB07 (the sort work database) in its
own bufferpool may be beneficial. This is accomplished by assigning all DSNDB07 tablespaces to the
targeted bufferpool (BP1).

Another technique for the allocation of bufferpools is to use separate bufferpools for indexes and
tablespaces. This can be accomplished by creating tablespaces in one bufferpool (for example, BP2)
and indexes in another (for example, BP3). The idea behind this strategy is to enable DB2 to maintain
more frequently accessed data by type of object. For instance, if indexes are isolated in their own
bufferpool, large sequential prefetch requests do not cause index pages to be flushed, because the
sequential prefetch is occurring in a different bufferpool. Thus, index pages usually remain in memory
longer, which increases performance for indexed access.

You can further tune your bufferpool usage strategy by isolating random access from sequential access.
Consider using say, BP2 and BP3 for objects that are predominantly accessed sequentially, and say,
BP9 and BP10 for randomly access objects. It is then possible to further tune the bufferpool parameters
so that each type of bufferpool is optimized for the predominant type of access (that is, random or
sequential).

Tables providing specialized functions can also be isolated. This is depicted by BP4 and BP5. Because
these tables are very frequently accessed, they are often the cause of I/O bottlenecks that negatively
impact performance. Creating the tablespaces for these tables in a specialized bufferpool can allow the
entire table to remain in memory, vastly improving online performance. Additionally, the isolation of
specialized tables into their own bufferpools enables pinpoint tuning for these frequently accessed
tables (and indexes). General-purpose tables (and their associated indexes) accessed by multiple
programs are good candidates for this type of strategy. Following are some examples:

 Tables used to control the assignment of sequential numbers.

 - 588 -

 Lookup tables and code tables used by multiple applications.
 Tables and indexes used to control application-based security.
 Indexes with heavy index-only access. Isolating these indexes in their own bufferpool

may enable the leaf pages to remain in memory.
Regardless of the number of bufferpools that your shop intends to utilize, you should always reserve
one of the 4K bufferpools for tuning and testing (BP11, in the example). By reserving a bufferpool for
tuning, you can ALTER problem objects to use the tuning bufferpool and run performance monitor
reports to isolate I/O to the problem objects. The reports can be analyzed to assist in tuning.

It is usually a wise idea to use multiple bufferpools for different types of processing. This should
minimize bufferpool page contention. In the example, BP7 through BP8 are used for dedicated
processing. For example, you may want to isolate one heavily accessed tablespace and/or index in its
own bufferpool to ensure that no other processing will steal its buffer pages. Likewise, you may want to
use a bufferpool per application—isolating all of that application's objects into its own bufferpool(s). The
remaining bufferpools can be used to further isolate specific objects or for further tuning.

The DB2 bufferpools have a huge impact on performance. There are several schools of thought on how
best to implement DB2 bufferpools. For example, you may want to consider using separate bufferpools
to do the following:

 Separate ad hoc from production
 Isolate QMF tablespaces used for the SAVE DATA command
 Isolate infrequently used tablespaces and indexes
 Isolate tablespaces and indexes used by third-party tools

One Large Bufferpool?
The general recommendation from consultants and some IBM engineers in years past was to use only
BP0, specifying one large bufferpool for all DB2 page sets. This strategy turns over to DB2 the entire
control for bufferpool management. The theory was that since DB2 uses efficient buffer-handling
techniques, good performance could be achieved using a single large bufferpool.

Prior to DB2 V3, this strategy worked fairly well. Today, for DB2 V4, V5, and V6, only some very small
DB2 implementations can get by with one large bufferpool, using BP0 and letting DB2 do the bufferpool
management. The days when most shops employed the single bufferpool strategy are over. As the
amount of data stored in DB2 databases increases, specialized types of tuning are necessary to
optimize data access. This usually results in the implementation of multiple bufferpools. Why else would
IBM provide 80 of them?

If your shop is memory constrained, or you have limited practical experience with DB2 bufferpools, you
might want to consider starting with one DB2 bufferpool and then experimenting with specialized
bufferpool strategies as you acquire additional memory and practical expertise.

Notes on Multiple Bufferpool Use
The following guidelines are helpful when allocating multiple bufferpools at your shop.

Ensure That Sufficient Memory Is Available
Before implementing multiple bufferpools, be sure that your environment has the memory to back up the
bufferpools. The specification of large bufferpools without sufficient memory to back them up can cause
paging. Paging to DASD is extremely nasty and should be avoided at all costs.

Document Bufferpool Assignments
Be sure to keep track of which DB2 objects are assigned to which bufferpool. Failure to do so can result
in confusion. Of course, DB2 Catalog queries can be used for obtaining this information.

Modify Bufferpools to Reflect Processing Requirements
Defining multiple bufferpools so that they are used optimally throughout the day is difficult. For example,
suppose that DSNDB07 is assigned to its own bufferpool. Because sorting activity is generally much
higher during the batch window than during the day, buffers assigned to DSNDB07 can go unused
during the transaction processing window.

 - 589 -

Another example is when you assign tables used heavily in the online world to their own bufferpool.
Online transaction processing usually subsides (or stops entirely) when nightly batch jobs are running.
Online tables might be accessed sparingly in batch, if at all. This causes the buffers assigned for those
online tables to go unused during batch processing.

Unless you are using one large BP0, it is difficult to use resources optimally during the entire processing
day. Ask yourself if the performance gained by the use of multiple bufferpools offsets the potential for
wasted resources. Quite often, the answer is a resounding "Yes."
DB2 provides the capability to dynamically modify the size of bufferpools using the ALTER
BUFFERPOOL command. Consider using ALTER BUFFERPOOL to change bufferpool sizes to reflect
the type of processing being performed. For example, to optimize the DSNDB07 scenario mentioned
previously, try the following:

 Prior to batch processing, issue the following command: —ALTER BUFFERPOOL
BP1 VPSIZE(max amount)

 After batch processing, issue the following command: —ALTER BUFFERPOOL
BP1 VPSIZE(min amount)

The execution of these commands can be automated so that the appropriate bufferpool allocations are
automatically invoked at the appropriate time in the batch schedule.

Bufferpool Parameters
DB2 provides many bufferpool tuning options that can be set using the ALTER BUFFERPOOL
command. These options are described in the following paragraphs.
The first parameter, VPSIZE, is arguably the most important. It defines the size of the individual virtual
pool. The value can range from 0 to 400,000 for 4KB bufferpools, from 0 to 200,000 for 8KB bufferpools,
from 0 to 100,000 for 16KB bufferpools, and from 0 to 50,000 for 32KB bufferpools. The total VPSIZE
for all bufferpools cannot be greater than 1.6GB. The minimum size of BP0 is 56 because the DB2
Catalog tablespaces and indexes are required to use BP0.
The capability to dynamically alter the size of a virtual pool enables DBAs to expand and contract virtual
pool sizes without stopping DB2. Altering VPSIZE causes the virtual pool to be dynamically resized. If
VPSIZE is altered to zero, DB2 issues a quiesce and when all activity is complete, the virtual pool is
deleted.
Virtual bufferpools can be allocated in data spaces as of DB2 V6. To accomplish this, use the VPTYPE
parameter to indicate the type of bufferpool to be used. VPTYPE(DATASPACE) indicates that data
spaces are to be used for the bufferpool; VPTYPE(PRIMARY) indicates that the bufferpool is to be
allocated as before, in the DB2 database services address space.

Tuning
Strategy

The main reason to implement DB2 bufferpools in data spaces is to
relieve storage constraints in DB2's database services (DBM1) address
space. Another reason would be to provide greater opportunities for
caching very large tablespaces or indexes. If neither of these apply, you
do not need to use data spaces for your bufferpools.

The sequential steal threshold can be tuned using VPSEQT. VPSEQT is expressed as a percentage of
the virtual pool size (VPSIZE). This number is the percentage of the virtual pool that can be
monopolized by sequential processing, such as sequential prefetch. When this threshold is reached,
sequential prefetch will be disabled. All subsequent reads will be performed one page at a time until the
number of pages available drops below the specified threshold. The value of VPSEQT can range from 0
to 100, and the default is 80. When VPSEQT is set to 0, prefetch is disabled.

Tuning
Strategy

If the sequential steal threshold is reached often, consider either
increasing the VPSEQT percentage or increasing the size of the
associated bufferpool. When sequential prefetch is disabled,
performance degradation will ensue.

Tuning
Strategy

When all of the data from tables assigned to the bufferpool can be
stored in the bufferpool, and access is almost exclusively random,
specify VPSEQT=0. For example, consider specifying 0 for VPSEQT
when a virtual bufferpool is used for small code and lookup tables.

Additionally, the sequential steal threshold for parallel operations can be explicitly set using VPPSEQT.
This parallel sequential steal threshold is expressed as a percentage of the nonparallel sequential steal
threshold (VPSEQT). The value of VPPSEQT can range from 0 to 100, and the default is 50.

Tuning
Strategy

Consider isolating data sets that are very frequently accessed
sequentially into a bufferpool with VPPSEQT equal to 100. This enables
the entire bufferpool to be monopolized by sequential access.

 - 590 -

Tuning
Strategy

By setting VPPSEQT to 0, you can ensure that parallel I/O will not be
available for this virtual pool. I am not necessarily recommending this,
just pointing it out. If you want to ensure that I/O parallelism is not used
for a particular bufferpool, setting VPPSEQT to 0 will do the trick.

The assisting parallel sequential threshold can be explicitly set using VPXPSEQT. This threshold sets
the percentage of the parallel sequential threshold that is available to assist another parallel group
member to process a query. The VPXPSEQT sequential threshold is expressed as a percentage of the
parallel sequential steal threshold (VPPSEQT). The value of VPXPSEQT can range from 0 to 100, and
the default is 0.
To understand the relationship that exists among the previously discussed four "VP" bufferpool
parameters, refer to Figure 26.2. This diagram depicts the bufferpool specification that would be
generated by the following command:
-ALTER BUFFERPOOL BP1 VPSIZE(2000) VPSEQT(80) VPPSEQT(50) VPXPSEQT(25)

Figure 26.2: The relationship among of the "VP" bufferpool parameters.

DWQT can be used to specify the deferred write threshold. This threshold is expressed as a percentage
of the virtual pool size (VPSIZE). It specifies when deferred writes will begin to occur. When the
percentage of unavailable pages exceeds the DWQT value, pages will be written to DASD immediately
(not deferred, as normal) until the number of available pages reaches 10 percent of (DWQTxVPSIZE).
The value of DWQT can range from 0 to 100, and the default is 50.

Tuning
Strategy

Reaching the deferred write threshold does not necessarily constitute a
problem. However, if a bufferpool habitually reaches this threshold, you
should consider re-examining the nature of the objects assigned to the
bufferpool (for example, random versus sequential). You might also
consider increasing VPSIZE or modifying the DWQT percentage.

Additionally, VDWQT can be used to set the deferred write threshold per data set. VDWQT is expressed
as a percentage of the virtual pool size (VPSIZE). As of DB2 V6, you can express the VDWQT
threshold as an integer value instead of a percentage. When the percentage of pages containing
updated data for a single data set exceeds this threshold, immediate writes will begin to occur. The
value of VDWQT can range from 0 to 90 and the default is 10. This value should be less than DWQT.
As of DB2 V6, you can modify the page stealing algorithm used by DB2 virtual bufferpools using the
PGSTEAL parameter. When DB2 removes a page from the bufferpool to make room for a newer page,
this is called page stealing. The usual algorithm deployed by DB2 uses least-recently-used (LRU)
processing for managing buffer pages. In other words, older pages are removed so more recently used
pages can remain in the virtual buffer pool.
However, you can choose to use a different, first-in–first-out (FIFO) algorithm. With FIFO, DB2 does not
keep track of how often a page is referenced. The oldest pages are removed, regardless of how
frequently they are referenced. This approach to page stealing results in a small decrease in the cost of
doing a GETPAGE operation, and it can reduce internal DB2 latch contention in environments that
require very high concurrency.

Tuning
Strategy

Use the LRU page stealing algorithm in most cases. Consider FIFO
when the tablespaces and/or indexes assigned to the bufferpool are
read once and remain in memory. When the bufferpool has little or no
I/O, the FIFO algorithm can provide a performance boost.

Be sure to define objects that can benefit from the FIFO algorithm in
different bufferpools from other objects.

 - 591 -

Determining Bufferpool Sizes
Many database analysts and programmers are accustomed to working with bufferpools that are smaller
than DB2 bufferpools (for example, IMS and VSAM buffers). DB2 just loves large bufferpools. Each
shop must determine the size of its bufferpools based on the following factors:

 Size of the DB2 applications that must be processed
 Desired response time for DB2 applications
 Amount of virtual and real storage available

Remember, though, that DB2 does not allocate bufferpool pages in memory until it needs them. A DB2
subsystem with very large bufferpools might not use them most of the time.

As with the number of bufferpools to use, there are several schools of thought on how best to determine
the size of the bufferpool. I think that bufferpool sizing is more an art than a science. Try to allocate as
large a bufferpool as possible within the limitations defined by the amount of real and virtual memory
available.

The following calculation can be used as a good rough starting point for determining the size of your
DB2 bufferpools:
 [number of concurrent users x 80] +
 [(desired number of transactions per second) x (average GETPAGEs per transaction)] +
 [(Total # of leaf pages for all indexes) x .70]

The resulting number represents the number of 4K pages to allocate for all of your bufferpools. If you
are using only BP0, the entire amount can be coded for that bufferpool. If you are using multiple
bufferpools, a percentage of this number must be apportioned to each bufferpool you are using.

This formula is useful for estimating a bufferpool that balances the following:
 Workload
 Throughput
 Size of the DB2 subsystem

Workload is factored in by the average GETPAGEs per transaction and the number of concurrent users.
As workload (in terms of both number of users and amount of resources consumed) increases, so does
the number of users and the average GETPAGEs per transaction.

Throughput is determined by the desired number of transactions per second. The bufferpool number is
greater as you increase the desired number of transactions per second. Larger bufferpools are useful in
helping to force more work through DB2.

The size of the DB2 subsystem is represented by the number of index leaf pages. As the number of
DB2 applications grows, the number of indexes defined for them grows also, thereby increasing the
number of index leaf pages as DB2 use expands.
Recommendations for determining some of these values follow. Use the value of CTHREAD to
determine the number of concurrent users. If you are sure that your system rarely reaches this
maximum, you can reduce your estimate for concurrent users.

To estimate the number of transactions per second, use values from service-level agreement contracts
for your applications. If service-level agreements are unavailable, estimate this value based on your
experience and DB2-PM accounting summary reports.
To get an idea of overall workload and processing spikes (such as month-end processing), produce
accounting summary reports for peak activity periods (for example, the most active two-hour period)
across several days and during at least five weeks. Then arrive at an average for total transactions
processed during that period by adding the # OCCUR from the GRAND TOTAL line of each report and
dividing by the total number of reports you created. This number is, roughly, the average number of
transactions processed during the peak period. Divide this number by 7200 (the number of seconds in
two hours) for the average number of transactions per second. Then double this number because the
workload is probably not evenly distributed throughout the course of the two hours. Also, never use a
number that is less than 10 transactions per second.
You can approximate the average number of GETPAGEs per transaction with the accounting summary
or accounting detail reports (such as those provided by DB2-PM). Add all GETPAGEs for all
transactions reported, then divide this number by the total number of transactions reported. Basing this

 - 592 -

estimate on transactions only—including batch programs—would cause a large overestimate. Online
transactions are generally optimized to read a small amount of data, whereas batch jobs can read
millions of pages.

To determine the number of leaf pages for the indexes in your DB2 subsystem, issue the following
query:
 SELECT SUM(NLEAF)
 FROM SYSIBM.SYSINDEXES;
For this query to work properly, RUNSTATS statistics should be up to date, and any unused objects
should be excluded (using a WHERE clause).

DB2 Bufferpool Guidelines
You can use the following guidelines to ensure an effective DB2 bufferpool specification at your shop.

Be Aware of Bufferpool Thresholds

Be aware of the following overall effects of the bufferpool thresholds:
Data Manager Threshold This is referred to as a critical bufferpool. When 95 percent of a

bufferpool's pages are unavailable, the Buffer Manager does a
GETPAGE and a release of the page for every accessed row.
This is very inefficient and should be avoided at all costs.

Immediate Write
Threshold When 97.5 percent of a bufferpool's pages are unavailable,

deferred write is disabled. All writes are performed
synchronously until the percentage of unavailable pages is below
97.5 percent.

Tuning Strategy Increase the size of your bufferpools when these bufferpool
thresholds are reached:
Data Manager threshold : 95%
Immediate Write threshold (IWTH): 97.5%

It is best to avoid reaching these thresholds because they
degrade performance. (The immediate write threshold
degrades performance the most.)

Be Generous with Your Bufferpool Allocations

A bufferpool that is too large is always better than a bufferpool that is too small. However, do not make
the bufferpool so large that it requires paging to DASD.

Monitor BP0 Carefully

The DB2 Catalog and DB2 Directory are assigned to BP0. This cannot be changed. Therefore, even if
other bufferpools are used for most of your application tablespaces and indexes, pay close attention to
BP0. A poorly performing DB2 Catalog or DB2 Directory can severely hamper system-wide
performance.

Allocate BP32K

Specify a 32KB bufferpool—even if you have no tablespaces in your system with 32KB pages—to
ensure that joins requiring more than 4KB can operate. If BP32K is not defined, at least with a minimal
number of pages, joins referencing columns that add up to 4097 or greater will fail.

The default size of BP32K is 12 pages, which is a good number to start with if you allow large joins.
Some shops avoid allocating BP32K to ensure that large joins are not attempted. Avoiding BP32K
allocation is also an option, depending on your shop standards. Remember, 32KB-page I/O is less
efficient than 4KB-page I/O.

Be Aware of the 32K Bufferpool Names
Remember that BP32 and BP32K are two different bufferpools. BP32 is one of the 50 4KB bufferpools
available with DB2 V3. BP32K is one of the 10 32KB bufferpools. If you miss or add an erroneous K,
you may wind up using or allocating the wrong bufferpool.

 - 593 -

Consider Reserving a Bufferpool for Tuning

Even if you do not utilize multiple bufferpools, consider using unused bufferpools for performance
monitoring and tuning. When a performance problem is identified, tablespaces or indexes suspected of
causing the problem can be altered to use the tuning bufferpool. Then you can turn on traces and rerun
the application causing the performance problem. When monitoring the performance of the application,
I/O, GETPAGEs, and the usage characteristics of the bufferpool can be monitored separately from the
other bufferpools.
Consider Defining A Sort Bufferpool for DSNDB07
If you assign DSNDB07 to its own bufferpool, consider the appropriate parameters to use. First of all,
the VPSEQT parameter is quite useful. Recall that VPSEQT is used to set the sequential steal
threshold. Since most activity to DSNDB07 is sequential, VPSEQT should be set very high, to 95 for
example. But do not set VPSEQT to 100 because not all sorting activity is sequential.
Furthermore, you can set the immediate write thresholds (DWQT and VDWQT) to the VPSEQT size.

Optimize BP0

BP0 is probably the single most important bufferpool in a DB2 subsystem. The system resources,
namely the DB2 Catalog and DB2 Directory objects, are assigned to BP0 and cannot be moved.
Therefore, many organizations decide to use BP0 to hold only these resources by failing to assign other
objects to BP0. This is a good strategy because placing other objects into BP0 can degrade the
performance of processes that access the DB2 Catalog or Directory.
The size of your DB2 subsystem dictates the proper sizing of BP0. Consider starting with VPSIZE of
2000 pages. Monitor usage of BP0 and increase VPSIZE if access patterns warrant.
The proper specification of VPSEQT, DWQT, and VDWQT will depend on your shop's access patterns
against the DB2 Catalog and Directory.

Converting Active Bufferpool to use Data Space

To convert an active DB2 virtual bufferpool to use data space, perform the following steps:
1. Delete the active bufferpool by using ALTER BUFFERPOOL to specify

VPSIZE(0).
2. Stop all tablespaces and indexes that are using the bufferpool.
3. Issue the ALTER BUFFERPOOL command again specifying

VPTYPE(DATASPACE). You will also need to specify the appropriate VPSIZE for
the bufferpool.

4. Start all of the objects that were previously stopped.

Hiperpools
Hiperpools can be considered extensions to the regular bufferpools, which are also referred to as virtual
pools. Hiperpools use hiperspaces to extend DB2 virtual bufferpools. Working in conjunction with the
virtual pools, hiperpools provide a second level of data caching. When old information is targeted to be
discarded from (or, moved out of) the virtual bufferpool, it will be moved to the hiperpool instead (if a
hiperpool has been defined for that bufferpool).

Only clean pages will be moved to the hiperpool, though. Clean pages are those in which the data that
was modified has already been written back to DASD. No data with pending modifications will ever
reside in a hiperpool.

Each of the 80 virtual pools can optionally have a hiperpool associated with it. There is a one-to-one
relationship between virtual pools and hiperpools. A virtual pool can have one and only one hiperpool
associated with it, but it also can have none. A hiperpool must have one and only one virtual pool
associated with it.

Hiperpools are page addressable, so before data can be accessed by an application, it must be moved
from the hiperpool to the virtual pool (which is byte addressable). Hiperpools are backed by expanded
storage only, whereas virtual pools are backed by central storage, expanded storage, and possibly
DASD if paging occurs. Keeping this information in mind, consider using hiperpools instead of
specifying extremely large virtual pools without a hiperpool.

When you specify a virtual pool without a hiperpool, you are letting MVS allocate the bufferpool storage
required in both central and expanded memory.

 - 594 -

A good reason to utilize hiperpools is to overcome the 1.6GB limit for all virtual bufferpools. If your
buffering needs exceed 1.6GB, you can specify virtual bufferpools up to 1.6GB, with larger hiperpools
backing the virtual pools.

Tuning
Strategy

Consider specifying virtual pools that will completely fit in central storage
and hiperpools associated with the virtual pools. The DB2 Buffer
Manager will handle the movement from expanded to central storage
and should be more efficient than simply implementing a single large
virtual pool. Of course, you will need to monitor the system to ensure
that the virtual pool is utilizing central storage in an optimally efficient
manner.

Do not overallocate hiperpool storage. If you exceed the amount of
expanded storage you have available, performance will eventually
suffer.

Refer to Figure 26.3 to view the bufferpool to hiperpool relationship. This diagram outlines the basic
functionality of hiperpools and bufferpools. Data is read from disk to central storage in the virtual
bufferpool. Over time the data may be moved to the hiperpool. Once moved to the hiperpool, before it
can be read again by a DB2 program, it must be moved back to the virtual bufferpool. Hiperpools are
backed by expanded storage as a hiperspace. Virtual bufferpools are backed by central and expanded
storage, and can possibly page to DASD for auxiliary storage.

Figure 26.3: Hiperpool to bufferpool relationship.

Caution The total of all hiperpools defined cannot exceed 8 gigabytes.

Hiperpool Parameters
The ALTER BUFFERPOOL command can be used to tune hiperpool options as well as virtual pool
options. The hiperpool parameter options are described in the following paragraphs.
The first option, CASTOUT, indicates whether hiperpool pages are stealable by MVS. The value can be
either YES or NO. Specifying YES enables MVS to discard data in the hiperpool if an expanded storage
shortage is encountered. A value of NO prohibits MVS from discarding hiperpool data unless one of the
following occurs:

 The hiperpool is deleted.
 MVS hiperspace maintenance occurs.
 Hiperspace storage is explicitly released.

Just as VPSIZE controls the size of virtual pools, HPSIZE is used to specify the size of each individual
hiperpool. When the size of a hiperpool is altered, it immediately expands or contracts as specified. The
value can range from 0 to 2,097,152 for 4K hiperpools, from 0 to 1,048,576 for 8KB hiperpools, from 0
to 524,288 for 16KB hiperpools, and from 0 to 262,144 for 32K hiperpools. The total of all hiperpools
defined cannot exceed 8 gigabytes.

Tuning
Strategy

A good starting point for HPSIZE is twice the amount of VPSIZE. If
necessary, you can increase HPSIZE from there as you tune your
bufferpool and hiperpool usage. Hiperpools allocated with less than
twice the associated VPSIZE are usually not very efficient.

Sequential steal thresholds also can be specified for hiperpools, using the HPSEQT parameter.
HPSEQT is expressed as a percentage of the hiperpool size (HPSIZE). It specifies the percentage of

 - 595 -

the hiperpool that can be monopolized by sequential processing, such as sequential prefetch. The value
of HPSEQT can range from 0 to 100, and the default is 80.

Tuning
Strategy

If you know that the majority of your sequential prefetch requests will
never be accessed again, you may want to tune your hiperpools to
avoid sequential data. Do this by specifying HPSEQT=0. This ensures
that only randomly accessed data will be moved to the hiperpool.

There are no deferred write thresholds for hiperpools because only clean data is stored in the hiperpool.
Therefore, pages never need to be written from the hiperpool to DASD.

Data Sharing Group Bufferpools
If data sharing is implemented, group bufferpools are required. A group bufferpool must be defined for
each bufferpool defined to each data sharing member. Data is cached from the local bufferpools to the
group bufferpools during the processing of a data sharing request.

A page set is said to be GBP-dependent when two or more data sharing group members have
concurrent read/write interest in it. The page set is marked as GBP-dependent during the update
process and changed pages are written to the group bufferpool. GBP-dependent marking also affects
DB2 Catalog and Directory page sets of the shared DB2 catalog. For GBP-dependent page sets, all
changed pages are first written to the group bufferpool.

Changed data pages are written to the coupling facility at COMMIT for GBP-dependent page sets. This
enables committed data to be immediately available to the other DB2 data sharing group members.
The following describes a few typical operations and how a page is passed among the local and group
bufferpools. The following scenario is based on a data sharing environment with two member
subsystems (DB2A and DB2B):

 An application in DB2A updates a column. The DB2A subsystem checks the coupling
facility to determine if it should read the page from the global bufferpools or directly
from disk. If DB2A determines that the page is not cached globally, it will read the
page(s) from shared DASD and store the page(s) in its local bufferpool—for
example, BP6.

 An application in DB2B wants to update the same page. A global lock (P-Lock,
discussed in Chapter 21, "Locking DB2 Data") is taken indicating to the member that
the page is shared. DB2A is notified and writes the changed data page to global
bufferpool GBP6.

 DB2B retrieves the page from the global bufferpools and puts it in its own BP6.
 DB2B updates the data page and moves it back to the global bufferpool. The coupling

facility invalidates the page contained in the local bufferpool for DB2A.
 If DB2A needs to re-read the data page, it will determine that the page has been

marked invalid. Therefore, the page is retrieved from global bufferpool GBP6.
The GBPCACHE Parameter
The GBPCACHE clause can be specified on the CREATE and ALTER statement for tablespaces and
indexes. GBPCACHE is used to indicate how the global bufferpool is to be used for a particular
tablespace or index. There are two options for GBPCACHE: CHANGED and ALL.
If CHANGED is specified, and the tablespace or index has no inter-DB2 read/write interest, the group
bufferpool will not be used. When an inter-DB2 read/write interest exists, only changed pages are
written to the group bufferpool.
If GBPCACHE is set to ALL, changed pages are written to the group bufferpool. Clean pages are written
to the group bufferpool as they are read from the shared disk.

The Castout Process
Changed data is moved from a group bufferpool to disk by means of a castout process. The group
bufferpool castout process reads the pages contained in the GBP and writes them to the owning DB2's
local buffer, as well as to the physical DASD devices. This process is depicted in Figure 26.4. The
castout process moves data from a group bufferpool to DASD through one of the data sharing group
members. This is required because there is no direct connection from a coupling facility to DASD.

 - 596 -

Figure 26.4: The castout process.

The coupling facility is still able to update pages during the castout process. The castout process is
triggered when

 The changed page threshold for a page set is reached.
 The total changed page threshold for the group bufferpool is reached.
 The group bufferpool checkpoint is reached.

Note Because the coupling facility may contain data that is more recent than what is
contained on the DASD devices, DB2 employs coupling facility recovery
mechanisms to recover the data in case of coupling facility failure.

Data Sharing Bufferpool Guidelines
Consider the following guidelines when specifying bufferpools for data sharing.

Select Group Bufferpool Thresholds with Care

The castout process can have a negative impact on data sharing performance. Keep castout process
execution to a minimum by carefully considering the thresholds that are related to each group
bufferpool. You can control the castout process by changing the two group bufferpool thresholds:

 The group bufferpool castout threshold determines the total number of changed
pages that can exist in the group bufferpool before castout occurs. DB2 casts out a
sufficient amount of data to ensure that the number of changed pages is below the
threshold. The group bufferpool castout threshold is specified as a percentage of the
total number of pages in the group bufferpool. The default value is 50, which means
that castout is initiated when the group bufferpool is 50 percent full of changed
pages.

 The class castout threshold also is used to control when data is cast out of a group
bufferpool. DB2 internally maps modified data pages belonging to the same
tablespace, index, or partition to the same castout class queues. A castout class
queue is an internal mechanism used by DB2 to control the castout process for
groups of page sets. When DB2 writes modified pages to the group bufferpool, it
determines how many modified pages are in a particular class castout queue. When
the number of modified pages for a castout class queue exceeds the threshold, DB2
casts out data pages from that queue. The castout class threshold is specified as a
percentage of the total number of changed pages in the group bufferpool for a given
castout class. The default for the class castout is 10, indicating that castout is
initiated when 10 percent of the group bufferpool contains modified pages for the
class.

Do Not Underestimate the Size of the Cache Structure

The size of the group bufferpool structure has a major influence on the frequency of castout process
execution. This can negatively affect performance.

 - 597 -

The total cache structure size affects performance similar to the way that VPSIZE affects the
performance of non-group bufferpools (virtual pools). In addition, the less memory allocated to the group
bufferpool, the more frequent the castout process.

The number of directory entries also affects performance. A directory entry contains control information
for one page regardless of the number of places that page is cached. There is a one-to-one
correspondence between cached physical data pages and directory entries. If a page is in the group
bufferpool and in the virtual bufferpools of two members, there is only one directory entry for the page.
Each directory entry is 208 bytes for 4K pages and 264 bytes for 32K pages. A directory entry is used
by the coupling facility to determine where to send cross-invalidation signals when a page of data is
changed or when that directory entry must be reused. The higher the write-to-read ratio, the more
directory entries are needed.

The final impact on performance is the number of data entries. Data entries are the actual places where
the data page resides. The greater the number of distinct pages that are cached, the more directory
entries are needed.

Use Partitioned Tablespace

Design parallel processing by using partitioned tablespaces for data that is accessed in a data sharing
environment. This encourages the use of sysplex query parallelism. DB2 performs effective parallel
processing only when data is partitioned.

Consider Group Bufferpool Duplexing

Use group bufferpool duplexing to facilitate easier recovery. Without duplexing, your only options for
recovery in the event of a group bufferpool failure were to recover the group bufferpool or to rebuild it.
With duplexing, a secondary group bufferpool is available on standby in another coupling facility. The
secondary group bufferpool can take over if the primary group bufferpool fails.

With a duplexed group bufferpool, you have two allocations of the same group bufferpool that use one
logical connection. One allocation is called the primary structure, the other is the secondary structure.
The primary structure is used for cross-invalidation and page registration, and it is the structure from
which changed data is cast out to DASD. When changes are written to the primary structure, they are
written to the secondary structure, as well.

IRLM Tuning Options
Until now, I have covered tuning options for the DB2 database address space and system services
address space. You also can tune the IRLM address space.

When the IRLM is started, several parameters can be specified in the JCL for the IRLM. These options
can have a significant effect on DB2 performance.
DEADLOK Indicates when

the IRLM
executes a
deadlock
detection cycle.
The IRLM must
check for
deadlocks
frequently to
avoid long waits
for resources that
will never be
made available.

ITRACE Indicates whether
an IRLM trace will
be started.

PC Indicates where
IRLM locks will be

 - 598 -

stored in memory.
Tuning
Strategy

A good starting value for the DEADLOK parameter is 15 seconds.
However, this parameter should be evenly divisible into the
IRLMRWT DSNZPARM value to ensure synchronization between
IRLM deadlock detection and DB2 timeout waits.

Tuning
Strategy

Never issue an IRLM trace for an IRLM used by DB2. Specify
ITRACE=NO. The IRLM trace rapidly degrades performance and does
not provide much useful information.

Tuning
Strategy

Specify PC=NO. This guarantees that cross memory services are not
used for DB2 locking. Instead, locks are stored in ECSA and are directly
addressable. This will optimize the locking performance.

Before using ECSA to store IRLM locks, though, be aware that ECSA is
not protected and an erratic system task can potentially overwrite ECSA
storage.

Tuning the Database Design
The design of DB2 objects also can be tuned for performance. If changes to DB2 tables,
columns, keys, or referential constraints are required, however, the application logic usually
must be changed also. Retrofitting application code after it has been coded and tested is not
simple.
Several tuning opportunities do not affect application code. When multiple tablespaces are
assigned to a DB2 database, locking of the DBD in the DB2 Directory occurs when DDL
(ALTER, CREATE, or DROP) is issued for an object in that database. This effectively freezes all
access to objects defined to that database.
Tuning
Strategy

When a high degree of object alteration, creation, and removal occurs in
a DB2 database, avoid placing critical production tables in the
tablespaces in that database. If they are already in that database,
consider moving them to a separate database. This does not involve
any application programming changes, but DB2 utility parameters that
access tablespaces (such as DBNAME.TSNAME) might need to be
changed.

Also, if performance is severely degraded, consider denormalization. Several techniques for
denormalizing DB2 tables are discussed in Chapter 5.
Be sure to specify proper performance-oriented parameters for all DB2 objects. For an in-
depth discussion of these, refer to Chapter 5. A synopsis of these parameters is provided in
Table 26.2.

Table 26.2: Coding DDL for Performance

DB2 Object Performance-Oriented DDL Options

Database Limit DDL against production databases.

Tablespace In general, use segmented tablespaces.
 Partition tablespaces with very large tables.
 Partition tablespaces to take advantage of parallelism.
 Segment tablespaces for mass delete efficiency
 Use simple tablespaces to intermix rows from multiple tables..
 Specify CLOSE YES.
 Specify LOCKSIZE ANY to let DB2 handle locking.
 Specify LOCKSIZE PAGE to enforce page-level locking and eliminate

lock escalation.
 Specify LOCKSIZE ROW to enforce row-level locking.
 Specify LOCKSIZE TABLESPACE for read-only tables.
 Specify free space to tune inserts and delay page splits.

Table In general, specify one table per tablespace.

 - 599 -

 Do not specify an audit parameter unless it is absolutely necessary
for the application.

 Avoid FIELDPROCs, EDITPROCs, and VALIDPROCs unless they are
absolutely necessary for the application—consider triggers instead.

 Specify WITH RESTRICT ON DROP to inadvertent drops.
 Use DB2 referenti2al integrity instead of application referential

integrity.
 Use check constraints and triggers instead of application logic to

enforce column data values.

View Do not use one view per base table.
 Use views to enforce security.
 Use views to enforce join criteria.

Alias Use aliases as globally accessible synonyms.

Index Create indexes for critical SQL predicates.
 Index to avoid sorts.
 Specify CLOSE YES.
 Use only type 2 indexes.
 Specify free space to tune inserts.
 Cluster the most frequently used index.

Tuning the Application
As was evident from the DB2 performance tuning pie, tuning the application design provides the single
greatest benefit to overall DB2 performance. You can use several methods to accomplish this, each of
which is covered in this section. Before proceeding, however, I will review the access paths, particularly
the information about filter factors.

Analyzing Access Paths
To determine the actual "behind the scenes" operations being performed by DB2 for each SQL
statement, you must analyze the access path chosen for the statement by the DB2 optimizer. An access
path, as discussed in Chapter 19, "The Optimizer," is the method DB2 chooses to carry out the data
manipulation requested in SQL statements. The DB2 EXPLAIN statement places information about the
access paths in a PLAN_TABLE, which can be inspected by a technical analyst. You can use the
information in Chapter 23 in conjunction with the access path data to create a complete picture of the
operations being performed for each SQL statement.

Is DB2 on its own when making its access path determinations? The ideal answer to this question would
be "Yes." It would be wonderful if DB2 always had all the information it needed, required no external
input, and never chose the wrong access path. However, you do not yet live in this ideal world. DB2
sometimes chooses an inefficient access path over another, more efficient one for the following
reasons:

 The statistics might be outdated if RUNSTATS was never run or not run recently.
This causes the access paths to be chosen based on incorrect assumptions about
the current environment.

 Certain physical parameters are not yet taken into account by the optimizer when it
determines access paths. Some examples are differences between physical storage
devices (the model of DASD device, or faster devices), the number of data set
extents, and COBOL (or other 3GL and 4GL) code.

 Concurrent processes (scheduling) are not considered by the optimizer.
 The DB2 optimizer is prone to the same problems associated with every computer

program; it is fallible. (However, given its complexity, its success rate is admirable.)

 - 600 -

For these reasons, you may decide to artificially influence the optimizer's decision process. Techniques
for accomplishing this are addressed in the next section.

Before I move on, I will survey the factors addressed by the DB2 optimizer. The optimizer will take the
size of the bufferpools into account when determining access paths. As the size of the bufferpools
increases, DB2 assumes that read efficiency increases also.

The optimizer also takes into account the type of CPU being used during access path selection. DB2
chooses different access techniques based on the perceived performance of the processor. This is
important to remember when modeling SQL in a test DB2 subsystem using production statistics. If the
production DB2 subsystem has a different number of buffers or if it runs on a different CPU, the
optimizer might choose a different access path in the production environment than it did in the test
environment, even if the SQL and the DB2 Catalog statistics are identical.

To get around this, the following measures can be taken:
 When evaluating access paths for SQL statements using production statistics, be

sure that the test DB2 subsystem is using the same CPU or a different CPU of the
same type. This may be difficult for larger shops with several DB2 subsystems
running on various machines, all configured differently.

 Specify that test DB2 bufferpools be the same as the production bufferpools to
ensure that access paths do not change as a result of different bufferpool sizes.
However, setting test bufferpools as high as production bufferpools can waste
memory resources, and setting production bufferpools as low as test bufferpools can
degrade performance.

The wisest action is simply to realize that access path differences will exist between DB2 subsystems
and not try to avoid access path discrepancies between DB2 subsystems. Running DB2 subsystems
with artificial constraints such as those just outlined is counterproductive to optimizing DB2
performance. Just remember that a test access path determined using production statistics does not
guarantee that the production access path will be identical. Besides, it is wise to continuously monitor
the production access paths for all SQL statements, because they can change when plans or packages
are bound or rebound, or when RUNSTATS is run for dynamic SQL.

Tuning
Strategy

Analyze all production DB2 access paths. Some shops analyze only the
access paths for static SQL embedded in application programs, but this
is inadequate. Develop a plan for analyzing all components of DB2
programs, including the following:

 The structure of the application program to ensure that proper coding techniques are
used. Also be sure that otherwise efficient-looking SQL embedded in a program loop
does not occur without a proper reason.

 All SQL, whether static or dynamic, embedded in application programs. This includes
SQL in online transactions, batch programs, client/server programs, report writers,
4GLs, CASE tools, and decision support systems.

 All regularly executed or critical ad hoc, dynamic SQL. This includes, but is not
necessarily limited to, SQL executed by SPUFI, QMF, DSNTIAD, DSNTIAUL, or
DSNTEP2, SQL generated by any application system "on-the-fly," SQL generated or
submitted using vendor tools, data warehouse queries, and SQL shipped from
remote sites, including remote mainframes, minis, and PC workstations.

 All stored procedure and user-defined function programs that contain SQL.
 Every SQL statement in the DB2 program must be followed by a check of the

SQLCODE or SQLSTATE.

If you utilize triggers in your DB2 databases, you need to be aware that code exists within the triggers.
This code needs to be examined regularly to ensure that it is still optimal given the database design and
the application processes that modify the data, causing the trigger to fire.

Influencing the Optimizer
There are several methods of tuning the system to change access paths or influence access path
selection. This section describes several observations on changing the access paths selected by DB2.

The DB2 optimizer is one of the most intricate pieces of software on the market. It does an admirable
job of optimizing SQL requests. To achieve this level of success, the optimizer contains a great deal of
performance-specific expertise. For example, the optimizer estimates both elapsed times and CPU
times when choosing an access path. When a SQL statement is rebound, the optimizer might choose a

 - 601 -

new access path that increases CPU time but decreases elapsed time. Most shops choose to enhance
elapsed time at the expense of additional CPU use because elapsed time has a measurable effect on
user productivity. In other words, it is good to trade off CPU cycles for user satisfaction, and the DB2
optimizer attempts to accomplish this. Of course, if both CPU and elapsed time can be reduced, the
optimizer will try to do so.

However, the optimizer is not infallible. Sometimes the application analyst understands the nature of the
data better than DB2 (at the present time). You can influence the optimizer into choosing an access
path that you know is a better one but the optimizer thinks is a worse one. As the functionality and
complexity of the optimizer is enhanced from release to release of DB2, the need to trick the optimizer
in this way will diminish.

There are five ways to influence the optimizer's access path decisions:
 Standard, DB2-based methods
 Tweaking SQL statements
 Specifying the OPTIMIZE FOR n ROWS clause
 Updating DB2 Catalog statistics
 Using OPTHINT to indicate that an access path in the PLAN_TABLE should be

chosen
The next section discusses each of these methods.

Standard Methods
Of all the methods for influencing the DB2 optimizer, standard DB2 methods are the only mandatory
ones. Try all the standard methods covered in this section before attempting one of the other methods.
There are several reasons for this.

The standard methods place the burden for generating optimal access paths on the shoulders of DB2,
which is where it usually belongs. They also use IBM-supported techniques available for every version
and release of DB2. Finally, these methods generally provide the greatest gain for the smallest effort.
There are three standard methods for tuning DB2 access paths. The first method is ensuring that
accurate statistics are available using the RUNSTATS utility and the BIND or REBIND command.
RUNSTATS, which is discussed in detail in Chapter 32, "Catalog Manipulation Utilities," populates the
DB2 Catalog with statistics that indicate the state of your DB2 objects, including the following:

Their organization

The cardinality of tablespaces, tables, columns, and indexes

The column range

All of these factors are considered by the optimizer when it chooses what it deems to be the optimal
access path for a given SQL statement.

Tuning
Strategy

Execute RUNSTATS at least once for every tablespace, table, column,
and index known to your DB2 subsystem. Schedule regular RUNSTATS
executions for all DB2 objects that are not read-only. This keeps the
DB2 Catalog information current, enabling proper access path selection.

The second standard method for tuning DB2 access paths is ensuring that the DB2 objects are properly
organized. Disorganized objects, if properly reorganized, might be chosen for an access path. An object
is disorganized when data modification statements executed against the object cause data to be stored
in a non-optimal fashion, such as nonclustered data or data that exists on a different page than its RID,
thereby spanning more than one physical page. To organize these objects more efficiently, run the
REORG utility, followed by RUNSTATS and REBIND. In-depth coverage of the REORG utility and
guidelines for its use are in Chapter 31, "Data Organization Utilities."

Tuning
Strategy

Use the DB2 Catalog queries in Chapter 24, "DB2 Object Monitoring
Using the DB2 Catalog," to determine when your DB2 tablespaces and
indexes need to be reorganized:

 Reorganize a tablespace when the CLUSTERRATIO of its clustering index falls
below 95 percent. (Schedule this so that it does not affect system performance
and availability.)

 Reorganize any index (or index partition) when LEAFDIST is greater than 200. If
the value of FREEPAGE for the index is not 0, reorganize only when LEAFDIST is
greater than 300. Of course, you should not blindly reorganize indexes when they

 - 602 -

reach these thresholds. You should weigh the observed performance degradation
against the cost of running the index reorganization jobs before reorganizing your
application's indexes.

 Reorganize all DB2 tablespaces and indexes when their data set is in more than
two physical extents. Before reorganizing, ensure that space allocations have
been modified to cause all data to be stored in one extent.

You may want to reorganize more frequently than indicated here by creating scheduled REORG jobs for
heavily accessed or critical DB2 tablespaces and indexes. This limits performance problems due to
disorganized DB2 objects and reduces the number of reorganizations that must be manually scheduled
or submitted by a DBA or performance analyst.

The third standard method for tuning DB2 access paths is to encourage parallelism. Consider changing
simple and segmented tablespaces to partitioned tablespaces to encourage I/O, CPU, and Sysplex
parallelism. Furthermore, it may be advantageous to repartition already partitioned tablespaces to better
align ranges of values, thereby promoting better parallel access.

The fourth and final standard method for tuning DB2 access paths is ensuring that there are proper
indexes by creating new indexes or dropping unnecessary and unused indexes. DB2 relies on indexes
to achieve optimum performance.
Analyze the predicates in your SQL statements to determine whether there is an index that DB2 can
use. Indexes can be used efficiently by DB2 if the first column of the index key is specified in an
indexable predicate in the SQL statement. Refer to Chapter 2, "Data Manipulation Guidelines," for a
discussion of indexable and nonindexable predicates. If no index meets these requirements, consider
creating one. As you index more columns referenced in predicates, performance generally increases.
Dropping unused indexes is another critical part of application tuning. Every table INSERT and DELETE
incurs I/O to every index defined for that table. Every UPDATE of indexed columns incurs I/O to every
index defined for that column. If an index is not being used, drop it. This reduces the I/O incurred for
data modification SQL statements, reduces RUNSTATS resource requirements, and speeds REORG
and RECOVER processing.

Tweaking the SQL Statement
If you do not want to change the DB2 Catalog statistics but the standard methods outlined in the
preceding section are not helpful, you might consider tweaking the offending SQL statement. Tweaking
is the process of changing a statement in a nonintuitive fashion, without altering its functionality.
At times, you may need to disable a specific index from being considered by the optimizer. One method
of achieving this is to append OR 0 = 1 to the predicate. For example, consider a query against the
EMP table on which two indexes exist: one on EMPNO and one on WORKDEPT. Appending OR 0 = 1
(as shown next) to the WORKDEPT predicate will cause DB2 to avoid using the index on WORKDEPT.
 SELECT EMPNO, WORKDEPT, EDLEVEL, SALARY
 FROM DSN8610.EMP
 WHERE EMPNO BETWEEN '000020' AND '000350'
 AND (WORKDEPT > 'A01' AND 0 = 1);
The OR 0 = 1 clause does not change the results of the query, but it can change the access path
chosen.
Another method of tweaking SQL to influence DB2's access path selection is to code redundant
predicates. Recall from Chapter 19 that when DB2 calculates the filter factor for a SQL statement, it
multiplies the filter factors for all predicates connected with AND.

Tuning
Strategy

You can lower the filter factor of a query by adding redundant predicates
as follows:

Change this statement To this
SELECT LASTNAME SELECT LASTNAME
FROM DSN8610.EMP FROM DSN8610.EMP
WHERE WORKDEPT =

:VAR
WHERE WORKDEPT = :VAR

 AND WORKDEPT = :VAR
 AND WORKDEPT = :VAR
The two predicates added to the end are redundant and do not affect SQL statement functionally.
However, DB2 calculates a lower filter factor, which increases the possibility that an index on the

 - 603 -

WORKDEPT column will be chosen. The lower filter factor also increases the possibility that the table
will be chosen as the outer table, if the redundant predicates are used for a join.

Tuning
Strategy

When redundant predicates are added to enhance performance, as
outlined in the preceding strategy, be sure to document the reasons for
the extra predicates. Failure to do so may cause a maintenance
programmer to assume that the redundant predicates are an error and
thus remove them.

Another option for getting a small amount of performance out of a SQL statement is to change the
physical order of the predicates in your SQL code. DB2 evaluates predicates first by predicate type,
then according to the order in which it encounters the predicates. The four types of SQL predicates are
listed in the order that DB2 processes them:

Equality, in which a column is tested for equivalence to another column, a variable, or a literal
Ranges, in which a column is tested against a range of values (for example, greater than, less than, or
BETWEEN)
IN, where a column is tested for equivalence against a list of values

Stage 2 predicates
Tuning
Strategy

Place the most restrictive predicates at the beginning of your predicate
list. For example, consider the following query:
SELECT LASTNAME
FROM DSN8610.EMP
WHERE WORKDEPT = 'A00'
AND SEX = 'M'
The first predicate has a lower filter factor than the second because
there are fewer workers in department A00 than there are males in the
entire company. This does not increase performance by much, but it
can shave a little off a query's processing time.

Before deciding to tweak SQL statements to achieve different access paths, remember that you are
changing SQL code in a nonintuitive fashion. For each modification you make to increase performance,
document the reasons in the program, the data dictionary, and the system documentation. Otherwise,
the tweaked SQL could be maintained after it is no longer required, or modified when it is required for
performance.

Also remember that the changes could enhance performance for one release of DB2 but result in no
gain or decreased efficiency in subsequent releases. Re-examine your SQL for each new version and
release of DB2.
OPTIMIZE FOR n ROWS
Another method of influencing access path selection is to specify OPTIMIZE FOR n ROWS for a cursor
SELECT statement. This clause enables programmers to specify the estimated maximum number of
rows that will be retrieved.

By indicating that a different number of rows will be returned than DB2 anticipates, you can influence
access path selection. For example, consider the following statement:
EXEC SQL
 DECLARE OPT_CUR FOR
 SELECT WORKDEPT, EMPNO, SALARY
 FROM DSN8610.EMP
 WHERE WORKDEPT IN ('A00', 'D11')
 OPTIMIZE FOR 5 ROWS
END-EXEC.

The number of rows to be returned has been set to 5, even though this query could return more than 5
rows. DB2 formulates an access path optimized for 5 rows. More rows can be retrieved, but
performance could suffer if you greatly exceed the estimated maximum.

This type of tuning is preferable to both updating the DB2 Catalog statistics and tweaking the SQL
statement. It provides more information to DB2's optimization process, thereby giving DB2 the

 - 604 -

opportunity to establish a better access path. The crucial point, though, is that DB2 is doing the
optimization; no manual updates or artificial SQL constructs are required.

Tuning
Strategy

When coding online transactions in which 25 rows (for example) are
displayed on the screen, use the OPTIMIZE FOR n ROWS clause,
setting n equal to 25.

Tuning
Strategy

When using the OPTIMIZE FOR n ROWS clause, make n as accurate
as possible. An accurate estimate gives DB2 the best opportunity to
achieve optimum performance for the statement and also helps
document the purpose of the SQL statement. Using an accurate value
for n also positions your application to take advantage of future
enhancements to the OPTIMIZE FOR n ROWS clause.

Note When using OPTIMIZE FOR n ROWS to disable list prefetch, always set the
value of n to 1. This technique works well to ensure that list prefetch will not be
used.

Caution As of V4, DB2 will use the value of n for the block size of a distributed network
request. The smaller the value of n, the fewer rows sent across the network
for each block. The only exception is that when n=1, DB2 will set the block
size to 16.

Changing DB2 Catalog Statistics
When the standard methods of influencing DB2's access path selection are not satisfactory, you can
resort to updating the statistics in the DB2 Catalog. Only certain DB2 Catalog statistics can be modified
using SQL UPDATE, INSERT, and DELETE statements instead of the normal method using
RUNSTATS. This SQL modification of the DB2 Catalog can be performed only by a SYSADM.
Table 26.3 lists the DB2 Catalog statistics that affect access path selection and specifies whether they
can be modified. Remember, for parallel queries, the sequential access path is generated and only then
is the parallel access strategy generated. You can use this table to determine which DB2 Catalog
columns can be updated by SQL statements and which are used by the optimizer during sequential and
parallel access path determination.

Table 26.3: DB2 Catalog Statistics Used During Optimization

Used by the
DB2 Catalog

Table
Description

Column

Update?

Optimizer?

SYSCOLDIST FREQUENCYF Y Y Percentage
(x100) that
the value in
COLVALU
E is in the
column

 COLVALUE Y Y Nonuniform
distribution
column
value

 CARDF Y Y Number of
distinct
values

 COLGROUPCOLNO Y Y The set of
columns for
the
statistics

 NUMCOLUMNS Y Y Number of
columns for
the
statistics

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate

 - 605 -

these
statistics

SYSCOLDISTSTATS PARTITION Y P The
partition to
which this
statistic
applies

 FREQUENCYF Y P Percentage
(x100) that
the value in
COLVALU
E is in the
column

 COLVALUE Y P Nonuniform
distribution
column
value

 TYPE Y P Type of
statistics
(cardinality
or frequent
value)

 CARDF Y P Number of
distinct
values

 COLGROUPCOLNO Y P The set of
columns for
the
statistics

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSCOLSTATS PARTITION N P The
partition to
which this
statistic
applies

 LOWKEY Y P Lowest
value for
the column

 LOW2KEY Y P Second
lowest
value for
the column

 HIGHKEY Y P Highest
value for
the column

 HIGH2KEY Y P Second
highest
value for
the column

 - 606 -

 COLCARD Y P Number of
distinct
values for
the column

 COLCARDDATA Y P Number of
distinct
values for
the column

 STATSTIME Y P Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSCOLUMNS LOW2KEY Y Y Second
lowest
value for
the column

 HIGH2KEY Y Y Second
highest
value for
the column

 COLCARDF Y Y Number of
distinct
values for
the column

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSINDEXES CLUSTERRATIO Y Y Percentage
of rows in
clustered
order

 CLUSTERING N Y Indicates
whether
the index
was
created
specifying
CLUSTER
YES

 CLUSTERED Y N Indicates
whether
the
tablespace
is actually
clustered

 FIRSTKEYCARDF Y Y Number of
distinct
values for
the first
column of

 - 607 -

the index
key

 FULLKEYCARDF Y Y Number of
distinct
values for
the full
index key

 NLEAF Y Y Number of
active leaf
pages

 NLEVELS Y Y Number of
index b-
tree levels

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSINDEXPART LIMITKEY N Y The limit
key of the
partition

SYSINDEXSTATS PARTITION Y P The
partition to
which this
statistic
applies

 CLUSTERRATIOF Y P Percentage
of rows in
clustered
order

 FIRSTKEYCARDF Y P Number of
distinct
values for
the first
column of
the index
key

 FULLKEYCARDF Y P Number of
distinct
values for
the full
index key

 NLEAF Y P Number of
active leaf
pages

 NLEVELS Y P Number of
index b-
tree levels

 KEYCOUNTF Y N Number of
rows in the
partition

 STATSTIME Y N Indicates

 - 608 -

the time
RUNSTAT
S was run
to generate
these
statistics

SYSROUTINES IOS_PER_INVOC Y Y Estimated
number of
I/Os per
invocation
of the
routine

 INSTS_PER_INVOC Y Y Estimated
number of
instructions
per
invocation
of the
routine

 INITIAL_IOS Y Y Estimated
number of
I/Os for the
first
invocation
of the
routine

 INITIAL_INSTS Y Y Estimated
number of
instructions
for the first
invocation
of the
routine

 CARDINALITY Y Y Predicated
cardinality
of a table
function

SYSTABLES CARDF Y Y Number of
rows for a
table

 NPAGES Y Y Number of
pages
used by
the table

 PCTPAGES Y N Percentage
of
tablespace
pages that
contain
rows for
this table

 PCTROWCOMP Y Y Percentage
(x100) of
rows
compresse
d

 - 609 -

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSTABLESPACE NACTIVEF Y Y Number of
allocated
tablespace
pages

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

SYSTABSTATS PARTITION N P The
partition to
which this
statistic
applies

 CARDF Y P Number of
rows for
the
partition

 NPAGES Y P Number of
pages
used by
the
partition

 NACTIVE Y P Number of
active
pages in
the
partition

 PCTPAGES Y P Percentage
of
tablespace
pages that
contain
rows for
this
partition

 PCTROWCOMP Y P Percentage
(x100) of
rows
compresse
d

 STATSTIME Y N Indicates
the time
RUNSTAT
S was run
to generate
these
statistics

 - 610 -

Legend:

N = No

P = Used for parallel path generation

Y = Yes

The two predominant reasons for changing DB2 Catalog statistics to influence the access path selection
are to influence DB2 to use an index and to influence DB2 to change the order in which tables are
joined. In each case, the tuning methods require that you "play around" with the DB2 Catalog statistics
to create a lower filter factor. You should keep in mind five rules when doing so.
Rule 1: As first key cardinality (FIRSTKEYCARD or FIRSTKEYCARDF) increases, the filter factor
decreases. As the filter factor decreases, DB2 is more inclined to use an index to satisfy the SQL
statement.
Rule 2: As an index becomes more clustered, you increase the probability that DB2 will use it. To
enhance the probability of an unclustered index being used, increase its cluster ratio (CLUSTERRATIO)
to a value between 96 and 100, preferably 100.

Tuning
Strategy

To influence DB2 to use an index, adjust the COLCARD,
FIRSTKEYCARD, and FULLKEYCARD columns to an artificially high
value. As cardinality increases, the filter factor decreases. As the filter
factor decreases, the chance that DB2 will use an available index
becomes greater. DB2 assumes that a low filter factor means that only a
few rows are being returned, causing indexed access to be more
efficient. Adjusting COLCARD, FIRSTKEYCARD, and FULLKEYCARD is
also useful for getting DB2 to choose an unclustered index because
DB2 is more reluctant to use an unclustered index with higher filter
factors. You also can change the value of CLUSTERRATIO to 100 to
remove DB2's reluctance to use unclustered indexes from the access
path selection puzzle.

Rule 3: DB2's choice for inner and outer tables is a delicate trade-off. Because the inner table is
accessed many times for each qualifying outer table row, it should be as small as possible to reduce the
time needed to scan multiple rows for each outer table row. The more inner table rows, the longer the
scan. But the outer table should also be as small as possible to reduce the overhead of opening and
closing the internal cursor on the inner table.
It is impossible to choose the smallest table as both the inner table and the outer table. When two tables
are joined, one must be chosen as the inner table, and the other must be chosen as the outer table. My
experience has shown that as the size of a table grows, the DB2 optimizer favors using it as the outer
table in a nested loop join. Therefore, changing the cardinality (CARD) of the table that you want as the
outer table to an artificially high value can influence DB2 to choose that table as the outer table.
Rule 4: As column cardinality (COLCARD or COLCARDF) decreases, DB2 favors the use of the nested
loop join over the merge scan join. Decrease COLCARD to favor the nested loop join.
Rule 5: HIGH2KEY and LOW2KEY can be altered to more accurately reflect the overall range of values
stored in a column. This is particularly useful for influencing access path selection for data with a
skewed distribution.
The combination of HIGH2KEY and LOW2KEY provides a range of probable values accessed for a
particular column. The absolute highest and lowest values are discarded to create a more realistic
range. For certain types of predicates, DB2 uses the following formula when calculating filter factor:
Filter factor = (Value-LOW2KEY) / (HIGH2KEY-LOW2KEY)
Because HIGH2KEY and LOW2KEY can affect the size of the filter factor, the range of values that they
provide can significantly affect access path selection.

Tuning
Strategy

For troublesome queries, check whether the distribution of data in the
columns accessed is skewed. If you query SYSIBM.SYSCOLDIST, as
discussed in Chapter 24, the 10 most frequently occurring values are
shown for indexed columns. To be absolutely accurate, however, obtain
a count for each column value, not just the top 10:

SELECT COL, COUNT(*)
FROM your.table
GROUP BY COL
ORDER BY COL

 - 611 -

This query produces an ordered listing of column values. You can use this list to determine the
distribution of values. If a few values occur much more frequently than the other values, the data is not
evenly distributed. In this circumstance, consider using dynamic SQL or hard coding predicate values
instead of using host variables. This enables DB2 to use the DB2 Catalog nonuniform distribution
statistics when calculating filter factors.

Tuning
Strategy

Referring back to the results of the query in the preceding tuning
strategy, if a few values are at the beginning or end of the report,
consider changing LOW2KEY and HIGH2KEY to different values. DB2
uses LOW2KEY and HIGH2KEY when calculating filter factors. So, even
though the valid domain of small integers is —32768 to +32767, the
valid range for access path selection is defined by LOW2KEY and
HIGH2KEY, which may set the range to +45 to +1249, for example. As
the range of values decreases, the filter factor decreases because there
are fewer potential values in the range of values.

Tuning
Strategy

If neither dynamic SQL nor hard-coded predicates are practical, change
HIGH2KEY to a lower value and LOW2KEY to a higher value to reduce
the range of possible values, thereby lowering the filter factor.
Alternatively, or additionally, you can increase COLCARD,
FIRSTKEYCARD, and FULLKEYCARD.

Remember that modifying DB2 Catalog statistics is not a trivial exercise. Simply making the changes
indicated in this section might be insufficient to resolve your performance problems because of DB2's
knowledge of the DB2 Catalog statistics. Some statistical values have implicit relationships. When one
value changes, DB2 assumes that the others have changed also. These relationships follow:

 When you change COLCARD for a column in an index, be sure to also change
the FIRSTKEYCARD of any index in which the column participates as the first
column of the index key, and the FULLKEYCARD of any index in which the
column participates.

 Provide a value to both HIGH2KEY and LOW2KEY when you change cardinality
information. When COLCARD is not -1, DB2 assumes that statistics are available.
DB2 factors these high and low key values into its access path selection decision.
Failure to provide both a HIGH2KEY and a LOW2KEY can result in the
calculation of inaccurate filter factors and the selection of inappropriate access
paths.

Before deciding to update DB2 Catalog statistics to force DB2 to choose different access paths, heed
the following warnings.

First, never change the DB2 Catalog statistics without documenting the following:
 Why the statistics will be modified
 How the modifications will be made and how frequently the changes must be run
 The current values for each statistic and the values they will be changed to

Secondly, be aware that when you change DB2 Catalog statistics, you are robbing from Peter to pay
Paul. In other words, your changes might enhance the performance of one query at the expense of the
performance of another query.

DB2 maintenance (PTFs, new releases, and new versions) might change the access path selection
logic in the DB2 optimizer. As a result of applying maintenance, binding or rebinding static and dynamic
SQL operations could result in different access paths, thereby invalidating your hard work. In other
words, IBM might get around to correcting the problem in the logic of DB2 (that you solved using
trickery).

Choosing the correct values for the statistics and keeping the statistics accurate can be an intimidating
task. Do not undertake this endeavor lightly. Plan to spend many hours changing statistics, rebinding
plans, changing statistics again, rebinding again, and so on.
The situation that caused the need to tinker with the statistics in the DB2 Catalog could change. For
example, the properties of the data could vary as your application ages. Distribution, table and column
cardinality, and the range of values stored could change. If the statistics are not changing because they
have been artificially set outside the jurisdiction of RUNSTATS, these changes in the data cannot be
considered by the DB2 optimizer, and an inefficient access path could be used indefinitely.

Tuning
Strategy

When DB2 Catalog statistics have been changed to influence access
path selection, periodically execute RUNSTATS and rebind to determine

 - 612 -

if the artificial statistics are still required. If they are, simply reissue the
DB2 Catalog UPDATE statements. If not, eliminate this artificial
constraint from your environment. Failure to implement this strategy
eventually results in inefficient access paths in your environment (as
DB2 and your applications mature).

Only a SYSADM can update the DB2 Catalog. SYSADMs have a great amount of authority, so it is
generally a good idea to limit the number of SYSADMs in your shop. When the DB2 Catalog needs to
be altered, an undue burden is placed on the SYSADMs.
When the DB2 Catalog has been updated using SQL, all subsequent RUNSTATS executions must be
followed by a series of SQL statements to reapply the updates to the DB2 Catalog.

Tuning
Strategy

If possible, give a single production userid SYSADM authority for
modifying DB2 Catalog statistics. This userid has the following
requirements:

 Should not have online TSO logon capabilities because only
batch jobs need to be run using it

 Should be under the same strict controls placed on
production jobs at your site

 Should be used to run only DB2 Catalog update jobs
A DBA or some other knowledgeable user can then create UPDATE statements to change the DB2
Catalog statistics as desired. A batch job running under the authid for the production SYSADM can then
run the UPDATE statements in production. Because the SYSADM userid has no logon capabilities, the
possibility for abuse is limited to the controls placed on the production environment (such as who can
update production job streams, who can submit them, or what review process is in place).
Using Optimization Hints (OPTHINT) to Force an Access Path
As of DB2 Version 6, a new method is available for influencing DB2 access paths. Actually, the new
method does not "influence" the access path; instead it directs DB2 to use a specific access path
instead of determining the access path using statistics. IBM refers to this process as specifying
optimization hints.

Caution The same basic cautions that apply to modifying DB2 Catalog statistics also
apply to optimization hints. Only experienced analysts and DBAs should
attempt to use optimization hints.

Optimization hints are implemented using the PLAN_TABLE. However, before you can use optimization
hints, the DB2 subsystem parameter for OPTIMIZATION HINTS must be set to YES. If it is set to NO,
you cannot use optimization hints.
There are two ways to use the PLAN_TABLE to provide an access path to DB2:

 Alter the PLAN_TABLE to use an access path that was previously created by the
DB2 optimizer.

 INSERT rows to the PLAN_TABLE to create a new access path independently.
In general, favor the first method over the second method. It is a difficult task to create an accurate
access path in the PLAN_TABLE. If you do not get every nuance of the access path correct, it is
possible that DB2 will ignore the optimization hint and calculate an access path at bind time. However, if
you use an access path that was originally created by DB2, you can be reasonably sure that the access
path will be valid.

You should consider using optimization hints for all of the same reasons you would choose to modify
DB2 Catalog statistics or tweak SQL. The general reason is to bypass the access path chosen by DB2
and use a different, hopefully more efficient, access path.
In addition to this reason, optimization hints are very useful as you migrate from release to release of
DB2. Sometimes, a new release or version of DB2 can cause different access paths to be chosen for
queries that were running fine. Or perhaps new statistics were accumulated between binds causing
access paths to change. By saving old access paths in a PLAN_TABLE, you can use optimization hints
to direct DB2 to use the old access paths instead of the new, and perhaps undesirable, access paths
that are the result of the new release or statistics.

Always test and analyze the results of any query that uses optimization hints to be sure that the desired
performance is being achieved.

Defining an Optimization Hint

 - 613 -

To specify that an optimization hint is to be used, you will have to update the PLAN_TABLE. The first
step is to make sure that you are using the 49 column format for the PLAN_TABLE (that is, the V6
version of the PLAN_TABLE). This PLAN_TABLE should include the following columns:
OPTHINT CHAR(8) NOT NULL WITH DEFAULT
HINT_USED CHAR(8) NOT NULL WITH DEFAULT
PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT
For more information on the PLAN_TABLE and a definition of all PLAN_TABLE columns, refer to
Chapter 23, "Using EXPLAIN."
To set an optimization hint, you need to first identify (or create) the PLAN_TABLE rows that refer to the
desired access path. You will then need to update the rows in the PLAN_TABLE, specifying an identifier
for the hint in the OPTHINT column. For example
UPDATE PLAN_TABLE
SET OPTHINT = 'SQLHINT' WHERE
PLANNO = 50 AND
APPLNAME = 'PLANNAME';
Of course, this is just an example. You may need to use other predicates to specifically identify the
PLAN_TABLE rows to include in the optimization hint. Some columns that might be useful, depending
on your usage of dynamic SQL and packages, include QUERYNO, PROGNAME, VERSION, and
COLLID.

Caution If you change a program that uses static SQL statements, the statement
number might change, causing rows in the PLAN_TABLE to be out of sync
with the modified application.

You can use the QUERYNO clause in SQL statements to ease correlation of SQL statements in your
program with your optimization hints. Statements that use the QUERYNO clause are not dependent on
the statement number. To use QUERYNO, you will need to modify the SQL in your application to
specify a QUERYNO, as shown in the following:
SELECT MGRNO
FROM DEPT
WHERE DEPNO = 'A00'
QUERYNO 200;
You can then UPDATE the PLAN_TABLE more easily using QUERYNO and be sure that the
optimization hint will take effect, as shown in the following:
UPDATE PLAN_TABLE
SET OPTHINT = 'SQLHINT' WHERE
QUERYNO = 200 AND
APPLNAME = 'PLANNAME';
When the PLAN_TABLE is correctly updated (as well as possibly the application), you must REBIND
the plan or package to determine if the hint is being used by DB2. When rebinding you must specify the
OPTHINT parameter:
REBIND PLAN PLANNAME . . . OPTHINT(SQLHINT)
Be aware that the optimization hints may not actually be used by DB2. For optimization hints to be used,
the hint must be correctly specified, the REBIND must be accurately performed, and the environment
must not have changed. For example, DB2 will not use an access path specified using an optimization
hint if it relies on an index that has since been deleted.
Use EXPLAIN(YES) to verify whether the hint was actually used. If the hint was used, the HINT_USED
column for the new access path will contain the name of the optimization hint (such as SQLHINT in the
previous example).

Miscellaneous Guidelines
The following miscellaneous guidelines provide you with useful general tips for improving DB2
performance.

 - 614 -

Favor Optimization Hints Over Updating the DB2 Catalog

Optimization hints to influence access paths are less intrusive and easier to implement than changing
columns in the DB2 Catalog. However, use optimization hints only as a last resort. Do not use
optimization hints as a crutch to arrive at a specific access path. Optimization hints are best used when
an access path changes and you want to go back to a previous, efficient access path.

Limit Ordering to Avoid Scanning
The optimizer is more likely to choose an index scan when ordering is important (ORDER BY, GROUP
BY, or DISTINCT) and the index is clustered by the columns to be sorted.

Maximize Buffers and Minimize Data Access

If the inner table fits in 2 percent of the bufferpool, the nested loop join is favored. Therefore, to increase
the chances of nested loop joins, increase the size of the bufferpool (or decrease the size of the inner
table, if possible).

Consider Deleting Nonuniform Distribution Statistics
To decrease wild fluctuations in the performance of dynamic SQL statements, consider removing the
nonuniform distribution statistics (NUDS) from the DB2 Catalog. Although dynamic SQL makes the best
use of these statistics, the overall performance of applications that heavily use dynamic SQL can suffer.
The optimizer might choose a different access path for the same dynamic SQL statement, depending on
the values supplied to the predicates. In theory, this should be the desired goal. In practice, however,
the results might be unexpected.

For example, consider the following dynamic SQL statement:
SELECT EMPNO, LASTNAME
FROM DSN8610.EMP
WHERE WORKDEPT = ?
The access path might change depending on the value of WORKDEPT because the optimizer
calculates different filter factors for each value, based on the distribution statistics. As the number of
occurrences of distribution statistics increases, the filter factor decreases. This makes DB2 think that
fewer rows will be returned, which increases the chance that an index will be used and affects the
choice of inner and outer tables for joins.
For DB2 V2.3, these statistics were stored in the SYSIBM.SYSFIELDS table and can be removed using
MODIFY STATISTICS. For DB2 V3 and later releases, these statistics are stored in the
SYSIBM.SYSCOLDIST and SYSIBM.SYSCOLDISTSTATS tables and can be removed using SQL
DELETE statements.
This suggested guideline does not mean that you should always delete the NUDS. My advice is quite to
the contrary. When using dynamic SQL, allow DB2 the chance to use these statistics. Delete these
statistics only when performance is unacceptable. (They can always be repopulated later with
RUNSTATS.)

Consider Collecting More Than Just the Top Ten NUDS
If non-uniform distribution impacts more than just the top ten most frequently occurring values, you
should consider using the FREQVAL option of RUNSTATS to capture more than 10 values. Capture
only as many as will prove to be useful for optimizing queries against the non-uniformly distributed data.

DB2 Referential Integrity Use
Referential integrity (RI) is the implementation of constraints between tables so that values from one
table control the values in another. Recall that a referential constraint between a parent table and a
dependent table is defined by a relationship between the columns of the tables. The parent table's
primary key columns control the values permissible in the dependent table's foreign key columns. For
example, in the sample table, DSN8610.EMP, the WORKDEPT column (the foreign key) must reference
a valid department as defined in the DSN8610.DEPT table's DEPTNO column (the primary key).
DB2 provides two options for implementing RI. DB2-enforced referential integrity is specified by DDL
options. All modifications, whether embedded in an application program or ad hoc, must comply to the
referential constraints. DB2-enforced referential integrity is also known as declarative RI, because the
RI is declared using DDL.

 - 615 -

Application-enforced referential integrity is coded in an application program. Every program that can
update referentially constrained tables must contain logic to enforce the referential integrity. This type of
RI is not applicable to ad hoc updates.

With DB2-enforced RI, CPU use is reduced because the Data Manager component of DB2 performs
DB2-enforced RI checking, whereas the RDS component of DB2 performs application-enforced RI
checking. Additionally, rows accessed for RI checking when using application-enforced RI must be
passed back to the application from DB2. DB2-enforced RI does not require this passing of data, further
reducing CPU time.

In addition, DB2-enforced RI uses an index (if one is available) when enforcing the referential constraint.
In application-enforced RI, index use is based on the SQL used by each program to enforce the
constraint.

Tuning
Strategy

DB2-enforced referential integrity is generally more efficient than
application-enforced RI. When you build new applications, use DB2-
enforced referential integrity and consider retrofitting older applications
that require performance tuning.

Declarative RI has the further benefit that it cannot be bypassed, like
application-enforced RI.

Triggers also can be used to implement complex RI and data integrity
rules. Triggers, like declarative RI, cannot be bypassed by ad hoc SQL.
All SQL data modification, whether static or dynamic, planned or ad hoc,
must conform to the trigger logic.

Tuning
Strategy

If no ad hoc updating is permitted, consider using application-based RI
in the following two situations:

 If an application program can be written so that a single
check is made for a row from the parent table, multiple inserts
to the child table are performed.

 If the application processing needs are such that the parent
table is read before inserting the child (even one child), DB2
just repeats the read process that the application must do
anyway.

Tuning
strategy

Do not implement DB2-enforced or application-enforced RI in the
following cases:

 If DB2 tables are built from another system that is already
referentially intact

 If application tables are accessed as read-only

General Application Tuning
This chapter has concentrated on some of the more complex methods of tuning your DB2 applications.
A wealth of less complex information about building efficient SQL is also available. For this type of
general SQL coding advice, and guidelines for coding efficient, performance-oriented SQL (DCL, DDL,
and DML), refer to Chapters 2 through 8.

The Causes of DB2 Performance Problems
All performance problems are caused by change. Change can take many forms, including the
following:

 Physical changes to the environment, such as a new CPU, new DASD devices, or
different tape drives.

 Installing a new version or release of the operating system, OS/390.
 Changes to system software, such as a new release of a product (for example,

QMF, CICS, or GDDM), the alteration of a product (for example, the addition of
more or fewer CICS regions or an IMS SYSGEN), or a new product (for example,
implementation of DFHSM). Also included is the installation of a new release or
version of DB2, which can result in changes in access paths and the utilization of
features new to DB2.

 Changes to the DB2 engine from maintenance releases, which can change the
optimizer.

 - 616 -

 Changes in system capacity. More or fewer jobs could be executing concurrently
when the performance problem occurs.

 Environment changes, such as the implementation of client/server programs or
the adoption of data sharing.

 Database changes. This involves changes to any DB2 object, ranging from
adding a new column or an index to dropping and re-creating an object.

 Changes to the application development methodology, such as usage of check
constraints instead of application logic or the use of stored procedures.

 Changes to application code.

Performance problems are not caused by magic. Something tangible changes, creating a
performance problem in the application. The challenge of tuning is to find the source of the
change, gauge its impact, and formulate a solution.
See Figure 26.5. This hierarchy shows the order of magnitude by which each type of resource
can affect DB2 performance. The resource with the highest potential for affecting performance
is at the top. This does not mean that the bulk of your problems will be at the highest level.
Recall the performance tuning pie presented at the beginning of Part V. Although MVS packs
the largest wallop in terms of its potential for degrading performance when improperly tuned, it
consists of only approximately five percent of the tuning opportunity.

Figure 26.5: The tuning hierarchy in terms of impact.

Although the majority of your problems will be application-oriented, you must explore the
tuning opportunities presented in the other environments when application tuning has little
effect.

The following is a quick reference of the possible tuning options for each environment.
To tune OS/390, MVS:

Change the dispatching priority.

Modify swappability.

Add memory.
To tune OS/390, MVS:

Upgrade CPU.

Implement data sharing.

Use an active performance monitor (enables tuning on-the-fly).
To tune the teleprocessing environments:

Change the system generation parameters.

Tune the program definition (PSBs and PPT entries).

Modify the Attachment Facility parameters.

Add or change table entries.

Use an active performance monitor (enables tuning on-the-fly).

 - 617 -

To tune the DB2 subsystem:

Modify DSNZPARMs to increase or decrease the number of concurrent users, change lock
escalation, increase EDM pool storage, and so on.
Issue SET LOG commands to change log buffers.
Issue ALTER BUFFERPOOL commands to change bufferpool sizes, increase or decrease bufferpool
thresholds, and modify associated hiperpools.
Tune the DB2 Catalog, including dropping and freeing objects, executing MODIFY, reorganizing DB2
Catalog tablespaces and indexes, rebuilding the DB2 Catalog indexes, adding indexes to the DB2
Catalog, changing data set placement, moving the DB2 Catalog to a faster DASD device, and
implementing data set shadowing.
Perform DSNDB07 tuning.

Use a tool to change DSNZPARMs on-the-fly.

To tune the DB2 database design:

Modify the logical and physical model.

Modify and issue DDL.
Execute ALTER statements.

Ensure that proper parameters are specified.

Implement table changes.

Partition simple and segmented tablespaces.
Spread non-partitioned objects over multiple devices using PIECESIZE.

Add indexes.
REORG tablespaces.
REORG or REBUILD indexes.

Consider or reconsider data compression.

Denormalize the database design.
To tune shared data:

Denormalize the database design.

Add redundant tables.
To tune programs:

Perform SQL tuning.

Use triggers to enforce business rules.

Implement stored procedures and user-defined functions as needed.

Reduce network requests in client/server applications.

Tune the high-level language (such as COBOL or 4GL).

Use a program restructuring tool.
Run RUNSTATS.
Execute EXPLAIN, modify your code, and REBIND.
Use the OPTIMIZE FOR n ROWS clause.

Consider activating query parallelism.

Change locking strategies.
Change the DB2 Catalog statistics and REBIND.

Implement optimization hints.

 - 618 -

Use a testing tool to provide "what if" testing and tuning.

Use a tool to sample the application's address space as it executes.
It is important not to confuse the issue, so I will present another tuning hierarchy. Figure 26.6
outlines the order in which DB2 problems should be investigated. Start at the top and work
your way down. If you are sure that your MVS environment has not changed, investigate the
teleprocessing monitor. Only when you have tried all avenues of tuning at one level should
you move to the next. Of course, this process should be used only when the cause of the
problem is not obvious. If you just implemented a new application yesterday and the first time
it runs problems occur, you most likely can assume the problem is in the new application and
begin looking there.

Figure 26.6: The tuning review process.

Tuning
Strategy

Implement at your shop a standard that incorporates tuning hierarchies
similar to the ones shown in Figures 26.5 and 26.6.

Document your tuning standard, stating that each component of the
DB2 tuning hierarchies should be considered when DB2 performance
problems are encountered. Include in the document all the tools that
can be used. If possible, get managerial agreement from all areas
involved to reduce the friction that can occur when diverse groups
attempt to resolve a DB2 tuning problem.

Summary
DB2 subsystem tuning is a major component of ensuring the overall efficiency of DB2 applications. You
learned about the many tuning options available to tune DB2 including DSNZPARM parameters, DB2
Catalog statistics, database design issues, and SQL coding techniques. Now that you understand how
to tune DB2 internals, move to the next chapter where you will learn how to implement controls to
govern the execution of DB2 applications.

Chapter 27: DB2 Resource Governing

Overview
In addition to performance monitoring and tuning, actively controlling certain types of SQL can
be beneficial. For example, consider a critical decision support query that retrieves hundreds,
thousands, or even millions of rows from DB2 tables. If the query is well planned, the designer
will have a good idea of the amount of time necessary to satisfy the request.
As time goes on, however, the performance of the query could degrade for many reasons,
such as unorganized indexes and tablespaces, additional rows being returned, or outdated
RUNSTATS. This degradation could affect the entire system because S-locks are being held

 - 619 -

and DB2 resources are being monopolized. It would be desirable, therefore, to disallow
access on a prespecified basis when performance falls outside an acceptable range.

The Resource Limit Facility
The DB2 Resource Limit Facility (RLF) is a governor that limits specific DB2 resources that can be
consumed by dynamic SQL. There are two modes used by the RLF: reactive and predictive. With
reactive governing, DB2 will allow the query to begin, but will limit the resources it can consume. With
predictive governing, DB2 attempts to determine the resources that will be consumed before the query
runs.

With predictive governing, you can stop a statement from executing before it has consumed any
resources at all. This is an advantage over the reactive governor, which can stop a dynamic SQL
statement only after it has exceeded its limit. With reactive governing, resources are consumed, but no
valuable work is completed.

Reactive Governing
With reactive governing, the RLF limits the CPU consumed by dynamic SQL issued by plan name,
terminating the requests that exceed the limit and returning a -905 SQLCODE to the requesting
program. The RLF also limits dynamic SQL issued by collection name. This effectively limits the
dynamic SQL capabilities of all plans and packages of a collection.
Also, the RLF can control when the BIND command can be issued. The RLF establishes a means
whereby particular plans, packages, or entire collections are unavailable for binding, even to those
authorized to issue the BIND command. In addition to checking for BIND authority, DB2 checks the RLF
specifications before allowing a bind.

Predictive Governing
With predictive governing, DB2 determines the cost category for SQL statements at runtime. Recall
from Chapter 23, "Using EXPLAIN," that DB2 can produce cost estimates for SQL statements and
assigns the estimate to one of two categories—category A or category B. You can examine the
COST_CATEGORY column of the DSN_STATEMNT_TABLE to determine whether a given SQL
statement falls into category A or B.
Predictive governing can be set up to cause the prepare for a dynamic SELECT, INSERT UPDATE, or
DELETE statement to fail if the cost estimate is exceeded. For category A cost estimates where the
error threshold is exceeded, DB2 returns a -495 SQLCODE to the application at PREPARE time, and
the statement is not prepared or executed. If the estimate is in cost category A and the warning
threshold is exceeded, a +495 SQLCODE is returned at prepare time, but the prepare is completed, and
the application must decide whether to run the statement or not.
Additionally, you can specify what action DB2 should take for cost estimates in category B. The
predictive governing process is outlined in Figure 27.1.

Figure 27.1: The predictive governing process.

 - 620 -

Defining the RLST
The RLF is designed to govern performance based on rows in a table known as a Resource Limit
Specification Table (RLST). All resource limits, for both reactive and predictive governing, are defined
using a table known as the RLST.

To define the RLST, use the following DDL:
CREATE DATABASE DSNRLST;

CREATE TABLESPACE DSNRLSxx
IN DSNRLST;

CREATE TABLE authid.DSNRLSTxx
(AUTHID CHAR(8) NOT NULL WITH DEFAULT,
 PLANNAME CHAR(8) NOT NULL WITH DEFAULT,
 ASUTIME INTEGER,
 LUNAME CHAR(8) NOT NULL WITH DEFAULT,
 RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
 RLFBIND CHAR(7) NOT NULL WITH DEFAULT,
 RLFCOLLN CHAR(18) NOT NULL WITH DEFAULT,
 RLFPKG CHAR(8) NOT NULL WITH DEFAULT,
 RLFASUERR INTEGER,
 RLFASUWARN INTEGER,
 RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT
)
IN DSNRLST.DNSRLSxx;

CREATE UNIQUE INDEX authid.DSNARLxx
ON authid.DSNRLSTxx
 (RLFFUNC,
 AUTHID DESC,
 PLANNAME DESC,
 RLFCOLLN DESC,
 RLFPKG DESC,
 LUNAME DESC)
CLUSTER
CLOSE NO;
A definition of each column in the RLST in provided in Table 27.1.

Table 27.1: The Columns of the RLST

Name Definition
AUTHID Identifies the primary authorization ID of the user to whom the limit set

by this row applies. If blank, this row applies to all primary authorization
IDs at the location specified by the LUNAME column.

PLANNAME Specifies the plan name for which the limit set by this row applies. If
blank, this row applies to all plan names at the location specified by the
LUNAME column. PLANNAME is valid only when RLFFUNC is blank. If
RLFFUNC contains a value, the column must be blank or the entire row
is ignored.

 - 621 -

ASUTIME Specifies the maximum number of CPU service units permitted for any
single dynamic SQL statement. If NULL, this row does not apply a limit.
If less than or equal to 0, this row indicates that dynamic SQL is not
permitted.

LUNAME The logical unit name of the site where the request originated. If blank,
this row applies to the local site. If PUBLIC, this row applies to all sites.

RLFFUNC Indicates the type of resource this row is limiting:

 blank row governs dynamic SQL reactively by
plan name

 1 row governs BIND for plans or packages
in collections

 2 row governs dynamic SQL reactively by
collection and package names

 3 row disables query I/O parallelism
 4 row disables query CP parallelism
 5 row disables Sysplex query parallelism
 6 row governs dynamic SQL predictively

by plan name
 7 row governs dynamic SQL predictively

by collection and package names

 If any other values are in this column, the row is ignored.
RLFBIND Indicates whether the BIND command is permitted. The value N

indicates that BIND is not allowed; any other value means that the
BIND command is allowed. Valid only when RLFFUNC equals 1.

RLFCOLLN Specifies the name of the collection to which this RLF row applies.
If blank, this row applies to all packages at the location specified by
the LUNAME column. If RLFFUNC is blank, 1, or 6, RLFCOLLN
must be blank or the entire row is ignored.

RLFPKG Specifies the package name for which the limit set by this row
applies. If blank, this row applies to all packages at the location
specified by the LUNAME column. If RLFFUNC is blank, 1 or 6,
RLFPKG must be blank or the entire row is ignored.

RLFASUERR Specifies the maximum number of CPU service units permitted for
any single dynamic SQL statement. If the threshold is exceeded, a
-495 SQLCODE is returned to the application. If NULL, this row
does not apply a limit. If less than or equal to 0, this row indicates
that dynamic SQL is not permitted. Used for predictive governing
only (RLFFUNC 6 or 7). Additionally, the dynamic SQL statements
must be in cost category A.

RLFASUWARN Specifies the maximum number of CPU service units permitted for
any single dynamic SQL statement. If the threshold is exceeded, a
+495 SQLCODE is returned to the application as a warning. If
NULL, this row does not apply a limit. If less than or equal to 0, this
row indicates that all dynamic SQL will receive a +495 SQLCODE
as a warning. Used for predictive governing only (RLFFUNC 6 or
7). Additionally, the dynamic SQL statements must be in cost
category A.

RLF_CATEGORY_B Specifies the default action to take for category B cost estimates.
Used for predictive governing (RLFFUNC 6 or 7). Valid values are
as follow:

 blank Execute the dynamic SQL statement.
 Y Prepare and execute the SQL statement.

 - 622 -

 N Do not prepare or execute the SQL statement.
Return SQLCODE -495 to the application.

 W Complete the prepare, return SQLCODE +495 as
a warning to let the application decide whether to
execute the dynamic SQL statement or not.

Caution Be sure to make the value for

RLFASUWARN less than the value of
RLFASUERR. If the warning value is higher,
the warning will never be reported because
an error will always occur before the
warning.

Regulate the impact of dynamic SQL using the RLF. Dynamic SQL is used by SPUFI, QMF, and many
vendor-supplied tools. Limit these types of tools to reduce the possibility of runaway ad hoc queries that
hog system resources.

Tuning
Strategy

Favor predictive governing over reactive governing to save resources. It
is better to know up front that a particular query is destined to exceed
your service level agreement. That way, you can tune the query and
optimize it, instead of having the query fail during processing.

You can create multiple RLSTs, with each controlling resources in a different manner. Some reasons for
doing this are as follows:

 To control the same resources in different RLSTs with different limits.
 To control different resources in different RLSTs.
 To eliminate resource control for a plan or package from a certain RLST, thereby

removing the limit.
 To control one type of limiting separately from another type; for example, to control

binds in one RLST, plans and packages in another, and users in another. However,
this is impractical because only one RLST can be active at any given time.

The RLF is started using the START RLIMIT command, which is discussed in Chapter 34, "DB2
Commands." Using this command, a DBA can specify which RLST should be activated for resource
limiting.

Tuning
Strategy

Use several RLSTs to control dynamic SQL access differently during
different periods. For example, consider a plan containing dynamic SQL
statements that consumes 10 CPU seconds normally but consumes 20
CPU seconds during month-end processing. You can define two
RLSTs, one with a limit of 10 and another with a limit of 20. The first
RLST is active most of the time, but the DBA can switch the RLF to use
the second RLST during month-end processing. This ensures that both
normal and month-end processing are controlled adequately.

The QMF Governor
Because QMF uses dynamic SQL, the RLF can be used to govern QMF resource use. To
control the usage of QMF, a row would be inserted specifying the following:

 A blank AUTHID (so the limit applies to all users)
 The QMF plan name in the PLANNAME column (for QMF V6 this is most likely

QMF610 or something similar)
 The resource limit in ASUTIME

If necessary, multiple rows could be inserted with varying resource limits for different
AUTHIDs.

However, the QMF Governor can govern QMF use independently from DB2 and SQL use.
The QMF Governor provides the capability to prompt users or to cancel threads based on
excessive resource use. Resource use is either a CPU time limit or a limit based on the
number of rows retrieved by a single query.
The operation of the QMF Governor is controlled by rows inserted into a QMF control table
named Q.RESOURCE_TABLE. DDL to create this table is shown in the following SQL
statement:
CREATE TABLE Q.RESOURCE_TABLE
(RESOURCE_GROUP CHAR(16) NOT NULL ,

 - 623 -

 RESOURCE_OPTION CHAR(16) NOT NULL ,
 INTVAL INTEGER,
 FLOATVAL FLOAT,
 CHARVAL VARCHAR(80)
)
IN DSQDBCTL.DSQTSGOV ;
Values inserted into the first three columns of this table control QMF resource governing. The
last two columns, FLOATVAL and CHARVAL, are not used by the IBM-supplied QMF Governor.
The following list shows the values that can be supplied for the RESOURCE_OPTION column,
indicating the types of QMF governing available:

SCOPE Sets the overall QMF resource governing environment. If a row has
RESOURCE_OPTION set to SCOPE, and the row contains a value of 0 in the
INTVAL column, governing is enabled. Any other value disables the QMF
Governor.

TIMEPROMPT Sets the amount of CPU time that can be incurred before prompting users
to cancel or continue. If INTVAL is 0, less than 0, or null, prompting does
not occur.

TIMELIMIT Sets the amount of CPU time that can be incurred before canceling. This is
an unconditional cancellation, without a prompt. The INTVAL specified for
TIMELIMIT should always be greater than the corresponding
TIMEPROMPT value. If INTVAL is 0, less than 0, or null, cancellation does
not occur.

TIMECHECK Sets the amount of time that must elapse before performing CPU time
checks as specified by TIMEPROMPT and TIMELIMIT. If INTVAL is 0, less
than 0, or null, time checking does not occur, regardless of the
TIMEPROMPT and TIMELIMIT settings.

ROWPROMPT Sets the maximum number of rows that can be retrieved before prompting
the user to cancel or continue. If INTVAL is 0, less than 0, or null,
prompting does not occur.

ROWLIMIT Sets the maximum number of rows that can be retrieved before canceling.
This is an unconditional cancellation, without a prompt. The INTVAL
specified for TIMELIMIT should always be greater than the corresponding
TIMEPROMPT value. If INTVAL is 0, less than 0, or null, cancellation does
not occur.

When the QMF Governor is set to prompt when reaching a particular threshold, the users are
told the amount of CPU time consumed and the number of rows retrieved. This prompt looks
like the following:

DSQUE00 QMF governor prompt:
Command has run for nnnnnn seconds of CPU times
and fetched mmmmmm rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key.
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key.

Users have the choice to continue or cancel their request. Users can request also that
additional prompting be disabled. If the request is continued and prompting is not disabled,
subsequent prompts are displayed as the limits are reached. Additionally, the QMF Governor
might cancel a request if additional limits are met.
Tuning
Strategy

Use the QMF Governor at least to prompt users when thresholds are
bypassed. This enables users to police their own requests. At a
minimum, also set a high system-wide cancellation time in case users
choose the NOPROMPT option. You can set this with the QMF
Governor or the RLF for the QMF plan.

 - 624 -

The QMF F Parameter
In addition to the governor, QMF provides a feature that is a cross between resource limitation
and performance tuning. You can use this feature, called the F parameter, or FPARM, to
control the number of rows fetched before displaying a QMF report. This is useful when a
large number of rows is fetched but only the first few need to be displayed.
Figure 27.2 shows how the FPARM works. Assume that the FPARM has been set to 100. When
the QMF query is initiated, up to the first 100 rows are fetched. If more than 100 rows are in
the answer set, the thread remains active. When the user pages down, QMF displays
additional rows but does not fetch any more rows until the 101st row has been requested. This
process keeps repeating, in blocks of 100 rows (or however many rows F has been set to). If
the user specifies M (for max) and presses F8 (for page down), all remaining rows are fetched,
and the active thread is terminated.

Figure 27.2: The QMF F parameter.

Consider the following points. The thread is not terminated until all rows have been retrieved
successfully or the user keys in the RESET DATA command. When the F parameter is set too
low, this can cause additional overhead due to additional active plans.
Also, the FPARM has little effect on some types of queries. For example, a query with a large
answer set requiring sorting consumes a significant amount of CPU time before any fetching
is performed. Be sure to set the RLF or the QMF Governor to control CPU use for these types
of queries.
Tuning
Strategy

Reduce QMF I/O requirements by setting the FPARM to 50. This is
approximately double the number of rows that can fit on one QMF report
page online. Therefore, users can page back and forth between the first
two pages of data without incurring additional I/O. Users frequently
issue a QMF query, look at the first page of data, and move to the next
query, without looking at every page. An FPARM of 50 optimizes the
performance of these types of queries.
Depending on the profile of your QMF users and their propensity to look
at multiple pages, you can adjust the FPARM accordingly. Use the
following formula to calculate the FPARM:
FPARM = [number of rows per online report page * approximate number
of pages viewed per user] + [number of rows per online report page]
For example, if QMF users tend to look at five pages of data, the
FPARM could be set to (25 * 5) + 25, which equals 150.

Summary
Resource governing should be an active component of your overall strategy for controlling and
optimizing the performance of DB2 applications. In this chapter, you learned about two different types of
resource governing: using the Resource Limit Facility and the QMF governor.

Part VI: DB2 Utilities and Commands

 - 625 -

Chapter List
Chapter 28: An Introduction to DB2 Utilities
Chapter 29: Data Consistency Utilities
Chapter 30: Backup and Recovery Utilities
Chapter 31: Data Organization Utilities
Chapter 32: Catalog Manipulation Utilities
Chapter 33: Miscellaneous Utilities
Chapter 34: DB2 Commands
Chapter 35: DB2 Utility and Command Guidelines
Chapter 36: DB2 Contingency Planning
Part Overview
DB2 has a comprehensive collection of utility programs to help you organize and
administer DB2 databases. You can use these utilities, for example, to ensure the proper
physical data structure, to back up and recover application data, and to gather current
statistical information about DB2 databases. A host of commands is also available to
enable you to actively monitor and support your DB2 database structures and DB2
access from multiple environments.
Part VI introduces you to these utility programs and the operator commands provided
with DB2. And, as you have seen throughout this book, guideline sections are included.
Guidelines for each utility and command as well as general utility usage guidelines are
presented. Other useful features of Part VI are the descriptions of DB2 pending states
and DB2 contingency planning guidelines.

Chapter 28: An Introduction to DB2 Utilities

Overview
DB2 utility programs are divided into four broad categories:

 Online utilities
 Offline utilities
 Service aids
 Sample programs

Each of these categories is defined in Part VI. A complete description of every utility that
makes up each category is also provided. Sample JCL listings are provided for each utility.
The job names, data set names, space allocations, and volumes used in the JCL are only
examples. The database and tablespace names are from the DB2 sample tables used
throughout this book. These names should be changed to reflect the needs of your
application.
The online utilities are referred to as online because they execute under the control of DB2.
They are run using the DSNUTILB program, which is supplied with DB2. DSNUTILB uses the
Call Attach Facility (CAF) to run as an independent batch program.
Online utilities operate using control card input. DSNUTILB reads the control card input and
then executes the proper utility based on the input. The first word in the control card is the
name of the utility to be processed, followed by the other parameters required for the utility.
In this chapter, all the sample JCL for the online utilities uses DSNUPROC, a generic utility
procedure supplied with DB2.
Recall from Chapter 16, "The Doors to DB2," that online DB2 utilities can be controlled by
DB2I option 8. The DB2I utility panels are shown in Figures 28.1 and 28.2. JCL to execute
DB2 utilities can be generated by these DB2I panels.
The first panel, shown in Figure 28.1, is set to generate JCL for the STOSPACE utility. The
second panel, shown in Figure 28.2, provides additional information used by certain DB2
utilities. If the first panel were set to generate JCL for the COPY, LOAD, or REORG utilities, the
second panel would prompt the user to enter data set names required for those utilities.

 - 626 -

Figure 28.1: DB2I utility JCL generation panel 1.

Figure 28.2: DB2I utility JCL generation panel 2.

The DB2I utility JCL generation panels provide four basic options:
SUBMIT JCL is automatically built to execute the requested DB2 utility, and it is

submitted in batch for processing.
EDITJCL JCL is automatically built and displayed for the user. The user can edit

the JCL, if desired, and then submit the JCL.
DISPLAY The status of a utility identified by JOB ID is displayed online.
TERMINATE utility identified by JOB ID is terminated. This cancels a running utility or

removes an inactive utility from the DB2 subsystem, thereby disabling
future restartability for the utility.

The DISPLAY and TERMINATE options are merely menu-driven implementations of the DB2 -
DISPLAY and -TERMINATE commands. The SUBMIT and EDITJCL options provide
automated DB2 utility JCL generation and submission. The DB2I utility program provides only
rudimentary DB2 utility JCL, however. It works as follows:

1. The user specifies either SUBMIT or EDITJCL and a JOB ID that uniquely
identifies a utility.

2. The user specifies one of the supported utilities (see Figure 28.1).
3. The user then specifies on the panel the data set containing the utility control

cards to be used. The data set must be preallocated.
4. As directed by the panel, the user supplies additional data set names,

depending on the selected utility.
5. JCL is generated for the requested utility.

The DB2I utility generator displays the output messages shown in Figure 28.3 when Enter is
pressed and the request is processed.

 - 627 -

Figure 28.3: DB2I JCL generation output messages.

The JCL generated by DB2I for the STOSPACE utility is shown in Figure 28.4. Generating JCL
for a utility each time it is required, however, can be cumbersome. Many users create a
partitioned data set containing sample utility JCL that they can modify as needed. The
examples in Part VI can be used as templates for the creation of DB2 utility JCL for use in
your shop.

Figure 28.4: Generated JCL for the STOSPACE utility.

Each online utility is associated with a utility identifier, or UID, that is passed to DSNUTILB as
a parameter to uniquely identify the utility to DB2. Two utilities with the same UID cannot
execute concurrently.
The DSNUPROC procedure requires the specification of override parameters to function
properly. These parameters should be coded as follows:

LIB The DB2 link library assigned to your DB2 system. This can be obtained
from the database administrator or the system programmer responsible
for DB2.

SYSTEM The DB2 system containing the objects on which the utility will be run.
UID Identifies the utility to the DB2 system. If this value is blank, the UID

defaults to the job name. This enables an analyst or DBA to quickly
identify the job associated with a utility. Also, because two identically
named MVS jobs cannot run concurrently, two utilities with the same UID
cannot run concurrently. This minimizes the possibility of incorrectly
restarting or rerunning an abending job.

UTPROC This value initially should be blank (that is, UTPROC=''). This parameter
is assigned a value only during restart. A value of 'RESTART(PHASE)'
restarts the utility at the beginning of the last executed phase. A value of
'RESTART' restarts the utility at the last or current commit point. The
type of restart, PHASE or COMMIT, must be determined by analyzing the
type of utility and the abend.

 - 628 -

Online DB2 utilities can be monitored and controlled using DB2 commands. The DISPLAY
and TERM commands can be used for this purpose. For example, the DISPLAY command can
be entered as
-DISPLAY UTILITY (UID)

or
-DISPLAY UTILITY (*)
Note The -DISPLAY command can be abbreviated to -DIS for simplicity.

The TERM command also can be entered by specifying a wildcard or a UID. The
recommendation is to specify a UID when terminating utilities, because an asterisk indicates
that every utility known to DB2 should be terminated. Enter the TERM command as
-TERM UTILITY (UID)
The -DISPLAY UTILITY command provides information about the execution status of the
utility named by the utility ID. When this command is issued, it returns a screen similar to the
one shown in Figure 28.5. This screen lists the following information:

Figure 28.5: Output from the -DISPLAY UTILITY (*) command.

USERID The user ID of the job performing the utility.
UTILID The utility ID assigned in the UID parameter on the EXEC card. If

the UID parameter is not provided, UTILID is the same name as
the job name.

STATEMENT The number of the control card containing the utility statement
that is being processed (if more than one utility control card is
supplied as input to the utility step).

UTILITY The type of utility that is being executed. For example, if a
reorganization is run, UTILITY contains REORG.

PHASE The phase of the utility being executed. The phases for each
utility are discussed in Part VI.

COUNT A count of the number of records (pages or rows, depending on
the utility and phase being monitored) processed by the phase.
COUNT also may be the number of index entries being processed.
COUNT isn't always kept by every utility phase, however.

STATUS The status of the utility. ACTIVE indicates that the utility is
currently active and should not be terminated. If terminated, the
utility will abend. STOPPED means that the utility is currently
stopped and should be restarted or terminated, depending on the
state of the job and the procedures in place for restarting or
rerunning.

Note The DISPLAY command will not

display most third-party utilities. The
third-party software vendors often
supply their own version of the

 - 629 -

DISPLAY command for displaying
the status of their utilities.

The TERM command terminates the execution of a DB2 utility. Think carefully before
terminating a utility. After a utility is terminated, it cannot be restarted. Instead, it must be
rerun, which involves reprocessing.

Five types of online DB2 utilities are provided:
 Data consistency utilities
 Backup and recovery utilities
 Data organization utilities
 Catalog manipulation utilities
 Miscellaneous utilities

Summary
In this brief chapter, you learned that there are four basic types of DB2 utilities and that DB2 provides
features for creating and managing these utilities. Chapters 29 through 33 cover each of the DB2
utilities in detail.

Chapter 29: Data Consistency Utilities

Overview
Often, the consistency of data in a DB2 database must be monitored and controlled. In the
scope of DB2 databases, consistency encompasses four things:

 The consistency of reference from index entries to corresponding table rows
 The consistency of reference from LOB entries to corresponding table rows
 The consistency of data values in referential structures
 The consistency of data values conforming to check constraints
 The general consistency of DB2 data sets and data

Recall from previous chapters that a DB2 index is composed of column key values and RID
pointers to rows in the DB2 table containing these values. Because the table and index
information are in different physical data sets, the information in the index could become
invalid. If the index key values or pointers become inconsistent, you would want to be able to
pinpoint and correct the inconsistencies. This is the first type of consistency.

When LOB columns are specified in a DB2 table, the data is not physically stored in the same
tablespace as the rest of the data in the table. An auxiliary table is required for each LOB
column in the table. The primary tablespace maintains pointers to the auxiliary table pages
where the LOBs are actually stored. Because the primary table data and the LOB data reside
in different physical data sets, the pointers in the primary table could become invalid. If the
LOB pointers become inconsistent, you would want to be able to pinpoint and correct the
inconsistencies. This is the second type of consistency.

The third type of consistency refers to the referential integrity feature of DB2. When a primary-
key-to-foreign-key relationship is defined between DB2 tables, a referential structure is
created. Every foreign key in the dependent table must either match a primary key value in the
parent table or be null. If, due to other utility processing, the referential integrity rules are
violated, you must be able to view and possibly correct the violations.
The fourth type of consistency refers to ensuring that data values conform to specific values
(or ranges of values). This is implemented using check constraints. A check constraint uses
expressions to place specific data value restrictions on the contents of a column. The
expression is explicitly defined in the table DDL and is formulated in much the same way that
SQL WHERE clauses are formulated. Every data value stored in a column with a check
constraint should conform to the predefined check constraint expression.

General consistency is the final type of consistency. If portions of DB2 tablespace and index
data sets contain invalid, inconsistent, or incorrect data because of hardware or software
errors, you want to be able to correct the erroneous information.

 - 630 -

The data consistency utilities are used to monitor, control, and administer these three types of
data consistency errors. There are three data consistency utilities (CHECK, REPAIR, and
REPORT) with a total of five functions. This chapter describes all of them.

The CHECK Utility
The CHECK utility checks the integrity of DB2 data structures. It has four purposes. The first
is to check referential integrity between two tables, displaying and potentially resolving
referential constraint violations. The second purpose of the CHECK utility is to ensure that
data values conform to the check constraints specified for the table. The third and final
purpose is to check DB2 indexes for consistency. This consists of comparing the key values of
indexed columns to their corresponding table values, as well as evaluating RIDs in the tables
and indexes being checked.

The CHECK DATA Option
The CHECK DATA utility is used to verify the accuracy and integrity of data in DB2 tables.

Referential Integrity Checking
One function of the CHECK DATA option of the CHECK utility checks the status of referential
constraints. It is used to validate foreign key values in the rows of a dependent table against primary key
values in its associated parent table. For example, consider a referential constraint defined in the DB2
sample tables. The DSN8610.DEPT table has a foreign key, RDE, defined on the column MGRNO. It
references the primary key of DSN8610.EMP, which is the EMPNO column. The CHECK DATA utility
can be used to verify that all occurrences of MGRNO in the DSN8610.DEPT sample table refer to a
valid EMPNO in the DSN8610.EMP sample table.
CHECK DATA can run against a single tablespace, multiple tablespaces, or a single partition of a
partitioned tablespace.
CHECK DATA can delete invalid rows and copy them to an exception table. The CHECK DATA utility
resets the check pending status if constraint violations are not encountered or if the utility was run with
the DELETE YES option.
The JCL in Listing 29.1 can be used to check data in the DB2 sample tables that contain referential
constraints.

Listing 29.1: CHECK DATA JCL

//DB2JOBU JOB (UTILITY),'DB2 CHECK DATA',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 CHECK DATA UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='CHEKDATA',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

 - 631 -

//DSNUPROC.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTOUT DD DSN=&&SORTOUT,

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SYSERR DD DSN=&&SYSERR,

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* This CHECK DATA statement checks DSN8510.DEPT for

//* referential constraint violations, deletes all

//* offending rows, and places them into the exception

//* table, DSN8510.DEPT_EXCPTN.

//*

//DSNUPROC.SYSIN DD *

 CHECK DATA TABLESPACE DSN8D61A.DSN8S61D

 FOR EXCEPTION IN DSN8610.DEPT

 USE DSN8610.DEPT_EXCPTN

 SCOPE ALL DELETE YES

/*

//

Note The sort work data sets need to be assigned in the JCL only if they're not dynamically

allocated. Additionally, you should consider explicitly defining sort work data sets
when checking very large tables.

Check Constraint Checking
The second function of the CHECK DATA option of the CHECK utility checks the status of check
constraints. It is used to validate column values against check constraints defined on those columns.
For example, consider a check constraint defined on the SALARY column of the DSN8510.EMP table
as follows:
CONSTRAINT CHECK_SALARY
CHECK (SALARY < 50000.00)

 - 632 -

All values of the SALARY column must be less than 50000.00 or they are in violation of the check
constraint. The CHECK DATA utility can be used to verify that all occurrences of SALARY in the
DSN8510.EMP sample table actually contain a valid SALARY conforming to the check constraint.

The columns of a table can contain values that violate the check constraint in the following two
circumstances:

1. When a table that already contains data is altered to add a check constraint,
enforcement of the constraint depends upon the value of the DB2 CURRENT
RULES special register. If the value of the CURRENT RULES register is DB2,
check constraint enforcement is deferred during table alteration and the table is
placed in a check pending state. If the value of the CURRENT RULES register is
STD, check constraint enforcement is immediate. If no rows violate the constraint,
the alteration proceeds normally. If existing rows do violate the constraint, the
table is placed in a check pending state.

2. When the LOAD utility is executed specifying the ENFORCE NO clause.

The syntax and JCL specification for checking check constraints is the same as is used for checking
referential constraints.

LOB Reference Checking
The third function of the CHECK DATA option of the CHECK utility checks the status of LOB
references. It is used to validate LOB columns against the LOB pointers to the auxiliary table. Before
running CHECK DATA to check LOBs, be sure to first run CHECK LOB to ensure the validity of the
LOB tablespace and run CHECK INDEX or REBUILD INDEX on the auxiliary table index to be sure it is
valid.
CHECK DATA can be run against base tablespaces only, not LOB tablespaces.
The JCL in Listing 29.2 can be used to check data for the DB2 sample table that contains LOB columns.

Listing 29.2: CHECK DATA JCL (for LOB References)

//DB2JOBU JOB (UTILITY),'DB2 CHECK DATA',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 CHECK DATA UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='CHEKDATA',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTOUT DD DSN=&&SORTOUT,

 - 633 -

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SYSERR DD DSN=&&SYSERR,

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* This CHECK DATA statement checks DSN8510.EMP_PHOTO_RESUME

//* for LOB reference problems.

//*

//DSNUPROC.SYSIN DD *

 CHECK DATA TABLESPACE DSN8D61L.DSN8S61B

 SCOPE AUXONLY AUXERROR REPORT

/*

//

The SCOPE Parameter
The SCOPE parameter is used to set the scope of the rows in the tablespace that are to be checked.
There are four SCOPE options:
PENDING Indicates that only rows in CHECK PENDING status are to be checked

for the specified tablespaces, partitions, and tables. The referential
integrity check, constraint check, and LOB column check are all
performed. If this option is run on a tablespace that is not in CHECK
PENDING status, the tablespace is ignored.

AUXONLY Indicates that only the LOB column check is to be performed for
tablespaces having tables with LOB columns. The referential integrity
and constraint checks are not performed.

ALL Indicates that all dependent tables in the specified tablespaces are to be
checked. The referential integrity check, constraint check, and the LOB
check are performed.

REFONLY Indicates that all dependent tables in the specified tablespaces are to be
checked. However, only the referential integrity check and constraint
check are performed. The LOB column check is not performed.

Note PENDING is the default option if SCOPE is not
specified.

The AUXERROR Parameter
The AUXERROR parameter is used to specify the action to take when LOB reference problems are
encountered. There are two options:
REPORT Indicates that the base tablespace is set to the auxiliary CHECK

PENDING (ACHKP) status.

 - 634 -

INVALIDATE Indicates that the base table LOB column is set to an invalid status.
The base tablespace is set to auxiliary warning (AUXW) status.

For both REPORT and INVALIDATE, a LOB column check error is reported with a warning message.
Note REPORT is the default option if AUXERROR is not specified.

CHECK DATA Phases
There are six phases of the CHECK DATA utility:
UTILINIT Sets up and initializes the CHECK DATA utility.
SCANTAB Extracts keys by index or tablespace scan and places them in the

SYSUT1 DD.
SORT Sorts the foreign keys using the SORTOUT DD (if the foreign keys

were not extracted using an index).
CHECKDAT Compares the extracted foreign keys to the index entries for the

corresponding primary key. This phase also issues error messages
for invalid foreign keys.

REPORTCK Copies the invalid rows to the specified exception table and then
deletes them from the source table if the DELETE YES option was
chosen.

UTILTERM Performs the final utility cleanup.

Estimating CHECK DATA Work Data Set Sizes
The CHECK DATA utility requires the use of work data sets to accomplish referential constraint
checking. The following formulas can help you estimate the sizes of the work data sets required by the
CHECK DATA utility. These calculations provide estimated data set sizes. More complex and precise
calculations are in the DB2 Utility Reference manual. The formulas presented here, however, produce
generally satisfactory results.
SYSUT1 = (size of the largest foreign key + 13) x (total number of rows in the table to be checked) x
(total number of foreign keys defined for the table)

Note If any number is 0, substitute 1.

SORTOUT = (size of SYSUT1)
SORTWKxx = (size of SORTOUT) x 2
SYSERR = (number of estimated referential constraint violations) x 60

Note Allocate at least one cylinder to the SYSERR data set.

After calculating the estimated size, in bytes, for each work data set, convert the number into cylinders,
rounding up to the next whole cylinder. Allocating work data sets in cylinder increments enhances the
utility's performance.
CHECK DATA Locking Considerations
The CHECK DATA utility can run concurrently with the following utilities:

 DIAGNOSE
 MERGECOPY
 MODIFY
 REPORT
 STOSPACE

CHECK DATA, when run specifying DELETE NO, will drain write claim classes for the tablespace and
indexes being processed. When DELETE YES is specified, all claim classes are drained for the
tablespace and indexes affected.
When CHECK DATA is run against an individual partition, DB2 also drains the write claim class for the
logical partition of the type 2 indexes affected if DELETE NO is specified. If DELETE YES is specified,
DB2 drains all claim classes for the logical partition of the type 2 indexes being acted upon. Regardless
of the other options specified, if the FOR EXCEPTION option is specified, the tablespace containing the
exception table (and any indexes) will have all claim classes drained.
CHECK DATA Guidelines
Before you execute the CHECK DATA utility, be sure to consider the following guidelines.

 - 635 -

Use CHECK DATA to Ensure Data Integrity
Favor the use of the CHECK DATA utility to reset the check pending status on DB2 tablespaces.
CHECK DATA is the only way to verify, in an automated fashion and on demand, that DB2 table data is
referentially intact and that the data conforms to all check constraints. The alternate methods of
resetting the check pending status are as follows:

 Running the REPAIR utility, specifying SET NOCHECKPEND for the appropriate
tablespaces

 Issuing the START DATABASE command, specifying ACCESS(FORCE)

Neither option ensures data integrity.
Another valid way to reset the check pending status is with the LOAD utility, specifying the ENFORCE
CONSTRAINTS option. However, this requires a sequential data set suitable for loading, and this type
of data set is not readily available for most application tablespaces. Even if a load data set is available,
the data it contains might be out of date, and thus of little benefit.
Use SCOPE PENDING
Specify the SCOPE PENDING option when executing the CHECK DATA utility to reduce the amount of
work the utility must perform. With the SCOPE PENDING option, CHECK DATA checks only the rows
that need to be checked for all tables in the specified tablespace. This means that only data in check
pending is checked. If the tablespace is not in check pending, the CHECK DATA utility issues a
message and terminates processing. This is the most efficient way to execute the CHECK DATA utility
because it minimizes runtime by avoiding unnecessary work. The alternative is to specify SCOPE ALL,
which checks all dependent tables in the specified tablespaces.
Run CHECK DATA When Data Integrity Is Questionable
Execute CHECK DATA after the following:

 Loading a table without specifying the ENFORCE CONSTRAINTS option.
 A check constraint is added to a table and data within an existing row of that table

violates the constraint.
 A table is altered to add a check constraint and the CURRENT RULES special register

contains DB2.
 When row violations are encountered by the CHECK DATA utility using the DELETE

NO option.
 The partial recovery of tablespaces in a referential set.

Both situations result in DB2 placing the loaded or recovered tablespaces into a check pending status.
The CHECK DATA utility is necessary to ensure referentially sound data and to remove the check
pending status, permitting future data access.
Bypass CHECK DATA Only When Data Integrity Is Verifiable
After a full recovery of all tablespaces in a referential set, you might want to bypass the execution of the
CHECK DATA utility. Depending on the order in which the recovery took place, some tablespaces are
placed in a check pending status. If you have followed the COPY guidelines presented in this book,
however, the full recovery of a tablespace set is referentially sound. In this case, the REPAIR utility
specifying the SET NOCHECKPEND option can be used instead of CHECK DATA, because CHECK
DATA would be a waste of time.
Define Exception Tables for Tables That Require CHECK DATA
An exception table stores the rows that violate the referential constraint being checked. An exception
table should be identical to the table being checked but with the addition of two columns: one column
identifies the RID of the offending row, and the other identifies a TIMESTAMP that indicates when the
CHECK DATA utility was run.

These two columns can have any name as long as it isn't the same name as another column in the
table. The names used in the following example are recommended because they clearly identify the
column's use. To avoid ambiguity, use the same column names for all exception tables. The exception
table can be created using the following DDL statements:
CREATE TABLE
 DSN8610.DEPT_EXCPTN
 LIKE DSN8610.DEPT;
ALTER TABLE
 DSN8610.DEPT_EXCPTN
 ADD RID CHAR(4);
ALTER TABLE

 - 636 -

 DSN8610.DEPT_EXCPTN
 ADD CHECK_TS TIMESTAMP;
The exception table does not need to be empty when the CHECK DATA utility is run because the
TIMESTAMP column identifies which execution of CHECK DATA inserted the offending rows.
Do not create a unique index for any exception table. A unique index could cause the CHECK DATA
utility to fail because of the insertion of non-unique key values. Non-unique indexes should not pose a
problem.

Place the exception tables in a segmented tablespace. You also can place multiple exception tables in a
single segmented tablespace.
Use DELETE YES for Optimum Automation
Rows that violate the referential constraint can be deleted from the table being checked if the DELETE
YES parameter was specified. This is often the preferred method of executing the CHECK DATA utility
in a production environment because the elimination of constraint violations is automated. If the deleted
rows are needed, they can be retrieved from the exception table.
If DELETE NO is specified instead of DELETE YES, the CHECK DATA utility does not reset the check
pending flag, but the rows in violation of the constraint are identified for future action.
A problem can occur, however, when you run the CHECK DATA utility with the DELETE YES option.
When a row is deleted from the dependent table, it could cause cascading deletes to one or more
dependent tables. This may result in valid data being deleted if the violation is caused by a missing
primary key in a parent table. For this reason, you might want to avoid the DELETE YES option. At any
rate, exercise caution when checking data with DELETE YES.

Be Aware of Inconsistent Indexes
If rows that appear to be valid are deleted, ensure that the indexes defined for the dependent and
parent tables are valid. If data in either index is invalid, the CHECK DATA utility might indicate
referential constraint violations, even though there are none. Indexes can be checked for validity using
the CHECK INDEX utility (discussed in the next section).
Also, ensure that the parent table contains all expected data. If rows are missing because of improper
deletions or partial loads, CHECK DATA will delete the foreign key rows as well (if DELETE YES was
specified).

Consider Checking at the Partition Level
CHECK DATA can be executed at the partition level. Choosing to check at the partition level provides
the following benefits:

 Pinpoint integrity checking can be performed. If the user has a good idea which
partition has a data integrity problem, CHECK DATA can be run on that partition only.

 A regularly scheduled CHECK DATA pattern can be established, whereby a single
partition is checked daily (or weekly). This establishes a data-integrity checking
process that eventually checks the entire table, but not so frequently as to cause
availability problems.

Rerun CHECK DATA After an Abend
The CHECK DATA utility cannot be restarted. If it abends during execution, determine the cause of the
abend, terminate the utility, and rerun it. Common causes for CHECK DATA abends are lockout
conditions due to concurrent data access and changes to the table being checked (for example, new
columns), without corresponding changes to the exception table.

The CHECK LOB Option
The CHECK LOB utility is used to verify the accuracy and integrity of data in auxiliary tablespaces for
LOB columns. It can be used to detect structural defects in the LOB tablespace and invalid LOB values.
After successfully running CHECK LOB, all CHECK PENDING (CHKP) and auxiliary warning (AUXW)
statuses will be reset. If exceptions are encountered, CHECK LOB will report on those exceptions only.
CHECK LOB cannot be used to fix the exceptions it finds.
The JCL in Listing 29.3 can be used to check data in a DB2 sample auxiliary table that contains LOB
columns.

Listing 29.3: CHECK LOB JCL

//DB2JOBU JOB (UTILITY),'DB2 CHECK LOB',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

 - 637 -

//*

//**

//*

//* DB2 CHECK LOB UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='CHECKLOB',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SORTOUT DD DSN=&&SORTOUT,

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.SYSERR DD DSN=&&SYSERR,

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(5,1))

//DSNUPROC.UTPRINT DD SYSOUT=X

//DSNUPROC.SYSIN DD *

 CHECK LOB TABLESPACE DSN8D61L.DSN8S61M

 EXCEPTIONS 0

/*

//

CHECK LOB Phases
The following are the five phases of the CHECK LOB utility:
UTILINIT Sets up and initializes the CHECK LOB utility
CHECKLOB Scans all active pages of the LOB tablespace
SORT Sorts the records from the CHECKLOB phase; reports four times

the number of rows sorted
REPRTLOB Examines records that are produced by the CHECKLOB phase

 - 638 -

and sorted by the SORT phase, and issues error messages
UTILTERM Performs the final utility cleanup

CHECK LOB Locking Considerations
Any operation or other online utility that attempts to update the same LOB tablespace cannot be run at
the same time as CHECK LOB.
CHECK LOB will drain write claim classes for both the LOB tablespace and the auxiliary table index
being processed.
The EXCEPTIONS Parameter
The EXCEPTIONS parameter is used to specify the maximum number of exceptions, which are
reported by messages only. If the maximum number of exceptions is exceeded, CHECK LOB will
terminate in the CHECKLOB phase.
Specifying EXCEPTIONS 0 indicates that no limit is to be applied to the number of exceptions.

Note If the EXCEPTIONS parameter is not specified, CHECK LOB will use
EXCEPTIONS 0 as the default.

The CHECK INDEX Option
The CHECK INDEX option of the CHECK utility checks for the consistency of index data and its
corresponding table data. This option identifies and reports RID pointer errors for missing index keys
and index key mismatches. CHECK INDEX does not correct invalid index entries; it merely identifies
them for future correction.
CHECK INDEX can run against an entire index or a single index partition. CHECK INDEX can identify
three problems:

 No corresponding row in the table for a given index entry.
 No index entry for a valid table row.
 The data in the indexed columns for the table does not match the corresponding index

key for a given matching RID.
Additionally, when checking an auxiliary table index, CHECK INDEX verifies that each LOB is
represented by an index entry, and that an index entry exists for every LOB.
To correct errors reported by CHECK INDEX, the user can execute the REBUILD INDEX utility to
rebuild the index based on the current table data. Alternately, the RECOVER INDEX utility can be used
to apply an index image copy. If the RECOVER option is chosen, care must be taken to ensure that the
recovery results in an index that matches the current state of the data. In general, REBUILD is a better
option than RECOVER for fixing index errors.
When mismatch-type errors occur, however, a data analyst who is experienced with the application that
contains the problem table or index should research the cause of the anomaly. The predominant causes
of invalid indexes are the uncontrolled use of the DSN1COPY utility and the partial recovery of
application tables or indexes.
The JCL to execute the CHECK INDEX utility is shown in Listing 29.4.

Listing 29.4: CHECK INDEX JCL

//DB2JOBU JOB (UTILITY),'DB2 CHECK INDEX',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 CHECK INDEX UTILITY

//*

//**

//*

 - 639 -

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='CHEKINDX',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The first CHECK INDEX statement checks all indexes

//* for the named tablespace.

//* The next two CHECK INDEX statements check only the

//* specifically named indexes.

//*

//DSNUPROC.SYSIN DD *

 CHECK INDEX(ALL) TABLESPACE DSN8D61A.DSN8S61D

 CHECK INDEX (DSN8610.XACT1)

 CHECK INDEX (DSN8610.XACT2)

/*

//

CHECK INDEX Phases
There are five phases of the CHECK INDEX utility:
UTILINIT Sets up and initializes the CHECK INDEX utility
UNLOAD Unloads index entries to the SYSUT1 DD
SORT Sorts the unloaded index entries using SORTOUT DD
CHECKIDX Scans the table to validate the sorted index entries against the table

data
UTILTERM Performs the final utility cleanup

Estimating CHECK INDEX Work Data Set Sizes
The CHECK INDEX utility requires work data sets to accomplish index checking. The following formulas
help you estimate the sizes for the work data sets required by the CHECK INDEX utility. These

 - 640 -

calculations provide estimated sizes only. More complex and precise calculations can be found in the
DB2 Utility Guide and Reference manual, but these formulas should produce comparable results:
SYSUT1 = (size of the largest index + 13) x (total number of rows in largest index to be checked)
SORTWKxx = (size of SYSUT1) x 2

After calculating the estimated size, in bytes, for each work data set, convert the number into cylinders,
rounding up to the next whole cylinder. Allocating work data sets in cylinder increments enhances the
utility's performance. This is true for all utilities.
CHECK INDEX Locking Considerations
The CHECK INDEX utility can run concurrently with all utilities except the following:

 CHECK DATA
 LOAD
 REBUILD INDEX
 RECOVER INDEX
 REORG INDEX
 REORG TABLESPACE UNLOAD CONTINUE
 REORG TABLESPACE UNLOAD PAUSE
 REPAIR REPLACE
 REPAIR DELETE

CHECK INDEX will drain write claim classes for both the index or index partition (including a logical
partition of a type 2 index) and the tablespace being processed.
CHECK INDEX Guidelines
The following tips and techniques will prove useful when you implement the CHECK INDEX utility at
your shop.
Run CHECK INDEX Only When Needed
Inconsistencies in DB2 indexes are rare in adequately controlled and administered environments. For
this reason, do not regularly schedule the execution of the CHECK INDEX utility for the production
indexes in your shop. It usually wastes processing time and increases an application's batch window.
The CHECK INDEX utility should be run only when inconsistent data is observed or when an
uncontrolled environment allows (or permits) the liberal use of DSN1COPY or partial recovery.

Note Consider running CHECK INDEX for an entire DB2 subsystem prior to a
migration. If a corrupt index exists, you can correct it prior to the migration.

Use CHECK INDEX After Potentially Dangerous Operations
Execute CHECK INDEX after a conditional restart or a partial application recovery.
Use CHECK INDEX on the DB2 Catalog When Necessary
CHECK INDEX can be used to check DB2 Catalog and DB2 Directory indexes.

Check Indexes at the Partition Level When Possible
CHECK INDEX can be run at the partition level (unless you are using a release of DB2 prior to V3).
Pinpoint integrity checking can be performed if the user knows which index partition has corrupted
entries. Running CHECK INDEX on that partition only can save processing time.
Rerun CHECK INDEX After an Abend
The CHECK INDEX utility cannot be restarted. If it abends during execution, determine the cause of the
abend, terminate the utility, and rerun. The most common cause for CHECK INDEX failure is a timeout
because the index is locked out by another user.
Buffer CHECK INDEX Work Data Sets Appropriately
Ensure that adequate data set buffering is specified for the work data sets. The BUFNO parameter can
be used on the DCB information of JCL DD statements to change buffering. The BUFNO parameter
creates read and write buffers in main storage for this data set, thereby enhancing the performance of
the utility.
In DB2 V3, the DCB=BUFNO default was 8. For DB2 V4 and later, the DCB=BUFNO default is 20.
Ensure that sufficient memory (real or expanded) is available, however, before increasing the BUFNO
specification for your CHECK INDEX work data sets.

The REPAIR Utility
The REPAIR utility is designed to modify DB2 data and associated data structures when there is an
error or problem.
You can use the REPAIR utility to perform the following tasks:

 Test DBD definitions
 Repair DBDs by synchronizing DB2 Catalog database information with the DB2

Directory DBD definition

 - 641 -

 Reset a pending status on a tablespace or index
 Verify the contents of data areas in tablespaces and indexes
 Replace the contents of data areas in tablespaces and indexes (using a zap)
 Delete a single row from a tablespace
 Produce a hexadecimal dump of an area in a tablespace or index
 Delete an entire LOB from a LOB tablespace
 Dump LOB pages
 Rebuild OBDs for a LOB tablespace

REPAIR Phases
The REPAIR utility has three phases, regardless of which type of REPAIR is run. These phases are as
follows:
UTILINIT Sets up and initializes the REPAIR utility
REPAIR Locates and repairs the data or resets the appropriate pending

flag
UTILTERM Performs the final utility cleanup

The REPAIR DBD Option
The REPAIR utility can be used to test, maintain, and modify DB2 database information. DB2 maintains
database information in the DB2 Catalog SYSIBM.SYSDATABASE table. An object known as a DBD is
also maintained in the DB2 Directory in the SYSIBM.DBD01 "table." You can use the REPAIR option
with the DBD specification to perform the following functions:

 Test the definition of a DB2 database by comparing information in the DB2 Catalog to
information in the DB2 Directory.

 Diagnose database synchronization problems and report differences between the DB2
Catalog information and the DBD stored in the DB2 Directory.

 Rebuild a DBD definition in the DB2 Directory based on the information in the DB2
Catalog.

 Drop an invalid database (if the SQL DROP statement cannot be used because of
database inconsistencies). REPAIR DBD can remove the DBD from the DB2 Directory
and delete all corresponding rows from the appropriate DB2 Catalog tables.

Listing 29.5 contains sample JCL to REPAIR the DBD for the DSN8D51A sample database.
Listing 29.5: REPAIR DBD JCL

//DB2JOBU JOB (UTILITY),'DB2 REPAIR DBD',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REPAIR UTILITY : : DBD REPAIR

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REPRDBD',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

 - 642 -

//* The first REPAIR statement builds a DBD based on

//* the DB2 Catalog and compares it to the corresponding

//* DBD in the DB2 Directory.

//* The second REPAIR statement reports inconsistencies,

//* if any exist.

//*

//DSNUPROC.SYSIN DD *

 REPAIR DBD TEST DATABASE DSN8D61A

 REPAIR DBD DIAGNOSE DATABASE DSN8D61A OUTDDN SYSREC

/*

//

REPAIR DBD Guidelines
The following guidelines provide useful techniques for running the REPAIR DBD utility.

Log All Repairs
Run the REPAIR utility with the LOG YES option. This ensures that all data changes are logged to DB2
and are therefore recoverable.
Consult IBM Before Using DROP or REBUILD
Do not issue the REPAIR DBD utility with the DROP or REBUILD option without consulting your IBM
Support Center. These options can be dangerous if used improperly.
Use TEST and DIAGNOSE for Error Resolution
When databases, or their subordinate objects, exhibit peculiar behavior, consider executing REPAIR
DBD with the TEST option. If this run returns a condition code other than 0, run REPAIR DBD with the
DIAGNOSE option and consult your IBM Support Center for additional guidance.
You should also consider implementing a regularly scheduled REPAIR DBD run to consistently check
for problems.

The REPAIR LOCATE Option
The LOCATE option of the REPAIR utility zaps DB2 data. The term zap refers to the physical
modification of data at specific address locations. This form of the REPAIR utility can be used to
perform the following functions:

 Delete an entire row from a tablespace
 Replace data at specific locations in a tablespace or index
 Reset broken tablespace page bits

The REPAIR LOCATE utility functions similarly to the IBM AMASPZAP utility. By specifying page
locations and offsets, specific RIDs, or key data, you can use the REPAIR utility to alter the data stored
at the specified location. Although it generally is not recommended and is not easy, the REPAIR
LOCATE utility can sometimes be of considerable help in resolving errors difficult to correct by normal
means (that is, using SQL).
The sample JCL provided in Listing 29.6 depicts the REPAIR LOCATE JCL necessary to modify the
data on the third page of the fourth partition at offset 50 for the sample tablespace
DSN8D61A.DSN8S61E.

Listing 29.6: REPAIR LOCATE JCL

 - 643 -

//DB2JOBU JOB (UTILITY),'DB2 REPAIR LOCATE',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REPAIR UTILITY : : LOCATE AND MODIFY DATA

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REPRLOCT',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The REPAIR statement modifies the data on the third

//* page at offset X'0080' from the value 'SP' to the

//* value 'ST'. This update happens only if that location

//* contains 'SP'. Additionally, the two characters are

//* dumped to ensure that the modification is correct.

//*

//DSNUPROC.SYSIN DD *

 REPAIR OBJECT

 LOCATE TABLESPACE DSN8D61A.DSN8S61D PAGE X'03'

 VERIFY OFFSET X'0080' DATA 'SP'

 REPLACE OFFSET X'0080' DATA 'ST'

 DUMP OFFSET X'0080' LENGTH 2

/*

//

REPAIR LOCATE Locking Considerations
The REPAIR LOCATE utility with the DUMP option takes an S-lock on the tablespace and an index, if
available, during the REPAIR phase. The REPAIR LOCATE utility with the REPLACE option takes a
SIX-lock on the tablespace and any related indexes during the REPAIR phase.

 - 644 -

REPAIR LOCATE Guidelines
Follow the guidelines suggested in this section when implementing and executing the REPAIR
LOCATE utility.

Log All Repairs
Run the REPAIR utility with the LOG YES option. This ensures that all data changes are logged to DB2
and are therefore recoverable.

Ensure That Adequate Recovery Is Available
Create a backup copy of any tablespace to be operated on by the REPAIR utility when the intent is to
modify data. To make a backup, use the COPY utility or the DSN1COPY service aid utility.
Avoid SVC Dumps When Using REPAIR

When determining the location and values of data to be repaired, use a dump produced only by one of
the following methods:

 REPAIR with the DUMP option
 DSN1COPY service aid utility
 DSN1PRNT service aid utility

Do not use an SVC dump, because the information contained therein might not accurately depict the
DB2 data as it exists on DASD.
Use VERIFY with REPLACE
When replacing data in a DB2 tablespace, code the VERIFY option, which ensures that the value of the
data being changed is as expected. If the value does not match the VERIFY specification, subsequent
REPLACE specifications will not occur. This provides the highest degree of safety when executing the
REPAIR utility and also maintains data integrity.
Use REPAIR LOCATE with Caution
REPAIR LOCATE should be used only by a knowledgeable systems programmer or DBA. Familiarity
with the MVS utility program AMASPZAP is helpful.
Do Not Use REPAIR on the DB2 Catalog and DB2 Directory
REPAIR LOCATE can be used to modify the DB2 Catalog and DB2 Directory data sets. However,
these data sets have a special format and should be modified with great care. It is recommended that
REPAIR never be run on these data sets. If you do not heed this warning, be sure to consult the DB2
Diagnosis Guide and Reference for the physical format of these data sets before proceeding.

Repair the "Broken" Page Bit When Necessary
Sometimes DB2 erroneously sets the "broken" page bit. If you determine that the page is correct after
examining the contents using dumps and the REPAIR utility, you can invoke REPAIR LOCATE with the
RESET option to reset the "broken" page bit. However, be absolutely sure that the page in question is
accurate before modifying this bit.
Grant REPAIR Authority Judiciously
Remember that REPAIR authority must be granted before anyone can execute the REPAIR utility.
However, it is common for many shops to grant REPAIR authority to beginning users or production jobs
in order to reset pending flags. Because the REPAIR authority cannot be broken down into which option
is needed (that is DBD, LOCATE, or SET), blanket authority to execute any type of REPAIR is given
when REPAIR authority is granted. This could be dangerous if an uneducated user stumbles across the
ability to zap DB2 tablespace data.
Remember that REPAIR authority is implicit in the group-level DBCTRL, DBADM, SYSCTRL, and
SYSADM authorities.

The REPAIR SET Option
When the REPAIR utility is executed with the SET option, it can be used to reset copy pending, check
pending, and recover pending flags. Pending flags can be set at the partition level, as well as at the
tablespace level. For an in-depth discussion of the pending status flags, refer to the section titled "The
Pending States" in Chapter 35. In general, these flags are maintained by DB2 to indicate the status of
tablespaces and indexes. When DB2 turns on a flag for a tablespace or index, it indicates that the
object is in an indeterminate state.
When the copy pending flag is set, it indicates that the COPY utility must be used to back up the
tablespace or partition to ensure adequate recoverability. Copy pending status is set when unlogged
changes have been made to DB2 tablespaces, or when a reference to a full image copy is no longer
available in the DB2 Catalog.
The check pending flag indicates that the CHECK DATA utility should be run because data has been
inserted into a table containing a referential constraint without ensuring that the data conforms to the

 - 645 -

referential integrity. The auxiliary check pending flag indicates that there is a problem with a base table
reference to a LOB column in an auxiliary table.

The recover pending flag indicates that the tablespace or the index must be recovered because a utility
operating on that object has ended abnormally, possibly causing inconsistent or corrupted data.
The rebuild pending flag indicates that an index does not match the table data and needs to be rebuilt.
Sometimes, however, these flags are set by DB2 but the corresponding utility does not need to be run
because of other application factors. In this case, the REPAIR SET utility can be run to reset the
appropriate pending flag.
Listing 29.7 shows JCL that can be used to reset check pending, copy pending, and recover pending
restrictions for the sample tablespaces. It also contains a REPAIR statement to reset the recover
pending status for an index on one of the sample tables.

Listing 29.7: REPAIR SET JCL

//DB2JOBU JOB (UTILITY),'DB2 REPAIR SET',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REPAIR UTILITY : : RESET PENDING FLAGS

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REPRSETP',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first REPAIR statement resets the copy pending

//* status for the named tablespace.

//* 2. The second REPAIR statement resets the check pending

//* status for two tablespaces.

//* 3. The third REPAIR statement resets the recover pending

//* status for the named tablespace.

//* 4. The fourth and final REPAIR statement resets the

//* copy pending status for the named index.

//*

//DSNUPROC.SYSIN DD *

 REPAIR SET TABLESPACE DSN8D61A.DSN8S61E NOCOPYPEND

 - 646 -

 REPAIR SET TABLESPACE DSN8D61A.DSN8S61E NOCHECKPEND

 SET TABLESPACE DSN8D61A.DSN8S61C NOCHECKPEND

 REPAIR SET TABLESPACE DSN8D61A.DSN8S61R NORCVRPEND

 REPAIR SET INDEX DSN8610.XPROJAC1 NORCVRPEND

/*

//

REPAIR SET Guidelines
Use the following guidelines when deciding how to utilize REPAIR SET.
Favor the COPY Utility over REPAIR SET NOCOPYPEND
To reset the copy pending flag, it is almost always better to run the COPY utility to take a full-image
copy rather than use REPAIR. Exceptions to this advice follow:

 Data loaded from a stable source does not need to be copied if the source is
maintained. (The data can always be reloaded.) If the data is loaded with the LOG
NO option, run REPAIR to reset the check pending condition rather than create an
image copy that will never be used.

 When the MODIFY RECOVERY utility is run—deleting the last image copy for a
tablespace—DB2 sets the copy pending flag. If the image copy data set deleted
from the SYSIBM.SYSCOPY table is still available, however, recovery to that image
copy can be accomplished using the DSN1COPY service aid. This requires manual
intervention to recover a tablespace and is not recommended.

 Test data with a short life span often does not need to be copied because it can be
easily re-created. If the copy pending restriction is set for a table of this nature, it is
usually quicker to run REPAIR than to create an image copy.

Favor the CHECK DATA Utility over REPAIR SET NOCHECKPEND
To reset the check pending flag, it is almost always better to run the CHECK DATA utility to enforce
referential constraints rather than use REPAIR. Exceptions to this advice follow:

 If referential constraint violations are checked by an application program later in a job
stream, the REPAIR utility can be run to reset the copy pending restriction. This
allows the subsequent deletion of referential constraint violations by the application
program. However, the DB2 CHECK DATA utility generally is infallible, and
application programs are not, so this scenario should be avoided unless you are
retrofitting referential integrity into a system that already exists without it.

 If check pending has been set for a tablespace containing a table that will have data
loaded into it using the LOAD utility (with the REPLACE and ENFORCE
CONSTRAINTS options) before data will be accessed, the CHECK DATA utility can
be bypassed because the LOAD utility enforces the referential constraints.

Favor the RECOVER Utility over REPAIR SET NORCVRPEND
To reset the recover pending flag, it is almost always better to run the RECOVER utility to recover a
DB2 tablespace or index to a time or state rather than use REPAIR.
There is only one situation contrary to this advice. When the LOAD utility abnormally terminates, the
recover pending flag is set, and running LOAD REPLACE rather than RECOVER is appropriate. It is
never advisable to set the recover pending flag using REPAIR unless the data is not critical and can be
lost without dire consequences.
Use LEVELID to Use a Down-Level Data Set
The LEVELID parameter sets the level identifier of the named tablespace or partition to a new identifier.
You cannot use LEVELID with an open tablespace or partition, a tablespace or partition with
outstanding indoubt log records, or pages in the logical page list (LPL).

Caution Actions affecting a down-level data set might cause data integrity and
accuracy problems. Use this option at your own risk because IBM will take no
responsibility for data problems resulting from the use of down-level data sets.

 - 647 -

The REPORT Utility
Two types of reports can be generated with the REPORT utility. The first is a tablespace set
report showing the names of all tablespaces and tables tied together by referential integrity.
This type of report is described in the next section. The second type deals with recovery and
is discussed in Chapter 30.

The REPORT TABLESPACESET Option
The REPORT TABLESPACESET utility generates a report detailing all tables and tablespaces in a
referential tablespace set. As you can see in the sample JCL in Listing 29.8, the input to the utility is a
single tablespace. The output is a report of all related tablespaces and tables.

Listing 29.8: REPORT TABLESPACESET JCL

//DB2JOBU JOB (UTILITY),'DB2 REPORT TS',MSGCLASS=X,

// NOTIFY=DB2JOBU,USER=DB2JOBU

//*

//**

//*

//* DB2 REPORT TABLESPACESET UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REPORTTS',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The REPORT statement generates a report of all objects

//* referentially tied to the named tablespace

//*

//DSNUPROC.SYSIN DD *

 REPORT TABLESPACESET TABLESPACE DSN8D61A.DSN8S61D

/*

//

REPORT TABLESPACESET Guidelines
Use the following tips and techniques when running the REPORT TABLESPACESET utility.
Use REPORT TABLESPACESET Reports for Documentation
The REPORT TABLESPACESET utility is particularly useful for monitoring DB2 objects that are
referentially related. DB2 Catalog reports such as those described in Chapter 24, "DB2 Object

 - 648 -

Monitoring Using the DB2 Catalog," are also useful but are difficult to structure so that a complete
tablespace set is returned given a tablespace anywhere in the set.
Rerun the REPORT Utility After Resolving Abends
Run the REPORT TABLESPACESET utility for every tablespace added to the production DB2
subsystem. Additionally, if referential constraints are added to current application tables, run the
REPORT TABLESPACESET utility on their corresponding tablespaces immediately after their
implementation. Store these reports as documentation for reference.
Periodically run the REPORT TABLESPACESET utility for tablespaces that DB2 Catalog queries
identify as containing tables defined with referential constraints. Ensure that the QUIESCE utility, when
executed against these tablespaces, is coded to quiesce all tablespaces identified by the report—as
well as any other tablespace that is logically related to any tablespace in the tablespace set (such as
programmatic referential integrity).
If the REPORT utility abends, terminate the utility, if necessary, and rerun it.

The DIAGNOSE Utility
The DIAGNOSE utility is an online utility that can be used to diagnose problems, especially
problems with other DB2 utilities. Sample JCL is provided in Listing 29.9.

Listing 29.9: DIAGNOSE JCL

//DB2JOBU JOB (UTILITY),'DB2 DIAGNOSE',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 DIAGNOSE UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='DIAGNOSE',UTPROC=''

//*

//* Display all records in the SYSIBM.SYSUTIL DB2 Directory table

//*

//DSNUPROC.SYSIN DD *

 DIAGNOSE DISPLAY SYSUTIL

/*

//

 - 649 -

The DIAGNOSE utility can be used to force dumps for utility abends and format
SYSIBM.SYSUTILX information for printing. It should be used only under instructions
and supervision from an IBM Support Center.

Summary
The utilities in this chapter help you keep the data in your DB2 tables consistent. But what if a hardware
error occurs? Or an abend? The next chapter prepares you for these situations by discussing utilities
that back up and recover your data.

Chapter 30: Backup and Recovery Utilities

Overview
The backup and recovery utilities supplied with DB2 are wonderfully complex. They remove
much of the burden of database recovery from the DBA or analyst and place it where it
belongs: squarely on the shoulders of the DBMS.

Ten forms of backup and recovery are provided by six DB2 utilities. The nine forms (and the
associated DB2 utility for each) are as follows:

 Backup of all data in a tablespace, partition, or index (COPY utility)
 Incremental backup of tablespace data (COPY utility)
 Analyze a tablespace to determine if a full or incremental backup is required

(COPY utility)
 Merging of incremental copies (MERGECOPY utility)
 Full recovery of tablespace or index data based on the image copy and the log

data (RECOVER utility)
 Restoration of a tablespace or index to an image copy or point in time, referred to

hereafter as a partial recovery (RECOVER utility)
 Re-creation of DB2 indexes from tablespace data (REBUILD utility)
 Recording of a point of consistency for a tablespace or a set of tablespaces

(QUIESCE utility)
 Repair of damaged data (REPAIR utility)
 Reporting of currently available recovery data (REPORT RECOVERY utility)

The COPY Utility
The COPY utility is used to create an image copy backup data set for a complete tablespace, a single
partition of a tablespace, or a complete indexspace. It can be executed so that a full image copy or an
incremental image copy is created. A full image copy is a complete copy of all the data stored in the
tablespace, tablespace partition, or index being copied. An incremental image copy is a copy of only the
tablespace pages that have been modified due to inserts, updates, or deletes since the last full or
incremental image copy.

Caution For indexes, only full image copies can be created. Incremental image copies
are not permitted for indexes.

The COPY utility utilizes the SYSIBM.SYSCOPY table to maintain a catalog of image copies. Every
successful execution of the COPY utility places in this table at least one new row that indicates the
status of the image copy. Information stored in the table includes the image copy data set name, the
date and time of the COPY, the log RBA at the time of the copy, and the volume serial numbers for
uncataloged image copy data sets. This information is read by the RECOVER utility to enable
automated tablespace and index recovery.
The JCL in Listing 30.1 depicts a full image copy for a DB2 tablespace; the JCL in Listing 30.2 is an
incremental image copy. The full image copy takes dual copies, whereas the incremental takes only a
single image copy data set.

Listing 30.1: Image Copy JCL

//DB2JOBU JOB (UTILITY),'FULL IMAGE COPY',CLASS=X,MSGCLASS=X,

// NOTIFY=USER

 - 650 -

//*

//**

//*

//* DB2 COPY UTILITY::FULL COPY

//*

//**

//*

//COPY EXEC DSNUPROC,SYSTEM=DSN,UID='FULLCOPY',UTPROC=''

//*

//DSNUPROC.COPY1 DD DSN=CAT.FULLCOPY.SEQ.DATASET1(+1),

// DISP=(MOD,CATLG),DCB=SYS1.MODEL,

// SPACE=(CYL,(5,2),RLSE),UNIT=3390

//DSNUPROC.COPY2 DD DSN=CAT.FULLCOPY.SEQ.DATASET2(+1),

// DISP=(MOD,CATLG),DCB=SYS1.MODEL,

// SPACE=(CYL,(5,2),RLSE),UNIT=3390

//DSNUPROC.SYSIN DD *

 COPY TABLESPACE DSN8D61A.DSN8S61D

 COPYDDN (COPY1, COPY2)

 SHRLEVEL REFERENCE

 DSNUM ALL FULL YES

/*

//

Listing 30.2: Incremental Image Copy JCL

//DB2JOBU JOB (UTILITY),'INCREMENTAL COPY',CLASS=X,MSGCLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 COPY UTILITY :: INCREMENTAL COPY

 - 651 -

//*

//**

//*

//COPY EXEC DSNUPROC,SYSTEM=DSN,UID='INCRCOPY',UTPROC=''

//*

//DSNUPROC.SYSCOPY DD DSN=CAT.INCRCOPY.SEQ.DATASET(+1),

// DISP=(MOD,CATLG),DCB=SYS1.MODEL,

// SPACE=(CYL,(2,2),RLSE),UNIT=3380

//DSNUPROC.SYSIN DD *

 COPY TABLESPACE DSN8D61A.DSN8S61D SHRLEVEL REFERENCE

 DSNUM ALL FULL NO

/*

//

Listing 30.3 provides sample JCL for taking a full image copy of an index. There are two options that
can be used to specify an index in the COPY SYSIN—the INDEX name or the INDEXSPACE name.
The INDEX name option requires specifying the index as creator.index-name; the INDEXSPACE
option requires specifying it as database.indexspace-name. Favor using the INDEXSPACE option
over the INDEX name. When using the INDEX option, DB2 has to resolve the indexspace name from
the index name. If you specify the indexspace name using the INDEXSPACE option, DB2 will already
have the indexspace name.

Listing 30.3: Index Copy JCL

//DB2JOBU JOB (UTILITY),INDEX COPY',CLASS=X,MSGCLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 COPY UTILITY :: INDEX COPY

//*

//**

//*

//COPY EXEC DSNUPROC,SYSTEM=DSN,UID='INDXCOPY',UTPROC=''

//*

 - 652 -

//DSNUPROC.SYSCOPY DD DSN=CAT.INDXCOPY.SEQ.DATASET(+1),

// DISP=(MOD,CATLG),DCB=(SYS1.MODEL,BUFNO=20),

// SPACE=(CYL,(1,1),RLSE),UNIT=3390

//DSNUPROC.SYSIN DD *

 COPY INDEXSPACE DSN8D61A.XPROJ1

 SHRLEVEL REFERENCE

/*

//

COPY Phases
The COPY utility has three phases:
UTILINIT Sets up and initializes the COPY utility
REPORT Reporting for the CHANGELIMIT option
COPY Copies the tablespace or index data to the sequential file

specified in the SYSCOPY DD statement
UTILTERM Performs the final utility cleanup

Calculating SYSCOPY Data Set Size
To create a valid image copy, the COPY utility requires that the SYSCOPY data set be allocated. The
following formula calculates the proper size for this data set:
SYSCOPY = (number of formatted pages) x 4096

Note For segmented tablespaces, empty formatted pages are not copied. This will
reduce the size of the backup data set.

If the tablespace being copied uses 32KB pages, multiply the result of the preceding calculation by 8.
The total number of pages used by a tablespace can be retrieved from the VSAM LISTCAT command
or from the DB2 Catalog as specified in the NACTIVEF column in SYSIBM.SYSTABLESPACE. When
copying a single partition, use the NACTIVE column in SYSIBM.SYSTABSTATS to estimate the
backup size.
If you use the DB2 Catalog statistics, ensure that the statistics are current by running the RUNSTATS
utility (discussed in Chapter 32, "Catalog Manipulation Utilities").

After calculating the estimated size in bytes for this data set, convert the number to cylinders, rounding
up to the next whole cylinder. Allocating data sets used by DB2 utilities in cylinder increments enhances
the utility's performance.
COPY Locking Considerations
Copies running against the different partitions of the same tablespace can run concurrently. Many other
utilities can run concurrently with COPY as well.
COPY TABLESPACE (whether SHRLEVEL REFERENCE or SHRLEVEL CHANGE) can run
concurrently with the following utilities (each accessing the same object):

 CHECK INDEX
 CHECK LOB
 COPY INDEXSPACE
 DIAGNOSE
 REBUILD INDEX
 RECOVER INDEX
 REORG INDEX
 REORG UNLOAD ONLY or UNLOAD EXTERNAL
 REPAIR LOCATE (DUMP or VERIFY)
 REPORT
 RUNSTATS

 - 653 -

 STOSPACE
Furthermore, COPY TABLESPACE utility can run concurrently with REPAIR LOCATE INDEX (PAGE
REPLACE) and QUIESCE, but only when run specifying SHRLEVEL REFERENCE.
COPY INDEXSPACE (whether SHRLEVEL REFERENCE or SHRLEVEL CHANGE) can run
concurrently with the following utilities (each accessing the same object):

 CHECK DATA
 CHECK INDEX
 CHECK LOB
 COPY TABLESPACE
 DIAGNOSE
 RECOVER TABLESPACE
 REORG UNLOAD ONLY or UNLOAD EXTERNAL
 REPAIR LOCATE (DUMP or VERIFY)
 REPAIR LOCATE TABLESPACE (PAGE REPLACE)
 REPORT
 RUNSTATS
 STOSPACE

Furthermore, COPY INDEXSPACE utility can run concurrently with QUIESCE, but only when run
specifying SHRLEVEL REFERENCE.
The COPY utility with the SHRLEVEL REFERENCE option drains the write claim class for the
tablespace, partition, or index. This enables concurrent SQL read access. When SHRLEVEL CHANGE
is specified, the COPY utility will claim the read claim class. Concurrent read and write access is
permitted with one exception. A DELETE with no WHERE clause is not permitted on a table in a
segmented tablespace while COPY SHRLEVEL CHANGE is running.
COPY Guidelines
You can use the following tips and techniques to ensure that the COPY utility is used effectively at your
organization.

Increase Performance Using Inline Copies
As of DB2 V5, the LOAD and REORG utilities can take inline image copies during regular utility
processing. By taking advantage of this capability, overall performance is enhanced because fewer
scans of the data are required to produce the image copy data sets.

Balance the Use of Incremental and Full Image Copies

For most application tablespaces, favor the creation of full image copies over incremental image copies.
The time saved by incremental copying is often minimal, but the additional work to recover using
incremental copies is usually burdensome.

To reduce the batch processing window, use incremental image copies for very large tablespaces that
incur only a small number of modifications between image copy runs. However, base the decision to
use incremental image copies rather than full image copies on the percentage of tablespace pages that
have been modified, not on the number of rows that have been modified. The image copy utility reports
on the percentage of pages modified, so you can monitor this number. Consider using incremental
image copies if this number is consistently small (for example, less than 20 percent).

You should consider incremental copying as the tablespace becomes larger and the batch window
becomes smaller.

Take Full Image Copies to Encourage Sequential Prefetch

Remember that DB2 utilities requiring sequential data access use sequential prefetch, thereby
enhancing utility performance. Thus, full image copies are often quicker than incremental image copies.
A full image copy sequentially reads every page to create the image copy. An incremental image copy
must check page bits to determine whether data has changed, and then access only the changed
pages.
When incremental image copying does not use sequential prefetch, full image copying can be more
efficient. Extra time is used because of the additional MERGECOPY step and the inefficient processing
(that is, nonsequential prefetch). Compare the performance of incremental and full image copies before
deciding to use incremental image copies.

 - 654 -

Take Full Image Copies for Active and Smaller Tablespaces
Take full image copies for tablespaces in which 40 percent or more of the pages are modified between
executions of the COPY utility.

Always take full image copies of tablespaces that contain less than 50,000 pages.
Specify SHRLEVEL REFERENCE to Reduce Recovery Time
COPY specifying SHRLEVEL REFERENCE rather than SHRLEVEL CHANGE. This reduces the time
for tablespace recovery. See the section titled "The RECOVER TABLESPACE Utility" later in this
chapter.
Running COPY with SHRLEVEL CHANGE can cause uncommitted data to be recorded on the copy.
For this reason, recovering to a SHRLEVEL CHANGE copy using the TOCOPY option is not
recommended.
An additional reason to avoid SHRLEVEL CHANGE is the impact on the performance of the COPY
utility. Because other users can access the tablespace being copied, the performance of the COPY
could degrade because of concurrent access. Note, however, that SHRLEVEL REFERENCE has only a
performance advantage—not an integrity advantage—over SHRLEVEL CHANGE.
Code JCL Changes to Make COPY Restartable
To make the COPY utility restartable, specify the SYSCOPY DD statement as
DISP=(MOD,CATLG,CATLG). When restarting the COPY utility, change the data set disposition to
DISP=(MOD,KEEP,KEEP).

Create a Consistent Recovery Point
QUIESCE all tablespaces in the tablespace set before copying. Do this even when some tablespaces
do not need to be copied so you can provide a consistent point of recovery for all referentially tied
tablespaces. Create a batch job stream that accomplishes the following steps:

1. START all tablespaces in the tablespace set using ACCESS(UT) or
ACCESS(RO). Starting the tablespaces in RO mode enables concurrent read
access while the COPY is running.

2. QUIESCE all tablespaces in the tablespace set.
3. Execute the COPY utility for all tablespaces to be copied.
4. START all tablespaces in the tablespace set using ACCESS(RW).

Note The consistent backup created by this series of steps is ideal for populating a test
environment (using DSN1COPY).

Consider Creating DASD Image Copies
When possible, use DASD rather than tape for the image copy SYSCOPY data sets that will remain at
the local site for recovery. This speeds the COPY process; DASD is faster than tape, and you eliminate
the time it takes the operator (or the automated robot tape loader) to load a new tape on the tape drive.

Consider Copying Indexes
Prior to DB2 V6 you could not make image copies of indexes. Instead, in a recovery situation, indexes
had to be rebuilt after recovering the associated tablespace data. The REBUILD process can take a
long time to complete for large amounts of data or when multiple indexes exist.
As of V6, you can take a full image copy or a concurrent copy of an index. Instead of rebuilding indexes
during recovery, you use the RECOVER utility to restore the image copy and apply log records.

Note You must specify the COPY YES parameter when creating an index to be able to
use the COPY utility to make image copy backups for the index. The default is
COPY NO. Existing indexes can be altered to specify the COPY YES parameter. If
the index is defined using COPY YES you can use both the REBUILD method or
the COPY and RECOVER method for index recovery.

The following utilities can place an index that was defined with the COPY YES attribute in the
informational COPY pending (ICOPY) status:

 LOAD TABLE (LOG YES or NO)
 REBUILD INDEX
 REORG INDEX
 REORG TABLESPACE (LOG YES or NO)

To remove the ICOPY status, create a full image copy of the index after running these utilities.

Synchronize Data and Index Copies
If you decide to use COPY and RECOVER for indexes, instead of rebuilding indexes after recovering
tablespaces, be sure to keep the data and index backups synchronized. When you COPY a tablespace,
be sure to also COPY any associated indexes defined with COPY YES.

 - 655 -

Buffer the SYSCOPY Data Set Appropriately
For large image copies set the BUFNO parameter in the JCL for the SYSCOPY DD statement to a
number greater than 20. The BUFNO parameter creates read and write buffers in main storage for the
data set, thereby enhancing the performance of the COPY utility. The default for BUFNO is 8 for DB2
V3 and 20 for DB2 V4.
Ensure that sufficient memory (real or expanded) is available, however, before increasing the BUFNO
specification for your SYSCOPY data sets.

Favor Dual Image Copies
Take dual image copies for every tablespace being copied to eliminate the possibility of an invalid
image copy due to an I/O error or damaged tape. As of DB2 V2.3, the COPY utility can do this
automatically. Prior to DB2 V2.3, only a single image copy can be taken by a single invocation of the
COPY utility. To create dual image copies with an older release of DB2, you have two choices:

 Run the COPY utility again, and incur all the expense associated with it
 Copy the image copy data set to an uncataloged data set of the same name using

IEBGENER or another utility that copies entire data sets

Prepare for disasters by sending additional image copies off-site.

Compress Image Copies

To conserve tapes, consider compressing image copies. Use the silo compression if it's available.
Additionally, many shops have third-party tools to compress data on tape cartridges.
Compressing image copy data sets not only saves tapes, but it can improve performance. If a backup
requires fewer tapes, fewer tape mounts will be required, which should reduce overall elapsed time. The
same can be said for the recovery process. If fewer tapes are required to RECOVER, elapsed time may
improve.
If your shop does not compress cartridges by default, add the following parameter to the DCB
specification for the SYSCOPY DD:
DCB=TRTCH=COMP

Consider Using DFSMS to Make Backup Copies

DFSMS can be utilized in the backup and recovery strategy for DB2 tablespaces and indexes. DB2
provides the capability to recover from backup copies of DB2 data sets taken using the concurrent copy
feature of DFSMS. To take viable copies using DB2 V3 and DFSMS, use the following strategy:

1. START all tablespaces to be backed up in read-only mode; ACCESS(RO).
2. QUIESCE the objects specifying the WRITE(YES) parameter.
3. Use DFSMS to copy the data sets for the tablespaces in question.
4. START the tablespaces in RW mode.

DB2 does not keep track of these copies in the DB2 Catalog.
As of DB2 V4, DFSMS can be invoked under the control of DB2 using the COPY utility. This greatly
enhances the ability to utilize DFSMS within the DB2 backup and recovery plan. DFSMS is invoked by
specifying the CONCURRENT parameter on the COPY utility. The image copy data sets created by the
COPY utility and DFSMS are stored in the DB2 Catalog (SYSIBM.SYSCOPY) with an ICTYPE of F and
an STYPE of C.

Note An output data set for DFSMS messages is required to be specified to the
DSSPRINT DD card when CONCURRENT copy is specified and the SYSPRINT DD
card is defined to a data set.

Caution You cannot use SHRLEVEL CHANGE with CONCURRENT COPY for tablespaces
having a 32KB page size.

Use CHANGELIMIT to Help with Copies
The CHANGELIMIT parameter can be specified on the COPY utility. When CHANGELIMIT is specified,
COPY analyzes the number of changed pages since the last copy.
CHANGELIMIT accepts one or two integers (from 0 to 100) as input. Each integer is a percentage. If
only one value is specified, an incremental image copy will be created if the percentage of changed
pages is greater than 0 and less than the specified value. A full image copy will be created if the
percentage of changed pages is greater than or equal to the specified percentage, or if
CHANGELIMIT(0) is specified. No image copy will be created if there were no changed pages, unless 0
was specified for the CHANGELIMIT.

 - 656 -

If two values are specified, an incremental image copy will be created if the percentage of changed
pages is greater than the lowest value specified and less than the highest value specified. A full image
copy will be created if the percentage of changed pages is equal to or greater than the highest value
specified. No image copy will be created if the percentage of changed pages is outside the range of the
low percentage and high percentage specified. If the two percentages happen to be the same, it will
follow the rules as if one value was specified, as stated previously.

Caution You cannot specify CHANGELIMIT when copying a tablespace or partition
defined as TRACKMOD NO.

When CHANGELIMIT is specified with COPY, return codes are set as indicated in Table 30.1.
Table 30.1: COPY / CHANGELIMIT Return Codes

Return Code Description
1 No CHANGELIMIT percentage is met; no image copy is

recommended or taken.
2 The percentage of changed pages is greater than the low

CHANGELIMIT value, but less than the high CHANGELIMIT
value; incremental copy is recommended or taken.

3 The percentage of changed pages is greater than or equal to the
high CHANGELIMIT value; full image copy is recommended or
taken.

8 The COPY step failed.

The information obtained can be used for two purposes:
 If REPORTONLY is specified, a report of the number of changed pages is produced.

Further action can be taken after reviewing the report or checking the return code in
the JCL.

 Without the REPORTONLY parameter, the COPY utility automatically decides
whether or not to take an image copy—if it does take an image copy, the COPY
utility determines if the image is to be incremental or full. Consider using the return
code to check the type of COPY that was created, and run a MERGECOPY step
only if the return code indicates an incremental copy was created.

The MERGECOPY Utility
The MERGECOPY utility combines multiple incremental image copy data sets into a new full or
incremental image copy data set. See Listing 30.4 for sample JCL. The first control card depicts the
merging of image copy data sets for the DSN8D61A.DSN8S61D tablespace into a full image copy. The
second control card shows statements that create a new incremental image copy data set for the
DSN8D61A.DSN8S61E tablespace.

Listing 30.4: MERGECOPY JCL

//DB2JOBU JOB (UTILITY), 'MERGECOPY',CLASS=X,MSGCLASS=X,NOTIFY=USER

//*

//**

//*

//* DB2 MERGECOPY UTILITY

//*

//**

//*

//COPY EXEC DSNUPROC,SYSTEM=DSN,UID='MERGCOPY',UTPROC=''

//*

 - 657 -

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SYSUT1 DD DSN=CAT.SYSUT1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(10,1)),DCB=BUFNO=20

//DSNUPROC.SYSCOPY1 DD DSN=CAT.FULLCOPY.SEQ.DATASETD(+1),

// DISP=(MOD,CATLG),DCB=(SYS1.MODEL, BUFNO=20),

// SPACE=(CYL,(5,1),RLSE),UNIT=TAPE

//DSNUPROC.SYSCOPY2 DD DSN=CAT.INCRCOPY.SEQ.DATASETE(+1),

// DISP=(MOD,CATLG),DCB=(SYS1.MODEL, BUFNO=20),

// SPACE=(CYL,(2,1),RLSE),UNIT=TAPE

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The first MERGECOPY statement creates a new full

//* image copy for the DSN8D61A.

//* The second statement creates a new incremental copy

//* for the named tablespace.

//*

//DSNUPROC.SYSIN DD *

 MERGECOPY TABLESPACE DSN8D61A.DSN8S61D

 DSNUM ALL NEWCOPY YES

 COPYDDN SYSCOPY1

 MERGECOPY TABLESPACE DSN8D61A.DSN8S61E

 DSNUM ALL NEWCOPY NO

 COPYDDN SYSCOPY2

/*

//

MERGECOPY Phases
The MERGECOPY utility runs in three phases:
UTILINIT Sets up and initializes the MERGECOPY utility.
MERGECOP Merges the full and incremental image copy data sets for the

indicated tablespace using the SYSUT1 DD data set for
temporary work space (if necessary), and then places the

 - 658 -

final merged copy in the data set specified by the SYSCOPY
DD statement.

UTILTERM Performs the final utility cleanup.

Estimating SYSUT1 and SYSCOPY Data Set Sizes
The MERGECOPY utility sometimes requires the use of the SYSUT1 work data set to merge image
copies. If it is impossible to simultaneously allocate all the data sets to be merged, SYSUT1 is used to
hold intermediate output from the merge. If enough tape drives are not available (to allocate the
incremental copy data sets) when MERGECOPY runs, be sure to allocate a SYSUT1 data set.
The SYSCOPY data set holds the final merged image copy data and must be specified. The space
required for this data set is the same as would be required for the SYSCOPY data set for the COPY
utility. A merged image copy and a full image copy should be functionally equivalent and therefore
should consume the same amount of space.
The following formula should be used to calculate an estimated size for this data set. This calculation is
only an estimate. More complex and precise calculations are in the DB2 Utility Guide and Reference
manual, but this formula should produce comparable results.
SYSUT1 = (size of the largest data set to be merged) x 1.5
SYSCOPY = (number of formatted pages) x 4096
If the tablespace being merged uses 32KB pages, multiply the result of the SYSCOPY calculation by 8.
The total number of pages used by a tablespace can be retrieved from either the VSAM LISTCAT
command or the DB2 Catalog as specified in the NACTIVE column of SYSIBM.SYSTABLESPACE. If
you are using the DB2 Catalog method, ensure that the statistics are current by running the RUNSTATS
utility (discussed in Chapter 24, "DB2 Object Monitoring Using the DB2 Catalog").

After calculating the estimated size for the data sets, convert the number into cylinders, rounding up to
the next whole cylinder. Allocating work data sets in cylinder increments enhances the utility's
performance.

Concurrency
Concurrent read and write activity can occur during execution of the MERGECOPY utility. The
MERGECOPY utility can run concurrently with any utility except the following:

 COPY
 MERGECOPY
 MODIFY RECOVERY
 RECOVER

MERGECOPY Guidelines
When running MERGECOPY, consider abiding by the following guidelines.

Merge Incremental Copies as Soon as Possible
Directly after the execution of an incremental COPY, run the MERGECOPY utility to create a new full
image copy. In this way, the resources to create a new full image copy are used at a non-critical time. If
you decide to avoid the creation of full image copies until there is an error, valuable time can be
consumed by processing that could have taken place at a less critical time.
Use MERGECOPY to Create Full Image Copies
Specify NEWCOPY YES to produce a new full image copy. NEWCOPY NO can be used to produce a
new incremental copy. Favor the creation of new full image copies rather than incremental copies
because less work must be performed to correct an error if full tablespace image copies exist.
Specify the SYSUT1 Data Set
Always specify a data set for SYSUT1 to avoid rerunning MERGECOPY. If SYSUT1 is not specified, the
MERGECOPY job might be unable to allocate all the data sets needed for the merge, thereby requiring
that MERGECOPY be run again. This must continue until all incremental copies have been merged into
a new image copy data set, either full or incremental.
If SYSUT1 is not specified, the output of the MERGECOPY utility indicates whether another merge must
be run. MERGECOPY produces a message indicating the number of existing data sets and the number
of merged data sets. If these numbers are not equal, rerun the MERGECOPY utility. Again, this can be
avoided by specifying a SYSUT1 data set.
Buffer the SYSCOPY Data Set Appropriately
For large image copies, set the BUFNO parameter in the JCL for the SYSCOPY DD statements to a
number greater than 20. The BUFNO parameter creates read and write buffers in main storage for the

 - 659 -

data set, thereby enhancing the performance of the COPY utility. The default for BUFNO is 8 for DB2
V3 and 20 for DB2 V4 and later versions.
Ensure that sufficient memory (real or expanded) is available, however, before increasing the BUFNO
specification for your SYSCOPY data sets.
Consider Buffering the SYSUT1 Data Set
Consider specifying a larger BUFNO for the SYSUT1 data set if you expect many incremental image
copies to be required. Remember that BUFNO=8 is the DB2 V3 default and BUFNO=20 is the default
for DB2 V4 and later releases.

The QUIESCE Utility
The QUIESCE utility is used to record a point of consistency for a tablespace, partition, tablespace set,
or list of tablespaces and tablespace sets. QUIESCE ensures that all tablespaces in the scope of the
QUIESCE are referentially intact. It does this by externalizing all data modifications to DASD and
recording log RBAs or LRSNs in the SYSIBM.SYSCOPY DB2 Catalog table, indicating a point of
consistency for future recovery. This is called a quiesce point. Running QUIESCE improves the
probability of a successful RECOVER or COPY.
QUIESCE inserts a row with ICTYPE='Q' into SYSIBM.SYSCOPY for each tablespace quiesced.
Additionally, QUIESCE inserts a row with ICTYPE='Q' into SYSIBM.SYSCOPY for any indexes (defined
with the COPY YES attribute) associated with the tablespace(s) being quiesced.
See the sections titled "The RECOVER Utility" and "The RECOVER TABLESPACE Utility" later in this
chapter for further information on recovering DB2 tablespaces.
Sample JCL for the QUIESCE utility is in Listing 30.5. This will quiesce all the tablespaces for the DB2
sample tables.

Listing 30.5: QUIESCE JCL

//DB2JOBU JOB (UTILITY),'QUIESCE',CLASS=X,MSGCLASS=X,NOTIFY=USER

//*

//**

//*

//* DB2 QUIESCE UTILITY

//*

//* Step 1: STARTUT: Start all tablespaces in the

//* tablespace set in utility-only mode.

//* Step 2: QUIESCE: Quiesce all tablespaces in the

//* tablespace set.

//* Step 3: STARTRW: Start all tablespaces in the

//* tablespace set in read/write mode.

//*

//**

//*

//STARTUT EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

 - 660 -

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

DSN SYSTEM (DSN)

-START DATABASE (DSN8D61A) ACCESS (UT)

END

/*

//QUIESCE EXEC DSNUPROC,SYSTEM=DSN,UID='QUIESCTS',UTPROC='',

// COND=(0,NE,STARTUT)

//DSNUPROC.SYSIN DD *

 QUIESCE TABLESPACE DSN8D61A.DSN8S61C

 TABLESPACE DSN8D61A.DSN8S61D

 TABLESPACE DSN8D61A.DSN8S61E

 TABLESPACE DSN8D61A.DSN8S61R

 TABLESPACE DSN8D61A.ACT

 TABLESPACE DSN8D61A.PROJ

 TABLESPACE DSN8D61A.PROJACT

 TABLESPACE DSN8D61A.EMPPROJA WRITE YES

/*

//STARTRW EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=EVEN

//STEPLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//*

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

DSN SYSTEM (DSN)

-START DATABASE (DSN8D61A) ACCESS (RW)

 - 661 -

END

/*

//

QUIESCE Phases
The QUIESCE utility has three phases:
UTILINIT Sets up and

initializes the
QUIESCE utility

QUIESCE Determines the
point of
consistency and
updates the
DB2 Catalog

UTILTERM Performs the
final utility
cleanup

QUIESCE Locking Considerations
The following utilities can run concurrently with QUIESCE:

 CHECK INDEX
 COPY SHRLEVEL REFERENCE
 DIAGNOSE
 MERGECOPY
 MODIFY
 REORG UNLOAD ONLY
 REPAIR LOCATE (DUMP or VERIFY)
 REPORT
 RUNSTATS
 STOSPACE

The QUIESCE utility will drain all write claim classes. If WRITE YES is specified, QUIESCE will also
drain all write claim classes on an associated partitioning index (or partition) and any nonpartitioned
indexes. Concurrent read access is permitted during a QUIESCE.
QUIESCE Guidelines
Implement the following guidelines to ensure effective usage of the QUIESCE utility at your shop.
Run QUIESCE Before COPY
QUIESCE all tablespaces in a tablespace set before copying them. When QUIESCE will be run for a
tablespace in a tablespace set, QUIESCE every tablespace in the tablespace set to ensure data
consistency and referential integrity. Of course, if the COPY PENDING flag is on, QUIESCE will fail.
Specify the WRITE Option
Be sure to specify whether changed pages in the bufferpool are to be externalized to DASD. Specifying
WRITE YES will cause pages in the bufferpool to be written; specifying WRITE NO will not. The default
is WRITE YES.
QUIESCE the System Databases Before Copying
QUIESCE all DSNDB01 and DSNDB06 tablespaces before copying the DB2 Catalog. Before quiescing
these tablespaces, consider placing the databases into utility-only mode using the DB2 START
command.
Only an Install SYSADM can QUIESCE the DB2 Directory and DB2 Catalog.
Use QUIESCE to Create Interim Points of Recovery
QUIESCE can be used to set up recovery points between regularly scheduled image copies. However,
QUIESCE does not replace the need for image copies.
QUIESCE Tablespaces Related by Application RI
Even when tablespaces are not tied together using DB2-defined referential integrity but are related by
application code, use the QUIESCE utility to ensure the integrity of the data in the tables. This
establishes a point of consistency for tablespaces that are related but not controlled by the DBMS.

 - 662 -

The QUIESCE utility cannot be run on a tablespace that has a copy pending, check pending, or
recovery pending status.

Consider Quiescing Online Tablespaces While Activity Is Low
Run QUIESCE as frequently as possible for tablespaces containing tables modified online. This enables
the recovery of the tablespaces to a point after the last full image copy if there is an error. Do not run the
QUIESCE utility during very active periods, however, because it requires a share lock on all the
tablespaces that it processes. This means that tablespaces being processed by QUIESCE cannot be
modified until the QUIESCE utility completes.

As a general rule, consider quiescing all online systems at least once a day during the least active
processing period.
Code Multiple Tablespaces per QUIESCE
When quiescing multiple tablespaces, code the utility control cards with multiple tablespaces assigned
to one QUIESCE keyword. For example, code this
QUIESCE TABLESPACE DSN8D61A.DSN8S61C
 TABLESPACE DSN8D61A.DSN8S61D
 TABLESPACE DSN8D61A.DSN8S61E

instead of
QUIESCE TABLESPACE DSN8D61A.DSN8S61C
QUIESCE TABLESPACE DSN8D61A.DSN8S61D
QUIESCE TABLESPACE DSN8D61A.DSN8S61E
By coding the control cards the first way, you ensure that the quiesce point for all the tablespaces is
consistent. If the control cards are coded as shown in the second example, the QUIESCE utility is
invoked three times, resulting in a different point of consistency for each tablespace. If you follow the
guidelines for starting all tablespaces in utility-only mode before running QUIESCE, either QUIESCE
option will work. However, getting into the habit of coding the control cards as shown in the first example
prevents errors if the start does not finish successfully before the QUIESCE begins to execute.
If the list of tablespaces on which the QUIESCE utility is being executed exceeds 1165, it will be
terminated with a return code of 8. To QUIESCE groups of more than 1165 tablespaces follow this
procedure:

1. Stop all the tablespaces before quiescing.
2. Break the tablespaces into groups of no more than 1165 tablespaces each.
3. Quiesce each group with a single QUIESCE statement. These QUIESCEs can be

run in parallel to decrease the overall elapsed time.
4. Start all the tablespaces only after all QUIESCE statements have finished.

Consider Using QUIESCE At the Partition Level
The QUIESCE utility can be requested at the partition level. When it makes sense within your
environment, consider using this ability to fine tune your backup and recovery strategy.
Consider Using QUIESCE With the TABLESPACESET Parameter
The TABLESPACESET parameter is used to indicate that all of the referentially related tablespaces in
the tablespace set are to be quiesced. A tablespace set is either a group of tablespaces tied together
with referential integrity or a base tablespace and all of its LOB tablespaces. One tablespace name is
supplied to the TABLESPACESET parameter, and DB2 identifies the rest of the tablespaces in the
tablespace set to be quiesced.

The RECOVER Utility
The recovery of DB2 data is an automated process rigorously controlled by the database
management system. Figure 30.1 shows the flow of normal DB2 recovery. The standard unit
of recovery for DB2 is the tablespace. As of DB2 V6, indexes can be copied using the COPY
utility and recovered using the RECOVER utility. The DB2 COPY utility is used to create an
image copy backup. All DB2 image copy data set information is recorded in the DB2 Catalog
in the SYSIBM.SYSCOPY table. It is not necessary to keep track of the image copy data
sets externally because DB2 manages this information independent of the application code.

 - 663 -

Figure 30.1: DB2 recovery.

DB2 is also responsible for keeping a log of all changes made to tablespaces. With a few
exceptions, all updates are recorded in the DB2 active log. When an active log is full, DB2
creates an archive log. Many archive logs are created during normal DB2 application
processing. All this information is stored in the DB2 Directory's SYSIBM.SYSLGRNX
table and the Boot Strap Data Set (BSDS). Refer to Chapter 20, "The Table-Based
Infrastructure of DB2," for a complete description of the internal DB2 tables and data sets.
The DB2 RECOVER utility reads all control information pertaining to data recovery and
applies the recorded changes contained in the copies and logs, as instructed by the DBMS
and the RECOVER utility control parameters.
Basically, the RECOVER utility is used to restore DB2 tablespaces and indexes to a specific
point in time. You can run two forms of the RECOVER utility: RECOVER
TABLESPACE and RECOVER INDEX. Both are discussed in the following sections.

The RECOVER Utility
RECOVER can be used to recover tablespaces or indexes by restoring data from an image copy data
set and then applying subsequent changes from the log files.
The RECOVER TABLESPACE Utility
The RECOVER TABLESPACE utility restores tablespaces to a current or previous state. It first reads
the DB2 Catalog to determine the availability of full and incremental image copies, and then reads the
DB2 logs to determine interim modifications. The utility then applies the image copies and the log
modifications to the tablespace data set being recovered. The DBMS maintains the recovery information
in the DB2 Catalog. This enables the RECOVER utility to automate tasks such as the following:

 Retrieving appropriate image copy data set names and volume serial numbers
 Retrieving appropriate log data set names and volume serial numbers
 Coding the DD statements for each of these in the RECOVER JCL

Data can be recovered for a single page, pages that contain I/O errors, a single partition of a partitioned
tablespace, or a complete tablespace.
Recovery to a previous point can be accomplished by specifying a full image copy or a specific log RBA.
Recovery to the current point can be accomplished by simply specifying only the tablespace name as a
parameter to the RECOVER utility.
Listing 30.6 shows an example of full recovery to the current point for a tablespace. Listing 30.7 shows
the recovery of the same tablespace to a previous point using the TOCOPY option to specify an image
copy, and the recovery of a different tablespace to a previous point using the TORBA option to specify a
log RBA. This applies the log records only up to, not including, the specified RBA. Note that when using
the TOCOPY option with GDG datasets, the relative GDG reference is not allowed.

Listing 30.6: JCL for Full Recovery

 - 664 -

//DB2JOBU JOB (UTILITY),'FULL RECOVERY',CLASS=X,MSGCLASS=X,

//NOTIFY=USER

//*

//**

//*

//* DB2 RECOVER UTILITY :: FULL RECOVERY

//*

//**

//*

//RCVR EXEC DSNUPROC,SYSTEM=DSN,UID='FULLRECV',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first RECOVER statement recovers the

//* DSN8D61A.DSN8S61C tablespace to the current point

//* in time.

//* 2. The second RECOVER statement recovers all indexes

//* in the tablespace.

//*

//DSNUPROC.SYSIN DD *

 RECOVER TABLESPACE DSN8D61A.DSN8S61C DSNUM ALL

 REBUILD INDEX(ALL) TABLESPACE DSN8D61A.DSN8S61C

/*

//

Listing 30.7: JCL for Partial Recovery

//DB2JOBU JOB (UTILITY),'PRTL RECOVERY',CLASS=X,MSGCLASS=X,

// NOTIFY=USER

//*

 - 665 -

//**

//*

//* DB2 RECOVER UTILITY :: PARTIAL RECOVERY

//*

//**

//*

//RCVR EXEC DSNUPROC,SYSTEM=DSN,UID='PRTLRECV',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first RECOVER statement recovers the

//* DSN8D61A.DSN8S61D tablespace to the named

//* image copy data set.

//* 2. The second RECOVER statement recovers the

//* DSN8D61A.DSN8S61C tablespace to the specified

//* log RBA.

//*

//DSNUPROC.SYSIN DD *

 RECOVER TABLESPACE DSN8D61A.DSN8S61D

 TOCOPY CAT.FULLCOPY.DATASETD.G0001V00

 RECOVER TABLESPACE DSN8D61A.DSN8S61C

 TORBA X'0000EF2C66F4'

/*

//

The RECOVER INDEX (or RECOVER INDEXSPACE) Utility
RECOVER INDEX (or alternately RECOVER INDEXSPACE) is executed to restore DB2 indexes to a
current or previous state. The utility first reads the DB2 Catalog to determine the availability of image
copies, and then reads the DB2 logs to determine interim modifications. The utility then applies the
image copies and the log modifications to the indexspace data set of the index being recovered.
RECOVER INDEXSPACE is similar to RECOVER TABLESPACE, except that it operates on DB2
indexes instead of DB2 tablespaces. DB2 V6 is the first release of DB2 that enables recovery of indexes
from image copy data sets. Prior to V6, all indexes had to be rebuilt from the data. Additionally, prior to
V6, the RECOVER utility performed this index rebuilding. As of V6 (and with an APAR to V5), REBUILD
INDEX is used to rebuild indexes from table data, not the RECOVER utility. JCL to run the RECOVER
INDEXSPACE utility is provided in Listing 30.8.

Listing 30.8: RECOVER INDEXSPACE JCL

 - 666 -

//DB2JOBU JOB (UTILITY),'DB2 RECVR INDEX',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 RECOVER INDEX UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='RCVRINDX',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* Recovers the XPROJ1 index from an image copy.

//*

//DSNUPROC.SYSIN DD *

 RECOVER INDEXSPACE DSN8D61A.XPROJ1

/*

//

RECOVER Phases
The RECOVER utility has four phases:
UTILINIT Sets up and initializes the RECOVER utility
RESTORE Locates and merges all appropriate image copy data sets, after which

the tablespace or indexspace is restored to the given point using the
merged image copy data; processes a list of objects in parallel if you
specified the PARALLEL keyword.

RESTORER For RECOVER with the PARALLEL option, this phase reads and
merges the image copies

RESTOREW For RECOVER with the PARALLEL option, this phase writes the
pages to the object

LOGAPPLY Locates outstanding modifications from the log and applies them to the

 - 667 -

tablespace or indexspace being recovered
UTILTERM Performs the final utility cleanup

The RESTORE phase is bypassed if the LOGAPPLY option is specified.
RECOVER Locking Considerations
The RECOVER utility can run concurrently with the following utilities:

 DIAGNOSE
 REPORT
 STOSPACE

Additionally, unless RECOVER TOCOPY or TORBA is specified, RECOVER can run concurrently with
REORG INDEX and REPAIR LOCATE INDEX.
The RECOVER utility drains all claim classes for the tablespace, partition, or index being recovered,
regardless of the options specified. However, if the ERROR-RANGE option is specified, the locking
level is downgraded to a write claim during the UTILINIT phase.
If either the TORBA or TOCOPY option is specified, RECOVER will drain all claim classes for the index
or index partition, as well.
RECOVER Guidelines
Be sure to implement the following guidelines when you are recovering tablespaces.

Do Not Specify Work Data Sets
The RECOVER utility does not require work data sets to recover DB2 tablespaces and indexes.
For High Performance, Avoid Recovery Using SHRLEVEL CHANGE Image Copies
If RECOVER TABLESPACE is used for a tablespace in which an image copy data set was created with
the SHRLEVEL CHANGE specification, the performance of the RECOVER utility degrades. The log
RBA stored for an image copy taken with SHRLEVEL CHANGE is at an earlier portion of the log
because the tablespace can be modified during the execution of the COPY utility. Therefore, the
RECOVER utility reads the log RBA recorded with the image copy in the SYSIBM.SYSCOPY table and
scans the active and archive logs for changes starting with that RBA. Performance can degrade
because more log records are read.
Recover SHRLEVEL CHANGE Copies Appropriately
Image copies taken using SHRLEVEL CHANGE must be recovered to the current point in time or to a
specific point in time using TORBA (not TOCOPY). If a SHRLEVEL CHANGE image copy is recovered
using the TOCOPY option, it will be in an indeterminate stage.

Be Aware of Underlying VSAM Data Set Deletions
The underlying VSAM data sets for STOGROUP-defined tablespaces are deleted and defined by the
RECOVER TABLESPACE utility. If the tablespace has been user-defined, the corresponding VSAM
data set is not deleted.
Recover Multiple Objects with a Single RECOVER
When multiple tablespaces must be recovered, code the utility control cards with multiple tablespaces
assigned to one RECOVER keyword. For example, code this
RECOVER TABLESPACE DSN8D61A.DSN8S61C
 TABLESPACE DSN8D61A.DSN8S61D
 TABLESPACE DSN8D61A.DSN8S61E

instead of
RECOVER TABLESPACE DSN8D61A.DSN8S61C
RECOVER TABLESPACE DSN8D61A.DSN8S61D
RECOVER TABLESPACE DSN8D61A.DSN8S61E
Coding the control cards the first way ensures that the archive and active logs are read only once. If the
control cards are coded as shown in the second example, the RECOVER TABLESPACE utility runs
three times, causing the archive and active logs to be read separately for each invocation of the utility.
This reduces CPU time, elapsed time, and time spent waiting for an operator to load the archive tapes.

Consider Restoring in Parallel
If multiple objects are specified to be recovered, consider using the PARALLEL parameter to restore
the objects concurrently. When the PARALLEL option is specified, the RECOVER utility will perform
parallel processing during the RESTORE phase. Additionally, you can specify a limit for the number of

 - 668 -

objects to restore in parallel—for example, PARALLEL(4) indicates that four objects should be restored
at a time.

Note If you specify PARALLEL(0) or do not indicate a value (that is, you specify simply
PARALLEL), RECOVER will determine the optimal number of objects to process
in parallel.

Explicitly Allocate Image Copy Data Sets
DB2 dynamically allocates image copy and log data sets during the execution of the RECOVER utility to
minimize an analyst's work during recovery. However, the image copy input to the RECOVER utility can
be specified explicitly in the JCL by simply coding a DD statement for each full and incremental image
copy to be used. The DD statement can use any name not already used by the RECOVER JCL. DB2
will not dynamically allocate an image copy data set if it finds a DD statement with a matching data set
name specified in the RECOVER JCL.
If image copy data sets are explicitly allocated as just described, the UNIT=AFF parameter can be
coded to single-thread the image copy input to the RECOVER utility.

Use DB2's Capability to Fall Back to Previous Image Copies
Current point-in-time recovery attempts to allocate the most recent full image copy for processing. If an
error is encountered for that image copy, the RECOVER utility uses the previous full image copy.

If a tape image copy data set is unavailable, the operator can reply NO to the tape mount message to
cause DB2 to use a previous image copy.

Take Incremental Image Copies to Reduce Log Reading
If incremental image copies exist, the RECOVER TABLESPACE utility attempts to use them to reduce
the number of log data sets and records that must be processed to accomplish the recovery.
It is not possible to use COPY to make incremental image copies for indexes, so this guideline is not
applicable to indexes.

Remember to Recover Indexes
Execute the REBUILD INDEX utility for all tablespaces recovered using the partial recovery options
TOCOPY or TORBA. For indexes defined using COPY YES, execute the RECOVER INDEX utility to
bring the indexes up to the same point as the tablespaces. Failure to REBUILD or RECOVER indexes
results in invalid indexes.

Do Not Specify Relative Generation Numbers for GDG Image Copies
The TOCOPY option of the RECOVER TABLESPACE utility is used to explicitly name an image copy
data set to which the named tablespace will be recovered. If the image copy data set is a GDG, the fully
qualified data set name must be specified, including the absolute generation and version number.
Relative generation number specification is not supported by the RECOVER utility.

Specify a Valid Image Copy Data Set
When the TOCOPY option is used, the image copy data set specified must be recorded in the
SYSIBM.SYSCOPY table. If it is not, the recovery fails.

Recover Tablespaces at the Same Level as the Available Image Copies
Recovery must be processed according to the type of image copy available. For example, if image
copies were taken for a partitioned tablespace at the DSNUM level, RECOVER TABLESPACE must
operate at the DSNUM level.

Recover Only Complete Units of Work
Avoid recovering tablespaces to an RBA other than an RBA recorded in the SYSIBM.SYSCOPY table
as a result of the QUIESCE utility. Recovery to an RBA other than a quiesce point RBA may cause
recovery to the middle of a unit of work, resulting in inconsistent data.

Recover Only Consistent Image Copies
Avoid using the TOCOPY option to recover tablespaces to an image copy created with SHRLEVEL
CHANGE. Doing so can cause data integrity problems because the image copy may reflect partial unit
of work changes. Because the tablespace might have been modified during the execution of the COPY
utility, the image copy without the corresponding log changes represents data in an inconsistent state.
Consider Using RECOVER with DFSMS Copies

DB2 provides the capability to recover from backup copies of DB2 data sets taken using the concurrent
copy feature of DFSMS. Follow these steps to accomplish this:

 - 669 -

1. STOP all tablespaces to be recovered.
2. START the objects in utility mode or read-only mode; ACCESS(UT) or

ACCESS(RO).
3. Use DFSMS to restore the data sets for the tablespaces in question.
4. Use RECOVER with the LOGONLY option to apply only log records and not

RESTORE from an image copy.
5. START the tablespaces in RW mode.

Restart the RECOVER Utility as Needed
RECOVER TABLESPACE is a restartable utility. No special consideration is necessary because work
data sets are not required when recovering a tablespace alone. The utility can be restarted by changing
the DSNUTILB JCL parameter to UTPROC=RESTART.

Follow the Procedures in the IBM Manual When Recovering System Tablespaces
The DB2 Catalog and DB2 Directory tablespaces can be recovered using the RECOVER
TABLESPACE utility, but the recovery must be performed in a specific order. Consult the DB2
Database Administration Guide for details.

The REBUILD INDEX Utility
The REBUILD INDEX utility can be used to re-create indexes from current data. Indexes defined as
COPY NO are always recovered from actual table data, not from image copy and log data. If the index
is defined as COPY YES, it can be recovered from an image copy or rebuilt from the table data.
REBUILD INDEX scans the table on which the index is based and regenerates the index based on the
current data. JCL to run the REBUILD INDEX utility is provided in Listing 30.9.

Listing 30.9: REBUILD INDEX JCL

//DB2JOBU JOB (UTILITY),'DB2 REBUILD IDX',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REBUILD INDEX UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='RBLDINDX',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTWK02 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

 - 670 -

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first REBUILD INDEX statement rebuilds the

//* DSN8610.XPROJ2 index.

//* 2. The second REBUILD INDEX statement rebuilds only

//* the third partition of the DSN8610.XEMP1

//* partitioning index.

//* 3. The third and final REBUILD INDEX statement

//* rebuilds all indexes on all tables in the

//* DSN8D61A.DSN8S61C tablespace.

//*

//DSNUPROC.SYSIN DD *

 REBUILD INDEX (DSN8610.XPROJ2)

 REBUILD INDEX (DSN8610.XEMP1) DSNUM 3

 REBUILD INDEX (ALL) TABLESPACE DSN8D61A.DSN8S61C

/*

//

Note The sort work data sets need to be assigned in the JCL only if sort work data sets are

not dynamic allocated. Additionally, you should consider explicitly defining sort work
data sets when recovering very large indexes.

REBUILD INDEX Phases
There are five phase of the REBUILD INDEX utility:
UTILINIT Sets up and initializes the REBUILD utility.
UNLOAD Unloads data from the appropriate table and places it in the data

set assigned to the SYSUT1 DD statement (if SORTKEYS is not
specified).

SORT Sorts the unloaded index data
BUILD Builds indexes and checks for duplicate key errors. Unique indexes

with duplicate key errors are not recovered successfully.
SORTBLD When the SORTKEYS option is used to invoke parallel index build

processing for a simple or segmented tablespace or a tablespace
partition, all activities that normally occur in the SORT and BUILD
phases occur in the SORTBLD phase instead.

UTILTERM Performs the final utility cleanup.

 - 671 -

Estimating REBUILD INDEX Work Data Set Sizes
The REBUILD INDEX utility requires work data sets to rebuild DB2 indexes. The following formulas can
help you calculate estimated sizes for these work data sets. More complex and precise calculations are
in the DB2 Utility Guide and Reference manual, but these formulas should produce comparable
results.
SYSUT1 = (size of the largest index key + 13) x (total number of rows in the
associated table for the index) x (number of indexes on the table)
SORTWKxx = (size of SYSUT1) x 2

Note If any of these numbers is 0, substitute 1.

After calculating the estimated size in bytes for each work data set, convert the number into cylinders,
rounding up to the next whole cylinder. Allocating work data sets in cylinder increments enhances the
utility's performance.
REBUILD INDEX Locking Considerations
Index rebuilding can run concurrently with the following utilities:

 CHECK LOB
 COPY SHRLEVEL REFERENCE
 DIAGNOSE
 MERGECOPY
 MODIFY
 REORG TABLESPACE UNLOAD ONLY or UNLOAD EXTERNAL (without a

clustered index)
 REPAIR LOCATE by RID or TABLESPACE (DUMP or VERIFY)
 REPORT
 RUNSTATS TABLESPACE
 STOSPACE

The REBUILD INDEX utility drains all claim classes for the index being recovered and drains the write
claim class for the associated tablespace.
If REBUILD INDEX is being specified for an individual partition, the utility drains all claim classes for the
index partition and the logical partition of a type 2 index. The read claim class is drained for non-
partitioned type 2 indexes. Also, this utility will drain write claim classes for the associated tablespace
partition.
REBUILD INDEX Guidelines
The following guidelines can be applied to ensure effective usage of the REBUILD INDEX utility.
Avoid SYSUT1 If Possible
As of DB2 V4, the SYSUT1 data set is no longer required to recover indexes. By removing SYSUT1
from the JCL, the REBUILD utility will perform faster and will require less work space. However, if
SYSUT1 is not included, the REBUILD INDEX utility is not restartable in the UNLOAD phase.
Precede REBUILD INDEX with CHECK INDEX for Large Indexes
Execute the CHECK INDEX utility for large indexes before running REBUILD INDEX. If CHECK INDEX
indicates that the index is invalid, REBUILD INDEX should be run. If CHECK INDEX indicates that the
index is valid, however, you can save valuable processing time because CHECK INDEX is faster than
REBUILD INDEX.

Be Aware of Underlying VSAM Data Set Deletions
The underlying VSAM data sets for STOGROUP-defined indexes are deleted and defined by the
REBUILD INDEX utility. If the index has been user-defined, the corresponding VSAM data set is not
deleted.
Reorganize System Indexes Using REBUILD INDEX

Although the DB2 Catalog and DB2 Directory tablespaces and indexes can be reorganized, their
indexes can be rebuilt, which effectively reorganizes these indexes.
Rerun REBUILD INDEX When Necessary
REBUILD INDEX is not restartable unless the SYSUT1 data set is specified and cataloged (and
SORTKEYS is not specified). If the REBUILD INDEX abends, terminate the utility, correct the cause of
the abend, and rerun the utility. Typical causes for REBUILD INDEX abends include the unavailability of
the applicable tablespace and VSAM data set allocation failures.

 - 672 -

The REPAIR Utility
The REPAIR utility, discussed in Chapter 29, also can be an integral part of data recovery.
REPAIR can be used to assist with a recovery if, based on the order and type of recovery
attempted, it can be determined that pending flags can be reset with the REPAIR utility
rather than another corresponding utility. This may speed recovery when time is critical.

Additionally, if data is damaged or invalid, the REPAIR utility can be used to modify the data.

The REPORT RECOVERY Utility
The REPORT RECOVERY utility is the second type of REPORT utility provided by DB2. It can be used
to generate a report on tablespace recovery information. The report contains information from the DB2
Directory, the DB2 Catalog, and the BSDS. The input to the utility is either a tablespace or a single
partition of a partitioned tablespace. REPORT RECOVERY has several options, including the following:

 Providing tablespace recovery information to the last recoverable point, which is the
last execution of a full image copy, LOAD REPLACE LOG YES, or REORG LOG YES

 Providing all recovery information for a tablespace, not just information to the last
recoverable point

 Providing a list of volume serial numbers for the image copy data sets and archive log
data sets needed for recovery

The output of REPORT RECOVERY is a report of all related DB2 recovery information for the
tablespaces and tables, including image copy information, log RBA information, and archive log
information needed to recover the requested tablespace.
The sample JCL in Listing 30.10 produces a report up to the last recoverable point for the sample
tablespace DSN8D61A.DSN8S61C.

Listing 30.10: REPORT RECOVERY JCL

//DB2JOBU JOB (UTILITY),'DB2 REPRT RCVRY',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REPORT RECOVERY UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DB2T,UID='REPORTRC',UTPROC=''

//DSNUPROC.SYSIN DD *

 REPORT RECOVERY TABLESPACE DSN8D61A.DSN8S61E

/*

//

 - 673 -

REPORT RECOVERY Locking Considerations
The REPORT utility is compatible with all other utilities. It functions like any other process that reads
DB2 data.
REPORT RECOVERY Guidelines
The REPORT RECOVERY utility can be used to determine which data sets will be needed by the
RECOVERY utility before recovering a tablespace. This can be useful when you must determine
whether the requisite data sets are still cataloged or available.

Summary
In this chapter, you learned how to plan for and implement DB2 backup and recovery. You
examined the utilities required to accomplish backup and recovery: COPY, MERGECOPY,
RECOVER, QUIESCE, REPAIR, and REPORT RECOVERY. Turn to the next chapter to discover
which utilities to use to efficiently organize DB2 data.

 - 674 -

Chapter 31: Data Organization Utilities
Overview
The data organization utilities affect the physical data sets of the DB2 objects for which they are run.
Rows of data and their sequence are affected by these utilities. The data organization utilities are LOAD
and REORG. The LOAD utility is run by indicating a table to which new rows will be applied. REORG is run
at the tablespace or index level, moving data to optimal locations in the data set.

The LOAD Utility
The LOAD utility is used to accomplish bulk inserts to DB2 tables. It can add rows to a table, retaining
the current data, or it can replace existing rows with the new data.

Table Loading Philosophies
There are two distinct philosophies regarding the use of the LOAD utility. The first and generally
recommended philosophy takes more time to implement but is easier to support. It requires the
reservation of sufficient DASD to catalog the LOAD work data sets in case the LOAD job abends.
The work data sets for the LOAD job are allocated for the DDNAMEs SORTOUT, SYSUT1, SYSERR, and
SYSMAP with DISP=(MOD,DELETE,CATLG). This enables the data sets to be allocated as new for the
initial running of the REORG job. If the job abends, it catalogs the data sets in case they can be used in a
restart. After the step completes successfully, the data sets are deleted. The space for these data sets
must be planned and available before the LOAD job runs.
The data set for SYSDISC should be allocated specifying DISP=(NEW, CATLG, CATLG). If there are
discards, the LOAD utility returns a RC=4, and it does not abend. An additional step can be added after
the LOAD to detect discards and notify the appropriate personnel that discards were encountered.
By creating your LOAD job with this philosophy, you can restart an abending LOAD job with little effort
after the cause of the abend has been corrected. See Listing 31.1. You simply specify one of the
RESTART options in the UTPROC parameter for DSNUTILB.

Listing 31.1: LOAD JCL (Restartable)

//DB2JOBU JOB (UTILITY),'DB2 LOAD',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 LOAD UTILITY (RESTARTABLE)

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='LOADDATA',UTPROC=''

//*

//* UTILITY WORK DATAETS

//*

//DSNUPROC.SORTWK01 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

 - 675 -

//DSNUPROC.SORTWK02 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTOUT DD DSN=CAT.SORTOUT,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSMAP DD DSN=CAT.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

//DSNUPROC.SYSUT1 DD DSN=CAT.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

//DSNUPROC.SYSDISC DD DSN=CAT.SYSDISC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSERR DD DSN=CAT.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSREC00 DD DSN=CAT.LOAD.INPUT.DATASETA,DISP=SHR,DCB=BUFNO=20

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The LOAD statement reloads the DSN8610.ACT table

//*

//DSNUPROC.SYSIN DD *

 LOAD DATA REPLACE INDDN SYSREC00 LOG NO

 INTO TABLE DSN8610.ACT

 (ACTNO POSITION (1) SMALLINT,

 ACTKWD POSITION (3) CHAR (6),

 ACTDESC POSITION (9) VARCHAR

)

/*

//

Note The sort work data sets need to be assigned in the JCL only if sort work data sets are

not dynamically allocated. Additionally, you should consider explicitly defining sort
work data sets when loading very large tables.

The second philosophy is easier to implement but more difficult to support. No additional DASD is
required because all LOAD work data sets are temporary. Therefore, all interim work data sets are lost
when the job abends. See Listing 31.2 for sample JCL.

Listing 31.2: LOAD JCL (Nonrestartable)

 - 676 -

//DB2JOBU JOB (UTILITY),'DB2 LOAD',MSGCLASS=X,CLASS=X,

// NOTIFY=USER,REGION=3M

//*

//**

//*

//* DB2 LOAD UTILITY (NON-RESTARTABLE)

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='LOADDATA',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DD DSN=&&SORTWK01,

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTWK02 DD DSN=&&SORTWK02,

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTOUT DD DSN=&&SORTOUT,

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSMAP DD DSN=CAT.SYSUT1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,DCB=BUFNO=10

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSDISC DD DSN=CAT.SYSDISC,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSERR DD DSN=&&SYSERR,

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//DSNUPROC.SYSREC00 DD DSN=CAT.LOAD.INPUT.DATASETD,DISP=SHR,DCB=BUFNO=10

//DSNUPROC.UTPRINT DD SYSOUT=X

//*

 - 677 -

//* UTILITY INPUT CONTROL STATEMENTS

//* The LOAD statement adds the data in SYSREC00 to

//* the DSN8610.DEPT table.

//*

//DSNUPROC.SYSIN DD *

 LOAD DATA RESUME(YES) ENFORCE CONSTRAINTS LOG NO

 INDDN SYSREC00 INTO TABLE DSN8610.DEPT

 (DEPTNO POSITION(1)

 CHAR(3),

 DEPTNAME POSITION(4)

 VARCHAR,

 MGRNO POSITION(42)

 CHAR(6) NULLIF(48)='?',

 ADMRDEPT POSITION(49)

 CHAR(3),

 LOCATION POSITION(52)

 CHAR(16) NULLIF(68)='?')

/*

//

To restart this LOAD job, you must determine in which phase the job abended. If the job abends in any
phase of a LOAD REPLACE, you can simply terminate the utility and rerun. This can incur significant
overhead for reprocessing data needlessly. If the first philosophy is used, reprocessing is usually
avoided.
For a LOAD RESUME(YES), however, if the job abends in any phase other than UTILINIT, you must
restore the tablespace for the table being loaded to a previous point in time. This can be accomplished
by running the RECOVER TOCOPY utility or by running a full RECOVER if the LOG NO option of the LOAD
utility was specified. After restoring the tablespace (and possibly its associated indexes), you must
correct the cause of the abend, terminate the utility, and then rerun the job. As you can see, this method
is significantly more difficult to restart than the first method.

Try to use the first philosophy rather than the second. This makes recovery from error situations as
smooth and painless as possible.
Estimating LOAD Work Data Set Sizes
The LOAD utility requires work data sets to load data into DB2 tables. The following formulas can help
you calculate estimated sizes for these work data sets. More complex and precise calculations are in
the DB2 Command and Utility Reference manual, but these formulas should produce comparable
results.

 - 678 -

SORTOUT = (size of the largest index key or foreign key + 14) x (total number of rows in the table to be
loaded) x (total number of indexes defined for the table) x (total number of foreign keys in the table) x
1.2

Note If any number in the SORTOUT calculation is 0, substitute 1.

The multiplier 1.2 is factored into the calculation to provide a "fudge factor." If you
are absolutely sure of your numbers, the calculation can be made more precise
by eliminating the additional multiplication of 1.2.

SYSUT1 = (size of the largest index key or foreign key + 14) x (total number of rows to be loaded to the
table) x (total number of indexes defined for the table) x (total number of foreign keys in the table) x 1.2

Note If any number in the SYSUT1 calculation is 0, substitute 1.

The multiplier 1.2 is factored into the calculation to provide a "fudge factor." If you
are absolutely sure of your numbers, the calculation can be made more precise
by eliminating the additional multiplication of 1.2.

SORTWKxx = (size of SYSUT1) x 2
 SYSERR = ((number of estimated unique index errors) + (number of estimated data conversion errors)
+ (number of estimated referential constraint violations)) x 100

Note Always allocate the SYSERR data set to be at least 1 cylinder.

SYSMAP = (total number of rows to be loaded to the table) x 21
Notes The SYSMAP data set is required if either of the following is true:

 Discard processing is requested.
 The tablespace is segmented or partitioned.

SYSDISC = Allocate the SYSDISC data set to be the same size as the data set containing the rows to
be loaded by the LOAD utility

Note The space requirements for SYSDISC may be prohibitive if disk space is at a
premium at your shop. Instead of allocating the SYSDISC data set as large as the
data being loaded, consider using a small primary quantity and a larger
secondary quantity—for example:
 SPACE=(CYL,(0,50),RLSE)

Note Although the SYSDISC data set is optional, specifying it is highly recommended
to trap records that cannot be loaded.

After calculating the estimated size in bytes for each work data set, convert the number into cylinders,
rounding up to the next whole cylinder. Allocating work data sets in cylinder increments enhances the
utility's performance.
LOAD Phases
There are nine possible phases of the LOAD utility:
UTILINIT Sets up and initializes the LOAD utility.
RELOAD Reads the sequential data set specified as input and loads the data to

the specified table. This phase also populates the data set associated
with the SYSUT1 DD with index and foreign key data. The compression
dictionary is rebuilt in this step for COMPRESS YES tablespaces. The
copy pending flag is reset at the end of this phase if an inline copy is
produced (unless the SORTKEYS parameter is specified).

SORT Sorts the index and foreign key data using the data sets assigned to
the SORTOUT and SORTWKxx DD statements.

BUILD Builds indexes and identifies duplicate keys, placing the error
information in SYSERR. The recovery pending flag is reset for all non-
unique indexes. The copy pending flag is reset at the end of this phase
if an inline copy is produced unless the SORTKEYS parameter is
specified.

SORTBLD When parallel index build is specified (SORTKEYS), the SORT and
BUILD phases are performed in the SORTBLD phase instead.

INDEXVAL Reads the SYSERR data set to correct unique index violations. The
recovery pending flag is reset for all unique indexes.

ENFORCE Checks foreign keys for conformance to referential constraints and

 - 679 -

stores the error information in SYSERR. Resets check pending flag for
tablespace.

DISCARD Reads the SYSERR information to correct referential constraint
violations and places the erroneous records in the SYSDISC data set.

REPORT Sends reports of unique index violations and referential constraint
violations to SYSPRINT.

UTILTERM Performs the final utility cleanup.

Creating an Inline Copy During the LOAD
As of DB2 V5 it is possible to create a full image copy data set during the execution of the LOAD utility.
This is referred to as an inline COPY. The image copy will be a SHRLEVEL REFERENCE copy.
There are two major benefits of taking an inline copy. The first is that a second pass of the data is not
required to create a DB2 image copy. The second is that the tablespace into which the data is being
loaded will not be placed into a copy pending state when inline copy is specified, even if the LOG NO
option is specified.
To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You can specify up to two
primary and two secondary copies.
Gathering Inline Statistics During the LOAD
As of DB2 V6, it is possible to generate statistics during the execution of the LOAD utility. This is referred
to as inline RUNSTATS. Up-to-date statistics will be generated during the LOAD instead of requiring an
additional RUNSTATS step.
To generate inline RUNSTATS, use the STATISTICS keyword. You can gather tablespace statistics,
index statistics, or both.
Discards and Inline RUNSTATS
If you specify both the DISCARDDN and STATISTICS options, the inline statistics collected during the
LOAD may be inaccurate. When a row is found with check constraint errors or conversion errors, the row
is not loaded into the table, so DB2 will not collect statistics for it. So far, so good.
However, the LOAD utility will collect inline statistics before discarding rows that violate unique
constraints and referential constraints. Therefore, when the number of rows that violate RI and unique
constraints is high, the statistics could be quite imprecise. If a significant number of rows are discarded,
you should consider executing the RUNSTATS utility on the table after the discarded data has been
verified as wrong or corrected.
LOAD Rerun/Restart Procedures
The LOAD utility can be restarted. The restart or rerun procedure is determined by the abending phase
of the LOAD step. There are two ways to determine the phase in which the abend occurred.
The first method is to issue the DISPLAY UTILITY command to determine which utilities are currently
active, stopped, or terminating in the DB2 system. The format of the command is
-DISPLAY UTILITY(*)
The second method to determine the abending phase is to view the SYSPRINT DD statement of the
LOAD step. This method is not as desirable as the first, but it is the only method you can use when the
DB2 system is down. At the completion of each phase, DB2 prints a line stating that the phase has
completed. You can assume that the phase immediately following the last phase reported complete in
the SYSPRINT DD statement is the phase that was executing when the abend occurred.
After determining the phase of the LOAD utility at the time of the abend, follow the steps outlined here to
restart or rerun the load. In the following procedures, it is assumed that your LOAD utility processing is
generally restartable.
If the abend occurred in the UTILINIT phase

1. Determine the cause of the abend. An abend in this step is usually caused by another
utility executing with the same UID or a utility that is incompatible with another utility
currently executing.

2. Resolve the cause of the abend. An abend in this phase is probably due to improper job
scheduling. Issue the DISPLAY UTILITY command to determine which utilities are
currently in process for the DB2 system. Resolve the scheduling problem by allowing
conflicting utilities to complete before proceeding to step 3.
Another possible cause is insufficient sort space. If the SORTWKxx data sets are
dynamically added, try to resolve the problem using the following methods:

 Use the SORTDEVT clause to dynamically create the SORTWKxx data sets
someplace else.

 - 680 -

 Clean the work packs by deleting or moving extraneous files.
 Explicitly allocate the appropriate sort work data sets in the JCL.

3. Restart the job at the LOAD step.
If the abend occurred in the RELOAD phase

1. Determine the cause of the abend. An abend in this step is usually caused by insufficient
space allocated to the SYSUT1 DD statement. Another cause is that the VSAM data set
associated with the tablespace has run out of available DASD space.

2. Resolve the cause of the abend.
a. If the problem is an out-of-space abend (B37) on the SYSUT1 DD

statement, the data set associated with that DD statement will have been
cataloged. Allocate a new data set with additional space, copy the SYSUT1
data set to the new data set, delete the original SYSUT1 data set, and
rename the new data set to the same name as the original SYSUT1 data set.

b. If the problem is an out-of-space abend on the VSAM data set containing
the tablespace being reloaded, contact the DBA or DASD support unit. This
situation can be corrected by adding another volume to the STOGROUP
being used; using IDCAMS to redefine the VSAM data set, move the VSAM
data set, or both; or altering the primary space allocation quantity for the
index, the secondary space allocation quantity for the index, or both.

3. Restart the job at the LOAD step with a temporary JCL change to alter the UTPROC
parameter to RESTART.

If the abend occurred in the SORT phase
1. Determine the cause of the abend. The predominant causes are insufficient sort work

space or insufficient space allocations for the SORTOUT DD statement.
2. Resolve the cause of the abend. If the problem is insufficient space on the sort work or

SORTOUT DD statements, simply increase the allocations and proceed to step 3.
3. Restart the job at the LOAD step with a temporary change to alter the UTPROC parameter

to RESTART(PHASE).
If the abend occurred in the BUILD phase

1. Determine the cause for the abend. An abend in this step is usually caused by insufficient
space allocated to the SYSERR DD statement. Another cause is that the VSAM data set
associated with the index space has run out of available DASD space.

2. Resolve the cause of the abend.
a. If the problem is an out-of-space abend (B37) on the SYSERR DD

statement, the data set associated with the DD statement will have been
cataloged. Allocate a new data set with additional space, copy the SYSERR
data set to the new data set, delete the original SYSERR data set, and
rename the new data set to the same name as the original SYSERR data set.

b. If the problem is an out-of-space abend on the VSAM data set containing
the index space being reloaded, contact the DBA or DASD support unit.
This situation can be corrected by adding another volume to the STOGROUP
being used; using IDCAMS to redefine the VSAM data set, move the VSAM
data set, or both; or altering the primary space allocation quantity for the
index, the secondary space allocation quantity for the index, or both.

3.
a. If LOAD was run using the REPLACE option, restart the job at the LOAD step

with a temporary change to alter the UTPROC parameter to
RESTART(PHASE).

b. If LOAD was run using the RESUME YES option, the LOAD is not restartable.
Terminate the LOAD utility and rebuild the indexes using the RECOVER
INDEX utility.

Note When the SORTKEYS parameter is used and the LOAD utility terminates during
the RELOAD, SORT, or BUILD phases, both RESTART and RESTART(PHASE)
restart from the beginning of the RELOAD phase.

If the abend occurred in the INDEXVAL phase
1. Determine the cause of the abend. Abends in this phase are rare. The INDEXVAL phase

is run only when unique indexes exist for the table being loaded.
2. Resolve the cause of the abend.
3. Restart the job at the LOAD step with a temporary JCL change to alter the UTPROC

parameter to RESTART(PHASE).

 - 681 -

If the abend occurred in the ENFORCE phase
1. Determine the cause for the abend. An abend in this step is usually caused by insufficient

space allocated to the SYSERR DD statement. The ENFORCE phase is optional and is not
always run.

2. Resolve the cause of the abend. If the problem is an out-of-space abend (B37) on the
SYSERR DD statement, the data set associated with that DD statement will have been
cataloged. Allocate a new data set with additional space, copy the SYSERR data set to
the new data set, delete the original SYSERR data set, and rename the new data set to
the same name as the original SYSERR data set.

3. Restart the job at the LOAD step with a temporary change to alter the UTPROC parameter
to RESTART.

If the abend occurred in the DISCARD phase
1. Determine the cause for the abend. An abend in this step is usually caused by insufficient

space allocated to the SYSDISC DD statement. The DISCARD phase is optional and is
not always run.

2. Resolve the cause of abend. If the problem is an out-of-space abend (B37) on the
SYSDISC DD statement, the data set associated with that DD statement will have been
cataloged. Allocate a new data set with additional space, copy the SYSDISC data set to
the new data set, delete the original SYSDISC data set, and rename the new data set to
the same name as the original SYSDISC data set.

3. Restart the job at the LOAD step with a temporary change to alter the UTPROC parameter
to RESTART.

If the abend occurred in the REPORT phase
1. Determine the cause for the abend. Abends in the REPORT phase are rare. The REPORT

phase is run only if the INDEXVAL, ENFORCE, or DISCARD phases encounter any errors.
Sometimes the cause for an abend in this phase is insufficient space allocated to the sort
work data sets because the report is sorted by error type and input sequence.

2. Resolve the cause of the abend. If the problem was caused by insufficient space on the
sort work or SORTOUT DD statements, simply increase the allocations and proceed to
step 3.

3. Restart the job at the LOAD step with a temporary change to alter the UTPROC parameter
to RESTART(PHASE).

If the abend occurred in the UTILTERM phase
1. An abend in this phase is unlikely because all the work required for the load has been

completed. A problem at this phase means that DB2 cannot terminate the utility.
2. Terminate the DB2 utility by issuing the TERM UTILITY command. The format of the

command is
Note -TERM UTILITY(UID)

3. where UID is obtained from the -DISPLAY UTILITY (*) command.
4. If the LOAD utility work data sets associated with this job were cataloged as a result of the

abend, uncatalog them and force the job's completion.
LOAD Locking Considerations
The LOAD utility can run concurrently with the following utilities (each accessing the same object):

 DIAGNOSE
 REPORT
 STOSPACE

The LOAD utility will drain all claim classes for the tablespace or partition being loaded and any
associated indexes, index partitions, and logical index partitions. Furthermore, if the ENFORCE option is
specified, LOAD will drain the write claim class for the primary key index.

Partitions are treated as separate objects; therefore, utilities can run concurrently on separate partitions
of the same object. However, if a type 1 nonpartitioning index exists on the tablespace, contention will
occur. For nonpartitioning type 2 indexes, a partition load will drain only the logical partition. Additionally,
the page set recovery pending flag is not set.
LOAD Guidelines
When running the LOAD utility consider applying the following tips, tricks, and techniques.

 - 682 -

Consider Using SORTKEYS
When index keys are not already in sorted order and indexes exist on the table into which data is being
loaded, consider using the SORTKEYS keyword. When SORTKEYS is specified, index keys are sorted in
memory, rather than being written to work files. This can improve performance by:

 Eliminating the expensive I/O operations to disk
 Reducing the space requirements for the SYSUT1 and SORTOUT data sets
 Reducing elapsed time from the start of the reload phase to the end of the build phase is

reduced
An estimate of the number of keys to be sorted can be supplied. This is optional, but recommended
because the extracted keys will be written to a work data set, minimizing the efficiency gains of using
the SORTKEYS parameter. To estimate the number of keys to sort, use the following calculation:
Number of Keys = (Total number of rows to be loaded) x
 [(number of indexes on the table) +
 (number of foreign keys {unless index exists for the FK}) +
 ((number of foreign keys participating in multiple
 relationships) x (number of relationships - 1))
]

Note If more than one table is being loaded, the preceding calculation must be
repeated for each table—the sum of the results is used.

Use Parallel Index Build to Reduce Elapsed Time
When indexes are built in parallel rather than sequentially, overall elapsed time for the LOAD job can be
reduced.
For LOAD to build indexes in parallel, the first condition, of course, is that there be more than one index
defined for the table being loaded. If that is the case, the SORTKEYS clause must be specified with an
estimate for the number of keys, and sort work data sets must be allocated to the LOAD job (either
explicitly or dynamically).

Serialize Loads for Tables in the Same Database
The LOAD utility is sensitive to concurrent processing. Plan to serialize LOAD jobs for tables in the same
database rather than run them concurrently. Concurrently submitted LOAD jobs tend to cause timeout
conditions or languish in the UTILINIT phase until the RELOAD phase of other concurrent LOAD jobs is
finished.

Note Consider assigning tables needing to be loaded concurrently to different
databases to avoid this problem. Another approach is to assign only one table per
database.

Use LOAD to Append or Replace Rows
You can use LOAD to replace data in a table by specifying the REPLACE option. LOAD also can append
new data to a table, leaving current data intact, by specifying the RESUME(YES) option. Choose the
appropriate option based on your data loading needs.
Use LOAD to Perform Mass Deletes
Use the LOAD utility, specifying an empty input data set (or DD DUMMY), to delete all rows from a
nonsegmented tablespace. This is called a mass delete. LOAD is usually more efficient than DELETE
SQL without a WHERE clause. Specifying the LOG NO option to avoid logging data changes will further
enhance the performance of the mass delete. Note, however, the following considerations:

 If multiple tables are assigned to a simple tablespace, the LOAD utility deletes all rows for all
tables in that tablespace.

 Consider loading a DUMMY data set even for segmented tablespaces if a large amount of data
must be deleted. Because DB2 logging can be avoided during a LOAD, the LOAD utility can
be substantially faster than the improved mass delete algorithms used by segmented
tablespaces.

Use Fixed Blocked Input
To enhance the performance of the LOAD utility, use a fixed blocked input data set rather than a variable
blocked data set.

Buffer the Work Data Sets Appropriately
For large loads, set the BUFNO parameter in the JCL for the SYSUT1 DD statement to a number greater
than 20. A BUFNO of approximately 20 is recommended for medium-sized indexes, and a BUFNO

 - 683 -

between 50 and 100 is recommended for larger tables. The BUFNO parameter creates read and write
buffers in main storage for the data set, thereby enhancing the performance of the LOAD utility. The
default for BUFNO is 8 for DB2 V3 and 20 for DB2 V4.
Ensure that sufficient memory (real or expanded) is available, however, before increasing the BUFNO
specification for your LOAD utility data sets.

Enforce RI During Table Loading When Possible
Favor using the ENFORCE option of the LOAD utility to enforce referential constraints instead of running
CHECK DATA after the LOAD completes. It is usually more efficient to process the loaded data once, as
it is loaded, than to process the data twice, once to load it and once to check it. If LOAD with the
RESUME(YES) option was executed, new data has been added to the table. However, if ENFORCE was
not specified and a subsequent CHECK DATA is run, CHECK DATA will check the entire table, not just
the new data.
Ensure that LOAD Input Data Sets Are in Key Sequence
Always sort the LOAD input data set into sequence by the columns designated in the clustering index.
Be sure to sort the data in the appropriate sequence, either ascending or descending, depending on
how the index was defined. Otherwise, the LOAD utility does not load data in clustering order, and the
tablespace and indexes will be inefficiently organized.

Note When the index key is null, it should be treated as "high values" for sorting
purposes.

REORG After Loading Only When the Input Is Not Sorted
If data is not loaded in clustering sequence, consider following the LOAD with a tablespace
reorganization. This can be performed all the time, which is not recommended, or based on the value of
CLUSTER RATIO stored in the DB2 Catalog for the tablespace and its clustering index. If CLUSTER
RATIO is not 100% for a newly loaded table, the REORG utility should be used to cluster and organize
the application data.

Note If LOAD is run specifying RESUME(YES), even if the input is in clustering
sequence, the result can be a CLUSTER RATIO less than 100%. It is best to
avoid sorting the input in this case, run the load, and then run the REORG utility
to cluster and organize the data.

Favor the Use of LOG NO
Use the LOG NO option unless the table to be loaded is very small. This avoids the overhead of logging
the loaded data and speeds load processing. If data is loaded without being logged, however, follow the
LOAD utility with a full image copy.
Specify KEEPDICTIONARY for Performance
The LOAD utility will rebuild the compression dictionary for tablespaces defined with the COMPRESS YES
parameter. Specifying the KEEPDICTIONARY parameter causes the LOAD utility to bypass dictionary
rebuilding. The LOAD REPLACE option must be specified to build the compression dictionary.
This will improve the overall performance of the LOAD utility because the CPU cycles used to build the
dictionary can be avoided. However, this option should be utilized only when you are sure that the same
basic type of data is being loaded into the table. If the type of data differs substantially, allowing the
LOAD utility to rebuild the compression dictionary will provide for more optimal data compression.

Note Keeping the compression dictionary can increase work space requirements for
the REORG utility. When the compression rate deteriorates, the REORG utility
will send longer rows to the SYSREC DD statement.

Avoid Nullable Columns for Frequently Loaded Tables
Loading tables with nullable columns can degrade the LOAD utility's performance. If a table will be
loaded frequently (daily, for example), consider reducing or eliminating the number of nullable columns
defined to the table to increase the performance of the LOAD utility. This is not always practical or
desirable because many program changes may be required to change columns from nullable to NOT
NULL or to NOT NULL WITH DEFAULT. Additionally, nullable columns might make more sense than
default values given the specification of the application.

Avoid Decimal Columns for Frequently Loaded Tables
Avoid DECIMAL columns for tables that are loaded frequently. Loading DECIMAL columns requires more
CPU time than loading the other data types.

Avoid Data Conversion
The LOAD utility automatically converts similar data types as part of its processing. However, try to avoid
data conversion, because the LOAD utility requires additional CPU time to process these conversions.

 - 684 -

The following data conversions are performed automatically by the LOAD utility:

Original Data Type Converted
Data Type

SMALLINT INTEGER
DECIMAL
FLOAT

INTEGER SMALLINT
DECIMAL
FLOAT

DECIMAL SMALLINT
INTEGER
FLOAT

FLOAT SMALLINT
INTEGER
DECIMAL

CHAR VARCHAR
LONG
VARCHAR

VARCHAR CHAR
LONG
VARCHAR

GRAPHIC VARGRAPHIC
LONG
VARGRAPHIC

VARGRAPHIC GRAPHIC
LONG
VARGRAPHIC

TIMESTAMP EXT DATE
TIME
TIMESTAMP

Reduce CPU Usage by Explicitly Coding All LOAD Parameters
Explicitly define the input file specifications in the LOAD control cards. Do this even when the data set to
be loaded conforms to all the default lengths specified in Table 31.1. This reduces the LOAD utility's
CPU use.

Table 31.1: Default LOAD Lengths

Column Data Type Default
Length

SMALLINT 2
INTEGER 4
DECIMAL Column's

precision
REAL 4
DOUBLE PRECISION 8
DATE 10
TIME 8
TIMESTAMP 26
CHAR Column's

length
VARCHAR Column's

maximu
m length

 - 685 -

GRAPHIC Double
the
column's
length

VARGRAPHIC Double
the
column's
maximu
m length

If the input file specifications are not explicitly identified, the LOAD utility assumes that the input data set
is formatted with the defaults specified in Table 31.1.

Note You can use the DSNTIAUL sample program to build LOAD control cards with
explicit definitions. You also can generate LOAD control cards when using
REORG UNLOAD EXTERNAL to unload data. The PUNCHDDN keyword is used
to specify a data set for the control cards.

For BLOB, CLOB, and DBCLOB data, you must specify the length of the input field in bytes. This length
value is placed in a four-byte binary field at the beginning of the LOB value. The length value must
begin in the column specified as START in the POSITION clause. The END specification is not used for
LOBs.

Create All Indexes Before Loading
It is usually more efficient to define all indexes before using the LOAD utility. The LOAD utility uses an
efficient algorithm to build DB2 indexes.
If indexes must be created after the data has been loaded, create the indexes with the DEFER YES
option and build them later using the REBUILD INDEX utility.
Favor LOAD over INSERT
To insert initial data into a DB2 table, favor the use of the LOAD utility with the REPLACE option over an
application program coded to process INSERTs. LOAD should be favored even if the application
normally processes INSERTs as part of its design. The initial loading of DB2 table data usually involves
the insertion of many more rows than does typical application processing. For the initial population of
table data, the LOAD utility is generally more efficient and less error-prone than a corresponding
application program, and also maintains free space.
Consider using the LOAD utility with the RESUME(YES) option to process a large volume of table
insertions. LOAD is usually more efficient and less error-prone than a corresponding application program
that issues a large number of INSERTs.

Do Not Load Tables in a Multitable Simple Tablespace
Avoid loading tables with the REPLACE option when multiple tables have been defined to a simple
tablespace. The LOAD utility with the REPLACE option deletes all rows in all tables in the simple
tablespace, which is not usually the desired result.

Gather Statistics When Loading Data
If you are loading data into a DB2 table specifying RESUME NO and the REPLACE keyword, you also
should use the STATISTICS keyword to gather statistics during LOAD processing. These keywords
specify that you are loading a table from scratch and that any previous data will be lost. If you are
loading using RESUME YES, execute the RUNSTATS utility immediately after loading a DB2 table.

Accurate statistics are necessary to maintain current information about your table data for access path
determination. Of course, access paths for static SQL will not change unless all packages and plans
accessing the table are rebound. Any dynamic SQL statements will immediately take advantage of the
new statistics.

Consider Loading by Partition

Concurrent loading of multiple partitions of a single tablespace can be achieved using partition
independence. This technique is useful for reducing the overall elapsed time of loading a table in a
partitioned tablespace.

Use Data Contingency Options as Required
The LOAD utility can perform special processing of data depending on the data values in the input load
data set. Data contingency processing parameters indicate a field defined in the LOAD parameters or a

 - 686 -

beginning and ending location of data items to be checked. The data contingency processing
parameters follow:
NULLIF Sets column values to null if a particular character string is found

at a particular location—for example:
 NULLIF (22) = '?'
DEFAULTIF Sets column values to a predefined default value if a particular

character string is found at a particular location. For example
 DEFAULTIF FIELD = 'DEFLT'
WHEN Limits the loaded data to specific records in the load input data

set. For example
 LOAD DATA REPLACE

INTO DSN8510.DEPT
WHEN (1 : 3) = 'A00'

CONTINUEIF Used when there are record types in the input load data set.
Specifies that loading will continue, logically concatenating the
next record to the previous input record. For example

 LOAD DATA
INTO DSN8510.EMP
CONTINUEIF (10 : 10) = 'X'

Caution NULLIF cannot be used with ROWID columns because a

ROWID column cannot be null.

Separate Work Data Sets

Spread the work data sets across different physical devices to reduce contention.
Use Caution When Loading ROWID Data
When loading a table with a ROWID column, ensure that the input data is a valid ROWID value. The
appropriate way to do this is to load ROWID values that were previously generated by DB2.
If the ROWID is defined with the GENERATED ALWAYS keyword, you cannot load data into that column.
Instead, the ROWID value must be generated by DB2.

Handle Floating Point Data

Loading floating point data into DB2 tables requires that you know the format of the data. Two options
are available for loading floating point data:
S390 Floating point data is specified in System/390 hexadecimal floating

point format. This is the default value. It is also the format in which
DB2 stores floating point numbers.

IEEE Floating point data is specified in IEEE binary floating point format.
DB2 expects to find the input numbers in binary floating point
format and will convert the data to hexadecimal floating point format
as the data is loaded.

Note If a conversion error occurs while converting from binary floating
point format to hexadecimal floating point format, DB2 will place
the record in the discard file.

Optimize Sort Utility Processing
Be sure to optimize the operation of the sort utility in use at your shop. For example, you can assign
additional resources to DFSORT using the following DD statement:

//DFSPARM DD *
HIPRMAX=0,EXCPVR=NONE,SIZE=32768K

The REORG Utility
The REORG utility can be used to reorganize DB2 tablespaces and indexes, thereby improving the
efficiency of access to those objects. Reorganization is required periodically to ensure that the data is
situated in an optimal fashion for subsequent access. Reorganization reclusters data, resets free space

 - 687 -

to the amount specified in the CREATE DDL, and deletes and redefines the underlying VSAM data sets
for STOGROUP-defined objects.
There are three types of reorganizations supported by the DB2 REORG utility:

 When REORG is run on an index, DB2 reorganizes the index space to improve access
performance and reclaim fragmented space.

 When REORG is run on a regular (non-LOB) tablespace, DB2 reorganizes the data into
clustering sequence by the clustering index, reclaims fragmented space, and optimizes
the organization of the data in the tablespace.

 When REORG is run on a LOB tablespace, DB2 removes embedded free space and
tries to make LOB pages contiguous. The primary benefit of reorganizing a LOB
tablespace is to enhance prefetch effectiveness.

Proper planning and scheduling of the REORG utility is a complex subject. Many factors influence the
requirements for executing the REORG utility. The following topics highlight the necessary decisions for
implementing an efficient REORG policy in your DB2 environment.

Recommended Reorganization Standards
You should develop rigorous standards for the REORG utility because it is the most significant aid in
achieving optimal DB2 performance. The standard will influence the input to the REORG utility, the
REORG job streams, and the rerun and restart procedures for REORG utilities.
As with the LOAD utility, there are two philosophies for implementing the REORG utility. Individual
databases, tablespaces, and applications can mix and match philosophies. One philosophy, however,
should be chosen for every non-read-only tablespace and index in every DB2 application. Failure to
follow a standard reorganization philosophy and schedule will result in poorly performing DB2
applications. The REORG philosophy must be recorded and maintained for each tablespace and index
created.

The philosophies presented here strike a balance between programmer productivity, ease of use and
comprehension by operations and control staff, and the effective use of DB2 resources.

Reorganization Philosophies
Two REORG philosophies can be adopted by DB2-based application systems. The first, which is
generally the recommended philosophy, is more time-consuming to implement but easier to support. It
requires that sufficient DASD be reserved to catalog the REORG work data sets if the REORG job abends.
The three work data sets for the REORG job are allocated for the SYSREC, SYSUT1, and SORTOUT
DDNAMEs with DISP=(MOD,DELETE,CATLG). This specification enables the data sets to be allocated
as new for the initial running of the REORG job. If the job abends, however, it will catalog the data sets
for use in a possible restart. After the step completes successfully, the data sets are deleted. The space
for these data sets must be planned and available before the REORG job is executed.
The sample REORG JCL in Listing 31.3 follows this philosophy. By creating your REORG job according to
this philosophy, you can restart an abending REORG job with little effort after the cause of the abend has
been corrected. You simply specify one of the RESTART options in the UTPROC parameter for
DSNUTILB.

Listing 31.3: REORG JCL (Restartable)

//DB2JOBU JOB (UTILITY),'DB2 REORG',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 REORG UTILITY (RESTARTABLE)

//*

 - 688 -

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REORGTS',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTWK02 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTOUT DD DSN=CAT.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSUT1 DD DSN=CAT.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

//DSNUPROC.SYSREC DD DSN=OUTPUT.DATASETD,DISP=(MOD,CATLG,CATLG),

 UNIT=SYSDA,SPACE=(CYL,(15,5)),DCB=BUFNO=20

//DSNUPROC.SYSPRINT DD SYSOUT=*

//DSNUPROC.UTPRINT DD SYSOUT=*

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The REORG statement reorganizes the second partition

//* of DSN8D61A.DSN8S61E.

//*

//DSNUPROC.SYSIN DD *

 REORG TABLESPACE DSN8D61A.DSN8S61E PART 2

/*

//

The second philosophy is easier to implement but more difficult to support. No additional DASD is
required because all REORG work data sets are defined as temporary. Therefore, upon abnormal
completion, all interim work data sets are lost. See Listing 31.4 for sample JCL.

Listing 31.4: REORG JCL (Nonrestartable)

//DB2JOBU JOB (UTILITY),'DB2 REORG',MSGCLASS=X,CLASS=X,

 - 689 -

// NOTIFY=USER,REGION=4096K

//*

//**

//*

//* DB2 REORG UTILITY (NON-RESTARTABLE)

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='REORGTS',UTPROC=''

//*

//* UTILITY WORK DATASETS

//*

//DSNUPROC.SORTWK01 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTWK02 DDUNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SORTOUT DD DSN=&&SORTOUT,

// UNIT=SYSDA,SPACE=(CYL,(2,1))

//DSNUPROC.SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,SPACE=(CYL,(2,1)),DCB=BUFNO=20

//DSNUPROC.SYSREC DD DSN=&&SYSREC,

// UNIT=SYSDA,SPACE=(CYL,(15,5)),DCB=BUFNO=20

//DSNUPROC.SYSPRINT DD SYSOUT=*

//DSNUPROC.UTPRINT DD SYSOUT=*

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first REORG statement reorganizes the

//* named tablespace.

//* 2. The second REORG statement reorganizes the

//* named index.

//*

//DSNUPROC.SYSIN DD *

REORG TABLESPACE DSN8D61A.DSN8S61D

 - 690 -

REORG INDEX (DSN8610.XACT1)

/*

//

To restart this REORG job, you must determine in which phase the job abended. If it abended in any
phase other than the UTILINIT phase or UNLOAD phase, you must restore the tablespace being
reorganized to a previous point. You can do this by running either the RECOVER TOCOPY utility or a
simple RECOVER (if the LOG NO option of the REORG utility was specified).

After restoring the tablespace (and possibly its associated indexes), you must correct the cause of the
abend, terminate the utility, and rerun the job. As you can see, this method is significantly more difficult
to restart.

Try to use the first philosophy rather than the second. The first reorganization philosophy makes
recovery from errors as smooth and painless as possible.

Reorganization Frequency
The frequency of reorganization is different for every DB2 application. Sometimes the reorganization
frequency is different for tablespaces and indexes in the same application because different data
requires different reorganization schedules. These schedules depend on the following factors:

 Frequency of modification activity (insertions, updates, and deletions)
 Application transaction volume
 Amount of free space allocated when the tablespace or index was created

The scheduling of reorganizations should be determined by the Database Administrator, taking into
account the input of the application development team as well as end-user requirements. The following
information must be obtained for each DB2 table to determine the proper scheduling of tablespace and
index reorganizations:

 The data availability requirement to enable effective REORG scheduling
 The insertion and deletion frequency for each table and tablespace
 The number of rows per table
 An indication of uneven distribution of data values in a table
 The frequency and volume of updates to critical columns in that table. (Critical

columns are defined as columns in the clustering index, columns containing variable
data, any column used in SQL predicates, or any column that is sorted or grouped.)

Most of this information can be obtained from the DB2 Catalog if the application already exists. For new
application tablespaces and indexes, this information must be based on application specifications, user
requirements, and estimates culled from any existing non-DB2 systems.
Letting REORG Decide When to Reorganize
As of DB2 V6, it is possible to use the OFFPOSLIMIT, INDREFLIMIT, and LEAFDISTLIMIT options of
the REORG utility to determine whether a reorganization would be useful. OFFPOSLIMIT and
INDREFLIMIT apply to tablespace reorganization; LEAFDISTLIMIT applies to index reorganization.
The OFFPOSLIMIT parameter uses the NEAROFFPOSF, FAROFFPOSF, and CARDF statistics from
SYSIBM.SYSINDEXPART to gauge the potential effectiveness of a REORG. To use OFFPOSLIMIT,
specify the clause with an integer value for the REORG. For the specified partitions, the value will be
compared to the result of the following calculation:
(NEAROFFPOSF + FAROFFPOSF) _ 100 / CARDF
If any calculated value exceeds the OFFPOSLIMIT value, REORG is performed. The default value for
OFFPOSLIMIT is 10.
The INDREFLIMIT parameter uses the NEARINDREF, FARINIDREF, and CARDF statistics from
SYSIBM.SYSINDEXPART to gauge the potential effectiveness of a REORG. To use INDREFLIMIT,
specify the clause with an integer value for the REORG. For the specified partitions, the value will be
compared to the result of the following calculation:

 - 691 -

(NEARINDREF + FARINDREF) _ 100 / CARDF
If any calculated value exceeds the INDREFLIMIT value, REORG is performed. The default value for
INDREFLIMIT is 10.

Caution OFFPOSLIMIT and INDREFLIMIT cannot be used for LOB tablespaces. The
parameters can be specified for any other type of tablespace.

You can use the LEAFDISTLIMIT option to allow REORG to determine whether reorganizing an index is
recommended. To use LEAFDISTLIMIT, specify the clause with an integer value for the REORG. For
the specified index, the value will be compared to the LEAFDIST value in SYSIBM.SYSINDEXPART. If
any LEAFDIST exceeds the value specified for LEAFDISTLIMIT, REORG is performed. The default
value for LEAFDISTLIMIT is 200.
If the REPORTONLY keyword is specified, a report is generated indicating whether the REORG should be
performed or not. The actual REORG will not be performed. You can use the REORG utility in conjunction
with REPORTONLY and the INDREFLIMIT and OFFPOSLIMIT keywords for tablespaces or the
LEAFDISTLIMIT keyword for indexes, to produce reorganization reports. Further information on
determining the frequency of reorganization is provided in Part IV, "DB2 Performance Monitoring," and
Part V, "DB2 Performance Tuning."

Reorganization Job Stream
The total reorganization schedule should include a RUNSTATS job or step, two COPY jobs or steps for
each tablespace being reorganized, and a REBIND job or step for all plans using tables in any of the
tablespaces being reorganized.
The RUNSTATS job is required to record the current tablespace and index statistics to the DB2 Catalog.
This provides the DB2 optimizer with current data to use in determining optimal access paths.
An image copy should always be taken immediately before any tablespace REORG is run. This ensures
that the data is recoverable, because the REORG utility alters the physical positioning of application data.
The second COPY job is required after the REORG if it was performed with the LOG NO option.
The second COPY job or step can be eliminated with DB2 V5 if an inline COPY is performed during the
REORG. Similar to the inline COPY feature of LOAD, a SHRLEVEL REFERENCE full image copy can be
performed as a part of the REORG. To create an inline copy, use the COPYDDN and RECOVERYDDN
keywords. You can specify up to two primary and two secondary copies. When a REORG job runs with
the LOG NO option, DB2 turns on the copy pending flag for each tablespace specified in the REORG
(unless inline copy is used). The LOG NO parameter tells DB2 not to log the changes. This minimizes
the performance impact of the reorganization on the DB2 system and enables your REORG job to finish
faster.
When the LOG NO parameter is specified, you must take an image copy of the tablespace after the
REORG has completed and before it can be updated. It is good practice to back up your tablespaces
after a reorganization anyway. A REBIND job for all production plans should be included to enable DB2
to create new access paths based on the current statistics provided by the RUNSTATS job.
If all the tablespaces for an application are being reorganized, each utility should be in a separate job—
one REORG job, one RUNSTATS job, one COPY job, and one REBIND job. These common jobs can be
used independently of the REORG job. If isolated tablespaces in an application are being reorganized, it
might be acceptable to perform the REORG, RUNSTATS, COPY, and REBIND as separate steps in a
single job. Follow your shop guidelines for job creation standards.
Estimating REORG Work Data Set Sizes
The REORG utility requires the use of work data sets to reorganize tablespaces and indexes. The
following formulas help you estimate the sizes for these work data sets. More complex and precise
calculations are in the DB2 Utility Guide and Reference manual, but these formulas should produce
comparable results.
SYSREC = (number of pages in tablespace) x 4096 x 1.10

Note If the tablespace being reorganized uses 32K pages, multiply the SYSREC number
by 8. The total number of pages used by a tablespace can be retrieved from
either the VSAM LISTCAT command or the DB2 Catalog, as specified in the
NACTIVE column of SYSIBM.SYSTABLESPACE. If you use the DB2 Catalog
method, ensure that the statistics are current by running the RUNSTATS utility
(discussed in Chapter 32, "Catalog Manipulation Utilities").
An additional 10% of space is specified because of the expansion of variable
columns and the reformatting performed by the REORG UNLOAD phase.

 - 692 -

SORTOUT = (size of the largest index key + 12) x (largest number of rows to be loaded to a single
table) x (total number of nonclustering indexes defined for each table) x 1.2

Note If any number in the SORTOUT calculation is 0, substitute 1.

The multiplier 1.2 is factored into the calculation to provide a "fudge factor." If you
are absolutely sure of your numbers, the calculation can be made more precise
by eliminating the additional multiplication of 1.2.

 SYSUT1 = (size of the largest index key + 12) x (largest number of rows to be loaded to a single table)
x (total number of nonclustering indexes defined for each table) x 1.2

Note If any number in the SYSUT1 calculation is 0, substitute 1.

The multiplier 1.2 is factored into the calculation to provide a "fudge factor." If you
are absolutely sure of your numbers, the calculation can be made more precise
by eliminating the additional multiplication of 1.2.

SORTWKxx = (size of SYSUT1) x 2
Note If any number in the SORTWKxx calculation is 0, substitute 1.

After calculating the estimated size in bytes for each work data set, convert the number into cylinders,
rounding up to the next whole cylinder. Allocating work data sets in cylinder increments enhances the
utility's performance.
REORG INDEX Phases
The REORG utility consists of the following six phases when run for an index:
UTILINIT Sets up and initializes the REORG utility.
UNLOAD Unloads the index and writes the keys to a sequential data set

(SYSREC).
BUILD Builds indexes and updates index statistics.
LOG Only for SHRLEVEL CHANGE; processes the log iteratively to append

changes.
SWITCH Switches access to shadow copy of index space or partition being

reorganized (online REORG) with SHRLEVEL REFERENCE or CHANGE.
UTILTERM Performs the final utility cleanup.

REORG TABLESPACE Phases
The REORG utility consists of ten phases when run on a tablespace:
UTILINIT Sets up and initializes the REORG utility.
UNLOAD Unloads the data into a sequential data set (SYSREC) unless

NOSYSREC is specified, in which case the data is just passed to the
RELOAD phase. If a clustering index exists and either SORTDATA or
SHRLEVEL CHANGE is specified, the data is sorted. The
compression dictionary is rebuilt in this step for COMPRESS YES
tablespaces.

RELOAD Reads the records passed from the UNLOAD phase or from the
sequential data set created in the UNLOAD phase, loads them to the
tablespace, and extracts index keys (SYSUT1). Creates a full image
copy if COPYDDN, RECOVERYDDN, SHRLEVEL REFERENCE, or
SHRLEVEL CHANGE are specified. If SORTKEYS is specified, the
index keys are sorted by a subtask.

SORT Sorts the key entries before updating indexes, if any exist. SYSUT1
is the input to the sort, and SORTOUT is the output of the sort. This
phase can be skipped if there is only one key per table, if the data
is reloaded in key order, or if the data is reloaded grouped by table.
If SORTKEYS is used, passes sorted keys in memory to the BUILD
phase.

BUILD Updates any indexes to reflect the new location of records and
updates index statistics.

 - 693 -

SORTBLD When parallel index build is specified (SORTKEYS), the SORT and
BUILD phases are performed in the SORTBLD phase instead.

LOG Only for SHRLEVEL CHANGE: processes the log iteratively to
append changes to the image copies.

SWITCH Switches access to a shadow copy of the tablespace or partition
being reorganized (online REORG) with SHRLEVEL REFERENCE or
CHANGE.

BUILD2 Corrects nonpartitioning indexes when reorganizing a partition
using SHRLEVEL REFERENCE or CHANGE.

UTILTERM Performs the final utility cleanup.

REORG TABLESPACE Phases for LOB Tablespaces
The REORG utility consists only of three phases when run against a LOB tablespace:
UTILINIT Sets up and initializes the REORG utility.
REORGLOB Rebuilds the LOB tablespace in place; no LOBs are unloaded or

reloaded. The LOB tablespace is placed in a RECOVER pending
state when processing begins and is removed from this state when
the REORGLOB phase completes. So, if the REORGLOB phase fails,
the LOB tablespace will be in a RECOVER pending state.

UTILTERM Performs the final utility cleanup.

REORG Rerun/Restart Procedures
The REORG restart procedure depends on the phase that the reorganization utility was running when the
abend occurred. There are two ways to determine the phase in which the abend occurred.
The first method is to issue the DISPLAY UTILITY command to determine which utilities are currently
active, stopped, or terminating in the DB2 system. The format of the command is
-DISPLAY UTILITY(*)
The second way to determine the abending phase is to view the SYSPRINT DD statement of the REORG
step. This method is not as desirable as the first, but it is the only method you can use when the DB2
system is down. At the completion of each phase, DB2 prints a line stating that the phase has finished.
You can assume that the phase immediately following the last phase reported complete in the
SYSPRINT DD statement is the phase that was executing when the abend occurred.
After determining the phase of the REORG utility at the time of the abend, follow the steps outlined here
to restart or rerun the reorganization. In the following procedures, it is assumed that your REORG
processing is restartable.
If the abend occurred in the UTILINIT phase

1. Determine the cause of the abend. An abend in this step is usually caused by
another utility executing with the same UID or a utility that is incompatible with
another utility currently executing.

2. Resolve the cause of abend. An abend in this phase is probably due to improper
job scheduling. Issue the DISPLAY UTILITY command to determine which
utilities are currently in process for the DB2 system. Resolve the scheduling
problem by allowing conflicting utilities to complete before proceeding to step 3.

3. Restart the job at the REORG step.
If the abend occurred in the UNLOAD phase

1. Determine the cause of the abend. An abend in this step is usually caused by
insufficient space allocated to the SYSREC DD statement.

2. Resolve the cause of the abend. If the problem is an out-of-space abend (B37) on
the SYSREC DD statement, the data set associated with that DD statement will
have been cataloged. Allocate a new data set with additional space, copy the
SYSREC data set to the new data set, delete the original SYSREC data set, and
rename the new data set to the same name as the original SYSREC data set.

3. Restart the job at the REORG step with a temporary change to alter the UTPROC
parameter to RESTART. This restarts the utility at the point of the last commit.

If the abend occurred in the RELOAD phase
1. Determine the cause of the abend. An abend in this phase is usually a Resource

Unavailable abend due to another user allocating the tablespace or the VSAM

 - 694 -

data set associated with the tablespace running out of space. Note the SHRLEVEL
specified for the REORG.

When an abend occurs in this phase, the tablespace will be in recover pending and copy
pending status. Associated indexes will be in recover pending status.

2. Resolve the cause of the abend.
a. If the problem is timeout due to another job or user accessing the

tablespace to be reloaded, determine the conflicting job or user
access and wait for it to complete processing before proceeding to
step 3.

b. If the problem is an out-of-space abend on the VSAM data set
containing the tablespace being reloaded, contact the DBA or DASD
support unit. This situation can be corrected by adding another
volume to the STOGROUP being used; by using IDCAMS to redefine
the VSAM data set, move the VSAM data set, or both; or by altering
the primary space allocation quantity for the index, the secondary
space allocation quantity for the index, or both.

3.
a. If the abend was not due to an error in the data set for the SYSREC

DD statement, restart the job at the REORG step with a temporary
change to alter the UTPROC parameter to RESTART.

b. If the abend was caused by an error in the data set for the SYSREC
DD statement, first terminate the utility by issuing the -TERM
UTILITY(UID) command. Then recover the tablespace by
executing the Recover tablespace utility. Next, re-create a temporary
copy of the control cards used as input to the REORG step. Omit the
control cards for all utilities executed in the step before the abend.
This bypasses the work accomplished before the abend. The first
card in the new data set should be the utility that was executing at
the time of the abend. Finally, restart the job at the REORG step using
the modified control cards.

c. For SHRLEVEL NONE, the tablespace and indexes are left in
recovery pending status. Once the tablespace is recovered, the
REORG job can be rerun. For SHRLEVEL REFERENCE or CHANGE,
the data records are reloaded into shadow copies so the original
objects are not impacted. The job can be rerun.

If the abend occurred in the SORT phase
1. Determine the cause of the abend. The predominant causes are insufficient sort

work space or insufficient space allocations for the SORTOUT DD statement.

When an abend occurs in this phase, the tablespace will be in copy pending status.
Associated indexes will be in recover pending status.

2. Resolve the cause of the abend. If the problem is insufficient space on either the
sort work or SORTOUT DD statements, simply increase the allocations and
proceed to step 3.

3. Restart the job at the REORG step with a temporary change to alter the UTPROC
parameter to RESTART(PHASE).

If the abend occurred in the BUILD phase
1. Determine the cause for the abend. An abend in this step is usually the result of

the VSAM data set associated with the indexspace running out of space.

When an abend occurs in this phase, the tablespace will be in copy pending status.
2. Resolve the cause of abend. If the problem is an out-of-space abend on the

VSAM data set containing the indexspace being reloaded, contact the DBA or
DASD support unit. This situation can be corrected by adding another volume to
the STOGROUP being used—by using IDCAMS to redefine the VSAM data set,
move the VSAM data set, or both—or by altering the primary space allocation
quantity for the index, the secondary space allocation quantity for the index, or
both.

3. Restart the job at the REORG step with a temporary change to alter the UTPROC
parameter to RESTART(PHASE).

 - 695 -

For abends in the SORT, BUILD, or LOG phases, the SHRLEVEL option can impact the response:
1. For SHRLEVEL NONE, indexes that were not built will be in recovery pending

status. Run REORG with the SORTDATA option or RECOVER INDEX to rebuild
these indexes.

For SHRLEVEL REFERENCE or CHANGE, the records are reloaded into shadow objects,
so the original objects have not been affected by REORG. The job can be rerun.

If the abend occurred in the SWITCH phase
1. All data sets that were renamed to their shadow counterparts are renamed back.

This leaves the objects in their original state. The job can be rerun. If there is a
problem in renaming to the original data sets, the objects are placed in recovery
pending status. The tablespace can then be recovered using the image copy
created by REORG. The indexes must also be recovered.

If the abend occurred in the BUILD2 phase
1. The logical partition is left in recovery pending status. Run RECOVER INDEX for

the logical partition to complete the REORG.
If the abend occurred in the UTILTERM phase

1. An abend in this phase is unlikely because all the work required for the
reorganization has been completed. A problem at this phase means that DB2
cannot terminate the utility.

The tablespace will be in copy pending status.
2. Terminate the DB2 utility by issuing the TERM UTILITY command. The format of

the command is
Note -TERM UTILITY(UID)

3. where UID is obtained from the -DISPLAY UTILITY (*) command.
4. If data sets associated with the SYSREC, SYSUT1, and SORTOUT DD statements

were cataloged as a result of the abend, uncatalog them and force the job to
complete.

Caution You cannot restart a REORG on a LOB tablespace if it is in the REORGLOB
phase. Be sure to take a full image COPY of the LOB tablespace before
executing REORG if the LOB tablespace was defined specifying LOG NO.
Failure to do so will place the recoverability of the LOB tablespace in jeopardy.
Any LOB tablespace defined with LOG NO will be in COPY pending status after
REORG finishes.

Gathering Inline Statistics During the REORG
As of DB2 V6, it is possible to generate statistics during the execution of the REORG utility. This is
referred to as inline RUNSTATS. Up-to-date statistics will be generated during the REORG instead of
requiring an additional RUNSTATS step.
To generate inline RUNSTATS, use the STATISTICS keyword. You can gather tablespace statistics,
index statistics, or both. By generating statistics during the REORG, you can accomplish two tasks with
one I/O (reorganization and statistics collection) and also avoid the need to schedule an additional
RUNSTATS step after the REORG.
REORG and the SHRLEVEL Parameter
As of DB2 V5, the SHRLEVEL parameter has been added to the REORG utility. Similar to the functionality
of SHRLEVEL in other DB2 utilities, the SHRLEVEL parameter controls the level of concurrent data
access permitted during a REORG. There are three SHRLEVEL options for REORG: NONE, REFERENCE,
and CHANGE.
SHRLEVEL NONE indicates that concurrent data reading is permitted while data is being unloaded, but
no access is permitted during the RELOAD phase. This is the default and is the manner in which REORG
is executed for all versions of DB2 prior to V5.
SHRLEVEL REFERENCE indicates that concurrent read access is permitted during both the UNLOAD and
RELOAD phases of the REORG.
SHRLEVEL CHANGE indicates concurrent read and write access is available throughout most of the
reorganization.
Both SHRLEVEL REFERENCE and SHRLEVEL CHANGE require a shadow copy of the object being
reorganized.

 - 696 -

Using SHRLEVEL CHANGE to Achieve Online Reorganization
Data availability can be greatly enhanced through the use of SHRLEVEL CHANGE when reorganizing
tablespaces. This option, known as Online REORG or Concurrent REORG, is new as of DB2 V5. When
using online REORG, full read and write access is available to the data during most phases of the REORG
utility. This is achieved by modifying the way in which REORG operates (see Figure 31.1). Online REORG
takes the following steps:

Figure 31.1: Concurrent REORG processing.

1. Data is unloaded from the tablespace, partition, or index during which read and
write access is available.

2. Data is reloaded into a shadow copy of the data store being reorganized. Read
and write access is still available to the original tablespace, partition, or index.

3. The log entries recording the changes made to the original data set while the
shadow reload was occurring are applied to the shadow. Read and usually write
access is still available to the original tablespace, partition, or index. This step is
performed iteratively based upon the conditions specified in MAXRO, DEADLINE,
DELAY, and LONGLOG.

4. The original and the copy are swapped so that future access is to the newly
reorganized version of the data. Data is unavailable until the swap is
accomplished.

5. Read and write access to the data is enabled again.
Online REORG should not be used all of the time because there are drawbacks to its use. First and
foremost, is the need to have excess disk space to store the shadow copy. The shadow copy typically
consumes at least as much space as the object being reorganized. More space may be required
because REORG reclaims free space.
Because of the need to apply changes from the log, online REORG is most effectively used when
transaction throughput is low and most transactions are of short duration. Furthermore, avoid
scheduling REORG with SHRLEVEL CHANGE when low-tolerance applications are executing.

The Mapping Table
A mapping table must be specified whenever a SHRLEVEL CHANGE reorganization is run. The mapping
table is used by REORG to map between the RIDs of records in the original copy and the like RIDs in the
shadow copy. The mapping table must use the following definition as a template:
 CREATE TABLE table-name
 (TYPE CHAR(1) NOT NULL,
 SOURCE_RID CHAR(5) NOT NULL,
 TARGET_XRID CHAR(9) NOT NULL,
 LRSN CHAR(6) NOT NULL
);

Additionally, an index must be created for the mapping table using the following template:
 CREATE TYPE 2 UNIQUE INDEX index-name
 ON TABLE table-name
 (SOURCE_RID ASC,

 - 697 -

 TYPE,
 TARGET_XRID,
 LRSN
);
Create the table in a segmented tablespace explicitly set aside for the use of the mapping table. Multiple
mapping tables can be created in the segmented tablespace if concurrent online REORGs are required to
be run. One mapping table is required per online REORG execution. Although a single mapping table can
be reused for multiple REORGs, they cannot be concurrent REORGs. Consider specifying LOCKSIZE
TABLE for the tablespace containing the mapping table because concurrent tasks will not access the
mapping table.
Any name can be used for the mapping table as long as it conforms to the DB2 restrictions on table
names. It is wise to create a naming standard to identify mapping tables as such. For example, you may
want to name all mapping tables beginning with a prefix of MAP_.

Caution Explicit creation of shadow copy data sets is required only if the object being
reorganized uses user-defined VSAM data sets instead of STOGROUPs. This is
yet another reason to use STOGROUPs instead of user-defined VSAM.

Online REORG Options
There are several additional options that can be used in conjunction with online REORG. These options
are briefly discussed in this section.
MAXRO
The MAXRO option is an integer that specifies the amount of time for the last iteration of log processing
for the online REORG. DB2 continues to iteratively apply log records until it determines that the next
iteration will take less than the indicated MAXRO value. Of course, the actual execution time for the last
iteration may actually exceed the MAXRO value.
Specifying a small positive MAXRO value reduces the length of the period of read-only access, but it
might increase the elapsed time for REORG to complete. If you specify a huge positive value, the second
iteration of log processing is probably the last iteration.

Note The ALTER UTILITY command can be used to change the value of MAXRO
during the execution of an online REORG.

The MAXRO parameter can also be set to DEFER instead of an integer value. The DEFER option indicates
that log processing iterations can continue indefinitely. If DEFER is specified, the online REORG will not
start the final log processing iteration until the MAXRO value is modified using the ALTER UTIL
command.
When DEFER is specified and DB2 determines that the time for the current iteration and the estimated
time for the next iteration are both less than five seconds, DB2 will send a message to the console
(DSNU362I) indicating that a pause will be inserted before the next log iteration. When running an
online REORG specifying DEFER, the operator should scan for DSNU362I messages to determine when
to issue an ALTER UTIL command to change the MAXRO value.
The DEFER parameter should always be used in conjunction with LONGLOG CONTINUE.
LONGLOG
The LONGLOG parameter designates how DB2 will react if the number of records that the next log
processing iteration is not lower than the number that the previous iterations processed. If this occurs,
the REORG log processing may never catch up to the write activity of the concurrently executing
transactions and programs.
If LONGLOG CONTINUE is specified, DB2 will continue processing the REORG until the time on the JOB
statement expires. When MAXRO DEFER is used in conjunction with LONGLOG CONTINUE, the online
REORG continues with read/write access still permitted to the original tablespace, partition, or index.
When the switch to the shadow copy is required, an operator or DBA must issue the ALTER UTIL
command with a large integer MAXRO value. CONTINUE is the default LONGLOG value.
If LONGLOG TERM is specified, DB2 terminates reorganization after the delay specified by the DELAY
parameter (discussed in the next section).
If LONGLOG DRAIN is specified, DB2 drains the write claim class after the delay specified by the DELAY
parameter, thereby forcing the final log processing iteration to happen.
DELAY
The DELAY parameter is used in conjunction with the LONGLOG parameter. It indicates the minimum
amount of time before the TERM or DRAIN activity is performed.
DEADLINE

 - 698 -

The DEADLINE parameter provides a mechanism for shutting off an online REORG. If DB2 determines
that the switch phase will not finish by the deadline, DB2 terminates the REORG.
If DEADLINE NONE is specified, there is no deadline and the REORG can continue indefinitely. This is
the default option.
If DEADLINE timestamp is specified, the REORG must finish before the specified date and time
deadline. This indicates that the switch phase of the log processing must be finished by the timestamp
provided.

Caution The timestamp provided to the DEADLINE parameter must be in the future.
The REORG will not commence if the date/time combination has already
passed.

REORG TABLESPACE Locking Considerations
The REORG TABLESPACE utility, regardless of the execution options specified, can run concurrently
with the following utilities (each accessing the same object):

 DIAGNOSE
 REPORT

When REORG TABLESPACE is run specifying SHRLEVEL NONE and UNLOAD ONLY, the following
additional utilities can be run concurrently:

 CHECK INDEX
 COPY
 QUIESCE
 REBUILD INDEX

(only when a clustering index does not exist)
 REORG INDEX

(only when a clustering index does not exist)
 REORG SHRLEVEL NONE UNLOAD ONLY
 REPAIR DUMP or VERIFY
 REPAIR LOCATE INDEX PAGE REPLACE

(only when a clustering index does not exist)
 RUNSTATS
 STOSPACE

The REORG TABLESPACE utility when run specifying UNLOAD ONLY will drain all write claim classes for
the tablespace or partition being reorganized. Additionally, if a clustering index exists, the REORG utility
will drain all write claim classes for the index or partition.
REORG TABLESPACE SHRLEVEL NONE
When REORG TABLESPACE SHRLEVEL NONE is executed with the UNLOAD CONTINUE or UNLOAD
PAUSE options, the following locking activity occurs:

 Write claim classes are drained for the tablespace or tablespace partition and the
associated index or index partition during the UNLOAD phase.

 All claim classes are drained for the tablespace or tablespace partition and the
associated index or index partition during the RELOAD phase.

 Write claim classes are drained for the logical partition of a nonpartitioned type 2
index during the RELOAD phase.

 For a REORG of a single partition, all claim classes are drained for the logical
partition of a non partitioned type 2 index during the RELOAD phase.

REORG TABLESPACE SHRLEVEL REFERENCE
When REORG TABLESPACE SHRLEVEL REFERENCE is executed with the UNLOAD CONTINUE or
UNLOAD PAUSE options, the following locking activity occurs:

 Write claim classes are drained for the tablespace or tablespace partition and the
associated partitioning index and nonpartitioned index during the UNLOAD phase.

 All claim classes are drained for the tablespace or tablespace partition and the
associated partitioning index and nonpartitioned type 1 indexes during the
SWITCH phase.

 Write claim classes are drained for the logical partition of a nonpartitioned type 2
index during the SWITCH phase.

 Write claim classes are drained for the tablespace or tablespace partition and the
associated partitioning index and nonpartitioned type 1 indexes during the
UNLOAD phase.

 All claim classes are drained for the logical partition of a nonpartitioned type 2
index during the UNLOAD phase.

 - 699 -

 All claim classes are drained for the tablespace or tablespace partition and the
associated partitioning index and nonpartitioned type 1 indexes during the
SWITCH phase of a single partition REORG.

 For a REORG of a single partition, the repeatable read class is drained for
nonpartitioned type 2 index during the SWITCH phase.

REORG TABLESPACE SHRLEVEL CHANGE
When REORG TABLESPACE SHRLEVEL CHANGE is executed with the UNLOAD CONTINUE or UNLOAD
PAUSE options, the following locking activity occurs:

 The read claim class is claimed for the tablespace and associated indexes during
the UNLOAD phase.

 The write claim class is drained for the tablespace and associated indexes during
the LOG phase.

 All claim classes are drained for the tablespace and associated indexes during
the SWITCH phase.

REORG INDEX Locking Considerations
The REORG INDEX utility is compatible with the following utilities:

 CHECK LOB
 COPY TABLESPACE
 DIAGNOSE
 MERGECOPY
 MODIFY
 RECOVER TABLESPACE (no options)
 RECOVER TABLESPACE ERROR RANGE
 REORG SHRLEVEL NONE UNLOAD ONLY or UNLOAD EXTERNAL

(only when a clustering index does not exist)
 REPAIR LOCATE RID (DUMP, VERIFY, or REPLACE)
 REPAIR LOCATE TABLESPACE PAGE REPLACE
 REPORT
 RUNSTATS TABLESPACE
 STOSPACE

SHRLEVEL NONE
When REORG INDEX SHRLEVEL NONE is executed, the write claim class is drained for the index or
index partition during the UNLOAD phase and all claim classes are drained during both the SORT and
BUILD phase. Remember, the SORT phase can be skipped.
SHRLEVEL REFERENCE
When REORG INDEX SHRLEVEL REFERENCE is executed, the write claim class is drained for the
index or index partition during the UNLOAD phase—all claim classes are drained during the SWITCH
phase.
SHRLEVEL CHANGE
When REORG INDEX SHRLEVEL CHANGE is executed, the read claim class is claimed for the index or
index partition during the UNLOAD phase. Additionally, the write claim class is drained during the last
iteration of the log processing—all claim classes are drained during both the SWITCH phase.
REORG Guidelines
By adhering to the following guidelines, you will ensure efficient and effective reorganization of DB2
tablespaces.

Ensure That Adequate Recovery Is Available
Take an image copy of every tablespace to be reorganized before executing the REORG utility. All image
copies taken before the reorganization are marked as invalid for current point-in-time recovery by the
REORG utility. These image copies can be used only with the TORBA or TOCOPY options of the RECOVER
utility.
Take an image copy of every tablespace reorganized after using the LOG NO option of the REORG utility.
All tablespaces reorganized with the LOG NO option are placed into copy pending status.

Analyze Clustering Before Reorganizing
Consider the CLUSTER RATIO of a tablespace before reorganizing. If the tablespace to be reorganized
is not clustered, specify the SORTDATA parameter. The SORTDATA option causes the data to be
unloaded according to its physical sequence in the tablespace. The data is then sorted in sequence by
the clustering index columns.

 - 700 -

If the SORTDATA parameter is not specified, the tablespace data is unloaded using the clustering index,
which is highly efficient when the tablespace is clustered. If the tablespace is not clustered, however,
unloading by the clustering index causes REORG to scan the tablespace data in an inefficient manner.
Refer to Chapter 24, "DB2 Object Monitoring Using the DB2 Catalog," for DB2 Catalog queries to obtain
CLUSTER RATIO.
DB2 does not consider a default clustering index to be clustering for the purposes of unloading for a
REORG. Only an explicitly created clustering index, if available, will be used.
If the CLUSTER RATIO for a tablespace is less than 90%, consider using the SORTDATA option. When
data is less than 90% clustered, unloading physically and sorting is usually more efficient than scanning
data. Furthermore, the DBA statistics NEAROFFPOS and FAROFFPOS can be used to judge whether to
use the SORTDATA option.
Monitor the results of the REORG utility with and without the SORTDATA option, however, to gauge its
effectiveness with different application tablespaces.

Note Use of the SORTDATA option can increase the sort work requirements of the
REORG utility, especially for tables with long rows and few indexes.

Follow General Reorganization Rules
As a general rule, reorganize indexes when the LEAFDIST value is large or the number of levels is
greater than four. Reorganize tablespaces when the CLUSTER RATIO drops below 95% or when
FARINDREF is large. Reorganizing a large tablespace as soon as the CLUSTER RATIO is not 100%
could produce significant performance gains.
Consider Using SORTKEYS
REORG provides a SORTKEYS parameter similar to the SORTKEYS parameter of LOAD. When more than
multiple indexes exist and need to be created, consider using the SORTKEYS keyword. When
SORTKEYS is specified, index keys are sorted in parallel with the RELOAD and BUILD phases, thereby
improving performance.

An estimate of the number of keys to be sorted can be supplied. To estimate the number of keys to sort,
use the following calculation:
Number of Keys = (Total number of rows in the table) x
 [(number of indexes on the table) +
 (number of foreign keys)]
Consider Using NOSYSREC
The NOSYSREC option can be used so that the REORG process does not require an unload data set. This
can enhance performance because intermediate disk I/O is eliminated. To use the NOSYSREC option,
neither the UNLOAD PAUSE nor the UNLOAD ONLY options can be used. Furthermore, you must specify
SORTDATA, and SHRLEVEL REFERENCE or SHRLEVEL CHANGE.
However, the NOSYSREC option affects the restartability of the REORG utility. For a SHRLEVEL
REFERENCE tablespace REORG, if an error occurs during the RELOAD phase, you must restart at the
UNLOAD phase, effectively unloading all of the data again. This is because the previously unloaded data
has not been saved to disk. Likewise, for a REORG TABLESPACE SHRLEVEL NONE, if an error occurs
during the RELOAD phase, a RECOVER TABLESPACE is required. Therefore, it is wise to create an
image copy prior to running REORG SHRLEVEL NONE with the NOSYSREC option.
Consider Specifying REUSE
When the REUSE option is used in conjunction with SHRLEVEL NONE, the REORG utility will logically
reset and reuse STOGROUP-managed data sets without deleting and redefining them. If REUSE is not
specified, the underlying data sets will be deleted and redefined as part of the REORG process. By
eliminating the delete and redefine step, you can enhance the overall performance of the reorganization
because less work needs to be done. However, if a data set is in multiple extents, the extents will not be
released if you specify the REUSE parameter.

Caution The REUSE option is not applicable with a SHRLEVEL REFERENCE or
SHRLEVEL CHANGE REORG.

Buffer REORG Work Data Sets
Ensure that adequate buffering is specified for the work data set by explicitly coding a larger BUFNO
parameter in the REORG utility JCL for the SYSUT1 and SYSREC DD statements. The BUFNO parameter
creates read and write buffers in main storage for the data set, thereby enhancing the utility's
performance. A BUFNO of approximately 20 is recommended for medium-sized tablespaces, and a
BUFNO between 50 and 100 is recommended for larger tablespaces. However, ensure that sufficient

 - 701 -

memory (real or expanded) is available before increasing the BUFNO specification for your REORG work
data sets.
Specify KEEPDICTIONARY for Performance
The REORG utility will rebuild the compression dictionary for tablespaces defined with the COMPRESS
YES parameter. Specifying the KEEPDICTIONARY parameter causes the REORG utility to bypass
dictionary rebuilding.
This can improve the overall performance of the REORG utility because the CPU cycles used to build the
dictionary can be avoided. However, as the compression ratio deteriorates, the LRECL of the SYSREC
data set will get longer. Do not utilize the KEEPDICTIONARY option if the type of data in the table has
changed significantly since the last time the dictionary was built. Remember, the dictionary is built at
LOAD or REORG time only. If the type of data being stored has changed significantly, allowing the REORG
utility to rebuild the compression dictionary will provide for more optimal data compression.
Be Aware of VARCHAR Overhead
The REORG utility unloads VARCHAR columns by padding them with spaces to their maximum length.
This reduces the efficiency of reorganizing.
Be Aware of VSAM DELETE and DEFINE Activity
The underlying VSAM data sets for STOGROUP-defined tablespaces and indexes are deleted and
defined by the REORG utility. If the tablespace or index data set has been user-defined, the
corresponding VSAM data set is not deleted.

Consider Concurrently Reorganizing Partitions
It is possible to execute the REORG utility concurrently on separate partitions of a single partitioned
tablespace. By reorganizing partitions concurrently, the overall elapsed time to complete the REORG
should be substantially lower than a single REORG of the entire partitioned tablespace. However, the
overall CPU usage will probably increase. This is usually a satisfactory trade-off, however, as elapsed
time impacts overall data availability.
Use REORG to Move STOGROUP-Defined Data Sets
The REORG utility can be used to reallocate and move STOGROUP-defined data sets. By altering
STOGROUP, PRIQTY, or SECQTY and then reorganizing the tablespace or index, data set level
modification can be implemented. The REUSE option must not be specified to ensure that underlying
data sets are deleted and redefined.
Use REORG to Archive Data
The REORG utility can be used to delete data from a table in the tablespace and archive it to a data set.
To archive rows during a REORG, use the DISCARD option and the DISCARDDN to indicate a data set to
hold the discarded data. The criteria for discarding is specified using the FROM TABLE and WHEN
clause.
The tablespace being reorganized can contain more than one table. You can use the FROM TABLE
clause to indicate which tables are to be processed for discards. Multiple tables can be specified. The
table cannot be a DB2 Catalog table.
The WHEN clause is used to define the specific criteria for discarding. A selection condition can be coded
in the WHEN clause indicating which records in the tablespace are to be discarded. If the WHEN clause is
not coded, no records are discarded.
The WHEN clause is basically an SQL predicate used to specify particular data. It specifies a condition
that is true, false, or unknown for the row. When the condition evaluates to true, the row is discarded.
For example,
REORG TABLESPACE (DSN8D61A.DSN8S61P)
 DISCARD DISCARDDN ARCHDD
 FROM TABLE DSN8610.ACT
 WHEN ACTNO < 100
This REORG statement indicates that any row of DSN8610.ACT that contains an ACTNO value less than
100 will be removed from the table and placed in the data set specified by ARCHDD.

Caution Specifying DISCARD potentially can cause a performance degradation for the
REORG process. When archiving data using DISCARD, keep in mind that rows
are decompressed (if compression is enabled) and any edit routines are
decoded. If you specify a DISCARDDN data set, any field procedures on the
rows will be decoded, and SMALLINT, INTEGER, FLOAT, DECIMAL, DATE,
TIME, and TIMESTAMP columns will be converted to external format.
When not using DISCARD, REORG will bypass all edit routines, field
procedures, and validation procedures.

 - 702 -

When running a REORG with the DISCARD option on a table involved in a referential constraint, you must
run CHECK DATA against any objects placed in a CHECK pending state as a result of the data being
archived.
Collect Inline RUNSTATS Using the STATISTICS Option
Collecting statistics during the execution of the REORG utility, referred to as inline RUNSTATS, is
preferable to running a subsequent RUNSTATS after every REORG. By specifying the STATISTICS
keyword, up-to-date statistics will be generated during the REORG.
If you are not yet using DB2 Version 6, and therefore do not have the inline statistics feature available,
be sure to execute the RUNSTATS utility immediately after reorganizing a DB2 tablespace. This is
necessary to maintain current table statistics for access path determination. Plans and packages must
be rebound if access paths are to be determined using the updated statistics. Any dynamic SQL
statements will immediately take advantage of the new statistics.

Consider Reorganizing Indexes More Frequently Than Tablespaces
The cost of reorganizing an index is small compared to the cost of reorganizing a tablespace.
Sometimes, simply executing REORG INDEX on a tablespace's indexes can enhance system
performance. Reorganizing an index will not impact clustering, but it will do the following:

 Possibly impact the number of index levels.
 Reorganize and optimize the index page layout, removing inefficiencies introduced

due to page splits.
 Reset the LEAFDIST value to 0 (or close to 0).
 Reset free space.

Consider Design Changes to Reduce REORG Frequency
You can reduce the frequency of REORG by adding more free space (PCTFREE, FREEPAGE), updating in
place to preformatted tables (all possible rows), avoiding VARCHAR, and reorganizing indexes more
frequently.

Reorganizing the DB2 Catalog

Prior to DB2 V4, it was not possible to reorganize the tablespaces in the DB2 Catalog and DB2
Directory because of the internal hashing and link structures built into these databases. Of the many
new features added to DB2 V4, one of the most eagerly awaited by database administrators is the
ability to expediently reorganize the DB2 catalog and DB2 directory in a systematic manner.

The DB2 catalog is the central repository for DB2 object and user metadata. DB2 is constantly referring
to that metadata as it processes applications and queries. The physical condition of the tablespaces and
indexes that comprise the DB2 catalog is therefore a major component in overall DB2 subsystem
performance.

Likewise, the DB2 directory contains internal control structures such as DBDs and skeleton cursor
tables that can be accessed only by DB2 itself. The information in the DB2 directory is critical for
database access, utility processing, plan and package execution, and logging. Efficient access to this
information is quite critical.
Prior to DB2 V4, reorganization of the DB2 catalog and DB2 directory using the REORG utility was not
possible. The only option for any type of "reorganization" activity was to run the RECOVER INDEX utility
on DB2 catalog indexes. This rebuilt the indexes, but had no impact on the underlying data housed in
the actual physical tablespace. As of DB2 V4, it is permitted to execute the REORG utility on tablespaces
and indexes in the DB2 catalog database (DSNDB06) and on specific tablespaces (SCT02, SPT01, and
DBD01) in the DB2 directory database (DSNDB01). As of DB2 V6, of course, the REBUILD INDEX utility
can be run to rebuild DB2 Catalog and Directory indexes.

When Should the DB2 Catalog and Directory Be Reorganized?
To determine when to reorganize the system catalog, DBAs can use most of the same basic indicators
used to determine whether application tablespaces should be reorganized. Although it always has been
a wise course of action to execute RUNSTATS on the DB2 Catalog tablespaces, it becomes even more
important now that these tablespaces can be reorganized. These statistics can be analyzed to
determine when a REORG should be run. When RUNSTATS is run for a catalog tablespace, the statistics
about that system catalog tablespace are gathered and then stored the DB2 Catalog tables themselves.
Table 31.2 provides a basic guide to help determine when to reorganize system catalog tablespaces
and indexes.

Table 31.2: DB2 Catalog Reorganization Indicators

 - 703 -

Column Catalog Table Object Impact
NEAROFFPOSF SYSIBM.SYSINDEXPART TABLESPACE +
FAROFFPOSF SYSIBM.SYSINDEXPART TABLESPACE ++++
CLUSTERRATIO SYSIBM.SYSINDEXES INDEX – – – –

–
NEARINDREF SYSIBM.SYSTABLEPART INDEX +
FARINDREF SYSIBM.SYSTABLEPART INDEX ++++
LEAFDIST SYSIBM.SYSINDEXPART INDEX +++

This table is similar to the one in Chapter 24 that details reorganization indicators for application
tablespaces and indexes (as opposed to system catalog tablespaces and indexes). The column and
table name where the statistic can be found is given in the first two columns of the chart. The third
column indicates whether the statistic is applicable for a tablespace or an index. The fourth column
gives an indication of the impact of the statistic. A plus (+) sign indicates that you should REORG more
frequently as the value in that column gets larger. A minus (–) sign indicates that you should REORG
more frequently as the value gets smaller. As the number of "+" or "–" signs increases, the need to
REORG becomes more urgent. For example, as FAROFFPOSF gets larger, the need to REORG is very
urgent, as indicated by the four plus (+) signs.
For the SYSDBASE, SYSVIEWS, and SYSPLAN catalog tablespaces, the value for the FAROFFPOSF and
NEAROFFPOSF columns of SYSINDEXPART can be higher than for other tablespaces before they need
to be reorganized. In addition to the guidelines in Table 31.2, consider catalog and directory
reorganization in the following situations:

 To reclaim space and size tablespaces appropriately when DB2 catalog and directory
data sets are not using a significant portion of their allocated disk space (PRIQTY).

 When it is necessary to move the DB2 catalog and directory to a different device.
 When the DB2 catalog and directory data sets contain a large number of secondary

extents.

Synchronizing System Catalog Reorganization
It is a more difficult prospect to determine when the DB2 directory tablespaces should be reorganized.
The RUNSTATS utility does not maintain statistics for these "tablespaces" like it can for the DB2 Catalog.
However, it is possible to base the reorganization of the DB2 directory tablespaces on the
reorganization schedule of the DB2 catalog tablespaces. In fact, in certain situations, it is imperative that
specific DB2 directory tablespaces are reorganized when a "companion" DB2 catalog tablespace is
reorganized. The chart contained in Table 31.3 provides information on keeping the DB2 catalog and
DB2 directory tablespaces "in sync."

Table 31.3: DB2 Directory Reorganization Indicators

When You REORG… Be Sure to Also
REORG…

DSNDB06.SYSDBASE DSNDB01.DBD01
DSNDB06.SYSPLAN DSNDB01.SCT02
DSNDB06.SYSPKAGE DSNDB01.SPT01

These tablespaces are logically related. DB2 requires that you reorganize them at the same time to
keep them synchronized.

DB2 Catalog Reorganization Details
There are 12 system catalog tablespaces and six directory tablespaces (refer to Tables 31.4 and 31.5).
DB2 has different rules for different sets of these tablespaces. There are three groupings of
tablespaces:

 Cannot be reorganized at all
 Can be reorganized using normal REORG procedures
 Can be reorganized using special REORG procedures

Table 31.4: DB2 Catalog Tablespaces (DSNDB06)

 - 704 -

Tablespace Definition
SYSCOPY Contains image copy information (one table)
SYSDBASE Contains database object information (14 tables)
SYSDBAUT Contains database and database authority information (two tables)
SYSDDF Contains information about distributed DB2 connections (seven

tables)
SYSGPAUT Contains resource authority information (one table)
SYSGROUP Contains storage group information (two tables)
SYSOBJ Contains object/relational and routine information (eight tables)
SYSPLAN Contains plan information (five tables)
SYSPKAGE Contains package and stored procedure information (eight tables)
SYSSTATS Contains optimization statistics (five tables)
SYSSTR Contains translation and check constraint information (four tables)
SYSUSER Contains user authority information (one table)
SYSVIEWS Contains view information (four tables)

Table 31.5: DB2 Directory Tablespaces (DSNDB01)

Tablespace Definition
DBD01 Contains database descriptor information (one table)
SCT01 Contains skeleton cursor table information (one table)
SPT02 Contains skeleton package table information (one table)
SYSLGRNGX Contains recovery log range information (one table)
SYSUTILX Contains utility processing information (one table)

There are only two tablespaces in the first grouping of tablespaces that cannot be reorganized at all:
DSNDB01.SYSUTILX and DSNDB01.SYSLGRNX. Do not attempt to reorganize these tablespaces as
DB2 will not permit it.
The second grouping of tablespaces are those that the REORG utility processes as it would any other
tablespace:

 DSNSB06.SYSCOPY
 DSNDB06.SYSDDF
 DSNSB06.SYSGPAUT
 DSNSB06.SYSOBJ
 DSNSB06.SYSPKAGE
 DSNSB06.SYSSTATS
 DSNSB06.SYSSTR
 DSNSB06.SYSUSER
 DSNSB01.SCT02
 DSNSB01.SPT01

The third and final grouping of tablespaces must be processed differently than other tablespaces:
 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

These six tablespaces require special "handling and care." Because they have a different internal
configuration than most other tablespaces, a different calculation is required for the size of the unload
data set (SYSREC) used during the REORG utility. These tablespaces contain internal links. Links are

 - 705 -

internal pointers that tie the information in their tables together hierarchically. A link can be thought of as
a type of parent-child relationship that, due to these links, the BUILD and SORT phases of the REORG
utility are not executed.
The WORKDDN, SORTDATA, SORTDEVT, and SORTNUM options are ignored when reorganizing these
tablespaces. Also, the REORG utility cannot be restarted from the last checkpoint when used against
these six tablespaces. Instead, it must be restarted from the beginning of the phase. Finally, as
mentioned before, a different set of steps must be executed during reorganization for these
tablespaces.
Steps to REORG the Six "Special" Tablespaces
The following steps should be used when reorganizing the six "special" tablespaces:

1. Calculate the size of unload data set (SYSREC).

The SYSREC data set for the "special" tablespaces has a different format than the other
tablespaces. This causes a special calculation to be required to determine its size. The
equation to use is:
DATA SET SIZE IN BYTES = (28 + LONGROW) * NUMROWS

NUMROWS is the number of rows to be contained in the data set and LONGROW is the
length of the longest in the tablespace. For DSNDB06 tablespaces, the value for LONGROW
can be determined by running the following SQL statement:
SELECT MAX(RECLENGTH)
FROM SYSIBM.SYSTABLES
WHERE DBNAME = 'DSNDB06'
AND TSNAME = 'name of tablespace to REORG'
AND CREATOR = 'SYSIBM';

2. Ensure incompatible operations are not executing.
3. Start database DSNDB01 and DSNDB06 for read only access.
4. Run QUIESCE and DSN1CHKR utilities.
5. Take a full image copy of entire DB2 catalog and directory tablespaces.
6. Start DSNDB01 and DSNDB06 for utility access.
7. Execute REORG utility.
8. Take a full image copy of entire DB2 catalog and directory tablespaces.
9. Start tablespace and associated indexes for read/write access.

Note It is important to take a full image copy before and after reorganizing any DB2
catalog or directory tablespace.

Steps to REORG Regular Tablespaces

The following steps should be used when reorganizing the remaining "regular" system catalog and
directory tablespaces:

1. Calculate the size of unload data set (SYSREC) using the normal calculation:
DATA SET SIZE IN BYTES = LONGROW * NUMROWS

In this case it is unnecessary to add the additional 28 bytes to the length of the longest
row. This is because these system catalog tablespaces do not utilize links.

2. Ensure that incompatible operations are not concurrently executing (see the
next section for an explanation of incompatible operations).

3. Start the tablespace and its associated indexes for read only access.
4. Run CHECK INDEX on all indexes associated with the tablespace that is being

reorganized.
5. Take a full image copy of the entire DB2 catalog and directory tablespaces.
6. Start the tablespace and its associated indexes for utility access.
7. Execute the REORG utility.
8. Take a full image copy of the entire DB2 catalog and directory tablespaces.
9. Start the tablespace and any associated indexes for read/write access.

These steps should be familiar to you because they closely follow the steps executed during the
reorganization of an application data tablespace. There are several additional required steps added as
precautions because of the critical nature of the DB2 catalog and directory.

Note It is important to take a full image copy before and after reorganizing any DB2
catalog or directory tablespace.

 - 706 -

Catalog Reorganization Restrictions
In addition to the procedures outlined previously, there are several restrictions on the manner in which
the REORG TABLESPACE utility can be used with system catalog tablespaces. First, recall that the
SYSUTILX and SYSLGRNX tablespaces in the DB2 Directory cannot be reorganized.
When reorganizing the DB2 Catalog (DSNDB06) and DB2 Directory (DSNDB01) tablespaces, the
following options cannot be used:

 The UNLOAD ONLY option is not permitted.
 Online REORG is not permitted for catalog and directory tablespaces with links.
 The LOG YES option is not permitted as image copies are explicitly required following

a catalog and/or directory reorganization.
Also, the reorganization of two specific tablespaces are treated differently than any other in the manner
in which the are tracked by DB2. Generally, DB2 records the reorganization of any tablespace in the
SYSIBM.SYSCOPY system catalog table. However, DB2 records the reorganization of the
DSNSB06.SYSCOPY and DSNDB01.DBD01 tablespaces in the log instead.

Finally, in many 24x7 environments, it may be necessary to reorganize the system catalog and
dictionary while it is being accessed. However, because of the central nature of the system catalog and
directory to the operation of DB2, the following restrictions apply to concurrent activity during catalog
reorganization:

 ALTER, DROP, and CREATE statements cannot be executed during the
reorganization of any DB2 catalog or DB2 directory tablespace with the exception of
SYSIBM.SYSSTR and SYSIBM.SYSCOPY.

 The BIND and FREE commands cannot be issued when the following tablespaces
are being reorganized: SYSIBM.SYSDBAUT, SYSIBM.SYSDBASE,
SYSIBM.SYSGPAUT, SYSIBM.SYSPKAGE, SYSIBM.SYSPLAN, SYSIBM.SYSSTATS,
SYSIBM.SYSUSER, and SYSIBM.SYSVIEWS.

 No DB2 utility can be running while SYSIBM.SYSCOPY, SYSIBM.SYSDBASE,
SYSIBM.SYSDBAUT, SYSIBM.SYSSTATS, and/or SYSIBM.SYSUSER are being
reorganized.

 No plan or package may be executed during the reorganization of SYSIBM.SYSPLAN
and SYSIBM.SYSPKAGE.

 The GRANT and REVOKE statements cannot be issued when REORG is being run on
SYSIBM.SYSDBASE, SYSIBM.SYSDBAUT, SYSIBM.SYSGPAUT,
SYSIBM.SYSPKAGE, SYSIBM.SYSPLAN, and/or SYSIBM.SYSUSER.

The ability to reorganize the DB2 catalog and directory tablespaces provides the DBA with a potent tool
for his or her system tuning arsenal.

DB2 Catalog Reorganization Guideline

Do not go overboard with reorganizing the DB2 Catalog. It is not necessary, in most cases, to build a
regularly scheduled job stream for reorganizing the DB2 Catalog. Simply reorganize the DB2 Catalog
when the performance of queries or third party tools begins to suffer.

Summary
This chapter discussed ways to ensure the proper organization of your data. Data organization is
essential for optimal performance. But after the data is properly organized, it is important to inform DB2
of that fact. The next chapter discusses how to do that and how to keep the system databases running
efficiently.

Chapter 32: Catalog Manipulation Utilities
Overview
The DB2 Catalog and the DB2 Directory are essential to the continuing performance of your DB2
subsystem. This chapter discusses several utilities that can help you keep these system databases in
an optimal state.

The CATMAINT Utility

 - 707 -

The CATMAINT utility is used when migrating from one version or release of DB2 to another. It changes
the structure of the DB2 Catalog by altering and creating DB2 tables and indexes using the special links
and hashes in the DB2 Catalog database. The CATMAINT utility modifies the DB2 Catalog objects in
place.
An execution of CATMAINT cannot be partially successful; all the catalog changes are made when the
job is successful, or none are made when the job fails.
CATMAINT can be executed by either INSTALL SYSADM specified in the DSNZPARMs.
CATMAINT Guidelines
The guideline presented next should be followed when you are considering CATMAINT usage.
Use CATMAINT Only as Directed
The CATMAINT utility should be used only when migrating to a new release of DB2, and then only as
directed by IBM in the DB2 release migration procedures.

The MODIFY Utility
The MODIFY utility is used to delete rows from DB2 Catalog and DB2 Directory tables. MODIFY is the
clean-up utility. When COPY information in the DB2 Catalog or DB2 Directory is no longer relevant or
desirable, MODIFY can be used to delete the unwanted rows. The MODIFY RECOVERY utility deletes
rows related to data recovery from both the DB2 Catalog and DB2 Directory.

Note In older releases of DB2, another version of the MODIFY utility was available.
Known as MODIFY STATISTICS, the utility was used to delete the nonuniform
distribution statistics that were stored in the SYSIBM.SYSFIELDS table for DB2
V3 and prior releases.
Before migrating from V3 to a later release of DB2, consider using the MODIFY
STATISTICS utility to perform a mass delete of the useless nonuniform
distribution statistics is SYSIBM.SYSFIELDS.

MODIFY Phases
The MODIFY utility uses three phases, regardless of whether recovery or statistical information is being
deleted:
UTILINIT Sets up and

initializes the
MODIFY utility

MODIFY Deletes rows
from
SYSIBM.SYSC
OPY

UTILTERM Performs the
final utility
cleanup

The MODIFY RECOVERY Utility
The MODIFY RECOVERY utility removes recovery information from SYSIBM.SYSCOPY and
DSNDB01.SYSLGRNX. Recovery information can be removed in two ways. You can delete rows that are
older than a specified number of days, or before specified data.
You cannot use MODIFY RECOVERY to explicitly remove index copies from the DB2 Catalog. Index
copies are removed implicitly as tablespace copies are removed. When you run MODIFY RECOVERY on
a tablespace, the utility also removes SYSIBM.SYSCOPY and DSNDB01.SYSLGRNX rows that meet the
AGE and DATE criteria for related indexes that were defined with COPY YES.
The JCL to execute the MODIFY utility with the RECOVERY option is provided in Listing 32.1. Both the
AGE and DATE options are shown.

Listing 32.1: MODIFY RECOVERY JCL

//DB2JOBU JOB (UTILITY),'DB2 MOD RCV',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

 - 708 -

//**

//*

//* DB2 MODIFY RECOVERY UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='MODIRECV',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first statement deletes all SYSCOPY information

//* older than 80 days for the named tablespace.

//* 2. The second statement deletes all SYSCOPY information

//* with a date before December 31, 1992 for the named

//* tablespace.

//*

//DSNUPROC.SYSIN DD *

 MODIFY RECOVERY TABLESPACE DSN8D61A.DSN8S61E AGE (80)

 MODIFY RECOVERY TABLESPACE DSN8D61A.DSN8S61D DATE (19961231)

/*

//

MODIFY RECOVERY Locking Considerations
The MODIFY RECOVERY utility can run concurrently on the same object with all utilities except the
following:

 COPY TABLESPACE
 LOAD
 MERGECOPY
 MODIFY RECOVERY
 RECOVER
 REORG

The MODIFY RECOVERY utility will drain write claim classes for the tablespace or partition being
operated upon.
MODIFY RECOVERY Guidelines
When running MODIFY RECOVERY, you should consider using the following tips and techniques.
Run MODIFY RECOVERY Regularly
The MODIFY RECOVERY utility should be run monthly to eliminate old recovery information stored in
SYSIBM.SYSCOPY and DSNDB01.SYSLGRNX. Running this utility more frequently is usually difficult to
administer. Running it less frequently causes the recovery tables to grow, affecting the performance of

 - 709 -

the DB2 CHECK, COPY, LOAD, MERGECOPY, RECOVER, and REORG utilities. Access to other DB2 Catalog
tables on the same DASD volumes as these tables also may be degraded.

Caution The MODIFY RECOVERY utility places an X lock on the SYSCOPY tablespace.
As such, run MODIFY RECOVERY when there is little or no concurrent
SYSCOPY activity.

The definition of old recovery information must be defined on an application-by-application basis.
Usually, DB2 applications run the COPY utility for all tablespaces at a consistent time. Sometimes,
however, the definition of what should be deleted must be made on a tablespace-by-tablespace basis.
One way to define "old recovery information" is anything that is older that the oldest archive log.

Ensure that Two Full Copies Are Always Available
As a general rule, leave at least two full image copy data sets for each tablespace in the
SYSIBM.SYSCOPY table. In this way, DB2 can use a previous image copy if the most recent one is
damaged or unavailable. Additionally, if the full image copy data sets are SHRLEVEL CHANGE, ensure
that the log is older than the oldest image copy. If the log does not predate the oldest image, the image
copy is not very useful.
Synchronize MODIFY RECOVERY Execution with Deletion of Log and Copy Data Sets
The MODIFY RECOVERY utility deletes rows from only the SYSIBM.SYSCOPY and DSNDB01.SYSLGRNX
tables. It does not physically delete the image copy data sets corresponding to the deleted
SYSIBM.SYSCOPYrows, nor does it physically delete the log data sets associated with the deleted
DSNDB01.SYSLGRNX log ranges. To delete these data sets, run separate jobs—at the same time that
MODIFY RECOVERY is run—using IEFBR14 or IDCAMS. Alternately, assign an expiration date to the log
data sets.

Be Aware of Copy Pending Ramifications
If MODIFY RECOVERY deletes recovery information for a tablespace such that full recovery cannot be
accomplished, the tablespace is placed in copy pending status.
Be Aware of the Nonstandard DATE Format
Be careful when specifying the DATE option of the MODIFY RECOVERY utility. The data is in the format
YYYYMMDD, rather than the standard DB2 date format. If you want October 16, 1997, for example, you
must specify it as 19971016 rather than as 1997-10-16.

Caution For DB2 V3 and earlier releases, the century component of the DATE was not
accepted. Instead, the DATE option of MODIFY RECOVERY had to be specified
as YYMMDD. DB2 V4 required a PTF to accept the century component.

The RUNSTATS Utility
The RUNSTATS utility collects statistical information for DB2 tables, tablespaces, partitions, indexes, and
columns. It can place this information into DB2 Catalog tables or simply produce a report of the
statistical information. The statistics in these tables are used for two primary reasons: to provide
organizational information for DBAs and to be used as input to the DB2 optimizer during the BIND
process to determine optimal access paths for SQL queries. The statistical information can also be
queried using SQL. Several sample DB2 Catalog queries were presented in Chapter 24. The diagram in
Figure 32.1 details the functionality of the RUNSTATS utility.

 - 710 -

Figure 32.1: The RUNSTATS utility.

You can use the RUNSTATS utility to
 Produce a statistics report without updating the DB2 Catalog tables.
 Update the DB2 Catalog with only DB2 optimizer statistics.
 Update the DB2 Catalog with only DBA monitoring statistics.
 Update the DB2 Catalog with all the statistics that have been gathered.

This flexibility can be useful when you want to determine the effect of RUNSTATS on specific SQL
queries—without updating the current usable statistics. Also, if the statistics used by the DB2 optimizer
have been modified, RUNSTATS can still be run to gather the DBA monitoring statistics.
Consult Table 32.1 for a breakdown of the types of statistics gathered by RUNSTATS. The information in
this table is accurate as of DB2 V6. For DB2 V4 and previous releases, some of the columns will appear
with different names. For example, some columns now end in "F," such as CARDF and FREQUENCYF,
whereas in previous releases there was no "F" suffix. The new columns ending in "F" signify that the
column is stored as a FLOAT data type; in past releases, the columns were stored as integers. These
changes were made to accommodate large partitioned tablespaces.
When statistics are collected for large tablespaces, RUNSTATS sets the value of the old columns to –1,
populating the statistics in the new columns that end in "F" instead.

Table 32.1: Statistics Gathered by RUNSTATS
Statistics used by the DB2 optimizer to determine access paths

DB2 Catalog Table Column Description
SYSIBM.SYSTABLES CARDF Number of rows for a table

 NPAGES Number of pages used by the
table

 PCTROWCOMP Percentage of total active rows
that are compressed for this table

 STATSTIME Timestamp of RUNSTATS
execution

SYSIBM.SYSTABSTATS CARD Number of rows in the tablespace
partition

 NPAGES Number of pages used by the
tablespace partition

 CARDF Number of rows in the tablespace
partition

SYSIBM.SYSTABLESPACE NACTIVE Number of allocated tablespace

 - 711 -

pages
 STATSTIME Timestamp of RUNSTATS

execution
 NACTIVEF Number of allocated tablespace

pages
 DSSIZE Maximum size of the data set
SYSIBM.SYSCOLUMNS LOW2KEY Second-lowest value for the

column
 HIGH2KEY Second-highest value for the

column
 COLCARDF Number of distinct values for the

column
 STATSTIME Timestamp of RUNSTATS

execution
SYSIBM.SYSCOLDIST TYPE The type of stats collected:

C=cardinality; F=frequent value
 CARDF Number of distinct values for the

column group.
 COLVALUE Nonuniform distribution column

value
 FREQUENCYF Percentage (' 100) that the value in

EXITPARM exists in the column
 STATSTIME Timestamp of RUNSTATS

execution
 NUMCOLUMNS Number of columns associated

with the statistics
 COLGROUPCOLNO Identifies the set of columns

associated with the statistics
SYSIBM.SYSINDEXES CLUSTERED Whether or not the table is

clustered
 CLUSTERRATIOF Percentage of rows in clustered

order (when multiplied by 100)
 CLUSTERING Whether CLUSTER was specified

when the index was created
 FIRSTKEYCARDF Number of distinct values for the

first column of the index key
 FULLKEYCARDF Number of distinct values for the

full index key
 NLEAF Number of active leaf pages
 NLEVELS Number of index b-tree levels
 STATSTIME Timestamp of RUNSTATS

execution
SYSIBM.SYSINDEXSTATS CLUSTERRATIOF Percentage of rows in clustered

order (when multiplied by 100)
 FIRSTKEYCARD Number of distinct values for the

first column of the index key
 FULLKEYCARD Number of distinct values for the

full index key

 - 712 -

 NLEAF Number of active leaf pages
 NLEVELS Number of index b-tree levels
 KEYCOUNT Number of index key entries in the

partition
 FIRSTKEYCARDF Number of distinct values for the

first column of the index key
 FULLKEYCARDF Number of distinct values for the

full index key
 KEYCOUNTF Number of index key entries in the

partition

Statistics used by DBAs for DB2 subsystem monitoring

DB2 Catalog Table Column Description
SYSIBM.SYSTABLEPART CARD Number of rows in the tablespace or

partition, or number of LOBs in the
LOB tablespace

 NEARINDREF Number of rows between 2 and 16
pages from their original page

 FARINDREF Number of rows more than 16 pages
from their original page

 PAGESAVE Percentage of pages saved due to
data compression

 PERCACTIVE Percentage of space that contains
table rows in this tablespace

 PERCDROP Percentage of space used by rows
from dropped tables

 CARDF Number of rows in the tablespace or
partition; or number of LOBs in the
LOB tablespace

 SPACE The currently allocated space for all
extents, in K

SYSIBM.SYSLOBSTATS FREESPACE Amount of free space in the LOB
tablespace

 ORGRATIO Ratio of organization for the LOB
tablespace; the greater the value
exceeds 1, the less organized the
LOB tablespace

SYSIBM.SYSINDEXPART CARDF Number of rows referenced by the
index or partition

 LEAFDIST Average distance between
successive pages multiplied by 100

 SPACE The currently allocated space for all
extents, in K

 NEAROFFPOSF Number of times you must access a
near-off page when accessing all
rows in indexed order

 FAROFFPOSF Number of times you must access a
far-off page when accessing all

 - 713 -

rows in indexed order
There are two forms of the RUNSTATS utility. The first form operates at the tablespace level and
optionally at the table, index, and column levels. Listing 32.2 shows RUNSTATS JCL executing the
RUNSTATS utility twice: once for the DSN8610.DEPT tablespace and all its indexes, and a second time
for the DSN8610.EMP table and some of its columns.

Listing 32.2: RUNSTATS TABLESPACE JCL

//DB2JOBU JOB (UTILITY),'DB2 RUNSTATS',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 RUNSTATS TABLESPACE UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='STATSTS',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* 1. The first statement accumulates statistics for the

//* given tablespace based on the named index columns.

//* 2. The second statement accumulates statistics only for

//* the named table and columns in the named tablespace.

//*

//DSNUPROC.SYSIN DD *

 RUNSTATS TABLESPACE DSN8D61A.DSN8S61D

 INDEX (ALL) SHRLEVEL REFERENCE

 RUNSTATS TABLESPACE DSN8D61A.DSN8S61E

 TABLE (DSN8610.EMO)

 COLUMN (FIRSTNME,MIDINIT,LASTNAME,SALARY,BONUS,COMM)

 SHRLEVEL REFERENCE

/*

//

 - 714 -

The other form of RUNSTATS operates only at the index level. Listing 32.3 demonstrates JCL to
execute RUNSTATS for a specific DB2 index.

Listing 32.3: RUNSTATS INDEX JCL

//DB2JOBU JOB (UTILITY),'DB2 RUNS IX',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 RUNSTATS INDEX UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='STATSIX',UTPROC=''

//*

//* UTILITY INPUT CONTROL STATEMENTS

//* The RUNSTATS statement accumulates statistics for the

//* given index.

//*

//DSNUPROC.SYSIN DD *

 RUNSTATS INDEX (DSN8610.XEMPPROJACT2)

/*

//

RUNSTATS Phases
The RUNSTATS utility has three phases:
UTILINIT Sets up and initializes the RUNSTATS utility
RUNSTATS Samples the tablespace data, the index data, or both, and then

updates the DB2 Catalog tables with the statistical information
UTILTERM Performs the final utility cleanup

 - 715 -

RUNSTATS Locking Considerations
The RUNSTATS utility, regardless of whether it is being run to collect TABLESPACE statistics or INDEX
statistics, can operate concurrently with the following utilities:

 CHECK INDEX
 CHECK LOB
 COPY
 DIAGNOSE
 MERGECOPY
 MODIFY
 QUIESCE
 REORG TABLESPACE UNLOAD ONLY
 REPAIR (DUMP or MODIFY)
 REPORT
 RUNSTATS
 STOSPACE

Furthermore, RUNSTATS TABLESPACE can operate concurrently with RECOVER INDEX, REBUILD
INDEX, REORG INDEX, and REPAIR LOCATE INDEX PAGE REPLACE.
RUNSTATS INDEX can be run concurrently with the following:

 RECOVER TABLESPACE (no options)
 RECOVER ERROR RANGE
 REPAIR LOCATE KEY or RID (DELETE or REPLACE), only if SHRLEVEL CHANGE is

specified
 REPAIR LOCATE TABLESPACE PAGE REPLACE

When the RUNSTATS utility is executed with the SHRLEVEL REFERENCE option, it drains write claim
classes to the tablespace, tablespace partition, index, or index partition. If SHRLEVEL CHANGE is
specified, the RUNSTATS utility will claim the read claim class for the object being operated on.
However, no locking occurs if the object is a type 2 index.
DB2 Catalog Tables Updated by RUNSTATS
The actual DB2 Catalog tables and statistics that get updated by RUNSTATS vary depending on the
RUNSTATS options specified. For RUNSTATS TABLESPACE using the UPDATE ALL option, the following
DB2 Catalog tables are updated:

 SYSTABLESPACE
 SYSTABLEPART
 SYSTABLES
 SYSTABSTATS
 SYSLOBSTATS

However, if RUNSTATS TABLESPACE is run with the UPDATE ACCESSPATH option, only
SYSTABLESPACE and SYSTABLES are updated. If RUNSTATS TABLESPACE is run specifying UPDATE
SPACE, SYSTABSTATS, SYSTABLEPART, and SYSLOBSTATS are updated.
For RUNSTATS TABLE using either the UPDATE ALL or UPDATE ACCESSPATH option, SYSCOLUMNS
and SYSCOLSTATS are updated.
When executing RUNSTATS INDEX using the UPDATE ACCESSPATH option, the following DB2 Catalog
tables are updated:

 SYSCOLUMNS
 SYSCOLDIST
 SYSCOLDISTSTATS
 SYSCOLSTATS
 SYSINDEXES
 SYSINDEXSTATS

RUNSTATS INDEX specifying UPDATE SPACE modifies the SYSINDEXPART DB2 Catalog table. When
specifying UPDATE ALL, the six DB2 Catalog tables specified for UPDATE ACCESSPATH and the one
DB2 Catalog table specified for UPDATE SPACE are all updated.
RUNSTATS Guidelines
Use the following tips and techniques to implement effective RUNSTATS jobs at your shop.
Execute RUNSTATS During Off-Peak Hours
RUNSTATS can cause DB2 Catalog contention problems for a DB2 subsystem because it can update
the following DB2 Catalog tables:
SYSIBM.SYSCOLDIST
SYSIBM.SYSCOLDISTSTATS

 - 716 -

SYSIBM.SYSCOLSTATS
SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSINDEXSTATS
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABSTATS
SYSIBM.SYSLOBSTATS
Whenever possible, execute RUNSTATS during an off-peak period to avoid performance degradation.
Execute RUNSTATS Multiple Times for Long Column Lists
A limit of 10 columns can be specified per RUNSTATS execution. If you must gather statistics on more
than 10 columns, issue multiple executions of the RUNSTATS utility, specifying as many as 10 columns
per run.

Be Aware of DB2's Notion of Clustering
Although the calculation of CLUSTER RATIO has not been published by IBM, DB2 does not weigh
duplicate values the same as unique values. For example, consider a table with a SMALLINT column
that contains the following values in the physical sequence indicated:

1

3

4

95 occurrences of 7

6

9
This would seem to be 99 percent clustered because 6 is the only value out of sequence. This is not the
case, however, because of the complex algorithm DB2 uses for factoring duplicates into the CLUSTER
RATIO.
Execute RUNSTATS After Significant Data Changes
Run the RUNSTATS utility liberally. The cost of RUNSTATS usually is negligible for small- to medium-size
tablespaces. Moreover, the payback in optimized dynamic SQL, and static SQL when plans are re-
bound using valid statistics, can be significant.
Running RUNSTATS can take longer on larger tablespaces, so plan wisely before executing RUNSTATS
for very large tablespaces and indexes. However, you cannot avoid running RUNSTATS for larger
objects because DB2 requires the statistics for formulating efficient access paths, perhaps even more
so for larger objects.
Always schedule the running of the RUNSTATS utility for dynamic production data. This gives DB2 the
most accurate volume data on which to base its access path selections. Discuss the frequency of
production RUNSTATS jobs with your database administration unit.
For volatile tables, consider running the RUNSTATS utility at least monthly.

Caution Be aware that RUNSTATS changes your statistics, which can change your DB2
access paths. If you are satisfied with the performance of your production,
static SQL, you should use caution when rebinding those packages and plans
against changed statistics.

Favor Using SHRLEVEL REFERENCE
To ensure the accuracy of the statistics gathered by RUNSTATS, favor the use of the SHRLEVEL
REFERENCE option. For tablespaces that must be online 24 hours a day, however, execute RUNSTATS
with the SHRLEVEL CHANGE option during off-peak processing periods.
Use Good Judgment When Scheduling RUNSTATS
Although it may seem best to execute RUNSTATS to record each and every modification to DB2 table
data, it is probably overkill. Not every data modification will affect performance. Deciding which will and
which won't, however, is an arduous task requiring good judgment. Before running RUNSTATS, analyze
the type of data in the tablespace, the scope of the change, and the number of changes. The overhead
of running the RUNSTATS utility and the data availability needs of the application could make it
impossible to run the utility as frequently as you want.

 - 717 -

It is good practice to execute RUNSTATS in the following situations:
 When new data is loaded into a table
 When a new column is added to a table and is at least partially populated
 When a new index is created
 When a tablespace or index is reorganized
 When a large number of data modifications have been applied to a particular table

(updates, deletions, and/or insertions)
 After recovering a tablespace or index

Do Not Avoid RUNSTATS Even When Changing Statistics Using SQL
The DB2 optimizer is not perfect. Sometimes, DBAs alter the RUNSTATS information stored in the DB2
Catalog. This should be done only as a last resort.
Also, do not forgo the execution of RUNSTATS after modifying the DB2 Catalog statistics. At the least,
RUNSTATS should be run to report on the current statistics without updating the DB2 Catalog. However,
this will make all the DB2 Catalog statistics for the tablespace outdated, not just the ones that need to
be static. Therefore, consider running RUNSTATS to update the DB2 Catalog, regardless of whether the
statistics have been modified, but follow the RUNSTATS job with a SQL UPDATE, INSERT, or DELETE
statement to make the changes.

Consider Collecting Partition-Level Statistics
RUNSTATS can be executed by partition, thereby collecting statistics for a tablespace a partition at a
time. Employ this technique to collect statistics (over time) while increasing data availability.
Additionally, consider collecting RUNSTATS more frequently for volatile partitions, and less frequently for
other partitions.

Consider Sampling
The SAMPLE parameter, introduced with DB2 V5, enables the RUNSTATS utility to use sampling
methods to collect statistics instead of scanning every row in the tablespace, tables, and indexes
specified. When sampling is specified, the overall resource consumption, CPU time, and elapsed time
required by RUNSTATS can be substantially reduced. However, the accuracy of the collected statistics is
affected because only a subset of the rows are read to estimate statistics such as cardinality, high key
value, and low key value.
In general, consider sampling only when RUNSTATS takes too much time to execute within the structure
of your environment. Additionally, specify as high a sampling percentage as possible because the more
data that is sampled, the more accurate the statistics are. For example:
 RUNSTATS TABLESPACE DSN8D51A.DSN8S51D
 TABLE (ALL) SAMPLE 50
This statement causes RUNSTATS to use a sampling rate of 50 percent for the specified tablespace and
tables.

Consider Collecting Frequent Value Statistics
As of DB2 V5, the KEYCARD and FREQVAL parameters can be used with RUNSTATS. DB2 typically
views any two columns as independent from one another. However, frequent value statistics enable
DB2 to capture information about correlated columns. Columns are considered to be correlated with one
another when their values are related in some manner. Consider, for example, CITY and STATE
columns. If the CITY column is set to CHICAGO, it is much more common for the STATE to be set to IL
than any other state. However, without frequent value statistics, DB2 would consider Chicago, FL to be
just as common as Chicago, IL.
With a multi-column index for CITY and STATE, the RUNSTATS utility can be used to collect frequent
value statistics to "learn" about the correlation between the two columns. For example, consider the
following RUNSTATS specification for DSN8610.XEMPPROJACT1 (a unique index on PROJNO, ACTNO,
EMSTDATE, and EMPNO):
 RUNSTATS INDEX DSN8610.XEMPPROJACT1
 KEYCARD
 FREQVAL NUMCOLS 2 COUNT 15
This statement causes the cardinality values to be collected for the concatenation of the first and
second columns of the index (in this case, PROJNO and ACTNO). The top 15 most frequently occurring
values will be collected. These statistics are most useful for queries against columns that are actually
correlated in some manner, where a matching index scan is used for the columns indicated.

 - 718 -

Consider Collecting Inline Statistics
Instead of executing RUNSTATS after loading tables, reorganizing tablespaces and indexes, or
rebuilding indexes, consider collecting statistics as those utilities run. You can use the STATISTICS
keyword with LOAD, REBUILD INDEX, and REORG, causing catalog statistics to be collected as part of
the utility processing. This eliminates the need to execute RUNSTATS after those utilities.

Caution If you restart a LOAD or REBUILD INDEX utility that uses the STATISTICS
keyword, inline statistics collection will not occur. You will need to run
RUNSTATS to update the DB2 Catalog statistics after the restarted utility
completes.

Use RUNSTATS to Generate DB2 Statistics Reports
You can use the REPORT YES option, along with the UPDATE NONE option, to use RUNSTATS as a DB2
statistics reporting tool. The REPORT YES option causes RUNSTATS to generate a report of the statistics
it collects, and the UPDATE NONE clause signals RUNSTATS to collect the statistics without updating the
DB2 Catalog.
The reports, however, will contain information about the actual condition of the DB2 objects for which
RUNSTATS was run. The reports will not contain the information as it exists in the DB2 Catalog because
the statistics were not updated due to the UPDATE NONE key word. You can use the report to compare
the statistics against the statistics in the DB2 Catalog to determine how the data has changed since the
last RUNSTATS was executed.

The STOSPACE Utility
The STOSPACE utility is executed on a STOGROUP or list of STOGROUPs. It populates the DB2 Catalog
with tablespace and index data set DASD usage statistics. These statistics are culled from the
appropriate ICF Catalog as indicated in the STOGROUP for which the STOSPACE utility is being executed.
All space usage statistics stored in the DB2 Catalog are specified in terms of kilobytes (1024 bytes).
JCL to execute the STOSPACE utility for all storage groups known to the DB2 system is in Listing 32.4.
The (*) in JCL can be replaced with either a single STOGROUP name or a list of STOGROUP names
separated by commas (enclosed in parentheses).

Listing 32.4: STOSPACE JCL

//DB2JOBU JOB (UTILITY),'DB2 STOSPACE',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 STOSPACE UTILITY

//*

//**

//*

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID='STOSPACE',UTPROC=''

//DSNUPROC.SYSIN DD *

 STOSPACE STOGROUP (*)

/*

//

 - 719 -

STOSPACE Phases
The STOSPACE utility has three phases:
UTILINIT Sets up and initializes the STOSPACE utility.
STOSPACE Analyzes the VSAM catalog for each tablespace and index in the

indicated STOGROUPs. Space utilization statistics are gathered, and the
DB2 Catalog is updated.

UTILTERM Performs the final utility cleanup.

STOSPACE Locking Considerations
The STOSPACE utility can be run concurrently with all utilities.
STOSPACE Guidelines
When running the STOSPACE utility, use the following guidelines to ensure effective storage
management.
Run STOSPACE Regularly
The STOSPACE utility should be run weekly for STOGROUPs to which highly active tablespaces and
indexes are assigned. It should be executed at least monthly for all STOGROUPs defined to the DB2
system.
Be Aware of DB2 Catalog Updates Caused by STOSPACE
The STOSPACE utility updates the following DB2 Catalog tables and columns:

Table Column
SYSIBM.SYSSTOGROUP SPACE

and
STATST
IME

SYSIBM.SYSINDEXES SPACE
SYSIBM.SYSINDEXPART SPACE
SYSIBM.SYSTABLESPACE SPACE
SYSIBM.SYSTABLEPART SPACE

If the SPACE column in the SYSIBM.SYSSTOGROUP table is 0 after running the STOSPACE utility,
consider dropping the STOGROUP, because no objects are currently defined for it. You can issue the
following query to determine this:
 SELECT NAME, SPACE
 FROM SYSIBM.SYSSTOGROUP
 WHERE SPACE = 0
 ORDER BY NAME
Be careful, however, if your shop uses DFHSM to automatically migrate inactive data sets to tape. Issue
the following query to be sure that no objects have been defined to the STOGROUPs with a SPACE value
of 0:
 SELECT *
 FROM SYSIBM.SYSSTOGROUP ST
 WHERE NOT EXISTS
 (SELECT 1
 FROM SYSIBM.SYSINDEXPART IP
 WHERE ST.NAME = IP.STORNAME)
 AND NOT EXISTS
 (SELECT 1
 FROM SYSIBM.SYSTABLEPART TP

 - 720 -

 WHERE ST.NAME = TP.STORNAME)
If no objects are returned by this query, the STOGROUPs previously identified probably can be dropped.
There is one more problem, however. If a STOGROUP used as the default storage group for an active
database is dropped, future tablespace and index DDL must explicitly specify a STOGROUP rather than
rely on the default STOGROUP for the database. This is not usually a problem because the
recommendation is to explicitly specify every parameter when creating DB2 objects. You can use the
following query to determine whether a STOGROUP is used as the default STOGROUP for a database:
 SELECT NAME
 FROM SYSIBM.SYSDATABASE
 WHERE STGROUP = 'STOGROUP';

Monitor DASD Usage
Run the DB2 DASD usage queries (presented in Chapter 24) after successfully running the STOSPACE
utility. This helps you monitor DASD used by DB2 objects.
Now that you have your DB2 Catalog in order, look at several other types of DB2 "utilities" in Chapter
33, "Miscellaneous Utilities."

Summary
In this chapter, you explored methods of manipulating the DB2 Catalog and the DB2 Directory using
DB2 utilities. The utilities covered in this chapter—CATMAINT, MODIFY, RUNSTATS, and STOSPACE—
are essential to ensure an optimal DB2 subsystem.

Chapter 33: Miscellaneous Utilities
Overview
In the previous two chapters, you looked at the DB2 online utilities. Several other DB2 utility programs
are outside this category. (As might be expected, if there are online utilities, there are also offline
utilities.) DB2 also provides service aids and sample programs that have properties and objectives
similar to true DB2 utilities. This chapter discusses each of these remaining types of utilities.

The Offline Utilities
The offline utilities can be executed when DB2 is not active. Most DB2 service aid utilities can be
executed also when DB2 is inactive, but IBM does not consider them to be offline utilities. (The service
aids are covered in the next section.)

Two offline utilities are used to administer the DB2 logs. These utilities should be used only by technical
support personnel who understand the intricacies of DB2 logging. As such, only the DB2 systems
programmer or DBA who installs and maintains the DB2 system should use these utilities. A brief
introduction to these utilities, however, should increase your overall understanding of DB2 logging.
The Change Log Inventory Utility (DSNJU003)
DSNJU003, better known as the Change Log Inventory utility, modifies the bootstrap data set (BSDS).
Its primary function is to add or delete active and archive logs for the DB2 subsystem. Sample JCL to
add an archive log data set is provided in Listing 33.1.

Listing 33.1: DSNJU003 JCL (Change Log Inventory)

//DB2JOBU JOB (UTILITY),'DSNJU003',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//* DB2 CHANGE LOG INVENTORY

 - 721 -

//**

//*

//DSNJU003 EXEC PGM=DSNJU003

//SYSUT1 DD DSN=DB2CAT.BSDS01,DISP=OLD

//SYSUT2 DD DSN=DB2CAT.BSDS02,DISP=OLD

//SYSIN DD *

NEWLOG DSNAME=DB2CAT.FIRST.COPY,COPY1

NEWLOG DSNAME=DB2CAT.SECOND.COPY,COPY2

/*

//

The Print Log Map Utility (DSNJU004)
DSNJU004, or the Print Log Map utility, is used to display the status of the logs in the BSDS. Sample
JCL is provided in Listing 33.2.

Listing 33.2: DSNJU004 JCL (Print Log Map)

//DB2JOBU JOB (UTILITY),'DSNJU004',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//* DB2 PRINT LOG MAP

//**

//*

//DSNJU004 EXEC PGM=DSNJU004

//SYSUT1 DD DSN=DB2CAT.BSDS01,DISP=SHR

//SYSPRINT DD SYSOUT=*

//

Log Utility Guideline
Use the following guidelines when running DSNJU004.

 - 722 -

Use DSNJU004 for Documentation
Run DSNJU004, the Print Log Map utility, before and after running the Change Log utility. You can use
the output of DSNJU004 to document the log change being implemented.
The DB2 Log Preformat Utility (DSNJLOGF)
DSNJLOGF, the DB2 Log Preformat utility, preformats DB2 active log data sets. The execution of this
utility is not mandatory for new active log data sets. However, if DSNJLOGF has not been run prior to the
first write activity for the log, DB2 will preformat the log at that time, incurring a delay. Sample JCL is
provided in Listing 33.3.

Listing 33.3: DSNJLOGF JCL

//DB2JOBU JOB (UTILITY),'DSNJLOGF',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//* DB2 LOG PREFORMAT

//**

//*

//* Preformat the DB2 active log data sets

//*

//PREF11 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DSN510.LOGCOPY1.DS01,DISP=SHR

//*

//PREF12 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DSN510.LOGCOPY1.DS02,DISP=SHR

//*

//PREF21 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DSN510.LOGCOPY2.DS01,DISP=SHR

//*

//PREF22 EXEC PGM=DSNJLOGF

 - 723 -

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DSN510.LOGCOPY2.DS02,DISP=SHR

//

DSNJLOGF Guideline
Use the following guideline when running DSNJLOGF.
Use DSNJLOGF
Execute the DSNJLOGF utility instead of allowing DB2 to preformat the active log data set during
processing. This will eliminate delays due to log data set preformatting.

Service Aids
The DB2 service aids are batch utilities that perform DB2 administrative activities outside the control of
the DB2 subsystem (with the exception of DSN1SDMP). This can be useful if an error makes the DB2
system inactive. For example, the service aids can copy DB2 data sets and print formatted dumps of
their contents without DB2 being active. Every DB2 specialist should have a working knowledge of the
service aid utilities. The service aids are
DSN1CHKR DB2 Catalog and DB2 Directory verification utility
DSN1COMP Data compression analysis utility
DSN1COPY Offline tablespace copy utility
DSN1SDMP Dump and trace utility
DSN1LOGP Recovery log extractor utility
DSN1PRNT Formatted tablespace dump utility

The Catalog Integrity Verification Utility (DSN1CHKR)
DSN1CHKR, the Catalog Integrity Verification utility, verifies the integrity of the DB2 Catalog and DB2
Directory. Sample JCL is provided in Listing 33.4.

Listing 33.4: DSN1CHKR JCL

//DB2JOBU JOB (UTILITY),'DSN1CHKR',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//* DB2 CATALOG CHECK SERVICE AID

//**

//*

//* Verifies the integrity of the SYSPLAN tablespace

//*

//CHECK EXEC PGM=DSN1CHKR,PARM='FORMAT'

 - 724 -

//SYSUT1 DD DSN=DB2CAT.DSNDBC.DSNDB06.SYSPLAN.I0001.A001,DISP=SHR

//SYSPRINT DD SYSOUT=*

//

Caution The SYSUTILX and SYSLGRNX tables are not checkable using DSN1CHKR. This

is true even though the predecessors to these tables were checkable (SYSUTIL
prior to DB2 V3 and SYSLGRNG prior to DB2 V4).

DSN1CHKR Guidelines
Review the following techniques when using DSN1CHKR to verify the integrity of DB2 Catalog
tablespaces.
Schedule DSN1CHKR Runs Regularly
Execute the DSN1CHKR utility for the DB2 Catalog and DB2 Directory weekly to catch problems early,
before they affect program development and testing in your test DB2 subsystems or business
availability and production processing in your production DB2 subsystems.

Consider Starting the DB2 Catalog in Read-Only Mode
For the results of DSN1CHKR to be 100% accurate, DB2 must be down or the tablespaces being
checked must be started in read-only mode (or stopped). To minimize the outage, consider copying the
tablespaces to be checked to VSAM files. The VSAM files can be checked instead of the actual DB2
Catalog tablespaces. It should take less time to copy the files to VSAM than to check the actual
tablespace data sets.

Take Additional DB2 Catalog Verification Steps
In addition to running DSN1CHKR, consider the following steps to ensure DB2 Catalog integrity:

 Run DSN1COPY with the check option against all DB2 Catalog indexes and
tablespaces.

 Run the CHECK INDEX utility against all catalog indexes.
Use DSN1CHKR on a Valid Tablespaces Only
Several of the DB2 Catalog tablespaces are not able to be checked using DSN1CHKR. Do not execute
DSN1CHKR on the following tablespaces:
DSNDB06.SYSCOPY
DSNDB06.SYSDDF
DSNDB06.SYSGPAUT
DSNDB06.SYSPKAGE
DSNDB06.SYSSTATS
DSNDB06.SYSSTR
DSNDB06.SYSUSER
Likewise, do not run DSN1CHKR on the following DB2 Directory tablespaces:
DSNDB01.SCT02
DSNDB01.SPT01
DSNDB01.SYSLGRNX
DSNDB01.SYSUTILX
The Compression Analyzer (DSN1COMP)
The Compression Analyzer service aid, also known as DSN1COMP, can be used to approximate the
results of DB2 data compression. DSN1COMP can be run on a tablespace data set, a sequential data set
containing a DB2 tablespace or partition, a full image copy data set, or an incremental image copy data
set. It will provide the following statistics:

 Space used with compression
 Space used without compression
 Percentage of bytes saved by using compression
 Total pages required with compression
 Total pages required without compression
 Percentage of pages saved by using compression
 Number of dictionary entries
 Number of dictionary pages required
 Average size of a compressed row

 - 725 -

Caution DSN1COMP cannot be run against compressed objects. Because the
compression dictionary can age, it can be difficult to determine when to
replace the dictionary because DSN1COMP cannot be used for this purpose.

Sample DSN1COMP JCL is provided in Listing 33.5. This job reads the VSAM data set for the
DSN8D61A.DSN8S61D tablespace specified in the SYSUT1 DD statement and analyzes the data,
producing estimated compression statistics.

Listing 33.5: DSN1COMP JCL

//DB2JOBU JOB (UTILITY),'DB2 DSN1COMP',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 DSN1COMP SERVICE AID UTILITY

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//DSN1COMP EXEC PGM=DSN1COMP,PARM='ROWLIMIT(20000)'

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DB2CAT.DSNDBC.DSN8D61A.DSN8S61D.I0001.A001,DISP=OLD,AMP=
('BUFND=181')

//

There are numerous parameters that can be supplied to the DSN1COMP utility. The following are the
most commonly used parameters:

 FREEPAGE Indicates the frequency of inserting a completely blank page when
calculating the percentage of pages saved. The default is 0. You should specify the
same value used for FREEPAGE in the CREATE TABLESPACE DDL for the
tablespace being analyzed.

 PCTFREE Specifies the percentage of each page to leave free when calculating the
percentage of pages saved. The default is 5. Once again, you should specify the
same value used for PCTFREE in the CREATE TABLESPACE DDL for the tablespace
being analyzed.

 FULLCOPY Indicates that a full image copy is being used as input. If the tablespace is
partitioned, you should also use the NUMPARTS parameter.

 INCRCOPY Indicates that an incremental image copy is used as input. Once again,
for partitioned tablespaces, you should also specify the NUMPARTS parameter.

 REORG Indicates that the estimate should be based on the compression savings
achievable by the REORG utility. If REORG is not specified, the estimate is the savings
that the LOAD utility would achieve.

 - 726 -

 ROWLIMIT Specifies the maximum number of rows to evaluate to provide the
compression estimate. You should use this option to limit the elapsed and processor
time required by DSN1COMP.

DSN1COMP Guideline
To ensure effective compression planning, consider the following guideline as you execute the
DSN1COMP utility.
Utilize DSN1COMP to Plan for Compression
Execute the DSN1COMP utility for tablespaces that are candidates for compression. The statistics
provided by this utility can be analyzed to determine whether compression will be cost-effective.

In general, contrast the percentage of pages saved when using compression against the anticipated
increase in CPU time to determine whether compression is desirable. The CPU increase should be
negligible when DB2 is using hardware compression.
The Offline Tablespace Copy Service Aid (DSN1COPY)
The Offline Tablespace Copy service aid, better known as DSN1COPY, has a multitude of uses. For
example, it can be used to copy data sets or check the validity of tablespace and index pages. Another
use is to translate DB2 object identifiers for the migration of objects between DB2 subsystems or to
recover data from accidentally dropped objects. DSN1COPY also can print hexadecimal dumps of DB2
tablespace and index data sets.
Its first function, however, is to copy data sets. DSN1COPY can be used to copy VSAM data sets to
sequential data sets and vice versa. It also can copy VSAM data sets to other VSAM data sets and can
copy sequential data sets to other sequential data sets. As such, DSN1COPY can be used to

 Create a sequential data set copy of a DB2 tablespace or index data set.
 Create a sequential data set copy of another sequential data set copy produced by

DSN1COPY.
 Create a sequential data set copy of an image copy data set produced using the DB2

COPY utility, except for segmented tablespaces. (The DB2 COPY utility skips empty
pages, thereby rendering the image copy data set incompatible with DSN1COPY.)

 Restore a DB2 tablespace or index using a sequential data set produced by
DSN1COPY.

 Restore a DB2 tablespace using a full image copy data set produced using the DB2
COPY utility.

 Move DB2 data sets from one disk pack to another to replace DASD (such as
migrating from 3380s to 3390s).

 Move a DB2 tablespace or indexspace from a smaller data set to a larger data set to
eliminate extents. Or, move a DB2 tablespace or indexspace from a larger data set
to a smaller data set to eliminate wasted space.

Caution If you change the allocation size of a DB2 data set using DSN1COPY, be sure
also to change the PRIQTY and SECQTY values for the object to reflect the
change in the DB2 Catalog.

DSN1COPY runs as an MVS batch job, so it can run as an offline utility when the DB2 subsystem is
inactive. It can run also when the DB2 subsystem is active, but the objects it operates on should be
stopped to ensure that DSN1COPY creates valid output. DSN1COPY does not check to see whether an
object is stopped before carrying out its task. DSN1COPY does not communicate with DB2.

Caution DSN1COPY performs a page by page copy. Therefore, you cannot use
DSN1COPY to alter the structure of DB2 data sets. For example, you cannot
copy a partitioned tablespace into a simple tablespace.

Sample DSN1COPY JCL is provided in Listing 33.6. This job reads the VSAM data set for the
DSN8D51A.DSN8S51D tablespace specified in the SYSUT1 DD statement and then copies it to the
sequential data set specified in the SYSUT2 DD statement.

Listing 33.6: DSN1COPY JCL

//DB2JOBU JOB (UTILITY),'DB2 DSN1COPY',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

 - 727 -

//**

//*

//* DB2 DSN1COPY SERVICE AID UTILITY

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//STOPDB EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

DSN SYSTEM (DSN)

-STOP DATABASE (DSN8D61A) SPACENAM(DSN8S61D)

END

/*

//DSN1COPY EXEC PGM=DSN1COPY,PARM='CHECK'

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DB2CAT.DSNDBC.DSN8D61A.DSN8S61D.I0001.A001,DISP=OLD,AMP=
('BUFND=181')

//SYSUT2 DD DSN=OUTPUT.SEQ.DATASET,DISP=OLD,DCB=BUFNO=20

/*

//STARTRW EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=EVEN

//STEPLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//*

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

 - 728 -

//SYSTSIN DD *

DSN SYSTEM (DSN)

-START DATABASE (DSN8D61A) SPACENAM(DSN8S61D)

END

/*

//

One of the best features of the DSN1COPY utility is its capability to modify the internal object identifier
stored in DB2 tablespace and index data sets, as well as in data sets produced by DSN1COPY and the
DB2 COPY utility. When you specify the OBIDXLAT option, DSN1COPY reads a data set specified by the
SYSXLAT DD statement. This data set lists source and target DBIDs, PSIDs or ISOBIDs, and OBIDs.

Caution The DSN1COPY utility can only translate up to 500 record OBIDs at a time.

Each record in the SYSXLAT file must contain a pair of integers separated by a comma. The first integer
is the source ID and the second integer is the target ID. The first record in the SYSXLAT file contains the
source and target DBIDs. The second record contains the source and target PSIDs or ISOBIDs for
indexes. All subsequent records in the SYSXLAT data set are OBIDs for tables.

Caution Only the first two records were required for a type 1 index. For a type 2 index,
the SYSXLAT data set must contain the table OBID in addition to the DBID
and ISOBID.

For example, assume that you accidentally dropped the DSN8D61A database after the JCL in Listing
33.6 was run. Because this database uses STOGROUP-defined objects, all the data has been lost.
However, after re-creating the database, tablespaces, tables, and other objects for DSN8D61A, you can
restore the DSN8S61D tablespace using DSN1COPY with the OBIDXLAT option. Consider the sample
JCL using this option as shown in Listing 33.7. It is operating on the sequential data set produced in
Listing 33.6, copying it back to the data set for the DSN8D61A.DSN8S61D tablespace. This job
translates the DBID for database DSN8D61A from 283 to 201, the PSID for the DSN8S61D tablespace
from 0002 to 0003, and the OBID for the DSN8610.DEPT table from 0020 to 0008.

Listing 33.7: DSN1COPY JCL (Using the OBIDXLAT Option)

//DB2JOBU JOB (UTILITY),'DB2 DSN1COPY',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 DSN1COPY SERVICE AID UTILITY

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//DSN1COPY EXEC PGM=DSN1COPY,PARM='OBIDXLAT'

 - 729 -

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD DSN=DB2CAT.DSNDBC.DSN8D61A.DSN8S61D.I0001.A001,DISP=OLD,AMP=
('BVCND=81')

//SYSUT2 DD DSN=DB2CATP.DSNDBC.DSN8D61A.DSN8S61D.I0001.A001,DISP=OLD,AMP=
('BUFND=181')

//*

//* The SYSXLAT input will ::

//* Translate the DBID 283 (sending) into 201 on

//* the receiving end.

//* Translate the OBID 2 (sending) into 3 on the

//* receiving end.

//* Translate the PSID 20 (sending) into 8 on the

//* receiving end.

//*

//SYSXLAT DD *

283 201

2 3

20 8

/*

//

The object identifiers for the old objects can be found in two ways. First, you can scan old
DBID/PSID/OBID reports. Second, you can use DSN1PRNT to list the first three pages of the copy data
set. The object identifiers are shown in the formatted listing produced for those pages. Obtain the new
object identifiers using the DB2 Catalog reports listed in Chapter 24, "DB2 Object Monitoring Using the
DB2 Catalog."
DSN1COPY Guidelines
When planning your DSN1COPY jobs, be sure to consult the following tips and guidelines.
Issue the Stop Command Before Running DSN1COPY
Never run the DSN1COPY utility for a DB2 object until it has been explicitly stopped for all access in the
appropriate DB2 subsystem. This advice can be ignored if DB2 is not active.
Use DSN1PRNT Instead of DSN1COPY for Hex Dumps
Although DSN1COPY can be used to obtain a hex dump of a DB2 data set, favor the use of DSN1PRNT
because it produces a listing that is formatted, and thus easier to use.
Estimate the Size of SYSUT2 Based on 4KB Pages
When the SYSUT2 data set is a sequential data set, estimate its size using the following formula:
 (Number of pages) x 4096

 - 730 -

Specify the space parameter in cylinders by rounding this number up to the next whole cylinder. If the
object being copied uses a page size other than 4KB, use the following formulas:

For 8KB pages, multiply the number by two

For 16KB pages, multiply the number by four

For 32KB pages multiply the number by eight
Also, remember to specify the appropriate PAGESIZE option of DSN1COPY: 4KB, 8KB, 16KB, or 32KB.
The total number of pages used by a tablespace can be retrieved from the VSAM LISTCAT command
or the DB2 Catalog as specified in the NACTIVE column of SYSIBM.SYSTABLESPACE. If you are using
the DB2 catalog method, ensure that the statistics are current by running the RUNSTATS utility.
Do Not Use DSN1COPY on Log Data Sets
Avoid using the DSN1COPY utility on DB2 log data sets because certain options can invalidate the log
data.

Use Appropriate Options with LOB Tablespaces
You can use DSN1COPY on LOB tablespaces, but you cannot specify the SEGMENT or INLCOPY options.
Use the LOB keyword to use DSN1COPY with a LOB tablespace.

Use Appropriate Options with Large Tablespaces
Use the DSSIZE parameter to specify the size of data sets that exceed 2GB (4GB for LOB
tablespaces). If you fail to specify this parameter, DB2 will assume that the size of the input data set is
2GB. DSN1COPY results will be unpredictable if the DSSIZE parameter is not coded for data sets that
exceed 2GB.
When specifying the DSSIZE parameter, the size specified must match exactly the value used when the
tablespace was defined.
You can specify LARGE instead of DSSIZE if the tablespace was defined with the LARGE parameter.
However, it is better to use DSSIZE(4G) instead of LARGE because the LARGE parameter is being
phased out in favor of DSSIZE.
The DB2 Dump and Trace Program (DSN1SDMP)
DSN1SDMP is the IFC selective dump utility. Although technically defined by IBM to be a service aid
utility, DSN1SDMP is actually a DB2 application program. It must be run under the TSO terminal monitor
program, IKJEFT01. DSN1SDMP, unlike the other service aids, can be run only when DB2 is
operational.
Using the Instrumentation Facility Interface, DSN1SDMP can write DB2 trace records to a sequential data
set named in the SDMPTRAC DD statement. It can also force system dumps for DB2 utilities or when
specific DB2 events occur. For shops without a DB2 performance monitor, DSN1SDMP can come in
handy in trying to resolve system problems. Sample JCL is shown in Listing 33.8.

Listing 33.8: DSN1SDMP JCL

//DB2JOBU JOB (UTILITY),'DSN1SDMP',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 FORCE DUMP UTILITY : :

//* CONSULT IBM BEFORE RUNNING

//*

//**

 - 731 -

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//DUMPER EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SDMPPRNT DD SYSOUT=*

//SDMPTRAC DD DSN=CAT.TRACE.SEQ.DATASET,

// DISP=(MOD,CATLG,CATLG),SPACE=(8192,(100,100)),UNIT=SYSDA,

// DCB=(DSORG=PS,RECFM=VB,LRECL=8188,BLKSIZE=8192)

//SYSTSIN DD *

DSN SYSTEM(DSN)

RUN PROGRAM(DSN1SDMP) PLAN(DSN1SDMP) -

LIB('DSN610.RUNLIB.LOAD')

END

/*

//SDMPDD *

CONSULT IBM BEFORE USING

IBM SUPPORT CENTER WILL PROVIDE OPTIONS

/*

//

DSN1SDMP Data Sets
SDMPIN Input parameters to the DSN1SDMP utility
SDMPPRNT DSN1SDMP output messages
SYSABEND System dump if DSN1SDMP abends
SDMPTRAC Output trace records

DSN1SDMP Guidelines
You can use the following guidelines as a blueprint for effective DSN1SDMP usage.
Use DSN1SDMP Only as Directed
DSN1SDMP should be used only under instructions from the IBM Support Center.
Be Sure That the User Has the Authority to Run DSN1SDMP
To execute the DSN1SDMP service aid, the requester must have the requisite authority to start and stop
the DB2 traces, as well as the MONITOR1 or MONITOR2 privilege.

 - 732 -

The Recovery Log Extractor (DSN1LOGP)
DSN1LOGP, otherwise known as the Recovery Log Extractor, produces a formatted listing of a specific
DB2 recovery log. When a log is operated on by DSN1LOGP, an active DB2 subsystem must not be
currently processing the log.
DSN1LOGP produces a detailed or a summary report. The detailed report displays entire log records.
The summary report condenses the log records, displaying only the information necessary to request a
partial recovery. As such, the detailed report is rarely used. Sample JCL is shown in Listing 33.9.

Listing 33.9: DSN1LOGP JCL

//DB2JOBU JOB (UTILITY),'DSN1LOGP',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 RECOVERY LOG EXTRACTOR

//*

//**

//*

//DSN1LOGP PGM=DSN1LOGP

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSSUMRY DD SYSOUT=*

//BSDS DD DSN=DB2CAT.BSDS01,DISP=SHR

//SYSIN DD *

RBASTART(E300F4)

RBAEND(F40000)

SUMMARY(YES)

/*

//

DSN1LOGP Guidelines
The following techniques can be used to produce effective log extract reports using the DSN1LOGP
service aid.

 - 733 -

Do Not Run DSN1LOGP on the Active Log
DSN1LOGP cannot be run on the active log that DB2 is currently using for logging. It can be run on the
other active logs as well as on the archive logs. Given this caveat, DSN1LOGP can be run while DB2 is
operational.
Use the DSN1LOGP Output to Assist in Recovery
You can use the output report produced by the DSN1LOGP service aid utility to determine an appropriate
log RBA for partial recovery by the RECOVER TORBA utility. This method should be used only when an
appropriate log RBA is available in the SYSIBM.SYSCOPY table as the result of running the QUIESCE
utility.
The DB2 Data Set Dump Creator (DSN1PRNT)
The program name for the DB2 Data Set Dump Creator is DSN1PRNT. It can be used to print
hexadecimal and formatted dumps of DB2 tablespace, indexspace, and image copy data sets. It is
useful for searching for values and dumping only the pages containing the specified value. Sample JCL
is in Listing 33.10.

Listing 33.10: DSN1PRNT JCL

//DB2JOBU JOB (UTILITY),'DSN1PRNT',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 DATA SET DUMP SERVICE AID

//*

//**

//*

//DSN1PRNT PGM=DSN1PRNT,PARM='PRINT,FORMAT'

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=DB2CAT.DSNDBC.DSN8D61A.DSN8S61D.I0001.A001,DISP=SHR,AMP=
('BUFND=181')

//

DSN1PRNT Guidelines
Consider the following guidelines when using DNS1PRNT to dump DB2 data sets.
Analyze Problems Using DSN1PRNT Output
Use DSN1PRNT to track down data problems and page errors. By scanning the dump of a DB2 data set,
you can view the format of the page and the data on the page.

Be Aware of Potential Errors
If DSN1PRNT encounters an error on a page of a DB2 data set, an error message is printed. If you
specified the FORMAT option, the output is not formatted. All pages without errors are formatted.
Use DSN1PRNT for All DB2 Data Set Dumps
Favor the use of DSN1PRNT over other data set dump utilities (such as DSN1COPY) because of the
formatting feature of DSN1PRNT.

 - 734 -

Run DSN1PRNT Only for Stopped DB2 Objects
When running DSN1PRNT when DB2 is active, be sure that the data set being dumped has been
stopped. This ensures that the data being dumped is accurate and unchanging.

Be Aware of Data Set Page Sizes
If the object being dumped uses non-4KB pages, remember to specify the PAGESIZE option of
DSN1PRNT. Specify the appropriate page size for the data set being printed: 4KB, 8KB, 16KB, or 32KB.

Use Appropriate Options for LOB Tablespaces
You can use DSN1PRNT with LOB tablespaces. To do so, be sure to specify the LOB parameter, and do
not specify the INLCOPY parameter.

DB2 Sample Programs
The sample programs are DB2 application programs supplied by IBM with DB2. They are normal DB2
application programs that require precompilation, compilation, linking, and binding, as described in
Chapter 11, "Program Preparation." These programs run using the TSO Terminal Monitor Program,
IKJEFT01, as described in Chapter 16, "The Doors to DB2." Therefore, you must provide a DB2
system name, a program name, a DB2 load library name, and a plan name for each sample program
execution.

You must verify the load library and plan names associated with these programs at your site with your
DBA or system administrator. The JCL examples in the following sections specify the default load
library, and plan names are the same as the sample program names.
The Dynamic SQL Processor (DSNTEP2)
DSNTEP2 is a PL/I application program that can be used to issue DB2 dynamic SQL statements. The
sample JCL in Listing 33.11 demonstrates the capability of this program to issue DCL, DDL, and DML
dynamically.

Listing 33.11: DSNTEP2 JCL

//DB2JOBU JOB (UTILITY),'DB2 SAMPLE SQL',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 SAMPLE SQL PROGRAM

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//BATCHSQL EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 - 735 -

DSN SYSTEM(DSN)

RUN PROGRAM(DSNTEP2) PLAN(DSNTEP61) -

LIB('DSN610.RUNLIB.LOAD')

END

/*

//SYSIN DD *

SELECT * FROM SYSIBM.SYSTABLES ;

UPDATE DSN8610.DEPT

SET DEPTNAME = 'CHANGED NAME'

WHERE DEPTNO = 'D01' ;

INSERT INTO DSN8610.ACT

VALUES (129, 'XXXXXX', 'SAMPLE ACCT') ;

DELETE FROM DSN8610.EMP

WHERE SALARY < 1000 ;

CREATE DATABASE TESTNAME

BUFFERPOOL BP12

STOGROUP DSN8G610 ;

GRANT DBADM ON TESTNAME TO USERA ;

/*

//

Because DSNTEP2 is an application program, it must be compiled, linked, and bound before it can be
used. Additionally, because the source code is provided in PL/I, it can be modified easily by a
knowledgeable PL/I programmer.
Prior to DB2 V6, you needed to have a PL/I compiler to use DSNTEP2. However, as of V6 IBM now
provides both the source code and an object code version of DSNTEP2 with DB2. So, you no longer
need a PL/I compiler to use DSNTEP2.

 - 736 -

DSNTEP2 can process almost every SQL statement that can be executed dynamically. DSNTEP2
accepts

 The GRANT and REVOKE DCL statements
 The ALTER, COMMENT ON, CREATE, and DROP DDL statements
 The DELETE, INSERT, SELECT, and UPDATE DML statements
 The COMMIT, ROLLBACK, EXEC SQL, EXPLAIN, and LOCK statements

The only important statement that DSNTEP2 does not support is the LABEL ON DDL statement.
DSNTEP2 can be modified easily to support this statement (if you have a PL/I compiler).
DSNTEP2 Guidelines
The following tips and techniques should be utilized when executing SQL statements using DSNTEP2.
Code DSNTEP2 Input in the First 72 Bytes of the Input Data Set
DSNTEP2 reads SQL statements from an input data set with 80-byte records. The SQL statements must
be coded in the first 72 bytes of each input record. SQL statements can span multiple input records and
are terminated by a semicolon (;). Semicolons are not permitted in the text of the SQL statement.
Be Aware of DSNTEP2 Error Handling
Each SQL statement is automatically committed by DSNTEP2. When DSNTEP2 encounters an SQL
error, it continues processing the next SQL statement in the input data set. When 10 SQL errors have
been encountered, DSNTEP2 ends. If any SQL errors occur during the execution of DSNTEP2, a return
code of 8 is received.

Do Not Rerun Committed Work
To rerun DSNTEP2, remember that all SQL statements that completed with a 0 SQL code were
committed. These statements should not be rerun. All SQL statements completed with a negative SQL
code must be corrected and reprocessed.
Liberally Comment DSNTEP2 Input
Comments can be passed to DSNTEP2 in the SQL statements using two hyphens in columns 1 and 2 or
a single asterisk in column 1.
Use DSNTEP2 to Batch Large Streams of SQL
Use DSNTEP2 to simulate SPUFI in a batch environment. This can be useful because it enables the
execution of dynamic SQL statements from an input data set without monopolizing a TSO terminal as
SPUFI does. This can have a significant effect when issuing multiple DDL statements to create DB2
objects.
Prepare DSNTEP2 for Use
The DSNTEP2 program must be prepared before it can be run to issue dynamic SQL. If you want to use
the source code version of DSNTEP2, you must precompile, compile, link, and bind it. You need to bind
the object code version of DSNTEP2 before you can use it.
These steps are usually performed by the systems programmer or DBA responsible for installing DB2.
Be sure to use the correct plan for DSNTEP2. Sometimes the installer will provide a new plan name for
each new version of DB2, and a common technique is to append the version and release number to the
plan name, for example DSNTEP61 for DB2 V6.
The Dynamic SQL Update Program (DSNTIAD)
DSNTIAD is an assembler application program that can issue the same DB2 dynamic SQL statements
as DSNTEP2, with the exception of the SELECT statement. For this reason, it almost always is
preferable for applications programmers to use DSNTEP2 rather than DSNTIAD.
DSNTAID is written in Assembler language. Because DSNTIAD is a sample program, its source code
can be modified to accept SELECT statements. This task is complex and should not be undertaken by a
beginning programmer.
Additionally, DSNTIAD supports the LABEL ON statement, whereas DSNTEP2 does not. Also note that
DSNTIAD can be a little more efficient than DSNTEP2 because it is written in Assembler. Sample
DSNTIAD JCL is provided in Listing 33.12.

Listing 33.12: DSNTIAD JCL

//DB2JOBU JOB (UTILITY),'DB2 SAMPLE UPD',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

 - 737 -

//**

//*

//* DB2 SAMPLE SQL UPDATE PROGRAM

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//BATUPSQL EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

DSN SYSTEM(DSN)

RUN PROGRAM(DSNTIAD) PLAN(DSNTIAD6) -

LIB('DSN610.RUNLIB.LOAD')

END

/*

//SYSIN DD *

UPDATE DSN8610.DEPT

SET DEPTNAME = 'CHANGED NAME'

WHERE DEPTNO = 'D01' ;

INSERT INTO DSN8510.ACT

VALUES (129, 'XXXXXX', 'SAMPLE ACCT') ;

DELETE FROM DSN8510.EMP

WHERE SALARY < 1000 ;

CREATE DATABASE TESTNAME

BUFFERPOOL BP12

STOGROUP DSN8G510 ;

 - 738 -

GRANT DBADM ON TESTNAME TO USERA ;

/*

//

DSNTIAD Guidelines
Use the following guidelines to ensure the effective execution of SQL using DSNTIAD.
Use DSNTIAD for DDL
Consider using DSNTIAD rather than DSNTEP2 to submit batch DDL.
Control DSNTIAD Execution Authority
Consider giving only DBAs and systems programmers the authority to execute DSNTIAD. Allow
everyone to execute DSNTEP2 because it provides support for the SELECT statement.
Do Not Comment DSNTIAD Input
Unlike DSNTEP2, DSNTIAD does not accept comments embedded in SQL statements.
Be Aware of DSNTIAD Error Handling
Each SQL statement is automatically committed by DSNTIAD. When an SQL error is encountered,
DSNTIAD continues processing the next SQL statement in the input data set. When 10 SQL errors have
been encountered, DSNTIAD ends. If any SQL errors occur during the execution of DSNTIAD, a return
code of 8 is received.

Do Not Rerun Committed Work
When rerunning DSNTIAD, remember that all SQL statements that completed with a 0 SQL code were
committed. All SQL statements that completed with a negative SQL code need to be corrected and
reprocessed.
Prepare DSNTIAD For Use
The DSNTIAD program must be prepared before it can be executed. This requires a precompile,
compile, link and bind. These steps are usually performed by the systems programmer or DBA
responsible for installing DB2. Be sure to use the correct plan for DSNTIAD. Sometimes the installer will
provide a new plan name for each new version of DB2, and a common technique is to append the
version and release number to the plan name, for example DSNTIAD6 for DB2 V6.
The Sample Unload Program (DSNTIAUL)
One option for creating a readable sequential unload data set for DB2 tables (without writing an
application program) is the DSNTIAUL sample program. The REORG utility with the UNLOAD ONLY
option also can be used to unload DB2 data from a tablespace. DSNTIAUL is a DB2 application
program written in assembler. It can unload the data from one or more DB2 tables or views into a
sequential data set. The LOAD utility then can use this data set. Additionally, DSNTIAUL can produce
the requisite control cards for the LOAD utility to load the sequential data set back into the specific DB2
table. Consider the JCL provided in Listing 33.13.

Listing 33.13: DSNTIAUL JCL

//DB2JOBU JOB (UTILITY),'DB2 SAMPLE UNLD',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

//*

//* DB2 SAMPLE UNLOAD PROGRAM

 - 739 -

//*

//**

//*

//JOBLIB DD DSN=DSN610.DSNLOAD,DISP=SHR

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

DSN SYSTEM(DSN)

RUN PROGRAM(DSNTIAUL) PLAN(DSNTIAU6) -

LIB('DSN610.RUNLIB.LOAD')

/*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSREC00 DD DSN=DEPT.UNLOAD.DATASET,DISP=(,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(1,1)),DCB=BUFNO=20

//SYSPUNCH DD DSN=DEPT.RELOAD.UTILITY.INPUT,DISP=(,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(1,1),RLSE)

//SYSIN DD *

DSN8610.DEPT

/*

//

After running the JCL in Listing 33.13, the DSN8610.DEPT table is unloaded into the SYSREC00 data
set. The SYSPUNCH data set contains the generated LOAD control cards. The generated LOAD control
cards look like the following:
LOAD DATA INDDN SYSREC00 LOG NO INTO TABLE
 DSN8610.DEPT
 (
 DEPTNO POSITION(1)
 CHAR(3) ,
 DEPTNAME POSITION(4)
 VARCHAR ,
 MGRNO POSITION(42)
 CHAR(6)
 NULLIF(48)='?',

 - 740 -

 ADMRDEPT POSITION(49)
 CHAR(3)
)
DSNTIAUL Guidelines
When unloading data from DB2 tables using DSNTIAUL, keep the following techniques in mind.
Use DSNTIAUL to Create Unloaded Flat Files
Use DSNTIAUL to produce sequential data sets containing DB2 data from one or more tables. Running
DSNTIAUL is significantly easier than coding an application program to extract the desired data.
Use WHERE and ORDER BY with DSNTIAUL
DSNTIAUL can accept WHERE clauses and ORDER BY clauses to limit the data to be unloaded and sort
the unloaded data, respectively. However, the combination of the table name and its associated WHERE
and ORDER BY clauses cannot exceed 72 total characters.
Use DSNTIAUL to Unload from a View
DSNTIAUL can unload data from DB2 views. When data from multiple tables must be unloaded into a
single data set, create a view that joins the two tables and use DSNTIAUL to unload the data from that
view.
Use the 'SQL' Parameter
Complete SELECT statements can be specified in SYSIN. This is accomplished by specifying
PARMS('SQL') in the SYSTSIN data set. When PARMS('SQL') is specified, the 72-byte restriction is
lifted. The largest SQL statement that can be specified is 32,765 bytes.
Keep Your SYSREC Data Sets Synchronized
Unloaded data is placed into a data set associated with the SYSRECxx DD statement. When multiple
tables will be unloaded to multiple data sets using DSNTIAUL, be careful when you specify the
SYSRECxx data sets. SYSREC00 refers to the first unload utility card, SYSREC01 refers to the second,
and so on. Because SYSREC00 is the first DD statement, the number associated with the SYSRECxx DD
statement is 1 less than the corresponding input statement being processed.
Unload No More than 100 Tables with a Single DSNTIAUL Execution
No more than 100 input control cards can be successfully processed by a single execution of the
DSNTIAUL utility.
Consider Using LOCK TABLE with DSNTIAUL
The LOCK TABLE statement can be used with DSNTIAUL to create a consistent unload file. By issuing
the LOCK TABLE statement, you ensure that no modifications are made to the table during the
timeframe of the unload execution.
Consider Using DSNTIAUL for Data Movement and Storage
You can deploy the DSNTIAUL program for many useful purposes. Any activity that requires bulk
movement of data from a DB2 table is ideal for DSNTIAUL. Consider the following uses:

 To migrate data from one DB2 subsystem to another
 To save data when the structure of a table must be changed by dropping and re-

creating it
 To copy data before a table structure change is made (because old image copy data

sets cannot be applied after a structure change)
 To create a comma-delimited file (other DBMSs can accept a delimited file as input to

a load or restore process)
Prepare DSNTIAUL for Use
The DSNTIAUL program must be prepared before it can be executed. This requires a precompile,
compile, link, and bind. These steps are usually performed by the systems programmer or DBA
responsible for installing DB2. Be sure to use the correct plan for DSNTIAUL. Sometimes the installer
will provide a new plan name for each new version of DB2 and a common technique is to append the
version and release number to the plan name, for example DSNTIAU6 for DB2 V6.
Interpreting DSNTIAUL, DSNTIAD, and DSNTEP2 Return Codes
There are four possible return codes that can be returned by DSNTIAUL, DSNTIAD, and DSNTEP2. Be
sure to examine the return codes shown in Table 33.1 and take appropriate action. If a non-zero return
code is received by DSNTIAUL, you may need to re-run DSNTIAUL to unload the desired data.

Table 33.1: DSNTIAUL, DSNTIAD, and DSNTEP2 Return Codes

Return Code Interpretation
0 Successful completion.
4 A warning code was received by an SQL statement. If the statement

 - 741 -

was a SELECT, DB2 did not perform the unload.
 An error code was received by an SQL statement. If the statement was

a SELECT, DB2 did not perform the unload.
12 The program could not open a data set, an SQL statement returned a

severe error (in the –800 or –900 range), or an error was encountered
in the SQL message formatting routine.

Summary
In this chapter, you learned about the three types of nontraditional DB2 utility programs: offline utilities,
service aids, and sample programs. Each of these programs provide utility-like functionality. Most DB2
developers will, at some point, need to use one of these programs.

Now that you have mastered DB2 utilities, turn the page and learn about DB2 commands and how they
can be used to control the DB2 environment.

Chapter 34: DB2 Commands

Overview
DB2 commands are operator-issued requests that administer DB2 resources and
environments. There are six categories of DB2 commands, which are delineated by the
environment from which they are issued. These are

 DB2 environment commands
 DSN commands
 IMS commands
 CICS commands
 IRLM commands
 TSO commands

Each of these categories is discussed in this chapter.

DB2 Environment Commands
DB2 environment commands usually are issued either through the DB2I ISPF panels or by
batch TSO under the control of the DSN command. However, they can be issued from an MVS
console, from IMS/TM using the specialized command /SSR, or from CICS using the
specialized CICS command DSNC. The DB2 environment commands can be used to monitor
and control DB2 databases, resources, and processing. There are three types of environment
commands:

 Information-gathering commands
 Administrative commands
 Environment control commands

All DB2 environment commands have a common structure, as follows:
cp command operand
The cp is the command prefix assigned when DB2 is installed. The command prefix identifies
a single DB2 susbsystem, targeting the command as a DB2 command for a specific DB2
subsystem. The command prefix is built from a combination of the subsystem recognition
character concatenated to the DB2 subsystem name. Prior to DB2 V4, only the single
character subsystem recognition character was available to identify subsystems. The multi-
character command prefix enables more meaningful names to be used. A subsystem
recognition character is assigned when DB2 is installed. The default recognition character is a
hyphen, but it can be changed by each installation, depending on the environment from which
the command is issued. The following characters can be used as subsystem recognition
characters:

¢ + ; ?

. | - :

 - 742 -

< ! / #

($, @

*) % "
' =

A sample DB2 command might be
-DB2A DISPLAY DATABASE(DSNDB07)
The command specifies that the DSNDB07 database in the DB2A subsystem is to be
displayed.
The command portion of the environment command is the DB2 command verb. The operand
is the combination of optional and required keywords and values necessary to successfully
issue the command.
Figure 34.1 shows a DB2 environment command, -DISPLAY DATABASE, issued through
option 7 of the DB2I panel. The response to that command is shown in Figure 34.2. Listing
34.1 is the JCL needed to issue the same command in a batch job.

Figure 34.1: Issuing a DB2 command through DB2I.

Figure 34.2: Response to the DB2 command issued in Figure 34.1.
Listing 34.1: JCL to Issue a DB2 Command in Batch

//DB2JOBC JOB (COMMAND),'DB2 COMMAND SQL',MSGCLASS=X,CLASS=X,

// NOTIFY=USER

//*

//**

 - 743 -

//*

//* JCL TO ISSUE DB2 COMMAND

//*

//**

//*

//JOBLIB DD DSN=DSN510.DSNLOAD,DISP=SHR

//BATCHCOM EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 - DISPLAY DATABASE (DSNDB06)

 END

/*

//

The three types of DB2 environment commands are presented in the following sections.

Information-Gathering Commands
The information-gathering DB2 environment commands can be used to monitor DB2 objects and
resources. They can return the status of DB2 databases, threads, utilities, and traces, as well as
monitor the Resource Limit Facility and distributed data locations.
The DISPLAY command is used for information gathering. A description of each of the eight forms of
the DISPLAY command follows:
-DISPLAY ARCHIVE Displays input archive log information.
-DISPLAY BUFFERPOOL Displays the current status of active and/or inactive

bufferpools.
-DISPLAY DATABASE Displays the status and pending information for DB2

databases, tablespaces, and indexes.
-DISPLAY DATABASE
LOCKS

Displays the locks for the DB2 databases, tablespaces, and
indexes (including transaction locks and drain locks). An
option for the command, CLAIMS, shows claims that are
being held on a resource.

-DISPLAY FUNCTION
SPECIFIC Displays statistics about external DB2 user-defined functions.

-DISPLAY GROUP Displays information about the data sharing group.

 - 744 -

-DISPLAY
GROUPBUFFERPOOL Displays information about the status of DB2 group

bufferpools.
-DISPLAY LOCATION Displays information for distributed threads.
-DISPLAY LOG Displays information about the DB2 logs and the status of the

log offload task.
-DISPLAY PROCEDURE Displays information about stored procedures.
-DISPLAY RLIMIT Displays the status of the Resource Limit Facility, including

the ID of the active RLST (Resource Limit Specification
Table).

-DISPLAY THREAD Displays active and in-doubt connections to DB2 for a
specified connection or all connections.

-DISPLAY TRACE Displays a list of active trace types and classes along with
the specified destinations for each; consult Chapter 22,
"Traditional DB2 Performance Monitoring," for a discussion of
DB2 trace types and classes.

-DISPLAY UTILITY Displays the status of all active, stopped, or terminating
utilities.

Information-Gathering Command Guidelines
Use the following guidelines when issuing commands to gather information about DB2 and its
environment.
Use the LIMIT Option to Increase the Amount of Displayed Information
Use the LIMIT parameter of the DISPLAY DATABASE command to view database object lists greater
than 50 lines long. The default number of lines returned by the DISPLAY command is 50, but the LIMIT
parameter can be used to set the maximum number of lines returned to any numeric value. Because 50
lines of output usually is not sufficient to view all objects in a medium-size database, the
recommendation is to specify the LIMIT parameter as follows:
-DISPLAY DATABASE(DSND851A) LIMIT(300)
To indicate no limit, you can replace the numeric limit with an asterisk (*).
Use DISPLAY BUFFERPOOL to Monitor DB2 Bufferpools
Use the DISPLAY BUFFERPOOL command to display allocation information for each bufferpool. Refer
to the example in Listing 34.2 for details of the information provided by DISPLAY BUFFERPOOL.

Listing 34.2: Results of DISPLAY BUFFERPOOL

-DISPLAY BUFFERPOOL (BP0)

DSNB401I < BUFFERPOOL NAME BP0, BUFFERPOOL ID 0, USE COUNT 90

DSNB402I < VIRTUAL BUFFERPOOL SIZE = 2000 BUFFERS

 ALLOCATED = 2000 TO BE DELETED = 0

 IN USE/UPDATED = 12

DSNB403I < HIPERPOOL SIZE = 100000 BUFFERS, CASTOUT = YES

 ALLOCATED = 100000 TO BE DELETED = 0

 BACKED BY ES = 91402

 - 745 -

DSNB404I < THRESHOLDS -

 VP SEQUENTIAL = 80 HP SEQUENTIAL = 80

 DEFERRED WRITE = 50 VERTICAL DEFERRED WRT = 10

 IOP SEQUENTIAL = 50

DSNB405I < HIPERSPACE NAMES - @001SSOP

DSN9022I < DSNB1CMD '-DISPLAY BUFFERPOOL' NORMAL COMPLETION

Use the DETAIL Parameter for Bufferpool Tuning Information
To produce reports detailing bufferpool usage, specify the DETAIL parameter. Using
DETAIL(INTERVAL) produces bufferpool usage information since the last execution of DISPLAY
BUFFERPOOL using DETAIL(INTERVAL). To report on bufferpool usage as of the time it was activated,
specify DETAIL(*).
Listing 34.3 depicts the type of information provided by the DETAIL option of DISPLAY BUFFERPOOL.

Listing 34.3: Results of DISPLAY BUFFERPOOL

-DISPLAY BUFFERPOOL (BP0), DETAIL(INTERVAL)

DSNB401I < BUFFERPOOL NAME BP0, BUFFERPOOL ID 0, USE COUNT 90

DSNB402I < VIRTUAL BUFFERPOOL SIZE = 2000 BUFFERS

 ALLOCATED = 2000 TO BE DELETED = 0

 IN USE/UPDATED = 12

DSNB403I < HIPERPOOL SIZE = 100000 BUFFERS, CASTOUT = YES

 ALLOCATED = 100000 TO BE DELETED = 0

 BACKED BY ES = 91402

DSNB404I < THRESHOLDS -

 VP SEQUENTIAL = 80 HP SEQUENTIAL = 80

 DEFERRED WRITE = 50 VERTICAL DEFERRED WRT = 10

 IOP SEQUENTIAL = 50

DSNB405I < HIPERSPACE NAMES - @001SSOP

DSNB409I < INCREMENTAL STATISITCS SINCE 05:43:22 DEC 23, 1993

DSNB411I < RANDOM GETPAGE = 230 SYNC READ I/O (R) = 180

 SEQ. GETPAGE = 610 SYNC READ I/O (S) = 20

 DMTH HIT = 0

 - 746 -

DSNB412I < SEQUENTIAL PREFETCH -

 REQUESTS = 124 PREFETCH I/O = 10

 PAGES READ = 69

DSNB413I < LIST PREFETCH -

 REQUESTS = 0 PREFETCH I/O = 0

 PAGES READ = 0

DSNB414I < DYNAMIC PREFETCH -

 REQUESTS = 0 PREFETCH I/O = 0

 PAGES READ = 0

DSNB415I < PREFETCH DISABLED -

 NO BUFFER = 0 NO READ ENGINE = 0

DSNB420I < SYSPAGE UPDATES = 0 SYS PAGES WRITTEN = 0

 ASYNC WRITE I/O = 0 SYNC WRITE I/O = 0

DSNB421I < DWT HIT = 0 VERTICAL DWT HIT = 0

 NO WRITE ENGINE = 0

DSNB430I < HIPERPOOL ACTIVITY (NOT USING ASYNCHRONOUS

 DATA MOVER FACILITY) -

 SYNC HP READS = 100 SYNC HP WRITES = 120

 ASYNC HP READS = 0 ASYNC HP WRITES = 0

 READ FAILURES = 0 WRITE FAILURES = 0

DSNB431I < HIPERPOOL ACTIVITY (USING ASYNCHRONOUS

 DATA MOVER FACILITY) -

 HP READS = 231 HP WRITES = 263

 READ FAILURES = 0 WRITE FAILURES = 0

DSNB440I < I/O PARALLEL ACTIVITY -

 PARALL REQUEST = 2 DEGRADED PARALL = 0

DSN9022I < DSNB1CMD '-DISPLAY BUFFERPOOL' NORMAL COMPLETION

This report can be used to augment bufferpool tuning. Suggested action items are as follows:

 - 747 -

 Monitor the read efficiency of each bufferpool using the formula, as presented in
Chapter 31, "Data Organization Utilities," (see the following). The higher the
number, the better.

 (Total GETPAGEs) / [(SEQUENTIAL PREFETCH) +
 (DYNAMIC PREFETCH) +
 (SYNCHRONOUS READ)
]

 If I/O is consistently high, consider tuning the bufferpool to handle the additional
workload. For example, you could add virtual pool pages or hiperpool pages.

Use the LIST and LSTATS Parameters for Additional Detail
For additional bufferpool information, the LIST and LSTATS parameters can be specified:
LIST Lists the open tablespaces and indexes within the specified

bufferpool(s).
LSTATS Lists statistics for the tablespaces and indexes reported by LIST.

Statistical information is reset each time DISPLAY with LSTATS is
issued, so the statistics are as of the last time LSTATS was issued.

Use DISPLAY LOG to Monitor DB2 Logging
Use the DISPLAY LOG command to display information about the number of logs, their current
capacity, the setting of LOGLOAD, and which logs require offloading. Refer to the example in Listing 34.4
for details of the information provided by DISPLAY LOG.

Listing 34.4: Results of DISPLAY LOG

DIS LOG

DSNJ370I - DSNJCOOA LOG DISPLAY

| CURRENT COPY1 LOG = DSNC610.LOGCOPY1.DS03 IS 22% FULL

| CURRENT COPY2 LOG = DSNC610.LOGCOPY2.DS03 IS 22% FULL

| H/W RBA = 0000039A9F24, LOGLOAD = 150000

| FULL LOGS TO OFFLOAD = 2 OF 6, OFFLOAD TASK IS (BUSY,ALLC)

| DSNJ371I - DB2 RESTARTED 14:06:23 MAY 22, 1998

| RESTART RBA 0000039A8000

| DSN9002I - DSNJC001 'DIS LOG' NORMAL COMPLETION

Use DISPLAY DATABASE to Monitor DB2 Objects
Use the DISPLAY DATABASE command to monitor the status of tablespaces and indexes. The possible
status values follow. When a status other than RO or RW is encountered, the object is in an
indeterminate state or is being processed by a DB2 utility.
ACHKP The auxiliary CHECK PENDING status has been set for the base

tablespace. An error exists in the LOB column of the base tablespace.
AUXW Either the base tablespace or the LOB tablespace is in the AUXILIARY

WARNING status. This warning status indicates an error in the LOB
column of the base tablespace or an invalid LOB in the LOB tablespace.

CHKP The CHECK PENDING status has been set for this tablespace or partition.

 - 748 -

COPY The COPY PENDING flag has been set for this tablespace or partition.
DEFER Deferred restart is required for the object.
GRECP The tablespace, tablespace partition, index, index partition, or logical

index partition is in the group bufferpool RECOVER PENDING state.
ICOPY The index is in informational COPY PENDING status.
INDBT In-doubt processing is required for the object.
LPL The tablespace, tablespace partition, index, index partition, or logical

index partition has logical page errors.
OPENF The tablespace, tablespace partition, index, index partition, or logical

index partition had an open data set failure.
PSRCP Indicates PAGE SET RECOVER PENDING state for an index (non-

partitioning indexes).
PSRBD The nonpartitioning index space is in a PAGE SET REBUILD PENDING

status.
RBDP The physical or logical index partition is in the REBUILD PENDING status.
RBDP* The logical partition of a nonpartitioning index is in the REBUILD

PENDING status, and the entire index is inaccessible to SQL applications.
However, only the logical partition needs to be rebuilt.

RECP The RECOVER PENDING flag has been set for this tablespace,
tablespace partition, index, index partition, or logical index partition.

REORP The data partition is in the REORG PENDING status.
REST Restart processing has been initiated for the tablespace, tablespace

partition, index, index partition, or logical index partition.
RESTP The tablespace or index is in the RESTART PENDING status.
RO The tablespace, tablespace partition, index, index partition, or logical

index partition has been started for read-only processing.
RW The tablespace, tablespace partition, index, index partition, or logical

index partition has been started for read and write processing.
STOP The tablespace, tablespace partition, index, index partition, or logical

index partition has been stopped.
STOPE The tablespace or index is stopped because of an invalid log RBA or

LRSN in one of its pages.
STOPP A stop is pending for the tablespace, tablespace partition, index, index

partition, or logical index partition.
UT The tablespace, tablespace partition, index, index partition, or logical

index partition has been started for the execution of utilities only.
UTRO The tablespace, tablespace partition, index, index partition, or logical

index partition has been started for RW processing, but only RO
processing is enabled because a utility is in progress for that object.

UTRW The tablespace, tablespace partition, index, index partition, or logical
index partition has been started for RW processing, and a utility is in
progress for that object.

UTUT The tablespace, tablespace partition, index, index partition, or logical
index partition has been started for RW processing, but only UT
processing is enabled because a utility is in progress for that object.

Use DISPLAY DATABASE to View Restricted Objects
By specifying the RESTRICT option on the DISPLAY DATABASE command, only restricted DB2 objects
are listed. A database is considered restricted if it is in one of the following states:

 Stopped
 Started for RO or UT processing

 - 749 -

A tablespace or index is considered restricted if it is in one of the following states:
 Stopped
 Started for RO or UT processing
 Being processed by a stopped or active utility
 In a pending state (CHKP, COPY, RECP, or GRECP)
 Contains an LPL or page error range

Use the RESTRICT option to ascertain whether any objects require action to restore them to a usable
state.
The ADVISORY option can also be used with DISPLAY DATABASE. Specifying the ADVISORY option on
the DISPLAY DATABASE command causes the display to show DB2 objects where read-write access is
allowed, but an action needs to be taken on the object. The ICOPY and AUXW statuses are considered
ADVISORY states. Finally, you can use the AREST option to identify objects in an advisory restart
pending state.
Use DISPLAY DATABASE to View Objects Being Used
By specifying the ACTIVE option of the DISPLAY DATABASE command, only tablespaces and indexes
that have been allocated for use by an application are listed. Use the ACTIVE option to determine the
currently allocated objects.
Use DISPLAY DATABASE to Determine Database Usage
The USE option of the DISPLAY DATABASE command displays information on how the database is
being used. It returns information on the applications and subsystems to which the database is
allocated, the connection IDs, correlation IDs, and authorization IDs for all applications allocated to the
displayed tablespaces and the LUWID and location of remote threads accessing the database.
Use DISPLAY DATABASE to View Locking Information
Two options of the DISPLAY DATABASE command, LOCKS and CLAIMERS, can be used to view
locking details for the database and its associated tablespaces. The LOCKS clause displays the
applications and subsystems having locks held, waited on, or retained for the specified database as well
as the transaction locks for all tablespaces, tables, index spaces and tablespace partitions being
displayed. It will also show drain locks held by running jobs.
The CLAIMERS clause displays the claims on all tablespaces, index spaces, and tablespace partitions
whose status is displayed. If the CLAIMERS clause is specified, it overrides both the LOCKS and USE
clauses.
Use DISPLAY DATABASE to View the Logical Page List
Pages that are logically in error are written to a special list known as the logical page list (LPL). A logical
page error is one that can be corrected without redefining physical devices, for example, caused by a
connection problem. The LPL clause can be specified on the DISPLAY DATABASE command to view
the logical page errors for the database, tablespace, or partition. Logical page errors can be cleared by
starting or recovering the object in question.

Note If starting the object with the LPL error does not work, DB2 will upgrade the failure
to a physical failure. If this occurs, the object must be recovered.

Use Wildcards to View Multiple Databases
DISPLAY DATABASE can use the asterisk as a wildcard specifier in the operand portion of the
command. Consider the following command:
-DISPLAY DATABASE (DSN8*)
This command lists only the databases that contain the DSN8 characters as the first four characters in
their name—the sample database.
Use ONLY to Display Database Information Without Related Objects
Normally, the DISPLAY DATABASE command will display information about a database and all of its
associated tablespaces and indexes. You can use the ONLY option without the SPACENAM() keyword
to display information about the database, but not the tablespaces and indexes in the database.
Use DISPLAY PROCEDURE to Monitor Stored Procedure Statistics
The DISPLAY command can be used to monitor the status of stored procedures. This command will
show

 Whether the named procedure is currently started or stopped
 How many requests are currently executing
 The highwater mark for concurrently running requests
 How many requests are currently queued
 How many times a request has timed out
 The WLM environment where the stored procedure executes

 - 750 -

Use DISPLAY FUNCTION SPECIFIC to Monitor UDF Statistics
The DISPLAY command can be used to monitor the status of stored procedures. This command
displays one output line for each function that a DB2 application has accessed.

 Whether the named function is currently started or stopped, and why
 How many requests are currently executing
 The highwater mark for concurrently running requests
 How many requests are currently queued
 How many times a request has timed out
 The WLM environment where the function executes

Understand the Stored Procedure and UDF Status
When displaying information about stored procedures and UDFs using the DISPLAY PROCEDURE and
DISPLAY FUNCTION SPECIFIC commands, a status is returned indicating the state of the procedure
or UDF. A procedure or UDF can be in one of four potential states:
STARTED Requests for the function can be processed.
STOPQUE Requests are queued.
STOPREJ Requests are rejected.
STOPABN Requests are rejected because of abnormal termination.

Use DISPLAY UTILITY to Monitor DB2 Utilities
The DISPLAY UTILITY command can be used to monitor the progress of an active utility. By
monitoring the current phase of the utility and matching this information with the utility phase
information, you can determine the relative progress of the utility as it processes.
For example, if the DISPLAY UTILITY command indicates that the current phase of a LOAD utility is
the REPORT phase, you know that there is only one more phase and that seven phases have been
processed.

Caution The IBM service aid and sample programs will not appear in the DISPLAY
UTILITY output.

Note Many third-party utilities do not show up when -DIS UTIL is issued if they run
outside the scope of DB2. Use the display tool provided by the third-party vendor
instead.

Use DISPLAY UTILITY to Gauge a Utility's Progress
For the DB2 COPY, REORG, and RUNSTATS utilities, DISPLAY UTILITY also can be used to monitor
the progress of particular phases. The COUNT specified for each phase lists the number of pages that
have been loaded, unloaded, copied, or read.

Figure 34.3: DISPLAY UTILITY output.

The REORG utility in Figure 34.3 is in the RELOAD phase and has processed nine records. COUNT
= nnn indicates that nnn pages have been unloaded by the REORG utility in the UNLOAD phase. By
comparing this number to the number of pages for the tablespace as found in the NACTIVE column of
SYSIBM.SYSTABLESPACE, you can track the progress of the following phases:

Utility Phase
COPY COPY

 - 751 -

REORG UNLOAD,
RELOAD

RUNSTATS RUNSTATS

Note You also can check the progress

of the CHECK, LOAD, RECOVER,
and MERGE utilities using -DIS
UTIL. The number of rows,
index entries, or pages, which
have been processed, are
displayed.

Centralize DISPLAY Capability

A centralized area in your organization should have the capability to issue all the information-gathering
commands online to effectively administer the DB2 subsystem. This centralized area should be staffed
such that support is available when DB2 applications, queries, or utilities are being processed.

Be Wary of the Dynamic Nature of Displayed Information
The information returned by the DISPLAY command is dynamic. As the information is displayed, it may
also be changing, making the displayed information inaccurate. Therefore, do not rely solely on
information issued by the DISPLAY command unless it can be verified from another source or by
multiple executions of the same DISPLAY command. Other sources for verification include online
performance monitors and calling end users. Usually, a combination of sources should be consulted
before taking any action based on information returned from the DISPLAY command.

Administrative Commands
Administrative commands are provided to assist the user with the active administration, resource
specification, and environment modification of DB2 subsystems. Each command modifies an
environmental aspect of the DB2 subsystem. The administrative commands are as follows:
-ALTER BUFFERPOOL Used to alter bufferpool size, thresholds, and CASTOUT

attributes for active and inactive bufferpools.
-ALTER
GROUPBUFFERPOOL Used to alter the attributes of group bufferpools.

-ALTER UTILITY Can change the value of some parameters for the REORG utility.
-ARCHIVE LOG Forces a DB2 log archival.
-CANCEL THREAD Cancels a local or distributed DB2 thread.
-MODIFY TRACE Changes the specifications for active DB2 traces.
-RECOVER BSDS Re-establishes a valid Boot Strap Data Set after an I/O error on

the BSDS data set.
-RECOVER INDOUBT Recovers in-doubt threads that cannot be recovered

automatically by DB2 or the appropriate transaction manager.
-RECOVER POSTPONED Completes backout processing for units of recovery that are left

incomplete during an earlier restart (POSTPONED ABORT units
of recovery). To be used when automatic resolution was not
selected.

-RESET GENERICLU Purges information stored by VTAM in the coupling facility.
-RESET INDOUBT Purges information from the "in doubt" thread report (generated

by the -DISPLAY THREAD command).
-SET ARCHIVE Used to set the parameters for log archiving.
-SET LOG Modifies the checkpoint frequency. The changes that SET LOG

makes are temporary; at restart, DB2 again uses the values
that were specified when DB2 was installed. The new LOGLOAD
value takes effect following the next system checkpoint.

-START DATABASE Starts a stopped database, tablespace, tablespace partition,

 - 752 -

index, or index partition or changes the status of these objects
to RW, RO, or UT.

-START FUNCTION
SPECIFIC Starts an external UDF that is stopped. Not to be used for built-

in functions or UDFs that are sourced on another function.
-START PROCEDURE Starts a stored procedure enabling subsequent execution using

the CALL statement.
-START RLIMIT Starts the Resource Limit Facility with a specific Resource Limit

Specification Table (RLST).
-START TRACE Activates DB2 traces, classes, and IFCIDs; specifies limiting

constraints for plans and authids; and specifies the output
destination for the activated trace records.

-STOP DATABASE Stops a database, a tablespace, or an index and closes the
underlying VSAM data sets associated with the stopped object.
As of DB2 V3, partitions can be stopped individually.

-STOP FUNCTION
SPECIFIC Stops an external UDF disabling subsequent execution. Not to

be used for built-in functions or UDFs that are sourced on
another function.

-STOP PROCEDURE Stops a stored procedure disabling subsequent execution.
-STOP RLIMIT Stops the Resource Limit Facility.
-STOP TRACE Stops the specified DB2 traces and classes.
-TERM UTILITY Terminates the execution of an active or a stopped DB2 utility,

releases all the resources that are being utilized by the utility,
and cleans up the DB2 Directory.

Administrative Command Guidelines
When you issue administrative commands, you are actually changing the DB2 environment.
Administrative commands should be used with caution. Review the following guidelines before utilizing
administrative commands.

Educate the Users of Administrative Commands

All administrative commands should be issued only by an experienced analyst who knows the DB2
commands and their effect on the DB2 subsystem and its components. This should be accomplished by
administering strict DB2 security controls.
Use ALTER BUFFERPOOL to Dynamically Manage Bufferpools
The ALTER BUFFERPOOL command can be used to dynamically change the size and characteristics of
a bufferpool. The following parameters can be used to change the bufferpool using ALTER
BUFFERPOOL:
VPSIZE Size of the virtual bufferpool
HPSIZE Size of the associated hiperpool
VPSEQT Virtual pool sequential steal threshold
HPSEQT Hiperpool sequential steal threshold
VPPSEQT Virtual pool parallel sequential steal threshold
VPXPSEQT Virtual pool assisting parallel sequential steal threshold
DWQT Virtual pool deferred write threshold
VDWQT Virtual pool vertical deferred write threshold (by data set)
CASTOUT Hiperpool dirty page discard
VPTYPE Whether the bufferpool is allocated in the DB2 database services address

 - 753 -

space (PRIMARY) or in a data space associated with DB2 (DATASPACE)
Use ALTER UTILITY to Affect REORG Processing
The ALTER UTILITY command can be used to change the value of the DEADLINE, MAXRO, LONGLOG,
and DELAY parameters for REORG utilities running SHRLEVEL REFERENCE or SHRLEVEL CHANGE.
Refer to Chapter 31 for more information on the functionality of these parameters.
Use ARCHIVE LOG to Synchronize Disaster Recovery Plans with DB2
Issue the ARCHIVE LOG command to synchronize DB2 log archival and copying with application and
DB2 Catalog image copies sent to a remote site for disaster recovery. See Chapter 36, "DB2
Contingency Planning," for further guidance.
Use ARCHIVE LOG to Synchronize New Logs with Shift Changes
Sometimes a new active DB2 log should begin at the commencement of each new operational shift.
This can be accomplished with the ARCHIVE LOG command.
Use RECOVER INDOUBT with Caution
The RECOVER INDOUBT command can abort or commit changes made by in-doubt threads. Be
cautious before committing in-doubt threads. Most DB2 programs are coded to process updates in
commit scopes defined as a unit of work.
The unit of work, as described in Chapter 9, "Using DB2 in an Application Program," is coded as much
as possible to maintain data integrity between related tables. If the RECOVER INDOUBT command
commits changes for a partial unit of work, the affected tables may not be in a consistent state. If
database-enforced referential integrity is always used, this is not a concern, because the database
forces the tables to be in a consistent state. However, very few applications require that every
referential constraint be explicitly defined and enforced by DB2.
Avoid Using ACCESS(FORCE)
Issuing the START DATABASE command with the ACCESS(FORCE) option is not recommended,
because it may cause tablespaces or indexes to be in an inconsistent state. ACCESS(FORCE) forces all
pending flags (check, copy, and recover) to be reset for the specified object. Never use
ACCESS(FORCE) unless you are absolutely sure that the data is in a consistent state for the specified
object (for example, after restoring objects using the DSN1COPY service aid utility).
To be safe, never use ACCESS(FORCE). Instead, use the appropriate utility to reset the exception flags.

Ensure That DASD Is Online Before Stopping Databases
The DASD volume for the underlying VSAM data sets for the object that will be started by the START
DATABASE command do not need to be online when the START command is issued. Because the STOP
DATABASE command closes the underlying VSAM data sets, however, the corresponding volume for
that object must be online when the STOP command is issued.

Start and Stop at the Partition Level
The START and STOP commands can be executed for partitioned tablespaces and indexes at the
partition level. This functionality enhances availability by enabling users to stop only portions of an
application (tablespace or index).
Be Aware of the Time Constraints of the STOP Command
The STOP command can be used to close VSAM data sets and cause buffer pages associated with the
closed data set to be flushed and forced to DASD. The VSAM close operation may take a while before it
is complete, though. The buffers may not be flushed completely to DASD immediately after the STOP
DATABASE command completes. Subsequent processing must consider this fact.
Explicitly Start Objects Stopped with the SPACENAM Parameter
When a tablespace or index is explicitly stopped using the SPACENAM parameter of the STOP
DATABASE command, it must be explicitly started again before it can be accessed. Starting at the
database level will not affect the status of explicitly stopped tablespaces or indexes.
Use START PROCEDURE Before Calling
The START PROCEDURE command must be issued for each DB2 stored procedure prior to any
application calling the stored procedure. Failure to start a stored procedure before trying to execute it
with the CALL statement results in the CALL statement failing.
Use the ACTION Clause when Stopping Stored Procedures
The STOP command disables subsequent executions of the named stored procedure. The ACTION
clause can be specified to indicate whether future attempts to run the stored procedure will be entirely
rejected [ACTION(REJECT)] or queued [ACTION(QUEUE)] to be run when the stored procedure is
started again.

 - 754 -

Use START RLIMIT to Vary Resource Limits
START RLIMIT can use different resource limit specification tables (RLST) with different limits. By
specifying the ID parameter, a specific RLST is chosen. For example
-START RLIMIT ID=02
starts the RLF using the SYSIBM.DSNRLS02 table. This enables different limits to be specified for

 Different times of the day
 Batch and online processing
 Heavy and light ad hoc processing

Use START TRACE to Specify Trace Destinations
When issuing the START TRACE command, each type of trace can specify different destinations for the
trace output. The following lists destinations for each type of trace:

Trace Destination Trace Types
GTF ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT
OPn ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT
OPX ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT
RES GLOBAL
SMF ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT
SRV ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT

Use START TRACE to Specify Constraints
When you issue the START TRACE command, each type of trace can place optional constraints on the
data to be collected. The following lists constraints for each type of trace:

Constraint Type Trace Types
AUTHID ACCTG, AUDIT, GLOBAL, MONITOR, PERFM
CLASS ACCTG, AUDIT, GLOBAL, MONITOR, PERFM, STAT
PLAN ACCTG, AUDIT, GLOBAL, MONITOR, PERFM
RMID GLOBAL, MONITOR, PERFM

Use No More than Six Active Traces
Although as many as 32 traces can be active at one time, you should limit the number of active traces to
6 to avoid performance degradation. Add this recommendation to the trace guidelines presented in
Chapter 22 to establish the proper controls for issuing DB2 traces.

Be Aware of the Authority Required to Terminate Utilities
To terminate utilities, the issuer of the TERM UTILITY command must meet one of the following
requirements. The issuer must

 Be the user who initially submitted the utility
 Have SYSADM, SYSCTRL, or SYSOPR authority

If your operational support staff must have the ability to terminate utilities that they did not originally
submit, they should be granted SYSOPR authority. However, SYSOPR authority permits the user to
START and STOP DB2, which is not generally acceptable because the uncontrolled issuing of these
commands can wreak havoc on a production system. There is no viable alternative to SYSOPR authority,
though, because explicit TERM UTILITY authority is unavailable.

Avoid Using Wildcards when Terminating Utilities
When terminating utilities, explicitly specify the UID to be terminated, rather than use the -TERMINATE
UTILITY command to terminate all utilities invoked by your ID. When you explicitly specify what should
be terminated, you avoid inadvertently terminating an active utility. After a utility is terminated, it can
never be restarted. The utility must be rerun from the beginning and may require data recovery before
rerunning.

Environment Control Commands
The environment control commands affect the status of the DB2 subsystem and the Distributed Data
Facility. These commands commonly are issued only by the DB2 systems programmer, systems
administrator, or DBA. A brief description of the environment control commands follows:

 - 755 -

-START DB2 Initializes and establishes the DB2 subsystem
-START DDF Starts the Distributed Data Facility
-STOP DB2 Stops the DB2 subsystem
-STOP DDF Stops the Distributed Data Facility

Environment Control Command Guidelines
Before issuing environment control commands, be sure to review the following guidelines.

Control the Use of Environment Control Commands

Secure the environment control commands so that they are issued only by technically astute
administrative areas.
Verify the Completion of START DB2 and STOP DB2
Make sure that the START DB2 command successfully completes by ensuring that access to DB2 is
available using DB2I. Another way to verify that the START DB2 command was successful is to make
certain that the started tasks for DB2 are active. The default names for these tasks are:
DSNMSTR DB2 Master Region
DSNDBM1 DB2 Database Region
IRLMPROC DB2 IRLM

Your installation probably has renamed these address spaces, but the names are probably similar.
Be sure that the STOP DB2 command successfully completes by ensuring that the started tasks for the
subsystem being stopped are no longer active.
Verify the Completion of START DDF and STOP DDF
The status of the START DDF and STOP DDF commands can be checked by monitoring the status of
the DDF address space. (The default name of the DDF address space is DSNDDF.)
Use MODE(FORCE) Sparingly
Exercise caution before stopping the DB2 subsystem with the MODE(FORCE) parameter. The FORCE
option terminates all active programs and utilities. As such, in-doubt units of recovery may result by
forcing DB2 to stop in this manner. The MODE(QUIESCE) option allows all active programs and utilities
to complete before DB2 is stopped.
When DB2 is stopped with MODE(FORCE) or MODE(QUIESCE), only currently executing programs are
affected. No new programs or utilities are permitted to run.

DSN Commands
DSN commands are actually subcommands of the DSN command. DSN is a control program that
enables users to issue DB2 environment commands, plan management commands, and commands to
develop and run application programs. DSN commands can be run in TSO foreground, either directly or
indirectly, or in TSO background. An example of issuing the DSN command processor indirectly in
foreground is through DB2I. (The DB2I panels accomplish most of their functions by issuing DSN
commands.) DSN commands can be issued in the background with the IKJEFT01 terminal monitor
program.

There are nine DSN commands:
DSN A command processor that enables the user to issue DB2

environment commands from a TSO session or in a batch job.
For example
DSN SYSTEM (DSN)
- DISPLAY THREAD (*)
END
The DSN command processor must be invoked before any DSN
command that follows can be issued.

ABEND Used to request and obtain a dump when problems are
suspected with another DSN subcommand. Use this DSN

 - 756 -

command under the guidance of the IBM Support Center.
BIND Builds an application plan or package from one or more database

request modules.
DCLGEN Produces the SQL DECLARE TABLE specification and a working

storage data declaration section for VS/COBOL, COBOL II, PL/I,
or C.

END Terminates the DSN session and returns the user to TSO.
FREE Deletes application plans and packages.
REBIND Rebuilds an application plan or package when SQL statements in

a program's DBRM have not been changed. REBIND also can
modify the BIND parameters.

RUN Executes an application program. The program can contain SQL
statements, but this is not required.

SPUFI Executes the SPUFI program. This subcommand can be issued
only when processing under ISPF; it cannot be submitted in a
batch job.

DSN Command Guidelines
Deploy the following guidelines to ensure effective usage of the DSN commands.

Use DB2I, Online TSO, or a Batch Job to Invoke DSN
The DSN command processor can be invoked in three ways: from the DB2I panels, online by entering
DSN (which enables the user to enter subcommands at the DSN prompt), or in batch, specifying
subcommands in the SYSTSIN data set.
In general, it is safest to invoke the DSN commands from the DB2I panels. Some DSN commands such
as RUN and BIND, however, may need to be processed in a batch job that invokes the DSN command
under the auspices of IKJEFT01. Batch TSO is the only method IBM supplies with DB2 for running a
batch DB2 program.
Refer to Chapter 16, "The Doors to DB2," for examples of issuing DSN commands through the DB2I
panels.
Use END to Terminate a DSN Command Session
A DSN session is terminated by issuing the END subcommand, by issuing a new DSN command, or by
pressing the attention key (PA1) twice in succession.
Use the TEST Option to Trace DSN Problems
If a subcommand or function of the DSN command appears to be functioning improperly, the TEST
option can be used to trace DSN commands.

IMS Commands
The IMS commands affect the operation of DB2 and IMS/TM. IMS commands must be issued from a
valid terminal connected to IMS/TM, and the issuer must have the appropriate IMS authority. Consult
the IMS manuals in the following list for additional information on IMS commands:

SC26-8013, IMS/ESA Administration Guide: System

SC26-8014, IMS/ESA Administration Guide: Transaction Manager

SC26-8028, IMS/ESA Messages and Codes

SC26-8029, IMS/ESA Operations Guide

SC26-8030, IMS/ESA Operator's Reference

SC26-8032, IMS/ESA Sample Operating Procedures

SC26-8042, IME/ESA Summary of Operator Commands

 - 757 -

GG24-3203, IMS/VS A Planning Guide for DB2

The following IMS commands pertain to DB2:
/CHANGE Resets in-doubt units of recovery
/DISPLAY Displays outstanding units of recovery or the status of the connection

between IMS/TM and the DB2 subsystem
/SSR Enables the user to issue DB2 environment commands from an

IMS/TM terminal, for example:
 /SSR -DISPLAY THREAD (*)
/START Enables the connection between IMS/TM and an active DB2

subsystem
/STOP Disables the connection between IMS/TM and an active DB2

subsystem
/TRACE Enables and disables IMS tracing

IMS Command Guidelines
The following techniques are useful when issuing IMS commands that affect DB2.

Control the Use of Critical IMS Commands
The /CHANGE, /START, and /STOP commands should be secured commands. Because these
commands can damage IMS/TM transactions that are being processed, they should be avoided during
peak processing times. A centralized authority consisting of only systems programmers and DBAs
should administer and invoke these commands.
Use /START and /STOP to Refresh the IMS-to-DB2 Connection
The /START and /STOP commands can be used to refresh the IMS to DB2 subsystem connection
without bringing down IMS/TM.
Use /TRACE with Caution
The /TRACE command should be issued only by a qualified analyst who understands the ramifications
of IMS tracing. This is usually best left to the IMS DBA or systems programmer.

CICS Commands
The CICS commands affect the operation of DB2 and CICS. CICS commands must be issued from a
valid terminal connected to CICS, and the issuer must have the appropriate CICS authority.
All CICS commands that pertain to DB2 are prefixed with DSNC. DSNC is a CICS transaction that
enables the execution of DB2 commands from a CICS terminal.

The following CICS commands pertain to DB2:
DSNC Enables the user to issue DB2 environment commands from a CICS

terminal. For example
DSNC -DISPLAY THREAD(*)
DSNC is also a required prefix for all CICS commands related to DB2.

DSNC DISCONNECT Enables the user to disconnect DB2 threads.
DSNC DISPLAY Displays RCT and statistical information for CICS transactions that

access DB2 data. If more than one page of information is displayed
by this command, use the following syntax to page through the
information. At the top of the CICS screen, enter P/x, where x is a
number indicating which page to display. P/1 displays page 1, P/2
displays page 2, and so on.

DSNC MODIFY Enables the modification of RCT values online.
DSNC STOP Disables the CICS attachment to DB2.
DSNC STRT Enables the CICS attachment to DB2.

 - 758 -

CICS Command Guidelines
The following techniques are useful when issuing CICS commands that affect DB2.

Control the Use of Critical CICS Commands
The DSNC DISCONNECT, DSNC MODIFY, DSNC STRT, and DSNC STOP commands should be secured
commands. Because these commands can damage CICS transactions that are being processed, they
should be avoided during peak processing times. A centralized authority consisting of only systems
programmers and DBAs should administer and invoke these commands.
Use DSNC DISPLAY STATISTICS to Monitor DB2 Transaction Information
Use the DSNC DISPLAY STATISTICS command to obtain statistics for DB2 transactions. The
information provided by this command is an accumulation of statistical counters because the CICS
attachment to DB2 is activated with the DSNC STRT command. Directly after the DB2 subsystem is
attached to CICS, all of these numbers are 0; this should be taken into account in analyzing these
statistics. For example, these counters are significantly smaller if the attachment is stopped and started
daily instead of once a month.
Sample DSNC DISPLAY output is provided in Figure 34.4. The following list defines each of the
columns listed by the DSNC DISPLAY command.

Figure 34.4: DSNC DISPLAY STATISTICS output.

TRAN Transaction name associated with this RCT entry. If the entry defines
a group, the first transaction in the group is listed.

PLAN Plan name associated with this RCT entry. DSNC does not have a
transaction associated with it, so PLAN is blank. A string of asterisks
indicates that dynamic plan allocation was specified for this RCT
entry.

CALLS Number of SQL executions issued by transactions associated with
this RCT entry.

COMMITS Number of COMMITs executed by transactions associated with this
RCT entry.

ABORTS Number of aborts, including both abends and rollbacks, encountered
by transactions associated with this RCT entry.

AUTHS Number of sign-ons for transactions associated with this RCT entry.
A sign-on occurs only when a new thread is created or when an
existing thread is reused with a new authid or a different plan.

W/P Number of times any transaction associated with this RCT entry was
diverted to the pool or had to wait for an available thread.

HIGH Highwater mark for the number of threads needed by any transaction
associated with this RCT entry.

TSO Commands

 - 759 -

The DB2 TSO commands are CLISTs that can be used to help compile and run DB2 programs or build
utility JCL. The TSO commands are issued from a TSO session, either online using ISPF panels or in
batch using the IKJEFT01 program. There are two TSO commands:
DSNH Can be used to precompile, translate, compile, link, bind, and

run DB2 application programs written in VS/COBOL, COBOL II,
Assembler H, Assembler, FORTRAN, PL/I, or C

DSNU Can be used to generate JCL for any online DB2 utility

IRLM Commands
The IRLM commands affect the operation of the IRLM defined to a DB2 subsystem. IRLM commands
must originate from an MVS console, and the issuer must have the appropriate security.

The following IRLM commands pertain to DB2:
MODIFY irlmproc,ABEND Terminates the IRLM identified by irlmproc

abnormally, regardless of whether any IMS/VS
subsystems are controlled by the specified IRLM.
Compare this command with the MODIFY irlmproc,
STOP trace command.

MODIFY irlmproc,START trace Starts internal IRLM traces for the IRLM identified by
irlmproc. Valid trace specifications are ITRACE for
internal tracing, GTRACE for GTF tracing, PTBTRACE
for PTB buffer tracing, or TRACE to start all three types
of traces.

MODIFY irlmproc,STATUS Displays the status of the IRLM identified by
irlmproc, including information for each subsystem
connected to the specified IRLM.

MODIFY irlmproc,STOP trace Stops internal IRLM traces for the IRLM identified by
irlmproc.

START irlmproc Starts the IRLM identified by irlmproc using an
installation-defined proc.

STOP irlmproc Stops the IRLM identified by irlmproc.
TRACE CT, options Stops, starts, or modifies an IRLM diagnostic trace.

IRLM Command Guidelines
The following guidelines offer practical advice for using commands that affect the DB2 IRLM.

Stop the IRLM to Stop DB2
The quickest way to bring down a DB2 subsystem is to issue the STOP irlmproc command from an
MVS console. When the -STOP DB2 command does not terminate the DB2 subsystem quickly enough,
consider stopping that DB2 subsystem's IRLM.
Use the STATUS Parameter to Monitor the IRLM
Use the STATUS option of the MODIFY irlmproc command to periodically monitor the effectiveness of
the IRLM.

Summary
In this chapter, you learned how to issue DB2 commands to administer DB2 resources and
environments. You examined the six types of DB2 commands, learning the best way to
implement and use each. The six categories of DB2 commands covered are as follows:

 DB2 environment commands
 DSN commands
 IMS commands
 CICS commands
 IRLM commands

 - 760 -

 TSO commands

Chapter 35: DB2 Utility and Command Guidelines
Overview
Now you know about each of the DB2 utilities and commands. The specific definitions and usage
guidelines presented in the first few chapters of Part VI, "DB2 Utilities and Commands," are certainly
helpful, but some general considerations should be discussed. This chapter presents general guidelines
for the effective use of DB2 utilities and commands, and it also discusses the pending states.

This chapter presents general advice. Whereas previous chapters presented specific guidelines for
each utility, command, or group of utilities or commands, this chapter covers topics that span more than
one utility or command.

Utility Guidelines
The following topics provide useful guidance for the development and usage of DB2 utilities.

DB2 Online Utility Return Codes

When an online utility runs, a return code is provided indicating the status of the utility execution. If the
utility runs to normal completion, the return code is set to 0.

A return code of 4 indicates that the utility completed running, but with warnings. Review the utility
output to determine whether some type of reprocessing is required. A warning often indicates a
condition that requires no additional consideration.

A return code of 8 means that the utility did not complete successfully. Determine the cause and
execute the utility again.

A return code of 12 is an authorization error, which means that the user is not authorized to execute the
utility. Either grant the user the proper authority or have an authorized user execute the utility.

DB2 Utility Work Data Sets
Many DB2 online utilities require the allocation of work data sets to complete the task at hand. These
work data sets were presented in the first chapters of Part VI. Because a central reference often is
handy, the required and optional work data sets for the DB2 online utilities are presented together in
Table 35.1. The data sets used by DB2 utilities are listed along the top of the table. The utilities that use
these data sets are listed along the left side of the table. Consult the legend to determine the necessity
of coding these data sets in the JCL.

Table 35.1: Required Utility Data Sets

CHE
CK
DAT
A

R R R O R R

CHE
CK
IND
EX

R R O R R

CHE
CK
LOB

R R O R R

COP
Y

 R R R O

 - 761 -

LOA
D X

/
C
/
K

R B O O O R R R R R

MER
GEC
OPY

 R O R R

QUI
ESC
E

 R R

REB
UIL
D
IND
EX

 R O R R R

REC
OVE
R

 R R

REO
RG
IND
EX

 R R R

REO
RG
TS

X R B D R T R R R

B = Required if the COPYDDN and RECOVERYDDN options are used to make image copies during
utility processing
C = Required if referential constraints exist and the ENFORCE CONSTRAINTS option is used
D = Required if the DISCARDDN option is specified to purge data during a REORG
K = Required if the SORTKEYS option is specified with no value or a value of zero

O = Optional (based on utility parameters)

R = Required
T = Required for tables with indexes unless the SORTKEYS option is specified

X = Required if indexes exist
The COPY utility also requires a filter data set containing a list of VSAM data set names when COPY is
run with the CONCURRENT and FILTERDDN options.
You also can specify a SYSPUNCH data set for the REORG utility to generate LOAD statement input cards.
Additionally, REORG requires a data set to hold the unloaded data unless NOSYSREC or SHRLEVEL
CHANGE is specified.

DB2 Utility Catalog Contention
DB2 utilities read and update DB2 Catalog and DB2 Directory tables. This can cause contention when
multiple utilities are run concurrently. Table 35.2 lists the DB2 Catalog tables that are either updated or
read by the online DB2 utilities. In addition, DB2 utilities update the SYSIBM.SYSUTILX DB2 Directory
table.

DB2 utilities also use claim and drain processing instead of transaction locks to reduce contention and
increase availability.

Table 30.2: Utility Contention

Utility Updates Reads
CHECK SYSIBM.SYSCOPY SYSIBM.SYSCHECKDEP

SYSIBM.SYSCHECKS
SYSIBM.SYSCOLUMNS

 - 762 -

SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

COPY SYSIBM.SYSCOPY SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

LOAD SYSIBM.SYSCOPY SYSIBM.SYSCHECKDEP
SYSIBM.SYSCHECKS
SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

MERGECOPY SYSIBM.SYSCOPY SYSIBM.SYSCOPY
MODIFY
RECOVERY

SYSIBM.SYSCOPY

SYSIBM.SYSCOPY

REBUILD SYSIBM.SYSCOPY SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

RECOVER SYSIBM.SYSCOPY SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

QUIESCE SYSIBM.SYSCOPY
REORG SYSIBM.SYSCOPY SYSIBM.SYSCOLUMNS

SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE

REPAIR SET
NOCHCKPEND

NORCVRPEND
NOCOPYPEND

SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
DB2 Directory
DB2 Directory

RUNSTATS SYSIBM.SYSCOLDIST
SYSIBM.SYSCOLDISTSTATS
SYSIBM.SYSCOLSTATS
SYSIBM.SYSCOLUMNS
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXPART
SYSIBM.SYSINDEXSTATS
SYSIBM.SYSTABLES
SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABSTATS

Objects being analyzed

STOSPACE SYSIBM.SYSINDEXES
SYSIBM.SYSTABLESPACE
SYSIBM.SYSSTOGROUP

 - 763 -

SYSIBM.SYSTABLEPART
SYSIBM.SYSINDEXPART

Partition Level Operation
DB2 online utilities can operate at the tablespace partition level. The following utilities can be issued for
a single partition or for all the partitions of a tablespace:

 CHECK DATA, CHECK INDEX, and REPAIR data consistency utilities
 COPY, MERGECOPY, QUIESCE, RECOVER, REBUILD INDEX, and REPORT backup

and recovery utilities
 LOAD and REORG data organization utilities
 MODIFY and RUNSTATS catalog manipulation utility

Coding Utility Control Cards
All DB2 utility control card input must be contained in 80-character record images. The utility statements
must be confined to columns 1 through 72. All input in columns 73 through 80 is ignored by DB2.

Automatically Generate Utility Control Cards

Consider using DB2 Catalog queries to generate utility control card input. By creating standard queries
for each utility, you improve the accuracy of the utility input syntax. For example, the following query
automatically generates input to the RECOVER utility to invoke full tablespace recovery for all
tablespaces in a given database:
SELECT 'RECOVER TABLESPACE ' || DBNAME ||
 '.' || NAME || 'DSNUM ALL'
FROM SYSIBM.SYSTABLESPACE
WHERE DBNAME = 'DSN8D51A';
This query generates RECOVER TABLESPACE control cards for every tablespace in the sample
database. You can formulate queries to automatically create control card input for most of the online
utilities.
Specify the BUFNO JCL Parameter
Various guidelines in Part VI recommend specific BUFNO JCL parameter settings for different utility work
data sets. Each installation defines a default number of buffers adequate for the data sets used by most
batch jobs. The DB2 utilities, however, can benefit by increasing the work data set buffers. Therefore, if
sufficient memory is available to increase the buffering of DB2 utility work data sets, always do so. As of
DB2 V4, the default for BUFNO is 20.

Allocate Sufficient Sort Work Space for DFSORT
The CHECK INDEX, LOAD, RECOVER INDEX, and REORG utilities require an external sort routine. DB2
uses an IBM-supplied sort utility named DFSORT. You can use the SORTDEVT and SORTNUM
parameters of these utilities to allow the system to allocate the sort work area dynamically. This way,
the sort work specification never needs to be adjusted or sized—the system manages the required size.

Caution For very large tablespaces requiring a large amount of sort work space,
consider explicit allocation of sort work data sets because the system might
not be able to allocate large amounts of space during the utility execution.

The SORTDEVT parameter is used to specify the device type for temporary data sets to be dynamically
allocated by DFSORT. The SORTNUM parameter specifies the number of temporary data sets to be
dynamically allocated by the sort program. If you use SORTDEVT and omit SORTNUM, DFSORT will
determine how many data sets to allocate on its own.

Note No sort work space is required when reorganizing type 2 indexes. No sort work
space is required when loading a table with no indexes or a single index, when
the data to be loaded is in order by the index key.

The SORTWKxx DD statement defines the characteristics and location of the intermediate storage data
sets used by DFSORT. Multiple data sets can be allocated for the temporary sort work space required
by DFSORT. Specify each sort work data set to a different SORTWKxx DD statement. The xx is a two-
digit indicator ranging from 00 to 99. In general, begin with 00 and work your way up. No more than 32
SORTWKxx data sets will be used by DFSORT.

 - 764 -

All the data sets allocated to the SORTWKxx DD statements must be allocated on the same media type.
Although DFSORT permits the allocation of work data sets to a tape unit, avoid doing this for DB2
utilities because it causes severe performance degradation. Additionally, the SORTWKxx DD statements
must be allocated on the same type of unit (for example, one SORTWKxx data set cannot be allocated to
a 3390 device if the others are allocated to 3380 devices).
Specify the SPACE allocation for the SORTWKxx data sets in cylinder increments. If you don't, DFSORT
will reallocate the data sets in cylinder increments anyway.
For performance, specifying one or two large SORTWKxx data sets is preferable to specifying multiple
smaller data sets. For more information on DFSORT, consult the IBM DFSORT Application
Programming Guide (SC33-4035).
When Loading or Reorganizing, Specify LOG NO
To reduce the overhead associated with the LOAD and REORG job, use LOG NO. DB2 logs every
modification to DB2 data, except when the LOAD and REORG utilities run with the LOG NO option. When
you use LOG NO, however, an image copy must be taken after the successful completion of the LOAD or
REORG job.

When Loading or Reorganizing, Perform Inline Utilities
To eliminate the need to run subsequent RUNSTATS and COPY after a LOAD or REORG, use DB2's ability
to generate statistics and make image copies as a part of the LOAD or REORG utility.
Use the STATISTICS clause to indicate that inline statistics are to be generated.
Specify COPYDDN data sets (and RECOVERYDDN data sets if off-site copies are desired) to indicate that
inline image copies are to be made.
Back Up Data Using the COPY Utility or DFSMS
To back up data, use the COPY utility rather than DSN1COPY. DSN1COPY operates "behind DB2's back."
If you always use the COPY utility, DB2 will have an accurate record of all backup data sets. DFSMS is
also a valid copy mechanism.

Note DSN1COPY, DSN1PRNT, and DSN1COMP cannot be used on a concurrent copy.

REBUILD INDEX Versus CREATE INDEX
For very large existing tables, it is quicker to use the REBUILD INDEX utility to build an index than to
simply issue a CREATE INDEX statement. REBUILD INDEX is more efficient because it uses an
external sort. The REBUILD INDEX utility is designed to rebuild indexes, not initially build them as part
of a CREATE statement.
The CREATE INDEX DDL provides the option to defer index population by specifying DEFER YES. This
causes an index to be built as an empty shell. After the index is created, it will be put into a rebuild
pending status. The REBUILD INDEX utility can then be executed to populate the index. This process
is usually much more efficient for indexes on very large tables.

The Pending States
DB2 weaves an intricate web of checks and balances to ensure the integrity of the data housed in its
tables. DB2 ensures that image copies, recovers, and referential integrity checks are performed as
needed, based on an application's job stream.
For example, if data is loaded into a table with DB2 logging turned off, no further updates can be made
to that table until an image copy is made or the table is reloaded with changes logged. If DB2 did not
enforce this, valuable application data could be lost because of hardware or software failures. DB2
controls the integrity of its data through the use of pending flags.

A tablespace is in a pending state when the check pending, copy pending, or recover pending flag is set
for that tablespace.

Why Pending States Occur
A tablespace's check pending flag is set when

 A check constraint is added to a table and data within an existing row of that table
violates the constraint.

 - 765 -

 A table is altered to add a check constraint and the CURRENT RULES special register
contains 'DB2'.

 A tablespace with a table or tables containing referential constraints is partially
recovered (that is, RECOVER TORBA or RECOVER TOCOPY is run).

 The CHECK DATA utility is run for a table in the tablespace specifying DELETE NO
and referential constraint or check constraint violations are encountered.

 The LOAD utility is run for a table in the tablespace specifying the ENFORCE NO
option and either RI or check constraints exist for any table in the tablespace.

 A table in the tablespace is altered to add a new foreign key.
 Any table in a referential set is dropped.
 Any database or tablespace containing tables in a referential set is dropped.

A tablespace's copy pending flag is set when
 The REORG utility is run for the tablespace specifying LOG NO or the LOAD utility is

run for a table in the tablespace specifying LOG NO.
 A tablespace with a table or tables containing referential constraints is partially

recovered (that is, RECOVER TORBA or RECOVER TOCOPY is run).
 The MODIFY utility is run deleting the last full image copy data set from the

SYSIBM.SYSCOPY table.

A tablespace's recover pending flag is set when
 A RECOVER or REORG utility being run for the tablespace abends.
 A LOAD utility being run for tables in the tablespace abends.

An index's recover pending flag is set when
 A tablespace with a table or tables containing referential constraints is partially

recovered (that is, RECOVER TORBA or RECOVER TOCOPY is run).
 Abends occur in the REBUILD, RECOVER, REORG, or LOAD utility.
 The index was created specifying DEFER YES.

How to Correct Pending States
The check pending flag for the tablespace can be reset by

 Running the CHECK DATA utility for the tables in the tablespace specifying DELETE
NO if no constraint violations are encountered.

 Running the CHECK DATA utility for the tables in the tablespace specifying DELETE
YES.

 Running the LOAD utility specifying the ENFORCE CONSTRAINTS option.
 Altering tables in the tablespace to drop foreign keys and check constraints.
 Running the REPAIR utility specifying SET NOCHECKPEND for the tablespace or

issuing the START command for the tablespace with the ACCESS(FORCE)
parameter. Neither option corrects the problem flagged by the pending state; they
merely reset the pending flag.

The copy pending flag for the tablespace can be reset by
 Running the REORG utility with the LOG YES option or running the LOAD utility with

both the REPLACE and LOG YES options.
 Running the COPY utility specifying both the SHRLEVEL REFERENCE and the FULL

YES options.
 Running the REPAIR utility specifying SET NOCOPYPEND for the tablespace or

issuing the START command for the tablespace with the ACCESS(FORCE)
parameter. Neither option corrects the problem flagged by the pending state; they
merely reset the pending flag.

The recover pending flag for the tablespace can be reset by
 Running the LOAD utility with the REPLACE option.
 Running a full recovery for the tablespace.
 Running the REPAIR utility specifying SET NORCVRPEND for the tablespace or

issuing the START command for the tablespace with the ACCESS(FORCE)
parameter. Neither option corrects the problem flagged by the pending state; they
merely reset the pending flag.

 - 766 -

The recover pending flag for the index can be reset by
 Running the REBUILD INDEX utility for the index.
 Running the REPAIR utility specifying SET NORCVRPEND for the index or issuing the

START command for the index with the ACCESS(FORCE) parameter. Neither option
corrects the problem flagged by the pending state; they merely reset the pending
flag.

Summary
Although you now have a comprehensive understanding of DB2 utilities and commands, one more
issue must be discussed in the framework of utilities and commands: DB2 disaster recovery. The next
chapter covers various contingency planning scenarios, incorporating DB2 utilities and commands into
those scenarios.

Chapter 36: DB2 Contingency Planning
Overview
Contingency planning for disaster recovery is a complex task in the best of situations. Unfortunately, the
best of situations does not exist in a DB2 environment. This chapter defines the limitations of DB2 in the
framework of disaster recovery and suggests solutions to the problems that these limitations create.
This chapter pertains to the recovery of DB2 application data, not to the recovery of the DB2 subsystem
(and related data).

Suggestions, cautions, requirements, and techniques are provided to help you create a disaster
recovery plan for your DB2 applications.

What Is a Disaster?
It is quite natural for organizations to begin developing a disaster recovery plan before stepping back to
analyze the question "What is a disaster?" Without a firm understanding of what types of disasters can
occur, it is quite probable that the plan will be incomplete. A good place to start is to define the term
disaster. The Oxford American dictionary defines a disaster as a "sudden great misfortune." It helps to
expand on this, though. My definition follows:
A disaster is any event that has a small chance of transpiring, a high level of uncertainty, and a
potentially devastating outcome.

Most of us have witnessed a disaster situation (at least on the news). Tornadoes, hurricanes,
earthquakes, and fires are prime examples of natural disasters. Disasters can also be man-made, such
as electrical failure, bursting pipes, and war. However, relatively few of us have actually lived through a
disaster of the proportion shown on television. But many of us have had our basements flooded or been
in an automobile accident. A disaster does not have to have global consequences in order for it to be a
disaster to you.

Although disasters by their very definition are unpredictable and unlikely, you must plan for them.
Insurance companies have made their livelihood on this premise. Every company should have a
comprehensive and tested disaster plan that details how to resume business operations in the event of
a disaster. Companies with disaster plans will provide a higher degree of customer satisfaction and, in
the long run, will be more successful than companies with no plan. Disaster recovery for DB2 should be
an integral component of your overall business recovery plan. But to what degree should the disaster
planning be taken? Before your company can ascertain the appropriate level of recoverability, you must
analyze the risks and determine the objectives.

Determining and Managing Risk
A disaster recovery plan is developed to minimize the costs resulting from losses of, or damages to, the
resources or capabilities of your IT facilities. The success of any DB2 disaster recovery plan depends
on how well you ascertain the risks involved. First, you must recognize potential disaster situations and
understand the consequences of each. How these disasters affect your business is the bottom-line
reason for contingency planning in the first place. If your shop is on the coast, for example, tornadoes,
floods, and hurricanes are more likely to cause problems than snow storms (unless you're in a Northern
area) or earthquakes (unless you are in California).

 - 767 -

Each DB2 application must undergo an analysis period whereby the impact of losing the application is
evaluated. This can only be accomplished with the input of those individuals who will be affected—the
end users.

Risk can be broken up into three categories: financial loss, business service interruption, and legal
responsibilities. Within each category, there are varying degrees of risk. Each application has a different
impact on the company's bottom line the longer it is unavailable. Consider a bank, for example. Having
the demand deposit application unavailable will cause a greater loss than having the human resources
application unavailable, not only because deposits will be lost, but because customer trust will diminish.

Similarly, varying degrees of business service interruption and legal responsibilities also will exist. Most
applications will be affected by each of the three risk areas, and each application should be analyzed to
determine the level of risk associated with it. The disaster recovery plan needs to factor each of these
categories into the mix to determine which applications are most critical.

When you're developing your disaster recovery plan, remember that business needs are the motivating
force behind your planning. It is prudent, therefore, to separate your systems into critical and non-critical
applications based on business needs. Defining a system as critical has to be done by the area
responsible for the business function that the system supports. It is a good idea to rank your
applications into classes to determine which applications have the biggest impact if they are not
available:

Class 1 Super Critical Application. This class of application must be
supported with current data and is one of the most important to
support immediately. It must be recovered in the first group of
applications to be recovered at the disaster site. This group should
be limited to 5 or fewer applications to ensure that only the most
critical applications are processed first.

Class 2 Business Critical Application. This class of application is important
but falls outside the top 5 applications in terms of impact on the
business. It must be available at the remote site within the first 2 to
3 days. Typically, it requires current data.

Class 3 Moderately Critical Application. This class of application must be
available if the disaster lasts longer than one week. However, its
impact on the business is less critical, allowing it to wait for all
Class 1 and 2 applications to be recovered first. Its data
requirements vary from current to daily to possibly weekly.

Class 4 Required Application. This application needs to be supported at the
remote site, but it is not critical. Data can be from the last available
backup.

Class 5 Non-critical Application. This application need not be supported in
the event of a disaster. Very few users will volunteer their
applications to be Class 5.

Develop disaster recovery plans first for the critical applications. These support the functions that are
absolutely necessary should your company experience a disaster. Based upon these rankings, the
appropriate backup strategy can be employed for the tablespaces in each DB2 application.

Disaster Recovery Requirements
I have described the reasons why a disaster recovery plan is needed, but what should the goals of this
disaster recovery plan be? One part of that plan must deal with the recovery of DB2 data. Most disaster
recovery plans are composed of four goals:

 Avoid the loss of data
 Avoid the reprocessing of transactions
 Avoid causing inconsistent data
 Limit the time needed to restart critical application processing

These goals often conflict. For example, how can critical applications be online quickly when they
usually consist of large databases? How can the loss of data be avoided when thousands of

 - 768 -

transactions update DB2 tables every second? Each decision in the plan requires a trade-off to be
made.
After you target applications for disaster planning, you then should decide on a disaster recovery
strategy. This chapter details three strategies for DB2 disaster recovery planning—the sledgehammer,
the scalpel, and DSN1COPY. Each has its strengths and weaknesses. You can choose one strategy or
mix and match strategies based on the recovery requirements of each application.

Disaster Strikes
The situation is grim. There has been a devastating fire at your data processing shop. All computer
hardware, software, and data at your site has been destroyed. Are you adequately prepared to recover
your DB2 data at a remote processing site?

In this section, it is assumed that your data processing shop has planned for remote processing in the
event of a disaster. In addition, it is assumed that the operating system software and environment have
been recovered successfully. Given these caveats, let's continue with our discussion of DB2 disaster
planning.
DB2 disaster recovery happens in two steps: the recovery of the DB2 subsystem and the recovery of
the application data. The primary concern of the DBA should be the recovery of the operational data. To
accomplish this, however, you must recover your DB2 subsystem first. Therefore, your initial concern
should be developing a comprehensive plan for recovering your DB2 subsystem. IBM's DB2
Administration Guide covers this topic in depth.

DB2 Recovery Basics
To fully understand DB2 disaster recovery, you must first review basic DB2 recovery procedures and
techniques. The standard tools of DB2 recovery are the image copy backup, the DB2 log tapes, and
internal DB2 tables and data sets. Refer to Chapter 30, "Backup and Recovery Utilities" (and Figure
30.1), for a discussion of DB2 recovery basics.
The RECOVER utility is invoked to restore the tablespace data. As of DB2 V6, RECOVER can be used to
restore index data, too. DB2 uses all the information it stores in active and archive logs, the DB2
Catalog, the DB2 Directory, and the BSDS to recover tablespace data with a minimum of user input.
The only input the RECOVER utility requires is the name of the tablespace (or index) to be recovered.
DB2 does the rest. The reduction of user input in a recovery situation lessens the possibility of errors
during a potentially hectic and confusing time. The automation of the recovery process, however, is just
the circumstance that can complicate offsite DB2 disaster recovery planning.

Strategy #1: The Sledgehammer
This first strategy is referred to as the sledgehammer because it is a basic approach to application
backup and recovery. This strategy should be considered for non–24x7 applications, non-critical
applications, and nonvolatile applications. It is easy to implement and consists of the following steps:

1. Stop the DB2 subsystem to ensure stable application data. This establishes a
system-wide point of consistency.

2. Copy all tablespaces using a utility to dump complete DASD volumes. Utilities
such as FDR, from Innovation Data Processing, and DFSMS, from IBM, work
well.

3. When all DASD volumes containing DB2 data have been successfully copied,
restart the DB2 subsystem.

4. Copy the backup tapes and send them offsite.
5. Recovery at the remote site is then performed a complete DASD volume at a

time.

There are some problems with this strategy, however. For example, many shops require DB2 to be
available 24 hours a day, 7 days a week, so stopping the DB2 subsystem is not an option.
As an alternative to stopping the DB2 subsystem, each application could have a regularly scheduled job
to stop only the application. The job would need to quiesce the application tablespaces, the DB2
Catalog (DSNDB06), and the DB2 Directory (DSNDB01), and then stop each application tablespace. Note
that only an Install System Administrator (SYSADM) can quiesce the DB2 Catalog and DB2 Directory.
The complete volume backup could be performed at this point, and, when complete, the application
tablespaces could be restarted.

 - 769 -

An additional problem arises when DB2 data sets are strewn across numerous DASD volumes. If the
backup process copies data a complete volume at a time, many non-DB2 data sets that are not required
for DB2 recovery will be copied. Most tools that perform complete DASD volume copies can also copy
specific data sets, but this complicates the backup process by requiring the user to maintain a list of
DB2 data sets as well as a list of DB2 volumes for backing up.
If DFSMS, commonly referred to as system managed storage, is used to automate the placement of
DB2 tablespace and index data sets, the location of these data sets is controlled by DFSMS and is
dynamic. Therefore, the DB2 tablespace or index data set being backed up will not consistently remain
on the same DASD volume. This further complicates the DASD volume backup strategy.

The sledgehammer strategy is effective for shops willing to trade 24-hour processing capabilities for
ease of disaster recovery preparation. But this strategy is not the optimal solution for most DB2
installations because most shops are unwilling to make this trade-off. Shutting down DB2 effectively
prohibits the execution of every application that uses DB2 tables. This is usually impossible. Even
running the QUIESCE utility affects other applications by forcing a point of consistency on the DB2
Catalog and the DB2 Directory. If you want to avoid these points of contention, choose another strategy.

DFSMS Concurrent Copy
DB2 V3 added functionality for recovering from backups produced using DFSMS (Data Facility Storage
Management Subsystem). The DFSMS concurrent copy function can copy a data set concurrently with
other access. To restore the data sets, you can manually apply the DFSMS copies, and then you can
use the RECOVER utility for point-in-time recovery in conjunction with the DB2 log. However, DB2 did not
keep track of the DFSMS copies under DB2 V3.
DB2 V4 provided the ability to invoke a DFSMS concurrent copy directly from the DB2 COPY utility. A
DFSMS concurrent copy is recorded in the DB2 Catalog SYSIBM.SYSCOPY table with ICTYPE of F and
STYPE of C. Likewise, DB2 can automatically restore DFSMS copies using the RECOVER utility. When
RECOVER is invoked and a DFSMS copy needs to be part of the recovery, DB2 will invoke the DFDSS
RESTORE command to apply the DFSMS concurrent copy. Of course, the copy can be applied outside
the scope of the DB2 RECOVER utility if so desired.

Strategy #2: The Scalpel
The second strategy uses native DB2 functionality to prepare for disaster recovery. This strategy is
called the scalpel because it is precise and accurate. It involves the following steps:

1. Produce two or more image copy backups, at least one of which must be on tape.
2. Send the tape image copy backup to the remote site. You should do this as soon

as possible after the tape has been created to avoid having the tape damaged in
a subsequent disaster.

3. Do not back up indexes.
4. Produce a daily report (using DSNTEP2 or QMF) from the SYSIBM.SYSCOPY

table and send a copy of the report to the remote site. A sample query that
accomplishes this follows:

5. SELECT DBNAME, TSNAME, DSNUM, TIMESTAMP, ICTYPE,
6. ICBACKUP, DSNAME, FILESEQNO, SHRLEVEL, DSVOLSER
7. FROM SYSIBM.SYSCOPY

ORDER BY DBNAME, TSNAME, DSNUM, TIMESTAMP
A QMF form that can be used with the query is provided in Listing 36.1. The automated
running of this query can be accomplished with relative ease by setting up a batch QMF
job and sending SYSOUT to a tape data set that can be sent offsite.
Listing 36.1: QMF Form to be Used with the SYSCOPY Query

Total Width of Report Columns: 150

NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ
 1 DATABASE BREAK1 1 8 C 1
 2 TABLE_SPACE BREAK2 1 8 C 2

 - 770 -

 3 DS_NUM BREAK3 1 3 L 3
 4 TIMESTAMP 1 26 C 4
 5 IC_TYPE 1 4 C 5
 6 IC_BACKUP 1 2 C 6
 7 DATASET NAME 1 44 C 7
 8 FIL_SEQ_NO 1 3 C 8
 9 SHR_LVL 1 3 C 9
10 VOL SERIAL LIST 1 42 C 10

This report details all the information available for DB2 to use for recovery. Be sure to
synchronize the running of this report with the running of the DB2 Catalog backup sent
offsite to ensure that the corresponding offsite DB2 Catalog image copy conforms to the
data in this report.
Use Table 36.1 to interpret the value of the ICTYPE column in this report. ICTYPE refers
to the type of recovery information recorded in the SYSIBM.SYSCOPY table.
Table 36.1: SYSIBM.SYSCOPY ICTYPEs

Type Description

A ALTER

B REBUILD INDEX

D CHECK DATA LOG(NO)
(no log records for the range are available for RECOVER)

F Full image COPY

I Incremental image COPY

P Partial recovery point (RECOVER TOCOPY or RECOVER
TORBA)

Q Quiesce (point of consistency RBA)

R LOAD REPLACE (LOG YES)

S LOAD REPLACE (LOG NO)

T TERM UTILITY command

W REORG (LOG NO)

X REORG (LOG YES)

Y LOAD (LOG NO)

Z LOAD (LOG YES)

8. Use DSNJU004 to produce a BSDS log map report and send a copy of the report
to the remote site.

9. Recovery at the remote site is performed a tablespace at a time. Use REBUILD
INDEX to rebuild all indexes. Run CHECK DATA to resolve any constraint
violations.

10. For this method of disaster recovery preparation to succeed, the DB2 system data
sets must be backed up and sent offsite. Be sure to create offsite backups of the
DB2 Catalog, the BSDS, the DB2 Directory, and the archive logs at least daily for
volatile systems and at least weekly for all systems, regardless of their volatility.

The scalpel method differs from the sledgehammer in many ways, but perhaps the most important way
is its reliance on DB2. Only application data recorded in the DB2 Catalog, the DB2 Directory, and the
BSDS can be recovered. For this reason, the scalpel method relies heavily on the capability to recover

 - 771 -

the DB2 subsystem. Application data is as current as the last backup of the DB2 subsystem—one of the
headaches caused by the automation of the DB2 recovery process.

Consider, for example, an application that sends three image copy backups to a remote site daily. One
backup is sent offsite in the morning to allow for post-batch recovery, another is sent offsite in the
afternoon to allow recovery of all morning transactions, and a third is sent offsite in the evening to allow
recovery of all pre-batch transactions.

However, if only one DB2 Catalog copy is sent offsite daily—for example, after the morning copy but
before the afternoon copy—remote recovery can proceed only to the morning copy plus any archive
logs sent offsite.

For this reason, try to synchronize your application image copies with your DB2 Catalog backups.
Additionally, as mentioned, ensure that the reports at the remote site reflect the status of the DB2
Catalog image copies. Otherwise, you will end up with greater confusion during the disaster recovery
scenario, increased data loss, and unusable image copies at your remote site.
The amount of data lost in an offsite recovery depends not only on the synchronization of application
tablespace backups with DB2 Catalog backups, but also on the timeliness of the backup of archive logs
and the synchronization of the DB2 Catalog backup with the logs. When the DB2 Catalog is backed up
to be sent offsite, issue the ARCHIVE LOG command as part of the copy job. Send to the remote site a
copy of the archived log that was produced along with the DB2 Catalog image copies.

Additionally, keep at least three image copy backup tapes at your remote site. This provides a
satisfactory number of backups if one or more of your image copy tapes is damaged. DB2 automatically
falls back to previous image copy backups when a tape is damaged. Changes are applied from the
archive logs to re-create the data lost by falling back to the previous image copy.

Note also that updates recorded on the DB2 active logs at the time of the disaster are lost. Recovery
can be performed through only the last archive log available at the remote site.
The final consideration for the scalpel method is the creation of the underlying tablespace and
indexspace data sets at the remote site. If you are using native VSAM, you must use AMS to create the
data sets before recovering each tablespace and its related indexes. If you are using STOGROUPs for
your production data sets, simply ensure that the STOGROUPs have been altered to point to valid DASD
volumes at the remote site. The RECOVER utility creates the underlying VSAM data sets for you.
Strategy #3: DSN1COPY
The third strategy, using DSN1COPY, generally is not recommended because it operates behind the
back of DB2 and therefore sacrifices the rigorous control provided by DB2 backup and recovery
procedures. Implementing disaster recovery in this manner can be beneficial, however, for a limited
number of non-critical applications.
This strategy is close to the sledgehammer approach but a little more complicated. Follow these steps
for each DSN1COPY that must be executed:

1. Use the START command with the MODE(RO) option to place all the tablespaces
to be backed up in read-only mode.

2. Issue Quiesce WRITE(YES) for all the tablespaces that will be backed up using
DSN1COPY.

3. Execute the DSN1COPY utility for each tablespace being copied.
4. Start all the tablespaces in read-write mode using the START command using the

MODE(RW) option.
Recovery at the remote site must be performed using DSN1COPY because these backup data sets are
not recorded in the DB2 Catalog. Therefore, each tablespace and indexspace data set must be created
using AMS before the DSN1COPY can be executed to restore the application data.
This complex and potentially error-prone process should be avoided. If your application data is very
stable, however, you might want to avoid recording backups in the DB2 Catalog to simplify your DB2
Catalog maintenance procedures. The MODIFY utility must be executed periodically to clean up the
SYSIBM.SYSCOPY table and the SYSIBM.SYSLGRNX table. MODIFY is run specifying a tablespace and
a date range that deletes all image copy and log information for the tablespace for that date range. Each
application must supply the appropriate date range for image copy deletion.
If your date range is unknown, unstable, or random, you might want to avoid using the DB2 Catalog for
recovery altogether. You could simply create four DSN1COPY backups every time your (stable)
application data changes. Retaining two onsite and sending two offsite should suffice. Remember, this
method should be used only for stable data and is not recommended. The most desirable method is to

 - 772 -

use the DB2 COPY, RECOVER, and REBUILD utilities and to execute the MODIFY utility on a tablespace-
by-tablespace basis for each application.

Non-Critical Applications
Non-critical (Class 4 and possibly Class 5) applications should be considered only after complete
disaster recovery procedures have been implemented for the critical applications. If you follow the
procedures outlined in this chapter, you will have an exemplary disaster recovery plan for all your
applications.
Sometimes, however, simple DSN1COPY data sets for each tablespace in the non-critical application
suffice for offsite recovery. These should be taken when DB2 is not operational (or the application has
been stopped). Because the application is non-critical, the DSN1COPY might need to be performed less
frequently. This decision must be made on an application-by-application basis.

For some non-critical (pure Class 5) applications, the decision might be made not to develop disaster
recovery procedures. This decision is valid only when the system can be lost completely. Obviously,
application systems of this type are rare.

DB2 Environmental Considerations
Sometimes recovery is targeted to be performed at an alternative site that is already running DB2. This
is not advisable. During a disaster, your whole machine will be lost. In addition to DB2, MVS, JES, and
TSO, all other system software must be recovered. Your disaster recovery plan will become needlessly
complex if you plan to recover to an existing system. Reconfiguring software that is already operational
usually is more difficult than bringing everything up from scratch.
If you insist on a plan to recover to a DB2 subsystem that already exists, remember the following: All
databases, tablespaces, tables, and indexes must be created at the remote site. This could be
performed either at the time of the disaster (which is complex and error-prone) or before the disaster
(which is easy but consumes resources). With either option, all DB2 objects must exist before the image
copy data sets can be restored. This can be accomplished only by using the DSN1COPY service aid with
the OBIDXLAT option.
You should maintain a comprehensive report that lists the DBID for each database, the PSID for each
tablespace, and the OBID for each table in both DB2 subsystems. (DBIDs, PSIDs, and OBIDs identify
each object to DB2 and are stored in the DB2 Catalog.) A query to produce this report follows:
SELECT S.DBNAME, S.DBID, S.NAME, S.PSID,
 T.CREATOR, T.NAME, T.OBID
FROM SYSIBM.SYSTABLESPACE S,
 SYSIBM.SYSTABLES T
WHERE S.DBNAME = T.DBNAME
AND S.NAME = T.TSNAME
AND T.TYPE = 'T'
ORDER BY S.DBNAME, S.DBID, S.NAME, S.PSID, T.CREATOR, T.NAME
A QMF form to create a formatted report using this query is presented in Listing 36.2. The report
generated by this query should be sent to the remote site to assist with disaster recovery. The
information can be used as a reference when using DSN1COPY with the OBIDXLAT option. This is the
only way to accomplish recovery to a different DB2 subsystem.

Listing 36.2: QMF Form to be Used with the DBID/PSID/OBID Query

Total Width of Report Columns: 61

NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ

 1 DATABASE BREAK1 1 8 C 1

 - 773 -

 2 DBID BREAK1 1 4 L 2

 3 TABLE_SPACE BREAK2 1 8 C 3

 4 PSID BREAK2 1 4 L 4

 5 TABLE_CREATOR 1 8 C 5

 6 TABLE NAME 1 18 C 6

 7 OBID 1 4 L 7

Data set management techniques also must be considered. If you allocate VSAM data sets for all
production tablespaces and indexes, you must use AMS to create the underlying data sets before
recovery at the remote site. If you use STOGROUPs, though, the data sets are allocated when the
tablespaces and indexes are created.

DB2 Contingency Planning Guidelines
When developing your DB2 disaster recovery plan, be sure to consider the following tips and
techniques.

Plan Before a Disaster Strikes

Ensure that an adequate disaster recovery plan is in place for the DB2 subsystem. This involves
backing up system data sets and system tablespaces and integrating the timing of the backups with the
needs of each DB2 application.
Remember, the absolute worst time to devise a disaster recovery plan is during a disaster!

Create a Schedule to Ship Vital Image Copies Offsite Regularly
Remember that the RECOVER utility can recover only with the backup tapes sent to the remote site.
Updates on the active log at the time of the disaster are lost, as are all archive logs and image copy
backup tapes not sent offsite.

Ensure that every tablespace has a valid offsite image copy backup.

Do Not Forget to Backup Other Vital DB2 Data

Copying DB2 tablespace data is not sufficient to ensure a complete disaster recovery plan. Be sure to
back up and send offsite all related DB2 libraries, such as

 Any DB2 DDL libraries that might be required
 JCL and proc libraries
 DBRM libraries
 Application program load libraries
 Libraries and passwords for critical third-party DB2 products
 Stored procedure program load libraries
 Application program, stored procedure source code, and copy book libraries

Use SHRLEVEL REFERENCE for Offsite Copies
SHRLEVEL CHANGE means that other processes can read and modify the tablespace as the COPY is
running. SHRLEVEL REFERENCE means that other processes are permitted only to read the tablespace
data during the COPY utility execution.
When running the COPY utility for offsite backup needs, do the following:

 Stop concurrent data modification to all tablespaces in the tablespace set using the
STOP command or START ... ACCESS(RO).

 Use the SHRLEVEL REFERENCE clause.
If you run COPY with SHRLEVEL CHANGE for an offsite image copy be sure to send the archive logs, or
a copy of the archive logs offsite. Additionally, ensure that related tablespaces are assigned the same
quiesce point for recoverability.

 - 774 -

Beware of Compression

If your site uses tape-compression software, be sure that the offsite location to be used for disaster
recovery uses the same tape-compression software. If it does not, specify the following JCL parm for
any offsite image copy data set:
DCB=TRTCH=NOCOMP

Document Your Strategy

Document the backup strategy for each tablespace (sledgehammer, scalpel, DSN1COPY, or some
other internally developed strategy). Document the state of each DB2 application and the DB2
subsystem by producing DB2 Catalog, DB2 Directory, and BSDS reports after producing your offsite
backups. Send this information daily to your remote site.

Use an Appropriate Active Log Size

Keep the active log relatively small, but not so small that it affects system performance. Active logging
poses a logistical problem. If a disaster strikes, the active log will be lost. Therefore, you will not be able
to restore all DB2 data to its state just prior to the disaster. Remember, a disaster implies total loss of
your machine or site. At best, data can be restored only back to the last archive log sent offsite. This is
one reason to have small active logs, thereby forcing more frequent log archival. If DB2 provided the
capability to remote log and remote copy, it would be technically possible to recover data back to its
most recent state using remote logs and remote copies.
When the active log is small, consider increasing the maximum number of archive logs for the DB2
subsystem. This maximum is controlled using the MAXARCH DSNZPARM parameter. The maximum value
acceptable for MAXARCH is 1000.
Automate Use of the ARCHIVE LOG Command
The ARCHIVE LOG command can be used within a job that is submitted periodically, forcing an archive
log and creating a copy of the archive log for offsite recovery. This is an important component of the
DB2 disaster recovery plan because the BSDS and the SYSIBM.SYSCOPY table, which play a
substantial role in the recovery process, are backed up at log archival time. Be sure to put the
appropriate procedures in place to move the archive log copies offsite as soon as feasible after the job
completes. A tape that is still sitting in the shop when a disaster strikes will be useless for disaster
recovery purposes.

The general recommendation for logging is to enable dual logging—both active and archive. If this is the
case, be sure to do one of the following:

 Keep both archive log sets on site, but make a copy of one of the archive log sets and
send that copy offsite.

 Keep one archive log set onsite and send the second set offsite. This alternative
creates a greater exposure to the primary site because only one backup of the logs is
available onsite.

Copy Each Tablespace After an Offsite Recovery

Back up each application's tablespaces at the remote site immediately after each application has been
recovered.

Validate Your Offsite Recovery
Run a battery of SELECT statements against the recovered application tables to validate the state of the
data.

Test Your Offsite Recovery Plan

Test your disaster recovery plan before a disaster occurs. This gives you time to correct problems
before it is too late. It is wise to schedule at least yearly disaster recovery tests in which disaster
conditions are mimicked. The DB2 environment should be recovered at the offsite location minimally
once a year to ensure that the plan is up-to-date and able to be implemented in case of a disaster.

Appropriate Copying Is Dependent Upon Each Application

DB2 disaster recovery is a complex topic that deserves substantial attention. Each application must be
analyzed to uncover its optimal disaster recovery strategy. The frequency of copying will be dependent

 - 775 -

upon the volatility of the data, the size of the batch window, the length of time allowable for an eventual
recovery, and the frequency of log archival.

Summary
The guidelines in this chapter, combined with a comprehensive DB2 subsystem disaster plan, will
provide a satisfactory disaster recovery mechanism for your corporation.

Part VII: The Ideal DB2 Environment
Chapter List

Chapter 37: Components of a Total DB2 Solution
Chapter 38: Organizational Issues
Part Overview
Until now, this book has concentrated on DB2 database management, design, and
programming. It has delved into the components of DB2 and some of the complementary
software packages used by most DB2 shops (such as QMF and DB2-PM). An ideal DB2
environment, however, consists of much more than DB2, QMF, and DB2-PM.

Section VII of this book expands the scope of discussion to include topics outside the
general framework of DB2. In particular, this section discusses the features missing from
DB2 and the many organizational issues that must be addressed when using DB2 at your
shop.

This discussion includes a categorization of software toolsets that alleviate the problems
caused by DB2's lack of certain features, and a summary of some of the major vendors
and the types of products they supply. This section also provides checklists to refer to in
evaluating and implementing these value-added tools.

Use the information in this section to discover the additional functionality available from
third-party vendors and to ensure that your DB2 environment is organized in an optimal
manner.

Chapter 37: Components of a Total DB2 Solution
Overview
DB2, as delivered out of the box, is a relatively complete, full-function relational database management
system. An organization can install DB2 as delivered, but it will realize quickly that the functionality
needed to adequately support large-scale DB2 development is not provided by DB2 alone.

The administration and maintenance of DB2 applications is time-consuming if you use the standard
features of the DB2 database management system as supplied by IBM. Fortunately, a host of tools
enhance the functionality of DB2, thereby easing the administrative burden and reducing the
possibilities of error.

DB2 Tools
The need for these tools can be seen by the number of them available. Most DB2 shops implement one
or more add-on tools for DB2. Of these, IBM's QMF and DB2-PM are among the most popular. Many
more tools from other vendors fill market niches not adequately supported by IBM. Table 37.1 provides
a rundown of the categories of products.

Table 37.1: Categories of DB2 Products

Abbreviation Tool Category Definition
ALT Tools that administer the SQL necessary to change DB2 objects

without losing either authorization or other, dependent objects.

 - 776 -

AUD Tools that read the DB2 logs and report on data modification and
database changes. May also create re-apply SQL from log images.

CAT Tools that enable panel-driven (or GUI-based) access to the DB2
Catalog without having to code actual SQL queries.

COM Tools that reduce data storage requirements using compression
algorithms.

C/S DB2-related client/server tools for building applications, connecting
databases, or enabling remote access. Includes middleware and
gateways.

DBA Database administration and analysis tools that enable a DBA to
determine when to reorganize tablespaces and indexes. Useful for
implementing proactive tuning.

DES Database modeling and design tools such as upper CASE tools,
entity-relationships diagramming tools, and tools to enable logical to
physical model translation.

DSD Tools that monitor and manage DB2 DASD and space management.
EDT Tools that provide an ISPF (or GUI-based) editor for accessing,

manipulating, and modifying data in DB2 tables. Data is typically
displayed using a spreadsheet-like interface and can be modified
simply by over-typing (instead of issuing SQL statements).

IDX Tools that analyze your SQL statement usage and determine the
optimal indexes to build for performance.

INT Tools that manage and implement data integrity (check constraints)
and referential integrity (RI).

MIG Tools that create and administer the requisite SQL to migrate DB2
objects from one DB2 subsystem to another.

MOV Tools that move data from environment to environment, such as from
IMS to DB2.

MSC Miscellaneous tools (do not fit into one of the other categories).
NET Tools that enable DB2 databases to be connected to the Internet,

intranet, and the World Wide Web.
OPR Operational support tools, such as on-line DB2 standards manuals,

change control systems, and schedulers.
PC PC- and workstation-based DBMSs that mimic DB2 execution such

that application development chores can be offloaded from the
mainframe.

PLN Tools that analyze and evaluate the access paths for individual SQL
statements and SQL in plans and packages. May also provide
suggestions for how to improve the SQL.

PM DB2 performance monitors.
PRF Products to enhance performance.
PRG Tools that assist the application developer, such as lower CASE tools,

4GLs, SQL generation tools, SQL formatting tools, and application
testing tools.

QMF Tools that augment the functionality and/or enhance the performance
of QMF. Examples include query compilers and QMF object
administration tools.

QRY Tools that provide an integrated environment for developing and
issuing queries against DB2 tables. May be ISPF- or GUI-based.

 - 777 -

REP Tools that store, manage, and enable access to metadata (such as
repositories and data dictionaries).

SEC Security tools.
UTL Tools that generate DB2 utility JCL or enhance DB2 utility functions

by providing faster, more efficient execution.

These types of add-on tools can significantly improve the efficiency of DB2 application development.
Even IBM is beginning to understand the need for better management tools. IBM provides several DBA
tools for DB2 Version 6. Some are provided free with DB2, others are available for a fee. Some of the
newer tools from IBM include the following:

 DB2 UDB Control Center—A tool for viewing and managing DB2 databases
 DB2 Stored Procedures Builder—A tool for creating, installing, and testing DB2 stored

procedures
 DB2 Installer—A GUI-based installation assistant
 DB2 Visual Explain—Graphically presents DB2 EXPLAIN output
 DB2 Estimator—Tool for estimating the performance of DB2 applications
 DB2 Administration Tool—Provides DB2 catalog query capability and rudimentary DB2

object management

Of course, IBM has provided tools such as DPROP, QMF, and DB2-PM for quite some time now, as
well. So, the need for tools that add-on to the functionality of DB2 is well established.

In the following sections, each tool category is described, along with a discussion of desired features. In
evaluating products, look for features important to your organization. These lists are not comprehensive,
but they provide a starting point for the evaluation process.

Table Altering Tools (ALT)
DB2 provides the capability to modify the structure of existing objects using the ALTER DDL statement.
The ALTER statement, however, is a functionally crippled statement. You should be able to alter all the
parameters that can be specified for an object when it is created, but DB2 does not support this. For
example, you can add columns to an existing table (only at the end), but you can never remove columns
from a table. The table must be dropped and then re-created without the columns you want to remove.

Another problem that DBAs encounter in modifying DB2 objects is the cascading drop effect. If a
change to a tablespace mandates its being dropped and re-created (for example, changing the limit
keys of a partitioned tablespace), all dependent objects are dropped when the tablespace is dropped.
This includes the following:

All tables in the tablespace
All information in SYSCOPY (including image copy information)

All indexes on the tables

Primary and foreign keys

Check constraints

Synonyms and views

Labels and comments
FIELDPROC and EDITPROC assignments
RUNSTATS values

All authorization below the tablespace level statistics

Ensuring that DDL is issued after the modification to reverse the effects of cascading drops can be a
tedious, complex, and error-prone procedure.
Many types of DB2 object alteration cannot be performed using the generic DB2 ALTER statement.
Several examples follow:

 - 778 -

You cannot change the name of a database, alias, view, column, constraint, tablespace, or index.

You cannot create a database based on the attributes of an existing database.

You cannot create a tablespace based on the attributes of an existing tablespace.

You cannot change the database in which the tablespace exists.

You cannot change the number of tablespace partitions.

You cannot remove a tablespace (or index) partition.

You cannot change the tablespace type (for example, changing a simple tablespace to a segmented or
partitioned tablespace).
You cannot change the SEGSIZE of a segmented tablespace.
You cannot copy primary and foreign keys using CREATE LIKE; this command creates a new table
based on the columns of another table.

You cannot move a table from one tablespace to another.

You cannot rearrange column ordering.

You cannot add a column into the middle of other columns; only at the end of the table.
You cannot change a column's data type and length (other than increasing the length of a VARCHAR
column as of DB2 V6).

You cannot remove columns from a table.

You cannot change the primary key without dropping and adding the primary key.
You cannot add to a table a column specified as NOT NULL.
You cannot add any columns to a table defined with an EDITPROC.
You cannot add columns to a table defined with an EDITPROC.
You cannot change a table's EDITPROC or a column's VALIDPROC.

You cannot create a view based on another view.

You cannot add columns to, or remove columns from, a view.
You cannot change the SELECT statement on which the view is based.

You cannot create an index based on another index.

You cannot change the index columns.

You cannot change the clustering specification.

You cannot change the index order (ascending or descending).

You cannot create an alias based on another alias.

You cannot change the location of the alias.

You cannot change the table on which the alias is based.

This list provides all the justification needed to obtain an alter tool. Such a tool provides an integrated
environment for altering DB2 objects. The burden of ensuring that a change to a DB2 object does not
cause other implicit changes is moved from the DBA to the tool.

At a minimum, an alter tool should perform the following functions:
 Maintain tables easily without manually coding SQL.
 Alter all DB2 database objects supported by the latest release or version of DB2.
 Understand all implemented referential integrity and apply any database changes

while maintaining the defined referential constraints.
 Retain or reapply all data, dependent objects, and security affected by the requested

alter if a drop is required.

 - 779 -

 Retain or reapply all statistical information for dropped objects.
 Navigate hierarchically from object to object, making alterations as it goes.
 Provide panel-driven or point-and-click modification showing before and after

definitions of the DB2 objects before the changes are applied.
 Batch requested changes into a work list that can be executing in the foreground or

the background. The work list should be able to be reused, if necessary.
 Run directly against the DB2 Catalog or optionally against a copy of the DB2

Catalog.
 Analyze changes to ensure that the requested alterations do not violate any DB2

DDL rules. For example, if a series of changes is requested and one change causes
a subsequent change to be invalid (an object is dropped, for instance), this should
be flagged before execution.

 Provide automated recovery for inadvertently dropped objects.
 Control the environment in which alters are executed.
 Use standard DB2 utilities or enhanced third-party utilities.
 Compare one database to another and indicate the differences. Should also be able

to compare a database against a DDL file to check for differences. If differences are
found, the tool should be able to automatically make the two environments the
same.

 Be capable of monitoring changes as they are applied. Furthermore, the tool should
keep a log of all applied changes.

Auditing Tools (AUD)
An audit is the examination of a practice to determine its correctness. DB2 auditing software therefore
should help in monitoring the data control, data definition, and data integrity in the DB2 environment.
Several mechanisms provided by DB2 enable the creation of an audit trail, but this trail can be difficult to
follow.

The primary vehicle provided by DB2 for auditing is the audit trace. This feature enables DB2 to trace
and record auditable activity initiated by specific users. When the DB2 audit trace is activated, the
following type of information can be captured to the trace destination:

Authorization failures

Grant and revoke SQL statements

DDL issued against auditable tables

DML issued against auditable tables

Bind requests involving auditable tables
Authorization ID changes requested by the SET CURRENT SQLID statement

Utility executions
An auditable table is any table defined to DB2 with the AUDIT clause of the CREATE TABLE statement.
There are three options for table auditing: NONE, CHANGES, and ALL. Specifying AUDIT NONE, which is
the default, disables table auditing so that the audit trace does not track that table. Specifying AUDIT
CHANGES indicates that the first DELETE, INSERT, or UPDATE statement issued against that table in
every application unit of work (COMMIT scope) is recorded. AUDIT ALL records the first DML statement
of any type accessing this table in each application unit of work. Note, however, that this information is
tracked only if the appropriate audit trace is activated. Refer to Chapter 22, "Traditional DB2
Performance Monitoring," for more information on DB2 audit traces.

This information is written to the output trace destination specified for the audit trace. DB2 trace records
can be written to GTF, SMF, or an OP buffer. After the information has been written to the specified
destination, the problem of how to read this information still exists. If you have DB2-PM, you can run the
appropriate audit reports, but even these can be insufficient for true auditing.

An audit tool should provide five important features that DB2's audit tracing capability does not. DB2
auditing requires a trace to be activated, and this can quickly become expensive if many tables must be
audited. The first feature an auditing tool should provide is the capability to read the DB2 logs, which are

 - 780 -

always produced, and report on update activity as needed. This reduces overhead because it uses the
regular processing features of DB2 rather than an additional tracing feature, which increases overhead.

The DB2 audit trace records a trace record only for the first statement in a unit of work. The second
feature of the auditing tool is reporting all data modification from the DB2 logs.

The DB2 audit trace facility does not record the specifics of the data modification. The third feature of an
auditing tool is reporting who (by authorization ID) makes each change, and also showing a before and
after image of the changed data.

The fourth feature the auditing tool should provide is the capability to report on the DB2 audit trace data
if so desired.

A fifth feature of a DB2 auditing tool is to access the DB2 logs to create re-do SQL scripts that can be
run to re-apply data modifications that occurred during a specific timespan. Although this feature is
optional for the auditing functionality of such tools, it is a common feature since auditing tools, by their
very nature, must access the DB2 logs.

Finally, the auditing tool should provide both standard reports and the capability to create site-specific
reports (either from the log or from the DB2 audit trace data).

If your shop has strict auditing requirements, an auditing tool is almost mandatory because of DB2's
weak inherent auditing capabilities. Additional things to look for in an auditing tool include the following:

 The tool should consume minimal resources. Before acquiring an auditing tool,
determine the estimated I/O and CPU overhead of running the auditing tool to make
sure that it will not disrupt your service level agreements for DB2 applications or
consume excessive resources.

 The tool should be able to understand DB2 audit trace data and provide formatted
reports of the audit trace data, including reports on DDL, DML, and DCL executions.

 Online and batch reporting options should be available.
 The tool should be able to capture additional information from the DB2 transaction

logs.
 Of high importance, the tool should be able to identify the authid of any user that

modifies any DB2 data in any table being audited.
 Finally, the tool should be able to read the transaction log and generate undo and re-

do SQL to backout or re-apply any changes recorded on the log.

DB2 Catalog Query and Analysis Tools (CAT)
The DB2 Catalog contains a wealth of information essential to the operation of DB2. Information about
all DB2 objects, authority, and recovery is stored and maintained in the DB2 Catalog. This system
catalog is composed of DB2 tables and can be queried using SQL. The data returned by these queries
provides a base of information for many DB2 monitoring and administrative tasks.
Coding SQL can be a time-consuming process. Often, you must combine information from multiple DB2
Catalog tables to provide the user with facts relevant for a particular task. This can be verified by
reexamining the DB2 Catalog queries presented in Chapter 24, "DB2 Object Monitoring Using the DB2
Catalog."

Add-on tools can ease the burden of developing DB2 Catalog queries. The basic feature common to all
DB2 Catalog tools is the capability to request DB2 Catalog information using a screen-driven interface
without coding SQL statements. Analysts can obtain rapid access to specific facts stored in the DB2
Catalog without the burden of coding (sometimes quite complex) SQL. Furthermore, procedural logic is
sometimes required to adequately query specific types of catalog information.

Instead of merely enabling data access, many DB2 Catalog tools can do one or more of the following:
 Create syntactically correct DDL statements for all DB2 objects by reading the

appropriate DB2 Catalog tables. These statements are generally executed
immediately or saved in a sequential data set for future reference or use.

 Modify the "updateable" DB2 Catalog statistical columns using an editor interface (for
example, a non-SQL interface).

 Create syntactically correct DCL statements from the DB2 Catalog in the same way
that DDL is generated.

 - 781 -

 Perform "drop analysis" on a SQL DROP statement. This analysis determines the
effect of the cascading drop by detailing all dependent objects and security that will
be deleted as a result of executing the DROP. If the tool also manages DB2
security, it should be able to perform "revoke analysis" as well.

 Provide a hierarchical listing of DB2 objects. For example, if a specific table is
chosen, the tool can migrate quickly up the hierarchy to show its tablespace and
database, or down the hierarchy to show all dependent indexes, views, synonyms,
aliases, referentially connected tables, and plans.

 Create and drop DB2 objects, and grant and revoke DB2 security from a screen
without coding SQL. Additionally, some tools log all drops and revokes so that they
can be undone in the event of an inadvertent drop or revoke execution.

 Specify the ISOLATION clause to access DB2 data using cursor stability, repeatable
read, read stability, or uncommitted read processing.

 Operate on the DB2 Catalog or on a copy of the DB2 Catalog to reduce system-wide
contention.

These features aid the DBA in performing his day-to-day duties. Furthermore, a catalog query tool can
greatly diminish the amount of time required for a junior DBA to become a productive member of the
DBA team.

Compression Tools (COM)
A standard tool for reducing DASD costs is the compression utility. This type of tool operates by
applying an algorithm to the data in a table so that the data is encoded in a more compact area. By
reducing the amount of area needed to store data, DASD costs are decreased. Compression tools must
compress the data when it is added to the table and subsequently modified, then expand the data when
it is later retrieved (see Figure 37.1).

Figure 37.1: A DB2 table compression routine at work.

Third-party compression routines are specified for DB2 tables using the EDITPROC clause of the
CREATE TABLE statement. The load module name for the compression routine is supplied as the
parameter to the EDITPROC clause. A table must be dropped and re-created to apply an EDITPROC.

In general, a compression algorithm increases CPU costs while providing benefits in the areas of
decreased DASD utilization and sometimes decreased I/O costs. This trade-off is not beneficial for all
tables. For example, if a compression routine saves 30 percent on DASD costs but increases CPU
without decreasing I/O, the trade-off is probably not beneficial.

A compression tool can decrease DASD by reducing the size of the rows to be stored. CPU use usually
increases because additional processing is required to compress and expand the row. I/O costs,
however, could decrease.

 - 782 -

Enhancements to DB2 since V2.3 have made most third party compression tools of little added value.
DB2 V2.3 provided a basic compression routine called DSN8HUFF. Still most third-party compression
tools provided more efficient compression algorithms and advanced analysis to determine the costs and
benefits of compression for a specific table. This changed dramatically with DB2 V3. The internal
compression capabilities of DB2 since V3 have caused DB2 compression to outperform most third-party
compression tools. Even when a third party compression tool can provide benefit to an organization
(perhaps because it offers multiple compression routines geared for different types of data), the return
on investment is such that most shops typically stick with internal DB2 compression for new tables. The
third party compression tools, however, are here to stay as legacy compression tools. This phenomenon
exists because most shops are too busy with production work to support the additional work required to
remove the third party EDITPROC and replace it with internal DB2 compression.

There are other types of compression tools than those that simply compress DB2 tablespace data.
Some tools compress DB2 image copy backup data sets. These are divided into two camps: those that
compress DASD backups and those that compress cartridge backups. This type of compression tool
can provide the following benefits:

 Reduced backup storage costs
 Reduced elapsed time for taping backups because fewer tapes must be loaded
 Fewer physical cartridges required (for local and offsite storage)

Another type of compression tool is available to compress DB2's archive log data sets. By compressing
the archive logs, you may be able to fit more archive data sets on DASD, thereby improving the
performance of a recovery situation.

DB2-Related Client/Server Tools (C/S)
Client/server processing has been very successful in recent years because it provides a flexible,
distributed computing environment and decreases reliance on the mainframe. However, DB2 is a large
participant in the client/server plans for many shops. Providing efficient access to large amounts of data,
DB2 for OS/390 can function as the ultimate database server in a client/server environment.

This being the case, there are many tools on the market that can ease the burden of implementing and
administering DB2 in a client/server environment. Middleware products and database gateways that sit
between the client workstation and the mainframe enable access to DB2 as a server. These products
can provide access to DB2 for OS/390 as well as to other server DBMS products (Oracle, DB2 for OS/2,
DB2 for AIX, DB2 for OS/400, DB2 for VSE & VM, Microsoft SQL Server, Informix, and so on).
Additionally, many third party ODBC drivers are being made available to ease workstation access to
mainframe DB2 data.

Another valid type of client/server tool is a 4GL programming environment that provides seamless
access to DB2. These types of products typically split the application workload between the workstation
and the server aiding the programmer to rapidly develop DB2 client/server applications.

Database Analysis Tools (DBA)
DB2 does not provide an intelligent database analysis capability. Instead, a database administrator or
performance analyst must keep a vigilant watch over DB2 objects using DB2 Catalog queries or a DB2
Catalog tool. This is not an optimal solution, because it relies on human intervention for efficient
database organization, opening up the possibility of human error, forgetting to monitor, and
misinterpreting analyzed data.

Fortunately, database analysis tools can proactively and automatically monitor your DB2 environment.
This monitoring can perform the following functions:

 Collect statistics for DB2 tablespaces and indexes. These statistics can be standard
DB2 RUNSTATS information, extended statistics capturing more information (for
example, data set extents), or a combination of both.

 Read the VSAM data sets for the DB2 objects to capture current statistics, read
RUNSTATS from the DB2 Catalog, read tables unique to the tool that captured the
enhanced statistics, or any combination of these three.

 Set thresholds, whereby the automatic scheduling of the REORG utility is invoked
based on current statistics. Additional alarming capabilities can be available to take

 - 783 -

corrective action when database problems are encountered or merely to page the
DBA who is on call when a problem occurs.

 Database analysis tools also can provide a "Swiss-army knife" toolkit for DBAs.
Some features to look for include integrity checking, zapping pages to fix problems,
compression analysis, a RUNSTATS history database, and interfaces to DB2
utilities and commands.

 Provide a series of canned reports detailing the potential problems for specific DB2
objects.

Note With Versions 5 and 6, IBM is adding a limited amount of intelligence to some of
the utilities. As of V5, the COPY utility can check to see how many tablespace
pages have changed since the last copy before executing a full or incremental
copy. As of V6, the REORG utility can examine RUNSTATS values to determine if
reorganization would be beneficial. More details of these features can be found in
Chapter 30, "Backup and Recovery Utilities," for COPY and Chapter 31, "Data
Organization Utilities," for REORG.

Database Modeling and Design Tools (DES)
Database modeling and design tools do not have to be unique to DB2 design, although many are.
Application development should be based on sound data and process models. The use of a tool to
ensure this is a good practice.
Database modeling and design tools may be referred to as CASE tools. CASE, or computer-aided
software engineering, is the process of automating the application development life cycle. A CASE tool,
such as a data modeling tool, supports portions of that life cycle. A comprehensive checklist of features
to look for in a CASE tool is presented in Chapter 12, "Alternative DB2 Application Development
Methods." Although CASE tools were very popular in the late 1980s and early 1990s, they have not
been in vogue during the latter half of the 1990s.

Many excellent database design and modeling tools are not specifically designed for DB2 but can be
used to develop DB2 applications. Tools developed specifically to support DB2 development, however,
add another dimension to the application development effort. They can significantly reduce the
development timeframe by automating repetitive tasks and validating the models. If your organization
decides to obtain a CASE tool that specifically supports DB2, look for one that can do the following:

 Provide standard features of logical data modeling (such as entity-relationship
diagramming and normalization).

 Create a physical data model geared to DB2. This model should support all features
of DB2, such as the capability to depict all DB2 objects, referential integrity, VCAT
and STOGROUP-defined tablespaces, and capacity planning.

 Provide an expert system to verify the accuracy of the physical data model and to
suggest alternative solutions.

 Cross-reference the logical model to the physical model, capturing text that supports
physical design decisions such as denormalization and the choice of tablespace
type.

 Automatically generate DB2-standard DDL to fully implement the database defined in
the physical data model.

 Interface with application development tools and data dictionaries available to the
organization.

DASD and Space Management Tools (DSD)
DB2 provides basic statistics for space utilization in the DB2 Catalog, but the in-depth statistics required
for both space management and performance tuning are woefully inadequate. The queries presented in
Chapter 16 form a basis for DB2 DASD management, but critical elements are missing.
Chief among the missing elements of DASD space management in DB2 is the capability to monitor the
space requirements of the underlying VSAM data sets and to maintain historical growth information.
When these data sets go into secondary extents, performance suffers. Without a DASD management
tool, the only way to monitor secondary extents is to periodically examine LISTCAT output. This is a
tedious exercise.
Additionally, the manner in which DB2 allocates space can result in the inefficient use of DASD. Often
space is allocated but DB2 does not use it. Although the STOSPACE utility, combined with DB2 queries,
provides limited out-of-the-box DASD management, this capability is far from robust. A DASD

 - 784 -

management tool is the only answer for ferreting out the amount of allocated space versus the amount
of used space.

DASD management tools often interface with other DB2 and DASD support tools such as standard
MVS space management tools, database analysis tools, DB2 Catalog query and management tools,
and DB2 utility JCL generators.

DB2 Table Editors
The only method of updating DB2 data is with the SQL data manipulation language statements DELETE,
INSERT, and UPDATE. Because these SQL statements operate on data a set at a time, multiple rows—
or even all of the rows—can be affected by a single SQL statement. Coding SQL statements for every
data modification required during the application development and testing phase can be time-
consuming.

A DB2 table editing tool reduces the time needed to make simple data alterations by providing full-
screen edit capability for DB2 tables. The user specifies the table to edit and is placed in an edit session
that resembles the ISPF editor. The data is presented to the user as a series of rows, with the columns
separated by spaces. A header line indicates the column names. The data can be scrolled up and
down, as well as left and right. To change data, the user simply types over the current data.

This type of tool is ideal for supporting the application development process. A programmer can make
quick changes without coding SQL. Also, if properly implemented, a table editor can reduce the number
of erroneous data modifications made by beginning SQL users.

Caution Remember that the table editor is issuing SQL in the background to implement
the requested changes. This can cause a lag between the time the user
updates the data and the time the data is committed. Table editor updates
usually are committed only when the user requests that the data be saved or
when the user backs out of the edit session without canceling.

Remember too that table editors can consume a vast amount of resources. Ensure that the tool can limit
the number of rows to be read into the editing session. For example, can the tool set a filter such that
only the rows meeting certain search criteria are read? Can a limit be set on the number of rows to be
read into any one edit session? Without this capability, large tablespace scans can result.

A DB2 table editor should be used only in the testing environment. End users or programmers might
request that a table editor be made available for production data modification. This should be avoided at
all costs. The data in production tables is critical to the success of your organization and should be
treated with great care. Production data modification should be accomplished only with thoroughly
tested SQL or production plans.

When a table editor is used, all columns are available for update. Thus, if a table editor is used to
change production data, a simple miskeying can cause unwanted updates. Native SQL should be used
if you must ensure that only certain columns are updated.

Additionally, tested SQL statements and application plans are characterized by their planned nature.
The modification requests were well thought out and tested. This is not true for changes implemented
through a table editor.

In addition to simple online browsing and editing of DB2 data using ISPF, the table editing tool should
be able to

 Mimic the functionality of the ISPF editor
 Provide both single row and multiple-row-at-a-time editing
 Optionally prompt the user before actually applying any changes
 Propagate referential integrity changes
 Cancel accumulated changes of any editing session before exiting
 Periodically save the changes without exiting the table editor
 Provide the capability to copy, load, and unload tables
 Interface with the testing tools you have at your disposal
 Apply filters to rows before displaying them in an editing session
 Display and save SQL DML for the accumulated changes of an editing session
 Issue SQL within an editing session
 Interface with your program editor
 Compare data in two tables and show any differences

 - 785 -

Index Analysis Tools (IDX)
Designing and creating the appropriate indexes for your SQL queries is without a doubt the single most
important determinant of DB2 performance. Although many factors are involved in creating and
managing optimal DB2 applications, proper indexing is essential.

A relatively new breed of tool, known as an index analysis tool, is emerging on the market. These tools
examine the SQL statements in your applications and usage patterns (how often is a statement
executed). This information is coupled with an expert system for index usage. The tool then
recommends indexes to achieve better performance.

When examining index analysis tools, look for the following features:
 Should be able to analyze at the application level or the table level, at the user's

discretion.
 Should be able to examine actual usage statistics for SQL statements by reading

performance monitor data or by storing its own historical data.
 Should be able to run in the foreground or background.
 Should be able to automatically create the indexes it recommends or interface with a

tool that will create the indexes.
 Should be able to accept weighting factors to give certain SQL statements higher

importance. This is important if you want to provide different levels of users different
levels of performance (for example, make sure the CEO's queries always run fast).

Integrity Tools (INT)
Referential integrity has been available on DB2 since DB2 V2.1. However, it has always been difficult to
administer and implement. RI tools eliminate the difficulty by performing one of the following functions:

 Analyzing data for both system- and user-managed referential integrity constraint
violations

 Executing faster than the IBM-provided CHECK utility
 Enabling additional types of RI to be supported; for example, analyzing primary keys

for which no foreign keys exist and deleting the primary key row

Check constraints for data integrity have been available with DB2 since V4. Tools can help implement
and maintain check constraints in the following ways:

 Analyzing data for both system– and user-managed data integrity constraint
violations

 Executing faster than the IBM-provided CHECK utility
 Enabling additional types of data integrity to be supported; for example, analyzing the

compatibility of check constraints and user-defined DEFAULT clauses

DB2 Object Migration Tools (MIG)
DB2 does not provide a feature to migrate DB2 objects from one subsystem to another. This can be
accomplished only by manually storing the CREATE DDL statements (and all subsequent ALTER
statements) for future application in another system. Manual processes such as this are error-prone.
Also, this process does not take into account the migration of table data, plans, DB2 security, packages,
statistics, and so on.

DB2 object migration tools facilitate the quick migration of DB2 objects from one DB2 subsystem to
another. They are similar to a table altering tool but have a minimal altering capability (some interface
directly with an alter tool or are integrated into a single tool). The migration procedure is usually driven
by SPF panels that prompt the user for the objects to migrate.

Migration typically can be specified at any level. For example, if you request the migration of a specific
database, you also could migrate all dependent objects and security. Minimal renaming capability is
provided so that database names, authorization IDs, and other objects are renamed according to the
standards of the receiving subsystem. When the parameters of the migration have been specified
completely, the tool creates a job stream to implement the requested DB2 objects in the requested DB2
subsystem.

 - 786 -

A migration tool reduces the time required by database administrators to move DB2 databases from
environment to environment (for example, from test to production). Quicker turnaround results in a more
rapid response to user needs, thereby increasing the efficiency of your business.

Typically, migration tools are the second DB2 tool that an organization acquires (right after a DB2
Catalog query product). When evaluating migration tools, look for the following capabilities:

 Should be able to run directly against the DB2 Catalog or against a copy of the DB2
Catalog

 Should be able to run in the foreground or in the background (batch)
 Should be able to migrate DB2 objects, including plans and packages, triggers,

stored procedures, and user-defined functions, and optionally data and authorization
 Should be able to rename DB2 objects during the migration
 Should be able to migrate all objects within a specific database easily (for example,

specify database name and migrate all dependent objects)
 Should be able to operate for multiple DB2 subsystems
 Should provide a change control facility and the ability to track versions of DB2

databases
 Should provide an object comparison facility
 Should allow you to restart a migration strategy at the point of failure

Data Movement Tools (MOV)
At times, multiple database management systems coexist in data processing shops. This is increasingly
true as shops embark on client/server initiatives. Additionally, the same data might need to be stored in
each of the databases. In a multiple DBMS environment, the movement of data from DBMS to DBMS is
a tedious task. The need to move data from one environment to another is increasing with the
overwhelming acceptance and implementation of data warehouses.

Data movement tools ease the burden because the tool understands the data format and environment
of each DBMS it works with. The data movement and warehousing tool(s) that a shop chooses depends
on the following factors:

 How many DBMS products need to be supported?
 To what extent is the data replicated across the DBMS products?
 What transformations need to occur as the data is moved from one environment to

another? For example, how are data types converted for DBMSs that do not support
date, time, and timestamp date (or support these data types using a different
format)?

 Does the data have to be synchronized across DBMS products?
 Is the data static or dynamic?
 If it is dynamic, is it updated online, in batch, or both?

The answers to these questions help determine the type of data conversion tool necessary.

Two basic types of conversion tools are popular in the market today:

Replication tools These tools extract data from external application systems and
other databases for population into DB2 tables. This type of tool
can extract data from VSAM, IMS, Sybase, Oracle, flat files, or
other structures and insert the data into DB2.

Propagation tools Inserts data from external applications and other database products
into DB2 tables. A propagation tool is similar in function to an
extract tool, but propagation tools are active. They constantly
capture updates made in the external system, either for immediate
application to DB2 tables or for subsequent batch updating. This
differs from the extract tool, which captures entire data structures,
not data modifications.

Miscellaneous Tools (MSC)
Many types of DB2 tools are available. The categories in this chapter cover the major types of DB2
tools, but not all tools can be easily pigeonholed. For example, consider a DB2 table space calculator. It

 - 787 -

reads table DDL and information on the number of rows in the table to estimate space requirements. A
space calculator is often provided with another tool, such as a DASD management tool or a database
design and modeling tool.

Internet Enabling Tools (NET)
The Internet is the hottest technology trend these days. Every organization is looking for ways to
increase their competitive advantage by making corporate data available to customers, partners, and
employees over the Internet, intranet, and extranets.
A specialized category of tools is available to hook DB2 data to the web. These tools are referred to as
Internet-enabling tools. For more information on the Internet and IBM's tools for connecting the Web to
DB2, refer to Chapter 15, "DB2 and the Internet."

Operational Support Tools (OPR)
Many avenues encompass operational support in a DB2 environment, ranging from standards and
procedures to tools that guarantee smoother operation. This section describes tools from several
operational support categories.

One type of operational support tool provides online access to DB2 standards and procedures. These
tools are commonly populated with model DB2 standards and procedures that can be modified or
extended. Tools of this nature are ideal for a shop with little DB2 experience that wants to launch a DB2
project. As the shop grows, the standards and procedures can grow with it.

Another type of product delivers online access to DB2 manuals. With this tool, you avoid the cost of
purchasing DB2 manuals for all programmers, and DB2 information and error messages are always
available online. In addition, analysts and DBAs who dial in to the mainframe from home can reference
DB2 manuals online rather than keeping printed copies at home. IBM's Book Manager is an example of
this type of tool.

Products also exist that provide "canned" standards for implementing, accessing, and administering
DB2 databases. These tools are particularly useful for shops new to DB2. By purchasing an online
standards manual, these shops can quickly come up-to-speed with DB2. However, mature DB2 shops
can also benefit from these types of products if the third-party vendor automatically ships updates
whenever IBM ships a new release of DB2. This can function as cheap training in the new DB2 release.
A product containing DB2 standards should fulfill the following requirements:

 Provide online access via the mainframe or a networked PC environment, so all
developers and DBAs can access the manual

 Be extensible, so additional standards can be added
 Be modifiable, so the provided standards can be altered to suit prior shop standards

(naming conventions, programming standards, and so on)
Tools also exist to enable a better batch interface to DB2. Standard batch DB2 programs run under the
control of the TSO terminal monitor program, IKJEFT01 (or IKJEFT1A or IKJEFT1B). Another
operational support tool provides a call-attach interface that enables DB2 batch programs to run as a
standard MVS batch job without the TSO TMP.
DB2, unlike IMS, provides no inherent capability for storing checkpoint information. Tools that store
checkpoint information and can be used by the program during a subsequent restart are useful for large
batch DB2 applications issuing many COMMITs.
One final type of operational support tool assists in managing changes. These tools are typically
integrated into a change control tool that manages program changes. Change control implemented for
DB2 can involve version control, plan and package management, and ensuring that timestamp
mismatches (SQLCODE -818) are avoided. Some tools can even control changes to DB2 objects.

PC-Based DB2 Emulation Products (PC)
Personal computers are everywhere now. Most data processing professionals have one on their desk.
Most end users do, too. As such, the need to access DB2 from the PC is a viable one. However, not
everyone needs to do this in a client/server environment.

Sometimes, just simple access from a PC will suffice. For this, a PC query tool can be used. Data
requests originate from the PC workstation. The tool sends the requests to the mainframe for
processing.

 - 788 -

When processing is finished, the data is returned to the PC and formatted. These types of tools typically
use a graphical user interface with pull-down menus and point-and-click functionality. These features
are not available on mainframe products.

Another increasingly popular approach to developing DB2 applications is to create a similar
environment on the PC. This can be done using a PC DBMS that works like DB2 and other similar PC
products that mimic the mainframe (COBOL, IMS/TM, CICS, JCL, and so on).

Quite often, tools that can be used in a straight PC environment also can be used in a client/server
environment.

Plan Analysis Tools (PLN)
The development of SQL to access DB2 tables is the responsibility of an application development team.
With SQL's flexibility, the same request can be made in different ways. Because some of these ways
are inefficient, the performance of an application's SQL could fluctuate wildly unless it is analyzed by an
expert before implementation.
The DB2 EXPLAIN command provides information about the access paths used by SQL queries by
parsing SQL in application programs and placing encoded output into a DB2 PLAN_TABLE. To gauge
efficiency, a DBA must decode the PLAN_TABLE data and determine whether a more efficient access
path is available.
SQL code reviews are required to ensure that optimal SQL design techniques are used. SQL code
walkthroughs are typically performed by a DBA or someone with experience in SQL coding. This
walkthrough must consist of reviews of the SQL statements, the selected access paths, and the
program code in which the SQL is embedded. It also includes an evaluation of the RUNSTATS
information to ascertain whether production-level statistics were used at the time of the EXPLAIN.
A line-by-line review of application source code and EXPLAIN output is tedious and prone to error, and
it can cause application backlogs. A plan analysis tool can greatly simplify this process by automating
major portions of the code review process. A plan analysis tool can typically perform the following
functions:

 Analyze the SQL in an application program, describing the access paths chosen in a
graphic format, an English description, or both.

 Issue warnings when specific SQL constructs are encountered. For example, each
time a sort is requested (by ORDER BY, GROUP BY, or DISTINCT), a message is
presented informing the user of the requisite sort.

 Suggest alternative SQL solutions based on an "expert system" that reads SQL
statements and their corresponding PLAN_TABLE entries and poses alternate SQL
options.

 Extend the rules used by the "expert system" to capture site-specific rules.
 Analyze at the subsystem, application, plan, package, or SQL statement level.
 Store multiple versions of EXPLAIN output and create performance comparison and

plan history reports.
Currently, no tool can analyze the performance of the COBOL code in which the SQL is embedded. For
example, consider an application program that embeds a singleton SELECT inside a loop. The singleton
SELECT requests a single row based on a predicate, checking for the primary key of that table. The
primary key value is changed for each iteration of the loop so that the entire table is read from the
lowest key value to the highest key value.

A plan analysis tool will probably not flag the SQL statement because the predicate value is for the
primary key, which causes an indexed access. It could be more efficient to code a cursor, without a
predicate, to retrieve every row of the table, and then fetch each row one by one. This method might
use sequential prefetch or query I/O parallelism, reducing I/O and elapsed time, and thereby enhancing
performance. This type of design problem can be caught only by a trained analyst during a code
walkthrough. Plan analysis tools also miss other potential problems, such as when the program has two
cursors that should be coded as a one-cursor join. Although a plan analysis tool significantly reduces
the effort involved in the code review process, it cannot eliminate it.

Following are some required features for a plan analysis tool:
 It must be capable of interpreting standard DB2 EXPLAIN output and present the

information in an easy to understand (preferably graphical) format.
 It must automatically scan application source code and PLAN_TABLEs, reporting on

the selected access paths and the predicted performance.

 - 789 -

 It should be able to interpret DSN_STATEMNT_TABLE entries for cost estimation
and DSN_FUNCTION_TABLE entries for function resolution information.

 It should be able to be run online or in batch and should be accessible from QMF.
 It must be able to provide a historical record of access paths by program, package,

plan, or SQL statement.
 It should provide the capability to quickly view statistical information in the DB2

Catalog along with the access path information.
 It should contain an extensible SQL Knowledge Base and suggest alternative SQL

formulations for better performance.
 It should work with plans, packages, and standalone SQL statements.

The Visual EXPLAIN tool, provided free with DB2, provides some of this functionality. However, Visual
EXPLAIN is a workstation-based tool. You must run it on a PC. The third-party tools run in an ISPF,
mainframe environment. Additionally, some of the third-party solutions provide in-depth
recommendations for rewriting and tuning SQL statements.

Performance Monitors (PM)
Performance monitoring and tuning can be one of the most time-consuming tasks for large or critical
DB2 applications. This topic was covered in depth in Parts V and VI. DB2 performance monitoring and
analysis tools support many features in many ways. For example, DB2 performance tools can operate
as follows:

 In the background mode as a batch job reporting on performance statistics written by
the DB2 trace facility

 In the foreground mode as an online monitor that either traps DB2 trace information
using the instrumentation facility interface or captures information from DB2 control
blocks as DB2 applications execute

 By sampling the DB2 and user address spaces as the program runs and by capturing
information about the performance of the job independent of DB2 traces

 By capturing DB2 trace information and maintaining it in a history file (or table) for
producing historical performance reports and for predicting performance trends

 As a capacity planning device by giving the tool statistical information about a DB2
application and the environment in which it will operate

 As an after-the-fact analysis tool on a PC workstation for analyzing and graphing all
aspects of DB2 application performance and system-wide DB2 performance

DB2 performance tools support one or more of these features. The evaluation of DB2 performance
monitors is a complex task. Often more than one performance monitor is used at a single site. Features
to look for in a DB2 performance monitor include the following:

 Tracks CPU and elapsed time at various levels (for example, plan, transaction,
authid, correlation ID)

 Tracks I/O at both the data set and system level
 Tracks memory usage, paging, and bufferpool utilization
 Tracks multiple DB2 subsystems from a single session
 Monitors locking at various levels
 Provides detailed deadlock information
 Monitors critical thresholds and takes corrective action based on pre-defined limits
 Can notify appropriate personnel when thresholds are reached
 Supports capacity planning and benchmarking
 Monitors performance in batch and online
 Uses IFI
 Samples DB2 control blocks instead of always requiring costly DB2 traces
 Samples address space(s) at runtime
 Provides extensible batch reports
 Understands data sharing and monitors the coupling facility constructs
 Compatible with DB2-PM report formats
 Supports historical reporting and maintains a database of historical performance data
 Runs when DB2 is down
 Interfaces with allied agent monitors (MVS, VTAM, DASD, CICS, IMS/TM)
 Provides EXPLAIN capability
 Monitors distributed data requests
 Automatically starts DB2 traces based on menu picks
 Automatically generates JCL for batch performance reporting

 - 790 -

 Identifies runaway ad hoc queries
 GUI and/or Web interface available in addition to ISPF

For more information on DB2 performance monitoring and tuning, refer to Parts V and VI.

Products to Enhance Performance (PRF)
Performance is an important facet of DB2 database administration. Many shops dedicate several
analysts to tweaking and tuning SQL, DB2, and its environment to elicit every performance
enhancement possible. If your shop falls into this category, several tools on the market enhance the
performance of DB2 by adding functionality directly to DB2. These DB2 performance tools can interact
with the base code of DB2 and provide enhanced performance. Typically, these products take
advantage of known DB2 shortcomings.

For example, products exist to perform the following functions:
 Enable DSNZPARMs to be changed without recycling DB2
 Enhance the performance of reading a DB2 page
 Enhance DB2 bufferpool processing

Care must be taken when evaluating DB2 performance tools. New releases of DB2 might negate the
need for these tools because functionality was added or a known shortcoming was corrected. However,
this does not mean that you should not consider performance tools. They can pay for themselves after
only a short period of time. Discarding the tool when DB2 supports its functionality is not a problem if the
tool has already paid for itself in terms of better performance.

Caution Because these tools interact very closely with DB2, be careful when migrating
to a new release of DB2 or a new release of the tool. Extra testing should be
performed with these tools because of their potentially intrusive nature.

DB2 Programming and Development Tools (PRG)
Often times, application development efforts require the population and maintenance of large test beds
for system integration, unit, and user testing. A category of testing tools exists to facilitate this
requirement. Testing tools enable an application developer or quality assurance analyst to issue a
battery of tests against a test base and analyze the results. Testing tools are typically used for all types
of applications and are extended to support testing against DB2 tables.

Many other types of tools enhance the DB2 application development effort. These DB2 programming
and development tools can perform as follows:

 Compare two DB2 tables to determine the differences. These tools enable the output
from modified programs to be tested to determine the impact of code change on
application output.

 Enable the testing of SQL statements in a program editor as the programmer codes
the SQL.

 Explain SQL statements in an edit session.
 Generate complete code from in-depth specifications. Some tools even generate

SQL. When code generators are used, great care should be taken to ensure that the
generated code is efficient before promoting it to production status.

 Use 4GLs (fourth-generation languages) that interface to DB2 and extend the
capabilities of SQL to include procedural functions (such as looping or row-at-a-time
processing).

Due to the variable nature of the different types of DB2 programming tools, they should be evaluated
case by case.

QMF Enhancement Tools (QMF)
A special category of tool, supporting QMF instead of DB2, automatically creates COBOL programs
from stored QMF queries. QMF provides a vehicle for the ad hoc development, storage, and execution
of SQL statements. When an ad hoc query is developed, it often must be stored and periodically
executed. This is possible with QMF, but QMF can execute only dynamic SQL. It does not support static

 - 791 -

SQL. A method of running critical stored queries using static SQL would be beneficial, because static
SQL generally provides better performance than dynamic SQL.

QMF enhancement tools convert the queries, forms, and procs stored in QMF into static SQL
statements embedded in a COBOL program. The COBOL program does all the data retrieval and
formatting performed by QMF, providing the same report as QMF would. However, the report is now
created using static SQL instead of dynamic SQL, thereby boosting performance.

Query Tools (QRY)
DB2 provides DSNTEP2 and the SPUFI query tool bundled with the DBMS. Most organizations find
these inadequate, however, in developing professional, formatted reports or complete applications. It
can be inadequate also for inexperienced users or those who want to develop or execute ad hoc
queries.

QMF addresses each of these deficiencies. The capability to format reports without programming is
probably the greatest asset of QMF. This feature makes QMF ideal for use as an ad hoc query tool for
users.
Another important feature is the capability to develop data manipulation requests without using SQL.
QMF provides QBE and Prompted Query in addition to SQL. QBE, or Query By Example, is a language
in itself. The user makes data manipulation requests graphically by coding keywords in the columns of a
tabular representation of the table to be accessed. For example, a QBE request to retrieve the
department number and name for all departments that report to 'A00' would look like the construct
shown in Figure 37.2.

Figure 37.2: A Query By Example (QBE) request.

Prompted Query builds a query by prompting the end user for information about the data to be retrieved.
The user selects a menu option and Prompted Query asks a series of questions, the answers to which
are used by QMF to build DML. Both QBE and Prompted Query build SQL "behind the scenes" based
on the information provided by the end user.

QMF can also be used to build application systems. A QMF application accesses DB2 data in three
ways:

 Using the QMF SAA Callable Interface from an application program
 Using the QMF Command Interface (QMFCI) in a CLIST to access QMF
 Using a QMF procedure

Why would you want to call QMF from an application? QMF provides many built-in features that can be
used by application programs to reduce development cost and time. For example, QMF can display
online reports that scroll not only up and down but also left and right. (Coding left and right scrolling in
an application program is not a trivial task.) QMF also can issue the proper form of dynamic SQL,
removing the burden of doing so from the novice programmer. Refer to Chapter 10, "Dynamic SQL
Programming," for an in-depth discussion of dynamic SQL techniques.

Another benefit of QMF is that you can use inherent QMF commands to accomplish tasks that are
difficult to perform with a high-level language such as COBOL. Consider, for example, the following
QMF commands:
EXPORT Automatically exports report data to a flat file. Without this QMF

command, a program would have to allocate a data set and read
the report line by line, writing each line to the output file.

DRAW Reads the DB2 Catalog and builds a formatted SQL SELECT,
INSERT, UPDATE, or DELETE statement for any table.

SET Establishes global values for variables used by QMF.

QMF, however, is not the only game in town. Other vendors provide different DB2 table query and
reporting tools that can be used to enhance DB2's ad hoc query capabilities. Some of these products
are similar in functionality to QMF but provide additional capabilities. They can do the following:

 Use static SQL rather than dynamic SQL for stored queries
 Provide standard query formats and bundled reports
 Provide access to other file formats such as VSAM data sets or IMS databases in

conjunction with access to DB2 tables

 - 792 -

 Provide access from IMS/TM (QMF is supported in TSO and CICS only)
 Execute DB2 commands from the query tool

Tools that operate on workstations and PCs are becoming more popular than their mainframe
counterparts (such as QMF). This is because the PC provides an environment that is more conducive to
quickly creating a report from raw data. Using point-and-click, drag-and-drop technology greatly eases
the report generation process.
Additionally, data warehousing is driving the creation of tools that enable rapid querying along business
dimensions. These tools provide OLAP, or on-line analytical processing. For an overview of data
warehousing and OLAP please refer to Chapter 42, "Data Warehousing With DB2."

Finally, fourth-generation languages (4GLs) are gaining more and more popularity for accessing DB2
data. Though not a typical type of DB2 add-on tool, these products provide more functionality than a
report writing tool, but with the GUI front-end that makes them easier to use than 3GL programming
languages such as COBOL and C. 4GL tools typically work in one of three ways:

 Queries are developed using 4GL syntax, which is then converted "behind the
scenes" into SQL queries.

 SQL is embedded in the 4GL code and executed much like SQL embedded in a 3GL.
 A hybrid of these two methods is used in which the executed SQL is either difficult or

impossible to review.

In general, you should avoid 4GLs that require a hybrid approach. When a hybrid method is mandatory,
exercise extreme caution before using that 4GL. These methods are usually difficult to implement and
maintain, and they typically provide poor performance.

If you do use a 4GL to access DB2 data, heed the following cautions:
 Many 4GLs provide only dynamic SQL access, which is usually an inefficient way to

develop entire DB2 applications. Even if the 4GL provides static SQL access, often
the overhead associated with the DB2 interface is high. For this reason, use 4GLs to
access DB2 data only for ad hoc or special processing. 4GLs are generally an
unacceptable method of developing complete DB2 applications.

 Be wary of using the syntax of the 4GL to join or "relate" DB2 tables. Instead, use
views that efficiently join the tables using SQL, then access the views using the 4GL
syntax. I was involved in an application tuning effort in which changing a "relate" in
the 4GL syntax to a view reduced the elapsed time of a 4GL request by more than
250 percent.

Repositories (REP)
A repository stores information about an organization's data assets. Repositories are used to store
metadata, or data about data. They are frequently used to enhance the usefulness of DB2 application
development and to document the data elements available in the data warehouse.

In choosing a repository, base your decision on the metadata storage and retrieval needs of your entire
organization, not just DB2. Typically, a repository can perform the following functions:

 Store information about the data, processes, and environment of the organization.
 Support multiple ways of looking at the same data. An example of this concept is the

three-schema approach, in which data is viewed at the conceptual, logical, and
physical levels.

 Support data model creation and administration. Integration with popular CASE tools
is also an important evaluation criterion.

 Scan the operational environment to generate metadata from operational systems.
 Store in-depth documentation, as well as produce detail and management reports

from that documentation.
 Support change control.
 Enforce naming conventions.
 Generate copy books from data element definitions.

These are some of the more common functions of a data dictionary. When choosing a data dictionary
for DB2 development, the following features are generally desirable:

 The data stores used by the repository are in DB2 tables. This enables DB2
applications to directly read the data dictionary tables.

 The repository can directly read the DB2 Catalog or views on the DB2 Catalog. This
ensures that the repository has current information on DB2 objects.

 - 793 -

 If the repository does not directly read the DB2 Catalog, an interface is provided to
ease the population of the repository using DB2 Catalog information.

 The repository provides an interface to any modeling and design tools used.

This section is a brief overview of repositories—an extended discussion of data dictionaries,
repositories, and metadata management is beyond the scope of this book.

Security Tools (SEC)
DB2 security is provided internal to DB2 with the GRANT and REVOKE data control language
components of SQL. Using this mechanism, authorization is granted explicitly and implicitly to users of
DB2. Authorization exits enable DB2 to communicate with other security packages such as IBM's RACF
and Computer Associate's Top Secret and ACF2. This eases the administrative burden of DB2 security
by enabling the corporate data security function to administer groups of users. DB2 authorization is then
granted to the RACF groups, instead of individual userids. This decreases the volume of security
requests that must be processed by DB2.
DB2's implementation of security has several problems. Paramount among these deficiencies is the
effect of the cascading REVOKE. If an authority is revoked from one user who previously granted
authority to other users, all dependent authorizations are also revoked. For example, consider Figure
37.3. Assume that Bob is a SYSADM. He grants DBADM WITH GRANT OPTION to Ron and Dianne. Ron
then grants the same to Rick and Bill, as well as miscellaneous authority to Chris, Jeff, and Monica.
Dianne grants DBADM WITH GRANT OPTION to Dale, Carl, and Janet. She grants miscellaneous
authority to Mike and Sue also. Rick, Bill, Dale, Carl, and Janet now have the authority to grant authority
to other users. What would be the effect of revoking Ron's DBADM authority? Chris, Jeff, and Monica
would lose their authority. In addition, Rick and Bill would lose their authority, as would everyone who
was granted authority by either Rick or Bill, and so on.

Figure 37.3: DB2 security cascading REVOKEs.

This problem can be addressed by a DB2 security add-on tool. These tools typically analyze the effects
of a REVOKE. For example, the implications of revoking Ron's DBADM authority would have been
clearly displayed, showing all implicit revokes. These tools enable the user to revoke the authority and
optionally reassign all dependent authority either by storing the appropriate GRANT statements to

 - 794 -

reapply the authorizations implicitly revoked or by revoking the authority and automatically reapplying all
implicit revokes in the background.
These tools provide other functions. Consider the administrative overhead when DB2 users are hired,
quit, or are transferred. Security must be added or removed. A good security tool enables a user to
issue a GRANT LIKE command, which can copy DB2 authority from one DB2 object to another or from
one user to another. Consider two examples.

Suppose that Ron is transferred to another department. A security tool can assign all of Ron's authority
to another user before revoking Ron's authority. Or suppose that a new DB2 table is created for an
existing DB2 application, and it requires the same users to access its data as can access the other
tables in the application. This type of tool enables a user to copy all security from one table to the new
table.

There is one other type of DB2 security product. Rather than augment DB2 security, however, this type
of product replaces DB2 security with an external package.

The primary benefit is the consolidation of security. If your organization uses a security package from
another vendor rather than RACF for regular data security, security administration for regular data
security and DB2 security can be consolidated into a single unit. A second benefit is that the cascading
revoke effect can be eliminated because MVS data security packages do not cascade security
revocations.
The weaknesses of this type of tool, however, outweigh the benefits. These tools do not conform to the
rigorous definition of the relational model, which states that the DBMS must control security. Some do
not provide all types of DB2 security. For example, INSTALL SYSADM is still required in DB2 for
installation of DB2 and DB2 Catalog and Directory recovery.

Another weakness is that if the external security package fails, DB2 data is unprotected. Finally, these
types of external security packages may not use supported DB2 exit control points. As such, they may
be unable to provide support for new releases of DB2 in a timely fashion.

Utility Enhancement Tools (UTL)
The DB2 COPY, LOAD, RECOVER, REORG, and UNLOAD utilities are notorious for their inefficiency,
sometimes requiring more than 24 hours to operate on very large DB2 tables. These utilities are
required to populate, administer, and organize DB2 databases.
Several vendors provide support tools that replace the DB2 utilities and provide the same functionality
more efficiently. For example, one vendor claims that its REORG utility executes six to ten times faster
than the DB2 REORG utility. These claims must be substantiated for the applications at your
organization, but enough inefficiencies are designed into the IBM DB2 utilities to make this claim
believable.

Before committing to an alternate utility tool, be sure that it conforms to the following requirements:
 Does not subvert the integrity of the data in the DB2 tables.
 Minimally provides the same features as the corresponding DB2 utility. For example,

if the DB2 REORG utility can REORG both indexes and tablespaces, the enhanced
REORG tool must be capable of doing the same.

 Does not subvert standard DB2 features, when possible. For example, DB2 image
copies are maintained in the DB2 Catalog. The enhanced COPY tool, therefore,
should store its image copies there as well.

 Provides an execution time at least twice as fast as the corresponding DB2 utility. For
example, if the DB2 LOAD utility requires 20 minutes to load a table, the enhanced
LOAD tool must load the same table in at least 10 minutes. (This should not be a
hard-and-fast rule. Sometimes even a moderate increase in processing time is
sufficient to cost-justify a third-party utility tool.)

 Corrects the deficiencies of the standard DB2 utilities, when possible. For example,
DB2 provides no inherent capability to unload data from a backup, image copy data
set. An enhanced UNLOAD tool should provide this capability.

 When testing utility tools from different vendors, ensure that you are conducting fair
tests. For example, always reload or recover prior to testing REORG utilities so that
you don't skew your results due to different levels of tablespace organization.
Additionally, always run the tests for each tool on the same object with the same
amount of data.

 - 795 -

Caution IBM utility I/O is charged to the DB2 subsystem. The third-party tool will most
likely charge I/O to the batch utility job.

Caution Third-party utility information usually cannot be monitored using the -
DISPLAY UTILITY command. Keep this in mind as you implement third-
party utilities.

Checklists are provided at the end of this chapter that can be used as evaluation forms for enhanced
COPY, LOAD, RECOVER, REORG, and UNLOAD utilities.

One last category of the DB2 utility tool is the utility manager. This type of tool provides administrative
support for the creation and execution of DB2 utility jobstreams. These utility generation and
management tools can do the following:

 Automatically generate DB2 utility parameters and JCL, with correct workspace
assignments

 Monitor DB2 utility jobs as they execute
 Automatically schedule DB2 utilities when exceptions are triggered
 Assist in the scheduling of DB2 utilities to kick off the most important ones first, or to

manage the available batch window
 Restart utilities with a minimum of intervention. For example, if a utility cannot be

restarted, the tool automatically issues a -TERM UTIL command and resubmits the
utility.

The DB2 add-on tool market is one of the most lucrative and expanding markets in the realm of
mainframe software products. This section provides an overview of the major DB2 add-on tool vendors
and presents guidelines to assist you in selecting a vendor.

DB2 Tools Vendors
This section contains an extensive listing of vendors who provide DB2 products. This list is not intended
to be exhaustive, but lists the major players in the DB2 add-on tool market. It is accurate as of the
writing of this book, but the software industry is dynamic; software development companies are buying
out one another or selling their assets almost weekly.

Product names are not provided as names frequently change and some tools provide more than one
function. Often these vendors supply software tools for other products (such as OS/390, CICS, or IMS),
but the focus of this list is on the DB2 development tools only. This list is a reference, not a
recommendation. Each vendor name is accompanied by the type of DB2 add-on tools the company
supplies. The tool types are coded based on the abbreviations used in the preceding section. The
abbreviations are repeated here for reference:
ALT Table alter tools
AUD Auditing tools
CAT DB2 Catalog query and analysis tools
COM Compression tools
C/S DB2-related client/server tools
DBA Database analysis tools
DES Database modeling and design tools
DSD DASD and space management tools
EDT DB2 table editors
IDX Index analysis tools
INT Data and referential integrity tools
MIG DB2 object migration tools
MOV Data movement and data warehousing tools
MSC Miscellaneous tools

 - 796 -

NET Internet, intranet, and Web Enabling Tools
OPR Operational support tools
PC PC-based DB2-related products
PLN Plan analysis tools
PM Performance monitors
PRF Products to enhance performance
PRG DB2 programming and development tools
QMF QMF enhancement tools
QRY Query tools
REP Repositories and data dictionaries
SEC Security tools
UTL Utility enhancement, generation, and management tools

Some tools provide features that support more than one tool category. In most cases, the category
shown in the listing indicates the tool's primary purpose. If no single tool dominates the product,
however, the tool is listed with multiple categories.

Organize your evaluations of DB2 tools by tool category. Then concentrate on only the features of each
tool integral to the category you are evaluating. This is the recommended approach to DB2 tool
evaluation because many tools support multiple features. For example, an alter tool could also provide
table editing capability. If you are evaluating alter capabilities and do not need table editing, do not let
the additional feature of table editing influence your decision. Judge products based solely on the
features you need. It is usually less costly (in the long run) to purchase two tools that fully support the
required features (for example, altering and editing) than to purchase a single tool that only partially
supports two (or more) capabilities.

This does not mean that tools that integrate multiple features always provide fewer capabilities than
single-function tools. One integrated tool could provide all the features a small shop needs. Just be sure
that a product supports your basic needs before looking at its additional "bells and whistles."

In general, it is wise to realize that third party add-on tools can significantly improve the efficiency of
DB2 application development. When evaluating products, look for features important to your
organization. Consider adopting checklists for product comparisons based upon the features discussed
in this article. And remember, although DB2 is a fantastic RDBMS, it leaves quite a bit to be desired in
the administration, data access, performance monitoring, and application development areas.

The Vendor List
Vendor/Address Product

Categories
Aonix
595 Market St.
10th Floor
San Francisco, CA 94105
(415) 543-0900
fax: (415) 543-0145
http://www.aonix.com

C/S, DES,
PRG, QRY

BMC Software
2101 CityWest Blvd.
Houston, TX 77042
(713) 918-8800
fax: (713) 918-8000
http://www.bmc.com

ALT, AUD,
CAT, COM,
C/S, DBA,
DSD, IDX,
INT, MIG,
MSC, OPR,
PLN, PM,

 - 797 -

PRF, UTL
Brio Technology
3950 Fabian Way
Suite 200
Palo Alto, CA 94303
(415) 856-8000
fax: (415) 856-8020
http://www.brio.com

C/S, QRY

BusinessObjects, Inc.
2870 Zanker Rd.
San Jose, CA 95134
(408) 953-6000
fax: (408) 953-6001
http://www.businessobjects.com

C/S, QRY

Candle Corporation
2425 Olympic Blvd.
Santa Monica, CA 90404
(310) 829-5800
fax: (310) 582-4287
http://www.candle.com

CAT, DBA,
DSD, MIG,
PLN, PM,
PRG

CDB Software Inc.
P.O. Box 771624
Houston, TX 77215
(713) 780-2382
fax: (713) 784-1842
http://www.cdbsoftware.com

PRG, UTL

Centura Software Corp.
1060 Marsh Rd.
Menlo Park, CA 94025
(415) 617-4782
fax: (415) 617-4640
http://www.centurasoft.com

C/S, PC,
PRG, QRY

Chicago Soft Products Ltd.
45 Lyme Rd. #307
Hanover, NH 03755
(603) 643-4002
fax: (603) 643-4571
http://www.quickref.com

OPR

Cognos Inc.
3775 Riverside Drive
P.O. Box 9707, Station T
Ottowa, ON
Canada K1G 4K9
(613) 738-1440
fax: (613) 738-0002
http://www.cognos.com

C/S, MSC,
PRG, QRY

Computer Associates
One Computer Associates Pl.
Islandia, NY 11788
(516) 342-5224
fax: (516) 342-5329
http://www.cai.com

ALT, AUD,
CAT, COM,
C/S, DBA,
DES, DSD,
EDT, IDX,
INT, MIG,
MOV, MSC,
OPR, PLN,
PM, PRG,
QMF, QRY,
REP, SEC,
UTL

Compuware Corporation
31440 Northwestern Highway ALT, CAT,

 - 798 -

Farmington Hills, MI 48334
(248) 737-7300
fax: (248) 737-7119
http://www.compuware.com

C/S, DBA,
EDT, INT,
MIG, MSC,
OPR, PM,
PRG, SEC

Coromandel Industries Inc.
70-15 Austin St.
Forest Hills, NY 11375
(718) 997-0699
http://www.tile.net/vendors/coromandel.html

QRY

Cross Access Corp.
One Tower Lane
Suite 2410
Oakbrook Terrace, IL 60181
(630) 954-0500
fax: (630) 954-0554
http://www.crossaccess.com

C/S, MOV

Data Junction
2201 Northland Drive
Austin, TX 78756
(512) 459-1308
fax: (512) 459-1309
http://www.datajunction.com

MOV

DBE Software, Inc.
7601 Lewisville Rd., Suite 200
McLean, VA 22102
(703) 847-9500
fax: (703) 556-0089
http://www.dbesoftware.com

DES, MSC

DSIMS Corporation
510 Water St.
Wayahachie, TX 75165
(972) 923-2087
fax: (972) 923-2301
http://www.psgdsims.com/dsims.html

PRG, REP

GUIdance Technologies, Inc.
800 Vinial St.
Pittsburgh, PA 15212
(412) 231-1300
fax: (412) 231-2076
http://tile.net/vendors/guidance.html

C/S, PRG

Hit Software
4020 Moorpark Avenue
Suite 100
San Jose, CA 95117
(408) 345-4001
fax: (408)345-4899
http://www.hit.com

C/S, NET

Hyperion
1344 Crossman Avenue
Sunnyvale, CA 94089
(408) 744-9500
http://www.hyperion.com

QRY, REP

IBM Corporation
Santa Teresa Laboratory
555 Bailey Ave.
San Jose, CA 95141
(800) 426-4785
fax: (800) 426-4522
http://www.software.ibm.com/data

CAT, C/S,
DBA, DES,
EDT, IDX,
MOV, MSC,
NET, PM,
PRG, QMF,
QRY, REP,

 - 799 -

UTL
IMSI
4720 Little John Trail
Sarasota, FL 34232
(800) 354-4674
fax: (941) 377-8475
http://www.imsi-intl.com

PLN, PRF

Information Builders Inc.
1250 Broadway
New York, NY 10001
(212) 736-4433
fax: (212) 967-6406
http://www.ibi.com

MOV, PRG,
QRY

Infospace
181 2nd Ave., Suite 218
San Mateo, CA 94401
(415) 685-3000
fax: (415) 685-3001
http://www.infospace-inc.com

NET

Infotel Corporation
15438 N. Florida Ave.
Suite 204
Tampa, FL 33613
(813) 264-2090
fax: (813) 960-5345
http://www.infotelcorp.com

COM, DSD,
MOV, OPR,
PRG, UTL

JYACC, Inc.
116 John St.
New York, NY 10273-0506
(212) 267-7722
fax: (212) 608-6753
http://www.jyacc.com

C/S, INT,
PRG

Landmark Systems
8000 Towers Crescent Drive
Vienna, VA 22182-2700
(703) 902-8000
fax: (703) 893-5568
http://www.landmark.com

PM

Mainware, Inc.
601 Carlson Parkway
Suite 620
Minnetonka, MN 55305
(612) 475-8495
fax: (612) 475-8496
http://www.mainware.com

MOV, MSC

Manager Software Products
131 Hartwell Ave.
Lexington, MA 02173-3126
(617) 863-5800
fax: (617) 861-6130
http://www.manager-software-products.co.uk

REP

Merant
9420 Key West Avenue
Rockville, MD 20850
(301) 838-5228
fax: (301) 838-5060
http://www.merant.com

C/S, NET,
PC, PRG

Microsoft Corporation
One Microsoft Way
Redmond, WA 98502

C/S, INT,
PRG, QRY

 - 800 -

(800) 426-9400
fax: (206) 936-7329
http://www.microsoft.com
NEON Systems, Inc.
14141 Southwest Freeway
Suite 6200
Houston, TX 77478
(281) 491-4200
fax: (281) 242-3880
http://www.neonsys.com

C/S, MOV,
NET, UTL

Oracle Corp.
500 Oracle Parkway
Redwood Shores, CA
(415) 506-7000
fax: (415) 506-7132
http://www.oracle.com

C/S, MOV,
PRG

Pine Cone Systems
7430 East Caley Ave., Suite 100
Englewood, CO 80111
(303) 221-4000
fax: (303) 221-4010
http://www.pine-cone.com

PRF, MOV

Plasma Technologies
209 Timber Trail
East Hartford, CT 06118
(860) 569-2267
http://www.mjlweb.com/plasma/index.htm

OPR

Praxis International
245 Winter St.
Waltham, MA 02154-8716
(617) 622-5757
fax: (617) 622-5766
http://www.praxisint.com

MOV

Princeton SOFTECH
1060 State Rd.
Princeton, NJ 08540-1423
(609) 497-0205
fax: (609) 497-0302
http://www.princetonsoftech.com

EDT, INT,
MOV

Relational Architects Inc.
33 Newark St.
Hoboken, NJ 07030
(201) 420-0400
fax: (201) 420-4080
http://www.relarc.com

OPR, PM,
PRG, QMF

Responsive Systems Co.
281 Highway 79
Morganville, NJ 07751
(908) 972-1261
fax: (908) 972-9416
http://www.responsivesystems.com

DSD, OPR,
PM

RevealNet
3016 Cortland Place NW
Washington D.C. 20008
(202) 234-8557
fax: (202) 234-8558
http://www.revealnet.com

OPR

Rocket Software Inc.
161 Worcester Rd.
Framingham, MA 01701

QMF

 - 801 -

(508) 875-4321
fax: (508) 875-1335
http://www.rocketsoft.com
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8200
fax: (919) 677-8123
http://www.sas.com

PRG, QRY

SEGUS Inc.
12007 Sunrise Valley Drive
Reston,VA 20191-3446
(800) 327-9650
(703) 391-9650
fax: (703) 391-7133
http://www.segus.com

EDT, PLN,
RI

SILVERRUN Technologies, Inc.
One International Boulevard
Suite 400
Mahwah, NJ 07495-0400
(800) 647-1688
(201) 512-8820
fax: (201) 512-8819
http://www.silverrun.com

C/S, DES

Softbase Systems Inc.
1664 Hendersonville Highway
Asheville, NC 28803
(704) 277-9900
fax: (704) 277-9900
http://www.softbase.com

OPR

Software AG of North America
11190 Sunrise Valley Drive
Reston, VA 22091
(703) 860-5050
fax: (703) 391-6999
http://www.sagus.com

C/S, PRG,
QRY

Starware Connectivity Software
2150 Shattuck Ave., Suite 600
Berkeley, CA 94704
(510) 704-2000
fax: (510) 704-2001
http://www.starware.com

C/S

Sterling Software
300 Crescent Court
Suite 1200
Dallas, TX 75201
(214) 981-1000
fax: (214) 981-1255
http://www.sterling.com

C/S, COM,
DEC, DES,
MOV, PM,
PRG, QRY

Sybase Corporation
6475 Christie Ave.
Emeryville, CA 94608
(510) 922-3555
fax: (510) 658-9441
http://www.sybase.com

C/S, MOV,
PRG, QRY

SysData International, Inc.
33-41 Newark St., Suite 4-D
Hoboken, NJ 07030
(800) 937-4734
fax: (819) 778-7943

SEC

 - 802 -

http://www.sysdata.com
Tone Software Corp.
1735 S. Brookhurst Ave.
Anaheim, CA 92804
(714) 991-9460
fax: (714) 991-1831
http://www.tonesoft.com

COM, OPR

Treehouse Software
400 Broad St.
Sewickley, PA 15143
(412) 741-1677
fax: (412) 741-7245
http://www.treehouse.com

C/S, MOV

Vality Technology
One Financial Center, 6th Floor
Boston, MA 02111
(617) 338-0300
fax: (617) 338-0338
http://www.std.com/~Vality/vality.html

MOV

Vmark Software
50 Washington St.
Westboro, MA 01581-1021
(508) 366-3888
fax: (508) 366-3669
http://www.vmark.com

C/S, MOV,
PRG

Viasoft Corporation
2022 N. 44th St., Suite 101
Phoenix, AZ 85018
(602) 952-0050
fax: (602) 840-4068
http://www.viasoft.com

PRG, REP,
TST

Wall Data, Inc.
11332 N.E. 122nd Way
Kirkland, WA 98034
(415) 856-9255
http://www.walldata.com

C/S, NET,
PRG, QRY

XDB Systems, Inc.
14700 Sweitzer Lane
Laurel, MD 20707-9896
(301) 317-6800
fax: (301) 317-7701
http://www.xdb.com

C/S, NET,
PC, PRG,
QMF, QRY

Note At the time this book was being

written, Compuware was in the
process of acquiring Viasoft
Corporation. However, it was
not clear that the United States
Department of Justice would
permit the acquisition to be
finalized because of competitive
questions.

Evaluating DB2 Tools Vendors
Although the most important aspect of DB2 tool selection is the functionality of the tool and the way it
satisfies the needs of your organization, the nature and stability of the vendor that provides the product
is important also. This section provides suggested questions to ask when you are selecting a DB2 tool
vendor.

1. How long has the vendor been in business? How long has the vendor been
supplying DB2 tools?

 - 803 -

2. Does your company have other tools from this vendor? How satisfied are the
users of those tools?

3. Are other organizations satisfied with the tool you are selecting? Obtain a list of
other organizations who use the same tool, and contact several of them.

4. Does the vendor provide a 24-hour support number? If not, what are its hours of
operation? Does the vendor have a toll-free number? If not, how far away is the
company from your site? You want to avoid accumulating long distance charges
when you are requesting customer support from a vendor. (If an 800 number is
not shown in the vendor list, that does not mean that the vendor does not have a
toll-free customer support line.)

5. Does the vendor provide a newsletter? How technical is it? Does it provide
information on DB2 and the vendor's tools, or just on the vendor's tools? Does the
vendor provide online technical support service? Is it Web-based? Can you
access it before establishing a relationship with the vendor to evaluate its
usefulness? If so, scan some of the questions and reported problems for the tools
before committing to the vendor's product.

6. Does this vendor supply other DB2 tools that your organization might need later?
If so, are they functionally integrated with this one? Does the vendor supply a full
suite of DB2 products or just a few?

7. Does the vendor integrate its tools with other tools? For example, a product that
analyzes databases to determine whether a REORG is required should integrate
the REORG job with your shop's job scheduler.

8. Does the vendor provide training? Is it on-site training? Does the vendor supply
DB2 training as well as training for its tools? Are installation, technical, and user
manuals provided free of charge?—How many copies? Is mainframe- or PC-
based training available for the vendor's tools?

9. Evaluate the response of the technical support number. Call the number with
technical questions at least four times throughout the day: before 8:00 a.m., at
noon, just before 5:00 p.m., and again after 9:00 p.m. These are the times when
you could find problems with the level of support provided by the vendor. Was the
phone busy? Were you put on hold? For how long? When you got a response,
was it accurate and friendly? Did the person who answered the phone have to
find someone with more technical knowledge? (This can indicate potential
problems.)

10. Will the vendor answer DB2 questions free of charge in addition to questions
about its product? Sometimes vendors will, but they do not advertise the fact. Try
it out by calling the technical support number.

11. Does the vendor have a local office? If not, are technicians readily available for
on-site error resolution if needed?—At what price?

12. Will the vendor deliver additional documentation or error-resolution information by
overnight mail? Does it publish a fax number?

13. How are software fixes provided? Electronically? By tape? On the Web? By FTP?
Is a complete reinstallation required? Are fixes typically accomplished using
zaps?

14. How does the vendor support product installations? Do they provide SMPE
support or do they use another method? Are software consultants provided to
assist with the installation if required?

15. How many man hours, on a short notice, is the vendor willing to spend to solve
problems? Is there a guaranteed time limit?

16. Is the vendor willing to send a sales representative to your site to do a
presentation of the product tailored to your needs?

17. Is the vendor an IBM business partner? How soon will the vendor's tools be
modified to support new DB2 releases and versions?

18. Have the vendor's tools been reviewed or highlighted in any industry publications
recently? If so, obtain the publications and read the articles.

19. Will the vendor assist in developing a cost justification? Most tool vendors are
eager for your business and will be more than willing to provide cost justification
to help you sell upper management on the need for the tool.

20. Does the vendor provide sample JCL to run its product? Skeleton JCL? A panel-
driven JCL generator?

21. Does the vendor charge an upgrade fee when the processor is upgraded? How
flexible are the terms and conditions for the contract?

 - 804 -

22. If the vendor is sold or goes out of business, will the vendor supply the source
code of the tool? If not, are the terms and conditions of the contract flexible in the
event of an acquisition? Given the state of the industry today with mass vendor
consolidation, this is an important item to consider, or you may be stuck with
unsupported products or a "difficult" vendor post-acquisition.

23. Is the vendor willing to set a ceiling for increases in the annual maintenance
charge?

24. Does the vendor supply database administration tools for other DBMSs used at
your shop? Can the same tool, using the same interface, be used to manage
multiple databases across multiple operating systems?

25. How does the vendor rank enhancement requests?

These 25 questions provide a basis for evaluating DB2 tool vendors. Judge for yourself which criteria
are most important to your organization.

Checklist 1: Enhanced COPY utility evaluation.

 - 805 -

Checklist 2: Enhanced LOAD utility evaluation.

Checklist 3: Enhanced REORG utility evaluation.

 - 806 -

Checklist 4: Enhanced RECOVER utility evaluation.

Checklist 5: Enhanced UNLOAD utility evaluation.

 - 807 -

Summary
In this chapter, you learned about the additional tools that are available to make DB2 easier to use,
manage, and administer. Not every shop will have (or need) all of these tools. However, when you need
to acquire or implement DB2 add-on tools, use the information in this chapter to guide your way.

Chapter 38: Organizational Issues

Overview
Although you must jump many technical hurdles to use DB2 successfully, the organizational
issues of implementing and supporting DB2 are not insignificant. Each corporation must
address the organizational issues involved in supporting DB2. Although the issues are
common from company to company, the decisions made to address these issues can vary
dramatically.

This chapter outlines the issues. Your organization must provide the answers as to how it will
support these issues. This chapter can be used in any of the following ways:

 As a blueprint of issues to address for organizations that will implement DB2
 As a checklist for current DB2 users to ensure that all issues have been

addressed
 As a resource for programmers who need a framework for accessing their

organization's standards and operating procedures

Education
Education is the first issue that should be addressed after your organization decides to
implement DB2. Does your organization understand what DB2 is? How it works? Why (and if)
it is needed at your shop? How it will be used?

After addressing the basics of DB2 education, you must deal with ongoing support for DB2
education. This support falls into three categories. The first is in-house, interactive education
in the form of videos, computer-based training, and instructor-led courses.

The second category of support is external education for special needs. This support includes
education for database administrators, technical support personnel, and performance
analysts. Additionally, your organization needs to plan for ongoing education to keep
appropriate personnel up-to-date on new versions and releases of DB2. Although IBM
typically offers the earliest courses for new DB2 releases, several third-party vendors such as
RYC, Inc. and Themis regularly offer release-specific DB2 courses and lectures.
The final category of support is reference material—for example, IBM's DB2 manuals, DB2
books such as this one, vendor-supplied white papers, and industry publications and
periodicals. Refer to Appendix E, "DB2 Manuals," for the current IBM manuals for DB2 and
DB2-related products. It's a good idea to provide online access to the DB2 and related
manuals using Book Manager Library Reader on the mainframe (as shown in Figure 38.1), the
workstation (as shown in Figure 38.2), or both.

 - 808 -

Figure 38.1: IBM BookManager Library Reader on the mainframe.

Figure 38.2: IBM BookManager Library Reader for Windows.

Vendors are another rich source of DB2 information. The major vendors provide in-depth
technical papers on features of DB2 that would be difficult for most shops to research in the
same detail. BMC Software, Candle Corporation, Compuware Corporation, and Computer
Associates are the best sources for DB2-related white papers.

The final type of reference material is industry periodicals and publications. Many trade
magazines describe database management in general and DB2 specifically. A listing of
recommended industry publications that cover DB2 on a regular basis follows:

Candle Computer Report

Candle Corporation

2425 Olympic Boulevard

Santa Monica, CA 90404
http://www.candle.com

Free to customers and potential customers; published monthly

Contains in-depth technical information about OS/390-related platforms and products,
including technical DB2 articles.

The Data Administration Newsletter online newsletter
http://www.tdan.com

Free with email reminders; published quarterly

Completely Web-based newsletter that focuses on data administration and database
administration topics. Frequently covers issues pertinent to DB2 data and database
management.

Computer World newsweekly

 - 809 -

375 Cochituate Road

Framingham, MA 01701-9494
http://www.computerworld.com

$39.95 per year; published weekly

In-depth data processing newspaper. Frequently contains database-related articles. DB2-
specific information is sporadic at best, but the coverage of IT news is outstanding.

Data Based Advisor Web magazine

P.O. Box 469013

Escondido, CA 92046-9963
http://www.advisor.com

Was formerly a print magazine for PC and client/server databases. Advisor has now migrated
to a Web site that covers many areas of IT, one section of which is database-focused.
Provides regular SQL coverage, but only rarely discusses DB2.

Data Management Review magazine

Faulkner & Gray

Eleven Penn Plaza

New York, NY 10001
http://www.dm-review.com
http://www.data-warehouse.com

Free to qualified subscribers; published monthly

Interesting publication addressing all types of database management system issues.
Highlights include a large product review section, but only occasional DB2-related articles.
Recent editorial focus is heavily oriented toward data warehousing topics. On their Web site,
you also can subscribe to DM Direct, an email-based newsletter on data management topics.

Intelligent Enterprise magazine

Miller Freeman Publications

P.O. Box 51247

Boulder, CO 80321-1247
http://www.intelligententerprise.com

$39.00 per year; published monthly
A good general-purpose monthly publication for DBAs and DAs. Provides extensive coverage
of all aspects of database development. Contains a regular column by Joe Celko, and
occasional coverage of DB2. This publication is the result of Miller Freeman combining two
prior database-focused publications: DBMS Magazine and Database Programming & Design.

Database Newsletter

Database Research Group

One State Street

Boston, MA 02109

$129.00 per year; published bimonthly

Provides current information about the entire database marketplace, with specific emphasis
on data administration, business rules, and database design.

Datamation magazine

P.O. Box 7529

 - 810 -

Highlands Ranch, CO 80163-9329
http://www.datamation.com

Free

Provides coverage of news affecting the data processing community. Frequent coverage of
IBM and DB2. No longer published in hard copy; available only on the Web.

DB2 magazine

Miller Freeman Publications

P.O. Box 51247

Boulder, CO 80321-1247
http://www.db2mag.com
Free to intelligent Enterprise subscribers; published quarterly

Provides in-depth, technical articles focused on the DB2 family of products. Useful for DB2
shops.

DB2 Update technical journal

Xephon Publications

1301 West Highway 407

Suite 201-450

Lewisville, TX 75067
http://www.xephon.com

$340.00 per year; published monthly

Each issue is devoted to DB2. Provides technical articles on all areas of DB2 administration,
design, and development. Each issue contains 20 to 30 pages, with no advertisements.

Enterprise System Journal magazine

Cardinal Business Media

P.O. Box 3051

Northbrook, IL 60065
http://www.esj.com

Free to qualified subscribers; published monthly

Provides in-depth technical articles focusing on all areas of IBM mainframe development.
Contains sporadic coverage of DB2. Also periodically covers client/server development, CICS,
and IMS.

IBM System Journal technical journal

IBM Corporation

P.O. Box 3033

Southeastern, PA 19398

$49.50 per year; published quarterly

Technical articles written by IBM staff about IBM products and architectures. Sometimes
covers DB2 topics. Every IBM shop should subscribe to this journal.

IDUG Solutions Journal

IDUG Headquarters

 - 811 -

401 N. Michigan Avenue

Chicago, IL 60611-4267

Free to qualified DB2 professionals; published quarterly

A journal specifically for DB2 professionals using DB2 or any platform. Published by IDUG.
Information Week newsweekly

CMP Publications, Inc.

600 Community Drive

Manhasset, NY 11030

Free to qualified data processing professionals; published weekly

In addition to timely DP news, contains frequent user-focused articles related to DBMS
technology.

WorldView magazine

BMC Software

2101 CityWest Blvd.

Houston, TX 77042
http://www.bmc.com

Free to qualified subscribers; published quarterly
BMC's customer magazine provides coverage of BMC's products and the IT industry in
general. BMC WorldView provides frequent coverage of DB2 and related technologies.

All these components—in-house education, external education, and industry publications—
are useful for explaining how you can use DB2 effectively. You would be wise to have a mix of
material that supports one or more of the categories outlined previously. In this way, you
provide a varied learning environment that meets the needs of all students. This varied
learning environment allows each student to learn in the most conducive way for him or her.
Plan to provide an onsite library of educational material addressing the following subjects:

Introduction to relational databases

Introduction to DB2 and SQL

Advanced SQL

Programming DB2 in batch

Programming DB2 using TSO, CICS, and IMS

Programming DB2 and the Web

Creating DB2 stored procedures, triggers, and UDFs

Programming DB2 in a distributed environment

QMF usage guidelines
You also might want to have an introductory DB2 database administration course to train new
DBAs. In addition to this basic education library, plan to provide advanced education for
technical DB2 users, such as DBAs, technical support personnel, and technical programmers
and analysts. Advanced DBA topics (such as data sharing, performance management, and
backup/recovery) should be left to instructor-led training courses because of the complex
nature of DB2 database administration. Additional advanced topics to consider include system
administration (for systems programmers) and disaster recovery. These classes are offered
by many vendors, including IBM and Themis. Searching for smaller consulting firms and local

 - 812 -

resources is also prudent; these firms usually provide courses tailored to your installation
needs.

The advanced education program should include allocating time to attend area user groups
meetings, the annual IBM DB2 Technical Conference, and/or the International DB2 Users
Group (IDUG). When DB2 users get together to share experiences at such forums, they
uncover undocumented solutions and ideas that would be difficult to arrive at independently.

Standards and Procedures
To implement DB2 effectively, you must have a set of standards and procedures that are the blueprint
for DB2 development in your organization. Standards are common practices that provide an
environment that is consistent, efficient, or understandable (for example, a naming standard for DB2
objects). Procedures are scripts that outline the way a proscribed event should be handled, such as a
disaster recovery plan.

DB2 standards and procedures are usually developed together and stored in a common place.
Standards and procedures are usually part of a corporate-wide (or MIS) standards and procedures
document. They can be stored in written format and online for easy access. Several vendors offer
"canned" standards and procedures (both hard copy and online). One such example is RevealNet's
DB2 Knowledge Base.

This section describes the items that should be addressed by DB2 standards and procedures.

Roles and Responsibilities
Running DB2 requires a large degree of administrative overhead. Not only must the DB2 subsystem be
installed and then maintained, but the functionality of DB2 must also be administered. This work
constitutes the bulk of the administrative burden.
A matrix of DB2 functions and who will support them is necessary. The matrix can be at the department
level or at the job description level. Table 38.1 shows a sample matrix you can use as a template for
your organization.

Table 38.1: DB2 Roles and Responsibilities

Role D
A

D
B
A

P
G
M

A
N
L

T
S

D
S
D

S
E
C

M
GT

E
U

O
P
R

Budg
eting
for
DB2

 X X X X X

DB2
Install
ation

 X X X X X

DB2
Syste
m
Supp
ort

 X

DB2
Syste
m
Securi
ty

 X X

Syste
m-
Wide
Perfor
manc
e

 X X

 - 813 -

Monit
oring

Syste
m-
Wide
Tunin
g

 X

DB2
Syste
m
Backu
p and
Recov
ery
Proce
dures

X X X X X X X X X X

Hard
ware
Planni
ng

 X X X

Capa
city
Planni
ng

 X X X X

Utility
Devel
opme
nt

 X X

Data
Analy
sis

X X

DB2
Objec
t
Creati
on

 X

DB2
Datab
ase

 X

Perfor
manc
e
Monit
oring

DB2
Datab
ase
Perfor
manc
e
Tunin
g

X X X X

DB2
Applic
ation

X X X X

 - 814 -

Desig
n

DB2
Progr
am
Codin
g

 X X

DB2
Progr
am
Testin
g

 X X

Store
d
Proce
dure
Codin
g

 X X X

Store
d
Proce
dure
Testin
g

 X X X

Store
d
Proce
dure
Supp
ort

 X X X X

Trigge
r
Codin
g

 X X X

Trigge
r
Testin
g

 X X X

Trigge
r
Supp
ort

 X X X X

User-
define
d
Functi
on
Codin
g

X X X

User-
define
d
Functi
on
Testin
g

X X X

 - 815 -

User-
define
d
Functi
on
Supp
ort

X X X X

DB2
Applic
ation
Securi
ty

 X X

DB2
Applic
ation
Turno
ver

 X X X X

DB2
Applic
ation

 X X X

Perfor
manc
e
Monit
oring

DB2
Applic
ation
Datab
ase
Backu
p and
Recov
ery

 X X X X

DB2
Job
Sched
uling

 X X X

DB2
Desig
n
Revie
ws

X X X X X X X X X X

DB2
Tool
Select
ions

X X X X X X X X

Imple
menti
ng
DDF

 X X X

Distrib
uting
DB2
Data

X X X X X X X

 - 816 -

DB2
Data
Shari
ng

 X X X X X X

QMF
Install
ation

 X

QMF
Admin
istrati
on

 X X

QMF
Tunin
g

 X X X X

DA Data
administrator

DBA Database
administrator

PGM Programmer

ANL Analyst

TS Technical
support

DSD DASD
support

SEC Data security

MGT Management

EU End user

OPR Operations
The matrix in Table 38.1 represents a sampling of roles and responsibilities for the DB2 environment.
Each block of the matrix represents a portion of the total responsibility for the given role.
Your organization might have different roles responsible for different areas. Additionally, you might have
more categories or a further breakdown of the categories (for example, dividing the Utilities
Development line into a single line for each utility).

Each position on the matrix should be accompanied by in-depth text as follows:
 A description of the resources encompassing this combination of role and

responsibility.
 A definition of the role in terms of what needs to be performed. This information

should include a detailed list of tasks and a reference to the supporting
organizational procedures that must be followed to carry out these tasks.

 A definition of the responsibility in terms of who should do the tasks. In addition to
primary and secondary contacts for the people performing the task, this description
should provide a management contact for the department in charge of the
responsibility.

Remember, Table 38.1 is only an example. It is not uncommon for DB2 administrative tasks to be
assigned to departments or jobs different from the ones shown in the table. Each shop should have a
document appropriately modified to reflect the needs and organization of the company.

This document will eliminate confusion when DB2 development is initiated. Analysts, programmers, and
management will have an organized and agreed-on delineation of tasks and responsibilities before the
development and implementation of DB2 applications.

 - 817 -

Based on the roles and responsibilities matrix in use at your shop, you might need to augment or
change the following procedures. Certain functions may move to a different area, but all the necessary
standards are covered.

Data Administration
Data administration is beyond the scope of this book, but this section lists some basic guidelines. All
DB2 applications must be built using the techniques of logical database design. This design involves the
creation of a normalized, logical data model that establishes the foundation for any subsequent
development. It documents the data requirements for the organization. Each piece of business data is
defined and incorporated into the logical data model. All physical DB2 tables should be traceable to the
logical data model.

The data administration standards should outline the following:
 Corporate policies dictating that information is to be managed as a vital business

resource
 Who is responsible for creating the logical data model
 How the logical data model will be created, stored, and maintained
 Who is responsible for maintaining and administering the logical data model
 The integration of application data models with an enterprise data model
 Data sharing issues (this does not refer to DB2 data sharing but rather to the sharing

of data in general)
 How physical databases will be created from the logical data model
 How denormalization decisions will be documented
 The tools used by the data administrator (modeling tools, data dictionaries,

repositories, and so on)
 Rules for data creation, data ownership, and data stewardship
 Metadata management policy
 The communication needed between data administration and database

administration to ensure the implementation of an effective DB2 application

Database Administration Guide
A database administration guide is essential to ensure the ongoing success of the DBA function. The
guide serves as a cookbook of approaches to be used in the following circumstances:

 Converting a logical model to a physical implementation
 Choosing physical DB2 parameters when creating (or generating) DDL
 DB2 utility implementation procedures and techniques
 DB2 application monitoring schedules
 DB2 application and database tuning guidelines

This document, although geared primarily for DBA staff, is useful for the programming staff as well. If
the program developers understand the role of the DBA and the tasks that must be performed, more
effective communication can be established between DBA and application development, thereby
increasing the chances of achieving an effective and efficient DB2 application system.

System Administration Guide
The DB2 system administrator is considered to be at a higher level than the database administrator. It is
not unusual, though, for a DBA to be the system administrator also. A system administrator guide is
needed for many of the same reasons that a DBA guide is required. It should consist of the following
items:

 DB2 installation and testing procedures
 Procedures to follow for applying fixes to DB2 (APARs)
 A checklist of departments to notify for impending changes
 Interface considerations (CICS, IMS/TM, TSO, CAF, RRSAF, DDF, and other

installation-specific interfaces)
 A DB2 system monitoring schedule
 DB2 system tuning guidelines
 DB2 data sharing policy and implementation
 System DASD considerations

 - 818 -

Application Development Guide
The development of DB2 applications differs from typical program development. Providing an
application development guide specifically for DB2 programmers is therefore essential. It can operate as
an adjunct to the standard application development procedures for your organization. This guide should
include the following topics:

 An introduction to DB2 programming techniques
 Shop SQL coding standards
 SQL tips and techniques
 DB2 program preparation procedures
 Interpretations of SQLCODEs, SQLSTATEs and DB2 error codes
 References to other useful programming materials for teleprocessing monitors (CICS

and IMS/TM), programming languages (such as COBOL, Java, and PL/I), and
general shop coding standards

 The procedure for filling out DB2 forms (if any) for database design, database
implementation, program review, database migration, and production application
turnover

DB2 Security Guide
The DBA unit often applies and administers DB2 security. However, at some shops, the corporate data
security unit handles DB2 security. You must provide a resource outlining the necessary standards and
procedures for administering DB2 security. It should consist of the following:

 A checklist of what to grant for specific situations. For example, if a plan is being
migrated to production, it should list the security that must be granted before the
plan can be executed.

 A procedure for implementing site-specific security. It must define which tools or
interfaces (for example, secondary authorization IDs) are being used and how they
are supported.

 An authoritative signature list of who can approve authorization requests.
 Procedures for any DB2 security request forms.
 Procedures for notifying the requester that security has been granted.
 Procedures for removing security from retiring, relocating, and terminated

employees.

SQL Performance Guide
The SQL performance guide can be a component of the application development guide, but it should
also exist independently. This document should contain tips and tricks for efficient SQL coding. It is
useful not only for application programmers but also for all users of DB2 who regularly code SQL.

QMF Guide
If QMF (or another query tool) is in use at your site, a QMF guide must be available. It should contain
information from the simple to the complex so that all levels of QMF users will find it useful. This guide
should cover the following topics, in increasing order of complexity:

 What QMF is
 Who is permitted to use QMF
 When QMF can be used (such as hours of operation and production windows)
 How to request QMF use
 How to call up a QMF session
 A basic how-to guide for QMF features
 QMF limitations
 References to further documentation (for example, CBT and IBM manuals)

Naming Conventions
All DB2 objects should follow a strict naming convention. You learned some basic guidelines for DB2
naming conventions in Chapter 5, "Data Definition Guidelines." This section details the rules to follow in
naming a DB2 object.

 - 819 -

Make names as English-like as possible. In other words, do not encode DB2 object names, and avoid
abbreviations unless the name would be too long otherwise.

Do not needlessly restrict DB2 object names to a limited subset of characters or a smaller size than
DB2 provides. For example, do not forbid an underscore in table names, and do not restrict DB2 table
names to eight characters or fewer (DB2 allows as many as 18 characters).

Another rule in naming objects is to standardize abbreviations. Use the abbreviations only when the
English text is too long.
In most cases, provide a way to differentiate types of DB2 objects. For example, start indexes with I,
tablespaces with S, and databases with D. In two cases, however, this approach is inappropriate. You
should not constrain tables in this manner; you need to provide as descriptive a name as possible. The
second exception is that views, aliases, and synonyms should follow the same naming convention as
tables. In this way, DB2 objects that operate like tables can be defined similarly. The type of object can
always be determined by querying the DB2 Catalog using the queries presented in Chapter 24, "DB2
Object Monitoring Using the DB2 Catalog."

Provide naming conventions for the following items:

Databases STOGROUPs

Tablespaces Plans

Tables Packages

Indexes Collections

Views Versions

Aliases DBRMs

Synonyms DBRM Libraries
DCLGEN Members Transactions
DCLGEN Libraries Programs
DB2 COPYLIB Members DB2 Load Libraries

DB2 Subsystems DB2 Address Spaces

Application DB2 data
sets

RCTs

System DB2 data sets Data sets for DB2 Tools

Locations Creators

Constraints DB2 data sets (tools—general for DB2 subsystem; specific for
each tool)

DSNZPARM RACF groups

DB2 group name IRLM group name

Location name Group attach name

DB2 member name Workfile DB name

User-defined functions User-defined distinct types

Command prefixes Triggers

Migration and Turnover Procedures
The minimum number of environments for supporting DB2 applications is two: test and production. Most
shops, however, have multiple environments. For example, a shop could have the following DB2
environments to support different phases of the development life cycle:

 - 820 -

Unit testing

Integration testing

User acceptance testing

Quality assurance

Education

Having multiple environments requires a strict procedure for migrating DB2 objects and moving DB2
programs and plans from environment to environment. Each shop must have guidelines specific to its
environment because not all sites implement these different environments in the same way. For
example, both test and production DB2 could be supported using either a single DB2 subsystem or two
DB2 subsystems. (Two are recommended to increase efficiency and turnaround time, but having two is
a luxury some smaller shops cannot afford.)

Dual versions of these procedures should exist to describe what is entailed from the point of view of
both the requester and the person implementing the request. For the requester, the procedures should
include what will be migrated, why and when it will be migrated, who is requesting the migration, and the
authorization for the migration. For the person implementing the request, the procedures should include
who is responsible for which portions of the migration and a description of the methods used to migrate.

Design Review Guidelines
All DB2 applications, regardless of their size, should participate in a design review both before and after
they are implemented. Design reviews are critical for ensuring that an application is properly designed
to achieve its purpose.

Design reviews can take many forms. Some of the areas that can be addressed by a design review
include the following:

 A validation of the purpose of the application
 An assessment of the logical and physical data models
 A review and analysis of DB2 physical parameters
 A prediction of SQL performance

Before discussing the different types of DB2 design reviews, I must first outline who must participate to
ensure a successful review of all elements of the application. The following personnel should engage in
the design review process:

AA Representatives from other applications affected by the
application being reviewed (because of the need to interface with
the new application, shared data requirements, scheduling
needs, and so on)

AD Application development personnel assigned to this development
effort

DA Data administration representatives

DBA Database administration representatives

EU End-user representatives

EUM End-user management

IC Information center representatives

MM MIS management for the new application and all affected
applications

OLS Online support representatives (CICS or IMS/TM unit, or Web
support if the application is for the Internet)

OS Operational support management

 - 821 -

TS Technical support and systems programming representatives

Not all of these participants need to take part in every facet of the design review. Holding more than one
design review is best, with each one focusing on an aspect of the design. The scope of each design
review should be determined before the review is scheduled so that only the appropriate participants
are invited.

You can break down the design review into seven distinct phases, which are described in the following
sections.

Phase 1
The first phase of the design review process is the Conceptual Design Review (CDR). This review
validates the concept of the application. This review involves a presentation of the statement of purpose
as well as an overview of the desired functionality.

A CDR should be conducted as early as possible to determine the feasibility of a project. Failure to
conduct a CDR can result in projects that provide duplicate or inadequate functionality—projects that
are canceled because of lack of funds, staffing, planning, user participation, or management interest, or
projects that are over budget.

Participants should include AA, AD, DA, DBA, EU, EUM, and MM.

Phase 2
Phase 2 of the design review process is the Logical Design Review (LDR). This phase should be
conducted when the first cut of the logical data model has been completed. A thorough review of all
data elements, descriptions, and relationships should occur during the LDR. The LDR should scrutinize
the following areas:

 Is the model in (at least) third normal form?
 Are all data elements (entities and attributes) required for this application

identified?
 Are the data elements documented accurately?
 Are all relationships defined properly?

Failure to hold an LDR can result in a failure to identify all required pieces of data, a lack of
documentation, and a database that is poorly designed and difficult to maintain. This failure results in
the development of an application that is difficult to maintain. If further data modeling occurs after the
logical design review is held, further LDRs can be scheduled as the project progresses.

Participants should include AA, AD, DA, DBA, EU, EUM, and IC.

Phase 3
The third phase of the design review process is the Physical Design Review (PDR). Most DB2
developers associate this component with the design review process. In this phase, the database is
reviewed in detail to ensure that all the proper design choices were made. In addition, the DA and DBA
should ensure that the logical model was translated properly to the physical model, with all
denormalization decisions documented.

In addition, the overall operating environment for the application should be described and verified. The
choice of teleprocessing monitor and a description of the online environment and any batch processes
should be provided. Data sharing and distributed data requirements should be addressed during this
phase.

At this stage, the SQL that will be used for this application might be unavailable. General descriptions of
the processes, however, should be available. From the process descriptions, a first-cut denormalization
effort (if required) should be attempted or verified.

Because the PDR phase requires much in-depth attention, it can be further divided. The PDR, or pieces
of it, can be repeated before implementation if significant changes occur to the physical design of the
database or application.

 - 822 -

Participants should include AA, AD, DA, DBA, EU, EUM, IC, MM, OLS, OS, and TS.

Phase 4
Phase 4 is the Organization Design Review (ODR). It is smaller in scope—but no less critical—than the
Physical Design Review. This review addresses the enterprise-wide concerns of the organization with
respect to the application being reviewed. Some common review points follow:

 How does this system interact with other systems in the organization?
 Has the logical data model for this application been integrated with the enterprise

data model (if one exists)?
 To what extent can this application share the data of other applications? To what

extent can other applications share this application's data?
 How will this application integrate with the current production environment in

terms of DB2 resources required, the batch window, the online response time,
and availability?

Participants should include AA, AD, DA, DBA, EU, EUM, IC, MM, OLS, OS, and TS.

Phase 5
Phase 5, the SQL Design Review (SDR), must occur for each SQL statement before production
turnover. This phase should consist of the following analyses.
An EXPLAIN should be run for each SQL statement using production statistics. The PLAN_TABLEs
should then be analyzed to determine whether the most efficient access paths have been chosen,
whether the runtime estimates are within the agreed service level, and to verify function resolution when
UDFs are used. If a plan analysis tool is available, the output from it should be analyzed as well.

Every DB2 program should be reviewed to ensure that inefficient host language constructs were not
used. In addition, efficient SQL implemented inefficiently in loops should be analyzed for its
appropriateness. To accomplish this, you will need knowledge of the application language being used,
whether it is COBOL, Java, or some other language.
All dynamic SQL should be reviewed whether it is embedded in an application program or earmarked
for QMF. The review should include multiple EXPLAINs for various combinations of host variables. Be
sure to EXPLAIN combinations of host variable values so that you test both values that are not among
the 10 most frequently occurring values and values that are among the 10 most frequently occurring
values. These values can be determined by running the column occurrence query, as presented in
Chapter 24.
Different access paths can be chosen for the same query based on differing column value distributions.
This needs to be taken into account to determine how best to implement RUNSTATS for tables
accessed dynamically.

Suggestions for performance improvements should be made and tested before implementation to
determine their effect. If better performance is achieved, the SQL should be modified.

Participants should include AD, DBA, EU, and IC.

Phase 6
Phase 6 is the Pre-Implementation Design Review (PreIDR). This phase is simply a review of the
system components before implementation. Loose ends from the preceding five phases should be
taken care of, and a final, quick review of each application component should be performed.

Participants should include AA, AD, DA, DBA, EU, EUM, IC, MM, OLS, OS, and TS.

Phase 7
The last design review phase is phase 7, the Post-Implementation Design Review (PostIDR). This
phase is necessary to determine whether the application is meeting its performance objectives and
functionality objectives. If any objective is not being met, a plan for addressing the deficiency must be
proposed and acted on. Multiple PostIDR phases can occur.

Participants should include AA, AD, DA, DBA, EU, EUM, IC, MM, OLS, OS, and TS.

 - 823 -

Operational Support
When you're implementing a DB2 environment, sufficient operational support must be
available to administer the environment effectively. Operational support is defined as the
elements of the organization responsible for supporting, maintaining, and running the
applications.

This first major operational concern is the establishment of a staff who can support DB2. You
can choose from four approaches to staffing for DB2 support. The first is to develop all DB2
expertise using the existing staff. This approach requires a significant amount of training and
can result in slow DB2 implementation as your staff gets up to speed with DB2.

The second approach is to hire outside expertise. This approach usually results in a much
faster implementation of DB2, but it can breed resentment in your current staff and result in a
workplace where it is difficult to accomplish much because of a lack of cooperation between
the old staff and the new.

The third approach is to entrust all DB2 development to an outside contracting or consulting
firm. This approach is the worst. Although it results in quick development, no one is left to
support the application after it is developed.

The fourth and best approach is to combine these strategies. Plan to train your brightest and
most eager staff members, while augmenting that staff with several outside experts,
temporary consultants, and contract programmers.

Expertise (obtained outside or inside the organization) is required in each of the following
areas:

Programmers In addition to basic coding skills, must know SQL coding
techniques and the teleprocessing monitor(s) in your shop.
Should also have basic Web development skills if Internet
applications are being developed.

Systems analysts Must know DB2 development techniques, data modeling, and
process modeling. Should be able to use the CASE tools in your
shop.

Data analysts Must be able to work with data administration and database
administration to develop application-level models.

DBA Must be knowledgeable in all aspects of DB2, with emphasis on
the physical implementation of DB2 objects, DB2 utilities, SQL
efficiency, and problem solving.

Technical support Must have basic systems programming skills in addition to an
understanding of DB2 installation, DB2 recovery, and day-to-day
technical support.

Production control In addition to basic job scheduling skills, must understand how
DB2 is integrated into the organization. Must minimally be able to
understand and issue DB2 commands when a problem occurs.

Help desk Must be able to provide SQL expertise.

Another operational concern is the integration of DB2 standards, policies, procedures, and
guidelines with existing ones. These two sets of standards could conflict. For example, DB2
data sets must conform to a rigid standard, but it usually does not agree with the
organization's current data set naming standards.

Another operational concern is enabling the production control personnel who submit and
monitor production jobs to execute DB2 commands. Enabling operational personnel in this
manner could conflict with the current nature of production support as a facilitator and not a
doer.

 - 824 -

The scheduling of and responsibility for DB2 utilities might pose a problem for your shop.
Some utilities lend themselves more toward being developed and supported by a DBA or a
technical support area, whereas others are more application-oriented. Sometimes great
debates can ensue over who should have responsibility for each utility.

Political Issues
The technical hurdles in supporting a DB2 environment sometimes pale in comparison to the political
issues. Technical problems can always be addressed by a combination of outside expertise, enhanced
hardware, add-on tools, and overtime. Political issues are more difficult to overcome because they
typically rely on human nature, which is fragile at best.

Of paramount importance to the health of your DB2 support structure is keeping the valuable employees
who have DB2 skills. Although doing so is not always easy, you can do it by packaging jobs with a
healthy mix of job challenge, fair salaries, and merit-based promotions.

When this type of workplace is achieved, however, problems occur when other employees learn that
junior personnel with advanced DB2 skills are being paid more than senior personnel without those
skills. However, DB2 skills are in high demand in the marketplace, so failure to compensate your DB2
employees could result in their leaving. You can take either of two approaches to dealing with the
problem, but neither is pleasurable: Either underpay DB2 professionals and risk losing them to firms
willing to pay the going rate, or pay the going rate for DB2 expertise and risk resentment from the rest of
your application development personnel.

Another personnel issue involving DB2 for OS/390 is the current IT skills shortage. The demand for IT
skills far outpaces the supply. And with DB2 for OS/390 in particular, the problem is growing. With the
client/server boom of a few years ago, many of the folks who learned DB2 in its early days have moved
on to other DBMS products (such as Oracle and SQL Server) and platforms (such as UNIX and the
Web). Finding and then keeping employees with DB2 for OS/390 skills can be quite difficult.

Following are some other political issues that you must deal with in a DB2 workplace. If 24-hour
availability and support is required, your personnel might have to adjust their attitude toward shift work
and carrying pagers.

Often, programmers will clamor for the opportunity to work on DB2 projects because it's a chance to
learn DB2. They are aware of the monetary rewards that can result if DB2 skills are added to their
repertoire. Choosing which of your valued personnel should be given this chance can be difficult. With
the advent of client/server technology and the Internet, many shops now have the opposite problem.
Skilled DB2 professionals wanting to expand their horizons are looking to move out of the DB2 arena
into other projects using newer (and resume-enhancing) technology.

Another type of political problem that you can encounter is the direct opposite of the preceding one:
ambivalence. People are sometimes afraid of change, and DB2 forces change on an organization. This
change can scare MIS personnel and create a resistance movement against DB2 development efforts.
This resistance can be assuaged with education and time.

Finally, many organizations have an "island unto themselves" attitude. This attitude should be avoided
regarding DB2 development and support. DB2 is complex and dynamic, which makes it difficult to
master. Do not be shy about attending user group meetings, contracting expert consultants to assist
with difficult or critical tasks, or contacting other local companies that have experienced the same
problems or developed a similar system. Most DB2 professionals are willing to share their experiences
to develop a contact that might be useful in the future. And by all means, share your experiences with
other shops. The more informed everyone is, the better your experience with DB2 will be.

Environmental Support
The organization must ensure that adequate levels of support are available for the online environments
of choice (CICS, TSO, IMS/TM, or other in-house teleprocessing monitors). Usually, the addition of DB2
development to these environments adds considerable growth to the number of developers and end
users of these monitors. Be sure that this explosion in use is planned and that appropriate staffing is
available to support the growth.

 - 825 -

Additionally, if performance monitors are unavailable for these environments, the addition of DB2 should
cause your organization to rethink its position. When DB2 is added to the puzzle, tracking certain types
of performance problems can be nearly impossible without a performance monitor available in each
environment.

Tool Requirements
DB2 implementation is not quite as simple as installing DB2 alone. Your organization must budget for
not just DB2 but also DB2, QMF, and tools from the categories deemed most important by your
organization. As time goes on and DB2 use grows, your organization should plan to acquire more tools.
Budgeting for DB2 tools should be an annual process.

Summary
As you can see, establishing the ideal DB2 environment is not an easy undertaking. It involves not only
the installation and mastering of DB2 (if such a thing is possible), but also a lot of organizational change
and political maneuvering. This chapter should help you deal with these sometimes frustrating issues.

Part VIII: Distributed DB2
Chapter List

Chapter 39: DRDA
Chapter 40: Distributed DB2
Chapter 41: Distribution Guidelines
Chapter 42: Data Warehousing with DB2
Part Overview
The final section of this book covers using DB2 in a distributed environment.

DB2 can function as a distributed database management system (DDBMS). A DDBMS is
a collection of data spread across multiple computers and, possibly, multiple geographic
locations. The distributed components communicate with one another by means of a
network. In addition, the DDBMS controls data access and modification requests across
the network. Indeed, users of a distributed database should not be aware that the data is
distributed to several disparate locations.

The implementation of a distributed database is only one phase of implementing
distributed processing. Other stages allocate tasks to available locations (or nodes) to
balance the workload across the distributed environment. Involving several computing
environments in a distributed network enables optimal utilization of a company's
computing resources. These resources can include mainframes, midranges,
workstations, and PCs.

Two other types of processing being bandied about in the trades these days can be
considered components of distributed processing:

 Client/server processing is a specialized form of distributed processing in
which one node acts as the supplier of information (the server) and the other
nodes act as requesters of information (clients).

 Cooperative processing is also a type of distributed processing. Applications
running on multiple computing platforms each perform a piece of the overall
work in a cooperative processing application.

The Advantages of Data Distribution
Distributed data is fast becoming a fact of life for data processing professionals.
Unarguably, a distributed DBMS is more complex, more prone to error, and more
susceptible to performance degradation than a non-distributed DBMS. Why, then, is
everyone rushing to distribute their data?

Given these very real precautions, distributing data across multiple sites provides some
major advantages. Such as

 - 826 -

 Eliminating the single point of failure. When data is distributed across multiple
locations, no single location is a bottleneck. With portions of the data (and
application) residing at multiple sites, each constitutes a point of failure, but
none cripples the entire system.

 Moving data to its "home" location can enhance performance. By modeling
distributed data such that the data is stored at the location that will access it
most frequently, network transmission can be reduced. This should bolster
performance.

 Distributing data to multiple sites increases overall availability because when
one site is unavailable, the others can still function.

 Establishing multiple, distributed processing sites can aid disaster recovery
planning. A remote system can be configured to handle the bulk of the
transaction load in the event of a disaster, thereby reducing downtime.

 Capacity management is easier because growth can occur across the
network on all nodes, instead of on a single (potentially overloaded) node
only.

DB2 Data Distribution
The purpose of this section, however, is not to delve into an exhaustive definition of
distributed processing, but to describe how DB2 can operate in a distributed fashion. As
such, it will encompass

 A description of DRDA, IBM's Distributed Relational Data Architecture. DRDA
is the framework on which IBM has based its distributed relational database
management systems.

 A description of DB2's current level of support for data distribution including
DB2 private protocol, DB2's current level of support for DRDA, and
distributed two-phase commit.

 Tips and techniques to follow when implementing distributed DB2 databases
and applications.

DB2 Data Warehousing
A topic related to data distribution is the burgeoning acceptance of developing DB2-
based data warehouses and data marts. Although distributed DB2 is not a requirement
for data warehousing, many of the techniques required to build a data warehouse are
similar.

Techniques and guidelines for designing, populating, managing, and accessing DB2 data
warehouses are provided in the final chapter of the book.

So turn the page to begin your voyage into the realm of distributed DB2 data and data
warehousing with DB2 for OS/390.

Chapter 39: DRDA
Overview
When speaking about distributed DB2 data, it is necessary to speak about DRDA. DRDA
stands for Distributed Relational Database Architecture. It is an architecture developed by
IBM that enables relational data to be distributed among multiple platforms. Both like and
unlike platforms can communicate with one another. For example, one DB2 subsystem can
communicate to another DB2 subsystem (like). Alternately, a DB2 subsystem can
communicate with a third-party RDBMS (unlike). The platforms need not be the same. As long
as they both conform to the DRDA specifications, they can communicate. DRDA can be
considered a sort of universal distributed data protocol.

This chapter will describe DRDA. Keep in mind that no vendor, not even IBM, has
implemented a RDBMS that fully supports all DRDA functionality.

What Is DRDA?
DRDA is a set of protocols, or rules, that enables a user to access distributed data regardless of where
it physically resides. It provides an open, robust heterogeneous distributed database environment.
DRDA provides methods of coordinating communication among distributed locations. This allows

 - 827 -

applications to access multiple remote tables at various locations and have them appear to the end user
as if they were a logical whole.

A distinction should be made, however, between the architecture and the implementation. DRDA
describes the architecture for distributed data and nothing more. It defines the rules for accessing the
distributed data, but it does not provide the actual application programming interfaces (APIs) to perform
the access. So DRDA is not an actual program, but is more like the specifications for a program.

When a DBMS is said to be DRDA compliant, all that is implied is that it follows the DRDA
specifications. DB2 is a DRDA-compliant RDBMS product.

Benefits of DRDA
DRDA is only one protocol for supporting distributed RDBMSs. Of course, if you are a DB2 user, it is
probably the only one that matters.

The biggest benefit provided by DRDA is its clearly stated set of rules for supporting distributed data
access. Any product that follows these rules can seamlessly integrate with any other DRDA-compliant
product. Furthermore, DRDA-compliant RDBMSs support full data distribution including multi-site
update. The biggest advantage, however, is that it is available today, and many vendors are jumping on
the DRDA-compliance bandwagon.
An alternative to DRDA is to utilize a gateway product to access distributed data. Gateways are
comprised of at least two components—one for each distributed location. These parts communicate
with one another. As far as DB2 is concerned, a host-based gateway component is necessary. It
functions as another mainframe DB2 application. Most gateway products that access DB2 execute
using CICS (and sometimes VTAM). Gateways, however, typically support dynamic SQL only.

Therefore, two more advantages of DRDA surface in the performance arena:
 The removal of the overhead associated with the gateway and its code
 The removal of reliance upon and the inevitable performance degradation associated

with it

What about RDA?
Although DRDA is the distributed architecture utilized by DB2, it is not the only architecture in the
industry. RDA (Remote Database Access) is a competing set of protocols developed by the ISO and
ANSI standard committees.

As a DB2 developer, DRDA will be the method you use to implement distributed data with DB2.
However, knowing a bit about RDA cannot hurt.

 RDA was built to work with a standard subset of SQL that is available from DBMS to
DBMS. DRDA was built to function with platform-specific extensions to SQL.

 Static SQL can be used with DRDA; with RDA only dynamic SQL is available.

DRDA Functions
Three functions are utilized by DRDA to provide distributed relational data access:

 Application requester (AR)
 Application server (AS)
 Database server (DS)

These three functions inter-operate with one another to enable distributed access. Refer to Figure 39.1.

 - 828 -

Figure 39.1: The three DRDA functions.

Let's further examine these three functions.

Application Requester
The DRDA application requester (AR) function enables SQL and program preparation requests to be
requested by application programs. The AR accepts SQL requests from an application and sends them
to the appropriate application server (or servers) for subsequent processing. Using this function,
application programs can access remote data.

In theory, if all of the data that you are interested in is physically located somewhere else (that is,
remote), there may be no need for a local RDBMS, and DRDA does not require the requester to run on
a system with a local RDBMS.

For the DB2 family, the DRDA AR function is implemented using DB2 Connect.

Application Server
The DRDA application server (AS) function receives requests from application requesters and
processes them. These requests can be either SQL statements or program-preparation requests. The
AS acts upon the portions that can be processed and forwards the remainder to DRDA database
servers for subsequent processing. This is necessary if the local RDBMS cannot process the request.

The AR is connected to the AS using a communication protocol called the Application Support Protocol.
The Application Support Protocol is responsible for providing the appropriate level of data conversion.
This is only necessary when different data representations are involved in the request. An example of
this is the conversion of ASCII characters to EBCDIC (or vice versa).

Database Server
The DRDA database server (DS) function receives requests from application servers or other database
servers. These requests can be either SQL statements or program preparation requests. Like the
application server, the database server will process what it can and forward the remainder on to another
database server.

It is important to note that a database server request may be for a component of an SQL statement.
This would occur when data is distributed across two subsystems and a join is requested. The join
statement is requesting data from tables at two different locations. As such, one portion must be
processed at one location, the other portion at a different location.

Because the database servers involved in a distributed request need not be the same, the Database
Support Protocol is used. It exists for the following reasons:

 To connect an application server to a database server
 To connect two database servers

Like the Application Support Protocol, the Database Support Protocol is used to ensure compatibility of
requests between different database servers.

 - 829 -

What Is Returned
When a request is completely processed, the application server must inform the requesting process, the
application requester. How is this accomplished?
The AS passes a return code and a result set (if one was produced) back to the AR. The return code is
the SQLSTATE (or SQLCODE). A result set is not generated under the following circumstances:

 INSERT
 UPDATE
 DELETE
 SELECT, when no rows qualify
 DCL and DDL requests

This protocol is used unless a cursor is employed. When rows are fetched from a read-only cursor,
limited block protocol can be used. Limited block protocol passes multiple rows across the network at
a time, even though one fetch can process only a single row at a time. Limited block protocol enhances
overall performance by minimizing network traffic. If the cursor is not read-only (that is, rows can be
updated), limited block protocol is not employed.

DRDA Architectures and Standards
In order for DRDA to exist, it relies upon other established protocols. Refer to Figure 39.2. These
architectures are examined in the following sections.

Figure 39.2: DRDA's supporting architectures.

Advanced Program-to-Program Communication (APPC)
Advanced Program-to-Program Communication provides peer-level communication support based on
LU 6.2 protocols. LU 6.2 is an advanced communication architecture that defines the formats and
protocols for communication between functionally equivalent logical units.

APPC/LU 6.2 provides communication and transaction processing facilities needed for cooperative
processing and distributed transaction processing.

Distributed Data Management (DDM)
The Distributed Data Management architecture defines facilities for accessing distributed data across a
network using APPC and LU 6.2. With DDM, the distributed data to be accessed can reside in either
files or relational databases. An RDBMS is implied, however, within the context of DRDA.

Formatted Data: Object Content Architecture (FD:OCA)
FD:OCA is an architecture that provides for the distribution and exchange of field-formatted data. Using
FD:OCA, both the data and its description are packaged together so that any DRDA-compliant DBMS
can understand its structure and content.

Character Data Representation Architecture (CDRA)
Character Data Representation Architecture is the architecture utilized to ensure that any symbol or
character used on any SAA relational DBMS has the same meaning regardless of the underlying coded
character set. CDRA provides a method of unambiguously identifying data from any SAA platform.

 - 830 -

CDRA is particularly necessary when data is transferred between a PC workstation (using ASCII code)
and a mainframe (using EBCDIC code). Theoretically, CDRA can be extended to support other codes
(such as Unicode, a new character encoding scheme gaining support).

The Five DRDA Levels
There are five levels within DRDA. Each level represents an increasing level of distributed support.
Additionally, the levels reflect

 The number of requests and RDBMSs per unit of work
 The number of RDBMSs per request

In order of increasing complexity, the five DRDA levels are
 User-Assisted Distribution
 Remote Request
 Remote Unit of Work (RUW)
 Distributed Unit of Work (DUW)
 Distributed Request

Refer to Table 39.1 for a synopsis of the DRDA levels.
Table 39.1: The Five DRDA Levels

DRDA Level SQL
Stm
ts
per
UO
W

DBMS
per
UOW

DBMS
per
SQL
stmt

User-Assisted - - -

Remote Request 1 1 1

Remote Unit of Work >1 1 1

Distributed Unit of Work >1 >1 1

Distributed Request >1 >1 >1

The result of moving up the levels is additive. For example, distributed request capability implies
distributed unit of work (which in turn implies remote unit of work). The reverse, however, is not implicitly
true.

These levels are discussed at greater length in the following pages.

User-Assisted Distribution
User-assisted distribution is the simplest form of data distribution. However, under this DRDA level, the
end user is aware of the distribution and participates in accomplishing the distributed access. To
accomplish user-assisted distribution, the user must

 Extract the needed data from the original system
 Load the extracted data to the requesting system

This is an intensive procedure that should not be taken lightly. As it involves replicated data, care must
be taken to document the system of record and the date of extraction in case future modification is
permitted.

Even given its many limitations, user-assisted distribution is useful for producing snapshot tables and
satisfying one-time requests. However, to many, user-assisted distribution is not truly distributed data
access. I tend to agree with them.

Often, user-assisted distribution is not even included in a formal discussion of DRDA. However, I
include it here for completeness.

 - 831 -

Remote Request
Remote request is the first level of true distribution within DRDA. When a DBMS supports DRDA remote
request capability, a single SQL statement can be issued to read or modify a single remote RDBMS
within a single unit of work.

Simply stated, remote request enables developers to operate within one RDBMS and refer to a different
RDBMS. Furthermore, it is possible to utilize remote request capability to access a remote RDBMS,
even if a local RDBMS is not being used.

DRDA remote request provides the capability of issuing only one SQL request per unit of work and only
one RDBMS per SQL request.

Remote Unit of Work
The remote unit of work (RUW) DRDA level adds to the functionality of remote request. RUW allows
multiple SQL statements. However, the SQL can only read and/or modify a single remote RDBMS
within a single a unit of work.

To clarify, within the scope of a commit, RUW can access only one RDBMS.

So, DRDA remote unit of work provides the capability of issuing multiple SQL requests per unit of work,
but still can access only one RDBMS per SQL request.

Distributed Unit of Work
Distributed unit of work (DUW) builds onto the functionality of remote unit of work. More than one
RDBMS can be accessed per unit of work.

Simply stated, DRDA DUW enables multiple SQL statements to read and/or modify multiple RDBMSs
within a single unit of work. However, only one RDBMS can be specified per SQL statement.
As with any unit of work, all of the SQL statements within the commit scope either succeed or fail. This
requires a two-phase commit protocol to be established. Distributed two phase commit is functionally
equivalent to the two phase commit DB2 performs when executing under CICS or IMS/TM. When a
DUW program issues a COMMIT, the two-phase commit protocol must synchronize the COMMIT across
all affected platforms.

Distributed Request
DRDA distributed request capability enables complete data distribution. Using distributed request, the
DUW restriction of one RDBMS per SQL statement is removed. Additionally, multiple SQL requests,
both distributed and non-distributed, can be contained within a single unit of work.

Simply stated, distributed request enables a single SQL statement to read and/or update multiple
RDBMSs at the same time.

There are no RDBMS products that currently provide DRDA distributed request capability.

Putting It All Together
Consider a scenario where three remote processing locations are set up, each with an RDBMS:
Pittsburgh, Chicago, and Jacksonville. Let's examine how each of the four DRDA options could access
distributed data from these locations.

Consider a situation whereby we need to access specific columns from tables at each remote location.
Furthermore, assume that the requests are emanating from Chicago.
Refer to Figure 39.3 for a depiction of remote request distributed access. In this scenario, we can
access only a single RDBMS from a single location in a single unit of work. The request to the Chicago
table is a local request; the Pittsburgh and Jacksonville requests are remote. Each request is within a
single unit of work (indicated by the COMMIT).

 - 832 -

Figure 39.3: DRDA remote request.

Remote unit of work functionality is depicted in Figure 39.4. Contrast this diagram with remote request.
Instead of a single statement per unit of work, multiple statements can be issued (see the Pittsburgh
example).

Figure 39.4: DRDA remote unit of work.

Distributed unit of work enables multiple RDBMSs per unit of work. This is shown in Figure 39.5.

Figure 39.5: DRDA distributed unit of work.

All four tables from all three locations can be accessed within one unit of work using DRDA DUW
functionality.
Finally, Figure 39.6 depicts distributed request. Using distributed request, multiple RDBMSs from
multiple locations can be accessed using a single SQL statement. In this scenario, the application
requester sends a request to the Chicago application server, which in turn sends the request to the
Chicago database server. It processes what it can and passes it to one of the other database servers
(in, say, Pittsburgh) and so on.

 - 833 -

Figure 39.6: DRDA distributed request.

Summary
Remember, though, this chapter has covered the DRDA framework only. It has not discussed actual
implementation in DB2. For this information, read Chapter 40, "Distributed DB2."

Chapter 40: Distributed DB2
Overview
In the preceding chapter, I discussed DRDA from a purely theoretical perspective. DB2 distributes data
following the DRDA architecture. However, you will find major differences in some aspects of DB2's
implementation of distributed data.

Distributing Data Using DB2
DB2 can distribute data following three of the DRDA levels: remote request, remote unit of work, and
distributed unit of work. As of DB2 V6, distributed request capability is not available. Additionally, DB2
V6 supports application requester and application server functions. The database server function is not
available under DB2 V6.

DB2 also provides the capability to access distributed data using a non-DRDA private protocol. This
capability was introduced to DB2 prior to the existence of DRDA.

The Basics
The Distributed Data Facility (DDF) is required for accessing distributed data through DB2. The DDF is
an optional DB2 address space. (Recall from Chapter 18, "DB2 Behind the Scenes," that the others are
the DBAS, SSAS, and IRLM.)

The Communication Database
Distributed DB2 connections are defined using system tables defined to DB2. For DB2 V4 and prior
releases, connection information is stored in a separate database called the Communications Data
Base (CDB). The CDB is created either during or after DB2's installation. Just like any other DB2
database, the CDB is created using DDL and is maintained using DML INSERT, UPDATE, and DELETE
statements. The DDF reads the CDB to perform authid name translations and to map DB2 objects to
VTAM objects. As of DB2 V5, the CDB tables were renamed and moved to the DB2 Catalog. They exist
in a separate tablespace in the DB2 Catalog, named SYSDDF. The CDB is still required when DB2 V5
and V6 subsystems communicate with pre-V5 subsystems.
In a distributed environment, each DB2 subsystem is identified by a unique location name of up to 18
characters. A location can be explicitly accessed using CONNECT or three-part table names.
For DB2 V4 and earlier releases, DSNDDF is the name of the DB2 database in which the CDB is
contained. It consists of six tables in one tablespace (SYSDDF). The six tables contain the following
information:
SYSIBM.SYSLOCATIONS Maps location names to VTAM LUNAMEs. Contains a row

for each remote DB2 subsystem to which SQL statements
can be sent.

 - 834 -

SYSIBM.SYSLULIST Assigns LUNAMEs to locations.
SYSIBM.SYSLUMODES Defines session/conversation limits.
SYSIBM.SYSLUNAMES Defines the attributes of LUNAMEs. Contains a row for each

remote DB2 to which SQL statements can be sent or from
which SQL statements can be received.

SYSIBM.SYSMODESELECT Defines the mode for an individual user.
SYSIBM.SYSUSERNAMES Translates local usernames.

For DB2 V5 and later releases, the DB2 Catalog contains seven tables that control distributed DB2
database connections. The seven tables contain the following information:
SYSIBM.IPNAMES Defines the remote servers that DB2 can access using

TCP/IP.
SYSIBM.LOCATIONS Specifies the location for every accessible remote server.
SYSIBM.LULIST Assigns LUNAMEs to locations.
SYSIBM.LUMODES Defines session/conversation limits.
SYSIBM.LUNAMES Specifies each remote SNA client or server that

communicates to DB2.
SYSIBM.MODESELECT Defines the mode for an individual user.
SYSIBM.USERNAMES Specifies outbound and inbound ID translations.

Refer to Appendix B, "The DB2 Catalog Tables," for a complete description of the tables used to define
distributed DB2 connections.

Distributed Terms
In addition to the DRDA terms from the preceding chapter, I use the following terms in the remainder of
this chapter:

 A location is a single DB2 subsystem. Locations are also called sites or instances.
 A unit of work describes the activity that occurs between commits. It is also called a

unit of recovery or commit scope.
 A request is a single SQL statement.

In the remainder of this chapter, I describe the data distribution options that exist for DB2 for OS/390.

DB2 Support for the DRDA Levels
DB2 provides support for distributed requests using three of the DRDA levels: remote request, remote
unit of work, and distributed unit of work.

Remote Request
Applications can implement remote request capability by issuing a single request to a single location
within a single unit of work. This approach is the easiest but least flexible method of coding distributed
DB2 access.

Remote Unit of Work (RUW)
To utilize RUW within an application program, these rules must be followed:

 Each request must be for a single location.
 Each unit of work can contain multiple requests.
 Each unit of work must access data from a single location only.

 - 835 -

A single application program can access data from multiple locations using RUW but not within the
same unit of work. The programmer must be cognizant of this fact and therefore code the program
appropriately.

Distributed Unit of Work (DUW)
An application utilizes DUW if these rules are followed:

 Each request must be for a single location.
 Each unit of work can contain multiple requests.
 Each unit of work can access data at multiple locations.

DB2 supports both private protocol DUW and full DRDA DUW.

Methods of Accessing Distributed Data
You should note that the developer of a distributed application does not have to know the descriptions
of remote request, RUW, and DUW. Ensuring that the application does not access multiple locations
within a single request is sufficient. DB2 handles the distributed access based on the nature of the
request(s).

Of course, an informed programmer is an efficient programmer. To enhance performance, application
developers should be aware of the location at which the data to be accessed exists.

A DB2 application developer has two choices for the manner in which distributed data is accessed:
 Application-directed access
 System-directed access

In the following sections, you will examine these two methods of distributed data access.

Application-Directed Data Access
Application-directed data access is the more powerful of the two options. With this access, explicit
connections are required. Furthermore, application-directed distributed access conforms to the DRDA
standard.

Establishing Connections
When implementing application-directed distribution, the application must issue a CONNECT statement
to the remote location, prior to accessing data from that location. Consider this example:
CONNECT TO CHICAGO;
This statement connects the application to the location named CHICAGO. The connection must be a
valid location, as defined in the SYSIBM.LOCATIONS (or SYSBM.SYSLOCATIONS) table. Multiple
locations can be connected at once. For example, an application can issue the following:
CONNECT TO CHICAGO;
 .
 .
 .
CONNECT TO JACKSONVILLE;
 .
 .
 .
CONNECT TO PITTSBURGH;
In this scenario, three connections have been established—one each to Chicago, Jacksonville, and
Pittsburgh. The CONNECT statement causes a VTAM conversation to be allocated from the local site to
the specified remote location. Therefore, if the preceding example were to be issued from Seattle, three
VTAM conversations would be established:

 One from Seattle to Chicago
 One from Seattle to Jacksonville

 - 836 -

 One from Seattle to Pittsburgh
However, only one connection can be active at any one time. You use the SET CONNECTION statement
to specify which connection should be active. Now look at this example:
SET CONNECTION PITTSBURGH;
This statement sets the active connection to Pittsburgh. Additionally, the SET CONNECTION statement
places the previously active connection into a dormant state.
In all the preceding examples (for both CONNECT and SET CONNECTION), you could have used a host
variable in place of the literal, as in this example:
SET CONNECTION :HV;

This statement sets the active connection to be whatever location was stored in the host variable at the
time the statement was executed.

Releasing Connections
After it is established, a connection is available for the duration of the program unless it is explicitly
released or the DISCONNECT BIND option was not set to EXPLICIT (which is the default).
Connections are explicitly released using the RELEASE statement, as shown here:
RELEASE PITTSBURGH;
This statement releases the connection to the Pittsburgh location. Valid options that can be specified on
the RELEASE statement are

 A valid location specified as a literal or a host variable
 CURRENT, which releases the currently active connection
 ALL, which releases all connections
 ALL PRIVATE, which releases DB2 private connection and is discussed in the

next section
The DISCONNECT BIND option also affects when connections are released. You can specify this option
for plans only. It applies to all processes that use the plan and have remote connections of any type.
The following DISCONNECT parameters are valid:
EXPLICIT This option is the default. It indicates that only released connections

will be destroyed at a COMMIT point.
AUTOMATIC This option specifies that all remote connections are to be destroyed

at a COMMIT point.
CONDITIONAL This option specifies that all remote connections are to be destroyed

at a COMMIT point unless a WITH HOLD cursor is associated with the
conversation.

System-Directed Data Access
In addition to application-directed distribution, DB2 also provides system-directed access to distributed
DB2 data. The system-directed access is less flexible than application-directed access because of the
following reasons:

 Prior to DB2 V6, it does not use the open DRDA protocol but uses a DB2-only,
private protocol.

 It is viable for DB2-to-DB2 distribution only.
 Connections cannot be explicitly requested but are implicitly performed when

distributed requests are initiated.

Although system-directed access does not conform to DRDA, it does provide the same levels of
distributed support as application-directed access—remote request, RUW, and DUW.

System-directed access is requested using three-part table names, as shown in this example:
SELECT COL1, COL2, COL7
FROM PITTSBURGH.OWNER.TABLE
WHERE KEY = :HV

Issuing this request causes an implicit connection to be established to the Pittsburgh location. DB2
determines the location by using the high-level qualifier of the three-part name. This type of distribution

 - 837 -

is called system-directed because the system (DB2), not the application, determines to which location to
connect.

Optionally, you can create an alias for the three-part table name. The alias enables users to access a
remote table (or view) without knowing its location. Here's an example:
CREATE ALIAS EMP
FOR PITTSBURGH.OWNER.EMPLOYEE;
SELECT COL1, COL2
FROM EMP;
The first statement creates the alias EMP for the EMPLOYEE table located in Pittsburgh. The second
statement requests the data from the Pittsburgh EMPLOYEE table using the alias, EMP. Note that the
three-part name is avoided.

DB2 V3 Provides Full DUW Capability
Prior to DB2 V3, system-directed distribution provided only a partial implementation of distributed unit of
work capability. The implementation was incomplete because the capability to update multiple sites
within a unit of work was not available. Multiple sites could be read, but only a single site could be
updated. Of course, DB2 V3 rectified this problem by supplying a distributed two-phase commit
capability.

Furthermore, prior to DB2 V3, updates could be requested only through local CICS and IMS
subsystems. Remote updates were forbidden. DB2 V3 lifted this restriction as well. Multi-site update is
possible, regardless of how you attach to DB2:

 CAF
 CICS
 IMS/TM
 TSO

Refer to Figure 40.1 for a synopsis of the distributed capabilities of DB2 V2.3 compared to DB2 V3.

Figure 40.1: Distributed data capabilities.

DB2 V6 Provides Three-Part Name Support to DRDA

As of DB2 version 6, applications can use three-part names to access distributed data and still use
DRDA. Applications that used private protocol distribution can now use DRDA protocol with no program
code or database naming changes.
To use DRDA protocol with three-part names, you must BIND a package at each location that is
specified in a three-part name and then BIND a package or plan at the local location specifying the
DBPROTOCOL(DRDA) BIND option. You do not need to re-code any logic, nor do you need to rename
any database objects.

Caution IBM will eventually phase out private protocol distribution in a subsequent
release of DB2. IBM continues to support private protocol distribution to
provide support for legacy applications written using the private protocol
before DRDA support was provided. However, because DB2 V6 provides the

 - 838 -

ability to use DRDA with three-part names, private protocol distribution will not
be supported by IBM for very long. Therefore, you should avoid implementing
new applications using private protocol distribution.

Converting Private Protocol to DRDA

To convert an application that uses private protocol distribution to use DRDA instead, follow these
steps:

1. First you must determine the locations that are accessed by the application.
To do this, you can look for SQL statements in the application that access
three-part names. The first component of the three-part name is the location
name. If the application uses aliases, you can query the DB2 Catalog to
determine the location of the alias using the following SQL SELECT
statement:

2. SELECT LOCATION, CREATOR, NAME, TBCREATOR, TBNAME
3. FROM SYSIBM.SYSTABLES
4. WHERE NAME = 'alias name'

AND TYPE = 'A';

If the application uses dynamic SQL instead of static SQL, simply BIND packages at all
remote locations that users access using three part names.

5. Using the list of locations obtained in step 1, BIND a package at each of the
locations. You can also BIND a package locally (optionally, you can just use
the DBRM).

Note If the application combines application-directed and system-directed
access by using a CONNECT to get to a remote location, and then three-
part names to get yet another location, you must BIND a package
specifying DBPROTOCOL(DRDA) at the first remote location and another
package at the third location.

6. BIND all remote packages into a plan with the local package or DBRM. Use
the DBPROTOCOL(DRDA) option when issuing the BIND for this plan.

7. Ensure that all aliases are accurate. When using private protocol distribution,
aliases are resolved at the location that issues the request. However, for
DRDA distribution, aliases are resolved at the location where the package is
executed. So, you will need to create additional aliases at remote locations
when switching from private protocol to DRDA.

8. If you use the resource limit facility (RLF) to control distributed requests, you
will need to ensure that the RLF settings are applied correctly. When using
private protocol, distribution plan names are provided to the RLF to govern
SQL access. When using DRDA, you must specify package names instead
of plan names.

Refer to Chapter 27, "DB2 Resource Governing," for additional information on the RLF.

System-Directed Versus Application-Directed
Which is better: system-directed or application-directed? Both have their benefits and drawbacks. For a
short comparison of the two methods, refer to Table 40.1.

Table 40.1: System-Directed Versus Application-Directed Access

Application-
Directed

System-
Directed

Explicit connections Yes No

Three-part table names No Yes

Can issue DCL Yes No

Can issue DDL Yes No

Can issue DML Yes Yes

Static SQL using packages Yes No

 - 839 -

Dynamic SQL at the server No Yes

DB2 to any server Yes No

DB2 to DB2 Yes Yes

Open DRDA protocol Yes Yes *
[*]

DB2 Private protocol No Yes

Distributed request support No No

Read and update at remote locations from CAF
Yes

Yes

Read and update at remote locations from TSO
Yes

Yes

Read and update at remote locations from CICS
Yes

Yes

Read and update at remote locations from IMS/TM
Yes

Yes

[*]as of DB2 Version 6

Regardless of the relative merits of system-directed versus application-directed distribution, favor
application-directed distribution because it is IBM's strategic direction for DB2 data distribution.

Packages for Static SQL
Static SQL is supported in distributed applications by packages. To access remote locations using SQL
embedded in an application program, the program must be precompiled and then bound into a package.
The application program calls the SQL API, which executes the package at the RDBMS.

If the application program requires access to multiple RDBMSs, multiple packages must be bound, one
at each location. Packages enable a request originating from one location to execute static SQL at
remote locations. Of course, dynamic SQL is also supported using system-directed distribution.

Two-Phase Commit
Distributed two-phase commit enables application programs to update data in multiple RDBMSs within a
single unit of work. The two-phase commit process coordinates the commits across the multiple
platforms. The two-phase commit provides a consistent outcome, guaranteeing the integrity of the data
across platforms, regardless of communication or system failures.

Two-Phase Commit Terminology
A syncpoint tree is built by the coordinator of a unit of work. The syncpoint tree determines which
process is in control of the commit/abort decision.

Each node in the syncpoint tree is the coordinator of its own resources and of the nodes below it on the
syncpoint tree. Additionally, a node is a participant of the node directly above it in the syncpoint tree.
Figure 40.2 shows an example of a syncpoint tree. In this example, DB2V is the coordinator for DB2W,
DB2X, and DB2Y. In addition, DB2W is the coordinator for DB2Z.

 - 840 -

Figure 40.2: A two-phase commit syncpoint tree.

Keep these terms in mind as I discuss the two-phase commit process in this chapter.

What Are the Two Phases?
The two phases in the two-phase commit process are

1. Preparation
2. Actual commit

The first phase is the preparation phase. Each participant in the two-phase commit process is informed
to get ready to commit. The preparation phase uses the presumed abort protocol. All affected
modifications at all locations within the unit of work therefore are rolled back if an error is encountered.

Each participant informs the coordinator when it has successfully written the appropriate log records
and is therefore ready to commit (or roll back) all changes. Usually, this process is followed by a
commit. However, if any participant fails to commit, the coordinator may need to back out all changes
for all participants.

During phase 1, each participant returns a "vote" on whether commit can proceed. Each participant
returns one of the following votes:
YES The participant and all dependent nodes are ready for COMMIT or ABORT

processing.
READ-ONLY The participant and all dependent nodes are read-only and do not need

to participate in the two-phase commit process.
NO One or more nodes in the syncpoint tree failed to return a YES or READ-

ONLY vote. A communication failure or error is recorded as a NO vote.
If all votes are READ-ONLY, a COMMIT is not necessary because no updates were performed. If all the
votes are YES and READ-ONLY, the COMMIT can be processed. If any vote is NO, the unit of work is
rolled back.

After all the participants are ready to commit, phase 1 is complete. Therefore, the second phase—the
actual commit—is initiated. During phase 2, success is presumed, even in the case of system failure.
Because all participants have elected to continue the commit, success can be presumed with no danger
of data integrity violations.

The actual commit phase is implemented as a series of communications between the coordinator and
its subordinate participants.
The coordinator specifies that each participant that voted YES is free to permanently record the changed
data and release all held locks. When the participant successfully completes this work, it responds back
to the coordinator indicating that it has successfully committed the unit of work. The coordinator then
logs that the participant has successfully committed.
Additionally, a process called resynchronization occurs during phase 2. Resynchronization resolves
in-doubt logical units of work. An in-doubt logical unit of work has passed phase 1 but has not passed
phase 2. This situation is typically caused by communication failures.
When a communication failure occurs causing in-doubt LUWs, locks may be held, causing system
timeouts and deadlocks. For this reason, waiting for the automatic DB2 resynchronization may not be
feasible. Therefore, you also can initiate resynchronization manually. You do so by using the RECOVER
INDOUBT command, as in this example:

 - 841 -

RECOVER INDOUBT ACTION(COMMIT) ID(1031)
This command schedules a commit for the threads identified by the correlation ID of 1031. The ACTION
parameter can be either COMMIT or ABORT. The decision whether to commit or abort must be made by
the analyst issuing the RECOVER. For this reason, manual resynchronization should be initiated only
when absolutely necessary. Automatic DB2 resynchronization is generally more efficient and accurate.

When resynchronization is complete for all the two-phase commit participants, the two-phase commit is
complete.

Multi-Site Updating
The presence of the two-phase commit process within DB2 enables multi-site updating capability. The
two-phase commit occurs when data at more than one remote location is modified (INSERT, UPDATE,
and/or DELETE).

The two-phase commit process ensures that data at all remote locations is consistent and recoverable.

One-Phase or Two-Phase Commit
Two-phase commit is optional. However, if you need to implement applications that perform multi-site
updates within a single unit of work, two-phase commit is mandatory. The SYNCLVL=SYNCPT parameter
must be specified on the VTAM APPL definition statement to configure DB2's communication support for
two-phase commit.

Distributed Thread Support
Successive versions of DB2 have provided enhanced thread support specifically to increase the
performance and functionality of distributed applications.

Inactive DBATS
Prior to DB2 V3, remote distributed applications would repeatedly connect, perform the appropriate
processing, commit, and then disconnect. This process generated a significant amount of overhead to
support each connect and disconnect request. For DB2 V3 and later releases, each database access
thread (DBAT) can be made inactive instead of disconnecting. A DBAT becomes inactive when all the
following are true:

 A commit or rollback was the last task performed.
 No locks are being held by the thread.
 The package being executed was bound specifying RELEASE(COMMIT).
 INACTIVE was specified for the DDF THREAD install parameter.

Inactive DBATs become active when they receive a message from VTAM. When the remote application
shuts down, the thread is disconnected.

Thread Limit Changes
By enabling threads to become inactive instead of disconnecting, DB2 provides a valuable service.
However, the existence of inactive threads may cause the number of concurrent DB2 threads to
increase substantially.
In DB2 V3, the number of concurrent threads was limited to 10,000. As of DB2 V4, this limit is increased
to 25,000. This number provides greater flexibility by allowing more connections to be supported by the
distributed applications at your shop. The maximum concurrent threads (MAXDBAT + CONDBAT) can be
25,000, of which only 2,000 (CTHREAD + MAXDBAT) can be active. Refer to Table 40.2 for a synopsis of
the affected DSNZPARMs.

Table 40.2: Thread Parameters

Definition DSNZPARM

Local Threads CTHREAD

Active DBATs MAXDBAT

Inactive DBATs CONDBAT

 - 842 -

Database Connection Pooling

DB2 version 6 adds support for database connection pooling. In prior DB2 releases, when an
application requester established a connection to DB2, a connection to the DB2 database was also
established. As of V6, DB2 maintains a pool of database connections that can be reused to process
requests from DRDA application requesters. The connection pool enables DB2 to support up to 150,000
DRDA connections to DB2. The connections in the pool are DBATs, referred to as type 2 inactive
threads.

DB2 supports two types of inactive threads—type 1 and type 2. Type 2 inactive threads are only
available for DRDA connections and use less storage than type 1 inactive threads. Type 2 inactive
threads use a pool of DBATs that can be switched among connections as needed.

If you have a requirement to support more inbound remote connections than you have database access
threads, you should consider using DDF inactive thread support. The following sections provide
information on inactive thread support.
DB2 favors making inactive threads type 2. However, certain scenarios prohibit type 2 inactive threads.
After a COMMIT or ROLLBACK, DB2 determines whether a thread can become inactive, and, if it can,
whether it can become a type 1 or type 2 inactive thread. Refer to Table 40.3 for a breakdown of when
inactive threads can be type 2 or not.

Table 40.3: Type 1 and Type 2 Inactive Threads

Condition

Thread
can be
Type 1

Thread
can be
Type 2

A hop to another location Yes Yes

A connection using DB2 private—protocol access Yes No
A package that is bound specifying RELEASE(COMMIT) Yes Yes
A package that is bound specifying RELEASE(DEALLOCATE) No Yes

A held cursor or a held LOB locator No No
A package that is bound specifying KEEPDYNAMIC(YES) No No

When a "Yes" is listed for a condition in Table 40.3, the thread can become inactive as the indicated
type of inactive thread when a COMMIT is issued. After a ROLLBACK, a thread can become inactive,
even if it had open cursors defined WITH HOLD or a held LOB locator because ROLLBACK closes all
cursors and LOB locators.
If a thread is eligible to become a type 2 inactive thread, the thread is made inactive and the DBAT is
eligible to be used by another connection. If the thread must become a type 1 inactive thread, DB2 first
determines that the number of inactive threads will not exceed the installation limit set in DSNZPARMs. If
the limit is not exceeded, the thread becomes inactive; if the limit would be exceeded, the thread
remains active. If too many active threads exist, DB2 may terminate the thread and its connection.

Miscellaneous Distributed Topics
The following assortment of tips might prove to be helpful as you develop your distributed DB2
applications.

Combining DRDA and Private Protocol Requests
By combining CONNECT statements and SQL statements that access three-part tables names, you can
issue application-directed and system-directed requests from within a single unit of work. However,
having a system-directed and an application-directed request to the same location is not possible. The
requests must be to different locations.

Consider the following piece of code:
CONNECT TO JACKSONVILLE;
 .
 .

 - 843 -

 .
SELECT COL7
INTO :HV7
FROM DEPT;
 .
 .
 .
SELECT COL1, COL2
INTO :HV1, :HV2
FROM CHICAGO.OWNER.EMPLOYEE;
 .
 .
 .
COMMIT;
The application connects to Jacksonville using application-directed access (CONNECT). At the
Jacksonville location, the DEPT table is accessed. Within the same unit of work, a request is made for
Chicago data using system-directed access (three-part table name).

Combining DB2 Releases
You can access different release levels of DB2 within a single unit of work. As you might expect, this
capability has the following restrictions as well:

 When you're connecting V6 (or V5) and pre-V5 servers, be sure to keep the CDB.
Further, be sure to keep the information in the CDB synchronized with the
corresponding DB2 V6 (or V5) Catalog tables.

 Updates are not permitted to V2.3 servers when accessed from CICS or IMS/TM.
 DB2 V2.2 requesters cannot access DB2 V3 servers.
 When accessing DB2 V2.3, only one phase commit is available.

Workstation DB2
In addition to DB2 for OS/390, IBM also provides versions of DB2 for Windows NT, UNIX and OS/2
workstations. Of course, these DB2 implementations are not 100-percent compatible with DB2 for
OS/390. Also, each DB2 uses SQL, but different SQL features are provided by each. For example, DB2
for OS/2 supports the EXCEPT clause for performing relational division and the INTERSECT clause for
performing relational intersection. DB2 for OS/390 does not.

At the time of publication, DB2 implementations were available for the following platforms:

AS/400

OS/2

Windows NT

HP-UX

IBM VM

IBM VSE

IBM AIX

Linux

Sun Solaris

Hewlett Packard HP-UX

 - 844 -

The edition of DB2 that runs on Windows NT, OS/2, and UNIX variants is sometimes referred to as DB2
for Common Servers. As of V5, it is referred to as DB2 Universal Database. Of course, as of V6, DB2
for OS/390 is also referred to as DB2 Universal Database. The workstation DB2 products do not
internally support DRDA. DRDA support is provided by an additional product, DB2 Connect. This is
somewhat analogous to the manner in which DB2 for OS/390 supports distributed access—via DDF.

For additional information on how the workstation DB2 products support DRDA, refer to the appropriate
IBM manuals for DB2 Connect and the workstation DB2 product of interest.

Developing Client/Server Applications
Client/server processing is fast becoming a de facto standard for accessing remote data. DB2 is an
ideal candidate for functioning as the server in the client/server framework. It can accept requests from
multiple IBM and non-IBM RDBMS products.

ASCII Server Support
IBM mainframes use a different encoding scheme for alphanumeric characters than most other
computers. The IBM encoding scheme is known as EBCDIC. When non-IBM computers communicate
with IBM computers it is necessary to translate the EBCDIC encoding scheme to ASCII, the standard
encoding scheme used by these other devices.

DB2, as of V5, enables an entire subsystem, a database, a tablespace, or a table to be defined to use
ASCII instead of EBCDIC. You can enhance performance by creating ASCII objects for distributed
applications because characters will not need to be converted to EBCDIC when communicating with
other ASCII servers.

Before creating ASCII objects, consider the following caveats:
 You can specify a different encoding scheme for DB2 objects using the CCSID

parameter of the CREATE DATABASE, CREATE TABLESPACE, CREATE
GLOBAL TEMPORARY TABLE, or CREATE TABLE statement.

 The encoding scheme of an object cannot be altered after the object is created.
 Only type 2 indexes are supported for ASCII encoded tables.
 MVS applications that display ASCII encoded data actually receive the data as

EBCDIC, but sort the data using the ASCII collating sequence.

Native TCP/IP Support
DB2 provides native TCP/IP support for distributed connections. Previous versions of DB2 supported
TCP/IP requesters, but only with additional software and configuration. TCP/IP enables direct
connections to DB2 from client applications without the overhead and expense of the additional
software.

For DB2 V5 and subsequent releases, you can choose to use SNA, TCP/IP, or mixed networks for
distributed DB2 applications.

Summary
In this chapter, you examined the how-to aspect of accessing distributed DB2 data. But what about the
practical implications, such as administration and performance? Turn to the next chapter for practical
DB2 data distribution hints, tips, and techniques.

Chapter 41: Distribution Guidelines
Overview
In the preceding two chapters, I introduced both the distributed architecture employed by DB2 and the
manner in which the architecture is implemented. In this chapter, I discuss some practical guidelines to
follow as you develop distributed DB2 applications.

Distribution Behind the Scenes

 - 845 -

Distributed DB2 requests are carried out through the Distributed Data Facility (DDF). The DDF
is implemented as an address space in the same manner as the other DB2 address spaces:
DBAS, SSAS, and IRLM. Refer to Chapter 18, "DB2 Behind the Scenes," for additional
information on these three address spaces.
To more fully understand the workings of distributed data, see Figure 41.1 for a brief
description of the components of the DDF.

Figure 41.1: The Distributed Data Facility.

The DDF is composed of four components:

DCRM Distributed Communication Resource Manager

DRDS Distributed Relational Data System

DDIS Distributed Data Interchange System

DTM Distributed Transaction Manager
The DCRM manages the interfaces to other resources with which the DDF must interact. The
DCRM is the component that actually manages the connections (see Figure 41.2). The DCRM
of the requester creates conversations to communicate to the server. The DCRM of the server
accepts requests and creates a database access thread (DBAT) to handle distributed
requests.

Figure 41.2: Distributed communication.

Three different managers within the DCRM enable you to perform these tasks: the
conversation manager, the queue manager, and the VTAM manager.
Connections are managed by the conversation manager (CM). The CM is responsible for
managing the receipt of messages from remote clients and sending messages from the server
back to the requester. Furthermore, the CM manages the creation and termination of
connections to support DRDA and private protocol requests.
The queue manager (QM) creates and routes work requests for allied agents. Requests from
allied agents are queued by the QM and then routed for further processing.
The third and final component of the DCRM is the VTAM manager. The CM uses the VTAM
manager to communicate with other DBMSs in the network. This component reads the CDB to
determine how communication resources are to be used by DDF.
The second component of the DDF is the Distributed Relational Data System (DRDS). It
performs tasks similar to those performed by the RDS (in the DBAS). For private protocol
requests, the DRDS receives remote requests and invokes the local DCRM to communicate
with the remote server DCRM. The server DCRM receives the request and passes it to the
RDS of the server. For DRDA requests, the DRDS enables the requester to perform remote
binds. The bind request is passed to the server, which uses its DRDS to kick off the bind.

 - 846 -

The Distributed Data Interchange System (DDIS) is the third component of the DDF. It is used
only for DRDA requests. The DDIS performs object mapping of remote objects. Object
mapping occurs at both the requester and server.
The final DDF component is the Data Transaction Manager (DTM). As its name implies, the
DTM manages distributed transactions. It performs tasks such as monitoring for errors,
controlling commits and aborts, and managing recovery.

A firm understanding of the functionality embedded within each of these components can help
the application developer or database analyst more fully comprehend the underlying
operations required for supporting a distributed environment.

Block Fetch
DB2 employs a method of reducing network communication known as block fetch. Communication
over the network can be the largest bottleneck in a distributed application. If the number of messages
sent over the network can be reduced, performance can be significantly increased.
If block fetch were not utilized when an application accessed rows of data, each one would have to be
passed over the network as a single message. One row equates to one message. When block fetch is
invoked, the retrieved rows are grouped into a large block of data. This block of data is stored in a
buffer called the message buffer. The message buffer, after it is filled, is transmitted over the network
as a single message. Thus, block fetch allows large blocks of data (instead of many single messages)
to be transferred.
Figure 41.3 shows the difference between blocked and unblocked data access. Obviously, the amount
of network communication diminishes when blocks of data are transmitted instead of single rows of
data.

Figure 41.3: Block fetch.

Coding Cursors to Encourage Block Fetch
Block fetch can be used only by read-only cursors. If data can be updated through the cursor, DB2 must
send the data over the network one row at a time.
Sometimes, DB2 cannot properly determine whether a cursor is read-only. This type of cursor is called
an ambiguous cursor. However, there are techniques you can use when coding cursors in an
application program to ensure that read-only cursors are known to DB2 to be read-only. These types of
cursors are called unambiguous cursors.
You can ensure that a cursor is unambiguous in three ways: using the FOR READ ONLY (or FOR
FETCH ONLY) clause, using certain SQL constructs, or when the semantics dictate that the cursor is not
updateable.
FOR READ ONLY or (FOR FETCH ONLY)
You can append the FOR READ ONLY (or FOR FETCH ONLY) clause to a cursor to indicate that the
cursor is read-only. As a rule of thumb, always specify FOR READ ONLY when a distributed query is
identified as being read-only. Even if the query is read-only by nature (see the next section), it is still
best to code the cursor using FOR READ ONLY, thereby ensuring that the cursor is unambiguous and
can utilize block fetch.

Note As of DB2 V4, the FOR READ ONLY clause provides the same function as FOR
FETCH ONLY. The FOR READ ONLY construct is preferable to the FOR FETCH
ONLY construct because it is ODBC-compliant.

 - 847 -

Cursors That Are Read-Only by Nature

Certain cursors, by definition, are always read-only. Any of the following conditions causes a read-only
cursor:

 Joining tables
 Specifying the DISTINCT keyword in the first SELECT clause
 Using either UNION or UNION ALL
 Specifying a subquery, where the same table is specified in the FROM clauses of both

the subquery and the outer query
 Using a scalar function in the first SELECT clause
 Using either a GROUP BY or HAVING clause in the outer SELECT clause
 Specifying an ORDER BY clause

Even though these conditions cause the cursor to be read-only, you should still specify the FOR READ
ONLY clause. Doing so enhances clarity and is helpful for documentation purposes.

Semantically Non-Updateable Cursors
Certain types of cursors are semantically not updateable, even when not defined using FOR READ
ONLY or FOR FETCH ONLY. They are read-only cursors because they are included within an application
program that avoids updates. This type of cursor exists within a program that conforms to the following
guidelines:

 No static DELETE WHERE CURRENT OF statements
 No static UPDATE WHERE CURRENT OF statements
 No dynamic SQL

Avoid Ambiguous Cursors

Avoiding ambiguous cursors greatly reduces the administrative burden of identifying updateable and
read-only cursors. Likewise, it makes tuning easier because the identification of cursors that are
candidates for block fetch becomes easier.
Avoiding ambiguous cursors is simple. To do so, you should establish a global shop standard that
requires the specification of the FOR clause on every cursor. Read-only cursors should specify the FOR
FETCH ONLY clause. Updateable cursors should specify the FOR UPDATE OF clause.

Data Currency
Block fetch is used as the default for ambiguous cursors if the package or plan was bound with the
CURRENTDATA(NO) parameter. CURRENTDATA(NO) indicates that data currency is not a prerequisite
for this package or plan, thereby enabling DB2 to use block fetch.
To disable block fetch for ambiguous cursors, specify CURRENTDATA(YES). However, doing so is not
generally recommended.
To determine which plans and packages were bound with CURRENTDATA(NO), issue the following
queries against the DB2 Catalog:
 SELECT NAME, CREATOR, BOUNDTS, EXPREDICATE
 FROM SYSIBM.SYSPLAN P
 ORDER BY NAME
SELECT COLLID, NAME, VERSION, CREATOR,
 BINDTIME, DEFERPREP
 FROM SYSIBM.SYSPACKAGE
 ORDER BY COLLID, NAME, VERSION
For plans, when the EXPREDICATE column is set to B, blocking is enabled. For packages, when the
DEFERPREP column is set to B, blocking is enabled. In both cases, a value of C indicates that
CURRENTDATA(YES) was specified.
Specify CURRENTDATA(NO)
Binding packages and plans with the CURRENTDATA(NO) parameter encourages the use of block fetch.
This use, in turn, should enhance the overall performance of distributed queries. The DB2 default value
for the CURRENTDATA option is CURRENTDATA(YES).

 - 848 -

Limited Versus Continuous Block Fetch
The two types of block fetch are limited and continuous. Each method of block fetching has its benefits
and drawbacks.

Limited Block Fetch
Limited block fetch can be used by application-directed DRDA units of work. Refer to Figure 41.4.
When limited block fetch is used, synchronous processing occurs.

Figure 41.4: Limited block fetch.

Limited block fetch uses a single conversation to facilitate communication between the requester and
the server subsystems.

Continuous Block Fetch
Continuous block fetch operates asynchronously. Only system-directed, private-protocol units of work
can use it. Each open cursor is assigned a separate conversation when continuous block fetch is used.
Refer to Figure 41.5.

Figure 41.5: Continuous block fetch.

Each open cursor has a buffer area on both the server and the requester. The server continues to fill its
buffers with results and transmit them to the requester until it reaches VTAM pacing limits. In other
words, the server continues processing behind the scenes.

When a sufficient number of conversations are not available to DB2 (one per open cursor), processing
reverts to limited block fetch.

A Comparison of Continuous and Limited Block Fetch

The big question is "Which is the better type of block fetch: continuous or limited?" The answer, of
course, is "It depends." You must consider the following two trade-offs.

In general, continuous block fetch is more efficient than limited block fetch because fewer messages
must be transmitted. However, limited block fetch consumes fewer resources than continuous block
fetch because each cursor does not require a conversation.

Programs can use static SQL when they use application-directed DRDA distributed requests. Therefore,
static SQL is available only with limited block fetch. So, the performance gain that can be achieved by
continuous block fetch through a reduction in network traffic can be mitigated or even eliminated by the
requirement to use dynamic SQL.
For a synopsis of the trade-offs between continuous and limited block fetch, refer to Table 41.1.

Table 41.1: Distributed Trade-Offs

 - 849 -

Continuous Block Fetch Limited Block Fetch

Resource-Intensive Network-Intensive

System-Directed Application-Directed

Private DB2 Protocol Open DRDA Protocol

DB2 to DB2 Distribution Only Open Distribution to any DRDA-Compliant RDBMS

Dynamic SQL Static SQL

Dynamic Cursor Pre-Open
Distributed dynamic SQL requests should perform better with DB2 V5 (and subsequent releases) than
for previous versions. In certain situations, DB2 automatically adds an OPEN cursor request to the
PREPARE statement. By anticipating that a cursor is to be opened and doing so, DB2 optimizes
performance by avoiding VTAM overhead.
To take advantage of dynamic cursor pre-open, the statement being prepared must be a SELECT
statement, no parameter markers can be used, and the connection must be a DRDA connection.

Distributed Performance Problems
Recall the definition of performance given in Part IV. Performance in a distributed environment also can
be defined in terms of throughput and response time. The requester and the server each place a
different degree of emphasis on these two aspects.
The server views performance primarily in terms of throughput. Remember that throughput is the
amount of work that can be done in a unit of time.
The requester views performance more in terms of response time. Response time is more visible to the
end user. Recall that response time is the amount of time required to accomplish a predefined set of
work.

Analyzing Distributed Throughput
When analyzing the throughput of a given distributed DB2 implementation, you must examine each
component of the implementation. Failure to analyze every component may result in an overall
performance degradation caused by a single weak link.
The combination of all components used to process a transaction is called the throughput chain. A
sample throughput chain can include a combination of the following components:

 Requester hardware
 Local/requester operating system (OS/2, AIX, MVS, and so on)
 Local DB2
 Network operating system
 Actual network (or LAN)
 Middleware (or gateway)
 Mainframe
 MVS
 Server DB2
 DASD

Each link in the chain may be necessary to complete a given transaction. The best throughput that any
given configuration can achieve is always confined by the slowest component on the chain.

To achieve optimal performance, you should spend more tuning and optimization effort on the weaker
links in the throughput chain.

Factors Affecting Throughput

The three biggest factors affecting throughput in a distributed environment are hardware, contention,
and availability.

The processing speed of the hardware used in the distributed environment has a big impact on
throughput. Factors such as processor speed (MIPS), available memory, physical configuration, and
DASD speed have an impact on the throughput component of performance.

 - 850 -

When the demand for a particular resource is high, contention results. When two or more processes
attempt to utilize a particular resource in a conflicting manner, contention degrades overall performance.
In a distributed environment, the number of locations that can utilize a resource increases; thus,
contention problems usually increase.
The final factor is availability. In a distributed environment, multiple computing platforms are used. If one
of these platforms breaks down or becomes otherwise unavailable (such as with a communication
problem), throughput is affected. Depending on application design, throughput may

 Increase, if transactions continue to be processed. Work targeted for the unavailable
component must be saved so that it can be applied later when the unavailable
component becomes available.

 Decrease, if logic has not been coded to handle unavailable components, and
transactions start to "hang."

 Become nonexistent, if all work is suspended until the unavailable component is
made available again.

Note Plan for periods of resource unavailability in a distributed environment and code
distributed DB2 application programs accordingly.

Analyzing Distributed Response Time
Response time is typically easier to comprehend than throughput. Usually, a throughput problem comes
to light as a result of a complaint about response time.

End users are the typical bearers of bad news about response-time problems. As the actual patrons of
the system, they understand its basic performance patterns. When response time suffers, end users
tend to voice their dissatisfaction quickly.

Online performance monitoring tools and performance reports are other means of gauging response-
time problems.

General Distributed Performance Guidelines
When developing distributed DB2 applications, implement the following techniques to ensure optimal
performance.

Standard DB2 Performance Tuning Techniques
Follow standard DB2 performance tuning techniques, as outlined in Part V, "DB2 Performance Tuning."

Minimize the SQL Result Set

Be sure to access only the data that is actually required by the application. Do not access more data
than is necessary and filter it out in the application program. Although this tip is a standard SQL tuning
rule of thumb, it is particularly applicable in a distributed environment. When fewer rows qualify, less
data is sent over the communication lines. And remember, network-related problems tend to be a
significant obstacle in distributed environments.
Use OPTIMIZE FOR n ROWS
As of DB2 V6, client programs can use the OPTIMIZE FOR n ROWS clause to optimize the retrieval of
a large number of rows. To retrieve multiple query blocks on each network transmission, specify a large
value for n, in the OPTIMIZE FOR n ROWS clause for queries that must return a large number of rows.
Favor this technique if your application has the following qualities:

 A large number of rows are fetched from read-only queries
 The cursor is not closed before all of the result set is fetched
 No additional SQL statements are issued to the DB2 server while the cursor remains

open
 Only one cursor at a time is open and being fetched from that is defined with the

OPTIMIZE FOR n ROWS clause

This can result in a reduced number of network transmission, and therefore, enhanced performance.

Distributed Bufferpool

 - 851 -

The bufferpool that will hold the distributed data, after it has been sent from the server to the client, is
the bufferpool in which the CDB is defined. Ensure that adequate space has been allocated to
accommodate distributed data access in the aforementioned bufferpool.

Note As of DB2 V5, the CDB tables were moved to the DB2 Catalog. This means that
these tables must use BP0. This is not the case for releases of DB2 prior to V5,
though.

DDF Dispatching Priority

When DB2 is used as a database server in a distributed environment, the dispatching priority of the
DDF address space should be reanalyzed.
The general recommendation made in Chapter 25, "Tuning DB2's Environment," (see Figure 25.3) is to
code the dispatching priority of DSNDDF on a par with IMS MP regions (below short-running TSO
requests but above medium-running TSO requests). However, in a distributed environment with critical
distributed transactions, consider changing the dispatching priority of DSNDDF to a higher position in the
hierarchy. Refer to Figure 41.6.

Figure 41.6: Distributed dispatching priority hierarchy.

You should set the dispatching priority of DSNDDF so that it is not so high as to affect overall system
performance but not so low as to degrade the performance of distributed DB2 requests.
In general, higher dispatching priorities should be reserved for I/O-bound applications. Because DSNDDF
is a low CPU consumer, setting a higher DPRTY may prove to be advantageous.

Caution Ensure that a higher DSNDDF dispatching priority does not cause excessive
resource consumption. If you decide to experiment with the dispatching
priority of DSNDDF, thoroughly test different priority hierarchies in your shop
until you're satisfied that DDF is at an appropriate level.

Tuning VTAM Parameters

Before you implement distributed DB2 applications, buy your VTAM systems programmer lunch! (Most
system programmers have a ravenous appetite; buy them food, and they'll be your friends for life.)

The performance of DB2 in a distributed environment depends heavily on ensuring that the appropriate
VTAM parameters are coded for the type of distributed applications to be implemented.

The following VTAM parameters are important:
 If the VTAM pacing rate is set high, and your application retrieves multiple rows, the

communication channels can become flooded, consuming an inordinate amount of
system resources.

 Avoid the VTAM DELAY parameter when your application is coded to retrieve single
rows. The DELAY parameter causes a planned wait that would impede
performance.

 Queuing of conversations can greatly increase response time. Consider increasing
CONVLIMIT if the number of queued conversations is high. Likewise, if the number
of queued conversations is very low or zero, consider decreasing CONVLIMIT. Start

 - 852 -

the DB2 global trace, IFCID 167, to collect information on queued conversation
requests.

The number of conversations that a remote DB2 subsystem can be handle is controlled in
the SYSIBM.LUMODES table. You use the CONVLIMIT column of LUMODES to set the limit
of conversations per DB2 subsystem (in the LUNAME column) per VTAM logon mode (in the
MODENAME column).
For a change to CONVLIMIT to take place, the DDF address space must be recycled.
Whenever you're making these types of changes, be sure to keep your VTAM systems
programmer in the loop, because setting these values overrides the VTAM DSESLIM
parameter, and the VTAM systems programmer usually has a much better idea (than a DB2
DBA or analyst) of what these numbers should be.

Distributed Database Design Issues
When you're designing databases in a distributed environment, follow the standard database design
rules of thumb provided in Chapter 5, "Data Definition Guidelines." However, you might need to take a
more rigorous approach regarding denormalization. For more information, refer to the exhaustive
discussion of denormalization in Chapter 5. Use Table 41.2 to recall the types of denormalization
covered in Chapter 5.

Table 41.2: Types of Denormalization

Denormalization Use

Prejoined Tables When the cost of joining is prohibitive

Report Tables When specialized critical reports are needed

Mirror Tables When tables are required concurrently by two types of
environments

Split Tables When distinct groups use different parts of a table

Combined Tables When one-to-one relationships exist

Redundant Data To reduce the number of table joins required

Repeating Groups To reduce I/O and (possibly) DASD

Derivable Data To eliminate calculations and algorithms

Speed Tables To support hierarchies

Denormalization can be a useful technique in a distributed environment. In the following sections, I
discuss several methods of distributed denormalization. Along the way, I make references to the
denormalization types already discussed to clarify the distributed denormalization concepts.

Fragmentation
Fragmentation is a specialized form of distributed denormalization that resembles split tables. To
implement fragmentation, a table must be separated into separate parts, or fragments. Each fragment is
then stored at a different location. Fragmentation can enhance performance because each fragment
can be stored at the location that accesses it most frequently.

As with split tables, fragmentation avoids data duplication. Each fragment must contain a logical subset
of the data.

Multiple fragments can be created from a single source table. The methodology used to determine
where and how to split the table depends on the data access needs of the distributed applications that
must access the data.
Two types of fragmentation can be implemented: horizontal and vertical. Horizontal
fragmentation splits the data by rows, whereas vertical fragmentation splits the data by columns.
Tables are horizontally fragmented using ranges of values to create distinct fragments. Tables are
vertically fragmented by assigning specific columns to specific fragments.

Vertical fragmentation requires a certain amount of data duplication because the key column(s) must be
stored at each site to defragment the data. Without the redundant key stored at each location, joining

 - 853 -

the tables back together so that the data returned is the unfragmented, original data would be
impossible.

Ensure Lossless Joins and Unions

You must take care to ensure that fragmentation is accomplished such that defragmenting the tables
does not result in additional data or a loss of data.
For horizontal fragmentation, rows must be wholly contained within one, and only one, fragment. In
other words, the result of selecting all rows from every fragment and combining them together using
UNION ALL must provide the same result as a SELECT of all rows from the original, unfragmented
table:
 SELECT *
 FROM FRAGMENT1
 UNION ALL
 SELECT *
 FROM FRAGMENT2
 UNION ALL
 SELECT *
 FROM FRAGMENTn

Of course, this statement cannot be successfully executed until DB2 supports distributed request
capability.

For vertical fragmentation, only the key columns are permitted to be duplicated in multiple fragments.
The key columns must reside in every fragment. Even when no data is actually associated with a
particular key for a particular fragment, a row must be stored in the fragment for that key to facilitate
defragmentation. Nulls (or default values) can be used to indicate that the other columns contain no
valid data for the particular key at that particular location.

Simply stated, the result of joining all fragments together should provide the same result as selecting
from the original, unfragmented table:
 SELECT F1.KEY, F1.COL1, F2.COL2, Fn.COLn
 FROM FRAGMENT1 F1,
 FRAGMENT2 F2,
 FRAGMENTn Fn
 WHERE F1.KEY = F2.KEY
 AND F2.KEY = Fn.KEY

If certain keys are not included, an outer join must be used. Until such time, because DB2 provides
native outer join support, always propagating keys across locations is wise.

Replication
Another type of distributed denormalization is replication. In its implementation, it is similar to mirror
tables.

When data is replicated, redundant data is stored at multiple distributed locations. Because replication
causes copies of the data to be stored across the network, performance can be enhanced by
eliminating the need for distributed data access.

Replication can be implemented simply by copying entire tables to multiple locations. Alternatively,
replicated data can be a subset of the rows and/or columns. The general rule of thumb is to copy only
what is needed to each remote location.

Furthermore, each replica should contain accurate, up-to-date information. Whenever possible, you
should update all replicated copies at the same time. This way, you can eliminate the administrative
burden of having to know the state of each replica. Additionally, replication transparency is ensured
when the data is accurate at each location.

 - 854 -

To achieve optimal performance, you should always read from the closest replica. A replica may not
exist at every location. By always reading from the closest replica (which supports the current
requirements), you can enhance performance by reducing the communication path.

You can tune replicas independently of one another. Different clustering strategies, different indexes,
and different tablespace parameters might be appropriate at different locations.

Finally, do not create more replicas than are required. The more replicas, the more complicated the
process of updating them.

Snapshots
Similar to mirror tables, snapshot tables are read-only copies of tables. Snapshot tables also are
similar to replicas, but the data currency requirements for each snapshot table can differ. Data in
snapshot tables usually represents a "point in time" and is not accurate up-to-the-second.

Decision-support applications typically use snapshot tables. Snapshots are most useful for optimizing
performance when data does not have to be entirely accurate.

As with the other types of distributed denormalization, snapshots tend to optimize performance when
they are stored at the location that accesses them most frequently.

Multiple snapshot tables can be created—each representing a different "point in time." The number of
snapshots required depends on the nature of the data and the needs of the applications that must
access them.

To achieve optimal performance, always read from the closest snapshot. A snapshot may not exist at
every location. By always reading from the closest replica (which supports the current requirements),
you can enhance performance by reducing the communication path.
Be sure to send all updates to the system of record, which is the master table (or tables) that always
contains accurate, up-to-date information. Application updates should never be made to snapshots, only
to the system of record. The snapshot tables need to be refreshed periodically with data from the
system of record. You should develop a reliable, systematic method of refreshing snapshot data.

By their very nature, snapshot tables do not contain up-to-the-second information. Ad hoc users,
programmers, and anyone else requiring access to snapshot tables need to be informed of the
following:

 The data is not current; for current data, the system of record should be accessed.
 The date and time for which the data is accurate.
 The next scheduled refresh date and time.

Distributed Data Placement
A key aspect of distributed performance and functionality lies in the application of proper data
placement techniques. To perform proper data placement, you should understand the manner
in which each piece of data is accessed within the distributed environment. Analyzing which
application or program accesses the data is not sufficient. Analyzing is merely one portion of
the distributed data placement puzzle. You also need to analyze and understand the access
patterns from each location on the network.

Normal data placement revolves around a single subsystem. The access patterns of programs
and applications are recorded; based on that information, portions of the data are placed on
DASD devices. Access-based data placement still must be done in the distributed
environment. However, location access patterns must be analyzed also. Based on these
patterns, portions of data can be placed at the appropriate locations within the distributed
network.

The primary goal of distributed data placement is to optimize performance by reducing
network transmission costs. Each piece of data should be stored at the location that accesses
it most frequently. For example, storing Pittsburgh data at the Pittsburgh server makes more
sense than storing it at the Chicago server. Such decisions are easy to make. Problems arise
when

 A location has no server

 - 855 -

 The frequency of access is (relatively) evenly divided between two or more
servers

If the location does not have a server, place the data to the closest location on the network.
For example, Pittsburgh data would be better stored in Cleveland than in Chicago, because
Cleveland is physically closer to Pittsburgh than Chicago. For scenarios too close to call, the
best approach is to choose a location and monitor performance. If performance is not up to
par, consider migrating the data to another location.

Distributed Optimization
Optimization in DB2 is usually a clear-cut matter. The DB2 optimizer is a state-of-the-art
optimizer that, more often than not, can be relied upon to produce properly optimized access
paths for SQL statements. The rule of thumb is to code as much work as possible into the
SQL and let the optimizer figure out the best way to access the data. However, in a distributed
environment, optimization is not quite so simple.
To understand this difference, consider a distributed implementation of the DB2 sample tables
PROJ, PROJACT, and ACT. A project (PROJ) can have many activities, and each activity (ACT)
can be a part of many projects. The PROJACT table resolves the many-to-many relationship.
For more information on these tables, refer to Appendix D, "DB2 Sample Tables."
Assume that the PROJ and PROJACT tables exist at one location (say, Pittsburgh), and the
ACT table exists at a different location (say, Chicago).

The task at hand is to retrieve a list of documentation activities for projects started after
January 1, 1998. If DB2 provides distributed request support, the following query would satisfy
this request:
 SELECT A.ACTNO, A.ACTDESC
 FROM ACT A,
 PROJ P,
 PROJACT J
 WHERE A.ACTNO = J.ACTNO
 AND J.PROJNO = P.PROJNO
 AND A.ACTKWD = "DOC"
 AND P.PRSTDATE > "01/01/2000";

However, DB2 does not provide distributed request. Therefore, issuing this particular join is
not possible. Lacking distributed request, what is the best way to satisfy this request? You can
optimize this three-table join in (at least) six different ways:

 Join PROJ and PROJACT at Pittsburgh, selecting only projects starting after
January 1, 2000. For each qualifying row, move it to Chicago to be joined with
ACT to see whether any design activities exist.

 Join PROJ and PROJACT at Pittsburgh, selecting only projects starting after
January 1, 2000. Then move the entire result set to Chicago to be joined with
ACT, checking for design activities only.

 At Chicago, select only design activities from ACT. For each of them, examine the
join of PROJ and PROJACT at Pittsburgh for post-January 1, 2000 projects.

 Select only design activities from ACT at Chicago. Then move the entire result set
to Pittsburgh to be joined with PROJ and PROJACT, checking for projects started
after January 1, 2000 only.

 Move ACT to Pittsburgh and proceed with a local three-table join.
 Move PROJ and PROJACT to Chicago and proceed with a local three-table join.

Determining which of these six optimization choices will perform best is a difficult task.
Usually, performing multiple smaller requests to a remote location is worse than making a
single larger request to the remote location. In general, the fewer messages, the better
performance will be. However, this rule of thumb is not always true. Try different combinations
at your site to arrive at the optimal method of performing distributed queries. The optimal
choice will depend on the following:

 - 856 -

 The size of the tables
 The number of qualifying rows
 The type of distributed request being made
 The efficiency of the network

Distributed Security Guidelines
Several techniques can enhance the security of distributed DB2 implementations. The following
guidelines will assist the developer in securing distributed DB2 data.

Come-From Checking
At times, ensuring that a specific userid has the appropriate authorization to access distributed data is
not sufficient. Using the CDB tables, you can use DB2 to institute what is known as come-from
checking. When come-from checking is established, the requesting location and requesting userid are
checked in combination.
Suppose that userid DBAPCSM exists at several locations: CHICAGO, JACKSONVILLE, and
PITTSBURGH. By populating the SYSIBM.USERNAMES table appropriately, you can implement come-
from checking to effectively disable specific combinations of userid and location.
By inserting the appropriate rows into SYSIBM.LUNAMES and SYSIBM.USERNAMES, you can implement
come-from checking to enable a specific user to access data from any location or to enable any user to
access data from a specific location. By default, come-from checking is not implemented. Analysis and
specific action must be taken to use come-from checking.

Come-from checking is particularly useful when multiple authids may be logging in from multiple
locations. Additional control is available with come-from checking.

Authid Translation
Another possibility in a distributed environment is to translate authids automatically for distributed
requests. One authid can be translated to another completely different authid.

Authids can be translated by the requesting location, the server location, both locations, or neither
location.
Inbound authid translation happens when authids are translated by the server. This term is used
because the authid is not changed until it is received by the server (as an inbound request). By contrast,
outbound authid translation is performed by the requester, prior to the request being sent.

Consistent Authids
You can use authid translation to implement consistent authids for each user on the network, regardless
of location. Consider, for example, a situation in which authids are assigned so that they are unique
across the network. Perhaps the location is embedded in the name. So, maybe DBAPCSM exists in
Pittsburgh; DBAJCSM, in Jacksonville; and DBACCSM, in Chicago.
Authid translation can be used to convert any of these valid authids to a single, consistent authid such
as DBACSM. Doing so greatly reduces the administrative burden of implemented distributed security.

Network Specific Authids

Sometimes assigning all requests from a single location the same consistent authid is useful. If you
impose outbound authid translation, all outbound requests can be translated to one specific authid,
thereby reducing complexity (of course, at the expense of security).

Password Encryption
If outbound authid translation is implemented, DB2 requires that a valid password is sent along with
each authid. If you choose this option, be sure to encrypt the passwords in the SYSUSERNAMES CDB
table using one of the following methods:

 Specify Y in the ENCRYPTPSWDS column of the SYSLUNAMES table (for that LU).
 Code an EDITPROC on SYSUSERNAMES to encrypt the password.

Miscellaneous Security Guidelines
Utilize the following security guidelines as you develop distributed DB2 applications.

 - 857 -

PUBLIC AT ALL LOCATIONS
If a particular table is to be made accessible by anyone on the network—regardless of authid or
location—security can be granted specifying PUBLIC AT ALL LOCATIONS. Of course, it is applicable
to only the INSERT, UPDATE, DELETE, and SELECT table privileges.

Miscellaneous Distributed Guidelines
Keep the following guidelines in mind as you implement distributed DB2 applications and databases.

Favor Type-2 Connections
Application-directed distribution is implemented using the CONNECT statement. DB2 supports two
different types of CONNECTs:

 Type 1 CONNECT: Multiple CONNECT statements cannot be executed within a single
unit of work.

 Type 2 CONNECT: Multiple CONNECT statements can be executed within a single unit of
work.

Type 2 CONNECTs allow updates to be made to multiple locations within a single unit of work. If you
connect to a system using a type 1 CONNECT, or if the system is at a level of DRDA that does not
support two-phase commit, you can update at only one system within a single unit of work. Only one
type 1 CONNECT statement is permitted within a single unit of work; however, multiple type 2 CONNECT
statements can be executed within a single unit of work.
The type of CONNECT being utilized is determined by a precompiler option and the type of processing
being performed by the program.
First, DB2 provides a precompiler option to set the type of connect: CONNECT. Specifying CONNECT(1)
indicates that the program is to use type 1 CONNECTs; CONNECT(2), which is the default, specifies type
2 CONNECTs are to be used.
Second, the type of connect to be used can be determined by the type of processing within your
application. If the first CONNECT statement issued is a type 1 CONNECT, type 1 CONNECT rules apply for
the duration of the program. If a type 2 CONNECT is executed first, type 2 CONNECT rules apply.

Choose Appropriate Distributed Bind Options
Several bind parameters affect the distributed environment. Ensuring that the proper parameters are
used when binding plans and packages can greatly influence the performance of distributed
applications. Refer to Table 41.3.

Table 41.3: Distributed Bind Parameter Recommendations

Parameter Recommendation Default Applies*
CURRENTDATA CURRENTDATA(NO) CURRENTDATA(YES) B
DEFER DEFER(PREPARE) NODEFER(PREPARE) P
CURRENTSERVER "it depends" local DBMS P

SQLRULES "it depends" SQLRULES(DB2) P

DISCONNECT DISCONNECT(EXPLICIT) DISCONNECT(EXPLICIT) P
SQLERROR "it depends" SQLERROR(NOPACKAGE) K

[*] The Applies column indicates whether the parameter applies to plans (P), packages (K), or both
(B).

Review the information in Table 41.3. Block fetch is used as the default for ambiguous cursors if the
package or plan was bound with the CURRENTDATA(NO) parameter. CURRENTDATA(YES) is not
recommended because block fetch would be disabled.
When system-directed dynamic access is requested, specifying DEFER(PREPARE) causes only a single
distributed message to be sent for the PREPARE, DESCRIBE, and EXECUTE statements. A plan bound
specifying DEFER(PREPARE) generally outperforms one bound as NODEFER(PREPARE). The default,
of course, is NODEFER.
The CURRENTSERVER parameter specifies a connection to a location before the plan is executed. The
server's CURRENT SERVER register is set to the location specified in the CURRENTSERVER option, and a
type 1 CONNECT is issued. This way, the connection can be established prior to making a request.
However, debugging an application without an explicit CONNECT is more difficult.

 - 858 -

If adherence to the ANSI/ISO standards for remote connection is essential, you should bind using
SQLRULES(STD). The ANSI/ISO standard does not allow a CONNECT to be issued against an existing
connection, whereas DB2 does. Always specify SQLRULES(DB2) if conformance to the ANSI/ISO
standard is not required.
The DISCONNECT parameter determines when connections are to be released. Three options exist:
EXPLICIT, AUTOMATIC, and CONDITIONAL. Refer to Chapter 40, "Distributed DB2," for a discussion
of these parameters.
Finally, the SQLERROR option indicates what is to happen when SQL errors are encountered when
binding a package. If SQLERROR(CONTINUE) is specified, a package is created even if some of the
objects do not exist at the remote location. This way, the package can be bound before objects are
migrated to a remote location. The default, SQLERROR(NOPACKAGE), is the safer option.

Remove the Distributed Factor

A wise first step when investigating an error within a distributed environment is to remove the remote
processing from the request and try again.
Trying to execute the request directly on the server instead of from a remote client eliminates potentially
embarrassing problem scenarios. For example, consider an application in which two DB2 subsystems,
DB2S and DB2R, are connected via DDF. An application executing from DB2R is unsuccessful in
requesting data from DB2S. The recommended first step in resolving the problem is to ensure that the
same request executes properly on DB2S as a local request.

Distributed problem determination should ensue only if the request is successful.

Maintain a Problem Resolution Log
Keep a written record of problems encountered in the distributed environment. You should establish and
strictly maintain this problem resolution log. You should include every unique problem, along with its
solution, in the log. A sample problem resolution log form is shown in Figure 41.7.

Figure 41.7: Distributed problem resolution log.

For optimum effectiveness, the log should be automated for ease of maintenance. Anyone involved in
distributed problem determination should be permitted to access and update the log. The log should be
readily available and stored in a central location. If you review past problems, you can more easily
resolve current problems and avoid future problems.

Summary
Implementing applications in a distributed DB2 environment can be a complex and taxing ordeal.
However, if you approach the endeavor in a practical manner and follow the guidelines in this chapter,
distributing DB2 data need not be an overwhelming task.

Chapter 42: Data Warehousing with DB2

 - 859 -

Overview
Data warehousing is not a particularly new idea. The basic idea behind data warehousing is
one that has been performed by IT professionals throughout the years: enabling end users to
have access to corporate operational data to follow and respond to business trends. You
might be tempted, therefore, to shrug off data warehousing as another of the many industry
buzzwords that rise and fall every few years. However, doing so would be a mistake.

The true benefit of data warehousing lies not with the conceptual components embodying the
data warehouse, but in the combination of these concepts into a single, unified
implementation that is novel and worthwhile. Consider the typical DP shop. Data is stored in
many locations, in many different formats, and is managed by many different DBMSs from
multiple vendors. It is difficult, if not impossible, to access and use data in this environment
without a consistent blueprint from which to operate. This blueprint is the data warehouse.

Data warehousing enables an organization to make information available for analytical
processing and decision making. The data warehouse defines the manner in which data

 Is systematically constructed and cleansed (or scrubbed)
 Is transformed into a consistent view
 Is distributed wherever it is needed
 Is made easily accessible
 Is manipulated for optimal access by disparate processes

In this chapter, I provide a basic overview of data warehousing concepts and terms. However,
I do not provide comprehensive coverage of all that is implied by data warehousing.
Additionally, I provide useful guidelines for developers who are building data warehouses
using DB2. Some of the guidelines are generally applicable to any RDBMS; however, many of
them are tailored specifically to DB2 for OS/390.

Defining the Basic Terms
Although data warehousing is a pervasive term, used throughout the IT industry, there is a lot of
misunderstanding as to what a data warehouse actually is. This section will provide a good introductory
treatment of data warehousing and the terminology used when discussing data warehouses.

What Is a Data Warehouse?
A data warehouse is best defined by the type and manner of data stored in it and the people who use
that data. The data warehouse is designed for decision support providing easier access to data and
reducing data contention. It is separated from the day-to-day OLTP applications that drive the core
business. A data warehouse is typically read-only with the data organized according to the business
rather than by computer processes. The data warehouse classifies information by subjects of interest to
business analysts, such as customers, products, and accounts. Data in the warehouse is not updated;
instead, it is inserted (or loaded) and then read multiple times.

Warehouse information is historical in nature, spanning transactions that have occurred over the course
of many months and years. For this reason, warehouse data is usually summarized or aggregated to
make it easier to scan and access. Redundant data can be included in the data warehouse to present
the data in logical, easily understood groupings.

Data warehouses contain information that has been culled from operational systems, as well as possibly
external data (such as third-party point-of-sale information). Data in the data warehouse is stored in a
singular manner for the enterprise, even when the operational systems from which the data was
obtained store it in many different ways. This fact is important because the analyst using the data
warehouse must be able to focus on using the data instead of trying to figure out the data or question its
integrity.

A typical query submitted to a data warehouse is: "What was the total revenue produced for the central
region for product 'x' during the first quarter?"

To summarize, a data warehouse is a collection of data that is
 Separate from operational systems
 Accessible and available for queries

 - 860 -

 Subject-oriented by business
 Integrated and consistently named and defined
 Associated with defined periods of time
 Static, or non-volatile, such that updates are not made

Operational Data Versus the Data Warehouse
The purpose and intent of a data warehouse differ substantially from operational databases supporting
OLTP and production systems, such as order entry, shipping, and inventory control (see Table 42.1).
Operational databases are typically used by clerical or line workers doing the day-to-day business of an
organization. Additionally, operational data is atomic in nature, continually changes as updates are
made, and reflects only the current value of the last transaction.

Table 42.1: Operational Data Versus Warehouse Data

Operational Data Warehouse
Data

Atomic Summarized

Production Support Analytical

Application-Oriented Subject-
Oriented

Current Historical

Dynamic Static

What Is a Data Mart?
The term data mart is used almost as often as the term data warehouse. But how is a data mart
different from a data warehouse? A data mart is basically a departmental data warehouse defined for a
single (or limited number of) subject area(s).

Data in data marts need not be represented in the corporate data warehouse, if one even exists.
Breadth of data in both data marts and corporate data warehouses should be driven by the needs of the
business. Therefore, unless the departmental data is required for enterprise-wide analysis, it may not
exist in the corporate data warehouse.

A data mart is not necessarily smaller in size than an enterprise data warehouse. It may be smaller, but
size is determined based on business needs. Departmental analysis at the business unit level may
require more historical information than cross-department, enterprise-wide analysis.

What Is an Operational Data Store?
An Operational Data Store (ODS) provides a centralized view of near real-time data from operational
systems. The ODS is optional in a data warehousing environment. If used, it is populated from multiple
operational databases or may be used directly as the data store for multiple operational applications.
The ODS can then be used as a staging area for data warehouse population (as shown in Figure 42.1).

Figure 42.1: The Operational Data Store.

An ODS is a collection of data that is
 Used by operational systems
 Subject-oriented by business
 Integrated and consistently named and defined
 Current, up-to-date (as opposed to historical)
 At the detail level (as opposed to summarized)

 - 861 -

 Dynamic, or volatile, to support operational systems

What Is OLAP?
OLAP stands for On-Line Analytical Processing. OLAP technology is often used in conjunction with a
data warehouse. OLAP technology enables high-level end users (analysts, managers executives, and
so on) to derive intelligence from data through interactive and iterative access to multiple views of
information (typically stored in a data warehouse).
OLAP uses a multidimensional view of detail, summary, and aggregate data to access information for
further analysis. The key term here is multidimensional. A dimension is a structural attribute viewed as
similar by the end user. For example, months, quarters, years, and so on make up a time dimension;
likewise, all cities, regions, countries, and so on could comprise a geography dimension.

Simply stated, a dimension is a modifier of the basic fact that must be analyzed. Examples of facts
include sales figures, expenses, and inventory on hand. Multiple dimensions affect the value of these
facts. For example, sales differ by geography (for example, sales region), time (for example, first
quarter), product (for example, widgets versus flanges), and any other number of factors.

OLAP is characterized by dynamic multidimensional analysis, enabling complex calculations applied
across dimensions, across components of a dimension, and/or through hierarchies. Additionally, OLAP
provides analysis and trending capabilities over time, subsetting of data, drill-down through varying
levels of detail, reach-through to operational data, and methods for comparing different analytical views
of data.

OLAP calculations are usually more complex than simple data summarization and aggregation. For
example, the following is a typical OLAP query: "What would be the effect on net revenue if account
maintenance fees for demand deposit accounts went up by 3 percent in conjunction with a customer
affinity program that reduced the fee by 1 percent for every additional account held by the customer?"
Answering this question is not simple.
The technology used to store the aggregate data on which OLAP operates can be relational or a
proprietary multidimensional format. If the data is stored in a relational database, such as DB2, the term
ROLAP, or Relational OLAP, is used; if a multidimensional database is deployed, such as Essbase
(which IBM has licensed from Hyperion Software and delivered as the DB2 OLAP Server), the term
MOLAP, or Multidimensional OLAP, is used.

This introduction covers the basics of OLAP but is necessarily brief. To cover OLAP in depth could take
an entire book.

Designing a Data Warehouse
When you're designing a data warehouse, be sure to drive the project from a plan. This plan should
include methods to accomplish each of the following components of data warehouse development:

 Document the business drivers in the marketplace, spearheading the need for a data
warehouse.

 Secure an executive sponsor to ensure the overall success of the project.
 Define the scope of the data stored in the data warehouse in terms of subject areas.
 Document the business reasons for the data warehouse; they are typically related to

the business drivers in terms of reacting to the identified market trends.
 Develop a detailed analysis of the requirements. Plan to produce a prototype of the

data warehouse before proceeding into full scale development.
 Define the facts and dimensions required. Determine the source systems for acquiring

the data that will be populated into the data warehouse. You can have internal and
external sources.

 Describe the technology used including client and server hardware, operating systems,
DBMS, networking software, data transformation tools, repository technology,
middleware, message queuing system, query tools, and other software.

 Define the development approach taken. Is the project staged into smaller manageable
projects with defined deliverables? Is it an iterative process with clear milestones? Or
is it a monolithic development endeavor? (Try to avoid these endeavors if possible.)

 Document the resources available and the roles they will be assuming for the project.
 Develop a project timeline and document status of the project as it progresses.

 - 862 -

Many of these steps are similar to any application development project that is undertaken. However, the
success of the data warehouse is contingent on all of these steps being planned and implemented in a
consistent and manageable fashion.

Several design issues, however, are somewhat unique to the data warehouse including metadata
management and developing star and snowflake schemas.

The Role of Metadata
When you're designing a data warehouse, incorporating repository technology into the plans is a good
idea. In addition to the standard role of a repository (storing the metadata and the data model for the
corporation), it can act as a single, centralized store to assist in the movement of data into the data
warehouse. Furthermore, a repository can help end users as they access data by providing definitions
of all data elements stored in the data warehouse.

Alas, many shops do not own a repository. Even worse, some of them that do own a repository neglect
the product, causing it to become "shelfware." There it sits on the shelf, and the metadata in the product
is either outdated, inaccurate, or non-existent. This lack of use does not negate the value of repository
products; it simply depicts the cavalier attitude that many organizations take toward their data. If you
own a repository, the single most important thing that you can do to enhance the value of your data is to
keep the metadata in the repository up-to-date. Doing so requires a lot of effort, a budget, and most of
all, commitment.
Refer to Figure 42.2 for a synopsis of the role a repository can play in data warehousing and how it fits
in with the other, traditional duties of the repository.

Figure 42.2: The role of the repository.

Star Schema
The star schema concept is common within a data warehousing environment. The star schema is also
sometimes called a star-join schema, data cube, or multidimensional schema. The name star schema
comes from the pattern formed by the data model when it is graphically depicted (refer to Figure 42.3).

Figure 42.3: Star schema.

Typically, a central fact table stores the primary business activity at the center of the star. The fact table
is encircled by the dimensions that affect the activity. You can think of them as the points of the star.

 - 863 -

The DB2 optimizer understands and supports the star schema. In practice, when using databases
designed with the star schema, users need to join the tables of the star together frequently. Consider
the following example of a star join using the example star schema in Figure 42.3
SELECT F.FACT, A.ACCTNO, T.TIME_PERIOD, P.PRODUCT_NAME, B.BUS_UNIT, L.LOCATION
FROM FACT_TABLE F,
 ACCOUNT_TABLE A,
 TIME_TABLE T,
 PRODUCT_TABLE P,
 BUSUNIT_TABLE B,
 LOCATION_TABLE L
WHERE F.ACCT = A.ACCT
AND F.TIME = T.TIME
AND F.PROD = P.PROD
AND F.BU = B.BU
AND F.LOC = L.LOC;

This SQL statement represents a star join. Each of the five points of the star is joined back to the central
fact table. If the fact table is very large, it is inefficient for DB2 to process this as a series of nested loop
joins. Because the first join combines the large fact table with a small dimension table, each subsequent
join also involves the large amount of data from the fact table. DB2 can detect this situation and invoke
a star join technique.
When a star join is deployed, the DB2 optimizer will choose to implement Cartesian products for the
dimension tables. In the previous example, DB2 would join together the five dimension tables,
ACCOUNT_TABLE, TIME_TABLE, PRODUCT_TABLE, BUSUNIT_TABLE, and LOCATION_TABLE, even
though there were no join predicates to combine them. This is why a Cartesion product is required. But,
because the FACT_TABLE is usually many times larger than the dimension tables, processing the fact
table only once against the Cartesian product of the fact tables can enhance query performance.

Note As many as six dimension tables (five prior to DB2 V6) can be joined as a
Cartesian product for a star join in DB2.

DB2 will not automatically deploy this star join technique for star schema joins. A star join will be used
only when the DB2 optimizer determines that the star join will outperform other access path options.

Note The star join itself is not a join method, such as nested loop, merge scan, and
hybrid joins. DB2 will use the other join methods to accomplish the star join when
a star join is chosen as the access path. Do not confuse a star join as a join
method.

A variation on this theme is the snowflake schema, in which the dimension tables can have additional
relationships. In essence, in a snowflake schema, each dimension table is a mini-star itself.
Once again, in this section I provide only a basic introduction to the star schema. For in-depth coverage,
I recommend Ralph Kimball's excellent book, The Data Warehouse Toolkit: Practical Techniques for
Building Dimensional Data Warehouses (1996, J. Wiley, ISBN 0-471-15337-0).

Populating a Data Warehouse
After you design the data warehouse, you must move the appropriate data into it. You can use several
methods to populate the data warehouse. Some methods, such as replication, propagation, and
creation of snapshots are relatively simple; others, such as various data transformation techniques, are
more involved.

Replication Versus Propagation
You learned about replication in Chapter 41, "Distribution Guidelines." To review, when data is
replicated, one data store is copied to one or more locations. Replication can be implemented simply by
copying entire tables to multiple locations. Alternatively, replicated data can be a subset of the rows
and/or columns.

 - 864 -

You can tune replicas independently of one another. Different clustering strategies, different indexes,
and different tablespace parameters might be appropriate at different locations.
Propagation, on the other hand, is the migration of only changed data. Typically, propagation is
implemented by scanning the transaction log and applying the results of the INSERT, UPDATE, and
DELETE statements to another data store. Figure 42.4 shows the difference between replication and
propagation.

Figure 42.4: Replication versus propagation.

Data warehouses can use both of these techniques to remain consistent with source data stores. Initial
population of a data warehouse can be achieved by replication and subsequent population of changes
by either replication (if the data is very dynamic) or propagation of changes only.

Snapshots
Snapshots, also discussed in Chapter 41 are read-only copies of entire tables. A snapshot table is
useful in a data warehouse only when the entire table is needed in exactly the same format as is used in
the operational environment.

Because data warehouses are integrated and optimized for query, you should not use snapshots very
often. However, there is a major exception. The most popular type of data warehouse is an exact copy
of the operational database duplicated for analytical querying. This type of data warehouse consists
entirely of snapshot tables. The major benefit of the operational database copy is its ease of
implementation. The drawbacks are myriad, including lack of integration, data not optimized for query,
much of the data is codified and not easy to access, and so on. Yet, because of the relative simplicity of
creating copies of operational tables, this type of data warehouse is sure to prosper.

Data Transformation
Data transformation is the process of modifying data as it is moved from the operational and external
sources to the target data warehouse or data mart. The four basic types of data transformation follow:

 Simple transformation
 Aggregation and summarization
 Data cleansing (or scrubbing)
 Integration

In the following sections, you examine each of these types.

Simple Transformation
Simple transformation is the underlying component of each of the other three types of data
transformation. It can also stand on its own.

A simple data transformation occurs on a single field. No additional analysis is performed as to the
impact of the transformation on any other field that may be related to the transformed field. Examples of
simple transformations include:

 Replacing a coded value with a decoded, easy-to-understand value
 Replacing default values with relational NULLs
 Changing the data type of a field to a more appropriate type (for example, from

CHAR(6) to DATE)

 - 865 -

Aggregation and Summarization
Data stored in data warehouses is usually summarized and aggregated at some level because of the
vast size of most data warehouses coupled with the analytical processing that occurs on the warehouse
data. Although summarization and aggregation are sometimes used interchangeably, you will find a
subtle difference between the two.

Summarization is the addition of like values along one or more business dimensions. An example of
summarization is adding up detail revenue values by day to arrive at weekly totals (or by week to arrive
at monthly totals, by month to arrive at quarterly totals, and so on).

Aggregation refers to a summarization coupled with a calculation across different business elements.
An example of aggregation is the addition of bimonthly salary to monthly commission and bonus to
arrive at monthly employee compensation values.

Depending on the data requirements of the warehouse, both summarization and aggregation can be
deployed during data transformation. Summarization and aggregation are typically used for the following
reasons:

 They are required when the lowest level of detail stored in the data warehouse is
at a higher level than the detail arriving from the source. This situation occurs
when data warehouse queries do not require the lowest level of detail or
sometimes when sufficient disk space is not available to store all the data for the
time frame required by the data warehouse.

 They can be used to populate data marts from the data warehouse where the
data mart does not require the same level of detail as is stored in the warehouse.

 They can be used to roll up detail values when the detail is removed from the
warehouse because it is not being used or because it has aged past its useful life
in the data warehouse.

Therefore, the data warehouse can consist of detail data as well as multiple levels of summarized and
aggregated data across multiple dimensions. For example, revenue is stored at the detail level, as well
as by month and by quarter, and also by product group and product type.

Data Cleansing
Before data is moved to the data warehouse, it almost always must be cleansed (or scrubbed). Do not
take this statement lightly. The true scope of a data cleansing project is enormous. Much of production
data is dirty, and you don't even want to consider what work cleaning it up would take. By "dirty," I mean
that it does not conform to proper domain definitions or "make sense." The age-old adage "garbage in,
garbage out" still applies, and you can do nothing about it short of analyzing and correcting the
corporate data. Failure to do so results in poorly made business decisions.

Basically, the two types of data cleansing are value validation and reformatting.

Value Validation
Value validation is the process of ensuring that each value that is sent to the data warehouse is
accurate. You've probably had that experience in which you look at the contents of one of your major
flat files or database structures and intuitively know that the data is incorrect. No way could that
employee be born in 1995. You know your company doesn't hire toddlers (even if some of your
coworkers seem to act like children)! And that next record looks bad, too. How could she have been
born in 1978 but hired in 1977. Most companies don't hire unborn embryos.

All too often, these types of data integrity problems are glossed over. "No one would actually take that
information seriously, would they?" Well, maybe people won't, but computerized systems will. That
information can be summarized, aggregated, and/or manipulated in some way, and then populated into
another data element. And when that data element is moved into the data warehouse, analytical
processing will be performed on it that can affect the way your company does business. What if
warehouse data is being analyzed to overhaul hiring practices? That data may make an impact on the
business decisions if enough of the hire and birth dates are inaccurate.

Small data discrepancies can become statistically irrelevant when large volumes of data are averaged.
But averaging is not the only analytical function that is employed by analytical data warehouse queries.

 - 866 -

What about sums, medians, max/min, and other aggregate and scalar functions? Even further, can you
actually prove that the scope of your data problems is as small as you think it is? The answer is
probably "no."
And the preceding is just one small example of the scope of the data integrity violations that many
application systems allow to be inserted into production data stores. Some of the integrity violations may
seem to be inexcusable. For example, you probably have discovered the SEX column (or field) that is
supposed to store M or F. Frequently, you might see SEX data that defies imagination—everything from
* to ! to a blank. These designations typically do not refer to a third sex; they are incorrect data values.
Shouldn't programmatically forcing the values to be either M or F be a simple matter? The short answer
is "yes," but this answer simplifies the matter too much. Many systems were designed to record this
information, if available, but not to force the user to enter it. If you are a telephone marketer, the reasons
for this are clear. Not everyone wants to reveal personal information, and acquiring the information
independently is not always an easy matter. However, the organization would rather record incomplete
information than no information.
The organization is correct in wanting incomplete information over nothing. However, one problem is still
ignored. The true problem is that a systematic manner of recording "unknown" values was not
employed. Every program that can modify data should be forced to record a special "unknown" indicator
if a data value is not readily available at the time of data entry. Most relational DBMS products allow
data columns to store a "null," indicating "unknown" or "unavailable" information. Pre-relational DBMS
products and flat files do not have this option. However, you can choose some specific, standard default
value. The trick is to standardize on the default value.
One of the key components of value validation should be the standardization of "unknown" values. This
process can be tedious. The primitive examples outlined in the preceding paragraphs use data
elements with a domain of two valid values. Most data elements have domains that are considerably
more complex. Determining which are valid values and which are not can be difficult for someone who
is not intimately aware of the workings of the application systems that allowed the values to be inserted
in the first place. Is 1895-01-01 a valid date for a field or is it a default for an "unknown" value?

Nineteenth century dates may be valid for birth dates, stock issuance dates, account inception dates,
publication dates, and any number of other dates with long periods of "freshness." Just because the
program allows it to be put there, though, that does not mean it is actually a valid date. A user can easily
type 1895 instead of 1995. If the data entry program is not intelligent enough to trap these types of
errors, the systems will insert dirty data into production data stores. This type of data integrity problem is
the most difficult to spot. Likely, only the business person who understands the data and the business
requirements can spot these types of problems.
A similar scenario can occur for future dates. Is 2112-01-01 a valid date? Or did the user type 2112
instead of 2002? Once again, you need to know the type of data that is valid for the application. Future
dates can be valid for long-term contracts, deeds, pre-need burial contracts, or any number of other
dates having long term validity.

Reformatting
The format of data in the source system does not always conform to the desired format of data in the
data warehouse. Examples include storing addresses as they would appear on an envelope as opposed
to a group of separate address lines or atomic address fields (that is, city, state, zip). Other examples
include the formatting of orders with associated items or the formatting of any type of data to look like
forms used by the analysts accessing the data warehouse.

Automating Data Transformation
Data transformation is typically implemented using a third-party tool that eases the definition and
implementation of the various forms of transformation. However, creating home-grown programs to
perform data transformation is possible, though time consuming. When you're deciding which approach
to use, keep the following five questions in mind:

 What is the time frame for the project, and is it possible to create all the data
transformation programs necessary in the time allotted with the available staff?

 What is the budget for the data warehouse project, and how much do the third-
party tools cost? Keep in mind that a data transformation tool, once acquired,
can be used across multiple projects. Also, be sure to factor in the cost of
maintaining home-grown data transformation programs before analyzing the
cost of a third-party solution.

 - 867 -

 What is the size of the data warehouse being implemented? If it is very small, a
tool may not be cost justifiable. If it is large, however, a tool could be less costly
than a home-grown solution.

 What other data warehouse projects are on the horizon, and can the cost of the
tool be spread across multiple projects? Vendors usually provide discounts
when you purchase software in volume.

 What are the skills of the data warehouse development staff? The more savvy
the team, the less need you have for a third-party data transformation tool.

As for the cleansing process, you truly cannot avoid human interaction completely when attempting to
clean dirty data. The best approach is to clean the data at the source. If you don't clean the data there,
dirty data will continue to be stored in the organization and sent to the data warehouse. Of course, the
data transformation tool can catch and correct some of these values, but it is impractical to assume that
all data anomalies can be captured if they are not corrected at the source.

Integration
The fourth, and final, type of data transformation is integration. Integration can be the most difficult
component of the transformation process.

Data warehouses are populated with data from multiple sources, both local and remote; internal and
external. Integration is the process of rationalizing data elements received from multiple disparate
sources. It is possible that a single data element in the data warehouse can be populated from more
than one source. For example, competitive pricing information might be received from multiple research
firms. One firm might store the data in a decimal format, another in an integer format, and yet another in
decimal format, but with more significant digits. Before the pricing data can be moved to the data
warehouse, it must be modified to conform to a single definition.

Another integration problem can occur when data from multiple sources must be combined into a single
data element in the data warehouse. This frequently takes the form of a calculated or derived result.

The different types of integration that you might encounter are indeed impossible to predict. Data
elements in different applications, systems, and organizations will follow different business rules, be
impacted by different administration and coding practices, and, in general, be different. Therefore, you
must implement flexible integration procedures to be prepared for the many different data types and
formats that you will encounter when populating your data warehouse.

Accessing the Data Warehouse
After you design the data warehouse, you can use data access tools (also known as business
intelligence tools) to access the data. You can use many types of data access tools, including
the following:

 GUI or Web-based database query tools
 Complex report writers
 OLAP tools that analyze data along dimensions
 Data mining tools
 CASE tools
 Program generation tools

Most data warehouses deploy only the first three categories of data access tools for end-user
querying and analysis. Additionally, data mining is gaining acceptance. Data mining is the
practice of automatic and systematic analysis of data to find patterns and trends. The topic of
data mining is beyond the scope of this book.

Managing the Data Warehouse
After the data warehouse environment is built and users rely on it for their data analysis
needs, you must be prepared to manage the environment like any other mission-critical
application. Managing implies creating a systems management plan for the data warehouse
that should include the plans to support the following.
Operations

 24x7 support (help desk)

 - 868 -

 Automation
 Chargeback
 Capacity planning
 Securing access

Administration
 Maintenance of database structures
 Data availability
 Backup and recovery

Performance Management
 Proactive automation
 Predictive performance modeling
 Server performance optimization
 Network performance optimization
 Database performance optimization

Additionally, you should manage change throughout the application life cycle for operational
systems that can affect the warehouse because they are data sources, as well as for any
application that accesses warehouse data directly.

The Big Picture
Now that you have learned about the basics of data warehousing, I will tie all this information together
with a single picture. Figure 42.5 contains all the core components of a data warehouse environment.

Figure 42.5: Data warehousing the big picture.

Populating a Data Warehouse
After you design the data warehouse, you must move the appropriate data into it. You can use several
methods to populate the data warehouse. Some methods, such as replication, propagation, and
creation of snapshots are relatively simple; others, such as various data transformation techniques, are
more involved.

Replication Versus Propagation
You learned about replication in Chapter 41, "Distribution Guidelines." To review, when data is
replicated, one data store is copied to one or more locations. Replication can be implemented simply by
copying entire tables to multiple locations. Alternatively, replicated data can be a subset of the rows
and/or columns.

 - 869 -

You can tune replicas independently of one another. Different clustering strategies, different indexes,
and different tablespace parameters might be appropriate at different locations.
Propagation, on the other hand, is the migration of only changed data. Typically, propagation is
implemented by scanning the transaction log and applying the results of the INSERT, UPDATE, and
DELETE statements to another data store. Figure 42.4 shows the difference between replication and
propagation.

Figure 42.4: Replication versus propagation.

Data warehouses can use both of these techniques to remain consistent with source data stores. Initial
population of a data warehouse can be achieved by replication and subsequent population of changes
by either replication (if the data is very dynamic) or propagation of changes only.

Snapshots
Snapshots, also discussed in Chapter 41 are read-only copies of entire tables. A snapshot table is
useful in a data warehouse only when the entire table is needed in exactly the same format as is used in
the operational environment.

Because data warehouses are integrated and optimized for query, you should not use snapshots very
often. However, there is a major exception. The most popular type of data warehouse is an exact copy
of the operational database duplicated for analytical querying. This type of data warehouse consists
entirely of snapshot tables. The major benefit of the operational database copy is its ease of
implementation. The drawbacks are myriad, including lack of integration, data not optimized for query,
much of the data is codified and not easy to access, and so on. Yet, because of the relative simplicity of
creating copies of operational tables, this type of data warehouse is sure to prosper.

Data Transformation
Data transformation is the process of modifying data as it is moved from the operational and external
sources to the target data warehouse or data mart. The four basic types of data transformation follow:

 Simple transformation
 Aggregation and summarization
 Data cleansing (or scrubbing)
 Integration

In the following sections, you examine each of these types.

Simple Transformation
Simple transformation is the underlying component of each of the other three types of data
transformation. It can also stand on its own.

A simple data transformation occurs on a single field. No additional analysis is performed as to the
impact of the transformation on any other field that may be related to the transformed field. Examples of
simple transformations include:

 Replacing a coded value with a decoded, easy-to-understand value
 Replacing default values with relational NULLs
 Changing the data type of a field to a more appropriate type (for example, from

CHAR(6) to DATE)

 - 870 -

Aggregation and Summarization
Data stored in data warehouses is usually summarized and aggregated at some level because of the
vast size of most data warehouses coupled with the analytical processing that occurs on the warehouse
data. Although summarization and aggregation are sometimes used interchangeably, you will find a
subtle difference between the two.

Summarization is the addition of like values along one or more business dimensions. An example of
summarization is adding up detail revenue values by day to arrive at weekly totals (or by week to arrive
at monthly totals, by month to arrive at quarterly totals, and so on).

Aggregation refers to a summarization coupled with a calculation across different business elements.
An example of aggregation is the addition of bimonthly salary to monthly commission and bonus to
arrive at monthly employee compensation values.

Depending on the data requirements of the warehouse, both summarization and aggregation can be
deployed during data transformation. Summarization and aggregation are typically used for the following
reasons:

 They are required when the lowest level of detail stored in the data warehouse is
at a higher level than the detail arriving from the source. This situation occurs
when data warehouse queries do not require the lowest level of detail or
sometimes when sufficient disk space is not available to store all the data for the
time frame required by the data warehouse.

 They can be used to populate data marts from the data warehouse where the
data mart does not require the same level of detail as is stored in the warehouse.

 They can be used to roll up detail values when the detail is removed from the
warehouse because it is not being used or because it has aged past its useful life
in the data warehouse.

Therefore, the data warehouse can consist of detail data as well as multiple levels of summarized and
aggregated data across multiple dimensions. For example, revenue is stored at the detail level, as well
as by month and by quarter, and also by product group and product type.

Data Cleansing
Before data is moved to the data warehouse, it almost always must be cleansed (or scrubbed). Do not
take this statement lightly. The true scope of a data cleansing project is enormous. Much of production
data is dirty, and you don't even want to consider what work cleaning it up would take. By "dirty," I mean
that it does not conform to proper domain definitions or "make sense." The age-old adage "garbage in,
garbage out" still applies, and you can do nothing about it short of analyzing and correcting the
corporate data. Failure to do so results in poorly made business decisions.

Basically, the two types of data cleansing are value validation and reformatting.

Value Validation
Value validation is the process of ensuring that each value that is sent to the data warehouse is
accurate. You've probably had that experience in which you look at the contents of one of your major
flat files or database structures and intuitively know that the data is incorrect. No way could that
employee be born in 1995. You know your company doesn't hire toddlers (even if some of your
coworkers seem to act like children)! And that next record looks bad, too. How could she have been
born in 1978 but hired in 1977. Most companies don't hire unborn embryos.

All too often, these types of data integrity problems are glossed over. "No one would actually take that
information seriously, would they?" Well, maybe people won't, but computerized systems will. That
information can be summarized, aggregated, and/or manipulated in some way, and then populated into
another data element. And when that data element is moved into the data warehouse, analytical
processing will be performed on it that can affect the way your company does business. What if
warehouse data is being analyzed to overhaul hiring practices? That data may make an impact on the
business decisions if enough of the hire and birth dates are inaccurate.

Small data discrepancies can become statistically irrelevant when large volumes of data are averaged.
But averaging is not the only analytical function that is employed by analytical data warehouse queries.

 - 871 -

What about sums, medians, max/min, and other aggregate and scalar functions? Even further, can you
actually prove that the scope of your data problems is as small as you think it is? The answer is
probably "no."
And the preceding is just one small example of the scope of the data integrity violations that many
application systems allow to be inserted into production data stores. Some of the integrity violations may
seem to be inexcusable. For example, you probably have discovered the SEX column (or field) that is
supposed to store M or F. Frequently, you might see SEX data that defies imagination—everything from
* to ! to a blank. These designations typically do not refer to a third sex; they are incorrect data values.
Shouldn't programmatically forcing the values to be either M or F be a simple matter? The short answer
is "yes," but this answer simplifies the matter too much. Many systems were designed to record this
information, if available, but not to force the user to enter it. If you are a telephone marketer, the reasons
for this are clear. Not everyone wants to reveal personal information, and acquiring the information
independently is not always an easy matter. However, the organization would rather record incomplete
information than no information.
The organization is correct in wanting incomplete information over nothing. However, one problem is still
ignored. The true problem is that a systematic manner of recording "unknown" values was not
employed. Every program that can modify data should be forced to record a special "unknown" indicator
if a data value is not readily available at the time of data entry. Most relational DBMS products allow
data columns to store a "null," indicating "unknown" or "unavailable" information. Pre-relational DBMS
products and flat files do not have this option. However, you can choose some specific, standard default
value. The trick is to standardize on the default value.
One of the key components of value validation should be the standardization of "unknown" values. This
process can be tedious. The primitive examples outlined in the preceding paragraphs use data
elements with a domain of two valid values. Most data elements have domains that are considerably
more complex. Determining which are valid values and which are not can be difficult for someone who
is not intimately aware of the workings of the application systems that allowed the values to be inserted
in the first place. Is 1895-01-01 a valid date for a field or is it a default for an "unknown" value?

Nineteenth century dates may be valid for birth dates, stock issuance dates, account inception dates,
publication dates, and any number of other dates with long periods of "freshness." Just because the
program allows it to be put there, though, that does not mean it is actually a valid date. A user can easily
type 1895 instead of 1995. If the data entry program is not intelligent enough to trap these types of
errors, the systems will insert dirty data into production data stores. This type of data integrity problem is
the most difficult to spot. Likely, only the business person who understands the data and the business
requirements can spot these types of problems.
A similar scenario can occur for future dates. Is 2112-01-01 a valid date? Or did the user type 2112
instead of 2002? Once again, you need to know the type of data that is valid for the application. Future
dates can be valid for long-term contracts, deeds, pre-need burial contracts, or any number of other
dates having long term validity.

Reformatting
The format of data in the source system does not always conform to the desired format of data in the
data warehouse. Examples include storing addresses as they would appear on an envelope as opposed
to a group of separate address lines or atomic address fields (that is, city, state, zip). Other examples
include the formatting of orders with associated items or the formatting of any type of data to look like
forms used by the analysts accessing the data warehouse.

Automating Data Transformation
Data transformation is typically implemented using a third-party tool that eases the definition and
implementation of the various forms of transformation. However, creating home-grown programs to
perform data transformation is possible, though time consuming. When you're deciding which approach
to use, keep the following five questions in mind:

 What is the time frame for the project, and is it possible to create all the data
transformation programs necessary in the time allotted with the available staff?

 What is the budget for the data warehouse project, and how much do the third-
party tools cost? Keep in mind that a data transformation tool, once acquired,
can be used across multiple projects. Also, be sure to factor in the cost of
maintaining home-grown data transformation programs before analyzing the
cost of a third-party solution.

 - 872 -

 What is the size of the data warehouse being implemented? If it is very small, a
tool may not be cost justifiable. If it is large, however, a tool could be less costly
than a home-grown solution.

 What other data warehouse projects are on the horizon, and can the cost of the
tool be spread across multiple projects? Vendors usually provide discounts
when you purchase software in volume.

 What are the skills of the data warehouse development staff? The more savvy
the team, the less need you have for a third-party data transformation tool.

As for the cleansing process, you truly cannot avoid human interaction completely when attempting to
clean dirty data. The best approach is to clean the data at the source. If you don't clean the data there,
dirty data will continue to be stored in the organization and sent to the data warehouse. Of course, the
data transformation tool can catch and correct some of these values, but it is impractical to assume that
all data anomalies can be captured if they are not corrected at the source.

Integration
The fourth, and final, type of data transformation is integration. Integration can be the most difficult
component of the transformation process.

Data warehouses are populated with data from multiple sources, both local and remote; internal and
external. Integration is the process of rationalizing data elements received from multiple disparate
sources. It is possible that a single data element in the data warehouse can be populated from more
than one source. For example, competitive pricing information might be received from multiple research
firms. One firm might store the data in a decimal format, another in an integer format, and yet another in
decimal format, but with more significant digits. Before the pricing data can be moved to the data
warehouse, it must be modified to conform to a single definition.

Another integration problem can occur when data from multiple sources must be combined into a single
data element in the data warehouse. This frequently takes the form of a calculated or derived result.

The different types of integration that you might encounter are indeed impossible to predict. Data
elements in different applications, systems, and organizations will follow different business rules, be
impacted by different administration and coding practices, and, in general, be different. Therefore, you
must implement flexible integration procedures to be prepared for the many different data types and
formats that you will encounter when populating your data warehouse.

Accessing the Data Warehouse
After you design the data warehouse, you can use data access tools (also known as business
intelligence tools) to access the data. You can use many types of data access tools, including
the following:

 GUI or Web-based database query tools
 Complex report writers
 OLAP tools that analyze data along dimensions
 Data mining tools
 CASE tools
 Program generation tools

Most data warehouses deploy only the first three categories of data access tools for end-user
querying and analysis. Additionally, data mining is gaining acceptance. Data mining is the
practice of automatic and systematic analysis of data to find patterns and trends. The topic of
data mining is beyond the scope of this book.

Managing the Data Warehouse
After the data warehouse environment is built and users rely on it for their data analysis
needs, you must be prepared to manage the environment like any other mission-critical
application. Managing implies creating a systems management plan for the data warehouse
that should include the plans to support the following.
Operations

 24x7 support (help desk)

 - 873 -

 Automation
 Chargeback
 Capacity planning
 Securing access

Administration
 Maintenance of database structures
 Data availability
 Backup and recovery

Performance Management
 Proactive automation
 Predictive performance modeling
 Server performance optimization
 Network performance optimization
 Database performance optimization

Additionally, you should manage change throughout the application life cycle for operational
systems that can affect the warehouse because they are data sources, as well as for any
application that accesses warehouse data directly.

The Big Picture
Now that you have learned about the basics of data warehousing, I will tie all this information together
with a single picture. Figure 42.5 contains all the core components of a data warehouse environment.

Figure 42.5: Data warehousing the big picture.

Data Warehouse Guidelines
You can use the following guidelines as rules of thumb when you're designing, implementing, and using
your DB2-based data warehouse.

Do Not Implement a Data Warehouse as a Panacea

Many data warehouse development projects begin with "pie in the sky" expectations. One of the biggest
problems with a data warehouse project is a situation in which the data warehouse is viewed as a
"magic bullet" that will solve all of management's information problems.

To alleviate these types of problems, you should manage expectations by securing an executive
sponsor, limiting the scope of the project, and implementing the data warehouse in stages (or possibly
by implementing multiple data marts for each department).

 - 874 -

Incorporate All Three Sides of the Pyramid

When you're developing a data warehouse, be sure to include tools, people, and methods in your
warehouse blueprint. Too often, the focus is solely on the tools component. To be successful, a data
warehouse project requires more than just tools. You need careful planning and implementation
(methods) as well as a means to learn from the efforts of others (people) through mentoring, consulting,
education, seminars, and user groups.

Do Not Mix Operational Needs into the Data Warehouse Project

When a data warehousing project is first initiated, it may have a mixture of operational and
analytical/informational objectives. This mixture is a recipe for disaster. Redefine the project to
concentrate on non-operational, informational needs only. The primary reason for the existence of the
data warehouse in the first place is to segregate operational processing from reporting.

Ensure Read-Only Data

Create the data warehouse as a decision support vehicle. The data should be periodically updated and
summarized. If your design calls for a data warehouse in which all the data is modified immediately as it
is changed in production, you need to rethink your data warehouse design.
Consider starting DB2 data warehouse databases as ACCESS(RO) to ensure read-only access. Doing
so has the additional effect of eliminating locking on the read-only databases. When the data
warehouse is refreshed, the databases have to be restarted in read/write mode.

Consider Using Dirty Reads
Because the data warehouses are read-only in nature, locking is not truly required. You can specify
ISOLATION(UR) for all plans, packages, and queries used in the data warehouse environment. With
ISOLATION(UR), DB2 will take fewer locks, thereby enhancing performance. However, DB2 might
read uncommitted data when ISOLATION(UR) is specified. This should not be a major concern in the
read-only data warehouse.
To utilize ISOLATION(UR), all indexes must be Type 2 indexes.

Do Not Underestimate the Complexity of Implementing a Data Warehouse

Moving data into a data warehouse is a complex task. Detailed knowledge of the applications accessing
the source databases that feed the data warehouse must be available. Be sure to allot development
time for learning the complexities of the source systems. Frequently, the systems documentation for a
production system is inadequate or non-existent.

Additionally, be sure to analyze the source data to determine what level of data scrubbing is required.
As I mentioned earlier, this process can be an immense, time-consuming task.

Prepare to Manage Data Quality Issues Constantly

Maintaining data quality will be an ongoing concern. Both the end users and the data warehouse
construction and maintenance team are responsible for promoting and fostering data quality. Data
problems will be discovered not only throughout the development phase of the data warehouse, but
throughout the useful life of the data warehouse.

Be sure to establish a policy for how data anomalies are to be reported and corrected before the data
warehouse is made generally available to its end users. Additionally, be sure to involve the end users in
the creation and support of this policy; otherwise, it is doomed to fail. The end users understand the
data better than anyone else in the organization, including the data warehouse developers and DBAs.

Do Not Operate in a Vacuum

As business needs change, operational systems change. When operational data stores change, the
data warehouse will be affected as well. When a data warehouse is involved, however, both the
operational database and the data warehouse must be analyzed for the impact of changing any data
formats. This is true because the data warehouse stores historical data that you might not be able to
change to the new format. Before the change is made to the operational system, the data warehouse
team must be prepared first to accept the new format as input to the data warehouse, and second, to
either maintain multiple data formats for the changed data element or to implement a conversion

 - 875 -

mechanism as part of the data transformation process. Conversion, however, can result in lost or
confusing data.

Prepare to Tackle Operational Problems During the Data Warehousing Project

You will encounter problems in operational systems that feed the data warehouse. These problems may
have been in production for years, running undetected. The data warehousing project will uncover many
such errors. Be prepared to find them and have a plan for handling them.

Only three options are available:
 Ignore the problem with the understanding that the problem will exist in the data

warehouse if not corrected.
 Fix the problem in the operational system.
 If possible, fix the problem during the data transformation phase of data warehouse

population.

Of course, the second and third options are the favored approaches.

Determine When Data Is to Be Purged

Even in the data warehouse environment, when certain thresholds are reached, maintaining certain
data in the data warehouse does not make sense. This situation may occur because of technology
reasons (such as reaching a capacity limit), regulatory reasons (change in regulations or laws), or
business reasons (restructuring data, instituting different processes and so on).

Plan to arrange for methods of purging data from the data warehouse without dropping the data forever.
A good tactic is to prepare a generic plan for offloading warehouse data to tape or optical disk.

If you create a data warehouse without a data purging plan, be prepared to manage very large
databases as the data warehouse grows uncontrollably. IBM has introduced a new product, called
Archive Row Manager, to assist with purging and archiving data from DB2 databases. Archive Row
Manager does not come for free with DB2 but must be licensed at an additional charge.

Use Denormalization Strategies

Experiment with denormalized tables. Because the data warehouse is a read-only database, you should
optimize query at the expense of update. Denormalization takes care of this situation. Analyze the data
access requirements of the most frequent queries, and plan to denormalize to optimize those queries.
Refer to Chapter 5, "Data Definition Guidelines," for an in-depth discussion on the types of
denormalization.

Be Generous with Indexes
The use of indexes is a major factor in creating efficient data retrieval. You usually can use indexes
more liberally in the read-only setting of the data warehouse. Remember, though, you must make a
trade-off between data loading and modification and the number of indexes, as shown in Figure 42.6.

Figure 42.6: Indexes and the performance of query versus modification.

These indexes do not have to be the same indexes that exist in the operational system, even if the data
warehouse is nothing more than an exact replica or snapshot of the operational databases. You should

 - 876 -

optimize the indexes based on the access patterns and query needs of the decision support
environment of the data warehouse.

Avoid Referential Integrity, Triggers, and Check Constraints

Because data is cleansed and scrubbed during the data transformation process, implementing data
integrity mechanisms such as referential integrity (RI), triggers, and check constraints on data
warehouse tables is not efficient. Even without a comprehensive cleansing during data transformation,
the data in the warehouse will be as good as the data in the source operational systems (which should
utilize RI and check constraints).

Note Triggers can be useful in data warehouses as a reporting or auditing tool, but not
as a data integrity tool. For example, you might create a trigger that records a log
containing the timestamp of the last change to data in the data warehouse. This
log then can be queried by users to determine the freshness of the data in the
warehouse.

Encourage Parallelism
Use partitioned tablespaces and specify DEGREE(ANY) to encourage I/O, CPU, and Sysplex
parallelism. Parallelism helps to reduce overall elapsed time when accessing large databases such as
those common in a data warehouse.

Consider partitioning simple and segmented tablespaces to take advantage of DB2's parallelism
features. Additionally, consider repartitioning partitioned tablespaces to take full advantage of DB2
parallelism based on the usage patterns of your data warehouse access.

Consider Data Compression

DB2's hardware-based data compression techniques are optimal for the data warehousing environment.
Consider compressing tables that are infrequently accessed to save disk space. Furthermore, consider
compressing all tables if possible.

Back Up the Data Warehouse

Putting in place a backup and recovery plan for data warehouses is imperative. Even though most of the
data comes from operational systems originally, you cannot always rebuild data warehouses in the
event of a media failure (or a disaster). As operational data ages, it is removed from the operational
databases, but it may still exist in the data warehouse. Furthermore, data warehouses often contain
external data that, if lost, may have to be purchased again (creating a financial drain).

Follow "The 10 Steps to Clean Data"

The following list is a short compendium of the top 10 things you can do to ensure data quality in your
data warehouse environment:

1. Foster an understanding for the value of data and information within the organization.
In short, treat data as a corporate asset. What does this mean? Consider the other
assets of your organization. The capital assets ($) are modeled using a chart of
accounts. Human resources (personnel) are modeled using management structures,
reporting hierarchies, and personnel files. From building blueprints to item bills of
material, every asset that is truly treated as an asset is modeled. If your corporation
does not model data, it does not treat data as an asset and is at a disadvantage.

Acceptance of these ideals can be accomplished through lobbying the users and
managers you know, starting an internal newsletter, circulating relevant articles and
books throughout your company, and treating data as a corporate asset yourself. A great
deal of salesmanship, patience, politics, and good luck will be required, so be prepared.
2. Never cover up data integrity problems. Document them and bring them to the

attention of your manager and the users who rely on the data. Usually, the business
units using the data are empowered to make changes to it.

3. Do not underestimate the amount of time and effort that will be required to clean up
dirty data. Understand the scope of the problem and the process required to rectify
it. Take into account the politics of your organization and the automated tools that
are available. The more political the battle, the longer the task will take. The fewer
tools available, the longer the task will be. Even if you have tools, if no one

 - 877 -

understands them properly, the situation will probably be worse than having no tools
at all as people struggle to use what they do not understand.

4. Understand what is meant by "data warehouse" within the context of your projects.
What is the scope of the "warehouse": enterprise or departmental? What technology
is used? If OLAP is a component of the environment, is it ROLAP or MOLAP?

5. Educate those people implementing the data warehouse by sending them to courses
and industry conferences, purchasing books, and encouraging them to read
periodicals. A lack of education has killed many potentially rewarding projects.

6. Physically design the data stores for the data warehouse differently than the similar,
corresponding production data stores. For example, the file and table structures,
indexes, and clustering sequence should be different in the warehouse because the
data access requirements are different.

7. You will often hear that denormalization is desirable in the data warehouse
environment, but proceed with caution. Because denormalized data is optimized for
data access, and the data warehouse is "read-only," you might think that
denormalization is a natural for this environment. However, the data must be
populated into the data warehouse at some point. Denormalized data is still difficult
to maintain and should be avoided if performance is acceptable.

8. Understand the enabling technologies for data warehousing. Replication and
propagation are different technologies with different availability and performance
effects on both the production (OLTP) and the warehouse (OLAP) systems.

9. Only after you understand the basics should you delve into the more complex
aspects of data warehousing such as implementing an ODS, very large databases,
or multidimensional databases.

10. Reread steps 1 through 9 whenever you think you are overworked, underpaid, or
both!

Data in the warehouse is only as good as the sources from which it was gleaned. Failure to clean dirty
data can result in the creation of a data outhouse instead of a data warehouse.

Use Good DB2 Database Design Techniques
Use the DB2 DDL design techniques presented in Chapter 5 in conjunction with the guidelines
presented in this chapter to ensure an optimal DB2 data warehouse implementation.

Summary
Data warehouses can provide organizations with a competitive advantage as users begin to analyze
data in conjunction with business trends. After a data warehouse is implemented, you cannot turn back
because your users will be hooked, your organization will be more profitable, and you'll have the
satisfaction of contributing to the success of the business (and, just maybe, a big fat raise).

 - 878 -

Appendix A: DB2 SQLCODE and SQLSTATE Values

Overview
This appendix lists the SQLCODEs and SQLSTATEs that DB2 returns to indicate the success or failure of
each SQL statement. Simply remember the following rules:

 An SQLCODE of 0 indicates that the SQL statement completed successfully.
 A negative SQLCODE value indicates that the SQL statement was not successful. An error

that hindered DB2 from performing the requested action occurred.
 An SQLCODE of +100 indicates that no row was found. This value can be returned by any

SQL statement that expects to process a row but cannot acquire the row.
 Any other positive SQLCODE value indicates that the SQL statement completed, but with a

warning. Warnings might require subsequent attention, or they may be inconsequential.
 You also can use SQLSTATE, a character string value, to determine the success or failure of

an SQL statement. The values assigned to SQLSTATE are consistent across platforms
(DB2 for Common Servers, DB2 for AS/400, DB2 for VSE & VM, and DB2 for MVS).

 SQLSTATE values do not necessarily have a one-to-one correspondence with SQLCODE
values. For example, one SQLCODE can have many corresponding SQLSTATEs, and one
SQLSTATE can correspond to many SQLCODEs.

 SQLSTATE values are made up of a two-character class code and a three-character subclass
code. The class code indicates the type of error, and the subclass code details the explicit
error within that error type. The following list details each SQLSTATE class code and the
type of error to which it relates.

Class Code Type of Error
00 Unqualified Successful Completion
01 Warning
02 No Data
07 Dynamic SQL Error
08 Connection Exception
16 Feature Not Supported
21 Cardinality Violation
22 Data Exception
23 Constraint Violation
24 Invalid Cursor State
26 Invalid SQL Statement Syntax
2D Invalid Transaction Termination
34 Invalid Cursor Name
37 Syntax Error
39 External Function Call Exception
40 Serialization Failure
42 Access Violation
44 WITH CHECK OPTION Violation
51 Invalid Application State
52 Duplicate or Undefined Name
53 Invalid Operand or Inconsistent Specification
54 SQL or Product Limit Exceeded

 - 879 -

55 Object Not in Prerequisite State
56 Miscellaneous SQL or Product Restriction
57 Resource Unavailable or Operator Intervention
58 System Error

 You can gear your program to check for general SQL error types by checking only the two-
digit SQLSTATE class code.

 In general, you should gear your application programs to check for SQLCODEs because
checking for negative values is easier. Check the SQLSTATE value, however, when you
must check for a group of SQLCODEs associated with a single SQLSTATE or when your
program runs on multiple platforms.

Three comprehensive SQLCODE and SQLSTATE lists follow. Tables A.1 and A.2 list the basic SQLCODE
and SQLSTATE values returned by embedded SQL applications. Table A.1 is in order by SQLCODE;
Table A.2 is in SQLSTATE order. Table A.3 lists the special SQLSTATE values returned by DB2 CLI
applications. You can use these tables as references when you're writing DB2 application programs or
issuing ad hoc SQL statements.

Caution Be aware that IBM changed the SQLSTATE values for many errors and
warnings as of DB2 V4. The changes were made to better conform to
ANSI/ISO standards. However, programs that checked for explicit SQLSTATE
values may not operate as you want without your making changes after
migrating from DB2 V3 to V4.
SQLSTATE values for other release migrations have remained stable.

Table A.1: DB2 Error Messages (Sorted by SQLCODE)
SQLCODE SQLSTATE Description
000 00000 The SQL statement finished successfully.

 01xxx The SQL statement finished successfully, but with a
warning.

+012 01545 The unqualified column name was interpreted as a
correlated reference.

+098 01568 A dynamic SQL statement ends with a semicolon.
+100 02000 No rows found to satisfy the SQL statement.
+110 01561 Update to a table defined using DATA CAPTURE was not

signaled to originating subsystem. (DPROP)
+111 01590 The SUBPAGES clause was specified (and ignored) for a

Type 2 index.
+117 01525 The number of values being inserted does not equal the

number of columns in the table being inserted to.
+162 01514 Named tablespace placed in check pending status.
+203 01552 The named qualified column was resolved using a non-

unique name.
+204 01532 Named object is not defined to DB2.
+206 01533 Named column does not exist in any table named in the

SQL statement.
+218 01537 EXPLAIN cannot be executed for the SQL statement as it

references a remote object.
+219 01532 The named PLAN_TABLE does not exist.
+220 01546 Improperly defined PLAN_TABLE; check definition of

named column.
+236 01005 The value of SQLN in the SQLDA should be at least as

large as the number of columns that are being described.

 - 880 -

+237 01594 At least one of the columns being described is a distinct
type, so additional space is required for extended
SQLVAR entries.

+238 01005 At least one of the columns being described is a LOB, so
additional space is required for extended SQLVAR entries.

+239 01005 At least one of the columns being described is a distinct
type, so additional space is required for extended
SQLVAR entries.

+304 01515 Value cannot be assigned to host variable because it is
out of range for the data type.

+331 01520 String cannot be translated so it has been assigned to
NULL.

+339 01569 Character conversion problem may exist due to
connection to a DB2 V2.2 subsystem.

+394 01629 Optimizer "hints" used to select the access path.
+395 01628 Invalid optimizer "hints" specified; reason code specifies

why. Optimizer "hints" were ignored.
+402 01521 Unknown location.
+403 01522 CREATE ALIAS object does not exist locally.
+434 01608 The specified feature will not be supported in future

releases of DB2. IBM recommends that you stop using
this feature.

+445 01004 Value has been truncated by a CAST function.
+462 01Hxx Warning issued by user-defined function or stored

procedure.
+464 01609 Named stored procedure exceeded the limit on the

number of query results sets it can return.
+466 01610 Specifies the number of query results sets returned by

the named stored procedure. Successful completion.
+494 01614 Number of results sets returned by a stored procedure

exceeds the number of results set locators as specified
by the ASSOCIATE LOCATORS statement.

+495 01616 Warning issued because the cost estimate for the
dynamic SQL exceeds the warning threshold value
specified in the RLST.

+535 01591 A positioned update of a primary key or a delete from a
table with a self-referencing constraint was requested.

+541 01543 Named foreign key is a duplicate referential constraint.
+551 01548 Named authorization ID lacks authority to perform the

named operation on the named DB2 object.
+552 01542 Named authorization ID lacks authority to perform the

named operation.
+558 01516 Already granted to PUBLIC so WITH GRANT OPTION

not applicable.
+561 01523 PUBLIC AT ALL LOCATIONS not valid for ALTER.

REFERENCES, INDEX, and TRIGGER privileges.
+562 01560 One or more of the privileges was ignored because the

GRANTEE already possesses that privilege.
+585 01625 Schema name is specified more than once.

 - 881 -

+599 01596 Comparison functions are not created for long string data
types (BLOB, CLOB, and DBCLOB).

+610 01566 The named object is in a PENDING status due to creating
an index specifying DEFER YES or because ALTER
INDEX was used to change limit key values.

+625 01518 Table definition marked incomplete because primary key
index was dropped.

+626 01529 Index to enforce UNIQUE constraint has been dropped;
uniqueness no longer enforced.

+645 01528 WHERE NOT NULL was ignored because the key for the
index being created cannot contain NULLs.

+650 01538 Cannot alter or create the named table as a dependent
table.

+653 01551 Partitioned index for the named table in the named
partitioned tablespace has not been created yet, so it is
unavailable.

+655 01597 Specific and non-specific volume IDs specified to the
CREATE or ALTER STOGROUP statement; will not be
supported in later DB2 releases (post V6).

+658 01600 Cannot specify SUBPAGES clause when creating a
catalog index; SUBPAGES will be ignored and default to 1.

+664 01540 Limit key for the partitioning index exceeds the maximum
value.

+738 01530 The change to the named object may require like
changes for the objects in read-only systems.

+799 01527 A special register that does not exist is referenced in the
SET statement. The SET request is ignored.

+802 01519 Data exception error caused by data overflow or divide
exception.

+806 01553 ISOLATION(RR) conflicts with LOCKSIZE PAGE.
+807 01554 Overflow may result due to decimal multiplication.
+863 01539 Connection successful, but only SBCS will be supported.
+2000 56094 Type 1 indexes where SUBPAGES does not equal 1

cannot become group bufferpool dependent in a data
sharing environment.

+2002 01624 The GBPCACHE specification is ignored because the
specified bufferpool does not allow caching.

+2007 01602 Optimizer "hints" cannot be specified because the DB2
subsystem parameter disabling "hints" has been
activated.

+30100 01558 Distribution protocol error detected. Original SQLCODE
and SQLSTATE provided.

-007 42601 Illegal character in SQL statement.
-010 42603 String constant not terminated properly; check for

missing quotation marks.
-029 42601 INTO clause required.
-060 42815 Invalid length or scale specification for the specified data

type.
-084 42612 SQL statement cannot be executed because it is invalid

for dynamic SQL or is not valid for DB2 for OS/390.

 - 882 -

-097 42601 Cannot use LONG VARCHAR or LONG VARGRAPHIC with
CAST, or in distinct types, user-defined functions, and
procedures.

-101 54001 SQL statement exceeds an established DB2 limit; for
example, too many tables, too many bytes in statement,
and so on.

-102 54002 String constant is too long.
-103 42604 Invalid numeric literal.
-104 42601 Illegal symbol encountered in SQL statement.
-105 42604 Invalid character string format; usually refers to an

improperly formatted graphic string.
-107 42622 Object name is too long.
-108 42601 Incorrect name specified for the RENAME statement;

cannot use a qualifier.
-109 42601 Invalid clause specified; for example: CREATE VIEW

cannot contain an ORDER BY clause.
-110 42606 Invalid hexadecimal literal encountered.
-111 42901 Column function specified without a column name.
-112 42607 Invalid column function syntax; column function cannot

operate on another column function.
-113 42602 Invalid character encountered.
-114 42961 Location name for this statement must match the current

server, but it does not.
-115 42601 Invalid predicate encountered because comparison

operator is not followed by an expression or list.
-117 42802 Number of inserted values not equivalent to number of

columns for the inserted row.
-118 42902 Table or view is illegally named in both data modification

clause (UPDATE or DELETE) and the FROM clause.
-119 42803 Column list in HAVING clause does not match column list

in the GROUP BY clause.
-120 42903 The WHERE clause, SET clause, VALUES clause, or SET

ASSIGNMENT statement is not allowed to reference a
column function.

-121 42701 A column is illegally referenced twice in an INSERT or
UPDATE statement.

-122 42803 Column function applied illegally because all columns not
applied to a column function are not in the GROUP BY
clause.

-123 42601 The parameter in the specified position must be either a
constant or a key word.

-125 42805 Invalid number specified in the ORDER BY clause—
number is either less than 1 or greater than the number
of columns selected.

-126 42829 An ORDER BY clause cannot be specified for an UPDATE
statement.

-127 42905 DISTINCT can only be specified once in a subselect.
-128 42601 NULL use improperly in an SQL predicate.

 - 883 -

-129 54004 The SQL statement contains more than 15 tables.
-130 22019 Escape clause must be 1 character.

 22025 Invalid escape pattern.
-131 42818 The LIKE predicate can only be applied to character

data.
-132 42824 Invalid operand in LIKE clause, ESCAPE clause, LOCATE

function, or POSSTR function.
-133 42906 Invalid correlated subquery reference.
-134 42907 Column larger than 255 bytes used improperly.
-136 54005 Sort key length is greater than 4000 bytes.
-137 54006 Concatenated string is too large; maximum is 32,767 for

character or 16,382 for graphic.
-138 22011 The second or third operator of the SUBSTR column

function is invalid.
-142 42612 Unsupported SQL statement. The statement might be

valid in another RDBMS, or the statement might be valid
in another context (for example, VALUES can only appear
inside a trigger).

-144 58003 Named section number is invalid.
-147 42809 A source function cannot be altered. To change the

source function, it must be dropped and recreated.
-148 42809 The RENAME or ALTER cannot be executed. RENAME

cannot be used to rename a view or an active RLST
table; ALTER cannot be used to alter the column length
because the column participates in RI, a user exit, a
global temporary table, or a table with DATA CAPTURE
CHANGES on.

-150 42807 Invalid view update requested or a transition table was
specified in an INSERT, UPDATE, or DELETE statement
during a triggered action.

-151 42808 Invalid column update requested; trying to update either
a non-updateable view column, a DB2 Catalog table
column, or a ROWID column.

-152 42809 DROP CHECK tried to drop a referential constraint; or
DROP FOREIGN KEY tried to drop a check constraint.

-153 42908 Invalid view creation required; must provide a name for
an unnamed or duplicate column listed in the select list.

-154 42909 Cannot create a view using UNION, UNION ALL, or a
remote table.

-156 42809 It is invalid to create an index on a view or specify an
object other than a table on the ALTER TABLE, CREATE
TRIGGER, DROP TABLE, or LOCK TABLE statements.

-157 42810 Must specify a table name on the FOREIGN KEY clause.
-158 42811 View columns do not match columns in the select list.
-159 42809 Invalid DROP or COMMENT ON statement.
-160 42813 WITH CHECK OPTION invalid for this view.
-161 44000 The WITH CHECK OPTION clause of the view being

updated prohibits this row from being inserted or updated
as specified.

 - 884 -

-164 42502 User does not have the authority to create this view.
-170 42605 Invalid number of arguments specified for the scalar

function.
-171 42815 Invalid data type length or value for the scalar function.
-173 42801 Isolation level UR cannot be specified on a cursor that is

not read-only.
-180 22007 Invalid syntax for the string representation of a DATE,

TIME, or TIMESTAMP value.
-181 22007 Not a valid DATE, TIME, or TIMESTAMP value.
-182 42816 Invalid date/time value in an arithmetic expression.
-183 22008 Result of arithmetic expression returns a DATE/TIME

value that is not within the range of valid values.
-184 42610 Improper usage of parameter marker for DATE/TIME

values.
-185 57008 No local date/time exits defined.
-186 22505 Local DATE/TIME exit changed causing invalid length for

this program.
-187 22506 MVS returned invalid current date/time.
-188 22503 Invalid string representation.
-189 22522 The named coded character set ID is invalid or

undefined.
-190 42837 Cannot ALTER the column as specified. Can only ALTER

column length of VARCHAR columns.
-191 22504 String contains invalid mixed data.
-197 42877 Qualified column names cannot be used in an ORDER BY

clause when two or more tables are unioned and then
ordered.

-198 42617 Trying to issue a PREPARE or EXECUTE IMMEDIATE
statement on a blank string.

-199 42601 Illegal keyword used in SQL statement.
-203 42702 Ambiguous column reference.
-204 42704 Undefined object name.
-205 42703 Invalid column name for specified table.
-206 42703 Column name not in any table referenced in the FROM

clause or in the table on which the trigger is defined.
-208 42707 Cannot ORDER BY specified column because it is not in

the select list.
-212 42712 The specified table name is not allowed to be used more

than once in the trigger.
-214 42822 Invalid expression caused by DISTINCT and ORDER BY.
-219 42704 EXPLAIN cannot be executed because PLAN_TABLE

does not exist.
-220 55002 Invalid PLAN_TABLE column encountered.
-221 55002 If any optional columns are defined for the PLAN_TABLE

all of them must be defined.
-229 42708 The locale specified was not found.
-240 428B4 The PART clause of a LOCK TABLE statement is invalid.

 - 885 -

-250 42718 Local location name is not defined.
-251 42602 Invalid token.
-300 22024 String in host variable or parameter is not null-terminated.
-301 42895 Invalid host variable data type.
-302 22001 The value of an input variable is invalid for the specified

column.
 22003 The value of an input variable is too large for the

specified column.
-303 42806 Value cannot be assigned because of incompatible data

types.
-304 22003 Value cannot be assigned because it is out of range.
-305 22002 Null indicator variable is missing.
-309 22512 Invalid predicate due to referenced host variable set to

NULL.
-310 22023 Decimal host variable or parameter cannot contain non-

decimal data.
-311 22501 Invalid length of input host variable; either negative or too

large.
-312 42618 Undefined or unusable host variable.
-313 07001 Number of host variables does not equal number of

parameter markers.
-314 42714 Ambiguous host variable reference.
-327 22525 Cannot INSERT row outside the bounds of the last

partition key range.
-330 22021 String cannot be translated successfully.
-331 22021 String cannot be assigned to a host variable because of

unsuccessful translation.
-332 57017 Translation not defined for the two named coded

character set IDs.
-333 56010 Subtype invalid causing translation to fail.
-338 42972 Invalid ON clause; must refer to joined columns.
-339 56082 Access to DB2 V2.2 subsystem was denied because

ASCII to EBCDIC translation cannot occur.
-350 42962 Invalid large object specification.
-351 56084 Unsupported data type in SELECT list.
-352 56084 Unsupported data type in input list.
-355 42993 LOB column is too large to be logged.
-372 428C1 Only one ROWID column per table is permitted.
-390 42887 The specified function is not valid in this context.
-392 42855 The SQLDA for the specified cursor was improperly

changed since the previous FETCH.
-396 38505 Attempted to execute SQL statement during final call

processing.
-397 428D3 Improperly specified GENERATED on a column that is not

 - 886 -

a ROWID data type.
-398 428D2 LOCATOR was requested for a host variable that is not a

LOB.
-399 22511 Invalid value specified for ROWID column in the INSERT

statement.
-400 54027 Cannot define more than 100 user-defined indexes in the

DB2 Catalog.
-401 42818 The operands of an arithmetic or comparison operator

are not compatible.
-402 42819 Arithmetic function cannot be applied to character or

date/time data.
-404 22001 The SQL statement specified a string that is too long.
-405 42820 Numeric literal is out of range.
-406 22003 A calculated or derived numeric value is out of range.
-407 23502 Cannot insert a null value into a column that is defined as

NOT NULL.
-408 42821 Value cannot be inserted or updated because it is

incompatible with the column's data type.
-409 42607 COUNT function specified invalid operand.
-410 42820 Floating point literal longer than maximum allowable

length of 30 characters.
-411 56040 Invalid CURRENT SQLID usage.
-412 42823 Multiple columns encountered in the select list of a

subquery.
-413 22003 Overflow condition when converting a numeric data type.
-414 42824 The LIKE predicate cannot operate on columns defined

with a numeric or date/time data type.
-415 42825 The select lists specified for the UNION operation are not

union-compatible.
-416 42907 Long string columns are not allowed in SQL statements

containing the UNION operator.
-417 42609 Two parameter markers specified as operands on both

sides of the same predicate.
-418 42610 Invalid usage of parameter markers.
-419 42911 Invalid decimal division.
-420 22018 Character string argument value did not conform to the

function's requirements.
-421 42826 Same number of columns not supplied in the select lists

for a UNION operation.
-423 0F001 Invalid value specified for the LOB or result set locator.
-426 2D528 COMMIT not permitted for an application server where

updates are not permitted.
-427 2D529 ROLLBACK not permitted for an application server where

updates are not permitted.
-430 38503 Error encountered within a user-defined function or

stored procedure.
-433 22001 Specified value is too long.

 - 887 -

-435 428B3 Invalid application-defined SQLSTATE.
-438 xxxxx Error raised by the application using the RAISE_ERROR

function.
-440 42884 Number of parameters in the parameter list for a stored

procedure or user-defined function does not match the
number expected.

-441 42601 Improper usage of DISTINCT or ALL in combination with
a scalar function.

-443 42601 Error SQLSTATE returned by the specified external
function.

-444 42724 Program associated with the called stored procedure or
user-defined function could not be found.

-449 42878 The EXTERNAL NAME clause is improperly missing from
the CREATE or ALTER statement for the stored procedure
or user-defined function.

-450 39501 The stored procedure or user-defined function overwrote
storage beyond a parameter's declared length.

-451 42815 Improper data type specified in CREATE FUNCTION.
-453 42880 Invalid RETURNS clause in user-defined function.
-454 42723 The signature of the function specified matches a

signature of another function that already exists.
-455 42882 Schema names do not match.
-456 42710 The specific name of the user-defined function already

exists.
-457 42939 The user-defined function or user-defined type is

attempting to use the name of a system-defined function
or type.

-458 42883 Function not found.
-463 39001 Invalid SQLSTATE returned by the specified external

routine.
-469 42886 Host variable must be provided on the CALL statement

for parameters defined as OUT or INOUT.
-470 39002 Null parameter specified but the routine does not support

NULLs.
-471 55023 Stored procedure or user-defined function failed; reason

code provided.
-472 24517 Cursor was left open by the external function program.
-473 42918 Cannot name a user-defined data type the same as a

system-defined data type.
-475 42866 The result type is not castable to the RETURNS type.
-476 42725 The function is not unique within its schema.
-478 42893 Cannot DROP or REVOKE the specified object because

another object is dependent on it.
-480 51030 DESCRIBE PROCEDURE and ASSOCIATE LOCATORS

cannot be issued until the stored procedure has been
CALLed.

-482 51030 Stored procedure returned no locators.
-483 42885 Number of parameters in the CREATE FUNCTION

statement does not match the number of parameters in

 - 888 -

the source function.
-487 38001 The specified stored procedure or user-defined function

was created with the NO SQL option, but it is trying to
issue an SQL statement.

-491 42601 The CREATE FUNCTION statement is invalid because it
does not have a RETURNS clause, or because it does not
specify a valid SOURCE or EXTERNAL clause.

-492 42879 The specified parameter number of the specified function
is in error.

-495 57051 The estimated processor cost of the statement exceeds
resource limit.

-496 51033 Statement cannot be executed because the current
server is different than the server that called a stored
procedure

-497 54041 Named database exceeded the limit of 32,767 OBIDs, or
the CREATE DATABASE statement causes the limit of
32,511 DBIDs to be reached.

-499 24516 Named cursor already assigned to a result set from
named stored procedure.

-500 24501 A WITH HOLD cursor was closed because the connection
was destroyed.

-501 24501 Must open a cursor before attempting to fetch from it or
close it.

-502 24502 Cannot open a cursor twice without first closing it.
-503 42912 Column cannot be updated because it was not specified

in the FOR UPDATE OF clause of the cursor from which it
was fetched.

-504 34000 Cannot reference cursor because it is not defined to the
program.

-507 24501 Must open a cursor before attempting to update or delete
WHERE CURRENT OF.

-508 24504 Cannot update or delete because the referenced cursor
is not currently positioned on a data row.

-509 42827 Cannot update from a different table than the one
specified on the cursor referenced by the WHERE
CURRENT OF clause.

-510 42828 Table or view cannot be modified as requested.
-511 42829 FOR UPDATE OF is invalid for non-modifiable tables or

views.
-512 56023 Invalid reference to a remote object.
-513 42924 An alias cannot be defined on another alias.
-514 26501 Cursor has not been prepared.
-516 26501 Describe attempted for an unprepared SQL statement.
-517 07005 Cursor is invalid because the SQL statement has not yet

been prepared.
-518 07003 Execute attempted for an unprepared SQL statement.
-519 24506 Cursor cannot be open when issuing a prepare statement

for its SQL statement.

 - 889 -

-525 51015 Cannot execute SQL statement within named package
because it was invalid at bind time.

-526 42995 Global temporary table cannot be used in the given
context.

-530 23503 Invalid foreign key value specified for the specified
constraint name.

-531 23504 As of V5, multi-row update of a parent key attempted to
remove a parent key vale on which a foreign key was
dependent.

 Prior to V5, attempting to update a primary key value
when foreign keys currently exist that reference that
value.

-532 23504 Deletion violates the named referential constraint.
-533 21501 Invalid multiple row insert; attempted to insert multiple

rows into a self-referencing table.
-534 21502 An update statement changing the value of a primary key

column cannot be used to update more than one row at a
time.

-535 21502 Cannot specify WHERE CURRENT OF when deleting from
a self-referencing table or updating primary key
column(s). This code will be raised only by non-V5
subsystems.

-536 42914 Invalid delete statement due to referential constraints
existing for the specified table.

-537 42709 A single column cannot appear more than once in a
foreign key or primary key clause specification.

-538 42830 Invalid foreign key; does not conform to the definition of
the referenced table's primary key.

-539 42888 Foreign key cannot be defined because the referenced
table does not have a primary key.

-540 57001 Table definition is incomplete until a unique index is
created for the primary key or UNIQUE clause, or the
ROWID column contains the GENERATED BY DEFAULT
attribute.

-542 42831 Nullable columns are not permitted to be included as part
of a primary key.

-543 23511 DELETE cannot occur because the table is a parent table
in a referential constraint specifying the SET NULL delete
rule, but the check constraint does not allow NULLs.

-544 23512 Cannot add this check constraint using ALTER because
an existing row violates the check constraint.

-545 23513 INSERT or UPDATE caused a check constraint violation.
-546 42621 Invalid check constraint specified in CREATE or ALTER

TABLE.
-548 42621 Invalid check constraint due to named column.
-549 42509 Invalid SQL statement for DYNAMICRULES(BIND) plan

or package.
-551 42501 User is attempting to perform an operation on the

specified object for which he is not authorized, or the
table does not exist.

 - 890 -

-552 42502 User is attempting to perform an operation for which he is
not authorized.

-553 42503 Cannot set CURRENT SQLID because the user has not
been set up to change to that ID.

-554 42502 Cannot grant a privilege to yourself.
-555 42502 Cannot revoke a privilege from yourself.
-556 42504 Cannot revoke a privilege that the user does not

possess.
-557 42852 Inconsistent grant or revoke key word specified.
-558 56025 Invalid clause or clauses specified for the grant or revoke

statement.
-559 57002 The DB2 authorization mechanism has been disabled.

Grant and revoke cannot be issued.
-567 42501 Named authorization ID lacks the authority to bind the

named package.
-571 25000 Multiple site updates are not permitted.
-573 42890 Referential constraint cannot be defined because the

named parent table does not have a unique key on the
specified column.

-574 42894 Specified default conflicts with the column definition.
-577 38002 Tried to modify data in a user-defined function or stored

procedure that was created without the MODIFIES SQL
DATA option.

-579 38004 Tried to read data in a user-defined function or stored
procedure that was created without either the READS
SQL DATA or MODIFIES SQL DATA option.

-580 42625 Result expressions of a CASE expression cannot all be
NULL.

-581 42804 Incompatible data types in the result expressions of a
CASE expression.

-582 42625 Search-condition in a searched-when-clause specifies a
quantified, IN, or EXISTS predicate.

-583 42845 The specified function is invalid because it is not
deterministic or may have an external action.

-585 42732 The schema name appears more than once in the
current path.

-586 42907 The CURRENT PATH special register cannot exceeed 254
characters in length.

-587 428C6 The list of item-references must be of the same family.
-590 42734 The parameter name must be unique within the named

stored procedure or user-defined function.
-592 42510 Not authorized to create stored procedures or user-

defined functions in WLM environment.
-601 42710 Attempting to create (or rename) an object that already

exists.
-602 54008 Too many columns specified in the CREATE INDEX

statement.
-603 23515 Unique index cannot be created because duplicates were

 - 891 -

found.
-604 42611 Invalid length, precision, or scale specified for the data

type in a CREATE or ALTER TABLE statement.
-607 42832 The INSERT UPDATE or DELETE statement specified

cannot be issued as written against the DB2 Catalog
tables.

-611 53088 When LOCKSIZE is TABLE or TABLESPACE, LOCKMAX
must 0.

-612 42711 Duplicate column names not permitted within a single
table, index, or view.

-613 54008 The primary key or UNIQUE constraint is too long or
contains too many columns.

-614 54008 Maximum internal key length of 255 for indexes has been
surpassed.

-615 55006 Cannot drop this package because it is currently
executing.

-616 42893 The specified object cannot be dropped because other
objects are dependent upon it.

-617 56089 Type 1 index is invalid for DB2 Version 6. For previous
releases, a type 1 index cannot be defined with
LOCKSIZE ROW or LARGE tablespace.

-618 42832 Requested operation not permitted for DB2 Catalog
tables.

-619 55011 DSNDB07 cannot be modified unless it has first been
stopped.

-620 53001 The specified key word is not permitted for a tablespace
in DSNDB07.

-621 58001 Duplicate DBID encountered; system problem
encountered.

-622 56031 Cannot specify FOR MIXED DATA because the mixed
data option has not been installed.

-623 55012 Cannot define more than one clustering index for a single
table.

-624 42889 Cannot define more than one primary key for a single
table.

-625 55014 A unique index is required for a table defined with a
primary key.

-626 55015 Cannot issue an ALTER statement to change PRIQTY
SECQTY or ERASE unless the tablespace has first been
stopped.

-627 55016 Cannot issue an ALTER statement to change PRIQTY
SECQTY or ERASE unless the tablespace has first been
defined to use storage groups.

-628 42613 The clauses specified are mutually exclusive (for
example, cannot partition a segmented tablespace).

-629 42834 SET NULL is invalid because the foreign key cannot
contain null values.

-630 56089 WHERE NOT NULL cannot be specified for Type 1
indexes.

-631 54008 Invalid foreign key; is either longer than 254 bytes or

 - 892 -

contains more than 40 columns.
-632 42915 The specified delete rules prohibit defining this table as a

dependent of the named table.
-633 42915 Invalid delete rule; the specified mandatory delete rule

must be used.
-634 42915 DELETE CASCADE is not allowed in this situation.
-635 42915 The delete rule cannot be different or cannot be SET

NULL.
-636 56016 The partitioning index must be consistent in its

specification of ascending or descending for the
partitioning index key.

-637 42614 Duplicate key word encountered.
-638 42601 Missing column definition in CREATE TABLE statement.
-639 56027 A nullable column of a foreign key with a delete rule of

SET NULL cannot be a column of the key of a
partitioning index.

-640 56089 LOCKSIZE ROW cannot be specified for this tablespace
because a Type 1 index is defined on a table in the
tablespace.

-642 54021 Unique constraint contains too many columns.
-643 54024 Check constraint exceeds maximum length of 3,800

characters.
-644 42615 Invalid value specified for key word in the SQL statement.
-646 55017 The table cannot be created in the specified partitioned

or default tablespace because the specified tablespace
already contains a table.

-647 57003 The specified bufferpool is invalid because it has not
been activated.

-650 56090 ALTER INDEX cannot be executed; reason code
provided.

-651 54025 Table object descriptor (OBD) would exceed maximum
size (32KB) if the CREATE or ALTER TABLE were
allowed.

-652 23506 Violation of EDITPROC or VALIDPROC encountered.

Appendix B: The DB2 Catalog Tables
Overview
The DB2 Catalog is contained in a single database (DSNDB06). The 54 tables in the DB2 Catalog
collectively describe the objects and resources available to DB2. You can find a comprehensive
description of the DB2 Catalog and its purpose in Chapter 20, "The Table-Based Infrastructure of DB2."

This appendix presents each DB2 Catalog table, outlining the following information:
 A description of the table
 The name of the tablespace in which the table resides
 The indexes for each table, the index columns, and whether the indexes are unique
 A description of the columns in each table

DB2 developers can use this information to query the status of their DB2 subsystem and applications.
SYSIBM.IPNAMES
SYSIBM.IPNAMES contains a single row for each LU associated with one or more other systems
accessible to the local DB2 subsystem.

Tablespace DSNDB06.SYSDDF

 - 893 -

Indexes DSNFPX01
[unique]
(LINKNAME)

Column Definitions
LINKNAME Must match the LINKNAME of the associated

row in SYSIBM.LOCATIONS.
SECURITY_OUT An indicator specifying the DRDA security

option used when DB2 SQL applications
connect to any remote server associated with
this TCP/IP host. Contains the following:

 A Outbound connection requests do not require
passwords; the authid used for outbound
requests is either the DB2 authid or a translated
ID, depending on the value of the USERNAMES
column. It is the default.

 R Outbound connection requests contain a userid
and an RACF PassTicket; the authid used for
outbound requests is either the DB2 authid or a
translated ID, depending on the value of the
USERNAMES column.

 P Outbound connection requests contain an authid
and a password; the password is obtained from
SYSIBM.USERNAMES or RACF; the USERNAMES
column must contain B or O.

USERNAMES Indicates
whether
outbound
authid
translatio
n is to
occur.
Contains
the
following:

 blank No
translatio
n.

 O Outbound
requests
subject to
ID
translatio
n.

IBMREQD An
indicator
specifyin
g Y if the
row was
supplied
by IBM,
or N if it
was not.

IPADDR Contains
the IP
address

 - 894 -

or
domain
name of
a remote
TCP/IP
host.

SYSIBM.LOCATIONS
SYSIBM.LOCATIONS contains a single row for each accessible server, equating a location with its SNA
or TCP/IP network attributes.

Tablespace DSNDB06.SYSDDF

Indexes DSNFCX01
[unique]
(LOCATION)

Column Definitions
LOCATION A unique location name, to be used by the local DB2 subsystem, for

the accessible server.
LINKNAME Identifies the VTAM or TCP/IP attributes for the specified location.

Must have a corresponding row in either SYSIBM.IPNAMES or
SYSIBM.LUNAMES.

IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it
was not.

PORT For TCP/IP, specifies a port number as follows:
 blank Default

DRDA
port is
used.

 value Either a
TCP/IP
port
number
or a
TCP/IP
service
name.

TPN Indicates the SNA LU 6.2 transaction program name that will allocate
the conversation.

SYSIBM.LULIST
SYSIBM.LULIST enables you to specify multiple LUNAMES for any given LOCATION.

Tablespace DSNDB06.SYSDDF

Indexes DSNFLX01
[unique]
(LINKNAME,
LUNAME)
DSNFLX02
[unique]
(LUNAME)

Column Definitions
LINKNAME Corresponds to a SYSIBM.LOCATIONS LINKNAME.
LUNAME Contains the VTAM LUNAME of the remote system. Must not exist

in SYSIBM.LUNAMES.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.

 - 895 -

SYSIBM.LUMODES
SYSIBM.LUMODES contains conversation limits for a specific LUNAME / MODENAME combination. It is
used to control change-number-of-sessions (CNOS) negotiations at DDF startup.

Tablespace DSNDB06.SYSDDF

Indexes DSNFMX01
[unique]
(LUNAME,
MODENAME)

Column Definitions
LUNAME Name of the LU involved in CNOS processing.
MODENAME Logon mode description name as defined in the VTAM logon

mode table.
CONVLIMIT Conversation limit (maximum number of conversations) between

the local DB2 and the server.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
SYSIBM.LUNAMES
SYSIBM.LUNAMES contains a single row for each LU associated with one or more other systems
accessible to the local DB2 subsystem.

Tablespace DSNDB06.SYSDDF

Indexes DSNFNX01
[unique]
(LUNAME)

Column Definitions
LUNAME Name of the LU for one or more accessible systems. Blank if

requester is undefined.
SYSMODENAME Identifies the mode used to establish system to system

conversations. Blank indicates default IBMDB2LM mode.
SECURITY_IN An indicator specifying the ecurity acceptance option when an SNA

client connects to DB2. Contains the following:
 V An

incoming
connection
must
contain a
userid and
a
password;
or a userid
and RACF
PassTicket
; or a DCE
security
ticket.

 A Requests
do not
require
passwords
; can
contain
just a
userid or

 - 896 -

any of the
options
described
previously;
if the
USERNAME
S column
contains B
or I, RACF
is not
invoked to
validate
incoming
connection
requests. It
is the
default.

SECURITY_OUT An indicator
specifying the
security
acceptance
option when local
DB2 SQL
applications
connect to any
remote server
associated with
this LUNAME.
Contains the
following:

 A Outbound
connection
requests do not
require passwords;
the authid used for
outbound requests
is either the DB2
authid or a
translated ID,
depending on the
value of the
USERNAMES
column. It is the
default.

 R Outbound
connection
requests contain a
userid and an
RACF PassTicket;
the authid used for
outbound requests
is either the DB2
authid or a
translated ID,
depending on the
value of the
USERNAMES
column.

 P Outbound
connection
requests contain

 - 897 -

an authid and a
password; the
password is
obtained from
SYSIBM.USERNAM
ES or RACF; the
USERNAMES
column must
contain B or O.

ENCRYPTPSWDS Indicator
specifyin
g
whether
password
s are
encrypte
d. Value
applies to
DB2
systems
only.
Contains
the
following:

 N Not
encrypted
(default)

 Y Encrypted
MODESELECT Indicates whether

the
SYSIBM.MODESEL
ECT table is to be
used. Contains the
following:

 N Uses default
modes: IBMDB2LM
(for private
protocol) and
IBMRDB (for
DRDA). N is the
default.

 Y Searches
SYSIBM.MODESEL
ECT for mode
name.

USERNAMES Indicates whether the SYSIBM.USERNAMES
table is to be used for "come from" checking
and userid translation. Contains the
following:

 blank No translation.
 B Both inbound

and outbound
requests subject
to ID translation.

 I Inbound requests
subject to ID

 - 898 -

translation.
 O Outbound

requests subject
to ID translation.

GENERIC Indicates whether DB2
should use its real LU
name or a generic LU
name. Contains the
following:

 N Real
VTAM
LU
name. It
is the
default.

 Y Generic
LU
name.

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.MODESELECT
SYSIBM.MODESELECT assigns mode names to conversations supporting outgoing SQL requests.

Tablespace DSNDB06.SYSDDF

Indexes DSNFDX01
[unique]
(LUNAME,
AUTHID,
PLANNAME)

Column Definitions
AUTHID Authid of the SQL request. Blank is the default, which indicates

the MODENAME for the row is to apply to all authids.
PLANNAME Plan name containing the SQL request.
LUNAME LU name associated with the SQL request.
MODENAME Logon mode description name, as defined in the VTAM logon

mode table, to be used in support of the SQL request.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
SYSIBM.SYSAUXRELS

 - 899 -

SYSIBM.SYSAUXRELS contains a row for each auxiliary table (required for LOB columns). Each LOB
column requires an auxiliary table; if the LOB column exists is a partitioned tablespace, an auxiliary
table is required for each partition for each LOB column.

Tablespace DSNDB06.SYSOBJ

Indexes DSNOXX01 [non-
unique]
(TBOWNER,
TBNAME)
DSNOXX02 [non-
unique]
(AUXTBOWNER,
AUXTBNAME)

Column Definitions
TBOWNER The owner of the base table.
TBNAME Name of the base table.
COLNAME Name of the LOB column in the base table.
PARTITION The number of the partition for a partitioned tablespace;

otherwise, 0.
AUXTBOWNER The owner of the auxiliary table.
AUXTBNAME Name of the auxiliary table.
AUXRELOBID Internal identifier of the relationship between the base table and

the auxiliary table.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
SYSIBM.SYSCHECKDEP
SYSIBM.SYSCHECKDEP contains a row for each reference to a column in a check constraint.

Tablespace DSNDB06.SYSSTR

Indexes DSNSDX01
[unique]
(TBOWNER,
TBNAME,
CHECKNAME,
COLNAME)

Column Definitions
TBOWNER The owner of the table named in TBNAME.
TBNAME The table name to which this check constraint applies.
CHECKNAME The name of the check constraint.
COLNAME The name of the column referenced by the check constraint.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if

it was not.
SYSIBM.SYSCHECKS
SYSIBM.SYSCHECKS contains one row for each check constraint.

Tablespace DSNDB06.SYSSTR

Indexes DSNSCX01
[unique]
(TBOWNER,
TBNAME,
CHECKNAME)

 - 900 -

Column Definitions
TBOWNER The owner of the table named in TBNAME.
CREATOR The authid of the creator of this check constraint.
DBID Internal identifier of the database for this check constraint.
OBID Internal identifier for this check constraint.
TIMESTAMP Date and time when this check constraint was created.
RBA The log RBA when this check constraint was created.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
TBNAME The table name to which this check constraint applies.
CHECKNAME The name of the check constraint.
CHECKCONDITION The actual text of the check constraint.
SYSIBM.SYSCOLAUTH
SYSIBM.SYSCOLAUTH contains the UPDATE privileges held by DB2 users on single table columns or
view columns.

Tablespace DSNDB06.SYSDBASE

Indexes None

Column Definitions
GRANTOR A userid,

the
literal
PUBLIC,
or the
literal
PUBLIC
*. This
user
granted
update
authority
to the
GRANTE
E.

GRANTEE The
authid of
the user
who
possess
es the
privilege
s
describe
d in this
row, the
name of
a plan or
package
that
uses the
privilege
s, the

 - 901 -

literal
PUBLIC
to
indicate
that all
users
have
these
privilege
s, or the
literal
PUBLIC
* to
indicate
that all
users at
all
distribut
ed
locations
hold
these
privilege
s.

GRANTEETYPE A value
indicatin
g the
type of
GRANTE
E.
Contains
the
following
:

 P GRANTEE
is a plan.

 blank GRANTEE
is a
userid.

CREATOR The owner of
the view or
table named
in TNAME.

TNAME The view or
table name
in which the
COLNAME
indicated in
this row
exists.

TIMESTAMP An internal
timestamp
representing
when
authority
was granted.
Do not use
because it is
unreadable.

DATEGRANTED The date on

 - 902 -

which
authority
was granted
(yymmdd).
Do not
reference
this column;
use
GRANTEDTS
instead.

TIMEGRANTED The time at
which
authority
was granted
(hhmmssth).
Do not
reference
this column;
use
GRANTEDTS
instead.

COLNAME The authority
in this row
applies to
this column
name.

IBMREQD An indicator
specifying Y
if the row
was supplied
by IBM, or N
if it was not.

LOCATION Not currently
used (DB2
V3).

COLLID The
collection
name, if
GRANTEE is
a package.

CONTOKEN The
consistency
token, if
GRANTEE is
a package.

PRIVILEGE Indicates
which
privilege this
row
describes.
Contains the
following:

 R REFERENCES
privilege.

 blank UPDATE
privilege.

GRANTEDTS Timestamp
of when

 - 903 -

the GRANT
was
executed.

SYSIBM.SYSCOLDIST
SYSIBM.SYSCOLDIST contains non-uniform distribution statistics (NUDS). One row exists for each
column on which RUNSTATS was executed.

Tablespace DSNDB06.SYSSTATS

Index DSNTNX01
[nonunique]
(TBOWNER,
TBNAME, NAME)

Column Definitions
FREQUENCY The percentage (* 100) that

the value specified in
COLVALUE exists in the
column if the row will hold
statistics (V4 and previous;
not used in V5).

STATSTIME Timestamp indicating the date
and time that RUNSTATS was
executed to produce this row.

IBMREQD An indicator specifying Y if the
row was supplied by IBM, or
N if it was not.

TBOWNER The owner of the table named
in TBNAME.

TBNAME The table name to which this
statistical row applies.

NAME The column name; if
NUMCOLUMS is > 1, this
column identifies the first
column name of the set of
columns associated with the
statistics.

COLVALUE Contains the actual data of a
frequently occurring value.
Statistics are not collected for
an index on a ROWID column.

TYPE Type of statistics generated:
 C Cardinality
 F Frequent

value
CARDF Number

of
distinct
values
for the
column
group;
valid
only if
TYPE =
"C".

 - 904 -

COLGROUPCOLNO Identifies
the set
of
columns
associat
ed with
the
statistics
. For
single
column
stats,
the
column
is of
zero
length.

NUMCOLUMNS Number
of
columns
associat
ed with
the
statistics
.

FREQUENCYF The
percenta
ge (*
100) that
the
value
specified
in
COLVAL
UE
exists.
Statistics
are not
collected
for an
index on
a ROWID
column.

SYSIBM.SYSCOLDISTSTATS
SYSIBM.SYSCOLDISTSTATS contains partition-level non-uniform distribution statistics. Zero, one, or
many rows exist for the key columns of each partitioned index.

Tablespace DSNDB06.SYSSTATS

Index DSNTPX01
[nonunique]
(TBOWNER,
TBNAME, NAME,
PARTITION)

Column Definitions
FREQUENCY The percentage (x 100) that

the value specified in
COLVALUE exists in the
column if the row will hold
statistics (V4 and previous;

 - 905 -

not used in V5).
STATSTIME Timestamp indicating the date

and time that RUNSTATS was
executed to produce this row.

IBMREQD An indicator specifying Y if the
row was supplied by IBM, or
N if it was not.

PARTITION The partition number
indicating the physical
partition of the tablespace to
which this statistical row
applies.

TBOWNER The owner of the table named
in TBNAME.

TBNAME The table name to which this
statistical row applies.

NAME The column name.
COLVALUE Contains the actual value to

which the statistic contained
in the FREQUENCY column
applies. Statistics are not
collected for an index on a
ROWID column.

TYPE Type of statistics generated:
 C Cardinality
 F Frequent

value
CARDF Number of distinct values for the column group; valid only if

TYPE = "C".
COLGROUPCOLNO Identifies the set of columns associated with the statistics. For

single column stats, the column is of zero length.
NUMCOLUMNS Number of columns associated with the statistics.
FREQUENCYF The percentage (* 100) that the value specified in COLVALUE

exists. Statistics are not collected for an index on a ROWID
column.

SYSIBM.SYSCOLSTATS
SYSIBM.SYSCOLSTATS contains one row of general partition-level statistics for each column specified
to RUNSTATS.

Tablespace DSNDB06.SYSSTATS

Index DSNTCX01 [unique]
(TBOWNER,
TBNAME, NAME,
PARTITION)

Column Definitions
HIGHKEY A number generated by the RUNSTATS utility or explicitly specified by an

authorized user indicating the highest value in this column. If RUNSTATS
has not been run for this column, HIGHKEY will be blank.

HIGH2KEY A number generated by the RUNSTATS utility or explicitly specified by an
authorized user indicating the second highest value in this column. If
RUNSTATS has not been run for this column, HIGH2KEY will be blank.

 - 906 -

LOWKEY A number generated by the RUNSTATS utility or explicitly specified by an
authorized user indicating the lowest value contained in this column. If
RUNSTATS has not been run for this column, LOWKEY will be blank.

LOW2KEY A number generated by the RUNSTATS utility or explicitly specified by an
authorized user indicating the second lowest value contained in this
column. If RUNSTATS has not been run for this column, LOW2KEY will be
blank.

COLCARD A number generated by the RUNSTATS utility or explicitly specified by an
authorized user indicating the number of distinct values in this column. If
RUNSTATS has not been run for this column, COLCARD is set to -1.

STATSTIME Timestamp indicating the date and time that RUNSTATS was executed to
produce this row. If the value of STATSTIME is 0001-01-
02.00.00.000000, this indicates that an ALTER was issued to change
the length of a VARCHAR column and RUNSTATS should be run again.

IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was not.
PARTITION The partition number indicating the physical partition of the tablespace to

which this statistical row applies.
TBOWNER The owner of the table named in TBNAME.
TBNAME The table name to which this statistical row applies.
NAME The column name.
COLCARDDATA Internal use only.
SYSIBM.SYSCOLUMNS
SYSIBM.SYSCOLUMNS contains one row for every column of every table and view defined to DB2.

Tablespace DSNDB06.SYSDBASE

Index DSNDCX01
[unique]
(TBCREATOR,
TBNAME, NAME)

Column Definitions
NAME The column name.
TBNAME The table name that contains the

column identified by NAME.
TBCREATOR The owner of the view or table named

in TBNAME.
COLNO A small integer identifying the

position of the column in the table.
For example, 3 indicates the third
column in the table.

COLTYPE The data type of the column.
LENGTH The length of the column as it is

physically stored. For BLOB, CLOB,
and DBCLOB columns, LENGTH
contains 4, the actual length of the
field stored in the table; LENGTH2
contains the maximum length of the
LOB.

SCALE The scale if the column is the
DECIMAL data type; otherwise, it
contains 0.

NULLS An indicator specifying Y if the
column is nullable, or N if it is not.

 - 907 -

COLCARD For V4 and previous releases, a
number generated by the RUNSTATS
utility or explicitly specified by a
SYSADM indicating the number of
distinct values in this column. If
RUNSTATS has not been run for this
column, COLCARD is set to -1. (Not
used as of V5.)

HIGH2KEY A number generated by the
RUNSTATS utility or explicitly
specified by a SYSADM indicating the
second highest value in this column.
If RUNSTATS has not been run for this
column, HIGH2KEY is blank.

LOW2KEY A number generated by the
RUNSTATS utility or explicitly
specified by a SYSADM indicating the
second lowest value contained in this
column. If RUNSTATS has not been
run for this column, LOW2KEY is
blank.

UPDATES An indicator specifying Y if this
column is updateable, or N if it is not.

IBMREQD An indicator specifying Y if the row
was supplied by IBM, or N if it was
not.

REMARKS Documentation describing the column
as specified by the COMMENT ON
SQL statement.

DEFAULT An indicator specifying the
characteristic default values for this
column. Valid values are as follows:

 N No default
value.

 A The column is
a ROWID with
the
GENERATED
ALWAYS
clause.

 B The column
uses the
system
default based
on the data
type.

 D The column is
a ROWID with
the
GENERATED
BY DEFAULT
clause.

 S The default is
the SQL
authid of the
process.

 - 908 -

 U The default is
the USER
special
register (at
execution
time).

 Y If NULLS is Y,
the default is
NULL;
otherwise, it is
the system
default based
on the data
type.

 1 The default is
string data.

 2 The default is
a floating-
point number.

 3 The default is
a decimal
value.

 4 The default is
an integer
value.

 5 The default is
a hex string.

KEYSEQ A small integer indicating the
column's position in the
table's primary key. If the
column is not part of the
primary key, KEYSEQ is 0.

FOREIGNKEY An indicator specifying the
characteristics of character
columns. Contains the
following:

 B If the
column
can
contain bit
data.

 S If the
MIXED
DATA
installatio
n option is
YES and
the
column
contains
SBCS
data.

 Any other character indicates SBCS if the MIXED DATA
installation option is NO, or MIXED data if the MIXED DATA
installation option is YES.

 - 909 -

FLDPROC An indicator specifying Y if the column has a field procedure, or N
if it does not.

LABEL The label of the column as specified by the LABEL ON SQL
statement.

STATSTIME Timestamp indicating the date and time that RUNSTATS was
executed for the named column. If the value of STATSTIME is
0001-01-02.00.00.000000, this indicates that an ALTER was
issued to change the length of a VARCHAR column and
RUNSTATS should be run again.

DEFAULTVALUE When the DEFAULT column equals 1, 2, 3, 4, or 5,
DEFAULTVALUE contains the actual default value. This column is
applicable only for tables (that is, where the TYPE column of the
associated SYSIBM.SYSTABLES row is equal to G or T).

COLCARDF Estimated number of distinct values in the column. If RUNSTATS
has not been run for this column, COLCARD is set to -1.

COLSTATUS An indicator specifying whether the column definition is complete.
This column is blank if the column definition is complete,
otherwise it will contain the value I if it is incomplete because a
LOB tablespace, auxiliary table, or index on an auxiliary table has
not been created.

LENGTH2 Contains the maximum length of the data retrieved for the
column. For LOB columns, LENGTH2 contains the maximum
length of the LOB.

DATATYPEID Internal identifier for the data type.
SOURCETYPEID Internal identifier for the source data type. For built-in data types

SOURCETYPEID is 0.
TYPESCHEMA If the value of COLTYPE is 'DISTINCT', TYPESCHEMA contains

the name for the UDT; otherwise the value is SYSIBM.
TYPENAME If the value of COLTYPE is 'DISTINCT', TYPENAME contains the

name of the UDT; otherwise the value is the same as COLTYPE.
CREATEDTS The date and time when the column was created. If the column

was created prior to migrating to DB2 V6, CREATEDTS will
contain the value 0001-01-01.00.00.000000.

SYSIBM.SYSCONSTDEP
SYSIBM.SYSCONSTDEP contains information on columns dependent upon check constraints and user-
defined defaults.

Tablespace DSNDB06.SYSOBJ

Index DSNCCX01
[nonunique]
(BSCHEMA,
BNAME, BTYPE)

Index DSNCCX02
[nonunique]
(DTBCREATOR,
DTBNAME)

Column Definitions
BNAME The name of the object

for which the dependency
exists.

BSCHEMA The schema name for the
object specified in
BNAME.

BTYPE The type of object on

 - 910 -

which the dependency
exists.

DTBNAME The name of the table for
which the dependency
exists.

DTBCREATOR The creator name of the
table specified in
DTBNAME.

DCONSTNAME If DTYPE = C, this column
contains the name of the
check constraint; if
DTYPE = D, this column
contains the name of the
column.

DTYPE Type of object
 C check

constrai
nt

 D user-
defined
default
constan
t

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSCOPY
SYSIBM.SYSCOPY contains information on the execution of the DB2 COPY, QUIESCE, LOAD, RECOVER,
and REORG utilities. DB2 uses this information to manage data recovery scenarios.

Tablespace DSNDB06.SYSCOPY

Index DSNUCH01
[nonunique]
(DBNAME,
TSNAME,
STARTRBA,
TIMESTAMP)

Index DSNUCX01
[nonunique]
(DSNAME)

Column Definitions
DBNAME The database name.
TSNAME The tablespace or index space

name.

 - 911 -

DSNUM The tablespace data set
number: the partition number
of partitioned tablespaces, 1
for non-partitioned tablespaces
and index spaces using a
single data set, 0 for the entire
partitioned tablespace or index
space, or the data set number
of large non-partitioned
tablespaces residing in more
than one data set.

ICTYPE The type of utility information
stored in this row. Refer to
Chapter 33, "Miscellaneous
Utilities," for a listing of valid
ICTYPE values.

ICDATE The date (yymmdd) when this
row was added to SYSCOPY.
Do not reference this column;
use TIMESTAMP instead.

START_RBA A 48-bit positive integer
containing the LRSN of point in
the DB2 log. (The LRSN is the
RBA if you're not using data
sharing.)

FILESEQNO The sequence number of the
tape for this copy.

DEVTYPE The device type for the copy
as specified in the COPY
parameters.

IBMREQD An indicator specifying Y if the
row was supplied by IBM, or N
if it was not.

DSNAME Contains the data set name if
ICTYPE is I, F, or P (RECOVER
TOCOPY only). For other
ICTYPEs, DSNAME contains
the database and tablespace;
or database and index space
(or is blank for pre-V4 rows).

ICTIME The time (hhmmss) when this
row was added to SYSCOPY.
Do not reference this column;
use TIMESTAMP instead.

SHRLEVEL The share level used when
creating full and incremental
image copies (ICTYPE = F or
I). Valid values are as follows:

 C SHRLEVEL
CHANGE

 R SHRLEVEL
REFERENC
E

 blank Not
applicable;
row does
not

 - 912 -

describe
an image
copy.

DSVOLSER A list of the
volume serial
numbers used
by the image
copy data set.
When more
than one
volume exists,
the volume
serial numbers
are strung
together in this
column and
separated by
commas.

TIMESTAMP The date and
time when this
row was added
to SYSCOPY.

ICBACKUP An indicator
specifying the
type of image
copy in this
row:

 LB LOCALSITE
backup copy

 RB RECOVERYSITE
backup copy

 RP RECOVERYSITE
primary copy

 blank LOCALSITE
primary copy

ICUNIT Media
type
used
for the
image
copy:

 D DASD
 T Tape
 blank Not

DASD
or
tape,
row
genera
ted
prior to
DB2
V2.3;
or row
does
not

 - 913 -

pertain
to an
image
copy.

STYPE When ICTYPE="T", valid STYPE
indicates which type of copy was
terminated by TERM UTIL or START
DATABASE ACCESS(FORCE);
values are as follow:

 F COPY FULL
YES

 I COPY FULL
NO

 When
ICTYPE="F
", valid
values are
as follows:

 C DFSMS
concurrent
copy

 R LOAD
REPLACE(Y
ES)

 S LOAD
REPLACE(N
O)

 W REORG
LOG(NO)

 X REORG
LOG(YES)

 blank DB2 image
copy

 When ICTYPE="P", the only
valid value is the following:

 L RECOVER
TORBA
LOGONLY

 When
ICTYPE="Q
", valid
values are
as follows:

 W WRITE(YES)
in effect
when
QUIESCE
was taken.

 When ICTYPE="A", the length of a VARCHAR column in the
table was altered to be longer.

 When ICTYPE="R", "S", "W", or "X", and the operation is
resetting REORG pending status the valid value is "A".

 For any other ICTYPE, STYPE is blank.
PIT_RBA Contains the LRSN for the point in the DB2 log (for RECOVER

TOCOPY and RECOVER TORBA rows). The LRSN is the RBA
when data sharing is not being used.

 - 914 -

GROUP_MEMBER The DB2 data-sharing member name of the DB2 subsystem
that performed the operation; or blank if the DB2 subsystem
was not in a data-sharing environment.

OTYPE Type of the object, valid values are:
 I index space
 T tablespace
LOWDSNUM Partition

number
of the
lowest
partition
in the
range.

HIGHDSNUM Partition
number
of the
highest
partition
in the
range.

SYSIBM.SYSDATABASE
SYSIBM.SYSDATABASE contains information about every DB2 database.

Tablespace DSNDB06.SYSDBAUT

Index DSNDDH01 [unique]
(NAME)

Index DSNATX02
[nonunique]
(GROUP_MEMBER)

Column Definitions
NAME The database

name.
CREATOR The owner of the

database named
in NAME.

STGROUP The name of the
default storage
group specified in
the CREATE
DATABASE DDL.

BPOOL The name of the
default bufferpool
specified when
this database was
created; blank for
a system
tablespace.

DBID An internal
identifier
assigned to this
database by DB2.

IBMREQD An indicator
specifying the

 - 915 -

following:
 Y Row

was
supplie
d by
IBM.

 N Not
supplie
d by
IBM.

 E Not
supplie
d by
IBM;
V2.3
depend
ent.

 G Not
supplie
d by
IBM; V4
depend
ent.

CREATEDBY The
primary
authoriza
tion ID of
the
individual
who
created
this
database
.

ROSHARE No
longer
used as
of DB2
V6. In
releases
prior to
V6,
ROSHARE
containe
d an
indicator
specifyin
g
whether
the
database
is shared
with
another
DB2
subsyste
m:

 O Shared

 - 916 -

database
with local
DB2 as
the
owner.

 R Shared
database
with local
DB2 as
read-only
user.

 blank Database
is not
shared.

TIMESTAMP No longer used as of
DB2 V6. In releases prior
to V6, TIMESTAMP
contained the date and
time when the database
was made shareable on
the owning system.

 As of V6, for all rows, this
column will contain the
value 0001-01-01-
00.00.00.000000.

TYPE The type of the
database:

 W Work
file
databas
e.

 blank Not a
work
file
databas
e.

GROUP_MEMBER The DB2 data-sharing
member name of the DB2
subsystem that uses this
work file database; or
blank if the work file
database was not created
in a data-sharing
environment or if the
database is not a work
file database.

CREATEDTS The date and time when
the database was
created.

ALTEREDTS The date and time of the
last ALTER for this
database. ALTEREDTS
equals CREATEDTS when
no ALTER has been
issued.

 - 917 -

ENCODING_SCHEME Default encoding scheme
for the database. Valid
values are as follows:

 A ASCII
 E EBCDIC
 blank For

DSNDB0
4 and
work
files

SBCS_CCSID Default
SBCS
CCSID
.

DBCS_CCSID Default
DBCS
CCSID
.

MIXED_CCSID Default
mixed
CCSID
.

INDEXBP The
name
of the
default
bufferp
ool for
indexe
s
specifi
ed
when
this
databa
se was
create
d.

SYSIBM.SYSDATATYPES
SYSIBM.SYSDATATYPES contains the user-defined distinct types defined to the DB2 subsystem.

Tablespace DSNDB06.SYSOBJ

Index DSNODX01
[unique]
(SCHEMA, NAME)

Index DSNODX02
[nonunique]
(DATATYPEID)
[DESCENDING]

Column Definitions
SCHEMA Schema name for the

UDT.
OWNER Owner of the UDT.
NAME Name of the UDT.

 - 918 -

CREATEDBY Authid of the person
who created the UDT.

SOURCESCHEMA Schema name of the
source data type.

SOURCETYPE Name of the source
data type.

METATYPE The class of the data
type; T if a distinct type.

DATATYPEID Internal identifier of the
UDT.

SOURCETYPEID Internal identifier of the
source data type.

LENGTH Maximum length of the
UDT; or precision for a
UDT defined on a
source data type of
DECIMAL.

SCALE The scale for a UDT
defined on a source
data type of DECIMAL.

SUBTYPE Subtype of the UDT
(based on the subtype
of a source data type).
Valid values are as
follows:

 B FOR
BIT
DATA

 S FOR
SBCS
DATA

 M FOR
MIXED
DATA

 blank Source
is not
of a
charact
er data
type

CREATEDTS The date and time when the UDT was created.
ENCODING_SCHEME The encoding scheme for the UDT. Valid values are A for ASCII or

E for EBCDIC.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
REMARKS The UDT comments as specified by the COMMENT ON statement.
SYSIBM.SYSDBAUTH
SYSIBM.SYSDBAUTH contains database privileges held by DB2 users.

Tablespace DSNDB06.SYSDBAUT

Index DSNADH01
[nonunique]
(GRANTEE, NAME)

 - 919 -

Index DSNADX01
[nonunique]
(GRANTOR, NAME)

Column Definitions
GRANTOR Authid of the user who

granted the privileges
described in this row.

GRANTEE The authid of the user
who possesses the
privileges described in
this row, the name of a
plan that uses the
privileges, or the literal
PUBLIC to indicate that
all users have these
privileges.

NAME The database name.
TIMESTAMP The date and time (in

the internal format)
when the privileges
were granted.

DATEGRANTED The date when the
authority was granted
(yymmdd). Do not
reference this column;
use GRANTEDTS
instead.

TIMEGRANTED The time when the
authority was granted
(hhmmssth). Do not
reference this column;
use GRANTEDTS
instead.

GRANTEETYPE Internal use only.
AUTHHOWGOT The authorization level

of the GRANTOR:
 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicabl
e

CREATETABAUTH The
privilege
to create
tables in
the
named
databas
e:

 G GRANTEE

 - 920 -

holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CREATETSAUTH The
privilege
to create
tablespa
ces in
the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DBADMAUTH The
DBADM
privilege
on the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DBCTRLAUTH The
DBCTRL
privilege
on the
named

 - 921 -

databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DBMAINTAUTH The
DBMAIN
T
privilege
on the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DISPLAYDBAUTH The
DISPLA
Y
DATABA
SE
privilege
on the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

 - 922 -

DROPAUTH The
privilege
to alter
or drop
the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

IMAGCOPYAUTH The privilege to
execute the COPY,
MERGECOPY, MODIFY,
and QUIESCE utilities
for the named
database:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

LOADAUTH The
privilege
to
execute
the
LOAD
utility for
the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the

 - 923 -

privilege.
 blank GRANTEE

does not
hold the
privilege.

REORGAUTH The
privilege
to
execute
the
REORG
utility for
the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

RECOVERDBAUTH Privilege
to
execute
the
RECOVE
R and
REPORT
utilities
for the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

REPAIRAUTH The
privilege
to
execute
the

 - 924 -

REPAIR
and
DIAGNO
SE
utilities
for the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

STARTDBAUTH The
privilege
to issue
the
START
comman
d for the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

STATSAUTH The
privilege
to
execute
the
RUNSTA
TS and
CHECK
utilities
for the
named
databas
e:

 G GRANTEE
holds the

 - 925 -

privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

STOPAUTH The
privilege
to issue
the
STOP
comman
d for the
named
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

IBMREQD An
indicator
specifying
Y if the row
was
supplied
by IBM, or
N if it was
not.

GRANTEDTS Timestamp
when the
GRANT
was
executed.

SYSIBM.SYSDBRM
SYSIBM.SYSDBRM contains DBRM information only for DBRMs bound into DB2 plans.

Tablespace DSNDB06.SYSPLAN

Indexes None

Column Definitions
NAME The name of the Database Request Module bound into the plan

identified in the PLNAME column.

 - 926 -

TIMESTAMP The date and time (in the internal format) when the privileges
were granted.

PDSNAME The named DBRM is a member of the partitioned data set
named in this column.

PLNAME The plan name.
PLCREATOR The owner of the plan named in PLNAME.
PRECOMPTIME The time the DBRM was precompiled [HHMMSSTH] unless the

LEVEL precompiler option was specified.
PRECOMPDATE The date the DBRM was precompiled [YYMMDD], unless the

LEVEL precompiler option was specified.
QUOTE An indicator specifying Y if the SQL escape character is a

quotation mark, or N if it is an apostrophe.
COMMA An indicator specifying Y if the SQL decimal point is a comma,

or N if it is a period.
HOSTLANG An indicator specifying the host language used for the DBRM:

 B BAL
(assembler)

 C VS/COBOL
 D C
 F FORTRAN
 P PL/I
 2 COBOL II
 3 IBM

COBOL
 4 C++
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was

not.
CHARSET An indicator specifying K if the Katakana character set was specified

at precompile time, or A if alphanumeric was used.
MIXED An indicator specifying Y if the mixed precompiler option was

specified, or N if it was not.
DEC31 An indicator specifying Y if the 31-byte decimal precompiler option

was specified, or blank if it was not.
VERSION The version specified at precompile time.
PRECOMPTS Timestamp when the DBRM was compiled.
SYSIBM.SYSDUMMY1
SYSIBM.SYSDUMMY contains a single row. It is designed to be used in SQL statements in which a table
reference is needed but the table contents are unimportant.

Tablespace DSNDB06.SYSSTR

Indexes None

Column Definitions
IBMREQD An

indicat
or
specif
ying Y
if the
row

 - 927 -

was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSFIELDS
SYSIBM.SYSFIELDS contains information on field procedures implemented for DB2 tables.

Tablespace DSNDB06.SYSDBASE

Indexes None

Column Definitions
TBCREATOR The owner of the table named in TBNAME.
TBNAME The name of the table that contains the column specified in NAME.
COLNO The position of the column in the table.
NAME The column name.
FLDTYPE The data type of the column.
LENGTH The physical length of the column, not including VARCHAR length

fields and null indicators.
SCALE The scale of columns when FLDTYPE is DECIMAL, or 0 if FLDTYPE is

not DECIMAL.
FLDPROC The name of the field procedure.
WORKAREA The size of the work area used by the FLDPROC.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was

not.
EXITPARML The length of the parameter list used by the FLDPROC.
PARMLIST The actual parameter list used by the field procedure named in

FLDPROC.
EXITPARM The parameters used by the field procedure named in FLDPROC.
SYSIBM.SYSFOREIGNKEYS
SYSIBM.SYSFOREIGNKEYS contains information about all columns participating in foreign keys.

Tablespace DSNDB06.SYSDBASE

Indexes None

Column Definitions
CREATOR The owner of the table named in TBNAME.
TBNAME The table name containing the foreign key column.
RELNAME The referential constraint name.
COLNAME The column name that participates in the foreign key.
COLNO The sequence of the column in the table definition.
COLSEQ The sequence of the column in the foreign key definition.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N

if it was not.
SYSIBM.SYSINDEXES
SYSIBM.SYSINDEXES contains information about every DB2 index.

Tablespace DSNDB06.SYSDBASE

Index DSNDXX01
[unique]

 - 928 -

(CREATOR, NAME)

Index DSNDXX02
[unique]
(DBNAME,
INDEXSPACE)

Index DSNDXX03
[nonunique]
(TBCREATOR,
TBNAME, CREATOR,
NAME)

Links DSNDT#DX
REFERENCES
SYSIBM.SYSTABLES

Column Definitions
NAME The

index
name.

CREATOR The
owner of
the
index
named
in NAME.

TBNAME The
table
name for
which
the
index
was
created.

TBCREATOR The
owner of
the table
named
in
TBNAME.

UNIQUERULE Describe
if the
index is
unique:

 D Not
unique;
duplicat
es are
allowed.

 C Unique
and
used to
enforce
a
UNIQUE
constrai
nt.

 G Unique
for
ROWID

 - 929 -

GENERA
TED BY
DEFAUL
T.

 N UNIQUE
WHERE
NOT
NULL.

 P Unique
and
supports
a
primary
key.

 R Unique
and
used to
enforce
uniquen
ess of a
non-
primary
parent
key.

 U Unique
(but no
UNIQUE
constrai
nt).

COLCOUNT The number of
columns defined for
the key.

CLUSTERING Y if the index was
created with the
CLUSTER option, or N
if it was not.

CLUSTERED Y if the table is more
than 95 percent
clustered by the key
of this index, or N if it
is not. The column
can be blank if not
applicable (such as
for an auxiliary table).

DBID An internal database
identifier.

OBID An internal object
identifier for the
index.

ISOBID An internal object
identifier for the index
space.

DBNAME The database name
containing this index.

INDEXSPACE An 8-byte index
space name. It differs

 - 930 -

from the index name
when the index name
is greater than 8
bytes, or when more
than one index has
the same name (with
a different CREATOR)
in the same
database.

FIRSTKEYCARD For V4 and prior
releases, a value
indicating the number
of distinct values in
the first column of the
index key, or -1 if
RUNSTATS has not
been run. Value is an
estimate if updated
while collecting
statistics on a single
partition only. (Not
used for V5.)

FULLKEYCARD For V4 and prior
releases, a value
indicating the number
of distinct values in
the entire index key,
or -1 if RUNSTATS
has not been run.
(Not used for V5.)

NLEAF The number of active
leaf pages, or -1 if
RUNSTATS has not
been run.

NLEVELS The number of levels
in the index b-tree
structure, or -1 if
RUNSTATS has not
been run.

BPOOL The bufferpool name
specified when this
index was created.

PGSIZE The size of the index
subpages (for type 1
indexes only):

 256 16
subpa
ges

 512 8
subpa
ges

 1024 4
subpa
ges

 2048 2
subpa
ges

 - 931 -

 1 subpage
ERASERULE Y if the index was created with the ERASE YES option, or N if it was

created with ERASE NO.
DSETPASS No longer used as of DB2 V6. In pre-V6 subsystems, DSETPASS was

used to store the index data set password (only for indexes created
using a STOGROUP).

CLOSERULE Y if the index was created with the CLOSE YES option, or N if it was
created with CLOSE NO.

SPACE The space in kilobytes allocated for this index, or 0 if STOSPACE has
not been run or for indexes not created using a STOGROUP.
Additionally, the SPACE column will be 0 if the index was migrated or
deleted by HSM, even if STOSPACE was executed.

IBMREQD An indicator specifying whether the row was supplied by IBM:
 Y Yes, row

was
supplied
by IBM.

 N No.
 C No; V2.1

depende
nt.

 D No; V2.2
depende
nt.

 E No; V2.3
depende
nt.

 G No; V4
depende
nt.

 I No; V6
depende
nt.

CLUSTERRATIO Indicates the percentage
of table rows that are in
clustered order by this
index key, or 0 if
RUNSTATS has not been
run. Will be set to -2 if
the index is on an
auxiliary table.

CREATEDBY The primary authorization
ID of the individual who
created this index.

IOFACTOR Internal DB2 use only.
PREFETCHFACTOR Not currently used.
STATSTIME Timestamp indicating the

date and time that
RUNSTATS was executed
for the named index.

INDEXTYPE The type of index:

 - 932 -

 blank Type 1
index
(for pre-
V6 only)

 2 Type 2
index

FIRSTKEYCARDF A value indicating the number of distinct values in the first column
of the index key, or -1 if RUNSTATS has not been run. Value is
an estimate if updated while collecting statistics on a single
partition only.

FULLKEYCARDF A value indicating the number of distinct values in the entire index
key, or -1 if RUNSTATS has not been run.

CREATEDTS The date and time when the index was created.
ALTEREDTS The date and time of the last ALTER for this index. ALTEREDTS

equals CREATEDTS when no ALTER has been issued.
PIECESIZE Maximum size of the data set storage piece (for non-partitioned

indexes only).
COPY Indicates whether the COPY YES clause was specified for this

index.
COPYLRSN If the index is defined as COPY YES, this column contains the

RBA or LRSN (data sharing) when the index was created as, or
altered to COPY YES. If the index is defined as COPY NO, this
column contains hex zeroes. If the index was altered from COPY
YES to COPY NO, this column contains the RBA or LRSN when
the index was altered to COPY YES.

CLUSTERRATIOF When multiplied by 100, indicates the percentage of table rows
that are in clustered order by this index key, or 0 if RUNSTATS
has not been run. Will be set to -2 if the index is on an auxiliary
table.

SYSIBM.SYSINDEXPART
SYSIBM.SYSINDEXPART contains information about the physical structure and storage of every DB2
index.

Tablespace DSNDB06.SYSDBASE

Index DSNDRX01
[unique]
(IXCREATOR,
IXNAME,
PARTITION)

Column Definitions
PARTITION The partition number for

partitioned indexes, or 0 if the
index is not partitioned.

IXNAME The index name.
IXCREATOR The owner of the index

named in IXNAME.
PQTY The primary space quantity,

in 4KB pages, specified when
the index was created.

SQTY The secondary space
quantity, in 4KB pages,
specified when the index was
created. If the value does not
fit in this column, SQTY will be

 - 933 -

set to 32767 and SECQTYI
will be set to the secondary
space quantity.

STORTYPE E for explicit VCAT-defined
indexes, or I for implicit
STOGROUP-defined indexes.

STORNAME The storage group name for
STOGROUP-defined indexes,
or a VCAT identifier for VCAT-
defined indexes.

VCATNAME The name of the VCAT used
to allocate the index,
regardless of how the index
was defined (STOGROUP or
VCAT).

CARD For V4 and prior releases, the
number of rows this index
references, or -1 if
RUNSTATS has not been run.
(Not used as of V5.)

FAROFFPOS For V4 and prior releases, the
number of rows located "far
off" from their optimal
position, or -1 if RUNSTATS
has not been run. (Not used
as of V5.)

LEAFDIST The average number of
pages (multiplied by 100)
between consecutive index
leaf pages, or -1 if
RUNSTATS has not been run.

NEAROFFPOS For V4 and prior releases, the
number of rows located "near
off" from their optimal
position, or -1 if RUNSTATS
has not been run. (Not used
as of V5.)

IBMREQD An indicator specifying Y if
the row was supplied by IBM,
or N if it was not.

LIMITKEY The high key value used to
limit partitioned indexes, or 0
if the index is not partitioned.

FREEPAGE The number of consecutive
pages to be loaded before
loading a blank page, or 0 for
no free pages.

PCTFREE The percentage of each page
(or leaf subpage) to leave
free at load time.

SPACE The space in kilobytes
allocated for this index,
partition or 0 if STOSPACE
has not been run or for
indexes not created using a
STOGROUP. Additionally, the
SPACE column will be 0 if the

 - 934 -

index was migrated or
deleted by HSM, even if
STOSPACE was executed.

STATSTIME Timestamp indicating the
date and time that RUNSTATS
was executed for the named
index partition.

INDEXTYPE Not currently used.
GBPCACHE Group bufferpool cache

option used:
 blank Only

changed
pages are
cached.

 A Changed
and
unchange
d pages
are
cached in
the group
bufferpool
.

 N No data is
cached in
the group
bufferpool
.

FAROFFPOSF The number of
rows located "far
off" from their
optimal position,
or -1 if
RUNSTATS has
not been run. Not
applicable for
auxiliary tables.

NEAROFFPOSF The number of
rows located
"near off" from
their optimal
position, or -1 if
RUNSTATS has
not been run. Not
applicable for
auxiliary tables.

CARDF The number of
rows this index
(or partition)
references, or -1
if RUNSTATS has
not been run.

SECQTY1 The secondary
space quantity, in
4KB pages,
specified when

 - 935 -

the index was
created.

IPREFIX Not currently
used.

ALTEREDTS The date and
time of the last
ALTER for this
index group. If
the index has not
been altered, the
value is 0001-
01-
01.00.00.0000
00.

SYSIBM.SYSINDEXSTATS
SYSIBM.SYSINDEXSTATS contains one row of partition-level statistics for each index partition.

Tablespace DSNDB06.SYSSTATS

Index DSNTXX01 [unique]
(OWNER, NAME,
PARTITION)

Column Definitions
FIRSTKEYCARD A value indicating the number of distinct values in the first column of

the index key for the partition, or -1 if RUNSTATS has not been run.
FULLKEYCARD A value indicating the number of distinct values in the entire index key

for the partition, or -1 if RUNSTATS has not been run.
NLEAF The number of active leaf pages, or -1 if RUNSTATS has not been run.
NLEVELS The number of levels in the index b-tree structure, or -1 if RUNSTATS

has not been run.
IOFACTOR Not currently used (DB2 V6).
PREFETCHFACTOR Not currently used (DB2 V6).
CLUSTERRATIO A number indicating the percentage of table rows in clustered order by

this index key, or 0 if RUNSTATS has not been run.
STATSTIME Timestamp indicating the date and time that RUNSTATS was executed

to produce this row.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was

not.
PARTITION The partition number indicating the physical partition of the index to

which this statistical row applies.
OWNER The owner of the index named in NAME.
NAME The index name to which this statistical row applies.
KEYCOUNT Total number of rows in the partition.
FIRSTKEYCARDF A value indicating the number of distinct values in the first column of

the index key for the partition, or -1 if RUNSTATS has not been run.
FULLKEYCARDF A value indicating the number of distinct values in the entire index key

for the partition, or -1 if RUNSTATS has not been run.
KEYCOUNTF Total number of rows in the index partition.
CLUSTERRATIOF A number, when multiplied by 100, indicating the percentage of table

rows in clustered order by this index key for the partition, or 0 if
RUNSTATS has not been run.

SYSIBM.SYSKEYS
SYSIBM.SYSKEYS contains information about every column of every DB2 index.

 - 936 -

Tablespace DSNDB06.SYSDBASE

Indexes DSNDKX01 [unique]
(IXCREATOR,
IXNAME, COLNAME)

Column Definitions
IXNAME The index name.
IXCREATOR The owner of the index named in IXNAME.
COLNAME The column name.
COLNO The sequence of the column in the table definition.
COLSEQ The sequence of the column in the index key definition.
ORDERING A for an index key column ordered in ascending sequence, or D

if the sequence is descending.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if

it was not.
SYSIBM.SYSLINKS
SYSIBM.SYSLINKS contains information about the table-to-table links that make up the physical
structure and storage of the DB2 Catalog. Links are internal structures similar to RI relationships. Not all
catalog tables use links.

Tablespace DSNDB06.SYSDBASE

Indexes None

Links DSNDR#DL
REFERENCES
SYSIBM.SYSRELS

Column Definitions
CREATOR The owner of the dependent

table named in TBNAME.
TBNAME The dependent table name

for this link.
LINKNAME The name of this link.
PARENTNAME The parent table name for

this link.
PARENTCREATOR The owner of the parent

table named in
PARENTNAME.

CHILDSEQ A number indicating the
clustering order of the
dependent table in the parent
table.

DBNAME The database name
containing this link.

DBID The internal database
identifier.

OBID The internal object identifier
assigned to this link by DB2.

COLCOUNT The number of columns
defined for the link.

INSERTRULE An indicator specifying how
rows will be inserted into the

 - 937 -

DB2 Catalog tables for this
link:

 F FIRST
 L LAST
 O ONE
 U UNIQUE

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSLOBSTATS
SYSIBM.SYSLOBSTATS contains statistics information for LOB tablespaces.

Tablespace DSNDB06.SYSSTATS

Index DSNLNX01 [unique]
(DBNAME, NAME)

Column Definitions
STATSTIME Date and

time
RUNSTATS
was run to
populate
this row.

AVGSIZE The average
size of a
LOB in the
LOB
tablespace
(in bytes).

FREESPACE Number of
pages of
free space
in the LOB
tablespace.

ORGRATIO Organization
ratio of the
LOB
tablespace.
A value of 1
indicates
perfect
organization
and the
greater the
value
exceeds 1,
the less
organized

 - 938 -

the LOB
tablespace
is.

DBNAME Database
name.

NAME LOB
tablespace
name.

IBMREQD An indicator
specifying Y
if the row
was
supplied by
IBM, or N if it
was not.

SYSIBM.SYSPACKAGE
SYSIBM.SYSPACKAGE contains information on DB2 packages.

Tablespace DSNDB06.SYSPKAGE

Index DSNKKX01 [unique]
(LOCATION,
COLLID, NAME,
VERSION)

Index DSNKKX02 [unique]
(LOCATION,
COLLID, NAME,
CONTOKEN)

Column Definitions
LOCATION Blank.
COLLID The collection name of the package; for trigger

packages, this is the name of the schema.
NAME The package name.
CONTOKEN The consistency token for the package.
OWNER The owner specified for the package named in

NAME. For a trigger package, the owner of the
trigger.

CREATOR The creator of the package named in NAME. Differs
from OWNER in that this is the primary authorization
ID of the user who binds the package. For a trigger
package, the authid (static) or plan or package
owner (dynamic) that created the trigger.

TIMESTAMP The date and time when the package was created.
BINDTIME The time that the package was bound (hhmmssth).
QUALIFIER A qualifier to be used for all tables, views,

synonyms, and aliases referenced in the program.
PKSIZE The size of the package base section (in bytes).
AVGSIZE The average size of the sections of the package

containing DML (in bytes).
SYSENTRIES The number of enabled/disabled entries for this

package (as recorded in SYSIBM.SYSPKSYSTEM).
VALID An indicator specifying the state of the package:

 - 939 -

 A An object that the
plan depends on has
been altered; rebind
is not required.

 H Table (or base table
of a view) description
was ALTERed
invalidating the
package.

 N The plan must first
be rebound.

 Y The plan can be run
without rebinding.

OPERATIVE Y if the package can be
allocated, or N if it cannot.

VALIDATE Specifies when validity
checking will be
accomplished:

 B Checking
performed
at BIND
time.

 R Checking
performed
at RUN
time.

ISOLATION Isolation
level for the
plan:

 R Repeatable
Read.

 S Cursor
Stability.

 T Read
Stability.

 U Uncommitted
Read.

 blank Default to the
isolation level
of the plan
into which
this package
is bound.

RELEASE An
indicator
specifying
when
resources
for this
package
will be
released:

 C Resources

 - 940 -

are
released
at each
COMMIT
point.

 D Resources
not
released
until the
plan is
deallocate
d.

 blank Default to
the
release
level of the
plan into
which this
package is
bound.

EXPLAIN An indicator specifying Y if the package was bound with EXPLAIN
YES, or N if it was bound with EXPLAIN NO.

QUOTE An indicator specifying Y if the SQL escape character is a
quotation mark, or N if it is an apostrophe.

COMMA An indicator specifying Y if the SQL decimal point is a comma, or N
if it is a period.

HOSTLANG An indicator specifying the host language used for the DBRM for this
package:

 B BAL
(assembler)

 C VS/COBOL
 D C
 F FORTRAN
 P PL/I
 2 VS COBOL

II
 3 IBM

COBOL
 4 C++
 blank Remote

bound
package or
trigger
package

CHARSET An indicator specifying K if the Katakana
character set was used at precompile time,
or A if alphanumeric was used.

MIXED An indicator specifying Y if the mixed
precompiler option was used, or N if it was
not.

DEC31 An indicator specifying Y if the 31-byte
decimal precompiler option was used, or N if

 - 941 -

it was not.
DEFERPREP Y if the package was bound with

DEFER(PREPARE), or N if it was bound with
NODEFER(PREPARE).

SQLERROR An indicator specifying the SQL error option
chosen at bind time:

 C CONTINUE on
error

 N NOPACKAGE

REMOTE An
indicat
or
specifyi
ng the
packag
e
source:

 C Created
by
BIND
COPY
comma
nd.

 N Created
from a
local
BIND
PACKAG
E
comma
nd.

 Y Created
from a
remote
BIND
PACKAG
E
comma
nd.

PCTIMESTAMP Indicates the date and
time when the program
was precompiled.

IBMREQD An indicator specifying
whether the row was
supplied by IBM:

 Y Yes, row
was
supplied
by IBM.

 N No.
 E No; V2.3

depende
nt.

 F No; V3
depende

 - 942 -

nt.
 G No; V4

depende
nt.

 H No; V5
depende
nt.

 I No; V6
depende
nt.

VERSION The
package
version;
blank for
trigger
packages.

PDSNAME The DBRM
for the
package
named by
NAME is a
member of
the
partitioned
data set
named in
this
column. For
remote
packages,
PDSNAME
contains an
identifier for
the remote
location.

DEGREE The degree
of
parallelism
chosen for
this
package:

 ANY Bound as
DEGREE(AN
Y).

 1 Bound as
DEGREE(1)
or default.

 blank Migrated
from a prior
release.

GROUP_MEMBER The DB2 data-
sharing
member name
of the DB2
subsystem that
performed the

 - 943 -

most recent
bind for this
package; or
blank if DB2
subsystem was
not in a DB2
data-sharing
environment
when the bind
was performed.

DYNAMICRULES Indicates the
DYNAMICRULE
S option used
to BIND the
package:

 B BIND
 D DEFINEBIND
 E DEFINERUN
 H INVOKEBIND
 I INVOKERUN
 R RUN
 blank DYNAMICRULES

not specified for
the package.

REOPTVAR Indicator
specifyin
g if
access
path is to
be
determin
ed again
at
runtime
using
explicit
values
for host
variables
or
paramete
r
markers.
Valid
values
are as
follows:

 N No,
access
path
determine
d at bind
time.

 Y Yes,
access
path may
be
redetermi

 - 944 -

ned at
runtime.

DEFERPREPARE Indicator specifying
whether PREPARE is
deferred until OPEN.
Valid values are as
follows:

 N No,
PREPA
RE is
not
deferre
d.

 Y Yes,
PREPA
RE is
deferre
d.

 blank Bind
option
not
specifie
d;
inherite
d from
plan.

KEEPDYNAMIC Indicator specifying
whether dynamic
statements are to be
kept past a commit
point. Y = yes; N = no.

PATHSCHEMAS The contents of the SQL
path for the BIND or
REBIND that bound this
package.

TYPE Type of package; a
value of "T" indicates a
trigger package, blank
indicates a normal
package.

DBPROTOCOL Indicator specifying
whether remote access
using three part names
used private protocol or
DRDA. Valid values are:

 D DRDA
 P DB2

private
protoco
l

FUNCTIONTS Date
and time
when
the
function
was

 - 945 -

resolved
.

OPTHINT Contains
the
value of
the
OPTHIN
T BIND
option;
blank if
no hints.

SYSIBM.SYSPACKAUTH
SYSIBM.SYSPACKAUTH contains the privileges held by DB2 users on packages.

Tablespace DSNDB06.SYSPKAGE

Index DSNKAX01
[nonunique]
(GRANTOR,
LOCATION,
COLLID, NAME)

Index DSNKAX02
[nonunique]
(GRANTEE,
LOCATION,
COLLID, NAME,
BINDAUTH,
COPYAUTH,
EXECUTEAUTH)

Index DSNKAX03
[nonunique]
(LOCATION,
COLLID, NAME)

Column Definitions
GRANTOR The

authid of
the user
who
granted
the
privilege
s
describe
d in this
row.

GRANTEE The
authid of
the user
who
possess
es the
privilege
s
describe
d in this
row, the
name of
a plan
that
uses the
privilege

 - 946 -

s, or the
literal
PUBLIC
to
indicate
that all
users
have
these
privilege
s.

LOCATION The
package
location.

COLLID The
collectio
n name.

NAME The
package
name.

CONTOKEN The
consiste
ncy
token for
the
package
.

TIMESTAMP The date
and time
that
these
privilege
s were
granted.

GRANTEETYPE A value
indicatin
g the
type of
GRANTE
E:

 P GRANTEE
is a plan.

 blank GRANTEE
is a
userid.

AUTHHOWGOT The authorization level
of the GRANTOR:

 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicabl
e

 - 947 -

BINDAUTH The
privilege
to BIND
or
REBIND
the
named
package
:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

COPYAUTH The
privilege
to COPY
the
named
package
:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

EXECUTEAUTH The
privilege
to
execute
the
named
package
:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 - 948 -

 blank GRANTEE
does not
hold the
privilege.

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSPACKDEP
SYSIBM.SYSPACKDEP contains a cross-reference of DB2 objects on which each given package is
dependent.

Tablespace DSNDB06.SYSPKAGE

Index DSNKDX01
[nonunique]
(DLOCATION,
DCOLLID, DNAME,
DCONTOKEN)

Index DSNKDX02
[nonunique]
(BQUALIFIER,
BNAME, BTYPE)

Column Definitions
BNAME The name of the object on which the package depends.
BQUALIFIER A qualifier for the object named in BNAME. If BTYPE is equal

to R, BCREATOR is a database name; otherwise, it is the
owner of the object named in BNAME.

BTYPE Type of object named in BNAME:
 A Alias
 F User-

defined
function or
cast
function

 I Index
 O Stored

procedure
 P Partitioned

Tablespace
 R Tablespace
 S Synonym
 T Table
 V View

 - 949 -

DLOCATION The location of the package.
DCOLLID The name of the collection.
DNAME The name of the package.
DCONTOKEN The consistency token for the package.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if

it was not.
DOWNER Package owner.
DTYPE Type of package; a value of "T" indicates a trigger package,

blank indicates a normal package.
SYSIBM.SYSPACKLIST
SYSIBM.SYSPACKLIST lists the DB2 packages that have been bound into application plans.

Tablespace DSNDB06.SYSPKAGE

Index DSNKLX01
[nonunique]
(LOCATION,
COLLID, NAME)

Index DSNKLX02 [unique]
(PLANNAME,
SEQNO, LOCATION,
COLLID, NAME)

Column Definitions
PLANNAME The plan name.
SEQNO A sequence number used to identify the order of the packages in the

package list for this plan.
LOCATION The location of the package.
COLLID The name of the collection.
NAME The name of the package. If this column contains an asterisk (*), the

entire collection applies.
TIMESTAMP The date and time when this package list was created.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was

not.
SYSIBM.SYSPACKSTMT
SYSIBM.SYSPACKSTMT contains the SQL statements for every DB2 package.

Tablespace DSNDB06.SYSPKAGE

Index DSNKSX01 [unique]
(LOCATION,
COLLID, NAME,
CONTOKEN, SEQNO)

Column Definitions
LOCATION Always contains blanks.
COLLID The name of the collection.
NAME The name of the package.
CONTOKEN The consistency token for the package.
SEQNO A sequence number used to identify SQL statements that span

multiple rows of this table.
STMTNO A statement number for the SQL statement as stored in the source

for the application program. If the statement number is greater than

 - 950 -

32767, this column will be 0 or a negative number. Refer to
STMTNOI for the actual statement number.

SECTNO The DBRM section number.
BINDERROR An indicator specifying Y if an SQL error was encountered when

this package was bound, or N if an SQL error was not encountered.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
VERSION The package version.
STMT Up to 254 characters of the SQL statement text. For SQL

statements that comprise more than 254 characters, multiple rows
with ascending SEQNO values exist.

ISOLATION Isolation level for the SQL statement:
 L RS with KEEP

UPDATE
LOCKS.

 R Repeatable
Read.

 S Cursor
Stability.

 T Read
Stability.

 U Uncommitted
Read.

 X RR with KEEP
UPDATE
LOCKS.

 blank WITH clause
not specified;
isolation level
defaults to
package
isolation
level.

STATUS Indicator
specifying the
status of the
bind. Valid
values are as
follows:

 A Distributed
statement
uses DB2
private
protocol;
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 B Distributed
statement

 - 951 -

uses DB2
private
protocol;
statement will
be parsed and
executed at
the server
using values
for input
variables.

 C Compiled
statement was
bound
successfully
using defaults.

 D Interpretive
statement will
be interpreted
at execution
time; usually
DDL.

 E EXPLAIN.
 F Parsed

statement not
bound
successfully;
VALIDATE(R
UN) was
used. The
statement will
be parsed and
executed at
the server
using values
for input
variables.

 G Compiled
statement was
bound
successfully
with REOPT
specified. The
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 I Indefinite;
statement is
dynamic. The
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 - 952 -

 J Indefinite;
statement is
dynamic. The
statement will
be parsed and
executed at
the server
using values
for input
variables.

 K CALL
statement.

 L Error in
statement.

 blank Non-
executable
statement, or
was bound
prior to DB2
V5.

ACCESSPATH Indicator
to
specify
whether
the
access
path is
based on
optimizer
hints or
not.
Valid
values
follow:

 H Optimizer
hints
used

 blank Access
path
determin
ed by
optimizer
without
using
hints

STMTNOI A
statem
ent
numbe
r for
the
SQL
statem
ent as
stored
in the
source

 - 953 -

for the
applica
tion
progra
m.

SECTNOI The
DBRM
section
numbe
r.

SYSIBM.SYSPARMS
SYSIBM.SYSPARMS contains a row for each parameter of a routine or multiple rows for table
parameters.

Tablespace DSNDB06.SYSOBJ

Index DSNOPX01
[unique]
(SCHEMA,
SPECIFICNAME,
ROUTINETYPE,
ROWTYPE,
ORDINAL)

Index DSNOPX02
[nonunique]
(TYPESCHEMA,
TYPENAME,
ROUTINETYPE,
CAST_FUNCTION)

Index DSNOPX03
[nonunique]
(TYPESCHEMA,
TYPENAME,
ROUTINETYPE,
ROWTYPE,
ORDINAL)

Column Definitions
SCHEMA The schema of the

routine.
OWNER The owner of the

routine.
NAME The name of the routine.
SPECIFICNAME The specific name of the

routine.
ROUTINETYPE The type of the routine;

P for stored procedure or
F for UDF or cast
function.

CAST_FUNCTION Indicator specifying
whether the routine is a
cast function.

PARMNAME The name of the
parameter.

ROUTINEID Internal identifier of the
routine.

ROWTYPE Indicator for the type of

 - 954 -

parameter. Valid values
follow:

 P Input
parame
ter

 O Output
parame
ter

 B Both
input
and
output
parame
ter

 (N/A for user-
defined
functions)

 R Result
befor
e
castin
g

 (N/A for stored
procedures)

 C Result
after
casting

 (N/A for stored
procedures)

ORDINAL If ROWYPE is equal to B,
O, P, or S, ORDINAL
contains the ordinal
number of the parameter
within the routine. The
value of ORDINAL is 0
when ROWTYPE is either
C or R.

TYPESCHEMA The schema of the data
type of the parameter.

TYPENAME The name of the data
type of the parameter.

DATATYPEID Internal identifier of the
data type of the
parameter.

SOURCETYPEID Internal identifier of the
source data type of the
parameter.

LOCATOR Indicates if this is a
locator to a value instead
of the actual value.

TABLE The data type of a
column for a table

 - 955 -

parameter.
TABLE_COLNO For table parameters,

the column number of
the table; otherwise 0.

LENGTH Maximum length of the
parameter; or precision
for a parameter defined
on a source data type of
DECIMAL.

SCALE The scale for a
parameter defined on a
source data type of
DECIMAL.

SUBTYPE Subtype of the UDT
(based on the subtype of
a source data type).
Valid values follow:

 B FOR
BIT
DATA

 S FOR
SBCS
DATA

 M FOR
MIXED
DATA

 blank Source
is not of
a
charact
er data
type

CCSID The
CCSID
for the
data
type for
charact
er,
graphic,
date,
time,
and
timesta
mp data
types.

CAST_FUNCTION_ID Internal
identifie
r of the
function
used to
cast the
argume
nt for a
sourced
function
,
otherwi
se 0.

 - 956 -

ENCODING_SCHEME The
encodin
g
scheme
for the
parame
ter.
Valid
values
are as
follows:

 A ASCII
 E EBCDIC
 blank Source

type not
a
characte
r data
type.

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSPKSYSTEM
SYSIBM.SYSPKSYSTEM contains the systems (for example, CICS or IMS/DC) that have been enabled
or disabled for specific packages.

Tablespace DSNDB06.SYSPKAGE

Index DSNKYX01
[nonunique]
(LOCATION,
COLLID, NAME,
CONTOKEN,
SYSTEM, ENABLE)

Column Definitions
LOCATION The location of the

package.
COLLID The name of the collection.
NAME The name of the package.
CONTOKEN The consistency token for

the package.
SYSTEM A value indicating the

environment that will be
disabled or enabled. Valid
values are as follows:

 - 957 -

 BATCH TSO
Batch

 CICS CICS
 DB2CALL Call

Attach
Facility

 DLIBATCH DL/I
Batch
(IMS)

 IMSBMP IMS/TM
BMP
(batch
messag
e
process
or)

 IMSMPP IMS/TM
MPP
(messa
ge
process
ing
progra
m)

 REMOTE Remote
packag
e

ENABLE An
indicator
specifyin
g Y if the
row will
enable
access,
or N if it
will
disable
access.

CNAME A name
identifyi
ng the
connecti
on or
connecti
ons to
which
this row
is
applicab
le.

IBMREQD An
indicator
specifyin
g Y if the
row was
supplied

 - 958 -

by IBM,
or N if it
was not.

SYSIBM.SYSPLAN
SYSIBM.SYSPLAN contains information on every plan known to DB2. The plan name is unique in the
DB2 subsystem.

Tablespace DSNDB06.SYSPLAN

Index DSNPPH01 [unique]
(NAME)

Column Definitions
NAME The plan

name.
CREATOR The owner

of the plan
named in
NAME.

BINDDATE The date
(yymmdd)
when the
plan was
bound. Do
not
reference
this column;
use
BOUNDTS
instead.

VALIDATE B if validity
checking is
performed at
bind time, or
R if checking
is performed
at runtime.

ISOLATION Isolation
level for the
plan:

 R Repeatable
Read

 S Cursor
Stability

 T Read
Stability

 U Uncommitted
Read

VALID An
indicat
or
specif
ying
the
state
of the
plan:

 - 959 -

 A An
object
upon
which
the
plan
depen
ds has
been
altered
;
rebind
not
require
d.

 H The
table
(or
base
table of
a view)
was
ALTER
ed.
The
change
invalid
ates
the
plan.

 N The
plan
must
first be
reboun
d.

 Y The
plan
can be
run
without
rebindi
ng.

OPERATIVE Y if the plan can be
allocated, or N if it cannot.

BINDTIME The time (hhmmssth)
that the plan was bound.
Do not reference this
column; use BOUNDTS
instead.

PLSIZE The number of bytes in
the base section of the
plan.

IBMREQD An indicator specifying
whether the row was
supplied by IBM:

 Y Yes,

 - 960 -

row was
supplie
d by
IBM.

 N No.
 B No;

V1.3
depend
ent.

 C No;
V2.1
depend
ent.

 D No;
V2.2
depend
ent.

 E No;
V2.3
depend
ent.

 F No; V3
depend
ent.

 G No; V4
depend
ent.

 H No; V5
depend
ent.

 I No; V6
depend
ent.

AVGSIZE The
average
number of
bytes for
the non-
base
sections
of the
plan.

ACQUIRE An
indicator
specifying
when
resources
for this
plan will
be
acquired:

 A All
resources
are

 - 961 -

acquired
when the
plan is
allocated.

 U Resources
are not
acquired
until they
are used
by the
plan.

RELEASE An
indicator
specifying
when
resources
for this
plan will
be
released:

 C Resources
are
released
at each
COMMIT
point.

 D Resources
are not
released
until the
plan is
deallocate
d.

EXREFERENCE Not currently used.
EXSTRUCTURE Not currently used.
EXCOST Not currently used.
EXPLAN Y if the plan was bound specifying EXPLAIN

YES, or N if it was bound specifying EXPLAIN
NO.

EXPREDICATE Not currently used.
BOUNDBY The primary authorization ID of the individual

who bound this plan.
QUALIFIER A qualifier specified to be used for all tables,

views, synonyms, and aliases referenced in
the program.

CACHESIZE The size of the cache to be acquired for the
named plan.

PLENTRIES The number of package list entries (from
SYSIBM.SYSPKLIST) for this plan.

DEFERPREP Y if the plan was bound specifying
DEFER(PREPARE), or N if it was bound
specifying NODEFER(PREPARE).

CURRENTSERVER The location name of the current server.

 - 962 -

SYSENTRIES The number of enabled/disabled entries for
this plan (as recorded in
SYSIBM.SYSPLSYSTEM).

DEGREE The degree of parallelism chosen for this
plan:

 ANY Bound as
DEGREE(ANY).

 1 Bound as
DEGREE(1) or
default.

 blank Migrated from a
prior release.

SQLRULES Valid values
are as follows:

 D Bound as
SQLRULES(DB
2).

 S Bound as
SQLRULES(ST
D).

 blank Migrated from
a prior release.

DISCONNECT Valid values are as follows:
 A Bound

DISCONNECT(AUTOMATIC)
.

 C Bound
DISCONNECT(CONDITIONA
L).

 E Bound
DISCONNECT(EXPLICIT).

 blank Migrated from a prior
release.

GROUP_MEMBER The DB2 data-sharing
member name of the
DB2 subsystem that
performed the most
recent bind for this
plan; or blank if DB2
subsystem was not in
a DB2 data-sharing
environment when the
bind was performed.

DYNAMICRULES Indicates dynamic
SQL treatment:

 S Dynamic
SQL
stateme
nts are
handled
like
static
SQL

 - 963 -

stateme
nts at
runtime.

 blank Dynamic
stateme
nts are
handled
like
dynamic
SQL
stateme
nts at
runtime.

BOUNDTS Date and
time the
plan was
bound.

REOPTVAR Indicator
specifyin
g
whether
access
path is to
be
determin
ed again
at
runtime
using
explicit
values
for host
variables
or
paramete
r
markers.
Valid
values
are as
follows:

 N No,
access
path
determine
d at bind
time.

 Y Yes,
access
path may
be
redetermi
ned at
runtime.

KEEPDYNAMIC Indicator specifying
whether dynamic
statements are to be
kept past a commit

 - 964 -

point. Y = yes; N = no.
PATHSCHEMAS The contents of the SQL

path for the BIND or
REBIND that bound this
plan.

DBPROTOCOL Indicator specifying
whether remote access
using three part names
used private protocol or
DRDA. Valid values are
as follows:

 D DRDA
 P DB2

private
protoco
l

FUNCTIONTS Date
and time
when
the
function
was
resolved
.

OPTHINT Contains
the
value of
the
OPTHIN
T BIND
option;
blank if
no hints.

SYSIBM.SYSPLANAUTH
SYSIBM.SYSPLANAUTH contains the plan privileges (BIND and EXECUTE authorities) held by DB2
users.

Tablespace DSNDB06.SYSPLAN

Index DSNAPH01
[nonunique]
(GRANTEE, NAME,
EXECUTEAUTH)

Index DSNAPX01
[nonunique]
(GRANTOR)

Column Definitions
GRANTOR The authid of the user

who granted the
privileges described in
this row.

GRANTEE The authid of the user
who possesses the
privileges described in
this row, the name of a
plan that uses the
privileges, or the literal
PUBLIC to indicate that

 - 965 -

all users have these
privileges.

NAME The name of the plan.
TIMESTAMP The date and time (in

the internal format)
when the privileges
were granted.

DATEGRANTED The date (yymmdd) that
authority was granted.
Do not reference this
column; use
GRANTEDTS instead.

TIMEGRANTED The time (hhmmssth)
that authority was
granted. Do not
reference this column;
use GRANTEDTS
instead.

GRANTEETYPE Not currently used.
AUTHHOWGOT The authorization level

of the GRANTOR:
 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicabl
e

BINDAUTH The
privilege
to BIND
or
REBIND
the
named
plan:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

EXECUTEAUTH The
privilege
to
execute
the

 - 966 -

named
plan:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

IBMREQD An
indicator
specifying
Y if the row
was
supplied
by IBM, or
N if it was
not.

GRANTEDTS Timestamp
when the
GRANT
was
executed.

SYSIBM.SYSPLANDEP
SYSIBM.SYSPLANDEP contains a cross-reference of DB2 objects used by each plan known to the DB2
subsystem.

Tablespace DSNDB06.SYSPLAN

Index DSNGGX01
[nonunique]
(BCREATOR,
BNAME, BTYPE)

Column Definitions
BNAME The name

of the
object
upon
which the
plan
depends.

BCREATOR A qualifier
for the
object
named in
BNAME. If
BTYPE is
equal to R,
BCREATOR
is a
database
name;
otherwise,
it is the

 - 967 -

owner of
the object
named in
BNAME.

BTYPE Type of
object
named in
BNAME:

 A Alias
 F User-

defined
function or
cast
function

 I Index
 O Stored

Procedure
 P Partitioned

Tablespace
 R Tablespace
 S Synonym
 T Table
 V View
DNAME The

name
of the
plan.

IBMREQD An
indicat
or
specif
ying Y
if the
row
was
suppli
ed by
IBM,
or N if
it was
not.

SYSIBM.SYSPLSYSTEM
SYSIBM.SYSPLSYSTEM contains the systems (for example, CICS or IMS/DC) that have been enabled
or disabled for specific plans.

Tablespace DSNDB06.SYSPKAGE

Index DSNKPX01
[nonunique]
U

Column Definitions
NAME The name of the plan.
SYSTEM A value indicating the

 - 968 -

environment that will be
disabled or enabled. Valid
values are as follows:

 BATCH TSO
Batch

 CICS CICS
 DB2CALL Call

Attach
Facility

 DLIBATCH DL/I
Batch
(IMS)

 IMSBMP IMS/DC
BMP

 IMSMPP IMS/DC
MPP

 REMOTE Remote
packag
e

ENABLE An indicator
specifying Y if
the row will
enable access,
or N if it will
disable access.

CNAME The name
identifying the
connection or
connections to
which this row
is applicable.
Blank if
SYSTEM=BATCH
or
SYSTEM=DB2CA
LL.

IBMREQD An indicator
specifying Y if
the row was
supplied by
IBM, or N if it
was not.

SYSIBM.SYSPROCEDURES
This table is obsolete as of DB2 Version 6, but is maintained for compatibility and fallback. In DB2 V5
and previous releases, SYSIBM.SYSPROCEDURES contained one row for each DB2 stored procedure.
The rows had to be explicitly inserted, updated, and deleted from this table by the DBA (instead of
implicitly by DB2 when a DCL or DDL statement was issued).

Tablespace DSNDB06.SYSPKAGE

Index DSNKCX01 [unique]
(PROCEDURE,
AUTHID
DESC,LUNAME
DESC)

Column Definitions

 - 969 -

PROCEDURE The name of the stored procedure.
AUTHID The authid of the user running the SQL application that issued the CALL. If

blank, applies to all authids.
LUNAME The LUNAME of the system that issued the CALL. If blank, applies to all

systems.
LOADMOD The MVS load module to use for this stored procedure.
LINKAGE The linkage convention used for passing parameters to the stored

procedure:
 N SIMPLE WITH NULLS
 blank SIMPLE (input

parameters cannot be
null)

COLLID Collection ID of the
package for this stored
procedure.

LANGUAGE Programming language
used. Valid values are
ASSEMBLE, PLI, COBOL, or
C.

ASUTIME Specifies the number of
service units permitted
before an execution of the
stored procedure is
canceled.

STAYRESIDENT Indicates whether the
module is to remain in
memory after the stored
procedure finishes
execution:

 Y Load
module
remains
resident
when
stored
procedur
e ends.

 blank Load
module
is
removed
from
memory
when
stored
procedur
e ends.

IBMREQD An indicator specifying Y if
the row was supplied by
IBM, or N if it was not.

RUNOPTS Specifies the LE/370
runtime options to be used
by this stored procedure.

PARMLIST The list of parameters

 - 970 -

expected by this stored
procedure.

RESULT_SETS Maximum number of query
result sets that can be
returned by this procedure.

WLM_ENV Name of the WLM
environment used to run
this procedure. A blank
indicates that the
procedure is to run in the
DB2-established SPAS.

PGM_TYPE Indicates whether the
stored procedure is a main
routine (M) or a subroutine
(S).

EXTERNAL_SECURITY Indicates whether a special
RACF environment is
needed to control access
to non-SQL resources.
Values are as follow:

 N Not
required

 Y Required
COMMIT_ON_RETURN Indicator specifying

whether work is to be
committed upon
successful completion of
the stored procedure.
Valid values are as
follows:

 N Do not
commit;
continu
e UOW

 Y Commit
 null Same

as N
SYSIBM.SYSRELS
SYSIBM.SYSRELS contains information on the foreign key and link relationships for all DB2 tables.

Tablespace DSNDB06.SYSDBASE

Index DSNDLX01
[nonunique]
U

Column Definitions
CREATOR The

owner of
the
dependen
t table
named in
TBNAME.

TBNAME The
dependen
t table

 - 971 -

name.
RELNAME The

referential
constraint
name.

REFTBNAME The
parent
table
name.

REFTBCREATOR The
owner of
the parent
table
named in
REFTBNA
ME.

COLCOUNT The
number of
columns
defined
for this
referential
constraint.

DELETERULE The
referential
DELETE
RULE
specified
for this
constraint:

 A NO
ACTION

 C CASCADE
 N SET NULL
 R RESTRICT

IBMREQD An indicator specifying Y if the row was supplied by IBM, or N
if it was not.

RELOBID1 An internal object identifier for the parent table.
RELOBID2 An internal object identifier for the dependent table.
TIMESTAMP A DB2 timestamp indicating the date and time that the

referential constraint was defined.
IXOWNER Owner of the unique non-primary key used as the parent key.
IXNAME Name of the unique non-primary key used as the parent key.
SYSIBM.SYSRESAUTH
SYSIBM.SYSRESAUTH contains privileges held by DB2 users over DB2 resources.

Tablespace DSNDB06.SYSGPAUT

Index DSNAGH01[nonunique]
(GRANTEE,
QUALIFIER, NAME,
OBTYPE)

Index DSNAGX01[nonunique]
(GRANTOR,
QUALIFIER, NAME,

 - 972 -

OBTYPE)

Column Definitions
GRANTOR The authid of the user who

granted the privileges
described in this row.

GRANTEE The authid of the user who
possesses the privileges
described in this row, the
name of a plan that uses the
privileges, or the literal
PUBLIC to indicate that all
users have these privileges.

QUALIFIER If this row defines a privilege
for a tablespace, this column
is the name of the database in
which this tablespace resides;
if this row defines a privilege
for a UDT, this column is the
name of the schema for the
UDT; otherwise, it is blank.

NAME The name of the resource for
which the privilege has been
granted. This is the name of a
bufferpool, a storage group, or
a tablespace. Can also be set
to ALL when USE OF ALL
BUFFERPOOLS is granted.

GRANTEETYPE Internal use only.
AUTHHOWGOT The authorization level of the

GRANTOR:
 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicable
OBTYPE The type of

object
defined in
this row:

 B Bufferpool
 C Collection
 D User-

defined
distinct type

 S STOGROUP
 R Tablespace
TIMESTAMP The date

and time
(in the
internal

 - 973 -

format)
when
the
privilege
s were
granted.

DATEGRANTED The date
(yymmdd
) that
authority
was
granted.
Do not
referenc
e this
column;
use
GRANTE
DTS
instead.

TIMEGRANTED The time
(hhmmss
th) that
authority
was
granted.
Do not
referenc
e this
column;
use
GRANTE
DTS
instead.

USEAUTH The
privilege
to use
the
resource
named
in NAME:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

IBMREQD An
indicat
or
specifyi
ng
whethe
r the
row
was
supplie

 - 974 -

d by
IBM:

 Y Yes,
row was
supplie
d by
IBM.

 N No.
 I No; V6

depend
ent.

GRANTEDTS Date
and
time
the
GRAN
T was
execu
ted.

SYSIBM.SYSROUTINEAUTH
SYSIBM.SYSROUTINEAUTH contains the privileges held by DB2 users on routines (that is, functions
and stored procedures).

Tablespace DSNDB06.SYSOBJ

Index DSNOAX01
[nonunique]
(SPECIFICNAME,
ROUTINETYPE,
GRANTEETYPE,
EXECUTEAUTH)

Index DSNOAX02
[nonunique]
(GRANTEE,
SCHEMA,
SPECIFICNAME,
ROUTINETYPE,
GRANTEETYPE)

Index DSNOAX03
[nonunique]
(SCHEMA,
SPECIFICNAME)

Column Definitions
GRANTOR The authid of the

user who
granted the
privileges
described in this
row.

GRANTEE The authid of the
user who
possesses the
privileges
described in this
row, or the literal
PUBLIC to
indicate that all
users have these
privileges.

 - 975 -

SCHEMA The name of the
schema of the
routine.

SPECIFICNAME The specific
name of the
routine.

GRANTEDTS Date and time
the GRANT was
executed.

ROUTINETYPE Type of routine.
Valid values are
as follows:

 F User-
define
d
functio
n or
cast
functio
n

 P Stored
Proced
ure

GRANTEETYPE Type
of
grante
e.
Valid
values
are as
follows
:

 blank Authid
 P Plan or

packag
e

 R Internal
use
only

AUTHHOWGOT The authorization level
of the GRANTOR:

 1 Grantor
had
privilege
on
schema *
at time of
GRANT.

 L SYSCTRL
 S SYSADM
 blank Not

applicabl
e

 - 976 -

EXECUTEAUTH The
privilege
to
execute
the
named
routine:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

COLLID If the GRANTEE is a
package, COLLID
contains the collection;
otherwise blank.

CONTOKEN If the GRANTEE is a
package, CONTOKEN
contains the consistency
token of the DBRM from
which the package was
derived; otherwise blank.

IBMREQD An indicator specifying
whether the row was
supplied by IBM:

 Y Yes,
row
was
supplie
d by
IBM.

 N No.
 I No; V6

depend
ent.

SYSIBM.SYSROUTINES
SYSIBM.SYSROUTINES contains a row for every routine (that is, functions and stored procedures).

Tablespace DSNDB06.SYSOBJ

Index DSNOFX01 [unique]
(NAME, PARM_COUNT, PARM_SIGNATURE,
ROUTINETYPE, SCHEMA, PARM1 – PARM30)

Index DSNOFX02 [nonunique]
(SCHEMA, SPECIFICNAME, ROUTINETYPE)

Index DSNOFX03 [nonunique]
(NAME, SCHEMA, CAST_FUNCTION,
PARM_COUNT, PARM_SIGNATURE, PARM1)

Index DSNOFX04 [unique]

 - 977 -

(ROUTINE_ID) DESC

Index DSNOFX05 [nonunique]
(SOURCESCHEMA, SOURCESPECIFIC,
ROUTINETYPE)

Index DSNOFX06 [nonunique]
(SCHEMA, NAME, ROUTINE_TYPE, PARM_COUNT)

Column Definitions
SCHEMA The

name
of the
schem
a of
the
routin
e.

OWNER The
owner
of the
routin
e.

NAME The
name
of the
routin
e.

ROUTINETYPE Type
of
routin
e.
Valid
values
are as
follow
s:

 F User-
defined
functio
n or
cast
functio
n

 P Stored
Proced
ure

CREATEDBY Authid of the
creator of the
routine.

SPECIFICNAME The specific name
of the routine.

ROUTINEID Internal identifier
of the routine.

RETURN_TYPE Internal identifier
of the result data
type.

 - 978 -

ORIGIN Indicator
specifying the
origin of the
routine. Valid
values are as
follows:

 E External
user-
defined
function
orstored
procedu
re

 U Sourced
user-
defined
function

 S System-
generat
ed
function

FUNCTION_TYPE Type
of
functio
n.
Valid
values
are as
follows
:

 blank Stored
proced
ure

 C Column
function

 S Scalar
function

 T Table
function

PARM_COUNT Number of parameters for
the routine.

LANGUAGE Host language the routine
is written in.

COLLID Collection of the package
used for the routine.

SOURCESCHEMA The name of the schema of
the source UDF if
ORIGIN is U and
ROUTINETYPE is F.

SOURCESPECIFIC Specific name of the
source UDF if ORIGIN is
U and ROUTINETYPE is F.

DETERMINISTIC Indicator specifying

 - 979 -

whether the external
function is deterministic or
not.

EXTERNAL_ACTION The external action of an
external function. Valid
values are as follows:

 blank Either a
stored
procedur
e or not
an
external
function

 E Function
has
external
actions

 N Function
has no
external
actions

NULL_CALL Indicator
specifyi
ng
whether
routine
is called
with null
input.

CAST_FUNCTION Indicator
specifyi
ng
whether
the
routine
is a cast
function.

SCRATCHPAD Indicator
specifyi
ng
whether
or not a
scratchp
ad is to
be used.

SCRATCHPAD_LENGTH Length
of the
scratchp
ad if one
exists,
otherwis
e 0.

FINAL_CALL Indicator
specifyi
ng
whether

 - 980 -

a final
call is to
be
made to
the
external
function.

PARALLEL Indicator
specifyi
ng
whether
external
function
can
operate
in
parallel.
Valid
values
are as
follows:

 blank Either a
stored
procedu
re or not
an
external
function

 A Function
can be
invoked
in
parallel

 D Function
cannot
be
invoked
in
parallel

PARAMETER_STYLE Style of
paramet
ers for
external
functions
and
stored
procedur
es. Valid
values
are as
follows:

 D DB2SQL
 G GENERAL
 N GENERAL

CALL
WITH
NULLS

 - 981 -

FENCED Indicator
specifying
whether
the
routine
runs
separately
from the
DB2
address
space.

SQL_DATA_ACCESS Indicator
specifying
what type
of SQL
access
the
routine
can
perform.
Valid
values are
as
follows:

 N NO SQL
 C CONTAINS

SQL
 R READS

SQL DATA
 M MODIFIED

SQL DATA
 blank Not

applicable
DBINFO Specified the DBINFO

option of the external
function or stored
procedure.

STAYRESIDENT Indicator specifying the
STAYRESIDENT option of
the routine.

ASUTIME Number of CPU service
units permitted for a
single invocation of this
routine.

WLM_ENVIRONMENT Name of the WLM
environment used for this
routine.

WLM_ENV_FOR_NESTED Specifies whether or not
the address space of the
calling stored procedure
is to be used to run a
nested procedure call.

PROGRAM_TYPE Indicator specifying
whether the routine runs
as a Language
Environment main routine

 - 982 -

or subroutine.
EXTERNAL_SECURITY Specifies the authid to be

used if the routine
accessed resources
secured by an external
security product such as
RACF.

COMMIT_ON_RETURN Indicator specifying
whether work is to be
committed upon
successful completion of
a stored procedure. Valid
values are as follows:

 N Do not
commit;
continue
UOW

 Y Commit
RESULT_SETS Maximum number of ad

hoc result sets that can be
returned for this stored
procedure.

LOBCOLUMNS Number of LOB columns
found in the parameter list
for a UDF.

CREATEDTS Date and time this routine
was created.

ALTEREDTS Date and time this routine
was last altered.

IBMREQD An indicator specifying
whether the row was
supplied by IBM:

 Y Yes, row
was
supplied
by IBM.

 N No.

PARM1 - PARM30 Internal use only.
IOS_PER_INVOC Estimated number of I/Os to perform the routine.
INSTS_PER_INVOC Estimated number of machine instructions to perform the routine.
INITIAL_IOS Estimated number of I/Os performed the first or last time the

routine is executed.
INITIAL_INSTS Estimated number of machine instructions performed the first or

last time the routine is executed.
CARDINALITY Predicted cardinality of the routine.
RESULT_COLS For a table function, the number of columns in the result table.
EXTERNAL_NAME The path, module, or function that DB2 must load to execute the

routine.

 - 983 -

PARM_SIGNATURE Internal use.
RUNOPTS Specifies the LE/370 runtime options to be used by this routine.
REMARKS Comments for this routine as specified by the COMMENT ON

statement.
SYSIBM.SYSSCHEMAAUTH
SYSIBM.SYSSCHEMAAUTH contains schema privileges granted to users.

Tablespace DSNDB06.SYSOBJ

Index DSNSKX01
[nonunique]
(GRANTEE,
SCHEMANAME)

Index DSNSKX02
[nonunique]
(GRANTOR)

Column Definitions
GRANTOR The authid of the user

who granted the
privileges described in
this row.

GRANTEE The authid of the user
who possesses the
privileges described in
this row, or the literal
PUBLIC to indicate that
all users have these
privileges.

SCHEMANAME The name of the
schema or "*" for all
schemata.

AUTHHOWGOT The authorization level
of the GRANTOR:

 1 Grantor
had
privilege
on
schema *
at time of
GRANT.

 L SYSCTRL
 S SYSADM
 blank Not

applicabl
e

CREATEINAUTH The
privilege
to create
routines
in this
schema:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 - 984 -

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

ALTERINAUTH The
privilege
to alter
routines
in this
schema:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DROPINAUTH The
privilege
to drop
routines
in this
schema:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

GRANTEDTS Date
and
time
this
authorit
y was
granted
.

IBMREQD An
indicat
or
specifyi

 - 985 -

ng
whethe
r the
row
was
supplie
d by
IBM:

 Y Yes,
row was
supplie
d by
IBM.

 N No.
 I No; V6

depend
ent.

SYSIBM.SYSSTMT
SYSIBM.SYSSTMT contains the SQL statements for every plan known to DB2.

Tablespace DSNDB06.SYSPLAN

Indexes None

Column Definitions
NAME The DBRM

name.
PLNAME The plan

name.
PLCREATOR The owner

of the plan
named in
PLNAME.

SEQNO The
sequence
number
used to
identify SQL
statements
that span
multiple
rows of this
table.

STMTNO The
statement
number for
the SQL
statement as
stored in the
source for
the
application
program. If
the
statement
number is
greater than
32767 it will
be saved as

 - 986 -

0 here and
the actual
number in
STMTNOI.

SECTNO The DBRM
section
number.

IBMREQD An indicator
specifying Y
if the row
was
supplied by
IBM, or N if it
was not.

TEXT Up to 254
characters
of the SQL
statement
text. For
SQL
statements
that
comprise
more than
254
characters,
multiple
rows with
ascending
SEQNO
values exist.

ISOLATION Isolation
level for the
SQL
statement:

 L RS with KEEP
UPDATE
LOCKS.

 R Repeatable
Read.

 S Cursor
Stability.

 T Read
Stability.

 U Uncommitted
Read.

 X RR with KEEP
UPDATE
LOCKS.

 blank WITH clause
not specified;
isolation level
defaults to
plan isolation
level.

STATUS Indicator

 - 987 -

specifying the
status of the
bind. Valid
values are as
follows:

 A Distributed
statement
uses DB2
private
protocol;
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 B Distributed
statement
uses DB2
private
protocol;
statement will
be parsed and
executed at
the server
using values
for input
variables.

 C Compiled
statement was
bound
successfully
using defaults.

 D Interpretive
statement will
be interpreted
at execution
time; usually
DDL.

 E EXPLAIN.
 F Parsed

statement not
bound
successfully;
VALIDATE(R
UN) was
used. The
statement will
be parsed and
executed at
the server
using values
for input
variables.

 G Compiled
statement was
bound
successfully

 - 988 -

with REOPT
specified. The
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 I Indefinite;
statement is
dynamic. The
statement will
be parsed and
executed at
the server
using defaults
for input
variables.

 J Indefinite;
statement is
dynamic. The
statement will
be parsed and
executed at
the server
using values
for input
variables.

 K CALL
statement.

 L Error in
statement.

 blank Non-
executable
statement, or
was bound
prior to V5.

ACCESSPATH Indicator to
specify
whether the
access path
is based on
optimizer
hints or not.
Valid values
are as
follows:

 H Optimizer
hints used

 blank Access path
determined
by
optimizerwith
out using
hints

 - 989 -

STMTNOI A statement number for the SQL statement as stored in the
source for the application program.

SECTNOI The section number of the statement.
SYSIBM.SYSSTOGROUP
SYSIBM.SYSSTOGROUP contains information on DB2 storage groups.

Tablespace DSNDB06.SYSGROUP

Indexes DSNSSH01 [unique]
(NAME)

Column Definitions
NAME The storage group name.
CREATOR The owner of the storage group named in NAME.
VCATNAME The name of the VCAT specified to the STOGROUP when it was

created.
VPASSWORD Not used as of DB2 V6; in pre-V6 subsystems contains the ICF

catalog password; if no password is used, this column is blank.
SPACE The disk space in kilobytes allocated for data sets defined to this

storage group. If STOSPACE has not been run, this column contains
0.

SPCDATE The Julian date (yyddd) indicating the last execution of the
STOSPACE utility.

IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it was
not.

CREATEDBY The primary authorization ID of the individual who created this
STOGROUP.

STATSTIME The timestamp the STOSPACE utility was last run for this storage
group.

CREATEDTS The date and time when the storage group was created.
ALTEREDTS The date and time of the last ALTER for this storage group.

ALTEREDTS equals CREATEDTS when no ALTER has been issued.
SYSIBM.SYSSTRINGS
SYSIBM.SYSSTRINGS contains information on converting from one coded character set to another.

Tablespace DSNDB06.SYSSTR

Index DSNSSX01
[unique]
(OUTCCSID,
INCCSID,
IBMREQD)

Column Definitions
INCCSID An input-coded character set identifier.
OUTCCSID An output-coded character set identifier.
TRANSTYPE An indicator specifying the nature of the conversion.
ERRORBYTE An error byte for the translation table stored in TRANSTAB.
SUBBYTE The substitution character for the TRANSTAB.
TRANSPROC The name of the translation procedure module.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
TRANSTAB The coded character set translation table (or any empty string).
SYSIBM.SYSSYNONYMS

 - 990 -

SYSIBM.SYSSYNONYMS contains information on DB2 synonyms.

Tablespace DSNDB06.SYSDBASE

Index DSNDYX01 [unique]
(CREATOR, NAME)

Column Definitions
NAME The synonym name.
CREATOR The owner of the synonym named in NAME.
TBNAME The table name on which the synonym is based.
TBCREATOR The owner of the table named in TBNAME.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if

it was not.
CREATEDBY The primary authorization ID of the individual who created this

synonym.
CREATEDTS The date and time when the synonym was created.
SYSIBM.SYSTABAUTH
SYSIBM.SYSTABAUTH contains information on the table privileges held by DB2 users.

Tablespace DSNDB06.SYSDBASE

Index DSNATX01
[nonunique]
(GRANTOR)

Index DSNATX02
[nonunique]
(GRANTEE,
TCREATOR,
TTNAME,
GRANTEETYPE,
UPDATECOLS,
ALTERAUTH,
DELETEAUTH,
INDEXAUTH,
INSERTAUTH,
SELECTAUTH,
UPDATEAUTH,
CAPTUREAUTH,
REFERENCEAUTH,
REFCOLS)

Index DSNATX03 [unique]
(GRANTEE,
GRANTEETYPE,
COLLID,
CONTOKEN)

Column Definitions
GRANTOR The authid of the user who granted the privileges described in

this row.
GRANTEE The authid of the user who possesses the privileges described

in this row, the name of a plan that uses the privileges, the
literal PUBLIC to indicate that all users have these privileges, or
the literal PUBLIC* to indicate that all users at all distributed
locations hold these privileges.

GRANTEETYPE A value indicating the type of GRANTEE:
 P GRANTEE

is a plan
or

 - 991 -

package.
 blank GRANTEE

is a
userid.

DBNAME The database name
over which the
GRANTOR possesses
DBADM, DBCTRL, or
DBMAINT authority, if
this privilege was
granted by a user with
this type of authority.
Otherwise, the column
is blank.

SCREATOR For views, SCREATOR
contains the owner of
the view named in
STNAME. If the row
defines a table and not
a view, SCREATOR is
equal to TCREATOR.

STNAME For views, STNAME
contains the view
name. If the row
defines a table and not
a view, STNAME is
equal to TTNAME.

TCREATOR The owner of the table
or view named in
TTNAME.

TTNAME The table or view
name.

AUTHHOWGOT The authorization level
of the GRANTOR:

 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicabl
e

TIMESTAMP The date and time (in the internal format)
when the privileges were granted.

DATEGRANTED The date (yymmdd) that authority was granted.
Do not reference this column; use GRANTEDTS
instead.

TIMEGRANTED The time (hhmmssth) that authority was
granted. Do not reference this column; use
GRANTEDTS instead.

UPDATECOLS If the UPDATEAUTH column applies to all
columns in this table, UPDATECOLS is blank.
Otherwise, this column contains an asterisk
(*), indicating that the value of UPDATEAUTH
applies to some columns but not all.

 - 992 -

SYSIBM.SYSCOLAUTH contains details in
which PRIVILEGE = blank.

ALTERAUTH The privilege to alter the named table:
 G GRANTEE holds

the privilege and
can grant it to
others.

 Y GRANTEE holds
the privilege.

 blank GRANTEE does not
hold the privilege.

DELETEAUTH The
privilege
to delete
rows
from the
named
table:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

INDEXAUTH The
privilege
to create
indexes
for the
named
table:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

INSERTAUTH The
privilege
to insert
rows into
the

 - 993 -

named
table:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

SELECTAUTH The
privilege
to select
rows
from the
named
table:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

UPDATEAUTH The
privilege
to
update
rows in
the
named
table:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

IBMREQD An

 - 994 -

indicat
or
specifyi
ng
whethe
r the
row
was
supplie
d by
IBM:

 Y Yes,
row was
supplie
d by
IBM.

 N No.
 I No; V6

depend
ent.

GRANTEELOCATION Not currently
used.

LOCATION Not currently
used.

COLLID The package
location (if the
privilege was
granted by a
package).

CONTOKEN The consistency
token for the
package (if the
privilege was
granted by a
package).

CAPTUREAUTH Not currently
used.

REFERENCESAUTH An indicator
specifying whether
the GRANTEE can
create or drop
referential
constraints in
which the table is
a parent:

 G Yes,
WIT
H
GRA
NT
OPT
ION

 Y Yes
 blank No

 - 995 -

REFCOLS If the REFERENCESAUTH column applies to all
columns in this table, REFCOLS is blank.
Otherwise, this column contains an asterisk
(*), indicating that the value of
REFERENCESAUTH applies to some columns
but not all. SYSIBM.SYSCOLAUTH contains
details in which PRIVILEGE = "R".

GRANTEDTS Time the GRANT was executed.
TRIGGERAUTH The privilege to create triggers in which the

named table is referenced:
 G GRANTEE holds

the privilege and
can grant it to
others.

 Y GRANTEE holds
the privilege.

 blank GRANTEE does not
hold the privilege.

SYSIBM.SYSTABLEPART
SYSIBM.SYSTABLEPART contains information on tablespace partitions and the physical storage
characteristics of DB2 tablespaces.

Tablespace DSNDB06.SYSDBASE

Index DSNDPX01 [unique]
(DBNAME, TSNAME,
PARTITION)

Column Definitions
PARTITION The partition number for

partitioned tablespaces, or 0
for simple and segmented
tablespaces (that is, not
partitioned).

TSNAME The tablespace name.
DBNAME The database name.
IXNAME The partitioned index name, or

blank for simple and
segmented tablespaces.

IXCREATOR The owner of the index named
in IXNAME.

PQTY The primary space quantity, in
4KB pages, specified when
the tablespace was created.

SQTY The secondary space quantity,
in 4KB pages, specified when
the tablespace was created. If
the value does not fit in this
column, SQTY will be set to
32767, and SECQTYI will be
set to the secondary space
quantity.

STORTYPE E for explicit VCAT-defined
tablespaces, or I for implicit
STOGROUP-defined
tablespaces.

 - 996 -

STORNAME The storage group name for
STOGROUP-defined
tablespaces; a VCAT identifier
for VCAT-defined tablespaces.

VCATNAME The name of the VCAT used to
allocate the tablespace,
regardless of how the
tablespace was defined
(STOGROUP or VCAT).

CARD The number of rows contained
in this tablespace or partition,
or -1 if RUNSTATS has not
been run. For a LOB
tablespace, CARD contains the
number of LOBs in the
tablespace.

FARINDREF A value indicating the number
of rows relocated far from their
initial page. Not applicable to
LOB tablespaces.

NEARINDREF A value indicating the number
of rows relocated near to their
initial page. Not applicable to
LOB tablespaces.

PERCACTIVE A percentage indicating the
amount of space utilized by
active tables in this tablespace
partition. -1 if RUNSTATS has
not been run, -2 for a LOB
tablespace.

PERCDROP A percentage indicating the
amount of space utilized by
dropped tables in this
tablespace partition. Not
applicable for auxiliary tables.

IBMREQD An indicator specifying Y if the
row was supplied by IBM, or N
if it was not.

LIMITKEY The high key value used to
limit partitioned tablespaces,
or 0 if the tablespace is not
partitioned.

FREEPAGE The number of consecutive
pages to be loaded before
loading a blank page, or 0 for
no free pages.

PCTFREE The percentage of each page
to leave free at load time.

CHECKFLAG C if the tablespace partition is
in check pending status, or
blank if it is not. May have
been caused by referential
constraint violations, check
constraint violations, or both.

CHECKRID For DB2 V4 and prior
releases, a blank if the
tablespace partition is not in

 - 997 -

check pending status or if the
tablespace is simple or
segmented. Otherwise,
contains the RID of the first
row that can contain a
referential constraint violation,
a check constraint violation, or
both; or the value
X'00000000' to indicate that
any row may be in violation.
(Not used as of DB2 V5.)

SPACE The space in kilobytes
allocated for this tablespace
partition, or 0 if STOSPACE has
not been run or for
tablespaces not created using
a STOGROUP. Additionally, the
SPACE column will be 0 if the
tablespace was migrated or
deleted by HSM, even if
STOSPACE was executed.

COMPRESS Indicates whether
compression has been
specified in the DDL. Contains
Y if compression is defined,
blank if not.

PAGESAVE Percentage of pages
(multiplied by 100) saved by
specifying compression. Takes
overhead, free space, and
dictionary pages into account.

STATSTIME Timestamp indicating the date
and time that RUNSTATS was
executed for the named
tablespace partition.

GBPCACHE Group bufferpool cache option
used:

 blank Only
changed
pages are
cached.

 A Changed
and
unchange
d pages
are
cached in
the group
bufferpool.

 N No data
cached in
the group
bufferpool.

 S Only
changed
system
pages are

 - 998 -

cached
inthe
group
bufferpool.

CHECKRID5B Blank if the table or partition is not in a check pending state, or if
the tablespace is not partitioned; otherwise, it contains the RID of
the first row that can violate referential and/or check constraints.

TRACKMOD Indicates whether page modifications are tracked in space map
pages.

EPOCH Whenever an operation occurs that changes the location of rows in
a table, this number is incremented.

SECQTY1 The secondary space quantity, in 4KB pages, specified when the
index was created.

CARDF The number of rows contained in this table, or -1 for temp tables,
views, aliases, or if RUNSTATS has not been run.

IPREFIX Not currently used.
ALTEREDTS The date and time of the last ALTER INDEX. If the index has not

been altered, the value is 0001-01-01.00.00.000000.
SYSIBM.SYSTABLES
SYSIBM.SYSTABLES contains information on every table known to the DB2 subsystem.

Tablespace DSNDB06.SYSDBASE

Index DSNDTX01 [unique]
(CREATOR, NAME)

Index DSNDTX02 [unique]
(DBID, OBID,
CREATOR, NAME)

Column Definitions
NAME The table

name.
CREATOR The

owner of
the table,
view, or
alias
named in
NAME.

TYPE Indicator
specifying
the table
type. Valid
values are
as follows:

 A Alias
 G Temporary

table
 T Table
 V View
 X Auxiliary

table
DBNAME The name of the database associated with the tablespace

 - 999 -

named in TSNAME; for an alias, temp table, or view, the value is
always DSNDB06.

TSNAME The name of the tablespace in which the table was created; if
the row defines a view based on tables, the value is the name
of the tablespace for one of the tables. If the row defines a
temporary table, the value is SYSPKAGE. If the row defines a
view based on other views, the value is SYSVIEWS. If the row
defines an alias, the value is SYSDBAUT.

DBID The internal database identifier; 0 for a view, temp table, or
alias.

OBID The internal object identifier assigned to this table by DB2; 0 for
a view, temp table, or alias.

COLCOUNT The number of columns defined for this table.
EDPROC The name of the EDITPROC used by the table, if any; always

blank for aliases and views.
VALPROC The name of the VALIDPROC used by the table, if any; always

blank for aliases and views.
CLUSTERTYPE Indicator describing whether RESTRICT ON DROP is specified:

 blank No
 Y Yes
CLUSTERRID Not

currentl
y used.

CARD For
DB2 V4
and
prior
release
s, the
number
of rows
contain
ed in
this
table,
or -1
for
temp
tables,
views,
aliases,
or if
RUNST
ATS
has not
been
run.

NPAGES The
number
of
tablesp
ace
pages
that
contain
rows for
this

 - 1000 -

table,
or -1
for
tempor
ary
tables,
auxiliar
y
tables,
views,
aliases,
or if
RUNST
ATS
has not
been
run.

PCTPAGES The
percent
age of
tablesp
ace
pages
that
contain
rows for
this
table,
or -1
for a
tempor
ary
table,
auxiliar
y table,
view, or
alias, or
if
RUNST
ATS
has not
run.

IBMREQD An
indicato
r
specifyi
ng
whether
the row
was
supplie
d by
IBM:

 Y Yes,
row
was
supplie
d by
IBM.

 N No.

 - 1001 -

 B No;
V1.3
depend
ent.

 C No;
V2.1
depend
ent.

 D No;
V2.2
depend
ent.

 E No;
V2.3
depend
ent.

 F No; V3
depend
ent.

 G No; V4
depend
ent.

 H No; V5
depend
ent.

 I No; V6
depend
ent.

REMARKS The table
comments
as
specified
by the
COMMENT
ON
statement.

PARENTS The
number of
referential
constraints
in which
this table is
a
dependent
table, or 0
for temp
tables,
views, and
aliases.

CHILDREN The
number of
referential
constraints
in which
this table is
a parent

 - 1002 -

table, or 0
for temp
tables,
views, and
aliases.

KEYCOLUMNS The
number of
columns in
this table's
primary
key, or 0
for temp
tables,
views, and
aliases.

RECLENGTH A value
indicating
the
absolute
maximum
length for
any row of
this table.

STATUS An
indicator
representin
g the
status of
this table's
primary
key
situation:

 I Definition of
the table is
incomplete
because of
reason
indicated in
the
TABLESTA
TUS
column.

 X Parent
index exists
for this
table's
primary
key.

 blank No parent
index
defined, or
row defines
a catalog
table, view,
or alias.

KEYOBID The internal object
identifier assigned to
this table's primary

 - 1003 -

key by DB2.
LABEL A label as specified by

the LABEL ON
statement.

CHECKFLAG C if the tablespace
containing the table is
in check pending
status, or blank if it is
not. May have been
caused by referential
constraint violations,
check constraint
violations, or both.

CHECKRID For DB2 V4 and prior
releases, this column
is blank if the table is
not in check pending
status, if the
tablespace is
partitioned, or if the
row describes an alias
or view. Otherwise,
contains the RID of
the first row that can
contain a referential
constraint violation, a
check constraint
violation, or both; or
the value
X'00000000' to
indicate that any row
may be in violation.
(Not used as of DB2
V5.)

AUDITING An indicator
specifying the auditing
option for the named
table:

 A AUDIT
ALL

 C AUDIT
CHANG
E

 blank AUDIT
NONE,
or row
define
s a
temp
table,
view,
or
alias

CREATEDBY The primary authorization
ID of the individual who
created this table.

LOCATION The location name for an
alias defined for a remote

 - 1004 -

table or view. Otherwise,
this column is blank.

TBCREATOR For aliases, contains the
owner of the table named
in TBNAME.

TBNAME For aliases, contains the
table name on which the
alias is based.

CREATEDTS The date and time when
the table, view, or alias
was created.

ALTEREDTS For tables, ALTEREDTS
indicates the date and time
when the table was
altered. If the table has not
been altered, or the row
defines a view or alias, this
column equals the value of
CREATEDTS.

DATACAPTURE Records the value of the
DATA CAPTURE option:

 Y Yes
 blank No

(always
blank for
temp
table)

RBA1 The log RBA when the table
was created.

RBA2 The log RBA when the table
was last altered.

PCTROWCOMP Percentage of active table
rows compressed; or -1 if
RUNSTATS was not executed
or the row is for a temporary
table, auxiliary table, view, or
alias.

STATSTIME Timestamp indicating the date
and time that RUNSTATS was
executed for the named table.

CHECKS The number of check
constraints defined on the
table; 0 if no check constraints
are defined or if the row
describes a temp table, view,
or alias.

CARDF Total number of rows
contained in this table, total
number of LOBs in an
auxiliary table, or -1 for
temporary tables, views,
aliases, or if RUNSTATS has
not been run.

CHECKRID5B Blank if the table or partition is
not in a check pending state,

 - 1005 -

or if the tablespace is not
partitioned; otherwise, it
contains the RID of the first
row that can violate referential
and/or check constraints.

ENCODING_SCHEME Default encoding scheme for
the database. Valid values are
as follows:

 A ASCII
 E EBCDIC
 blank For

remote
aliases

TABLESTATUS Indicator
specifying
the reason
that a
table
definition
is
incomplet
e. Valid
values are
as follows:

 L Incomplete
because
auxiliary
table
orauxiliary
index has
not been
defined for
a LOB
column.

 P Incomplete
because
parent
index has
not been
defined.

 R Incomplete
because
required
index on
ROWID has
not been
defined.

 blank Definition
is
complete.

SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABLESPACE contains information on every tablespace known to the DB2 sub-system.

Tablespace DSNDB06.SYSDBASE

Index DSNDSX01[unique]
(DBNAME, NAME)

 - 1006 -

Column Definitions
NAME The tablespace name.
CREATOR The owner of the tablespace named in NAME.
DBNAME The database name.
DBID The internal database identifier.
OBID The internal object identifier assigned to this tablespace by DB2.
PSID The internal page set identifier assigned to this tablespace by

DB2.
BPOOL The bufferpool name specified when this tablespace was created.
PARTITIONS The number of partitions for a partitioned tablespace; 0 for

segmented and simple tablespaces.
LOCKRULE An indicator specifying the LOCKSIZE parameter for the

tablespace:
 A ANY
 L Large object

(LOB)
 P PAGE
 R ROW
 S TABLESPACE
 T TABLE

PGSIZE The size of the tablespace pages, in bytes. Can be 4KB or
32KB.

ERASERULE Y if the tablespace was created with the ERASE YES option, or
N if it was created specifying ERASE NO.

STATUS An indicator specifying the current status of the tablespace:
 A Available.
 C Definition

incomplet
e, no
partitionin
g index
defined.

 P Check
pending
for entire
tablespac
e.

 S Check
pending
for less
than the
entire
tablespac
e.

 T Definition
incomplet
e; no
table yet
created.

 - 1007 -

IMPLICIT Y if the tablespace was
created implicitly, or N
if it was not.

NTABLES The number of tables
defined for this
tablespace.

NACTIVE The number of active
pages for this
tablespace. A page is
active if it is formatted
(even if it contains no
rows).

DSETPASS Not used as of DB2
V6; in pre-V6
subsystems this
column contained the
index data set
password; only for
indexes created using
a STOGROUP.

CLOSERULE Y if the tablespace was
created with the
CLOSE YES option, or
N if it was created
specifying CLOSE NO.

SPACE The space in kilobytes
allocated for this
tablespace, or 0 if
STOSPACE has not
been run or for
tablespaces not
created using a
STOGROUP.
Additionally, the
SPACE column will be
0 if the tablespace was
migrated or deleted by
HSM, even if
STOSPACE was
executed.

IBMREQD An indicator specifying
Y if the row was
supplied by IBM, or N if
it was not. Additional
values are used for the
IBMREQD column in
this table indicating
specific DB2
version/release
dependencies:

 C V2R1
 F V3R1
 G V4
 H V5
 I V6

 - 1008 -

ROOTNAME Internal DB2 use only.
ROOTCREATOR Internal DB2 use only.
SEGSIZE The number of pages per

segment for segmented
tablespaces; 0 for simple
or partitioned tablespaces.

CREATEDBY The primary authorization
ID of the individual who
created this tablespace.

STATSTIME Timestamp indicating the
date and time that
RUNSTATS was executed
for the named tablespace.

LOCKMAX Maximum number of locks
per user or tablespace
before lock escalation
occurs:

 0 No lock
escalati
on.

 n The
maximu
m
number
of locks
before
lock
escalati
on
occurs.

 -1 Use
LOCKMA
X
SYSTEM
.

TYPE Indicator
specifying
whether
tablespace
is large.
Valid
values are
as follows:

 I Not greater
than 64GB
and
wasdefined
with
MEMBER
CLUSTER

 K Can be
greater
than 64GB
and was
defined
with

 - 1009 -

MEMBER
CLUSTER

 L Can be
greater
than 64GB

 O LOB
tablespace

 blank Tablespace
created
without any
of the
following
options:
LOB,
DSSIZE,
LARGE, and
MEMBER
CLUSTER

CREATEDTS The date and time when
the tablespace was
created.

ALTEREDTS The date and time of the
last ALTER for this
tablespace. ALTEREDTS
equals CREATEDTS when
no ALTER has been
issued.

ENCODING_SCHEME Default encoding scheme
for the database. Valid
values are as follows:

 A ASCII
 E EBCDIC
 blank For

DSNDB
04 and
work
files

SBCS_CCSID Default
SBCS
CCSID.

DBCS_CCSID Default
DBCS
CCSID.

MIXED_CCSID Default
mixed
CCSID.

MAXROWS Maximum
number of
rows per
page. 0
for LOB
tablespac
e.

LOCKPART Indicator

 - 1010 -

specifying
whether
selective
partition
locking is
used.
Valid
values are
as
follows:

 Y LOCKPART
YES

 blank LOCKPART
NO (or not
partitioned
)

LOG Indicates whether changes to a tablespace are logged. Only
LOB tablespaces can avoid logging.

NACTIVEF The number of active pages for this tablespace. A page is
active if it is formatted (even if it contains no rows).

DSSIZE Maximum size of data set in kilobytes.
SYSIBM.SYSTABSTATS
SYSIBM.SYSTABSTATS contains one row of partition-level statistics for each tablespace partition.

Tablespace DSNDB06.SYSSTATS

Index DSNTTX01[unique]
(OWNER, NAME,
PARTITION)

Column Definitions
CARD The number of rows contained in this partition.
NPAGES The number of tablespace pages on which rows of the partition

appear.
PCTPAGES The percentage of tablespace pages that contain rows for this

partition.
NACTIVE The number of active pages for this tablespace partition.
PCTROWCOMP Percentage of active rows compressed in the partition.
STATSTIME Timestamp indicating the date and time that RUNSTATS was

executed to produce this row.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
DBNAME The database name containing the tablespace.
TSNAME The tablespace name to which this statistical row applies.
PARTITION The partition number indicating the physical partition to which this

statistical row applies.
OWNER The owner of the table named in NAME.
NAME The table name to which this statistical row applies.
CARDF The number of rows contained in this partition.
SYSIBM.SYSTRIGGERS
SYSIBM.SYSTRIGGERS contains a row for every trigger.

Tablespace DSNDB06.SYSOBJ

 - 1011 -

Index DSNOTX01
[unique]
(SCHEMA, NAME,
SEQNO)

Index DSNOTX02
[nonunique]
(TBOWNER,
TBNAME)

Column Definitions
NAME The name of the trigger and

trigger package.
SCHEMA The name of the schema of

the trigger.
SEQNO Sequence number of this

row. If multiple rows are
required to describe a
trigger, SEQNO is
incremented for each new
row.

DBID Internal identifier of the
database for this trigger.

OBID Internal identifier for this
trigger.

OWNER The authid of the owner of
the trigger.

CREATEDBY Authid of the creator of the
routine.

TBNAME Name of the table for which
this trigger applies.

TBOWNER Owner of the applicable
table named in TBNAME.

TRIGTIME When the triggered actions
are applied to the table.
Valid values are as follows:

 A After the
event

 B Before
the event

TRIGEVENT The
type of
operati
on that
fires
the
trigger.
Valid
values
are as
follows:

 I INSERT
 U UPDATE
 D DELETE

 - 1012 -

GRANULARITY Indicator specifying the
granularity of the trigger.
Valid values are as
follows:

 R Once
for
every
row
impacte
d

 S Once
per
statem
ent

CREATEDTS Date and time this
trigger was created.

IBMREQD An indicator
specifying whether
the row was supplied
by IBM:

 Y Yes,
row
was
suppli
ed by
IBM.

 N No.
TEXT Actual

DDL text
of the
trigger.

REMARKS Comments
for this
trigger as
specified
by the
COMMENT
ON
statement.

SYSIBM.SYSUSERAUTH
SYSIBM.SYSUSERAUTH contains information on system privileges held by DB2 users.

Tablespace DSNDB06.SYSUSER

Index DSNAUH01
[nonunique]
(GRANTEE)

Index DSNAUX01
[nonunique]
(GRANTOR)

Column Definitions
GRANTOR The authid of the user

who granted the
privileges described in
this row.

 - 1013 -

GRANTEE The authid of the user
who possesses the
privileges described in
this row, the name of a
plan that uses the
privileges, or the literal
PUBLIC to indicate that
all users have these
privileges.

TIMESTAMP The date and time (in
the internal format)
when the privileges
were granted.

DATEGRANTED The date (yymmdd) that
authority was granted.
Do not reference this
column; use
GRANTEDTS instead.

TIMEGRANTED The time (hhmmssth)
that authority was
granted. Do not
reference this column;
use GRANTEDTS
instead.

GRANTEETYPE Not currently used.
AUTHHOWGOT The authorization level

of the GRANTOR:
 C DBCTRL
 D DBADM
 L SYSCTRL
 M DBMAINT
 S SYSADM
 blank Not

applicabl
e

ALTERBPAUTH Not
currently
used.

BINDADDAUTH The
privilege
to issue
the
BIND
ADD
comman
d:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE

 - 1014 -

does not
hold the
privilege.

BSDSAUTH The
privilege
to issue
the -
RECOVE
R BSDS
comman
d:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CREATEDBAAUTH The
privilege
to create
databas
es
resulting
in the
creator
obtainin
g DBADM
over the
new
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CREATEDBCAUTH The
privilege
to create
databas
es
resulting
in the
creator

 - 1015 -

obtainin
g
DBCTRL
over the
new
databas
e:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CREATESGAUTH The
privilege
to create
STOGRO
UPs:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

DISPLAYAUTH The
privilege
to issue
-
DISPLA
Y
comman
ds:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

 - 1016 -

RECOVERAUTH The
privilege
to issue
the -
RECOVE
R
INDOUB
T
comman
d:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

STOPALLAUTH The
privilege
to issue
the -
STOP
DB2
comman
d:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

STOSPACEAUTH The
privilege
to
execute
the
STOSPA
CE utility:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the

 - 1017 -

privilege.
 blank GRANTEE

does not
hold the
privilege.

SYSADMAUTH SYSADM
privilege:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

SYSOPRAUTH SYSOPR
privilege:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

TRACEAUTH The
privilege
to issue
-START
TRACE
and -
STOP
TRACE
comman
ds:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

 - 1018 -

IBMREQD An indicator specifying
Y if the row was
supplied by IBM, or N if
it was not.

MON1AUTH The privilege to read
IFC serviceability data:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

MON2AUTH The
privilege
to read
IFC
data:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CREATEALIASAUTH The
privilege
to create
aliases:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

SYSCTRLAUTH SYSCTRL
privilege:

 G GRANTEE
holds the

 - 1019 -

privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

BINDAGENTAUTH BINDAGENT privilege:
 G GRANTEE

holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

ARCHIVEAUTH The
privilege
to issue
-
ARCHIV
E
comman
ds:

 G GRANTEE
holds the
privilege
and can
grant it to
others.

 Y GRANTEE
holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

CAPTURE1AUTH Not currently used.
CAPTURE2AUTH Not currently used.
GRANTEDTS Timestamp when the GRANT

was executed.
CREATETMTABAUTH The privilege to create

temporary tables:
 G GRANTEE

holds the
privilege
and can
grant it to

 - 1020 -

others.
 Y GRANTEE

holds the
privilege.

 blank GRANTEE
does not
hold the
privilege.

SYSIBM.SYSVIEWDEP
SYSIBM.SYSVIEWDEP contains a cross-reference of DB2 tables, functions, and other views on which
each view depends.

Tablespace DSNDB06.SYSVIEWS

Indexes DSNGGX02
[nonunique]
(BNAME, BNAME,
BTYPE)
DSNGGX03
[nonunique]
(BSCHEMA, BNAME,
BTYPE)

Column Definitions
BNAME The table or view name on which the view named in DNAME is

dependent. If the object type is a function, BNAME is the specific
name of the function.

BCREATOR The owner of the view or table named in BNAME. For functions,
BCREATOR is the schema name.

BTYPE T if the object is a table, F if it is a function, or V if it is a view.
DNAME The view name.
DCREATOR The authid of the owner of the view named in DNAME.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if

it was not.
BSCHEMA The name of the schema for BNAME.
SYSIBM.SYSVIEWS
SYSIBM.SYSVIEWS consists of one or more rows for each DB2 view, containing the actual text of the
DDL view creation statement.

Tablespace DSNDB06.SYSVIEWS

Index DSNVVX01 [unique]
(CREATOR, NAME,
SEQNO)

Column Definitions
NAME The view name.
CREATOR The owner of the view

named in NAME.
SEQNO The sequence number

used to identify the view
components.

CHECK Indicator specifying
whether CHECK OPTION
is in effect. Valid values
are as follows:

 A Yes,
with
cascade

 - 1021 -

d
semanti
c

 N No
 Y Yes,

with
local
semanti
c

IBMREQD An
indicat
or
specifyi
ng
whethe
r the
row
was
supplie
d by
IBM:

 Y Yes,
row was
supplie
d by
IBM.

 N No.
 B No;

V1.3
depend
ent.

 C No;
V2.1
depend
ent.

 D No;
V2.2
depend
ent.

 E No;
V2.3
depend
ent.

 F No; V3
depend
ent.

 G No; V4
depend
ent.

 H No; V5
depend
ent.

 I No; V6

 - 1022 -

depend
ent.

TEXT The
SQL
for the
view
CREAT
E
statem
ent.

PATHSCHEMAS The
SQL
path at
the
time
the
view
was
define
d.

SYSIBM.SYSVLTREE
SYSIBM.SYSVLTREE contains the extra portion of the internal representation of very large views. It is
used in conjunction with SYSIBM.SYSVTREE.

Tablespace DSNDB06.SYSVIEWS

Indexes None

Column Definitions
IBMREQD An indicator

specifying Y if
the row was
supplied by IBM,
or N if it was not.

VTREE When
SYSIBM.SYSVT
REE cannot hold
the entire view
parse tree, the
bytes in excess
of 4,000 are
stored here.

SYSIBM.SYSVOLUMES
SYSIBM.SYSVOLUMES contains the list of DASD volumes assigned to DB2 storage groups.

Tablespace DSNDB06.SYSGROUP

Indexes None

Column Definitions
SGNAME The storage group name.
SGCREATOR The owner of the storage group named in SGNAME.
VOLID A volume serial number assigned to the storage group named in

SGNAME.
IBMREQD An indicator specifying Y if the row was supplied by IBM, or N if it

was not.
SYSIBM.SYSVTREE
SYSIBM.SYSVTREE contains the first 4,000 bytes of the internal representation of each view known to
the DB2 subsystem. This internal representation is called a view parse tree.

 - 1023 -

Tablespace DSNDB06.SYSVIEWS

Index DSNVTH01 [unique]
(CREATOR, NAME)

Column Definitions
NAME The

view
name.

CREATOR The
owner
of the
view
named
in
NAME.

TOTLEN The
length
of the
parse
tree.

IBMREQD An
indicat
or
specifyi
ng
whethe
r the
row
was
supplie
d by
IBM:

 Y Yes,
row was
supplie
d by
IBM.

 N No.
 B No;

V1.3
depend
ent.

 C No;
V2.1
depend
ent.

 D No;
V2.2
depend
ent.

 E No;
V2.3
depend
ent.

 F No; V3

 - 1024 -

depend
ent.

 G No; V4
depend
ent.

 H No; V5
depend
ent.

 I No; V6
depend
ent.

VTREE The first 4,000
bytes of the parse
tree. If the entire
view parse tree is
4,000 bytes or
fewer, the entire
parse tree can be
stored here; if it is
larger, additional
rows are stored in
SYSIBM.SYSVLTR
EE.

SYSIBM.USERNAMES
SYSIBM.USERNAMES is used to enable outbound and inbound ID translation.

Tablespace DSNDB06.SYSDDF

Indexes DSNFEX01 [unique]
(TYPE, AUTHID,
LUNAME)

Column Definitions
TYPE Indicator

specifyin
g how
the row
is to be
used.
Contains
the
following:

 I Inbound
translatio
n and
"come
from"
checking

 O Outbound
translatio
n

AUTHID Authorization
ID to be
translated.

LINKNAME The VTAM or
TCP/IP
network

 - 1025 -

locations
associated
with this row:

 blank The name
translation rule
applies to any
TCP/IP or SNA
partner.

 nonblank Row exists in
either
SYSIBM.LUNA
ME or
SYSIBM.IPNA
MES for this
LINKNAME.

NEWAUTHID Translated
value for
the authid.
Blank
indicates
no
translation
to occur.

PASSWORD If
password
s are not
encrypted,
contains
the
password
for the
outbound
request.
Not used
if row is
for an
inbound
request or
if
password
s are
encrypted.

IBMREQD An
indicator
specifying
Y if the
row was
supplied
by IBM, or
N if it was
not.

The Communication Database

Prior to DB2 Version 5, an additional database (called the Communication Database, or CDB) was used
for establishing and documenting distributed DB2 connections. The CDB tables were renamed and
rolled into the DB2 Catalog as of DB2 V5, as follows:

CDB Table Name (pre-V5) DB2 Catalog Table
Name (V5 and later)

 - 1026 -

SYSIBM.SYSLOCATIONS SYSIBM.LOCATIONS
SYSIBM.SYSLULIST SYSIBM.LULIST
SYSIBM.SYSLUMODES SYSIBM.LUMODES
SYSIBM.SYSLUNAMES SYSIBM.LUNAMES
SYSIBM.SYSMODESELECT SYSIBM.MODESELECT
SYSIBM.SYSUSERNAMES SYSIBM.USERNAMES

Appendix C: The QMF Administrative Tables
Overview
QMF administers and controls its system using a series of seven tables. These tables are similar to the
DB2 Catalog and can be thought of as being like the QMF System Catalog. Authorized personnel can
query each table to obtain a comprehensive view of the status and use of QMF.

This appendix provides the definition DDL for each table, along with a brief description of the table and
its columns. This information can be helpful in QMF error tracking, in determining the effects of
database changes on dynamic SQL stored in QMF queries, and in monitoring, tracking, and limiting the
use of QMF.
Q.COMMAND_SYNONYMS
Q.COMMAND_SYNONYMS contains synonyms for installation-defined commands.

Table DDL
CREATE TABLE Q.COMMAND_SYNONYMS
 (VERB CHAR(18) NOT NULL ,
 OBJECT VARCHAR(31),
 SYNONYM_DEFINITION VARCHAR(254) NOT NULL ,
 REMARKS VARCHAR(254)
)
IN DSQDBCTL.DSQTSSYN ;
Column Definitions
VERB The name

of the
installation
-defined
command

OBJECT An
optional
name of
an object
on which
the
command
in VERB
acts

SYNONYM_DEFINITION The
command
or
commands
invoked by
the
synonym

REMARKS Descriptive
comments
for the

 - 1027 -

command
synonym

Q.ERROR_LOG
Q.ERROR_LOG contains a log of information on QMF system errors, resource errors, and unexpected
condition errors.

Table DDL
CREATE TABLE Q.ERROR_LOG
 (DATESTAMP CHAR(8) NOT NULL ,
 TIMESTAMP CHAR(5) NOT NULL ,
 USERID CHAR(8) NOT NULL ,
 MSG_NO CHAR(8) NOT NULL ,
 MSGTEXT VARCHAR(254) NOT NULL
)
IN DSQDBCTL.DSQTSLOG ;
Column Definitions
DATESTAMP The date the error was recorded
TIMESTAMP The time the error was recorded
USERID The logon ID of the user who encountered the error
MSG_NO The QMF internal error message number
MSGTEXT A textual description of the error
Q.OBJECT_DATA
Q.OBJECT_DATA contains the text that defines each stored QMF object. Valid QMF objects are
queries, forms, and procedures.

Table DDL
CREATE TABLE Q.OBJECT_DATA
 (OWNER CHAR(8) NOT NULL ,
 NAME VARCHAR(18) NOT NULL ,
 TYPE CHAR(8) NOT NULL ,
 SEQ SMALLINT NOT NULL ,
 APPLDATA LONG VARCHAR
)
IN DSQDBCTL.DSQTSCT3 ;
Column Definitions
OWNER The authorization ID for the QMF object owner
NAME The name of the QMF object
TYPE An indicator specifying the type of QMF object (query, form, or proc)
SEQ The row sequence number to order the APPLDATA data
APPLDATA The text defining the QMF object
Q.OBJECT_DIRECTORY
Q.OBJECT_DIRECTORY contains general information on all stored QMF queries, forms, and
procedures.

Table DDL
CREATE TABLE Q.OBJECT_DIRECTORY
 (OWNER CHAR(8) NOT NULL ,
 NAME VARCHAR(18) NOT NULL ,

 - 1028 -

 TYPE CHAR(8) NOT NULL ,
 SUBTYPE CHAR(8),
 OBJECTLEVEL INTEGER NOT NULL ,
 RESTRICTED CHAR(1) NOT NULL ,
 MODEL CHAR(8)
)
IN DSQDBCTL.DSQTSCT1 ;
Column Definitions
OWNER The

authorizati
on ID for
the QMF
object
owner

NAME The name
of the
QMF
object

TYPE An
indicator
specifying
the type of
QMF
object
(query,
form, or
proc)

SUBTYPE The
subtype of
the QMF
object

OBJECTLEVEL The
version of
the internal
representa
tion of the
QMF
object

RESTRICTED An
indicator
as to
whether
QMF users
other than
the OWNER
can
access this
QMF
object

MODEL The
indicator
specifying
whether
the query
uses SQL,
QBE, or

 - 1029 -

Prompted
Query
format, if
the QMF
object is a
query

Q.OBJECT_REMARKS
Q.OBJECT_REMARKS contains comments saved for QMF queries, forms, and procedures.

Table DDL
CREATE TABLE Q.OBJECT_REMARKS
 (OWNER CHAR(8) NOT NULL ,
 NAME VARCHAR(18) NOT NULL ,
 TYPE CHAR(8) NOT NULL ,
 REMARKS VARCHAR(254)
)
IN DSQDBCTL.DSQTSCT2 ;
Column Definitions
OWNER The

authorizati
on ID for
the QMF
object
owner

NAME The name
of the
QMF
object

TYPE An
indicator
specifying
the type of
QMF
object
(query,
form, or
proc)

REMARKS Descriptive
text about
the QMF
object

Q.PROFILES
Q.PROFILES contains profile information used by QMF to help manage user sessions.

Table DDL
CREATE TABLE Q.PROFILES
 (CREATOR CHAR(8) NOT NULL ,
 CASE CHAR(18),
 DECOPT CHAR(18),
 CONFIRM CHAR(18),
 WIDTH CHAR(18),
 LENGTH CHAR(18),
 LANGUAGE CHAR(18),

 - 1030 -

 SPACE CHAR(50),
 TRACE CHAR(18),
 PRINTER CHAR(8),
 TRANSLATION CHAR(18) NOT NULL ,
 PFKEYS VARCHAR(31),
 SYNONYMS VARCHAR(31),
 RESOURCE_GROUP CHAR(16),
 MODEL CHAR(8),
 ENVIRONMENT CHAR(8)
)
IN DSQDBCTL.DSQTSPRO ;
Column Definitions
CREATOR Either a logon ID for a QMF user or SYSTEM
CASE Either UPPER or LOWER, specifying the default for user input
DECOPT The specification for numeric decimal output
CONFIRM An indicator specifying whether to confirm data change
WIDTH The default width for the PRINT command
LENGTH The default length for the PRINT command
LANGUAGE The query language to be used
SPACE The tablespace name used for saving tables with SAVE DATA
TRACE The type of QMF trace to be used
PRINTER The GDDM printer nickname for use with the PRINT command
TRANSLATION The language environment for the user
PFKEYS The PF key definition table name
SYNONYMS The synonym definition table name
RESOURCE_GROUP The RESOURCE GROUP name to be used by the QMF governor
MODEL The indicator specifying whether the query uses SQL, QBE, or

Prompted Query format, if the QMF object is a query
ENVIRONMENT Specifies the environment for the profile
Q.RESOURCE_TABLE
Q.RESOURCE_TABLE contains resource and limit values for the QMF governor.

Table DDL
CREATE TABLE Q.RESOURCE_TABLE
 (RESOURCE_GROUP CHAR(16) NOT NULL ,
 RESOURCE_OPTION CHAR(16) NOT NULL ,
 INTVAL INTEGER,
 FLOATVAL FLOAT,
 CHARVAL VARCHAR(80)
)
IN DSQDBCTL.DSQTSGOV ;
Column Definitions
RESOURCE_GROUP The RESOURCE GROUP name used by the QMF governor
RESOURCE_OPTION The RESOURCE OPTION name associated with the RESOURCE

GROUP
INTVAL The integer value for a RESOURCE OPTION

 - 1031 -

FLOATVAL The floating-point value for a RESOURCE OPTION
CHARVAL The character value for a RESOURCE OPTION

Appendix D: DB2 Sample Tables
Overview
This appendix provides information on the DB2 sample tables used in most of the figures and examples
in this book. You learned about the DB2 sample tables because they are bundled with DB2, installed at
most DB2 shops, and generally available for everyone's use.
An understanding of the data in the sample tables and the relationship between these tables is
imperative to understanding the SQL in this book. The DB2 sample tables primarily contain information
about projects and the entities involved in working on these projects. Figure D.1 shows these entities
and the relationships between them.

Figure D.1: DB2 sample table relationships.

The seven tables represent departments, employees, projects, activities, activities assigned to a project,
and employees assigned to a project's activities. In the following sections, you can find a general
description of each table, its columns, and its relationship to the other sample tables, along with its
table-creation DDL.
The Activity Table: DSN8610.ACT
The DSN8610.ACT table describes activities that can be performed for projects. This table simply
provides activity information. It does not tie each activity to a project. The following information about an
activity is recorded: the activity number, the activity keyword, and the activity description. The activity
number (ACTNO) is the primary key for this table.
DSN8610.ACT is a parent table for DSN8610.PROJACT. Two indexes have been built for this table:
DSN8610.XACT1 is a primary key index on ACTNO, and DSN8610.XACT2 is a unique index on
ACTKWD.
DSN8610.ACT Table DDL
CREATE TABLE DSN8610.ACT
 (ACTNO SMALLINT NOT NULL,
 ACTKWD CHAR(6) NOT NULL,
 ACTDESC VARCHAR(20) NOT NULL,
 PRIMARY KEY (ACTNO)
)
IN DSN8D61A.DSN8S61P
CCSID EBCDIC;
The Department Table: DSN8610.DEPT
The DSN8610.DEPT table describes information about departments that may be participating in
projects. The following information is stored for each department: the department number, the
department name, the employee number for the manager of this department, and the department
number for the department to which this department reports. The department number is the primary key.
Referential integrity is used to implement a self-referencing constraint for ADMRDEPT. This referential
constraint establishes the higher level department to which this department reports. A constraint also
exists for MGRNO to EMPNO, the primary key of the DSN8610.EMP table. It ensures that the manager of a
department is a valid employee.

 - 1032 -

Three indexes have been built for this table: DSN8610.XDEPT1 is a primary key index on DEPTNO,
DSN8610.XDEPT2 is an index on MGRNO, and DSN8610.XDEPT3 is an index on ADMRDEPT.
DSN8610.DEPT Table DDL
CREATE TABLE DSN8610.DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16),
 PRIMARY KEY (DEPTNO)
)
IN DSN8D61A.DSN8S61D
CCSID EBCDIC;
ALTER TABLE DSN8610.DEPT
 FOREIGN KEY RDD (ADMRDEPT)
 REFERENCES DSN8610.DEPT ON DELETE CASCADE;
ALTER TABLE DSN8610.DEPT
 FOREIGN KEY RDE (MGRNO)
 REFERENCES DSN8610.EMP ON DELETE SET NULL;
The Employee Table: DSN8610.EMP
The DSN8610.EMP table describes employees in the organization. This table is in a partitioned
tablespace. The following information is retained about employees: the employee's number, first name,
middle initial, and last name; the department where this employee works; the employee's phone
number; the date the employee was hired; and the employee's job description, education level, sex,
birth date, salary, commission, and bonus data. The primary key is the employee number.
This table is a child of DSN8610.DEPT by the WORKDEPT column and a parent table for
DSN8610.PROJ. Two indexes have been built for this table: DSN8610.XEMP1 is a primary unique,
partitioning index on EMPNO, and DSN8610.XEMP2 is an index on WORKDEPT.
DSN8610.EMP Table DDL
CREATE TABLE DSN8610.EMP
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3),
 PHONENO CHAR(4) CONSTRAINT NUMBER CHECK
 (PHONENO >= '0000' AND
 PHONENO <= '9999'),
 HIREDATE DATE,
 JOB CHAR(8),
 EDLEVEL SMALLINT,
 SEX CHAR(1),
 BIRTHDATE DATE,
 SALARY DECIMAL(9,2),
 BONUS DECIMAL(9,2),
 COMM DECIMAL(9,2),
 PRIMARY KEY (EMPNO)

 - 1033 -

 FOREIGN KEY RED (WORKDEPT)
 REFERENCES DSN8610.DEPT ON DELETE SET NULL
)
EDITPROC DSN8EAE1
IN DSN8D61A.DSN8S61E
CCSID EBCDIC;
The Employee Photo and Resume Table: DSN8610.EMP_PHOTO_RESUME
The DSN8610.EMP_PHOTO_RESUME table contains photos and resume text for employees in the
DSN8610.EMP table, previously described. The table contains a LOB column for the resume and two
LOB columns for photos—one in PSEG format and one in BMP format.
The table is a pArent table of DSN8610.PROJ with a foreign key on column RESPEMP. There are four
indexes associated with the tables required to store photos and resumes—one on the base table and
one each on the auxiliary tables. DSN8610.XEMP_PHOTO_RESUME is a primary unique index on the
base table; and DSN8610.XAUX_BMP_PHOTO, DSN8610.XAUX_PSEG_PHOTO, and
DSN8610.XAUX_EMP_RESUME are each unique indexes on the respective auxiliary tables.

This table is new as of DB2 Version 6.
DSN8610.EMP_PHOTO_RESUME Table and Auxiliary Table DDL
CREATE TABLE DSN8610.EMP_PHOTO_RESUME
 (EMPNO CHAR(06) NOT NULL,
 EMP_ROWID ROWID GENERATED ALWAYS,
 PSEG_PHOTO BLOB(100K),
 BMP_PHOTO BLOB(100K),
 RESUME CLOB(5K))
 PRIMARY KEY EMPNO
 IN DSN8D61L.DSN8S61B
 CCSID EBCDIC;
An auxiliary table is required for each LOB column in the table. The following DDL creates the auxiliary
tables required for the three LOB columns in DSN8610.EMP_PHOTO_RESUME:
CREATE AUX TABLE DSN8610.AUX_BMP_PHOTO
 IN DSN8D61L.DSN8S61M
 STORES DSN8610.EMP_PHOTO_RESUME
 COLUMN BMP_PHOTO;
 CREATE AUX TABLE DSN8610.AUX_PSEG_PHOTO
 IN DSN8D61L.DSN8S61L
 STORES DSN8610.EMP_PHOTO_RESUME
 COLUMN PSEG_PHOTO;
 CREATE AUX TABLE DSN8610.AUX_EMP_RESUME
 IN DSN8D61L.DSN8S61N
 STORES DSN8610.EMP_PHOTO_RESUME
 COLUMN RESUME;
The Employee Assignment Table: DSN8610.EMPPROJACT
The DSN8610.EMPPROJACT table details which employee performs which activity for each project. It
effectively records the assignment of employees to a given activity for a given project. To accomplish
this assignment, the table stores an employee number, a project number, and an activity number on
every row, along with information about this employee's assignment. This additional information
consists of the percentage of time the employee should spend on this activity, the date the activity
starts, and the date the activity ends. No primary key is implemented, but a unique index is used on the
combination of PROJNO, ACTNO, EMSTDATE, and EMPNO.

 - 1034 -

The table is a child of both DSN8610.PROJACT and DSN8610.EMP. Two indexes exist for this table:
DSN8610.XEMPPROJACT1 is a unique index on PROJNO, ACTNO, EMSTDATE, and EMPNO; and
DSN8610.XEMPPROJACT2 is an index on EMPNO.
DSN8610.EMPPROJACT Table DDL
CREATE TABLE DSN8610.EMPPROJACT
 (EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DECIMAL(5,2),
 EMSTDATE DATE,
 EMENDATE DATE,
 FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)
 REFERENCES DSN8610.PROJACT ON DELETE RESTRICT,
 FOREIGN KEY REPAE (EMPNO)
 REFERENCES DSN8610.EMP ON DELETE RESTRICT
)
IN DSN8D61A.DSN8S61P
CCSID EBCDIC;
The Project Table: DSN8610.PROJ
The DSN8610.PROJ table defines all the projects for the organization. It contains information on the
project's number; the project's name; the responsible department number and employee number; the
project's staffing requirements, start date, and end date; and the project number of any related, superior
project. The primary key is PROJNO.
DSN8610.PROJ is a self-referencing table because one project can relate to another by the MAJPROJ
column, which identifies a parent project. It is also a parent table because it has relationships to
DSN8610.DEPT for the responsible department and to DSN8610.EMP for the responsible employee.
Two indexes exist for this table: DSN8610.XPROJ1 is a primary key index on PROJNO, and
DSN8610.XPROJ2 is an index on RESPEMP.
DSN8610.PROJ Table DDL
CREATE TABLE DSN8610.PROJ
 (PROJNO CHAR(6) PRIMARY KEY NOT NULL,
 PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT
 'PROJECT NAME UNDEFINED',
 DEPTNO CHAR(3) NOT NULL
 REFERENCES DSN8610.DEPT ON DELETE RESTRICT,
 RESPEMP CHAR(6) NOT NULL
 REFERENCES DSN8610.EMP ON DELETE RESTRICT,
 PRSTAFF DECIMAL(5, 2),
 PRSTDATE DATE,
 PRENDATE DATE,
 MAJPROJ CHAR(6)
)
IN DSN8D61A.DSN8S61P
CCSID EBCDIC;
ALTER TABLE DSN8610.PROJ
 FOREIGN KEY RPP (MAJPROJ)
 REFERENCES DSN8610.PROJ ON DELETE CASCADE:

 - 1035 -

The Project Activity Table: DSN8610.PROJACT
The DSN8610.PROJACT table records the activities for each project. It stores the following information:
the project's number, the activity's number, the number of employees needed to staff the activity, and
the estimated activity start date and end date.
DSN8610.PROJACT is a parent of the DSN8610.EMPPROJACT table and functions as a child table for
DSN8610.ACT and DSN8610.PROJ. This table has one index: DSN8610.XPROJAC1 is a unique
primary key index on PROJNO, ACTNO, and ACSTDATE.
DSN8610.PROJACT Table DDL
CREATE TABLE DSN8610.PROJACT
 (PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 ACSTAFF DECIMAL(5,2),
 ACSTDATE DATE NOT NULL,
 ACENDATE DATE,
 MAJPROJ CHAR(6),
 PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),
 FOREIGN KEY RPAP (PROJNO)
 REFERENCES DSN8610.PROJ ON DELETE RESTRICT,
 FOREIGN KEY RPAA (ACTNO)
 REFERENCES DSN8610.ACT ON DELETE RESTRICT
)
IN DSN8D61A.DSN8S61P
CCSID EBCDIC;
The Sample STOGROUP
The storage group used by the sample database is DSN8G610. The following statement is provided by
IBM to define the sample STOGROUP. (Of course, the VOLUMES and VCAT information is usually
modified prior to the creation of the storage group.)
 CREATE STOGROUP DSN8G610
 VOLUMES (DSNV01)
 VCAT DSNC610;

Sample Databases and Tablespaces
Tables D.1 and D.2 provide a synopsis of the databases and tablespaces used for the sample tables.

Table D.1: Sample Databases

Database Name Storage
Group

Bufferpool

DSN8D61A DSN8G610 BP0
DSN8D61L DSN8G610 BP0
DSN8D61P DSN8G610 BP0

Table D.2: Sample Tablespaces

Tablespace Database Buffer Tablespace Lock Close

Name Name pool Type Size Rule
DSN8S61B DSN8D61L BP0 SIMPLE PAGE NO
DSN8S61D DSN8D61A BP0 SIMPLE ANY NO
DSN8S61E DSN8D61A BP0 PARTITIONED ANY NO
DSN8S61C DSN8D61P BP0 SEGMENTED TABLE NO

 - 1036 -

DSN8S61P DSN8D61A BP0 SEGMENTED TABLE NO
DSN8S61R DSN8D61A BP0 SIMPLE ANY NO
DSN8S61L DSN8D61L BP0 LOB N/A N/A
DSN8S61M DSN8D61L BP0 LOB N/A N/A
DSN8S61N DSN8D61L BP0 LOB N/A N/A

Appendix E: DB2 Manuals
Overview
IBM supplies two types of DB2 manuals. The first type is the standard issue DB2 manual. The standard
manuals contain core information necessary to administer and use DB2, such as SQL syntax, command
syntax, utility syntax, installation instructions, error codes, and high-level overviews of programming and
design issues. However, the standard issue manuals contain few implementation guidelines on the day-
to-day use of DB2. Every installation that uses DB2 should have at least one printed set of standard
issue manuals.
The second type of DB2 manual offered by IBM is called a redbook (because of its red cover). These
manuals are limited to a specific subject and provide practical information and examples, such as usage
and design guidelines, performance information, and implementation examples. You should obtain a
hard copy library of relevant redbooks because they contain information not readily available elsewhere.
They are not always current, however, so use caution before relying on information from redbooks.

In addition to printed manuals, you should have online copies of the manuals available at your site
(accessible using TSO on the mainframe, on CD-ROM, or on your hard drive in Adobe Acrobat format).
You might also want to consider owning the following two CD-ROM collections for personal use at home
or when away from the office:

 Transaction Processing and Data Collection (SK2T-0730)—Contains all the DBMS and
TP manuals for IBM products across multiple release levels (for example, CICS, DB2,
MQ Series, IMS).

 System Center Publications S/390 "Rainbow Books" Collection (SK2T-2177)—
Contains a wide range of IBM ITSO redbooks across numerous topics.

IBM also offers many products that enhance the capabilities of DB2. I refer to these as DB2-related
products. The most popular of these products is QMF, IBM's Query Management Facility. It provides the
capability to quickly and easily retrieve DB2 data in a formatted report. Other popular DB2-related
products include Data Propagator and DB2-PM. Each of these products enhances the functionality of
DB2.

The rest of this appendix lists the most pertinent manuals for DB2 and DB2-related products.
DB2 Standard Issue Manuals
There are 20 standard issue manuals for DB2 for OS/390 Version 6. As of late 1999, all of the
DB2 Version 6 manuals can be freely downloadable from IBM's Web site (except for the
diagnostic manuals). The DB2 manuals can be downloaded from the Library section of the
DB2 for OS/390 section of IBM's Web site found at http:///www-
4.ibm.com/software/data/db2/os390.
Note The diagnostic manuals begin with the number LY36. The diagnostic manuals

contain licensed material about interfaces to DB2 that are available only to
licensed customers of DB2. As such, these manuals cannot be freely downloaded
from the Web.

The following list provides the titles and order numbers of each DB2 standard issue manual.
The order numbers listed for the standard issue manuals are the DB2 version 6 order
numbers.

SC26-9003: Administration
Guide

SC26-9004: Application
Programming
and SQL
Guide

 - 1037 -

SC26-9018: Application
Programming
Guide &
Reference for
Java

SC26-9006: Command
Reference

SC26-9007: Data Sharing:
Planning and
Administration

SX26-3843: Data Sharing
Quick
Reference

LY36-3736: Diagnosis
Guide and
Reference

LY36-3737: Diagnostic
Quick
Reference

SC26-9650: Image, Audio,
and Video
Extenders
Administration
and
Programming

GC26-9008: Installation
Guide

SC26-9010: Master Index

GC26-9011: Messages
and Codes

SC26-9005: ODBC Guide
and
Reference

SC26-9012: Reference for
Remote
DRDA
Requesters
and Servers

SX26-3844: Reference
Summary

SC26-9013: Release
Planning
Guide

SC26-9014: SQL
Reference

SC26-9651: Text Extender
Administration
and
Programming

SC26-9015: Utility Guide
and
Reference

SC26-9017: What's New
in DB2
Version 6?

DB2 Redbooks

 - 1038 -

IBM redbooks are a good reference source for additional detailed information not provided in the
standard manuals, or not provided in great detail in the standard manuals. There have been a large
number of IBM redbooks published on the topic of DB2 over the years. There are redbooks that provide
information on general DB2 and relational concepts, performance and tuning, security and control,
distributed data, client/server with DB2, implementing DB2 applications and systems, specific release-
level information, stored procedures, using DB2 with ERP systems, and DB2 utilities.
Some of these manuals are outdated and, as such, are not recommended for general use. Additionally,
IBM is always publishing new and updated redbooks. Refer to the IBM rebook Web site at
http://www.redbooks.ibm.com. Many of the most recent and useful redbooks are freely
downloadable from this Web site.
This Web site also contains information on redbooks in progress, called redpieces. You can find very
timely and up-to-date information that will not be officially published for months by reviewing and
downloading redpieces as they become available.

Since information on current redbooks and redpieces is available online, I will not attempt to catalog all
of the current redbooks in this appendix. However, some of the most interesting recent redbooks that
are worth reviewing include

SG24-2072: DB2 for OS/390 Terabyte Database: Design and Build
Experiences

SG24-2078: Database Administration Experiences: SAP R/3 on DB2 for
OS/390

SG24-5351: DB2 UDB for OS/390 Version 6 Performance Topics

S24-2213: DB2 for OS/390 Version 5 Performance Topics

SG24-2218: DB2 on the MVS Platform: Data Sharing Recovery

SG24-2233: DB2 for OS/390 Application Design Guidelines for High
Performance

SG24-2238: Data Modeling Techniques for Data Warehousing

SG24-2249: Data Warehousing with DB2 for OS/390

SG24-2244: DB2 for OS/390 Capacity Planning

SG24-4894: The Universal Connectivity Guide to DB2

SG24-5142: Integrating Java with Existing Data and Applications on OS/390

SG24-5261: DB2 for OS/390 and Data Compression

SG24-5273: Accessing DB2 for OS/390 Data from the World Wide Web

SG24-5333: Using RVA and SnapShot for Business Intelligence
Applications with OS/390 and DB2

SG24-5421: DB2 Server for OS/390 Version 5 Recent Enhancements—
Reference Guide

SG24-5462: Storage Management with DB2 for OS/390

SG24-5463: My Mother Thinks I'm a DBA

This list is by no means comprehensive. Be sure to periodically check the IBM Web site for newly
published DB2-related redbooks and redpieces.
Other DB2-Related Manuals
Many add-on products are used in conjunction with DB2. Several of these products, such as QMF and
DB2-PM, are provided by IBM and are used in many DB2 shops. This section provides information on
the standard issue manuals for the most popular DB2 add-on products supplied by IBM.

Query Management Facility (QMF) Standard Manuals
QMF, IBM's Query Management Facility for DB2, is very heavily used by many DB2 shops for the
creation of ad hoc queries and formatted reports. The following manuals are available for QMF:

 - 1039 -

SC26-9579: Developing
QMF
Application
s

GC26-9583: Installing
and
Managing
QMF for
Windows

GC26-9575: Installing
and
Managing
QMF on
OS/390

GC26-9576: Introducing
QMF

SC26-9582: Getting
Started
with QMF
for
Windows

SC26-9581: QMF High
Performan
ce Option
User's
Guide for
OS/390

GC26-9580: QMF
Messages
and Codes

SC26-9577: QMF
Reference

SC26-9578: Using
QMF

DB2 Administration Tool Standard Manual
The DB2 Administration Tool is a rudimentary tool for managing DB2 subsystems and databases. The
following manual is available for the DB2 Administration Tool:
SC26-8947: User's Guide

Data Propagator (DPROP) Standard Manual
DPROP is the IBM data movement and propagation tool. You can use DPROP to move data from one
database to another, either synchronously or asynchronously. The following manual is available for
DPROP:

SC26-9642: Replication Guide and Reference

DB2 Performance Monitor (DB2-PM) Standard Manuals
DB2-PM, IBM's DB2 performance monitor, is very heavily used by many DB2 shops for batch reporting
of DB2 performance statistics. Historically, DB2-PM did not provide strong online monitoring support,
but recent releases have significantly improved the online capabilities of DB2-PM. The following
manuals are available for DB2-PM:
SC26-9167: Batch User's Guide
SC26-9166: Command Reference
SC26-9171: Installation and Customization Guide
GC26-9172: General Information

 - 1040 -

SC26-9169: Messages
SC26-9168: Online Monitor User's Guide
SC26-9164: Report Reference Volume 1
SC26-9165: Report Reference Volume 2
SC26-9170: Using the Workstation Online Monitor

Net.Data Standard Manuals
Net.Data is IBM's product that enables users to create dynamic Web pages using data from multiple
DBMS products, including DB2, IMS, and ODBC-enabled databases. The following manuals are
available for Net.Data:

Application and Programming Guide for OS/390

Messages and Codes

Language Environment Interface Reference

Reference

Appendix F: Type 1 Indexes
Overview
The ability to create indexes on DB2 tables has been around since the first release of DB2. The first
type of index that was available is now referred to as a type 1 index. Type 1 indexes were made
obsolete when type 2 indexes were introduced in DB2 Version 4. However, IBM supported type 1
indexes through Version 5. As of DB2 V6, type 2 indexes can no longer be used by DB2.

Type 2 indexes are preferable to type 1 indexes because they eliminate index locking. Furthermore,
most newer features of DB2 require type 2 indexes.
Basic Index Structure
Before examining the specifics of the layout of index data pages, let's first examine the basic structure
of DB2 indexes.
A DB2 index is a modified b-tree (balanced tree) structure that orders data values for rapid retrieval. The
values being indexed are stored in an inverted tree structure, as shown in Figure F.1.

Figure F.1: DB2 index structure.

As values are inserted and deleted from the index, the tree structure is automatically balanced,
realigning the hierarchy so that the path from top to bottom is uniform. This realignment minimizes the

 - 1041 -

time required to access any given value by keeping the search paths as short as possible. To
implement b-tree indexes, DB2 uses the following types of index data pages:

Space map pages Space map pages determine what space is available in the index
for DB2 to utilize.

Root page Only one root page is available per index. The root page must
exist at the highest level of the hierarchy for every index
structure. It can be structured as either a leaf or a non-leaf page,
depending on the number of entries in the index.

Non-leaf pages Non-leaf pages are intermediate-level index pages in the b-tree
hierarchy. Non-leaf pages need not exist. If they do exist, they
contain pointers to other non-leaf pages or leaf pages. They
never point to data rows.

Leaf pages Leaf pages contain pointers to the data rows of a table. Leaf
pages must always exist. In a single page index, the root page is
a leaf page.

The pointers in the leaf pages of an index are called a record ID, or RID. Each RID is a combination of
the tablespace page number and the row pointer for the data value, which together indicate the location
of the data value.

The level of a DB2 index indicates whether it contains non-leaf pages. The smallest DB2 index is a one-
level index; the root page contains the pointers to the data rows. In this case, the root page is also a leaf
page, and no non-leaf pages are available. This is true for type 1 indexes only; no one-level type 2
indexes exist. A two-level index does not contain non-leaf pages. The root page points directly to leaf
pages, which in turn point to the rows containing the indexed data values.
A three-level index, such as the one shown in Figure F.1, contains one level for the root page, another
level for non-leaf pages, and a final level for leaf pages. The larger the number of levels for an index,
the less efficient it will be. You can have any number of intermediate non-leaf page levels. Try not to
have indexes with more than three levels, because they are generally very inefficient.

Type 1 Index Data Pages
Type 1 non-leaf pages are physically formatted as shown in Figure F.2. Each non-leaf page contains
the following:

Figure F.2: Type 1 index non-leaf page layout.

 A 12-byte index page header that houses consistency and recoverability information
for the index.

 A 16-byte physical header that stores control information for the index page. For
example, the physical header controls administrative housekeeping such as the type
of page (leaf or non-leaf), the location of the page in the index structure, and the
ordering and size of the indexed values.

 A 17-byte logical header that stores additional consistency and recoverability
checking information and administers free space.

 - 1042 -

The physical structure of a type 1 index leaf page differs according to the parameters specified when
the index is created. Type 1 index pages can be broken down into smaller portions, known as
subpages. A type 1 index can be defined as having 1, 2, 4, 8, or 16 subpages. The physical structure of
type 1 index leaf pages depends on the number of subpages defined for the index.
For type 1 indexes, increasing the number of subpages can decrease contention, but this may decrease
the efficiency of access to the index data. Specify SUBPAGES 1 for infrequently updated type 1 indexed
columns.

For a type 1 clustering index, you might want to try setting the number of subpages such that each
subpage contains the same number of rows as the data pages of the tablespace. This can reduce
locking of unrelated data. If the index is not clustered, do not attempt this, because the corresponding
index subpages will contain different rows than the tablespace pages, and no gain in performance will
be realized.
Refer to Figure F.3 for the physical layout of a type 1 index leaf page with a subpage specification of 1.
The page header, physical header, and logical header are used for the same purposes as they are in
non-leaf pages. The remainder of the page is used for index entries. Each index entry is composed of
indexed values and RID pointers to the table data.

Figure F.3: Layout of a type 1 index leaf page containing one subpage.

Refer to Figure F.4 for the physical layout of a type 1 index leaf page with a subpage specification
greater than 1. A subpage directory replaces the single logical header. This directory contains an array
of pointers used to locate and administer the index subpages. Each subpage has its own logical header,
allowing free space to exist on each subpage.

 - 1043 -

Figure F.4: Layout of a type 1 index leaf page containing more than one subpage.

The final physical index structure to explore is the index entry. You can create both unique and non-
unique indexes for each DB2 table. When the index key is of varying length, DB2 pads the columns to
their maximum length, making the index keys a fixed length. A unique index contains entries, and each
entry has a single RID. In a unique index, no two index entries can have the same value because the
values being indexed are unique (see Figure F.5).

Figure F.5: Index entries.

Synopsis
This appendix is provided for those shops that have not yet converted to DB2 V6 and still have type 1
indexes. No new indexes should be defined as type 1, and you should immediately begin to convert all
type 1 indexes to type 2 indexes. This is important because type 1 indexes are no longer supported by
DB2 as of Version 6.

Appendix G: Valid DB2 Data Types

Overview
Data Physical Value COBOL

Type Storage Range Picture
SMALLINT 2 bytes –32,768 to

+32,767
PIC S9(4)
COMP

 - 1044 -

INTEGER 4 bytes –2,147,483,648
to
+2,147,483,647

PIC S9(9)
COMP

REAL 4 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-1

FLOAT(1..21) 4 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-1

DOUBLE PRECISION 8 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-2

FLOAT(22..53) 8 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-2

DECIMAL(m,n) (m/2)+1
bytes

1 –10^31 to
10^31–1

PIC S9(m-
n)V9(n) CO
MP-3

CHARACTER(n) n bytes 254 chars
maximum

PIC X(n)

VARCHAR(n) 2 to n+2
bytes

4,046 bytes
maximum
32,704 for 32KB
pages

01
VARCHAR.
 49 LTH
PIC
S9(4)COMP.
 49 COLUMN
PIC X(n).

GRAPHIC(n) 2n bytes 127 double-byte
characters
maximum

PIC G(n)
DISPLAY-1

VARGRAPHIC(n) 2 to
2n+2
bytes2,
023
double-
byte

characters
maximum
32,704 for 32KB
pages

01
VGRAPHIC.
 49 LENGTH
PIC S9(4)
 49 COLUMN
PIC
G(n)DISPLA
Y-1

DATE 4 bytes 0001-01-01 to
9999-12-31

PIC X(10)

TIME 3 bytes 00.00.00 to
24.00.00

PIC X(8)

TIMESTAMP 10 bytes 0001-01-
01.00.00.00.000
000
to 9999-12-
31.24.00.00.000
000

PIC X(10)

ROWID up to 40
bytes

internal identifier 01 ROWID-
VAR USAGE
IS
SQL USAGE
IS ROWID

BLOB varies up to 2GB 01 BLOB-
VAR USAGE
IS
SQL TYPE
IS
BLOB(n).

 - 1045 -

 - or - 01 BLOB-
LOC USAGE
IS
 SQL TYPE
IS BLOB-
LOCATOR.

CLOB varies up to 2GB 01 CLOB-
VAR USAGE
IS
SQL TYPE
IS
CLOB(n).

 - or - 01 CLOB-
LOC USAGE
IS
SQL TYPE
IS CLOB-
LOCATOR.

DBCLOB varies up to 2GB 01 DBCLOB-
VAR USAGE
IS
SQL TYPE
IS
DBCLOB(n).

 - or - 01 DBCLOB-
LOC USAGE
IS
SQL TYPE
IS DBCLOB-
LOCATOR.

Note Applications that access or manipulate LOB data
require either declared host variables to hold the
LOB data or LOB locator variables to point to the
LOB data.
DB2 will generate a PIC S9(9) USAGE IS
BINARY field to be used for LOB locators
defined, as shown earlier.
For BLOB, CLOB, and DBCLOB, host variables
defined for DB2 will generate a field structure to
hold the LOB data. The first component is a PIC
9(9) COMP field to hold the length of the LOB,
followed by the declaration for the actual LOB
data. But the largest character and graphic
variable declaration permitted in a COBOL
program is 32,767 bytes. So, for LOBs greater
than 32,767 bytes, DB2 will create multiple host
language declarations of 32,767 or fewer bytes.

Appendix G: Valid DB2 Data Types
Overview

Data Physical Value COBOL

Type Storage Range Picture
SMALLINT 2 bytes –32,768 to

+32,767
PIC S9(4)
COMP

INTEGER 4 bytes –2,147,483,648
to
+2,147,483,647

PIC S9(9)
COMP

 - 1046 -

REAL 4 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-1

FLOAT(1..21) 4 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-1

DOUBLE PRECISION 8 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-2

FLOAT(22..53) 8 bytes 5.4E –79 to
7.2E+75

PIC USAGE
COMP-2

DECIMAL(m,n) (m/2)+1
bytes

1 –10^31 to
10^31–1

PIC S9(m-
n)V9(n) CO
MP-3

CHARACTER(n) n bytes 254 chars
maximum

PIC X(n)

VARCHAR(n) 2 to n+2
bytes

4,046 bytes
maximum
32,704 for 32KB
pages

01
VARCHAR.
 49 LTH
PIC
S9(4)COMP.
 49 COLUMN
PIC X(n).

GRAPHIC(n) 2n bytes 127 double-byte
characters
maximum

PIC G(n)
DISPLAY-1

VARGRAPHIC(n) 2 to
2n+2
bytes2,
023
double-
byte

characters
maximum
32,704 for 32KB
pages

01
VGRAPHIC.
 49 LENGTH
PIC S9(4)
 49 COLUMN
PIC
G(n)DISPLA
Y-1

DATE 4 bytes 0001-01-01 to
9999-12-31

PIC X(10)

TIME 3 bytes 00.00.00 to
24.00.00

PIC X(8)

TIMESTAMP 10 bytes 0001-01-
01.00.00.00.000
000
to 9999-12-
31.24.00.00.000
000

PIC X(10)

ROWID up to 40
bytes

internal identifier 01 ROWID-
VAR USAGE
IS
SQL USAGE
IS ROWID

BLOB varies up to 2GB 01 BLOB-
VAR USAGE
IS
SQL TYPE
IS
BLOB(n).

 - or - 01 BLOB-
LOC USAGE
IS

 - 1047 -

 SQL TYPE
IS BLOB-
LOCATOR.

CLOB varies up to 2GB 01 CLOB-
VAR USAGE
IS
SQL TYPE
IS
CLOB(n).

 - or - 01 CLOB-
LOC USAGE
IS
SQL TYPE
IS CLOB-
LOCATOR.

DBCLOB varies up to 2GB 01 DBCLOB-
VAR USAGE
IS
SQL TYPE
IS
DBCLOB(n).

 - or - 01 DBCLOB-
LOC USAGE
IS
SQL TYPE
IS DBCLOB-
LOCATOR.

Note Applications that access or manipulate LOB data
require either declared host variables to hold the
LOB data or LOB locator variables to point to the
LOB data.
DB2 will generate a PIC S9(9) USAGE IS
BINARY field to be used for LOB locators
defined, as shown earlier.
For BLOB, CLOB, and DBCLOB, host variables
defined for DB2 will generate a field structure to
hold the LOB data. The first component is a PIC
9(9) COMP field to hold the length of the LOB,
followed by the declaration for the actual LOB
data. But the largest character and graphic
variable declaration permitted in a COBOL
program is 32,767 bytes. So, for LOBs greater
than 32,767 bytes, DB2 will create multiple host
language declarations of 32,767 or fewer bytes.

Appendix H: DB2 Limits
Overview
You can use this appendix as a handy reference for the various physical and structural limitations to
which DB2 must conform.

Item Limit
STOGROUP name 8

bytes
Volumes per STOGROUP 133

Database name 8
bytes

Maximum number of databases 65,279

 - 1048 -

Authorization ID 8
bytes

Tablespace name 8
bytes

Partitions per tablespace

(non-LARGE or DSSIZE < 2GB) 64
(LARGE or DSSIZE > 2GB) 254
Partition size (non-LARGE or DSSIZE < 2GB)

1 to 16 parts 4GB

17 to 32 parts 2GB

33 to 64 parts 1GB
Partition size (LARGE)

1 to 254 parts 4GB
Partition size (DSSIZE > 2GB)

1 to 254 parts 64GB

Segment size 64 pages

Tablespace size 1,016GB

Table name 18 bytes

View name 18 bytes

Alias name 18 bytes

Synonym name 18 bytes

Column name 18 bytes

Referential constraint name 8 bytes

Check constraint name 18 bytes

Maximum length of the

check constraint text 3,800 bytes

Cursor name 18 bytes

Host identifier 64 bytes

Server name 16 bytes

Location name 16 bytes

Number of base tables per view 15

Maximum number of columns

in the table or view 750
[*]

Index name 18 bytes (8
recommended)

[**]

Columns per index 64

Index key size 255 bytes
(number of

 - 1049 -

nullable
columns)

[***]

Plan name 8 bytes

Package name 8 bytes

Collection name 18 bytes

Version name 64 bytes
DBRM name 8 bytes

Schema name 8 bytes

Stored procedure name 18 bytes

User-defined function name 18 bytes

Trigger name 8 bytes
Maximum length of CHAR 254 bytes
Largest VARCHAR

(4KB pages) 4,046 bytes

(8KB pages) 8,128 bytes

(16KB pages) 16,320 bytes

(32KB pages) 32,704 bytes
Maximum length of GRAPHIC 127 DBCS

characters
Largest VARGRAPHIC

(4KB pages) 4,046 bytes

(8KB pages) 8,128 bytes

(16KB pages) 16,320 bytes

(32KB pages) 32,704 bytes
Maximum length of BLOB 2,147,483,647

bytes
Maximum length of CLOB 2,147,483,647

bytes
Maximum length of DBCLOB 1,073,741,824

DBCS
characters

Largest SMALLINT 32,767 bytes
Smallest SMALLINT –32,768 bytes
Largest INTEGER 2,147,483,647
Smallest INTEGER –2,147,483,648
Largest DECIMAL 10^31 –1
Smallest DECIMAL 1 –10^31
Largest FLOAT 7.2 x 10^75
Smallest FLOAT –7.2 x 10^75
Smallest positive FLOAT 5.4 x 10^–79

 - 1050 -

Largest negative FLOAT –5.4 x 10^79
Smallest DATE 0001-01-01
Largest DATE 9999-12-31
Smallest TIME 00.00.00
Largest TIME 24.00.00
Smallest TIMESTAMP 0001-01-01-

00.00.00.000
000

Largest TIMESTAMP 9999-12-31-
24.00.00.000
000

[*]If the table is a dependent, it can contain a maximum of 749 columns. The value (749 or 750) depends
on the complexity of the CREATE VIEW statement.

[**]If the index name is longer than 8 bytes, DB2 derives an index space name using the index name. An
index space name must be unique in the given database. The index space name that DB2 generates for
index names of nine characters or more may be hard to track when you're performing DASD
management and object monitoring.

[***]For both partitioning and nonpartitioning indexes, you must subtract 1 for each nullable column in the
index to determine the maximum length of the columns that can be assigned to the index.
Physical Storage
SMALLINT 2 bytes
INTEGER 4 bytes
REAL 4 bytes
DOUBLE PRECISION 8 bytes
DECIMAL (p,m) (TRUNCATE

(p/2)+1) bytes
CHAR (n) n bytes
VARCHAR (n) n + 2 bytes
LONG VARCHAR size of

tablespace page
GRAPHIC (n) 2 * n
VARGRAPHIC (n) (2 * n) + 2)

bytes
LONG VARGRAPHIC Size of

tablespace page
DATE 4 bytes
TIME 3 bytes
TIMESTAMP 10 bytes

Maximum LOB dataset size 64GB

Row length

(4KB pages) 4,056 bytes

(8KB pages) 8,138 bytes

(16KB pages) 16,330 bytes

(32KB pages) 32,714 bytes

 - 1051 -

Row length (with EDITPROC)

(4KB pages) 4,046 bytes

(8KB pages) 8,128 bytes

(16KB pages) 16,320 bytes

(32KB pages) 32,704 bytes

Maximum number of rows per page

(user tables) 255

(DB2 Catalog & Directory) 127

Maximum number of tables

in a FROM clause 15

Maximum number of tables per

SELECT/INSERT/UPDATE/DELETE 225

Maximum number of subqueries

in an SQL statement 14

Maximum number of triggers,

stored procedures, and UDFs

referenced by a single SQL

statement 16 nested levels

Maximum length of SQL path 254 bytes

Largest SQL statement 32,765 bytes
Columns per SELECT

[****]
750

SQL correlation ID 18 bytes
Predicates per WHERE clause 750
Predicates per HAVING clause 750
Length of columns in ORDER BY 4,000
Length of columns in GROUP BY 4,000

Maximum length of host and

indicator variables pointed

to in SQLDA 32,767 bytes

Maximum number of parms per

stored procedure limited by size of
PARMLIST in
SYSPROCEDURE
S (3,000 bytes)

Maximum size of a single

stored procedure parm 32,765 bytes

Concurrent users 2,000

Open datasets 10,000

 - 1052 -

Largest active log dataset 2GB

Largest archive log dataset 2GB

Maximum active log copies 2

Maximum archive log copies 2

Maximum active log datasets 31

Maximum archive log volumes 1,000
Maximum DBRM entry size 131,072 bytes

[****]The maximum is for all items in the SELECT list, not just columns. For example, expressions and
constants can be included in the SELECT list.

Appendix I: DB2 on Other Platforms
Overview
Although DB2 began its life on the mainframe, the advent of client/server technology and the success of
competing workstation RDBMS products caused IBM to create versions of DB2 for additional platforms.
In short, DB2 is no longer just a mainframe product.

The DB2 Family
Versions of DB2 exist for a large array of platforms, of which OS/390 is only one (see Table I.1). These
products are now all collectively referred to by IBM as the DB2 family. Individually, each DBMS is
referred to as DB2, or DB2 Universal Database Server. The proper way to refer to any individual
offering in the DB2 family is DB2 for (operating system) (for example, DB2 for OS/390 or DB2 for AIX). If
the version of the DB2 product has been extended with object/relational capabilities, it is referred to as
DB2 UDB for (operating system), where the UDB stands for Universal Database. Version 6 is the first
version of DB2 for OS/390 that earns the UDB moniker.

Many shops implement applications on several different platforms and interconnect them using
client/server development methods.

Table I.1: The DB2 Family of Products

Platform Operating
System

AKA (Old
Name)

AS/400 OS/400 SQL/400

Mainframe MVS,
OS/390

DB2

Mainframe VM SQL/DS

Mainframe VSE SQL/DS

Workstation OS/2 OS/2 EE
Database
Manager

Intel Windows
NT/95/98

—-

 Linux —-
 SCO

UNIXwar
e

—-

IBM (server) AIX DB2/6000

Hewlett-Packard HP-UX —-Sun

 - 1053 -

Solaris —-

PDA Palm
Computin
g

—-

 Windows
CE

—-

Note The PDA version of
DB2 is also referred
to as DB2
Everywhere. IBM also
offers DB2 Satellite
Edition for
occasionally
connected users on
Windows 95, 98, and
NT platforms.

However, these products are not simply "plug and play" commodities simply because they all share the
name DB2. There are some big differences among these products in their current releases. The biggest
differences are relatively easy to detect and include the following:

 Differences imposed due to operating system constraints (OS/2 versus OS/390 versus
AIX)

 Back-level compatibility issues (that is, ensuring that DB2 for OS/2 will work with code
developed for OS/2 Database Manager)

 Workstation orientation differences such as GUI interfaces and drag-and-drop menus
 Subsystem-centric implementation (OS/390) versus database-centric implementation

(workstation)

Most of these differences are minor and easy to handle. Indeed, IBM has slowly but surely been making
these disparate implementations of DB2 more and more alike with each new release and version.
However, there are some "gotchas" lurking under the covers that might be more difficult to find.

Some Major Differences
Of the basic differences mentioned earlier, the only one that might not be obvious is the focus of the
DBMS implementation. DB2 for common servers (the old group name for the work-station and UNIX
server flavors of DB2) is database-centric. This implies that each new database carries its own system
catalog with it. Additionally, it is not possible to simply access tables across different databases;
distributed access is required.

On OS/390, DB2 is subsystem-centric. A single system catalog spans databases. Each sub-system has
a unique identification, and you can create multiple databases within it. Distributed requests are not
required to access databases within the same subsystem (or, indeed, across multiple subsystems in a
data-sharing environment).

Directories
Another concept that is different at the workstation level is that of a directory. The DB2 for OS/390
Directory houses DBMS system-related information regarding DBD structure, skeleton plan and
skeleton package table, RBA log ranges, and utility control data. The information cannot be updated by
the user but is managed and controlled by DB2.

At the workstation level, a directory is another matter altogether. For example, the directory structure
used by DB2 for OS/2 controls the overall environment. The directories used by DB2 for OS/2 are as
follows:

 The System Database Directory identifies the databases that can be accessed
from the workstation and contains an entry for each local and remote one. Each
database entry contains the database name, alias, entry type, and location.

 One Volume Database Directory is allocated per disk drive that contains a
workstation database. Each entry identifies the location of a specific database on
the drive.

 - 1054 -

 The Workstation Directory is used to make a connection to a remote database
server. It is used in conjunction with the Database Connection Services Directory
to make a connection to a remote host server.

 The Database Connection Services Directory is used by DB2 Connect to make a
connection to a remote host server.

Not only is it possible for the user to update these directories, but it is required. The work-station
directories define the environment of DB2 for OS/2. Without the proper information recorded in these
directories, DB2/2 might not function in the desired manner. The information in these directories is
somewhat analogous to DB2 for OS/390 DSNZPARMs and SYSDDF.

Database Structures
Not all the objects available to DB2 for OS/390 users are supported at the workstation level. For
example, hardware-specific DB2 objects such as tablespaces and storage groups are not available for
DB2 on other platforms, at least as we are used to dealing with them. Partitioning and segmenting as
they are done on the OS/390 flavor of DB2 are not possible. However, DB2 for common servers does
provide a feature known as a segmented table. But this is not the same concept as a DB2 for OS/390
segmented tablespace. Common server segmented tables are used to span volumes, enabling DB2 to
get around the 2 gigabyte file size limitations under AIX.

The file structure used for databases differs from platform to platform. For example, DB2 for OS/390
uses VSAM Linear Data Sets (LDS) or Entry Sequenced Data Sets (ESDS). A database deployed on
DB2 for common servers uses two files for table data: one for normal data and a second to store long
fields. These workstation files are flat files, not VSAM files.
Although tables are basically the same for all of the DB2 environments, not all of the DDL options are
provided in all of the environments. For example, DB2 for OS/390 does not support triggers, and DB2
for common servers does not allow VALIDPROCs, FIELDPROCs, and EDITPROCs.

Optimizer Differences
One of the most significant benefits of relational databases is that they provide built-in optimization. The
DB2 for OS/390 optimizer is well-known to mainframe DB2 users, but how similar are the other DB2
optimizers?

The DB2 for common servers product uses the latest and greatest optimization technology from IBM's
Almaden labs: the Starburst optimizer. Starburst is a database optimization research project that has
been covered quite extensively in the academic press. Although some Starburst technology will find its
way to DB2 for OS/390, the DB2 for OS/390 optimizer will never be completely replaced by Starburst
technology. The DB2 for OS/390 optimizer has been finely tuned for its environment over the course of
more than a decade.

Another interesting tidbit is that DB2 for OS/400 provides an access method for programmers in which
they can bypass the relational engine. This is not encouraged, but it is available.

Other Differences
Other differences exist between the different implementations of DB2. Some of these are caused by the
different release cycles IBM has created for the differing platforms. For example, DB2 UDB for common
servers has supported recursive SQL for a while now, but DB2 for OS/390 does not support recursive
SQL. Furthermore, it looks like the next version of DB2 for OS/390 will not provide this capability, either.

The bottom line is that you need to be aware that there are differences between the DB2s on different
platforms. Whenever you use a specific implementation of DB2, you need to be aware of the features it
supports that other DB2 platforms do not, as well as the features it does not support that other DB2
platforms do support.
Summary
The intent of this appendix is not to criticize IBM or to provide an exhaustive listing of differences among
the DB2 family product offerings. Instead, its purpose is to inform you that DB2 is available on multiple
platforms and to prepare you for the inevitable differences from DB2 for OS/390 that you will encounter.
For more extensive coverage of the differences between IBM's various SQL implementations and DB2
products, consult your local IBM representative and the IBM manuals. Another good reference manual

 - 1055 -

is the IBM SQL Reference, Volumes 1 and 2 (SC26-8416). It provides a comparison of the SQL
implementation within each of IBM's database management systems.

Appendix J: Summary of DB2 Version 4, Version 5,
and Version 6 Changes
Overview
This appendix provides short checklists of features for the most recent versions of DB2 released by
IBM. There have been three versions of DB2 released since 1995:

 DB2 Version 4 (also known as DB2 V4 or DB2 V4.1)
 DB2 Version 5 (also known as DB2 V5 or DB2 V5.1)
 DB2 Version 6 (also known as DB2 V6 or DB2 V6.1)

The following sections contain very short, bulleted lists that inventory the features of each release. The
lists are in reverse chronological order.

DB2 Version 6 Features
DB2 V6 has been generally available since June 1999. At the time of publication, it is the most up-to-
date version of DB2 available from IBM for OS/390. The most important new features provided by V6
are listed in the following sections.

Database Administration Features
16TB tables.
Object/relational capabilities including BLOBs, CLOBs, and DBCLOBS, triggers, UDFs, and UDTs.

Multimedia support with DB2 Extenders.

8KB and 16KB tablespace page sizes.
VARCHAR column resizing.
Explicit CREATE support for stored procedures.

Ability to specify a default bufferpool for indexes.

Enhanced support for pattern-matching characters in DB2 commands.

Improved partition rebalancing.
You can change checkpoint frequency dynamically using the SET LOG command.
Object code version of DSNTEP2 provided (no longer need a PL/I compiler).

Utility Features
COPY and RECOVER can process a list of objects in parallel and recover indexes and tablespaces at the
same time from image copies and the log.
Parallel index build reduces the elapsed time of LOAD and REORG jobs involving more than one index.

Inline statistics collection during utility jobs.
Threshold limits to determine when to run REORG.

Remote site recovery improvements.

Programming Features
SQLJ support for embedded SQL in Java programs.

Three-part names support using DRDA.

 - 1056 -

Many stored procedure enhancements, including nested procedure CALLs and the ability to issue
CALL statements dynamically using ODBC drivers.

More than 50 new built-in functions.
Up to 225 tables permitted in SQL SELECT, INSERT, UPDATE, and DELETE statements and views.
Support for VALUES and VALUES INTO.
Direct-row access using the ROWID data type to re-access a row directly without using the index or
scanning the table.

ODBC extensions including new and modified APIs, support for DB2 V6 object/relational extensions,
and ODBC catalog query redirection to shadow copies of DB2 Catalog tables.

Performance Features
Optimization hints

Predictive governing

Statement cost estimation

Bufferpools in data spaces

DDF connection pooling

Improved workload balancing in parallel Sysplex

Faster log apply process

Ability to postpone backout work during a restart

Increased log output buffer size (from 1,000 to 100,000 4KB buffers)

Query parallelism improvements

DB2 Catalog Impact
9 new tables.

1 table no longer used, but kept for fallback purposes.

24 tables have one or more new or changed columns.

52 total new columns.

80 total revised columns.

DB2 Version 5 Features
DB2 V5 was first announced by IBM as V4.2. However, late in 1996 IBM changed plans and switched
from a point release to a full-fledged new version. DB2 V5, generally available since June 1997, is laden
with new features.

Database Administration Features
LARGE tables (up to 254 partitions; approx. 1 TB)

Multiple stored procedure address spaces

Table renaming

ASCII server support

 - 1057 -

Native TCP/IP

DCE security

DDL-based support rows per page (up to 255)

Workstation GUI install

Utility Features
Online REORG
LOAD and REORG improvements
COPY with thresholds
RUNSTATS using sampling

Programming Features
CASE expressions

Stored procedure results sets

Temporary tables

RRSAF

Call Level Interface (ODBC)
NULLIF function
STRIP function
Visual EXPLAIN

Temporary tables

Performance Features
Optimization changes

Skip partition scanning

Changes to stage 1 and indexable predicates

SQL caching
Persistent dynamic BIND

Query Sysplex parallelism

Partition locking

Data sharing improvements

DB2 Catalog Impact
Communications Database moved to the DB2 Catalog Database.

8 new or renamed tables.

31 tables have one or more new or changed columns.

65 total new columns.

59 total revised columns.

DB2 Version 4 Features

 - 1058 -

IBM introduced many new and useful features with DB2 V4. Available since December 1995, many
shops are still running DB2 V4 today.

Database Administration Features
DB2 Catalog REORG

User-defined DB2 Catalog indexes
COPY, RECOVER, and REORG improvements

Dynamic SQL security improvements
REFERENCES privilege

Data sharing

Type 2 indexes

User-defined defaults

Check constraints
UNIQUE WHERE NOT NULL indexes

Row-level locking

Multi-character command prefixes

Tracking DFSMS concurrent copies in the DB2 Catalog

Client/Server Features
Stored procedures

Support for 25,000 distributed connections

Performance Features
Partition scanning (page range scan)

Query CP parallelism

Uncommitted read (read-through locks)

No locks on type 2 indexes

Programming Features
Outer join

In-line views (nested tables)
COALESCE function
Column renaming using AS
DCLGEN improvements

DB2 Catalog Impact
Communications Database moved to the DB2 Catalog Database.

3 new tables.

16 tables have one or more new or changed columns.

 - 1059 -

18 total new columns.

21 total revised columns.

List of Figures
Chapter 1: The Magic Words

Figure 1.1: Relational closure.
Figure 1.2: Record-at-a-time processing versus set-at-a-time processing.
Figure 1.3: SQL statement types.
Figure 1.4: The DB2 object hierarchy.
Figure 1.5: DB2 security levels.

Chapter 2: Data Manipulation Guidelines
Figure 2.1: Visual Explain graphically depicts an EXPLAIN.

Chapter 5: Data Definition Guidelines
Figure 5.1: DB2 Estimator and Space Requirements.
Figure 5.2: Using DB2 Estimator to Calculate Space.
Figure 5.3: Two methods of splitting tables.
Figure 5.4: A department hierarchy.

Chapter 6: Using DB2 Triggers for Integrity
Figure 6.1: Trigger transition variables: NEW and OLD.

Chapter 7: Large Objects and Object/Relational Databases
Figure 7.1: Base table to auxiliary table relationship for storing LOBs.
Figure 7.2: Using LOB locators.

Chapter 11: Program Preparation
Figure 11.1: DB2 program preparation.
Figure 11.2: The DB2I main menu.
Figure 11.3: The DB2I Defaults panel.
Figure 11.4: The DB2I DCLGEN panel.
Figure 11.5: The DB2I Precompile panel.
Figure 11.6: The DB2I Bind Plan panel.
Figure 11.7: The DB2I Bind Package panel.
Figure 11.8: The DB2I Program Preparation panel.
Figure 11.9: The DB2I Compile, Prelink, Link, and Run panel.
Figure 11.10: The DB2I Run panel.

Chapter 12: Alternative DB2 Application Development
Methods

Figure 12.1: Using DB2 Connect and CAE to connect to DB2 for OS/390.
Figure 12.2: A complex client/server environment.
Figure 12.3: An ODBC application.

Chapter 13: Using DB2 Stored Procedures
Figure 13.1: Calling a stored procedure.
Figure 13.2: Stored procedure nesting.
Figure 13.3: A stored procedure returning result sets.
Figure 13.4: Coding to return a result set.
Figure 13.5: Using the Stored Procedure Builder to create a stored procedure.

Chapter 14: The Procedural DBA
Figure 14.1: Procedural DBA tasks.

Chapter 15: DB2 and the Internet
Figure 15.1: The Craig S. Mullins home page
(http://www.craigsmullins.com).
Figure 15.2: A newsgroup reader.
Figure 15.3: How Net.Data works.
Figure 15.4: The IBM DB2 for OS/390 page
(http://www.software.ibm.com/data/db2/os390).
Figure 15.5: Ron Rabe's DB2 reference page
(http://www.webcom.com/~raberd/db2info.html).
Figure 15.6: Eric Loriaux's MVS site (http://www.ping.be/~ping1475).

 - 1060 -

Figure 15.7: The JED-SP S/390 home page (http://www.jedsp.com/s390).
Figure 15.8: The RYC, Inc. site (http://www.ryci.com).
Figure 15.9: The International DB2 user group site (http://www.idug.org).
Figure 15.10: The GSE U.K. DB2 Working Group site
(http://www.gseukdb2.org.uk).
Figure 15.11: DB2 Magazine online site (http://www.db2mag.com).
Figure 15.12: The BMC software site (http://www.bmc.com).
Figure 15.13: Internet FAQ Consortium (http://www.faqs.org).
Figure 15.14: The AltaVista search engine site
(http://www.altavista.com).

Chapter 16: The Doors to DB2
Figure 16.1: Programs access DB2 using threads.
Figure 16.2: Using the TSO Attach Facility.
Figure 16.3: A typical ISPF online DB2 application.
Figure 16.4: The DB2I menu.
Figure 16.5: The DB2I SPUFI panel.
Figure 16.6: The DB2I SPUFI Defaults panel.
Figure 16.7: The DB2I Bind/Rebind/Free menu.
Figure 16.8: The DB2I Rebind Plan panel.
Figure 16.9: The DB2I Rebind Package panel.
Figure 16.10: The DB2I Free Plan panel.
Figure 16.11: The DB2I Free Package panel.
Figure 16.12: The DB2I Run panel.
Figure 16.13: The DB2I Commands panel.
Figure 16.14: The DB2I Defaults panel.
Figure 16.15: The DB2I Defaults panel #2: COBOL Defaults.
Figure 16.16: The QMF Home panel.
Figure 16.17: The QMF Query panel.
Figure 16.18: The QMF Report panel.
Figure 16.19: The QMF Form panel.
Figure 16.20: The QMF Proc panel.
Figure 16.21: A typical QMF session.
Figure 16.22: CICS region to DB2 subsystem relationship.
Figure 16.23: CICS/DB2 program preparation.
Figure 16.24: The CICS Attach Facility.
Figure 16.25: The CICS two-phase commit process.
Figure 16.26: IMS/TM regions.
Figure 16.27: The IMS Attach Facility.
Figure 16.28: IMS/DB2 transaction threads.
Figure 16.29: The IMS/TM two-phase commit process.
Figure 16.30: The Call Attach Facility.
Figure 16.31: Explicit CAF thread creation.
Figure 16.32: Implicit CAF thread creation.

Chapter 17: Data Sharing
Figure 17.1: A DB2 Data Sharing Environment.
Figure 17.2: Group Bufferpool Duplexing.
Figure 17.3: Administering the DB2 Data Sharing Environment.

Chapter 18: DB2 Behind the Scenes
Figure 18.1: DB2 objects.
Figure 18.2: DB2 uses data sets with 4KB pages.
Figure 18.3: 32KB pages are composed of eight 4KB pages.
Figure 18.4: DB2 tablespace layout.
Figure 18.5: Number of pages per space map page.
Figure 18.6: Tablespace data page layout.
Figure 18.7: LOB map page layout.
Figure 18.8: LOB data page layout.
Figure 18.9: DB2 index structure.
Figure 18.10: DB2 index space layout.
Figure 18.11: Index space map page layout.
Figure 18.12: Type 2 index non-leaf page layout.
Figure 18.13: Type 2 Index leaf page layout.

 - 1061 -

Figure 18.14: Index entries.
Figure 18.15: The DB2 address spaces.
Figure 18.16: The components of the Database Services Address Space.
Figure 18.17: From RDS to DM to BM and back again.

Chapter 19: The Optimizer
Figure 19.1: The DB2 optimizer.
Figure 19.2: A tablespace scan.
Figure 19.3: A segmented tablespace scan.
Figure 19.4: Partitioned tablespace scans.
Figure 19.5: Sequential prefetch.
Figure 19.6: Sequential prefetch processing.
Figure 19.7: Direct index lookup.
Figure 19.8: A matching index scan.
Figure 19.9: A nonmatching index scan.
Figure 19.10: Clustered index access.
Figure 19.11: Nonclustered index access.
Figure 19.12: Index-only access.
Figure 19.13: List prefetch.
Figure 19.14: Multi-index access (AND).
Figure 19.15: Multi-index access (OR).
Figure 19.16: Index lookaside.
Figure 19.17: Query I/O parallelism.
Figure 19.18: Query CP parallelism.
Figure 19.19: Query Sysplex parallelism.
Figure 19.20: Generalized join process.
Figure 19.21: Nested loop join.
Figure 19.22: Merge scan join.
Figure 19.23: A hybrid join.
Figure 19.24: Relative join performance.
Figure 19.25: A non-correlated subquery.
Figure 19.26: A correlated subquery.
Figure 19.27: View merge.
Figure 19.28: View materialization.

Chapter 20: The Table-Based Infrastructure of DB2
Figure 20.1: The effect of DDL on the DB2 Catalog.
Figure 20.2: The effect of DCL on the DB2 Catalog.
Figure 20.3: The DB2 Catalog: tablespaces, tables, and indexes.
Figure 20.4: The DB2 Catalog: plans and packages.
Figure 20.5: The DB2 Catalog: views, STOGROUPs, and databases.
Figure 20.6: The DB2 Catalog: routines, UDFs, schemas, and procedures.
Figure 20.7: The DB2 Catalog: distributed information, the CDB.
Figure 20.8: The DB2 Directory.

Chapter 21: Locking DB2 Data
Figure 21.1: The DB2 locking hierarchy.
Figure 21.2: Processing a lock request.
Figure 21.3: The DB2 LOB locking hierarchy.
Figure 21.4: DB2 log offloading.
Figure 21.5: DB2: The big picture.

Chapter 22: Traditional DB2 Performance Monitoring
Figure 22.1: DB2-PM operation.
Figure 22.2: DB2 console messages.
Figure 22.3: Log offloading.
Figure 22.4: Resource unavailable.
Figure 22.5: Locking contention and timeouts.
Figure 22.6: The BCT plan.
Figure 22.7: The BINDCT plan.

Chapter 23: Using EXPLAIN
Figure 23.1: How EXPLAIN works.

Chapter 24: DB2 Object Monitoring Using the DB2 Catalog
Figure 24.1: Referential integrity terms.

 - 1062 -

Part V: DB2 Performance Tuning
Figure V.1: The DB2 performance tuning pie.
Figure V.2: The 80-20 rule.

Chapter 25: Tuning DB2's Environment
Figure 25.1: DB2 memory use.
Figure 25.2: How DB2 sorts.
Figure 25.3: Dispatching priority hierarchy.

Chapter 26: Tuning DB2's Components
Figure 26.1: DB2 bufferpool processing.
Figure 26.2: The relationship among of the "VP" bufferpool parameters.
Figure 26.3: Hiperpool to bufferpool relationship.
Figure 26.4: The castout process.
Figure 26.5: The tuning hierarchy in terms of impact.
Figure 26.6: The tuning review process.

Chapter 27: DB2 Resource Governing
Figure 27.1: The predictive governing process.
Figure 27.2: The QMF F parameter.

Chapter 28: An Introduction to DB2 Utilities
Figure 28.1: DB2I utility JCL generation panel 1.
Figure 28.2: DB2I utility JCL generation panel 2.
Figure 28.3: DB2I JCL generation output messages.
Figure 28.4: Generated JCL for the STOSPACE utility.
Figure 28.5: Output from the -DISPLAY UTILITY (*) command.

Chapter 30: Backup and Recovery Utilities
Figure 30.1: DB2 recovery.

Chapter 31: Data Organization Utilities
Figure 31.1: Concurrent REORG processing.

Chapter 32: Catalog Manipulation Utilities
Figure 32.1: The RUNSTATS utility.

Chapter 34: DB2 Commands
Figure 34.1: Issuing a DB2 command through DB2I.
Figure 34.2: Response to the DB2 command issued in Figure 34.1.
Figure 34.3: DISPLAY UTILITY: output.
Figure 34.4: DSNC DISPLAY STATISTICS: output.

Chapter 37: Components of a Total DB2 Solution
Figure 37.1: A DB2 table compression routine at work.
Figure 37.2: A Query By Example (QBE) request.
Figure 37.3: DB2 security cascading REVOKEs.
Checklist 1: Enhanced COPY utility evaluation.
Checklist 2: Enhanced LOAD utility evaluation.
Checklist 3: Enhanced REORG utility evaluation.
Checklist 4: Enhanced RECOVER utility evaluation.
Checklist 5: Enhanced UNLOAD utility evaluation.

Chapter 38: Organizational Issues
Figure 38.1: IBM BookManager Library Reader on the mainframe.
Figure 38.2: IBM BookManager Library Reader for Windows.

Chapter 39: DRDA
Figure 39.1: The three DRDA functions.
Figure 39.2: DRDA's supporting architectures.
Figure 39.3: DRDA remote request.
Figure 39.4: DRDA remote unit of work.
Figure 39.5: DRDA distributed unit of work.
Figure 39.6: DRDA distributed request.

Chapter 40: Distributed DB2
Figure 40.1: Distributed data capabilities.
Figure 40.2: A two-phase commit syncpoint tree.

Chapter 41: Distribution Guidelines

 - 1063 -

Figure 41.1: The Distributed Data Facility.
Figure 41.2: Distributed communication.
Figure 41.3: Block fetch.
Figure 41.4: Limited block fetch.
Figure 41.5: Continuous block fetch.
Figure 41.6: Distributed dispatching priority hierarchy.
Figure 41.7: Distributed problem resolution log.

Chapter 42: Data Warehousing with DB2
Figure 42.1: The Operational Data Store.
Figure 42.2: The role of the repository.
Figure 42.3: Star schema.
Figure 42.4: Replication versus propagation.
Figure 42.5: Data warehousing the big picture.
Figure 42.6: Indexes and the performance of query versus modification.

Appendix D: DB2 Sample Tables
Figure D.1: DB2 sample table relationships.

Appendix F: Type 1 Indexes
Figure F.1: DB2 index structure.
Figure F.2: Type 1 index non-leaf page layout.
Figure F.3: Layout of a type 1 index leaf page containing one subpage.
Figure F.4: Layout of a type 1 index leaf page containing more than one
subpage.
Figure F.5: Index entries.

List of Tables

Chapter 2: Data Manipulation Guidelines
Table 2.1: Date and Time Addition Table

Chapter 4: Using DB2 User-Defined Functions and Data
Types

Table 4.1: Characteristics of DB2 User-Defined Functions
Table 4.2: Data Type Promotability
Table 4.3: DSN_FUNCTION_TABLE Columns
Table 4.4: Using SQL Within User-Defined Functions

Chapter 5: Data Definition Guidelines
Table 5.1: Storage Abbreviations
Table 5.2: User-Defined VSAM Data Sets Versus STOGROUPs
Table 5.3: Lengths for DB2 Data Types
Table 5.4: Free Space Allocation Chart
Table 5.5: Types of Denormalization
Table 5.6: DB2 Date and Time Formats
Table 5.7: System-Defined Column Default Values
Table 5.8: Index Free Space Allocation Chart

Chapter 6: Using DB2 Triggers for Integrity
Table 6.1: Permitted Trigger Transition Variables
Table 6.2: Allowable SQL Statements by Trigger Type
Table 6.3: Types of Referential Integrity

Chapter 7: Large Objects and Object/Relational Databases
Table 7.1: LOB Variable Declarations
Table 7.2: LOB Locator Variable Declarations
Table 7.3: Maximum Size of a VARCHAR Column
Table 7.4: UDFs Created by the Audio Extender
Table 7.5: UDFs Created by the Image Extender
Table 7.6: UDFs Created by the Text Extender
Table 7.7: UDFs Created by the Video Extender

Chapter 8: Miscellaneous Guidelines
Table 8.1: Non-Updateable View Types

Chapter 9: Using DB2 in an Application Program
Table 9.1: Types of Embedded SQL Statements

 - 1064 -

Table 9.2: DB2 Programming Versus Flat File Programming
Table 9.3: SQL Reserved Words
Table 9.4: IBM SQL Reserved Words
Table 9.5: Recommendations for COMMIT Frequency

Chapter 10: Dynamic SQL Programming
Table 10.1: SQLDA Data Element Definitions
Table 10.2: Valid Values for SQLTYPE

Chapter 11: Program Preparation
Table 11.1: Environments that Can Be Enabled or Disabled
Table 11.2: Link-Edit Modules for DB2 Programs

Chapter 12: Alternative DB2 Application Development
Methods

Table 12.1: CASE Tool Features Checklist
Chapter 13: Using DB2 Stored Procedures

Table 13.1: SQL Stored Procedure Samples
Table 13.2: SYSIBM.SYSPSM (SQL Procedure Source Table)
Table 13.3: SYSIBM.SYSPSMOPTS (SQL Procedure Options Table)

Chapter 15: DB2 and the Internet
Table 15.1: SQLJ and SQL Data Type Equivalents
Table 15.2: Interesting Usenet Newsgroups

Chapter 16: The Doors to DB2
Table 16.1: DB2 Processing Environments
Table 16.2: RCT INIT Macro Parameters
Table 16.3: RCT COMD Macro Parameters
Table 16.4: RCT ENTRY Macro Parameters
Table 16.5: RCT POOL Macro Parameters
Table 16.6: RCT AUTH Values
Table 16.7: Thread Specification by the Type of Transaction
Table 16.8: CICS File Processing Commands
Table 16.9: A Comparison of Resource Availability
Table 16.10: Comparison of Online Development Capabilities

Chapter 17: Data Sharing
Table 17.1: Shared and Non-Shared Objects
Table 17.2: Coupling Facility Structure Naming Conventions

Chapter 19: The Optimizer
Table 19.1: Statistics Analyzed During Query Optimization
Table 19.2: DB2 Catalog Columns Analyzed by the Optimizer
Table 19.3: Filter Factor Formulas
Table 19.4: Sequential Prefetch and Detection Values for 4KB Page Bufferpools
Table 19.5: Sequential Prefetch Values for 8KB Page Bufferpools
Table 19.6: Sequential Prefetch Values for 16KB Page Bufferpools
Table 19.7: Sequential Prefetch Values for 32KB Page Bufferpools
Table 19.8: When Does View Materialization Occur
Table 19.9: Access Path Strategy Compatibility Matrix

Chapter 20: The Table-Based Infrastructure of DB2
Table 20.1: Tables in the DB2 Catalog
Table 20.2: DB2 Catalog Link Insert Rules

Chapter 21: Locking DB2 Data
Table 21.1: Tablespace Locks
Table 21.2: How Tablespace Locks Are Acquired
Table 21.3: Tablespace Lock Compatibility Matrix
Table 21.4: How Table Locks Are Acquired
Table 21.5: Page Locks
Table 21.6: Page Lock Compatibility Matrix
Table 21.7: How Page Locks Are Acquired
Table 21.8: Row Locks
Table 21.9: Row Lock Compatibility Matrix
Table 21.10: How Row Locks Are Acquired

 - 1065 -

Table 21.11: Claim/Drain Compatibility Matrix
Table 21.12: Drain/Drain Compatibility Matrix
Table 21.13: Recommended IRLM Parameters

Chapter 22: Traditional DB2 Performance Monitoring
Table 22.1: DB2 Trace Types
Table 22.2: DB2 Trace Destinations
Table 22.3: Traces to Initiate for Each DB2-PM Report Type
Table 22.4: DB2-PM Monitoring Reference

Chapter 23: Using EXPLAIN
Table 23.1: PLAN_TABLE Columns
Table 23.2: DSN_STATEMNT_TABLE Columns

Chapter 24: DB2 Object Monitoring Using the DB2 Catalog
Table 24.1: Reorganization Indicators

Chapter 26: Tuning DB2's Components
Table 26.1: A Possible Bufferpool Usage Scenario
Table 26.2: Coding DDL for Performance
Table 26.3: DB2 Catalog Statistics Used During Optimization

Chapter 27: DB2 Resource Governing
Table 27.1: The Columns of the RLST

Chapter 30: Backup and Recovery Utilities
Table 30.1: COPY / CHANGELIMIT Return Codes

Chapter 31: Data Organization Utilities
Table 31.1: Default LOAD Lengths
Table 31.2: DB2 Catalog Reorganization Indicators
Table 31.3: DB2 Directory Reorganization Indicators
Table 31.4: DB2 Catalog Tablespaces (DSNDB06)
Table 31.5: DB2 Directory Tablespaces (DSNDB01)

Chapter 32: Catalog Manipulation Utilities
Table 32.1: Statistics Gathered by RUNSTATS

Chapter 33: Miscellaneous Utilities
Table 33.1: DSNTIAUL, DSNTIAD, and DSNTEP2 Return Codes

Chapter 35: DB2 Utility and Command Guidelines
Table 35.1: Required Utility Data Sets
Table 30.2: Utility Contention

Chapter 36: DB2 Contingency Planning
Table 36.1: SYSIBM.SYSCOPY ICTYPEs

Chapter 37: Components of a Total DB2 Solution
Table 37.1: Categories of DB2 Products

Chapter 38: Organizational Issues
Table 38.1: DB2 Roles and Responsibilities

Chapter 39: DRDA
Table 39.1: The Five DRDA Levels

Chapter 40: Distributed DB2
Table 40.1: System-Directed Versus Application-Directed Access
Table 40.2: Thread Parameters
Table 40.3: Type 1 and Type 2 Inactive Threads

Chapter 41: Distribution Guidelines
Table 41.1: Distributed Trade-Offs
Table 41.2: Types of Denormalization
Table 41.3: Distributed Bind Parameter Recommendations

Chapter 42: Data Warehousing with DB2
Table 42.1: Operational Data Versus Warehouse Data

Appendix A: DB2 SQLCODE and SQLSTATE Values
Table A.1: DB2 Error Messages (Sorted by SQLCODE)
Table A.2: DB2 Error Messages (Sorted by SQLSTATE)
Table A.3: DB2 ODBC SQLSTATE Messages

 - 1066 -

Appendix D: DB2 Sample Tables
Table D.1: Sample Databases
Table D.2: Sample Tablespaces

Appendix I: DB2 on Other Platforms
Table I.1: The DB2 Family of Products

List of Listings
Chapter 9: Using DB2 in an Application Program

Listing 9.1: COBOL Error Handling Paragraph
Listing 9.2: Cursor Processing
Listing 9.3: Updating with a Cursor
Listing 9.4: Pseudocode for retrieving data from an SQL join
Listing 9.5: Pseudocode for Retrieving Data from an Application Join

Chapter 10: Dynamic SQL Programming
Listing 10.1: A COBOL Program Using EXECUTE IMMEDIATE
Listing 10.2: A COBOL Program Using Non-SELECT Dynamic SQL
Listing 10.3: Non-SELECT Dynamic SQL Using Parameter Markers
Listing 10.4: Fixed-List SELECT Dynamic SQL
Listing 10.5: Varying-List SELECT Dynamic SQL
Listing 10.6: Varying-List SELECT Dynamic SQL with Minimum SQLDA

Chapter 11: Program Preparation
Listing 11.1: Running a DB2 Program in TSO Batch
Listing 11.2: Sample Program Preparation Procedure
Listing 11.3: Precompile, Compile, and Link CLIST
Listing 11.4: Bind CLIST

Chapter 12: Alternative DB2 Application Development Methods
Listing 12.1: Sample DB2 CLI Code

Chapter 13: Using DB2 Stored Procedures
Listing 13.1: COBOL Stored Procedure Shell

Chapter 15: DB2 and the Internet
Listing 15.1: JDBC Code Fragment
Listing 15.2: SQLJ Code Fragment

Chapter 16: The Doors to DB2
Listing 16.1: Batch JCL for a TSO/DB2 Program
Listing 16.2: A sample Resource Control Table (RCT).
Listing 16.3: Checking for DB2 Availability
Listing 16.4: JCL to Run a DL/I Batch DB2 Program

Chapter 17: Data Sharing
Listing 17.1: Results of the DISPLAY GROUP Command

Chapter 21: Locking DB2 Data
Listing 21.1: A Typical Processing Scenario

Chapter 22: Traditional DB2 Performance Monitoring
Listing 22.1: DB2-PM Accounting Report—Short
Listing 22.2: Accounting Report—Long (Part 1)
Listing 22.3: Accounting Report—Long (Part 2)
Listing 22.4: Accounting Report—Long (Part 3)
Listing 22.5: Accounting Report—Long (Part 4)
Listing 22.6: Accounting Report—Long (Part 5)
Listing 22.7: Accounting Report—Long (Part 6)
Listing 22.8: Accounting Report—Long (Part 7)
Listing 22.9: Accounting Report—Long (Part 8)
Listing 22.10: Accounting Report—Long (Part 8)
Listing 22.11: Accounting Report—Long (Other)
Listing 22.12: DB2-PM Audit Summary Report
Listing 22.13: DB2-PM I/O Activity Summary Report
Listing 22.14: DB2-PM Lock Contention Summary Report
Listing 22.15: DB2-PM Lock Suspension Summary Report

 - 1067 -

Listing 22.16: DB2-PM Statistics Short Report
Listing 22.17: DB2-PM Transit Time Summary Report

Chapter 23: Using EXPLAIN
Listing 23.1: DDL to Create the PLAN_TABLE
Listing 23.2: DDL to Create the DSN_STATEMNT_TABLE
Listing 23.3: DDL to Create the DSN_FUNCTION_TABLE

Chapter 24: DB2 Object Monitoring Using the DB2 Catalog
Listing 24.1: Sample QMF Form for the Table Listing Query

Chapter 29: Data Consistency Utilities
Listing 29.1: CHECK DATA JCL
Listing 29.2: CHECK DATA JCL (for LOB References)
Listing 29.3: CHECK LOB JCL
Listing 29.4: CHECK INDEX JCL
Listing 29.5: REPAIR DBD JCL
Listing 29.6: REPAIR LOCATE JCL
Listing 29.7: REPAIR SET JCL
Listing 29.8: REPORT TABLESPACESET JCL
Listing 29.9: DIAGNOSE JCL

Chapter 30: Backup and Recovery Utilities
Listing 30.1: Image Copy JCL
Listing 30.2: Incremental Image Copy JCL
Listing 30.3: Index Copy JCL
Listing 30.4: MERGECOPY JCL
Listing 30.5: QUIESCE JCL
Listing 30.6: JCL for Full Recovery
Listing 30.7: JCL for Partial Recovery
Listing 30.8: RECOVER INDEXSPACE JCL
Listing 30.9: REBUILD INDEX JCL
Listing 30.10: REPORT RECOVERY JCL

Chapter 31: Data Organization Utilities
Listing 31.1: LOAD JCL (Restartable)
Listing 31.2: LOAD JCL (Nonrestartable)
Listing 31.3: REORG JCL (Restartable)
Listing 31.4: REORG JCL (Nonrestartable)

Chapter 32: Catalog Manipulation Utilities
Listing 32.1: MODIFY RECOVERY JCL
Listing 32.2: RUNSTATS TABLESPACE JCL
Listing 32.3: RUNSTATS INDEX JCL
Listing 32.4: STOSPACE JCL

Chapter 33: Miscellaneous Utilities
Listing 33.1: DSNJU003 JCL (Change Log Inventory)
Listing 33.2: DSNJU004 JCL (Print Log Map)
Listing 33.3: DSNJLOGF JCL
Listing 33.4: DSN1CHKR JCL
Listing 33.5: DSN1COMP JCL
Listing 33.6: DSN1COPY JCL
Listing 33.7: DSN1COPY JCL (Using the OBIDXLAT Option)
Listing 33.8: DSN1SDMP JCL
Listing 33.9: DSN1LOGP JCL
Listing 33.10: DSN1PRNT JCL
Listing 33.11: DSNTEP2 JCL
Listing 33.12: DSNTIAD JCL
Listing 33.13: DSNTIAUL JCL

Chapter 34: DB2 Commands
Listing 34.1: JCL to Issue a DB2 Command in Batch
Listing 34.2: Results of DISPLAY BUFFERPOOL
Listing 34.3: Results of DISPLAY BUFFERPOOL

 - 1068 -

Listing 34.4: Results of DISPLAY LOG
Chapter 36: DB2 Contingency Planning

Listing 36.1: QMF Form to be Used with the SYSCOPY Query
Listing 36.2: QMF Form to be Used with the DBID/PSID/OBID Query

List of Sidebars
Chapter 15: DB2 and the Internet

How to Access the Internet

