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Foreword

Charles Davies, Chief Technical Officer, Symbian

Software engineers live in interesting times: software is becoming perva-
sive. We all increasingly rely on our personal computers and use their
software as an essential tool in organizing our lives. But what we ”see” is
just the tip of the iceberg. Most software exists beneath the surface within
a variety of embedded systems such as electronic consumer devices,
motor cars, and aircraft. Symbian OS is targeted at mobile phones – a
class of embedded system that exists in massive volume and which is
used by the entire developed world.

The amount of software built into a mobile phone is expanding rapidly.
In recent times it has outpaced Moore’s law: in the past three years the
amount of embedded software in high-end phones has jumped from
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about 2 MB to 20 MB. This is partly required by the sophistication of
new 3G networks, but it is mainly due to mobile phones subsuming
the functionality of other portable consumer devices, such as digital
cameras and camcorders, digital audio players, video players, electronic
organizers, mobile gaming consoles, portable radios, portable TVs, email
terminals, cordless phones and even electronic payment cards. The
mobile phone is becoming the key portable lifestyle support system – an
electronic Swiss army knife.

Symbian OS is needed because this explosion in software-supported
functionality requires a capable operating system that is designed for
sophisticated, always-on, battery-powered mobile devices.

The object-oriented programming paradigm of Symbian OS helps
manage system complexity and permeates the architecture of Symbian
OS. This architecture uses many advanced, but classical, constructs
found in other multitasking operating systems. Examples include pre-
emptive multitasking threads, processes, asynchronous services and
internal servers for serializing access to shared resources. Symbian OS
has some particular features that also need to be understood if one is
to become an effective Symbian OS programmer. These distinct features
have been designed to cope with the rigorous discipline of mobile device
programming, for example, in the handling of asynchronous events and
errors, avoiding memory leakages and other dangling resources.

Software engineers moving from the embedded space will probably
have to make a transition from C to the object-oriented world of C++.
Software engineers moving from the PC space will probably be used to
C++, but will not be used to the tougher disciplines of programming for
mobile phones where robustness, code size, memory usage, performance
and battery life is important, where there are no regular reboots to mop
up memory leaks and where the radio increases and enriches the number
of events to which applications have to respond.

Whatever your background and level of experience, your effectiveness
will be much improved if you read this book and understand the essential
Symbian OS concepts.



About this Book

Developing good C++ code on Symbian OS requires a clear understand-
ing of the underlying concepts and the nature of the operating system.
This book explains the key features of Symbian OS and shows how you
can use this knowledge most effectively. It also focuses on some aspects
of good C++ style that particularly apply to Symbian OS. With under-
standing and practice, the expertise required to write high quality C++
code on Symbian OS should become second nature.

The book is divided into a series of self-contained chapters, each
discussing specific and important features of Symbian OS. Besides the
fundamentals, the chapters illustrate best practice and describe any com-
mon mistakes to avoid. The chapters are concise enough to impart the
insight you need without being so brief as to leave you needing more infor-
mation. Each chapter delivers simple and straightforward explanations
without omitting the important facts.

This book doesn’t teach you how to write C++. It assumes you’re
already familiar with the most important concepts of the language. Neither
does it walk through Symbian OS from the perspective of developing a
particular application. Instead, I try to impart an understanding of the
central concepts and key features of Symbian OS and good techniques in
C++. To quote from Scott Meyers,1 whose book inspired me to write this
one, ”In this book you’ll find advice on what you should do, and why,
and what you should not do, and why not”.

1 Scott Meyers, Effective C++: 50 specific ways to improve your programs and designs,
1997. See the Bibliography for further details.
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Who Is It For?

The book assumes a reasonable understanding of programming in C++.
It does not assume in-depth knowledge of Symbian OS and covers
the basics such as descriptors (Chapters 5 and 6) and active objects
(Chapters 8 and 9) as well as more complex features such as the Sym-
bian OS client–server architecture (Chapters 11 and 12) and ECOM
(Chapter 14).

The book focuses upon the core of the operating system, which should
be equally applicable to all versions of Symbian OS, and user interfaces,
such as UIQ and Series 60. If there are any important differences between
platforms, they are highlighted. At the time of writing (Spring 2004),
Symbian is preparing to release a new version of the operating system,
Symbian OS v8.0. This book explicitly indicates any changes that the
new version will introduce, where the author is aware of them.

If you are a developer targeting, or thinking of targeting, Symbian
OS, this book will show you how to write the most effective C++.
You will benefit from a greater understanding of the characteristic fea-
tures and design of the operating system, and confidence in how to
use them. However experienced you are with Symbian OS, there are
always new tricks to learn, which is why this book will appeal to all
levels of developer. It reflects the combined wisdom of the many expe-
rienced Symbian OS developers I have worked with. Over the years,
they have taught me a great deal, and when I looked more closely at
parts of the OS whilst writing this book, I learnt even more. I hope you
will too.

How to Use This Book
As I’ve already mentioned, the book is split into a number of chapters,
where each chapter acts as a guide to a particular feature of Symbian OS.
The title of each, a detailed table of contents and the index, glossary and
bibliography sections are all designed to help you find the information
you need.

The chapters do not necessarily need to be read in sequence. Rather,
the book can be dipped into for revision, reference or to provide a handy
”tip for the day”; it does not necessarily need to be read from cover to
cover. The chapters cross-reference each other where there is overlap
between them, to indicate which other areas are particularly relevant to
the discussion.

For clarification and explanation, the chapters also use example code
which has been designed to illustrate good coding style and the conven-
tions of Symbian OS code and code layout.
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Notation and Code Conventions Used in This Book
The textual layout of this book is self-explanatory, but the code layout
needs some introduction. Where I use example code, it will be highlighted
as follows:

This is example code;

C++ code for Symbian OS uses an established naming convention which
you should try to stick to in order for your own code to communicate its
intent most clearly. Besides communication, the main benefit of adhering
to the convention is that it is chosen to reflect clearly object cleanup
and ownership.

The best way to get used to it is to look at code examples such as those
found in your chosen SDK as well as in this book. The main features of
the naming conventions are described here; in Chapter 1, I discuss the
class name prefix conventions, while Chapter 2 covers the reason for the
trailing L on some function names and Chapter 3 discusses the use of
trailing C.

Capitalization

The first letter of class names should be capitalized:

class TClanger;

The words making up variable, class or function names should be
adjoining, with the first letter of each word capitalized where appropri-
ate (parameters, automatic, global and member variables, and function
parameters have a lower case first letter). The rest of each word should
be lower case, including acronyms:

void SortFunction();
TInt myLocalVariable;
CMemberVariable* iDevilsHaircut;
class CActiveScheduler;
class CBbc;//Acronyms are not usually written in upper case

Global variables tend to be discouraged, but typically start either with an
initial capital letter or are prefixed with a lower case ”g”.

Prefixes

Member variables are prefixed with a lower case ”i” which stands for
”instance”.
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TInt iCount;
CPhilosopher* iThinker;

Parameters are prefixed with a lower case ”a” which stands for ”argu-
ment”. Do not use ”an” for arguments that start with a vowel.

void ExampleFunction(TBool aExampleBool, const TDesC& aName);

Note TBool aExampleBool rather than TBool anExampleBool.
Automatic variables have no prefix and the first letter is lower case.

TInt index;
CMyClass* ptr = NULL;

Class names should be prefixed with an appropriate letter (”C”, ”R”, ”T”
or ”M” as described fully in Chapter 1).

class CActive;
class TParse;

Constants should be prefixed with ”K”.

const TInt KMaxFilenameLength = 256;
#define KMaxFilenameLength 256

Enumeration members are prefixed with ”E”. Enumerations are types, and
so are prefixed with ”T” (you can find more information about T classes
in Chapter 1).

enum TChilliPeppers {EScotchBonnet, EJalapeno, ECayenne};

Suffixes

A trailing ”L” on a function name indicates that the function may leave.

void ConstructL();

A trailing ”C” on a function name indicates that the function returns a
pointer that has been pushed onto the cleanup stack.

CPhilosopher* NewLC();
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A trailing ”D” on a function name means that it will result in the deletion
of the object referred to by the function.

TInt ExecuteLD(TInt aResourceId);

Underscores

Underscores should be avoided except in macros (__ASSERT_DEBUG)
or resource files (MENU_ITEM).

Code layout

You’ll notice that the curly bracket layout in Symbian OS code, used
throughout this book, is to indent the bracket as well as the following
statement. I’m not a big fan of this, and I don’t think it makes that
much difference if you use an alternative layout. However, if you want
to stick to writing code the ”Symbian way”, you should adhere to the
following convention:

void EatChilliL(CChilliPepper* aChilli)
{
if (!aChilli)

{
User::Leave(KErrArgument);
}

TChilliType type = aChilli->Type();
if (EScotchBonnet==type)

{
User::Leave(KErrNotSupported);
}

DoEatChilliL(aChilli);
}

Tips

Throughout the book, tips and advice are signified by a symbol in the
margin.

These tips complement each section, providing reminders of key
elements of the discussion.

Introduction to Symbian OS

A key characteristic of a mobile phone is that it is small – as small and as
light as possible.
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It’s with you all the time, ready to send and receive phone calls
or messages, play alarms to wake you, connect to the phone network
or other devices, organize your personal information or play games.
Whatever you want to do, you want access to your phone to be instant. It
should be ready without the long boot-up you expect from a PC. It should
react to user input from the moment you pick it up. And it should be
reliable. As a mobile phone owner, how many of your contacts’ phone
numbers do you know? Your phone keeps your personal data for you and
it’s essential that it doesn’t lose it.

Let’s examine the consequences of these features on the design of a
mobile operating system, such as Symbian OS. The phone may be small
and light, but, as users, we still demand it to have a reasonable battery
life. This places huge importance on efficient power management. The
operating system cannot drain the battery and must allow the processor
to power parts of the system down where possible, although it cannot
ever power off completely because it must handle incoming calls and
messages, and signal alarms.

The user expects the phone to be responsive, not sluggish to respond
to each key press; the operating system and hardware must carefully
balance demands for good performance speed with the consumption
requirements of power-hungry processors. Costs are also important: they
limit the processor and amount of memory in a mobile device. The
operating system must be efficient, to make best use of the limited
processor and memory resources available, whilst using the least power.

Besides being efficient, the operating system must be robust when
the limited resources are exhausted. It must be engineered to cope with
low memory conditions, loss of power or when a communications link
is unavailable. Memory management is key. The operating system must
track precious system resources accurately and free them when they
are not required. It’s not acceptable for memory to slowly leak away,
resulting in disintegration in performance and usability until the user is
forced to reboot. The operating system should make it easy for software
engineers to write code that runs without memory leaks and can handle
out-of-memory conditions when they occur.

The mobile phone market is a mass market, with many millions of
units shipped. It’s difficult, if not impossible, to recall them or require the
user to upgrade through service packs. So when a phone is shipped, it’s
shipped. It must not have any serious defects. Not only must the platform
on which a phone is based be well-engineered, it must also provide the
means for developers to build, debug and test robust code.

As users, we also demand that our mobile phones are as cheap as
possible. We want the latest, trendiest phone, which may just be smaller
than the last, or have additional features like Bluetooth, an integrated
camera or video player, or an MP3 player. This means that the lifetime of
a phone in the marketplace is limited. When a manufacturer develops a



ABOUT THIS BOOK xix

phone it must be ready for market as quickly as possible and the operating
system should ideally be flexible so the basic design can be extended or
upgraded and released in a different model.

Symbian OS was designed for mobile devices, from its earliest incar-
nation as EPOC32 in the Psion Series 5. Many of the requirements of
today’s mobile phones applied equally well in those days, and its design
reflects that. The huge demands upon a mobile operating system have
shaped Symbian OS, from resilient power-management and careful use
of memory resources, to the sophisticated use of C++ and object-oriented
programming techniques. As a developer on Symbian OS, you benefit
from a platform which was created specifically for mobile devices and
which has evolved with the market.

Of course, the responsibilities don’t stop with the operating system.
To work most successfully on a mobile phone, your code must also
be efficient, robust, responsive and extensible. Some of the problems of
mobile computing are notoriously difficult to solve and programming in
C++ is complex at the best of times. It’s not easy, but opting to work on
Symbian OS gives you the benefits of a purpose-built platform. This book
brings you the best advice from those experienced in working with it.
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1
Class Name Conventions

on Symbian OS

Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch
The longest place name in the British Isles, said to be invented to

attract tourists

Symbian OS defines several different class types, each of which has
different characteristics. The categories are used to describe the main
properties and behavior of objects of each class, such as where they may
be created (on the heap, on the stack or on either) and, particularly, how
they should be cleaned up. Each of the class types has a well-defined
set of rules which makes the creation and destruction of instances of that
class quite straightforward.

To enable the types to be easily distinguished, Symbian OS uses a
simple naming convention which prefixes the class name with a letter
(usually T, C, R or M). Naming conventions aren’t always popular,
but this one isn’t difficult to follow and is clearly of value, since it
allows the behavior of a class to be easily identified, particularly with
respect to cleanup. As a class designer, the class types simplify matters.
You consider the required behavior of your class, and match it to the
definitions of the basic Symbian OS types. Having chosen a type, you
can then concentrate on the role of the class. By the same token, as
a client of an unfamiliar class, the naming convention indicates how
you are expected to instantiate an object, use it and then destroy it in a
leave-safe way.

1.1 Fundamental Types

I’ll discuss the main features of each class type in this chapter. However,
before doing so let’s go back to basics and consider the fundamental
types. Symbian OS provides a set of typedefs of the built-in types,
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which are guaranteed to be compiler-independent; these should always
be used instead of the native types.

• TIntX and TUintX (for X = 8, 16 and 32) for 8-, 16- and 32-bit
signed and unsigned integers respectively. Unless you have a good
reason to do so, such as for size optimization or compatibility, you
should use the non-specific TInt or TUint types, which correspond
to signed and unsigned 32-bit integers, respectively.

• TInt64. Releases of Symbian OS prior to v8.0 had no built-in ARM
support for 64-bit arithmetic, so the TInt64 class implemented a
64-bit integer as two 32-bit values. On Symbian OS v8.0, TInt64
and TUInt64 are typedef’d to long long and use the available
native 64-bit support.

• TReal32 and TReal64 (and TReal, which equates to TReal64)
for single- and double-precision floating point numbers, equivalent to
float and double respectively.1 Operations on these are likely to
be slower than upon integers so you should try to avoid using them
unless necessary.

• TTextX (for X= 8 or 16), for narrow and wide characters, correspond
to 8-bit and 16-bit unsigned integers, respectively.

• TAny* should be used in preference to void*, effectively replacing
it with a typedef’d ”pointer to anything”. TAny is thus equivalent
to void but, in the context where void means ”nothing”, it is not
necessary to replace the native void type. Thus, a function taking
a void* pointer (to anything) and returning void (nothing) will
typically have a signature as follows on Symbian OS:

void TypicalFunction(TAny* aPointerParameter);

This is the one exception to the rule of replacing a native type
with a Symbian OS typedef; it occurs because void is effectively
compiler-independent when referring to ”nothing”.

• TBool should be used for boolean types. For historical reasons TBool
is equivalent to int and you should use the Symbian OS typedef’d
values of ETrue (=1) and EFalse (=0). Bear in mind that C++ will
interpret any nonzero value as true. For this reason, you should refrain
from making direct comparisons with ETrue.

• Each TBool represents 32 bits, which may be quite wasteful of
memory in classes with a number of flags representing state or settings.

1 Note that these are typedefs and should not be confused with the Symbian OS
TRealX class, which describes an extended 64-bit precision real value.
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You may wish to use a bitfield rather than a number of booleans,
given that the 32 bits of a single TBool could hold 32 boolean
values in a bitfield. Of course, you should consider the potential code
complexity, and trade that off against the benefits of a smaller object.

The typedef’d set of Symbian OS built-in types are guaranteed to
be compiler-independent and should be used instead of the native
types except when returning voidwhich is equivalent to ”nothing”.

1.2 T Classes

T classes behave much like the C++ built-in types, hence they are prefixed
with the same letter as the typedefs described above (the ”T” is for
”Type”). Like built-in types they have no destructor and, consequently, T
classes should not contain any member data which itself has a destructor.
Thus, a T class will contain member data which is either:

• ”plain ol’ data” (built-in types) and objects of other T classes

• pointers and references with a ”uses a” relationship rather than a ”has
a” relationship, which implies ownership. A good example of this is
the TPtrC descriptor class, described in Chapter 5.

T classes contain all their data internally and have no pointers, refer-
ences or handles to data they own (although references to data owned
by other objects is allowed). The reason for not allowing ownership of
external data is because the T class must not have a destructor.

Without a destructor, an object of a T class can be created on the
stack and will be cleaned up correctly when the scope of that function
exits, either through a normal return or a leave (”leaving” is discussed in
detail in Chapter 2). If a T class were to have a destructor, Symbian OS
would not call it in the event of a leave because leaves do not emulate
the standard C++ throw semantics. If a call to the destructor were
necessary for the object to be safely cleaned up, the object could only be
created on the stack in the scope of code which can be guaranteed not
to leave – which is clearly somewhat restrictive.

An object of a T class can also be created on the heap. Such an
object should be pushed onto the cleanup stack prior to calling code
with the potential to leave. In the event of a leave, the memory for the T
object is deallocated by the cleanup stack (which is discussed in detail in
Chapter 3) but no destructor call is made.
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T classes are also often defined without default constructors; indeed,
if a T class consists only of built-in types, a constructor would prevent
member initialization as follows:

TMyPODClass local = {2000, 2001, 2003};

However, in the rare case that the T class has exported virtual functions,
a default constructor must be exported because it is required for any client
code to link against. The reasons for this are discussed in Chapter 20,
which explains the EXPORT_C syntax.

As a rule, the members of a T class will be simple enough to be bitwise
copied, so copy constructors and assignment operators are trivial and
the implicit compiler-generated versions are likely to be more efficient.
So you generally don’t need to write a copy constructor or assignment
operator unless, of course, you want to prevent cloning, in which case
you should declare them both private to your class and leave them
unimplemented.

Some T classes have fairly complex APIs, such as TLex, for lexical
analysis, and the descriptor base classes TDesC and TDes, described in
Chapter 5. In other cases, a T class is simply a C-style struct consisting
only of public data (traditionally, a structwas prefixed with S instead of
T, but more recent Symbian OS code tends to make these T classes too).

You’ll find the T prefix used for enumerations too, since these are
simple types. For example:

enum TMonthsOfYear {EJanuary = 1, EFebruary = 2, ..., EDecember = 12};

A T class must not have a destructor.

1.3 C Classes

Classes with the C prefix2 ultimately derive from class CBase (defined in
e32base.h). This class has two characteristics which are inherited by
its subtypes and thus guaranteed for every C class.

Firstly, CBase has a virtual destructor so a CBase-derived object
may be destroyed properly by deletion through a CBase pointer. This

2 In case you are wondering, the ”C” stands for ”Class”, which perhaps makes a ”C
class” something of a tautology, though it is an accurate reflection of the fact that it is more
than the simple ”Type” described by a T class.
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is common when using the cleanup stack, since the function invoked
when pushing a CBase-derived object onto the cleanup stack is the
CCleanupStack::PushL(CBase* aPtr) overload.

If CCleanupStack::PopAndDestroy() is called for that object (or
if a leave occurs), the object is deleted through the CBase pointer. The
virtual destructor in CBase ensures that C++ calls the destructors of the
derived class(es) in the correct order (starting from the most derived class
and calling up the inheritance hierarchy). So, as you’ll have gathered,
unlike T classes, it’s fine for a C class to have a destructor, and they
usually do.

It is worth noting at this point that, if the class does not derive
from CBase and is pushed onto the cleanup stack, the CCleanup-
Stack::PushL(TAny* aPtr) overload will be used instead. As des-
cribed above, when PopAndDestroy() is called, or a leave occurs, the
memory for the object will be deallocated but no destructor calls made.
So if you do not inherit from CBase, directly or indirectly, even if your
base class destructor has a virtual destructor, objects of your class will
not be cleaned up as you expect.

The second characteristic of CBase, and its derived classes, is that
it overloads operator new to zero-initialize an object when it is first
allocated on the heap. This means that all member data in a CBase-
derived object will be zero-filled when it is first created. You don’t have
to do this explicitly yourself in the constructor. Zero initialization will
not occur for stack objects because allocation on the stack does not use
operator new. This could potentially cause unexpected or different
behavior between zero-filled heap-based and non-zeroed stack-based
objects. For this reason, among others such as managing cleanup in
the event of a leave, objects of a C class must always be allocated on
the heap.

Clearly, when it is no longer needed, a heap-based object must be
destroyed. Objects of C classes typically exist either as pointer members
of another class or are accessed by local pointer variables. If owned,
the CBase-derived object should be destroyed by a call to delete, for
example in the destructor of the owning class. If the C class object is
not owned, instead being accessed through a local pointer, that pointer
must be placed on the cleanup stack prior to calling any code with the
potential to leave – otherwise it will be orphaned on the heap in the event
of a leave. I’ll discuss this further in Chapter 3.

If you look at e32base.h, you’ll notice that CBase declares a private
copy constructor and assignment operator. This is a common strategy
used to prevent a client from making accidental shallow copies of, or
assignments to, objects of a class. If such an operation is valid for your
class you must explicitly declare and define a public copy constructor
and assignment operator, because their private declaration in the base
class means they cannot be called implicitly. However, given the nature
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of C classes, a deep copy operation may well have the potential to
leave, and you should never allow a constructor (or destructor) to leave
(I describe the reasons for this in more detail in Chapter 4). If you need
to allow C class copying, rather than defining and implementing a public
copy constructor, you should add a leaving function, e.g. CloneL() or
CopyL(), to your class to perform the same role.

Since most C classes tend not to be straightforward enough to be bitwise
copied, the implicit copy is best avoided, and this is yet another benefit
of deriving from CBase. The private declaration of a copy constructor
and assignment operator in the CBase class means you don’t have to
privately declare them in every C class you write in order to prevent
clients from making potentially unsafe ”shallow” copies.

Objects of a C class must always be allocated on the heap.

1.4 R Classes

The ”R” which prefixes an R class indicates a resource, usually a handle
to an external resource such as a session with the file server. There is no
equivalent RBase class, so a typical R class will have a constructor to
set its resource handle to zero, indicating that no resource is currently
associated with the newly constructed object. You should not attempt to
initialize the resource handle in the constructor, since it may fail; you
should never leave in a constructor, as I’ll explain in Chapter 4.

To associate the R class object with a resource, the R class will typ-
ically have a function such as Open(), Create() or Initialize()
which will allocate the resource and set the handle member variable as
appropriate or fail, returning an error code or leaving. The class will also
have a corresponding Close() or Reset() method, which releases the
resource and resets the handle value to indicate that no resource is associ-
ated with the object. It should thus be safe to call such a function more than
once on the same object. Although, in theory, the cleanup function can
be named anything, by convention it is almost always called Close().

A common mistake when using R classes is to forget to call Close() or
to assume that there is a destructor which cleans up the owned resource.
This can lead to serious memory leaks.

R classes are often small, and usually contain no other member
data besides the resource handle. It is rare for an R class to have a
destructor – it generally does not need one because cleanup is performed
in the Close() method.

R classes may exist as class members or as automatic variables on
the stack, or occasionally on the heap. You must ensure the resource
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will be released in the event of a leave, typically by using the cleanup
stack, as described in Chapter 3. Remember, if using an R class object as
a heap-based automatic variable, you must make sure that the resource
is released as well as freeing the memory associated with the object
itself, typically by using two push calls: CleanupClosePushL(), or a
similar function, to ensure that the resource is cleaned up, and a standard
CleanupStack::PushL(TAny*)which simply calls User::Free()
on the heap cell.

The member data of an R class is typically straightforward enough
to be bitwise copied, so you would not expect to see an explicit copy
constructor or assignment operator unless a shallow copy would result
in undefined behavior. An example of this might be where the dupli-
cation of a handle value by bitwise copy would make it ambiguous as
to which object owns the resource. In these circumstances undefined
behavior might result if both copies attempt to release it. Calling the
Close() function on the same object may be safe because the handle
value member is reset, but the same cannot always be said for calling
Close() twice on the same underlying resource via two separate handle
objects. If one object frees the resource, the handle held by the other
is invalid.

If your class contains a handle to a resource which cannot be shared
safely by bitwise copy, you should declare a cloning function in the event
that it must be copied. If you want to prevent any kind of copying for
objects of your R class, you should declare, but not define, a private copy
constructor and assignment operator.

The rules for R classes are more open to interpretation than C or T
classes, so you’ll find more different ”species” of R class. Within Symbian
OS the types of resources owned by R classes vary from ownership of a
file server session (class RFs) to ownership of memory allocated on the
heap (class RArray).

Close()must be called on an R class object to cleanup its resource.

1.5 M Classes

Computing folklore relates that ”mix-ins” originated from Symbolic’s
Flavors, an early object-oriented programming system. The designers
were apparently inspired by Steve’s Ice Cream Parlor, a favorite ice
cream shop of MIT students, where customers selected a flavor of ice
cream (vanilla, strawberry, chocolate, etc) and added any combination
of mix-ins (nuts, fudge, chocolate chips and so on).
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When referring to multiple inheritance, it implies inheriting from a
main ”flavor” base class with a combination of additional ”mix-in”
classes which extend its functionality. I believe the designers of Symbian
OS adopted the term ”mixin”, and hence the M prefix in turn, although
the use of multiple inheritance and mixins on Symbian OS should be
more controlled than a trip to an ice cream parlor.

In general terms, an M class is an abstract interface class. A concrete
class deriving from such a class typically inherits a ”flavor” base class
(such as a CBase, or a CBase-derived class) as its first base class, and one
or more M class ”mixin” interfaces, implementing the interface functions.
On Symbian OS, M classes are often used to define callback interfaces
or observer classes.

An M class may be inherited by other M classes. I’ve shown two
examples below. The first illustrates a concrete class which derives from
CBase and a single mixin, MDomesticAnimal, implementing the func-
tions of that interface. The MDomesticAnimal class itself derives from,
but does not implement, MAnimal; it is, in effect, a specialization of that
interface.

class MAnimal
{

public:
virtual void EatL() =0;
};

class MDomesticAnimal : public MAnimal
{

public:
virtual void NameL() =0;
};

class CCat : public CBase, public MDomesticAnimal
{

public:
virtual void EatL(); // From MAnimal, via MDomesticAnimal
virtual void NameL(); // Inherited from MDomesticAnimal
... // Other functions omitted for clarity
};

The second example illustrates a class which inherits from CBase and
two mixin interfaces, MRadio and MClock. In this case, MClock is not
a specialization of MRadio and the concrete class instead inherits from
them separately and implements both interfaces. For M class inheritance,
various combinations of this sort are possible.

class MRadio
{

public:
virtual void TuneL() =0;
};
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class MClock
{

public:
virtual void CurrentTimeL(TTime& aTime) =0;
};

class CClockRadio : public CBase, public MRadio, public MClock
{

public:
virtual void TuneL();
virtual void CurrentTimeL(TTime& aTime);
... // Other functions omitted for clarity
};

The use of multiple interface inheritance, as shown in the previous
examples, is the only form of multiple inheritance encouraged on Symbian
OS. Other forms of multiple inheritance can introduce significant levels
of complexity, and the standard base classes were not designed with it in
mind. For example, multiple inheritance from two CBase-derived classes
will cause problems of ambiguity at compile time, which can only be
solved by using virtual inheritance:

class CClass1 : public CBase
{...};

class CClass2 : public CBase
{...};

class CDerived : public CClass1, public CClass2
{...};

void TestMultipleInheritance()
{
// Does not compile, CDerived::new is ambiguous
// Should it call CBase::new from CClass1 or CClass2?
CDerived* derived = new (ELeave) CDerived();
}

Let’s consider the characteristics of M classes, which can be thought
of as equivalent to Java interfaces. Like Java interface, an M class
should have no member data; since an object of an M class is never
instantiated and has no member data, there is no need for an M class to
have a constructor.

In general, you should also consider carefully whether an M class
should have a destructor (virtual or otherwise). A destructor places a
restriction on how the mixin is mixed in, forcing it to be implemented
only by a CBase-derived class. This is because a destructor means that
delete will be called, which in turn demands that the object cannot
reside on the stack, and must always be heap-based. This implies that
an implementing class must derive from CBase, since T classes never
possess destructors and R classes do so only rarely.
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In cases where the ownership of an object that implements an M class
is through a pointer to that interface class, it is necessary to provide some
means of destroying the object. If you know you can restrict implementers
of your interface class to derivation from CBase, then you can provide
a virtual destructor in the M class. This allows the owner of the M class
pointer to call delete on it.

If you do not define a virtual destructor, deletion through an M class
pointer results in a USER 42 panic, the reasons for which are as follows:
a concrete class that derives from an M class also inherits from another
class, for example CBase, or a derived class thereof. The mixin pointer
should be the second class in the inheritance declaration order3, and the
M class pointer will thus have been cast to point at the M class subobject
which is some way into the allocated heap cell for the object, rather than
at the start of a valid heap cell.

The memory management code attempting to deallocate the heap
space, User::Free(), will panic if it cannot locate the appropriate
structure it needs to cleanup the cell. This is resolved by using a virtual
destructor.

However, as an alternative to defining the interface as an M class,
you should consider simply defining it as an abstract CBase-derived
class instead, which can be inherited as usual by a C class. CBase
already provides a virtual destructor, and nothing else, so is ideal for
defining an interface class where its implementation classes can be lim-
ited to C classes. Of course, in these cases, the implementation classes
will be limited to single inheritance, because, as I described above,
multiple inheritance from CBase results in ambiguity and the dreaded
”diamond-shape” inheritance hierarchy.

In general, a mixin interface class should not be concerned with
the implementation details of ownership. If it is likely that callers will
own an object through a pointer to the M class interface, as described
above, you must certainly provide a means for the owner to relinquish
it when it is no longer needed. However, this need not be limited to
cleaning up through a destructor. You may instead provide a pure virtual
Release() method so the owner can say ”I’m done” – it’s up to the
implementing code to decide what this means (for a C class, the function
can just call ”delete this”). This is a more flexible interface – the
implementation class can be stack- or heap-based, perform reference

3 The correct class definition is

class CCat : public CBase, public MDomesticAnimal{...};

and not

class CCat : public MDomesticAnimal, public CBase{...};

The ”flavor” C class must always be the first specified class of the base class list, to
emphasize the primary inheritance tree. It also enables C class objects of derived classes such
as these to be placed on the cleanup stack using the correct CleanupStack::PushL()
overload (see Chapter 3 for more details).
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counting, special cleanup or whatever. By the way, it isn’t essential to
call your cleanup method Release() or Close(), but it can help your
callers if you do. First of all, it’s recognizable and easy enough to guess
what it does. More importantly, it enables the client to make use of the
CleanupReleasePushL() function described in Chapter 3.

Like a Java interface, an M class should usually have only pure
virtual functions. However, there may be cases where non-pure virtual
functions may be appropriate. A good example of this occurs when all the
implementation classes of that interface have common default behavior.
Adding a shared implementation to the interface reduces code duplication
and its related bloat and maintenance headaches. Of course, there’s a
restriction on what this default implementation can do, because the
mixin class must have no member data. Typically, all virtual functions are
implemented in terms of calls to the pure virtual functions of the interface.

An M class has similar characteristics to a Java interface. It has
no member data and no constructor. The use of multiple interface
inheritance using M classes is the only form of multiple inheritance
encouraged on Symbian OS.

1.6 Static Classes

We’ve reached the end of the naming convention prefixes, though not
quite the end of the types of class commonly found on Symbian OS.
There are a number of classes, with no prefix letter, that provide utility
code through a set of static member functions, for example, User and
Mem. The classes themselves cannot be instantiated; their functions must
instead be called using the scope resolution operator:

User::After(1000); // Suspends the current thread for 1000 microseconds
Mem::FillZ(&targetData, 12); // Zero-fills the 12-byte block starting

// from &targetData

Classes which contain only static functions do not need to have a
name prefix.

1.7 Buyer Beware

It’s a good rule of thumb that for all rules there are exceptions. The class
name conventions on Symbian OS are no exception to that rule and there
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are classes in Symbian OS code itself which do not fit the ideals I’ve put
to you above. There are a few classes in Symbian OS which don’t even
conform to the naming conventions. Two well-documented exceptions
are the kernel-side driver classes and the heap descriptor (HBufC), which
is discussed further in Chapter 5.

This doesn’t mean that the code is wrong – in many cases there are
good reasons why they do not fit the theory. In the lower-level code, in
particular, you’ll find cases which may have been written before the name
conventions were fully established or which, for efficiency reasons, have
different characteristics and behavior. Whenever you come across a new
class, it’s worth comparing it to the rules above to see if it fits and, if not,
considering why it doesn’t. You’ll be able to add a set of good exceptions
to the rules to your list of cunning Symbian OS tricks, while discarding
any code that unnecessarily contravenes the conventions – thus learning
from others’ mistakes.

1.8 Summary

This chapter reviewed the major class types used when coding for
Symbian OS, and described their main features such as any special
requirements when constructing or destroying objects of the class,
whether they can be stack- or heap-based and typical member data
contained by the class (if any). In particular, the chapter discussed the
use of the class name conventions to indicate the cleanup characteristics
of objects of the class in the event of a leave.

The guidelines within this chapter should be useful when writing a
class – they can help you save time when coding and testing it, if only by
cutting down on the rewrite time. If you can stick as closely as possible
to Symbian OS conventions, your clients will know how you mean your
class to be constructed, used and destroyed. This naturally benefits them,
but can also help you reduce documentation and support-time further
down the track.



2
Leaves: Symbian OS Exceptions

Go away. I’m all right
Said to be the last words of H. G. Wells

Symbian OS was first designed at a time when exceptions were not part
of the C++ standard. Later, exception handling was introduced to the
standard, but was found to add substantially to the size of compiled code
and to run-time RAM overheads, regardless of whether or not exceptions
were actually thrown. For these reasons, standard C++ exception handling
was not considered suitable to add to Symbian OS, with its emphasis on
a compact operating system and client code. When compiling Symbian
OS code, the compilers are explicitly directed to disable C++ exception
handling, and any use of the try, catch or throw keywords is flagged
as an error.

An alternative to conventional, but rather awkward, error-checking
around each function with a return value was needed. Thus ”leaves”1

were developed as a simple, effective and lightweight exception-handling
mechanism which has become fundamental to Symbian OS. You’ll
encounter lots of ”leaving code” when working on Symbian OS and
you’ll probably write some too. You need to know how to recognize
code that leaves and how to use it efficiently and safely, since it’s possible
to leak memory inadvertently in the event of a leave. So when and how
does a leave occur and why would you use it?

2.1 Leaving Functions

A leave may occur when you call a leaving function or if you explicitly
call a system function to cause a leave. A leave is used to raise an

1 ”Leaves” is as in the verb ”to leave” rather than the noun usually found attached to
plants. A function that contains code which may leave is called a ”leaving function” while
code that has executed along the path of a leave (say, as the result of an exceptional
condition) can be said to have ”left”.
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exception and propagate an error value back up the call stack to a point
at which it can be ”caught” by a trap harness and handled appropriately.
To all intents and purposes, code execution ends at the point of the leave
and resumes where it is trapped. The leave sets the stack pointer to the
context of a trap harness TRAP macro and jumps to the desired program
location, restoring the register values. It does not terminate the flow of
execution (unlike an assertion, which is used to detect programming
errors and panic accordingly, as described in detail in Chapter 16).
TRAP and User::Leave() may be considered analogous to the

standard library setjmp() and longjmp() methods respectively. A
call to setjmp() stores information about the location to be ”jumped
to” in a jump buffer, which is used by longjmp() to determine the
location to which the point of execution ”jumps”. A leave should only be
used to propagate an exception to a point in the code which can handle
it gracefully, unwinding the call stack as it does so. It should not be used
to direct the normal flow of program logic.

A typical leaving function is one that performs an operation that is
not guaranteed to succeed, such as allocation of memory, which may
fail under low memory conditions. Since leaving functions by definition
leave with an error code (a ”leave code”), they do not also need to return
error values. Indeed any error that occurs in a leaving function should be
passed out as a leave; if the function does not leave it is deemed to have
succeeded and will return normally. Generally, leaving functions should
return void unless they use the return value for a pointer or reference
to a resource allocated by the function. Later in this chapter, I’ll discuss
the factors that may influence your decision as to whether to implement
a function that leaves or one that returns an error value.

Some examples of leaving function declarations are as follows:

void InitializeL();
static CTestClass* NewL();
RClangerHandle& CloneHandleL();

If a function may leave, its name must be suffixed with ”L” to identify
the fact. You must use this rule: of all Symbian OS naming conventions
it is probably the most important. If you don’t name a leaving function
accordingly, callers of your code may not defend themselves against a
leave and may potentially leak memory.

Functions may leave if they:

• call code that may leave without surrounding that call with a
trap harness

• call one of the system functions that initiates a leave, such as
User::Leave() or User::LeaveIfError()
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• use the overloaded form of operator new which takes ELeave as a
parameter (described in Section 2.2).

The suffix notation for names of functions which may leave is a
simplification of the C++ exception specification which uses throw(. . .)
or throw(type) by convention to indicate a function which may throw
an exception. A call to User::Leave() or User::LeaveIfError()
is similar to a C++ throw instruction (except for its destruction of stack-
based variables, as I’ll discuss shortly) while the TRAP macros are, in
effect, a combination of try and catch.
User::LeaveIfError() tests an integer parameter passed into it

and causes a leave (using the integer value as a leave code) if the value is
less than zero, for example, one of the KErrXXX error constants defined
in e32std.h. User::LeaveIfError() is useful for turning a non-
leaving function which returns a standard Symbian OS error into one that
leaves with that value.
User::Leave() doesn’t carry out any value checking and sim-

ply leaves with the integer value passed into it as a leave code.
User::LeaveNoMemory() also simply leaves but the leave code is
hardcoded to be KErrNoMemory which makes it, in effect, the same as
calling User::Leave(KErrNoMemory).
User::LeaveIfNull() takes a pointer value and leaves with

KErrNoMemory if it is NULL. It can sometimes be useful, for example,
to enclose a call to a non-leaving function which allocates memory and
returns a pointer to that memory or NULL if it is unsuccessful.

The following example shows four possible leaves:

TInt UseClanger(CClanger* aClanger); // Forward declaration

CClanger* InitializeClangerL()
{
CClanger* clanger = new (ELeave) CClanger(); // (1) Leaves if OOM
CleanupStack::PushL(clanger); // (2) See Chapter 3
clanger->InitializeL(); // (3) May leave
User::LeaveIfError(UseClanger(clanger)); // (4) Leaves on error
CleanupStack::Pop(clanger);
return (clanger);
}

The L suffix is not checked during compilation so occasionally you
may forget to append L to a function name, or may later add code to
a previously non-leaving function which may then cause it to leave.
Symbian OS provides a helpful tool, LeaveScan, that checks code for
incorrectly-named leaving functions. It is described in more detail in
Section 2.6.

If a function may leave, its name must be suffixed with ”L”.
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2.2 Heap Allocation Using new (ELeave)

Let’s take a closer look at the use of new (ELeave) to allocate an object
on the heap. This overload leaves if the memory is unavailable, and thus
allows the returned pointer to be used without a further test that the
allocation was successful. We saw it used in the code fragment above:

CClanger* InitializeClangerL()
{
CClanger* clanger = new (ELeave) CClanger();
CleanupStack::PushL(clanger);
clanger->InitializeL();
CleanupStack::Pop(clanger);
return (clanger);
}

The code above is preferable to the following code, which requires an
additional check to verify that the clanger pointer has been initialized:

CClanger* InitializeClangerL()
{
CClanger* clanger = new CClanger();
if (clanger)

{
CleanupStack::PushL(clanger);
clanger->InitializeL();
CleanupStack::Pop(clanger);
}

return (clanger);
}

What exactly does new (ELeave) do? Well, when you call new() to
allocate an object on the heap you are invoking the new operator. This
first allocates the memory required for the object by calling operator
new (yes, the naming scheme is incredibly confusing), passing in the size
of the memory required. It then calls the constructor to initialize an object
in that memory. This code is generated by the compiler, because it’s not
possible to call a constructor directly – which of course means that if you
want an object constructed on the heap, you must allocate it, via the new
operator, through a call to new().

Symbian OS has overloaded the global operator new to take a
TLeave parameter in addition to the size parameter provided implicitly
by new(). The TLeave parameter is ignored by operator new and
is only used to differentiate this form of operator new from the non-
leaving version. The Symbian OS overload calls a heap allocation function
that leaves if there is insufficient heap memory available:

// From e32std.h
enum TLeave {ELeave};
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...
inline TAny* operator new(TUint aSize, TLeave);

// e32std.inl
inline TAny* operator new(TUint aSize, TLeave)
{return User::AllocL(aSize);}

Symbian OS has overloaded the global operator new to take a
TLeave parameter. This overload leaves if memory is unavailable
on the heap.

If a leaving function which allocates an object doesn’t leave,
the allocation was successful and there is no need to check the
result further.

2.3 Constructors and Destructors

Before moving on to talk further about how to call leaving functions,
let’s consider which functions should not leave. Quite simply, neither a
constructor nor a destructor should leave, since doing so would potentially
leak memory and place the object upon which it is invoked in an
indeterminate state.

Chapter 4 will discuss this in more detail, but essentially, if a con-
structor can fail, say, through lack of the resources necessary to create or
initialize the object, you must remove the code that may leave from the
constructor and use the two-phase construction idiom instead.

Likewise, a leave should not occur in a destructor or in cleanup
code. One particular reason for this is that a destructor could itself be
called as part of cleanup following a leave and a further leave at this
point would be undesirable, if nothing else because it would mask the
initial reason for the leave. More obviously, a leave part-way through a
destructor will leave the object destruction incomplete which may leak
its resources.

If a destructor must call a leaving function, it may potentially be
trapped and the leave code discarded, although this causes problems
when testing out of memory leaves using the debug macros described in
Chapter 17. Generally, it’s preferable to have a separate leaving function,
which can be called before destruction, to perform actions that may fail
and provide the caller an opportunity to deal with the problem before
finally destroying the object. Typically these would be functions such as
CommitL() or FreeResourceL().



18 LEAVES: SYMBIAN OS EXCEPTIONS

Constructors and destructors must not leave.

2.4 Working with Leaving Functions

Let’s look at the practicalities of working with leaves. Below is an
example of a call to a leaving function. You’ll notice that there is no
need to check that ironChicken is initialized before using it, since
CTestClass::NewL() would have left if any failure had occurred.

void FunctionMayLeaveL()
{
// Allocates ironChicken on the heap
CTestClass* ironChicken = CTestClass::NewL();
// If NewL() didn’t leave, ironChicken was allocated successfully
ironChicken->FunctionDoesNotLeave();
delete ironChicken;
}

If the CTestClass::NewL() function leaves for some reason, it
is the responsibility of that function to release any memory already
allocated as part of the function. If successful, the function allocates,
initializes and returns a heap-based object (NewL() functions and two-
phase construction are discussed in more detail in Chapter 4). In the
code above, a call to a non-leaving function follows, but consider the
implications if a leaving function was called instead. For example:

void UnsafeFunctionL()
{
// Allocates test on the heap
CTestClass* test = CTestClass::NewL();
test->FunctionMayLeaveL(); // Unsafe – a potential memory leak!
delete test;
}

This is unsafe. Memory is allocated on the heap in the call to CTest-
Class::NewL(), but the following function may leave. Should this
occur test will not be deallocated; consequently the function has the
potential to leak memory. In a scenario such as this, you should push the
heap object onto the cleanup stack, which will delete it should a leave
occur. The cleanup stack is described more fully in Chapter 3.

While heap variables referred to only by local variables may be
orphaned in this way, member variables will not suffer a similar fate
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(unless their destructor neglects to delete them when it is called at some
later point). Thus the following code is safe:

void CTestClass::SafeFunctionL()
{
iMember = CClangerClass::NewL(); // Allocates a heap member
FunctionMayLeaveL(); // Safe
}

Note that the CTestClass object (pointed to by ”this” in CTest-
Class::SafeFunctionL()) is not deleted in the event of a leave.
The heap-based iMember is stored safely as a pointer member variable,
to be deleted at a later stage with the rest of the object, through the
class destructor.

I’ve shown that you must prevent leaks from the potential orphaning
of heap-based local variables, but what about cleanup of stack variables
if a leave occurs? The leave mechanism simply deallocates objects on
the stack – it does not call any destructors they have defined as it does
so, unlike a C++ throw. Stack objects that own a resource which must
be deallocated, or otherwise ”released” as part of destruction, would leak
that resource in the event of a leave. Classes which are intended to be
used on the stack must not need a destructor.

This is the reason why Symbian OS has a class naming conven-
tion which clearly defines the allowed usage of a class (described in
Chapter 1). The only classes which may be instantiated and used safely
on the stack are T classes, which the Symbian OS naming convention
dictates must not have a destructor, and R classes, which do not have a
destructor but use Close(), or a similar method, to free the associated
resource. The cleanup stack must be used to ensure that this method is
called in the event of a leave – I’ll discuss how to do so in the next chapter.

class TMyClass
{

public:
TMyClass(TInt aValue);

private:
TInt iValue;
};

void AnotherSafeFunctionL()
{
TInt localInteger = 1; // Leave-safe (built-in type)
FunctionMayLeaveL(localInteger);
TMyClass localObject(localInteger); // Leave-safe object
AnotherPotentialLeaverL(localObject);
}

Let’s consider what happens if you happen to have a local vari-
able, an object of a T class, on the heap. In a leaving function, you
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still need to protect the heap memory from being orphaned by a leave
but the object itself has no destructor. You’ll recall that I mentioned
earlier that the cleanup stack performs both destruction and dealloca-
tion upon the objects in its care in the event of a leave. Well, that’s
true for objects of class types which have destructors, but for T class
objects, it simply deallocates the memory. There’s more about this in
Chapter 3.

void AnotherFunctionL()
{
TMyClass* localObject = new (ELeave) TMyClass();
// Make localObject leave-safe using the cleanup stack
CleanupStack::PushL(localObject);
AnotherPotentialLeaverL(localObject);
CleanupStack::PopAndDestroy(localObject);
}

2.5 Trapping a Leave Using TRAP and TRAPD

Symbian OS provides two macros, TRAP and TRAPD, to trap a leave.
The macros differ only in that TRAPD declares a variable in which the
leave error code is returned, while the program code itself must declare
a variable before calling TRAP. Thus the following statement:

TRAPD(result, MayLeaveL());
if (KErrNone!=result) // See footnote 2

{
// Handle error
}

2 Throughout this text, you’ll notice that I prefer to use ”back to front” comparisons in
my if statements to prevent accidentally typing only a single =, which is valid C++ but isn’t
at all what is intended. Take the following example of the unforeseen consequences that
can arise from this bug, which is often difficult to spot unless you have a helpful compiler
that warns you about it.

TInt ContrivedFunction()
{ // The bug in this function means it will always return 0
for (TInt index = 0; index < KContrivedValue; index++)

{
TInt calculatedValue = DoSomeComplexProcessing(index);
// This assignment always returns true
if (calculatedValue=KAnticipatedResult)

return (index);
}

return (KErrNotFound);
}

However, not everybody likes this style of coding. If you prefer not to use this technique,
it pays to compile with a high warning level and pay attention to any resulting warnings.
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is equivalent to:

TInt result;
TRAP(result, MayLeaveL());
if (KErrNone!=result)

{
// Handle error
}
...

You should beware of nesting TRAPD macros and using the same
variable name, as in the following snippet:

TRAPD(result, MayLeaveL())
if (KErrNone==result)

{
TRAPD(result, MayAlsoLeaveL())
}
...

User::LeaveIfError(result);

In the example, two TInt result variables are declared, one for each
TRAPD statement. The scope of the second result macro is bounded by
the curly brackets that enclose it. Thus any leave code assigned to the
second result variable, from the call to MayAlsoLeaveL(), is discarded
on exiting the bounding brackets. The User::LeaveIfError() call
thus only tests the leave code from the MayLeaveL() call, which is
unlikely to be what the code intended. To ensure both values are tested,
the second TRAPD should be replaced with a TRAP – thus reusing the
TInt result declared by the initial TRAPD.

If a leave occurs inside the MayLeaveL() function, which is exe-
cuted inside the harness, the program control will return immediately
to the trap harness macro. The variable result will contain the
error code associated with the leave (i.e. that passed as a parameter
to the User::Leave() system function) or will be KErrNone if no
leave occurred.

Any functions called by MayLeaveL() are executed within the trap
harness, and so on recursively, and any leave that occurs during the
execution of MayLeaveL() is trapped, returning the error code into
result. Alternatively, TRAP macros can be nested to catch and handle
leaves at different levels of the code, where they can best be dealt with.
I’ll discuss the runtime cost of using trap harnesses shortly, but if you find
yourself using the TRAPmacros several times in one function, or nesting a
series of them, you may want to consider whether you can omit trapping
all the leaving functions except at the top level, or change the layout of
the code.

For example, there may be a good reason why the following function
must not leave but needs to call a number of functions which may leave.
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At first sight, it might seem straightforward enough simply to put each call
in a trap harness.

TInt MyNonLeavingFunction()
{
TRAPD(result, FunctionMayLeaveL());
if (KErrNone==result)

TRAP(result,AnotherFunctionWhichMayLeaveL());
if (KErrNone==result)

TRAP(PotentialLeaverL());

// Handle any error if necessary
return (result);
}

However, each TRAP has an impact in terms of executable size
and execution speed. Both entry to and exit of a TRAP macro result
in kernel executive calls3 (TTrap::Trap() and TTrap::UnTrap())
being made. In addition, a struct is allocated at runtime to hold the
current contents of the stack in order to return to that state if unwinding
proves necessary in the event of a leave. Of course, use of the macro itself
will also create additional inlined code, though it is probably insignificant
in comparison. The combination of these factors does make a TRAP quite
an expensive way of managing a leave. You should attempt to minimize
the number of TRAPs you use in your code, where possible, either by
allowing the leave to propagate to higher-level code or by making an
adjustment similar to the following:

MyNonLeavingFunction()
{
TRAPD(result, MyLeavingFunctionL());
// Handle any error if necessary
return (result);
}

void MyLeavingFunctionL()
{
FunctionMayLeaveL();
AnotherFunctionWhichMayLeaveL();
PotentialLeaverL();
}

Of course, code is rarely as trivial as this example and you should
beware of losing relevant error information. If a number of calls to
potential leaving functions are packaged together as above and a leave

3 A kernel executive call is made by user-side code to allow it to enter processor
privileged mode in order to access kernel resources in a controlled manner. Control is
switched to the kernel executive, and the processor is switched to supervisor mode, within
the context of the calling thread.
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code is returned from a call to the package of functions, it will not be
clear which function left.

Every program (even a simple ”hello world” application) must have at
least one TRAP, if only at the topmost level, to catch any leaves that are
not trapped elsewhere. If you are an application writer you don’t need
to worry about this, though, because the application framework provides
a TRAP.

When testing any code that may leave, you should test both paths of
execution, that is, for a successful call and for a call that leaves as a result
of each of the exceptional conditions you expect to handle, for example,
low memory conditions, failure to write to a file, etc. The Symbian OS
macros to simulate such conditions are described in Chapter 17.

I mentioned earlier that, under normal circumstances, you shouldn’t
implement functions which both return an error and have the potential
to leave. For example, consider a function, OpenFileObjectL(), that
instantiates an object (CFileObject) which must be initialized with an
open file handle. The implementation of this object may be in a separate
library, the source code for which may not be available to the writer of
this code.

TInt OpenFileObjectL(CFileObject*& aFileObject)
{// File server session initialization is omitted for clarity
... // (handle is leave-safe)
RFile file;
TInt error = file.Open(...);
if (KErrNone==error)

{
CleanupClosePushL(file); // Makes handle leave-safe
// Propagates leaves from CFileObject
aFileObject = CFileObject::NewL(file);
CleanupStack::Pop(&file); // Owned by aFileObject now
}

return error; // Returns any error from RFile::Open()
}

When a caller comes to use OpenFileObjectL(), they’ll find that
this function is more complex than it needs to be. At best, they may find
themselves writing code something like the following:

void ClientFunctionL()
{// Pass all errors up to be handled by a higher-level TRAP harness
CFileObject* fileObject = NULL;
TInt errorCode=OpenFileObjectL();
if (KErrNone!=errorCode)

{
User::Leave(errorCode);
}

...
}
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Or they may use a TRAP to catch any leaves and return them as errors:

TInt ClientFunction()
{
CFileObject* fileObject = NULL;
TInt errorCode;
TRAPD(r, errorCode=OpenFileObjectL());
if (KErrNone!=r)

return (r);
if (KErrNone!=errorCode)

return (errorCode);
...
}

Neither of these options is very attractive. Furthermore, if the client
function can actually handle some of the errors at that point in the code, it
becomes even messier. Should it differentiate between the two methods of
propagating an error? And if so, how? Are the leaves in some way different
to the errors returned? Could the same error sometimes be returned as an
error value (say KErrNotFound from RFile::Open()) and sometimes
as a leave code (say a leave from CFileObject::NewL() which
attempts to read the contents of the file and finds it is missing some vital
configuration data)?

In effect, this approach requires you to document the function clearly
to allow callers to use it correctly and handle errors or exceptions as they
choose. Maybe you can guarantee that you, or whoever takes responsi-
bility for maintaining this function, keeps the documentation up to date.
But you are returning an error directly from one, separate, component
(class RFile) and a leave code from another (class CFileObject). Even
if you know exactly what errors and leave codes each will use and are
prepared to document them for callers of OpenFileObjectL(), you
cannot guarantee that their error handling will not change.

It is preferable to restrict the code either to leaving or to return-
ing an error. First, consider an implementation that leaves under all
circumstances (notice that I’ve changed the signature to return the
CFileObject rather than pass it as a reference-to-pointer parameter).

CFileObject* LeavingExampleL()
{
RFile file;
User::LeaveIfError(file.Open(...));
return (CFileObject::NewL(file));
}

The implementation of the function is certainly smaller and less com-
plex. If the calling code can handle some errors, then it can TRAP the
method and switch on the error value returned in order to distinguish
between the exceptional case and the non-exceptional case.
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void ClientFunctionL()
{
CFileObject* fileObject = NULL;
TRAPD(r, fileObject = LeavingExampleL());
switch (r)

{
case (KErrNoMemory):

... // Free up some memory and try again...
break;

...
default:

User::Leave(err);
break;
}

}

Otherwise it can just call the function directly and allow a higher-level
trap handler to handle all the leave codes:

CFileObject* fileObject = LeavingExampleL();

As an alternative to leaving on all errors, the function to instantiate
a CFileObject could TRAP the call to CFileObject::NewL() and
instead return an error for all failures:

TInt Example(CFileObject*& aFileObject)
{
RFile file;
TInt error = file.Open(...);
if (error == KErrNone)

{
TRAP(error, aFileObject = CThing::NewL(file));
}

return error;
}

Again, if the calling code can handle some errors, it can switch on the
return code; otherwise, it can call the function inside User::LeaveIf-
Error() to pass all failures up to a TRAP harness in higher-level code.

CFileObject* fileObject = NULL;
User::LeaveIfError(Example(fileObject));

Which of the two implementations is preferable? Well, the leav-
ing version is smaller and simpler and, as Martin Fowler discusses
in Refactoring: Improving the Design of Existing Code (see Bibliogra-
phy for further details), the use of exceptions clearly separates nor-
mal processing from error processing. Furthermore, the use of the
alternative, error-returning function always incurs the overhead of a



26 LEAVES: SYMBIAN OS EXCEPTIONS

TRAP, even if none of the callers can handle errors and they all call
User::LeaveIfError() as shown in the previous code sample.

However, if you know who all your callers are (for example, if the
function is internal to your component) and you know that the callers
will all TRAP the call, it may be worthwhile implementing the version
that returns an error. This limits the use of a TRAP to one place in
the code.

Use of TRAP is an expensive way of managing a leave in terms
of executable size and execution speed. You should attempt to
minimize the number of TRAPs you use in your code where
possible. However, every program must have at least one TRAP to
catch any leaves that occur.

2.6 LeaveScan

LeaveScan is a useful tool which you should run regularly against your
source code. It checks that all functions which have the potential to leave
are named according to the Symbian OS convention, with a trailing L.
LeaveScan can be used on your source to indicate areas of code where
you may have forgotten to use the convention. By revealing where leaves
may occur but are not acknowledged by the function name, it highlights
potential bugs and gives you an opportunity to fix the problem and ensure
that your code handles any leaves correctly.

LeaveScan works by examining each line of source code and checking
that functions which do not terminate in L cannot leave. However, there
are a few functions (more accurately, operators) in Symbian OS that
may leave but cannot have an L suffix (such as operator<< and
operator>> for RWriteStream and RReadStream respectively).
The naming convention cannot be applied appropriately to operators
and, unfortunately, LeaveScan does not have the sophisticated logic
needed to recognize operators that may leave. When you use operators
that you know have the potential to leave, you’ll have to remember to
check this code by sight yourself.

LeaveScan also checks functions which do have a trailing L to see
if they really can leave. If functions are encountered which do not
leave, LeaveScan raises a warning. However, this scenario can be per-
fectly valid, for example, when implementing an abstract function such
as CActive::RunL(), some implementations may leave but others
may not.
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LeaveScan will highlight functions which may leave but are incor-
rectly named without a suffixed ”L”. The potential to leave occurs
when a function:

• calls other functions which themselves leave (and thus have
function names ending in L) but does not surround the function
call with a TRAP harness

• calls a system function which initiates a leave, such as
User::LeaveIfError() or User::Leave()

• allocates an object on the heap using the Symbian OS overload
of operator new.

2.7 Summary

This chapter discussed leaves, which are the lightweight equivalent of
C++ exceptions on Symbian OS. A leave is used to propagate an error
which occurs because of exceptional conditions (such as being out of
memory or disk space) to higher-level code which can handle it. A Sym-
bian OS leave is equivalent to a C++ throw and a TRAP harness is used
to catch the leave. In fact, a TRAP harness is effectively a combination of
try and catch.

Having compared leaves and TRAPs with standard C++, it’s worth
making a comparison with the standard library too. TRAP and leave
are analogous to the setjmp() and longjmp() methods, respec-
tively – setjmp() stores information about the location to be ”jumped
to” in a jump buffer, which is used by longjmp() to direct the code to
jump to that point.

On Symbian OS, if a function can leave, that is, fail under exceptional
conditions, it indicates this by suffixing its function name with L. Of all
the Symbian OS naming conventions, this is one you should comply with
because, if you don’t, it’s hard to know whether you can call a function
without potentially orphaning any local heap-based variables. You can
check that you have adhered to the naming convention by running the
LeaveScan tool over your source code.

A function can leave if it calls one of the system functions which
cause a leave (such as User::Leave()), calls another leaving function
(such as NewL()) or allocates memory using the Symbian OS leaving
overload of operator new. Some functions should not leave, namely
constructors (I’ll discuss the reasons behind this in detail in Chapter 4,



28 LEAVES: SYMBIAN OS EXCEPTIONS

and explain how two-phase construction can be used to prevent it)
and destructors, which could potentially leak memory by leaving before
completing object cleanup.

This chapter described best practice for writing and calling leaving
code, particularly when a function may have a return value for initialized
pointer data. It also discussed the best use of the TRAP and TRAPD
macros, which can have a significant overhead in terms of code size and
runtime speed.

The next chapter discusses the use of the cleanup stack to protect
heap-based local variables against orphaning in the event of a leave.



3
The Cleanup Stack

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome
Jimi Hendrix

This chapter discusses a fundamental part of Symbian OS, the cleanup
stack. Symbian OS is designed to perform well with limited memory,
and part of that design must inevitably consider memory management
when errors occur. The cleanup stack manages memory which would
otherwise be ”orphaned” (leaked) in the event of a leave.

But what, exactly, is ”orphaning”? In the previous chapter, I described
why Symbian OS doesn’t use standard C++ exceptions, but instead
handles exceptional conditions using ”leaves”. Code that can leave is, at
some level, surrounded by a TRAP, or TRAPD, harness. If a leave occurs,
control is transferred directly to the statement following the harness. In
effect, the TRAP is equivalent to a setjmp and the leave to a longjmp.
The stack memory is freed as the stack unwinds, but otherwise the
stack frame is abandoned and no object destructors are called (which
is unlike a standard C++ exception). This means that the destructors of
any local variables or arguments passed by value, or objects created as
member variables of either of these, will not be called. Some objects
are ”leave-safe” – they do not need destructors and contain only data
which can be destroyed as stack memory is freed by the leave. This
data may consist of the basic, built-in types or other objects which
contain such types. In Symbian OS these are called T classes (T for
”type”, described in detail in Chapter 1), the characteristic of which is
that they may safely be created on the stack in functions where code
may leave.

If a local variable is a pointer to an object on the heap, when a leave
occurs the pointer is destroyed without freeing that heap memory, which
becomes unrecoverable, causing a memory leak. The memory is said to
be orphaned. This means that C class objects, which are always created
on the heap, as described in Chapter 1, are not leave-safe. Unless they
are otherwise accessible for safe destruction (for example, as member
variables of an object which is destroyed regardless of the leave), the
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memory they occupy on the heap and any resources they own are
orphaned by a leave. R class objects are generally not leave-safe either,
since the resources they own must be freed in the event of a leave (through
a call to the appropriate Close() or Release() type function). If this
call cannot made by an object accessible after the leave, the resource
is orphaned.

Consider the following code, which creates an object of a C class
(CClanger) on the heap, referenced only by an automatic variable,
clanger. After creating the object, a function which may potentially
leave, InitializeL(), is called. The heap-based object is not leave-
safe and neither the heap memory it occupies, nor any objects it owns,
are destroyed if InitializeL() leaves.1

void UnsafeFunctionL()
{
CClanger* clanger = new (ELeave) CClanger();
clanger->InitializeL(); // Potential leaving function orphans clanger
... // Omitted for clarity
delete clanger;
}

You could remove the potential memory leak by placing a TRAP, or
TRAPD, macro around the call to InitializeL() to catch any leaves.
However, as Chapter 2 explained, the use of TRAPs should be limited,
where possible, to optimize the size and run-time speed of the compiled
binary. I have only shown one call which could cause the object to be
leaked; in a typical function there may be other operations that may
leave. It would be inefficient to surround each with a TRAP. From an
error-handling perspective, too, it’s often preferable to leave rather than
return an error, as I discussed in Chapter 2.

When you combine both arguments, and consider the following irre-
deemably inefficient code, it’s clear that there should be an alternative to
the TRAP idiom to protect objects which are not inherently leave-safe:

void SafeButInefficientL()
{
CClanger* clanger = new (ELeave) CClanger();
TRAPD(r,clanger->InitializeL()); // leave-safe, at a cost...
if (KErrNone!=r)

1 Before going any further, I should point out that the example is atypical of how a CBase-
derived class should be instantiated. The Symbian OS coding standard recommends that all
C classes wrap their construction and initialization code in a single static function, generally
called NewL() or NewLC(), as illustrated later. To prevent a client from instantiating
and initializing the object separately, as I’ve shown above, the standard advises that the
constructors and initialization functions should be specified as protected in the class. This
is known as two-phase construction, and is described further in Chapter 4.
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{
delete clanger; // delete clanger to prevent a leak
User::Leave(r); // leave with the same error... horrible!
}

// Now do something else that may leave
TRAP(r, clanger->DoSomethingElseL());
if (KErrNone!=r)

{
delete clanger; // Again, delete clanger to prevent a leak
User::Leave(r);
}

... // Omitted for clarity
delete clanger;
}

When a leave occurs, local variables are destroyed without first free-
ing any resources they own. The resource becomes unrecoverable,
causing a memory leak, and is said to be ”orphaned”.

3.1 Using the Cleanup Stack

This is the cue for the cleanup stack, which is accessed through the static
member functions of class CleanupStack, defined in e32base.h:

class CleanupStack
{

public:
IMPORT_C static void PushL(TAny* aPtr);
IMPORT_C static void PushL(CBase* aPtr);
IMPORT_C static void PushL(TCleanupItem anItem);
IMPORT_C static void Pop();
IMPORT_C static void Pop(TInt aCount);
IMPORT_C static void PopAndDestroy();
IMPORT_C static void PopAndDestroy(TInt aCount);
IMPORT_C static void Check(TAny* aExpectedItem);
inline static void Pop(TAny* aExpectedItem);
inline static void Pop(TInt aCount, TAny* aLastExpectedItem);
inline static void PopAndDestroy(TAny* aExpectedItem);
inline static void PopAndDestroy(TInt aCount,

TAny* aLastExpectedItem);
};

Objects that are not otherwise leave-safe should be placed on the
cleanup stack before calling code that may leave. This ensures they are
destroyed correctly if a leave occurs; in the event of a leave, the cleanup
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stack manages the deallocation of all objects which have been placed
upon it.

The following code illustrates a leave-safe but simpler version than the
SafeButInefficientL() example:

void SafeFunctionL()
{
CClanger* clanger = new (ELeave) CClanger;

// Push onto the cleanup stack before calling a leaving function
CleanupStack::PushL(clanger);
clanger->InitializeL();
clanger->DoSomethingElseL()
// Pop from cleanup stack
CleanupStack::Pop(clanger);
delete clanger;
}

If InitializeL() succeeds, the lines of code following the call pop
the automatic CClanger pointer from the cleanup stack and delete the
object to which it points. This code could equally well be replaced by
a single call to CleanupStack::PopAndDestroy(clanger) which
performs both the pop and a call to the destructor in one step. The
function is useful if the object is no longer required and may also be
destroyed. And if InitializeL() or DoSomethingElseL() leave,
the clanger object is destroyed by the cleanup stack itself as part of
leave processing, which I’ll discuss shortly.

Let’s move on to consider some general good practices when work-
ing with the cleanup stack. Objects are pushed on and popped off
the cleanup stack in strict order: a series of Pop() calls must occur
in the reverse order of the PushL() calls. It is possible to Pop() or
PopAndDestroy() one or more objects without naming them, but it’s
a good idea to name the object popping off. This averts any poten-
tial cleanup stack ”imbalance” bugs which can occur when Pop()
removes an object from the cleanup stack which was not the one
intended.

void ContrivedExampleL()
{// Note that each object is pushed onto the cleanup stack
// immediately it is allocated, in case the succeeding allocation
// leaves.

CSiamese* sealPoint = NewL(ESeal);
CleanupStack::PushL(sealPoint);
CSiamese* chocolatePoint = NewL(EChocolate);
CleanupStack::PushL(chocolatePoint);
CSiamese* violetPoint = NewL(EViolet);
CleanupStack::PushL(violetPoint);
CSiamese* bluePoint = NewL(EBlue);
CleanupStack::PushL(bluePoint);
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sealPoint->CatchMouseL();
// Other leaving function calls, some of which use the cleanup stack
...

// Various ways to remove the objects from the stack and delete them:
// (1) All with one anonymous call - OK, but potentially risky
// CleanupStack::PopAndDestroy(4);
// (2) All, naming the last object - Better
// CleanupStack::PopAndDestroy(4, sealPoint);
// (3) Each object individually to verify the code logic
// Note the reverse order of Pop() to PushL()
// This is quite long-winded and probably unnecessary in this
// example

CleanupStack::PopAndDestroy(bluePoint);
CleanupStack::PopAndDestroy(violetPoint);
CleanupStack::PopAndDestroy(chocolatePoint);
CleanupStack::PopAndDestroy(sealPoint);
}

At times, it’s quite difficult to keep track of what’s on the cleanup stack.
Imbalance bugs can be difficult to find because they cause unexpected
panics in code quite unrelated to where the error has occurred. To avoid
them, it’s best to name what you Pop() off the cleanup stack explicitly,
if only in the early stages of coding until you’re confident that the code
is behaving as you expect. The checking is only performed in debug
builds, so it has no impact on the speed of released code (although, if
you do want to perform checking in a release build, you can use the
CleanupStack::Check() function). If nothing else, it may help you
track down bugs such as the one below where, under some conditions, an
object is accidentally left on the cleanup stack when the function returns:

void AnotherContrivedExampleL(const TDesC& aString)
{
CClanger* clanger = AllocateClangerL(aString);
CleanupStack::PushL(clanger);
TBool result = NonLeavingFunction(clanger);
if (!result)

return; // Whoops, clanger is still on the cleanup stack!

DoSomethingThatLeavesL();
CleanupStack::PopAndDestroy(clanger);
}

But when should you Pop() an object from the cleanup stack? Well, it
should never be possible for an object to be cleaned up more than once.
If a pointer to an object on the cleanup stack is later stored elsewhere,
say as a member variable of another object which is accessible after a
leave, it should then be popped from the cleanup stack. If the pointer
were retained on the cleanup stack, it would be destroyed by it, but the
object storing the pointer to it would also attempt to destroy it, usually in
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its own destructor. Objects should be referred to either by another object
or by the cleanup stack, but not by both.

void TransferOwnershipExampleL
{
CClanger* clanger = new (ELeave) CClanger();
CleanupStack::PushL(clanger); // Pushed - the next function may leave
iMemberObject->TakeOwnershipL(clanger);// iMemberObject owns it so
CleanupStack::Pop(clanger); // remove from cleanup stack
}

Likewise, you should never push class member variables (objects
prefixed by ”i”, if the Symbian OS naming convention is followed) onto
the cleanup stack. The object may be accessed through the owning object
which destroys it when appropriate, typically in its destructor. Of course,
this requires the owning object to be leave-safe.

Incidentally, no panic occurs if you push or pop objects onto the
cleanup stack more than once. The problem occurs if the cleanup stack
tries to destroy the same object more than once, either through multiple
calls to PopAndDestroy() or in the event of a leave. Multiple deletion
of the same C class object will attempt to free memory which has already
been released back to the heap, which causes a panic.

If an object is pushed onto the cleanup stack and remains on it when
the function returns, the function name must have the suffix ”C”. This
indicates to the caller that, when the function returns successfully, the
cleanup stack has additional objects upon it. It is typically used by CBase-
derived classes which define static functions to instantiate an instance of
the class and leave it on the cleanup stack. The C suffix indicates to the
caller of a function that it is not necessary to push any objects allocated
by the function onto the cleanup stack. The following code creates an
object of type CSiamese (which I used in an earlier example) and leaves
it on the cleanup stack. This function is useful because the caller can
instantiate CSiamese and immediately call a leaving function, without
needing to push the allocated object back onto the cleanup stack:

CSiamese* CSiamese::NewLC(TPointColor aPointColour)
{
CSiamese* me = new (ELeave) CSiamese(aPointColour);
CleanupStack::PushL(me); // Make this leave-safe...
me->ConstructL();
return (me) // Leave "me" on the cleanup stack for caller to Pop()
}

However, a word of warning with regard to functions that leave objects
on the cleanup stack – you must take care when calling them from inside
a TRAP harness. If objects are pushed onto the cleanup stack inside a
TRAP and a leave does not occur, they must be popped off again before
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exiting the macro, otherwise a panic occurs. This is because the cleanup
stack stores nested levels of objects to destroy; each level is confined
within a TRAP, and must be empty when the code inside it returns. Thus,
the following code panics with E32USER-CBASE 71,2 when it returns to
the TRAPD macro.

CExample* MakeExample()
{
CExample* pExample = TRAPD(r, CExample::NewLC()); // This will panic
return (pExample);
}

Objects that are not leave-safe should be placed on the cleanup
stack before calling code that may leave. The cleanup stack manages
the deallocation of all objects which have been placed upon it in
the event of a leave.

3.2 How Does the Cleanup Stack Work?

I’ll use this section to go into how the cleanup stack works in some
detail. If you came to this chapter only with an interest in how to use
the cleanup stack, feel free to skip this section, since I have now covered
the most important points for CBase-derived classes. Either read on
anyway, or rejoin the chapter at Section 3.3, ”Using the Cleanup Stack
with non-CBase Classes”, where I’ll go into how to use the cleanup stack
to make leave-safe objects of R classes, heap-based T classes and objects
referenced through M class pointers.

As I’ve already described, the cleanup stack stores pointers to objects
to be destroyed in the event of leave. The pointers are stored in nested
”levels” associated with the TRAP macro under which they were pushed
onto the stack. In the following code, if FeedL() leaves, only objects
placed on the cleanup stack inside the TRAP macro are destroyed. Thus
the CChilli object on the cleanup stack is destroyed, but the CExample
object, stored on the cleanup stack prior to the call inside the TRAPmacro,
is not destroyed because the leave is only propagated to the level of the
enclosing TRAP.

class CChilli;
class TCalibrateDragon

2 The panic is described as follows in the panic documentation of the SDK: ”This panic
is raised when TRAPs have been nested and an attempt is made to exit from a TRAP nest
level before all the cleanup items belonging to that level have been popped off the cleanup
stack.”
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{
public:

FeedL(TChilliPepper aChilli);
private:

void TasteChilliL(CChilli* aChilli);
... // Omitted for clarity
};

CExample* CExample::NewL(TChilliPepper aChilli)
{
CExample* me = new (ELeave) CExample();
CleanupStack::PushL(me); // Later functions may leave
TCalibrateDragon dragon;
TRAPD(r, dragon->FeedL(aChilli)); // TRAP this to act on the result

// Do something dependent on whether FeedL() left
if (KErrNone==r)

{//... omitted for clarity
}

else
{//... omitted for clarity
}

CleanupStack::Pop(me);
return (me)
}

void TCalibrateDragon::FeedL(TChilliPepper aChilli)
{
CChilli* chilli = CChilli::NewL(aChilli);
CleanupStack::PushL(chilli);
TasteChilliL(chilli); // Function leaves if chilli is too hot
CleanupStack::PopAndDestroy(chilli);
}

As the example shows, in the event of a leave, the cleanup stack
destroys the objects it stores for that particular TRAP level. But how does
it know how to destroy them? What does the cleanup stack class look
like? How is the cleanup stack created? And what, the ever-cautious
reader may ask, happens if CleanupStack::PushL() leaves?

Well, let’s start at the beginning, the creation of a cleanup stack. You
won’t have to create a cleanup stack if you are writing a GUI application
or a server, since both have cleanup stacks created for them as part
of their framework code. However, if you are writing a simple console
test application or creating a separate thread, and you need to use the
cleanup stack or call code that does, you will need to allocate a cleanup
stack, since if there is no cleanup stack allocated for a thread, a call to
CleanupStack::PushL() causes an E32USER-CBASE 32 panic.

CTrapCleanup* theCleanupStack = CTrapCleanup::New();
... // Code that uses the cleanup stack, within a TRAP macro
delete theCleanupStack;
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The name given to the CTrapCleanup object is up to you, since the
object is only referenced directly when you come to destroy it again.
As you’ve already seen, access to the cleanup stack is through the static
member functions of the CleanupStack class, defined in e32base.h.
But how does this work?

Well, it’s slightly confusing. When you create an object of type
CTrapCleanup, the following occurs in CTrapCleanup::New():

1. The current trap handler for the thread is stored.

2. Within CTrapCleanup, an iHandler object of type TCleanup-
TrapHandler is created (this owns a CCleanup object which
actually contains the code which implements the cleanup stack).

3. A call to User::SetTrapHandler() then installs that TCleanup-
TrapHandler object as the new trap handler for the thread.

When you call CleanupStack::PushL() or CleanupStack::
Pop(), the static functions call User::TrapHandler() to acquire
the installed TCleanupTrapHandler object and gain access to the
CCleanup object. Likewise, when a leave occurs, the trap handler
catches it and invokes the CCleanup object to cleanup any objects it
has stored (see Figure 3.1).

The CleanupStack class has three overloads of the PushL() func-
tion, which I’ll discuss shortly. But first, let me allay any concerns you
may have about the fact that PushL() can leave.

The reason that PushL() is a leaving function is because it may
allocate memory to store the cleanup pointer and, thus, may fail in low
memory situations. However, you don’t need to worry that the object
you are pushing onto the cleanup stack will be orphaned if a leave does
occur. The cleanup stack is created with at least one spare slot. When
you call PushL(), the pointer you pass is added to the vacant slot, and
then, if there are no more vacant slots available, the cleanup stack code
attempts to allocate one for the next PushL() operation. If that allocation
fails, a leave occurs, but your pointer has already been stored safely and
the object it refers to is safely cleaned up.

In fact, the cleanup stack code is more efficient than my simplistic
explanation above; it allocates more than a single slot at a time. By
default, it allocates four slots. In addition, it doesn’t release slots when
you Pop() objects out of them, so a PushL() frequently does not make
any allocation and can be guaranteed to succeed. This can be useful
in circumstances where you acquire more than one pointer that is not
leave-safe to push onto the cleanup stack. You can use this knowledge
to expand the cleanup stack to contain at least the number of slots you
need, then create the objects and safely push them onto the vacant slots.
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CleanupStack

static void PushL(CBase*)
static void PushL(TAny*)
static void PushL(TCleanupItem)
static void Pop()
static void PopAndDestroy()
...

CTrapCleanup

CTrapCleanup* New()
...

TCleanupTrapHandler

Trap()
UnTrap()
...

TTrapHandler

CCleanup

void PushL(CBase*)
void PushL(TAny*)
void PushL(TCleanupItem)
void Pop()
void PopAndDestroy()
...

iOldHandleriHandler

iCleanup

Figure 3.1 Cleanup stack class hierarchy

The cleanup stack stores pointers to objects to be destroyed using
nested ”levels” associated with the TRAP macro under which they
were PushL()’d.

3.3 Using the Cleanup Stack with Non-CBase Classes

If you’ve rejoined after skipping the detailed section on how the cleanup
stack works, welcome back. Up to this point, we’ve only really consid-
ered one of the overloads of the CleanupStack::PushL() function:
PushL(CBase* aPtr), which takes a pointer to a CBase-derived
object. When CleanupStack::PopAndDestroy() is called for that
object, or if leave processing occurs, the object is destroyed by invoking
delete on the pointer, which calls the virtual destructor of the CBase-
derived object. As mandated by C++, the object is destroyed by calling
destructor code in the most-derived class first, moving up the inheritance
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hierarchy calling destructors in turn and eventually calling the empty
CBase destructor. This is the reason that the CBase class has a virtual
destructor – so that C class objects can be placed on the cleanup stack
and destroyed safely if a leave occurs.

If you define a C class and forget to derive it from CBase, bad
things happen if the cleanup stack tries to destroy it. If the object
does not derive from CBase, the CleanupStack::PushL(TAny*)
overload will be used to push it onto the cleanup stack, instead of
the CleanupStack::PushL(CBase*) overload. Using this overload
means that if the cleanup stack later comes to destroy the object, its
heap memory is simply deallocated (by invoking User::Free()) and
no destructors are called on it. In consequence, if your heap-based class
does not inherit from CBase, directly or indirectly, and you push it onto
the cleanup stack, its destructor is not called and it may not be cleaned
up as you expect.

The CleanupStack::PushL(TAny*) overload is used when you
push onto the cleanup stack a pointer to a heap-based object which does
not have a destructor, for example, a T class object or a struct which
has been allocated, for some reason, on the heap. Recall that T classes do
not have destructors, and thus have no requirement for cleanup beyond
deallocation of the heap memory they occupy.

Likewise, when you push heap descriptor objects (of class HBufC,
described in Chapters 5 and 6) onto the cleanup stack, the Cleanup-
Stack::PushL(TAny*) overload is used. This is because HBufC
objects are, in effect, heap-based objects of a T class. Objects of type
HBufC require no destructor invocation, because they only contain plain
built-in type data (a TUint representing the length of the descriptor
and a character array of type TText8 or TText16). The only cleanup
necessary is that required to free the heap cells for the descriptor object.

The third overload, CleanupStack::PushL(TCleanupItem),
takes an object of type TCleanupItem, which allows you to put
other types of object or those with customized cleanup routines onto
the cleanup stack. A TCleanupItem object encapsulates a pointer to
the object to be stored on the cleanup stack and a pointer to a function
that provides cleanup for that object. The cleanup function can be a local
function or a static method of a class.

For reference, here’s the definition of the TCleanupItem class and
the required signature of a cleanup function, which takes a single TAny*
parameter and returns void:

// From e32base.h
typedef void (*TCleanupOperation)(TAny*);
//
class TCleanupItem

{
public:
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inline TCleanupItem(TCleanupOperation anOperation);
inline TCleanupItem(TCleanupOperation anOperation, TAny* aPtr);

private:
TCleanupOperation iOperation;
TAny* iPtr;
friend class TCleanupStackItem;
};

A call to PopAndDestroy() or leave processing removes the object
from the cleanup stack and calls the cleanup function provided by the
TCleanupItem.

class RSample
{

public:
static void Cleanup(TAny *aPtr);
void Release();
... // Other member functions omitted for clarity
};

// cleanup function
void RSample::Cleanup(TAny *aPtr)

{// Casts the parameter to RSample and calls Release() on it
// (error-checking omitted)
(static_cast<RSample*>(aPtr))->Release();
}

void LeavingFunctionL()
{
RSample theExample;
TCleanupItem safeExample(RSample::Cleanup, &theExample);
CleanupStack::PushL();

// Some leaving operations called
theExample.InitializeL(); // Allocates the resource
...

// Remove from the cleanup stack and invoke RSample::Cleanup()
CleanupStack::PopAndDestroy();
}

You’ll notice that the static Cleanup() function defined for RSample
casts the object pointer it receives to a pointer of the class to be cleaned
up. This is to allow access to the non-static Release() method which
performs the cleanup. For code to be generic, the TCleanupItem object
must store the cleanup pointer and pass it to the cleanup operation as a
TAny* pointer.

The curious reader may be wondering how the cleanup stack dis-
criminates between a TCleanupItem and objects pushed onto the
cleanup stack using one of the other PushL() overloads. The answer
is that it doesn’t – all objects stored on the cleanup stack are of type
TCleanupItem. The PushL() overloads that take CBase or TAny
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pointers construct a TCleanupItem implicitly and store it on the cleanup
stack. As I’ve already described, the cleanup function for the CBase*
overload deletes the CBase-derived object through its virtual destructor.
For the TAny* overload, the cleanup function calls User::Free(),
which simply frees the allocated memory.

Symbian OS also provides three utility functions, each of which gen-
erates an object of type TCleanupItem and pushes it onto the cleanup
stack, for cleanup methods Release(), Delete() and Close(). The
functions are templated so the cleanup methods do not have to be
static.

CleanupReleasePushL(T& aRef)

Leave processing or a call to PopAndDestroy() will call Release()
on an object of type T. To illustrate, here’s the implementation from
e32base.inl:

// Template class CleanupRelease
template <class T>
inline void CleanupRelease<T>::PushL(T& aRef)

{CleanupStack::PushL(TCleanupItem(&Release,&aRef));}
template <class T>
void CleanupRelease<T>::Release(TAny *aPtr)

{(STATIC_CAST(T*,aPtr))->Release();}
template <class T>
inline void CleanupReleasePushL(T& aRef)

{CleanupRelease<T>::PushL(aRef);}

You may be wondering about the use of STATIC_CAST rather than
the C++ standard static_cast I used in RSample::Cleanup(). Fear
not, I’ll explain why it’s used at the end of this chapter, in Section 3.6
(”An Incidental Note on the Use of Casts”).

And here’s an example of its use to make an object referred to by an M
class3 pointer leave-safe. The M class does not have a destructor; instead
the object must be cleaned up through a call to its Release() method,
which allows an implementing class to customize cleanup:

class MExtraTerrestrial // See Chapter 1 for details of mixin classes
{

public:
virtual void CommunicateL() = 0;
... // The rest of the interface is omitted for clarity
virtual void Release() = 0;
};

3 M classes are described in more detail in Chapter 1 and define a ”mixin” interface
which is implemented by a concrete inheriting class, which will, typically, also derive from
CBase.
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class CClanger : public CBase, MExtraTerrestrial
{

public:
static MExtraTerrestrial* NewL();
virtual void CommunicateL(); // From MExtraTerrestrial
virtual void Release();

private:
CClanger();
∼CClanger();

private:
...
};

void TestMixinL()
{
MExtraTerrestrial* clanger = CClanger::NewL();
CleanupReleasePushL(*clanger); // The pointer is deferenced here
... // Perform actions which may leave
CleanupStack::PopAndDestroy(clanger); // Note pointer to the object
}

Notice the asymmetry in the calls to push the object onto the cleanup
stack and to pop it off again. As you can see from the definition above,
CleanupReleasePushL() takes a reference to the object in question,
so you must deference any pointer you pass it. However, if you choose to
name the object when you Pop() or PopAndDestroy() it, you should
pass a pointer to the object. This is because you’re not calling an overload
of Pop().

The definition of CleanupClosePushL() is similarly asymmetric,
but for CleanupDeletePushL() you should pass in a pointer. This is
because objects which may be cleaned up using Release()or Close()
may equally be CBase-derived heap-based objects, such as the one
shown below, or R class objects which typically reside on the stack, as
shown in a later example. As I’ll describe, the CleanupDeletePushL()
function should only apply to heap-based objects, so this function has a
pointer argument.

CleanupDeletePushL(T& aRef)

Here’s the implementation from e32base.inl:

// Template class CleanupDelete
template <class T>
inline void CleanupDelete<T>::PushL(T* aPtr)

{CleanupStack::PushL(TCleanupItem(&Delete,aPtr));}
template <class T>
void CleanupDelete<T>::Delete(TAny *aPtr)

{delete STATIC_CAST(T*,aPtr);}
template <class T>
inline void CleanupDeletePushL(T* aPtr)

{CleanupDelete<T>::PushL(aPtr);}
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As you can see, leave processing or a call to PopAndDestroy()
calls delete on an object added to the cleanup stack using this
method. A call is thus made to the destructor of the object and the
heap memory associated with the object is freed. It is similar to using
the CleanupStack::PushL() overload which takes a CBase pointer,
and is useful when an M class-derived pointer must be placed on the
cleanup stack.

Calling CleanupStack::PushL() and passing in an M class pointer
to a heap-based object invokes the overload which takes a TAny*
parameter. For this overload, the TCleanupItem constructed does not
call the object’s destructor, as I discussed above. Instead, it simply
attempts to free the memory allocated for the object and, in doing so,
causes a panic (USER 42) because the pointer does not point to the start
of a valid heap cell.

This is because a concrete class that derives from an M class also
inherits from another class, for example CBase, or a derived class
thereof. The mixin pointer must be the second class in the inheritance
declaration order if destruction of the object is to occur correctly, through
the CBase virtual destructor. This means that when you access the object
through the M class interface, the pointer has been cast to point at the M
class sub-object which is some way into the allocated heap cell for the
object. The memory management code cannot deduce this and panics
when it cannot locate the appropriate structure it needs to free the cell
back to the heap.

To resolve this, you should always use CleanupDeletePushL()
to push M class pointers onto the cleanup stack, if the M class will be
cleaned up through a virtual destructor. This creates a TCleanupItem
for the object which calls delete on the pointer, using its destructor to
cleanup the object correctly.

CleanupClosePushL(T& aRef)

If an object is pushed onto the cleanup stack using CleanupClose-
PushL(), leave processing or a call to PopAndDestroy() calls
Close() on it. As an example, it can be used to make a stack-based
handle to the file server leave-safe, closing it in the event of a leave:

void UseFilesystemL()
{
RFs theFs;
User::LeaveIfError(theFs.Connect());
CleanupClosePushL(theFs);
... // Call functions which may leave
CleanupStack::PopAndDestroy(&theFs);
}
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CleanupStack::PushL(TAny*) is used to push a pointer to
a heap-based object which does not have a destructor onto the
cleanup stack (for example, a T class object or a struct).
CleanupStack::PushL(TCleanupItem) allows you to put

other types of object, such as those with customized cleanup
routines, onto the cleanup stack. Symbian OS provides three tem-
plated utility functions, each of which generates an object of
type TCleanupItem and pushes it onto the cleanup stack, for
Release(), Delete() and Close() cleanup methods.

3.4 Using TCleanupItem for Customized Cleanup

As I’ve already mentioned, TCleanupItem can be used to perform cus-
tomized cleanup when a leave occurs. The cleanup function (TCleanup-
Operation) used by the TCleanupItem must be of the correct
signature (void Function(TAny* aParam)) and may perform any
cleanup action appropriate in the event of a leave. It is especially useful
for transaction support where a sequence of functions must either succeed
or fail as a single atomic operation. If any of the functions leaves, the
object must be returned to its original state.

Alternatively, you can do this by putting a TRAP harness around each
call that may leave, rolling back any previous changes when the TRAP
”catches” a leave. Consider the following example code where an atomic
method, UpdateSpreadsheetL(), calls two separate leaving functions
inside TRAPs to recalculate the contents of a spreadsheet and update the
view of the spreadsheet. If either of the methods leaves, the TRAPs catch
the leave and allow the state of the spreadsheet and the spreadsheet view
to be returned to the point before the UpdateSpreadSheetL()method
was invoked, by calling Rollback().

class CSpreadSheet : public CBase
{

public:
// Guarantees an atomic update
void UpdateSpreadSheetL(const CUpdate& aUpdate);
... // Other methods omitted

private:
// Recalculates the contents of iSpreadSheet
void RecalculateL(const CData& aData);
void UpdateL(); // Updates iSpreadSheetView
void RollBack(); // Reverts to the previous state

private:
CExampleSpreadSheet* iSpreadSheet; // Defined elsewhere
CExampleSpreadSheetView* iSpreadSheetView; // Defined elsewhere
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...
};

void CSpreadSheet::UpdateSpreadSheetL(const CUpdate& aUpdate)
{
TRAPD(result, RecalculateL(aData)); // Performs the recalculation
if (KErrNone==result) // if no error, update the view

{
TRAP(result, UpdateL());
}

if (KErrNone!=result) // RecalculateL() or UpdateL() failed
{// Undo the changes
RollBack();
User::Leave(result);
}

}

However, as I’ve described, the use of TRAPs has an associated
cost in terms of less efficient and more complex code. A preferable
technique is to modify the code which reverts the object to its previ-
ous state. In the following example, the Rollback() method is now
static and takes a TAny* pointer – and can be used to initialize a
TCleanupItem. Rollback() casts the incoming TAny* to CSpread-
Sheet* and calls DoRollBack(), which returns the spreadsheet to its
state before UpdateSpreadSheetL() was called.

class CSpreadSheet : public CBase
{

public:
// Guarantees an atomic update
void UpdateSpreadSheetL(const CUpdate& aUpdate);
... // Other methods omitted

private:
// Recalculates the contents of iSpreadSheet
void RecalculateL(const CData& aData);
void UpdateL(); // Updates iSpreadSheetView

// Reverts to the previous state
static void RollBack(TAny* aSpreadSheet);
void DoRollBack();

private:
CExampleSpreadSheet* iSpreadSheet;
CExampleSpreadSheetView* iSpreadSheetView;
...
};

void CSpreadSheet::UpdateSpreadSheetL(const CUpdate& aUpdate)
{
// Initialize the TCleanupItem
TCleanupItem cleanup(CSpreadSheet::RollBack, this);
CleanupStack::PushL(cleanup); // Put it on the cleanup stack
RecalculateL(aData);
UpdateL();
CleanupStack::Pop(&cleanup); // TCleanupItem is no longer required
}
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void CSpreadSheet::Rollback(TAny* aSpreadSheet)
{
ASSERT(aSpreadSheet);
CSpreadSheet* spreadsheet = static_cast<CSpreadSheet*>(aSpreadSheet);
spreadsheet->DoRollBack();
}

3.5 Portability

The cleanup stack is a concept specific to Symbian OS, which means that
code that uses it is non-portable. Sander van der Wal of mBrain Software
has proposed using the cleanup stack to implement auto_ptr<>, part
of the C++ standard, for Symbian OS, to make cleanup code more
transferable. The auto_ptr<> template class can be used for automatic
destruction, even when an exception is thrown and use of this standard
cleanup mechanism could certainly allow code to be ported more rapidly.
You can find more information about the implementation through links
on the Symbian Developer Network (www.symbian.com/developer),
where you can also find additional, in-depth articles about cleanup on
Symbian OS.

3.6 An Incidental Note on the Use of Casts

C++ supports four cast operators (static_cast, const_cast, rein-
terpret_cast and dynamic_cast) which are preferable to the old
C-style cast because they each have a specific purpose which the com-
piler can police for erroneous usage. For this reason, when you need to use
a cast in Symbian OS code, you should endeavor to use static_cast,
const_cast or reinterpret_cast rather than a basic C-style cast.
Another benefit of using these casts is that they are more easily identified,
both by the human eye and by search tools like grep.

Prior to Symbian OS v6.0, GCC did not support the C++ casting
operators. Instead, Symbian OS defined a set of macros that simply used
C-style casts for that compiler but at least allowed Symbian OS code to
differentiate between the casts. The macros made the use of casts visible
and allowed the code to be upgraded easily when the GCC compiler
began to support the new casts, from v6.0 onwards. The macros were
changed to reflect the availability of the new casts in v6.1.

You may encounter legacy code which still uses these macros,
such as CleanupReleasePushL(), CleanupDeletePushL() and
CleanupClosePushL(), but, from v6.0 onwards, you should simply
use the native C++ casting operators rather than these macros.
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You’ll find the legacy macros defined in e32def.h:

#define CONST_CAST(type,exp) (const_cast<type>(exp))
#define STATIC_CAST(type,exp) (static_cast<type>(exp))
#define REINTERPRET_CAST(type,exp) (reinterpret_cast<type>(exp))
#if defined(__NO_MUTABLE_KEYWORD)
#define MUTABLE_CAST(type,exp) (const_cast<type>(exp))
#else
#define MUTABLE_CAST(type,exp) (exp)
#endif

You’ll notice that dynamic_cast is not supported on Symbian OS.
This cast is useful, allowing you to perform a safe cast from pointers of less
derived classes to those in the inheritance hierarchy that are either more
derived (child classes) or related across the inheritance tree. However,
dynamic_cast makes use of runtime type identification (RTTI) which is
not supported on Symbian OS because of the expensive runtime overhead
required.4 For this reason, dynamic_cast is, sadly, not supported by
Symbian OS.

3.7 Summary

This chapter covered one of the most fundamental concepts of Symbian
OS, the cleanup stack. It first explained the need for the cleanup stack,
to prevent inadvertent heap memory leaks in the event of a leave. It then
moved on to illustrate how, and how not, to use the cleanup stack most
effectively. The chapter discussed the advantages of the cleanup stack
over a TRAP harness, which can be used to prevent leaves but has a more
significant impact on run-time speed and code size.

The chapter discussed in detail how the cleanup stack actually works
and concluded by describing how it can best be used to ensure cleanup
in the event of a leave for C class and R class objects, T class objects on
the heap and objects referenced by M class interface pointers.

You can find more information about leaves in Chapter 2; the impact
of leaves on constructor code is discussed in the next chapter.

4 Another useful feature of dynamic_cast is that you can tell whether the cast
succeeded; it will return a NULL pointer if you’re casting a pointer or throw an exception if
you’re casting a reference. As you’ll know from the previous chapter, Symbian OS does not
support C++ exceptions, and uses leaves instead. This also contributes to the reason why
dynamic_cast is unavailable on Symbian OS.





4
Two-Phase Construction

Either that wallpaper goes, or I do
Reputed to be the last words of Oscar Wilde

By now, you’ll have gathered that Symbian OS takes memory efficiency
very seriously indeed. It was designed to perform well on devices with
limited memory, and uses memory management models such as the
cleanup stack to ensure that memory is not leaked, even under error
conditions or in exceptional circumstances.

Two-phase construction is an idiom that you’ll see used extensively in
Symbian OS code. To understand why it is necessary, we must consider
exactly what happens when you create an object on the heap. Consider
the following line of code, which allocates an object of type CExample
on the heap, and sets the value of the foo pointer accordingly:

CExample* foo = new CExample();

The code calls the new operator, which allocates a CExample object
on the heap if there is sufficient memory available. Having done so, it
calls the constructor of class CExample to initialize the object.

As I described in Chapter 3, once you have a heap object such as
that pointed to by foo, you can use the cleanup stack to ensure that the
CExample object is correctly cleaned up in the event of a leave. But it
is not possible to do so inside the new operator between allocation of
the object and invocation of its constructor. If the CExample constructor
itself leaves, the memory already allocated for the object and any memory
the constructor may have allocated will be orphaned. This gives rise to
a key rule of Symbian OS memory management: no code within a C++
constructor should ever leave.

Of course, to initialize an object you may need to write code that
leaves, say to allocate memory or read a configuration file which may
be missing or corrupt. It is under these circumstances that two-phase
construction is useful.
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When writing a new class you should break your construction code
into two parts, or phases:

1. A basic constructor which cannot leave.
It is this constructor which is called by the new operator. It implicitly
calls base-class constructors and may also invoke functions that
cannot leave and/or initialize member variables with default values
or those supplied as arguments to the constructor.

2. A class method (typically called ConstructL()).
This method may be called separately once the object, allocated
and constructed by the new operator, has been pushed onto the
cleanup stack; it will complete construction of the object and may
safely perform operations that may leave. If a leave does occur, the
cleanup stack calls the destructor to free any resources which have
been successfully allocated and destroys the memory allocated for
the object itself.

For example:

class CExample : public CBase
{

public:
CExample(); // Guaranteed not to leave
∼CExample(); // Must cope with partially constructed objects
void ConstructL(); // Second phase construction code - may leave
...
};

The simplest implementation may expect clients to call the second-
phase construction function themselves, but a class cannot rely on its
objects being fully constructed unless it makes the call internally itself. A
caller may forget to call the ConstructL() method after instantiating
the object and, at the least, will find it a burden since it’s not a standard
C++ requirement. For this reason, it is preferable to make the call to
the second phase construction function within the class itself. Obviously,
the code cannot do this from within the simple constructor since this
takes it back to the problem of having implemented a constructor which
may leave.

A commonly used pattern in Symbian OS code is to provide a static
function which wraps both phases of construction, providing a simple
and easily identifiable means to instantiate objects of a class on the heap.
The function is typically called NewL(), though a NewLC() function is
often provided too, which is identical except that it leaves the constructed
object on the cleanup stack for convenience.1

1 In fact, NewLC() is such a commonly used idiom when working with Symbian OS
that a very useful, independent Symbian developer website (www.NewLC.com) exists,
providing news, tutorials and support forums.
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class CExample : public CBase
{

public:
static CExample* NewL();
static CExample* NewLC();
∼CExample(); // Must cope with partially constructed objects

private:
CExample(); // Guaranteed not to leave
void ConstructL(); // Second phase construction code, may leave
...
};

Note that the NewL() function is static, so you can call it without first
having an existing instance of the class. The non-leaving constructors and
second-phase ConstructL() functions have been made private2 so a
caller cannot instantiate objects of the class except through NewL().

This prevents all of the following erroneous constructions:

CExample froglet; // BAD! C classes should not be created on the stack

CExample* myFroglet = new CExample(); // Caller must test for success
if (NULL!=myFroglet)

{
myFroglet->Hop(); // ConstructL() for myFroglet has not been called
}

CExample* frogletPtr = new (ELeave) CExample();
frogletPtr->Hop(); // ConstructL() wasn’t called, frogletPtr may not be

// fully constructed

Typical implementations of NewL() and NewLC() may be as follows:

CExample* CExample::NewLC()
{
CExample* me = new (ELeave) CExample(); // First phase construction
CleanupStack::PushL(me);
me->ConstructL(); // Second phase construction
return (me);
}

CExample* CExample::NewL()
{
CExample* me = CExample::NewLC();
CleanupStack::Pop(me);
return (me);
}

2 If you intend your class to be subclassed, you should make the default constructor
protected rather than private so the compiler may construct the deriving classes. The
ConstructL()method should be private (or protected if it is to be called by derived
classes) to prevent clients of the class from mistakenly calling it on an object which has
already been fully constructed.
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Note that the NewL() function is implemented in terms of the
NewLC() function rather than the other way around (which would
be slightly less efficient since this would make an extra PushL() call on
the cleanup stack).

Each function returns a fully constructed object, or will leave either
if there is insufficient memory to allocate the object (that is, if the
special Symbian OS overload of operator new leaves) or if the second
phase ConstructL() function leaves. If second phase construction
fails, the cleanup stack ensures both that the partially constructed object
is destroyed and that the memory it occupies is returned to the heap.

The NewL() and NewLC() functions may, of course, take parameters
with which to initialize the object. These may be passed to the sim-
ple constructor in the first phase or the second-phase ConstructL()
function, or both.

If your class derives from a base class which also implements Con-
structL(), you will need to ensure that this is also called, if nece-
ssary, when objects of your class are constructed (C++ will ensure that
the simple first-phase constructors of your base classes are called). You
should call the ConstructL()method of any base class explicitly (using
the scope operator) in your own ConstructL() method, to ensure the
base class object is fully constructed, before proceeding to initialize your
derived object.

It is with class inheritance in mind that we can answer the following
question: If it is possible to PushL() a partially constructed object onto
the cleanup stack in a NewL() function, why not do so at the beginning
of a standard constructor (thus allowing it to leave), calling Pop() when
construction is complete? At first sight, this may be tempting, since the
single-phase construction I described as unsafe at the beginning of the
chapter would then be leave-safe, as long as the object was pushed
onto the cleanup stack before any leaving operations were called in
the constructor. However, if the class is to be used as a base class,
the constructor of any class derived from it will incur one PushL()
(and corresponding Pop()) in the constructor called at each level in
the inheritance hierarchy, rather than a single cleanup stack operation in
the NewL() function. In addition, from a cosmetic point of view, a C++
constructor cannot be marked with a suffixed L to indicate its potential
to leave unless the class is itself named as such.

Before closing this chapter, it is worth noting that, when implementing
the standard Symbian OS two-phase construction idiom, you should
consider the destructor code carefully. Remember that a destructor must
be coded to release all the resources that an object owns. However,
the destructor may be called to cleanup partially constructed objects
if a leave occurs in the second-phase ConstructL() function. The
destructor code cannot assume that the object is fully initialized and you
should beware of calling functions on pointers which may not yet be set
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to point to valid objects. Of course, the memory for a CBase-derived
object is guaranteed to be set to binary zeroes on first construction (as
described in Chapter 1). It is safe for a destructor to call delete on a
NULL pointer, but you should beware of attempting to free other resources
without checking whether the handle or pointer which refers to them is
valid, for example:

CExample::∼CExample()
{
if (iMyAllocatedMember)

{
iMyAllocatedMember->DoSomeCleanupPreDestruction();
delete iMyAllocatedMember;
}

}

On Symbian OS, a C++ constructor should never leave, since
any memory allocated for the object (and any memory the con-
structor may already have allocated) would be orphaned by the
leave. Instead, construction code should be broken into two phases
within a public static member function, typically called NewL() or
NewLC().

4.1 Summary

A constructor should never be able to leave, because if it is called
and leaves when an object is instantiated on the heap that object will
be orphaned, causing a memory leak. For this reason, two-phase con-
struction is used extensively in Symbian OS code for CBase-derived
classes. It provides a means by which heap-based objects may be instan-
tiated without the need to prevent construction and initialization code
from leaving.

The first phase of two-phase construction allocates an object on the
heap and may perform basic initialization which cannot leave. The
second phase pushes the object onto the cleanup stack, to ensure it
will be cleaned up in the event of a leave, before calling any further
construction code which may leave.

Two-phase construction is generally performed by methods inter-
nal to the class rather than exposed to a caller, who may not appreci-
ate that both phases of construction are required. Typically, two-phase
construction is performed on Symbian OS using static NewL() and
NewLC() methods (the latter leaves the constructed object on the
cleanup stack). The second-phase construction method is usually
called ConstructL() or InitializeL() and is usually specified
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as protected or private – as are the constructors – which enforces
two-phase construction as the only means by which an object can be
instantiated.

Two-phase construction is typically used for C classes, since T classes
do not usually require complex construction code (because they do not
contain heap-based member data) and R classes are usually created
uninitialized, requiring their callers to call Connect() or Open() to
associate the R class object with a particular resource. You can find more
information about the characteristics of the various Symbian OS class
types in Chapter 1, which discusses them in detail.



5
Descriptors: Symbian OS Strings

Get your facts first, then you can distort them as you please
Mark Twain

The Symbian OS string is known as a ”descriptor”, because it is self-
describing. A descriptor holds the length of the string of data it represents
as well as its ”type”, which identifies the underlying memory layout of
the descriptor data. Descriptors have something of a reputation among
Symbian OS programmers because they take some time to get used
to. The key point to remember is that they were designed to be very
efficient on low memory devices, using the minimum amount of memory
necessary to store the string, while describing it fully in terms of its length
and layout. There is, necessarily, some trade-off between efficiency and
simplicity of use, which this chapter illustrates. The chapter is intended
to give a good understanding of the design and philosophy of descriptors.
The next chapter will show how to use descriptors most effectively by
looking at some of the more frequently used descriptor API functions and
describing some common descriptor mistakes and misconceptions.

Descriptors have been part of Symbian OS since its initial release
and they have a well established base of documentation. Despite this,
they can still appear confusing at first sight, perhaps because there are
quite a number of descriptor classes, all apparently different although
interoperable.1 They’re not like standard C++ strings, Java strings or the
MFC CString (to take just three examples) because their underlying
memory allocation and cleanup must be managed by the programmer.
But they are not like C strings either; they protect against buffer overrun
and don’t rely on NULL terminators to determine the length of the string.
So let’s discuss what they are and how they work – initially by looking at
a few concepts before moving on to the different descriptor classes.

First, I should make the distinction between descriptors and literals;
the latter can be built into program binaries in ROM because they

1 To paraphrase Andrew Tanenbaum: The nice thing about descriptors is that there are
so many to choose from.
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are constant. Literals are treated a bit differently to descriptors and I’ll
come back to them later in the chapter. For now, the focus is on
descriptors.

Another issue is the ”width” of the string data, that is, whether an
individual character is 8 or 16 bits wide. Early releases, up to and including
Symbian OS v5, were narrow builds with 8-bit native characters, but since
that release Symbian OS has been built with wide 16-bit characters as
standard, to support Unicode character sets. The operating system was
designed to manage both character widths from the outset by defining
duplicate sets of descriptor classes for 8- and 16-bit data. The behavior
of the 8- and 16-bit descriptor classes is identical except for Copy() and
Size(), both of which are described in the next chapter. In addition,
a set of neutral classes are typedef’d to either the narrow or wide
descriptor classes, depending on the build width. You can identify the
width of a class from its name. If it ends in 8 (e.g. TPtr8) it assumes
narrow 8-bit characters, while descriptor class names ending with 16 (e.g.
TPtr16) manipulate 16-bit character strings. The neutral classes have no
number in their name (e.g. TPtr) and, on releases of Symbian OS since
v5u,2 they are implicitly wide 16-bit strings.

The neutral classes were defined for source compatibility purposes
to ease the switch between narrow and wide builds. Although today
Symbian OS is always built with 16-bit wide characters, you are well
advised to continue to use the neutral descriptor classes where you do
not need to state the character width explicitly.

Descriptors can also be used for binary data because they don’t rely on
a NULL terminating character to determine their length. The unification
of binary and string-handling APIs makes it easier for programmers and,
of course, the ability to re-use string manipulation code on data helps
keep Symbian OS compact. To work with binary data, you need to code
specifically with the 8-bit descriptor classes. The next chapter discusses
how to manipulate binary data in descriptors in more detail.

So, with that knowledge in hand, we can move on to consider the
descriptor classes in general.

5.1 Non-Modifiable Descriptors

All (non-literal) descriptors derive from the base class TDesC which is
typedef’d to TDesC16 in e32std.h and defined in e32des16.h
(the narrow version, TDesC8, can be found in e32des8.h). Chapter 1
discusses Symbian OS class naming conventions and explains what the
”T” prefix represents. The ”C” at the end of the class name is more

2 Symbian OS v5u was used in the Ericsson R380 mobile phone. This version is also
sometimes known as ”ER5U”, which is an abbreviation of ”EPOC Release 5 Unicode”.
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relevant to this discussion, however; it reflects that the class defines a
non-modifiable type of descriptor, whose contents are constant. The
class provides methods for determining the length of the descriptor and
accessing the data.

The length of the descriptor is returned, unsurprisingly, by the
Length() method. The layout of every descriptor object is the same,
with 4 bytes holding the length of the data it currently contains. (Actually,
only 28 of the available 32 bits are used to hold the length of the descrip-
tor data; 4 bits are reserved for another purpose, as I’ll describe very
shortly. This means that the maximum length of a descriptor is limited to
228 bytes, 256 MB, which should be more than sufficient!)

The Length()method in TDesC is never overridden by its subclasses
since it is equally valid for all types of descriptor. However, access to
the descriptor data is different depending on the implementation of the
derived descriptor classes but Symbian OS does not require each subclass
to implement its own data access method using virtual functions. It does
not use virtual function overriding because this would place the burden
of an extra 4 bytes on each derived descriptor object, added by C++ as a
virtual pointer (vptr) to access the virtual function table. As I’ve already
described, descriptors were designed to be as efficient as possible and
the size overhead to accommodate a vptr was considered undesirable.
Instead, to allow for the specialization of derived classes, the top 4 bits of
the 4 bytes that store the length of the descriptor object are reserved to
indicate the type of descriptor.

There are currently five derived descriptor classes, each of which sets
the identifying bits as appropriate upon construction. The use of 4 bits
to identify the type limits the number of different types of descriptor to
24 (=16), but since only five types have been necessary in current and
previous releases of Symbian OS, it seems unlikely that the range will
need to be extended significantly in the future.

Access to the descriptor data for all descriptors goes through the non-
virtual Ptr() method of the base class, TDesC, which uses a switch
statement to check the 4 bits, identify the type of descriptor and return
the correct address for the beginning of its data. Of course, this requires
that the TDesC base class has knowledge of the memory layout of its
subclasses hardcoded into Ptr().

With the Length() and Ptr() methods, the TDesC base class can
implement all the operations you’d typically expect to perform on a
constant string (such as data access, comparison and search). Some of
these methods are described in detail in the next chapter, and all will be
documented in full in your preferred SDK. The derived classes all inherit
these methods and, in consequence, all constant descriptor manipulation
is performed by the same base class code, regardless of the type of
the descriptor.
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The non-modifiable descriptor class TDesC is the base class from
which all non-literal descriptors derive. It provides methods to
determine the length of the descriptor and to access its data. In
addition, it implements all the operations you’d typically expect to
perform on a constant string.

5.2 Modifiable Descriptors

Let’s now go on to consider the modifiable descriptor types, which all
derive from the base class TDes, itself a subclass of TDesC. TDes has an
additional member variable to store the maximum length of data allowed
for the current memory allocated to the descriptor. The MaxLength()
method of TDes returns this value. Like the Length()method of TDesC,
it is not overridden by the derived classes.
TDes defines the range of methods you’d expect for modifiable string

data, including those to append, fill and format the descriptor data. Again,
all the manipulation code is inherited by the derived classes, and acts
on them regardless of their type. Typically, the derived descriptors only
implement specific methods for construction and copy assignment.

None of the methods allocates memory, so if they extend the length
of the data in the descriptor, as Append() does, for example, you must
ensure that there is sufficient memory available for them to succeed
before calling them. Of course, the length of the descriptor can be less
than the maximum length allowed and the contents of the descriptor can
shrink and expand, as long as the length does not exceed the maximum
length. When the length of the descriptor contents is shorter than the
maximum length, the final portion of the descriptor is simply unused.

The modification methods use assertion statements to check that the
maximum length of the descriptor is sufficient for the operation to succeed.
These will panic if an overflow would occur if they proceeded, allowing
you to detect and fix the programming error (panics are described in
detail in Chapter 15 and assertions in Chapter 16).

The very fact that you can’t overflow the descriptor makes the code
robust and less prone to hard-to-trace memory scribbles. In general,
descriptor classes use __ASSERT_ALWAYS to check that there is sufficient
memory allocated for an operation, raising a USER category panic if the
assertion fails. In the event of such a panic, it can be assumed that no
illegal access of memory has taken place and that no data was moved
or corrupted.

The base classes provide and implement the APIs for constant and
modifiable descriptor operations for consistency, regardless of the actual
type of the derived descriptor. For this reason, the base classes should be
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used as arguments to functions and return types, allowing descriptors to
be passed around in code without forcing a dependency on a particular
type. However, if you attempt to create objects of type TDesC and TDes
you’ll find that they cannot be instantiated directly because their default
constructors are protected.3

So it’s to the derived descriptor types that we now turn, since these
are the descriptor classes that you’ll actually instantiate and use. As I
mentioned earlier, it can at first sight appear quite confusing because
there is a proliferation of descriptor classes. I’ve already explained why
there are three versions of each class, e.g. TDes8, TDes16 and TDes,
for narrow, wide and neutral (implicitly wide) classes respectively. Let’s
now look at the main descriptor types, initially considering their general
layout in memory before moving on to look at each class in more detail.
I’ll describe the differences between the classes and the methods each
defines over and above those provided by the TDesC and TDes base
classes. The following chapter will go further into how to use the base
class APIs, as well as noting any useful tips or mistakes commonly made
when doing so. For comprehensive information about the descriptor APIs,
you should refer to the SDK documentation.

As I’ll describe, descriptors come in two basic layouts: pointer descrip-
tors, in which the descriptor holds a pointer to the location of a character
string stored elsewhere, and buffer descriptors, where the string of char-
acters forms part of the descriptor.

TDes is the base class for all modifiable descriptors, and itself
derives from TDesC. It has a method to return the maximum
amount of memory currently allocated to hold data, and a range of
methods for modifying string data.

When using descriptors, memory management is your responsibil-
ity. Descriptors do not perform allocation, re-allocation or garbage
collection, because of the extra overhead that would carry. How-
ever, descriptor functions do check against access beyond the end
of the data, and will panic if passed out-of-bounds parameters.

3 There is no copy constructor declared, so the compiler generates a default public
version which can be used to instantiate a TDes or TDesC by copy, although you are
unlikely to have a valid reason for doing this:
_LIT(KExampleLiteral, "The quick brown fox jumps over the lazy dog");
TPtrC original(KExampleLiteral);
TDesC copy(original); // Shallow copy the type, length & data
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5.3 Pointer Descriptors

The string data of a pointer descriptor is separate from the descriptor
object itself and can be stored in ROM, on the heap or on the stack. The
memory that holds the data is not ”owned” by the descriptor and is not
managed through it. Thus, if it is on the heap, the memory is created,
reallocated if necessary, and destroyed using a heap descriptor pointer
(HBufC, described below). If a pointer descriptor is referencing a stack-
based string, the memory in question will already have been allocated
on the stack. The pointer descriptors themselves are usually stack-based,
but they can be used on the heap, for example as a member variable of
a CBase-derived class. Pointer descriptors are agnostic about where the
memory they point to is actually stored.

In a non-modifiable pointer descriptor (TPtrC), the pointer to the data
follows the length word, thus the total size of the descriptor object is two
words. In a modifiable pointer descriptor (TPtr), it follows the maximum
length word and the descriptor object is three words in length. Figure 5.1
compares the memory layouts of TPtr and TPtrC.

Hello World!iLength
12

iPtr

TDesC TPtrC ROM, heap or  stack

TPtrC

TPtr

TDesC

iLength
12

iMaxLength
12

iPtr

TDes TPtr

Figure 5.1 Memory layouts of pointer descriptors

TPtrC

TPtrC is the equivalent of using const char* when handling strings
in C. The data can be accessed but not modified: that is, the data in the
descriptor is constant. All the non-modifiable operations defined in the
TDesC base class are accessible to objects of type TPtrC. The class also
defines a range of constructors to allow TPtrC to be constructed from
another descriptor, a pointer into memory or a zero-terminated C string.
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// Literal descriptors are described later in this chapter
_LIT(KLiteralDes, "Sixty zippers were quickly picked from the woven

jute bag");

TPtrC pangramPtr(KLiteralDes); // Constructed from a literal descriptor
TPtrC copyPtr(pangramPtr); // Copy constructed from another TPtrC

TBufC<100> constBuffer(KLiteralDes); // Constant buffer descriptor
TPtrC ptr(constBuffer); // Constructed from a TBufC

// TText8 is a single (8-bit) character, equivalent to unsigned char
const TText8* cString = (TText8*)"Waltz, bad nymph, for quick jigs

vex";
// Constructed from a zero-terminated C string
TPtrC8 anotherPtr(cString);

TUint8* memoryLocation; // Pointer into memory initialized elsewhere
TInt length; // Length of memory to be represented
...
TPtrC8 memPtr(memoryLocation,length); // Constructed from a pointer

The pointer itself may be changed to point at different string data – the
Set() methods in TPtrC are defined for that purpose. If you want to
indicate that the data your TPtrC points at should not be changed,
you can declare the TPtrC to be const, which typically generates a
compiler warning if an attempt is made to call Set() upon it. It will not
fail, however, since the rules of const-ness in C++ are such that both
const and non-const functions may be called on a const object.

// Literal descriptors are described later in this chapter
_LIT(KLiteralDes1, "Sixty zippers were quickly picked from the woven jute

bag");
_LIT(KLiteralDes2, "Waltz, bad nymph, for quick jigs vex");

TPtrC alpha(KLiteralDes1);
TPtrC beta(KLiteralDes2);
alpha.Set(KLiteralDes2); // alpha points to the data in KLiteralDes2
beta.Set(KLiteralDes1); // beta points to the data in KLiteralDes1

const TPtrC gamma(beta); // Points to the data in beta, KLiteralDes1
gamma.Set(alpha); // Generates a warning, but points to alpha

TPtr

TPtr is the modifiable pointer descriptor class for access to and mod-
ification of a character string or binary data. All the modifiable and
non-modifiable base class operations of TDes and TDesC respectively
may be performed on a TPtr.



62 DESCRIPTORS: SYMBIAN OS STRINGS

The class defines constructors to allow objects of type TPtr to be
constructed from a pointer into an address in memory, setting the length
and maximum length as appropriate.

The compiler also generates implicit default and copy construc-
tors, since they are not explicitly declared protected or private in the
class. A TPtr object may be copy constructed from another modifi-
able pointer descriptor, for example, by calling the Des() method on a
non-modifiable buffer, which returns a TPtr as shown below:

_LIT(KLiteralDes1, "Jackdaws love my big sphinx of quartz");
TBufC<60> buf(KLiteralDes1); // TBufC are described later

TPtr ptr(buf.Des()); // Copy construction; can modify the data in buf
TInt length = ptr.Length(); // Length = 12
TInt maxLength = ptr.MaxLength(); // Maximum length = 60, as for buf

TUint8* memoryLocation; // Valid pointer into memory
...
TInt len = 12; // Length of data to be represented
TInt maxLen = 32; // Maximum length to be represented

// Construct a pointer descriptor from a pointer into memory
TPtr8 memPtr(memoryLocation, maxLen); // length = 0, max length = 32
TPtr8 memPtr2(memoryLocation, len, maxLen); // length = 12, max = 32

In addition, the class provides an assignment operator, operator=(),
to copy data into the memory referenced by the pointer (from another
modifiable pointer descriptor, a non-modifiable pointer or a zero-termin-
ated string). If the length of the data to be copied exceeds the maximum
length of the descriptor, a panic will be raised. Like TPtrC, this class also
defines a Set() method to change the descriptor to point at different
data.

_LIT(KLiteralDes1, "Jackdaws love my big sphinx of quartz");
TBufC<60> buf(KLiteralDes1); // TBufC are described later
TPtr ptr(buf.Des()); // Points to the contents of buf

TUint16* memoryLocation; // Valid pointer into memory
...
TInt maxLen = 40; // Maximum length to be represented
TPtr memPtr(memoryLocation, maxLen); // length = 12, max length = 40

// Copy and replace
memPtr = ptr; // memPtr data is KLiteralDes1 (37 bytes), maxLength = 40

_LIT(KLiteralDes2, "The quick brown fox jumps over the lazy dog");
TBufC<100> buf2(KLiteralDes2); // TBufC are described later
TPtr ptr2(buf2.Des()); // Points to the data in buf
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// Replace what ptr points to
ptr.Set(ptr2); // ptr points to contents of buf2, max length = 100
memPtr = ptr2; // Attempt to update memPtr which panics because the
// contents of ptr2 (43 bytes) exceeds max length of memPtr (40 bytes)

You should be careful not to confuse Set(), which resets your
descriptor to point at a new data area (with corresponding modifica-
tion to the length and maximum length members) with
operator =() which merely copies data into the existing descrip-
tor (and may modify the descriptor length but not its maxi-
mum length).

5.4 Stack-Based Buffer Descriptors

The stack-based buffer descriptors may be modifiable or non-modifiable.
The string data forms part of the descriptor object, located after the length
word in a non-modifiable descriptor and after the maximum length word
in a modifiable buffer descriptor. Figure 5.2 compares the memory layouts
of TBuf and TBufC.

iLength
12

iBuf
Hello World!

TDesC TBufC

TBufC <12>

TDesC

iLength
12

iMaxLength
15

TDes TBuf

TBufC <15>

iBuf
Hello World!

Figure 5.2 Buffer descriptors

These descriptors are useful for fixed-size or relatively small strings,
say up to the length of a 256-character filename. Being stack-based, they
should be used when they have a lifetime that coincides with that of their
creator. They may be considered equivalent to char[] in C, but with
the benefit of overflow checking.
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TBufC<n>

This is the non-modifiable buffer class, used to hold constant string or
binary data. The class derives from TBufCBase (which derives from
TDesC, and exists as an inheritance convenience rather than to be used
directly). TBufC<n> is a thin template class which uses an integer value
to determine the size of the data area allocated for the buffer descriptor
object. Chapter 19 describes the thin template pattern and its role in
Symbian OS code.

The class defines several constructors that allow non-modifiable buffers
to be constructed from a copy of any other descriptor or from a zero-
terminated string. They can also be created empty and filled later since,
although the data is non-modifiable, the entire contents of the buffer
may be replaced by calling the assignment operator defined by the class.
The replacement data may be another non-modifiable descriptor or a
zero-terminated string, but in each case the new data length must not
exceed the length specified in the template parameter when the buffer
was created.

_LIT(KPalindrome, "Satan, oscillate my metallic sonatas");

TBufC<50> buf1(KPalindrome); // Constructed from literal descriptor
TBufC<50> buf2(buf1); // Constructed from buf1
// Constructed from a NULL-terminated C string
TBufC<30> buf3((TText*)"Never odd or even");
TBufC<50> buf4; // Constructed empty, length = 0

// Copy and replace
buf4 = buf1; // buf4 contains data copied from buf1, length modified
buf1 = buf3; // buf1 contains data copied from buf3, length modified
buf3 = buf2; // Panic! Max length of buf3 is insufficient for buf2 data

The class also defines a Des() method which returns a modifiable
pointer descriptor for the data represented by the buffer. So, while
the content of a non-modifiable buffer descriptor cannot normally be
altered directly, other than by complete replacement of the data, it is
possible to change the data indirectly by creating a modifiable pointer
descriptor into the buffer. When the data is modified through the pointer
descriptor, the lengths of both the pointer descriptor and the constant
buffer descriptor are changed although, of course, the length is not
automatically extended because the descriptor classes do not provide
memory management.

_LIT8(KPalindrome, "Satan, oscillate my metallic sonatas");
TBufC8<40> buf(KPalindrome); // Constructed from literal descriptor
TPtr8 ptr(buf.Des()); // data is the string in buf, max length = 40

// Illustrates the use of ptr to copy and replace contents of buf
ptr = (TText8*)"Do Geese see God?";
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ASSERT(ptr.Length()==buf.Length());
_LIT8(KPalindrome2, "Are we not drawn onward, we few, drawn onward to

new era?");
ptr = KPalindrome2; // Panic! KPalindrome2 exceeds max length of ptr(=40)

TBuf<n>

Like the corresponding non-modifiable buffer class, this class for non-
constant buffer data is a thin template class, the integer value determining
the maximum allowed length of the buffer. It derives from TBufBase,
which itself derives from TDes, thus inheriting the full range of descrip-
tor operations in TDes and TDesC. TBuf<n> defines a number of
constructors and assignment operators, similar to those offered by its
non-modifiable counterpart.

As with all descriptors, its memory management is your responsibility
and, although the buffer is modifiable, it cannot be extended beyond the
initial maximum length set on construction. If the contents of the buffer
need to expand, it’s up to you to make sure that you either make the
original allocation large enough at compile time or dynamically allocate
the descriptor at runtime. The only way you can do the latter is to use
a heap descriptor, described below. If this responsibility is too onerous
and you want the resizing done for you, I suggest you consider using
a dynamic buffer, as described in Chapter 7, bearing in mind that the
associated overhead will be higher.

_LIT(KPalindrome, "Satan, oscillate my metallic sonatas");
TBuf<40> buf1(KPalindrome); // Constructed from literal descriptor
TBuf<40> buf2(buf1); // Constructed from constant buffer descriptor
TBuf8<40> buf3((TText8*)"Do Geese see God?"); // from C string
TBuf<40> buf4; // Constructed empty, length = 0, maximum length = 40

// Illustrate copy and replace
buf4 = buf2; // buf2 copied into buf4, updating length and max length
buf3 = (TText8*)"Murder for a jar of red rum"; // updated from C string

The stack-based buffer descriptors, TBuf<n> and TBufC<n>, are
useful for fixed-size or relatively small strings, say up to the length
of a 256-character filename.

5.5 Heap-Based Buffer Descriptors

Heap-based descriptors can be used for string data that isn’t in ROM and
is not placed on the stack because it is too big. Heap-based descriptors
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can be used where they may have a longer lifetime than their creator,
for example, passed to an asynchronous function. They are also useful
where the length of a buffer to be created is not known at compile time
and are used where malloc’d data would be used in C.

The class representing these descriptors is HBufC (explicitly HBufC8
or HBufC16) although these descriptors are always referred to by pointer,
HBufC*. You’ll notice that, by starting with ”H”, the class doesn’t
comply with the naming conventions described in Chapter 1. The class is
exceptional and doesn’t really fit any of the standard Symbian OS types
exactly. Thus, it is simply prefixed with H to indicate that the data is
stored on the heap. If you’re interested in how the cleanup stack handles
HBufC, see Chapter 3.

The HBufC class exports a number of static NewL() functions to
create the buffer on the heap. These follow the two-phase construction
model (described in Chapter 4) since they may leave if there is insufficient
memory available. There are no public constructors and all heap buffers
must be constructed using one of these methods (or from one of the
Alloc() or AllocL() methods of the TDesC class which you may use
to spawn an HBufC copy of any descriptor).

As you’ll note from the ”C” in the class name, these descriptors are non-
modifiable, although, in common with the stack-based non-modifiable
buffer descriptors, the class provides a set of assignment operators to
allow the entire contents of the buffer to be replaced. As with TBufC, the
length of the replacing data must not exceed the length of the heap cell
allocated for the buffer or a panic occurs.

In common with TBufC, the heap-based descriptors can be manipu-
lated at runtime by creating a modifiable pointer descriptor, TPtr, using
the Des() method.

_LIT(KPalindrome, "Do Geese see God?");
TBufC<20> stackBuf(KPalindrome);

// Allocates an empty heap descriptor of max length 20
HBufC* heapBuf = HBufC::NewLC(20);
TInt length = heapBuf->Length();// Current length = 0
TPtr ptr(heapBuf->Des()); // Modification of the heap descriptor
ptr = stackBuf; // Copies stackBuf contents into heapBuf
length = heapBuf->Length(); // length = 17

HBufC* heapBuf2 = stackBuf.AllocLC(); // From stack buffer
length = heapBuf2->Length(); // length = 17

_LIT(KPalindrome2, "Palindrome");
*heapBuf2 = KPalindrome2; // Copy and replace data in heapBuf2
length = heapBuf2->Length(); // length = 10
CleanupStack::PopAndDestroy(2, heapBuf);

Remember, the heap descriptors can be created dynamically to the
size you require, but they are not automatically resized should you want
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to grow the buffer. You must ensure that the buffer has sufficient memory
available for the modification operation you intend to use.

To help you with this, the HBufC class also defines a set of ReAl-
locL() methods to allow you to extend the heap buffer, which may
potentially move the buffer from its previous location in memory (and
may of course leave if there is insufficient memory). If the HBufC* is
stored on the cleanup stack, moving the pointer as a result of memory
reallocation can cause significant problems either in the event of a leave
or if the cleanup stack’s PopAndDestroy() function is used to destroy
the memory. If you call Des() on a heap descriptor to acquire a TPtr,
the iPtr member of this object is not guaranteed to be valid after re-
allocation; it’s safest to assume that the buffer will have moved and create
a new TPtr accordingly.

There is no modifiable heap descriptor, HBuf, which you may have
expected in order to make heap buffers symmetrical with TBuf stack
buffers. The reasons for this are manifold. First, the expectation might
reasonably be that the maximum length of a modifiable HBuf class would
expand and contract on the heap as the content was modified. The goal of
descriptors is efficiency, with memory managed by the programmer not
the descriptor object, but an HBuf class which is modifiable but does not
dynamically resize may be considered somewhat odd. To add dynamic
resizing to HBuf would be difficult and costly in terms of code size
because, as I’ve described, all the modifiable descriptor operations are
implemented in its base class, TDes. In addition, if dynamic reallocation
were added to HBuf, the programmer would have to be made aware
that the location of the buffer might change as code is reallocated, and
that certain functions might fail if there is insufficient memory, probably
requiring a new set of leaving functions to be added to the class.

Heap buffers were initially intended to allow efficient reading of
constant resource strings of variable length. Being non-modifiable, they
save on the additional four bytes required to store a maximum length,
which allows them to be as compact as possible. The Des() method
permits them to be modified if necessary, when the programmer makes
an explicit choice to do so. Providing a separate HBuf class would
require the programmer to decide whether the buffer would ever require
modification. It is possible that many would opt to use HBuf rather than
HBufC ”just in case” the descriptor later needed modification. Besides
the additional code required for an HBuf class, the extra 4-byte overhead
of HBuf objects created unnecessarily might add up over time. Providing
the Des() method on the HBufC allows the programmer to modify heap
buffers when needed but keeps the code associated with heap descriptor
objects compact.

A counter-argument to this might be that the HBufC::Des() call is
non-trivial and the resultant TPtr will occupy 12 bytes of stack space. In
cases where a modifiable heap descriptor is definitely needed, creating a
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non-modifiable buffer and an additional, modifiable pointer to update it
may be seen as a waste of processor instructions and memory. Perhaps the
solution in future will be to provide both non-modifiable and modifiable
heap buffers, with clear documentation as to the consequences of using
each. With education, we should be able to trust developers to make
the right choice of descriptor for the right operation, using constant heap
descriptors by default and modifiable heap descriptors where necessary.
I hope this book, and this chapter in particular, will go some way in
helping to reach this goal!

To summarize, the inheritance hierarchy of the descriptor classes is
shown in Figure 5.3.

TDesC

iLength
iType
Length()
Ptr()
...constant descriptor
methods

TBufCBaseTPtrC

iPtr

HBufC

iBuf

TDes

iMaxLength
MaxLength()
...modifiable descriptor
methods

TBufBaseTPtr

iPtr

TBuf<n>

iBuf

TBufC<n>

iBuf

Figure 5.3 Class inheritance hierarchies

Heap descriptors can be created dynamically to the size you require,
but are not automatically resized should they need to be extended
beyond their maximum length.
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5.6 Literal Descriptors

Let’s move on to take a look at literal descriptors (constant descriptors
that are compiled into ROM), which are equivalent to static char[]
in C. Literal descriptors can be created by a set of macros defined in
e32def.h. It’s a bit unnerving at first sight, so I’ve only included the
explicit definitions for 8- and 16-bit literals. The implicit definitions for
the neutral macros _L, _S and _LIT are exactly the same, where _L is
equivalent to _L16 on a Unicode build and _L8 on a narrow ASCII build:

#define _L8(a) (TPtrC8((const TText8 *)(a)))
#define _S8(a) ((const TText8 *)a)
#define _LIT8(name,s) const static TLitC8<sizeof(s)>

name ={sizeof(s)-1,s}
#define _L16(a) (TPtrC16((const TText16 *)L ## a))
#define _S16(a) ((const TText16 *)L ## a)
#define _LIT16(name,s) const static TLitC16<sizeof(L##s)/2>

name ={sizeof(L##s)/2-1,L##s}

Don’t worry; I’ll go through these slowly. Let’s look at _LIT macros
first, since these are the most efficient, and preferred, Symbian OS literals.
The typical use of the macro would be as follows:

_LIT(KMyLiteralDescriptor, "The quick brown fox jumps over the lazy dog");

KMyLiteralDescriptor can then be used as a constant descriptor,
for example written to a file or displayed to a user. The _LIT macro
builds a named object (KMyLiteralDescriptor) of type TLitC16
into the program binary, storing the appropriate string (in this case, The
quick brown fox jumps over the lazy dog). As you’d expect, _LIT8 and
_LIT16 behave similarly. The reason why the macros subtract one byte
for the length of the data and divide by two, in the case of _LIT16, is
that the macro is converting the C byte string to data which can be used
as a descriptor.

For reference, here’s the definition of class TLitC16, from e32des.h
and e32des.inl, where __TText is typedef’d to a wide, 16-bit
character. The TLitC8 class, which has an array of 8-bit characters, has
a similar definition.

template <TInt S>
class TLitC16

{
public:

inline const TDesC16* operator&() const;
inline operator const TDesC16&() const;
inline const TDesC16& operator()() const;
... // Omitted for clarity
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public:
TUint iTypeLength;
__TText iBuf[__Align16(S)];
};

template <TInt S>
inline const TDesC16* TLitC16<S>::operator&() const

{return REINTERPRET_CAST(const TDesC16*,this);}
template <TInt S>
inline const TDesC16& TLitC16<S>::operator()() const

{return *operator&();}
template <TInt S>
inline TLitC16<S>::operator const TDesC16&() const

{return *operator&();}

As you can see, TLitC16 (and TLitC8) do not derive from TDesC8 or
TDesC16 but they have the same binary layouts as TBufC8 or TBufC16.
This allows objects of these types to be used wherever TDesC is used.4

You can form a pointer descriptor from the literal as follows:

TPtrC8 thePtr(KMyLiteralDescriptor);

It’s slightly trickier to form a buffer descriptor from the literal. If
you use sizeof() on a _LIT constant, the size of the corresponding
TLitC object is returned, which is the size of the descriptor contents – in
bytes – plus 8 extra bytes (a TUint for the stored length and the NULL
terminator). If you want to use a stack-based buffer, you must take these
extra bytes into account.

For a heap buffer, you can use the actual length of the descriptor
contents to allocate the buffer then copy the contents of the descriptor.
To get the correct length you can use the public iTypeLength member
variable, or, more simply, use operator()() to reinterpret_cast
the literal object to a descriptor and use the resultant object to determine
the length of the contents. However, the simplest technique is to use
operator()() to cast the literal object to a descriptor, then call one of
the TDes::AllocL() methods upon it. For example:

// Define a 44 character literal
_LIT8(KExampleLit8, "The quick brown fox jumped over the lazy dog");

TInt size = sizeof(KExampleLit8); // 52 bytes (contents + 8 bytes)
TInt descriptorLength = KExampleLit8.iTypeLength; // 44 bytes

// Form a stack buffer descriptor around the literal

4 Actually, the string stored in the program binary has a NULL terminator because the
native compiler string is used to build it. However, as I described above, the length is
adjusted to the correct value for a non-terminated descriptor by the _LIT macro as it
constructs the TLitC object.
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TBufC8<(sizeof(KExampleLit8)-8)> theStackBuffer(KExampleLit8);
// Create a heap buffer copying the contents of the literal
HBufC8* theHeapBuffer = KExampleLit8().AllocL();
// Similar behaviour for wide literals
_LIT16(KExampleLit16, "The quick brown fox jumped over the lazy dog");
size = sizeof(KExampleLit16);// 96 bytes (contents in bytes + 8 bytes)
descriptorLength = KExampleLit16.iTypeLength; // 44 bytes (contents)

Figure 5.4 illustrates the difference between the memory layouts for
literal descriptors created using _L and _LIT.

_LIT (KHello, "Hello World!")

HelloWorld!\012

ROM

TPtrC hello (_L("Hello World!"))

iLength
12

iPtr Hello World!\0

ROMStackTemporary

Figure 5.4 Memory layout for literal descriptors

Incidentally, literals have already been defined in Symbian OS to
represent a blank string. There are three variants of the ”NULL descriptor”,
defined as follows:

Build independent: _LIT(KNullDesC,"");
8-bit for non-Unicode strings: _LIT8(KNullDesC8,"");
16-bit for Unicode strings: _LIT16(KNullDesC16,"");

Let’s move on to look briefly at the _L and _S macros, the use of
which is now deprecated in production code, though they may still be
used in test code (where memory use is less critical). The advantage of
using _L (or the explicit forms _L8 and _L16) is that you can use it in
place of a TPtrC without having to declare it separately from where it is
used (besides saving an extra line of code, one benefit is that you don’t
have to think up a name for it!).

User::Panic(_L("example.dll"), KErrNotSupported);

The string (”example.dll”) is built into the program binary as a
basic, NULL-terminated string, with no initial length member (unlike the
TLitC built for the _LIT macro). Because there is no length word, the
layout of the stored literal is not like that of a descriptor and, when
the code executes, each instance of _L will result in construction of a
temporary TPtrC, with the pointer set to the address of the first byte of
the literal as it is stored in ROM. The use of such a run-time temporary is
safe as long as it is used only during the lifetime of the function in which it
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is created, or if it is copied for use outside of that lifetime.5 However, the
construction of a temporary, which requires setting the pointer, the length
and the descriptor type, is an overhead in terms of inline constructor code
which may bloat binaries where many string literals are used.

The _S macro is equivalent to the _L macro in terms of the way the
string is stored in the binary, but it does not construct the temporary
TPtrC around the string. These macros are useful if you wish to use the
literal directly as a NULL-terminated string; you will incur no overhead if
you do so.

Prefer the use of _LIT to _L for declaring literal descriptors,
because the latter has an overhead associated with constructing a
run-time temporary TPtrC.

5.7 Summary

This chapter introduced Symbian OS descriptors and discussed the
following:

• The descriptor model treats string and binary data in the same way
because there is no reliance on trailing NULL terminators to indicate
the length of string data.

• The descriptor classes offer native ”wide” 16-bit character support, but
the same APIs can be used explicitly with 8-bit binary or string data.

• Non-modifiable descriptor functionality is defined by the TDesC base
class and inherited by all its subclasses.

• For compactness, no virtual functions are used in the descriptor hierar-
chies, so no additional 4-byte vptr is added to each descriptor object.

• The base class, TDesC, defines Length() and uses the bottom 28
bits of the first machine word of the object to hold the length of the
descriptor data. TDesC also defines Ptr() to access that data – it
uses hardcoded logic to determine the correct memory address, based
on the descriptor subtype which is indicated by the top 4 bits of the
first machine word of the object.

5 Code like this will not work in a DLL because, although marked const, the creation of
such a runtime temporary constitutes the use of modifiable static data, which is disallowed
on Symbian OS (as described in Chapter 13).

const TPtrC KDefaultPath=_L("C:\\System\\Messages")
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• Modifiable descriptor functionality is defined by the TDes class,
which derives from TDesC, adding an extra machine word to store the
maximum allowed length of a descriptor. The TDes class implements
typical data modification operations.

• The five concrete descriptor classes can be subdivided in terms of
their memory layout (pointer or buffer), whether they are constant
or modifiable and whether they are heap- or stack-based. However,
there is significant interoperability between the classes, and the base
class APIs make no assumptions about their underlying data layout.
Descriptor data can be stored in RAM (on the stack or heap) or ROM;
the APIs are consistent regardless of location or memory layout.

• For efficiency reasons, descriptors do not dynamically extend the
data area they reference. You, the programmer, are responsible for
memory management.

• Descriptor member functions check that access to the descriptor lies
within its data area and raise a panic (in both debug and release builds)
if a descriptor overflow would result. This ensures that descriptor code
is robust and that programming errors are easy to track down.

• _LIT literals are not part of the TDesC inheritance hierarchy, but
have an equivalent memory layout in ROM to TBufC and can thus
be used interchangeably.

• The advantage of using the _L literal macros is that you can use them
where you would use a temporary TPtrC, without having to predefine
and name them. The disadvantage is the extra run-time overhead
associated with construction of a temporary descriptor – which is
why they are deprecated in production code.

• Symbian OS descriptors may take some getting used to, but cannot
be avoided when programming for Symbian OS because many API
functions use them.

The next chapter shows how to use descriptors effectively and examines
the more frequently used descriptor functions. It also describes some
common descriptor mistakes and misconceptions.





6
Good Descriptor Style

For every problem there is one solution which is simple, neat
and wrong

H L Mencken

The previous chapter covered the basics of Symbian OS strings, known
as descriptors. It examined the methods used to instantiate each concrete
descriptor class and described how to access, modify and replace the
descriptor data. It also discussed the descriptor base classes (the non-
modifiable base class TDesC, which implements constant descriptor
operations, and TDes, which derives from it and implements methods for
descriptor modification). The chapter should have given you a good idea
of the concrete types of descriptor.

This chapter examines some of the descriptor manipulation methods
of the base classes and discusses mistakes and problems commonly
encountered when using descriptors. Figure 6.1 summarizes the descrip-
tor classes and the factors to bear in mind when deciding which type of
descriptor to use.

6.1 Descriptors as Parameters and Return Types

When writing code, you probably don’t want to be constrained to using a
TBuf just because a particular library function requires it. Likewise, as a
function provider, you’re probably not interested in the type of descriptor
your callers will be passing to you. In fact, you shouldn’t require a
particular type, because if you change the implementation later, you may
want to change the type of descriptor, and if you expose it at the API
level you will require your clients to change their code. This kind of
change breaks source compatibility and is highly undesirable. I’ll discuss
compatibility further in Chapter 18.

Unless you’re taking ownership, you don’t even need to know if the
incoming descriptor parameter or return value is stack- or heap-based.
In fact, as long as the descriptor is one of the standard types, so the
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Figure 6.1 Flow chart to choose the correct descriptor type

appropriate descriptor methods can be called on it, the receiving code
can remain blissfully ignorant as to its layout and location in memory. For
this reason, when defining functions you should always use the abstract
base classes as parameters or return values. For efficiency, descriptor
parameters should be passed by reference, either as const TDesC& for
constant descriptors or TDes& when modifiable. I’ll discuss good API
design in detail in Chapter 20.

As an example, class RFile defines straightforward file read and write
methods as follows:

IMPORT_C TInt Write(const TDesC8& aDes);
IMPORT_C TInt Read(TDes8& aDes) const;

For both methods, the input descriptor is explicitly 8-bit to allow for
both string and binary data within a file. The descriptor to write to the
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file is a constant reference to a non-modifiable descriptor, while to read
from the file requires a modifiable descriptor. The maximum length of
the modifiable descriptor determines how much file data can be read
into it, so the file server doesn’t need to be passed a separate parameter
to describe the length of the available space. The file server fills the
descriptor unless the content of the file is shorter than the maximum
length, in which case it writes what is available into the descriptor.
The resultant length of the descriptor thus reflects the amount of data
written into it, so the caller does not need to pass a separate parameter to
determine the length of data returned.1

When writing a function which receives a modifiable descriptor you
don’t actually need to know whether it has sufficient memory allocated to
it, since the descriptor methods themselves perform bounds checking and
panic if the operation would overflow the descriptor. Of course, you may
not always want the descriptor methods to panic if the caller’s descriptor
data area is too short. Sometimes the caller cannot know until runtime the
maximum length required and a panic is somewhat terminal. You should
define clearly in your documentation what happens when the descriptor is
not large enough. There are times when a more suitable approach would
be to return the length required to the caller so it can take appropriate
steps to allocate a descriptor of the correct length. For example:

HBufC* CPoem::DoGetLineL(TInt aLineNumber)
{// Code omitted for clarity. Allocates and returns a heap buffer
// containing the text of aLineNumber (leaves if aLineNumber is
// out of range)
}

void CPoem::GetLineL(TInt aLineNumber, TDes& aDes)
{
HBufC* line = DoGetLineL(aLineNumber);
CleanupStack::PushL(line);

// Is the descriptor large enough (4 bytes or more) to return an
// integer representing the length of data required?
if (aDes.MaxLength() < line->Length())

{
if (aDes.MaxLength() >= sizeof(TInt))

{// Writes the length required (TPckg is described later)
TPckg<TInt> length(line->Length());
aDes.Copy(length);
}

// Leave & indicate that the current length is too short

1 For comparison purposes only, here’s a similar function from the Win32 Platform SDK,
which uses a basic buffer (lpBuffer) for file reads and thus requires extra parameters to
indicate the amount to read and the amount that was actually read:
BOOL ReadFile(HANDLE hFile, LPVOID lpBuffer,

DWORD nNumberofBytesToRead, LPDWORD lpNumberofBytesRead,
LPOVERLAPPED lpOverlapped);
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User::Leave(KErrOverflow); // Leaves are described in Chapter 2
}

else
{
aDes.Copy(*line);
CleanupStack::PopAndDestroy(line);
}

}

An alternative approach is to allocate a heap buffer of the appropriate
size for the operation and return it to the caller. The caller takes ownership
of the heap buffer on return and is responsible for deleting it:

HBufC8* CPoem::GetLineL(TInt aLineNumber)
{
return (DoGetLineL(aLineNumber)); // As shown above
}

void PrintPoemLinesL(CPoem& aPoem)
{
HBufC* line;
FOREVER // See footnote 2

{
line = poem.NextLineL();
... // Do something with line (make it leave-safe if necessary)
delete line;
}

}

When defining functions, use the abstract base classes as parameters
and return values. For efficiency, pass them by reference, either as
constTDesC& for constant descriptors or TDes&when modifiable.

6.2 Common Descriptor Methods

Moving on, let’s consider some of the methods implemented by the
descriptor base classes, particularly those that may cause problems if mis-
used. The SDK documentation covers the descriptor classes extensively,
and you’ll find more information on each of the descriptor methods I

2 The FOREVER macro is defined in e32def.h as follows:
#define FOREVER for(;;)

The code will run in the loop until the end of the poem is reached. At that point
NextLineL() will leave because CPoem::DoGetNextLineL() leaves to indicate the
end of the poem. This breaks the code out of the loop, so it will not run forever, only until
the end of the poem. Some poems, of course, do seem to go on forever. . .
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discuss here, as well as others for seeking, comparison, extraction, string
and character manipulation and formatting.

The base classes implement methods to access and manipulate the
string data of deriving classes. The base classes do not themselves store the
data. They have no public constructors save an implicit copy constructor.
So you won’t attempt to instantiate them. Will you?

The TDesC base class implements Ptr() to provide access to the
descriptor data, as described in Chapter 5. The method returns a pointer
to the first character in the data array, allowing you to manipulate the
descriptor contents directly, using C pointers, if you so wish.3 In doing so,
you should take care not to write off the end of the descriptor data area.
(One way to check that this kind of programming error does not occur
is to use assertion statements, as described in detail in Chapter 16.) I’ve
included an example of using a pointer to manipulate descriptor data
later in this chapter, to illustrate an issue related to the maximum length
of heap descriptors.
TDesC implements both Size() and Length() methods, and you

should be careful to differentiate between them. The Size() method
returns the number of bytes the descriptor occupies, while the Length()
method returns the number of characters it contains. For 8-bit descriptors,
this is the same thing, i.e. the size of a character is a byte. However,
from Symbian OS v5u, the native character is 16 bits wide, which means
that each character occupies two bytes. For this reason, Size() always
returns a value double that of Length(). (As I described in Chapter 5,
the length of a descriptor cannot be greater than 228 bytes because the top
four bits of the length word are reserved to indicate the type of descriptor.)

The base class for modifiable descriptors, TDes, implements a Max-
Length() method which returns the maximum length allowed for the
descriptor. Beware of the SetMax() method, which doesn’t allow you
to change the maximum length of the descriptor, thereby expanding
or contracting the data area; instead, it sets the current length of the
descriptor to the maximum length allowed.

You can use SetLength() to adjust the descriptor length to any
value between zero and its maximum length (inclusively). The Zero()
method also allows you to set the length to zero. If you thought that
method might fill the contents of the descriptor with zeroes, you want
the FillZ() method – which is overloaded so you can fill the entire
descriptor or to a required length. If you don’t want to fill with zeroes,
the overloaded Fill() methods permit you to choose which character
to fill the descriptor.

3 TDes also has the PtrZ() method, which returns a pointer to the first character in the
data array and appends a NULL terminator to the descriptor data so the returned pointer can
be used directly as a C string. (The length of the descriptor must be less than its maximum
allowable length in order for there to be sufficient space for the zero terminator.)
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TDes implements an overloaded set of Copy() methods, two of
which are shown below. (There are another six overloads of the Copy()
function, which allow copying directly from a NULL-terminated string or
from a pointer directly into descriptor data and which perform folding,
collation or case adjustment as part of the copy.)

IMPORT_C void Copy(const TDesC8 &aDes);
IMPORT_C void Copy(const TDesC16 &aDes);

These methods copy the descriptor parameter into the data area of the
descriptor on which they are called, setting its length to reflect the new
data. The methods will panic if the maximum length of the receiving
descriptor is shorter than the incoming data. The Copy() method is
overloaded to take either an 8- or 16-bit descriptor. Thus, not only
is it possible to copy a narrow-width descriptor onto a narrow-width
descriptor and a wide descriptor onto a wide descriptor, but it is also
possible to copy between descriptor widths, effecting a conversion of
sorts in the process.

These methods are an example of where the implementation of the
TDes8 class differs from the TDes16 class. As Figure 6.2 illustrates, the
Copy() method implemented by TDes8 to copy an incoming wide
16-bit descriptor into a narrow descriptor strips out alternate characters,
assuming them to be zeroes, that is, the data values should not exceed
255 (decimal). The Copy() method which copies a narrow descriptor
into the data area is a straight data copy, however.

// Instantiate a narrow descriptor
TBuf8<3> cat(_L8("cat")); // _L is described in Chapter 5
// Instantiate a wide descriptor
TBuf16<3> dog(_L16("dog"));
// Copy the contents of the wide descriptor into the narrow descriptor
cat.Copy(dog); // cat now contains "dog"

C A T D O G

D O G

cat

cat.Copy(dog)
Strips \0 padding

\0 \0 \0

cat dog

TDes16TDes8

Figure 6.2 NULL characters are stripped out when wide characters are copied into a
narrow descriptor
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Conversely, for class TDes16, an incoming 16-bit descriptor can be
copied directly onto the data area, but the Copy() method that takes an
8-bit descriptor pads each character with a trailing zero as part of the
copy operation, as shown in Figure 6.3. The Copy() methods thus form
a rudimentary means of copying and converting when the character set
is encoded by one 8-bit byte per character and the last byte of each wide
character is simply a NULL character padding.

// Instantiate a narrow descriptor
TBuf8<5> small(_L8("small"));
// Instantiate a wide descriptor
TBuf16<5> large(_L16("large"));
// Copy the contents of the narrow descriptor into the wide
large.Copy(small); // large now contains "small"

D O G\o \oS A LM L L A R\0 \0 G E\0 \0\0

S M A\0 \0 L L\0 \0\0

large.Copy(small)
Adds \0 padding

small large

large

TDes8 TDes16

Figure 6.3 NULL characters pad narrow characters when copied into a wide descriptor

To perform proper conversion in both directions between 16-bit Uni-
code and 8-bit, non-Unicode, character sets (or between Unicode and
the UTF-7 and UTF-8 transformation sets) you should use the conver-
sion library (charconv.lib) that Symbian OS provides (see header
file charconv.h). You can also use the Character Conversion Plug-in
Provider API to write plug-in DLLs to extend the range of foreign character
sets beyond the ones already provided by Symbian OS. I’ll discuss the
use of a framework and plug-ins, a commonly used Symbian OS idiom,
in more detail in Chapter 13.

Symbian OS has been built as _UNICODE since the v5U release.
The descriptor classes which end in 8 or 16 reflect the character
size of the descriptor. The neutral versions, with no numerical indi-
cator, are implicitly 16-bit and, for many descriptor operations, you
can simply use this neutral version, which will, if nothing else, make
your code more readable. However, there are occasions when you
are dealing with text of a specific character size. For example, you
may be working with 8-bit text (e.g. an ASCII text file or Internet
email – or simply using the RFile::Read()and RFile::Write()
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methods shown above) for which you should explicitly use the 8-bit
descriptor classes, using TText8 pointers as returned by the Ptr()
operation to access characters. When working with 16-bit text (for
example, Java strings), you should indicate the fact explicitly by using
the TDesC16-derived classes, referencing individual characters with
TText16 pointers.

As I described in Chapter 5, because descriptors do not use NULL
terminators, they may be used with binary data as well as strings, which
also allows code re-use within Symbian OS. Binary data is always
considered to be 8-bit and you should use the 8-bit classes to manipulate
it, using TInt8 or TUint8 to reference individual bytes.

6.3 The Use of HBufC Heap Descriptors

Having discussed some of the features of the descriptor classes, I’ll
move on now to discuss some of the common mistakes made when using
descriptors. First I’ll cover the creation and use of HBufC heap descriptors.

As I mentioned in Chapter 5, HBufC can be spawned from existing
descriptors using the Alloc() or AllocL() overloads implemented
by TDesC. Here is a contrived example which shows how to replace
inefficient code with AllocL():

void CSampleClass::UnnecessaryCodeL(const TDesC& aDes)
{
iHeapBuffer = HBufC::NewL(aDes.Length());
TPtr ptr(iHeapBuffer->Des());
ptr.Copy(aDes);
...
// could be replaced by a single line
iHeapBuffer = aDes.AllocL();
}

Another common way to introduce complexity occurs in the opposite
direction, that is, the generation of TDesC& from a heap descriptor. A
common mistake is to call the Des() method on the heap descriptor; this
is not incorrect (it returns a TDes&), but it is clearer and more efficient
simply to de-reference the HBufC pointer when a non-modifiable TDesC&
is required:

const TDesC& CSampleClass::MoreAccidentalComplexity()
{
return (iHeapBuffer->Des());
// could be replaced more efficiently with
return (*iHeapBuffer);
}
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Another subtle problem occurs when you allocate an HBufC and then
call Des() on it to return a TPtr. If you recall, an HBufC object doesn’t
have a maximum length word – since it is non-modifiable, it doesn’t need
one. But the modifiable TPtr does. The length of the TPtr is set to the
stored length of the HBufC, but where does the maximum length come
from when you create it? In fact, when you call Des() on HBufC, it uses
the maximum length of the heap cell in which the HBufC was allocated
to set the maximum length of the returned TPtr.

The maximum length of the heap cell may not be exactly what
you specified as the maximum length of the heap descriptor when you
allocated it. This may happen because you didn’t specify a word-aligned
maximum length (i.e. a multiple of 4 bytes) or because there was not
enough space left over in the free cell from which the heap cell was
allocated to create any other heap cells. The minimum size required for
a heap cell is approximately 12 bytes and, if there are fewer bytes left
over, your descriptor will be given the extra bytes too. (The former case
of specifying an unaligned maximum length is much more common.) The
end result in either case is that the maximum length of a TPtr returned
from a call to HBufC::Des() may not be exactly the size you asked for
when you allocated the heap descriptor; while it will not be truncated,
it could be longer. Don’t get caught out by the fact that it may be larger
than you expect – but, likewise, don’t expect that it is simply rounded up
to the next word-aligned value. For example:

HBufC8* buf = HBufC8::NewLC(9);
TPtr8 ptr(buf->Des());
TInt maxLength = ptr.MaxLength(); // maxLength>9 but may not be 12

In practice this will be guaranteed to fill ptr with at least three extra
bytes but beyond that, you cannot predict how much larger the maximum
length of the heap buffer is than requested. Since you cannot guarantee
the value of the maximum length, stick to using the Length() methods
of the TPtr or HBufC, or the value you used to allocate the HBufC
initially.

Here’s an example where you could get caught out, illustrating the use
of pointers to manipulate the contents of a descriptor and the use of an
assertion statement to catch access beyond the descriptor length:

_LIT(KPanic, "TestPointer");
const TInt KBufferLength = 10;

void TestPointer()
{// Create a buffer with length KBufferLength = 10 bytes
HBufC8* myBuffer = HBufC8::NewMaxL(KBufferLength);

TPtr8 myPtr(myBuffer->Des());
myPtr.Fill(’?’); // Fill with ’?’
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// Byte pointer to descriptor in memory
TUint8* ptr = (TUint8*)myPtr.Ptr();

TInt maxLength = myPtr.MaxLength();
for (TInt index = 0; index < maxLength; index++)

{// This fails at the end of the buffer (index = 10)
// because myPtr.MaxLength() > KBufferLength
__ASSERT_DEBUG(index<KBufferLength,

User::Panic(KPanic, KErrOverflow));
(*ptr) = ’!’; // Replace the contents with ’!’
++ptr;
}

}

A common mistake is to call the Des()method on the heap descrip-
tor to return a TDes&. It is more efficient simply to de-reference
the HBufC pointer when a non-modifiable TDesC& is required.

6.4 Externalizing and Internalizing Descriptors

Moving on from the accidental complexity that may be introduced when
using heap descriptors to a more general issue – that of externalizing
descriptor data to file using a writable stream and re-internalizing it using
a readable stream. Consider the following sample code:

// Writes the contents of iHeapBuffer to a writable stream
void CSampleClass::ExternalizeL(RWriteStream& aStream) const

{
// Write the descriptor’s length
aStream.WriteUint32L(iHeapBuffer->Length());
// Write the descriptor’s data
aStream.WriteL(*iHeapBuffer, iHeapBuffer->Length());
}

// Instantiates iHeapBuffer by reading the contents of the stream
void CSomeClass::InternalizeL(RReadStream& aStream)

{
TInt size=aStream.ReadUint32L(); // Read the descriptor’s length
iHeapBuffer = HBufC::NewL(size); // Allocate iHeapBuffer
// Create a modifiable descriptor over iHeapBuffer
TPtr ptr(iHeapBuffer->Des());
// Read the descriptor data into iHeapBuffer
aStream.ReadL(ptr,size);
}

The code above implements descriptor externalization and internal-
ization in a very basic manner, using four bytes to store the descriptor
length, then adding the descriptor data to the stream separately. In the
InternalizeL() method, the descriptor is reconstructed in four rather
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awkward stages. In fact, Symbian OS provides a templated stream operator
(operator<<) for externalization, which compresses the length infor-
mation to keep descriptor storage as efficient and compact as possible.
Furthermore, descriptors externalized in this way may be re-created from
the stream, as heap descriptors using the NewL() overloads of HBufC,
passing in the read stream and an additional parameter to indicate the
maximum length of data to be read from the stream. This is a signifi-
cantly more efficient approach. To use operator<< you must link to
estor.lib. The stream classes are documented in your preferred SDK.

void CSampleClass::ExternalizeL(RWriteStream& aStream) const
{// Much more efficient, no wasted storage space
aStream << iHeapBuffer;
}

void CSampleClass::InternalizeL(RReadStream& aStream)
{
iHeapBuffer = HBufC::NewL(aStream, KMaxLength);
}

You can also use the templated operator>>, which assumes that the
descriptor was externalized using operator<<.

class TSomeClass
{
... // Omitted for clarity

private:
TBuf<12> iBuffer;
...
};

void TSomeClass::ExternalizeL(RWriteStream& aStream)
{
aStream << iBuffer;
...
}

void TSomeClass::InternalizeL(RReadStream& aStream)
{
aStream >> iBuffer;
...
}

You’ll notice that the internalization and externalization methods
above are leaving functions. This is because the templated streaming
operators, operator>> and operator<<, may leave. They are not
suffixed with L, as is conventional for all leaving functions, because they
are operators, and to do so would interfere with their usage. The fact
that they can leave isn’t picked up by the leave-checking tool LeaveScan
(described in Chapter 2) either. When writing code which uses them you
should make a special point of checking that your code is leave-safe and
that functions are named according to Symbian OS.
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Symbian OS also provides WriteL() and ReadL() methods on the
RWriteStream and RReadStream classes, respectively. The
WriteL() method writes only the contents of the descriptor, not the
length. The ReadL() method reads the contents into a target descriptor
up to its maximum length.

Symbian OS provides templated stream operators for external-
ization and internalization of descriptors, to store the descriptor
efficiently. These should be used in preference to hand-crafted
code when reading and writing a descriptor to a stream. Where
only the contents of the descriptor need to be stored, ReadL() and
WriteL() should be used.

6.5 The Overuse of TFileName

Another potential hazard when using descriptors occurs through the
overuse of TFileName objects. TFileName is defined as follows
in e32std.h:

const TInt KMaxFileName=0x100; // = 256 (decimal)
typedef TBuf<KMaxFileName> TFileName;

Since each wide character is equivalent to two bytes, each time you
create and use a TFileName object on the stack you are setting aside
524 bytes (2 × 256 descriptor data bytes + 12 for the descriptor object
itself) regardless of whether they are all actually required for the file name.
The standard stack size on Symbian OS is just 8 KB, so it’s a good rule
never to allocate stack-based TFileName objects or pass them around by
value, since unnecessary use of this restricted resource is very wasteful.
You could, of course, use them on the heap, say as members of C classes
(which always exist on the heap, as described in Chapter 1). But if you
are unlikely to need the full path length, you should aim to use an HBufC
or some other descriptor type, since it is good practice to consume as
little memory as necessary.

As an example of where you can often avoid using an unnecessary
TFileName object, consider the TParse class (defined in f32file.h).
This class takes a copy of a descriptor containing a file name to parse,
and stores it in a TFileName, which may waste valuable stack space.
You should consider using the TParsePtr and TParsePtrC classes
instead; these offer the same functionality (implemented by the base class
TParseBase) while storing a reference to the file name rather than
a copy.
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Do not waste valuable stack resources by using TFileName or
TParse unnecessarily.

6.6 Useful Classes for Descriptor Manipulation

Having looked at a few common problems, let’s close this chapter by tak-
ing a quick look at a couple of useful classes you can use with descriptors.

Firstly, let’s look at lexical analysis and extraction, using the TLex class.
TLex is provided as TLex8 and TLex16 in the same way as descriptors,
though you should use the build-independent type (implicitly TLex16)
unless you require a particular build variant. The class implements
general-purpose lexical analysis, and effects syntactical element parsing
and string-to-number conversion, using the locale-dependent functions
of TChar to determine whether each character is a digit, a letter or a
symbol. An object of type TLex stores a pointer to the string data to be
analyzed. In addition, the class maintains an extraction mark to indicate
the current lexical element and a pointer to the next character to be
examined. The marker can be used to mark position and you can peek,
skip and rewind as required.

Another useful set of classes are the package buffers (TPckgBuf) and
package pointers (TPckg and TPckgC) which are thin template classes
derived from TBuf<n>, TPtr and TPtrC respectively (see e32std.h).
The classes are type-safe and are templated on the type to be pack-
aged – I’ll discuss the thin template idiom later, in Chapter 19. The
package classes allow flat data objects to be stored conveniently within
descriptors, which is useful for example for inter-thread or inter-process
data transfer (which I will describe further in Chapters 10, 11 and 12). In
effect, a T class object may be packaged whole into a descriptor (I like to
think of this as ”descriptorizing”) so it may be passed easily in a type-safe
way between threads or processes.

There are two package pointer classes, creating either modifiable
(TPckg) or non-modifiable (TPckgC) pointer descriptors which refer to
the existing instance of the template-packaged class. Functions may be
called on the enclosed object, although if it is enclosed in a TPckgC, a
constant reference to the packaged object is returned from operator().

The package buffer TPckgBuf creates and stores a new instance of
the type to be encapsulated in a descriptor. The copied object is owned
by the package buffer; it is modifiable and functions may be called on
it, after calling operator() on the TPckgBuf object to retrieve it.
Because the package buffer contains a copy of the original object, if a
modification function is called it is the copy that is modified – the original
is unchanged.



88 GOOD DESCRIPTOR STYLE

The following code shows an object of a simple T class encapsulated in
the package types, and Figure 6.4 illustrates the memory layout of each:

class TSample
{

public:
void SampleFunction();
void ConstantSampleFunction() const;

private:
TInt iSampleData;
};

TSample theSample;
TPckg<TSample> packagePtr(theSample);
TPckgC<TSample> packagePtrC(theSample);
TPckgBuf<TSample> packageBuf(theSample);

packagePtr().SampleFunction();
packagePtrC().SampleFunction();// Compile error! Non-const function
packagePtrC().ConstantSampleFunction();
packageBuf().SampleFunction();

iLength iMaxLength iPtr

iLength iPtr

iLength iMaxLength copy of theSample

TPckgC<TSample>

TPckg<TSample>

TPckgBuf<TSample>

TSample theSample

TPtr

TPtrC

TBuf

Figure 6.4 Memory layout of the TPckg, TPckgC and TPckgBuf classes

6.7 Summary

In this chapter, I discussed the following:

• You should not attempt to instantiate objects of the base descriptor
classes TDesC and TDes. However, you will typically use them when
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defining descriptor function parameters because they give a caller
flexibility as to the type of descriptor passed to the function. For
example, the Read() and Write() methods of class RFile take a
generic (8-bit) descriptor.

• One of the benefits of descriptor parameters is that the function can
determine the length of the descriptor, and its maximum allowed
length if it is modifiable. This means that a function does not require
separate parameters for this information.

• TDesC defines a Size() method, which returns the total size in
bytes of the current descriptor contents, and a Length() method,
which returns the number of characters currently contained by the
descriptor. From v5U, the native character on Symbian OS is 16 bits
(two bytes) wide; as a result, Size() will always return a value
double that of Length().

• Conversion between 16-bit and 8-bit descriptors can be effected
using the Copy() function defined by TDes. However, this mode
of copying assumes basic character data (i.e. values not exceeding
255) because it performs rudimentary zero-padding for narrow to
wide conversion and zero-stripping for wide to narrow conversion.
Symbian OS provides the charconv library to convert between
genuine 16-bit Unicode and 8-bit, non-Unicode character sets (or
between Unicode and the UTF-7 and UTF-8 transformation sets).

• If you are working with 8-bit text or binary data you should explicitly
use the 8-bit descriptor classes, using TText8 pointers as returned by
the Ptr() operation to access characters. Otherwise, you should use
the neutral descriptor classes unless you wish to highlight the fact that
the data is explicitly 16 bits wide.

• A number of common mistakes are made with HBufC heap descrip-
tors, including:

• using long-winded allocation from other descriptors rather than
calling TDesC::AllocL() or TDesC::AllocLC()

• using the Des() method to return a const TDesC& rather than
simply dereferencing the HBufC pointer

• calling MaxLength() on a heap descriptor, which can return a
spurious value

• The templated >> and << stream operators should be used to
internalize and externalize descriptors using RReadStream and
RWriteStream respectively; or alternatively, the ReadL() and
WriteL() methods of the stream classes should be used. These
have been optimized for the most efficient storage of descriptor data.



90 GOOD DESCRIPTOR STYLE

• Use of stack-based objects of types TFileName and TParse should
be kept to a minimum because they reserve a large amount of stack
space (524 bytes), often unnecessarily.

• Symbian OS provides the TLex classes for lexical analysis and
extraction.

• The package descriptor classes TPckgBuf, TPckg and TPckgC are
useful template classes for type-safe wrapping of the built-in types or
T class objects within descriptors. This method of ”descriptorizing”
flat data is particularly useful for passing objects between client and
server, and is described in detail in Chapters 10, 11 and 12.



7
Dynamic Arrays and Buffers

Make my skin into drumheads for the Bohemian cause
The last words of Czech General Jan Zizka (1358–1424)

This chapter discusses the use of the dynamic array classes
RArray<class T> and RPointerArray<class T>. It also describes
the CArrayX<class T> classes and the dynamic buffer classes they
use. Dynamic array classes are very useful for manipulating collections of
data without needing to know in advance how much memory to allocate
for their storage. They expand as elements are added to them and, unlike
C++ arrays, do not need to be created with a fixed size.

Conceptually, the logical layout of an array is linear, like a vector.
However, the implementation of the dynamic array can either use a single
heap cell as a ”flat” buffer to hold the array elements or allocate the array
buffer in a number of segments, using a doubly-linked list to manage the
segmented heap memory. Contiguous flat buffers are typically used when
high-speed pointer lookup is an important consideration and when array
resizing is expected to be infrequent. Segmented buffers are preferable
for large amounts of data and where the array is expected to resize fre-
quently, or where a number of elements may be inserted into or deleted
from the array.

The capacity of a dynamic array is the number of elements the array
can hold within the space currently allocated to its buffer. When the
capacity is filled, the array dynamically resizes itself by reallocating heap
memory when the next element is added. The number of additional
elements allocated to the buffer is determined by the granularity, which
is specified at construction time.

It is important to choose an array granularity consistent with the
expected usage pattern of the array. If too small a value is used, an
overhead will be incurred for multiple extra allocations when a large
number of elements are added to the array. However, if too large a
granularity is chosen, the array will waste storage space.

For example, if an array typically holds 8 to 10 objects, then a
granularity of 10 would be sensible. A granularity of 100 would be
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unnecessary. However, if there are usually 11 objects, a granularity of 10
wastes memory for 9 objects unnecessarily. A granularity of 1 would also
be foolish, since it would incur multiple reallocations.

Symbian OS provides a number of different dynamic array classes
with names prefixed by ”CArray”, such as CArrayFixFlat, CAr-
rayFixSeg and CArrayVarSeg (which I’ll refer to collectively as
”CArrayX”), as well as the RArray and RPointerArray classes. It
can be quite difficult to determine which to use, so this chapter guides
you through their main characteristics.

Choose the granularity of a dynamic array carefully to avoid wasting
storage space (if the granularity chosen is too large) or frequent
re-allocations (if it is chosen too small).

7.1 CArrayX Classes

There are a number of CArrayX classes, which makes this dynamic
array family very flexible, albeit with an associated performance over-
head which I’ll discuss later in this chapter. To sidestep the performance
penalty, the RArray and RPointerArray classes were added to Sym-
bian OS to provide simpler and more efficient dynamic arrays. You should
use these classes in preference to CArrayX where possible.

However, for background information, I’ll run through some brief
details of the CArrayX classes. The naming scheme works as follows; for
each class the CArray prefix is followed by:

• Fix for elements which have the same length and are copied so they
may be contained in the array buffer.

• Var where the elements are of different lengths; each element is
contained within its own heap cell and the array buffer contains
pointers to the elements.

• Pak for a packed array where the elements are of variable length; they
are copied so they may be contained within the array buffer. Each
element is preceded by its length information, rather like a descriptor.

• Ptr for an array of pointers to CBase-derived objects.

Following this, the array class name ends with ”Flat”, for classes
which use an underlying flat buffer for the dynamic memory of the array,
or ”Seg”, for those that use a segmented buffer. Figure 7.1 illustrates the
various layouts available.
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12 5 6

Segmented Buffer

Flat Buffer

Granularity = 4

Fix Var or Ptr Pak

element length

Heap Memory occupied
by a valid element

Unoccupied element

Figure 7.1 Memory layout of Symbian OS dynamic arrays

As I described above, the RArray classes are more efficient for simple
arrays (flat arrays of fixed-length objects). For this reason, I will not discuss
the CArrayFixFlat and CArrayPtrFlat classes at all, because you
should use the RArray classes in preference.

However, there are other CArrayX classes which can be useful when
you have variable-length elements or if you need to use a segmented
buffer,1 because there are no directly analogous RArray classes:

• CArrayVarFlat is used for variable-length elements referenced by
pointer elements, using a flat memory layout for the array

• CArrayVarSeg is used for variable-length elements referenced by
pointer elements, using a segmented array layout

• CArrayPakFlat is used for fixed- or variable-length elements that
are stored in the flat array buffer itself, each element containing
information about its length

1 You may prefer to use a segmented buffer if reallocations are expected to be common,
i.e. if the size of the array is likely to change frequently. If a single flat buffer is used,
numerous reallocations may result in heap thrashing and copying. In addition, insertion
and deletion in a segmented buffer can be more efficient than in a flat buffer, since it does
not require all the elements after the modification point to be shuffled. However, you must
weigh up the benefits of using a segmented memory buffer for the array against the other
optimizations the flat RArray classes offer.
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• CArrayPtrSeg is used for an array of pointers in a segmented array.

The inheritance hierarchy of the CArrayX classes is fairly straight-
forward. All of the classes are C classes and thus ultimately derive
from CBase. Each class is a thin template specialization of one of the
array base classes,CArrayVarBase,CArrayPakBaseor CArrayFix-
Base. Thus, for example, CArrayVarSeg<class T> and CArray-
VarFlat<class T> derive from CArrayVar<class T> which is a
template specialization of CArrayVarBase, as shown in Figure 7.2.
CArrayVarBase owns an object that derives from CBufBase, the

dynamic buffer base class, and is used to store the elements of the array.
The object is a concrete instance of CBufFlat (a flat dynamic storage
buffer) or CBufSeg (a segmented dynamic buffer). I’ll discuss the dynamic
buffer classes in more detail later.

CBase

CArrayVarBase

Count()
Length()
...
CBufBase* iBase

CBufBase

Read()
Write()
ExpandL()
...

{abstract}

CArrayVar

AppendL()
Operator[]
...

CArrayVarFlat CArrayVarSeg

T T

T

CBufFlat

...
TUint8* iPtr

CBufSeg

...
TDblQue<TBufSegLink>iQue
TBufSegLink* iSeg

See e32base.h
for further details

Figure 7.2 Inheritance hierarchy of the variable-length element array classes

Here is some example code showing how to manipulate the CArray-
PtrSeg class. There’s quite a lot of code but don’t worry, it’s quite
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straightforward, and I’ll reuse it throughout the chapter to illustrate some
of the other dynamic array classes. I’ve kept the sample code as brief as
possible by omitting error checking and other code which isn’t directly
relevant to this chapter.

The example is of a very basic task manager which can be used to
store tasks and execute them. The task manager class, CTaskManager,
owns a dynamic array of pointers (in a CArrayPtrSeg object) to heap-
based objects of the task class, TTask. The example shows the use of
AppendL() and InsertL() to add an object to the array, Delete()
to remove an element and At() and operator[] to access elements in
the array.

The TTask class is rather empty, because I’ve implemented just the
minimum amount of code for the example. You’ll notice that it is a T
class (as described in Chapter 1) and that I create objects on the heap
and transfer ownership to the task manager array. Of course, I could have
used any of the other CArrayX dynamic array classes to store the TTask
objects, but I wanted to illustrate the use of the pointer array, particularly
on cleanup. If the objects stored in the pointer array are not owned by
another object, it is the responsibility of the array to destroy them when
they are removed from the array or when the array itself is destroyed.
You’ll notice in the CTaskManager::Delete() method below that I
store a pointer to the TTask object to be deleted, remove it from the
array and then destroy it. In the destructor for CTaskManager, I call
ResetAndDestroy() on the array, which empties the array, calling
delete on every pointer.

class TTask // Basic T class, represents a task
{

public:
TTask(const TDesC& aTaskName);
void ExecuteTaskL() {}; // Omitted for clarity

private:
TBuf<10> iTaskName;
};

TTask::TTask(const TDesC& aTaskName)
{ iTaskName.Copy(aTaskName); }

// Holds a dynamic array of TTask pointers
class CTaskManager : public CBase

{
public:

static CTaskManager* NewLC();
∼CTaskManager();

public:
void AddTaskL(TTask* aTask);
void InsertTaskL(TTask* aTask, TInt aIndex);
void RunAllTasksL();
void DeleteTask(TInt aIndex);

public:
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inline TInt Count()
{return (iTaskArray->Count());};

inline TTask* GetTask(TInt aIndex)
{return(iTaskArray->At(aIndex));};

private:
void ConstructL();
CTaskManager() {};

private:
CArrayPtrSeg<TTask>* iTaskArray;
};

const TInt KTaskArrayGranularity = 5;

CTaskManager* CTaskManager::NewLC()
{
CTaskManager* me = new (ELeave) CTaskManager();
CleanupStack::PushL(me);
me->ConstructL();
return (me);
}

CTaskManager::∼CTaskManager()
{// Cleanup the array
if (iTaskArray)

iTaskArray->ResetAndDestroy(); // Destroys objects through ptrs

delete iTaskArray;
}

void CTaskManager::ConstructL()
{
iTaskArray =

new (ELeave) CArrayPtrSeg<TTask>(KTaskArrayGranularity);
}

void CTaskManager::AddTaskL(TTask* aTask)
{ // Add a task to the end of array
// No need to check that aTask! =NULL because CBufBase does this
// before appending it

iTaskArray->AppendL(aTask);
}

void CTaskManager::InsertTaskL(TTask* aTask, TInt aIndex)
{ // Insert a task into a given element index
// No assertion on aTask or aIndex because CArrayFixBase
// and CBufBase do this

iTaskArray->InsertL(aIndex, aTask);
}

void CTaskManager::RunAllTasksL()
{ // Iterates all TTask objects and calls ExecuteTaskL()
TInt taskCount = iTaskArray->Count();
for (TInt index = 0; index < taskCount; index++)

{
(*iTaskArray)[index]->ExecuteTaskL();
}

}
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void CTaskManager::DeleteTask(TInt aIndex)
{ // Removes the pointer from the array
// The function stores a pointer to it so it can be destroyed

TTask* task = iTaskArray->At(aIndex);
if (task)

{
iTaskArray->Delete(aIndex); // Does not delete the object
delete task; // Deletes the object
}

}

// Calling code
void TestTaskManagerL()

{
CTaskManager* taskManager = CTaskManager::NewLC();

// Add four tasks to the array
_LIT(KTaskName, "TASKX%u");
for (TInt index =0; index<4; index++)

{
TBuf<10> taskName;
taskName.Format(KTaskName, index); // Names each task
TTask* task = new (ELeave) TTask(taskName);
CleanupStack::PushL(task);
taskManager->AddTaskL(task);
CleanupStack::Pop(task); // Now owned by the taskManager array
}

ASSERT(4==taskManager->Count()); // Chapter 16 discusses ASSERTs

// Insert a task into element 3
_LIT(KNewTask, "InsertedTask");
TTask* insertedTask = new (ELeave) TTask(KNewTask);
CleanupStack::PushL(insertedTask);
taskManager->InsertTaskL(insertedTask, 3);
CleanupStack::Pop(insertedTask); // Now owned by taskManager

ASSERT(5==taskManager->Count());

// Delete a task
taskManager->DeleteTask(2);

ASSERT(4==taskManager->Count());
taskManager->RunAllTasksL();
// Destroys the array (which itself destroys the TTasks it owns)
CleanupStack::PopAndDestroy(taskManager);
}

7.2 RArray<class T> and RPointerArray<class T>

RArray and RPointerArray are R classes, the characteristics of which
were described in Chapter 1. The ”R” of an R class indicates that it owns a
resource, which in the case of these classes is the heap memory allocated
to hold the array.
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RArray objects themselves may be either stack- or heap-based. As
with all R classes, when you have finished with an object you must call
either the Close() or Reset() function to clean it up properly, that is,
to free the memory allocated for the array. RArray::Close() frees the
memory used to store the array and closes it, while RArray::Reset()
frees the memory associated with the array and resets its internal state,
thus allowing the array to be reused. It is acceptable just to call Reset()
before allowing the array object to go out of scope, since all the heap
memory associated with the object will have been cleaned up.
RArray<class T> comprises a simple array of elements of the same

size. To hold the elements it uses a flat, vector-like block of heap
memory, which is resized when necessary. This class is a thin template
specialization of class RArrayBase.
RPointerArray<class T> is a thin template class deriving from

RPointerArrayBase. It comprises a simple array of pointer elements
which again uses flat, linear memory to hold the elements of the array,
which should be pointers addressing objects stored on the heap. You
must consider the ownership of these objects when you have finished
with the array. If the objects are owned elsewhere, then it is sufficient
to call Close() or Reset() to clean up the memory associated with
the array. However, if the objects in the array are owned by it, they
must be destroyed as part of the array cleanup, in a similar manner
to the previous example for CArrayPtrSeg. This can be effected by
calling ResetAndDestroy()which itself calls delete on each pointer
element in the array.

RArray

T

RPointerArray

T

RArray

Append()
Insert()
Remove()
Find()
At()
...
TAny* iEntries

RPointerArrayBase

Append()
Insert()
Remove()
Find()
At()
...
TAny* iEntries

See e32std.h
for further details

Figure 7.3 Inheritance hierarchy of RArray<T> and RPointerArray<T>
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The RArray and RPointerArray classes are shown in Figure 7.3.
They provide better searching and ordering than their CArrayX coun-
terparts. The objects contained in RArray and RPointerArray may
be ordered using a comparator function provided by the element class.
That is, objects in the array supply an algorithm which is used to order
them (typically implemented in a function of the element class) wrapped
in a TLinearOrder<class T> package. It is also possible to perform
lookup operations on the RArray and RPointerArray classes in a
similar manner. The RArray classes have several Find() methods, one
of which is overloaded to take an object of type TIdentityRela-
tion<class T>. This object packages a function, usually provided by
the element class, which determines whether two objects of type Tmatch.

There are also two specialized classes defined specifically for arrays
of 32-bit signed and unsigned integers, RArray<TInt> and RAr-
ray<TUint> respectively. These use the TEMPLATE_SPECIALIZ-
ATION macro to generate type-specific specializations over the generic
RPointerArrayBase base class. The classes have a simplified inter-
face, compared to the other thin template classes, which allows them to
define insertion methods that do not need a TLinearOrder object and
lookup methods that do not require a TIdentityRelation.

To illustrate how to use the RArray<class T> class, let’s look at
some example code. I’ve modified the CTaskManager class I used
previously to use an RArray to store the TTask objects. First, here’s the
TTask class, which I’ve modified to add a priority value for the task, and
functions for comparison and matching; where the code is identical to
the previous example I’ve omitted it.

class TTask // Basic T class, represents a task
{

public:
TTask(const TDesC& aTaskName, const TInt aPriority);
...

public:
static TInt ComparePriorities(const TTask& aTask1,

const TTask& aTask2);
static TBool Match(const TTask& aTask1, const TTask& aTask2);

private:
TBuf<10> iTaskName;
TInt iPriority;
};

TTask::TTask(const TDesC& aTaskName, const TInt aPriority)
: iPriority(aPriority){iTaskName.Copy(aTaskName);}

// Returns 0 if both are equal priority,
// Returns a negative value if aTask1 > aTask2
// Returns a positive value if aTask1 < aTask2
TInt TTask::ComparePriorities(const TTask& aTask1, const TTask& aTask2)

{
if (aTask1.iPriority>aTask2.iPriority)
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return (-1);
else if (aTask1.iPriority<aTask2.iPriority)

return (1);
else

return (0);
}

// Compares two tasks; returns ETrue if both iTaskName and
// iPriority are identical
TBool TTask::Match(const TTask& aTask1, const TTask& aTask2)

{
if ((aTask1.iPriority==aTask2.iPriority) &&

(aTask1.iTaskName.Compare(aTask2.iTaskName)==0))
{
return (ETrue);
}

return (EFalse);
}

Here’s the task manager class, which has changed slightly because
I’m now using RArray<TTask> rather than CArrayPtrSeg<TTask>
to hold the set of tasks. Again, where the code is unchanged from the
earlier example, I’ve omitted it for clarity.

class CTaskManager : public CBase
// Holds a dynamic array of TTask pointers

{
public:

static CTaskManager* NewLC();
∼CTaskManager();

public:
void AddTaskL(TTask& aTask);
void InsertTaskL(TTask& aTask, TInt aIndex);
void RunAllTasksL();
void DeleteTask(TInt aIndex);
void DeleteTask(const TTask& aTask);

public:
inline TInt Count() {return (iTaskArray.Count());};
inline TTask& GetTask(TInt aIndex) {return(iTaskArray[aIndex]);};

private:
CTaskManager() {};

private:
RArray<TTask> iTaskArray;
};

CTaskManager::∼CTaskManager()
{// Close the array (free the memory associated with the entries)
iTaskArray.Close();
}

void CTaskManager::AddTaskL(TTask& aTask)
{// Add a task to the end of array
User::LeaveIfError(iTaskArray.Append(aTask));
}

void CTaskManager::InsertTaskL(TTask& aTask, TInt aIndex)
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{// Insert a task in a given element
User::LeaveIfError(iTaskArray.Insert(aTask, aIndex));
}

void CTaskManager::RunAllTasksL()
{// Sorts the tasks into priority order then iterates through them
// and calls ExecuteTaskL() on each

// Construct a temporary TLinearOrder object implicitly – the
// equivalent of the following:
// iTaskArray.Sort(TLinearOrder<TTask>(TTask::ComparePriorities));
iTaskArray.Sort(TTask::ComparePriorities);

TInt taskCount = iTaskArray.Count();
for (TInt index = 0; index < taskCount; index++)

{
iTaskArray[index].ExecuteTaskL();
}

}

void CTaskManager::DeleteTask(const TTask& aTask)
{// Removes all tasks identical to aTask from the array

// Constructs a temporary TIdentityRelation object implicitly – the
// equivalent of the following:
// TInt foundIndex = iTaskArray.Find(aTask,
// TIdentityRelation<TTask>(TTask::Match));
while (TInt foundIndex = iTaskArray.Find(aTask,

TTask::Match)! =KErrNotFound)
{
iTaskArray.Remove(foundIndex);
}

}

void CTaskManager::DeleteTask(TInt aIndex)
{// Removes the task at index aIndex from the array
iTaskArray.Remove(aIndex);
}

You’ll notice the following changes:

• The calls to add and insert elements are within User::LeaveIf-
Error() because those methods in RArray do not leave but instead
return an error if a failure occurs (for example, if there is insufficient
memory available to allocate the required space in the array).

• CTaskManager::RunAllTasks() sorts the array into descending
priority order before iterating through the tasks and calling Execute-
TaskL() on each.

• CTaskManager has an extra method that deletes all elements from
the array where they are identical to the one specified: Delete-
Task(const TTask& aTask). This function uses the Find() func-
tion to match each element in the array against the task specified,
deleting any it finds that are identical. Note that this function
cannot leave.
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Here’s the modified version of code that uses the task manager class. It
is quite similar to the previous code because the change to the encapsu-
lated array class – which stores the tasks in CTaskManager – does not
affect it:

void TestTaskManagerL()
{
CTaskManager* taskManager = CTaskManager::NewLC();

// Add tasks to the array, use the index to set the task priority
_LIT(KTaskName, "TASKX%u");
for (TInt index=0; index<4; index++)

{
TBuf<10> taskName;
taskName.Format(KTaskName, index);
TTask task(taskName, index);
taskManager->AddTaskL(task);
}

ASSERT(4==taskManager->Count());

// Add a copy of the task at index 2
// to demonstrate sorting and matching
TBuf<10> taskName;
taskName.Format(KTaskName, 2);
TTask copyTask(taskName, 2);
taskManager->AddTaskL(copyTask);

ASSERT(5==taskManager->Count());

taskManager->RunAllTasksL();

// Remove both copies of the task
taskManager->DeleteTask(copyTask);

ASSERT(3==taskManager->Count());

// Destroy the taskManager
CleanupStack::PopAndDestroy(taskManager);
}

7.3 Why Use RArray Instead of CArrayX?

The original CArrayX classes use CBufBase, which allows a varied
dynamic memory layout for the array using either flat or segmented array
buffers. However, CBufBase works with byte buffers and requires a
TPtr8 object to be constructed for every array access. This results in
a performance overhead, even for a simple flat array containing fixed-
length elements. Furthermore, for every method which accesses the array,
there are a minimum of two assertions to check the parameters, even in
release builds.



DYNAMIC DESCRIPTOR ARRAYS 103

For example, to access a position in a CArrayFixX array, opera-
tor[] calls CArrayFixBase::At(), which uses an __ASSERT_AL-
WAYS statement to range-check the index and then calls
CBufFlat::Ptr() which also asserts that the position specified lies
within the array buffer. Likewise, adding an element to a CArray-
FixFlat<class T> array using AppendL() runs through two asser-
tion statements in CArrayFixBase::InsertL() and a further two
__ASSERT_ALWAYS checks in CBufBase::InsertL(), which check
that the appended object is valid and is being inserted within the range
of the array.

Another issue is that a number of the array manipulation functions
of CArrayX, such as AppendL(), can leave, for example when there
is insufficient memory to resize the array buffer. While it is frequently
acceptable to leave under these circumstances, in other cases (such as
where the kernel uses the dynamic arrays) a leave is not allowed. In those
circumstances, the leaving functions must be called in a TRAP macro
to catch any leaves. As I described in Chapter 2, the TRAP macro has a
performance overhead.

The RArray classes were added to Symbian OS to solve these issues
for simple flat arrays. These classes have significantly better performance
than CArrayX classes and do not need a TRAP harness. They are
implemented as R classes for a lower overhead than C classes, because
they do not need the characteristic features of a C class: zero-fill on
allocation, a virtual function table pointer and creation on the heap. For
reference, the Symbian OS class types (T, C, R and M) are discussed in
more detail in Chapter 1.

The searching and ordering functions of the RArray classes were
also optimized over those of the original classes and were made simpler
to use.

Use RArray and RPointerArray instead of CArrayX except
when you need support for segmented array memory and storage of
elements of variable lengths (which is likely to be relatively rare).

7.4 Dynamic Descriptor Arrays

Descriptor arrays are dynamic arrays which are specialized for holding
descriptors. These arrays extend the dynamic array classes and are
defined in the Symbian OS Basic Application Framework Library (BAFL)
component, which means that you must link against bafl.lib in order
to use them. I’ll describe them briefly – you’ll find more documentation
in your preferred SDK.
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There are two types of descriptor array, both of which are provided for
both 8-bit and 16-bit descriptors (the use of different width descriptors is
discussed in more detail in Chapters 5 and 6):

• a pointer descriptor array
This type of array holds only non-modifiable TPtrC descriptor ele-
ments. The pointer descriptors are added to the array, but the data
they point to is not copied. The pointer descriptor array classes
are CPtrC8Array and CPtrC16Array and derive from CArray-
FixFlat<TPtrC8>andCArrayFixFlat<TPtrC16> respectively.

• a general descriptor array
This type of array can hold any descriptor type, storing it as a non-
modifiable element. That is, an HBufC copy is created for each
descriptor added to the array; the array itself stores pointers to
these heap descriptor copies. The abstract base class for a build-
independent general descriptor array is CDesCArray (the explicit
variants CDesC16Array and CDesC8Array may be used where
necessary). These classes derive from CArrayFixBase, which was
described earlier in this chapter. The concrete implementation classes
are CDesCXArrayFlat (for flat array storage) or CDesCXArraySeg
(for segmented storage), where X= 8, 16, or is not declared explicitly.

There are advantages and disadvantages of each type. General descrip-
tor arrays are useful because you do not have to use a particular concrete
descriptor type and thus can equally well store HBufC, TPtrC or TBuf
objects in the array. These arrays take a copy of the original descriptor,
which increases the amount of memory used compared to the pointer
descriptor arrays, which do not take copies. However, it does mean
that the original descriptor can then be safely discarded when using the
general descriptor arrays. Pointer descriptor arrays do not take copies, so
the descriptor elements must remain in memory for the lifetime of the
array, otherwise it references invalid information.

7.5 Fixed-Length Arrays

Although this chapter is mostly about dynamic arrays, I’ll briefly mention
an alternative to them: fixed-length arrays. You may consider using fixed-
length, C++ arrays when you know the number of elements that will
occupy an array. Symbian OS provides the TFixedArray class, which
wraps a fixed-length C++ array and adds range checking. Array access
is automatically checked and can be performed in both release and
debug builds. The checking uses assertion statements (as described in
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Chapter 16) and a panic occurs if an attempt is made to use an out-of-
range array index. The class can be used as a member of a CBase class
(on the heap) or on the stack, since it is a T class.

The class is templated on the class type and the size of the array. Here’s
some example code to illustrate a fixed-size array containing five TTask
objects. The array can be initialized by construction or by using the
TFixedArray::Copy() function. The At() function performs range-
checking in both release and debug builds, while operator[] checks
for out-of-range indices in debug builds only.

class TTask
{

public:
TTask(TInt aPriority);

public:
TInt iPriority;
};

TTask::TTask(TInt aPriority)
: iPriority(aPriority){}

void TestFixedArray()
{
TTask tasks[5]={TTask(0), TTask(1), TTask(2), TTask(3), TTask(4)};
// Wrap tasks with a range-checked TFixedArray
TFixedArray<TTask, 5> taskArray(&tasks[0], 5);
taskArray[1].iPriority = 3; // change priority
taskArray[5].iPriority = 3;
// Assertion fails -> panics debug builds (USER 133)
taskArray.At(5).iPriority = 3;
// Assertion fails -> panics debug & release builds
}

These arrays are convenient where the number of elements is fixed
and known at compile time. Once the array has been allocated, it
cannot be resized dynamically, so insertion within the bounds of the
array is guaranteed to succeed. Additionally, access to the array is fast in
release mode.

Besides range-checking, the TFixedArray class has some useful
additional functions which extend a generic C++ array. These include:

• Begin() and End() for navigating the array

• Count(), which returns the number of elements in the array

• Length(), which returns the size of an array element in bytes

• DeleteAll(), which invokes delete on each element of the array

• Reset(), which clears the array by filling each element with zeroes.

Besides having to know the size of the array in advance, the main
drawbacks to the use of fixed-length arrays are that any addition to
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the array must occur at the end and that they do not support ordering
and matching.

When working with fixed-length arrays, use TFixedArray instead
of a generic C++ array to take advantage of bounds-checking and
the utility functions provided.

7.6 Dynamic Buffers

Dynamic buffers are useful for storing binary data when its size is not fixed
at compile time and it may need to expand to a potentially significant
size at runtime. Descriptors or C++ arrays can be used to store binary
data on Symbian OS, but these are not dynamically extensible; that is, a
fixed-length C++ array cannot be expanded and a descriptor will panic
if you attempt to write off the end of the array. You can use a heap
descriptor, HBufC, and a modifiable pointer to write into it but even then
you must manage the allocation of memory when you need to expand
the array (as described in Chapter 5).

Dynamic buffers provide an alternative solution for binary data, but
you should beware of using these classes as an alternative to descriptors
for text data. The descriptor classes have been optimized for that purpose;
in addition, dynamic buffer classes store data in 8-bit buffers, so you
cannot use them comfortably for 16-bit Unicode strings.

When I described the underlying memory layout of the dynamic
array classes, I mentioned that they use the CBufBase-derived classes
CBufFlat and CBufSeg. CBufBase is an abstract class that provides
a common interface to the dynamic buffers. This includes methods to
insert, delete, read and write to the buffer. CBufFlat and CBufSeg are
the concrete dynamic buffer classes. They are straightforward to use, as
you’ll see from the example code below. When instantiating an object
using the static NewL() function, a granularity must be specified, which
is the number of bytes by which the buffer will be reallocated when it
needs to be resized. For a segmented buffer, the granularity determines
the size of a segment.

Operations on dynamic buffers are all specified in terms of a buffer
position, which is an integer value indicating a byte offset into the buffer
data, and thus has a valid range from zero to the size of the buffer. The
InsertL() and DeleteL() functions shuffle the data in the buffer after
the insertion point. For this reason, any pointers to data in the dynamic
buffers must be discarded when the data in the buffer is updated by
insertion or deletion. As an example, consider an insertion into a flat
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buffer. This may potentially cause it to be reallocated, thus invalidating
any pointers to data in the original heap cell. Likewise, deletion of buffer
data causes data after the deletion point to move up the buffer. For this
reason, it is sensible to reference data in the dynamic buffers only in terms
of the buffer position.

Let’s take a look at some example code for the dynamic buffers which
stores 8-bit data received from a source of random data. The details of
the example are not that important; in fact it’s somewhat contrived, and
its main purpose is to illustrate the use of the InsertL(), Delete(),
Compress(), ExpandL(), Read(), and Write() functions.

// Returns random data in an 8-bit heap descriptor of length = aLength
HBufC8* GetRandomDataLC(TInt aLength); // Defined elsewhere

void PrintBufferL(CBufBase* aBuffer)
{
aBuffer->Compress();
// Compress to free unused memory at the end of a segment
TInt length = aBuffer->Size();
HBufC8* readBuf = HBufC8::NewL(length);
TPtr8 writable(readBuf->Des());
aBuffer->Read(0, writable);
... // Omitted. Print to the console
delete readBuf;
}

void TestBuffersL()
{
__UHEAP_MARK; // Heap checking macro to test for memory leaks

CBufBase* buffer = CBufSeg::NewL(16); // Granularity = 16
CleanupStack::PushL(buffer); // There is no NewLC() function

HBufC8* data = GetRandomDataLC(32);// Data is on the cleanup stack

buffer->InsertL(0, *data);
// Destroy original. A copy is now stored in the buffer
CleanupStack::PopAndDestroy(data);

PrintBufferL(buffer);

buffer->ExpandL(0, 100); // Pre-expand the buffer

TInt pos = 0;
for (TInt index = 0; index <4; index++, pos+16)

{// Write the data in several chunks
data = GetRandomDataLC(16);
buffer->Write(pos, *data);
CleanupStack::PopAndDestroy(data); // Copied so destroy here
}

PrintBufferL(buffer);
CleanupStack::PopAndDestroy(buffer); // Clean up the buffer
__UHEAP_MARKEND; // End of heap checking
}
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The dynamic buffer, of type CBufSeg, is instantiated at the beginning
of the TestBuffersL() function by a call to CBufSeg::NewL(). A
32-byte block of random data is retrieved from GetRandomDataLC()
and inserted into the buffer at position 0, using InsertL().

The example also illustrates how to pre-expand the buffer using
ExpandL() to allocate extra space in the buffer at the position specified
(alternatively, you can use ResizeL(), which adds extra memory at the
end). These methods are useful if you know there will be a number of
insertions into the buffer and you wish to make them atomic. ExpandL()
and ResizeL() perform a single allocation, which may fail, but if the
buffer is expanded successfully then data can be added to the array using
Write(), which cannot fail. This is useful to improve performance, since
making a single call which may leave (and thus may need to be called in
a TRAP) is far more efficient than making a number of InsertL() calls,
each of which needs a TRAP.2 Following the buffer expansion, random
data is retrieved and written to the buffer in a series of short blocks.

The PrintBufferL() function illustrates the use of the Com-
press(), Size() and Read() methods on the dynamic buffers. The
Compress() method compresses the buffer to occupy minimal space,
freeing any unused memory at the end of a segment for a CBufSeg, or
the end of the flat contiguous buffer for CBufFlat. It’s a useful method
for freeing up space when memory is low or if the buffer has reached its
final size and cannot be expanded again. The example code uses it in
PrintBufferL() before calling Size() on the buffer (and using the
returned value to allocate a buffer of the appropriate size into which data
from Read() is stored). The Size() method returns the number of heap
bytes allocated to the buffer, which may be greater than the actual size
of the data contained therein, because the contents of the buffer may not
fill the total allocated size. The call to Compress() before Size() thus
retrieves the size of the data contained in the buffer rather than the entire
memory size allocated to it.

To retrieve data from the buffer, you can use the Ptr() function,
which returns a TPtr8 for the given buffer position up to the end of the
memory allocated. For a CBufFlat this returns a TPtr8 to the rest of the
buffer, but for CBufSeg it returns only the data from the given position
to the end of that segment. To retrieve all the data in a segmented buffer
using Ptr(), you must use a loop which iterates over every allocated
segment. Alternatively, as I’ve done in PrintBufferL(), the Read()
method transfers data from the buffer into a descriptor, up to the length of
the descriptor or the maximum length of the buffer, whichever is smaller.

2 In addition, for CBufFlat, multiple calls to InsertL() will fragment the heap
whereas a single ExpandL() or ResizeL() call will allocate all the memory required in
a single contiguous block.
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7.7 Summary

This chapter discussed the use of the Symbian OS dynamic array classes,
which allow collections of data to be manipulated, expanding as neces-
sary as elements are added to them. Unlike C++ arrays, dynamic arrays
do not need to be created with a fixed size. However, if you do know
the size of a collection, Symbian OS provides the TFixedArray class
to represent a fixed-length array which extends simple C++ arrays to
provide bounds-checking.

The chapter described the characteristics and use of the dynamic
container classes RArray and RPointerArray and also discussed the
CArrayX classes which the RArray classes supersede. The RArray
classes were introduced to Symbian OS for enhanced performance over
the CArrayX classes. They have a lower overhead because they do not
construct a TPtr8 for each array access, have fewer assertion checks and
no leaving methods and are implemented as R classes, which tend to have
a lower overhead than C classes. The RArray classes also have improved
search and sort functionality and should be preferred over CArrayX
classes. However, the CArrayX classes may still be useful when dealing
with variable-length elements or segmented memory, because there are
no RArray analogues.

The chapter also discussed the descriptor array classes, CPtrC8Array
and CPtrC16Array, and the dynamic buffers, CBufFlat and
CBufSeg.

All the dynamic array and buffer classes in Symbian OS are based on
the thin template idiom (see Chapter 19). The use of lightweight templates
allows the elements of the dynamic arrays to be objects of any type, such
as pointers to CBase-derived objects, or T and R class objects.





8
Event-Driven Multitasking Using Active

Objects

Light is the task where many share the toil
Homer

Active objects are a fundamental part of Symbian OS. This chapter
explains why they are so important, and how they are designed for
responsive and efficient event handling. Active objects are intended to
make life easy for application programmers, and this chapter alone gives
you sufficient knowledge to work with them within an application frame-
work or derive your own simple active object class. Chapter 9 will be of
interest if you want to write or work with more complex active objects:
it discusses the responsibilities of active objects, asynchronous service
providers and the active scheduler in detail, and reviews the best strategies
for long-running or low-priority tasks. System-level programmers wishing
to understand the Symbian OS client–server architecture and lower-level
system design should read both this chapter and the following one.

8.1 Multitasking Basics

First of all, what are active objects for? Well, let’s go back to basics.
Consider what happens when program code makes a function call to
request a service. The service can be performed either synchronously or
asynchronously. When a synchronous function is called, it performs a
service to completion and returns directly to its caller, usually returning an
indication of its success or failure (or leaving, as discussed in Chapter 2).
An asynchronous function submits a request as part of the function call
and returns to its caller – but completion of that request occurs some
time later. Before the request completes, the caller may perform other
processing or it may simply wait, which is often referred to as ”blocking”.
Upon completion, the caller receives a signal which indicates the success
or failure of the request. This signal is known as an event, and the
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code can be said to be event-driven. Symbian OS, like other operating
systems, uses event-driven code extensively both at a high level, e.g.
for user interaction, and at a lower, system level, e.g. for asynchronous
communications input and output.

Before considering active objects further, let’s consider how code
actually ”runs”. A thread is a fundamental unit of execution, which runs
within a process. A process has its own address space and may have one
or more threads independently executing code within it. When a process
is created, a single primary thread is initialized within it. Other threads
may then be created, as described in Chapter 10. Code executing in that
process accesses virtual memory addresses which are mapped for that
process to physical locations in hardware by the memory management
unit. The writable memory of one process is not normally accessible to
another process, thus ”protecting” processes from each other. However,
multiple threads running in the same process are not isolated from each
other in the same way because they share the memory mapped for the pro-
cess in which they run. This means that they can access each other’s data,
which is useful, but they can also accidentally scribble on it, which is not.

On Symbian OS, threads are scheduled pre-emptively by the kernel,
which runs the highest priority thread eligible. Each thread may be
suspended while waiting for a given event to occur and may resume
whenever appropriate. The kernel controls thread scheduling, allowing
the threads to share the system resources by time-slice division, pre-
empting the running of a thread if another, higher priority thread becomes
eligible to run. This constant switching of the running thread is the basis of
pre-emptive multitasking, which allows multiple servers and applications
to run simultaneously. A context switch occurs when the currently
running thread is suspended (for example, if it is blocked, has reached
the end of its time-slice, or a higher priority thread becomes ready to
run) and another thread is made current by the scheduler. The context
switch incurs a runtime overhead in terms of the kernel scheduler and,
potentially, the memory management unit and hardware caches, if the
original and replacing threads are executing in different processes.

8.2 Event-Driven Multitasking

Moving up a level, let’s look at some typical examples of events and
event-driven multitasking. Events can come from external sources, such
as user input or hardware peripherals that receive incoming data. They
can also be generated by software, for example by timers or completed
asynchronous requests. Events are managed by an event handler, which,
as its name suggests, waits for an event and then handles it.

An example of an event handler is a web browser application, which
waits for user input and responds by submitting requests to receive web
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pages which it then displays. The web browser may use a system server,
which waits to receive requests from its clients, services them and returns
to waiting for another request. The system server submits requests, e.g.
I/O requests, to other servers, which later generate completion events.
Each of the software components described is event-driven. They need
to be responsive to user input and responsive to requests from the system
(for example, from the communications infrastructure).

In response to an event, the event handler may request another
service. This service will later cause another event, or may indicate that
the service has completed, which may cause another event in a different
part of the system. The operating system must have an efficient event-
handling model to handle each event as soon as possible after it occurs
and, if more than one event occurs, in the most appropriate order. It is
particularly important that user-driven events are handled rapidly to give
feedback and a good user experience. Between events, the system should
wait in a low power state. This avoids polling constantly, which can lead
to significant power drain and should be avoided on a battery-powered
device. Instead the software should allow the operating system to move
to an idle mode, while it waits for the next event.

On hardware running Symbian OS, resources are more limited than
on a typical desktop PC. Thus, on Symbian OS, besides the requirements
to be responsive and handle power consumption carefully, it is also
important that the memory used by event-handling code is minimized
and that processor resources are used efficiently. Active objects assist with
efficient programming by providing a model for lightweight, event-driven
multitasking.

Active objects encapsulate the traditional wait loop inside a class.
They were designed such that a switch between active objects that run in
the same thread incurs a lower overhead than a thread context switch.1

This makes active objects preferable for event-driven multitasking on
Symbian OS.

Apart from the runtime expense of a context switch, using pre-emptive
multithreading for event handling can be inconvenient because of the
need to protect shared objects with synchronization primitives such
as mutexes or semaphores. Additionally, resource ownership is thread-
relative by default on Symbian OS. If a file is opened by the main
thread it will not be possible for a different thread in the process to
use it without the handle being explicitly shared through a call to
RSessionBase::Share() (and some Symbian OS servers do not
support session sharing at all). Because of this restriction, it may be

1 The difference in speed between a context switch between threads and transfer of
control between active objects in the same thread can be of a factor of 10 in favor of active
objects. In addition, the space overhead for a thread can be around 4 KB kernel-side and
8 KB user-side for the program stack, while the size of an active object may be only a few
hundred bytes, or less.
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very difficult to use multiple threads as a viable method for event-driven
multitasking. More detail on threads can be found in Chapter 10, while
the client–server model is discussed in Chapters 11 and 12.

On Symbian OS, active objects multitask cooperatively and, con-
sequently, there is no need for synchronization protection of shared
resources. In addition, because active objects run in the same thread,
memory and objects may be shared more readily. Active objects still run
independently of each other, despite existing in the same thread, in much
the same way as threads are independent of each other in a process.

On Symbian OS, the use of active objects for event-handling multitask-
ing is ideal because they are designed for efficiency and, if used correctly,
to be responsive. In general, a Symbian OS application or server will
consist of a single main event-handling thread. A set of active objects
run in the thread, each representing a task. Each active object requests
an asynchronous service, waits while it is serviced, handles the request
completion event and communicates with other tasks as necessary.

Some events require a response within a guaranteed time, regardless of
any other activity in the system. This is called ”real-time” event-handling.
For example, a real-time task may be required to keep the buffer of a
sound driver supplied with sound data – a delay in response delays the
sound decoding, which results in it breaking up. Other typical real-time
requirements may be even more strict, say for low-level telephony. These
tasks have, in effect, different requirements for real-time responses, which
can be represented by task priorities. Higher-priority tasks must always
be able to pre-empt lower-priority tasks in order to guarantee to meet
their real-time requirements. The shorter the response time required, the
higher the priority that should be assigned to a task.

However, once an active object is handling an event, it may not
be pre-empted by the event handler of another active object2, which
means that they are not suitable for real-time tasks. On Symbian OS,
real-time tasks should be implemented using high-priority threads and
processes, with the priorities chosen as appropriate for relative real-time
requirements.

Active objects are used on Symbian OS to simplify asynchronous
programming and make it easy for you to write code to submit asyn-
chronous requests, manage their completion events and process the
result. They are well suited for lightweight event-driven program-
ming, except where a real-time, guaranteed response is required.

2 Note that, although the active objects within a thread run cooperatively without
pre-emption, on Symbian OS the thread in which they run is scheduled pre-emptively.
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8.3 Working with Active Objects

Let’s move on now to consider in more detail how active objects work, and
how to use them. A typical Symbian OS application or server consists of a
single event-handling thread running a scheduler (the ”active scheduler”)
which coordinates one or more active objects. Each active object requests
an asynchronous service and handles the resulting completion event some
time after the request. It also provides a way to cancel an outstanding
request and may provide error handling for exceptional conditions.

An active object class must derive from class CActive, which is
defined in e32base.h (shown here with only the relevant methods, for
clarity). The next chapter discusses details of the base class further.

class CActive : public CBase
{

public:
enum TPriority

{
EPriorityIdle=-100,
EPriorityLow=-20,
EPriorityStandard=0,
EPriorityUserInput=10,
EPriorityHigh=20,
};

public:
IMPORT_C ∼CActive();
IMPORT_C void Cancel();
...
IMPORT_C void SetPriority(TInt aPriority);
inline TBool IsActive() const;
...

protected:
IMPORT_C CActive(TInt aPriority);
IMPORT_C void SetActive();
virtual void DoCancel() =0;
virtual void RunL() =0;
IMPORT_C virtual TInt RunError(TInt aError);

public:
TRequestStatus iStatus;
...
};

Construction

Like threads, active objects have a priority value to determine how they
are scheduled. Classes deriving from CActive must call the protected
constructor of the base class, passing in a parameter to set the priority of
the active object.

When the asynchronous service associated with the active object
completes, it generates an event. The active scheduler detects events,
determines which active object is associated with each event, and calls
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the appropriate active object to handle the event. I’ll describe this in
more detail in the later section on event handling. While an active object
is handling an event, it cannot be pre-empted3 until the event handler
function has returned back to the active scheduler.

It is quite possible that a number of events may complete before control
returns to the scheduler. The scheduler must resolve which active object
gets to run next; it does this by ordering the active objects using their
priority values. If multiple events have occurred before control returns to
the scheduler, they are handled sequentially in order of the highest active
object priority, rather than in order of completion. Otherwise, an event
of low priority that completed just before a more important one would
supplant the higher-priority event for an undefined period, depending on
how much code it executed to run to completion.

A set of priority values are defined in the TPriority enumeration
of class CActive. For the purposes of this chapter, and in general, you
should use the priority value EPriorityStandard (=0) unless you have
good reason to do otherwise. The next chapter discusses the factors you
should consider when setting the priority of your active objects on con-
struction or by making additional calls to CActive::SetPriority().

As part of construction, the active object code should call a static
function on the active scheduler, CActiveScheduler::Add(). This
will add the object to a list maintained by the active scheduler of
event-handling active objects on that thread.

An active object typically owns an object to which it issues requests that
complete asynchronously, generating an event, such as a timer object of
type RTimer. This object is generally known as an asynchronous service
provider and it may need to be initialized as part of construction. Of
course, if the initialization can fail, you should perform it as part of the
second-phase construction, as described in Chapter 4.

Submitting Requests

An active object class supplies public methods for callers to initi-
ate requests. These will submit requests to the asynchronous service
provider associated with the active object, using a well-established pat-
tern, as follows:

1. Request methods should check that there is no request already
submitted before attempting to submit another. Each active object

3 While this is true under most circumstances, it is possible to nest a separate active
scheduler within the event handler of an active object, and use the nested active scheduler
to receive other active objects’ events. This is used in Uikon for modal ”waiting” dialogs,
as discussed further in the next chapter. However, this technique can cause complications
and should be used with caution. For the purposes of discussion in this chapter, you should
simply consider that all active object event handling is non-preemptive.
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can only ever have one outstanding request, for reasons I’ll discuss
further in the next chapter. Depending on the implementation, the
code may:

• panic if a request has already been issued, if this scenario could
only occur because of a programming error

• refuse to submit another request (if it is legitimate to attempt to
make more than one request)

• cancel the outstanding request and submit the new one.

2. The active object should then issue the request to the service provider,
passing in its iStatus member variable as the TRequestStatus&
parameter.

3. If the request is submitted successfully, the request method then calls
the SetActive() method of the CActive base class, to indicate
to the active scheduler that a request has been submitted and is
currently outstanding. This call is not made until after the request has
been submitted.

Event Handling
Each active object class must implement the pure virtual RunL()member
method of the CActive base class. When a completion event occurs from
the associated asynchronous service provider and the active scheduler
selects the active object to handle the event, it calls RunL() on the
active object.4 The function has a slightly misleading name because the
asynchronous function has already run. Perhaps a clearer description
would be HandleEventL() or HandleCompletionL().

Typical implementations of RunL() determine whether the asyn-
chronous request succeeded by inspecting the completion code in the
TRequestStatus object (iStatus) of the active object, a 32-bit inte-
ger value. Depending on the result, RunL() usually either issues another
request or notifies other objects in the system of the event’s comple-
tion; however, the degree of complexity of code in RunL() can vary
considerably. Whatever it does, once RunL() is executing, it cannot be
pre-empted by other active objects’ event handlers. For this reason, the
code should complete as quickly as possible so that other events can be
handled without delay.

Figure 8.1 illustrates the basic sequence of actions performed when an
active object submits a request to an asynchronous service provider that
later completes, generating an event which is handled by RunL().

4 Advanced Windows programmers will recognize the pattern of a message loop and
message dispatch which drives a Win32 application. On Symbian OS, the active scheduler
takes the place of the Windows message loop and the RunL() function of an active object
acts as a message handler.
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Active Object
Asynchronous Service

Provider

(1) Issues request
passing iStatus

(3) Calls SetActive()
on itself 

(2) Sets iStatus=KRequestPending
and starts the service

(4) Service completes.
Service provider uses
RequestComplete() to
notify the Active Scheduler
and post a completion
result

(5) Active Scheduler
calls RunL() on the
active object to handle
the event

RunL() resubmits
another request or
stops the Active
Scheduler

RunL() cannot be pre-
empted

PROCESS OR
THREAD
BOUNDARY

Figure 8.1 Process of submitting a request to an asynchronous service provider, which generates an event
on completion

Each active object class must implement the pure virtual RunL()
member method of the CActive base class to handle comple-
tion events.

Cancellation

The active object must be able to cancel any outstanding asynchronous
requests it has issued, for example, if the application thread in which it
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is running is about to terminate. The CActive base class implements a
Cancel() method which calls the pure virtual DoCancel() method
(which the derived active object class must implement) and waits for the
request’s early completion. Any implementation of DoCancel() should
call the appropriate cancellation method on the asynchronous service
provider. DoCancel() can also include other processing, but should
not leave or allocate resources and should not carry out any lengthy
operations. It’s a good rule to restrict the method to cancellation and any
necessary cleanup associated with the request, rather than implementing
any sophisticated functionality. This is because a destructor should call
Cancel(), as described in later, and may have already cleaned up
resources that DoCancel() may require.

It isn’t necessary to check whether a request is outstanding for the
active object before calling Cancel(), because it is safe to do so even if
it isn’t currently active. The next chapter discusses in detail the semantics
of canceling active objects.

Error Handling

From Symbian OS v6.0 onwards, the CActive class provides a virtual
RunError() method which the active scheduler calls if a leave occurs
in the RunL() method of the active object. The method takes the leave
code as a parameter and returns an error code to indicate whether the
leave has been handled. The default implementation does not handle the
leave and simply returns the leave code passed to it. If the active object
can handle any leaves occurring in RunL(), it should do so by overriding
the default implementation and returning KErrNone to indicate that the
leave has been handled.

If RunError() returns a value other than KErrNone, indicating that
the leave has yet to be dealt with, the active scheduler calls its Error()
function to handle it. The active scheduler does not have any contextual
information about the active object with which to perform error handling.
For this reason, it is generally preferable to manage error recovery within
the RunError() method of the associated active object, where more
context is usually available.

Destruction

The destructor of a CActive-derived class should always call Cancel()
to terminate any outstanding requests as part of cleanup code. This
should ideally be done before any other resources owned by the active
object are destroyed, in case they are used by the service provider or
the DoCancel() method. The destructor code should, as usual, free all
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resources owned by the object, including any handle to the asynchronous
service provider.

The CActive base class destructor is virtual and its implementation
checks that the active object is not currently active. It panics if any request
is outstanding, that is, if Cancel() has not been called. This catches any
programming errors which could lead to the situation where a request
completes after the active object to handle it has been destroyed. This
would otherwise result in a ”stray signal”, described further in Chapter 9,
where the active scheduler cannot locate an active object to handle
the event.

Having verified that the active object has no issued requests out-
standing, the CActive destructor removes the active object from the
active scheduler.

The destructor of a CActive-derived class should always call
Cancel() to terminate any outstanding requests before cleanup
proceeds.

8.4 Example Code

The example below illustrates the use of an active object class to wrap
an asynchronous service, in this case a timer provided by the RTimer
service. In fact, Symbian OS already supplies an abstract active object
class, CTimer, which wraps RTimer and can be derived from, speci-
fying the action required when the timer expires. However, I’ve created
a new class, CExampleTimer, because it’s a straightforward way of
illustrating active objects. Figure 8.2 illustrates the classes involved and
their relationship with the active scheduler.

When the timer expires, the RunL() event handler checks the active
object’s iStatus result and leaves if it contains a value other than
KErrNone so the RunError() method can handle the problem. In
this case, the error handling is very simple: the error returned from the
request is logged to file. This could have been performed in the RunL()
method, but I’ve separated it into RunError() to illustrate how to use
the active object framework to split error handling from the main logic
of the event handler. If no error occurred, the RunL() event handler
logs the timer completion to debug output using RDebug::Print()
(described in Chapter 17) and resubmits the timer request with the stored
interval value. In effect, once the timer request has started, it continues to
expire and be resubmitted until it is stopped by a call to the Cancel()
method on the active object.
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CActive

RunL()
DoCancel()
RunError()
...
iActive
iStatus

CActiveScheduler

Add()
...

CExampleTimer

NewL()
After
RunL()
DoCancel()
RunError()
...

RTimer

n 1

iTimer

Figure 8.2 CExampleTimer and its relationship with RTimer, CActive and CActive-
Scheduler

_LIT(KExampleTimerPanic, "CExampleTimer");

class CExampleTimer : public CActive
{

public:
∼CExampleTimer();
static CExampleTimer* NewL();
void After(TTimeIntervalMicroSeconds32& aInterval);

protected:
CExampleTimer();
void ConstructL();

protected:
virtual void RunL(); // Inherited from CActive
virtual void DoCancel();
virtual TInt RunError(TInt aError);

private:
RTimer iTimer;
TTimeIntervalMicroSeconds32 iInterval;
};

CExampleTimer::CExampleTimer()
: CActive(EPriorityStandard) { CActiveScheduler::Add(this); }

void CExampleTimer::ConstructL()
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{// Create the asynchronous service provider
User::LeaveIfError(iTimer.CreateLocal());
}

CExampleTimer* CExampleTimer::NewL()
{...} // Code omitted for clarity

CExampleTimer::∼CExampleTimer()
{
Cancel();
iTimer.Close();
}

void CExampleTimer::After(TTimeIntervalMicroSeconds32& aInterval)
{// Only allow one timer request to be submitted at a time
// Caller must call Cancel() before submitting another

__ASSERT_ALWAYS(!IsActive(), User::Panic(KExampleTimerPanic,
KErrInUse));

iInterval = aInterval;
iTimer.After(iStatus,aInterval); // Set the RTimer
SetActive(); // Mark this object active
}

void CExampleTimer::RunL()
{// If an error occurred (admittedly unlikely)
// deal with the problem in RunError()

User::LeaveIfError(iStatus.Int());

// Otherwise, log the timer completion and resubmit the timer
_LIT(KTimerExpired, "Timer Expired\n");
RDebug::Print(KTimerExpired); // See Chapter 17 for more details
iTimer.After(iStatus, iInterval);
SetActive();
}

void CExampleTimer::DoCancel()
{// Cancel the timer
iTimer.Cancel();
}

TInt CExampleTimer::RunError(TInt aError)
{// Called if RunL() leaves, aError contains the leave code
_LIT(KErrorLog, "Timer error %d");
RDebug::Print(KErrorLog, aError); // Logs the error
return (KErrNone); // Error has been handled
}

The example is simplistic but it demonstrates the use of an active object
to wrap an asynchronous function, in this case, timer completion. Here’s
how a client of class CExampleTimer can expect to use the active object,
which it stores as a member variable called iExampleTimer, illustrating
the transparency of active object classes from a client’s perspective:

// Class CClient has a member variable CExampleTimer* iExampleTimer
void CClient::StartRepeatingTimerL()

{
iExampleTimer = CExampleTimer::NewL();
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iExampleTimer->After(1000000);
}

void CClient::StopRepeatingTimer()
{
iExampleTimer->Cancel();
delete iExampleTimer;
iExampleTimer = NULL; // Prevents re-use or double deletion
}

8.5 Threads Without an Active Scheduler

Most threads running on Symbian OS have an active scheduler, which
is usually created implicitly by a framework (e.g. CONE for the GUI
framework). However, if you are implementing a server, you have to
create and start an active scheduler explicitly before you can use active
objects. Likewise, console-based test code may not use active objects
directly itself, but must create an active scheduler in its main thread if it
depends on components which do use active objects.

There are a few threads in Symbian OS which intentionally do not have
an active scheduler and thus cannot use active objects or components
that use them:

• The Java implementation does not support an active scheduler and
native Java methods may not use active objects. It is permissible to
make calls in code to C++ servers which do use them, since these run
in a separate thread which has a supporting active scheduler.

• The C Standard Library, STDLIB, thread has no active scheduler
and thus standard library code cannot use active objects. Functions
provided by the Standard Library may however be used in active
object code, for example in an initialization or a RunL() method.
The functions should be synchronous and return quickly, as required
by all active object implementations.

• OPL does not provide an active scheduler and C++ extensions to
OPL (OPXs) must not use active objects or any component which
uses them.

8.6 Application Code and Active Objects

The active object model is very easy to use without needing a full under-
standing of how it works. In this chapter, I’ve described how to handle
events resulting from the completion of asynchronous functions on Sym-
bian OS. This involves defining CActive-derived classes, and providing
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the event handler and additional code for construction, destruction,
error-handling and cancellation. However, application code requires
some understanding of active objects and requires implementation of
active object code that is incidental to the purpose of the application. In
addition, many other operating systems do not encapsulate event han-
dling in the same way. This means that Symbian OS code is not directly
portable to other operating systems.

For this reason, Symbian OS provides frameworks to hide active object
code from high-level application code by defining handler interfaces
(often mixin classes as described in Chapter 1) which a client implements.
The frameworks hide the active objects, implementing initialization,
cleanup and error handling, and performing generic event processing in
the RunL() method. In RunL() the framework calls methods on the
client-implemented interface to respond to the completed event. The
appropriate client object receives the call, having ”registered” with the
framework by passing a reference or pointer to its implementation of
the interface. The one rule the client should be aware of is that the
interface methods should be implemented to complete quickly so that
the framework can handle other events without delay.

An example of this may be seen when application code runs within
the GUI framework (CONE), which uses active objects to handle events
associated with user input and system requests such as window redraw
requests, originating from the window server. The framework implements
the RunL()method to process each event, and calls an appropriate virtual
function such as OfferKeyEventL() or HandlePointerEventL()
in the associated control. As an application programmer, all you have to
do is implement the functions defined by the framework and it takes care
of the mechanics of event handling.

Likewise, server code runs inside the Symbian OS system server
framework and handles requests from client messages. Server code
often implements its own additional set of internal active objects, to
make requests to asynchronous service providers while still remaining
responsive to incoming client requests. The client–server architecture is
discussed in detail in Chapters 11 and 12.

8.7 Summary

Symbian OS makes it very easy to write event-driven code without getting
too involved in the implementation of the active objects which handle
the events. This chapter set out to explain the basics of how active
objects work, why you should prefer them to threads for multitasking and
how to implement a basic active object class. If you are likely to write
server code, implement an asynchronous service provider or perform
more advanced GUI programming, you will probably be interested in the
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next chapter, which goes deeper into the responsibilities and roles of the
main components – active objects, asynchronous service providers and
the active scheduler.

This chapter explained that:

• Active objects were designed for lightweight, responsive, power-
efficient event-handling and are used by most applications and servers,
generally in a single thread.

• Active objects are scheduled cooperatively in a single thread and,
in consequence, are easy to program because there is no need
to use synchronization primitives to prevent concurrent access to
shared resources.

• The kernel schedules threads pre-emptively but these are not generally
used for event-driven multitasking.

• The active object framework on Symbian OS has a modular design
that decouples event completion processing, performed by the active
scheduler, from individual event handling, performed by active
objects.

• The constructor of the active object class should set its priority
and add it to the active scheduler. Any initialization required by the
asynchronous service provider should be performed in a second-phase
constructor.

• Active objects encapsulate an asynchronous service provider and the
event handling necessary when a request to that service provider
completes.

• Active objects provide request initiation functions. These usually
conform to a pattern: performing a check for no previous outstanding
requests, submitting the request with its iStatus member variable
as a parameter, and setting the state of the active object to indicate
that a request has been issued.

• Event handling is performed by implementing the pure virtual RunL()
method defined in the CActive base class; RunL() is called by the
active scheduler some time after the request completes.

• Because active objects cannot pre-empt each other, RunL() should
complete as quickly as possible so that other active object events can
be handled without delay.

• The pure virtual DoCancel() method must also be implemented
by deriving classes and should call an appropriate method on the
asynchronous service provider to cancel the request.
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• The default ”do nothing” implementation of the virtual RunError()
method on the base class should be overridden if the derived class can
reasonably handle leaves which occur within its RunL() function.

• Symbian OS uses framework code to conceal the active object idiom.
For example, the GUI framework dispatches incoming events to be
handled by functions implemented by an associated control, which
may be extended by individual applications as required.

The next chapter looks ”under the hood” at active objects, discusses
the responsibilities of active objects, asynchronous service providers
and the active scheduler, and illustrates best practice when writing and
using active objects. Chapter 10 has more information about Symbian OS
threads and processes, while Chapters 11 and 12 build on an understand-
ing of active objects, threads and processes, to describe the Symbian OS
client–server architecture in detail.



9
Active Objects under the Hood

Do not hack me as you did my Lord Russell
The last words of the Duke of Monmouth (1649–1685) addressed to his

executioner

The previous chapter introduced active objects and described the basics,
such as how to use them, how to derive a simple active object class
and why active objects are used by Symbian OS as a lightweight alter-
native to threads for event-driven multitasking. This chapter considers
active objects in more detail and discusses some commonly used active
object idioms.

First of all, let’s examine in detail the responsibilities of active objects,
asynchronous service providers and the active scheduler and walk
through how they fit together. The previous chapter made the following
main points:

• Symbian OS event-handling is usually managed in one thread, which
runs a single active scheduler

• the active scheduler holds a set of active objects for that thread, each
of which encapsulates an associated asynchronous service provider

• each thread has an associated request semaphore; when an asyn-
chronous function completes, it generates an event by calling
RequestComplete() on the requesting thread, which signals its
semaphore and is detected by the active scheduler

• the active scheduler calls the RunL() event handler method of the
active object associated with the completion event.

In the previous chapter, I used example code for an active object
wrapper over an RTimer to illustrate the main points. You may find it
useful to refer to that example throughout this chapter.
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9.1 Active Object Basics

All active objects must derive from class CActive. On construction,
each active object is assigned a priority value, which is set through a
call to the base class constructor. In its constructor, the active object
must also be added to the active scheduler through a call to CActive-
Scheduler::Add(). The active scheduler maintains a doubly-linked
list of the active objects added to it, ordered by priority. When an active
object is added to the active scheduler, it is added to that list in the
appropriate position, according to its priority value.

As I described in Chapter 8, the active object encapsulates asyn-
chronous functions (those that return immediately and complete at some
later stage rather than returning only when the request has completed).
On Symbian OS, asynchronous functions can be identified as those taking
a TRequestStatus reference parameter into which the request com-
pletion status is posted. An object implementing such methods is usually
known as an asynchronous service provider.

A typical active object class provides public ”request issuer” methods
for its clients to submit asynchronous requests. These pass on the requests
to the encapsulated asynchronous service provider, passing by reference
the iStatus member variable of the CActive class as the TRequest-
Status parameter. Having issued the request, the issuer method must
call CActive::SetActive() to set the iActive member to indicate
that there is an outstanding request.

The service provider must set the value of the incoming TRequest-
Status to KRequestPending (=0x80000001) before acting on the
request. Upon completion, if the service provider is in the same thread
as the requester, it calls User::RequestComplete(), passing the
TRequestStatus and a completion result, typically one of the standard
errors such as KErrNone or KErrNotFound, to indicate the success
or otherwise of the request. User::RequestComplete() sets the
value of TRequestStatus and generates a completion event in the
requesting thread by signaling the thread’s request semaphore. If the
asynchronous service provider and the requester are in separate threads,
the service provider must use an RThread object, representing a han-
dle to the requesting thread, to complete the request. It should call
RThread::RequestComplete() to post the completion code and
notify the request semaphore.

While the request is outstanding, the requesting thread runs in the
active scheduler’s event processing loop. When it is not handling
completion events, the active scheduler suspends the thread by call-
ing User::WaitForAnyRequest(), which waits on a signal to the
thread’s request semaphore. When the asynchronous service provider
completes a request, it signals the semaphore of the requesting thread
as described above, and the active scheduler determines which active
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object should handle the completed request. It uses its priority-ordered
list of active objects, inspecting each one in turn to determine whether
it has a request outstanding. It does so by checking the iActive flag;
if the object does indeed have an outstanding request, it then inspects
its TRequestStatus member variable to see if it is set to a value other
than KRequestPending. If so, this indicates that the active object is
associated with a request that has completed and that its event handler
code should be called.

Having found a suitable active object, the active scheduler clears the
active object’s iActive flag and calls its RunL() event handler. This
method handles the event and may, for example, resubmit a request or
generate an event on another object in the system. While this method is
running, other events may be generated but RunL() is not pre-empted – it
runs to completion before the active scheduler resumes control and
determines whether any other requests have completed.

Once the RunL() call has finished, the active scheduler re-enters the
event processing wait loop by issuing another User::WaitForAny-
Request() call. This checks the request semaphore and either suspends
the thread (if no other requests have completed in the meantime) or
returns immediately (if the semaphore indicates that other events were
generated while the previous event handler was running) so the scheduler
can repeat active object lookup and event handling.

Here’s some pseudo-code which represents the basic actions of the
active scheduler’s event processing loop.

EventProcessingLoop()
{
// Suspend the thread until an event occurs
User::WaitForAnyRequest();
// Thread wakes when the request semaphore is signaled
// Inspect each active object added to the scheduler,
// in order of decreasing priority
// Call the event handler of the first which is active & completed
FOREVER

{
// Get the next active object in the priority queue
if (activeObject->IsActive())

&& (activeObject->iStatus!=KRequestPending)
{// Found an active object ready to handle an event
// Reset the iActive status to indicate it is not active
activeObject->iActive = EFalse;
// Call the active object’s event handler in a TRAP
TRAPD(r, activeObject->RunL());
if (KErrNone!=r)

{// event handler left, call RunError() on active object
r = activeObject->RunError();
if (KErrNone!=r) // RunError() didn’t handle the error,

Error(r); // call CActiveScheduler::Error()
}

break; // Event handled. Break out of lookup loop & resume
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}
} // End of FOREVER loop

}

If a single request has completed on the thread in the interim, the
active scheduler performs lookup and calls the appropriate event handler
on that active object. If more than one request has completed in that time,
the active scheduler calls the event handler for the highest priority active
object. It follows that, if multiple events are generated in close succession
while another event is being handled, those events may not be handled
in the sequence in which they occurred because the active object search
list is ordered by priority to support responsive event-handling.

Normally, active object code should be designed so the priority does
not matter, otherwise the system can become rather delicate and be
thrown off balance by minor changes or additional active objects on the
thread. However, to be responsive, say for user input, it is sometimes
necessary to use a higher priority value. Long-running, incremental tasks,
on the other hand, should have a lower priority than standard since
they are designed to use idle processor time (as I’ll describe later in
this chapter).

It’s important to understand that the priority value is only an indication
of the order in which the active scheduler performs lookup and event-
handling when multiple events have completed. In contrast to the priority
values of threads used by the kernel scheduler, it does not represent an
ability to pre-empt other active objects. Thus, if you assign a particular
active object a very high priority, and it completes while a lower-priority
active object is handling an event, no pre-emption occurs. The RunL()
of the lower-priority object runs to completion, regardless of the fact that
it is ”holding up” the handler for the higher-priority object.

On Symbian OS, you cannot use active object priorities to achieve
a guaranteed response time; for this you must use the pre-emptive
scheduling associated with threads1, which is described in Chapter 10.

If you have a large number of active objects in a single thread which
complete often, they ”compete” for their event handler to be run by
the active scheduler. If some of the active objects have high priorities
and receive frequent completion events, those with lower priorities wait
indefinitely until the active scheduler can call their RunL() methods.
In effect, it’s possible to ”hang” lower-priority active objects by adding
them to an active scheduler upon which a number of high-priority active
objects are completing.

1 The new hard real-time kernel in Symbian OS 8.0 can commit to a particular response
time. On earlier versions of Symbian OS, the kernel has soft real-time capabilities and
cannot make such guarantees.
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An active object’s priority is only an indication of the order in
which the active scheduler performs lookup and event-handling. It
does not reflect an ability to pre-empt other active objects.

9.2 Responsibilities of an Active Object

Figure 9.1 illustrates the roles and actions of the active scheduler, active
object and the asynchronous service provider. It extends Figure 8.1.

Executable Active Object Active Scheduler
Asynchronous Service

Provider

Create and Install the
Active Scheduler

Create Active Object
(with appropriate
priority) and add it to the
Active Scheduler

Issue a request to the
Active Object

Start the Active
Scheduler if it is not
already started

Make a request to the Asynchronous
Service Provider, passing in iStatus

Call SetActive()

RunL() handles the
completed event
and resubmits
another request or
stops the Active
Scheduler

CActiveScheduler::Stop()

Sets iStatus=KRequestPending
and starts the service

Service completes and uses
RequestComplete() to
notify the Active Scheduler
(by signalling its thread
semaphore) and to post a
completion result

PROCESS OR
THREAD
BOUNDARY

Wait Loop

CActiveScheduler::Start()

Calls RunL() on the Active
Object with
iStatus!=KRequestPen
ding and iActive=ETrue

Figure 9.1 Roles and actions of the active scheduler, an active object and an asynchronous service provider
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It looks complex, but I’ll explain how it all fits together throughout this
chapter and you’ll probably want to refer back to it later.

The following list summarizes the responsibilities of an active
object:

• As I described in Chapter 8, the priority of an active object must be set
on construction. The priority generally defaults to EPriorityStan-
dard (=0, from class CActive) or EActivePriorityDefault (=0
if using the TActivePriority enumeration defined in coemain.h
for use with application code). This is the standard priority for an
active object and should be used unless there is a good reason to set
its priority to some other value, for example to EActivePriority-
WsEvents (=100) for handling user input responsively.

• An active object provides at least one method for clients to initiate
requests to its encapsulated asynchronous service provider. The active
object always passes its own iStatus object to the asynchronous
function, so does not need to include a TRequestStatus reference
among the parameters to the request issuer method unless it is acting
as a secondary provider of asynchronous services.

• After submitting a request to an asynchronous service provider, the
active object must call SetActive() upon itself. This sets the
iActive flag, which indicates an outstanding request. This flag is
used by the active scheduler upon receipt of an event and by the base
class upon destruction, to determine whether the active object can be
removed from the active scheduler.

• An active object should only submit one asynchronous request at a
time. The active scheduler has no way of managing event-handling
for multiple requests associated with one active object.

• An active object should pass its iStatus object to an asynchronous
service function. It should not reuse that object until the asynchronous
function has completed and been handled. The active scheduler
inspects the TRequestStatus of each active object to determine
its completion state and the event-handling code uses the value it
contains to ascertain the completion result of the function.

• An active object must implement the pure virtual methods RunL()
and DoCancel() declared in the CActive base class. Neither
method should perform lengthy or complex processing, to avoid
holding up event handling in the entire thread. This is particularly
important in GUI applications where all user interface code runs in
the same thread. If any single RunL() is particularly lengthy, the user
interface will be unresponsive to input and will ”freeze” until that
event handler has completed.
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• An active object must ensure that it is not awaiting completion of
a pending request when it is about to be destroyed. As destruction
removes it from the active scheduler, later completion will generate
an event for which there is no associated active object. To prevent
this, Cancel() should be called in the destructor of an active
object. The destructor of the CActive base class checks that there
is no outstanding request before removing the object from the active
scheduler and raises an E32USER–CBASE 40 panic if there is, to
highlight the programming error. The base class destructor cannot
call Cancel() itself because that method calls the derived class
implementation of DoCancel() – and, of course, C++ dictates that
the derived class has already been destroyed by the time the base
class destructor is called.

• Objects passed to the asynchronous service provider by the issuer
methods must have a lifetime at least equal to the time taken to
complete the request. This makes sense when you consider that the
provider may use those objects until it is ready to complete the
request, say if it is retrieving and writing data to a supplied buffer.
This requirement means that parameters supplied to the provider
should usually be allocated on the heap (very rarely, they may be
on a stack frame that exists for the lifetime of the entire program).
In general, parameters passed to the asynchronous service provider
should belong to the active object, which is guaranteed to exist while
the request is outstanding.

• If a leave can occur in RunL(), the class should override the default
implementation of the virtual RunError() method to handle it.
RunError() was added to CActive in Symbian OS v6.0 to han-
dle any leaves that occur in the RunL() event handler. If a leave
occurs, the active scheduler calls the RunError() method of the
active object, passing in the leave code. RunError() should return
KErrNone to indicate that it has handled the leave, say by cleaning
up or resetting the state of the active object. The default implementa-
tion, CActive::RunError(), does not handle leaves and indicates
this by simply returning the leave code passed in.

9.3 Responsibilities of an Asynchronous Service Provider

An asynchronous service provider has the following responsibilities:

• Before beginning to process each request, the provider must set
the incoming TRequestStatus value to KRequestPending to
indicate to the active scheduler that a request is ongoing.
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• When the request is complete, the provider must set the TRe-
questStatus value to a result code other than KRequestPending
by calling the appropriate RequestComplete() method from the
RThread or User class.

• The asynchronous service provider must only call Request-
Complete() once for each request. This method generates an event
in the requesting thread to notify it of completion. Multiple comple-
tion events on a single active object result in a stray signal panic.
Completion may occur normally, because of an error condition or
because the client has cancelled an outstanding request. If the client
calls Cancel() on a request after it has completed, the asynchronous
service provider must not complete it again and should simply ignore
the cancellation request. This is discussed further in Sections 9.8
and 9.9.

• The provider must supply a corresponding cancellation method for
each asynchronous request; this should complete an outstanding
request immediately, posting KErrCancel into the TRequest-
Status object associated with the initial request.

9.4 Responsibilities of the Active Scheduler

The active scheduler has the following responsibilities:

• Suspending the thread by a call to User::WaitForAnyRequest().
When an event is generated, it resumes the thread and inspects the
list of active objects to determine which has issued the request that
has completed and should be handled.

• Ensuring that each request is handled only once. The active scheduler
should reset the iActive flag of an active object before calling its
handler method. This allows the active object to issue a new request
from its RunL() event handler, which results in SetActive() being
called (which would panic if the active object was still marked active
from the previous request).

• Placing a TRAP harness around RunL() calls to catch any leaves
occurring in the event-handling code. If the RunL() call leaves,
the active scheduler calls RunError() on the active object ini-
tially. If the leave is not handled there, it passes the leave code to
CActiveScheduler::Error(), described in more detail shortly.

• Raising a panic (E32USER–CBASE 46) if it receives a ”stray signal”.
This occurs when the request semaphore has been notified of an
event, but the active scheduler cannot find a ”suitable” active object
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(with iActive set to ETrue and a TRequestStatus indicating
that it has completed).

9.5 Starting the Active Scheduler

Once an active scheduler has been created and installed, its event
processing wait loop is started by a call to the static CActive-
Scheduler::Start() method. Application programmers do not have
to worry about this, since the CONE framework takes care of managing
the active scheduler. If you are writing server code, or a simple console
application, you have to create and start the active scheduler for your
server thread, which can be as simple as follows:

CActiveScheduler* scheduler = new(ELeave) CActiveScheduler;
CleanupStack::PushL(scheduler);
CActiveScheduler::Install(scheduler);

The call to Start() enters the event processing loop and does
not return until a corresponding call is made to CActive-
Scheduler::Stop(). Thus, before the active scheduler is started,
there must be at least one asynchronous request issued, via an active
object, so that the thread’s request semaphore is signaled and the call to
User::WaitForAnyRequest() completes. If no request is outstand-
ing, the thread simply enters the wait loop and sleeps indefinitely.

As you would expect, the active scheduler is stopped by a call to
CActiveScheduler::Stop(). When that enclosing function returns,
the outstanding call to CActiveScheduler::Start() also returns.
Stopping the active scheduler breaks off event handling in the thread, so
it should only be called by the main active object controlling the thread.

9.6 Nesting the Active Scheduler

I’ve already noted that an event-handling thread has a single active
scheduler. However, it is possible, if unusual, to nest other calls to
CActiveScheduler::Start(), say within a RunL() event-handling
method. The use of nested active scheduler loops is generally discour-
aged but can be useful if a call should appear to be synchronous, while
actually being asynchronous (”pseudo-synchronous”). A good example
is a RunL() event handler that requires completion of an asynchronous
request to another active object in that thread. The RunL() call cannot
be pre-empted, so it must instead create a nested wait loop by calling
CActiveScheduler::Start(). This technique is used in modal
Uikon ”waiting” dialogs.
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Each call to CActiveScheduler::Start() should be strictly
matched by a corresponding call to CActiveScheduler::Stop()
in an appropriate event handler. Before employing such a technique you
must be careful to test your code thoroughly to ensure that the nesting
is controlled under both normal and exceptional conditions. The use
of nested active scheduler event-processing loops can introduce subtle
bugs, particularly if more than one nested loop is used concurrently in
the same thread. For example, if a pair of independent components both
nest active scheduler loops, their calls to Start() and Stop() must be
carefully interleaved if one component is to avoid stopping the loop of
the other’s nested active scheduler.

The complexity that results from nesting active scheduler processing
loops means that Symbian does not recommend this technique. However,
where the use of nested active scheduler loops is absolutely unavoid-
able, releases of Symbian OS from v7.0s onwards have introduced the
CActiveSchedulerWait class to provide nesting ”levels” that match
active scheduler Stop() calls to the corresponding call to Start().

9.7 Extending the Active Scheduler

CActiveScheduler is a concrete class and can be used ”as is”, but
it can also be subclassed. It defines two virtual functions which may be
extended: Error() and WaitForAnyRequest().

By default, the WaitForAnyRequest() function simply calls
User::WaitForAnyRequest(), but it may be extended, for example
to perform some processing before or after the wait. If the function is
re-implemented, it must either call the base class function or make a call
to User::WaitForAnyRequest() directly.

I described earlier how if a leave occurs in a RunL() event handler,
the active scheduler passes the leave code to the RunError() method
of the active object. If this method cannot handle the leave, it returns
the leave code and the active scheduler passes it to its own Error()
method. By default, this raises a panic (E32USER-CBASE 47), but it may
be extended in a subclass to handle the error, for example by calling an
error resolver to obtain the textual description of the error and displaying
it to the user or logging it to file.

If your active object code is dependent upon particular specializations
of the active scheduler, bear in mind that it will not be portable to run
in other threads managed by more basic active schedulers. Furthermore,
any additional code added to extend the active scheduler should be
straightforward and you should avoid holding up event-handling in the
entire thread by performing complex or slow processing.
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9.8 Cancellation

Every request issued by an active object must complete exactly once.
It can complete normally or complete early as a result of an error
or a call to Cancel(). Let’s first examine what happens in a call to
CActive::Cancel() and return to the other completion scenar-
ios later.
CActive::Cancel() first determines if there is an outstanding

request and, if so, it calls the DoCancel() method, a pure vir-
tual function in CActive, implemented by the derived class (which
should not override the non-virtual base class Cancel() method).
DoCancel() does not need to check if there is an outstanding request; if
there is no outstanding request, Cancel() does not call it. The encapsu-
lated asynchronous service provider should provide a method to cancel
an outstanding request and DoCancel() should call this method.
DoCancel() can include other processing, but it should not leave

or allocate resources and it should not carry out any lengthy operations.
This is because Cancel() is itself a synchronous function which does
not return until both DoCancel() has returned and the original asyn-
chronous request has completed. That is, having called DoCancel(),
CActive::Cancel() then calls User::WaitForRequest(), pass-
ing in a reference to its iStatus member variable. It is blocked until
the asynchronous service provider posts a result (KErrCancel) into it,
which should happen immediately, as described above.

The cancellation event is thus handled by the Cancel() method of
the active object rather than by the active scheduler.

Finally, Cancel() resets the iActive member of the active object
to reflect that there is no longer an asynchronous request outstanding.

The Cancel() method of the CActive base class performs all
this generic cancellation code. When implementing a derived active
object class, you only need to implement DoCancel() to call the
appropriate cancellation function on the asynchronous service provider
and perform any cleanup necessary. You most certainly should not
call User::WaitForRequest(), since this will upset the thread
semaphore count. Internally, the active object must not call the pro-
tected DoCancel() method to cancel a request; it should call
CActive::Cancel(), which invokes DoCancel() and handles the
resulting cancellation event.

When an active object request is cancelled by a call to
Cancel(), the RunL() event handler does not run. This means that
any post-cancellation cleanup must be performed in DoCancel()
rather than in RunL().
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9.9 Request Completion

At this point, we can summarize the ways in which a request issued
from an active object to an asynchronous service provider can com-
plete:

• The request is issued to the asynchronous service provider by the
active object. Some time later, the asynchronous service provider calls
User::RequestComplete() which generates a completion event
and passes back a completion result. The active scheduler detects
the completion event, resumes the thread and initiates event handling
on the highest priority active object that has iActive set to ETrue
and iStatus set to a value other than KRequestPending. This is
a normal case, as described in the walkthrough above, although the
completion result may not reflect a successful outcome.

• The asynchronous request cannot begin, for example if invalid
parameters are passed in or insufficient resources are available. The
asynchronous service provider should define a function that neither
leaves nor returns an error code (it should typically return void). Thus,
under these circumstances, the request should complete immediately,
posting an appropriate error into the TRequestStatusobject passed
into the request function.

• The request is issued to the asynchronous service provider and
Cancel() is called on the active object before the request has
completed. The active object calls the appropriate cancellation func-
tion on the asynchronous service provider, which should terminate the
request immediately. The asynchronous service provider should com-
plete the request with KErrCancel as quickly as possible, because
CActive::Cancel() blocks until completion occurs.

• The request is issued to the asynchronous service provider and
Cancel() is called on the active object some time after the request
has completed. This occurs when the completion event has occurred
but is yet to be processed by the active scheduler. The request appears
to be outstanding to the active object framework, if not to the asyn-
chronous service provider, which simply ignores the cancellation call.
CActive::Cancel() discards the normal completion result.

9.10 State Machines

An active object class can be used to implement a state machine to per-
form a series of actions in an appropriate sequence, without requiring
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client code to make multiple function calls or understand the logic of
the sequence. The example below is of an active object class, CState-
Machine, which has a single request method SendTranslatedData().
This retrieves the data, converts it in some way and sends it to another
location. The method takes the location of a data source, the destina-
tion and a TRequestStatus which is stored and used to indicate to
the caller when the series of steps has completed. CStateMachine
encapsulates an object of CServiceProvider class which provides
the methods necessary to implement SendTranslatedData(). This
class acts as an asynchronous service provider for the active object. Each
asynchronous method takes a reference to a TRequestStatus object
and has a corresponding Cancel() method.

The state machine class has an enumeration which represents the
various stages required for SendTranslatedData() to succeed. It
starts as CStateMachine::EIdle and must be in this state when
the method is called (any other state indicates that a previous call to
the method is currently outstanding). Having submitted a request by
making the first logical call to CServiceProvider::GetData(),
the method changes the iState member variable to reflect the new
state (CStateMachine::EGet) and calls SetActive(). When it has
finished, GetData() generates a completion event and the active sched-
uler, at some later point, invokes the CStateMachine::RunL() event
handler. This is where the main logic of the state machine is imple-
mented. You’ll see from the example that it first checks whether an error
has occurred and, if so, it aborts the rest of the sequence and notifies the
client. Otherwise, if the previous step was successful, the handler calls
the next method in the sequence and changes its state accordingly, again
calling SetActive(). This continues, driven by event completion and
the RunL() event handler.

For clarity, in the example code below, I’ve only shown the imple-
mentation of functions which are directly relevant to the state
machine:

// Provides the "step" functions
class CServiceProvider : public CBase

{
public:

static CServiceProvider* NewL();
∼CServiceProvider() {};

public:
void GetData(const TDesC& aSource, HBufC8*& aData,

TRequestStatus& aStatus);
void CancelGetData();
TInt TranslateData(TDes8& aData);
void SendData(const TDesC& aTarget, const TDesC8& aData,

TRequestStatus& aStatus);
void CancelSendData();

protected:
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CServiceProvider(){};
};

void CServiceProvider::GetData(const TDesC& aSource, HBufC8*& aData,
TRequestStatus& aStatus)

{
aStatus = KRequestPending;

// Retrieves data from aSource using the asynchronous overload of
// RFile::Read() and writing to aData (re-allocating it if
// necessary). aStatus is completed by the file server when the
// read has finished
...
}

void CServiceProvider::CancelGetData() {...}

TInt CServiceProvider::TranslateData(TDes8& aData)
{// Synchronously translates aData & writes into same descriptor
...
return (translationResult);
}

void CServiceProvider::SendData(const TDesC& aTarget, const TDesC8&
aData, TRequestStatus& aStatus)

{
aStatus = KRequestPending;

// Writes data to aTarget using the asynchronous overload of
// RFile::Write(), which completes aStatus
...
}

void CServiceProvider::CancelSendData() {...}

class CStateMachine : public CActive
{

public:
∼CStateMachine();
static CStateMachine* NewLC();
void SendTranslatedData(const TDesC& aSource, const TDesC& aTarget,

TRequestStatus&);
protected:

enum TState { EIdle, EGet, ETranslate, ESend};
protected:

CStateMachine();
void InitializeL(const TDesC& aTarget);
void Cleanup();

protected:
virtual void DoCancel(); // Inherited from CActive
virtual void RunL();
// The following base class method is not overridden because
// RunL() cannot leave
// virtual TInt RunError(TInt aError);

private:
CServiceProvider* iService;
TState iState;

private:
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HBufC* iTarget;
HBufC8* iStorage;
TRequestStatus* iClientStatus;
};

CStateMachine::CStateMachine()
: CActive(EPriorityStandard) {CActiveScheduler::Add(this);}

CStateMachine::∼CStateMachine()
{
Cancel();
Cleanup();
}

void CStateMachine::InitializeL(const TDesC& aTarget)
{
// Store this to pass to CServiceProvider later
iTarget = aTarget.AllocL();
// To store retrieved data
iStorage = HBufC8::NewL(KStandardDataLen);
}

void CStateMachine::Cleanup()
{// Pointers are NULL-ed because this method is called outside
// the destructor
iState = EIdle;
delete iTarget;
iTarget = NULL;
delete iStorage;
iStorage = NULL;
}

const TInt KStandardDataLen = 1024;

// Starts the state machine
void CStateMachine::SendTranslatedData(const TDesC& aSource,

const TDesC& aTarget, TRequestStatus& aStatus)
{
__ASSERT_ALWAYS(!IsActive(), User::Panic(KExPanic, KErrInUse));
ASSERT(EIdle==iState);
// Store the client request status to complete later
iClientStatus = &aStatus;
iClientStatus = KRequestPending;

TRAPD(r, InitializeL(aTarget);
if (KErrNone!=r)

{// Allocation of iTarget of iStorage failed
Cleanup(); // Destroys successfully allocated member data
User::RequestComplete(iClientStatus, r);
}

else
{
iService->GetData(aSource, iStorage, iStatus);
iState = EGet;
SetActive();
}

}
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// The state machine is driven by this method
void CStateMachine::RunL()

{// Inspects result of completion and iState
// and submits next request (if required)

ASSERT(EIdle!=iState);

if (KErrNone!=iStatus.Int())
{// An error - notify the client and stop the state machine
User::RequestComplete(iClientStatus, iStatus.Int());
Cleanup();
}

else
{
if (EGet==iState)

{// Data was retrieved, now translate it synchronously
TPtr8 ptr(iStorage->Des());
iService->TranslateData(ptr);
iState = ETranslate;
// Self completion – described later
TRequestStatus* stat = &iStatus;
User::RequestComplete(stat, r);
SetActive();
}

else if (ETranslate==iState)
{// Data was translated, now send it asynchronously
TInt r = iService->SendData(*iTarget, *iStorage, iStatus);
iState = ESend;
SetActive();
}

else
{// All done, notify the caller
ASSERT(ESend==iState);
User::RequestComplete(iClientStatus, iStatus.Int());
Cleanup();
}

}
}

void CStateMachine::DoCancel()
{
if (iService)

{
if (CStateMachine::EGet = =iState)

{
iService->CancelGetData();
}

else if (CStateMachine::ESend = =iState)
{
iService->CancelSendData();
}

}
if (iClientStatus)

{// Complete the caller with KErrCancel
User::RequestComplete(iClientStatus, KErrCancel);
}

Cleanup();
}
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In effect, CStateMachine maintains a series of outstanding requests
to the service provider in RunL(), rather than making a single call.
This example is quite straightforward because there are only three active
states, but the code logic here can potentially be far more complex.
The DoCancel() method of CStateMachine must also have some
state-related logic so that the correct method on CServiceProvider is
cancelled. The states and transitions are illustrated in Figure 9.2.

Send TranslatedData()
Call CServiceProvider::GetData()

1. EIdle 2. EGet

3. ETranslate4. ESend

Cancel(),
RunError() or

normal completion

RunL() calls
CServiceProvider::
TranslateData()

(self completes)

RunError()

Cancel() or
RunError()

RunL() calls
CServiceProvider::SendData()

Figure 9.2 Internal states of CStateMachine

In this example the service provider functions called by the state
machine are a mixture of synchronous (TranslateData()) and asyn-
chronous (GetData() and SendData()) functions. The synchronous
method uses self-completion to simulate an asynchronous completion
event, which is discussed further in the following section.

9.11 Long-Running Tasks

Besides encapsulating asynchronous service providers, active objects can
also be used to implement long-running tasks which would otherwise
need to run in a lower-priority background thread.

To be suitable, the task must be divisible into multiple short incre-
ments, for example, preparing data for printing, performing background
recalculations and compacting the database. The increments are per-
formed in the event handler of the active object. For this reason, they
must be short enough for event handling in the thread to continue to be
responsive, because RunL() cannot be pre-empted once it is running.

The active object should be assigned a low priority such as
CActive::TPriority::EPriorityIdle (=-100), which deter-
mines that a task increment only runs when there are no other events to
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handle, i.e. in idle time. If the task consists of a number of different steps,
the active object must track the progress as series of states, implementing
it using a state machine as described above.

The active object drives the task by generating its own events to invoke
its event handler. Instead of calling an asynchronous service provider,
it completes itself by calling User::RequestComplete() on its own
iStatus object and calls SetActive() on itself so the active scheduler
calls its event handler. In this way it continues to resubmit requests until
the entire task is complete. A typical example is shown in the sample
code, where I’ve shown all the relevant methods in the class declarations
but only the implementations relevant to this discussion. I’ve also omitted
error handling for clarity:

// This class has no dependence on the active object framework
class CLongRunningCalculation : public CBase

{
public:

static CLongRunningCalculation* NewL();
TBool StartTask(); // Initialization before starting the task
TBool DoTaskStep(); // Performs a short task step
void EndTask(); // Destroys intermediate data
...
};

TBool CLongRunningCalculation::DoTaskStep()
{// Do a short task step, returning
// ETrue if there is more of the task to do
// EFalse if the task is complete

... // Omitted
}

_LIT(KExPanic, "CActiveExample");

class CBackgroundRecalc : public CActive
{

public:
... // NewL(), destructor etc are omitted for clarity

public:
void PerformRecalculation(TRequestStatus& aStatus);

protected:
CBackgroundRecalc();
void ConstructL();
void Complete();
virtual void RunL();
virtual void DoCancel();

private:
CLongRunningCalculation* iCalc;
TBool iMoreToDo;
TRequestStatus* iCallerStatus; // To notify caller on completion
};

CBackgroundRecalc::CBackgroundRecalc()
: CActive(EPriorityIdle) // Low priority task
{ CActiveScheduler::Add(this); }
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// Issues a request to initiate a lengthy task
void CBackgroundRecalc::PerformRecalculation(TRequestStatus& aStatus)

{
iCallerStatus = &aStatus;
*iCallerStatus = KRequestPending;
__ASSERT_ALWAYS(!IsActive(), User::Panic(KExPanic, KErrInUse));
iMoreToDo = iCalc->StartTask(); // iCalc initializes the task
Complete(); // Self-completion to generate an event
}

void CBackgroundRecalc::Complete()
{// Generates an event on itself by completing on iStatus
TRequestStatus* status = &iStatus;
User::RequestComplete(status, KErrNone);
SetActive();
}

// Performs the background task in increments
void CBackgroundRecalc::RunL()

{// Resubmit request for next increment of the task or stop
if (!iMoreToDo)

{// Allow iCalc to cleanup any intermediate data
iCalc->EndTask();
// Notify the caller
User::RequestComplete(iCallerStatus, iStatus.Int());
}

else
{// Submit another request and self-complete to generate event
iMoreToDo = iCalc->DoTaskStep();
Complete();
}

}

void CBackgroundRecalc::DoCancel()
{// Give iCalc a chance to perform cleanup
if (iCalc)

iCalc->EndTask();

if (iCallerStatus) // Notify the caller
User::RequestComplete(iCallerStatus, KErrCancel);

}

If you are designing an API for a long-running task, to make it useful
with this pattern, it is a good idea to provide methods which split
the task into increments, as in the example above. StartTask(),
DoTaskStep() and EndTask() perform small, discrete chunks of the
task and can be called directly by the RunL() method of the low-priority
active object. The API can then also be reused by code which implements
long-running tasks differently, since it will have no dependence on the
active object itself. Besides portability, distancing the active object model
makes it more straightforward to focus on the implementation of the
long-running task itself.

Of course, one disadvantage of this approach is that some tasks cannot
be broken down into short steps. Another is that if you implement a
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number of low-priority active objects for long-running tasks in the same
thread, you will need to work out how best to run them together and
write the necessary low-priority scheduling code yourself.

The use of a background thread for long-running tasks is fairly straight-
forward. The code for the task can be written without worrying about
yielding the CPU, since the kernel schedules it when no higher-priority
thread needs to run, pre-empting it again when a more important thread
needs access to system resources. However, as with all multi-threaded
code, any shared resources must be protected against illegal concurrent
access by synchronization objects and, on Symbian OS, the overhead
of running multiple threads is significantly higher than that for multiple
active objects running in a single thread. You should prefer low-priority
active objects for long-running tasks, except for cases where the task
cannot be split into convenient increments. The next chapter illustrates
how to use a separate thread to perform a long-running task which is
wrapped with code for an active object.

9.12 Class CIdle

CIdle derives from CActive and is a useful class which wraps the
active object basics such as implementing RunL() and DoCancel().
The wrapper allows you to focus solely on implementing the code
to run the incremental task without worrying about the active object
code.

class CIdle : public CActive
{

public:
IMPORT_C static CIdle* New(TInt aPriority);
IMPORT_C static CIdle* NewL(TInt aPriority);
IMPORT_C ∼CIdle();
IMPORT_C void Start(TCallBack aCallBack);

protected:
IMPORT_C CIdle(TInt aPriority);
IMPORT_C void RunL();
IMPORT_C void DoCancel();

protected:
TCallBack iCallBack;

};

The CIdle object should be created with a low or idle priority and
the long-running task initiated by a call to Start(), passing a callback
function to perform an increment of the task. The TCallback object
encapsulates a pointer to a callback function which takes an argument
of type TAny* and returns an integer. The callback function manages
the task increments and can be a local or a static member function. It
should keep track of the task progress, returning ETrue if further steps are
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necessary and EFalse when it is complete. In much the same way as the
incremental task shown above, the RunL() event handler which calls the
TCallback object is only called during idle time. Furthermore, it will
not be pre-empted while it is running. As long as the callback function
indicates that further steps of the task are required, CIdle::RunL()
resubmits requests by completing on its own iStatus object and calling
SetActive().

Here’s some example code for another background recalculation task
class. In fact, I’ve slightly reworked the class from the example above
to be driven by CIdle. You’ll notice that there’s no ”boilerplate” active
object code required, unlike the code in the CBackgroundRecalc
class, because CIdle provides that functionality.

class CLongRunningCalculation : public CBase
{

public:
static CLongRunningCalculation* NewLC(TRequestStatus& aStatus);

protected:
static TInt TaskStep(TAny* aLongCalc); // Callback function

protected:
void StartTask(); // Initialization before starting the task
TBool DoTaskStep(); // Does a step of the task
void EndTask(); // Destroys intermediate data

protected:
CLongRunningCalculation(TRequestStatus& aStatus);

private:
...
TBool iMoreToDo; // Flag tracks the progress of the task
// To notify the caller when the calc is complete
TRequestStatus* iCallerStatus;
};

CLongRunningCalculation* CLongRunningCalculation::NewLC(TRequestStatus&
aStatus)

{
CLongRunningCalculation* me = new (ELeave)
CLongRunningCalculation(aStatus);
CleanupStack::PushL(me); // ... 2nd phase construction code omitted
return (me);
}

CLongRunningCalculation::CLongRunningCalculation(TRequestStatus&
aStatus)
: iCallerStatus(&aStatus) {}

TBool CLongRunningCalculation::DoTaskStep()
{// Does a short task step, returning ETrue if it has more to do
... // Omitted
}

void CLongRunningCalculation::StartTask()
{// Prepares the task
iMoreToDo = ETrue;
}
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// Error handling omitted
void CLongRunningCalculation::EndTask()

{// Performs cleanup when the task has completed
ASSERT(!iMoreToDo);
...
User::RequestComplete(iCallerStatus, KErrNone);
}

TInt CLongRunningCalculation::TaskStep(TAny* aLongCalc)
{
ASSERT(aLongCalc);
CLongRunningCalculation* longCalc =

static_cast<CLongRunningCalculation*>(aLongCalc);
if (!longCalc->iMoreToDo)

longCalc->EndTask();
else

longCalc->iMoreToDo = longCalc->DoTaskStep();

return (longCalc->iMoreToDo);
}

Code which uses the idle object will look something like the following
example, which creates the CIdle object and a CLongRunning-
Calculation object that drives the task:

CIdle* idle = CIdle::NewL(EPriorityIdle);
CleanupStack::PushL(idle);

// Create the object that runs the task, passing in a TRequestStatus&
CLongRunningCalculation* longCalc =

CLongRunningCalculation::NewLC(iStatus);
TCallBack callback(CLongRunningCalculation::TaskStep, longCalc);
idle->Start(callback);
... // Completion of the task completes iStatus

9.13 Class CPeriodic

CPeriodic is another useful CActive-derived class for running incre-
mental task steps. It uses a timer object to generate regular timer events,
handling a single step of the task for each timer event. CPeriodic is
useful for performing regular task steps such as flashing a cursor or for
controlling time-outs.

Like CIdle, CPeriodic is initialized with a priority value and the
task is initiated by a call to Start(), passing settings for the timer as well
as a callback to perform increments of the task. When the timer period
elapses, the CPeriodic object generates an event that is detected by
the active scheduler. When there are no active objects of higher priority
requiring event handling, the active scheduler calls the RunL() event
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handler of the CPeriodic object, which in turn calls its task-processing
callback function. Thus, the callback may not be as exactly regular as
the periodic value passed to the Start() request. If the timer completes
but other, higher-priority, active objects have completed events, they
are processed first. Alternatively, the RunL() method of another active
object may be running when the timer elapses and a running active object
cannot be pre-empted even if it has a lower priority than the CPeriodic
object.

The response of signal and callback processing can be improved by
ensuring that all active objects in the thread perform short, efficient
RunL() methods and that the CPeriodic object has a higher priority
than other active objects.

9.14 Common Mistakes

I’ve described the dos and don’ts of active objects fairly comprehensively
in this chapter and the previous one. The most commonly encountered
problem when writing active object code is the infamous ”stray signal”
panic (E32USER-CBASE 46), which occurs when the active scheduler
receives a completion event but cannot find an active object to handle it
(i.e. one which is currently active and has a completed iStatus result,
indicated by a value other than KRequestPending). Stray signals can
arise for the following reasons:

• CActiveScheduler::Add()was not called when the active object
was constructed

• SetActive() was not called following the submission of a request
to the asynchronous service provider

• the asynchronous service provider completed the TRequestStatus
of an active object more than once – either because of a programming
error in the asynchronous service provider (for example, when an
already-completed request is cancelled) or because more than one
request was submitted simultaneously on the same active object.

If a stray signal occurs from one of your active objects, it is worth
checking against each of these.

Over the course of Chapters 8 and 9, I have described the cooperative
multitasking nature of active objects, which means that an active object’s
RunL() event handler cannot be pre-empted by any other in that thread,
except by using nested active scheduler loops, which are strongly dis-
couraged. In consequence, when using active objects for event handling
in, for example, a UI thread, their event-handler methods must be kept
short to keep the UI responsive.
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No active object should have a monopoly on the active scheduler that
prevents other active objects from handling events. Active objects should
be ”cooperative”. This means you should guard against:

• writing lengthy RunL() or DoCancel() methods

• repeatedly resubmitting requests

• assigning your active objects a higher priority than is necessary.

Stray signals can arise if:

• the active object is not added to the active scheduler

• SetActive() is not called following the submission of a
request

• the active object is completed more than once for any given
request.

9.15 Summary

While the previous chapter gave a high-level overview of active objects
on Symbian OS, this chapter focused on active objects in detail, walking
through the roles, responsibilities and interactions between the active
scheduler, active objects and the asynchronous service providers they
encapsulate.

It contained the detail necessary to write good active object or asyn-
chronous service provider code and to extend the active scheduler.
Example code illustrated the use of active objects for state machines and
for implementing background step-wise tasks, either using active objects
directly or through the CIdle wrapper class.

At this level of detail, active objects can seem quite complex and
this chapter should mostly be used for reference until you start to work
directly with complex active object code.
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Symbian OS Threads and Processes

Don’t disturb my circles!
Said to be the last words of Archimedes who was drawing geometric

figures in the dust and became so absorbed that he snapped at a Roman
soldier. The soldier became enraged, pulled out his sword and killed him

Chapters 8 and 9 discussed the role of active objects in multitasking code
on Symbian OS. Active objects are preferred to threads for this role
because they were designed specifically to suit the resource-limited hard-
ware upon which Symbian OS runs. Multithreaded code has significantly
higher run-time requirements compared to active objects: for example,
a context switch between threads may be an order of magnitude slower
than a similar switch between active objects running in the same thread.1

Threads tend to have a larger size overhead too, typically requiring 4 KB
kernel-side and 8 KB user-side for the program stack, compared to active
objects, which generally occupy only the size of the C++ object (often
less than 1 KB).

One of the main differences between multitasking with threads and
active objects is the way in which they are scheduled. Active objects
multitask cooperatively within a thread and, once handling an event,
an active object cannot be pre-empted by the active scheduler in
which it runs. Threads on Symbian OS are scheduled pre-emptively
by the kernel.

Pre-emptive scheduling of threads means that data shared by threads
must be protected with access synchronization primitives such as mutexes
or semaphores. However, despite this additional complexity, pre-emptive
scheduling is sometimes necessary. Consider the case of two active
objects, one assigned a high priority because it handles user-input events

1 A context switch between threads running in the same process requires the processor
registers of the running thread to be stored, and the state of the thread replacing it to be
restored. If a reschedule occurs between threads running in two separate processes, the
address space accessible to the thread, the process context, must additionally be stored and
restored.
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and another with a lower priority, which performs increments of a long-
running task when no other active object’s event handler is running
on the thread. If the event handler of the lower-priority active object
happens to be running when an event for the higher-priority active object
completes, it will continue to run to completion. No pre-emption will
occur and the low-priority active object effectively ”holds up” the handler
of the high-priority object. This can make the user interface sluggish and
unresponsive.

Typically, on Symbian OS, problems of this nature are avoided by
careful analysis of each active object’s event handler, to ensure that event
processing is kept as short as possible (described in Chapters 8 and 9).
It would generally not be regarded as reason enough to multithread the
code. However, there are occasions where the use of several threads
may be necessary, say to perform a task which cannot be split into
short-running increments. By implementing it in a separate thread, it can
run asynchronously without impacting an application’s response to user
interface events.

On Symbian OS, active objects multitask cooperatively within a
thread and cannot be pre-empted by the active scheduler; threads
are scheduled pre-emptively by the kernel.

10.1 Class RThread
On Symbian OS, the class used to manipulate threads is RThread (you’ll
notice that it’s an R class, the characteristics of which are described in
Chapter 1). An object of type RThread represents a handle to a thread,
because the thread itself is a kernel object. An RThread object can be
used to create or refer to another thread in order to manipulate it (e.g.
suspend, resume, panic or kill it) and to transfer data to or from it.

The RThread class has been modified quite significantly as part of
the changes made for the new hard real-time kernel delivered in releases
of Symbian OS v8.0. I’ll identify the main differences as I come to
them. Most notably, a number of the functions are now restricted for
use on threads in the current process only, whereas previous versions of
Symbian OS allowed one thread to manipulate any other thread in the
system, even those in other processes. The changes to Symbian OS v8.0
have been introduced to protect threads against abuse from potentially
malicious code.

At the time of going to press, Symbian identifies the hard real-time
kernel as ”EKA2” – which is a historical reference standing for ”EPOC2

2 Symbian OS was previously known as EPOC, and earlier still, EPOC32.
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Kernel Architecture 2” – and refers to the kernel of previous releases
as EKA1. Throughout this chapter, and the rest of the book, I’ll use
this nomenclature to distinguish between versions of Symbian OS v8.0
containing the new kernel and previous versions when discussing any
API differences.

On Symbian OS v7.0, class RThread is defined as follows in
e32std.h. I’ve included the entire class definition because I’ll mention
many of its methods throughout this chapter.

class RThread : public RHandleBase
{

public:
inline RThread();
IMPORT_C TInt Create(const TDesC& aName, TThreadFunction aFunction,

TInt aStackSize,TAny* aPtr,RLibrary* aLibrary,RHeap* aHeap,
TInt aHeapMinSize,TInt aHeapMaxSize,TOwnerType aType);

IMPORT_C TInt Create(const TDesC& aName, TThreadFunction aFunction,
TInt aStackSize,TInt aHeapMinSize,TInt aHeapMaxSize,
TAny* aPtr,TOwnerType aType=EOwnerProcess);

IMPORT_C TInt Create(const TDesC& aName,TThreadFunction aFunction,
TInt aStackSize,RHeap* aHeap,TAny* aPtr,
TOwnerType aType=EOwnerProcess);

IMPORT_C TInt SetInitialParameter(TAny* aPtr);
IMPORT_C TInt Open(const TDesC& aFullName,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(TThreadId aID,TOwnerType aType=EOwnerProcess);
IMPORT_C TThreadId Id() const;
IMPORT_C void Resume() const;
IMPORT_C void Suspend() const;
IMPORT_C TInt Rename(const TDesC& aName) const;
IMPORT_C void Kill(TInt aReason);
IMPORT_C void Terminate(TInt aReason);
IMPORT_C void Panic(const TDesC& aCategory,TInt aReason);
IMPORT_C TInt Process(RProcess& aProcess) const;
IMPORT_C TThreadPriority Priority() const;
IMPORT_C void SetPriority(TThreadPriority aPriority) const;
IMPORT_C TProcessPriority ProcessPriority() const;
IMPORT_C void SetProcessPriority(TProcessPriority aPriority) const;
IMPORT_C TBool System() const;
IMPORT_C void SetSystem(TBool aState) const;
IMPORT_C TBool Protected() const;
IMPORT_C void SetProtected(TBool aState) const;
IMPORT_C TInt RequestCount() const;
IMPORT_C TExitType ExitType() const;
IMPORT_C TInt ExitReason() const;
IMPORT_C TExitCategoryName ExitCategory() const;
IMPORT_C void RequestComplete(TRequestStatus*& aStatus,

TInt aReason) const;
IMPORT_C TInt GetDesLength(const TAny* aPtr) const;
IMPORT_C TInt GetDesMaxLength(const TAny* aPtr) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes8& aDes,

TInt anOffset) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes16 &aDes,

TInt anOffset) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC8& aDes,

TInt anOffset) const;
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IMPORT_C void WriteL(const TAny* aPtr,const TDesC16& aDes,
TInt anOffset) const;

IMPORT_C void Logon(TRequestStatus& aStatus) const;
IMPORT_C TInt LogonCancel(TRequestStatus& aStatus) const;
IMPORT_C RHeap* Heap();
IMPORT_C void HandleCount(TInt& aProcessHandleCount,

TInt& aThreadHandleCount) const;
IMPORT_C TExceptionHandler* ExceptionHandler() const;
IMPORT_C TInt SetExceptionHandler(TExceptionHandler* aHandler,

TUint32 aMask);
IMPORT_C void ModifyExceptionMask(TUint32 aClearMask,

TUint32 aSetMask);
IMPORT_C TInt RaiseException(TExcType aType);
IMPORT_C TBool IsExceptionHandled(TExcType aType);
IMPORT_C void Context(TDes8& aDes) const;
IMPORT_C TInt GetRamSizes(TInt& aHeapSize,TInt& aStackSize);
IMPORT_C TInt GetCpuTime(TTimeIntervalMicroSeconds& aCpuTime)

const;
inline TInt Open(const TFindThread& aFind,

TOwnerType aType=EOwnerProcess);
};

The base class of RThread is RHandleBase, which encapsulates
the behavior of a generic handle and is used as a base class throughout
Symbian OS to identify a handle to another object, often a kernel object.
As Chapter 1 discussed, CBase must always be the base class of a C class
(if only indirectly), but RHandleBase is not necessarily always the base
of an R class, although you’ll find that a number of Symbian OS R classes
do derive from it (e.g. RThread, RProcess, RMutex and RSession-
Base). Neither does RHandleBase share the characteristics of class
CBase (such as a virtual destructor and zero-initialization through an
overloaded operator new). Instead, class RHandleBase encapsulates
a 32-bit handle to the object its derived class represents and exports a
limited number of public API methods to manipulate that handle, namely
Handle(), SetHandle(), Duplicate() and Close().

You can use the default constructor of RThread to acquire a handle
to the thread your code is currently running in, which can be used
as follows:

RHeap* myHeap = RThread().Heap(); // Handle to the current thread's heap

// ...or...

_LIT(KClangerPanic, "ClangerThread");
// Panic the current thread with KErrNotFound
RThread().Panic(KClangerPanic, KErrNotFound);

The handle created by the default constructor is actually a pseudo-
handle set to the constant KCurrentThreadHandle, which is treated
specially by the kernel. If you want a ”proper” handle to the current thread
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(that is, a handle that is in the thread handle list) to pass between threads
in a process, you need to duplicate it using RThread::Duplicate():

RThread properhandle.Duplicate(RThread());

You can acquire a handle to a different thread either by creating it or by
opening a handle on a thread which currently exists in the system. As you
can see from its definition, class RThread defines several functions for
thread creation. Each function takes a descriptor representing a unique
name for the new thread, a pointer to a function in which execution
starts, a pointer to data to be passed to that function and a value for the
stack size of the thread, which defaults to 8 KB. The Create() function
is overloaded to allow you to set various options associated with the
thread’s heap, such as its maximum and minimum size and whether
it shares the creating thread’s heap or uses a specific heap. By default
on Symbian OS, each thread has its own independent heap as well as
its own stack. The size of the stack is limited to the size you set in
RThread::Create(), but the heap can grow from its minimum size
up to a maximum size, which is why both values may be specified in one
of the overloads of Create().3 Where the thread has its own heap, the
stack and the heap are located in the same chunk of memory.

When the thread is created, it is assigned a unique thread identity,
which is returned by the Id() function of RThread as a TThreadId
object. If you know the identity of an existing thread, you can pass it
to RThread::Open() to open a handle to that thread. Alternatively,
you can use an overload of the Open() function to pass the unique
name of a thread on which to open a handle. The thread’s name is set
as a parameter of the Create() function overloads when the thread is
created; once you have a handle to a thread, it is possible to rename it
using RThread::Rename() if the thread is not protected.

RThread has been modified in releases of Symbian OS v8.0 to
protect threads against abuse from potentially malicious code.

10.2 Thread Priorities

On Symbian OS, threads are pre-emptively scheduled and the currently
running thread is the highest priority thread ready to run. If there are two

3 You can also specify the minimum and maximum heap size for the main thread of a
component that runs as a separate process in its .mmp file, using the following statement:
epocheapsize minSizeInBytes maxSizeInBytes
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or more threads with equal priority, they are time-sliced on a round-robin
basis. The priority of a thread is a number: the higher the value, the higher
the priority.

When writing multithreaded code, you should consider the relative
priorities of your threads carefully. You should not arbitrarily assign a
thread a high priority, otherwise it may pre-empt other threads in the
system and affect their response times. Even those threads which may
legitimately be assigned high priorities must endeavor to make their
event-handling service complete rapidly, so they can yield the system
and allow other threads to execute.

A thread has an absolute priority which is calculated from the priority
assigned to the thread by a call to RThread::SetPriority() and
optionally combined with the priority assigned to the process in which
it runs. The TThreadPriority and TProcessPriority enumer-
ations, taken from e32std.h, are shown below.

enum TThreadPriority
{
EPriorityNull=(-30),
EPriorityMuchLess=(-20),
EPriorityLess=(-10),
EPriorityNormal=0,
EPriorityMore=10,
EPriorityMuchMore=20,
EPriorityRealTime=30,
EPriorityAbsoluteVeryLow=100,
EPriorityAbsoluteLow=200,
EPriorityAbsoluteBackground=300,
EPriorityAbsoluteForeground=400,
EPriorityAbsoluteHigh=500
};

enum TProcessPriority
{
EPriorityLow=150,
EPriorityBackground=250,
EPriorityForeground=350,
EPriorityHigh=450,
EPriorityWindowServer=650,
EPriorityFileServer=750,
EPriorityRealTimeServer=850,
EPrioritySupervisor=950
};

The following values are relative thread priorities: EPriorityMuch-
Less, EPriorityLess, EPriorityNormal, EPriorityMore and
EPriorityMuchMore. If these values are passed to RThread::Set-
Priority(), the resulting absolute priority of the thread is the combi-
nation of the priority of the process and the relative value specified. For
example, if the process has TProcessPriority::EPriorityHigh
(=450), and SetPriority() is called with TThreadPriority of
EPriorityMuchLess, the absolute priority of the thread will be
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450 − 20 = 430. If, for the same process, TThreadPriority::
EPriorityMuchMore is passed to SetPriority() instead, the abso-
lute priority of the thread will be 450 + 20 = 470.

The remaining TThreadPriority values, except EPriority-
RealTime,4 are absolute priorities that allow the priority of the thread
to be independent of the process in which it is running. If these
values are passed to a call to RThread::SetPriority(), the pri-
ority of the thread is set to the value specified, and the process
priority is ignored. For example, if the process has TProcess-
Priority::EPriorityHigh (=450), the absolute priority of the
thread can range from EPriorityAbsoluteVeryLow (=100) to
EPriorityAbsoluteVeryHigh (=500), depending on the absolute
TThreadPriority value selected.

All threads are created with priority EPriorityNormal by default.
When a thread is created it is initially put into a suspended state and does
not begin to run until Resume() is called on its handle. This allows the
priority of the thread to be changed by a call to SetPriority() before
it starts to run, although the priority of a thread can also be changed at
any time.

The secure RThread class in EKA2 does not allow you to call Set-
Priority() on a handle to any thread except that in which the code is
currently running. This prevents a badly programmed or malicious thread
from modifying the priorities of other threads in the system, which may
have a serious effect on the overall system performance.

10.3 Stopping a Running Thread

A running thread can be removed from the scheduler’s ready-to-run queue
by a call to Suspend() on its thread handle. It still exists, however, and
can be scheduled to run again by a call to Resume(). A thread can
be ended permanently by a call to Kill() or Terminate(), both of
which take an integer parameter representing the exit reason. You should
call Kill() or Terminate() to stop a thread normally, reserving
Panic() for stopping the thread to highlight a programming error. If the
main thread in a process is ended by any of these methods, the process
terminates too.

On EKA1, a thread must call SetProtected() to prevent other
threads from acquiring a handle and stopping it by calling Suspend(),
Panic(), Kill() or Terminate(). On EKA2, the security model
ensures that a thread is always protected and the redundant SetPro-
tected() method has been removed. This default protection ensures

4 TThreadPriority::EPriorityRealTime is treated slightly differently. Passing
this value to SetPriority() causes the thread priority to be set to TProcess-
Priority::EPriorityRealTimeServer.
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that it is no longer possible for a thread to stop another thread in a
separate process by calling Suspend(), Terminate(), Kill() or
Panic() on it. The functions are retained in EKA2 because a thread
can still call the various termination functions on itself or other threads
in the same process. RMessagePtr has Kill(), Terminate() and
Panic() methods that are identical to those in RThread. These allow
a server to terminate a client thread, for example to highlight a pro-
gramming error by causing a panic in a client which has passed invalid
request data. Chapters 11 and 12 discuss the client–server framework in
more detail.

The manner by which the thread was stopped, and its exit reason,
can be determined from the RThread handle of an expired thread by
calling ExitType(), ExitReason() and ExitCategory(). The exit
type indicates whether Kill(), Terminate() or Panic() was called
or, indeed, if the thread is still running. The exit reason is the integer
parameter value passed to the Kill() or Terminate() functions,
or the panic reason. The category is a descriptor containing the panic
category, ”Kill” or ”Terminate”. If the thread is still running, the exit
reason is zero and the exit category is a blank string.

It is also possible to receive notification when a thread dies. A call to
RThread::Logon() on a valid thread handle, passing in a TRequest-
Status reference, submits a request for notification when that thread ter-
minates. The request completes when the thread terminates and receives
the value with which the thread ended or KErrCancel if the notification
request was cancelled by a call to RThread::LogonCancel().

The following example code, which is suitable both for EKA1 and
EKA2, demonstrates how you may use thread termination notification. It
shows how some long-running synchronous function (Synchronous-
Task()) can be encapsulated within an active object class which
runs the task in a separate thread, allowing the function to be called
asynchronously. This is useful if a caller doesn’t want to be blocked
on a slow-to-return synchronous function. For example, a third-party
library may provide a synchronous API for preparing a file for print-
ing. The UI code which uses it cannot just ”hang” while waiting for
the function to return; it requires the operation to be performed asyn-
chronously. Of course, ideally, the function would be asynchronous,
implemented incrementally in a low-priority active object, as described
in Chapter 9. However, some tasks cannot easily be split into small units
of work, or may be ported from code which was not designed for active
objects.

The class defined below supplies an asynchronous wrapper,DoAsync-
Task(), over a synchronous function, allowing the caller to submit an
asynchronous request and receive notification of its completion through
a TRequestStatus object.
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_LIT(KThreadName, "ExampleThread"); // Name of the new thread

TInt SynchronousTask(); // Example of a long-running synchronous function

class CAsyncTask : public CActive
{// Active object class to wrap a long synchronous task

public:
∼CAsyncTask();
static CAsyncTask* NewLC();
// Asynchronous request function
void DoAsyncTask(TRequestStatus& aStatus);

protected: // From base class
virtual void DoCancel();
virtual void RunL();
virtual TInt RunError(TInt anError);

private:
CAsyncTask();
void ConstructL();
// Thread start function
static TInt ThreadEntryPoint(TAny* aParameters);

private:
TRequestStatus* iCaller; // Caller’s request status
RThread iThread; // Handle to created thread
};

The implementation of the active object class is shown below.
DoAsyncTask() is the asynchronous request-issuing function into which
the caller passes aTRequestStatusobject, typically from another active
object, which is stored internally as iCaller by the function. Addi-
tionally, DoAsyncTask() creates the thread in which the synchronous
function will run, calls Logon() upon the thread to receive notification
when it terminates, then sets itself active before resuming the thread.

When the thread terminates, the Logon() request completes (the
iStatus of the active object receives the exit reason). The active
scheduler calls RunL() on the active object which, in turn, notifies the
caller that the function call has completed by calling User::Request-
Complete() on iCaller, the stored TRequestStatus object.

The class implements the RunError() and DoCancel() functions
of the CActive base class. In DoCancel(), the code checks whether the
thread is still running because a case could arise where the long-running
function has completed and the thread has ended, but the resulting event
notification has not yet been handled by the active scheduler. If the
thread is outstanding, DoCancel() calls Kill() on it, closes the thread
handle and completes the caller with KErrCancel.

CAsyncTask::CAsyncTask()
: CActive(EPriorityStandard) // Standard priority unless good reason

{// Add to the active scheduler
CActiveScheduler::Add(this);
}
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// Two-phase construction code omitted for clarity

CAsyncTask::∼CAsyncTask()
{// Cancel any outstanding request before cleanup
Cancel(); // Calls DoCancel()

// The following is called by DoCancel() or RunL()
// so is unnecessary here too
// iThread.Close(); // Closes the handle on the thread
}

void CAsyncTask::DoAsyncTask(TRequestStatus& aStatus)
{
if (IsActive())

{
TRequestStatus* status = &aStatus;
User::RequestComplete(status, KErrAlreadyExists);
return;
}

// Save the caller’s TRequestStatus to notify them later
iCaller = &aStatus;

// Create a new thread, passing the thread function and stack sizes
// No extra parameters are required in this example, so pass in NULL
TInt res = iThread.Create(KThreadName, ThreadEntryPoint,

KDefaultStackSize, NULL, NULL);
if (KErrNone!=res)

{// Complete the caller immediately
User::RequestComplete(iCaller, res);
}

else
{// Set active; resume new thread to make the synchronous call
// (Change the priority of the thread here if required)

// Set the caller and ourselves to KRequestPending
// so the active scheduler notifies on completion

*iCaller = KRequestPending;
iStatus = KRequestPending;
SetActive();
iThread.Logon(iStatus); // Request notification when thread dies
iThread.Resume(); // Start the thread
}

}

TInt CAsyncTask::ThreadEntryPoint(TAny* /*aParameters*/)
{// Perform a long synchronous task e.g. a lengthy calculation
TInt res = SynchronousTask();
// Task is complete so end this thread with returned error code
RThread().Kill(res);
return (KErrNone); // This value is discarded
}

void CAsyncTask::DoCancel()
{// Kill the thread and complete with KErrCancel
// ONLY if it is still running

TExitType threadExitType = iThread.ExitType();
if (EExitPending==threadExitType)
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{// Thread is still running
iThread.LogonCancel();
iThread.Kill(KErrCancel);
iThread.Close();
// Complete the caller
User::RequestComplete(iCaller, KErrCancel);
}

}

void CAsyncTask::RunL()
{// Check in case thread is still running e.g. if Logon() failed
TExitType threadExitType = iThread.ExitType();
if (EExitPending==threadExitType) // Thread is still running, kill it

iThread.Kill(KErrNone);

// Complete the caller, passing iStatus value to RThread::Kill()
User::RequestComplete(iCaller, iStatus.Int());
iThread.Close(); // Close the thread handle, no need to LogonCancel()
}

TInt CAsyncTask::RunError(TInt anError)
{
if (iCaller)

{
User::RequestComplete(iCaller, anError);
}

return (KErrNone);
}

For more sophisticated thread death notification, you can alternatively
use the RUndertaker thread-death notifier class, which is described in
detail in the SDK. By creating an RUndertaker, you receive notification
when any thread is about to die. The RUndertaker passes back a
notification for each thread death, including the exit reason and the
TThreadId. It creates a thread-relative handle to the dying thread,
which effectively keeps it open. This means that you must close the
thread handle to release the thread finally into the abyss – hence the
name of the class. This notification is useful if you want to track the
death of every thread in the system, but if you’re interested in the
death of one specific thread, it’s easier to use RThread::Logon(), as
described above.

It is possible to receive notification when a thread dies by making a
call to RThread::Logon() on a valid thread handle. The manner
and reason for thread termination can also be determined from
the RThread handle of an expired thread by calling ExitType(),
ExitReason() and ExitCategory().



162 SYMBIAN OS THREADS AND PROCESSES

10.4 Inter-Thread Data Transfer

On Symbian OS, you can’t transfer data pointers directly between threads
running in separate processes, because process address spaces are pro-
tected from each other, as I described in Chapter 8.5

On EKA1 versions of Symbian OS, RThread provides a set of functions
that enable inter-thread data transfer regardless of whether the threads
are in the same or different processes:

IMPORT_C TInt GetDesLength(const TAny* aPtr) const;
IMPORT_C TInt GetDesMaxLength(const TAny* aPtr) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes8& aDes,TInt anOffset) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes16 &aDes,TInt anOffset) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC8& aDes,TInt anOffset)

const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC16& aDes,TInt anOffset)

const;

On EKA2 these methods have been withdrawn from class RThread,
but are implemented by RMessagePtr, which can be used by a server
to transfer data to and from a client thread. The functions take slightly
different parameters but perform a similar role. I’ll discuss inter-thread
data transfer here using the RThread API, which is applicable to EKA1
releases. In EKA2 the RMessagePtr API is more intuitive, using a
parameter value rather than TAny* to identify the source or target
descriptor in the ”other” thread. You should consult an appropriate v8.0
SDK for complete documentation.

On EKA1, RThread::WriteL() can be used to transfer data from the
currently running thread to the thread represented by a valid RThread
handle. RThread::WriteL() takes a descriptor (8- or 16-bit) contain-
ing the data in the current thread and writes it to the thread on whose
handle the function is called. The destination of the data in that other
thread is also a descriptor, which should be modifiable (derived from
TDes). It is identified as a const TAny pointer into the other thread’s
address space. The function leaves with KErrBadDescriptor if the
TAny pointer does not appear to point to a valid descriptor. The maxi-
mum length of the target descriptor can be determined before writing by
a call to RThread::GetDesMaxLength().

5 This is true for EKA2 and previous releases of Symbian OS running on target hardware.
However, the Symbian OS Windows emulator for releases prior to EKA2 does not protect
the address spaces of Symbian OS processes. The threads share writable memory, which
means that each emulated process can be accessed by other processes. Code which uses
direct pointer access to transfer data between threads in different processes will appear to
work on the Windows emulator, then fail spectacularly when deployed on a real Symbian
OS handset.
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RThread::ReadL() can be used to transfer data into the currently
running thread from the thread represented by a valid RThread handle.
ReadL() transfers data from a descriptor in the ”other” thread, identified
as a const TAny pointer, into a modifiable descriptor (8- or 16-bit) in
the current thread. The function leaves with KErrBadDescriptor if
the TAny pointer does not point to what appears to be a valid descriptor.
The length of the target descriptor can be determined before reading from
it by a call to RThread::GetDesLength().

Inter-thread data transfer uses descriptors because they fully describe
their length and maximum allowable length, which means that no extra
parameters need to be transferred to indicate this information. If you want
to transfer non-descriptor data, you can use the package classes TPckgC
and TPckg, described in Chapter 6, which effectively ”descriptorize” the
data. Package classes are only valid for transferring a flat data structure
such as that found in a T class object; their use in inter-thread data transfer
between client and server threads is discussed in Chapter 12.

10.5 Exception Handling

On EKA1, the RThread API supports thread exception management. On
the more secure EKA2 platform, this has moved into class User and
applies only to the current thread. The signatures of the five functions are
the same, however, regardless of the class that implements them.

TExceptionHandler* ExceptionHandler() const;
TInt SetExceptionHandler(TExceptionHandler* aHandler, TUint32 aMask);
void ModifyExceptionMask(TUint32 aClearMask, TUint32 aSetMask);
TInt RaiseException(TExcType aType);
TBool IsExceptionHandled(TExcType aType);

SetExceptionHandler() allows you to define an exception han-
dler function for the thread for which the handle is valid. It takes an
exception-handling function and a bitmask that allows you to specify the
category of exception which will be handled (see e32std.h).

const TUint KExceptionAbort=0x01;
const TUint KExceptionKill=0x02;
const TUint KExceptionUserInterrupt=0x04;
const TUint KExceptionFpe=0x08;
const TUint KExceptionFault=0x10;
const TUint KExceptionInteger=0x20;
const TUint KExceptionDebug=0x40;

If an exception is raised on the thread that falls into the category han-
dled, it will be passed to the specified exception handler to be dealt with.
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The exception handler function, TExceptionHandler, is a typedef
for a function which takes a value of TExcType (an enumeration which
further identifies the type of exception) and returns void. Each of the
TExcType enumeration values each correspond to one of the categories
above but they identify the exception further, for example EExcBounds-
Check, EExcInvalidOpCode and EExcStackFault are all types of
the KExceptionFault category.

What should an exception handler function do? Well, you cannot
identify where the problem occurred from within the handler, so the
only thing you can do is leave from the handler function. Effectively,
the handler converts an exception into a leave which can be caught
and dealt with. However, by doing this, you require a TRAP around
every operation that could generate an exception of that type. This could
have a significant impact in terms of code size and speed (as discussed
in Chapter 2) and as a result, while this technique might be useful for
debugging, it is not recommended for code you intend to release.

Without a handler specified, the exception terminates the thread with
a KERN-EXEC 3 panic if it occurs during a kernel executive call, or a
USER-EXEC 3 panic if it occurs in a non-system call.

10.6 Processes

I introduced processes in Chapter 8 and briefly mentioned them in
this chapter when discussing relative thread priorities. The RProcess
class can be used to get a handle to a running process, in much the
same way as RThread for a running thread. RProcess is defined in
e32std.h and a number of the functions look quite similar to those in
RThread.6

You can use the default constructor to create a handle to the current
process, the Create() function to start a new, named process and the
Open() function to open a handle to a process identified by name or
process identity (TProcessId). The Resume() functions and assorted
functions to stop the process will also look familiar. Note that there is no
Suspend() function because processes are not scheduled; threads form
the basic unit of execution and run inside the protected address space of
a process.

Chapter 13 discusses the difference between the emulator and target
hardware in more detail, but one aspect is particularly relevant here. On
Windows, the emulator runs within a single Win32 process, EPOC.exe,
and each Symbian OS process runs as a separate thread inside it.

6 The SDK documentation for RThread and RProcess is extensive and should be
consulted for further details of both these classes. Like the RThread class, RProcess has
been secured in EKA2, resulting in the removal of some functions and the restriction of
others to apply only to the currently running process
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On EKA1 the emulation of processes on Windows is incomplete and
RProcess::Create() returns KErrNotFound. To emulate any code
that spawns a separate process, e.g. server startup code, different source
code is required for emulator builds, using threads instead of processes
in which to launch the server. The EKA2 release has removed this
inconvenience. While Symbian OS still runs in a single process on
Windows (indeed, that’s what the ”S” in WINS, WINSCW and WINSB
stands for), the emulation is enhanced and you can use the same code,
calling RProcess::Create() on both platforms. Symbian OS, for
emulator builds, translates this call to creation of a new Win32 thread
within EPOC.exe.

I’ll conclude this chapter with a brief description of the most fundamen-
tal process within Symbian OS, the kernel server process, and the threads
which run within it. I’ll restrict the discussion to Symbian OS EKA1 – you
will be able to find more detail of the changes introduced by EKA2 from the
relevant system documentation (www.symbian.com/technology/
product descriptions.html). On EKA1, the kernel server process is a
special process that contains two threads which run at supervisor privi-
lege level:

• the kernel server thread
This is the first thread to run in the system and has the highest
priority of all threads. It implements all kernel functions requiring
allocation or deallocation on the kernel heap and manages hardware
resources. Device drivers run in the kernel thread and use interrupt
service routines and delayed function calls to service events from
the hardware.

• the ”Null” or ”Idle” thread
This has the lowest priority in the system and therefore runs when
no other threads are ready to run. It switches the processor into idle
mode to save power, by calling a callback function to shut down part
of the hardware. This allows Symbian OS to conserve power most
efficiently, thus maximizing the battery life. To allow the Null thread
to run, your code should wait on events (typically using active objects
or kernel signaling primitives such as mutexes) rather than polling
constantly. A polling thread prevents the Null thread from running
and stops Symbian OS from entering its idle, power-saving, mode.

The other threads in the system are known as user threads and run in an
unprivileged state. User threads can access kernel services, such as other
threads or processes, using the APIs in the user library (EUser.dll).
When a user thread requires a kernel service, EUser either switches to
the kernel executive, which runs kernel-privileged code in the context
of the running thread, or makes a call via the executive into the kernel
server process.
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10.7 Summary

This chapter compared the use of pre-emptively scheduled threads on
Symbian OS with cooperatively scheduled active objects. Active objects
are preferred for most multitasking code because they have lower runtime
overheads. However, threads are sometimes necessary, for example if
priority-based pre-emption is required or to perform a long-running
background task asynchronously where it cannot be split into increments.

The chapter reviewed the RThread class, which represents a handle
to a thread on Symbian OS. It identified the differences in the RThread
API between EKA1 and EKA2 releases, because EKA2 has removed the
facility for one thread to affect any other thread running in a separate
process. The RThread API allows a thread handle to rename a thread,
modify its priority and suspend, terminate or panic it. It also provides a
means by which data may be transferred between threads (inter-thread
data transfer is discussed in more detail in Chapters 11 and 12).

The chapter concluded by discussing Symbian OS processes in brief,
and included a short description of the threads running with the EKA1
kernel server process.

The use of active objects for multitasking on Symbian OS is discussed
in Chapters 8 and 9.
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The Client–Server Framework

in Theory

In theory there is no difference between theory and practice. In
practice there is

Yogi Berra

This chapter examines the client–server framework model on Symbian
OS. I’ll be discussing the theory, such as why client–server is used on
Symbian OS, how it works and the implementation classes involved.
There’s a lot of information, so I’ll use a question and answer structure to
break the chapter down clearly into logical sections.

When programming for Symbian OS, it is likely that you will often
use system servers transparently, via classes that wrap the actual details
of client–server communication. It’s less common to implement your
own server or write client-side code that accesses a server directly. So
in this chapter, I’ll make it clear which information you can skip if you
really only want to know the basics of the Symbian OS client–server
architecture and how to use a server as a typical client. I’ll illustrate the
chapter with examples of how to use a typical Symbian OS system server,
the file server.

The next chapter works through some example code for a Symbian
OS client and server, to illustrate how a typical implementation is put
together and explain how to go about writing your own.

This chapter discusses the client–server model for Symbian OS releases
up to and including v7.0s (the code samples use the client–server APIs
from Symbian OS v7.0). On Symbian OS v8.0, the concepts are generally
the same, but some of the APIs have changed. Rather than confuse matters,
I’ve decided to concentrate solely on the releases available at the time
of going to press. You can find more information about the differences
in v8.0 from the relevant v8.0 SDKs when they become available, from
other Symbian press books and, I hope, later editions of this book, or
from the Symbian website (www.symbian.com/technology.html).
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11.1 Why Have a Client–Server Framework?

A client makes use of services provided by a server. The server receives
request messages from its clients and handles them, either synchronously
or asynchronously.1 Data is passed from the client to the server in the
request message itself or by passing a pointer to a descriptor in the
client address space, which the server accesses using kernel-mediated
data transfer.

On Symbian OS, servers are typically used to manage shared access
to system resources and services. The use of a server is efficient since it
can service multiple client sessions and can be accessed concurrently by
clients running in separate threads.

A server also protects the integrity of the system because it can ensure
that resources are shared properly between clients, and that all clients
use the resources correctly. When the server runs in its own process
it has a separate, isolated address space and the only access a client
has to the services in question is through a well-defined interface. By
employing a server in a separate process, the system can guarantee
that misbehaved clients cannot corrupt any of the resources the server
manages on its behalf or for other clients. On Symbian OS, it is this
rationale which protects the filesystem; all access to file-based data must
be made through the file server client, efsrv.dll, or a higher-level
component which uses it such as the stream store, estor.dll.

Servers can also be used to provide asynchronous services because
they run in a separate thread to their clients. Most of the system services
on Symbian OS, particularly those providing asynchronous functionality,
are provided using the client–server framework: for example the window
server (for access to UI resources such as the screen and keypad), the
serial communications server (for access to the serial ports) and the
telephony server.

11.2 How Do the Client and Server Fit Together?

A Symbian OS server always runs in a separate thread to its clients and
often runs in a separate process. All interaction is performed by message
passing or inter-thread data transfer.

1 A synchronous function performs a service then returns directly to the caller, often
returning an indication of success or failure. A typical example of a synchronous function
is a call to format a descriptor or to copy the contents of one descriptor into another.

An asynchronous function submits a request as part of the function call and returns to
the caller, but completion of that request occurs some time later. Upon completion, the
caller receives a signal to notify it and indicate success or failure. A good example of an
asynchronous service is a timer – the request completes at a later stage when the wait time
has elapsed.
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This protects the system resource that the server accesses from any
badly programmed or malicious clients. A badly-behaved client should
not be able to ”crash” a server, although, of course, the server must
still guard against invalid data or out-of-sequence client requests and, if
necessary, panic the client responsible.

A typical server has associated client-side code that formats requests
to pass to the server, via the kernel, and hides the implementation details
of the private client–server communication protocol.

This means that, for example, a ”client” of the Symbian OS file server
(efile.exe2) is actually a client of the file server’s client-side imple-
mentation and links against the DLL which provides it (efsrv.dll), as
shown in Figure 11.1.

PROCESS
BOUNDARY

mytest.exe

efsrv.dll

efile.exe

Calling Client
(e.g. test code)

Client-side File Server
implementation

Links to efsrv.lib and calls
API methods, such as

RFs::Connect()

File Server

Client−server communication
(kernel-mediated messages)

Figure 11.1 File server, client and calling client

In the rest of this chapter, I’ll make it clear when I use the term ”client”
whether I mean:

• the client-side implementation that communicates directly with the
server, or

• code which links to that client-side implementation, using it to request
a service of the server, a ”calling client”.

2 Chapter 13 discusses the difference between executable code which runs on the
emulator and on target hardware. In effect, on Windows, Symbian OS runs in a single
process which emulates multiple processes by loading them as DLLs into separate threads.
Thus, while the file server is built to run on hardware as efile.exe, to run on Windows
builds it is built as efile.dll.
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The client-side server implementation may also be responsible for
starting the server if it is not critical to the system (whereupon it will be
started when the operating system itself starts).

11.3 How Do the Client and Server Communicate?

A client and a server run in different threads and often in different
processes. When running in different processes, they cannot access each
other’s virtual address spaces, so they use a message-passing protocol
to communicate. The communication channel is known as a session. A
session is created by the kernel, which also acts as an intermediary for
all client–server communication. A client may have several sessions with
a server, although, as I’ll explain later, the number of sessions should
be kept to a minimum, because each session consumes resources in the
kernel and server.

Client–server communication occurs when the client makes a request
to the server using a message that identifies the nature of the request
and can additionally hold some parameter data. For simple transactions
this is sufficient, but for more complex parameters the server can transfer
additional data to or from the client thread using inter-thread data transfer
functions, which I described in Chapter 10.

In the rest of this chapter, unless I state otherwise, this discussion
assumes that the client and server are running in separate processes,
which means that data transfer between them requires inter-process
communication (IPC). Under these circumstances parameter data can
never be transferred using simple C++ pointers, because the server never
has direct access to the client’s address space (or vice versa). Instead, the
kernel performs the data access on the server’s behalf.

When the request has been fulfilled, the server notifies the client that
it has completed by signaling the client thread’s request semaphore,
returning a completion result as a 32-bit value.

11.4 What Classes Does the Client–Server
Framework Use?

This section gives an overview of the classes Symbian OS uses to
implement the client–server framework. For further details of any of
the classes, you should consult your preferred SDK. The next chapter
reviews a typical implementation of a transient server3 and its client-side
access code, and further illustrates how the classes I discuss here are used.

3 A transient server is started by the first client session that connects to it and shuts itself
down when the last client session disconnects itself. I’ll discuss server startup and shutdown
in more detail in Section 11.6.
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This section provides general background information on how the
client–server framework is implemented. Although it helps to understand
what is happening ”under the hood”, this information is not necessary
simply to use a Symbian OS server. Most of the rest of the chapter discusses
the implementation of a typical server or the client-side wrapper code
that communicates with a server. If you don’t want to get into this much
detail, but want to know how to use a Symbian OS server most effectively,
you may wish to skip ahead to Section 11.14.

The classes I’ll discuss are as follows:

• RSessionBase – the client-side base class, representing a session
with a server

• RMessage – a server-side representation of a client request and its
request payload data

• DSession – a kernel class that represents a client–server session

• CSharableSession – an abstract base class for a server-side repre-
sentation of a session

• CServer – an abstract base class, deriving from CActive, which is
used server-side to receive client requests from the kernel and direct
them to the appropriate session.

RSessionBase

RSessionBase is the main client-side class. It derives from RHandle-
Base, which is the base class for classes that own handles to other
objects, often those created within the kernel. RSessionBase uniquely
identifies a client–server session.

Here’s the declaration of RSessionBase from e32std.h (I’ve omit-
ted a couple of private methods):

class RSessionBase : public RHandleBase
{

public:
enum TAttachMode {EExplicitAttach,EAutoAttach};

public:
IMPORT_C TInt Share(TAttachMode aAttachMode=EExplicitAttach);
IMPORT_C TInt Attach() const;

protected:
inline TInt CreateSession(const TDesC& aServer,

const TVersion& aVersion);
IMPORT_C TInt CreateSession(const TDesC& aServer,

const TVersion& aVersion,TInt aAsyncMessageSlots);
IMPORT_C TInt Send(TInt aFunction,TAny* aPtr) const;
IMPORT_C void SendReceive(TInt aFunction,TAny* aPtr,

TRequestStatus& aStatus) const;
IMPORT_C TInt SendReceive(TInt aFunction,TAny* aPtr) const;
};
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The methods of this class are used to send messages to the server. You’ll
notice that most of them are protected. This is because the client-side class
which accesses a server will typically derive from RSessionBase (for
example, class RFs, which provides access to the file server). The derived
class exports functions that wrap RSessionBase communication with
the server and are more meaningful to potential clients of the server (such
as RFs::Delete()or RFs::GetDir()).

The overloads of RSessionBase::CreateSession() start a new
client–server session. They are typically called by client-side implemen-
tation code in an exported method such as Open()or Connect().
As an example, when you start a session with the file server you
call RFs::Connect(), which itself calls RSessionBase::Create-
Session(). When the session is opened successfully, corresponding
kernel and server-side objects are created.

A server has a unique name which must be passed to RSession-
Base::CreateSession() to connect the client to the correct server.
Again, the client-side implementation takes care of this, so the calling
client does not need to know the name of the server. CreateSession()
also takes a TVersion structure4 for compatibility support.

You’ll notice that one overload of CreateSession() takes an inte-
ger parameter called aAsyncMessageSlots. This value reserves a
number of slots to hold any outstanding asynchronous requests that
client session may have with the server.5 The maximum number of slots
that may be reserved for each server is 255. The other overload of
CreateSession() does not pre-allocate a maximum number of mes-
sage slots. Instead, they are taken from a kernel-managed pool, of up
to 255 message slots for that server, which is available to the whole
system. If the number of outstanding requests to a server exceeds the
number of slots in the system pool, or the number reserved for a particu-
lar session, the asynchronous request fails to be submitted and completes
immediately with the error KErrServerBusy.

A request to a server is issued through a call to RSession-
Base::SendReceive() or RSessionBase::Send(). Send-
Receive()has overloads to handle both synchronous and asynchronous
requests. The asynchronous request method takes a TRequestStatus&
parameter, while the synchronous version returns the result in the TInt
return value. RSessionBase::Send() sends a message to the server
but does not receive a reply (and in practice, this function is rarely used).

The Send()and SendReceive() methods take a 32-bit argu-
ment (aFunction) that identifies the client request (typically defined
in an enumeration shared between the client and server – see the
THerculeanLabors enumeration in the sample code of Chapter 12

4 A TVersion object contains three integers representing the major, minor and build
version numbers.

5 A session can only ever have one outstanding synchronous request with a server.
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for an example). The methods also take a TAny* argument which is
a pointer to an array of four 32-bit values. This array constitutes the
”payload” for the request; it can be empty or it may contain up to four
integer values or pointers to descriptors in the client’s address space. The
layout of the array is determined in advance for each request between
client and server and is a private protocol. The calling client does not
need to have any knowledge of how data is transferred.

If a server supports session sharing, a client session may be shared by all
the threads in a client process (Symbian OS v8.0 is the first release which
also allows a session to be shared between processes). However, some
servers restrict the session to the thread which connected to the server
alone (this was always the case until sharable sessions were introduced
in Symbian OS v6.0). I’ll discuss sharable sessions in more detail later in
this chapter.

On the client side, if a session can be shared, the first connection to
the server should be made as normal using RSessionBase::Create-
Session(). Once the session is opened, RSessionBase::Share()
should be called on it to make it sharable.6 Until Share() is called, the
session is specific to the connecting client thread. If the TAttachMode
parameter passed to Share() is EExplicitAttach, other threads
wishing to share the session should call RSessionBase::Attach()
on the session. However, if EAutoAttach is passed to Share(), then
all threads are attached to the session automatically. If the session is not
attached before a message is sent, or the session is not sharable, a panic
occurs (KERN-SVR 0).

Client requests are identified using an enumeration shared between
the client and server. Requests are submitted with a payload array
which can contain up to four 32-bit values (integer values or
pointers to descriptors in the client’s address space).

RMessage

An RMessage object is a server-side representation of a client request,
and each client request to the server is represented by a separate
RMessage object. Here is the definition from e32std.h, where again,
I’ve shown only the most relevant methods:

class RMessage
{

public:
IMPORT_C RMessage();

6 A server must support sharable sessions, otherwise a call to RSession-
Base::Share() raises a panic (KERN-SVR 23).
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IMPORT_C void Complete(TInt aReason) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes8& aDes) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes8& aDes,

TInt anOffset) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes16& aDes) const;
IMPORT_C void ReadL(const TAny* aPtr,TDes16& aDes,

TInt anOffset) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC8& aDes) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC8& aDes,

TInt anOffset) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC16& aDes) const;
IMPORT_C void WriteL(const TAny* aPtr,const TDesC16& aDes,

TInt anOffset) const;
IMPORT_C void Panic(const TDesC& aCategory,TInt aReason) const;
IMPORT_C void Kill(TInt aReason) const;
IMPORT_C void Terminate(TInt aReason) const;
inline TInt Function() const;
inline const RThread& Client() const;
inline TInt Int0() const;
inline TInt Int1() const;
inline TInt Int2() const;
inline TInt Int3() const;
inline const TAny* Ptr0() const;
inline const TAny* Ptr1() const;
inline const TAny* Ptr2() const;
inline const TAny* Ptr3() const;
inline const RMessagePtr MessagePtr() const;

protected:
TInt iFunction;
TInt iArgs[KMaxMessageArguments];
RThread iClient;
const TAny* iSessionPtr;
TInt iHandle;
};

The RMessage object stores the 32-bit request identifier (also known
as an ”opcode”), which can be retrieved by calling Function(). It
also holds the array of request payload data, a handle to the client
thread, accessible through Client(), and the client’s RHandleBase
identification handle.

As I described above, the layout of the request parameters in the
request data array is pre-determined for each client request. For requests
where the server expects parameters from the client, it can retrieve the
data from an RMessage object using Int0() to return a 32-bit value
from the first element of the request array, Int1() to return the second
element, and so on. In a similar manner, Ptr0() returns the contents of
the first element in the request array as a TAny* pointer, Ptr1() for the
second element, and so on to the fourth element of the array.

The pointers returned from Ptr0() to Ptr3() cannot be used
directly by the server code if they refer to the address space of a
client running in a different process. The server must instead pass
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these pointers to the overloaded ReadL() and WriteL() methods7

of RMessage, which use kernel-mediated inter-process communication
to transfer the data.

When the server has serviced a client request, it calls Complete()
on the RMessage to notify the client. This method wraps a call to
RThread::Complete() on the client’s thread handle. The integer
value passed to Complete() is written into the client’s TRequest-
Status value and the request semaphore for the client thread is signaled.
If you’re wondering about synchronous SendReceive() requests from
the client, which don’t take a TRequestStatus parameter, take a look
at Section 11.5. The Panic(), Terminate()and Kill() methods
of RMessage are wrappers over the RThread methods of the same
name and may be used by the server to stop the client thread under
certain circumstances, such as client misbehavior due to a program-
ming error.

The client and server run in separate threads which also typically
run in different processes. The address spaces of Symbian OS
processes are protected and kernel-mediated data transfer must be
used between the client and server.

DSession

DSession is a kernel class; the ”D” prefix means that it is a CBase-
derived kernel-side class.

On Symbian OS, each process is memory-mapped into a different
address space, so it is protected from other processes. One process
cannot overwrite the memory of another. The only process that can ”see”
all the physical memory in the system is the kernel process. When a client
calls RSessionBase::CreateSession(), the kernel establishes the
connection between the client and the server and creates a DSession
object to represent the session. Each DSession object has a pointer to a
kernel object representing the client thread (DThread) and a pointer to
the kernel server object (DServer), as shown in Figure 11.2.

CSharableSession

CSharableSession is an abstract base class that represents a session
within the server. For each RSessionBase-derived object on the client
side, there is an associated CSharableSession-derived object on the
server side.

7 These methods are simply wrappers over the ReadL() and WriteL() methods of
RThread, as described in Chapter 10.
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Figure 11.2 Symbian OS client- and server-side base classes

class CSharableSession : public CBase
{
friend class CServer;

public:
IMPORT_C ∼CSharableSession()=0;
IMPORT_C virtual void CreateL(const CServer& aServer);
inline const CServer* Server() const;
inline const RMessage& Message() const;
IMPORT_C void ResourceCountMarkStart();
IMPORT_C void ResourceCountMarkEnd();
IMPORT_C virtual TInt CountResources();
virtual void ServiceL(const RMessage& aMessage)=0;

protected:
IMPORT_C CSharableSession();
...

private:
TInt iResourceCountMark;
TDblQueLink iLink;
const CServer* iServer;
};
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CSharableSession provides methods to access the CServer-
derived object, Server(), which I’ll discuss shortly. Message() can
be used to access the next client request to process, if there any
are outstanding. If the server makes an asynchronous call to service
the request and does not complete the request before returning from
ServiceL(), the RMessage object must be stored so it can be com-
pleted at a later stage. If it was not stored, when it came to complete the
request, Message() would return a different message if other requests
had been submitted to the server while the asynchronous request was
being processed.

Classes derived from CSharableSession handle incoming client
requests through their implementation of the pure virtual ServiceL()
method. Typically, this method should check the incoming message to
see which request the client has submitted, then handle it by unpacking
the message and using the incoming parameters accordingly. When the
request has been handled, the server calls RMessage::Complete()
to notify the client thread of request completion. The example code in
Chapter 12 illustrates this.

You’ll notice a set of resource-counting functions, Resource-
CountMarkStart(), ResourceCountMarkEnd() and Count-
Resources(), which have a default, ”do nothing” implementation in the
CSharableSessionbase class but which may be overridden by derived
classes for customized resource checking at server startup and shutdown,
usually used only in debug builds. ResourceCountMarkStart() ini-
tializes server resource counting while ResourceCountMarkEnd()
checks that the current number of server resources (e.g. subsessions) in
use is equivalent to that when resource counting started. If the values
are not equal, the function panics the client thread associated with the
most recent message. CountResources() returns the number of server
resources currently in use.

Prior to Symbian OS v6.0, class CSession represented a session on
the server side. The CSession class was thread-specific and accessible
only by a single thread on the client side. Symbian OS v6.0 introduced
the concept of sharable client–server sessions. From v6.0, a client session
may potentially be shared between multiple threads in the same client
process, although a server implementation is not required to support
sharable sessions. To support this modification, Symbian OS v6.0 intro-
duced CSharableSession as the base class for a server-side session.
CSession still exists, deriving from CSharableSession, as an abstract
class which provides a set of thread-specific functions to transfer data
between client and server.
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CServer

The fundamental server-side base class is CServer, which itself derives
from CActive. Here’s the definition of CServer from e32base.h,
with the less relevant details omitted for clarity:

class CServer : public CActive
{

public:
IMPORT_C ∼CServer()=0;
IMPORT_C TInt Start(const TDesC& aName);
IMPORT_C void StartL(const TDesC& aName);
IMPORT_C void ReStart();
inline const RMessage& Message() const;

protected:
IMPORT_C CServer(TInt aPriority,

TServerType aType=EUnsharableSessions);
IMPORT_C void DoCancel();
IMPORT_C void RunL();

private:
virtual CSharableSession* NewSessionL(const TVersion& aVersion)

const=0;
void Connect();

private:
const TServerType iSessionType;
RServer iServer;
TDblQue<CSharableSession> iSessionQ;

protected:
// to iterate the list of connected sessions
TDblQueIter<CSharableSession> iSessionIter;
};

The system ensures that there is only one CServer-derived active
object created for each uniquely-named server. This object receives
requests from all clients of the server as events, receiving notification of
each incoming request from the kernel. By inspecting the RMessage asso-
ciated with the request, the event handler method, CServer::RunL(),
determines whether the CServer-derived object handles the requests
itself or directs them to be handled by the appropriate server-side ses-
sion class.

If the request is to connect a new session, CServer::RunL() calls
the NewSessionL() method of the derived class, which creates a new
server-side session object. If it is a request from a client-side session
to disconnect, the associated server-side session object is destroyed
in CServer::RunL(). For other client requests, CServer::RunL()
calls the ServiceL() method of the associated CSharableSession-
derived object to service the request. Having serviced each request,
CServer::RunL() resubmits a ”message receive” request and awaits
further client requests.

When you are implementing a server, you must create an active sched-
uler as part of server startup (as I described in Chapter 8, which covers
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the basics of active objects). I’ll illustrate how to do this in the example
code for a typical server in the next chapter. CServer::StartL()
adds the server to the active scheduler and initiates the first message
receive request.

For each CServer object created in the system, a corresponding
DServer object is created in the kernel. Each DServer object holds
a doubly-linked queue of all DSessions, representing all the currently
open sessions for that server. It also owns a kernel object, DThread,
which represents the server thread.

When implementing a server, you must create an active scheduler
during server startup.

11.5 How Do Synchronous and Asynchronous
Requests Differ?

A client can request synchronous or asynchronous services8 from a server.
Asynchronous requests take a TRequestStatus reference parameter,
which is passed to RSessionBase::SendReceive(). This parameter
is filled with a completion result by the server, via the kernel, when the
request is completed by a call to RThread::RequestComplete(),
which also signals the request semaphore of the client thread to notify it
of request completion.

In fact, synchronous requests to the server are actually ”pseudo-
synchronous”. The synchronous overload of RSessionBase::Send-
Receive() declares a TRequestStatus object locally, passes this
to the asynchronous overload of SendReceive() and then blocks the
client thread until the request completes. In effect, the client thread is
suspended and notified only when a server has completed its action,
rather than continuing to poll the server for the status of a request. This is
important on Symbian OS, to minimize power consumption.

11.6 How Is a Server Started?

There are several ways in which a server can be started and stopped:

• System servers, e.g. the file server, are started by Symbian OS as part
of OS startup because they are essential to the operating system.

8 For each asynchronous request function a server API provides, it must also provide a
cancellation method.
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• Application servers, which are only needed when certain applications
are running, are started when clients need to connect to them. If
an application attempts to start a server that is already running, say
because it has been started by another application, no error results
and only a single instance of the server runs. When the server has
no outstanding clients, that is, when the last client session closes,
it should terminate to save system resources. This type of server is
known as a transient server. I’ll illustrate startup and shutdown for this
kind of server in the next chapter.

• Other servers, e.g. the POSIX server, are required by only a single
application and are started with that application and closed when
it terminates.

11.7 How Many Connections Can a Client Have?

A client can have multiple ”connections” to a server through one or more
sessions as follows:

• Each connection can use a separate client–server session opened by
a call to RSessionBase::CreateSession(). The sessions are
independent of any other within the client thread, and each maintains
its own context. That is, each client session has a corresponding
CSharableSession object in the server and DSession object in
the kernel. Use of multiple client sessions where they are not strictly
necessary should be limited to reduce the number of kernel and server
resources consumed – I’ll discuss this further later in this chapter.

• The client may create a number of subsessions within a single session
(the use of subsessions is described in Section 11.14). Client–server
communication occurs via the owning session, using a unique handle
to identify each individual subsession. The use of separate subsessions
is more lightweight than separate sessions because it uses fewer
kernel resources. However, they are more complex to implement
server-side.

• The server may support sharable sessions. Up to 255 threads in a
client process may share a single session.

11.8 What Happens When a Client Disconnects?

Typically, a class used to access a server has a termination method,
which is usually called Close(). Internally, this method will call
RHandleBase::Close(), which sends a disconnection message to
the server and sets the session handle to zero. On receipt of this message,
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the server ends its session with the client by destroying the associated
CSharableSession-derived object (in addition, the kernel will destroy
the DSession object which represents the session). If the client has any
outstanding requests when Close() is called, they are not guaranteed
to be completed.

11.9 What Happens If a Client Dies?

For a non-sharable session, if the client dies without calling Close(),
the kernel sends a disconnection message to the server to allow it to
cleanup sessions associated with that client thread. The kernel performs
its thread-death cleanup by walking the queue of DSession objects and
destroying any associated with the dead client thread.

If the session is sharable, the death of a single client thread does not
close the session – the session is effectively process-relative by virtue of
being sharable. To destroy the session, either the client process must
terminate or the session must be closed explicitly on the client-side by a
call to Close() on an RSessionBase handle.

11.10 What Happens If a Server Dies?

If a server dies, the kernel will complete any waiting client requests
with the error code KErrServerTerminated. This gives the client
an opportunity to handle request failure and cleanup, destroying any
RSessionBase objects open on the server. Even if the server is restarted,
previous client sessions cannot be reused without first being reconnected
to it, so the only valid operation is to call Close().

11.11 How Does Client–Server Communication
Use Threads?

A session between a client and a server is between one or more client
threads and a separate server thread. Client code runs in user-mode
threads. It submits requests to server code which also runs in user mode.
The channel of communication between client and server is mediated by
the kernel.

The Symbian OS server model is thread-based, allowing a server to
run either in a separate process to the client, for greater isolation between
client and server, or in the same process, to avoid the overhead of
inter-process client–server communication.
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11.12 What Are the Implications of Server-Side
Active Objects?

The responsiveness of a server can be defined as the maximum time
required to process a client message or the maximum time required to
respond to an event on some device that it controls. The server uses
non-pre-emptive active-object event-handling (described in Chapters 8
and 9). The response time is determined by the longest possible RunL()
event-handler method of any active object running on the server thread,
because an active object cannot be pre-empted when it is handling
an event.

If a client makes a request while the server thread is already handling
an event in a RunL() method, it runs to completion before the client
request can be serviced. This is also true for external events occurring
from resources owned by the server. Thus, if you want to write a high-
performance server, there should be no long-running RunL() methods
in any active objects in the server’s main thread.

This includes processing in the ServiceL() method of the
CSharableSession-derived class, which is called by
CServer::RunL(). This means that long-running operations must be
performed by a separate thread or server.

Furthermore, the priority of a server thread should be chosen according
to the maximum guaranteed response time, that is, the longest RunL()
method of the server. You should not give a high priority to a server
thread that performs lots of processing in its event handler, since it may
block threads with more appropriately chosen, lower, priorities.

11.13 What Are the Advantages of a Local (Same-Process)
Server?

Local servers are useful when several related servers can run in the
same process. For example, Symbian OS v7.0 runs the serial communi-
cations server, sockets server and telephony server in the same process
(C32.exe). The servers are in a different process to their clients, so a
context switch is still required, and resource integrity is maintained by
the separation. However, interactions between the three servers occur in
the same process and have a correspondingly lower overhead than they
would otherwise (I’ll describe the overheads associated with using the
client–server model in more detail shortly).

A private local server runs in the same process as its clients. It can
be useful, for example, if you need to share client sessions to a server
which does not support sharable sessions. The client process should use a
private local server which does support sharable sessions and has a single
open session with the non-sharable server. This private server services
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requests from each of the client threads, passing them through as requests
to its single session with the non-sharable server.

11.14 What Are the Overheads of Client–Server
Communication?

Session Overhead
Although a client can have multiple sessions with a server, each session
consumes limited resources in both the server and the kernel. For each
open client session, the kernel creates and stores a DSession object
and the server creates an object of a CSharableSession-derived class.
This means that each connecting session may give rise to a significant
speed overhead. Rather than creating and opening multiple sessions on
demand, client code should aim to minimize the number of sessions used.
This may involve sharing a session, or, for servers which do not support
this, passing the open session between functions or defining classes that
store and reuse a single open session.

For efficiency, where multiple sessions are required, a client–server
implementation may provide a subsession class to reduce the expense of
multiple open sessions. To use a subsession, a client must open a session
with the server as normal, and this can then be used to create subsessions
which consume fewer resources and can be created more quickly. This
is done using the RSubSessionBase class, the definition of which is
shown below (from e32std.h):

class RSubSessionBase
{

public:
inline TInt SubSessionHandle();

protected:
inline RSubSessionBase();
inline RSessionBase& Session();
IMPORT_C TInt CreateSubSession(RSessionBase& aSession,

TInt aFunction,const TAny* aPtr);
IMPORT_C void CloseSubSession(TInt aFunction);
IMPORT_C TInt Send(TInt aFunction,const TAny* aPtr) const;
IMPORT_C void SendReceive(TInt aFunction,const TAny* aPtr,

TRequestStatus& aStatus) const;
IMPORT_C TInt SendReceive(TInt aFunction,const TAny* aPtr) const;

private:
RSessionBase iSession;
TInt iSubSessionHandle;
};

A typical client subsession implementation derives from RSub-
SessionBase in a similar manner to a client session, which derives
from RSessionBase. The deriving class provides simple wrapper func-
tions to hide the details of the subsession. To open a subsession, the
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derived class should provide an appropriate wrapper function (e.g.
Open()) which calls RSubSessionBase::CreateSubSession(),
passing in an existing RSessionBase-derived session object. Create-
SubSession() also takes an integer ”opcode” to identify the ”create
subsession” request, and a pointer to an array of pointers (which may be
used to pass any parameters required to service the request across the
client–server boundary).

Once the subsession has been created, RSubSessionBase::Send-
Receive() and Send() methods can be called, by analogy with those
in RSessionBase, but only three parameters of the request data array
may be used because the subsession class uses the last element of the
data array to identify the subsession to the server.

On the server side, the code to manage client–server subsessions
can be quite complex. It usually requires reference counting to man-
age subsessions over the lifetime of the session, and typically uses the
CObject-derived classes. You can find more information about these,
somewhat confusing, classes in your SDK documentation.

A good example of the use of subsessions is RFile, which derives
from RSubSessionBase and is a subsession of an RFs client session
to the file server. An RFile object represents a subsession for access
to individual files. I’ll illustrate the use of RFs and RFile later in this
chapter, but you should consult your SDK for further information about
the use of the Symbian OS filesystem APIs.

It’s worth noting that connections to the file server can take a significant
amount of time to set up (up to 75 ms). Rather than creating multiple
sessions on demand, RFs sessions should be passed between functions
where possible, or stored and reused.

Each client–server session has an associated overhead in the kernel
and server. Client code should minimize the number of sessions
it uses, for example by sharing a session, or by defining classes
that store and reuse a single open session. A server may also
implement subsessions to be used as lightweight alternatives to
multiple open sessions.

Performance Overhead

You should be aware of the system performance implications when using
the client–server model. The amount of data transferred between the
client and server does not cause so much of an overhead as the frequency
with which the communication occurs.

The main overhead arises because a thread context switch is necessary
to pass a message from the client thread to the server thread and back
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again. If, in addition, the client and server threads are running in different
processes, a process context switch is also involved.

A context switch between threads stores the state of the running thread,
overwriting it with the previous state of the replacing thread. If the client
and server threads are in the same process, the thread context switch
stores the processor registers for the threads. If the client and server are
running in two separate processes, in addition to the thread context,
the process context (the address space accessible to the thread), must
be stored and restored. The MMU must remap the memory chunks for
each process, and on some hardware this means that the cache must be
flushed. The exact nature of the overhead of a thread or process context
switch depends on the hardware in question.

Inter-thread data transfer between threads running in separate pro-
cesses can also have an overhead because an area of data belonging to
the client must be mapped into the server’s address space.

How Can I Improve Performance?

For performance reasons, when transferring data between the client and
server, it is preferable, where possible, to transfer a large amount of data
in a single transaction rather than to perform a number of server accesses.
However, this must still be balanced against the memory cost associated
with storing and managing large blocks of request data.

For example, Symbian OS components that frequently transfer data
to or from the filesystem generally do not use direct filesystem access
methods such as RFile::Read()or RFile::Write(). Instead, they
tend to use the stream store or relational database APIs, which you can find
described in the system documentation. These higher-level components
have been optimized to access the file server efficiently. When storing
data to file, they buffer it on the client side and pass it to the file server in
one block, rather than passing individual chunks of data as it is received.

Thus, taking the stream store for example, RWriteStream uses a
client-side buffer to hold the data it is passed, and only accesses the file
server to write it to file when the buffer is full or if the owner of the stream
calls CommitL(). Likewise, RReadStream pre-fills a buffer from the
source file when it is created. When the stream owner wishes to access
data from the file, the stream uses this buffer to retrieve the portions of
data required, rather than calling the file server to access the file.

When writing code which uses a server, it is always worth considering
how to make your server access most efficient. Take the file server, for
example: while there are functions to acquire individual directory entries
in the filesystem, it is often more efficient to read an entire set of entries
and scan them client-side, rather than call across the process boundary to
the file server multiple times to iterate through a set of directory entries.
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11.15 How Many Outstanding Requests Can a Client
Make to a Server?

A client session with a server can only ever have a single synchronous
request outstanding. However, it can have up to 255 outstanding asyn-
chronous requests. The message slots which hold these requests are either
allocated to a single session or acquired dynamically from a system-
wide pool, according to the overload of RSessionBase::Create-
Session() used to start the session. See the discussion on RSession-
Base in Section 11.4 for more details.

11.16 Can Server Functionality Be Extended?

Server code can be extended by the use of plug-ins to offer different
types of service. A good example of this is the Symbian OS file server,
which can be extended at runtime to support different types of filesystem
plug-in. The core Symbian OS filesystem provides support for local media
(ROM, RAM and CF card) using a VFAT filing system, implemented as
a plug-in, ELocal.fsy. Other filesystems may be added, for example
to support a remote filesystem over a network or encryption of file
data before it is stored. These file system plug-ins may be installed and
uninstalled dynamically; in the client-side file server session class, RFs,
you’ll see a set of functions for this purpose (FileSystemName(),
AddFileSystem(), RemoveFileSystem(), MountFileSystem()
and DismountFileSystem()).

The extension code should be implemented as a polymorphic DLL
(targettype fsy) and must conform to the fsy plug-in interface
defined by Symbian OS. More information about the use of framework
and plug-in code in Symbian OS, and polymorphic DLLs, can be found
in Chapter 13.

Since they normally run in the same thread as the server, and are
often called directly from CServer::RunL(), it is important to note
that installable server extension plug-in modules must not have a negative
impact on the performance or runtime stability of the server.

11.17 Example Code

Finally, here is an example of how a server may be accessed and used.
It illustrates how a client thread creates a session with the Symbian OS
file server. The file server session class, RFs, is defined in f32file.h,
and to use the file server client-side implementation you must link
against efsrv.lib.



SUMMARY 187

Having successfully created the session and made it leave-safe using
the cleanup stack (as described in Chapter 3), the sample code sub-
mits a request to the file server, using RFs::Delete(). This func-
tion wraps the single descriptor parameter and passes it to the syn-
chronous overload of RSessionBase::SendReceive(). Following
this, it creates an RFile subsession of the RFs session, by calling
RFile::Create(). It then calls RFile::Read() on the subses-
sion, which submits a request to the file server by wrapping a call to
RSubSessionBase::SendReceive(), passing in the descriptor
parameter that identifies the buffer which will receive data read from
the file.

RFs fs;
User::LeaveIfError(fs.Connect());
CleanupClosePushL(fs); // Closes the session in the event of a leave

_LIT(KClangerIni, "c:\\clanger.ini");

// Submits a delete request to the server
User::LeaveIfError(fs.Delete(KClangerIni));

RFile file; // A subsession
User::LeaveIfError(file.Create(fs, KClangerIni,

EFileRead|EFileWrite|EFileShareExclusive));
// Closes the subsession in the event of a leave
CleanupClosePushL(file);

TBuf8<32> buf;
// Submits a request using the subsession
User::LeaveIfError(file.Read(buf));
CleanupStack::PopAndDestroy(2, &fs); // file, fs

11.18 Summary

This chapter explored the theory behind the Symbian OS client–server
framework. It is quite a complex subject, so the chapter was split into a
number of short sections to allow it to be read at several different levels,
depending on whether the information is required to use a server or to
write one. The sections covered the following:

• The basics of the client–server framework and why it is used to share
access to system resources and protect their integrity.

• The thread model for a client–server implementation. The client and
server run in separate threads and often the server runs in a separate
process; this isolates the system resource within a separate address
space and protects it from potential misuse. Symbian OS threads and
processes are discussed in Chapter 10.
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• The mechanism by which data is transferred between the client
and server, using inter-thread data transfer. This uses inter-process
communication (IPC) when the client and server run in different
processes, and there are potential runtime overheads associated with
IPC data transfer.

• The main classes which make up the Symbian OS client–server
framework (RSessionBase, C(Sharable)Session, CServer,
DSession, RMessage and RSubSessionBase), their main roles,
features, fundamental methods and interactions.

• Server startup (which is examined in more detail in the next chapter)
and shutdown, either when all clients have disconnected normally or
as a result of the death of either the client or server.

• The overheads associated with using a client–server architecture,
such as the number of kernel resources consumed by having multiple
open sessions with a server, and the potential impact of using active
objects with lengthy RunL() event handlers within the server.

• Example code using F32, the file server, as an example of a typical
Symbian OS client–server model.

The following chapter uses a detailed code example to illustrate a typ-
ical server, its client-side implementation, and its use by a calling client.



12
The Client–Server Framework

in Practice

Kill the lion of Nemea
Kill the nine-headed Hydra
Capture the Ceryneian Hind

Kill the wild boar of Erymanthus
Clean the stables of King Augeas

Kill the birds of Stymphalis
Capture the wild bull of Crete

Capture the man-eating mares of Diomedes
Obtain the girdle of Hippolyta, Queen of the Amazons

Capture the oxen of Geryon
Take golden apples from the garden of Hesperides

Bring Cerberus, the three-headed dog of the underworld, to the surface
The Twelve Labors of Hercules

This chapter works through the code for an example client and server to
illustrate the main points of the Symbian OS client–server architecture,
which I discussed in detail in Chapter 11. This chapter will be of particular
interest if you plan to implement your own server, or if you want to know
more about how a client’s request to a server is transferred and handled.

The code examines the typical features of a client–server implementa-
tion using a transient server, which is started by its first client connection
and terminates when its last outstanding client session closes, to save sys-
tem resources. I’ll take the main elements of client–server code in turn and
discuss the most important sections of each. You can find the entire set of
sample code on the Symbian Press website (www.symbian.com/books).
The bootstrap code used by a client to start a server can be quite complex
and you may find it helps to download this example and step through the
code to follow how it works.

As in the previous chapter, I discuss the client–server model only for
Symbian OS releases up to and including v7.0s (the code samples in
this chapter use the client–server APIs from Symbian OS v7.0). Some of
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the APIs have changed from Symbian OS 8.0 onwards and, although the
concepts are generally the same, I’ve decided to concentrate solely on the
releases available at the time of going to press, rather than confuse matters.

Client–server code can be notoriously complicated, so I have kept
the services provided by the server as simple as possible. This comes,
perhaps, at the expense of making the example code rather contrived; my
client–server example provides a software representation of the twelve
labors of the Greek hero Hercules.1 For each labor, I’ve exported a
function from a client-side implementation class, RHerculesSession.
These functions send a request to the server to perform the necessary
heroic activity. The client-side implementation is delivered as a shared
library DLL (client.dll) – callers wishing to use the functionality
provided by server should link to this. The server code itself is built into
a separate EPOCEXE component (shared library DLLs and targettype
EPOCEXE are discussed in Chapter 13).

12.1 Client–Server Request Codes

A set of enumerated values is used to identify which service the client
requests from the server. These values are quite straightforward and are
defined as follows:

enum THerculeanLabors
{
ESlayNemeanLion,
ESlayHydra,
ECaptureCeryneianHind,
ESlayErymanthianBoar,
ECleanAugeanStables,
ESlayStymphalianBirds,
ECaptureCretanBull,
ECaptureMaresOfDiomedes,
EObtainGirdleOfHippolyta,
ECaptureOxenOfGeryon,
ETakeGoldenApplesOfHesperides,
ECaptureCerberus,
ECancelCleanAugeanStables,
ECancelSlayStymphalianBirds
};

Later in the chapter you’ll see these shared request ”opcodes” passed
to an overload of RSessionBase::SendReceive() on the client side
and stored in the corresponding server-side RMessage object (which
represents the client request) to identify which service the client has
requested.

1 If nothing else, this chapter will prepare you well for a pub quiz question about the
Herculean labors.
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12.2 Client Boilerplate Code

Much of the client-side implementation is made up of the API used
by callers to submit requests to the server. This API is exported by
RHerculesSession, which derives from RSessionBase. Each of
the request methods passes the associated opcode, and any param-
eter data, to the server via a call to the base class method
RSessionBase::SendReceive(), using the synchronous or asyn-
chronous overload as appropriate.

Here is the definition of the main client-side class (I’ve shown only six
of the Herculean labor request methods):

// Forward declarations – the actual class declarations must be
// accessible to both client and server code
class CHerculesData;
struct THydraData;

class RHerculesSession : public RSessionBase
{

public:
IMPORT_C TInt Connect();

public:
IMPORT_C TInt SlayNemeanLion(const TDesC8& aDes, TInt aVal);
IMPORT_C TInt SlayHydra(THydraData& aData);
IMPORT_C TInt CaptureCeryneianHind(TInt& aCaptureCount);
IMPORT_C TInt SlayErymanthianBoar(const CHerculesData& aData);
IMPORT_C void CleanAugeanStables(TRequestStatus& aStatus);
IMPORT_C void CancelCleanAugeanStables();
IMPORT_C void SlayStymphalianBirds(TInt aCount, TDes8& aData,

TRequestStatus& aStatus);
IMPORT_C void CancelSlayStymphalianBirds();
...
};

I’ve included a range of parameter input, and implemented syn-
chronous and asynchronous functions for illustration purposes. Here are
the implementations of the request submission methods:

EXPORT_C TInt RHerculesSession::SlayNemeanLion(const TDesC8& aDes,
TInt aVal)

{
const TAny* p[KMaxMessageArguments];
p[0]=&aDes;
p[1]=(TAny*)aVal;
return (SendReceive(ESlayNemeanLion,p));
}

EXPORT_C TInt RHerculesSession::SlayHydra(THydraData& aData)
{
const TAny* p[KMaxMessageArguments];
TPckg<THydraData> data(aData);
p[0]=&data;
return (SendReceive(ESlayHydra,p));
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}

EXPORT_C TInt RHerculesSession::CaptureCeryneianHind(TInt& aCaptureCount)
{
const TAny* p[KMaxMessageArguments];
TPckg<TInt> countBuf(aCaptureCount);
p[0]=(TAny*)&countBuf;
return (SendReceive(ECaptureCeryneianHind,p));
}

// The implementation of RHerculesSession::SlayErymanthianBoar()
// is omitted here because it is discussed later in the section

// Asynchronous request
EXPORT_C void RHerculesSession::CleanAugeanStables(TRequestStatus& aStat)

{
SendReceive(ECleanAugeanStables, 0, aStat);
}

// Cancels the CleanAugeanStables() asynchronous request
EXPORT_C void RHerculesSession::CancelCleanAugeanStables()

{
SendReceive(ECancelCleanAugeanStables, 0);
}

// Asynchronous request
EXPORT_C void RHerculesSession::SlayStymphalianBirds(TInt aCount,

TDes8& aData, TRequestStatus& aStatus)
{
const TAny* p[KMaxMessageArguments];
p[0] = (TAny*)aCount;
p[1] = &aData;
SendReceive(ESlayStymphalianBirds, p, aStatus);
}

// Cancels the SlayStymphalianBirds() asynchronous request
EXPORT_C void RHerculesSession::CancelSlayStymphalianBirds ()

{// Every asynchronous request should have a cancellation method
SendReceive(ECancelSlayStymphalianBirds, 0);
}

You’ll understand now why I’ve called it ”boilerplate” code – there’s
a lot of repetition in the methods.

In each case, you’ll notice that, if any parameter data is passed to the
server with the request, the method instantiates an array of 32-bit values of
size KMaxMessageArguments (= 4, as defined in e32std.h). If there
are no accompanying request parameters (as in the case of the request
with opcode ECleanAugeanStables or the cancellation methods),
the array is not needed. The array is used to hold either the request
data itself (if it can be stored in the 32-bit elements) or a pointer to
a descriptor that stores the client-side data. It is the contents of this
array that are stored in an RMessage on the server side, but there is
no direct equivalent of RMessage for client-side code. The array is
passed to RSessionBase::SendReceive() and must always be of
size KMaxMessageArguments even when fewer parameters are passed
to the server.
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It is important that the client-side data passed to an asynchronous
request must not be stack-based. This is because the server may not
process the incoming request data until some arbitrary time after the
client issued the request. The parameters must remain in existence until
that time – so they cannot exist on the stack in case the client-side
function which submitted the request returns, destroying the stack frame.

The client API differentiates between non-modifiable descriptors passed
to functions which pass constant data to the server and modifiable descrip-
tors used to retrieve data from it. However, the client-side interface code
simply passes a pointer to the descriptor as a message parameter. Server-
side, this will be used in a call to RThread::ReadL() to retrieve data
from the client or in a call to RThread::WriteL() to write data to
the client thread. The RThread methods inspect the descriptor to which
it points, to check that it appears to be a descriptor, and leave with
KErrBadDescriptor if it does not.
SlayNemeanLion() and CaptureCeryneianHind() show how

integer and descriptor data are passed to a server, but what about custom
data? What if it has variable length or does not just contain ”flat” data,
but owns pointers to other objects, as is common for a C class object?
I’ll show how to pass a CBase-derived object across the client–server
boundary in SlayErymanthianBoar() shortly, but first, let’s consider
how to pass an object of a T class or a struct.
RHerculesSession::SlayHydra() passes an object of type

THydraData which is a simple struct that contains only built-in
types, defined as follows:

struct THydraData
{
TVersion iHydraVersion;
TInt iHeadCount;
};

TVersion is a Symbian OS class defined as follows in e32std.h:

class TVersion
{

public:
... // Constructors omitted for clarity

public:
TInt8 iMajor;
TInt8 iMinor;
TInt16 iBuild;
};

A THydraData object is thus 64 bits in size, which is too large to
be passed to the server as one of the 32-bit elements of the request
data array. It isn’t enough to pass a pointer to the existing THydraData
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object either because, when the client and server are running in different
processes, the server code runs in a different virtual address space. Under
these circumstances, a C++ pointer which is valid in the client process is
not valid in the server process; any attempt to use it server-side will result
in an access violation.2

Server-side code should not attempt to access a client-side object
directly through a C++ pointer passed from the client to server. Data
transfer between client and server must be performed using the inter-
thread data transfer3 methods of class RThread – except when integer
or boolean values are passed from the client. The request data array
can be used to pass up to four 32-bit values to the server, so these can
be read directly from the request message server-side. However, if the
parameter is a reference which the server updates for the client (such as
in the CaptureCeryneianHind()method above), the server must use
a kernel-mediated transfer to write the 32-bit data back to the client. I’ll
use example code to illustrate this later in the chapter.
RHerculesSession::SlayNemeanLion() transfers a descriptor

parameter (constTDesC8&aDes) from the client to the server by passing
a pointer to that descriptor as one of the elements of the request data
array. However, THydraData is not a descriptor and before it is passed
to the server it must be ”descriptorized”. Chapter 6 discusses the use of
the package pointer template classes TPckg and TPckgC, which can
be used to wrap a flat data object such as THydraData with a pointer
descriptor, TPtr8. The SlayHydra()method of RHerculesSession
creates a TPckg<THydraData> around its THydraData parameter to
pass to the server in the request data array. The resulting descriptor
has a length equivalent to the size in bytes of the templated object it
wraps, and the iPtr data pointer of the TPtr8 addresses the start of
the THydraData object. Later in the chapter I’ll show how the server
accesses the data and retrieves the THydraData object.

Moving on, let’s consider how an object of a C class, containing
a pointer to another object or variable-length data, is marshaled from
client to server. Consider the CHerculesData class, which owns two
heap descriptor pointers and an integer value. We’ve already seen that
passing a client-side object to the server requires the entire object to be
”descriptorized” for passing across the process boundary. However, as
I’ve already described, pointers to data in the client address space cannot

2 It should be noted that standard C++ pointer access directly between the client and
server may succeed on the Windows emulator. The emulator runs as a single process with
each Symbian OS process running as a separate thread. Threads share writable memory
and therefore the address spaces of the client and server are not separated by a process
boundary, but are mutually accessible. However, this will most definitely not be the case
when Symbian OS runs on real phone hardware, so you must not use direct pointer access
to transfer data between the client and server processes.

3 Where the client and server are running in different processes this transfer is, in effect,
inter-process communication (IPC).
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be used server-side. Thus, for the server to use a CHerculesData object,
it must receive a copy of the data each heap descriptor pointer addresses.

The CHerculesData class must have utility code which puts all
its member data into a descriptor client-side (”externalization”) and
corresponding code to recreate it from the descriptor server-side (”inter-
nalization”). There is a standard technique for this, as shown below:

class CHerculesData : public CBase
{

public:
IMPORT_C static CHerculesData* NewLC(const TDesC8& aDes1,

const TDesC8& aDes2, TInt aVal);
static CHerculesData* NewLC(const TDesC8& aStreamData);
IMPORT_C ∼CHerculesData();
... // Other methods omitted

public:
// Creates an HBufC8 representation of ’this’
IMPORT_C HBufC8* MarshalDataL() const;

protected:
// Writes ’this’ to the stream
void ExternalizeL(RWriteStream& aStream) const;
// Initializes ’this’ from stream
void InternalizeL(RReadStream& aStream);

protected:
CHerculesData(TInt aVal);
CHerculesData(){};
void ConstructL(const TDesC8& aDes1, const TDesC8& aDes2);

protected:
HBufC8* iDes1;
HBufC8* iDes2;
TInt iVal;
};

// Maximum size expected for iDes1 and iDes2 in CHerculesData
const TInt KMaxHerculesDesLen = 255;

// Maximum total size expected for a CHerculesData object
const TInt KMaxCHerculesDataLength = 520;

EXPORT_C CHerculesData* CHerculesData::NewLC(const TDesC8& aDes1,
const TDesC8& aDes2, TInt aVal)

{
CHerculesData* data = new (ELeave) CHerculesData(aVal);
CleanupStack::PushL(data);
data->ConstructL(aDes1, aDes2);
return (data);
}

// Creates a CHerculesData initialized with the contents of the
// descriptor parameter
CHerculesData* CHerculesData::NewLC(const TDesC8& aStreamData)

{// Reads descriptor data from a stream
// and creates a new CHerculesData object
CHerculesData* data = new (ELeave) CHerculesData();
CleanupStack::PushL(data);
// Open a read stream for the descriptor
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RDesReadStream stream(aStreamData);
CleanupClosePushL(stream);
data->InternalizeL(stream);
CleanupStack::PopAndDestroy(&stream); // finished with the stream
return (data);
}

EXPORT_C CHerculesData::∼CHerculesData()
{
delete iDes1;
delete iDes2;
}

CHerculesData::CHerculesData(TInt aVal)
:iVal(aVal){}

void CHerculesData::ConstructL(const TDesC8& aDes1, const TDesC8& aDes2)
{
iDes1 = aDes1.AllocL();
iDes2 = aDes2.AllocL();
}

// Creates and returns a heap descriptor which holds contents of ’this’
EXPORT_C HBufC8* CHerculesData::MarshalDataL() const

{
// Dynamic data buffer
CBufFlat* buf = CBufFlat::NewL(KMaxCHerculesDataLength);
CleanupStack::PushL(buf);
RBufWriteStream stream(*buf); // Stream over the buffer
CleanupClosePushL(stream);
ExternalizeL(stream);
CleanupStack::PopAndDestroy(&stream);

// Create a heap descriptor from the buffer
HBufC8* des = HBufC8::NewL(buf->Size());
TPtr8 ptr(des->Des());
buf->Read(0, ptr, buf->Size());
CleanupStack::PopAndDestroy(buf); // Finished with the buffer
return (des);
}

// Writes ’this’ to aStream
void CHerculesData::ExternalizeL(RWriteStream& aStream) const

{
if (iDes1) // Write iDes1 to the stream (or a NULL descriptor)

aStream << *iDes1;
else

aStream << KNullDesC8;

if (iDes2) // Write iDes2 to the stream (or a NULL descriptor)
aStream << *iDes2;

else
aStream << KNullDesC8;

aStream.WriteInt32L(iVal); // Write iVal to the stream
}

// Initializes ’this’ with the contents of aStream
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void CHerculesData::InternalizeL(RReadStream& aStream)
{
iDes1 = HBufC8::NewL(aStream, KMaxHerculesDesLength); // Read iDes1
iDes2 = HBufC8::NewL(aStream, KMaxHerculesDesLength); // Read iDes2
iVal = aStream.ReadInt32L(); // Read iVal
}

CHerculesData has a public method MarshalDataL(), which
creates and returns a heap descriptor containing the current contents of
the object. The method creates a dynamic buffer and passes a writable
stream over this buffer to its ExternalizeL() method. The protected
externalization method then writes the data of each individual member of
CHerculesData to the stream, using the built-in stream externalization
support provided by Symbian OS. ExternalizeL() uses the stream
operator<< to write the heap descriptors to the stream (as I discussed
in Chapter 6).

Having created an in-memory stream of the contents of a CHercules-
Data object in the dynamic buffer, the MarshalDataL() method then
converts it to a heap descriptor by allocating a descriptor of the appropri-
ate size and copying the data from the dynamic buffer.

Server-side, the descriptor data is read from the client thread by making
an inter-thread data transfer. To convert the descriptorized CHercules-
Data back to an object of that class, the server calls the overload of
CHerculesData::NewLC() passing the descriptor which contains the
descriptorized object. This method creates a descriptor read stream and
calls InternalizeL(), which is the opposite of ExternalizeL(),
and instantiates the heap descriptor member variables from the stream.

Any class that holds variable-length data, such as an RArray-derived
object or pointers to heap-based objects, must provide similar externalize
and internalize functions if objects of that type need to be marshaled
between a client and server.

Here’s the code for the RHerculesSessionmethod which marshals
a CHerculesData object into a descriptor and passes it from client to
server using RSessionBase::SendReceive():

EXPORT_C TInt RHerculesSession::SlayErymanthianBoar(const CHerculesData&
aData)

{
const TAny* p[KMaxMessageArguments];
HBufC8* dataDes;
TRAPD(r, dataDes = aData.MarshalDataL());
if (dataDes)

{
p[0] = dataDes;
r = SendReceive(ESlayErymanthianBoar, p);
delete dataDes;
}

return (r);
}
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Figure 12.1 illustrates the previous discussion and code sample.
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Figure 12.1 Marshaling CHerculesData from client to server within a descriptor

A client and server typically run in different processes. For this
reason, server-side code should not attempt to access a client-
side object directly through a C++ pointer passed from the client
to server. Where necessary, objects must be ”descriptorized” for
inter-process communication.

12.3 Starting the Server and Connecting
to It from the Client

The RHerculesSession constructor zeroes its iHandle value so it
is clear that the RHerculesSession object is invalid and must first
connect to the server by calling RSessionBase::CreateSession().
The client-side implementation of server access code typically wraps
this call in a method called Connect(), e.g. RFs::Connect(), or
occasionally an Open() method. If an attempt is made to submit a
request to a server using a client session that has not yet connected to the
server, a panic occurs (KERN-EXEC 0).

If the server is an essential system server, it is guaranteed to have been
started by the system as Symbian OS starts and will always be running.
The definition of a system server, for example, the file server, is that
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it is required by the system. If a system server panics for some reason,
Symbian OS is forced to reboot and restart the server because it cannot
function without it.

Client connection to a system server is straightforward because the
server is already running. In effect, a Connect() method simply
needs to call RSessionBase::CreateSession(). However, as I’ve
described, the Hercules example server discussed in this chapter is not
an essential system server; instead it is implemented as a transient server.
If it is not already running when a client calls CreateSession(), that
is if no other client is connected to it, the Connect() method of the
client-side implementation must start the server process. The server runs
in a separate process on phone hardware and Symbian OS processes run
in separate threads within the single process of the Windows emulator.

Here is the implementation of Connect() for the Hercules server:

// The server’s identity within the client – server framework
_LIT(KServerName,"HerculesServer");

EXPORT_C TInt RHerculesSession::Connect()
{
TInt retry=2; // A maximum of two iterations of the loop are required
for (;;)

{
// Uses system-pool message slots
TInt r=CreateSession(KServerName,TVersion(1,0,0));
if ( (KErrNotFound!=r) && (KErrServerTerminated!=r) )

return (r);

if (--retry==0)
return (r);

r=StartTheServer();
if ( (KErrNone!=r) && (KErrAlreadyExists!=r) )

return (r);
}

}

The method calls RSessionBase::CreateSession(), passing in
the name of the server required. If the server is already running and
can create a new client session, this call returns KErrNone and the
function returns successfully, having connected a new session. However,
if the server is not running, CreateSession() returns KErrNot-
Found. The Connect() method must check for this result and, under
these circumstances, attempt to start the server. You’ll notice that the
method also checks to see if KErrServerTerminated was returned
instead of KErrNotFound, which indicates that the client connec-
tion request was submitted just as the server was shutting down. For
either value,4 the server should be started (or restarted) by calling

4 If any other error value besides KErrNotFound or KErrTerminated is returned,
Connect() returns it to the caller.
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StartTheServer(). I’ll discuss this function shortly – if it returns
KErrNone, the server has started successfully. The next iteration of
the for loop submits another request to create a client session by calling
RSessionBase::CreateSession().

If some other client managed to start the server between this client’s
failed attempt to create a session on it and the call to StartThe-
Server(), it returns KErrAlreadyExists. Under the circumstances,
this is not an error,5 because the server is now running, even if the client
didn’t start it. So, again, the next iteration of the loop can submit a request
to create a new client session.

If the server fails to start or the client connection fails, an error is
returned and the code breaks out of the loop, returning the error value to
indicate that session creation failed.
StartTheServer() launches the server in a new thread on the

Windows emulator, or in a new, separate process on hardware running
Symbian OS. Because the server runs differently depending on whether it
is running on the emulator or a phone, the client-side server startup code
is quite complex. The code is implemented as follows (I’ve included a
number of comments to make it clear what is going on and I’ll discuss
the most important features below):

// Runs client-side and starts the separate server process/thread
static TInt StartTheServer()

{
TRequestStatus start;
TServerStart starter(start);

// HerculesServer.exe or HerculesServer.dll
_LIT(KServerBinaryName,"HerculesServer");
const TUid KServerUid3={0x01010101}; // Temporary UID
const TUidType serverUid(KNullUid, KNullUid, KServerUid3);

#ifdef __WINS__ // On the Windows emulator the server is a DLL
RLibrary lib;
TInt r=lib.Load(KServerBinaryName, serverUid);
if (r!=KErrNone)

return (r);
// The entry point returns a TInt representing the thread
// function for the server
TLibraryFunction export1 = lib.Lookup(1);
TThreadFunction threadFunction =

reinterpret_cast<TThreadFunction>(export1());
TName name(KServerName); // Defined previously
// Randomness ensures a unique thread name
name.AppendNum(Math::Random(), EHex);

5 The KErrAlreadyExists error code is returned because there must only be one
copy of the server running on the system. Simultaneous attempts to launch two copies of
the server process will be detected by the kernel when the second attempt is made to create
a CServer object of the same name. It is this which fails with KErrAlreadyExists.
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// Now create the server thread
const TInt KMinServerHeapSize=0x1000;
const TInt KMaxServerHeapSize=0x1000000;

RThread server;
r = server.Create(name, threadFunction,

KDefaultStackSize, &starter, &lib, NULL,
KMinServerHeapSize, KMaxServerHeapSize, EOwnerProcess);

lib.Close(); // The server thread has a handle to the library now

#else // Phone hardware - comparatively easy –
RProcess server; // just create a new process
TInt r=server.Create(KServerBinaryName,starter.AsCommand(),

serverUid);
#endif

if (KErrNone!=r)
return r;

TRequestStatus threadDied;
server.Logon(threadDied);
if (KRequestPending!=threadDied)

{// logon failed - server isn’t running yet
// Manage the thread signal by consuming it
User::WaitForRequest(threadDied);
server.Kill(0); // don’t try to start the server
server.Close();
return threadDied.Int(); // return the error
}

// Start the server thread or process and wait for startup or thread
// death notification
// This code is identical for both the emulator thread
// and the phone hardware process
server.Resume();
User::WaitForRequest(start, threadDied);
if (KRequestPending==start)

{// server died and signaled - startup still pending
server.Close();
return threadDied.Int();
}

// The server started.
// Cancel the logon and consume the cancellation signal

server.LogonCancel(threadDied);
server.Close(); // Don’t need this handle any more
User::WaitForRequest(threadDied);
return (KErrNone);
}

As you can see, StartTheServer() is responsible for creating the
new thread or process in which the server runs. Having done so, it waits
for notification that the server thread or process has been initialized and
returns the initialization result to its caller. You’ll notice that the client
waits for server notification by calling User::WaitForRequest(),
which means that the client thread is blocked until the server responds.
For this reason, server initialization should be as rapid as possible,
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performing only the actions necessary to initialize the server framework.
Other initialization should be performed asynchronously within the server
after it has been successfully launched.

On the emulator, the new thread is created with a unique name, to
avoid receiving a KErrAlreadyExists error from the kernel if the
server is restarted just after it has exited. The thread is assigned a standard
stack size, minimum and maximum heap sizes and an RLibrary handle
to the DLL in which the server code resides. The thread entry function is
initialized to the first export function of the DLL, which will be discussed
shortly when I come to describe the server-side startup code. The server
thread is owned by the entire emulator process (as indicated by the
EOwnerProcess parameter) rather than by the client thread that creates
it. This means that the client thread can terminate but the server thread
will continue to run, allowing other client threads to access the server
without it dying unexpectedly.

On a real Symbian OS phone, the server is launched as a process,
the code for which is significantly more straightforward than for emulator
thread startup. Once the server thread or process has started, the client
thread calls Logon() in case a failure occurs before server initialization
function is complete. The Logon() call ensures that the client thread is
notified if the server dies before the server startup TRequestStatus is
signaled. This prevents the client thread from hanging indefinitely if server
initialization fails. Once the server entry point signals the client and sets
the value of start to something other than KRequestPending, the
Logon() notification is canceled. I’ll discuss how the server-side code
manages initialization later in this chapter.

The client thread passes a TRequestStatus to the server for noti-
fication when its initialization is complete. A TServerStart object
(”starter”) is used to transfer the client’s TRequestStatus object
(”start”) to the server. The TServerStart class is defined and imple-
mented as follows:

class TServerStart
{

public:
TServerStart() {};
TServerStart(TRequestStatus& aStatus);
TPtrC AsCommand() const;
TInt GetCommand();
void SignalL();

private:
TThreadId iId;
TRequestStatus* iStatus;
};

inline TServerStart::TServerStart(TRequestStatus& aStatus)
:iId(RThread().Id()),iStatus(&aStatus){aStatus=KRequestPending;}
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// Descriptorizes ’this’ to pass it from client to server
inline TPtrC TServerStart::AsCommand() const

{return TPtrC(reinterpret_cast<const TText*>(this),
sizeof(TServerStart)/sizeof(TText));}

// Called server-side to ’reconstitute’ an object of this type
TInt TServerStart::GetCommand()

{
RProcess serverProcess;
if (serverProcess.CommandLineLength()! =

sizeof(TServerStart)/sizeof(TText))
return (KErrGeneral);

TPtr ptr(reinterpret_cast<TText*>(this),0,
sizeof(TServerStart)/sizeof(TText));

serverProcess.CommandLine(ptr);
return (KErrNone);
}

// Called server-side to notify the client that server initialization
// completed successfully
void TServerStart::SignalL()

{
RThread client;
User::LeaveIfError(client.Open(iId));
client.RequestComplete(iStatus, KErrNone);
client.Close();
}

A TServerStart object encapsulates the client’s TThreadId and a
pointer to a TRequestStatus object. For hardware builds, the object
is passed between the client and server processes by wrapping it in a
descriptor, using the AsCommand()method and passing it as a command
line argument. Server-side, a TServerStart object can retrieve these
values using GetCommand(), which reads the command line with
which the process was created. On the emulator, the TServerStart
object is passed as a parameter to the thread function. The server uses
TServerStart::SignalL() to notify the client that initialization has
completed successfully.

The code to start a server is quite complex because it differs
depending on whether the server will run on a phone or the
emulator. This complexity has been removed from Symbian OS
v8.0 because Symbian OS process emulation on Win32 has been
improved (see Chapter 10 for more details).

12.4 Server Startup Code
Having considered the client-side code to start the server, I will now
move on to discuss the server-side startup code:
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// Initialize and run the server
static void RunTheServerL(TServerStart& aStart)

{// First create and install the active scheduler
CActiveScheduler* scheduler = new (ELeave) CActiveScheduler;
CleanupStack::PushL(scheduler);
CActiveScheduler::Install(scheduler);

CHerculeanServer::NewLC();// creates the server
User::LeaveIfError(RThread().Rename(KServerName));

aStart.SignalL();// Signal the client that initialization is complete

CActiveScheduler::Start();// Enter the wait loop
// Exited – cleanup the server and scheduler
CleanupStack::PopAndDestroy(2, scheduler);
}

// Main entry-point for the server thread/process
static TInt RunTheServer(TServerStart& aStart)

{
CTrapCleanup* cleanup=CTrapCleanup::New();
TInt r=KErrNoMemory;
if (cleanup)

{
TRAP(r,RunTheServerL(aStart));
delete cleanup;
}
return (r);

}

#ifdef __WINS__ // Different startup code for emulator and hardware

// Thread entry-point function
static TInt ThreadFunction(TAny* aParameters)

{// The TServerStart object is passed as the thread parameter
return RunTheServer(*static_cast<TServerStart*>(aParameters));
}

// WINS DLL entry-point
IMPORT_C TInt WinsMain();
EXPORT_C TInt WinsMain()

{// Returns the real thread function cast to TInt
return reinterpret_cast<TInt>(&ThreadFunction);
}

TInt E32Dll(TDllReason)
{return (KErrNone);}

#else // Phone hardware
// Process entry-point
TInt E32Main()

{// Reads the startup parameters and runs the server
TServerStart start;
TInt r=start.GetCommand();
if (KErrNone==r)
r=RunTheServer(start);
return (r);
}

#endif
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Again, as you can see, the startup code differs for hardware process and
emulator DLL builds. On the emulator, the server DLL has an entry point
called WinsMain(),which takes no parameters and returns a TInt.
However, the Symbian OS thread function entry point function must
take a TAny* parameter, so WinsMain() is used to return the actual
thread function (ThreadFunction()) by casting the function pointer to
a TInt. The TAny* parameter passed to the thread function refers to the
client’s TServerStart object. This is passed directly to the main server
startup function, called RunTheServer(). It sounds quite complex, but
as you can see, it only takes a few lines of code.

On hardware, the server is a process with E32Main() as its entry point.
It simply instantiates a TServerStart object and uses GetCommand()
to retrieve the client’s TThreadId and TRequestStatus. Having done
so, it calls RunTheServer(). At this point, the divergence between the
emulator and hardware code is at an end.
RunTheServer() first creates a cleanup stack for the server. Having

done so, it calls RunTheServerL() within a TRAP harness (recall from
Chapter 2 that there must be at least one top-level TRAP in the system
before the cleanup stack can be used). RunTheServerL() creates and
installs an active scheduler to allow it to service incoming client requests.
It then creates the CServer-derived object (and any objects that uses)
and calls CServer::Start() or CServer::StartL(). Once the
server object is created and ready to receive connection requests, the
server thread is renamed with the name of the server. This is an optional
step, but it is useful when debugging panics to be able to see the
name of the server thread. At this point, server startup is complete and
TServerStart::SignalL() is called to notify the client that the
server is fully initialized.

Having signaled the client, the Start() method is called on the
active scheduler to make it ready to receive and process client requests.
Within this function, the server thread enters the active scheduler
wait loop, receiving and servicing client requests until CActive-
Scheduler::Stop() is called.

12.5 Server Classes

The fundamental server-side classes, deriving from CServer and
CSharableSession, are defined as follows:

class CHerculeanServer : public CServer // Receives client requests
{

public:
static CServer* NewLC();
void AddSession();
void RemoveSession();
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protected:
virtual TInt RunError(TInt aError); // Overrides CActive::RunError()

private:
CHerculeanServer();
void ConstructL();
virtual CSharableSession* NewSessionL(const TVersion& aVersion)

const; // From CServer
private:

TInt iSessionCount;
CShutdown iShutdown;
};

inline CHerculeanServer::CHerculeanServer()
:CServer(0, ESharableSessions){}

class CAsyncHandler; // Active object class for asynchronous requests

// Services client requests
class CHerculeanSession : public CSharableSession

{
public:

CHerculeanSession(){};
virtual void CreateL(const CServer& aServer);

private:
void SlayNemeanLionL(const RMessage& aMessage);
void SlayHydraL(const RMessage& aMessage);
void CaptureCeryneianHindL(const RMessage& aMessage);
void SlayErymanthianBoarL(const RMessage& aMessage);
void CleanAugeanStablesL(const RMessage& aMessage);
void SlayStymphalianBirdsL(const RMessage& aMessage);

private:
∼CHerculeanSession();
inline CHerculeanServer& Server();
void ServiceL(const RMessage& aMessage); // From CSharableSession

private:
CAsyncHandler* iAsyncRequestHandler;
HBufC8* iClientBuf;
};

inline CHerculeanServer& CHerculeanSession::Server()
{
return *static_cast<CHerculeanServer*>(const_cast<CServer*>

(CSharableSession::Server()));
}

The CServer-derived class CHerculeanServer is the main server
class; it coordinates server startup and shutdown and, as I described in the
previous chapter, receives incoming requests. The system creates a single
instance of CHerculeanServer on server startup. The CServer base
class manages a doubly-linked list of connected client sessions. When
the server class receives a client request, it passes it to the associated
CHerculeanSession object for handling.

Let’s examine the code for the CHerculeanServer class in more
detail (I’ve omitted some of the straightforward construction code to keep
the code sample as short as possible):
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// Starts the server and constructs the shutdown object, starting the
// timer to ensure that the server will exit even if the starting client
// connection fails
void CHerculeanServer::ConstructL()

{
StartL(KServerName);
iShutdown.ConstructL();
iShutdown.Start(); // In case the client session fails to connect
}

void CHerculeanServer::AddSession()
{
++iSessionCount;
iShutdown.Cancel();// Cancel the shutdown timer now
}

// Decrement the session counter. Start the shutdown timer when the last
// client disconnects
void CHerculeanServer::RemoveSession()

{
if (--iSessionCount==0)

iShutdown.Start();
}

TInt CHerculeanServer::RunError(TInt aError)
{
if (KErrBadDescriptor==aError)

PanicClient(Message(),EPanicBadDescriptor);
else

Message().Complete(aError);

ReStart(); // Continue reading client requests
return (KErrNone); // handled the error
}

The construction of the CHerculeanServer class is straightforward.
The shutdown timer is started when the server is first constructed, in case
construction of the initial client session fails. When the first session is
added successfully, the session count is incremented and the shutdown
timer is canceled. The server object increments and decrements the
iSessionCount reference count accordingly when sessions are added
and removed.
CHerculeanServer::RunError() is called if a leave occurs in

CHerculeanSession::ServiceL(), that is, if one of the meth-
ods which services client requests leaves. The leave code is passed
to RunError(), which should attempt to handle the leave, returning
KErrNone if it does so. CServer::RunError() was added to Sym-
bian OS v6.0 to allow the server to manage leaves resulting from client
request processing. Previously, the leaves were propagated to the active
scheduler which did not have sufficient context in which to handle them.
RunError() panics the client if the leave code is KErrBad-

Descriptor, because this indicates that client data has been passed
to the server without having been properly ”descriptorized”. This is
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indicative of a programming error, so the server is justified in panicking
the client. Under all other circumstances, the server reports the error to
the client by completing it using RMessage::Complete(). It is rarely
correct to panic another thread except to indicate a programming error.

The code used by CHerculeanServer to panic the client is shown
below. RMessage::Panic() uses the RThread handle it holds for the
client thread to panic it and also completes the outstanding client request
to allow the kernel to perform the necessary cleanup.

enum TServerPanic
{
EPanicBadDescriptor,
EPanicNotSupported
};

void PanicClient(const RMessage& aMessage,TServerPanic aPanic)
{
_LIT(KPanic,"HerculesServer");
aMessage.Panic(KPanic,aPanic);
}

A leave from CHerculeanSession::ServiceL() results in an
early return from CServer::RunL(), which skips the call to continue
requesting client messages. From Chapter 11, you’ll recall that, on receipt
of a client request, CServer::RunL() calls the ServiceL() method
of the associated CSharableSession-derived object. It is for this reason
that RunError() must call CServer::Restart().

Moving on, let’s consider the implementation of CHerculean-
Session. This consists of an implementation of the ServiceL()
method, which was declared pure virtual in the CSharableSession
base class, and a set of private methods to handle client requests:

void CHerculeanSession::CreateL(const CServer& aServer)
{// Called by the CServer framework
CSharableSession::CreateL(aServer); // Cannot leave
Server().AddSession();
// Create the CAsyncHandler object (iAsyncRequestHandler)
...
}

CHerculeanSession::∼CHerculeanSession()
{
Server().RemoveSession();
delete iAsyncRequestHandler;
delete iClientBuf;
}

// Handle a client request
// Leaves are handled by CHerculeanServer::RunError() which is called
// by CServer::RunL()
void CHerculeanSession::ServiceL(const RMessage& aMessage)
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{
switch (aMessage.Function())

{
case ESlayNemeanLion:

SlayNemeanLionL(aMessage); break;
case ESlayHydra:

SlayHydraL(aMessage); break;
case ECaptureCeryneianHind:

CaptureCeryneianHindL(aMessage); break;
case ESlayErymanthianBoar:

SlayErymanthianBoarL(aMessage); break;
case ECleanAugeanStables:

CleanAugeanStablesL(aMessage); break;
case ECancelCleanAugeanStables:

CancelCleanAugeanStables(); break;
case ESlayStymphalianBirds:

SlayStymphalianBirdsL(aMessage); break;
case ECancelSlayStymphalianBirds:

CancelSlayStymphalianBirds(); break;
case ECaptureCretanBull: // Omitted for clarity
case ECaptureMaresOfDiomedes:
case EObtainGirdleOfHippolyta:
case ECaptureOxenOfGeryon:
case ETakeGoldenApplesOfHesperides:
case ECaptureCerberus:
default:

PanicClient(aMessage, EPanicNotSupported);
break;

}
}

// p[0] contains const TDesC8&
// p[1] contains TInt
void CHerculeanSession::SlayNemeanLionL(const RMessage& aMessage)

{
const TInt KMaxLionDes = 100;
TBuf8<KMaxLionDes> lionDes;
aMessage.ReadL(aMessage.Ptr0(), lionDes);
TInt val = aMessage.Int1();
// ... Process as necessary
aMessage.Complete(KErrNone);
}

// p[0] contains TPckg<THydraData>
void CHerculeanSession::SlayHydraL(const RMessage& aMessage)

{
THydraData hydraData;
TPckg<THydraData> des(hydraData);
aMessage.ReadL(aMessage.Ptr0(), des);
// ... Process as necessary, updates hydraData.iHeadCount
// Write hydraData update back to client
aMessage.WriteL(aMessage.Ptr0(), des);
aMessage.Complete(KErrNone);
}

// p[0] contains TInt&
void CHerculeanSession::CaptureCeryneianHindL(const RMessage& aMessage)

{
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TInt count;
// ... Process as necessary (updates count)
TPckgC<TInt> countDes(count);
aMessage.WriteL(aMessage.Ptr0(), countDes);
aMessage.Complete(KErrNone);
}

// p[0] contains streamed CHerculesData
void CHerculeanSession::SlayErymanthianBoarL(const RMessage& aMessage)

{
HBufC8* desData = HBufC8::NewLC(KMaxCHerculesDataLength);
TPtr8 readPtr(desData->Des());
aMessage.ReadL(aMessage.Ptr0(), readPtr);
CHerculesData* data = CHerculesData::NewLC(*desData);
// ... Process as appropriate, passing in data
aMessage.Complete(KErrNone);
}

// Asynchronous method - no client parameters
void CHerculeanSession::CleanAugeanStablesL(const RMessage& aMessage)

{// Makes an asynchronous request via the CAsyncHandler active object
// (initialized with aMessage to allow it to complete the client)
...
}

void CHerculeanSession::CancelCleanAugeanStablesL()
{
... // Calls Cancel() on the CAsyncHandler active object which

// checks if a request is outstanding and cancels it
}

// Asynchronous method
// p[0] contains TInt
// p[1] contains TDes8&
void CHerculeanSession::SlayStymphalianBirdsL(const RMessage& aMessage)

{
TInt val0 = aMessage.Int0();

// Determine the length of the client descriptor passed to the server
TInt clientDesMaxLen =

aMessage.Client().GetDesMaxLength(aMessage.Ptr1());
if (iClientBuf)

{
delete iClientBuf;
iClientBuf = NULL;
}

// iClientBuf owned/destroyed by session
iClientBuf = HBufC8::NewL(clientDesMaxLen);
TPtr8 ptr(iClientBuf->Des());
aMessage.ReadL(aMessage.Ptr1(), ptr);
// Makes an asynchronous request via the CAsyncHandler active object
// which is initialized with aMessage to allow it to complete the
// client. Modifies the contents of iClientBuf and writes it back to
// the client
}

void CHerculeanSession::CancelSlayStymphalianBirdsL()
{
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... // Calls Cancel() on the CAsyncHandler active object which
// checks if a request is outstanding and cancels it

}

ServiceL() consists of a switch statement that examines the client
request opcode, using RMessage::Function(), and calls the associ-
ated handler method for that request. In the example code above, I’ve only
shown some of the request handling methods that CHerculesSession
implements.

You’ll recall that the client-side request code consisted of boilerplate
”packaging” of parameter data to pass to the server. By extension,
the server-side request code unpacks the parameter data, performs the
necessary processing upon it, repackages return data if necessary and
notifies the client that the request has been completed. Let’s now examine
each of those stages in turn.

The parameter unpacking code is fairly routine, as you can see from the
implementation of CHerculeanSession::SlayNemeanLionL().
The client writes a pointer to a constant TDesC8 into the first element
of the request data array. The server retrieves this data by instantiating
a modifiable descriptor and using RMessage::ReadL()6 to read data
from the client thread into it. The TAny pointer to the location of the client
descriptor is identified in this case by use of RMessage::Ptr0() – if
the descriptor had been in the second slot in the request array, RMes-
sage::Ptr1() would have been used, and so on.

In this example, the predetermined protocol between client and server
has fixed the maximum size of the client-side descriptor as KMaxLionDes
bytes, so the server allocates a stack-based TBuf8 with that maximum
size to receive the incoming data. However, if the size of the data is
unknown at compile time, as in SlayStymphalianBirdsL(), the
server must determine the size of the incoming descriptor to ensure that
a sufficiently large descriptor is allocated on the server side to receive the
client data. It can do this by calling RThread::GetDesMaxLength()
on the client thread, passing in the pointer to the descriptor. It also needs
to perform this check before writing descriptor data back to the client, to
determine whether the client has allocated a large enough descriptor.

The use of a heap-based descriptor to read data from the client is
more appropriate if a large or unpredictable amount of data is trans-
ferred between the client and server, because the amount of stack space
available is restricted on Symbian OS.
SlayNemeanLionL() retrieves a TInt from the second element of

the request data array, using RMessage::Int1(), which returns the
client parameter in the second ”slot” as an integer value. Don’t let the
zero-based numbering scheme confuse matters here!

6 RMessage::ReadL() performs inter-thread data transfer by calling
RThread::ReadL(), as discussed in Chapter 10.
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Having retrieved the client parameters, the request-handling func-
tion then performs any necessary processing upon it – I’ve omitted
this from the example code to keep it straightforward. SlayNemean-
LionL() is a simple example because it is synchronous and doesn’t
package any return data to send to the client. Thus, when the request
processing is finished, the server simply notifies the client by calling
RMessage::Complete(), which signals the client thread’s request
semaphore to indicate request completion.
CaptureCeryneianHindL() shows the server writing data back to

the client thread – in this case, it updates the integer value passed into
the first element of the request data array. The server has an integer value,
count, which represents the number of hinds captured. It ”descriptorizes”
this value using a TPckgC and calls RMessage::WriteL() to make
an inter-thread data transfer into the client thread.

Earlier, I discussed in detail how the client submitted custom objects
to the server, such as those of T or C classes. I described how an
object of class THydraData was marshaled into a descriptor using the
TPckg class, and in CHerculesSession::SlayHydraL() you see
what happens on the other side of the client–server boundary. The
server instantiates its own THydraData object, wraps it in a TPckg
descriptor and then ”reconstitutes” it by reading into it the descriptor
passed by the client. Having done so, the server performs the necessary
processing which modifies the object. It writes the changes back to the
client using RMessage::WriteL(). In a similar manner, CHercules-
Session::SlayErymanthianBoarL() shows how a server receives
a ”streamed” CBase-derived object in a descriptor and instantiates its
own copy using the appropriate NewLC() method. This object can then
be passed as a parameter to the appropriate internal handling function.

While most of the request handler methods shown are synchronous,
CleanAugeanStables()and SlayStymphalianBirdsL()are asy-
nchronous. The server retrieves any parameters passed from the client
and passes them to an active object which is responsible for submitting
requests to an asynchronous service provider and handling their comple-
tion events. To avoid complicating the code example I haven’t shown the
active object class here, but I discuss active objects fully in Chapters 8
and 9. The active object class must be passed a means to access the
RMessage associated with the client request, which it will use to call
Complete() on the client when the request has been fulfilled by the
asynchronous service provider. Since it only uses the RMessage to com-
plete the client, it is unnecessary for this class to hold a copy of the entire
object. Commonly, the RMessagePtr class is used to make a copy of
the client’s thread handle from the RMessage, and the RMessagePtr
object is then used to notify the client of the request’s completion. Class
RMessagePtr is defined in e32std.h.
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Incidentally, a constant reference to the RMessage associated with
the request is passed into each of the request handler methods but
it may, alternatively, be retrieved by the handler methods by call-
ing CSharableSession::Message(). However, the asynchronous
requests must store a copy of the RMessage object, because the session
may be processing another, different, request message by the time the
asynchronous request completes and is handled.

12.6 Server Shutdown

The timer class which manages server shutdown is shown below:

const TInt KShutdownDelay=200000; // approx 2 seconds

class CShutdown : public CTimer
{

public:
inline CShutdown();
inline void ConstructL();
inline void Start();

private:
void RunL();
};

inline CShutdown::CShutdown()
: CTimer(-1) {CActiveScheduler::Add(this);}

inline void CShutdown::ConstructL()
{CTimer::ConstructL();}

inline void CShutdown::Start()
{After(KShutdownDelay);}

void CShutdown::RunL()
{// Initiates server exit when the timer expires
CActiveScheduler::Stop();
}

The CServer-derived object owns a CShutdown object. As I des-
cribed above, the server reference-counts its connected client sessions.
The shutdown timer object is started when there are no sessions connected
to the server, although it is canceled if a session connects before the timer
expires. When the timeout completes, the timer’s event handler calls
CActiveScheduler::Stop() to terminate the server’s wait loop and
destroy the server. The timeout is used to delay shutdown and prevent
excessive startup/shutdown churn caused by client connections which
do not quite overlap. The server’s shutdown timeout is defined by
KShutdownDelay, which is set to 2 seconds.
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12.7 Accessing the Server

Finally, for reference, here is an example of how the Hercules server may
be accessed and used by a client. The client-side RHerculesSession
class is used to connect a session to the server and wrap the caller’s
parameter data as appropriate, before passing it to the server.

void TestClientServerL()
{
__UHEAP_MARK; // Checks for memory leaks (see Chapter 17)
RHerculesSession session;
User::LeaveIfError(session.Connect());
CleanupClosePushL(session); // Closes the session if it leaves

_LIT8(KLionDes, "NemeanLion");
User::LeaveIfError(session.SlayNemeanLion(KLionDes, 1));

TVersion version(1,0,0);
THydraData hydraData;
hydraData.iHydraVersion = version;
hydraData.iHeadCount = 9;
User::LeaveIfError(session.SlayHydra(hydraData));
... // Checks hydraData, which was modified by the server

TInt count;
User::LeaveIfError(session.CaptureCeryneianHind(count));
... // Checks count which was set by the server

CHerculesData* data =
CHerculesData::NewLC(_L8("test1"), _L8("test2"), 1);

User::LeaveIfError(session.SlayErymanthianBoar(*data));

TRequestStatus status;
session.CleanAugeanStables(status);
User::WaitForRequest(status);

// Server reads this data and updates it
TBuf8<12> myBuf(_L8("testdata"));
session.SlayStymphalianBirds(3, myBuf, status);
User::WaitForRequest(status);
... // Inspects the contents of myBuf, modified by the server
CleanupStack::PopAndDestroy(2, &session); // data, session
__UHEAP_MARKEND;
}

12.8 Summary

This chapter examined code for a typical client–server implementation,
using a simplistic example to avoid introducing ”accidental complexity”.
It is intended for those wishing to implement a server and its client-side
access code, and to illustrate how the Symbian OS client–server archi-
tecture works in practice, reinforcing the theory described in Chapter 11.
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The example is a transient server that runs in a separate process from
its clients, with the client-side implementation in a separate DLL. The
chapter discusses best practice in the following areas of code:

• the use of ”opcodes” to identify a client request

• a typical client-side RSessionBase-derived class and its ”boiler-
plate” code to submit requests to the server. The discussion included
details of how to submit different types of parameter data to the server:

• simple built-in types

• descriptors

• flat data (such as that contained in a struct or an object of a
T class)

• more complex objects, which do not have a fixed length or which
contain pointers to other objects (e.g. an object of a C class).

• how to implement client-side code to start the server (which for
EKA1 is different depending on whether the server is running on
the Windows emulator or target hardware) and how to connect to
the server

• server-side bootstrap code

• the fundamental server classes, deriving from CServer and
CSharableSession, including examples of request-handling meth-
ods (for both synchronous and asynchronous requests), server-side
unpacking of parameter data passed from the client, and an example
of how data can be passed back to the client

• the mechanism used by a transient server to reference-count its
connected client sessions and shut itself down, after a brief timeout,
when all its clients have disconnected

• the implementation of a typical calling client that instantiates an object
of the RSessionBase-derived client class and submits requests to
the server.

This chapter also listed the twelve labors of Hercules, which the reader
may, or may not, wish to commit to memory.





13
Binary Types

Oh Lord, forgive the misprints
Last words of Andrew Bradford, American Publisher

The executable code of any C++ component on Symbian OS is delivered
as a binary package. There are two particular types discussed in this
chapter: packages which are launched as a new process (.exe) and
those that run inside an existing process, dynamically linked libraries
(.dll). Note that I use the term ”executable” in this context to refer to
any binary code which may execute, as opposed to a .exe exclusively.

13.1 Symbian OS EXEs

On the Windows emulator Symbian OS runs within a single Win32
process. If you look at Task Manager on Windows when the emulator
is running, you’ll see the process, EPOC.exe. Within that process, each
Symbian OS EXE is emulated within a separate thread.

On a phone handset running Symbian OS, commonly known as
”target hardware”, each EXE is launched in a separate, new process.
Each process has a single main thread that invokes the sole entry point
function, E32Main().

On target hardware, executable code can either be built onto the
phone in Read-Only Memory (ROM) when the phone is in the factory or
installed on the phone at a later stage – either into the phone’s internal
storage or onto removable storage media such as a Memory Stick or
MMC. It’s a simplification, but you can generally think of ROM-based
EXEs as being executed directly in-place from the ROM. This means that
program code and read-only data (such as literal descriptors) are read
directly from the ROM, and the component is only allocated a separate
data area in RAM for its read/write data.

If an EXE is installed, rather than built into the ROM, it executes entirely
from RAM and has an area allocated for program code and read-only
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static data, and a separate area for read/write static data. If a second copy
of the EXE is launched, the program code and read-only static data area
is shared, and only a new area of read/write data is allocated.

13.2 Symbian OS DLLs

Dynamic link libraries, DLLs, consist of a library of compiled C++ code
that may be loaded into a running process in the context of an existing
thread. On Symbian OS there are two main types of DLL: shared library
DLLs and polymorphic DLLs.

A shared library DLL implements library code that may be used
by multiple components of any type, that is, other libraries or EXEs.
The filename extension of a shared library is .dll – examples of this
type are the base user library (EUser.dll) and the filesystem library
(EFile.dll). A shared library exports API functions according to a
module definition (.def) file. It may have any number of exported
functions, each of which is an entry point into the DLL. It releases a
header file (.h) for other components to compile against, and an import
library (.lib) to link against in order to resolve the exported functions.
When executable code that uses the library runs, the Symbian OS loader
loads any shared DLLs that it links to and loads any further DLLs that
those DLLs require, doing this recursively until all shared code needed
by the executable is loaded.

The second type of DLL, a polymorphic DLL, implements an abstract
interface which is often defined separately, for example by a framework.
It may have a .dll filename extension, but it often uses the extension
to identify the nature of the DLL further: for example, the extension
.app identifies an application, .fep a front-end processor and .mdl
a recognizer. Polymorphic DLLs have a single entry point ”gate” or
”factory” function, exported at ordinal 1, which instantiates the concrete
class that implements the interface. The interface functions are virtual;
they are not exported and are instead accessed by the virtual function
table, through a pointer to the base class interface. Polymorphic DLLs
are often used to provide a range of different implementations of a single
consistent interface, and are loaded dynamically at run-time by a call to
RLibrary::Load().

This type of DLL is often known as a ”plug-in” – recognizers are
a good example of plug-ins. The component that determines which
plug-ins to load, instantiate and use is typically known as a frame-
work. The framework which loads the recognizers is provided by the
application architecture server (Apparc). It can load any number of rec-
ognizer plug-in DLLs, which examine the data in a file or buffer and, if
they ”recognize” it, return its data (MIME) type. Each recognizer plug-in
exports a function at ordinal 1 that constructs and returns an instance
of the CApaDataRecognizerType interface. The plug-in must provide
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a concrete class which implements the three pure virtual functions
of the interface: DoRecognizeL(), SupportedDataTypeL() and
PreferredBufSize().

Recognizer plug-in DLLs are identified by having UID1 set to
KDynamicLibraryUid (0x10000079), UID2 set to KUidRecognizer
(0x10003A19) and UID3 set to a unique value to identify each individ-
ual implementation. Each recognizer has a .mdl file extension and its
targettype should be MDL. Don’t worry too much about this right
now though – UIDs and the targettype specifier are described later in
the chapter.

Up until Symbian OS v7.0, each framework that could be extended
dynamically by plug-in code was required to take responsibility for finding
the appropriate plug-ins, loading and unloading them, and calling the
entry point functions to instantiate the concrete interface implementation.
The ECOM framework was introduced in Symbian OS v7.0 to provide
a generic means of loading plug-in code, simplifying the use of plug-ins
and reducing code duplication. I’ll discuss ECOM further in Chapter 14.
Apparc implemented its own custom loading of recognizer plug-ins up to
v8.0; in this latest release it has been modified to use ECOM.

For both types of DLL, static and polymorphic, the code section is
shared. This means that, if multiple threads or processes use a DLL
simultaneously, the same copy of program code is accessed at the same
location in memory. Subsequently loaded processes or libraries that wish
to use it are ”fixed up” to use that copy by the DLL loader.

DLLs in ROM are not actually loaded into memory, but execute in
place in ROM at their fixed address. DLLs running from RAM are loaded
at a particular address and reference counted so they are unloaded only
when no longer being used by any component. When a DLL runs from
RAM,1 the address at which the executable code is located is determined
only at load time. The relocation information to navigate the code of the
DLL must be retained for use in RAM. However, DLLs that execute from
ROM are already fixed at an address and do not need to be relocated.
Thus, to compact the DLL in order to occupy less ROM space, Symbian
OS tools strip the relocation information out when a ROM is built. This
does mean, however, that you cannot copy a DLL from the ROM, store it
in RAM and run it from there.

On Symbian OS, the size of DLL program code is further optimized to
save ROM and RAM space. In most operating systems, to load a dynamic
library, the entry points of a DLL can either be identified by string-
matching their name (lookup by name) or by the order in which they are
exported (lookup by ordinal). Symbian OS does not offer lookup by name
because this adds an overhead to the size of the DLL (storing the names of

1 Loading a DLL from RAM is different from simply storing it on the internal (RAM) drive,
because Symbian OS copies it into the area of RAM reserved for program code and prepares
it for execution by fixing up the relocation information.
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all the functions exported from the library is wasteful of space). Instead,
Symbian OS only uses link by ordinal, which has significant implications
for binary compatibility. Ordinals must not be changed between one
release of a DLL and another, otherwise code which originally used the
old DLL will not be able to locate the functions it needs in the new
version of the DLL. I’ll discuss binary compatibility further in Chapter 18.

13.3 Writable Static Data

While EXE components have separate data areas for program code,
read-only data and writable data, DLLs do not have the latter. This has
the following consequence: Symbian OS DLLs do not support writable
global data.

So why is there no writable data section for Symbian DLLs? The reason
is that any code which refers to global data must use an address to do
so, rather than an offset from a pointer. When code is loaded, it must
either use a fixed address to somewhere in the DLL in order to locate the
data, or it must use a relocation value for the data, if it is moved to a new
address. Furthermore, because DLLs are shared between processes, every
process in which it loads must use the same address for the global data.2

Thus, each DLL that supported writable static data would need a
section of RAM (a ”chunk”, the basic unit of system memory) allocated
for it within every process that loaded it, just for static data. The smallest
size of a chunk is 4 KB – which comes to a significant overhead when
you consider the number of DLLs that a typical application on Symbian
OS might use (often over 50), and the fact that the DLL would typically
waste most of this memory, since it is unlikely to declare exactly 4 KB
worth of static data.

This restriction means that you cannot use static member variables,
such as those used to implement the singleton pattern (which allows
only one instance of a class to be instantiated and used, and is useful for
implementing a single ”controller” type object). This can be inconvenient,
particularly when porting code which makes uses of this idiom, or indeed
any other which requires global data.

Here’s an example of a simple task manager where I’ve included just
the minimum amount of code needed to illustrate the use of a singleton.

// TaskManager.h // Header file
class CTask; // Defined elsewhere

2 If the required address for the data has already been occupied when a DLL comes to
load, the DLL will not be usable. This is quite possible, because the data is placed in a
chunk which means that its address must start on a megabyte boundary, of which there are
few. A workaround would be to copy the program code for the DLL, and adjust the copy to
use a different address for the static data, but the overhead would be unacceptably high.
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class CTaskManager : public CBase
{

public:
IMPORT_C static CTaskManager* TaskManagerL();
IMPORT_C static void DestroyTaskManager();

public:
IMPORT_C void AddTaskL(CTask* aTask);
//... Omitted for clarity

private:
CTaskManager();

// Private - destroy the singleton through DestroyTaskManager()
∼CTaskManager();
void ConstructL();

private:
CTaskManager(const CTaskManager&); // Not implemented
CTaskManager& operator =(const CTaskManager&);// Prevents copying

private:
static CTaskManager* iTaskManager; // The singleton instance

private:
RPointerArray<CTask>* iTasks;
...

};

// TaskManager.cpp // Implementation

// Initializes the static data
CTaskManager* CTaskManager::iTaskManager = NULL;

EXPORT_C CTaskManager* CTaskManager::TaskManagerL()
{
if (!iTaskManager)

{// Construct the singleton object on first use
CTaskManager* taskManager = new (ELeave) CTaskManager();
CleanupStack::PushL(taskManager);
taskManager->ConstructL();
CleanupStack::Pop(taskManager);
iTaskManager = iTaskManager;
}

return (iTaskManager);
}

EXPORT_C void CTaskManager::DestroyTaskManager()
{
delete iTaskManager;
iTaskManager = NULL;
}

// The use of dynamic arrays is discussed in Chapter 7
void CTaskManager::ConstructL()

{// Creates the underlying array
iTasks = new (ELeave) RPointerArray<CTask>(4);
}

// Exported function through which clients manipulate the array
EXPORT_C void CTaskManager::AddTaskL(CTask* aTask)

{
User::LeaveIfError(iTasks->Append(aTask));
}
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CTaskManager::∼CTaskManager()
{
if (iTasks)

{
iTasks->Close();
delete iTasks;
}

}

The implementation works well in an EXE component, but because of
its use of writable static data cannot be used in a DLL. If writable global
data is used inadvertently, it returns an error at build time for ARM targets,
emitting a message from the PETRAN tool similar to the following:

ERROR: Dll 'TASKMANAGER[1000C001].DLL' has uninitialised data

The only global data you can use with DLLs is constant global data of
the built-in types, or of a class with no constructor. Thus while you may
have constant global data such as this in a DLL:

static const TUid KUidClangerDll = { 0x1000C001 };
static const TInt KMinimumPasswordLength = 6;

You cannot use these:

static const TPoint KGlobalStartingPoint(50, 50);
// This literal type is deprecated (see Chapter 5)
static const TPtrC KDefaultInput =_L("");
static const TChar KExclamation('!');

The reason for this is the presence of a non-trivial class constructor,
which requires the objects to be constructed at runtime. This means that,
although the memory for the object is pre-allocated in code, it doesn’t
actually become initialized and const until after the constructor has run.
Thus, at build time, each constitutes a non-constant global object and
causes the DLL build to fail for target hardware.

Note that the following object is also non-constant because, although
the data pointed to by pClanger is constant, the pointer itself is
not constant:

// Writable static data!
static const TText* pClanger = (const TText*)"clanger";

This can be corrected as follows:

// pClanger is constant
static const TText* const pClanger = (const TText*)"clanger";
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Incidentally, the issue of not allowing non-constant global data in
DLLs highlights another difference between the behavior of Windows
emulator builds and builds for target hardware. The emulator can use
underlying Windows DLL mechanisms to provide per-process DLL data.
If you do inadvertently use non-constant global data in your code, it will
go undetected on emulator builds and will only fail when building for
target hardware.

Symbian OS DLLs must not contain writable global or static data.
The only global data which may be used are constants, either of the
built-in types or of classes with no constructor.

13.4 Thread-Local Storage

As I mentioned, the lack of writable global data in DLLs can be difficult
when you are porting code to run on Symbian OS. However, the operating
system does provide a mechanism whereby a DLL can manage writable
static data on a per-thread basis using thread-local storage, commonly
known as ”TLS”. This allocates a single machine word of writable static
data per thread for every DLL, regardless of whether the DLL uses it.
Obviously, the memory overhead is far less significant than allocating
a 4 KB chunk for each DLL which uses static data. However, the price
of using TLS instead of direct memory access is performance; data is
retrieved from TLS about 30 times slower than direct access, because the
lookup involves a context switch to the kernel in order to access the data.

The use of TLS for per-thread access to global static data is safe because
it avoids complications when the DLL is loaded into multiple processes.
However, for writable static data to be used by multiple threads, this
approach must be extended. One technique uses a server to store the
data, which has the benefit of being able to use static data without the
need for TLS, because it is a process. The server can make this data
available to its clients, which may run in multiple threads.3 Of course,
the inter-process context switch required to access the server also has
performance implications, as I discuss in Chapter 11.

The TLS slot can be used directly if you have only one machine word
of data to store. For extensibility, it is more likely that you’ll use it to store
a pointer to a struct or simple T Class which encapsulates all the data
you would otherwise have declared as static.

Thread-local storage is usually initialized when the DLL is attached
to a thread within the DLL entry point, E32Dll(). Typically, code is

3 You can find an example of this technique in the EpocStat product released by Peroon
(www.peroon.com/Downloads.html), for which full source code is available for download.
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added to construct the struct containing the global data and store it in
thread-local storage using the static function Dll::SetTLS(). (When
the DLL is detached from the thread, the TLS slot should be reset and the
static data deleted.) To access the data, you should use the static function
Dll::Tls(). This will return a TAny* which can be cast and used to
access the data. For simplicity, you may wish to provide a utility function,
or set of functions, to access the data from a single point.

Here’s some example code to illustrate the use of thread-local storage
when implementing a task manager which runs as a single instance. The
code is a modification of the previous version above, and can now be
used within a DLL:

// TaskManager.h
class CTask; // Defined elsewhere

class CTaskManager : public CBase
{

public:
IMPORT_C static CTaskManager* New();
∼CTaskManager();

public:
IMPORT_C void AddTaskL(CTask* aTask);
// ... omitted for clarity

private:
CTaskManager();
void ConstructL();

private:
CTaskManager(const CTaskManager&); // Not implemented
CTaskManager& operator =(const CTaskManager&); // prevents copying

private:
RPointerArray<CTask>* iTasks; // Single instance
};

// Accesses the task manager transparently through TLS
inline CTaskManager* GetTaskManager()

{ return (static_cast<CTaskManager*>(Dll::Tls())); }

// TaskManager.cpp
GLDEF_C TInt E32Dll(TDllReason aReason)

{
TInt r =KErrNone;
CTaskManager* taskManager = NULL;
switch (aReason)

{
#ifdef __WINS__

// On Windows, DLL attaches to the current process, not a thread
case EDllProcessAttach:

#else
case EDllThreadAttach:

#endif
// Initialize TLS
taskManager = CTaskManager::New();
if (taskManager)

{
Dll::SetTls(taskManager);
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}
break;

#ifdef __WINS__
case EDllProcessDetach:

#else
case EDllThreadDetach:

#endif
// Release TLS
taskManager = static_cast<CTaskManager*>(Dll::Tls());
if (taskManager)

{
delete taskManager;
Dll::SetTls(NULL);
}

break;
default:
break;
}

return(r);
}

// Non-leaving because it is called by E32Dll() which cannot leave
EXPORT_C CTaskManager* CTaskManager::New()

{
CTaskManager* me = new CTaskManager();
if (me)

{
me->iTasks = new RPointerArray<CTask>(4);
if (!me->iTasks)

{
delete me;
me = NULL;
}

}
return (me);
}

If you look at the documentation for class DLL in your SDK, you may
find that it directs you to link against EUser.lib to use the Tls()
and SetTls() functions. You’ll find this works for emulator builds, but
fails to link for ARM. This is because the methods are not implemented
in EUser.dll – you should now link against edllstub.lib, before
linking to EUser.lib.

Thread-local storage (TLS) can be used to work around the pro-
hibition of writable global data. However, the use of TLS affects
performance; data is retrieved from TLS about 30 times slower
than direct access because the lookup involves a context switch to
the kernel.
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13.5 The DLL Loader
An interesting scenario can arise when you attempt to replace a DLL
with a version you have rebuilt, perhaps a debug version or one that
includes tracing statements to help you track down a problem. You may
find that it is not ”picked up” by the loader, which continues to run the
original version.

As I described earlier, a DLL running from RAM is only loaded once,
even if multiple processes use it. The DLL loader uses reference counting,
and only unloads the DLL when none of its clients are running. So, if the
DLL is loaded by other processes, it will not be unloaded and cannot be
replaced by a newer version until the original is unloaded. This is also
relevant if you are attempting to replace a ROM-based4 DLL. If a ROM
version of the DLL you wish to replace is used before your component
loads, your component will also end up using the ROM-based version. In
effect, this means that you can never replace a DLL which is used by the
application launcher shell.

The DLL is loaded by name lookup (with additional UID checking
which I’ll describe shortly). If a DLL is not already loaded, the DLL loader
uses a particular lookup order to find it, as follows:

1. The same directory as the process wishing to load the DLL (often
c:\system\libs).

2. The directory associated with the filesystem’s default session path
(which is usually the root of the C: drive).

3. The \system\libs directories on all available drives, in the follow-
ing order: C: (the internal storage drive), A:, B:, D:, E:, ..., Y:
and finally, Z: (the ROM).

If you wish to replace a DLL, you should ensure that you put the
replacement where it will be loaded before the original version.

13.6 UIDs

A UID is a signed 32-bit value which is used as a globally unique
identifier. Symbian OS uses a combination of up to three UIDs to create a
TUidType compound identifier. UIDs are used extensively, for example,
to identify the type of a component and to verify that it is compatible and
supports a particular interface. Thus, a DLL can register a type to reflect
the interface it is implementing. The DLL loader can check the type of

4 In case you were wondering, you can never replace a DLL used by a component on
ROM, because the ROM binaries are linked together when the ROM is built. However, you
can replace a ROM DLL if the component that is using it isn’t running from ROM.
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a DLL (using RLibrary::Type()) to determine whether a component
is of the correct type, and prevent other files which may share the same
name from being loaded.

The three UIDs are identified as UID1, UID2 and UID3 and are
generally used as follows:

• UID1 is a system-level identifier to distinguish between EXEs
(KExecutableImageUid = 0x1000007a) and DLLs (KDynamic-
LibraryUid = 0x10000079)

• UID2 distinguishes between components having the same UID1,
for example between shared libraries (KSharedLibraryUid =
0x1000008d) or polymorphic DLLs such as applications (KUidApp
= 0x100039CE), recognizers (0x10003A19) or front-end processors
(0x10005e32)

• UID3 identifies a component uniquely. In order to ensure that each
binary that needs a distinguishing UID is assigned a genuinely unique
value, Symbian manages UID allocation through a central database.5

For test code, or while your code is under development, you may
prefer to use a temporary UID from a range reserved for development
only. These values lie in the range 0x01000000 to 0x0fffffff. You must still
take care to avoid re-using UIDs in this region because a UID clash may
prevent a library from loading. For this reason, these values must not be
used in any released products.

You don’t need to specify UID1 for a component, because it is
defined implicitly by the targettype you choose for your compo-
nent (I’ll discuss the different options of targettype in the next
section). For example, a component which is specified as target-
type epocexe is assigned UID1=KExecutableImageUid by the
system, which is built directly into the binary. By comparison, tar-
gettype dll (for a shared library component) is automatically assigned
UID1=KDynamicLibraryUid. A component’s second and third UIDs,
if used, must be specified as hexadecimal values in the .mmp file of
the component.

For native binaries, Symbian OS uses UIDs as the primary means of
identification, rather than filenames or filename extensions.

5 You can make a request to Symbian for allocation of one or more UIDs by submitting
an email with the subject ”UID Request” to Symbian (UID@symbiandevnet.com). You can
ask to be assigned a single UID or a block of values, usually no more than ten, although you
will be granted more if you state your reasons for needing them. Your submission should
also include your name (or that of the application) and your return email address.
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13.7 The targettype Specifier

The targettype specifier in the .mmp (project) file allows you to define
the particular binary type of your component. The targettype is not
necessarily the extension assigned to the component when it builds,
although it may be, but categorizes it for the build tools. I describe below
the most common binary types you’ll encounter on Symbian OS. Various
other plug-in targettypes, such as app, fep, mdl, prn and ecomiic,
may be used for a polymorphic DLL.

targettype epocexe

You would logically think that any component running on Symbian
OS as a separate, ”out-of-process” component, such as a server, would
be built with the .exe extension. However, as I described earlier, the
Windows emulator runs in a single process. So, while you can run
multiple Symbian OS processes on hardware (ARM builds), on Windows
each Symbian OS process is built as a DLL which runs inside a separate
thread that emulates a Symbian OS process within the single Win32
emulator process, EPOC.exe.

On target hardware, if you browse the file system, select and click on a
.exe file, it will start a different process. However, this is not possible on
the emulator, which is why the epocexe type was introduced in v6.0 to
simulate this behavior. It instructs the build tools to build the component
as a .exe for multi-process hardware platforms and as a .dll for
single-process emulator builds. This allows an epocexe component to
be launched directly, both in the single process of the emulator and as a
separate process on target hardware. An example of a typical epocexe
component is the contacts server (built as cntsrv.dll on Windows
and cntsrv.exe for target hardware).

This is true for versions of Symbian OS earlier than v8.0. The new kernel
in Symbian OS v8.0 has more complete process emulation on Windows,
and an EXE may now be launched directly both in the emulator (although
it still runs within the single emulator process) and on hardware. As a
result, targettype epocexe is no longer needed and code which runs
as a separate process, such as a Symbian OS server, may now be built as
an EXE for both Windows and hardware platforms.

Components of this targettype should implement WinsMain(),
which is exported as ordinal 1 for emulator builds, to form the DLL
entry point. There should be no other exports besides this entry point for
emulator builds, and there need be no exported functions at all for ARM
builds. For example:

GLDEF_C TInt E32Main() // Process entry point function
{
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... // Omitted for clarity
return (KErrNone);
}

#if defined(__WINS__)
EXPORT_C TInt WinsMain()

{
E32Main();
return (KErrNone);
}

TInt E32Dll(TDllReason)
{ // DLL entry point for the DLL loader
return (KErrNone);
}

#endif

targettype exedll

This targettype exists as an alternative to epocexe and allows
separate process components to export functions to clients for both
hardware and emulator builds. Like epocexe, the build tools interpret
this differently on each platform and build the component as .exe for
the multi-process hardware (ARM) platforms and as .dll for single-
process emulator platforms. An example of this targettype is the
random server, which builds as randsvr.exe for ARM builds and
randsvr.dll to run on the emulator.

A component of this targettype must implement the DLL entry
point function E32Dll() for emulator builds only, to allow it to be
loaded as a DLL. This should be the first exported function in the .def
file.

In releases up to and including v5.0, the epocexe type did not exist
and exedll was used instead. This targettype is also due to be
retired in EKA26 versions of Symbian OS, because the enhanced process
emulation, described above, allows out-of-process components to be
built as a .exe for both ARM and emulator platforms. However, to allow
this type of component to export functions, a new targettype will be
introduced to replace it. This will be called exexp and, on all platforms,
will build components as .exe, which may export any number of entry
point functions.

targettype exe

The build tools build a component of this targettype to have the .exe
extension on both the emulator and target hardware. On EKA1, it is only
used for basic console applications such as Symbian OS command-line

6 You may recall from Chapter 10 that Symbian identifies the new hard real-time kernel
in Symbian OS v8.0 as ‘EKA2’ which stands for ‘EPOC Kernel Architecture 2’. The kernel in
previous versions of Symbian OS is referred to as EKA1.
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(”Text Shell”) test code, which I discuss further in Chapter 17. Text Shell
programs use the text window server and the programs are launched by
having integral emulator support. On EKA1 releases of Symbian OS, you
can only run them on the Windows emulator by launching them directly
from the command prompt on the PC, by running them from the debugger
or by launching the text shell, EShell.exe, from the command line of
the PC and then invoking your test executable from inside it. On EKA2,
Symbian OS process emulation has been enhanced on Windows, so you
can directly load the EXE from the command line, as previously, but
you can also start it from within the emulator by selecting it from the
application launcher shell, file manager or any other application which
launches processes. On EKA2, the Windows emulator corresponds more
closely to behavior on hardware where, on all releases of Symbian OS,
an EXE may be invoked directly.

targettype lib

This targettype is used for a static library, which is a file to which
other executable code links to resolve references to exported functions.
The component will build with a .lib extension.

13.8 Summary

This chapter examined the nature of DLLs and EXEs on Symbian OS.
It described how Symbian OS EXEs are emulated on Windows, and
described the difference between running an EXE from ROM and when
installed to internal storage or removable media, on hardware.

Symbian OS has two types of dynamic link library: shared library and
polymorphic DLL. All Symbian OS DLLs built into the ROM are stripped
of relocation information to minimize their size. Additionally, all Symbian
OS code links to DLLs by ordinal rather than by name, which reduces
the amount of space required in the DLL export table. The chapter also
gave brief details of how DLLs load, including the basic details of the
DLL loader.

Symbian OS UIDs are used to identify components by type and give
binaries a unique identity. The relationship between UID and target-
type (epocexe, exedll, exexp, exe, dll, lib and polymorphic
DLL types such as app or fep) was discussed. Each targettype was
explained in terms of its binary type on hardware and emulator plat-
forms, and any differences occurring between EKA1 and EKA2 releases
of Symbian OS.

The chapter also examined the reasons why no Symbian OS DLL may
have modifiable static or global data, and described how thread-local
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storage can be used instead to provide access to global data within
a single thread. It described why the use of thread-local storage can
have performance disadvantages but can be useful when porting code
which previously relied on static data, for example, through use of the
singleton pattern.
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ECOM

Go on, get out! Last words are for fools who haven’t said enough!
Karl Marx

In Chapter 13, I described polymorphic ”plug-in” DLLs which implement
an abstract interface and are dynamically loaded at run-time to extend a
”framework” process. There are three roles associated with an extensible
plug-in framework:

• an interface, which defines a service

• an implementation of that interface (within a polymorphic plug-in
DLL); the specifics of an implementation may not be known until
run-time and several implementations of the interface may exist

• a framework, which provides clients with access to all the implemen-
tations of a specific interface, including a way to determine which
implementations are available (resolution), and to manage the creation
and destruction thereof.

Prior to Symbian OS v7.0, each framework used its own custom code
to identify the plug-in type and the nature of the specific implementation
and to load and unload individual plug-ins as appropriate. To simplify
such framework code, ECOM was added to Symbian OS v7.0.

14.1 ECOM Architecture

ECOM is a generic and extensible framework by which abstract inter-
faces can be defined and their implementations identified, loaded and
managed. Frameworks can delegate their plug-in identification and
instantiation to ECOM, and do not have to duplicate complex code
which does not bear any direct relevance to the required behavior of the
framework itself. The architecture:

• Identifies all the concrete implementations of a particular interface.
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• Allows a client of that interface to specify dynamically which inter-
face implementation should be used. The selection process is called
resolution. ECOM provides a default resolver but interface definitions
can provide their own specialized resolvers where required.

• Instantiates an instance of the concrete class which implements that
interface by calling the appropriate factory function.

The class is implemented in an ECOM plug-in DLL and ECOM loads
it into the process in which the caller is running. The plug-in may be
loaded by a number of different clients running simultaneously in different
processes. ECOM uses reference counting to manage this, and unloads it
when all its clients have released it.

The ECOM architecture is used transparently by interface clients
without the need for them to call any ECOM-specific functions. ECOM
creates an instance of an interface implementation dynamically, either
by selecting a default implementation or by using a cue from the client as
a way of identifying the particular implementation required. The means
by which ECOM identifies and loads the correct plug-in is hidden from
the client. Once an object of the concrete class is instantiated, the caller
accesses it transparently through the interface. The client does not need to
access the concrete class itself, nor does it need to access ECOM directly,
although it must link against the ECOM client library (ECOM.lib).

ECOM itself uses a client–server architecture, which is discussed in
more detail in Chapters 11 and 12. The ECOM client class, RECom-
Session, provides functions to list, instantiate and destroy interface
implementations. A single instance of the ECOM client session exists per
thread, and is accessed by interface instantiation and destruction code,
which uses a set of static functions.

The ECOM server manages requests to instantiate concrete instances
of an interface. By using resource file metadata provided by each ECOM
plug-in, it constructs a registry of all interface implementations installed
on the device. The server constantly monitors which implementations are
available by means of filesystem scanning, which determines when plug-
ins have been added or removed, by installation or on removable media.

An interface implemented by an ECOM plug-in has two characteristic
features. Firstly, it is an abstract class that defines a set of one or more
pure virtual functions. This is the standard definition of an interface.
However, in addition, the interface must also provide one or more factory
functions to allow clients to instantiate an interface implementation
object.

The factory functions do not instantiate the object directly, because
an interface cannot predict which classes will implement it. Instead,
the factory functions issue requests to the ECOM framework which, at
runtime, instantiates the appropriate implementation class dynamically.
As I described above, in order to determine which implementation to
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instantiate, ECOM is given a cue, which may be a UID or some text
which is passed to a resolver. Alternatively, a list of all implementations
of a particular interface can be returned to the caller, which can then
specify the one to use. I’ll illustrate both methods of instantiation in code
later in the chapter.

If the only contact you intend to make with ECOM is as an ECOM
interface client, the good news is that you don’t need to read any more
of this chapter. However, you may find it useful to go to the end, where
you’ll find some example code for a typical interface client and a brief
summary of the contents of the rest of this chapter.

This chapter discusses how to define an interface and implement it in
an ECOM plug-in DLL. I’ll illustrate the main points with example code
that defines an abstract base class interface, CCryptoInterface, which
can be used to encrypt and decrypt the contents of an 8-bit descriptor.1

I’ll show how ECOM can be used to select dynamically which of two
possible concrete implementations of the interface to use. In the example,
I’ve assumed that there are just two implementations of the interface,
which differ because one uses a cryptography library implemented in
software while the other uses a cryptographic hardware module, accessed
by means of a device driver. Of course, numerous implementations of
this example interface could exist, provided by separate plug-in DLLs,
for various cryptography libraries ported to Symbian OS. However, for
simplicity, this example implements both concrete classes in a single
plug-in DLL.

Figure 14.1 shows the relationship between the client, interface and
implementation classes and ECOM, using the classes from the example
code for illustration.

Interface
(CCryptoInterface)

Implementation
(CHardwareCrypto)

Implementation
(CSoftwareCrypto)

ECOM Framework

Interface client

Resolves
and

instantiates

NewL()
Factory
function

REComSession::CreateImplementationL()

Figure 14.1 Relationship between client, interface and implementation classes and ECOM

1 I invented the fictional CCryptoInterface class, and all the sample code in this
chapter, merely as an example of how to use ECOM. Any resemblance to Symbian OS
cryptography libraries, living or dead, is purely coincidental.
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14.2 Features of an ECOM Interface

Let’s start by considering the features of an ECOM interface:

• As expected, the interface will define a set of pure virtual functions
which a concrete instance will implement.

• In addition, the interface must also provide one or more factory
functions that pass a cue to ECOM to enable it to instantiate an object
of the correct implementation (in the example below, the interface
definition has two static NewL() functions).

• The interface must also provide a means for its clients to release it,
such as a destructor to allow it to be deleted, or a method such as
Release() or Close().

• An ECOM interface definition must also have a TUid data member
which is used internally by ECOM to identify an implementation
instance for cleanup purposes.

Here is the definition of the example interface class, CCrypto-
Interface. You’ll notice that the example interface class is a C class
rather than an M class, which is what you may automatically have
expected for an abstract interface definition from the discussion of the
standard Symbian OS class types in Chapter 1. The reason for this is
clear on further inspection, because an ECOM interface class has features
which are atypical of an M class, such as the static instantiation method
and a TUid data member.

class CCryptoInterface : public CBase
{

public:
enum TAlgorithm { EDES, E3DES, EAES, ERC2, ERC4 };

// Instantiation of a default object of this type
IMPORT_C static CCryptoInterface* NewL();

// Instantiation using a cue to identify the implementation to use
IMPORT_C static CCryptoInterface* NewL(const TDesC8& aCue);

IMPORT_C virtual ∼CCryptoInterface();

// List all implementations of this interface
IMPORT_C static void

ListImplementationsL(RImplInfoPtrArray& aImplInfoArray);
public:

// Interface functions to be implemented by a concrete instance
virtual void EncryptL(TDesC8& aPlaintext, TDesC8& aKey,

TDes8& aCiphertext, CryptoInterface::TAlgorithm) = 0;
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virtual void DecryptL(TDesC8& aCiphertext, TDesC8& aKey,
TDes8& aPlaintext, CryptoInterface::TAlgorithm) = 0;

private:
TUid iDtor_ID_Key; // Identification on cleanup
};

This example interface derives directly from CBase, but it is not
mandatory for an ECOM interface definition to do so. Interfaces may, for
example, equally well derive from another C class such as CActive,
which, of course, itself derives from CBase. Although the interface is
defined as a C class, you’ll notice that a couple of the usual char-
acteristics of a C class are missing. Firstly, the class has no explicitly
declared constructor because it is an abstract base class and will
not itself be constructed.2 In addition, although the class defines a
static NewL() factory function, it does not define a ConstructL()
method for second-phase construction. This is because the NewL()
factory method of CCryptoInterface does not use standard two-
phase construction, but instead calls ECOM to instantiate a suitable
implementation object.

An ECOM interface has the following characteristics:

• It is an abstract class with a set of one or more pure vir-
tual functions.

• It must provide one or more factory functions to allow clients
to instantiate an interface implementation object.

• It must provide a means for its clients to release it, such as a
destructor or a method such as Release() or Close().

• It has a TUid data member, used internally to identify an
implementation instance for cleanup purposes.

14.3 Factory Methods

Let’s look at the implementation of the two static factory methods in more
detail. The overload of NewL() that takes no parameters creates an object
of the default implementation of CCryptoInterface. In the example

2 The compiler generates an implicit default constructor when instances of classes
deriving from CCryptoInterface are created, in order to construct the virtual function
table for the class.
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code below, the method hard-codes a specific implementation (CSoft-
wareCrypto) by passing ECOM its UID.3 This method of specifying a
particular class assumes that the UID of at least one implementation class
is known when the factory function for the interface is compiled.

An alternative, more loosely-coupled, technique for instantiating a
default implementation uses the ECOM resolver. The resolver can be
passed a cue to enable it to instantiate, for example, the first concrete
class it discovers which implements that interface. I’ll illustrate how to do
this later, when I discuss how to customize the ECOM resolver.

EXPORT_C CCryptoInterface* CCryptoInterface::NewL()
{
// Hard-coded to use CSoftwareCrypto by default
const TUid KSWCryptoUid = { 0x10008EE5 };

TAny* defaultCrypto =REComSession::CreateImplementationL(KSWCryptoUid,
_FOFF(CCryptoInterface, iDtor_ID_Key));

return (reinterpret_cast<CCryptoInterface*>(defaultCrypto));
}

REComSession::CreateImplementationL() is passed the UID
of the required implementation and the offset4 of the iDtor_ID_Key
member of the interface class. Don’t worry too much about this ECOM-
internal housekeeping, which initializes iDtor_ID_Key so ECOM can
later identify the object for cleanup. CreateImplementationL()
returns a TAny* which must be re-cast to the interface pointer before
returning it to the caller. There are a number of other overloads of
REComSession::CreateImplementationL(), which you’ll find
documented in detail in your preferred SDK (from Symbian OS v7.0
onwards).

The second NewL() factory method takes a cue parameter, which it
passes to the default ECOM resolver. The resolver uses it to determine the
concrete instance of the implementation to be instantiated, by matching
the cue against the default_data attributes for registered implemen-
tations of that interface. I’ll discuss the role of the default resolver and
ECOM resource files in more detail later.

// interface_uid for CCryptoInterface
const TUid KCCryptoInterfaceUid = {0x10008EE0};

3 Implementations are identified by their implementation_uid attribute, which is
declared in the resource file associated with the plug-in DLL, as I’ll discuss later in the
chapter.

4 The _FOFF macro is defined as follows in e32def.h:
#define _FOFF(c,f) ((TInt)(&((c *)0)->f))

It returns the offset in bytes of a member variable f of class c
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EXPORT_C CCryptoInterface* CCryptoInterface::NewL(const TDesC8& aCue)
{// Resolution using the default ECOM resolver
TEComResolverParams resolverParams;
resolverParams.SetDataType(aCue);
// Allows wildcards in the string match
resolverParams.SetWildcardMatch(ETrue);

TAny* cryptoInterface =
REComSession::CreateImplementationL(KCCryptoInterfaceUid,
_FOFF(CCryptoInterface, iDtor_ID_Key), NULL,
resolverParams));

return (reinterpret_cast<CCryptoInterface*>(cryptoInterface));
}

Besides the TEComResolverParams object, which encapsulates the
resolver cue, other parameters passed to REComSession::CreateIm-
plementationL() include the UID of the requested interface and the
offset of iDtor_ID_Key as discussed previously. The third parameter,
NULL in the example above, can be used to pass data to the initialization
method of the concrete class. If CreateImplementationL() cannot
find an appropriate interface implementation for the cue given, it leaves
with KErrNotFound.

By calling NewL(), an interface client instantiates an object which
implements that interface. The implementation type is either determined
by the cue passed into NewL() or is the default type. Because the caller
uses the interface to perform instantiation, it does not need information
about the class that actually implements that interface. However, RECom-
Session does provide a function, ListImplementationsL(), which
returns information about all the implementations of a given interface in
an object of type RImplInfoPtrArray. This can be used to provide
interface clients with a list of every implementation class available. I’ll
illustrate how a client might use this function at the end of this chapter.

EXPORT_C void CCryptoInterface::ListImplementationsL(RImplInfoPtrArray&
aImplInfoArray)

{
REComSession::ListImplementationsL(KCCryptoInterfaceUid,

aImplInfoArray);
}

The CCryptoInterface class also defines a virtual destructor, which
calls the ECOM framework, passing iDtor_ID_Key to identify the
object. This enables ECOM to perform reference counting and cleanup as
necessary. Subclasses will inherit this destructor code, which C++ calls
after the destructor of the derived class.
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EXPORT_C CCryptoInterface::∼CCryptoInterface()
{// Notify ECOM that this object is being deleted
REComSession::DestroyedImplementation(iDtor_ID_Key);
}

14.4 Implementing an ECOM Interface

Having discussed CCryptoInterface, let’s move on to consider how
it is implemented. Concrete classes must be defined in an ECOM plug-
in DLL, which is built with targettype ECOMIIC (which stands for
”ECOM Interface Implementation Collection”). Here’s the .mmp file for
the example plug-in DLL:

// ECryptoExample.mmp

TARGET ECryptoExample.dll
TARGETTYPE ECOMIIC

// UID2 = ECOM plug-in DLL recognition, UID3 = unique UID for this DLL
UID 0x10009D8D 0x10009EE1

SOURCEPATH .
SOURCE // ... Omitted for clarity
USERINCLUDE // ... Omitted for clarity
SYSTEMINCLUDE \epoc32\include \epoc32\include\ecom

RESOURCE 10009EE1.RSS // The resource file for this implementation

LIBRARY ECOM.lib // ECOM plug-in DLLs must link against ECOM.lib
LIBRARY ... // Other libraries as required

The plug-in is a polymorphic Symbian OS DLL and must define a
standard DLL entry point as follows:

TBool E32Dll()
{
return (ETrue);
}

Within a plug-in DLL, an ECOM interface collection may contain one
or more implementations of one or more ECOM interfaces and/or multiple
implementations of the same interface. The sample code implements two
subclasses of CCryptoInterface.

// implementation_uid = 0x10008EE5 (discussed later)
class CSoftwareCrypto : public CCryptoInterface

{
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public:
static CSoftwareCrypto* NewL();
∼CSoftwareCrypto();
// Implementation using a software cryptography library
virtual void EncryptL(TDesC8& aPlaintext, TDesC8& aKey,

TDes8& aCiphertext);
virtual void DecryptL(TDesC8& aCiphertext, TDesC8& aKey,

TDes8& aPlaintext);
private:

CSoftwareCrypto();
void ConstructL();

private:
... // Omitted for clarity
};

// implementation_uid = 0x10008EE4 (discussed later)

class CHardwareCrypto : public CCryptoInterface
{

public:
static CHardwareCrypto* NewL();
∼CHardwareCrypto();
// Implementation using hardware & device drivers
virtual void EncryptL(TDesC8& aPlaintext, TDesC8& aKey,

TDes8& aCiphertext);
virtual void DecryptL(TDesC8& aCiphertext, TDesC8& aKey,

TDes8& aPlaintext);
private:

CHardwareCrypto();
void ConstructL();

private:
... // Omitted for clarity
};

Besides the interface functions, every implementation must have an
instantiation function which it ”registers” with ECOM. The classes above
each define a static NewL() factory function, which uses two-phase
construction as described in Chapter 4.

ECOM calls the NewL() factory function of a class when a call to
REComSession::CreateImplementationL() specifies that class
directly or a given cue resolves to that implementation.

A plug-in DLL ”registers” these instantiation functions with ECOM
by exporting a standard function (ImplementationGroupProxy())
which returns a pointer to an array of TImplementationProxyobjects.
This is the only function that a polymorphic ECOM plug-in DLL exports.
Each TImplementationProxy object represents a single implemen-
tation class and contains the TUid which identifies the implementation
(this should match the implementation_uid value for the class in its
registration resource file) and a pointer to its instantiation method.

#include <ImplementationProxy.h> // ECOM header file
#include "CHardwareCrypto.h" // Class definition for CHardwareCrypto
#include "CSoftwareCrypto.h" // Class definition for CSoftwareCrypto
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// An array of TImplementationProxy objects which connect each
// implementation with its instantiation function
const TImplementationProxy ImplementationTable[] =

{
{{0x10008EE4}, CHardwareCrypto::NewL},
{{0x10008EE5}, CSoftwareCrypto::NewL}
};

// Exported proxy function to resolve instantiation methods for an ECOM
// plug-in DLL
EXPORT_C const TImplementationProxy* ImplementationGroupProxy(TInt&

aTableCount)
{
aTableCount = sizeof(ImplementationTable) /

sizeof(TImplementationProxy);
return ImplementationTable;
}

Slightly confusingly, ECOM uses a number of different UIDs for
identification:

• interface_uid is used to identify a specific interface

• implementation_uid is used to identify each concrete class
that implements an interface

• an ECOM plug-in DLL, which can contain one or more ECOM
interface implementations, is identified using UID3 for the DLL
(as described in Chapter 13).

14.5 Resource Files

Earlier, I briefly mentioned that ECOM uses resource files to build up
a ”registry” of all the ECOM plug-ins installed. Let’s now examine the
detail. Each plug-in DLL must supply a compiled .rss resource, of
a particular format, in order to register with the ECOM framework.
Both the plug-in DLL and the resource file should be built into the
\system\libs\plugins\ directory.

The resource file lists all the plug-in properties, including information
about each concrete class implementing an ECOM interface. ECOM
associates the resource file with the plug-in DLL by name – it should be
named using the hexadecimal value of the third UID of the plug-in DLL
(for the example below, this is 10008EE1.rss).
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// 10008EE1.RSS
// Registry file for the CCryptoInterface Implementation Collection

#include "RegistryInfo.rh" // Defines the resource structures

RESOURCE REGISTRY_INFO theInfo
{
// UID3 for the plug-in; must match the name of this file
dll_uid = 0x10008EE1;

interfaces = // interfaces info
{
INTERFACE_INFO

{
interface_uid = 0x10008EE0; // UID of CCryptoInterface

implementations =
{
IMPLEMENTATION_INFO // Info for CHardwareCrypto

{
// Identifies the specific implementation
implementation_uid = 0x10008EE4;
version_no = 1;
display_name = "Hardware Cryptography";
// Used for cue lookup by the default ECOM resolver
default_data = "HW";
opaque_data = "";
},

IMPLEMENTATION_INFO // Info for CSoftwareCrypto
{
// Identifies the specific implementation
implementation_uid = 0x10008EE5;
version_no = 1;
display_name = "Software Cryptography";
// Used for cue lookup by the default ECOM resolver
default_data = "SW";
opaque_data = "";
}

};
}

};
}

A single REGISTRY_INFO structure is used to declare all the imple-
mentations of ECOM interfaces (identified by interface_uid) available
in the plug-in DLL (identified by dll_uid). The details of each implemen-
tation are declared inside separate IMPLEMENTATION_INFO structures.
The default ECOM resolver uses the default_data attribute to resolve
a cue passed to a factory instantiation function. In addition, it is possible
to customize the resolver to use the opaque_data attribute for lookup.
Customized resolution can be useful to extend the selection criteria
from those of the default ECOM resolver, for example by implementing
case-insensitive lookup.
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A customized resolver is actually an implementation of an ECOM inter-
face, CResolver, and it should thus be implemented in an ECOM plug-in
DLL and registered with ECOM by supplying a resource file as described
above. The interface_uid for CResolver is 0x10009D0 – you
should always use this value in the resource file created for your cus-
tom resolver.

Such a resolver must implement the pure virtual functions
IdentifyImplementationL() and ListAllL() declared in
CResolver. It should also specify a factory creation function which
takes an MPublicRegistry reference parameter; this object gives the
resolver access to a list of implementations of a specified interface.
IdentifyImplementationL() should be implemented to identify

the most appropriate implementation of a specified interface, according
to a cue. It will use the MPublicRegistry object to obtain informa-
tion about each implementation. ListAllL() must return a list of all
implementations which match the cue.

class CCryptoResolver : public CResolver
{

public:
// Factory function
static CCryptoResolver* NewL(MPublicRegistry& aRegistry);
∼CCryptoResolver();

public: // From CResolver (see resolver.h)
/** Request that the resolver identify the most appropriate

interface implementation, returning the UID or KNullUid if no
match is found */

TUid IdentifyImplementationL(TUid aInterfaceUid,
const TEComResolverParams& aAdditionalParameters) const;

/** Return a pointer to an array of all the implementations which
satisfy the specified interface */

RImplInfoArray* ListAllL(TUid aInterfaceUid,
const TEComResolverParams& aAdditionalParameters) const;

... // Omitted
};

The custom resolver may be used by the interface instantiation func-
tions; for example, the CCryptoInterface::NewL() factory method
may be extended to use a custom resolver as follows:

CCryptoInterface* CCryptoInterface::NewL()
{// The implementation instantiated is the first found by resolver
_LIT8(KAny,"*");
TEComResolverParams resolverParams;
resolverParams.SetDataType(KAny());
resolverParams.SetWildcardMatch(ETrue);
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// UID of the crypto resolver
const TUid KCustomResolverUid = {0x10008EE6};

TAny* cryptoInterface =
REComSession::CreateImplementationL(KCCryptoInterfaceUid,
_FOFF(CCryptoInterface,iDtor_ID_Key), NULL, resolverParams,
KCustomResolverUid));

return (reinterpret_cast<CCryptoInterface*>(cryptoInterface));
}

The third UID of an ECOM plug-in DLL is used to name its asso-
ciated compiled resource, which contains its ECOM ”registration”
information.

14.6 Example Client Code

So how does a client use an ECOM plug-in? As I have already described,
the caller doesn’t need to be aware of the details and simply uses
the factory function supplied by the interface, supplying a cue if it is
required. ECOM takes care of the details of locating and instantiating the
appropriate implementation. An interface client must simply include the
header files which define the interface, link against ECOM.lib and use
the factory instantiation functions as appropriate:

#include "CryptoInterface.h"

void GetDefaultCryptoL()
{// Get the default implementation of CCryptoInterface
CCryptoInterface* crypto = CCryptoInterface::NewL();
CleanupStack::PushL(crypto);
...
CleanupStack::PopAndDestroy(crypto);
}

void GetSpecifiedCryptoL()
{// Use a cue - gets CCryptoInterface implementation which uses
// hardware support
_LIT8(KHardware,"HW");
CCryptoInterface* crypto = CCryptoInterface::NewL(KHardware);
CleanupStack::PushL(crypto);
...
CleanupStack::PopAndDestroy(crypto);
}

void GetAllCryptoL()
{

// Get all implementations using CCryptoInterface::ListImplementationsL()
RImplInfoPtrArray infoArray;
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CCryptoInterface::ListImplementationsL(infoArray);
// infoArray is not leave-safe, but use of the cleanup stack is
// omitted for clarity. See Chapter 3 for more information.
...

CCryptoInterface* crypto;
for (TInt i =0; i< infoArray.Count(); i++)

{
// Retrieves default_data for each
TPtrC8 dataType = infoArray[i]->DataType();
crypto = CCryptoInterface::NewL(dataType); // Use this as a cue
CleanupStack::PushL(crypto);
...
CleanupStack::PopAndDestroy(crypto);
}

}

14.7 Summary

This chapter covered the important concepts behind the ECOM architec-
ture, which provides services to locate, resolve, instantiate and manage
instances of polymorphic plug-in DLLs.

The chapter discussed how to define an abstract interface and how
to implement it in an ECOM plug-in DLL. The example showed how
to implement two concrete implementation classes for a fictional cryp-
tographic interface, within a single polymorphic plug-in DLL. For this
reason, an ECOM plug-in DLL is also known as an ”ECOM Interface
Implementation Collection”, and assigned a targettype of ECOMIIC.

The chapter also described how an interface client can use fac-
tory methods provided by the interface to instantiate concrete instances
thereof, without having any knowledge of ECOM itself. The factory instan-
tiation functions, provided by the interface, call the ECOM framework
using REComSession::CreateImplementationL(). The ECOM
framework uses a default or customized resolver to examine the registry
of interface implementations and instantiate an object of the appropriate
class. An interface client should simply include the header files which
define the interface and link against ECOM.lib.

Chapter 13 discusses generic polymorphic plug-in DLLs and Symbian
OS DLL loading in more detail.
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Panics

We experience moments absolutely free from worry. These brief
respites are called panic

Cullen Hightower

One dictionary definition of panic is ”a sudden overpowering fright;
sudden unreasoning terror often accompanied by mass flight”. The word
panic itself derives from Pan, the Greek god of nature and goatherds, who
was half man and half goat. He was considered by some to represent an
image of the devil. Panic was said to resemble the mental or emotional
state induced by him.

On Symbian OS, when a thread is panicked, the code in it stops
running. Panics are used to highlight a programming error in the most
noticeable way, stopping the thread to ensure that the code is fixed, rather
than potentially causing serious problems by continuing to run. There is
no recovery from a panic. Unlike a leave, a panic can’t be trapped. A
panic is terminal.

If a panic occurs in the main thread of a process, the entire process
in which the thread runs will terminate. If a panic occurs in a secondary
thread, it is only that thread which closes. However, on hardware, if
any thread is deemed to be a system thread, i.e. essential for the system
to run, a panic in the thread will reboot the phone.1 Otherwise, if it’s
not a system thread, on target hardware and in release builds on the
Windows emulator, the end result of a panic is seen as a ”Program
closed” message box, which displays the process name, along with a
panic category and error code. In debug emulator builds, you can choose
to break into the code to debug the cause of the panic – this is known as
just-in-time debugging.

1 Forcing a reboot if a system-critical thread panics is a policy decision rather than a
shortcoming of the operating system.
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Panics are used to highlight programming errors by terminating the
thread (and, if it is the main thread, the process in which it runs).

15.1 Just-In-Time Debugging

On the Windows emulator, in debug builds, you can use theUser::Set-
JustInTime() system function to choose whether a panic kills just
the thread or the whole emulator. By default, just-in-time debugging
is enabled and a panic will terminate the entire program and enter
the debugger. You can disable this by calling User::SetJustIn-
Time(EFalse), whereupon the panic will appear as it does in release
builds and simply terminate the thread in which it occurred with an
appropriate message box. Just-in-time debugging can be re-enabled by
calling User::SetJustInTime(ETrue).

When just-in-time debugging is enabled, the panic calls a function
called ThreadPanicBreakPoint(). This function presents the debug-
ger with an information structure which contains information about the
ID and name of the thread that panicked, the panic category and reason
(which are described shortly), and the name of the thread that caused the
panic. The function then breaks into the code and launches the debugger
within the context of the function that called the panic, using __asm int
3. You can use the debugger to look through the call stack to see where
the panic arose and examine the appropriate state.

There are some subtle differences in behavior between Symbian OS
v8.0, which contains the new hard real-time kernel (known at the time
of going to press as ”EKA2”, which stands for ”EPOC Kernel Architecture
2”) and previous releases of Symbian OS (EKA1).

Panics on EKA1

A call to the static function User::Panic() panics the currently run-
ning thread. A thread may panic any other thread in the system by
acquiring an RThread handle to it (as discussed in Chapter 10) and call-
ing RThread::Panic(). Both functions take two parameters: a panic
category string, which is limited to 16 characters, and an error code,
expressed as a TInt.

Panics on EKA2

A call to the static function User::Panic()panics the currently running
thread. A thread may panic any thread in the same process by calling
RThread::Panic(), but can no longer panic threads in any other
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process.2 The panic functions take a panic category string, which can
contain an unlimited number of characters, and an error code, expressed,
as usual, as a TInt.

15.2 Good Panic Style

Even without breaking into the debugger, you should still be able to track
down the cause of a panic using the panic category string and error
number. It’s good style to make your panic category string descriptive
and unique, so other developers can locate the string in your header files,
and with it, any associated panic error codes (which should also have
suitably descriptive names).

Thus, you might have a general panic header file for your library which
includes the following:

// ClangerPanic.h
#ifndef __CLANGERPANIC_H__
#define __CLANGERPANIC_H__

#include <e32base.h>

_LIT(KClangerPanic, "CLANGER-ENGINE");

enum TClangerEnginePanic
{
ECorruptBlueStringPudding, // =0,
EIronChickenNotInitialized,// =1,
EInvalidClangerSetting // =2
};

static void Panic(TClangerEnginePanic aCategory);
#endif // __CLANGERPANIC_H__

Which defines the Panic() function separately as follows:

static void Panic(TClangerEnginePanic aCategory)
{
User::Panic(KClangerPanic, aCategory);
}

(You’ll notice by the way that the panic enumeration is a T Class
because an enumeration is a type. Chapter 1 discusses the differences
between class types on Symbian OS and how to use them.)

When the library code is passed invalid arguments, it may invoke
Panic() with the appropriate error code, resulting in a panic and

2 Except where a server thread uses RMessagePtr to panic a misbehaving client thread.
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termination of the thread in which it is running. The category and error will
be reported, and may then be traced back by searching the library’s header
files for "CLANGER-ENGINE", located inside ClangerPanic.h. You’ll
see I’ve commented each error’s enum value with its associated number,
just to make the lookup easier. I’ve tried to give each a descriptive name,
though obviously they could be further documented, using in-source
comments, for clarity.

Of course, if a client programmer has access to the source code for
clanger.dll, they can also search it for calls to Panic() which use
a particular error value, to track down where a panic originated.

15.3 Symbian OS Panic Categories

Symbian OS itself has a series of well-documented panic categories
and associated error values. You can find details of platform-specific
panics in your preferred SDK. From Symbian OS v7.0, there is a special
Panics section in the C++ API Reference of each SDK, which contains a
comprehensive list of the Symbian OS system panics. Typical values you
may encounter include:

• KERN-EXEC 3 – raised by an unhandled exception (such as an access
violation caused, for example, by dereferencing NULL, memory mis-
alignment or execution of an invalid instruction) inside a system call
to the kernel executive; if an unhandled exception occurs inside
code which is instead executing in user mode, the panic is seen as
USER-EXEC 3

• E32USER-CBASE 46 – raised by the active scheduler as a result of a
stray signal (described further in Chapters 8 and 9)

• E32USER-CBASE 90 – raised by the cleanup stack when the object
specified to be popped off is not the next object on the stack. The
following code illustrates the cause of the panic; this issue is described
more fully in Chapter 3, which describes the cleanup stack.

class CExample; // defined elsewhere

void CauseAPanicL()
{
TInt val = 1;
CExample* ptr1 = new (ELeave) CExample();
CleanupStack::PushL(ptr1);
CExample* ptr2 = new (ELeave) CExample();
CleanupStack::PushL(ptr2);
...
CleanupStack::Pop(ptr1); // Panics with E32USER-CBASE 90 here...
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CleanupStack::Pop(ptr2); // ...so the code never gets here
}

As a user, if making the chess move you’ve carefully worked out
causes your game to panic and close, you’re probably not interested in
the category or error code. Such precise details are irrelevant and the
”program closed” dialog is more irritating than helpful.

Don’t use panics except as a means to eliminate programming
errors, for example by using them in assertion statements. Panick-
ing cannot be seen as useful functionality for properly debugged
software; a panic is more likely to annoy users than inform them.

15.4 Panicking Another Thread

I’ve shown how to call User::Panic() when you want the thread to
panic itself. But how, and when, should you use RThread::Panic()?
As I described earlier, the RThread::Panic() function can be used to
kill another thread and indicate that the thread had a programming error.
Typically this is used by a server to panic a client thread when the client
passes a badly-formed request. You can think of it as server self-defense;
rather than go ahead and attempt to read or write to a bad descriptor, the
server handles the client’s programming error gracefully by panicking the
client thread. It is left in a good state which it would not have been if
it had just attempted to use the bad descriptor. Generally, in a case like
this, the malformed client request has occurred because of a bug in the
client code, but this strategy also protects against more malicious ”denial
of service” attacks in which a client may deliberately pass a badly-formed
or unrecognized request to a server to try to crash it. The Symbian OS
client–server architecture is discussed in Chapters 11 and 12; the latter
chapter includes sample code that illustrates how a server can panic
its client.

If you have a handle to a thread which has panicked, you can
determine the exit reason and category using ExitReason() and Exit-
Category(). This can be useful if you want to write test code to check
that the appropriate panics occur, say from assertions in your library
code, to defend it against invalid parameters. Since you can’t ”catch” a
panic, it’s not as straightforward as running the code in the main thread,
passing in the parameters and checking that the code panics with the
correct value. The checking code would never run, because the panic
would terminate the main thread.
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A solution is to run deliberately badly-behaved client code in a
separate test thread, programmatically checking the resulting exit reasons
and categories of the panicked thread against those you would expect
to have occurred. You should disable just-in-time debugging for the
duration of the test, so that only the test thread, rather than the emulator,
is terminated. For example:

enum TChilliStrength
{
ESweetPepper,
EJalapeno,
EScotchBonnet
};

void EatChilli(TChilliStrength aStrength)
{
_LIT(KTooStrong, "Too Strong!");
__ASSERT_ALWAYS(EScotchBonnet!=aStrength,

User::Panic(KTooStrong, KErrAbort);
... // Omitted for clarity
}

// Thread function
TInt TestPanics(TAny* /*aData*/)

{// A panic occurs if code is called incorrectly
EatChilli(EScotchBonnet);
return (KErrNone);
}

void TestDefence()
{
// Save current just-in-time status
TBool jitEnabled = User::JustInTime();
// Disable just-in-time debugging for this test
User::SetJustInTime(EFalse);

_LIT(KPanicThread, "PanicThread");
// Create a separate thread in which to run the panic testing
RThread testThread;
TInt r = testThread.Create(KPanicThread, TestPanics,

KDefaultStackSize, NULL, NULL);

ASSERT(KErrNone==r);
// Request notification of testThread’s death (see Chapter 10)
TRequestStatus tStatus;
testThread.Logon(tStatus);
testThread.Resume();
User::WaitForRequest(tStatus); // Wait until the thread dies

ASSERT(testThread.ExitType()==EExitPanic);
// Test the panic reason is as expected
ASSERT(testThread.ExitReason()==KErrAbort);

testThread.Close();
// Set just-in-time back to previous setting
User::SetJustInTime(jitEnabled);
}
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15.5 Faults, Leaves and Panics

A fault is raised if a critical error occurs such that the operating system
cannot continue normal operation. On hardware, this results in a reboot.
A fault can only occur in kernel-side code or a thread which is essential to
the system, for example the file server, so typically you will not encounter
them unless you are writing device drivers or uncover a bug in the OS. In
effect, a fault is another name for a serious system panic.

Chapter 2 discusses leaves in more detail, but, in essence, they occur
under exceptional conditions such as out of memory or the absence of a
communications link. Unlike a panic, a leave should always be caught
(”trapped”) by code somewhere in the call stack, because there should
always be a top-level TRAP. However, if a leave is not caught, this implies
that the top-level TRAP is absent (a programming error) and the thread
will be panicked and terminate.

15.6 Summary

This chapter discussed the use of panics to terminate the flow of execution
of a thread. Panics cannot be ”caught” like an exception and are severe,
resulting in a poor user experience. For that reason, panics are only useful
to track down programming errors and, on Symbian OS, are typically
combined with an assertion statement, as discussed in the next chapter.

This chapter described the best way to identify panics and illustrated
how to test the panics that you’ve added to your own code for defensive
programming. It gave a few examples of commonly-encountered system
panics and directed you to the Panics section of the system documentation
for a detailed listing of Symbian OS system panics.
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Bug Detection Using Assertions

On the contrary!
As Ibsen lay dying, his nurse brought him some visitors. ”Our patient is

feeling much better today,” she told them. Ibsen woke up, made the
exclamation above, and died.

In C++, assertions are used to check that assumptions made about code
are correct and that the state, for example, of objects, function parameters
or return values, is as expected. Typically, an assertion evaluates a
statement and, if it is false, halts execution of the code and perhaps
prints out a message indicating what failed the test, or where in code the
failure occurred.

On Symbian OS, you’ll find the definition of two assertion macros1 in
e32def.h:

#define __ASSERT_ALWAYS(c,p) (void)((c)||(p,0))
...
#if defined(_DEBUG)
#define __ASSERT_DEBUG(c,p) (void)((c)||(p,0))
#endif

As you can see from the definition, if the assertion of condition c is
false, procedure p is called; this should always halt the flow of execution,
typically by panicking (panics are described in detail in Chapter 15). You
can apply the assertion either in debug code only or in both debug and
release builds. I’ll discuss how you decide which is appropriate later in
the chapter.

1 At first sight, these definitions seem more complex than they need to be, when the
following simpler definition could be used:
#define __ASSERT_ALWAYS(c,p) ((c)||(p))

The reason for the (p,0) expression is for cases where the type returned from p is void
(the case when p is a typical Panic() function) or a value that can’t be converted to an
integer type for evaluation. The cast to void is present to prevent the return value of the
expression being used inadvertently.
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You’ll notice that the assertion macros do not panic by default, but
allow you to specify what procedure to call should the assertion fail.
This gives you more control, but you should always terminate the running
code and flag up the failure, rather than return an error or leave. Assertions
help you detect invalid states or bad program logic so you can fix your
code as early as possible. It makes sense to stop the code at the point
of error, thus forcing you to fix the problem (or remove the assertion
statement if your assumption is invalid). If the assertion simply returns an
error on failure, not only does it alter the program flow, but it also makes
it harder to track down the bug.

You should always raise a panic when an assertion statement
fails.

16.1 −−−ASSERT−DEBUG

Here’s one example of how to use the debug assertion macro:

void CTestClass::TestValue(TInt aValue)
{
#ifdef _DEBUG
_LIT(KPanicDescriptor, "TestValue"); // Literal descriptor
#endif
__ASSERT_DEBUG((aValue>=0), User::Panic(KMyPanicDescriptor,

KErrArgument));
...
}

Of course, this is somewhat awkward, especially if you expect to use
a number of assertions to validate your code, so you’ll probably define a
panic utility function for your module, with its own panic category string
and a set of panic enumerators specific to the class. So, for example, you’d
add the following enumeration to CTestClass, so as not to pollute the
global namespace:

enum TTestClassPanic
{
EInvalidData, // =0
EUninitializedValue // =1
...
};

Then define a panic function, either as a member of the class or as a static
function within the file containing the implementation of the class:
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static void Panic(TInt aCategory)
{
_LIT(KTestClassPanic, "CTestClass-Panic");
User::Panic(KTestClassPanic, aCategory);
}

You could then write the assertion in TestValue() as follows:

void CTestClass::TestValue(TInt aValue)
{
__ASSERT_DEBUG((aValue> =0), Panic(EInvalidTestValueInput));
...
}

The advantage of using an identifiable panic descriptor and enu-
merated values for different assertion conditions is traceability, both for
yourself and clients of your code, when an assertion fails and a panic
occurs. This is particularly useful for others using your libraries, since
they may not have access to your code in its entirety, but merely to the
header files. If your panic string is clear and unique, they should be able
to locate the appropriate class and use the panic category enumeration to
find the associated failure, which you will have named and documented
clearly to explain why the assertion failed.

There may be cases where there’s nothing more a client programmer
can do other than report the bug to you, the author of the code;
alternatively, the problem could be down to their misuse of your library,
which they’ll be able to correct. I’ll discuss the pros and cons of using
assertions to protect your code against badly-programmed calling code
later in this chapter.

If you don’t want or need an extensive set of enumerated panic values,
and you don’t expect external callers to need to trace a panic, you may
consider using a more lightweight and anonymous assertion. A good
example of this is to test the internal state of an object, which could
not possibly be modified by an external caller, and thus should always
be valid unless you have a bug in your code. Assertions can be added
early in the development process, but left in the code, in debug builds, to
validate the code as it is maintained and refactored. In these cases, you
may consider using the ASSERTmacro, defined in e32def.h as follows:

#define ASSERT(x) __ASSERT_DEBUG(x, User::Invariant())

I like this macro because it doesn’t need you to provide a panic
category or descriptor. If condition x is false, in debug builds only, it
calls User::Invariant()which itself panics with category USER and
reason 0. The macro can be used as follows:
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ASSERT(iClanger>0);

As an alternative to using ASSERT to test the internal state of your
object, you may wish to consider using the __TEST_INVARIANTmacro,
which I discuss in more detail in Chapter 17.

An alternative, useful definition of ASSERT which you may see in
some Symbian OS code is as follows:

#ifdef _DEBUG
#ifdef ASSERT
#undef ASSERT
#endif
#define __ASSERT_FILE__(s) _LIT(KPanicFileName,s)
#define __ASSERT_PANIC__(l) User::Panic(KPanicFileName().Right(12),l)
#define ASSERT(x) { __ASSERT_FILE__(__FILE__);

__ASSERT_DEBUG(x, __ASSERT_PANIC__(__LINE__) ); }
#endif

This slightly alarming construction is actually quite simple; in debug
builds, if condition x is false, the code is halted by a panic identifying
the exact place in code (in the panic descriptor – which contains the last
12 characters of the filename) and the panic category (which contains
the line of code at which the assertion failed). The disadvantage of
using this construct is that you are coupling the compiled binary directly
to the source file. You cannot later modify your code file, even to
make non-functional changes to comments or white space lines, without
recompiling it to update the assertion statements. The resulting binary
will differ from the original, regardless of the nature of the changes.
Depending on how you deliver your code, this limitation may prohibit
you from using this macro.

Let’s move on from how to use the Symbian OS assertion syntax to
consider when you should use assertions and, perhaps more importantly,
when you should not.

Firstly, don’t put code with side effects into assertion statements. By
this, I mean code which is evaluated before a condition can be verified.

For example:

__ASSERT_DEBUG(FunctionReturningTrue(), Panic(EUnexpectedReturnValue));
__ASSERT_DEBUG(++index<=KMaxValue, Panic(EInvalidIndex));

The reason for this is clear; the code may well behave as you expect in
debug mode, but in release builds the assertion statements are removed
by the preprocessor, and with them potentially vital steps in your pro-
gramming logic. Rather than use the abbreviated cases above, you should
perform the evaluations first and then pass the returned values into the
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assertion. You should follow this rule for both __ASSERT_DEBUG and
__ASSERT_ALWAYS statements, despite the fact that the latter are com-
piled into release code, because, while you may initially decide the
assertion applies in release builds, this may change during the develop-
ment or maintenance process. You could be storing up a future bug for
the sake of avoiding an extra line of code.

You must also make a clear distinction between programming errors
(”bugs”) and exceptional conditions. Examples of bugs might be contra-
dictory assumptions, unexpected design errors or genuine implementation
errors, such as writing off the end of an array or trying to write to a file
before opening it. These are persistent, unrecoverable errors which should
be detected and corrected in your code at the earliest opportunity. An
exceptional condition is different in that it may legitimately arise, although
it is rare (hence the term ”exceptional”) and is not consistent with typical
or expected execution. It is not possible to stop exceptions occurring,
so your code should implement a graceful recovery strategy. A good
example of an exceptional condition that may occur on Symbian OS is an
out-of-memory failure, because it is designed to run constantly on devices
with limited resources for long periods of time without a system reset.

To distinguish between bugs and exceptions, you should consider the
following question. Can a scenario arise legitimately, and if it can, is
there anything you should or could do to handle it? If your answer is
”yes”, you’re looking at an exceptional condition – on Symbian OS, this
is exhibited as a leave (leaving is discussed in Chapter 2). If the answer
is ”no”, you should consider the situation to be caused by a bug which
should be tracked down and fixed. The rest of this chapter will focus on
the use of assertions to highlight such programming errors.

When code encounters a bug, it should be flagged up at the point
at which it occurs so it can be fixed, rather than handled or ignored
(which can at best complicate the issue and, at worst, make the bug
more difficult to find or introduce additional defects as you ”code around
it”). You could consider assertions as an annoying colleague, leaning
over your shoulder pointing out defects for you as your code runs. They
don’t prevent problems, but make them obvious as they arise so you can
fix them.

If you add assertion statements liberally as you write code, they
effectively document assumptions you make about your program logic
and may, in addition, flag up unexpected problems. As you consider
which assertions to apply, you are actually asking yourself what implicit
assumptions apply to the code and how you can test them. By thinking
about each piece of code you write in this way, you may well discover
other conditions to test or eliminate that would not have been immediately
obvious. Frequent application of assertions as you code can thus help
you to pre-empt bugs, as well as catch those already in existence.
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And there’s more! Another benefit of assertions is the confidence that
your code is behaving correctly, and that you are not ignoring defects
which may later manifest themselves where they are hard to track down,
for example intermittently or through behavior seemingly unrelated to the
code that contains the error. Say you write some library code containing
no assertions and then create some code to test it, which runs and returns
no errors; are you confident that everything behaves as you expect and
the test code checks every boundary condition? Are you sure? Certain?

Adding assertions to test fundamental assumptions in your code will
show you immediately if it is swallowing or masking defects – and it
should give you more confidence that the test results are valid. Sure, you
might hit some unpleasant surprises as the test code runs for the first
time, but once you’ve ironed out any failures, you can be more confident
about its overall quality. What’s more, the addition of assertions also
protects your code against any regressions that may be introduced during
maintenance and refactoring but which would not otherwise be picked
up by your test code. What more could you ask?

The cases so far could be considered as ”self defense”, in that I’ve
discussed using assertions to catch bugs in your code. Let’s move on to
consider defensive programming in general. Defensive programming is
not about retorting ”It works OK on my machine” after being informed
that your code doesn’t work as expected. It’s based on defending your
code against irresponsible use or downright abuse by code that calls
it. Defensive code protects functions against invalid input, by inspecting
data passed in and rejecting corrupt or otherwise flawed parameters, such
as strings that are too long or out-of-range numerical values.

You’ll need to consider how to handle bad parameters depending on
how your code is called; for example, you may want to assert that the
data is good, terminating with a panic if it is not. Alternatively, you may
decide to continue the flow of execution, so instead of assertions, you’ll
check each incoming parameter (e.g. using if statements) and return
to the caller if invalid data is detected – either with an error value or a
leave code. Another method would be to check incoming data and, if
a parameter is invalid, substitute it with a default parameter or continue
with the closest legal value. What you don’t want to do is ignore invalid
input and carry on regardless, since this could lead to problems later
on, such as data corruption. Whatever method you use to handle illegal
input, it should be consistent throughout your code.

Your clients should be testing with debug versions of your libraries
and thus you could use __ASSERT_DEBUG statements to alert them of
invalid input, or other misuse, so they can correct it.
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__ASSERT_DEBUG assertions can be added early in the develop-
ment process to highlight programming errors and can be left in to
validate the code as it is maintained and refactored – acting as a
means to ”design by contract”.

16.2 −−−ASSERT−ALWAYS
You still need to be defensive by checking for illegal usage in release
builds too, but the case for using __ASSERT_ALWAYS isn’t clear cut.
Remember, your assertions will terminate the flow of execution and
panic the library, displaying a nasty ”program closed” dialog to the user,
which is generally best avoided where possible. Additionally, you should
consider the impact on the speed and size of your code if you apply
assertion statements liberally in release builds.

If you decide not to use__ASSERT_ALWAYS to check incoming values,
you should use another defensive technique to guard against illegal input,
such as a set of if statements to check values and return error codes or
leave when data is unusable. You could use these in combination with
a set of __ASSERT_DEBUG statements to alert the client programmer to
invalid use in debug builds, but often it is preferable to keep the flow
of execution the same in both debug and release builds. In such cases,
I suggest you don’t use debug assertions to check input, but instead use
if statement checking in both modes, and document each expected
return value for your functions. Client programmers should understand
their responsibility to interpret the return value and act accordingly. I’ll
illustrate this with an example later in this chapter.

To determine whether you should use __ASSERT_ALWAYS or another,
less terminal, defense, I recommend that you consider whether the calling
code may be able to take a different action if you do return an error. Invalid
input is a bug from the perspective of your code, but may be caused by
an exceptional condition in the calling code which can be handled.

A simplistic example would be a call to your code to open and write to
a file, where the caller passes in the full file name and path, as well as the
data to be written to the file. If the file does not exist, it is probably more
appropriate to return this information to the caller through a returned
error code or leave value than to assert in a release build. Client code
can then anticipate this and deal with it, without the need for your library
to panic and alarm the user accordingly.
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Here’s an example of this scenario which illustrates how to defend
against illegal parameters without assertions. This code returns an error to
allow the caller to recover if they pass in an invalid parameter. Of course,
if the calling code is written in such a way that each parameter should be
correct and that only a bug could result in them being invalid, it can assert
that the return value from a call to WriteToFile() is KErrNone. On
the other hand, if it’s an exceptional circumstance that the file is missing
or the data is non-existent, it can handle it gracefully.

TInt CTestClass::WriteToFile(const TDesC& aFilename,
const TDesC8& aData)

{
TInt r = KErrNone;
if (KNullDesC8==aData)

{// No data to write – invalid!
r = KErrArgument;
}

else
{
RFile file;
__ASSERT_DEBUG(iFs, Panic(EUninitializedValue));
r = file.Open(iFs, aFilename, EFileWrite);
if (KErrNone==r)

{ // Only executes if the file can be opened
... // Writes aData to file, closes file etc
}

}

return (r);
}

You’ll notice that I’ve included an __ASSERT_DEBUG statement to
verify internal state in my code and catch any defects (such as attempting
to use the file server handle before it has been initialized) in the test phase.

One case where you may prefer to use __ASSERT_ALWAYS to protect
your code against illegal input is where that input could only have
arisen through a bug in calling code and will cause ”bad things”,
such as memory corruption, to occur. You could return an error to
the caller, but it’s probably clearer for the calling code if you flag
up the problem so it can be fixed. A good example of this is in the
Symbian OS array classes (RArray and RPointerArray), which have
__ASSERT_ALWAYS guards to prevent a caller passing an invalid index to
methods that access the array. The class provides functions to determine
the size of the array, so if a caller attempts to write off the end of the
array, it can only be doing so because of a bug.

Likewise, in the code above, if the context of the function means that
the second parameter, aData, should never be an empty string, you
can replace the first if statement check with an __ASSERT_ALWAYS
statement. But this assumes knowledge of how clients expect to call it
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and reduces the option for reuse at a later stage, should this condition no
longer apply.

If the caller is passing data from a source that it does not directly
control, say a communications link, there is always a possibility for
invalid input to your code. In these circumstances, it’s better to handle
bad incoming data by returning an error or leaving. It is unusual to use
assertions under these conditions, although code may occasionally need
to do so, depending on the circumstances in which it is used. Whatever
the decision, ignoring the problem of illegal input is not an option!

Use defensive coding techniques to protect your functions against
invalid input from calling code. __ASSERT_ALWAYS should be
used to protect against illegal input that can only ever have arisen
through a bug in the caller.

16.3 Summary

This chapter discussed assertion statements on Symbian OS in terms of
how they work, what they do and how you should use them. Their
primary purpose is for you to verify program logic as you write code and
to detect bugs at the point they occur so you can find and fix them. For
this reason, assertion statements must terminate the flow of execution
upon failure, typically with a panic.

The chapter recommended using __ASSERT_DEBUG or ASSERT state-
ments liberally in your code to check its internal state. You should expect
to test your code thoroughly and fix defects before release, so you
shouldn’t need to use __ASSERT_ALWAYS to check the internals of your
code. A user, or another software developer using your code, expects
you to have debugged your code; they don’t want to do it for you. Fur-
thermore, you should think carefully before adding assertion statements
to release code because of the added code size and extra execution
overhead associated with them.

You should make the distinction between bugs and exceptions (failures
occurring under exceptional circumstances). While you can use assertions
to catch bugs, you should handle exceptions gracefully, since they may
occur legitimately in your code, albeit as an atypical path of execution.
This point extends to your client’s code – you should program defensively
and consider whether invalid input has arisen because of a bug or
exception in the caller. If it can only be due to a bug, it is acceptable to
use __ASSERT_ALWAYS statements in your code to indicate to the client
that they have a programming error which needs fixing. However, since
release build assertion statements have a cost in terms of size, speed and
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ugly code termination, I advise you to consider carefully before using
them against invalid input data which may have arisen from an exception
that the caller can handle more gracefully.

This chapter illustrated some aspects of defensive programming besides
the use of assertion statements, but added this note of caution. You should
consider carefully how much defensive code to use, and whether it varies
between debug and release builds. It can create additional complexity
in your code, leaving it open to its own set of bugs, and, if you check
parameter data for every possible error, it can also make your code slow
and bloated. You should take care to use defensive techniques where
they are most effective, and document them clearly so the client can
build their own bug catching and exception handling around them.

The paradox is that you want problems to be noticeable so they are
flagged up during development, but you want them to be inconspicuous
in your production code. You should consider your approach to defensive
code and assertions appropriately for each project you work on. In all
cases, it’s best to keep it consistent and consider error handling as an
important issue to be determined and defined at an architectural level.

The next chapter discusses useful debug macros and test classes on
Symbian OS for tracking down programming errors such as memory leaks
and invalid internal state. You can find more information about handling
leaves (Symbian OS exceptions) in Chapter 2.
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Debug Macros and Test Classes

If you have built castles in the air, your work need not be lost; that is
where they should be. Now put foundations under them

Henry David Thoreau (Walden)

Memory management is an important issue on Symbian OS, which has a
number of mechanisms to assist you in writing memory leak-proof code.
This chapter starts by discussing a set of debug macros that allow you to
check that your code is managing heap memory correctly (you will find
them documented in your SDK under ”Memory Allocation”). It will also
discuss other useful debug macros and the RTest and RDebug classes.

17.1 Heap-Checking Macros
There are macros which can be used to check that you are not leaking
any memory under normal conditions and others that can be used to
simulate out-of-memory (OOM) conditions. It is advisable to check your
code using each macro type, to ensure both that it is leave-safe and that
it can handle OOM gracefully (that is, to ensure that heap memory is not
orphaned by a leave occurring under OOM as I discussed in Chapter 2).
This kind of testing is known as ”Alloc Heaven Testing”.

Here are the macros, as defined in e32def.h. They are only compiled
into debug builds, and are ignored by release builds, so they can be left
in your production code without having any impact on the code size
or speed.

#define __UHEAP_MARK User::__DbgMarkStart(RHeap::EUser)
#define __UHEAP_MARKEND User::__DbgMarkEnd(RHeap::EUser,0)
#define __UHEAP_MARKENDC(aCount)

User::__DbgMarkEnd(RHeap::EUser,aCount)
#define __UHEAP_FAILNEXT(aCount)

User::__DbgSetAllocFail(RHeap::EUser,RHeap::EFailNext,aCount)
#define __UHEAP_SETFAIL(aType,aValue)

User::__DbgSetAllocFail(RHeap::EUser,aType,aValue)
#define __UHEAP_RESET

User::__DbgSetAllocFail(RHeap::EUser,RHeap::ENone,1)
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The __UHEAP_MARK and __UHEAP_MARKEND macros verify that
the default user heap is consistent. The check is started by using
__UHEAP_MARK and a following call to __UHEAP_MARKEND performs
the verification. If any heap cells have been allocated since
__UHEAP_MARK and not freed back to the heap, __UHEAP_MARKENDwill
cause a panic.1 These macros can be nested inside each other and used
anywhere in your code. You must take care to match the pairs, because
a __UHEAP_MARKEND without a prior __UHEAP_MARK causes a panic.
__UHEAP_FAILNEXT simulates a heap failure (i.e. out of memory).

The macro takes a TInt parameter which specifies which memory
allocation call will fail (if the parameter is 1, the first heap allocation fails,
if it’s 2, the second allocation fails, and so on). The __UHEAP_RESET
macro cancels the failure checking.

Consider the following example, where a method CTest::Some-
thingL() makes several memory allocations internally. To test the
leave safety of the method, it is necessary to check that failure of each of
these allocations is handled correctly. The best way to do this is to call
SomethingL() inside a loop as follows:

1. Set the __UHEAP_FAILNEXT parameter.

2. Use __UHEAP_MARK to mark the heap.

3. Call CTest::SomethingL() inside a TRAP macro.

4. Call __UHEAP_MARKEND to check that no memory has been leaked.

5. Check the error from the TRAP; if it’s KErrNoMemory, you should
go round the loop again, incrementing the number of allocations
which succeed before the failure point. If it’s KErrNone, all the
allocation points inside SomethingL() have been tested and the
test is complete.

void TestLeaveSafetyL()
{
// extra check to demonstrate that these macros can be nested
__UHEAP_MARK;

CTest* test = CTest::NewLC();
for (TInt index=1;;index++)

{
__UHEAP_FAILNEXT(index);
__UHEAP_MARK;

// This is the function we are OOM testing

1 The call to User::__DbgMarkEnd() will raise a panic if the heap is inconsistent.
The panic raised is ALLOC nnnnnnnn, where nnnnnnnn is a hexadecimal pointer to the
first orphaned heap cell. I’ll discuss how to track down what is causing a panic of this type
shortly.
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TRAPD(r, test->SomethingL());

__UHEAP_MARKEND; // Panics if the heap memory is leaked

// Stop the loop if r! =KErrNoMemory
if (KErrNoMemory!=r)

{
User::LeaveIfError(r);
break; // For cases where r==KErrNone
}

}
CleanupStack::PopAndDestroy(test);
__UHEAP_MARKEND;
__UHEAP_RESET;

}

If your code fails to propagate allocation failures, then the loop above
will not work, although your code will appear to be leave-safe. Suppose
that CTest::SomethingL() makes five heap allocations, but when
the third allocation fails, the error is ”swallowed” and not propagated
back to the caller of SomethingL() as a leave. The loop will terminate
at the third allocation and the test will appear to have been successful.
However, if a leave from the fourth allocation causes a memory leak,
this will go undetected. It is thus important to make sure that your code
always propagates any heap allocation failures.

Another problem is that it is possible that some code will allocate
memory which is not freed before the __UHEAP_MARKEND macro. A
good example is the cleanup stack, which may legitimately be expanded
as code runs but does not free the memory allocated to it until the
code terminates (as I described in Chapter 3). This problem can also
occur when using any dynamic container class that supports automatic
buffer expansion to hide memory management (Chapter 7 examines these
classes in detail).

To prevent a false memory leak panic in your test code, it is advisable
to expand the cleanup stack beyond what it is likely to need before the
first __UHEAP_MARK macro:

void PushLotsL()
{// Expand the cleanup stack for 500 pointers

{
TInt* dummy = NULL;
for (TInt index =0; index<500; index++)
CleanupStack::PushL(dummy);
}

CleanupStack::Pop(500);
}

The __UHEAP_X (where X = MARK, MARKEND, MARKENDC, FAIL-
NEXT, SETFAIL and RESET) macros only work on the default heap
for the thread from which they are called. If your test code is in a
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different process to the code you’re testing, which is typical when testing
client–server code, the macros I’ve discussed won’t work. There are at
least three possible options here:

• In addition to the __UHEAP_Xmacros, there is also a set of equivalent
__RHEAP_X macros which perform checking on a specific heap,
identified by an RHeap parameter.2 If you take a handle to the
server’s heap, you can pass it to these functions to check the server’s
heap from a separate process. You can get a handle to the server’s
heap by opening an RThread handle on the server’s main thread
(using RThread::Open()) and then calling Heap() on this handle
to acquire an RHeap pointer.

• Add a debug-only test API to your server which calls the appropriate
__UHEAP_Xmacro server-side. You can then define your own macros
which call these methods:

RMyServerSession::MarkHeap() calls __UHEAP_MARK
RMyServerSession::MarkHeapEnd() calls __UHEAP_MARKEND
RMyServerSession::FailNextAlloc() calls __UHEAP_FAILNEXT
RMyServerSession::ResetHeap() calls __UHEAP_RESET

• Compile the server code directly into your test executable rather than
running a client–server IPC framework. This is necessary where you
don’t control the client–server API, but is a cumbersome solution
in general.

The Symbian OS header file, e32def.h, also defines the
__UHEAP_CHECK, __UHEAP_CHECKALL and __UHEAP_MARKENDC
macros. These are useful if you want to verify the number of objects
currently allocated on the default heap. __UHEAP_CHECKALL takes a
TInt parameter, checks it against the number of current heap alloca-
tions and raises a panic if the numbers differ. __UHEAP_CHECK is similar,
except it counts only those allocations since the last __UHEAP_MARK call.
Finally, __UHEAP_MARKENDC has a similar role to __UHEAP_MARKEND,
but rather than checking that nothing is left on the heap, it checks that
the number of outstanding heap allocations matches the TInt parameter
passed to it.

If you surround code which leaks heap memory with a pair of
__UHEAP_MARK and __UHEAP_MARKEND macros, an ALLOC panic will
be raised by User::__DbgMarkEnd(), which is called by
__UHEAP_MARKEND. So what should you do if you encounter such
a panic? How do you debug the code to find out what was leaked so you
can fix the problem?

2 Incidentally, Symbian OS also provides a set of __KHEAP_X macros, which look
identical to the __UHEAP_X macros, but can be used to check the kernel heap, for example
when writing device driver code.
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The panic reason for the ALLOC panic contains a hexadecimal value
which indicates the address of the first orphaned heap cell. First of all, you
should try to get more information about the type of the object that was
left orphaned on the heap. I’m assuming that you can reproduce the panic
using the Windows emulator running in a debugger. With just-in-time
debugging enabled, as described in Chapter 15, you should run your test
code to the breakpoint just after the panic. You should then be able to
find the panic reason, expressed as an 8-digit value (e.g. c212d698). If
you type this value into a watch window, prefixing it with 0x, you’ll have
a view of the orphaned heap cell.

You may be able to recognize the object simply by inspecting the
contents of the memory in the debugger. Otherwise, it’s worth casting
the address in the watch window to (CBase*) to see if you can get more
information about the object. If it’s a C class object, that is, CBase*-
derived, the cast allows the debugger to determine the class of the object
from its virtual function table pointer. Since C classes are always heap-
based, there’s a fair chance that the orphaned object can be identified in
this way. If there’s no information to be gleaned from a CBase* cast, you
can also try casting to HBufC* or any of the other classes that you know
are used on the heap in the code in question.

Once you know the type of the orphaned object, that’s often sufficient
to help you track down the leak. However, if there are numerous objects
of that type, or you can’t identify it (perhaps because the leak is occurring
in a library which your code is using, rather than in your own code),
you may need to use the debugger to add conditional breakpoints for
that particular address in memory. With these in place, when you run
the code again, it should break at the heap cell whenever it is allocated,
de-allocated or modified. You may find that the breakpoints are hit a
few times, as the heap cell is allocated and deallocated, but it is only
the last allocation that you’re interested in. When you’ve determined
the point at which the memory is allocated for the last time, you can
inspect the call stack to see what point you’re reached in your code.
This should help you track down which object is being allocated, and
later orphaned, and thus resolve the leak. You can find more information
about how to use the debugger to find a memory leak on the Symbian
Developer Network website (on www.symbian.com/developer, navigate
to the Knowledgebase and search for ”memory leak”).

It’s good practice to use the __UHEAP_X macros to verify that
your code does not leak memory. You can put __UHEAP_MARK and
__UHEAP_MARKEND pairs in your test code and, since the macros
are not compiled into release builds, you can use them to surround
areas where leaks may occur in your production code too.
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17.2 Object Invariance Macros

The __DECLARE_TEST and __TEST_INVARIANT macros allow you to
check the state of an object, for example at the beginning and end of
a complex function. The __DECLARE_TEST macro provides a standard
way to add a function to a class that allows object invariance to be tested.
This function is named __DbgTestInvariant()and you should define
it as necessary. When performing the invariance testing, rather than call
the function directly, you should use the __TEST_INVARIANT macro,
as I’ll show shortly.
__DECLARE_TEST is defined as follows in e32def.h:

#if defined(__DLL__)
#define __DECLARE_TEST public: IMPORT_C void __DbgTestInvariant()

const; void __DbgTest(TAny *aPtr) const
#else
#define __DECLARE_TEST public: void __DbgTestInvariant() const;

void __DbgTest(TAny *aPtr) const
#endif

You should add it to any class for which you wish to perform an object
invariance test. It’s best to add it to the bottom of the class declaration
because it uses the public access specifier. There are separate definitions
for DLLs and EXEs because the function must be exported from a DLL so
it may be called from a separate module. The second function defined
by __DECLARE_TEST, __DbgTest(), is designed to allow test code
to access non-public members of the class, if such testing is required.
Because any test code will implement this function itself, it is not
exported.

The __DECLARE_TEST macro is defined to be the same for both
release and debug builds, because otherwise the export list for debug
builds would have an extra function (__DbgTestInvariant()) com-
pared to the release version. This could cause binary compatibility
problems, by changing the ordinal numbers of other exported functions
in the module. (Chapter 18 discusses binary compatibility in more detail.)

The __TEST_INVARIANT macro is defined below; as you can see,
it doesn’t call __DbgTestInvariant() in release builds. However, if
you don’t want the invariance test code to be built into release builds, you
should surround it with preprocessor directives as appropriate to build
the invariance testing into debug builds only.

#if defined(_DEBUG)
#define __TEST_INVARIANT __DbgTestInvariant()
#else
#define __TEST_INVARIANT
#endif
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The invariance test function, __DbgTestInvariant(), typically
checks that the object’s state is correct at the beginning and end of
a function. If the state is invalid, a panic should be raised by calling
User::Invariant() (which panics with category USER, reason 0).
You may recall, from Chapter 16, that this is the panic raised by the
ASSERT macro. Thus a simple way to implement the invariance testing
in __DbgTestInvariant() is to perform the invariance checks inside
ASSERT statements.

Here’s an example of a class that represents a living person and uses
the __DECLARE_TEST invariance test to verify that:

• the person has a gender

• if the name is set, it is a valid string of length no greater than
250 characters

• the given age in years matches the age calculated for the given date
of birth and is no greater than 140 years.

class CLivingPerson: public CBase
{

public:
enum TGender {EMale, EFemale};

public:
static CLivingPerson* NewL(const TDesC& aName,

CLivingPerson::TGender aGender);
∼CLivingPerson();

public:
... // Other methods omitted for clarity
void SetDOBAndAge(const TTime& aDOB, const TInt aAge);

private:
CLivingPerson(TGender aGender);
void ConstructL(const TDesC& aName);

private:
HBufC* iName;
TGender iGender;
TInt iAgeInYears;
TTime iDOB; // Date of Birth
__DECLARE_TEST; // Object invariance testing
};

CLivingPerson::CLivingPerson(TGender aGender)
: iGender(aGender) {}

CLivingPerson::∼CLivingPerson()
{delete iName;}

CLivingPerson* CLivingPerson::NewL(const TDesC& aName,
CLivingPerson::TGender aGender)

{
CLivingPerson* me = new (ELeave) CLivingPerson(aGender);
CleanupStack::PushL(me);
me->ConstructL(aName);
CleanupStack::Pop(me);
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return (me);
}

void CLivingPerson::ConstructL(const TDesC& aName)
{
__TEST_INVARIANT;
iName = aName.AllocL();
__TEST_INVARIANT;
}

void CLivingPerson::SetDOBAndAge(const TTime& aDOB, const TInt aAge)
{// Store the DOB and age and check object invariance
__TEST_INVARIANT;
iDOB=aDOB;
iAgeInYears=aAge;
__TEST_INVARIANT;
}

void CLivingPerson::__DbgTestInvariant() const
{
#ifdef _DEBUG // Built into debug code only
if (iName)

{// Name should be more than 0 but not longer than 250 chars
TInt len = iName->Length();
ASSERT(len>0); // A zero length name is invalid
ASSERT(len<250); // The name should be less than 250 characters
}

// Person should male or female
ASSERT((EMale==iGender)||(EFemale==iGender));

if (iDOB>(TTime)0)
{// DOB is set, check that age is correct and reasonable
TTime now;
now.HomeTime();

TTimeIntervalYears years = now.YearsFrom(iDOB);
TInt ageCalc = years.Int(); // Calculate age in years today
ASSERT(iAgeInYears==ageCalc);// Compare with the stored age
ASSERT(iAgeInYears>0); // Stored value shouldn’t be 0 or less
ASSERT(iAgeInYears<140); // A living person is less than 140
}

#endif
}

void TestPersonL()
{
_LIT(KSherlockHolmes, "Sherlock Holmes");
CLivingPerson* holmes = CLivingPerson::NewL(KSherlockHolmes,

CLivingPerson::EMale);

// Holmes was (apparently) born on 6th January 1854, so he would
// have been 150 years old at the time of writing (2004)
TDateTime oldTime(1854, EJanuary, 5, 0, 1, 0, 0);
// This will panic. Holmes is older than 140!
holmes->SetDOBAndAge(TTime(oldTime), 150);
delete holmes;
}



CONSOLE TESTS USING RTest 273

One last point: if the class derives from a class which also implements
the invariance test function, __DbgTestInvariant() should be called
for the base class first, then any checking done on the derived object.

17.3 Console Tests Using RTest

Class RTest is not documented, but is a useful test utility class, used by
a number of Symbian OS test harnesses. You’ll find the class definition in
\epoc32\include\e32test.h. You should bear in mind that, because
the RTest API is not published, there are no firm guarantees that it will
not change in future releases of Symbian OS.
RTest is useful for test code that runs in a simple console. You can

use the class to display text to the screen, wait for input, and check
a conditional expression, rather like an assertion, raising a panic if the
result is false.

The main methods of RTest are Start(), End() and Next(),
which number the tests, and operator(), which evaluates the condi-
tional expression. The first call to Start() begins numbering at 001 and
the numbering is incremented each time Next() is called. Nested levels
of numbering can be achieved by using additional calls to Start(), as
shown in the example. Each call to RTest::Start() must be matched
by a call to RTest::End().

The following source code can be used as the basis of a simple console-
based test project, using targettype exe, as described in Chapter 13.
Remember, if you want to use the cleanup stack in console-based test
code, or link against a component which does so, you will need to create
a cleanup stack at the beginning of the test, as discussed in Chapter 3.
Likewise, if you write or link against any code which uses active objects,
you will need to create an active scheduler, as I described in Chapters 8
and 9.

#include <e32test.h>
GLDEF_D RTest test(_L("CONSTEST"));

TInt Test1()
{
test.Next(_L("Test1"));
return (KErrNone);
}

TBool Test2()
{
test.Next(_L("Test2"));
return (ETrue);
}

void RunTests()
{
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test.Start(_L("RunTests()"));
TInt r = Test1();
test(KErrNone==r);
test(Test2());
test.End();
}

TInt E32Main()
{
__UHEAP_MARK; // Heap checking, as described above
test.Title();
test.Start(_L("Console Test"));
TRAPD(r,RunTests());
test.End();
test.Close();
__UHEAP_MARKEND;
return (KErrNone);
}

You’ll notice that I’m using the _L form of a literal descriptor in the
test code, despite mentioning in Chapter 5 that it is deprecated because it
constructs a temporary stack-based TPtrC object at runtime. However,
it’s acceptable to use it for debug and test code which is never released
and, in this test example, I think it’s clearer than predefining a set of _LIT
literal descriptors.

The code above gives the following output:

RTEST TITLE: CONSTEST X.XX(XXX) // Build version and release number

Epoc/32 X.XX(XXX) // Build version and release number

RTEST: Level 001
Next test - Console Test

RTEST: Level 001.01
Next test - RunTests()

RTEST: Level 001.02
Next test - Test1

RTEST: Level 001.03
Next test - Test2
RTEST: SUCCESS : CONSTEST test completed O.K.

RTest::operator() can be used to evaluate boolean expressions;
if the expression is false, a USER 84 panic occurs. For example, if
Test2() above is modified to return EFalse, running the test gives
following output:

RTEST TITLE: CONSTEST X.XX(XXX) // Build version and release number

Epoc/32 X.XX(XXX) // Build version and release number
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RTEST: Level 001
Next test - Console Test

RTEST: Level 001.01
Next test - RunTests()

RTEST: Level 001.02
Next test - Test1

RTEST: Level 001.03
Next test - Test2

RTEST: Level 001.03
: FAIL : CONSTEST failed check 1 in Constest.cpp at line number 21

RTEST: Checkpoint-fail

You’ll notice this #define statement in e32test.h:

#define test(x) __test(x,__LINE__,__FILE__)

This is useful, because, if you use a variable name of test for the
RTest object as in the example, even if you use the simplest overload
of operator() which just takes the conditional expression, the actual
overload invoked includes the source file and line number at which the
test occurs. However, if you prefer not to display and log this additional
information, you should simply give the RTest object a variable name
other than test.

All the RTest functions which display data on the screen also send it
to the debug output using a call to RDebug::Print(). If you’re running
the code on the Windows emulator, this function passes the descriptor
to the debugger for output. On hardware, the function uses a serial port
which can be connected to a PC running a terminal emulator to view
the output (for this output, of course, you need a spare serial port on the
phone and a connection to a PC). You can set the port that should be
used by calling Hal::Set(EDebugPort,aPortNumber). You’ll find
a debug log can be extremely useful when running your code on the
phone as you develop it. Class RDebug is defined in e32svr.h and
provides a number of other useful functions, such as support for profiling.

On the emulator, the debug output is also written to file, so you can
run a batch of tests and inspect the output of each later. The emulator
uses the TEMP environment variable to determine where to store the file,
which it names epocwind.out (%TEMP%\epocwind.out).3

3 On Windows NT this is usually C:\TEMP, while on versions of Windows later than
Windows 2000, each user has a temporary directory under their Local Settings folder
(C:\Documents and Settings\UserName\Local Settings\Temp). Of course, you
can change the TEMP environment variable to any location you want to make access to this
file convenient.
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I’ve not illustrated the use of RTest::Printf() and
RTest::Getch() in the example code, but they can be used in much
the way you would expect, to print to the display/debug output and wait
for an input character respectively.

Class RTest is useful for test code that runs in a simple console, and
can be used to check conditional expressions, raising a panic if a
result is false. If you want to use the cleanup stack in console-based
test code, or link against a component which does so, you will need
to create a cleanup stack as discussed in Chapter 3. If you write or
link against any code which uses active objects, you will need to
create an active scheduler, as described in Chapters 8 and 9.

17.4 Summary

Memory is a limited resource on Symbian OS and must be managed
carefully to ensure it is not wasted by memory leaks. In addition, an
application must handle gracefully any exceptional conditions arising
when memory resources are exhausted. Symbian OS provides a set of
debug-only macros that can be added directly to code to check both that
it is well-behaved and that it copes with out-of-memory conditions. This
chapter described how to use the macros, and how to debug your code
to find the root cause when the heap-checking code panics to indicate a
heap inconsistency.

The chapter also discussed how to use the object invariance macro
that Symbian OS provides to verify the state of an object. The macro
can be added to any class and offers the opportunity to write customized
debug state-checking for objects of the class.

Finally, the chapter described the RTest class, which is useful for
console-based test code. The API for RTest can be found in e32test.h
and is not published, so it may be changed without notice but, since it
is used internally by Symbian OS test code, it is unlikely to be removed.
RTest can be used to run test code in a console, and display the results to
the screen, debug output and log file. The class also provides a means of
testing return values or statements, which behaves rather like an assertion
and panics when the check fails.
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Compatibility

It is only the wisest and the very stupidest who cannot change
Confucius

I’ve devoted this chapter to compatibility, because it is an important
aspect of software engineering. If you deliver your software as a set of
interdependent components, each of which evolves independently, you
will doubtless encounter compatibility issues at some stage.

For Symbian, most compatibility issues apply to dependent code, such
as that belonging to third-party developers, which should ideally work
equally well on products available today, and with future versions of
Symbian OS. Compatibility must be managed carefully between major
Symbian OS product releases. For developers delivering Symbian OS
code that is not built into ROM, there is the additional complexity of
managing compatibility between releases that are built on the same
Symbian OS platform.

Let’s consider the basics of delivering a software library – a binary
component which performs a well-defined task, such as a set of string
manipulation functions or a math library. The software’s author typically
publishes the component’s application programming interface (API) in the
form of C++ header files (.h), which are used by a customer’s compiler,
and an import library (.lib), which is used by a linker. Often these are
also accompanied by written documentation that describes the correct
way to use the library. The API presents, in effect, a contract that defines
the behavior of the component to those that use it (its dependents).

Over time, the library may be expanded to deliver additional function-
ality, or it may be enhanced to remove software defects, make it faster or
smaller, or conform to a new standard. These modifications may require
changes to the API; in effect, the contract between the component and its
dependents may need to be re-written. However, before doing this, the
impact of those changes on any dependent code must be assessed. The
nature and implications of a change must be well-understood because,
when a library has a number of dependent components in a system, even
an apparently simple modification can have a significant effect.
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This is a fundamental issue of software engineering, and a number
of techniques for writing extensible but compatible software have been
developed. Many of the issues associated with compatibility lie out-
side the scope of this book, but an understanding of the basics will
allow you to appreciate the factors which have shaped the evolution
of Symbian OS. This chapter defines some of the basic terminology of
compatibility. It then moves on to discuss some of the practical aspects,
which will help you to develop code on Symbian OS which can be
extended in a controlled manner without having a negative impact on
your external dependents.

18.1 Forward and Backward Compatibility

Compatibility works in two directions – forward and backward. When
you update a component in such a way that other code that used the
original version can continue to work with the updated version, you
have made a backward-compatible change. When software that works
with the updated version of your component also works with the original
version, the changes are said to be forward-compatible.

Let’s look at an example: a software house releases a library (v1.0) and
an application, A1. Later, it re-releases the library (v2.0) and also releases
a second application, A2, which uses it. If original copies of A1 continue
to work as they did previously with v2.0 of the library, the changes made
were backward-compatible.

If the v1.0 version of the library is then reinstalled for some reason,
and A2 continues to work with the older library as it did previously with
v2.0, the changes were also forward-compatible. This is illustrated in
Figure 18.1.

Library
(version 1.0)

Library
(version 2.0)

Application
A1

Application
A2

Update and
re-release

Forward
Compatible

(Application A2
works with

version 1.0 of the
library)

Backward
Compatible

(Application A1
works with

version 2.0 of the
library)

Figure 18.1 Forward and backward compatibility

Backward compatibility is usually the primary goal when making incre-
mental releases of a component, with forward compatibility a desirable
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extra. Some changes cannot ever be truly forward-compatible, such as
bug fixes, which by their nature do not work ”correctly” in releases prior
to the fix.

There are different levels of compatibility: class-level and library-level.
Maintaining compatibility at a class level means ensuring that, among
other things, methods continue to have the same semantics as were
initially documented, no publicly accessible data is moved, and the size
of an object of the class does not change (at least, not when a client
is responsible for allocating memory for it). To maintain library-level
compatibility, you should ensure that the API functions exported by a
DLL are at the same ordinal and that the parameters and return values of
each are still compatible.

There are also degrees to which compatibility can be maintained. This
can vary from not requiring anything of dependent code (i.e. it can run as
it did previously when a new version of the component it uses is installed)
to requiring it to be recompiled and/or re-linked. However, if dependent
source code needs to be changed in any way in order to work with a
new release of your component, the changes were incompatible. Pure
and simple.

Maintaining backward compatibility is the primary goal of an incre-
mental component release.

18.2 Source Compatibility

If you make a change to your component which forces any dependent
code to be changed in order to recompile, the change is source-
incompatible.

// orchestra.h
// Version 1.0
...
class CInstrument : public CBase

{
public:

IMPORT_C static CInstrument* NewL();
IMPORT_C virtual ∼CInstrument();

public:
IMPORT_C virtual void PlayL();

protected:
CInstrument();
void ConstructL();

private:
// ...
};
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Thus, the following change is source-incompatible if dependent code
includes orchestra.h and uses class CInstrument:

// orchestra.h
// Version 2.0, renames a class
...
class CStringInstrument : public CBase

{
public:

IMPORT_C static CStringInstrument* NewL();
IMPORT_C virtual ∼CStringInstrument();

public:
IMPORT_C virtual void PlayL();

protected:
CStringInstrument();
void ConstructL();

private:
// ...
};

The only change between version 1.0 and version 2.0 is the change of
class name from CInstrument to CStringInstrument. Any depen-
dent binaries that built against version 1.0 and do not need to be
recompiled will continue to work. It is only when the client code comes
to be rebuilt against version 2.0 that it will be affected by source incom-
patibility (it must be modified to replace the CInstrument class with
the new CStringInstrument class).

On Symbian OS, a typical source-incompatible change involves mod-
ifying the internals of a member function to give it the potential to leave
when previously it could not do so. To adhere strictly to the naming con-
vention, the name of the function must also be modified by the addition
of a suffix L.

If you change your component and dependent components can recom-
pile against the new version without the need to make any changes, it
can be said to be source-compatible. An example of a source-compatible
change is a bug fix to the internals of an exported function, which doesn’t
require a change to the function definition itself.

18.3 Binary Compatibility
Binary compatibility is achieved when one component, dependent on
another, can continue to run without recompilation or re-linking after the
component on which it depends is modified. The compatibility extends
across compilation and link boundaries.

One example of a binary-compatible change is the addition to a class
of a public, non-virtual function which is exported from the library with
an ordinal1 that comes after the previous set of exported functions. A

1 As I described in Chapter 13, Symbian OS uses dynamic linking by ordinal, rather
than function name matching, to reduce the size overhead of its export tables. However,
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client component which was dependent on the original version of the
library is not affected by the addition of a function to the end of the export
list of the library. Thus the change can be said to be binary-compatible
and backward-compatible (as well as source-compatible).

However, if the addition of a new function to the class causes
the ordinals of the exported functions to be reordered, the change is
not binary-compatible, although it continues to be source-compatible.
Dependent code must be recompiled, because otherwise it would use
the original, now invalid, ordinal numbers to identify the exports.

Of course, when we discuss the need for compatibility, this is with
relation to the API which has been published to external components.
You may make as many internally-incompatible changes to your code
as you need to, since it is only your components that are affected. The
restrictions I’ll discuss in the rest of this chapter apply to changes which
affect published, public APIs.

Let’s move on to consider some of the practical aspects of code, to
help you understand the kind of source code changes that can affect
compatibility. I’ll list some guidelines about which code changes do and
do not affect the binary layout at a class or DLL level. These derive from
an understanding of the way a compiler interprets the C++ standard. It
is only by deriving a set of rules in this way that we can be confident
as to which changes can be safely applied without breaking dependent
code.

Many of the following guidelines are based on whether class methods
or member data are ”visible” to dependent code. This assumes that
calling code gains visibility through legitimate means, that is, through
exported header files, using standard object-oriented C++ to access and
manipulate the methods and data encapsulated in C++ objects.

18.4 Preventing Compatibility Breaks

Do Not Change the Size of a Class Object
You should not change the size of a class object (e.g. by adding or
removing data) unless you can guarantee that:

• your class is not externally derivable

• the only code that allocates an object resides within your component,
or it has a non-public constructor that prevents it from being created
on the stack

this has significant implications for binary compatibility, because the ordinals of exported
functions must not be changed between one release of a DLL and another (otherwise code
which originally used the old DLL will not be able to locate the functions it needs in the
new version of the DLL).
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• the class has a virtual destructor.

The reasons for this rule are fairly straightforward. First, the size of
memory required for an object to be allocated on the stack is determined
for each component at build time, and to change the size of an object
would affect previously compiled client code, unless the client is guar-
anteed to instantiate the object only on the heap, say by using a NewL()
factory function.

Additionally, access to data members within an object occurs through
an offset from the this pointer. If the class size is changed, say by adding
a data member, the offsets of the data members of derived classes are
rendered invalid.

To ensure that an object of a class cannot be derived or instanti-
ated except by members (or friends) of the class, it should have private,
non-inline and non-exported constructors. It is not sufficient simply not
to declare any constructors for the class, since the compiler will then
generate an implicit, public default constructor. On Symbian OS, all C
classes derive from CBase, which defines a protected default construc-
tor, and prevents the compiler from generating an implicit version.2 If
your class needs a default constructor, you should simply define it as
private and implement it in source, or at least, not inline where it is
publicly accessible.

Here’s a definition for a typical, non-derivable class:

Class CNonDerivable : public CBase
{

public:
// Factory - instantiates the object via ConstructL()
IMPORT_C static CNonDerivable* NewL();
// Virtual destructor, inherited from CBase
IMPORT_C virtual ∼CNonDerivable();

public:
... // Omitted for clarity – public exports & virtual functions

private:
// constructor is private, not protected, to prevent subclassing
CNonDerivable();
void ConstructL();

private:
... // Omitted for clarity – private member data goes here
};

So, to recap, unless you can guarantee that all objects have been
constructed within your component on the heap, and are not derivable,

2 Class CBase also declares, but does not define, a private copy constructor (and
corresponding assignment operator) to prevent the compiler generating the implicit versions
that perform potentially unsafe shallow copies of member data. Neither the copy constructor
nor assignment operator are implemented, in order to prevent copy operations of CBase
classes – although of course you can implement your own, public, versions for derived
classes where this is valid.
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you should not change the size of the member data of a class. If you
follow these rules, you must also take into account that the object
may be destroyed by an external component, which must deallocate all
the memory it occupies. To guarantee that the object and the memory
allocated for it are destroyed correctly, the class must have a virtual
destructor. Again, you’ll inherit a virtual destructor from CBase when
implementing a C class.

You are unlikely to have a valid reason for preventing a stack-based
T class from being instantiated on the stack, so you should never modify
the size of an externally visible T class.

Do Not Remove Anything Accessible
If you remove something from an API which is used by an external
component, that component’s code will no longer compile against the
API (a break in source compatibility) nor run against its implementation
(a break in binary compatibility).

Thus, at an API level, you should not remove any externally-visible
class, function, enumeration (or any value within an enumeration) or
global data, such as string literals or constants.

At a class level, you should not remove any methods or class member
data. Even private member data should not be removed, in general,
because the size of the resulting object will change, which should be
avoided for reasons described above.

Do Not Rearrange Accessible Class Member Data
If you don’t remove class member data but merely rearrange it, you
can still cause problems to client code that accesses that data directly
because, as I described above, the offset of the member data from the
object’s this pointer will be changed.

You must not change the position of member data in a class if that
data is:

• public (or protected, if the client can derive from the class)

• exposed through public or protected inline methods (which will have
been compiled into client code).

This rule also means that you cannot change the order of the base
classes from which a class multiply inherits without breaking compatibil-
ity, because this order affects the overall data layout of the derived object.

Do Not Rearrange the Ordinal of Exported Functions
In Chapter 13, I briefly mentioned the mechanism by which the API of
a component is accessible to an external component, via a numerically
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ordered list of exported functions which are ”frozen” into a module
definition (.def) file. Each exported function is associated with an
ordinal number, which is used by the linker to identify the function.

If you later re-order the .def file, say by adding a new export within
the list of current exports, the ordinal number values will change and
previously compiled code will be unable to locate the correct function.
For example, say component A exports a method DoSomethingL() at
ordinal 9, which is used by component B. Component A is later extended
to export a new function, which is simply added to the start of the ordinal
list, at ordinal 1. This changes the ordinal value of DoSomethingL()
to 10. Unless component B is re-linked, it will still expect to be able to
call DoSomethingL() at ordinal 9 but instead will call a completely
different function. The change breaks binary compatibility. To avoid this,
the new export should be added to the end of the .def file, which assigns
it a new, previously unused, ordinal value.

The use of a .def file means that exported functions within a
C++ class definition may be reordered safely, say to group them
alphabetically or logically, as long as the underlying order of those
exports in the .def file is not affected.

Do Not Add, Remove or Modify the Virtual Functions
of Externally Derivable Classes

If a class is externally derivable (i.e. if it has an exported or inlined,
public or protected constructor) you must not alter the nature of the
virtual functions in any way, because this will break compatibility with
calling code.

The reason why virtual functions should not be added to or removed
from a derivable class is as follows: if the class is externally derivable
and a derived class defines its own virtual functions, these will be placed
in the virtual function table (vtable) directly after those defined by
the base class, i.e. your class. If you add or remove a virtual function
in the base class, you will change the vtable position of any virtual
functions defined by a derived class. Any code that was compiled against
the original version of the derived class will now be using an incorrect
vtable layout.

This rule also applies to any base classes from which the class derives
and the order from which they are derived if the class uses multiple
inheritance. Changes to either will affect the layout of the vtable.

Likewise, you must not modify a virtual function if this means changing
the parameters, the return type or the use of const. However, you can
make changes to the internal operation of the function, for example a bug
fix, as long as the documented behavior of the function is not changed.
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Do Not Re-Order Virtual Functions
Although not stated in the C++ standard, the order in which virtual
member functions are specified in the class definition can be assumed to
be the only factor which affects the order in which they appear in the
virtual function table. You should not change this order, since client code
compiled against an earlier version of the virtual function table will call
what has become a completely different virtual function.

Do Not Override a Virtual Function that was Previously Inherited
If you override a virtual function which was previously inherited, you are
altering the virtual function table of the class. However, existing client
code is compiled against the original vtable and will thus continue to
access the inherited base-class function rather than the new, overridden,
version. This leads to inconsistency between callers compiled against the
original version of the library and those compiled against the new version.
Although it does not strictly result in incompatibility, this is best avoided.

For example, a client of CSiamese version 1.0 calling SleepL()
invokes CCat::SleepL(), while clients of version 2.0 invoke
CSiamese::SleepL():

class CCat : public CBase // Abstract base class
{

public:
IMPORT_C virtual ∼CCat() =0;

public:
IMPORT_C virtual void PlayL(); // Default implementation
IMPORT_C virtual void SleepL(); // Default implementation

protected:
CCat();
};

class CSiamese : public CCat // Version 1.0
{

public:
IMPORT_C virtual ∼CSiamese();

public:
// Overrides PlayL() but defaults to CCat::SleepL()
IMPORT_C virtual void PlayL();
// ...
};

class CSiamese : public CCat // Version 2.0
{

public:
IMPORT_C virtual ∼CSiamese();

public:
// Now overrides PlayL() and SleepL()
IMPORT_C virtual void PlayL();
IMPORT_C virtual void SleepL();
// ...
};



286 COMPATIBILITY

Do Not Modify the Documented Semantics of an API
If you change the documented behavior of a class or global function, or
the meaning of a constant, you may break compatibility with previously
published versions used by client code, regardless of whether source and
binary compatibility are maintained. As a very simple example, you may
supply a class which, when supplied with a data set, returns the average
value of that data. If the first release of the Average() function returns
the arithmetic mean value, the second release of Average() should not
be changed to return the median value, or some other interpretation of
an average. As always, of course, if all the callers of the function can
accept the change, or if the effect is limited to the internals of your own
components, then such a modification is acceptable.

Do Not Remove const
The semantics of ”const” should not be removed, since this will be
a source-incompatible change. This means that you should not remove
the const-ness of a parameter, return type or class method that were
originally specified as const.

Do Not Change from Pass by Value to Pass by Reference, or Vice versa
If parameters or return values were originally passed by value, you will
break binary compatibility if you change them to reference values (or vice
versa). When a parameter is passed by value to a function, the compiler
generates a stack copy of the entire parameter and passes it to the function.
However, if the function signature is changed to accept the parameter by
reference, a word-sized reference to the original object is passed to the
function instead. The stack frame for a pass-by-reference function call is
thus significantly different from that for a pass-by-value function call. In
addition, the semantics of passing by value and by reference are very
different – as discussed in Chapter 20 – which inevitably causes binary
incompatibility.

class TColor
{
...

private:
TInt iRed;
TInt iGreen;
TInt iBlue;
};

// version 1.0
// Pass in TColor by value (12 bytes)
IMPORT_C void Fill(TColor aBackground);

// version 2.0 – binary compatibility is broken
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// Pass in TColor by reference (4 bytes)
IMPORT_C void Fill(TColor& aBackground);

18.5 What Can I Change Without Breaking Binary
Compatibility?

You Can Extend an API
You can add classes, constants, global data or functions without breaking
compatibility.3 Likewise, a class can be extended by the addition of static
member functions or non-virtual member functions. Recall the definition
of the direction of compatibility at the beginning of this chapter – any
extension of an API is, by its very nature, not forward-compatible.

If you add functions that are exported for external code to use (as
described in Chapter 20), you must add the new exports to the bottom
of the module definition file (.def) used to determine the ordinal
number by which the linker identifies the exported function. You must
avoid reordering the list of exported functions. This will break binary
compatibility, as described above.

As I discussed earlier, you should not add virtual member functions
to classes which may have been subclassed (i.e., externally derivable
classes), since this causes the vtable of the deriving classes to be
re-ordered.

You Can Modify the Private Internals of a Class
Changes to private class methods that are not exported and are not virtual
do not break client compatibility. Likewise for protected methods in a
class which is not derivable. However, the functions must not be called
by externally-accessible inline methods, since the call inside the inline
method would be compiled into external calling code – and would be
broken by an incompatible change to the internals of the class. As I discuss
in Chapter 21, it is general good practice to restrict, or eliminate, the use
of publicly-accessible inline functions, particularly where compatibility
is an issue. This is also discussed further in Section 18.6.

Changes to private class member data are also permissible, unless it
results in a change to the size of the class object or moves the position
of public or protected data in the class object (exposed directly, through
inheritance or through public inline ”accessor” methods).

You Can Relax Access Specification
The C++ access specifier (public, protected,private) doesn’t affect
the layout of a class and can be relaxed without affecting the data order

3 You should endeavor to avoid any name clashes within the component or others in
the global namespace – otherwise the change will be source-incompatible.
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of the object. The position of member data in a class object is determined
solely by the position of the data as it is specified in the class definition.

It is not sensible to change the access specification to a more restricted
form, e.g. from public to private, because, although it does not affect
the code, it means that the member data becomes invisible to external
clients when previously it was visible. A future change to the component
might incorrectly assume that the data has always been private and
modify its purpose, affecting external components dependent upon it. In
addition, any existing client which accesses that data will no longer be
able to do so – a source-incompatible change.

You Can Substitute Pointers for References and Vice Versa

Changing from a pointer to a reference parameter or return type (or vice
versa) in a class method does not break binary compatibility. This is
because references and pointers can be considered to be represented in
the same way by the C++ compiler.

You Can Change the Names of Exported Non-Virtual Functions

Symbian OS is linked purely by ordinal and not by name and signature.
This means that it is possible to make changes to the name of exported
functions and retain binary, if not source, compatibility.

You Can Widen the Input

Input can be made more generic (”widened”) as long as input that
is currently valid retains the same interpretation. Thus, for example, a
function can be modified to accept a less derived pointer4 or extra values
can be added to an enumeration, as long as it is extended rather than
re-ordered, which would change the original values.

You Can Narrow the Output

Output can be made less generic (”narrowed”) as long as any current
output values are preserved. For example, the return pointer of a function
can be made more derived as long as the new return type applies to the
original return value.5 For multiple inheritance, say, a pointer to a class
is unchanged when it is converted to a pointer to the first base class in

4 Say class CSiamese derives from class CCat. If the pointer passed to a function was
originally of type CSiamese, it is acceptable to change the function signature to take a
pointer to the less-derived CCat type.

5 Using the same example of class CSiamese which derives from CCat, if the pointer
returned from a function was originally of type CCat, it is acceptable to change the function
signature to return a pointer to the more-derived CSiamese type.
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the inheritance declaration order. That is, the layout of the object follows
the inheritance order specified.

You Can Apply the const Specifier

It is acceptable to change non-const parameters, return types or the
”this” pointer to be const in a non-virtual function, as long as the
parameter is no more complicated than a reference or pointer (i.e., not a
reference to a pointer or a pointer to a pointer). This is because you can
pass non-const parameters to const functions or those that take const
parameters. In effect, this is an extension of the ”widen input” guideline
described above.

18.6 Best Practice: Planning for Future Changes

Don’t Inline Functions

As described earlier, and later in Chapter 21 which discusses good coding
practice, an inline function is compiled into the client’s code. This means
that a client must recompile its code in order to pick up a change to an
inline function.

If you want to use private inline methods within the class, you should
ensure that they are not accessible externally, say by implementing them
in a file that is accessible only to the code module in question.

Using an inline function increases the coupling between your com-
ponent and its dependents, which should generally be avoided.

Don’t Expose Any Public or Protected Member Data

The position of data is fixed for the lifetime of the object if it is externally
accessible, either directly or through derivation. You should aim to
encapsulate member data privately within a class and provide (non-
inline) accessor functions where necessary. Chapter 20 discusses this in
more detail.

Allow Object Initialization to Leave

The steps required to instantiate an object of your class may not currently
have the potential to fail, but the class may be extended in future, perhaps
to read data from a configuration file which may not succeed, say if the
file is corrupt or missing. To allow for an extension of this type, object
instantiation should be able to leave safely should this become necessary.
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This is a straightforward guideline to adhere to, because the Symbian
OS ”two-phase construction” idiom, described in Chapter 4, allows for
exactly this type of extensibility:

class CExtensibleClass : public CBase
{

public:
static CExtensibleClass* NewL();
... // Omitted

protected:
CExtensibleClass(); // Constructor is externally inaccessible
void ConstructL(){}; // For extensibility

private:
... // Omitted
};

CExtensibleClass::CExtensibleClass()
{// Implement non-leaving construction code in this function }

CExtensibleClass* CExtensibleClass::NewL()
{// Can later be extended to call ConstructL() if initialization
// needs to leave

CExtensibleClass me = new (ELeave) CExtensibleClass();
return (me);
}

Override Virtual Functions that You Expect to Override Later
This will ensure that compatibility is not broken should you later need to
override a virtual function which was originally inherited (as described
earlier in Section 18.4). If you do not currently need to modify the func-
tions beyond what the base class supplies, the overridden implementation
should simply call the base-class function. This will allow the functions
to be extended in future. Earlier, I gave the example of CSiamese,
deriving from CCat, which inherited the default implementation of the
CCat::SleepL() virtual method in version 1.0 but overrode it in ver-
sion 2.0. The sample code below shows how to avoid this by overriding
both virtual functions in version 1.0, although CSiamese::SleepL()
simply calls through to CCat::SleepL():

Class CCat : public CBase // Abstract base class
{

public:
IMPORT_C virtual ∼CCat() =0;

public:
IMPORT_C virtual void EatL(); // Default implementation
IMPORT_C virtual void SleepL();// Default implementation
// ...
};

class CSiamese : public CCat // Version 1.0
{
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IMPORT_C virtual ∼CSiamese();
public:

IMPORT_C virtual void EatL(); // Overrides base class functions
IMPORT_C virtual void SleepL();
// ...
};

// Function definitions not relevant to the discussion have been
// omitted
void CSiamese::EatL()

{// Overrides base class implementation
... // Omitted for clarity
}

void CSiamese::SleepL()
{// Calls base class implementation
CCat::SleepL();
}

Provide ”Spare” Member Data and Virtual Functions

As you’ll have gathered from a number of the guidelines above, the use
of virtual functions, although powerful in a C++ sense, can be quite
limited in terms of extensibility when compatibility must be maintained.
If it is possible that your class may need to be extended (and this is
often hard to determine, so you may prefer to assume that it will), then
you should add at least one reserve exported virtual function. This will
give you the means by which to extend the class without disrupting the
vtable layout of classes which derive from the class. In effect, this
provides a means to get around the limits by which virtual functions may
be extended, through the use of explicit interface design. You should,
as always, implement any reserved functions, defaulting them to perform
no action.

By the same token, you may wish to reserve at least four extra bytes
of private member data in classes which may later need to be extended.
This reserved data can be used as a pointer to extra data as it is required.
Of course, if the class is internal to your component, or is unlikely
to require later modification, you should not reserve extra memory in
the class object, in order to continue to minimize the use of limited
memory resources.

18.7 Compatibility and the Symbian OS Class Types

Chapter 1 describes the main class types, and their characteristics, on
Symbian OS. The discussion in this chapter has mainly focused on
compatibility issues which apply to C class objects and, to a lesser extent,
R classes. T classes, by their very nature, tend to be stack-based and are
often simple, taking a similar role to a C struct. T classes frequently
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do not have constructors and never have destructors. Once a T class is
publicly defined, it is often difficult to make client-compatible changes
to it.

18.8 Summary

A change is acceptable if every line of code affected by it can be altered,
where necessary, and the code rebuilt against the changes. In effect,
this often means that a change must be restricted to the internals of
a component rather than its public API. For this reason, you should
endeavor to keep private definitions and header files (and anything else
which is likely to be subject to change) out of the public domain.

A change is also acceptable if it can be verified as compatible, accord-
ing to the guidelines I’ve discussed here. In general, the key compatibility
issue for shared library DLLs is backward binary compatibility, with
source compatibility an additional aim.

These guidelines derive from those used within Symbian, in accor-
dance with the C++ standard. I am very grateful to David Batchelor, John
Forrest and Andrew Thoelke of Symbian who have previously written
guides to compatibility best practice on Symbian OS, which I used as the
basis of this chapter.
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Thin Templates

Now, now, my good man, this is no time to be making enemies
Voltaire on his deathbed, in response to a priest who asked him to

renounce Satan

C++ templates are useful for code that can be reused with different types,
for example to implement container classes such as dynamic arrays.
Templates allow the code to be generic, accepting any type, without
forcing the programmer to overload a function.

template<class T>
class CDynamicArray : public CBase

{
public:

... // Functions omitted for clarity
void Add(const T& aEntry);
T& operator[](TInt aIndex);
};

Prior to the introduction of templates to the C++ standard, generic
code tended to be written using void* arguments, to allow the caller to
specify any pointer type as an argument. However, the major benefit of
using C++ templates for genericity, instead of void*, is that templated
code can be checked for type safety at compile time.

However, the problem with template code is that it can lead to a
major increase in code size, because for each type used in the template,
separate code is generated for each templated function. For example, if
your code used the CDynamicArray class above for both an array of
HBufC* and an array of TUid values, the object code generated when
your code was compiled would contain two copies of the Add() function
and two copies of operator[], one for an array of HBufC* and one for
an array of TUid. What’s more, the template code is generated, at best,
once for each DLL or EXE that uses it and, at worst, for every compilation
unit. Compiling a templated class into a binary can thus have a significant
impact on its size.
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The advantage of automatically generated template code is thus a
disadvantage when code size matters. Because Symbian OS code is
deployed on mobile phones with limited ROM and RAM sizes, it
is important to avoid code bloat. Using templated classes, such as
CDynamicArray above, expands the code size too significantly. To
avoid this, but still reap the benefits of C++ templates, Symbian OS
makes use of the thin template pattern. This chapter describes the pattern
in more detail, so you have a good idea of how the system code works.
If you intend to use C++ templates1 in your code on Symbian OS, you
should endeavor to use this pattern to minimize code size. Let’s consider
the theory first, and then look at a couple of examples of the use of thin
templates in Symbian OS code.

The thin template idiom works by implementing the necessary code
logic in a generic base class that uses type-unsafe TAny* pointers rather
than a templated type. This code is liable to misuse because of the lack of
type-checking, so typically these methods will be made protected in the
base class to prevent them being called naively. A templated class will
then be defined which uses private inheritance2 from this class to take
advantage of the generic implementation. The derived class declares the
interface to be used by its clients and implements it inline in terms of the
base class. I’ll show an example of this from Symbian OS code shortly.

Since the derived class uses templates, it can be used with any type
required. It is type-safe because it is templated and thus picks up the use
of an incorrect type at compile time. There are no additional runtime
costs because the interfaces are defined inline, so it will be as if the caller
had used the base class directly. And importantly, since the base class is
not templated, only a single copy of the code is generated, regardless of
the number of types that are used.

For illustration purposes, here is just a small part of the RArrayBase
class and its subclass RArray (from e32std.h and e32std.inl). The
type-unsafe base class (RArrayBase) implements the code logic for the
array but cannot be used directly because all its methods are protected.
You’ll find a detailed discussion of the RArray class, and other Symbian
OS container classes, in Chapter 7.

1 You will typically want to use templates when writing a class that manipulates several
different types using the same generic code. The code should be agnostic about the type
passed into the template parameter, that is, the underlying logic is independent of type.
Typical examples of (thin) template classes in Symbian OS are the array classes (I’ll discuss
RArray shortly), the singly- and doubly-linked list classes (based on TSglQueBase and
TDblQueBase) and the circular buffers (based on CCirBufBase).

2 Private inheritance means that the derived class is implemented in terms of the base
class. Private inheritance is used when the deriving class uses some of the implemented
methods of the base class, but has no direct conceptual relationship with the base class.
Using private inheritance allows implementation to be inherited but all the methods of the
base class become private members of the deriving class. In effect, the deriving class does
not inherit the interface of the base class.
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class RArrayBase
{

protected:
IMPORT_C RArrayBase(TInt anEntrySize);
IMPORT_C RArrayBase(TInt aEntrySize,TAny* aEntries, TInt aCount);
IMPORT_C TAny* At(TInt anIndex) const;
IMPORT_C TInt Append(const TAny* anEntry);
IMPORT_C TInt Insert(const TAny* anEntry, TInt aPos);
...
};

The templated RArray class privately inherits the implementation and
defines a clear, usable API for clients. The API is defined inline and uses
the base class implementation. Elements of the array are instances of the
template class.

template <class T>
class RArray : private RArrayBase
{

public:
...
inline RArray();
inline const T& operator[](TInt anIndex) const;
inline T& operator[](TInt anIndex);
inline TInt Append(const T& anEntry);
inline TInt Insert(const T& anEntry, TInt aPos);
...
};

template <class T>
inline RArray<T>::RArray()

: RArrayBase(sizeof(T))
{}

template <class T>
inline const T& RArray<T>::operator[](TInt anIndex) const

{return *(const T*)At(anIndex); }
template <class T>
inline T& RArray<T>::operator[](TInt anIndex)

{return *(T*)At(anIndex); }
template <class T>
inline TInt RArray<T>::Append(const T& anEntry)

{return RArrayBase::Append(&anEntry);}
template <class T>
inline TInt RArray<T>::Insert(const T& anEntry, TInt aPos)

{return RArrayBase::Insert(&anEntry,aPos);}

Use of the class is then straightforward:

void TestRArray()
{
const TInt arraySize = 3;
RArray<TInt> myArray(arraySize);
for (TInt index = 0; index<arraySize; index++)

{
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myArray.Append(index);
}

TInt count = myArray.Count();
ASSERT(arraySize==count);
for (index = 0; index<arraySize; index++)

{
ASSERT(myArray[index]==index);
}

}

For another example of the thin template pattern in Symbian OS,
consider the TBufC and TBuf descriptor classes discussed in Chapter 5.
These classes are templated on an integer, the value of which is used as the
variable which determines the maximum statically-allocated length of the
buffer. In this case, the inheritance model is public and the derived class
publicly inherits the base class implementation (whereas the previous
example used private inheritance to gain access to the implementation
without inheriting the behavior).

The constructors of the derived TBufC16 class, and other functions
that use the template parameter, are declared inline. I’ve shown the
constructors for the base and derived classes below (from e32des16.h
and e32std.inl):

class TBufCBase16 : public TDesC16
{

protected:
IMPORT_C TBufCBase16();
inline TBufCBase16(TInt aLength);
IMPORT_C TBufCBase16(const TUint16 *aString,TInt aMaxLength);
IMPORT_C TBufCBase16(const TDesC16 &aDes,TInt aMaxLength);
...
};

template <TInt S>
class TBufC16 : public TBufCBase16

{
public:

inline TBufC16();
inline TBufC16(const TUint16 *aString);
inline TBufC16(const TDesC16 &aDes);
...
};

template <TInt S>
inline TBufC16<S>::TBufC16()

: TBufCBase16()
{}

template <TInt S>
inline TBufC16<S>::TBufC16(const TUint16 *aString)

: TBufCBase16(aString,S)
{}

template <TInt S>
inline TBufC16<S>::TBufC16(const TDesC16 &aDes)
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: TBufCBase16(aDes,S)
{}

To get the benefits of C++ templates without the disadvantages of
code bloat, you should prefer the thin-template idiom which is used
throughout Symbian OS code.

19.1 Summary

This chapter explained why C++ templates are ideal for reusable type-
safe but type-agnostic code, but have the disadvantage that they can
increase their clients’ code size quite considerably. For each templated
class, every time a different type is used, separate code is generated for
every templated function. Furthermore, this code duplication occurs in
each client DLL or compilation unit using the templated class. This can
cause significant code bloat unless the number of different types that are
used with the templated class is limited, the code generated is small, and
it is guaranteed that only a few clients will use the templated class.

Many Symbian OS container classes use the thin template pattern
to gain the advantages of C++ templates without the disadvantages of
increased code size (which is unacceptable on the ”small footprint”
devices on which Symbian OS is deployed).

This chapter described the characteristics of the thin template pattern,
which typically defines a base class (containing a generic implementation,
usually specified as protected to prevent it being called directly) and a
derived class (which uses private inheritance to inherit the implementation
of the base class). The derived class exposes a templated interface,
implemented inline in terms of the base class and thus benefits from
compile-time type-checking by using C++ templates. The derived class
does not have the associated size overhead because, regardless of the
number of types used, the code is inline and uses a single copy of the
generic base class implementation.

In this chapter the RArray, TBuf and TBufC classes illustrated the
thin template idiom as it is employed on Symbian OS, and how these
classes should be used. The RArray class is discussed in detail in
Chapter 7, while TBuf and TBufC are examined in Chapter 5.
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Expose a Comprehensive and

Comprehensible API

Have no fear of perfection – you’ll never reach it
Salvador Dali

So, you’re ready to design a class. You’ve read Chapter 1, and have
thought about the characteristics of your class, maybe by asking the
following questions: ”How will objects of my class be instantiated?”;
”Will they be stack- or heap-based?”; ”Will the class have any data or
simply provide an interface?”; ”Will it need a destructor?” The answers
to these questions will help you decide what kind of Symbian OS
class it is and give you the first letter of its name, the rest of which
is down to you. When choosing a class name it is frequently difficult
to be descriptive yet brief. Unless your class consists solely of static
functions, it will be instantiated and used as an object. The class name
should be a noun to reflect that. I’ll discuss the best strategy for naming
classes and their member data, methods and parameters, later in this
chapter.

The type of class you choose affects, to some extent, the definition
of the class. For example, if you decide to implement it as a T class,
it won’t have a destructor nor own any data which needs one. On the
other hand, if you’re writing a C class, you’ll most likely need to use
two-phase construction. To do this, you will make constructors protected
or private and provide a public static function, usually called NewL(),
which calls a non-public second-phase construction method to perform
any initialization that may leave. You’ll find more information about
two-phase construction in Chapter 4.

This chapter aims to highlight the factors you need to consider when
designing a class, in particular the application programming interface
(API) it will expose to its clients. The chapter isn’t a comprehensive
treatise in class design – that would need a whole book – but it does
point out some of the more important points for good C++ class design
on Symbian OS.
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The quality of your API is important if your clients are to find it easy
to understand and use. It should provide all the methods they need to
perform the tasks for which the class is designed, but no more. You
should design your interface to be as simple as possible, each member
function having a distinct purpose and no two functions overlapping in
what they perform. Try and limit the number of methods, too – if your
class provides too many it can be confusing and difficult to work with.
A powerful class definition has a set of functions where each has a clear
purpose, making it straightforward, intuitive and attractive to reuse. The
alternative might make a client think twice about using the class – if the
functions are poorly declared, why trust the implementation? Besides the
benefit of avoiding duplicating the implementation effort, with limited
memory space on a typical Symbian OS phone, it’s in everyone’s interests
to reuse code where possible.

Even if your own code is the intended client, no matter! Should you
decide later to reuse the class, the time you spend making it convenient
to use will pay off. By making the class simple to understand and
use, and cutting out duplicated functionality, you’ll cut down your test
and maintenance time too. Furthermore, a well-defined class makes
documentation easier and that’s got to be a good thing.

20.1 Class Layout

Before looking at details of good API design, let’s consider the aesthetics
of your class definition. When defining a class, make it easy for your
clients to find the information they need. The convention is to lay out
Symbian OS classes with public methods at the top, then protected and
private methods, following this with public data if there is any (and later
in this chapter I’ll describe why there usually shouldn’t be), protected
and private data. I tend to use the public, protected and private
access specifiers more than once to split the class into logically related
methods or data. It doesn’t have any effect on the compiled C++, and it
makes the class definition simpler to navigate. For example:

class CMyExample : public CSomeBase
{

public: // Object instantiation and destruction
static CMyExample* NewL();
static CMyExample* NewLC();
∼CMyExample();

public:
void PublicFunc1(); // Public functions, non virtual
...

public:
inline TBool Inline1(); // Inline (defined elsewhere)
...

public:
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virtual void VirtualFunc1(); // Public virtual
...

protected:
// Implementation of pure virtual base class functions
void DoProcessL();
...

// etc for other protected and private functions
private: // Construction methods, private for 2-phase construct

void ConstructL();
CMyExample();
...

private: // Data can also be grouped, e.g. into that owned
CPointer* iData1; // by the class (which must be freed in the
... // destructor) & that which does not need cleanup
};

20.2 IMPORT−C and EXPORT−C

Having declared your class, you should consider how your clients get
access to it. If it will be used by code running in a separate executable (that
is, DLL or EXE code compiled into a separate binary component) from
the one in which you will deliver the class, you need to export functions
from it. This makes the API ”public” to other modules by creating a .lib
file, which contains the export table to be linked against by client code.
There’s more about statically linked DLLs in Chapter 13.

Every function you wish to export should be marked in the class
definition in the header file with IMPORT_C. Admittedly, this is slightly
confusing, until you consider that the client will be including the header
file, so they are effectively ”importing” your function definition into their
code module. You should mark the corresponding function definition
in the .cpp file with EXPORT_C. The number of functions marked
IMPORT_C in the header files must match the number marked EXPORT_C
in the source.

Here’s an example of the use of the macros, which will doubtless look
familiar from class definitions in the header files supplied by whichever
Symbian OS SDK you use.

class CMyExample : public CSomeBase
{

public:
IMPORT_C static CMyExample* NewL();

public:
IMPORT_C void Foo();
...
};

EXPORT_C CMyExample* CMyExample::NewL()
{...}
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EXPORT_C void CMyExample::Foo()
{...}

The rules as to which functions you need to export are quite simple.
Firstly, you must never export an inline function. There’s simply no need
to do so! As I described, IMPORT_C and EXPORT_C add functions to
the export table to make them accessible to components linking against
the library. However, the code of an inline function is, by definition,
already accessible to the client, since it is declared within the header file.
The compiler interprets the inline directive by adding the code directly
into the client code wherever it calls it. In fact, if you export an inline
function, you force all DLLs which include the header file to export it too,
because the compiler will generate an out-of-line copy of the function
in every object file which uses it. You’ll find a warning about the use
of inline directives except for the most trivial of functions in Chapters 18
and 21.

Only functions which need to be used outside a DLL should be
exported. When you use IMPORT_C and EXPORT_C on a function, it
adds an entry to the export table. If the function is private to the class and
can never be accessed by client code, exporting it merely adds it to the
export table unnecessarily.

Private functions should only be exported if:

• they are virtual (I’ll discuss when to export virtual functions shortly)

• they are called by a public inline function (this is clear when you
consider that the body of the inline function will be added to client
code, which means that, in effect, it makes a direct call to the
private function).

Similarly, a protected function should only be exported if:

• it is called by an inline function, as described above

• it is designed to be called by a derived class, which may be imple-
mented in another DLL

• it is virtual.

All virtual functions, public, protected or private, should be exported,
since they may be re-implemented by a derived class in another code
module. Any class which has virtual functions must also export a con-
structor, even if it is empty.

The one case where you should not export a virtual function is if it
is pure virtual. This is obvious when you consider that there is generally
no implementation code for a pure virtual function, so there is no code
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to export. As long as a deriving class has access to the virtual function
table for your base class, it is aware of the pure virtual function and is
forced to implement it. In the rare cases where a pure virtual function has
a function body, it must be exported.

The virtual function table for a class is created and updated by the
constructor of the base class and any intermediate classes. If you don’t
export a constructor, when a separate code module comes to inherit
from your class, the derived constructor will be unable to access the
default constructor of your class in order to generate the virtual function
table. This is why any class which has virtual functions must export a
constructor. Remember the rule that you must not export inline functions?
Since you’re exporting the constructor, you must implement it in your
source module, even if it’s empty, rather than inline it. A good example of
this is class CBase (defined in e32base.h), which defines and exports
a protected default constructor.

The rules of exporting functions are as follows:

• never export an inline function

• only those non-virtual functions which need to be used outside
a DLL should be exported

• private functions should only be exported if they are called by
a public inline function

• protected functions should be exported if they are called by
a public inline function or if they are likely to be called
by a derived class which may be implemented in another
code module

• all virtual functions, public, protected or private, should be ex-
ported, since they may be re-implemented in a separate module

• pure virtual functions should not be exported unless they con-
tain code

• any class which has virtual functions must also export a (non-
inlined) constructor, even if it is empty.

20.3 Parameters and Return Values

Let’s move on to think about the definitions of class methods in terms of
parameters and return values. I’ll compare passing and returning values
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by value, reference and pointer, and state a few general guidelines for
good C++ practice on Symbian OS.

Pass and Return by Value

void PassByValue(TExample aParameter);
TExample ReturnAValue();

Passing a parameter by value, or returning a value, takes a copy of
the argument or final return value. This can potentially be expensive,
since it invokes the copy constructor for the object (and any objects
it encapsulates) as well as using additional stack space for the copy.
When the object passed in or returned goes out of scope, its destructor is
called. This is certainly less efficient than passing a reference or pointer
to the object as it currently exists, and you should avoid it for large
or complex objects such as descriptors.1 However, it is insignificant for
small objects (say less than eight bytes) and the built-in types (TBool,
TText, TInt, TUint and TReal). Of course, by taking a copy of the
parameter, the original is left unchanged, so a parameter passed by value
is most definitely a constant input-only parameter.

You may even choose to return an object by const value in some
cases. This prevents cases of assignment to the return value – which is
illegal for methods that return the built-in types. You should strive to
make your own types behave like built-in types and may choose to use a
const return value to enforce this behavior when you are returning an
instance of your class by value.

Pass and Return by const Reference

void PassByConstRef(const TExample& aParameter);
const TExample& ReturnAConstRef();

Passing an object by const reference prevents the parameter from being
modified and should be used for constant input parameters larger than
the built-in types. Equally, for efficiency reasons, returning a value as a
constant reference should be used in preference to taking a copy of a
larger object to return it by value. You must be careful when returning
an object by reference, whether it is modifiable or constant, because
the caller of the function and the function itself must agree on the

1 When passing objects by reference or pointer, a 32-bit pointer value is transferred. This
minimal memory requirement is fixed, regardless of the type to which it points. Internally, a
reference is implemented as a pointer, with additional syntax to remove the inconvenience
of indirection.
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lifetime of the object which is referenced. I’ll discuss this further in the
next section.

Pass and Return by Reference

void PassByRef(TExample& aParameter);
TExample& ReturnARef();

Passing an object by reference allows it to be modified; it is, in effect,
an output or input/output parameter. This is useful for both larger objects
and the built-in types, and is a common alternative to returning an object
by value.

Returning a reference is commonly seen to allow read/write access, for
example to a heap-based object for which ownership is not transferred.
Returning a reference passes access to an existing object to the caller;
of course, the lifetime of this object must extend beyond the scope of
the function.

Consider the following example:

class TColor
{

public:
TColor(TInt aRed, TInt aGreen, TInt aBlue);
TColor& AddColor(TInt aRed, TInt aGreen, TInt aBlue);
//... functions omitted for clarity

private:
TInt iRed;
TInt iGreen;
TInt iBlue;
};

TColor::TColor(TInt aRed, TInt aGreen, TInt aBlue)
: iRed(aRed), iGreen(aGreen), iBlue(aBlue)

{}

TColor& TColor::AddColor(TInt aRed, TInt aGreen, TInt aBlue)
{// Incorrect implementation leads to undefined behavior
TColor newColor(aRed+iRed, iGreen+aGreen, iBlue+aBlue);
return (newColor); // Whoops, new color goes out of scope
}

TColor prettyPink(250, 180, 250);
TColor differentColor = prettyPink.AddColor(5, 10, 5);

The AddColor() method returns a reference to newColor, a local
stack-based object which ceases to exist outside the scope of Add-
Color(). The result is undefined, and some compilers flag this as an
error. If your compiler does let you build and run the code, it may even
succeed, since different compilers allow temporary variables different life
spans. In circumstances like these, that’s what ”undefined” means. What
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works with one compiler will doubtless fail with another and you should
avoid any reliance upon compiler-specific behavior.

The previous code is a classic example of knowing that it’s generally
preferable to return objects larger than the built-in types by reference
rather than by value, but applying the rule where it is not actually valid to
do so. An equally invalid solution would be to create the return value on
the heap instead of the stack, to avoid it being de-scoped, and then return
a reference to the heap object. For example, here’s another incorrect
implementation of adding two colors, this time in a leaving function.

TColor& TColor::AddColorL(TInt aRed, TInt aGreen, TInt aBlue)
{// Incorrect implementation leads to a memory leak
TColor* newColor = new (ELeave) TColor(aRed+iRed, iGreen+aGreen,

iBlue+aBlue);
return (*newColor);
}

The newColor object does at least exist, but who is going to delete
it? By returning a reference, the method gives no indication that the
ownership of newColor is being transferred to the method’s caller.
Without clear documentation, the caller wouldn’t know that they’re
supposed to delete the return value of AddColorL() when they’ve
finished with it.

TColor prettyPink(250, 180, 250);
TColor differentColor = prettyPink.AddColor(5, 10, 5);
...
delete &differentColor; // Nasty. It’s unusual to delete a reference!

This just isn’t the done thing with functions which return objects by
reference! Even if most of your callers read the documentation and don’t
object heartily to this kind of behavior, it only takes one less observant
caller to leak memory.

Of course, there is an expense incurred in return by value, namely the
copy constructor of the object returned and, later, its destructor. But in
some cases, such as that described above, you have to accept that (and
in some cases the copy constructor and destructor are trivial so it’s not
an issue). In addition, the compiler may be able to optimize the code
(say, using the named return value optimization) so the price you pay
for intuitive, memory-safe and well-behaved code is often a small one.
Here’s the final, correct implementation of AddColor(), which returns
TColor by value:

TColor TColor::AddColor(TInt aRed, TInt aGreen, TInt aBlue)
{
TColor newColor(aRed+iRed, iGreen+aGreen, iBlue+aBlue);
return (newColor); // Correct, return by value
}
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If you return a reference to an object which is local to the scope of
your function, the object will be released back to the stack when
your function returns, and the return value will not reference a valid
object. In general, if an object doesn’t exist when the function that
returns it is called, you can only return it by reference if some other
object, whose life-time extends beyond the end of that function,
has ownership of it.

Pass and Return by const Pointer

void PassByConstPtr(const CExample* aParameter);
const CExample* ReturnAConstPtr();

Passing or returning a constant pointer is similar to using a constant
reference in that no copy is taken and the recipient cannot change the
object.2 It’s useful to return a pointer when returning access to a C++
array, or where an uninitialized parameter or return value is meaningful.
There’s no such thing as an uninitialized reference, so returning a NULL
pointer is the only valid way of indicating ”no object” in a return value.
However, you might consider overloading a method to take an additional
constant reference input parameter. This means that you can use a const
reference for cases where the input parameter can be supplied, and call
the overloaded method which doesn’t take any input parameter when no
input is supplied. For example:

// Take a const pointer (aInput may be NULL)
void StartL(const CClanger* aInput, const TDesC8& aSettings);

// Or alternatively overload to take a const reference when it is valid
// Use this overload in cases where aInput is NULL
void StartL(const TDesC8& aSettings);
// Use this overload in cases where aInput!=NULL
void StartL(const CClanger& aInput, const TDesC8& aSettings);

The benefit of using a reference over a pointer is that it is always
guaranteed to refer to an object. In the first overload, StartL() would
have to implement a check to see whether aInput points to an object
before dereferencing it, in case it is NULL. This is unnecessary in the third
overload, where aInput is guaranteed to refer to an object.

2 The constness of the pointer can, of course, be cast away using const_cast
<CExample*>(aParameter), but you wouldn’t do that without good reason, would
you?
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Pass and Return by Pointer

void PassByPtr(CExample* aParameter);
CExample* ReturnAPtr();

Passing or returning a pointer allows the contents to be modified by the
recipient. As with const pointers, you should pass or return a pointer
if it can be NULL, if it points into a C++ array or if you are transferring
ownership of an object to a caller. On Symbian OS, passing or returning
a pointer often indicates a transfer of ownership and it’s preferable not
to return a pointer if you are not transferring ownership (since you must
then document clearly to callers that they should not delete it when
they’ve finished with it). In fact, you should prefer to pass by reference
or return a reference rather than use pointers except for the reasons
described.

All else being equal, a reference can be more efficient than a pointer
when the compiler must maintain a NULL pointer through a conversion.
Consider the following class and pseudo-code:

class CSoupDragon : public CBase, public MDragon
{...};

CSoupDragon* soupDragon;
MDragon* dragon;
...
dragon = soupDragon; // soupDragon may be NULL

For the conversion between CSoupDragon and MDragon, the com-
piler must add sizeof(CBase) to the soupDragon pointer in all cases,
except where soupDragon is NULL, whereupon it must continue to be
NULL rather than point incorrectly at the address which is the equivalent
of sizeof(CBase). Thus the compiler must effect the following:

dragon = (MDragon*)(soupDragon ? (TUint8*)soupDragon+sizeof(CBase) :
NULL);

For a conversion which involves references rather than pointers, the
test is unnecessary, since a reference must always refer to an object.

For any of your code that receives a pointer return value, or if you
implement methods that take pointer parameters, you should consider
the implications of receiving a NULL pointer. If an uninitialized value is
incorrect, i.e. a programming error, you should use an assertion statement
to verify that it is valid. The use of assertions for ”defensive” programming
is discussed further in Chapter 16.
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20.4 Member Data and Functional Abstraction

In this discussion on the API of your class, I’ve discussed the definition of
the member functions of your class, but not really touched on the member
data. There’s a very simple rule, which is that you should not make class
data public, and there’s a good reason for this – encapsulation.

The benefit of keeping your member data private to the class is that
you can control access to it. First, you can decide whether to expose the
data at all; if you choose to do so, you can provide member functions
in your class to expose the data. If you follow the guidelines above, you
can control precisely the type of access allowed. If you return const
references, const pointers or a value, the caller has read-only access,
while returning a reference or a pointer allows the caller to modify the
data, as illustrated by the following:

const TExample& ReadOnlyReference();
const TExample* ReadOnlyPointer();
TExample ReadOnlyValue();
TExample& ReadWriteReference();
TExample* ReadWritePointer();

An additional benefit of keeping class member data private is a degree
of functional abstraction. By providing methods to Set() and Get(),
the variable is not exposed directly. Should you later decide to change
the implementation of the class, you can do so without requiring your
clients to update their code.

For example, consider this rather contrived class which stores a pass-
word and compares it with a password typed in later, providing a
re-usable class for applications to protect their user files. In version 1.0,
the unencrypted password is, rather naively, stored within the object.
The code is released and everyone is happy for a while, including a few
hackers. A code review before version 2.0 highlights the problem. If the
class has been declared as follows, any attempt to add more security to
the class forces clients of the class to change their code. Incidentally, I
discuss how to maintain compatibility for client code in Chapter 18.

// Version 1.0
class CPassword : public CBase

{
public:

... // Other functions omitted for clarity
public:

// Bad! There are no access functions – the member data is public
// The caller can set and get the password directly
HBufC8* iPassword;
};
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The same problem arises in a second definition (version 1.1) below,
but for different reasons. This class is a step in the right direction, because
the password data is at least private. To set and get the password, the
caller must call a method explicitly rather than modify the contents of the
object directly.

// Version 1.1
class CPassword : public CBase

{
public:

...
IMPORT_C void SetPasswordL(const TDesC8& aPassword);
inline HBufC8* Password(); // Better! But not great

private:
HBufC8* iPassword; // Better. Password is private
};

inline HBufC8* CPassword::Password()
{
return (iPassword);
}

// SetPasswordL() is a leaving method because allocation
// of iPassword may leave if there is insufficient memory
EXPORT_C void CPassword::SetPasswordL(const TDesC8& aPassword)

{
HBufC8* newPassword = aPassword.AllocL();
delete iPassword;
iPassword = newPassword;
}

To access the data, the caller must now call Password(), which
provides read/write access to iPassword. Sure, it returns a constant
heap descriptor, but from Chapters 5 and 6, you know how to call Des()
on that pointer to get a modifiable pointer which can be used to update
the contents of the buffer. This is far from ideal; the password should
only be modifiable through the SetPasswordL() method, otherwise
it’s confusing for the client to know which to use. To get read-only
access, the method should either return a const HBufC8* or, preferably,
return a constant reference to the more generic descriptor type, TDesC8,
as follows:

// Version 1.2
class CPassword : public CBase

{
public:

...
// Better! Now a const method and return value
inline const TDesC8& Password() const;

private:
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HBufC8* iPassword;
};

inline const TDes8C& CPassword::Password() const
{
return (*iPassword);
}

In fact, for access to the password, this class definition is not much
of an improvement on the original one, because the method exposes
the class implementation directly. It’s questionable whether there’s much
benefit over the original version, since it doesn’t do anything additional to
version 1.0, other than requiring a function call to retrieve the password.
In fact, by implementing the accessor in an inline method, the additional
overhead of a function call is removed at compile time. This is not
necessarily a good thing in this case because its implementation is
compiled into the caller’s code. It isn’t possible to update Password()
without forcing clients of the class to recompile to receive the benefit of
the new implementation, as I discussed in Chapter 18.

Here’s a better definition of the class (version 1.3). Notice that the data
member is private; there is a single method to set the password and, rather
than returning the password, a method is provided to compare an input
password with the stored value, returning a TBool result to indicate a
match. This method is not inlined:

// Version 1.3
class CPassword : public CBase

{
public:

IMPORT_C TBool ComparePassword(const TDesC8& aInput) const;
// Implemented as shown previously
IMPORT_C void SetPasswordL(const TDesC8& aPassword);

private:
HBufC8* iPassword;
};

EXPORT_C TBool CPassword::ComparePassword(const TDesC8& aInput) const
{
return (0==iPassword->Compare(aInput));
}

A more secure storage mechanism is used in version 2.0, which doesn’t
require the definition of class CPassword to change, but updates the
internals of SetPasswordL() and ComparePassword() to store the
password as a hash value, rather than ”in the clear”. By abstracting the
functionality into the class, when version 2.0 is released existing clients
of the library are unaffected by the upgrade.
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// Version 2.0
EXPORT_C void CPassword::SetPasswordL(const TDesC8& aPassword)

{
TBuf8<KMaxHashSize> hashed;
// Fill hashed with a hash of aPassword using an appropriate method
// ...
HBufC8* newPassword = hashed.AllocL();
delete iPassword;
iPassword = newPassword;
}

EXPORT_C TBool CPassword::ComparePassword(const TDesC8& aInput) const
{
TBuf8<KMaxHashSize> hashed;
// Fill hashed with a hash of aInput using an appropriate method
// ...
return (0==iPassword->Compare(hashed));
}

Of course, there are still problems with this class, not least the fact
that there is no error checking to see whether iPassword has actually
been set by a call to SetPasswordL(). A better implementation would
perhaps remove SetPasswordL() and require the password to be
passed to a NewL() or NewLC() two-phase construction method, as
described in Chapter 4. This would also limit when, in the object’s
lifetime, the password could change, for better security. I’ll leave that
implementation as an exercise for the reader.

Where possible, use const on parameters, return values, ”query”
methods, and other methods that do not modify the internals of a
class. It indicates invariance to other programmers and ensures that
the compiler enforces it.

20.5 Choosing Class, Method and Parameter Names

The title of this chapter includes the word ”comprehensible”, and this is
an important issue when it comes to naming your class and the methods
of its API. In all cases, you should strive for clear and distinct names,
without making them so long as to be burdensome or, worse, abbreviating
each to an acronym of your own choosing. Likewise, the names of the
parameters in each method should be clear and descriptive. If you can,
make it possible for your clients to write comprehensible code too. For
example, in methods that take a number of initialization values, it’s a
good idea to use custom enumerations with clear names. Not only does
this make it easy for your client to work out which settings to choose, but
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it’s easier when looking back at the code to understand what it means. For
example, take the following function declaration in class CGpSurgery:

class CGpSurgery : public CBase
{

public:
void MakeHospitalAppointment(TBool aExistingPatient,

TBool aUrgency, TBool aTestData);
... // Other functions omitted for clarity
};

Without looking at the declaration of MakeHospitalAppoint-
ment(), it’s not immediately clear how to call the method, for example
to make an urgent hospital appointment for a new patient who already
has some test data available. Unless you name your parameters carefully,
your client may well have to consult your documentation too, to find out
the appropriate boolean value for each variable.

MakeHospitalAppointment(EFalse, ETrue, ETrue);

A far clearer approach is to use enumeration values whose name
clearly indicates their purpose. However, if you define them in global
scope, you or your clients may well find that a name clash arises with
code in other header files, particularly if you choose short, simple names
such as TSize or TColor. Even if your code doesn’t get a clash, this
(ab)use of the global scope means that code which includes your header
may get a conflict later down the line. It’s preferable to define them inside
the class to which they apply. The caller then uses the class scope to
identify them. This is a useful approach for class-specific enumerations,
typedefs and constants. If you prefer to keep them out of your class scope,
you could alternatively use a C++ namespace to prevent spilling your
definitions into the global scope.

class CGpSurgery : public CBase
{

public:
enum TPatientStatus { EExistingPatient, ENewPatient };
enum TAppointmentUrgency { EUrgent, ERoutine };
enum TTestData { ETestResultsPending, ETestResultsAvailable };

public:
void MakeHospitalAppointment(TPatientStatus aExistingRecords,

TAppointmentUrgency aUrgency, TTestData aTestData);
};

Looking at the function call, it is now significantly clearer what each
parameter refers to; in effect, the code has documented itself.

MakeHospitalAppointment(CGpSurgery::ENewPatient, CGpSurgery::EUrgent,
CGpSurgery::ETestResultsAvailable);
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The use of enumerations rather than boolean values also provides
extensibility in the future; in the case of the CGpSurgery class, addi-
tional levels of appointment urgency, patient status or test data availability
can be introduced without the need to change the signature of MakeHos-
pitalAppointment(). This avoids breaking compatibility – which is
the subject of Chapter 18.

20.6 Compiler-Generated Functions

I’ve discussed some of the things to consider when defining your class, but
before concluding this chapter, it’s worth briefly describing the functions
that the compiler generates for you if you don’t add them yourself. If you
have not declared a copy constructor, assignment operator or destructor,
the compiler generates them implicitly for a class in case they need to
be invoked. If there are no constructors declared, it declares a default
constructor too.

The implicitly-generated functions are public; the constructor and
destructor are simply placeholders for the compiler to add the code
required to create and destroy an object of the class (for example, to
set up or destroy the virtual function table). The destructor does not
perform any cleanup code. The compiler-generated copy constructor and
assignment operator perform a copy or assignment on each member
of your class, invoking the copy constructor or assignment operator
if there is one defined, or applying the rule for the members of the
encapsulated object if not. Built-in types, pointers and references are
copied or assigned using a shallow bitwise copy. This is problematic for
pointers to objects on the heap, since a bitwise copy is rarely desirable,
opening up opportunities for dangling pointers; these can result in a
memory leak or multiple deletion through the same pointer, which raises
a panic (USER 44).

This is particularly true for CBase-derived classes which should be
constructed through the NewL() and NewLC() functions, which are
guaranteed to initialize the object correctly using two-phase construction
(as described in Chapter 4). They should not be copy constructed or
assigned to, because this bypasses the two-phase construction and makes
shallow copies of any pointers to dynamic memory.

To prevent accidental copies, CBase declares a private copy construc-
tor and assignment operator (as you’ll see from the class definition in
e32base.h). Declaring, but not defining, a private copy constructor and
assignment operator prevents calling code from performing invalid copy
operations using compiler-generated code. If your C class does need a
copy constructor, you must explicitly declare and define one publicly – or
provide a CloneL() or CopyL() method, which allows you to make
leaving calls, which are not possible in a copy constructor.
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In fact, you’ll probably not find yourself implementing a copy construc-
tor or assignment operator on Symbian OS very often. As I’ve explained,
C class objects are not suitable for copy or assignment, while T class
objects are ideal candidates for allowing the compiler to generate its own
implicit versions. An R class object is unlikely to be copied and is safe for
bitwise copy anyway. You would usually not expect to define an explicit
copy constructor or assignment operator for an R class unless a shallow
copy of the resource handle causes problems. For example, while the
first object to call Close() releases the underlying resource and zeroes
the handle value (making it invalid), a second object may still have a
non-zero handle value. If the second object attempts to use the handle,
even just to call Close(), the behavior is undefined and depends on the
nature of the resource.

You can prevent a client copying objects of your R class by declaring
the copy constructor and assignment operator private and not imple-
menting them. If taking a copy is a valid action, you should declare
and define the copy constructor and assignment operator, or provide
another method, such as CloneL(), by which the resource handle is
copied safely.

If your class does not need a destructor, for example because it has
no cleanup code, you are under no obligation to add one. A good
example of this is a T or R class, described in more detail in Chapter 1;
neither type of class has need of an explicit destructor. For C classes,
any compiler-generated destructor is virtual by default since the parent
class, CBase, defines a virtual destructor. This means that, if your C class
inherits from a class which defines a destructor, it is called correctly,
regardless of whether you declare and define an empty destructor or
allow the compiler to do it for you.

20.7 Summary

This chapter stressed the importance of defining classes clearly and com-
prehensively so that code is re-used rather than re-written or duplicated.
It discussed a number of issues, most of which are not just specific to
Symbian OS, but relate generally to C++ best practice, including:

• a comparison of the relative merits of passing and returning by value,
reference or pointer

• the use of const where appropriate

• functional abstraction and how (not) to expose member data

• the use of enumerations to clarify the role of a function parameter and
allow it to be extended in future
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• the functions a compiler will generate for a class if they are not
declared.

This chapter also discussed the use of IMPORT_C and EXPORT_C on
Symbian OS to export API functions for use by external client code. The
choice of when to export a function is relatively straightforward:

• Virtual functions should always be exported unless the class is non-
derivable or where the functions are pure virtual (because there is no
code to export, except in rare cases).

• Code which exports virtual functions must also export a constructor,
even if it is empty, in order for the virtual function table to be created
correctly. If necessary, the constructor should be specified as protected
to prevent it being called directly by clients of the class.

• Inline functions should never be exported.

• Only functions that are used outside the DLL (called either directly or
indirectly through a call from an inline function) should be exported.
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Good Code Style

We all learn from our mistakes. The trick is to learn
from the mistakes of others

Anon

Symbian OS is designed to work well on devices with limited resources
while still providing rich functionality. To balance the demand on system
resources with their relative scarcity requires program code to be of high
quality; in particular, robust, efficient and compact.

You can find advice on writing good-quality C++ code in any decent
textbook on the subject. There are entire books which cover aspects of
good programming style and there isn’t enough space in this book to go
into too much detail. Instead, I’ve tried to focus on a few aspects that
can improve your C++ code on Symbian OS. The chapter covers some of
the main features of the Symbian OS coding standards and distils advice
that developers working on Symbian OS have found to be most useful.
While it concentrates on issues specific to Symbian OS, it also has some
tips for general good programming style. I used some excellent books on
C++ for background information when researching this chapter; those I
recommend in particular are listed in the Bibliography.

21.1 Reduce the Size of Program Code

Space is at a premium on Symbian OS. Where possible, you should
attempt to minimize the size of your program binary and its use of
memory without unduly complicating your code. In previous chapters,
I’ve already discussed some of the factors that may increase the size of
your object code. For example, Chapter 5 mentioned that the use of the
_L macro is deprecated and you should prefer to use _LIT for literal
descriptors. The TRAP/TRAPD macros, which I discussed in Chapter 2,
can also bloat program code. The following discussion describes some
other factors to consider which may help you trim the size of your
program binaries.
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Take Care When Using inline
Beware of inlining functions, since you may end up bloating your program
code while you are trying to speed it up. You’ll find a lot more about
the hazards of inlining in Scott Meyers’ Effective C++.1 To summarize:
the inline directive, when obeyed by a compiler, will replace a call
to the inlined function with the body of the function, thus avoiding the
overhead of a function call. However, this will increase the size of your
code if the function code is anything other than trivial. (If the directive
is ignored things may be even worse, since the compiler may generate
multiple copies of your function code, while still making function calls
to it, thus bloating your binary without any of the speed benefits from
forgoing the function call.) On Symbian OS, limited memory resources
typically mean that the overhead of a function call is preferable to the
potential code bloat from a large section of inlined code.

Furthermore, inlined code is impossible to upgrade without breaking
binary compatibility. If a client uses your function, it is compiled into their
code, and any change you make to it later will force them to recompile,
as I described in Chapter 18.

For both reasons, stick to the rule that you should prefer a function call
and return over an inlined function unless the function is trivial, such as
a simple ”getter” type function, shown below:

class TBook
{

public:
...
inline TInt Price() const {return (iPrice);};

private:
TInt iPrice;
};

Other candidates for inlining include trivial T class constructors and
templated functions, particularly when using the thin template idiom
discussed in Chapter 19.

Reuse Code
Code reuse has the benefit that you get to use tried and tested code. This
is great if the solution fits your problem exactly, but how many times have
you found that it doesn’t quite do what you want? Often you may find
yourself writing code from scratch or copying and reworking code from a
previous solution to solve your problem. Both courses are understandable
if the prior solution doesn’t fit exactly, but it is wasteful of space to end
up with two or more different solutions to a common problem.

1 See Item 33 of Effective C++: 50 specific ways to improve your programs and designs,
details of which can be found in the Bibliography.
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Sometimes it may be possible to abstract the common code into a
utility module which can be used by both solutions. Of course, this isn’t
always possible, since you may not be able to modify the original source.
If you cannot modify the original code, do you have to copy it for your
solution, or can you use it and perform additional tasks to get the result
you need? If you do have to copy and modify the code, try to copy only
as much as is required, and make sure you adapt it where you need to,
rewriting it completely if necessary so it is efficient for the task you are
trying to achieve.

When writing a class, you should endeavor to make it easy to use and
thus to reuse. Sometimes code is dismissed as being impossible to reuse
because it’s so hard to work out what it’s doing or how best to use it. This
is partly a problem with the language, because C++ is complex and it is
easy to use it incorrectly. Chapter 20 discusses some of the ways to define
a clear and efficient API, which will make your life easier in the testing,
maintenance and documentation phases and will improve the chances
that potential clients will adopt it, rather than duplicate effort and code
by writing their own version.

Refactor Code

Martin Fowler describes the concept of code refactoring in his book
Refactoring: Improving the Design of Existing Code, details of which can
be found in the Bibliography. As a module evolves, it may begin to lose
its structure as new functions are added to enhance and extend the pro-
gram. Even well-designed code, which initially performed a specific job
well, becomes increasingly complex when modified to support additional
requirements built on top of the original design. In theory, the program
should be redesigned rather than simply extended. However, this usu-
ally doesn’t happen for numerous reasons, often related to the release
schedule, which may be unprepared for redesign and reimplementation
of code which is apparently fit-for-purpose.

Fowler suggests that refactoring techniques can be used as a trade-off
between the long-term pain of additional code complexity and the short-
term pain of redesign, such as the introduction of new bugs and glitches.
Refactoring doesn’t usually change the functionality of existing code but,
rather, changes its internal structure to make it easier to work with as it
evolves and is extended. The changes come through small steps, such
as renaming methods, abstracting similar code from two classes into a
separate shared superclass or moving member variables between classes
when ownership changes become appropriate. The idea of refactoring is
not to extend the code itself; this should be a distinctly separate operation
to meet new requirements. But refactoring should take place whenever
code is extended or bugs are fixed; it’s an ongoing process to reduce
complexity and increase code reuse. You should make sure you have
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good test code in place when you refactor and run the tests after each
modification to ensure that you do not introduce regressive bugs into
the code.

Remove Debug, Test and Logging Code in Release Builds

Chapter 16 discusses when assertion statements are appropriate in release
builds; otherwise, any code you have added for debugging, testing and
logging should be compiled out of release code using the appropriate
macros. This allows you to minimize the overhead of diagnostic checking,
in terms of runtime speed and code size, in production code.

21.2 Use Heap Memory Carefully

Memory management is an important issue on Symbian OS, which
provides an infrastructure to help catch memory leaks, use memory effi-
ciently and test that code fails gracefully under low-memory conditions.
I’ll discuss each of these further in this section. The issue of good memory
management is so crucial to writing effective code on Symbian OS that
you’ll find most chapters in this book touch on it to some extent. This
section references those other chapters where relevant.

Prevent Memory Leaks

In Chapter 3, I described why you should use the cleanup stack and how
to do so in order to handle leaves safely. The general rule to follow is
that, when writing each line of code, you should ask yourself: ”Can this
code leave? If so, will all the currently allocated resources be cleaned
up?” By ensuring that all resources are destroyed in the event of a leave,
you are preventing potential memory leaks when exceptions occur. This
includes using the two-phase construction idiom for C classes, because
a C++ constructor should never leave. I discussed this in more detail in
Chapter 4.

You should, of course, ensure that all resources are cleaned up under
normal conditions too. For example, every resource an object owns
should be freed, as appropriate, in a destructor or cleanup function. It’s a
common mistake to add a member variable to a class but to forget to add
corresponding cleanup code to the destructor. I described how to check
that your code doesn’t leak in Chapter 17.

Be Efficient

As well as preventing leaks, you should use memory efficiently to prevent
wasting the limited resources available on a typical mobile phone. For
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example, you may want to consider whether the object size of your heap-
based classes can be reduced. Possible slimming techniques include
replacing a number of boolean flags with a bitfield and checking that you
are using the Symbian OS container classes efficiently.2 You should also
check that multiple copies of filenames, or other string data, are not copied
unnecessarily between components in a module – perhaps passing them
instead as reference parameters between components, where possible, to
avoid duplication.

There are many other ways to reduce memory use, but it’s also
sensible to consider how complex your code may become. There may
be a degree of compromise between preserving the readability of your
code and shaving off some extra bytes of memory consumption. As I’ve
already mentioned, it’s important to remember that if your code is hard
to understand, it is less likely to be reused. Potential clients may prefer to
re-implement code rather than spend time figuring out how it works, and
worrying about how they will maintain it.

By extension, you should prefer to use the classes provided by Sym-
bian OS, rather than re-implement your own version of, for example, a
string class. As I described in Chapters 5 and 6, the descriptor classes
were carefully designed for memory efficiency. The Symbian OS classes
have been written and maintained by those with expertise in dealing
with restricted memory resources, and the classes have been exten-
sively tried and tested as the OS has evolved. While the experience of
writing your own utility classes and functions is irreplaceable, you get
guaranteed efficiency and memory safety from using those provided by
Symbian OS.

When allocating objects on the heap (and on the stack as described
in the following section), the lifetime of the object is fundamental. On
Symbian OS, programs may run for months and the user may rarely reset
their phone. For this reason, objects should be cleaned up as soon as their
useful lifetime ends – whether normally or because of an error condition.
You should consider the lifetime of temporary objects allocated on the
heap and delete them as soon as they have served their purpose. If
you retain them longer than is necessary, the RAM consumption of the
application may be higher than necessary.

Of course, there’s often a trade-off between memory usage and speed.
For example, you may decide to conserve memory by creating an object

2 The RArray- and CArray-derived container classes take a granularity value on
construction which is used to allocate space for the array in blocks, where the granularity
indicates the number of objects in a block. Your choice of granularity must be considered
carefully because, if you over-estimate the size of a block, the additional memory allocated
will be wasted. For example, if a granularity of 20 is specified, but the array typically
contains only five objects, then the space reserved for 15 objects will be wasted. Of course,
you should also be careful not to under-estimate the granularity required, otherwise frequent
reallocations will be necessary. Chapter 7 discusses the use of the Symbian OS container
classes in more detail.
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only when necessary, and destroying it when you’ve finished with it.
However, if you need to use it more than once, you will reduce speed
efficiency by duplicating the effort of instantiating it. On these occasions,
individual circumstances will dictate whether you use the memory and
cache the object or take the speed hit and create it only when you
need it, destroying it afterwards. There is some middle ground, though:
you may prefer not to instantiate the object until its first use and then
cache it.

Once you have deleted any heap-based object, you should set the
pointer to NULL3 to prevent any attempt to use it or delete it again.
However, you don’t need to do this in destructor code: when member
data is destroyed in a destructor, no code will be able to re-use it because
it drops out of scope when the class instance is deleted.

In the following example, don’t worry too much about the details
of class CSwipeCard or the two security objects it owns, iPassword
and iPIN. However, consider the case where a CSwipeCard object
is stored on the cleanup stack and ChangeSecurityDetailsL() is
called upon it. First the two current authentication objects are deleted,
then a function is called to generate new PIN and password objects.
If this function leaves, the cleanup stack will destroy the CSwipeCard
object. As you can see from the destructor, this will call delete on
iPIN and iPassword – consider what would happen if I had not set
each of these values to NULL. The destructor would call delete on
objects that had already been destroyed, which isn’t a safe thing to do:
the result is undefined, though in debug builds of Symbian OS it will
certainly raise a panic (USER 44). Note that I’ve not set the pointers to
NULL in the destructor – as I mentioned above, at this point the object is
being destroyed, so no further access will be made to those pointers. It’s
safe to call delete on a NULL pointer, so setting the deleted pointer to
NULL after deletion prevents an unnecessary panic if the method which
creates the new PIN and password objects leaves.
ChangeSecurityDetailsL() is also called from ConstructL(),

at which point the iPIN and iPassword pointers are NULL (because
the CBase parent class overloads operator new to zero-fill the object’s
memory on creation, as I described in Chapter 1).

class CPIN;
class CPassword;

class CSwipeCard : public CBase
{

3 As an aside: in debug builds of Symbian OS, when a heap cell is freed, the contents
are set to 0xDE. If you are debugging and spot a pointer to 0xDEDEDEDE, the contents have
been deleted but the pointer has not been NULLed. Any attempt to use this pointer will
result in a panic.
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public:
∼CSwipeCard();
void ChangeSecurityDetailsL();
static CSwipeCard* NewLC(TInt aUserId);

private:
CSwipeCard(TInt aUserId);
void ConstructL();
void MakePasswordAndPINL();

private:
TInt iUserId;
CPIN* iPIN;
CPassword* iPassword;
};

CSwipeCard::CSwipeCard(TInt aUserId)
: iUserId(aUserId) {}

CSwipeCard::∼CSwipeCard()
{
delete iPIN; // No need to NULL the pointers
delete iPassword;
}

CSwipeCard* CSwipeCard::NewLC(TInt aUserId)
{
CSwipeCard* me = new (ELeave) CSwipeCard(aUserId);
CleanupStack::PushL(me);
me->ConstructL();
return (me);
}

void CSwipeCard::ConstructL()
{
ChangeSecurityDetailsL(); // Initializes the object
}

void CSwipeCard::ChangeSecurityDetailsL()
{
// Destroy original authentication object
delete iPIN;
// Zero the pointer to prevent accidental re-use or double deletion
iPIN = NULL;
delete iPassword;
iPassword = NULL;
MakePasswordAndPINL(); // Create a new random PIN and password
}

An alternative, slightly more complex, implementation of Change-
SecurityDetailsL() could create the new PIN and password data in
temporary descriptors before destroying the current iPIN and iPass-
word members. If either allocation fails, the state of the CSwipeCard
object is retained – whereas in the implementation above, if MakePass-
wordAndPINL() leaves, the CSwipeCard object is left in an unini-
tialized state, having no password or PIN values set. The choice of
implementation is usually affected by what is expected to happen if
ChangeSecurityDetailsL() leaves.
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void CSwipeCard::ChangeSecurityDetailsL() // Alternative implementation
{// MakePasswordAndPINL() has been split into two for simplicity
CPIN* tempPIN = MakePINL(); // Create a temporary PIN
CleanupStack::PushL(tempPIN);
CPassword* tempPassword = MakePasswordL();
CleanupStack::PushL(tempPassword);
delete iPIN; // No need to NULL these, nothing can leave
delete iPassword; // before they are reset
iPIN = tempPIN;
iPassword = tempPassword;
CleanupStack::Pop(2, tempPIN); // Owned by this (CSwipeCard) now
}

Finally in this section on memory efficiency, it’s worth mentioning that
you should avoid allocating small objects on the heap. Each allocation
is accompanied by a heap cell header which is four bytes in size, so it’s
clear that allocating a single integer on the heap will waste space, as well
as having an associated cost in terms of speed and heap fragmentation. If
you do need a number of small heap-based objects, it is best to allocate
a single large block of memory and use it to store objects within an array.

Degrade Gracefully – Leave if Memory Allocation Is Unsuccessful

You should code to anticipate low memory or other exceptional condi-
tions. To save you coding a check that each and every heap allocation
you request is successful, Chapter 2 describes the overload of operator
new which leaves if there is insufficient heap memory for the allocation.
Leaves are the preferred method of coping with exceptional conditions
such as low memory on Symbian OS. When a memory failure occurs
and causes your code to leave, you should have a higher level TRAP to
”catch” the failure and handle it gracefully (for example, by freeing some
memory, closing the application, notifying the user, or whatever seems
most appropriate).

Symbian OS runs on limited-resource mobile phones which will, at
times, run out of memory. So you must prepare your code to cope under
these conditions. To help you verify that your code performs safely under
low memory conditions, Symbian OS provides a variety of test tools and
macros that you can use in your own test code to simulate low memory
conditions. I described these in detail in Chapter 17.

Check that Your Code Does not Leak Memory

I’ve already discussed how to prevent memory leaks, but, of course, this
doesn’t mean that they won’t occur. It is important to test your code
regularly to check that it is still leave-safe and that no leaks have been
introduced by maintenance or refactoring. Symbian OS provides macros
and test tools to test the heap integrity and to show up leaks when your
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code unloads. I describe how to use these in Chapter 17. Leaks can be
difficult to track down, so it is far easier to test for them as part of the
regular testing cycle, in order to catch regressions close to the time at
which they are introduced.

21.3 Use Stack Memory Carefully

For a target mobile phone running Symbian OS, the program stack
size defaults to 8 KB,4 and it doesn’t grow when that size is exceeded.
Actually that’s not quite true, because the Symbian OS emulator running
on Windows will extend the program stack if the size exceeds the limit.
Consequently, you may find that your application runs perfectly well on
the emulator, while it overflows the stack on hardware.

So what happens when you outgrow the stack space available? Further
attempts to use the stack will result in access to a memory address that’s
not mapped into the address space for your process. This causes an access
violation that will generate an exception – at which point the kernel will
panic your code with KERN-EXEC 3. In fact, if you try to build code
where any single function tries to allocate automatic variables occupying
more than 4 KB, you will receive an unresolved external __chkstk link
error. However, this only considers static allocation and doesn’t take into
account recursion, variable length looping or anything else that can only
be calculated at runtime.

Both the size of the program stack, which is significantly smaller than
most desktop applications have available, and the fact it does not grow
dynamically, make it important that your stack usage is conservative.

Manage Recursive Code Carefully

Recursive code can use significant amounts of stack memory. To ensure
that your code does not overflow the stack, you should build in a limit to
the depth of recursion, where this is possible. It’s a good idea to minimize

4 For a component running in a separate process, e.g. a server or .exe, you can change
the stack size from the default 8 KB, by adding the following to your. mmp file to specify a
new stack size in hexadecimal or decimal format. For example:
epocstacksize 0x00003000 // 12 KB

Alternatively, you can create a new thread and specify a chosen stack size, as described
in Chapter 10. This is particularly useful if your application makes heavy use of the stack,
say through recursion, and needs more space than the default stack size makes available.

If you do hit the limit, it’s worth considering why your code is using so much stack
space before assigning more, because consumption of extra stack resources leaves less free
for other programs. There are valid reasons why you may need more stack, but you may
alternatively wish to consider modifying the program architecture or employing some of the
tips described here.
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the size of parameters passed into recursive code and to move local
variables outside the code.

Consider the Effect of Settings Data on Object Size
To minimize object size where a class has a large amount of state or
settings data, you may be able to use bitfields to store it rather than
32-bit TBools or enumerations (in fact, this applies equally to stack- and
heap-based classes). A good example of this is the TEntry class which is
part of F32, the filesystem module. A TEntry object represents a single
directory entry on the filesystem, and keeps track of its attributes (such
as whether it is marked read-only or hidden), its name and its size. The
TEntry class is defined in f32file.h – it has a single TUint which
stores the various attributes, each of which is defined in the header file
as follows:

const TUint KEntryAttNormal=0x0000;
const TUint KEntryAttReadOnly=0x0001;
const TUint KEntryAttHidden=0x0002;
const TUint KEntryAttSystem=0x0004;
const TUint KEntryAttVolume=0x0008;
const TUint KEntryAttDir=0x0010;
const TUint KEntryAttArchive=0x0020;
...
class TEntry

{
public:

...
IMPORT_C TBool IsReadOnly() const;
IMPORT_C TBool IsHidden() const;
IMPORT_C TBool IsSystem() const;
IMPORT_C TBool IsDir() const;
IMPORT_C TBool IsArchive() const;

public:
TUint iAtt;
...
};

The iAtt attribute setting is public data, so you can perform your own
checking, although the class also provides a set of functions for retrieving
information about the attributes of the file. These are implemented
something like the following:

TBool TEntry::IsReadOnly() const
{
return(iAtt&KEntryAttReadOnly);
}

TBool TEntry::IsHidden() const
{
return(iAtt&KEntryAttHidden);
}



USE STACK MEMORY CAREFULLY 327

This is all quite straightforward and transparent to client code because
the function returns a boolean value, although it doesn’t store the attribute
as such. As I’ve mentioned previously, you should aim to keep your class
intuitive to use and maintain. While you may be able to shave a few bytes
off the class by using bitfields, you need to consider the impact this may
have on the complexity of your code, and that of your clients.

Use Scoping to Minimize the Lifetime of Automatic Variables
Simple changes to the layout of code can make a significant difference to
the amount of stack used. A common mistake is to declare all the objects
required in a function at the beginning, as was traditional in C code.

Consider the following example, which is flawed because it declares
three large objects on the stack before they are all immediately necessary.

void CMyClass::ConstructL(const TDesC& aDes1, const TDesC& aDes2)
{
TLarge object1;
TLarge object2;
TLarge object3;

object1.SetupL(aDes1);
object2.SetupL(aDes2);
object3 = CombineObjectsL(object1, object2);
iUsefulObject = FinalResultL(object3);
}

If either of the SetupL() functions fails, space will have been allo-
cated and returned to the stack unnecessarily for at least one of the large
objects. More importantly, once object1 and object2 have been com-
bined to generate object3, it is unnecessary for them to persist through
the call to FinalResultL(), which has an unknown stack overhead.
By prolonging the lifetime of these objects, the code is wasting valuable
stack space, which may prevent FinalResultL() from obtaining the
stack space it requires.

A better code layout is as follows, splitting the code into two separate
functions to ensure the stack space is only used as it is required, at the
expense of an extra function call. Note that, because the parameters are
all passed by reference, no additional copy operations are performed to
pass them to the separate function.

void CMyClass::DoSetupAndCombineL(const TDesC& aDes1,
const TDesC& aDes2, TLarge& aObject)

{
TLarge object1;
object1.SetupL(aDes1);
TLarge object2;
object2.SetupL(aDes2);
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aObject = CombineObjectsL(object1, object2);
}

void CMyClass::ConstructL(const TDesC& aDes1, const TDesC& aDes2)
{
TLarge object3;
DoSetupAndCombineL(aDes1, aDes2, object3);
iUsefulObject = FinalResultL(object3);
}

In general, it is preferable to avoid putting large objects on the
stack – where possible you should consider using the heap instead.
If you make large objects member variables of C classes, you can
guarantee that they will always be created on the heap.

21.4 Eliminate Sub-Expressions to Maximize Code
Efficiency

If you know that a particular function returns the same object or value
every time you call it, say in code running in a loop, it is sensible
to consider whether the compiler will be able detect it and make an
appropriate optimization. If you can guarantee that the value will not
change, but cannot be sure that the compiler will not continue to call
the same function or re-evaluate the same expression, it is worth doing
your own sub-expression elimination to generate smaller, faster code.
For example:

void CSupermarketManager::IncreaseFruitPrices(TInt aInflationRate)
{
FruitSection()->UpdateApples(aInflationRate);
FruitSection()->UpdateBananas(aInflationRate);
...
FruitSection()->UpdateMangoes(aInflationRate);
}

In the above example, you may know that FruitSection() returns
the same object for every call made in the function. However, the
compiler may not be able to make that assumption and will generate a
separate call for each, which is wasteful in terms of space and size. The
following is more efficient, because the local variable cannot change and
can thus be kept in a register rather than being evaluated multiple times:

void CSupermarketManager::IncreaseFruitPrices(TInt aInflationRate)
{
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CFruitSection* theFruitSection = FruitSection();
theFruitSection->UpdateApples(aInflationRate);
theFruitSection->UpdateBananas(aInflationRate);
...
theFruitSection->UpdateMangoes(aInflationRate);
}

Consider the following example of inefficient code to access and
manipulate a typical container such as an array. The function adds an
integer value to every positive value in the iContainermember of class
CExample (where iContainer is a pointer to some custom container
class which stores integers).

void CExample::Increment(TInt aValue)
{
for (TInt index=0;index<iContainer->Count();index++)

{
if ((*iContainer)[index]>0)

(*iContainer)[index]+=aValue;
}

}

The compiler cannot assume that iContainer is unchanged during
this function. However, if you are in a position to know that the functions
you are calling on the container will not change it (that is, that Count()
and operator[] do not modify the container object itself), it would
improve code efficiency to take a reference to the container, since this
can be stored in a register and accessed directly.

void CExample::Increment(TInt aValue)
{
CCustomContainer& theContainer = *iContainer;
for (TInt index=0;index<theContainer.Count();index++)

{
if (theContainer[index]>0)

theContainer[index]+=aValue;
}

}

Another improvement in efficiency would be to store a copy of the
number of objects in the container rather than call Count() on each
iteration of the loop. This is not assumed by the compiler, because it
cannot be certain that the number of objects in iContainer is constant
throughout the function. You, the programmer, can know if it is a safe
optimization because you know that you are not adding to or removing
from the array in that function.

(Rather than creating another variable to hold the count, I’ve simply
reversed the for loop so it starts from the last entry in the container. This
has no effect on the program logic in my example, but if you know you
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have to iterate through the contents of the array in a particular order, you
can just create a separate variable to store the count, which is still more
efficient than making multiple calls to retrieve the same value.)

void CExample::Increment(TInt aValue)
{
CCustomContainer& theContainer = *iContainer;
for (TInt index=theContainer.Count();--index>=0;)

{
if (theContainer[index]>0)

theContainer[index]+=aValue;
}

}

In the code that follows, I’ve added another optimization, which
stores the integer value retrieved from the array from the first call to
operator[], rather than making two separate calls to it. This is an
optional enhancement, which probably depends on the percentage of
the array to which the if statement applies. As a general rule, I tend to
store retrieved values if they are used twice or more, when I know they
are constant between uses.

void CExample::Increment(TInt aValue)
{
CCustomContainer& theContainer = *iContainer;
for (TInt index=theContainer.Count();--index>=0;)

{
TInt& val = theContainer[index];
if (val>0)

val+=aValue;
}

}

21.5 Optimize Late

The sections above offer a number of suggestions to improve the style
of your code, concentrating on reducing memory usage and code size
and increasing efficiency. You should bear them in mind, bringing them
naturally into your code ”toolbox” to make your Symbian OS code
more effective.

However, a note of caution: don’t spend undue amounts of time
optimizing code until it is finished and you are sure it works. Of course,
you should always be looking for an optimal solution from the start,
using good design and writing code which implements the design while
being simple to understand and maintain. A typical program spends most
of its time executing only a small portion of its code. Until you have
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identified which sections of the code are worthy of optimization, it is
not worth spending extra effort fine-tuning the code. When you have
profiled your code, you will know what to optimize and can consider the
tips above. Then is the time to take another look at the code and see if
the general rules I’ve mentioned here (minimizing stack usage, releasing
heap memory early and protecting it against leaks, and coding efficiently
when the compiler cannot make assumptions for you) can be applied.

And finally, you may find it useful to look at the assembler listing of
your code. You can generate this using the Symbian OS command line
abld tool, the use of which will be described in detail in your SDK
documentation.
abld listing generates an assembler listing file for the source files

for a project. For a project with a single source file, testfile.cpp,
abld listing winscw udeb creates an assembler listing file (test-
file.lst.WINSCW) for the code in testfile.cpp. You can inspect
this to find out which optimizations have been applied by the compiler,
before coding the optimization yourself. The listing will also give you an
idea of which code idioms are particularly ”expensive” in terms of the
number of instructions required.

21.6 Summary

To program effectively on Symbian OS, your code needs to be robust,
efficient and compact. While many of the rules for writing high quality
C++ are not specific to Symbian OS, this chapter has focused on a few
guidelines which will definitely improve code which must work with
limited memory and processor resources and build with a small footprint
to fit onto a ROM. The chapter reviewed some of the main areas covered
by the Symbian OS coding standards and described the main principles
that developers working on Symbian OS adhere to, namely minimizing
code size, careful memory management for both stack and heap memory
and efficiency optimization.

You can find more advice on writing good C++ in the books listed in
the Bibliography.





Appendix
Code Checklist

The following list is based on the internal Symbian Peer Review Checklist.

Declaration of Classes

• A class should have a clear purpose, design and API.

• An exported API class should have some private reserved declarations
for future backward compatibility purposes.

• The API should provide the appropriate level of encapsulation, i.e.
member data hiding.

• Friendship of a class should be kept to a minimum in order to preserve
encapsulation.

• Polymorphism should be used appropriately and correctly.

• A class should not have exported inline methods.

• A non-derivable class with two-phase construction should make its
constructors and ConstructL() private.

• const should be used where possible and appropriate.

• Overloaded methods should be used in preference to default param-
eters.

• Each C class should inherit from only one other C class and have
CBase as the eventual base class.

• Each T class should have only stack-based member variables.

• Each M class should have no member data.
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Header Files

• Header files should contain ”in-source” documentation of the purpose
of each class.

• The inclusion of other header files should be minimized by using
forward declaration if required.

• Header files should include the correct #ifndef...#define...
#endif directive to prevent multiple inclusion.

• The number of IMPORT_C tags should match the corresponding
EXPORT_C tags in the .cpp file.

Comments

• Comments should match the code.

• Comments should be accurate, relevant, concise and useful.

• Each class should have ”in-source” documentation of its purpose in
header file.

• Each method should have ”in-source” documentation of its purpose,
parameters and return values in the .cpp file.

Constructors

• A CBase-derived class does not need explicit initialization.

• Member data of T and R classes should be explicitly initialized
before use.

• Member data should be initialized in the initializer list as opposed to
the body.

• A C++ constructor should not call a method that may leave.

• Two-phase construction should be used if construction can fail with
anything other than KErrNoMemory.

• NewL() and NewLC() methods should wrap allocation and con-
struction where necessary.
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Destructors

• All heap-allocated member data owned by the class should be
deleted.

• There should be a NULL pointer check before any dereference of a
member pointer.

• Member pointers do not need to be set to NULL after deletion in
the destructor.

• Member pointers deleted outside the destructor should be set to NULL
or immediately re-assigned another value.

• A destructor should not leave.

Allocation and Deletion

• For a new expression, either use new (ELeave), or check the return
value against NULL if leaving is not appropriate.

• For a call to User::Alloc(), either use AllocL(), or check the
return value against NULL if leaving is not appropriate.

• Objects being deleted should not be on the cleanup stack or referenced
by other objects.

• C++ arrays should be de-allocated using the array deletion operator,
delete [] <array>.

• Objects should be de-allocated using delete <object>.

• Other memory should be de-allocated using the method
User::Free (<memory>).

Cleanup Stack and Leave Safety

• If a leaving method is called during an object’s lifetime, then the
object should either be pushed on to the cleanup stack or be held
as a member variable pointer in another class that is itself leave-
safe.
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• An object should not simultaneously be owned by another object and
held on the cleanup stack when a leaving method is called.

• Calls to CleanupStack::PushL() and CleanupStack::Pop()
should be balanced (look out for functions that leave objects on the
cleanup stack, such as NewLC()).

• If possible, use the CleanupStack::Pop() and PopAndDe-
stroy() methods which take pointer parameters, because they
catch an unbalanced cleanup stack quickly.

• Where possible, use CleanupStack::PopAndDestroy() rather
than Pop() followed by delete or Close().

• Local R objects should be put on the cleanup stack using Cleanup-
ClosePushL(), usually after the object has been ”opened”.

• Errors caught by a TRAP harness that are ignored must be clearly
commented and explained.

• The code within a TRAP harness should be able to leave.

• Error processing after a TRAP that ends with an unconditional
User::Leave() with the same error code should be re-coded
using the cleanup stack.

• Use the LeaveScan tool to check source code for functions that can
leave but have no trailing L.

Loops and Program Flow Control

• All loops should terminate for all possible inputs.

• The bracing should be correct on if. . .else statements.

• Optimize loops by using the clearest type (do. . .while or while) in
each case.

• There should be a break statement for each case of a switch
statement – or a comment if a flow-through to the next case statement
is meant.

• A switch statement shouldn’t contain case statements that return
from the function unless every case in that switch statement con-
tains a return.

• A switch statement should be used to indicate state control. Each
case statement should contain only a small amount of code; large
chunks of code should be moved into separate functions to maintain
the readability of the switch statement.
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• There should be a default in every switch statement.

• Flow control statements should be used rather than extra boolean
variables to manage program flow.

Program Logic

• Stack usage should be reasonable, i.e. don’t store large objects on
the stack.

• Errors should propagate properly and not be changed or remapped to
e.g. KErrGeneral.

• Pointers should be manipulated and accessed correctly, i.e. check for
invalid address access, pointer overflow, etc.

• Bitmasks should be used properly (& to read, | to set, ∼ to reset).

• Unexpected events and inputs should be handled gracefully, i.e. use
error returns, leaves or panics appropriately.

• Hard-coded ”magic” values should not be used.

• Logging statements should be informative and in useful places.

• Code should be efficient, e.g. do not copy things unnecessarily, do
not create too many temporaries, do not use inefficient algorithms.

• Casts should be in C++ style such as static_cast, reinter-
pret_cast or const_cast rather than in C style.

• A cast should only be used where absolutely necessary and should be
the correct type for the expression.

Descriptors

• Descriptor character size should be correct, i.e. 8 bits for binary data
and ASCII-like text; 16 bits for explicitly Unicode text; no suffix for
normal text.

• _L should not be used for literal data: use _LIT instead (except for
test code, etc.).

• Assignment to TPtr or TPtrC does not redirect the pointer; Set()
is required for that purpose.

• HBufC::Des() and TBufC::Des() are not required to use the
object as an unwritable descriptor.
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• HBufC::Des() and TBufC::Des() are not required for assign-
ment: these classes define assignment operators.

• Use AppendNum() or Num() to format a number instead of
TDes::AppendFormat() or Format().

• Use Append() instead of TDes::AppendFormat() or Format()
to concatenate strings.

• Arguments toTDes::AppendFormat()orFormat() should match
the format of the string and the descriptor must be passed by pointer.

• Use descriptor functions such as Find() and Locate() rather than
re-implementing this functionality.

• Iterating over a descriptor using operator[] is expensive; con-
sider using C++ pointer arithmetic and the TDesC::Ptr() func-
tion instead.

• Descriptors passed to asynchronous operations should persist until
the operation completes, e.g. do not use a stack-allocated descriptor.

Containers

• The least-derived type of container should be used in declarations.

• The initial size and granularity of the container should be appropriate.

• All owned objects in the container should be destroyed (or ownership
passed) before the container is destroyed.

• The appropriate container for the purpose should be used.

• Thin templates should be used for any templated code.
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Term Definition Chapter

active object Responsible for issuing requests to
asynchronous service providers and
handling those requests on completion.
Derives from CActive.

8, 9

active scheduler Responsible for scheduling events to the
active objects in an event-handling program.

8, 9

asynchronous
service provider

A system, component or class, which
provides a service asynchronously, typically
to an active object. Asynchronous requests
are indicated by function calls with a
TRequestStatus reference parameter.

8, 9

backward
compatibility

Updating a component in such a way that
client code which used the original version
can continue to work with the updated
version. See also forward compatibility.

18

binary
compatibility

Modifying a library in such a way that code
which linked against the previous version
can continue to run with the new version
without needing recompilation.

18

C function In the context of Symbian OS, this refers to a
function with a trailing C in its name, e.g.
NewLC(). If successful, this type of function
leaves one or more objects on the cleanup
stack when it returns.

3
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chunk A unit of memory allocation, where a linear
region of RAM is mapped into contiguous
logical addresses.

13

clanger The Clangers are a race of highly-civilized,
small, bright pink, long-nosed,
mouse-shaped persons who stand upright
on big flappy feet (see www.clangers.co.uk
for more information).

throughout

cleanup stack Takes responsibility for cleaning up the
objects pushed onto it if a leave
occurs.

3

client interface
function

A member function in a client-side session
(or subsession) class that sends a specific
message request to a server, identified by an
opcode.

11, 12

context switch A switch in execution between one thread
or process and another. This involves saving
the context of the currently executing thread
or process (i.e. its address space mappings)
and restoring the context of the newly
executing thread or process.

10, 11, 12

descriptor A string, so-called because it is
self-describing. All descriptor classes derive
from TDesC, which describes an area of
memory used as either a string or binary
data.

4, 5

descriptorize To marshal a flat data object, typically a
struct or T class, into a descriptor for
inter-thread data transfer.

6, 11, 12

DLL (dynamic
link library)

Dynamic link libraries contain functions
that are linked and stored separately from
the programs that use them.

13

DLL export table An area in the DLL which lists the DLL
addresses of exported items. On Symbian
OS, these items are indexed by
ordinal.

13

E32 Collective term for the base components of
Symbian OS.

ECOM A generic framework in Symbian OS from
v7.0 for use with plug-in modules.

14
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emulator An implementation of Symbian OS hosted
on a PC running Microsoft Windows.
Compare with target hardware.

13

entry point A function called when a DLL is loaded or
attached by a thread or process. In Symbian
OS, the function E32Dll() is usually
coded as the entry point.

13

EPOC, EPOC32 Earlier names for Symbian OS. Rumors that
this stood for ‘Electronic Piece of Cheese’
are unconfirmed.

exec call A call to the kernel via a software interrupt
(see this useful paper by John Pagonis for
more details www.symbian.com/developer/
techlib/papers/userland/userland.pdf)

10

F32 Collective term for the components making
up the Symbian OS file server.

FEP (Front-End
Processor)

Allows the input of characters by a user, for
example, by handwriting recognition or
voice, and converts the input transparently
into text.

13

file server The server thread that mediates all file
system operations. All application programs
that use files are clients of this thread.

11

flat buffer A dynamic buffer using flat storage, i.e. a
single segment of memory (see also
segmented buffer).

7

forward
compatibility

Updating a component in such a way that
code which works with the new version also
works with the original version. See also
backward compatibility.

18

framework A component that allows its functionality to
be extended by plug-in modules, sometimes
known as framework extensions. The
framework loads the extensions as required
at runtime.

13, 14

framework
extension

Provides plug-in functionality to a
framework, typically by implementing
interfaces defined by that framework. On
Symbian OS, a framework extension is
implemented as a polymorphic DLL.

14



342 GLOSSARY

Term Definition Chapter

freeze The process of fixing the association
between name and ordinal, for functions
exported from a DLL. It is a colloquial
reference to a .def file (see module
definition file).

13

import library
(.lib)

A static library that an application program
uses at link time to resolve references to
symbols defined in a corresponding DLL.
Information from this library concerning the
location of export functions in the DLL is
included in the application’s executable
file.

13

IPC
(Inter-Process
Communication)

Used by clients to communicate with
out-of-process servers on Symbian OS.

11, 12

just-in-time (JIT) Just-in-time debugging is used to attach a
debugger to a process at the point at which
it is about to terminate.

15

kernel The core of the operating system. It manages
memory, loads processes and libraries and
schedules threads for execution.

10

L function A function with a trailing L in its name, e.g.
NewL(), which indicates that it may leave.

2

leave Symbian OS exception handling. A function
leaves when User::Leave()is called. It
causes a return to the current trap harness.

2

mixin An interface class for ”mixing in” with
primary base classes, and the only form of
multiple inheritance encouraged on
Symbian OS.

1

module
definition file
(.def)

A file that specifies an ordinal value for each
named function or data item to be exported
from a DLL. It is used to insert ordinal
information into the DLL export table,
allowing exports to be accessed by ordinal
from clients of the DLL.

13, 18

null thread The lowest-priority thread in the system,
belonging to the kernel. It only runs when
there is no higher priority thread to run and
usually puts the phone into power-saving
mode.

10
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OOM
(out-of-memory)

An error caused when the available RAM
has been exhausted, preventing further heap
allocation.

throughout

panic A run-time exception on Symbian OS that
terminates the current thread. Panics tend to
be caused when assertion statements
fail.

15, 16

plug-in A polymorphic interface DLL used to extend
a framework application.

13, 14

polymorphic
DLL

A DLL that provides plug-in functionality to
another program by implementing a defined
interface. These are typically known as
plug-ins and are loaded dynamically by
another program (usually a framework)
using RLibrary::Load(). Compare with
shared library.

13, 14

process The unit of memory protection on Symbian
OS. One user process may not access
another’s memory. A process may contain
one or more threads.

10

recognizer A plug-in that examines data from a file and
returns its data (MIME) type, if recognized.

13

request
semaphore

A semaphore associated with a thread,
which is used to indicate the completion of
an asynchronous request.

8, 9

request status An object that indicates the completion
status of a request, represented by
TRequestStatus.

8, 9

ROM Read-Only Memory. This is permanent
memory that can be read but not (easily)
written to. It holds code and data that must
persist when the phone is switched off. On
Symbian OS, it is usually identified as the Z:
drive.

13

SDK Software Development Kit.

segmented
buffer

A dynamic buffer using segmented storage,
which consists of a doubly-linked list of
segments. Segments are added when the
buffer needs to expand and removed when
it is compressed. See also flat buffer.

7
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server call A call to the kernel in which the kernel
server thread runs on behalf of the user
program. See this useful paper by John
Pagonis for more information
www.symbian.com/developer/techlib/
papers/userland/userland.pdf

11, 12

session The channel of communication between a
client and a server.

11, 12

shared library A library that is loaded by the DLL loader
when an executable that links to it is
loaded. Compare with polymorphic
DLL.

13

static library Other executable code may link to this
library to resolve references to exported
functions. Builds with a .lib
extension.

13

target hardware A phone handset running Symbian OS
(compare with emulator)

10, 13

thin template An idiom used to minimize code bloat from
the use of standard C++ templates.

19

thread-local
storage (TLS)

A machine word of memory that may be
used to anchor information in the context of
a DLL or a thread. Used instead of writable
static data, which is not supported for
Symbian OS DLLs.

13

TRAP, TRAPD Trap harness macros within which
leaving code may be executed and any
leaves ”caught”. Can be likened to a
combination of try and catch in standard
C++.

2

two-phase
construction

An idiom used on Symbian OS to ensure
that an object can be initialized safely using
leaving code.

4

UID (unique
identifier)

A unique 32-bit number used in a
compound identifier to identify an object,
file type, etc. When users refer to ”UID”
they often mean UID3, the identifier for a
particular program.

13

UID type A set of three UIDs that, in combination,
identify a Symbian OS object.

13
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UID1 The first UID in a compound identifier (UID
type). It identifies the general type of a
Symbian OS object and can be thought of as
a system-level identifier; for example
executables, DLLs and file stores are all
distinguished by UID1.

13

UID2 The second UID in a compound identifier
(UID type). It is used to distinguish within a
type (e.g. between types of DLL) and can be
thought of as an interface identifier. For
example, static interface and polymorphic
interface DLLs are distinguished by UID2.

13

UID3 The third UID in a compound identifier
(UID type). It identifies a particular subtype
and can be thought of as a project identifier
(for example, UID3 may be shared by all
objects belonging to a given program,
including library DLLs, framework DLLs,
and all documents).

13

Unicode A 16-bit character set that is used to assign
unique character codes for a wide range of
languages.

5, 6
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