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Preface 

When I first got involved in test engineering in the 1970s, boards were, by 
today's standards, simple. They contained, on average, a few thousand logic 
gates in the form of small- and medium-scale integration components. 
Testing was done by applying signals at the board's functional connector and 
by examining the board's response. 

Of course, board complexities increased. Soon, it was recognized that 
functional (from the edge) testing was too costly — it was expensive to 
develop test programs and these were relatively inefficient at locating 
common manufacturing faults, such as open and short circuits. The in-circuit 
tester was introduced as a solution to these problems. It allowed test 
generation costs to be significantly reduced and, by virtue of its connection 
to every chip-to-chip interconnection on the board, allowed rapid diagnosis 
of the most common manufacturing-induced faults. 

During the 1980s, the in-circuit tester became the principal type of 
test system used for testing loaded boards. Initially, some were concerned 
that the backdriving technique used by these testers might cause damage or 
reliability degradation to components on the boards. In response, techniques 
were developed to control the way that in-circuit tests were applied — 
ensuring that the chance of damage was minimized. In essence, these 
techniques required careful sequencing of the tests applied to the board, 
allowing a recovery period following backdriving of a particular IC, and 
imposition of a maximum time. limit for each test, calculated according to 
the characteristics of the components adjacent to that under test. 

v 
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Unfortunately, technology doesn't stand still. Board complexities 
continued to increase during the 1980s, fuelled by advancing integrated 
circuit technology and by the move towards the use of smaller surface-
mount packages. This caused three problems for the in-circuit tester: 

O First, test times for individual components increased and began to 
exceed the time limit imposed to avoid the possibility of damage 
during backdriving. Tests had to be shortened, with the result that 
they were less comprehensive than before. 

G Second, the pin-to-pin spacing for surface-mount packages is less 
than the 0.1" of dual-in-line ICs. The spacing between in-circuit test 
probes had to be reduced to allow connections into and out of these 
ICs to be accessed. Unfortunately, however, probes become less 
robust and less reliable as their size reduces. 

Towards the end of the 1980s, these problems were becoming acute in 
certain sectors of the electronics industry. An industry pressure group (the 
Joint Test Action Group — JTAG) was formed to develop and promulgate a 
change of approach — from in-circuit testing to a technique more suited to 
highly-complex, miniaturized loaded board designs, JTAG and, 
subsequently, the IEEE drafted a standard for the design of integrated 
circuits that would ensure that chips would be able to assist in the task of 
testing the loaded board. This standard — ANSI/IEEE Std 1149.1, Standard 
Test Access Port and Boundary-Scan Architecture — is now supported by 
several leading IC vendors and test equipment companies and is set to 
provide the basis of board testing through the 1990s. 

While these changes have helped to control the cost of testing (which 
would otherwise have risen much more rapidly as board complexity 
increased), it is clear that testing has become an expensive part of the total 
cost of developing, manufacturing, and (in particular) supporting electronic 
systems. As a result, design-for-test has become an essential aspect of the 
designer's task — those who ignore it do so at their peril. 

The objective of this book is to present design-for-test in a manner 
that matches the way that a board is designed — starting with top-level 
block design and progressing through component selection and circuit design 
to board layout. The design-for-test requirements that should be considered 
at each stage are, wherever possible, grouped into a single chapter. An 
explanation is provided for each requirement so that the designer can 
understand why the feature is needed and what the consequences of ignoring 
the requirement might be. Finally, a set of checklists is provided to help 
assess the testability of each completed design — again, stage by stage. 

As you will see, design-for-test is not difficult. The various 
requirements are easy to understand and to implement. If implemented, the 
various design-for-test features will significantly reduce the cost of testing 
the finished board design. So why not give it a try? 
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CHAPTER 1. 

Introduction to 
Testing and 
Testability 

1.1 Introduction 1.4 Test application 
1.2 Basics 1-5 Fault diagnosis 
1.3 Test generation 1.6 Design-for-test 

References 

1.1. Introduction 

A combination of two factors — greater competition and the wider use of 
'information technology' — is bringing about a rapid growth in the variety of 
electronic products available to the consumer. Also evident is the increasing 
complexity of these products, made possible through the combination of 
low-cost state of the art integrated circuit technology and advanced 
manufacturing techniques. 

To compete successfully in such an environment, companies need to 
bring new products from the drawing board to the marketplace as quickly 
(and as cheaply) as possible, and to encourage their suppliers to do the same. 
The costly and time-consuming 'production engineering' phases that have 
traditionally followed initial design must now be avoided, with the 
consequence that the responsibility for production engineering tasks is 
increasingly placed on the designer. The areas of design covered by these 

3 
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tasks do, however, contribute significantly to the product's commercial 
viability and it is therefore important that they continue to be considered 
carefully. 

One such design area is 'design-for-testability' which stems from the 
need to make the process of testing the product, both following production 
and during repair, as cost-effective as possible. The purpose of this chapter 
is to explain why design-for-testability (and hence this book) is needed 
through a discussion of test technology and the problems of test generation, 
test application and fault diagnosis. 

1.2. Basics 

1.2.1. Types of testing 

Testing is performed at a number of stages in the development of a product 
and for a variety of purposes. Perhaps the most important of these types of 
testing are: 

(1) Design Verification Testing. Carried out to ensure that the design 
adequately performs the function which is expected of it. This stage 
of testing is most often performed using bench-top instrumentation 
(oscilloscopes, logic analysers, etc.), although in the case of more 
complex designs programmable test systems may be used. 

(2) Production Testing. Performed to locate any defects which might 
exist in each copy of a design once it has been manufactured. 
Typically, this stage of testing will be done using a programmable 
automated test equipment (ATE), which for assembled printed 
circuit boards may cost $1,000,000 or more. The principal types of 
ATE are described in Section 1.4.1. 

(3) Repair Testing. Performed when a product fails during use. The aim 
is to isolate the cause of failure sufficiently to allow it to be repaired. 
Once again, this may be accomplished using ATE. 

(4) Self-testing. An example of self-test is the routining of telephone 
exchanges, computers, or military equipment during idle periods, 
performed to locate faults before they cause failure in use. Self-test 
procedures are also provided for other reasons, for example to reduce 
the costs of performing on-site repair. They are particularly suitable 
for use in equipment that is to be installed in a customer's premises 
(for example, office equipment or telephone switches) since they 
allow the customer to check which piece of equipment is at fault 
before asking for repair. 
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This book is directed at all stages of testing a product during its life and at 
ways in which products can be designed to make test tasks easier. 

1.2.2. Test activities 

There are three stages of activity involved in the testing of a product. 

(1) Test Development. Firstly, a test for the product must be developed, 
and demonstrated to be sufficiently good at detecting and locating 
faults. We will look at one typical method for achieving this in 
Section 1.3. 

(2) Test Application. Secondly, once the test has been developed, it will 
be applied to units as they leave the production line, or as they arrive 
for repair, using the available ATE. After this stage units will have 
been marked faulty or fault-free. Types of ATE, and other aspects of 
test application, are considered in Section 1.4. 

(3) Diagnosis. Finally, if a unit is found faulty, the ATE will be used to 
produce a diagnosis of the cause of failure, for example a failed 
component. In this way, a repair can be effected, the success of 
which will be determined by re-testing the unit. Ways in which 
automated diagnosis is accomplished are discussed in Section 1.5. 

1.2.3. What is testability? 

Since cost is an important factor in any commercial environment, it should 
not be surprising that the overall cost of performing testing activities 
discussed in Section 1.2.2 is one measure of the product's testability. The 
higher the cost of each activity, the lower the product's testability. 

Cost is, however, not the only factor which determines testability, 
and for the purpose of this discussion two other factors will be considered. 

Firstly, the time taken to perform the various test tasks is important, 
and cannot always be measured through the costs of labour, etc. In some 
cases, for example when deadlines have to be met, time may actually be 
more important than cost. In these cases, the most significant impact of 
reduced testability may be lengthened test development timescales. Figure 
1.1 (Reinerstein, 1983) shows the importance of time-to-market in high-
growth markets where product life cycles are relatively short. It can be seen 
that a loss of up to 33% of profits may occur if a product is six months late 
on to the market. 

Secondly, there is the adverse effect that reduced testability can have 
on the quality of the product. Ideally, a test program should be able to detect 
lOOfo of the faults that might occur in the product; if this were the case, then 
the quality of the product could be guaranteed. Inevitably, the test will be 
less than perfect (as will be discussed later) and so some faults will escape 
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Figure 1.2 Defect level as a function of process yield and fault coverage. 

Figure 1.1 Profit loss through exceeded budgets. 



detection, the number depending on the difficulty of testing the product — 
its 'untestability'. 

Figure 1.2 (Williams and Brown, 1981) shows how three factors — 
process yield (that is, the fraction of products manufactured fault-free), fault 
coverage (test performance), and shipped defect level (quality) — are 
related. It is clear that high-performance tests are required if the quality of 
shipped products is to be acceptable, particularly when the yield of the 
production process is low. 

The possibility that units passed as fault-free by the test might 
actually contain faults will, of course, appear as a reduction in quality when 
the product reaches the consumer. Frequently, therefore, a business's 
reputation can be damaged if product testability is inadequate. 

1.2.4. Why is testability important? 

Figure 1.3 gives some idea of the way in which test costs in the 
semiconductor industry have risen with each advance in integrated circuit 
technology. 

For a very-large-scale-integration (VLSI) integrated circuit, the 
development of an adequate test program can account for a major part of the 
overall cost of bringing the chip into production. Chip manufacturers are 
increasingly resorting to rigid 'design-for-testability' procedures as a means 
of reducing this expenditure. Indeed, the indications are that it will be 
impossible for chips as complex as those now starting to come onto the 
market to be produced economically unless such design procedures are used. 
To give a rough idea of costs, a VLSI chip may require 24 man-months or 
more of effort solely in test development — say, at a cost of $200,000. 

> 

Figure 1.3 Test cost trends. 
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Obviously, chips of this complexity are a major cause of testability 
problems in the systems into which they are assembled. Not surprisingly, 
therefore, the costs of testing for circuit cards and systems are also 
increasing rapidly. 

This raises another point: the need for the designer not only to design 
his product to be testable in its own right but also to ensure that it does not 
contribute to poor testability when it is assembled into other products. 
Testable chips can easily be assembled into untestable systems! As one test 
engineer put it in 1979: 

'LSI technology has brought the design of truly untestable circuits 
within the reach of everyone!' 

A further motivation for high testability comes from the 'Rule of 
10s'. This empircal rule, which is widely accepted by the test engineering 
community, relates the cost of testing for a fault at various stages in product 
assembly. For example, assume that there is a single fault present in a newly 
manufactured integrated circuit and that the cost of testing the chip is $C. If 
the fault is detected by the chip test, the cost is %C. 

If the fault is not detected by the chip test, then the faulty integrated 
circuit (IC) will be assembled into a loaded board. The Rule of 10s predicts 
that the cost of finding the fault while testing the board and then effecting a 
repair is $10 x C. 

Of course, if the quality of the test program is insufficient (due to 
poor testability), the fault may not be detected by the loaded board test. In 
this case, the faulty board will be inserted in a system. The Rule of 10s 
predicts that the cost of finding the fault during the system test and then 
effecting a repair will be $100 x C. 

Finally, if the fault escapes detection during system test, a faulty 
system will be shipped to a customer. Customers always find faults that have 
not been detected by the manufacturer! The Rule of 10s predicts that the cost 
of correcting the fault once the system has been installed in the field will be 
$1000 x C. 

1.3. Test generation 

1.3.1. Fault models 

Before starting to develop a test for a logic circuit we need to know precisely 
what the objectives of the test are in terms of the faults it should be able to 
detect. 

Ideally, we would like the test to be able to detect all failures which 
might occur. However, if each of the failure modes of each transistor, 
resistor, etc. in the circuit is considered, together with the possibility of 
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unwanted connections between each pair of signals, it becomes apparent that 
the number of different failures that could potentially occur (many of them 
are extremely unlikely!) is very large, even for a fairly small circuit. For 
larger circuits the number of possible failures would very rapidly become 
prohibitive. 

To produce a manageable objective for the test it is common to work 
in terms of a small range of fault models, each of which covers a range of 
failure modes. These fault models represent the effects (rather than the 
causes) of the malfunction and are significantly easier to comprehend. The 
more common of these fault models are illustrated in Figure 1.4 and 
described below. 

Stuck-at 0 Bridging 

Open circuit Timing 

Figure 1.4 Simple fault models. 

The 'stuck-at* fault model 

The 'stuck-at' fault model was originally proposed in 1959 when the 
dominant logic technologies were resistor transistor logic (RTL) and diode 
transistor logic (DTL) (Eldred, 1959). 

In these technologies, almost all failures of circuit components result 
in one or more circuit connections becoming stuck at one or other of the two 
logic values (0 or 1) and these failures could therefore be said to result in 
nodes becoming 'stuck-at 0' (s-a-0) or 'stuck-at 1' (s-a-l). 

Despite the fact that integrated circuit technology has advanced 
considerably 'stuck-at' models are still used widely today. This is because of 
two factors. Firstly, the models are extremely easy to introduce into circuit 
simulations — they merely result in nodes being permanently assigned the 
appropriate logic value. This means that it is relatively easy to ensure that 
the test is good at detecting stuck-at faults. Secondly, experience has shown 
that tests which are effective at detecting stuck-at faults are effective at 
detecting the types of failure more representative of modern technology — 
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for example failures in metal oxide semiconductor (MOS) integrated 
circuits and random-access memories (RAMs). 

The 'open circuit* fault model 

Open circuit failures in transistor transistor logic (TTL) are equivalent to 
the stuck-at fault models, since most undriven TTL device inputs will 'float' 
to a logic 1 state. For this reason, open circuit failures may not be considered 
separately for TTL-compatible circuits. 

In MOS technologies, however, the same assumption cannot be made 
since 'floating' inputs behave in considerably different ways. The use of 
specific models for open circuit failures during integrated circuit test 
development is therefore increasing. 

The bridging fault model 

An extremely common production defect, both for integrated circuits and for 
circuit boards, is for two nodes to become shorted together. Such a defect is 
termed a bridging fault, since in circuit board production it is the result of 
accidental bridging connections being inserted by solder splashes. In 
integrated circuits the same defect is caused by the failure of insulation 
between areas of silicon, conductors, and so on. Obviously, many potential 
bridging faults are unlikely to occur since the relevant connections are too 
widely spaced. For this reason only specific sets of bridging faults are 
simulated. Common examples are those between adjacent pins on a device 
or between adjacent PWB tracks since these are most likely to be shorted by 
extraneous solder. 

Note that it is important to model the result of the short-circuit fault 
correctly. For some faults, the outcome will be the wire-OR combination of 
the signals that drive the shorted tracks, while for others the outcome may be 
the wire-AND or an indeterminate voltage level. 

The timing fault model 

Fortunately by avoiding the use of asynchronous circuits (which is good 
design practice anyway) the likelihood of drifts in the timing behaviour of 
devices causing the failure of a circuit can be made extremely small. 
However, in circuits where accurate timings are required for successful 
operation, the possibility of such timing drifts must be considered and this is 
done using the timing fault model. In this model, the possibility of increased 
or decreased propagation delays through a device can be represented. 

1.3.2. Developing a test 

The most common method of developing a test for a logic circuit combines 
the intelligence of the human-bejng (the designer or a specialist test 
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programmer) with the computational ability of the computer. The test 
programmer defines a sequence of inputs to be applied to the circuit and the 
corresponding outputs. The computer runs a program called a fault simulator 
which takes descriptions of the circuit and test waveform, together with a list 
of the faults to be considered and returns an accurate assessment of the test's 
performance (amongst other information — see Section 1.3.3). 

Ways of quantifying test performance and the use of fault simulators 
are considered in more detail in the following section; here the task of the 
test programmer in defining the test waveform is considered. First, however, 
it must be mentioned briefly that computer programs do exist which can 
automate this task for certain, relatively simple, types of circuit or for 
circuits designed using highly structured design methods which will 
guarantee successful automatic test pattern generation. An example of a 
design methodology that guarantees fully automatic test generation is scan 
design, which is discussed in detail by Bennetts (1984). Until recently, these 
structured design methods have only been able to be used for integrated 
circuit design. The publication of ANSI/IEEE Std 1149.1 has, however, 
allowed similar techniques to be used at the board level for products 
constructed from compliant components (see Chapter 3). 

How then does the test programmer set about producing a test for a 
given circuit? Probably there are about as many answers to that question as 
there are test programmers, so the approach described here — the so-called 
'functional1 approach — should only be thought of as an example. 

The aim of the functional approach is to attempt to get each of the 
identifiable functional blocks in the circuit — for example, the more 
complex integrated circuit packages on a printed circuit board — to perform 
its intended function, and to allow this to be observed at the circuit's normal 
operating outputs. For example, counters in the circuit will be made to 
count, shift registers to shift, and so on. 

This task is not, unfortunately, as easy as it might appear. If we 
consider the device-under-test (DUT) shown in Figure 1.5, which we will 
assume to be embedded in the circuit, there are two tasks that must be 
accomplished. 

Firstly, some sequence of values must be applied to the DUT inputs 
to stimulate it into performing its function. If we consider the DUT to be a 
counter, then it must be supplied with clock signals and appropriate enables, 
etc. All these signal values will need to be derived by changing the circuit's 
'primary' inputs — the points to which the tester will have access — and 
propagating the changes through other devices in the region 'A'. Propagation 
of the changes may be extremely difficult, since the connections between the 
devices in region 'A' may be such as to cause the required values to be 
destroyed before they arrive at the DUT. 

Secondly, to complete the test of the DUT, its response must be 
made observable to the tester; that is changes at its outputs must be 
propagated through devices in region 'B' to the circuit's 'primary' outputs. 
Again, this will not. necessarily be as easy as it might appear, since conflicts 
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Figure 1.5 The functional test development approach. 

may occur on the way. There is the additional problem that the values which 
have to be set on the devices in region 'B' to allow the DUT's response to be 
made visible have to be set by applying changes at the circuit's primary 
inputs, giving rise to the possibility that conflicts may occur between the 
inputs needed to cause the DUT to operate and those needed to make its 
operation apparent at the circuit's primary outputs. 

To summarize, the two tasks involved are, firstly, control of the DUT 
inputs and, secondly, observation of the DUT outputs, both of which must 
be accomplished through the normal circuit connections. The ease of 
accomplishing these tasks is referred to as the controllability and 
observability of the connections and devices in the circuit. These 
parameters will be mentioned again in the chapters which discuss methods of 
designing circuits to be more easily testable. 

1.3.3. Evaluating test performance 

To determine if the performance of the test is sufficient, we need to be able 
to determine if it detects the target faults for the circuit. This is normally 
done using a fault simulator which introduces each fault into a simulation of 
the circuit's behaviour. If the fault causes a change that could be observed by 
the ATE, then it is deemed detected. 

Fault coverage 

The measure of test performance is its fault coverage. Fault coverage is 
expressed as the percentage of modelled faults which the test has been 
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shown to detect. Commonly, organizations will set a target of 95% of all 
stuck-at faults (plus selected open-circuit and bridging faults) below which a 
test program is unacceptable, although a figure much closer to 100% is 
desirable. The reasons for accepting a lower figure include: 

G Certain faults, such as s-a-1 on a connection which is normally tied 
to logic 1, cannot be detected since they do not change the logical 
behaviour of the circuit. Such faults may, however, degrade the 
performance of the circuit — for example, through changes in noise 
immunity, power dissipation, and so on. 

d Poor testability may make it very difficult for tests to be produced 
for some faults within the budget (time and cost) set for the work. 

For a figure for the fault coverage of a test to be useful, the set of faults to 
which the figure relates must be defined. To yield an effective test, the target 
fault set should include all single stuck-at faults, open-circuit faults, and 
bridging faults between adjacent pins or tracks. 

High fault coverage (as close to 100% as possible) is essential, since 
faults that the test does not detect may lead to reliability problems when the 
circuits are installed in working systems, with a consequent loss of the 
company's reputation for quality (see also Section 1.2.3). Many companies 
set a minimum acceptable fault coverage of 95%, with the target fault set 
being all single stuck-at-0 and stuck-at-l faults. 

Fault simulation 

As was mentioned briefly before, a fault simulator is a complex computer 
program used to predict the fault coverage of a test program. It requires 
three principal computer readable inputs (Figure 1.6): 

• a description of the circuit diagram (often called a netlist) 
• a specification of the test waveform 
d a list of target faults 

Once these inputs have been prepared, the simulator can be run and a 
set of results obtained. Typically, the results will include a list of the faults 
detected by the test, those not detected, and data to help in locating the 
source of any fault (for example, a diagnostic dictionary and data for guided 
probing — see Section 1.5). This process can be extremely expensive and 
must be carefully planned. For example, fault simulation run times for large, 
complex circuits are usually measured in central-processor-unit- (cpu-) days, 
even when using highly-tuned simulation algorithms running on high-
performance computers. 
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Figure 1.6 The fault simulator. 

If the simulation shows that there are faults remaining to be detected, 
then the test programmer will enhance his test program to attempt to test for 
them. This cycle — test definition, fault simulation, test definition, etc. — 
may have to be repeated several times until the performance of the test 
becomes adequate (Figure 1.7). 

1.4. Test application 

1.4.1. Automatic test equipment 

The automated test systems used for production and maintenance testing 
come in several varieties. 

Integrated circuit testers 

Integrated circuit testers can be found both on a semiconductor production 
line, checking the quality of components as they are manufactured and 
packaged, or in the incoming goods department of a systems company, 
where they screen components before they are assembled into hybrids, 
boards, and so on. 

As integrated circuit complexities and operating speeds have 
increased, general purpose IC testers have become extremely expensive — 
with costs in excess of $1M being commonplace. Less sophisticated or less 
generally applicable types of IC tester are available, for example to test 
prototype IC designs or to test particular types of device (for example, 
RAMs). These systems can be significantly cheaper, but the performance 
and range of possible measurements may be limited. 
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Figure 1.7 The test development process. 

Bare-board testers 

Bare-board and backplane testers serve an important function in the 
production of electronic systems. Perhaps the simplest type of tester, they 
are used to check the integrity of wiring contained on printed circuit boards, 
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or in backplanes or wiring harnesses. The objectives are to confirm that all 
wanted connections are present, and that no unwanted connections exist. 

The tester design is very simple since it has only to allow for 
resistance measurements to be performed between pairs of contact pins. 
However, the number of connections can be vast — for example, testers are 
available that allow simultaneous contact to up to 15,000 points. 

In-circuit board testers 

The advantages of the bed-of-nails — an array of pins on to which the 
product is placed during testing that gives access to many internal 
connections simultaneously — are exploited to the full by the in-circuit 
board tester. The idea is to provide direct access from the tester to each 
connection of each component in the circuit and to use these connections to 
test for the correct operation of each component in isolation, and of the links 
between them. The assumption is that the majority of the faults that are 
likely to be introduced during production can be detected in this way. The 
benefit is that test development costs are low, since tests for a device type 
can be reused on other products containing the device. 

While this type of tester has become increasingly popular in recent 
years, primarily because the development of test programs for it is relatively 
inexpensive, it is important to note two points. Firstly, the tests which in-
circuit testers apply cannot detect certain faults that can arise through 
incorrect interaction between components. Secondly, the question of whether 
the technique may actually damage the components being tested remains 
unresolved. The problem is that, in order to apply a test to the inputs of one 
component, the outputs of others will have to be overdriven if they are not in 
the required logic state. The overdriving process causes a significant amount 
of current to flow into the output stages of the devices driving the network, 
which may cause damage if not carefully controlled. 

The small example circuit, in Figure 1.8 will be used to illustrate the 
overdriving process. During the test of component G3, components Gl and 
G2 are powered up and, as a result of signals at their inputs, would normally 
be driving wires Nl and N2 to 1 and 0 respectively. To test G3 wires Nl and 
N2 must be set to both 0 and 1 as shown and the ATE does this through the 
bed-of-nails by supplying sufficient current to force the wires to the required 
test values, irrespective of the values being driven by Gl and G2. During 
overdriving the current supplied by the ATE flows mainly through the 
output stages of Gl and G2 and, if testing continues for sufficient time, this 
may cause damage. The facility to place a component's outputs in a high 
impedance state while the components it drives are tested eliminates the 
possibility of damage to the IC from overdriving. 

Another problem area for in-circuit testing arises from the need to 
make contact to every connection on the board. This may require 1000 or 
more contacts to be made to the board through a bed-of-nails. For dual-in-
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Figure 1.8 In-circuit testing. 

line/plated-through-hole (DIL/PTH) technology this degree of access is 
achievable; however, for miniaturized surface-mount technology (SMT) 
the need for such extensive access can become a significant problem. 
Cluster/functional testers provide one way of avoiding the worst of these 
difficulties. 

Functional board testers 

The functional board ATE works by applying a sequence of logic value 
changes, the test program, to the product and comparing its observed 
response with that which would be expected if it were fault-free. The test 
program is carefully designed for each product with the aim of exercising 
every part of the circuit. Both the test program and the expected response are 
held in the memory of the test system. 

Normally, both the application of the test program and the 
observation of the product's response would be done using the product's 
normal operating connections. However, in some cases the test program may 
be made more effective by allowing the tester direct access to internal parts 
of the circuit, either through the use of hand-positioned probes and clips or 
via a bed-of-nails. Such techniques are used extensively when diagnosing 
faults in circuit cards, as will be discussed in Section 1.5. 

Cluster/functional board testers 

Cluster testers provide an effective combination of the in-circuit and 
functional test approaches. In cluster testing (also known as function testing) 
groups of components performing an identifiable function within the 
complete design are tested independently of surrounding circuitry. For 
example, a microprocessor board will contain functions such as RAM, read-
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only memory (ROM), communication interfaces, the processor, and so on. 
Some of these functions are implemented in a single component (for 
example, the processor), while others require groups of components (for 
example, the RAM). 

The ability to test components in small groups with a clear function 
allows test development costs to be reduced and, where a function is used in 
several products, for the test to be reused (as for in-circuit testing). Unlike 
in-circuit testing, however, defects due to improper interaction between 
components will be detected. The fact that groups of components are tested, 
rather than a single component, means that diagnostic tools must be provided 
(see Section 1.5). 

1.4.2. Problems encountered in test application 

As with test development, the process of applying a test to a circuit using an 
ATE can be made more difficult and time-consuming if certain problems are 
encountered, due both to the electrical and physical design of the circuit. 

Considering first the circuit's electrical design, the problems are in 
the main due to difficulty in controlling the circuit from the ATE. One 
example is with circuits containing on-board clocks. In such cases it is 
necessary for the ATE to be able to synchronize to the on-board clock if the 
circuit is to be tested at all, and (preferably) for the ATE to be able to 
substitute for the on-board clock during testing. This latter approach allows 
testing to proceed at the ATE's own speed. Other similar examples of 
difficulty exist, primarily due to problems in matching the timing of the 
circuit to that of the ATE. In many cases, the operating speed of the ATE 
will be considerably lower than that of the circuit being tested, and this, 
should be considered when the circuit is designed. It is almost certain that 
circuits which depend on critical timings for their successful operation will 
not be able to be properly tested. 

The other area in which problems can arise is in the physical design 
of the circuit or product — the way that printed circuit boards are designed, 
and so on. Of particular interest is the ease with which the circuit can be 
connected to the tester — obviously the more difficult the connection is to 
make, the slower the process will be. 

1.5. Fault diagnosis 

After the first application of the test, the ATE will be able to say either that 
the circuit is fault-free (in which case no further action needs to be taken) or 
that it contains one or more faults. The next step depends on the type of 
product and the type of tester being used. 

For IC testing, diagnosis is frequently not required, since repair is not 
practical for many component designs. However, some devices (e.g., RAMs) 
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allow repair by including 'spare' logic blocks within the design that can be 
switched into the circuit in place of faulty blocks. Diagnosis may also be 
needed to isolate the cause of the fault to allow modification of the design 
such that the problem is avoided or to tune the production process. 

For board testing, diagnosis is implicit when using an in-circuit test 
system since the test is applied to one replaceable unit (chip) at a time. For 
functional and cluster/functional test systems, however, further work must 
be done to locate the fault once it has been detected. Two methods of 
automated diagnosis are possible — the use of a fault dictionary, or guided 
probing — and, while they can be used separately, a combination of them is 
likely to be more efficient. These two techniques are discussed briefly 
below. 

1.5.1. Fault dictionaries 

The fault dictionary is prepared as a by-product of the fault simulation 
process described in Section 1.3.3. It is a reference table which, for example, 
gives a list of the faults that will be detected at each step in the test program, 
organized according to the particular output of the circuit at which the fault 
becomes apparent. In many cases, the ATE will stop running the test on the 
first step at which a fault is detected, in which case the fault dictionary will 
list those faults which are first found at each step. 

It is not uncommon for each line of the dictionary to include just one 
or two faults, so the dictionary can be used to significantly restrict the area 
of the circpit that needs to be examined for exact diagnosis using the guided 
probe. 

1.5.2. Guided probing 

The guided probe is an additional source of information, and can be used to 
examine each connection in the circuit as if it were a direct connection to the 
ATE. The fault-free behaviour of all internal connections will have been 
evaluated during fault simulation and filed in the ATE's memory, for later 
comparison with the performance of a circuit under test. 

During guided probing, the ATE will direct the operator to place the 
probe at specific points in the circuit in an ordered manner, as illustrated in 
Figure 1.9. In the absence of a fault dictionary, probing will start from the 
circuit output at which the fault was first detected. The probe is then placed 
in turn on the input connections to the device feeding that output and the test 
program re-run. The output from each connection is compared with that 
stored on the ATE and, as a result, 'bad' or 'good' flags can be associated 
with each of the inputs to the device. The process is repeated, tracing the 
'bad' connections back through the circuit, until either: 
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Figure 1.9 Guided probing. 

(1) A device is found which has a 'bad' output but 'good' inputs. This 
may be caused by a faulty device, by a fault on the output connection 
(for example, a short circuit or a stuck-at fault — but not by an open-
circuit fault), or by a fault at the input of a device driven from a 'bad' 
signal. 

(2) A connection is found with a 'good' signal at the driving end, but a 
'bad' signal at the receiving end. This could be caused by an open-
circuit fault, for example. 

The basic procedure described above will almost certainly be enhanced to 
improve the accuracy of the diagnosis. For example, both the driving and 
receiving ends of a suspect connection may be probed so that open-circuit 
connections can be diagnosed. Also, if a fault dictionary is available, then 
probing may start at some point within the circuit rather than at the circuit 
outputs, thus cutting out much unnecessary activity. 

A further refinement is the use of a current-sensitive probe to resolve 
the locations of certain types of fault on bus-structured circuits. The probe 
allows the location of the fault to be determined, even though its effect is 
evident on all parts of the bus. 

1.5.3. Problems encountered during fault diagnosis and repair 

Problems encountered during diagnosis are primarily due to the physical 
design of the product being tested — for example, problems in placing 
probes on connections in the circuit because devices are too closely spaced. 
Other problems can be caused by the layout of the circuit which can impede 
diagnosis by making it difficult for the operator to locate or access the points 
he is asked to probe. 
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The goal of design-for-test is to ensure that a completed product design can 
be economically tested, both following manufacture and during its 
operational life. The following sections provide a brief introduction to the 
aims and scope of design-for-test. 

1.6.1. Do you want to create a 'quality' design? 

Would you like to feel that you have created an excellent product and not 
have the manufacturing and repair organizations complain about poor 
testability? 

If your answer is yes, read on. This book has the information you 
need to create a testable product that is matched to test capability in a wide 
range of manufacturing and repair operations. 

1.6.2. Design-for-test starts when design work starts 

Designs which work as bench-top prototypes may not necessarily be capable 
of volume manufacture or be economically supportable, since 
manufacturability or maintainability may not have been properly considered. 
Manufacturability issues include the suitability of the product for auto-
insertion of its components, the suitability for wave soldering, the provision 
of adequate timing margins, and the ease of testing the assembled product. 
Maintainability issues include reliability, the ease of testing in the field and 
during repair, and the ease of diagnosing faults. Indeed the general 
experience throughout the electronics industry is that the designer must 
specifically target manufacturability, maintainability and other issues from 
the outset if a product is to be a success, both technically and commercially. 

Testability — the ease of testing a product and, when required, 
locating faults — is a key contributor to both manufacturability and 
maintainability. Many electronics companies now state that test costs 
account for of the order of 50% of the total life cycle cost, so testability can 
have a significant impact on a product's commercial viability. 

The best way to achieve adequate testability is to include testability 
as a design objective from the outset. Designing testability into a product 
after the initial design is complete is difficult, a waste of valuable resources, 
and will, in general, produce a less than satisfactory result. 

1.6.3. What aspects of a design impact its testability? 

From the preceding sections, it can be seen that testability impacts two facets 
of product design: 
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O Circuit design. Here design-for-testability will permit easier test 
development and may give shorter test application times. 

O Physical design. For example, design-for-testability will ensure that 
sufficient access is available to allow internal connections of the 
product to be examined during fault diagnosis. 

1.6.4. Testability isn't free 

To make a product testable, circuitry or other features must usually be added 
to those needed to realize the intended function. Therefore the benefits of 
having a testable design must clearly be viewed against the costs of 
achieving testability. Costs (like benefits) fall in two areas: 

O Non-recurring costs. Non-recurring costs arise through increased 
design time, both to include testability features in the design and in 
the testability assurance process. Generally these costs will be a small 
fraction of the complete design cost, particularly if the designer is 
properly trained in design-for-testability. Non-recurring costs are 
offset by reductions in the start-up costs of testing (e.g., in test 
development) and savings in recurring test costs (e.g., the time to test 
and diagnose the product). 

O Recurring (per item) costs. These arise during manufacture and/or 
maintenance. Recurring costs result from increased board or chip 
size, added logic or components needed to achieve testability, and so 
on. These costs will be offset by benefits such as reduced test and 
diagnosis time on the ATE (giving increased throughput). 

The objective is to give a reduced overall life cycle cost for the product, not 
to minimize the localized costs of one aspect of the product's life. Testability 
may not be free, but any investment must produce a return. 

The benefits of having a testable design must clearly be viewed 
against the costs of achieving testability. Costs (like benefits) fall in two 
areas: non-recurring costs during product development and recurring (per 
item) costs during manufacture and/or maintenance. Non-recurring costs 
arise through increased design time, both to include testability features in the 
design and in the testability assurance process. Generally these costs will be 
a small fraction of the complete design cost, particularly if the designer is 
properly trained in design-for-testability. Recurring costs result from 
increased board or chip size, added logic needed to achieve testability, and 
so on. Clearly an objective during design-for-testability is to keep the 
recurring costs to a minimum — but it must be recognized that testability 
may not be free. 
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CHAPTER 2. 

Design-for-Test 
Techniques 

2.1 Introduction 2.4 Scan design 
2.2 Do nothing 2.5 Self-test 
2.3 Design-for-test guidelines References 

2.1. Introduction 

Chapter 1 highlighted several problems that can arise when testing an 
integrated circuit or loaded board. Key causes of these problems are: 

(1) Complexity. The difficulty in generating a test is related both to the 
size (for example, number of gate-equivalents) and complexity (for 
example, amount of feedback around or cross-connection between 
logic blocks). For combinational circuits, test generation costs vary 
on the order of N2, where N is the number of gate-equivalents in the 
design (Goel, 1980). For sequential circuits, test costs are further 
increased by the presence of stored-state devices and feedback. 

(2) Speed. For state-of-the-art ICs or boards, the maximum operating 
speed is likely to exceed that of the automatic test equipment (ATE) 
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Figure 2.1 Variation of pin count with IC complexity. 

used to apply tests. The ATE is built using yesterday's technology, 
but is expected to test today's products. 

(3) Access. During functional testing, most (if not all) connections 
between the ATE and the IC or board are made through the normal 
inputs and outputs (the package pins or board connectors). While the 
complexity of ICs and boards is rising rapidly, the number of 
external connections is relatively static (e.g., as shown in Figure 2.1). 
Therefore, more and more test data must be transferred through a 
limited number of connections from the ATE to the unit under test 
(UUT). This causes a bottle-neck, increasing test time and, in 
consequence, reducing ATE throughput. 

(4) Miniaturization. Through use of surface-mount assembly techniques, 
the geometries of loaded boards can be reduced considerably. The 
result, however, is that access to internal chip-to-chip 
interconnections on the board using bed-of-nails or guided probes 
becomes difficult. Unfortunately, probing is an inherent feature of in-
circuit and functional testing. 

The use of design-for-test techniques during the development of a new 
circuit design can reduce these problems and, as a result, reduce the cost of 
testing the circuit in production or during field service. 

In this chapter, an overview will be given of the principal design-for-
test techniques for digital circuits — both for ICs and for loaded boards. The 
intention here is to give readers an understanding of what each technique 
involves. The techniques that are of most value in the design of loaded 
boards — design-for-test guidelines and boundary-scan — will be discussed 
in more detail later in the book. The remainder are most widely used in the 
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design of ICs. In these cases, the aim of this chapter is to give readers 
sufficient information to allow them to converse with the designers and 
vendors of ICs — not to enable them to design the ICs themselves. 

For convenience, the design-for-test techniques are introduced in an 
historical sequence. 

2.2. Do nothing 

Of course, the designer could decide to ignore testability completely — to 
concentrate solely on meeting the functional requirement for the design. 

'Nobody worried about design-for-test when designing boards 
with small and medium scale ICs, so why bother now? The 
test engineering department could generate tests for everything 
we sent them. Can't they still do that for designs that use VLSI 
ICs?' 

The problem is that test costs rise exponentially as the complexity of a 
circuit rises. Double the circuit complexity and, without design-for-test, test 
costs may quadruple — that is, if a test can be generated at all. 

True, in the 1970s, when ICs and loaded boards contained only 
simple circuits, test engineers were able to create thorough test programmes 
for every design they received. They did not have to become involved in the 
design process themselves because, although it would be more difficult to 
create tests for some designs than for others, the cost of the work was small 
compared to the design cost — even for those designs that were quite 
difficult to test. 

Organizations and the people in them adapted to this scenario: 

• Highly-separated design and test teams were created. 
G The 'over the wall' mentality evolved. Designers created the product 

and refined it up to a point where it could be passed on to production 
engineering. Production engineering dealt with the task of turning the 
prototype design into something that could be manufactured and 
tested. Test engineering could be staffed with relatively low-grade 
labour. Highly-trained engineers were needed for design; failed 
designers went into test engineering! (Needless to say, the author 
does not share this view!) 

Some companies are still suffering from these attitudes and organizational 
structures today. 

For very-large-scale integration (VLSI) ICs, and boards that contain 
them, test engineering is a function that requires highly-skilled staff who 
must be closely involved in the design process from the outset. Today, a 
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company that omits consideration of testability from the design process is 
taking an enormous commercial risk: 

O The usual result of poor testability is that the test engineering team 
will not be able to create a sufficiently thorough test programme 
within the time and budget allowed. This is illustrated in Figure 2.2. 

As testability reduces, the fault coverage achievable on a 
fixed budget reduces. This is important, because time-to-market 
pressures normally prevent more time and budget being allocated to 
overcome test problems (Reinerstein, 1983). 

G With an inadequate test programme, a greater number of defective 
parts will be shipped to customers — the tests needed to highlight the 
presence of their faults just aren't in the test programme. Figure 1.2 
in Chapter 1 showed the relationship between shipped product 
quality, manufacturing yield, and test programme effectiveness. 

O Customers find the defects missed by the test — Murphy's Law 
applies (if anything can go wrong, it will — usually at the most 
inconvenient time). 

O Companies with a reputation for poor quality lose business! 

Test development time 

Figure 2.2 The effect of testability on test development time. 

2.3. Design-for-test guidelines 

Design-for-test guidelines are lists of dos and donts generated by test 
engineering departments. They record ways of designing circuits shown by 
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experience to result in reduced test costs (the dos) and ways of designing 
circuits that result in increased test costs (the don'ts). In effect they provide a 
feedback path from test engineers to designers that, over a period of time, 
will result in better (that is, more testable) designs emerging from the design 
department. 

Part 2 of this book contains an extensive list of design-for-test 
guidelines for use during board design. Many of these guidelines are also 
useful in the design of ICs. To illustrate how design-for-test guidelines 
might be applied, consider Figure 2.3. 

Perhaps the single most important guideline is 'Ensure that the circuit 
can be initialized — quickly and easily.' The reason for this guideline is that 
no testing can be done until the circuit has been placed in a known starting 
state. After this time, inputs can be applied to the circuit and its response can 
be observed. Prior to initialization, observation of the outputs of the circuit 
is of little value, because the circuit is simply moving from one 
indeterminate state to another. 

The example circuit of Figure 2.3 is difficult to initialize. Inspection 
of the design shows that the clear input to IC13 is supplied from an output of 
IC6. IC6 has its preset input tied high (inactive), while its clear is supplied 
from IC13, via an inverter. Therefore, to reset IC13 (an 8-bit shift register) it 
is first necessary to clock it until a logic 1 is propagated from its input (INa) 
to output Q8. As soon as Q8 is set to 1, IC6 is cleared and IC13 itself is 
reset. Note that the clear input to IC25 is also supplied from IC6. Therefore, 
clocking of IC13 is synchronized to the arrival of a logic 1 at output Q8 of 
IC13. 

The circuit is, in fact, an asynchronous data receiver, similar to the 
receive portion of a universal asynchronous receiver/transmitter. Data 
packets are received at the serial command input and are clocked into the 
shift register. The clock for the shift register is synchronized as closely as 
possible to the arrival of the start bit (a one). 

Initialization can be achieved by entering a known 8-bit data stream 
and watching to see when it appears as a set of parallel bits at the circuit's 
parallel outputs. While a test system can be programmed to do this, the 
problem is that none of the most widely used simulators can simulate the 
behaviour of this circuit during initialization. The majority of simulators use 
a single value (X) to indicate that the state of a signal is unknown. Therefore 
the simulated circuit will simply move from one unknown state to another as 
data is clocked in — initialization will never be achieved. The point here is 
that initialization is difficult because: 

(1) a great deal of thought is required to analyse the circuit and work out 
how it can be set to a known initial state; and 

(2) in the majority of cases, the initialization sequence cannot be 
simulated — preventing accurate fault simulation during this vital 
stage of testing, for example. 
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Initialization can be achieved easily by adding an external reset input 
to the stored-state devices, gated in with the clear signals required for normal 
operation. 

Of the design-for-test techniques that will be introduced in this 
chapter, the use of guidelines allows the widest range of test problems to be 
dealt with. While scan design and self-test concentrate on the logical design 
of the circuit, design-for-test guidelines can be used to tackle problems that 
arise from the physical design of the board — for example, difficulty in 
probing because probe targets are too closely spaced. 

2.4. Scan design 

The scan design technique is widely used in the design of application-
specific ICs (ASICs) and very-large-scale-integration ICs (VLSI ICs). 

2.4.1. Test generation problems 

In a combinational logic circuit, the states of the outputs are determined 
solely by the signals applied at circuit inputs. As a result, test generation is 
(relatively) straight-forward — certainly, it is sufficiently easy to allow 
computer programs to be written to perform the test generation task. 

In contrast, test generation for stored-state logic circuits of the 
complexity typically found in industry is an extremely complex task that 
cannot be automated unless a significant investment is made in design-for-
testability. (The use of design-for-test guidelines alone is unlikely to be 
sufficient to permit automated test development.) Why is this so? There are 
two principal reasons: stored-state devices and feedback. 

Stored-state devices 

For a stored-state circuit, the output is determined not only by the signals 
being applied at the input at that time but also by previous input signals, a 
processed form of which is held in the various stored-state devices. To set 
any signal to a value required during testing, it is therefore necessary to 
compute a sequence of input stimuli. A further sequence of stimuli will be 
needed to make the state of any given part of the circuit visible at the circuit 
outputs. 

Feedback 

Feedback comes in two types. There are local feedback paths built into each 
flip-flop or latch. Global feedback paths are those that are external to the 
flip-flops or latches themselves (see Figure 2.4). 
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Figure 2.4 Local and global feedback. 

In the absence of global feedback, test generation for a stored-state 
circuit is only slightly more complicated than that for combinational circuits. 
In effect, the flip-flops or latches result in pipelining of input signals, 
delaying the time at which they arrive at any given point by an appropriate 
number of clocks. (In the purely combinational circuit, the delay would be 
limited to that caused by the signal propagation characteristics of the various 
gates.) The signal at any node is determined by the values at other nodes at 
previous times — but not by the value previously held at the node itself. 

The presence of global feedback severely complicates test 
generation. Now, the signal present at any node may be dependent on a 
previous state of the same node. The test generator (human or computer) 
must not only compute the state to which a node must be set, but also the 
time that the node must be in this state. The node may be set to different 
states at different times, but not to different states at the same time, so a 
record must be kept of state assignments against time. The result is a 
significant increase in the amount of effort required to generate tests. 

2.4.2. The principle of scan design 

For loaded boards, a frequently-used method of solving test problems caused 
by complex VLSI ICs is to unplug these components from the board during 
functional testing. This allows the test system to control and/or observe the 
signals that would otherwise flow into or out of the complex chip. (Note that 
physical removal of the chip is not necessary in situations where all the 
chip's output pins can be placed in a high-impedance state.) These signals 
become primary inputs and outputs for the circuit for the duration of the test 
and are referred to as pseudo primary inputs and pseudo primary outputs. 
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(a) 

(b) 

Figure 2.5 Removal of flip-flops from a stored-state circuit. 
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Imagine applying this process to a simpler circuit consisting of 
combinational logic and flip-flops, with the flip-flops being the 'complex' 
devices. Removal of the flip-flops would leave a purely combinational logic 
network, as shown in Figure 2.5. Tests for this network could be generated 
fully automatically at low cost. The flip-flops could be tested independently 
of the combinational logic before being returned to the circuit. 

Scan design techniques provide a logical (rather than physical) means 
of removing the flip-flops and latches from a stored-state circuit design, with 
the benefit that test generation can be fully automated (Eicherberger and 
Williams, 1977). 

2.4.3. Shift register scan 

There are several forms of scan design (McCluskey, 1984). 
The most common form requires that all the flip-flops and latches in a 
circuit design are connected to form one or more shift register paths when a 
special test mode is selected. In Figure 2.6b, this is achieved by provision of 
a multiplexor at the data input to each flip-flop. One data input to each 
multiplexor receives the signal previously fed to the flip-flop's data input 
(Figure 2.6a), while the other is fed by the output of the preceding stage in 
the shift register chain (or, in the case of the first flip-flop, from a serial 
input, Scan-In). The control inputs to the multiplexors are fed from a 
dedicated test control input, Test-Mode, and the data output from the last 
flip-flop in the chain is fed to a serial output, Scan-Out. 

Testing of the modified circuit proceeds in two stages: shift register 
test and combinational logic test. 

Shift register test 

Test-Mode is set to select shift register operation of the modified flip-flops. 
Data is clocked in through Scan-In and appear at Scan-Out after an 
appropriate number of clock pulses has been applied. A data sequence of the 
form: 

01001100011100001Ill-

tests that: 

(1) each flip-flop can be set to both 0 and 1; 
(2) each transition in state is possible (0 to 1 and 1 to 0); and 
(3) there are no 'pattern-sensitive' faults — for example, faults that 

would prevent a change of state following a prolonged sequence of 
IsorOs. 



34 DESIGN-FOR-TEST TECHNIQUES 

Figure 2.6 Shift-register-based scan design — (a) Huffman model. 

Following this test, the only faults in the storage devices that have not been 
tested are those on the connections to and from the combinational logic. 

Combinational logic test 

This stage tests for the remaining faults in the flip-flops and for faults in the 
combinational logic. 

Tests for the combinational logic network are generated using an 
automatic test pattern generation (ATPG) package. For each of the test 
vectors generated, the following procedure is used: 

(1) Data is applied to those inputs of the circuit that are directly 
accessible. 

(2) The remainder of the input test pattern is shifted into the various flip-
flops by selecting test mode (Test-Mode = 1) and applying clock 
pulses. 
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Figure 2.6 (cont.) Shift-register-based scan design — (b) Scan design. 

(3) When shifting is complete, the circuit is placed in its normal mode 
(Test-Mode = 0). Those outputs from the combinational logic that 
are directly observable are checked against the expected values. 

(4) One clock pulse is applied. This causes the remaining outputs of the 
combinational logic to be loaded into the flip-flops to which they are 
fed. 

(5) The circuit is set to test mode (Test-Mode = 1) and clock pulses are 
applied to shift the captured data out of the circuit through Scan-Out. 
Following each clock, the signal at Scan-Out is compared to that 
expected at the appropriate combinational logic output. 

Steps (2) and (5) may be merged, with the results of one test being shifted 
out as the stimuli for the next are shifted in. 

There are several alternative forms of scan design based on the use of 
shift registers. Of these, the level-sensitive scan design (LSSD) technique is 
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the most widely used. LSSD is based on the use of latch-based shift register 
stages comprising a pair of latches (a master and a slave) controlled by 
independent non-overlapping clocks (Figure 2.7). A significant advantage of 
LSSD is that it eliminates a number of timing problems that can arise in use 
of the multiplexor/flip-flop design presented earlier. 

Further details of LSSD and a set of design rules for a scan testable 
circuit can be found in Bennetts (1981). 

LI latch 

L2 latch 

Figure 2.7 An LSSD shift register latch. 

2.4.4. Random-access scan 

In random-access scan, individual latches or flip-flops are built into a RAM-
like structure that allows their state to be individually written (controlled) 
and read (observed) (Ando, 1980). The resulting design is shown in Figure 
2.8. 

In Figure 2.8, the circuit is again divided into two parts — the 
combinational logic and the stored-state devices. The stored-state devices are 
level-operated latches implemented as shown in Figure 2.9. The scan data 
input for the chip is broadcast to all latches (to SDI). The scan data output of 
each latch (SDO) feeds onto a wire-AND bus and thence to the chip's scan 
data output. 

For normal circuit operation, the scan clock (SCLK) is held low. 
Data at the system data input (D) is loaded into the latch when the system 
clock (CLKn) is high. At least two system clock signals are required (CLK1 
and CLK2) and all system clocks must be non-overlapping (that is, only one 
of them is high at any given time). Latches controlled by one system clock 
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(CLKn) can only feed latches that are controlled by different clocks (CLKwz, 
m != «). 

In test operation, the system clock signals are held low. A target latch 
is selected by feeding an address into the circuit. The address is decoded to 
set the select input (SEL) of the target latch high, while the SEL inputs for 
all other latches are set low. This enables the target latch to drive onto the 
scan data out bus. New test data is written to the target latch from the chip's 
scan data input by setting SCLK high while SEL is high. 

If all latches need to be observed and controlled during application of 
a test, then each must be addressed in turn. SCLK must be controlled to 
ensure that data is read from the addressed latch before new data is written. 

Figure 2.9 Random-access scan latch. 



Once data is written into every latch, SCLK is held low while the system 
clock signals are pulsed in the appropriate sequence. The data in the latches 
can then be read by holding the system clocks low and sequencing through 
the addresses. 

The advantage of random-access scan compared to a shift-register-
based implementation is that it is possible to read and/or write data into 
individual latches without altering the state of the rest. This can be useful 
during functional testing or debug. 

2.4.5. Partial scan 

The scan design techniques discussed so far involve the provision of test 
access to every latch and flip-flop in a chip design. As a result, a circuit is 
produced for which automated test generation is guaranteed — regardless of 
the detail of the design. 

The partial scan technique involves the selection of a number of flip-
flops or latches to be included in a shift register path through the design. 
Alternatively, shift-register-based testability improvement cells of the form 
shown in Figure 2.10 can be introduced into the combinational circuitry to 
provide access during testing. 

Figure 2.10 Testability improvement cell. 

The idea is to provide shift register access to locations in the circuit 
that are particularly difficult to access, and thereby bring the resulting design 
within the reach of an ATPG tool. For example, tools are available that 
identify the nodes, flip-flops, or latches to be included in the shift register 
path during the ATPG run. Other tools have been proposed that analyse a 
design before test generation is attempted, producing a recommended set of 
storage devices for inclusion on the shift register path. 

Compared to full scan design, partial scan can be implemented at 
lower circuit cost. However, more computational effort is required during 
the design process because the sites for shift register access must be 
identified. A further limitation is that, while a full scan circuit can readily be 
'upgraded' into a self-testing circuit (see Section 2.5), this is not the case for 
a partial scan design. Problems may also result when a completed design is 
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used as a building block in a later, larger circuit because the locations that 
need to be scannable to render the original design testable may not be those 
to which access is required to permit testing of the new circuit. 

2.4.6. Boundary-scan 

Boundary-scan is a technique that can be used both in the design of. large, 
complex ICs, multi-chip modules, and loaded boards. In 1990, the IEEE 
approved a standard specification for boundary-scan facilities to be built into 
ICs (IEEE, 1990) and, as a result, the technique looks set to become one of 
the major ways of testing loaded boards (including multi-chip modules). 

Chapter 3 provides a detailed description of the features specified by 
the IEEE standard and how they can be used. Therefore, this section is 
intended only to give a very brief overview of the boundary-scan technique. 

To implement boundary-scan, a scan shift register stage is placed 
adjacent to every input and output of an IC building block (macro) or chip 
—that is, at the boundaries of the circuit. (Henceforth, the case of an IC will 
be described. Remember, however, that the technique is equally useful 
within a chip design.) To achieve this, specialized test circuitry may need to 
be added to the chip between each pin and the logic to which it is connected, 
as shown in Figure 2.11. These test circuits, called boundary-scan cells, are 
connected into a shift register path around the periphery of the IC. This is 
called the boundary-scan path. 

An example design for a boundary-scan cell is shown in Figure 2.12. 
(As will be discussed in Chapter 3, this is typical of the cell designs 
permitted by the IEEE standard.) Data can flow directly through the 
boundary-scan cell (from Data-in to Data-Out) when normal operation of the 

Boundary-scan cells 

Figure 2.11 Inclusion of boundary-scan in an IC. 
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Figure 2.12 A boundary-scan cell. 

component is required. During testing, the cells at output pins can be used to 
drive signal values onto the external network (e.g., the board interconnect), 
while those at input pins can capture the signals received. 

With cells of the design shown in Figure 2.12, testing is performed 
with the Test/Normal* signal set to 1. Two principal types of test are 
possible: interconnecton test and chip test. 

Interconnection test 

Test patterns are shifted into the boundary-scan cells at chip output pins and 
driven onto the external connection. The results of the test arrive at the input 
pins of an adjacent chip and are loaded into their boundary-scan cells 
(Shift/Load* = 0). They are then shifted out for examination (Shift/Load* = 
1). By careful selection of test patterns, the interconnections between 
boundary-scan-testable ICs can be tested for stuck-at, short circuit, open 
circuit, and other fault types. Figure 2.13 shows a circuit that contains a 
short-to-ground (stuck-at-0) fault and a wire-OR short circuit fault in the 
board interconnect (for example, a solder bridge). Table 2.1 shows some test 
vectors for these faults. 

Note that the rightmost bit of the data in Table 2.1 is shifted into the 
serial input, or out of the serial output, first. 

Table 2.1 Example tests for interconnect faults. 
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Figure 2.13 Testing for interconnect faults. 

Chip test 

Figure 2.14 shows a simple IC that contains a NAND gate. To test to this 
gate, stimuli are shifted into the boundary-scan cells located at the input 
pins. The result of the test is loaded into the cells at the chip's output pins 
(Shift/Load* = 0) and then shifted out for examination (Shift/Load* = 1). A 
set of test vectors for the NAND gate is shown in Table 2.2. As for Table 
2.1, the rightmost bit of each data pattern shown in Table 2.2 is shifted into 
the serial input, or out of the serial output, first. 

If the target chip is scan testable, then operation of its internal scan 
path can be synchronized to that of the surrounding boundary-scan path 
during application of the chip test. 

A significant advantage of the boundary-scan technique is that it 
separates the tasks of chip testing and loaded-board testing. In particular, 
only a limited knowledge of the chip's function and design is required to 
allow a high-quality test to be generated for board-level interconnections — 
indeed, this is possible from a knowledge of the design of the boundary-scan 
path alone. This is a notable contrast to the case without boundary-scan, 
where the test engineer needs to know a great deal about the chip's operation 
to generate either an in-circuit test or a functional board test. 
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Boundary—Scan 
Cell 

T 
Serial 
Output 

Figure 2.14 Testing on-chip logic. 

Table 2.2 Example tests for the NAND gate. 

Input Expected output 
xlOxxxxx xxxxxlxx 
xOlxxxxx xxxxxlxx 
x11xxxxx xxxxxOxx 

2.5. Self-test 

For VLSI ICs, the problems of complexity, speed, and access outlined at the 
start of this chapter become particularly severe. Built-in self-test (BIST) 
techniques offer a good solution to these problems. As will be discussed in 
Chapter 3, BIST features in ICs can also be accessed at board and system 
levels provided that a suitable control and access mechanism exists, reducing 
the cost of testing these higher level assemblies as well as the cost of testing 
the chip itself. 

In BIST, some or all of the function of the ATE is built into the chip 
itself (Figure 2.15). Additional logic is provided to generate test stimuli and 
observe test responses — functions that the tester would otherwise perform. 
To limit the. cost of this added circuitry. BIST desierns are most often based 



SELF-TEST 43 

on the use of pseudo-random testing, in which large numbers of near-
random test stimuli are applied to the circuit. The responses of the circuit to 
these tests are compressed into a signature, consisting of a relatively small 
number of data bits, that can be fed out of the circuit at the end of the test 
and checked against the expected fault-free value. 

Figure 2.15 Built-in self-test. 

2.5.1. Generating the test 

Figure 2.16 shows a small linear-feedback shift register (LFSR) design 
that can be used to generate a sequence of pseudo-random test stimuli. 
Outputs from a number of shift register stages are fed to an exclusive-OR 
gate network (parity tree) the output of which is fed back to the input to the 
first stage. 

If circuit is initialized to a starting state other than that where every 
stage is set to 0, then the example LFSR will generate a sequence of patterns 
that repeats after 15 (24 - 1) clocks have been applied. (If the circuit starts in 
the state where every stage is set to 0, then it will remain in this state no 
matter how many clocks are applied.) The sequence generated from a 
starting state where every stage holds a 1 is shown in Table 2.3. Note that 
the sequence of Is and 0s generated at any particular output appears to be 
random. Because the sequence is actually determinate, it is termed pseudo­
random. The randomness of the outputs increases as the number of shift 
register stages in the LFSR increases. 

In the general case, an LFSR built from a shift register containing N 
stages can generate a sequence of length 2^ - 1 if the points from which 
feedback is derived are chosen carefully. (Tables are available to assist in 
choosing the correct feedback taps for a shift register of a given length — 
for example, see Bardell (1987)). Use of a different set of feedback 'taps' 
may result in a sequence being generated that repeats more frequently than 
every 2^-1 clocks. 
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Figure 2.16 Linear-feedback shift register. 

Table 2.3 Sequence generated by the example LFSR. 

Ql Q2 Q3 Q4 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
1 
1 

1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
1 

1 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 

1 
1 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
0 
0 
1 

2.5.2. Signature analysis 

A signature analyser — that is, a circuit that can compress the sequence of 
results from a test into a short signature — can be produced by adding an 
external input to an LFSR as shown in Figure 2.17. The signature generated 
can be read at the end of the test and compared to that expected from a fault-
free circuit. Table 2.4 shows how an example fault-free output from a circuit 
is compressed into a signature (1110). 

Signature analysis was originally developed as a tool to help in the 
location of faults in digital equipment — for example, as a tool for use 
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Figure 2.17 A signature analyser. 

Table 2.4 Signature generation. 

Q4 
Q3 
Q2 

Qi-
Data 

1 
1 
1 
1 
1 

1 
1 
1 
1 
0 

1 
1 
1 
0 
1 

1 
1 
0 
1 
0 

1 
0 
1 
0 
1 

0 
1 
0 
0 
1 

1 
0 
0 
0 
1 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
1 

0 
0 
0 
1 
0 

0 
0 
1 
0 
1 

0 
1 
0 
1 
1 

1 
0 
1 
0 
0 

0 
1 
0 
1 
0 

1 
0 
1 
1 
0 

0 
1 
1 
1 
1 

1 
1 
1 
0 

during on-site repair (Frohwerk, 1977). Signature analysers can often be 
found built into ATE systems because they reduce the amount of test-result 
data that has to be stored. Often, these signature analysers are based on 16-
bit shift registers. For BIST applications, the size of the signature analyser 
would vary according to the length of the test that is applied. 

For test sequence of reasonable length (say, more than a few tens of 
tests), the chance that a faulty input sequence from the circuit under test will 
produce the expected fault-free signature (that is, the chance that the 
presence of the fault will be masked) is approximately 

where N is the number of shift register stages in the signature analyser. That 
is, for a 16-bit design, a maximum of only 0.002% of faults will be masked 
by the signature analyser. From a practical point of view, it can be 
considered that masking will rarely occur for signature analysers of length 
16 and over. 
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2.5.3. The multiple-input signature register 

The signature analyser so far described can be used to monitor a single 
output stream from the circuit under test. However, circuits typically have 
more than one output. Either sufficient signature analysers must be provided 
such that each circuit output stream can be compressed into a signature, or 
the test must be repeated many times with a signature being taken from one 
output on each occasion. 

The multiple-input signature register (MISR) overcomes this 
problem. As shown in Figure 2.18, an input data stream can be fed in at each 
stage along the shift register. Therefore, a MISR can monitor as many circuit 
inputs as the number of shift register stages it contains. 

Unless care is taken in the way that circuit outputs are connected to 
MISR inputs, there is a slightly higher chance of fault masking where a 
MISR is used. Figure 2.19 illustrates the problem. 

Figure 2.19 Fault masking in a MISR. 
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For example if a faulty data bit is injected into a shift register 
structure built into the circuit under test, then this bit could be presented at 
two inputs to the MISR — but at different times. When the faulty data bit 
arrives at the first MISR input, it corrupts the data held in shift register stage 
1. Either a 1 is changed to a 0, or a 0 is changed to a 1. 

On the next clock cycle, the corrupted data in the MISR will move 
into stage 2. On the third clock, the corrupted data in stage 2 will be 
combined with a faulty data bit received at the second MISR input, with the 
result that a correct value is written into stage 3 (a case of two wrongs make 
a right). The fault has been masked. 

The problem could be avoided by shifting the input connections one 
stage towards the right (that is, the input to Zl is now fed to Z2, and so on, 
with the input to Z4 becoming applied to Zl). Now, the fault first results in 
the corruption of the data held in stage 2. The corrupted data is moved into 
stage 3 on the next clock. On the next clock the corrupted data is combined 
with the faulty data at the second MISR input and, as before, results in 
correct data being written into the next stage — stage 4. However, the 
corrupted data in stage 3 is also fed back to stage 1 on this clock. 

Figure 2.20 A self-testing IC design. 
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Therefore, while the data in stage 4 does not show the presence of the fault, 
the data in stage 1 does. 

In general, if masking is to be minimized, related outputs from a 
circuit under test should be fed to MISR inputs that are separated by one or 
more feedback taps. 

2.5.4. A simple BIST IC design 

Figure 2.20 shows how a complete self-testing circuit can be constructed 
using an LFSR and a MISR. This is based on the use of scan-design. 

One output of the LFSR feeds into the scan path, while the others are 
able to drive the circuit inputs during testing. (During normal operation of 
the chip, the outputs of the LFSR would be set to high impedance.) 
Similarly, one MISR input is fed from the output of the scan path, while the 
others are fed from the circuit outputs. 

During test, operation of this circuit is as follows: 

(1) Signal the start of the test to the control circuit which will then reset 
the LFSR and MISR to their starting states. 

(2) Select the scan-test mode. Clock the complete circuit (including the 
LFSR) a sufficient number of times to fill the scan path with pseudo­
random data.Together with the data applied from the LFSR to the 
circuit inputs, this forms the first test pattern for the combinational 
logic. 

(3) Enable the MISR. Turn the scan-test mode off and clock the circuit 
once. This causes the results of the test to be loaded into the scan 
path or, in the case of those at the circuit outputs, to be captured by 
the MISR. 

(4) Repeat step (2) keeping the MISR enabled. As the results of the first 
test are shifted out into the MISR, the second test stimulus is shifted 
in from the LFSR. 

Continue to repeat stages (2) and (3) until a sufficient number of tests 
has been applied. 

(5) At the end of the test, inspect the contents of the MISR and compare 
to the expected fault-free value. 

2.5.5. The BILBO 

The built-in logic block observer (BILBO) (see Figure 2.21) combines the 
functions of an LFSR and a MISR into a single building block that can be 
used in a self-testing circuit design (Konemann et aL, 1979). 
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Figure 2.21 The BILBO. 

Table 2.5 Operating modes of the BILBO. 

Bl 
1 

0 

1 

0 

B2 
1 

0 

0 

1 

Operation 
The circuit behaves as a parallel-input, parallel-
output register. Data presented at the inputs Z is 
loaded into the flip-flops on each clock cycle. 
This is the normal operating mode of the BILBO. 
The circuit becomes a shift register. Data 
presented at the serial input (SI) appears at the 
serial output (S2) after an appropriate number of 
clocks has been applied. By using this mode 
together with the parallel register mode, scan 
testing is possible. 
The circuit becomes a MISR. Data presented at 
the inputs Z is compressed into a signature that 
can be shifted out for examination by selecting 
the shift register mode. If the data inputs can be 
held constant, then a pseudo-random test 
sequence is generated at the parallel outputs 0. 
The flip-flops are reset when the clock transition 
occurs. 

The BILBO has four operating modes that are selected using inputs 
Bl and B2 as shown in Table 2.5. 

A BILBO could be positioned between two combinational circuit 
blocks, for example as shown in Figure 2.22. During testing of block 1, the 
BILBO would be used as a MISR to generate a signature from the results of 
the test applied at the inputs to the block. During testing of block 2, the 
inputs to block 1 would be held constant, allowing the BILBO to generate a 
pseudo-random test for block 2. 
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Figure 2.22 Use of the BILBO. 

2.5.6. Macro test 

While the use of LFSRs, signature analysers, MISRs, and BILBOs is an 
effective way of converting an arbitrary circuit into a self-testing design, the 
use of other techniques may result in a better solution for certain types of 
building block (macro) — for example, better quality test for lower added 
silicon. This is particularly true where the detail of the silicon layout and of 
the manufacturing process are known. Examples would be highly-regular 
macro designs, such as RAMs, read-only memories (ROMs), and arithmetic 
logic units (ALUs). 

ASIC vendors are increasingly designing such macros with their own 
BIST capability — for example, to give a self-testing RAM. Generic 
versions of such macros are included in the ASIC vendor's library, allowing 
chip designers to request, say, a RAM of the size required for their particular 
circuit. 

A number of self-testing macros might be included in a complete 
chip design and would need to be connected to a small built-in controller 
that would control their behaviour during test execution. Testing of the logic 
not contained in the self-testing macros is organized by the chip designer, 
and could be based on scan paths or LFSR-based self-test. 

2.5.7. Board-level self-test 

LFSRs and MISRs can also be used to allow the development of self-testing 
loaded boards. For example, a MISR could be connected so as to compress a 
data stream on a microprocessor bus into a signature. 

More often, though, self-test is achieved by the provision of 
additional firmware on the board. This firmware is executed by the on-board 
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processor when test is selected and allows the processor to act as the on­
board ATE. The processor writes data into the various peripheral chips and 
reads their responses. A firmware equivalent of a MISR may be used to 
compress the result data into a compact signature. 

Some guidelines for the design of self-testing boards are contained in 
Part 2. 
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3.1. Introduction 

Two continuing trends are having a significant adverse impact on the cost of 
testing loaded printed wiring boards (PWBs): 

(1) Increasing complexity: As integrated circuits (ICs) become more 
complex, the difficulty of generating a test for loaded boards 
increases. For in-circuit testing, the generation of a test module for a 
new IC design could take several man-months. For functional testing, 
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test generation times are significantly longer, due to the need to 
propagate test data through the complex ICs while applying tests to 
other chips on the board. Test lengths also increase as complexity 
rises, pushing up the cost of applying the finished test. In in-circuit 
testing, the maximum test length is constrained by a time limit 
imposed to ensure that components are not damaged by backdriving. 
Often, therefore, the result of increasing complexity is that less 
thorough testing is possible. 

(2) Greater miniaturization: Test techniques that became widely used 
during the 1980s — in-circuit, functional, cluster, and emulation 
testing — depend significantly on the ability to make contact with 
connections internal to the loaded board. Bed-of-nails or hand-held 
probes must be connected to such connections during test application 
and/or fault diagnosis. The use of surface-mount assembly 
techniques, particularly when coupled with double-sided component 
mounting and the use of buried vias to connect layers of interconnect 
on the PWB, reduces board geometries — making the finished 
product smaller and, unfortunately, more difficult to probe. 

The aim of ANSVIEEE Std 1149.1 (IEEE, 1990) — the Standard 
Test Access Port and Boundary-Scan Architecture — is to provide the basis 
of solutions to these problems. The key is the elimination of the need for 
physical probing of the loaded board, which is achieved by building an 
electronic test-access mechanism (the boundary-scan path) into the 
integrated circuits themselves. 

This chapter provides a guide to the principal features defined by the 
standard and to their operation. It is intended as a prelude to the standard 
itself, not as a substitute for it. In particular, it is recommended that readers 
who intend to implement integrated circuits, design tools, or test systems 
that support the standard should read the standard document before doing so. 
Also, while this chapter shows how basic test operations can be performed, it 
is not a complete guide to the potential applications of the standard. For a 
view of the wide range of applications of the standard, the reader is directed 
to Maunder and Tulloss, 1990. 

3.2. A chip-level view 

Figure 3.1 gives an overall view of an IC design that conforms to 
ANSI/IEEE Std 1149.1. The circuitry can be broken down into two parts: 

(1) The system logic. This is the circuitry that performs the 'normal' 
function for which the chip was designed. For example, it could be 
the logic necessary to build a microprocessor, a communications 
interface, or a counter. 
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(2) The test logic. This is the circuitry defined by the standard and 
includes all the blocks in Figure 3.1 other than the system logic. The 
test logic is used during testing of the IC and of the board onto which 
the IC is assembled. It does not contribute to the normal operation of 
the system logic. 

Figure 3.1 Chip-level view. 

Some circuitry may be shared between the system and test logic. For 
example, a register in the system logic may have test modes of operation — 
perhaps it might be a BILBO or similar device (Konemann et ah, 1979). 
Under these circumstances, the circuitry is regarded as system logic while it 
contributes to the normal chip function and as test logic while it participates 
in test operations. 

3.3. The test logic architecture 

The top-level schematic of the test logic defined by ANSVIEEE Std 1149.1 
includes three key circuit blocks (Figure 3.2): 

O The TAP controller. This responds to control sequences supplied 
through the test access port (TAP — see Section 3.4) and generates 



Figure 3.2 ANSI/IEEE Std 1149.1 test logic. 

the clocks and control signals required for correct operation of the 
other circuit blocks. 

O The instruction register. This shift register based circuit is serially 
loaded with the instruction that selects a test to be performed. 

O The test data register. This is a bank of shift register based circuits 
(see Section 3.7). The stimuli or conditioning values required by a 
test are serially loaded into the test data register selected by the 
current instruction. Following execution of the test, results in test 
data registers can be shifted out for examination. 

These circuit blocks are connected to a TAP which includes the four 
or, optionally, five signals used to control the operation of tests and to allow 
serial loading and unloading of instructions and test data. The TAP on an IC 
is directly analogous to the 'diagnostic' socket provided on many 
automobiles — it allows an external test processor to control and to 
communicate with the various test features built into the product. When a 
number of ICs that implement the standard are combined on a PWB, they 
can be arranged in a single daisy chain with: 

O the test data input (TDI) input of the first IC in the chain connected 
to the board edge or to the output of an on-board master device; 

B subsequent ICs each having their TDI connected to their 
predecessor's test data output (TOO); and 

• the last ICs TOO being fed to the board edge or to the input of the 
on-board master device. 
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Serial input 

Control inputs 

Serial output 

Figure 3.3 Board-level connection of standard ICs. 

This arrangement, shown in Figure 3.3, supports the serial transfer of test 
data and instructions. Other arrangements are possible. 

3.4. The TAP 

The TAP contains four or, optionally, five pins. These are: 

O The test clock input (TCK). This is independent of the system 
clock(s) for the chip so that test operations can be synchronized 
between the various chips on a PWB. 

O The test mode select input (TMS). The operation of the test logic is 
controlled by the sequence of Is and Os applied at this input. The 
sequence on TMS directs the TAP controller in its generation of the 
clock and control signals required by the other test logic blocks. 

• The test data input (TDI), Data applied at this serial input is fed 
either into the instruction register or into a test data register, 
depending on the sequence previously applied at TMS. 

O The test data output (TDO). This serial output from the test logic is 
fed either from the instruction register or from a test data register 
depending on the sequence previously applied at TMS. During 
shifting, data applied at TDI will appear at TDO after a number of 
cycles of TCK determined by the length of the register included in 
the serial path. When data is not being shifted through the chip, TDO 
is set to an inactive drive state (for example, high impedance). 

O The optional test reset input (TRST*). The test logic is designed so 
that it can be reset synchronously under control of TCK and TMS. 
TRST* provides a supplementary reset mechanism. The test logic is 
reset when a 0 is applied at TRST*. 
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The TDI, TMS, and TRST* inputs are either equipped with a pull-up 
resistor or otherwise designed such that, when they are not driven from an 
external source, the test logic perceives a logic 1. 

3.5. The TAP controller 

Figure 3.4 State diagram for the TAP controller. 

A key goal during the development of ANSI/IEEE Std 1149.1 was to keep 
the number of pins in the TAP to a minimum, based on the knowledge that 
many ICs are pin- (rather than silicon-) limited. As test engineers are only 
too aware, chip designers are always reluctant to allocate pins for test 
purposes. 

The TAP controller allows this goal to be met. It is a 16-state finite 
state machine that operates according to the state diagram shown in Figure 
3.4. Note that in the states whose names end 'DR' the test data registers 
operate, while in those whose names end '-IR' the instruction register 
operates. A move along a state transition arc occurs on every rising edge of 
TCK. The Os and 1s shown adjacent to the state transition arcs show the 
value that must be present on TMS at the time of the next rising edge of 
TCK for the particular transition to occur. 

Eight of the 16 controller states determine operation of the test logic, 
allowing the following test functions to be performed: 
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O Test-Logic-Reset. All test logic is reset, allowing normal operation of 
the chip to occur without interference. Regardless of the starting state 
of the TAP controller, the Test-Logic-Reset controller state is reached 
by holding the TMS input at 1 and applying five rising edges at 
TCK. Alternatively, where TRST* is provided, it can be used to 
force the controller asynchronously into the Test-Logic-Reset 
controller state at any desired point during circuit operation. 

3 Run-Testlldle. The operation of the test logic in this controller state 
depends on the instruction held in the instruction register. When the 
instruction is, for example, one that activates a self-test, then the self-
test will be run in this state. If, in another case, the instruction in the 
instruction register is one that selects a data register for scanning, 
then the test logic will be idle. 

3 Capture-DR. Each instruction must identify one or more test data 
registers that are enabled to operate in test mode when the instruction 
is selected. In this controller state, data is loaded from the parallel 
inputs of the selected test data registers into its shift register paths. 

3 Shift-DR. Each instruction must identify a single test data register 
that is to be used to shift data between TDI and TDO in the Shift-DR 
controller state. Shifting allows the previously captured data to be 
examined and new test input data to be entered. 

3 Update-DR. This controller state marks the completion of the 
shifting process. Some test data registers may be provided with a 
latched parallel output to prevent signals applied to the system logic, 
or through the chip's system pins, from rippling while new data is 
shifted into the register. Where such test data registers are selected by 
the current instruction, the new data is transferred to its parallel 
outputs in this controller state. 

3 Capture-IR, Shift-IR, and Update-IR. These controller states are 
analogous to Capture-DR, Shift-DR, and Update-DR respectively but 
cause operation of the instruction register. By entering these states, a 
new instruction can be entered and applied to the test data registers 
and/or other specialized circuitry. The new instruction becomes 
'current' in the Update-IR controller state. 

Note that in the Update-DR and Update-IR controller states, the described 
action takes place on the falling edge of TCK. In all other states, the 
described action takes place on the rising edge of TCK just before the 
controller leaves the state (see Figure 3.5). Also note that TDO is active only 
in the Shift-DR and Shift-IR controller states. 

In the remaining eight controller states, no operation of the test logic 
occurs — that is, the test logic is 'idle.' The 'pause' states (Pause-DR and 
Pause-IR) are provided to allow the shifting process to be temporarily 
halted. This might occur while an ATE or other equipment controlling the 
test logic fetches more test data from backup memory (for example, disc). 
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3.6. The instruction register 

The instruction register provides one of the alternate serial paths between 
TDI and TDO. It operates when the instruction scanning portion of the 
controller state diagram is entered (that is, the portion where state names end 
'-IR'). 

The instruction register allows test instructions to be entered into 
each IC along the board-level path. At the board level, the instruction 
registers are daisy-chained together in the Shift-IR controller state (Figure 
3.6), so a different instruction can be loaded into each chip on the path if 
required. 
The instruction register is a parallel-in, parallel-out shift register. The 
parallel output is latched so that a new instruction can be shifted in without 
altering the instruction applied to the remainder of the test logic. The latched 
output is updated from the shift register path in the Update-IR controller 
state; at this time, the new instruction becomes 'current'. In the Test-Logic-
Reset controller state, the latched output is reset — to either the IDCODE or 
the BYPASS instruction depending on the set of test data registers built into 
the particular IC (see Sections 3.8 and 3.9). 
The instruction register must contain at least two stages (shown cross-
hatched in Figure 3.7). No maximum length is defined, since this will be 
determined by the number of test instructions provided by the particular IC. 
Stages I1 and I0 (that is, the stages located nearest to the serial output) 

Figure 3.5 The timing of events within a controller state. 

The final six controller states (Select-DR-Scan, Select-IR-Scan, 
Exitl-DR, Exitl-IR, Exit2-DR, and Exit2-IR) are decision points that allow 
choices to be made as to the route to be followed around the controller's state 
diagram. For example, in the Exitl-DR controller state a choice is made 
between entry into the Pause-DR state or entry into the Update-DR state. 
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Figure 3.6 Daisy-chain connection of instruction registers. 

Figure 3.7 The instruction register. 

must be set to 0 and 1 respectively in the Capture-IR controller state. These 
fixed values assist in detecting and locating faults in the serial path through 
chips on a board (Maunder and Tulloss, 1990). 

Instruction register stages numbered 12 or greater are optional and 
can have a parallel input from which data (typically, status information) is 
loaded. 

3.7. The test data registers 

The test logic design provides for a bank of test data registers as shown in 
Figure 3.8. 

ANSI/IEEE Std 1149.1 specifies the design of three test data 
registers, two of which must be included in the design. The mandatory test 
data registers are the bypass and boundary-scan registers. The provision of a 
device identification register is optional and further design-specific test data 
registers can be added as appropriate to a given design. 

All test data registers are shift register based and operate according to 
the same principles: 

O Operation of the various test data registers is controlled according to 
the current instruction. An instruction can place several test data 
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registers into their test mode of operation, but it can select only one 
register for connection as the serial path between TDI and TDO in 
the Shift-DR controller state. On the other hand, it is important to 
note that one or more physical registers can be configured as one 
(virtual) test data register by a given instruction. 

O Registers that are not enabled for test operation by the current 
instruction are configured so that they do not interfere with operation 
of the on-chip system logic (in the case of a register that can operate 
in either system or test mode, the system mode will be selected). 

O Registers enabled for test operation by the current instruction will 
load data from their parallel inputs (if any) in the Capture-DR 
controller state and will make any new data available at their latched 
parallel outputs (if any) in the Update-DR controller state. In other 
words, the results of a test are sampled in the Capture-DR controller 
state and the new test stimulus is available, at the latest, in the 
Update-DR controller state. 

O Where test execution is required between the Update-DR and 
Capture-DR controller states (for example, execution of a self-test), 
this occurs in the Run-Testlldle state. 

Figure 3.8 Test data registers. 
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O The register selected by the instruction to be the serial path between 
TDI and TDO will shift data from TDI towards TDO in the Shift-DR 
controller state. All other test data registers enabled for test operation 
will hold their state while shifting occurs. 

3.8. The BYPASS instruction 

Every IC that conforms to the standard must support the BYPASS 
instruction. A value (but not necessarily the only value) for the BYPASS 
instruction must be 'all-Is' (that is, a logic 1 entered into each stage of the 
instruction register). In ICs that do not include the optional device 
identification register, the BYPASS instruction is forced onto the instruction 
register's output in the Test-Logic-Reset state and thus becomes the 'current' 
instruction whenever the test logic is reset. 

The BYPASS instruction selects the bypass register as the serial path 
between TDI and TDO during the Shift-DR controller state.- This register 
consists of a single parallel-in, serial-out shift register stage that loads a 
constant logic 0 in the Capture-DR controller state when the BYPASS 
instruction is selected. The bypass register does not have a parallel data 
output so there is no significance to the data present in the register when 
shifting is completed. The operation of the register cannot interfere with that 
of the on-chip system logic. 

As an example of an occasion when the bypass register might be 
used, consider a board containing 100 ICs, all with boundary-scan and 
connected into a single serial chain, a small part of which is shown in Figure 
3.9. Assume that a need arises to access a test data register located in IC57, 
but that it is desired not to interfere with the operation of the remaining 99 
ICs. (An example of such a situation might be when the target chip includes 
a 'shadow' test data register that permits the state of its key internal registers 
to be read.) 

Figure 3.9 Use of the bypass register. 
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In this case, the required instruction would be loaded into IC57, with 
the BYPASS instruction being loaded into the other ICs. The serial bit 
stream shifted into TDI during the instruction scanning cycle would be: 

111 1111CCC...CCC1111 I l l 

where CCC...CCC is the instruction to be loaded into IC57. As a result of 
use of the 'alt-Is' value for the BYPASS instruction, the complexity of the 
bit stream input to the serial path is considerably reduced. This is an 
important consideration, since it reduces the data storage requirement for the 
automatic test equipment (ATE) or bus master chip that controls the 
operation of the board during test. 

Once the instructions are loaded, a minimum length serial path to 
and from the target chip is set up that allows access to the chip of interest in 
the minimum possible time, increasing test throughput. 

3.9. The IDCODE and USERCODE instructions 

The IDCODE and USERCODE instructions select use of the optional device 
identification register. In every IC that includes the device identification 
register, the IDCODE instruction is forced onto the instruction register's 
output in the Test-Logic-Reset state and thus becomes the 'current' 
instruction whenever the test logic is reset. 

The device identification register allows a binary data pattern to be 
read from the chip that identifies the manufacturer, the part number, the 
variant, and (where appropriate) the programmed state. This information 
might be used to: 

• adjust test program execution, depending on the source and/or variant 
of each chip present on the board; 

O verify that the correct IC (or correctly-programmed IC) has been 
mounted in each board location; or 

D establish which member of a plug-compatible family of boards is 
being tested. 

The register contains 32 parallel-in, serial-out shift register stages. Like the 
bypass register, the device identification register does not have a parallel 
output and, in consequence, there is no significance to the data contained in 
the register when shifting terminates. Also like the bypass register, operation 
of the device identification register can occur without interfering with 
normal chip operation. 

Where an IC is programmed off-line (for example, by blowing fuses 
or through some other non-reversible process), each stage must have a pair 



Figure 3.10 Structure of the device identity code. 

of alternative data inputs so that two different 32-bit codes can be loaded — 
one to identify the device and one to identify its programming. The former is 
loaded when the IDCODE instruction is selected, while the latter is loaded 
when the USERCODE instruction is selected. In all other types of IC, only 
one data input is required and the USERCODE instruction is not provided. 

The structure of the data loaded into the device identification register 
in response to the IDCODE instruction is shown in Figure 3.10. There are 
four separate fields: 

(1) The header. IDO loads a constant logic 1. 
(2) The manufacturer code. ID11-ID1 load an 11-bit manufacturer code. 

This code is derived from a scheme managed by the Joint Electron 
Device Engineering Council (JEDEC) — see IEEE (1990) and 
JEDEC (1986). The code can uniquely identify up to 2032 
manufacturers (since 16 codes are not used). If more than 2032 
manufacturer codes are issued by JEDEC, then the scheme will result 
in the reuse of some code values within the manufacturer code field. 
However, the chance that a component from an incorrect 
manufacturer will have the same code and the same test functionality 
is acceptably low. 

(3) The part number code. ID27-ID12 provide a 16-bit part number, 
chosen by the manufacturer to distinguish a chip from the others that 
the company sells. In cases where more than 2*6 cnip types are 
offered by a manufacturer, part number codes might have to be 
reused. The objective is to minimize the chance that an incorrect chip 
in a given position on a board will have the same part number as the 
correct chip type — not to provide absolute identification of the IC. 

(4) The version number code. For chips that are manufactured in several 
different versions through their lives, bits ID31-ID28 can be used to 
distinguish up to 16 variants. 

The data loaded by the USERCODE instruction may be organized as the 
part's programmer sees fit. It must be programmable at the same time (and in 
the same way) as the function of the chip is programmed. 



3.10. Boundary-scan register instructions 

The boundary-scan register is a shift register based structure comprising a 
variety of different cell designs matched onto the requirements of the 
particular component. Different cell designs are used according to the type 
of system pin concerned (input, output, 3-state, bidirectional) and according 
to the set of boundary-scan instructions supported. 

A simplified view of a boundary-scan register is shown in Figure 
3.11. 

Figure 3.11 A simplified view of the boundary-scan register. 

An example implementation for a cell that could be used in each of 
the locations shown in Figure 3.11 is given in Figure 3.12. 

The connections labelled PI, PO, SI, and SO in Figure 3.12 are 
connected to adjacent cells, the on-chip system logic, and the system pins as 
shown in Figure 3.11. In Figure 3.12, the signals ClockDR, ShiftDR, and 
UpdateDR are generated by the TAP controller in response to changes at the 
TCK and TMS input pins. The Mode input is controlled according to the 
type of pin connected to the cell (input, output, etc.) and the specific 
instruction selected. 

Use of this sample cell design, with appropriate signals supplied to 
the Mode input of each cell, will result in a component that supports the 
SAMPLE/PRELOAD, EXTEST, and INTEST instructions described below. 
Other cell designs are possible that meet the requirements of this standard 
for different sets of instructions. For example, if the INTEST instruction 
were not supported in a given design, R2 and M2 would be omitted from 
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This mandatory instruction allows a snapshot of the normal operation of the 
component to be taken and examined. The taking of this snapshot is 
arranged so as to have no effect on the system operation that it monitors. 
The instruction also allows data values to be loaded onto the latched parallel 
outputs of the boundary-scan shift register prior to selection of other 
boundary-scan test instructions. This instruction must select only the 
boundary-scan register to be connected between TDI and TDO in the Shift­
DR controller state. There is no required binary value that must be decoded 
as the SAMPLE/PRELOAD instruction. When SAMPLE/PRELOAD is the 
current instruction, test logic operation is not permitted to have any effect on 
operation of system logic or on the flow of signals between the IC's system 

Figure 3.12 An example boundary-scan cell design. 

cells that feed data from a system pin to the on-chip system logic. The input, 
PI, would then be connected directly through the cell to the output, PO. 

As the boundary-scan register instructions are discussed, we note for 
each: 

(1) whether the instruction is mandatory or optional; 
(2) which test data registers can be connected in the serial path between 

TOIandTDO; 
(3) restrictions (if any) on the choice of binary codes for the instruction; 

and 
(4) flow of data between the component's system pins, the boundary-

scan register cells, and the on-chip system logic. 
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pins and on-chip system logic (that is, the Mode signals for all cells should 
be set to 0). 

The sampling mechanism of the SAMPLE/PRELOAD instruction 
has the effect of loading the states of all signals flowing through system pins 
into their corresponding boundary-scan register cells on the rising edge of 
TCK during the Capture-DR controller state (Figure 3.13). (As in later 
figures, the paths followed by signals when the appropriate instruction is 
selected are shown as bold lines.) This capability allows the state of the 
interconnect network of a machine to be captured at a desired moment (for 
example, upon a failed parity check) by having the requisite edge of the 
signal feeding TCK triggered by a specified system event. 

Figure 3.13 Signal flow when the SAMPLE/PRELOAD instruction is 
selected. 

The preloading mechanism allows an initial data pattern to be placed 
at the latched parallel outputs of boundary-scan register cells (for example, 
in cells connected to pins driving off-chip) prior to selection of some other 
boundary-scan test operation. For example, the EXTEST instruction (to be 
discussed in Section 3.10.2) is used for testing the interconnection of chips. 
It is very desirable that predetermined and non-damaging signals be driven 
out of chips on a board while the first test pattern to be applied to the 
interconnect is being scanned into the boundary-scan register. This aim can 
be achieved by preloading the same boundary-scan register. As soon as the 
EXTEST instruction has been transferred to the parallel output of the 
instruction register, preloaded data will be driven through the system output 
pins of each IC; this situation will remain in effect while scanning of 
external test patterns is going on. 
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Shifting of data for sampling and preloading can occur concurrently 
when required — while sampled data is shifted out, preloading of new data 
can occur. 

3.10.2. EXTEST 

One of the principal motivations for the development of the standard was the 
need for a non-contact method of testing board (and system) interconnect — 
see Beenker (1985), Jarwala and Yau (1989), and Yau and Jarwala (1989). 
The EXTEST instruction is the key to the standard's response to that need. 
The EXTEST instruction is, therefore, mandatory. There may be more than 
one binary code that is interpreted as EXTEST; however, one of these codes 
must be the 'all-OY instruction code. 

When EXTEST is the current instruction, the boundary-scan register 
is the one and only register that is to be connected between TDI and TDO 
for data scanning purposes. While the EXTEST instruction is selected in a 
chip: 

(1) system logic of the chip must be controlled such that it cannot be 
damaged as a result of signals received at the system input or system 
clock input pins; 

(2) the state of all signals driven from system output pins is completely 
defined by the data shifted into the boundary-scan register and 
changes only on the falling edge of TCK in the Update-DR controller 
state; and 

(3) the state of all signals received at system input pins is loaded into the 
boundary-scan register on the rising edge of TCK in the Capture-DR 
controller state. 

The EXTEST instruction allows circuitry external to the component 
package to be tested. Typically such circuitry would be the board 
interconnect. Clusters of components that lack boundary-scan registers can 
be statically tested using the same functionality although complex clusters 
would require more sophisticated diagnostic systems than would 
interconnect alone. During use of the EXTEST instruction, boundary-scan 
register cells at output pins are used to apply test stimuli, while those at input 
pins capture test results (Figure 3.14). Captured results are scanned out of 
the serially linked boundary-scan registers of a board while the next set of 
test input values is scanned in. 

As was suggested in Section 3.10.1, the first test stimulus to be 
applied using the EXTEST instruction should be shifted into the boundary-
scan register using the SAMPLE/PRELOAD instruction. This is the most 
judicious approach because, when the change to the EXTEST instruction 
takes place in the next occurring Update-IR controller state, known data will 
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Figure 3.14 Signal flow when the EXTEST instruction is selected. 

be driven immediately from the component onto its external connections. 
Where a total of N tests are to be applied using the EXTEST instruction, 
stimuli for tests 2 to N will be shifted in while the results from tests 1 to N -
1 are shifted out. Note that, while the results from the final test (test N) are 
shifted out, a determinate set of data should be shifted in that will leave the 
board in a consistent state at the end of the shifting process. This can be 
achieved by shifting the stimuli for test N (or indeed any other test) into the 
boundary-scan register for a second time. 

Note that the boundary-scan register cells located at input pins may 
optionally be designed to allow signals to be driven into the on-chip system 
logic when the EXTEST instruction is selected. This allows user-defined 
values to be established at the system logic inputs, preventing misoperation 
in response to noise signals arriving from the board-level interconnect. The 
values driven may either be constant for the duration that EXTEST is 
selected (for example, by including a blocking gate at the input to the system 
logic) or they may be loaded serially through the boundary-scan register. 

The EXTEST instruction can be entered by holding TDI at a 
constant low value and completing an instruction-scan cycle of sufficient 
duration to fill each instruction register on the board-level serial data path. 
As in the case of the BYPASS instruction, this may simplify demands on the 
ATE or bus master device which controls a test. 

The data loaded into boundary-scan register cells located at system 
output pins (2-state, 3-state, or bidirectional) in the Capture-DR controller 
state when the EXTEST instruction is selected should be independent of the 
operation of the on-chip system logic. Where followed, this recommendation 
ensures that data shifted out of the component in response to the EXTEST 
instruction is not altered by the presence of faults in a chip's system logic. 
This simplifies diagnosis since any errors in the output bit stream can only 
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be caused by faults in off-chip circuitry, in board-level interconnections, or 
in boundary-scan registers used to apply the test. 

3.10.3. INTEST 

INTEST is one of two optional instructions defined by the standard that 
allow testing of on-chip system logic after a component is assembled on a 
board. The binary value(s) that are decoded as the INTEST instruction may 
be selected by the component designer's specification. Using the INTEST 
instruction, test stimuli are shifted in one at a time and applied to the on-chip 
system logic. To achieve this, on-chip system logic must be capable of 
single-step operation while INTEST is the current instruction. Internal test 
results are captured in the the IC's boundary-scan register and are examined 
by subsequent shifting. Initial data set-up for such a test can be achieved 
using the SAMPLE/PRELOAD instruction. 

The INTEST instruction must select the boundary-scan register to be 
the one and only register connected between TDI arid TDO for shifting 
access. When INTEST is the current instruction: 

(1) the state of all signals driven from system output pins must be 
completely defined by data previously shifted into the boundary-scan 
register and is allowed to change only on the falling edge of TCK in 
the Update-DR controller state; 

(2) the state of all non-clock signals driven into the system logic from 
the boundary-scan register must be completely defined by data 
previously shifted into the register; 

(3) the state of all signals output from the system logic to the boundary-
scan register must be loaded into the register on the rising edge of 
TCK in the Capture-DR controller state. 

The INTEST instruction allows slow speed (static) testing of on-chip 
system logic (Figure 3.15). Each test pattern and response must be shifted 
through the boundary-scan register. While an INTEST-based test is 
proceeding, the logic values at the component output pins are defined from 
the boundary-scan register. This requirement ensures that surrounding 
components on an assembled board are supplied known signal levels while 
on-chip system logic testing is in progress. A consistent, 'safe' set of data 
values would be shifted into the appropriate stages of the boundary-scan 
register using the SAMPLE/PRELOAD instruction prior to selection of the 
INTEST instruction. This 'safe' data pattern is then reloaded into boundary-
scan control cells and the cells associated with chip outputs each time a new 
INTEST test pattern is shifted into the boundary-scan register. 

As noted above, the approach taken with the INTEST instruction 
requires that on-chip system logic can be operated in a single step mode — 
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Figure 3.15 Signal flow when the INTEST instruction is selected. 

where the circuitry moves one step forward in its operation each time 
shifting of the boundary-scan register is completed. Note that, for each such 
test step, the latched parallel output of the boundary-scan cell at the system 
output pin is updated from data shifted in before the contents of the shift 
register is overwritten with a new test response. 

While the INTEST instruction is selected, an IC's boundary-scan 
register assumes the role of the fixture and pin electronics of an ATE used 
for stand-alone component testing. Cells at non-clock system input pins are 
used to apply test stimuli, while those at system output pins capture 
responses. Stimuli and responses are moved into and out of the circuit by 
shifting the boundary-scan register. 

To achieve single step operation, on-chip system logic can be 
expected to receive a sequence of clock events between application of the 
stimulus and capture of the response. A designer's specification of boundary-
scan cells for system clock input pins would allow clocks for on-chip system 
logic to be provided in several ways while INTEST is the current 
instruction. Here are some examples: 

(1) The signals received at system clock pins can be fed directly to the 
on-chip system logic as they would be during non-test operation. 
When this approach is taken, off-chip clock sources should be 
handled in such a way that, during internal testing via INTEST, clock 
signals received by the component change state only in the Run-
Testlldle controller state. In this way, on-chip system logic operation 
can be inhibited while test data is shifted through the boundary-scan 
register. Figure 3.16 illustrates how a system clock applied to a 
component should be controlled during INTEST-based testing of on-
chip system logic. 



Figure 3.17 Use of TCK as clock for on-chip system logic during INTEST. 

(2) On-chip system logic can be supplied with clock signals derived 
from the input signal to TCK in the Run-Testlldle controller state. In 
all other controller states, such clocks should not change state (Figure 
3.17). 

(3) Circuitry may be built into the component which allows on-chip 
system logic to complete one step of operation upon entry into the 
Run-Testlldle controller state. For example, if the component were a 
microprocessor, it would be permitted to complete a single 
processing cycle; this might be achieved by internal generation of a 
pulse on the processor's hold signal. In such a case, the clock(s) 
applied at system clock pin(s) during the test could be free-running. 

(4) Clock signals can be loaded serially via the boundary-scan path in the 
same manner in which non-clock signals for the on-chip system logic 
are supplied. This would require the boundary-scan register to be 
loaded for each distinct clock signal state — twice for a single-phase 
clock. This may be a hazard-prone operation for certain circuit 
designs. 

The standard recommends that for boundary-scan register cells 
located at system input pins (clock or non-clock) or at bidirectional pins 
configured as inputs, the data loaded in the Capture-DR controller state 
when the INTEST or RUNBIST (see Section 3.10.4) instruction is selected 
should be independent of the operation of off-chip circuitry or board-level 
interconnections. Where followed, this approach ensures that data shifted out 
of a component in response to the INTEST instruction is not altered by the 
presence of faults in off-chip system logic, board-level interconnections, and 

Figure 3.16 Control of applied system clock during INTEST. 
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so on. This will simplify diagnosis; any errors in the output bit-stream can be 
caused only by faults in on-chip system logic or the boundary-scan register. 

3.10.4. RUNBIST 

In many cases, it may be desirable to put more of the burden of test into the 
product itself, rather than on an external tester. Contemporary built-in self-
test (BIST) technology is beginning to make this possible with relatively 
little circuit overhead or performance penalty (Scholtz et al, 1988). The 
optional RUNBIST instruction causes execution of a self-contained self-test 
of the component. Its binary encoding is left to the discretion of the 
designer. Use of the RUNBIST instruction allows a component user to 
determine the health of a component without the need to load complex data 
patterns and without the need for single step operation (as required for the 
INTEST instruction). With this capability in place, it becomes possible for 
all components on a board that offer the RUNBIST instruction to execute 
their self-tests concurrently or in groups limited by power consumption or 
heat dissipation requirements; thus, a rapid health check for assembled 
boards can be provided. This has particular relevance to field service and 
maintenance. 

RUNBIST is an important instance of the flexibility that the 
standard offers in providing a gateway (the TAP) through which powerful 
instructions can be passed to an IC when it has become a component of an 
assembled system. 

The standard allows the development of public and private 
instructions which could cause execution of BIST in various subsections of 
an IC. (Such capabilities could contribute to support of failure mode 
analysis.) The RUNBIST instruction is intended to serve as a model for 
other BIST instructions and, when it is feasible to do so, to be a vehicle by 
means of which designers could link all self-testing circuitry within an IC 
into a single BIST process for the entire entity. The standard recommends 
that RUNBIST be implemented wherever possible. 

Self-test operation accessed via the RUNBIST instruction must 
execute only in the Run-Testlldle controller state; and when RUNBIST is the 
current instruction, the test data register into which the results of the self-
test(s) will be loaded must be connected for serial access between TDI and 
TDO in the Shift-DR controller state. (This register can be the boundary-scan 
register.) The result of the self-test(s) executed in response to the RUNBIST 
instruction must be loaded into the designated test data register no later than 
the rising edge of signal input to TCK in the Capture-DR controller state. 

The developers of the standard intended the RUNBIST instruction to 
be an encouragement for designers to create as simple an interface as 
possible for self-testing ICs embedded in systems. Therefore, they required 
that where a test data register (other than the boundary-scan register) must 
be initialized prior to execution of the self-test, this must occur at the start of 
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the self-test without any requirement to shift data into the component — 
there cannot be any requirement to enter seed values into any test data 
register other than the boundary-scan register. Moreover, where a 
component includes multiple self-test functions, these may be executed in 
response to the RUNBIST instruction either concurrently or in a sequence 
determined by the component manufacturer. In the latter case, all sequencing 
must be taken care of within the component without requiring alteration of 
instruction register contents or other external direction. 

A number of the requirements in the standard are there for purposes 
of isolation — to assure a repeatable self-test result for fault-free circuits and 
to protect off-chip circuitry during self-test. The design of the component 
must ensure that results of self-tests executed in response to the RUNBIST 
instruction are not affected by signals received at non-clock system input 
pins; and data shifted out of a component, following the completion of an 
execution of a self-test accessed using the RUNBIST instruction, must be 
independent of the operation of off-chip circuitry or board-level 
interconnections. 

When RUNBIST is the current instruction, the state of all signals 
driven from system output pins must be completely defined by data 
previously shifted into the boundary-scan register (for example, by use of 
the SAMPLE/PRELOAD instruction as described in Section 3.10.3); and 
states of parallel output registers or latches in boundary-scan register cells 
located at system output pins (2-state, 3-state, or bidirectional) are not 
permitted to change while the RUNBIST instruction is selected. In contrast 
to the INTEST instruction, the data values driven through the system output 
pins are held while the RUNBIST instruction is selected. For a boundary-
scan register cell located at a system output pin (see Figure 3.12), the 
UpdateDR signal should be held at 0 while the RUNBIST instruction is 
selected and the Mode input should be held at 1. 

While the RUNBIST instruction is selected, boundary-scan register 
cells associated with non-clock system inputs of a chip may simply be 
loaded with constant, 'safe' values. Alternatively, the boundary-scan register 
may act as a pattern generator and/or signature compactor in the Run-
Test/Idle controller state — provided the states of parallel output registers or 
latches are unchanging as required above. 

The specification of boundary-scan cells for system clock input pins 
allows the clocks for the on-chip system logic to be obtained in one of two 
ways while the RUNBIST instruction is selected: 

(1) The signals received at system clock pins can be fed directly to the 
on-chip system logic as they would be during non-test operation of 
the component. Where this is done, the design of the component 
must ensure that self-test executes only in the Run-Testlldle 
controller state. However, the clock may be active in other controller 
states. 



MACHINE-READABLE DESCRIPTIONS OF ANSI/IEEE STD 1149 J-COMPATIBLE ICS 75 

(2) The on-chip system logic can be supplied with clock signals derived 
from the signal input at TCK in the Run-Testlldle controller state. In 
this instance, in all other controller states, the clocks should not 
change state. 

There are certain, additional, commonsense requirements placed on 
an IC that implements RUNBIST and on such an ICs documentation. All 
stages of the test data register selected by the RUNBIST instruction must be 
set to determinate logic states (0 or 1) in the Capture-DR controller state 
(that is, while the test result is loaded). A duration for the test executed in 
response to the RUNBIST instruction must be specified (for example, by 
citing a number of rising edges of the signal at TCK or of a system clock). 
Because it is likely that self-test in one component may complete before the 
self-test in another, the test results produced by the execution of the 
RUNBIST instruction and deposited in the specified test data register ready 
for shifting out of the IC must be stable through the period of delay before 
the Capture-DR controller state is entered, which period is likely to be 
unpredictable at the time of the component's design. Use of the RUNBIST 
instruction must give the same result in all versions of a component. These 
requirements were included in the standard to ensure that the test for an 
assembled board is independent of the versions of components mounted on 
it. Such independence is an important consideration when working in a 
maintenance or repair environment, where the versions of components used 
on a board may very well be unknown. The standard's requirement can be 
met by forming the exclusive-OR of the result from execution of the 
RUNBIST instruction with a fixed (version-dependent) pattern. The output 
from this function would become the result loaded into the boundary-scan 
register or other test data register connected between TDI and TDO during 
the time the RUNBIST instruction is current. 

3.11. Machine-readable descriptions of ANSI/IEEE Std 
1149.1-compatible ICs 

While ANSI/IEEE Std 1149.1 defines the behaviour of the boundary-scan 
register and the other functional blocks shown in Figure 3.2, a number of 
parameters will vary from design to design. These include: 

O the lengths of the instruction register and boundary-scan register (that 
is, the number of shift register based stages in each); 

• the binary values used to encode each instruction defined by the 
standard (for example, EXTEST); 

D the mapping of input/output pins onto boundary-scan cells; and 
• the package pins assigned to the signals of the TAP. 
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A machine-readable language has been proposed that will facilitate 
communication of such parameters from the IC designer to the board 
designer, to electronic design automation (EDA) tools, or to a test system 
(Parker and Oresjo, 1991). In effect, the language — known as the 
boundary-scan description language (BSDL) — will act as an electronic 
data sheet for the test circuitry defined by the standard. 

The language is a subset of the VHSIC hardware description 
language (VHDL) (IEEE, 1987) and is in the process of being made a 
formal part of ANSI/IEEE Std 1149.1. As will be discussed later, the 
availability of such a language will ease the development of EDA tools to 
support the use of ICs that are compatible with the standard. 

3.12. Using boundary-scan 

The boundary-scan paths included in ICs that conform to the standard will 
be used in many different ways by different companies. Key influences in 
determining precisely how the boundary-scan paths are used will include: 

O the density of the board design; 
D the type of loaded-board test system to be used; 
O and, most significantly, the extent to which the board is populated 

with boundary-scan-compatible ICs (rather that ICs that do not 
conform to the standard). 

Inevitably, many ICs that do not contain the test features defined by the 
standard will continue to be used. While some board designs may only use 
ICs that conform to the standard, others may use one or just a few. 

In the following discussion, a range of situations illustrative of those 
that will occur in practice will be discussed. For each, a method of using the 
available boundary-scan circuitry to reduce test costs will be described and 
the impact on the board design and on EDA tools considered. The focus is 
on the move from in-circuit testing — the dominant test technique for 
loaded-boards in the 1980s — towards 100% boundary-scan testing. 

Boundary-scan can also be used to ease functional (from the 
connector) testing where this technique is used. Here, the benefit of 
boundary-scan is that connections internal to the loaded board become 
controllable and/or observable without the need for probes or other forms of 
access. The greater the number of ICs with boundary-scan, the greater the 
controllability, observability, and testability of the loaded board. The 
particular advantage of boundary-scan in this context is that it will most 
likely be implemented in new state-of-the-art, high complexity ICs. These 
are precisely the components that cause the largest problems during test 
development for loaded boards. 
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3.12.1. Case 1: One or more isolated boundary-scan ICs 

It will, of course, be some time before the inclusion of the features defined 
by the standard is the norm, rather than the exception, in off-the-shelf 
catalogue ICs. Therefore, it is probable that many boards will be designed 
that contain either a single IC with boundary-scan or a small number of such 
ICs that are isolated from one another by ICs without boundary-scan (that is, 
there are no direct interconnections between the ICs with boundary-scan). 
This situation is illustrated in Figure 3.18. 

Figure 3.18 Isolated boundary-scan ICs. 

In such situations, it is likely that an in-circuit test approach will be 
used to test all ICs — those with and those without boundary-scan. 
Therefore, bed-of-nails probes must be connected to all chip-to-chip 
connections and to the TAP pins of the ICs with boundary-scan. The 
requirement for probe access must be considered during layout of the PWB, 
because there are limitations on the size of targets that can be probed and on 
the proximity of one probe target to another. Further, it is a common 
requirement that all probe targets must be located on one side of the PWB. 
Unfortunately, few EDA vendors offer tools to help in this task. 

In-circuit testing 

In the case of in-circuit testing, each board interconnection is accessible to 
the test system, typically through a bed-of-nails probe. To test that each IC 
has been correctly soldered onto the board, the test system applies a test 
through the probes connected to the ICs input and output points. This test 
will check that: 

(1) Is and Os driven onto board-level connections that feed input pins 
flow through the solder joint and into the IC; and 

(2) the outputs of the IC are able to drive connections to both 1 and 0. 



For an IC without boundary-scan, these tasks are achieved by developing a 
test that detects (as a minimum) faults on the input and output pins. Task (1) 
is achieved by setting each input to both 1 and 0 and controlling the IC such 
that a change in the input signal (to 0 or 1, respectively) will cause an 
observable change at one or more output pins. Task (2) requires that each 
output is set to each logic value at some point during the test — a task that 
may be completed as a result of task (1). 

Development of the test requires an understanding of the IC's normal 
behaviour, and therefore becomes more difficult as the complexity of the IC 
increases. For example, it has been estimated that some 6 man-months of 
effort would be required to develop a test module for the Motorola 
MC68040 microprocessor. 

Two other factors should be noted: 

(1) Typically, the test module placed in an in-circuit tester's library will 
be developed on the assumption that no input pin is connected 
directly to power or ground and that all pins can be accessed by a 
bed-of-nails probe. Where this is not the case, a new test module will 
need to be developed. For complex ICs, this task may be costly. 

(2) The test will fail if there is a fault in the connection between any bed-
of-nails probe and the IC. However, it may not allow the fault to be 
diagnosed, for example, to an open-circuit joint at a specific pin. 

Developing in-circuit tests for boundary-scan ICs 

If in-circuit testing is to be used, the principal benefit that may be gained 
from the existence of boundary-scan in an IC is a reduction in test 
development time, and thence in time-to-market. This benefit may be 
significant, since time-to-market is recognized as a key factor in determining 
the profitability of a new product. 

For an IC with boundary-scan, an in-circuit test module can be 
created without any knowledge of the IC's 'normal' behaviour — all that is 
required is a specification of the boundary-scan path. The reason is that the 
test need only check that signals can flow between each bed-of-nails probe 
and the corresponding boundary-scan cell. Signals applied to the inputs of 
the IC can be observed using the 'load-and-shift' operation of the boundary-
scan path and no longer need to be made observable at the outputs. Outputs 
can easily be set to both 1 and 0 using the boundary-scan path. 

Given a knowledge of the boundary-scan path's behaviour (which is 
defined by the standard) and of the parameters of the test circuitry of the 
specific IC (which are defined by its BSDL file), an EDA tool could develop 
an in-circuit test module in a matter of minutes. Further, the tool could 
readily be rerun were any IC pins to be tied directly to power or ground on a 
particular board. 

Because faults at input pins would cause an error to be detected by a 
specific boundary-scan cell, rather than at an output pin, the resulting test 



would allow location of faults to a particular probe-to-chip connection. (This 
is an improvement compared to a conventional in-circuit test.) 

Design requirements 

In addition to the continuing need for tools to assist in the layout of PWBs 
such that they can be reliably probed, a need will arise for tools to link the 
TAPs of the individual boundary-scan ICs into one or more board-level 
paths. The number and structure of such paths may need to be determined 
according to the ICs used in the particular design, as was discussed earlier. 

The use of these tools will be similar to that of tools that assemble 
individual scannable flip-flops or latches into serial paths within an IC. 
Where scan design is used at the IC level, it is common for the designer to 
focus solely on the task of interconnecting flip-flops, latches, and other logic 
such that the functional specification is met. During this stage of design, the 
need for the flip-flops and latches to be assembled into scan paths is ignored. 
Scan path assembly occurs once the functional design is complete and may 
be performed automatically by EDA tools. Note that, provided that the 
design rules for scan design are met, the ordering of the individual flip-flops 
and latches on the scan paths is largely arbitrary. The ordering can be 
selected to ease implementation, test development, and test application. 

The ordering of boundary-scan ICs on the board-level scan path(s) 
can be similarly chosen to minimize costs. 

3.12.2. Case 2: Clusters of boundary-scan ICs 

As the number of boundary-scan ICs available to the designer increases, 
boards will begin to contain connections that go directly between such ICs 
(Figure 3.19). These connections can be tested using the boundary-scan 
paths and hence there is no need for them to be accessible to bed-of-nails 
probes. 

With care, some probes can also be eliminated on connections that 
flow from a boundary-scan IC to one without boundary-scan, or vice versa. 
Cases where this can be done include: 

O Networks where the connection feeds from a boundary-scan ICs 
output pin to one or more input pins on ICs without boundary-scan. 

O Networks where the connection feeds from an IC without boundary-
scan to an input pin on a boundary-scan IC. 

For more complex networks, a probe will probably still be required. 
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Figure 3.19 Clusters of boundary-scan ICs. 

Test development and application requirements 

Clearly, if probes are to be eliminated on boundary-scan-only connections, 
tools must be available that can generate tests for such connections. Also, the 
test system must be capable of applying these serial tests. 

In cases where a probe is eliminated on a connection that includes an 
IC without boundary-scan, additional support tools will be required to ease 
the process of converting an in-circuit test module so that parts of it can be 
applied using boundary-scan paths (de Jong, 1990): 

D parts of the test that would have been applied using the eliminated 
probe(s) must now be shifted into the appropriate boundary-scan 
cell(s); 

D similarly, parts of the test result that would have been sensed using 
the eliminated probe(s) must now be observed by loading and 
shifting of appropriate boundary-scan cell(s). 

Application of tests using the boundary-scan path must, of course, be 
synchronized to the conventional application of tests using bed-of-nails 
probes connected to signals that are not accessible via boundary-scan. 

Design requirements 

As more boundary-scan ICs become available on each board, the need for 
automated support for scan path assembly will increase, as outlined under 
Case 1. 
Also, as the opportunity increases to eliminate bed-of-nails probes for some 
board interconnections, so the need for effective support tools for use during 
board layout rises. A tool is now needed that can identify where 
probes may be omitted and ensure that acceptable probe targets exist on all 
other interconnections. This tool will require a knowledge of: 
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Figure 3.20 100% boundary-scan ICs. 

n the circuit schematic; 
• the PWB layout; and 
O the boundary-scan characteristics of each boundary-scan IC (for 

example, as defined in its BSDL file). 

3.12.3 Case 3: All ICs have boundary-scan 

Once all the ICs on a board have boundary-scan, full advantage may be 
taken of the features defined by the standard — assuming that appropriate 
design and test development tools are available. These tools should include: 

D a scan path assembler; 
D boundary-scan test generation tools for chip-to-chip interconnect; 

and 
• tools to assist in functional test of the loaded board, using boundary-

scan to replace logic analysis and manual guided probing (Lefebvre, 
1990). 

Because boundary-scan can be used to test all chip-to-chip 
connections, there is no longer any need to ensure that the PWB layout can 
be probed. All restrictions placed on PWB layout to ensure suitability for in-
circuit testing can be eliminated. 

3.13. Conclusion 

This chapter has provided an introduction to ANSI/IEEE Std 1149.1 and 
identified ways in which systems companies can reduce their test costs as 
boundary-scan ICs become more widely used. To be able to gain the full 
benefit from the boundary-scan circuitry that is available on a particular 
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board design, tools are necessary to help in tasks such as PWB layout and 
test development. It is hoped that the EDA and automatic test industries will 
soon make such tools available. 
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CHAPTER 4. 

Planning for Design-
for-Test 

4.1 Introduction 4.4 The test strategy 
4.2 Planning for a testable 4.5 Choosing a design-for-test 

design strategy 
4.3 Testability checklists and 4.6 Setting a design-for-test budget 

design reviews References 

4.1. Introduction 

Chapters 1 to 3 have discussed the need to design for testability and have 
described some of the most widely used design-for-test techniques. 

This chapter considers how a development project can be managed 
so that the result is a testable design. As a preface to Part 2, the question of 
how to choose between the alternative design-for-test techniques is 
discussed. 

4.2. Planning for a testable design 

For the purposes of discussion, it is assumed that the development task for a 
new module or board design is composed of four sequential stages: 
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(1) Product definition. 
(2) Architectural design. 
(3) Detailed design. 
(4) Transfer to manufacture. 

The following sections indicate, from a test viewpoint, the tasks that should 
be performed in each stage. 

4.2.1. Product definition 

In this stage, the specification for the module or board is produced. This will 
detail the functions to be performed, the operating speed or throughput, and 
some aspects of its physical appearance — for example, the fact that a 
double-height EuroCard is to be used or the types of connector to be 
provided. 

To allow initial planning for design-for-test, the following 
information should be included in the product specification: 

O A definition of the function or functions to be performed, including 
the characteristics of and relationship between signals at its external 
interfaces. 

O An estimate of the total number of units to be manufactured over the 
product life, with the quantity to be manufactured on a year-by-year 
basis if possible. 

•I Definitions of any features that must be included in the product to 
assist in the maintenance and diagnosis of the system of which it is a 
part. For example, to support field fault diagnosis to a replacable 
unit, it might be a requirement that a communications interface card 
(for example, Ethernet) be provided with various loop-back facilities. 

O Definitions of any features to be included to allow the health of the 
module or board to be verified in the field (for example, power-up 
self-test). 

O A statement of the assembly method to be used — surface-mount, 
dual-in-line/plated-through-hole. 

• The expected performance of the production test program — the 
target fault types, the fault coverage, the run time (fault-free and 
including diagnosis), and the ATE types available. 

O The 'budget' for design-for-testability. The aim here is to allocate a 
fraction of the total resources to design-for-test. For example, an 
amount of board area or a share of the total component cost should 
be allocated to design-for-test at the outset and relinquished for other 
use only if not required for that purpose. Too often, the designer uses 
all the available board space for circuitry required to meet the 
functional specification, with the result that none is left for design-
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for-test. Under these circumstances, little can be done to render the 
design testable. (The question of how much budget to allocate for 
design-for-testability is discussed further in Section 4.6.) 

In addition, the target manufacturer and repair organization (if different) 
should be identified wherever possible. For high-volume products (say, 
10,000+ units per annum) this is essential, because the greatest economy in 
design-for-test can be achieved only by tailoring the circuit design to the 
target ATE systems (see Section 4.5.3). 

A checklist is included in the Appendix to help in recording the 
above information. 

4.2.2. Architectural design 

Alternative block-level designs for the circuit are explored and key design 
decisions are made. For example, a decision may be made on the 
microprocessor family to be used and/or whether custom ICs will be used. 
Increasingly, simulations are performed at a behavioural level as a part of 
this activity — for example, using VHDL (IEEE, 1987). 

As a part of the design-for-test process, the following should be 
created and reviewed during this phase: 

D An outline bill of materials (BOM) showing the key types of 
component that might be used (for example, the microprocessor 
family selected). This should be reviewed against any known 
testability requirements or known test problems, for example as 
advised by the target manufacturer based on prior experience. The 
Component Selection checklist in the Appendix can be used to assist 
in this review. 

D Specifications for custom ICs, including a description of design 
features to be included to help test the loaded board — for example, 
ANSI/IEEE Std 1149.1 (IEEE, 1990). 

G A test plan for the overall functional test or self-test of the complete 
product. This should detail the test to be performed, the way that the 
tests are to be applied, and the way that results will be observed. 
While it should not specify precise test stimuli or responses, it should 
show the routes to be followed to get this data through the circuit to 
or from each component or functional block. Consider, for example, 
the RAM block of a microprocessor-based board design. The part of 
the test plan that deals with this block might specify that the ATE 
will drive and sense data via the microprocessor bus and that the 
microprocessor and other components should be disabled during this 
stage of the test so that this can be achieved. 
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4.2.3. Detailed design 

Detailed circuit schematics and board layouts are created, logic-level 
simulations are performed, and prototypes are constructed and debugged. 

The testability of the design will be considered in detail during this 
stage and the following items should be created and reviewed: 

O A final BOM showing the components used to construct the loaded 
board. As for the outline BOM, this should be reviewed against any 
known testability requirements or test problems. 

O A complete documentation pack for the design, including a 
description of any design-for-test features added to help in testing. 
Why spend time and money on design-for-test if you're not going to 
tell the test engineer what you've done? 

O Test waveforms for any custom ICs or programmable devices (for 
example, PLAs) included in the design. 

• A functional test for the complete board design. This,is the detailed 
implementation of the test plan created during the previous stage. 
The precise patterns of Is and Os that will be applied and sensed have 
now been computed. 

4.2.4. Transfer to manufacture 

The finished design is transferred to the selected manufacturer. The 
following test-related activities will occur during this stage: 

O Identification of the target manufacturer and (where appropriate) 
repair organization, if not identified previously. Note that this 
decision can only be left until this late stage in cases where the 
design does not 'push' any limits. For example, it should not include 
any timing-critical signal paths, use novel components, or have 
smaller than average board geometries. It should, in fact, be a 
perfectly average design. 

• Conversion of tests for custom ICs and programmable components 
and of the functional test for the complete board into the formats 
required by the target ATE. 

O Extraction of data from the printed circuit layout to permit 
construction of a test fixture. 

4.3. Testability checklists and design reviews 

To help manage the process of designing a testable board, Part 2 of this book 
contains a detailed set of rules and guidelines. This material is supported by 
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a set of checklists, included in the Appendix. These checklists should be 
completed by the designer during the appropriate stage (mostly, during 
detailed development) and used as an input to design reviews. The checklists 
allow the project manager or customer to verify that design-for-test issues 
have been properly considered and, where appropriate, that any violations 
have been signed off by competent staff. 

4.3.1. 'Dear Designer...' 

It is appreciated that designers have many issues to consider while 
developing a new product and that they must often work within tight 
timescales and budget limits. For this reason, this book defines a design-for-
test methodology that is as straightforward as possible. The aim is to ensure 
that designers can get on with the task in hand — the creation of a testable 
board design. For this reason, the various rules and guidelines have, as far as 
possible, been grouped on a task-by-task basis — for example, component 
selection, circuit design, and board layout. 

This book is not an attempt to limit the designer's freedom to innovate. 

Rather, its purpose is to help the designer develop a circuit that both meets 
the functional requirement and can be effectively manufactured, tested, and 
supported. Designs that meet the rules set out in Part 2 will usually be easier 
to debug, thus reducing the designer's task as well as that of the test 
engineer. 

4.3.2. Rules and guidelines 

Part 2 contains rules and guidelines that show how to design testable loaded 
boards. Each chapter focusses on one design activity — for example, 
component selection. 

The rules given in each chapter must be followed wherever possible 
if a particular feature or component type is present in the design. They relate 
to issues that are critical to the ability to test the loaded board and should be 
violated only with the agreement of experienced test personnel. 

In contrast, the guidelines provide freedom for the designer to make 
trade-offs between testability and other design criteria. They indicate 
problems that can occur when testing a loaded board and show how these 
problems can be avoided. Here, the aim is to give designers the information 
they need to make these trade-offs intelligently. 

The reason for including each rule or guideline is given so that the 
designer can understand the potential impact of non-conformance. 
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4.3.3. Testability checklists 

The rules and guidelines in each chapter are summarized in a checklist 
which will be found in the Appendix. The format of each of the checklists 
(with the exception of the management checklist) is similar to the example 
given in this section. 

In each checklist the rules are listed first. Rules must be followed if it 
is to be practical to test the board. For each rule, the checklist allows the 
designer (or alternative completer) three options: 

O Yes. The rule is complied with completely. 
D No. The rule is violated in some cases. If this option is selected, an 

explanation of the non-compliance should be given on an attached 
sheet. The explanation can then be considered by the test engineer for 
the design. The violation is acceptable only when agreed by the test 
engineer. 

G N/A. This rule is not applicable to the design — for example, because 
a circuit structure or component is not used. 

Note that the rules are not rigid — the designer always has the option of 
convincing the test engineer that non-conformance is acceptable. The 
important point is that the guidelines and, more importantly, the rules should 
only be neglected where justifiable. An aim of the checklists is to ensure that 
design decisions that impact testability are properly considered and recorded. 

Following the list of rules, guidelines are summarized. Because the 
designer can decide to make trade-offs between meeting the guidelines and 
achievement of other design objectives, the designer is allowed two options: 

• %. The percentage of occasions on, or extent to, which the guideline 
has been followed. It is suggested that a return of less than 75% 
should be justified by an attached explanation as if this represented a 
rule violation. 

D N/A. The guideline is not applicable. 

Clearly, the greater the number of guidelines that is followed, the higher the 
testability of the finished design will be. It is therefore suggested that an 
average rating of 75% for all applicable guidelines should be requested 
before a design is considered suitable for manufacture. 

4.3.4. Design reviews 

A design review meeting should be held at least at the end of each 
development stage. This should be attended by the designer, the test 
engineer, and others to represent different interests in the design: 
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Component selection 

(1) Product identity 

Product Version 

(2) Rules. The product must meet these requirements. 

Item 
1 

Rule description 
All device-specific testability 
requirements have been 
implemented 

Ref. 
7.2.3 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

3 

4 

Guideline description 
Components are in the approved 
components list for the target 
manufacturer 
Simulation models are available 
for component used 
ICT test data is available for 
components used 
Components used contribute to the 
'buy testable' policy 

Ref. 
7.2.1 

7.2.1 

7.2.1 

7.2.2 

% NIA 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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O Can it be manufactured? 
O Does it meet safety requirements? 

and should be chaired by the project manager or a neutral appointee. 
The attendees should be given a period (one or two weeks) before the 

review meeting in which they can examine the design documentation — 
including the completed checklists. They may choose to meet with the 
designer during this period to discuss any points of concern. 

At the review meeting, the designer should briefly review the 
structure of the design and the major design decisions made, with the 
objective of putting the subsequent discussion in context. The presentation 
should highlight any interesting or contentious issues — for example, the 
inclusion of a testability feature to assist in field fault diagnosis or the 
violation of a testability rule. 

The reviewers should then be allowed to raise any matters of concern 
— particularly those whose solution may impact on other interests 
represented at the meeting. 

The meeting should end with a record of the actions the designer 
should undertake to satisfy the reviewers' requirements. The expectation is 
that the designer will have met with the reviewers during the development 
process and discussed difficult issues with them. Therefore, actions agreed at 
the end of the review meeting should normally be minor. 

The minutes of the review meeting should be added to the 
documentation for the design. 

4.4. The test strategy 

4.4.1. Test stages 

In general, it will be necessary for a newly-manufactured board to undergo 
two stages of testing: 

(1) A test for assembly-induced faults to ensure that all components are 
in the correct locations and are correctly soldered to the board. 
Checks will also be made for other defects that may be introduced by 
the assembly process — for example, solder shorts between printed 
circuit tracks. This stage of testing can be performed using an in-
circuit or cluster tester or via boundary-scan paths built into the ICs. 
Note that the ability of the complete board is not checked at this 
stage. 

(2) A performance test to verify that components interact correctly over 
the required range of clock speeds or frequencies. This stage of 
testing can be performed by plugging the board into a 'mock-up' 
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working system, by using a functional tester, or through self-test 
capability built into the board design. 

A design should allow both 'assembly-oriented' and 'performance' testing to 
be performed at acceptable cost. The rules and guidelines in Part 2 are 
selected to ensure that this will be the case. 

4.4.2. Structured or unstructured design-for-test 

There is a widespread trend across the electronics industry towards use of 
structured built-in test techniques, such as boundary-scan and self-test, in 
place of tester-based techniques, such as in-circuit and functional test. The 
reasons for this were cited at the beginning of Chapter 2 — miniaturization 
is reducing test access and the operating speeds of loaded boards are 
escalating beyond the capability of the typical ATE systems. The rate of 
change to use of the structured techniques can be seen from Figure 4.1, 
which predicts the take-up of ANSI/IEEE Std 1149.1 (IEEE, 1990). 

The design-for-test strategy presented in Part 2 follows this trend by 
advocating: 

(1) that ICs compatible with ANSI/IEEE Std 1149.1 are used wherever 
possible because this will reduce test development costs for all board 
designs and, where required, allow some internal connections to be 
accessed without using a bed-of-nails; and 

(2) that as much self-test capability is provided as possible, since this 
reduces the cost of 'performance' testing and provides a valuable 
health-check facility for use in the field (for example, during system-
level fault diagnosis). 

4.5. Choosing a design-for-test strategy 

To give the most testable design at the lowest cost, the choice of which 
design-for-test technique or techniques to use for a particular board design 
must be determined by a number of factors. The most important factors, and 
the decisions made in developing the rules and guidelines in Part 2, are 
discussed in the following subsections. 

4.5.1. The type of product 

Designs will vary from low cost consumer products (such as telephones and 
calculators) to high cost 'capital' products (such as telephone exchanges and 
mainframe computers). They will include analogue and/or digital circuitry 
and operate at almost any frequency from D.C. to light. 
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Figure 4.1 Take-up of ANSI/IEEE Std 1149. 1. 

Clearly, test techniques vary considerably across this spectrum of 
product types. Testability requirements will also vary considerably, in 
particular to 'match' the board design onto the available test equipment. 

It is impossible to consider every possibility in this book. Therefore, 
the book concentrates on 'core' product types such as: 

O 100% digital board designs 
O largely-digital designs where the analogue circuitry is located at the 

periphery (and is therefore readily separated from the digital 
circuitry). 

If you have an 'unusual' product you will need to adapt the 
information given in this book to meet the particular requirements of the 
design and the test equipment. Ideally, you should involve a competent test 
engineer at an early stage. 

4.5.2. The assembly technology 

In Chapter 11, it is assumed that boards that do not use ICs compatible with 
ANSI/IEEE Std 1149.1 will be built using: 

O through-hole components (for example, dual-in-line ICs) mounted on 
plated-through-hole boards; or 

O surface-mount components spaced to give a low overall density of 
ICs on the board. 
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Where a high component packing density is required, ICs compatible with 
ANSI/IEEE Std 1149.1 will be used. 

4.5.3. The production volume 

In Chapter 1, it was mentioned that test costs fall into two types: 

O Recurring costs that are incurred for each copy of the design 
manufactured — for example, the cost of components added to 
improve testability and the cost of applying the test. 

D Non-recurring costs that are incurred once, usually during product 
development — for example, the cost of test generation. 

For products manufactured in low and medium volumes (say, up to 
10,000 units over the product's life), non-recurring costs dominate. In some 
cases, the sale price of the board will be determined exclusively by the 
development cost — the cost of the parts contributes a very small share of 
the total. In these cases, the development process (including the design-for-
test approach) needs to be uniform and routine. One simply cannot afford to 
produce a custom test strategy for each design. Therefore, the aim is to have 
an approach that is flexible, allowing it to accommodate a wide range of 
design types, and be manufacturer independent. 

The design-for-test rules and guidelines presented in Part 2 are 
designed with this aim in mind. Their goal is to keep test development costs 
and other non-recurring costs low, even if this results in slightly inefficient 
use of components or board real estate. In effect, the trade-off is between 
development time and unit cost — and this has been made in favour of 
reduced development time. 

In contrast, for high-volume products (say, in excess of 100,000 units 
over the product's life), recurring costs dominate. The drive is therefore to 
minimize the parts count and the cost of components, even if this increases 
development costs. Significant savings can be gained by achieving an 
optimum match between the design, the manufacturing process, and the test 
equipment. To achieve these savings, the test engineer must be a member of 
the design team from the outset of the project. He or she must be intimately 
involved in the creation of the design and may wish to create a design-for-
test strategy that is highly specific to the design. This will require that the 
manufacturer be identified at a very early stage, because the capabilities of 
the test equipment available will have a significant impact on the amount 
and nature of the design-for-test features that need to be added. 

For high-volume products, the rules and guidelines in Part 2 are 
offered as a starting point for the design and test engineers. The explanations 
that accompany each rule or guideline will, it is hoped, allow the purpose of 
each to be understood and the problems that may arise from violation to be 
carefully assessed. 
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4.6. Setting a design-for-test budget 

The amount that can be spent on design-for-test will, then, be determined 
primarily by the expected production volume. 

4.6.1. Added circuitry 

The majority of designs (perhaps 80% or more) are manufactured in low or 
medium volumes. As has already been mentioned, for such designs the 
principal objective is to reduce the non-recurring costs of development and 
test generation. 

For integrated circuits, Toshiba have stated (Nozuyama et al., 1988) 
that design-for-test features (such as scan paths and self-test) can account for 
up to 20% of the circuitry in a low volume ASIC. In contrast, for a high 
volume IC, such as a microprocessor, design-for-test circuitry would have to 
account for less than 5% of the total circuitry. 

This principle applies equally to board designs — the share of the 
board's cost that is attributable to design-for-test can be higher for a low-
volume product. 

For a board design, much can be accomplished by careful selection 
of the components to be used to realize the intended function (see Chapter 
7), so the number of components that will need to be added just to support 
testing can be kept low. This is especially true where components conform 
to ANSI/IEEE Std 1149.1, because these offer extensive test access to their 
input and output pins. 

It is therefore suggested that a budget is set on the order of: 

G Additional ICs. A number of ICs should be reserved for design-for-
test purposes, as shown in Table 4.1. These added ICs will, in 
general, be relatively low cost devices. As will be discussed in 
Chapter 11, it is useful if a standard board layout 'template' can be 
used that provides fixed locations for the added ICs across the range 
of board designs that use the same board style (for example, 
EuroCard). 

O Additional resistors, etc. Typically, a number of resistors and other 
discrete components will need to be added, for example to provide a 
pull-up to logic 1 that may be overridden by a tester. The added 
resistors may be grouped into a resistor pack when appropriate. 
Typically, on the order of 1 discrete components per IC is required 
for test purposes. 

The addition of a connector to allow connection between the tester and test 
access points may also be justified. 
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Table 4.1 Number of ICs to be reserved for test purposes. 

Number of ICs 
l to25 
26 to 50 
51 to 100 
over 100 

Added ICs for test 
0 or l 
1 or 2 
2 or 3 
3% to 5% of number 

4.6.2. Added design time 

Once the basic principles of design-for-test have been mastered and 
designers have become familiar with the various rules and guidelines, the 
additional design time needed to ensure a testable design will be low. 

Indeed, the inclusion of design-for-test features may well reduce the 
overall design time for complex designs, because designers will find that the 
test access they have provided helps during debugging of prototypes. 
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Part 2 

Part 2 contains a set of rules and guidelines 
that will allow the development of a testable 
loaded board design. 

The material is organized into chapters, each of 
which covers a particular design activity — for 
example, component selection or circuit 
design. 
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CHAPTER 5. 

Techniques 

5.1 Introduction registers 
5.2 Connector 'U' links 5.5 Use of simple logic gates 
5.3 3-state devices 5.6 Test support chips 
5.4 Multiplexors and shift- 5.7 Bed-of-nails 

5.1. Introduction 

The subsequent chapters show how an adequately testable circuit design can 
be created. Some of the design practices described in these chapters specify 
that signals, normally internal to the circuit design, should be controllable 
and/or observable directly by the ATE system if adequate testability is to be 
achieved. This chapter provides a catalogue of commonly-used techniques 
for improving test access to printed circuit boards. The catalogue is by no 
means complete — many other techniques can be used, the objective being 
to provide test access at the lowest practicable cost. 

Access to test connections to the product should be provided via one 
of the following (in order of preference): 

(1) The product's edge connector or other interface, if any 'spare' 
connections are available once the functional requirement is met. 

(2) Test access points accessible through a bed-of-nails test fixture (see 
Chapter 11 regarding physical placement of test access points). 

(3) Dedicated test connectors or sockets. 



100 TEST ACCESS TECHNIQUES 

Figure 5.1 Test point symbol. 

The requirement for physical test connections through one of the 
above can be reduced by adding components to the basic design, for 
example in situations where physical access is expensive (see Sections 5.4 
and 5.6). 

In this book, the symbol shown in Figure 5.1 is used to show a test 
connection to the circuit 

5.2. Connector 'U' links 

Where two or more spare pins are available on a connector, these can be 
used to separate the driving and receiving ends of a signal connection as 
shown in Figure 5.2. This will allow the connection to be controlled and 
observed during testing and, if necessary, for a different signal state to be 
applied to the input end compared to that generated within the circuit design. 

During normal operation, a 'U' link on the backplane between the two 
connector pins completes the signal path. When the board is removed from 
the backplane (for example, during testing) the two halves of the signal are 
separated, allowing direct observation of the driven values and direct control 
of the receiving devices. 

Backplane link 
reconnects signals 
to give system 
function 

Figure 5.2 Use of connector links. 
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Figure 5.3 Use of 3-state outputs and buffers. 
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5.3.3-state devices 

If the circuit contains devices with 3-stateable outputs then this facility can 
be used to allow test access to the driven connections, in addition to any 
system requirement for the device outputs to be set to high-impedance 
(Figure 5.3a). The cost of achieving access in this way is typically very low, 
since many devices include 3-state outputs. If the 3-state capability is used to 
meet the system requirement, then often inclusion of an additional gate in 
the control line will make the facility usable during testing (Figure 5.3b). 

Note that in bus-based designs (for example, microprocessor 
applications) the ability to control all devices connected to the bus so that the 
choice of bus driver is determined by the test system will allow the bus to be 
used for test access to all the blocks of logic to which it connects. 

Where no suitable devices with 3-state outputs exist in the design, 
additional 3-state buffers (for example, 74LS240) can allow partitioning or 
test access (Figure 5.3c). 

5.4. Multiplexors and shift-registers 

For highly-miniaturized designs, where access using a bed-of-nails fixture is 
difficult, multiplexors and shift registers can be used to provide test access 
from the design's edge connector, etc. 

Figure 5.4 Use of multiplexors. 
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Multiplexors allow sections of logic to be by-passed during the 
appropriate phase of testing and for the sharing of connector pins for system 
and test access (Figure 5.4). They are particularly useful where large 
amounts of test data must be supplied or observed, or where the timing of 
test patterns is critical. Where a design contains a block of logic for which 
existing test data is available, the use of multiplexors to render its inputs and 
outputs accessible to the test system will permit the existing test data to be 
re-used without modification. 

Shift-registers can provide a means of controlling or examining large 
numbers of points in a circuit through a small number of test connections. 
They are particularly useful for supplying test control signals, such as for 
enabling/disabling 3-state devices (see Section 5.3). Figure 5.5 shows two 
octal shift registers serially connected to provide access to: 

D 8 signals in the circuit that control test operation, etc. 
• 8 signals in the circuit that need to be observed during testing. 

Note that the outputs of the serial-in, parallel-out shift register are fed 
to a parallel latch within the 74LS596. By clocking the output latch only 
when shifting is complete, the test control signals do not alter while a new 
pattern is being shifted in. 

Figure 5.5 Use of shift registers 
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5.5. Use of simple logic gates 

Simple logic gates can be used to inhibit signal flow as shown in Figure 5.6, 
for example to disable signal propagation around feedback loops. The gates 
can either be provided solely for test purposes, or advantage can be taken of 
gates already present in the signal paths (for example, by adding another 
input). 

If, for example, a totem-pole TTL NAND gate is used (Figure 5.6a), 
then the output can be forced high by pulling the test access point low. This 
will permit the tester to inject signals at the gate's output using overdriving 
techniques (subject to time limits, etc.). Note that this is not recommended, 
and that the use of an open-collector gate (Figure 5.6b) is preferred since the 
output signal can be controlled without overdriving. 

5.6. Test support chips 

There are several commercially-available integrated circuits that are 
designed specifically to provide means of improving the testability of 
assembled printed circuit boards. For example, test support chips are 
available to: 

Figure 5.6 Use of simple logic gates. 

Alternatively, potential overdriving problems can be avoided by 
using a pair of NAND gates in a multiplexor-like configuration (Figure 
5.6c). 
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O provide a means of controlling signals within the circuit design; 
• provide a means of observing signls within the circuit design; and 
D replace common building blocks (for example, octal flip-flops, octal 

bus buffers, and so on) with equivalent blocks that additionally 
provide test access. 

Some examples of such components are: 

B AMD 29818. This is an 8-bit register with supplementary test access 
facilities. The contents of the register can be swapped with the 
contents of an 8-bit shift register built into the component. 

B LSTI Testability Chip Set. Members of this family of chips can be 
used to allow control or observation of internal board connections. 

B ANSI/IEEE Std 1149.1 Test-Support Chips. Texas Instruments, 
National Semiconductor, and other companies offer 8-bit and 18-bit 
buffers, transceivers, latches, and flip-flops that conform to 
ANSI/IEEE Std 1149.1. Signals connected to these devices can be 
accessed through their boundary-scan paths using the instructions 
defined by the standard (see Chapter 3). 

5.7. Bed-of-nails 

The bed-of-nails fixture, which is used in in-circuit testing to apply tests 
directly to components in the design, can be used in functional testing as a 
low-cost means of observing connections internal to the board design. 



CHAPTER 6. 

Designing Self-
Testing Products 

6.1 Introduction 6.5 Control of external 
6.2 Start small interfaces during self-test 
6.3 Triggering self-test 6.6 Component-specific self-test 
6.4 Pass/fail indications requirements 

6.7 Some useful techniques 

6.1. Introduction 

Many electronic products are intended for use in a domestic or office 
environment. They are of relatively low value (compared to, say, a 
mainframe computer or public telephone exchange). Many are produced in 
low to medium volumes — say, up to 10,000 units through the product's life. 

Given this situation, there are clear advantages to the provision of 
self-test (or health-check) features within the products. For example: 

O The equipment can perform a health-check when it is first turned on, 
and indicate any errors to the user. 

O The user can run the health-check to help localize a fault. 
Information provided by the test can be passed to the repair 
organization, helping them to send the right technician with the right 
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spares to fix the problem. In cases where a product is connected to 
others — for example, in a network — use of health-check tests can 
help in deciding which repair organization to call. A call to the 
wrong repair-man can prove expensive! , 

3 The service technician can use the self-test along with portable 
instruments to help in locating the fault within the product. 

3 The self-test can be used as a key part of the post-production test. 
Here, the self-test can complement the in-circuit test approach used 
by many manufacturers. The self-test can be used as a product 
acceptance criterion. 

That many companies are convinced of the value of these advantages is 
demonstrated by the number of small office systems which include self-test 
features: for example, computer terminals, personal computers, 
workstations, and printers. 

Unfortunately, the means of designing a self-test capability into a 
product is somewhat of a black art, with the design being highly product 
specific. Therefore this chapter does not provide detailed rules for the design 
of self-testing products. Instead it provides a set of guidelines which will 
help in the design of self-test facilities. 

6.2. Start small 

Preferably, the self-test should be designed such that, in the event of a 
failure being detected, information can be provided on the possible location 
of the fault. For a multi-board product, this will provide the technician with 
a good starting point for repair — for example by replacing the board 
indicated as being faulty. For a single board design, the value is primarily in 
the repair facility rather than to the field technician. 

The need to provide a degree of diagnosis dictates that a 'start small' 
strategy should be used for the self-test. That is, the test should initially 
check that a small kernel of components within the design is operational. In 
the next step this kernel can be used to apply a test to a limited amount of 
additional circuitry. If this circuitry also passes the test, it can then be used 
along with the kernel to test another block of circuitry, and so on until the 
complete design has been tested. This 'start small' approach is illustrated in 
Figure 6.1. 

6.2.1. Microprocessor-based designs 

For a microprocessor-based design, the kernel will typically contain the 
processor itself, the on-board clock generator, a small ROM containing 
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Circuitry covered by each test phase 

Figure 6.1 The 'start small' strategy. 

the self-test program, and associated components. Preferably, a dedicated 
ROM should be used to store the self-test program so that a clear distinction 
can be drawn between the kernel circuitry (which will perform the role of a 
tester) and the components to be tested (which will include the program 
memory). 

Note that in microprocessor-based designs it is typical for many 
components to be connected onto the processor's bus, and this may give a 
problem in isolating the kernel for the first step in the test — checking the 
health of the kernel itself. In order to avoid this problem, it is recommended 
that the circuit is designed to allow the kernel circuitry to be electrically 
isolated from signals generated elsewhere in the product while the kernel test 
is executed. For example, in the bus environment, a bidirectional bus buffer 
can be included to isolate the segment in the kernel from the remainder of 
the bus. 

The test of the kernel should include a health-check of the 
microprocessor itself which (as a minimum) verifies operation of each major 
internal register. For example, this could be achieved by writing 
checkerboard (1010...) and similar patterns into each register. 

Following the kernel test, it is recommended that tests are performed 
on any on-board ROM or RAM (for example, as discussed in Section 6.6). 
By testing the memory early in the test procedure, it can then be made 
available for use as working space during subsequent tests. 
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The self-test should execute in response to events such as the following: 

O power-up; 
D a transition on a pin provided on the principal interface into the 

product (for example, its backplane connector) — for digital designs 
where 5 volt logic is used, the self-test should run following a change 
to 0 at the pin and an internal pull-up resistor should be provided to 
ensure that the pin is inactive when unterminated; 

• a command received via a system interface (for example, via a 
network protocol or from the keyboard); or 

3 a push-button switch on the product. 

A continuous or 'stop-on-fail' self-test mode can also be provided for use 
during burn-in of the product or when troubleshooting for intermittent faults. 

6.4. Pass/fail indications 

The results of the test should be indicated through one or more of the 
following: 

3 An indicator light. To ensure that the light is not itself faulty, the 
circuit should be designed (say) such that the light is on for a brief 
period at the start of the self-test (for example, during the kernel test) 
and will otherwise stay off unless a fault is detected. The 'brakes 
faulty' indicators on many cars are an example of this type of 
operation. 

3 One or more connections at the product's principal interface (for 
example, the backplane connector). If possible, this interface should 
both distinguish between pass and fail and provide some diagnostic 
information in the event of failure. The design must ensure that a 
fault on the 'status' connector cannot give the fault-free signal. 

3 AVDU screen or other alphanumeric display built into the product. 
In this case, the design should be such that a sequence of messages of 
the form: 

Starting KERNEL test 
KERNEL test passed 
Starting RAM test 
etc. 

is displayed as the test proceeds, together with any diagnostic 
information which can be given on failure. 
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In all cases, where a fault is detected during the self-test, the failure 
indication given at the end of the test should be held until the test is re-run or 
some other command is given to restart the product's operation. 

6.5. Control of external interfaces during self-test 

While a self-test is executing within a unit (for example, a board, a set of 
boards, or a complete product) it is necessary to ensure that no erroneous 
data is supplied through its external interfaces. That is, the interfaces must 
be controlled such that it appears that the product is inactive. 

It is particularly important that the circuit is designed such that no 
hazardous signal can be supplied to a connected product which is not 
involved in the self-test. (The term 'hazardous' is used here to cover 
situations which could risk the safety of equipment users and situations 
where connected products may be physically damaged.) 

6.6. Component-specific self-test requirements 

This section defines the types of tests which should be performed on certain 
specific circuit blocks. 

6.6.1. ROM 

The contents of the ROM built into a product may change at intervals as the 
firmware used is upgraded. In order to minimize the effects of such changes, 
the ROM should be designed such that a constant test result can be obtained 
regardless of the precise content. Figure 6.2 gives an example of how this 
can be achieved. 

Assume that there are 2N words of memory within the design, in 
which case the first 2N - 1 words will be available for program storage, and 
so on. while the last word is reserved. The test involves the generation of a 
checksum (for example, using cyclic redundancy coding techniques) for the 
data held in the first 2N - 1 words of memory. The resulting checksum is 
then compared with the data stored in the final word — which should be 
programmed to hold the expected fault-free checksum result. 

6.6.2. RAM 

A test of the RAM built into a product should be capable of detecting at least 
the following faults: 
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Figure 6.2 ROM data contents. 

3 any single memory bit being unable to hold either 0 or 1 
3 incorrect operation of the address decoder 
3 shorts between adjacent data input or output pins 

An example of a suitable test procedure follows: 

(1) Write data words into memory such that: 
(i) the word stored at address N is different from that stored in 

locations which have addresses one bit different from N (for 
example, the data in word 4 must be different from that in 
words 0, 6, and 5); 

(ii) the word stored at address N is different from those in 
addresses N - \ and N + 1; and 

(iii) no word contains 111... 1 or 000...0. 
A suitable pattern could easily be generated using a linear-feedback 
shift register (or firmware analogue) and writing successive parallel 
outputs of the register into the memory as test data words. 

(2) Form a checksum by reading the data stored in each memory word. 
(3) Write the inverse of the previous data pattern into each memory 

word. 
(4) Continue the checksumming process while the new data stored in 

each memory word is read. 
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(5) Compare the final checksum with the expected result, which can be 
stored in the self-test program ROM. 

The Joint Electron Device Engineering Council (JEDEC) are 
developing an industry standard for self-test features built into memory 
components. Components that offer this facility should be used in preference 
to others. 

6.7. Some useful techniques 

6.7.1.On-board test generation and signature analysis 

Linear feedback shift registers (LFSRs) and multiple-input signature 
registers (MISRs) (see Chapter 2) can be built into a circuit, for example to 
provide a hardware mechanism for generating the data needed for a RAM 
test and creating the checksum from the results. Circuitry such as this is 
especially useful if placed on the principal buses in the design, since it can 
then be used to test many of the major component blocks. 

Some of the ICs listed in Section 5.6 contain LFSRs and MISRs. 

6.7.2.Loop-back 

For products which have interfaces onto communications networks (for 
example, Ethernet, FDDI, and ISDN) a loop-back mode should be provided 
for use during self-test execution in which the 'send' data is fed immediately 
back into the 'receive' port. 

The loop-back facility can be either internal or external to the 
product. In the latter case, the loop would be completed by an external cable 
connection between the two ports while in the former case additional 
hardware is built into the product to make the connection internally in 
response to a given control signal. Internal loop-back is preferred. 

While the loop-back mode is selected, care must be taken to ensure 
that no invalid signals are applied to the network connected to the data-out 
port (see Section 6.5). 



CHAPTER 7. 

Component Selection 
and Design 

7.1 Introduction 7.3 Programmable device design 
7.2 Component selection 7.4 ASIC design 

7.1. Introduction 

This chapter addresses factors which should be taken into account while 
selecting types of component to be used in a circuit design and while 
specifying and designing components. 

It should be noted that the chapter focusses exclusively on the test 
aspects of component selection and that there are other factors which 
designers should also take into consideration when selecting components — 
for example, their suitability for automated assembly, and so on. 

It should also be noted that the material in Section 7.4 is intended to 
be sufficient to help in specifying a testable application-specific IC (ASIC) 
design, not to be adequate for use during the ASIC design task. 
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7.2. Component selection 

7.2.1. Range of device types 

The range of component types used in a design, or across a range of designs, 
should be limited for many reasons, for example: 

D to limit the number of component types stocked by a factory of repair 
depot; and 

O to avoid the need to train support staff in the use of an excessive 
range of devices. 

To the above must be added the need to limit test development costs (low for 
components used in previous products, high for new component types) and 
to ensure that simulation models are available to support test development 
work. 

Where possible, components that are already'on the Approved 
Components List (ACL) for the target manufacturer should be selected in 
preference to new component types. These components will probably have 
pre-existing test data and simulation models, so these will not have to be 
developed as a part of the current design project. 

For components not on the target manufacturer's ACL, it is advisable 
to check with test engineering personnel before selecting them for inclusion 
in the design. 

7.2.2.The 'buy testable' policy 

Some components contain features which either make the testing of the 
components themselves easier or enhance the testability of the products in 
which they are used. 

Examples of features which make components themselves highly-
testable include: 

O scan design; and 
D self-test modes of operation (for example, a JEDEC-standard 

memory self-test facility). 

These design-for-test techniques were discussed in Chapter 2. 
Examples of features that enhance the testability of higher level 

products include: 

D the ability to place all outputs in a high impedance state under the 
control of one input pin; 
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D serial shadow-register paths (for example, AMD/MMI 'Serial 
Shadow Register' product ranges); and 

O standard test access port and boundary-scan register features 
designed to ANSI/IEEE Std 1149.1. 

Where possible, devices which offer test-support should be used in 
preference to others. 

Note: The SSI/MSI logic families contain variants of many 
functions. Care in selecting between these variants will help improve 
testability. For example, use a device with 3-state outputs in preference to 
one without, since the 3-state capability can be used to improve test access. 
(Figure 7.1). 

Figure 7.1 Choice of devices to improve testability. 

7.2.3. Known test problems 

Certain components may have specific test problems which are already 
known to the target manufacturer. Designers should check for the existence 
of known test problems for each component before including it in a product 
design and, where restrictions in the use of a component are specified, these 
must be followed. 

7.3. Programmable device design 

The following rules and guidelines should be followed when developing a 
programmable device. 

7.3.1. Initialization 

It must be possible to set the device into a known state by application of a 
simple waveform at one or more inputs. 
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Ideally, the device should be provided with a single asynchronous or 
synchronous reset input which, when the correct signal is applied, causes 
every register or latch, and so on, to be set to a known state. 

If this is not achievable, then initialization must be achieved by an 
alternative means within the constraints specified in Section 8.2. 

7.3.2. Ability to 3-state output pins 

The device should be provided with an input which, when activated, causes 
all output pins to be set to a high impedance (inactive drive) state. Where 
this capability is not needed to meet functional requirements, then a 
dedicated test pin and associated circuitry should be provided. (See Figure 
7.2.) 

This facility eliminates the possibility of damage to the device from 
overdriving during in-circuit testing (see Chapter 1). A number of 
commercial ICs include this facility, controlled from dedicated test pins, for 
this reason (for example, the Texas Instruments TMS380 chip set). 

Figure 7.2 Achieving high-impedance outputs on programmable logic. 
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Note also that some programmable logic devices can impede in-
circuit testing unless their outputs can be set into a high impedance state. 
The key problem is that the output drivers can become unstable when over­
driving techniques are used to inject signals from the ATE. The resulting 
oscillations at the over-driven connection prevent the test being applied. 

7.3.3. Avoid asynchronous designs 

Asynchronous stored-state circuits (for example, asynchronous finite state 
machines, etc.) cause significant test and reliability problems and are best 
avoided completely. Use a synchronous design instead. If this is not 
possible, restrict asynchronous circuitry to a small part of the design which 
can be isolated from the remainder during test (for example, using 
techniques such as those catalogued in Chapter 5). 

A key test problem is caused by the rapid propagation of signals 
around asynchronous feedback loops. For faulty circuits, this capability 
allows the effects of a fault to appear instantaneously at all points in the 
loop, making diagnosis of the cause of the fault extremely difficult. 

Reliability problems can arise due to critical dependence on the 
timing properties of the components in the feedback loop. For example, if 
combinational logic is used to control an asynchronous reset of a stored-state 
device, then it can cause spikes, and so on, which cause unwanted clearing 
unless it is carefully designed. Reliability problems of this sort not only 
impact the performance of the circuit in use, they cause mis-operation during 
testing with consequent 'fault not found' during diagnosis. 

Note: An exception to the rule is the use of asynchronous 
preset/clear/etc. inputs for circuit initialization (see Section 7.3.1). 

7.4. ASIC design 

The purpose of this section is to help the board designer to specify custom 
ICs in an informed manner, so that they include features which will secure 
board testability. Failure to follow the requirements set out in this chapter 
could significantly reduce the testability of the finished board design. 

7.4.1. Initialization 

It must be possible to set the IC into a known state by application of a simple 
waveform at one or more inputs. 

Ideally, the IC should be provided with a single asynchronous or 
synchronous reset input which, when the correct signal is applied, causes 
every part of the design to be set to a known state. 
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If this is not achievable, then initialization must be achieved by an 
alternative means within the constraints specified in Section 8.2. 

7.4.2. ASIC features needed to help in board test 

Ability to force an inactive drive state at output pins 

The IC must be designed such that all output pins can be set to a high-
impedance or inactive drive state when an appropriate condition (input 
signal, instruction, and so on) is applied. Where this capability is not needed 
to meet functional requirements, then it must be provided solely for test 
purposes. It is essential that output pins can be placed in the high-impedance 
(inactive drive) state while in-circuit testing of adjacent components is in 
progress (see Chapter 1). Control of the facility can be achieved either 
through a dedicated test pin or through a specific instruction applied to the 
chip via an ANSI/IEEE Std 1149.1 Test Access Port (see Chapter 3). 

ANSI/IEEE Std 1149.1 

All ASIC designs should include design-for-test features in accordance with 
ANSI/IEEE Std 1149.1, Test Access Port and Boundary-Scan Architecture. 

7.4.3. Test quality targets 

A high quality test programme must be available for each custom IC. 

Why is a high quality test needed? 

Like printed circuit boards, custom integrated circuits must be tested to a 
sufficiently high standard following production to ensure an acceptable 
shipped quality level. The result of an inadequate test is that faults may 
remain undetected in components shipped for assembly onto a printed circuit 
board. Such 'dormant' faults may be detected either when the assembled 
board is tested or, in the worse case, may cause intermittent failure of a 
system in the field. Many companies have estimated that it costs 1000 times 
as much to locate and replace a faulty IC in the field as it would have cost to 
find the defect immediately following chip production. 

What faults should the test detect? 

The following fault types must be included in the target fault set: 

(1) Stuck-at faults on device outputs. These faults represent device 
outputs becoming fixed at 0 or 1. Note also that the possibility of 
device outputs becoming stuck-at-Z (high impedance) should be 
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considered for devices with 3-state or bidirectional pins, but may 
lead to 'potential' detection (see below) unless the design ensures that 
the bus is pulled to 0 or 1 when it is not driven from another source. 
These faults all apply to a complete connection between devices — 
the fault is seen by all devices fed from the connection. 

(2) Stuck-at faults on device inputs. These faults represent individual 
device inputs becoming stuck at 0 or 1. The faults only affect the 
specific input and not other devices driven from the connection. They 
model defects in the fan-out branches of an interconnection — for 
example, an open-circuit in the segment of track feeding one gate 
input. In some simulators these faults are simulated as stuck-at faults, 
while in others they are simulated as open-circuit faults where the 
disconnected side of the connection is coerced to 0 or 1. 

Note that a 'device' may be a logic gate or more complex cell in a semi-
custom IC, or a transistor in a full-custom IC, depending on the level at 
which the circuit is modelled for simulation. 

Optionally, the following class of faults may also be considered if 
time and budget permit: 

(3) Bridging faults between adjacent device pins. These faults can be 
used to simulate solder shorts, etc. between adjacent terminals of a 
device or between adjacent tracks. 

How many of the target faults should the test detect? 

The target is for the test programme to allow all faults in the target fault list 
to be assigned into one of three categories, as discussed below. Under no 
circumstances should the number of faults which cannot be categorized 
exceed 5% of those in the target fault list. 

A fault is deemed to have been detected by a test programme as a 
result of one of the following: 

(1) 'Hard' detection. A hard detection occurs when a fault causes a 
change from 0 to 1 (or vice-versa) at one or more points monitored 
by the external test equipment. 

(2) 'Potential' detection. Potential detection occurs when a fault causes a 
predefined number of changes from either 0 to X (unknown) or from 
1 to X at one or more points monitored by the external test 
equipment. The number of observed changes before detection can be 
adjusted to change the confidence in the detection of the fault, since 
the observed unknown signal state could be the fault-free value or its 
complement. A figure of 5 observed changes to X is typical. 

(3) Acceptable non-detection. There will typically be some faults for 
which detection is not possible due to the nature of the circuit design. 
For example, where a circuit contains redundancy, not all faults will 
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be detectable since correct operation of one part of the circuit will 
prevent the incorrect operation of another from causing failure at a 
point observable to the ATE. A further example would be a stuck-at-
1 fault on a device input which is tied to the logic 1 since it is not 
required in the particular design. 'Acceptable non-detection' includes 
all cases where there is a clear reason why hard or potential detection 
is not possible. 

A pitfall you should avoid 

Normally, test quality will be verified using a fault simulator. However 
another technique — 'node toggling' — is sometimes advocated by silicon 
vendors or design houses. In the node toggling technique, a check is made 
on a simulation of a test programme to ensure that each connection (node) is 
at some point set to both 0 and 1. Clearly, if a node does not get set (say) to 
0 then the test programme cannot detect stuck-at-1 faults. However, simply 
setting the node to both 0 and 1 is not sufficient to ensure, that faults on it are 
detected — the effect of the fault must also be made visible to the ATE at 
the component's outputs. Detection of the fault can only be guaranteed using 
fault simulation. 

7.4.4. Internal testability 

As for printed circuit boards, test costs for custom integrated circuits can be 
a significant part — sometimes as much as 50% even for relatively testable 
designs — of the total development cost, particularly for complex full-
custom ICs. Clearly, costs of this magnitude can have a significant impact on 
the viability of using custom silicon in a product. 

For this reason, it is recommended that highly-structured design-for-
test techniques such as scan design and self-test are used wherever possible 
(see Chapter 2). These techniques can, in some cases, allow the test 
development task to be fully automated, thereby producing significant 
manpower savings. However, costs are incurred due to the need to dedicate a 
small number of package pins to test functions and due to increases in the 
physical size of the IC caused by test circuitry added to the design. 

7.4.5. A typical testability budget for IC design 

The amount which can be spent on design-for-test in an integrated circuit 
will depend on the quantity of devices which will be made over the 
production life. For high volume parts (such as microprocessors), test 
development costs per device are lower than for low volume parts (such as 
many semi-custom ASICs), so the amount which it is economical to spend 
on design-for-test is also lower. 
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For a low volume part (say, up to 2000 for total production quantity), 
a typical budget would be: 

O Additional circuitry — up to 15% increase in the number of gates. 
O Additional pins — 5, to allow provision of ANSI/IEEE Std 1149.1. 

(Note: Most test functions can be controlled through the interface 
defined by this standard.) 

O Reduced performance — up to 5% of maximum operating speed. 

For a high-volume part, the budgets for additional circuitry might be 
reduced to 5%. (Toshiba quote a variation between 20% for low-volume 
parts and 5% for high-volume parts within their company.) 

Beware: if you do not allow an appropriate budget for testability (for 
example, the entire gate capacity is needed to achieve the system function) 
then you may eventually get an adequately tested component, but the cost 
will be high. 



CHAPTER 8. 

Circuit Design 

8.1. Introduction 

This chapter provides design requirements which will help achieve 
testability in digital circuit designs, or in the digital portions of mixed 
analogue/digital circuit designs. 

The goals of the requirements in this chapter are to ensure that: 

O design practices known to lead to testability problems are avoided; 
and 

O the controllability and observability of internal signals are adequate 
by providing test access at key internal connections. 

8.1 Introduction 8.5 Connection-oriented 
8.2 Initialization requirements 
8.3 Architectural issues 8.6 Controllability and 
8.4 Function-oriented observability improvement 

requirements 
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Adherence to the standards defined in this chapter will: 

0 reduce test development costs; 
D reduce operator interaction during production or maintenance test, 

thus reducing test run times and increasing tester capacity; and 
(3 ensure synchronization between the circuit and the test system. 

8.2. Initialization 

It is essential that the circuit can be set to a Jully defined start state before 
tests are applied — that is it must be able to be initialized. If this cannot be 
done then the results of the test may not be repeatable, leading to low 
confidence in the test results or fault diagnosis. 

This section discusses the need for initialization and the problems 
which arise if it cannot be achieved effectively. It also defines recommended 
techniques achieving initialization. 

8.2.1. Why initialize? 

The state of the circuit is defined by the logic values held in each stored-
state device — flip-flop, counter, memory, and so on. Complete 
initialization is achieved when a known pattern of Os or Is has been written 
into each such device. This must be achieved as quickly and as simply as 
possible for two key reasons. 

Firstly, some of the faults which can occur in a design will prevent it 
from initializing. For example, if there is an open circuit fault in the 
connection to a reset input on a flip-flop then applying the reset condition 
will have no effect. If the circuit can be initialized by applying a small 
number of input patterns, then the number of such faults will be relatively 
small. However, if the initialization process is complex, then the number of 
faults which prevent completion will be much greater. While this does not 
impact the test's capability to detect faults, faults which inhibit initialization 
are extremely difficult to diagnose, thereby impeding repair. 

Secondly, initialization is vital during both design verification and 
the test development process. Here it is the cost of simulation which is 
adversely affected if initialization cannot be achieved, or is more complex 
than necessary. 

Both fault-free simulation (design verification) and (to a greater 
extent) fault simulation run times will be increased if initialization is 
inefficient. 



124 CIRCUIT DESIGN 

8.2.2. Length of initialization waveform 

To limit the number of faults which can prevent successful initialization (and 
which are in consequence difficult to diagnose), the length of the 
initialization waveform (as measured by the number of clocks or input 
patterns applied) must be kept to a minimum. As a guide, complete 
initialization should be achieved within 20 clocks or input patterns. 

8.2.3. Preferred initialization techniques 

The following sub-sections discuss preferred techniques for achieving 
circuit initialization. They are organized to indicate relative priority between 
the techniques, with the first being the ideal option. 

Asynchronous initialization 

The ideal way of initializing a circuit is to apply a single pattern at the 
design's inputs which asynchronously initializes all stored-state devices. See, 
for example, Figure 8.1 where a reset signal is applied to the asynchronous 
clear inputs of all flip-flops in the design. 

Figure 8.1 Circuit with asynchronous reset. 

Synchronous initialization 

A circuit can be synchronously initialized by applying a pattern of control 
inputs followed by one or more clock pulses. See, for example, Figure 8.2. 

Initialization through shifting or loading of data 

For highly regular designs such as parallel latches, long shift registers, and 
random access memory, asynchronous or synchronous initialization may be 
impractical. The provision of a clear or other input on each stored-state 
device is not practical due to the significant increase in circuit size (at the 
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Figure 8.2 Circuit with synchronous reset. 

chip level) which would be required. In these cases initialization must be 
achieved by shifting or loading data into the design. 

8.2.4. Prohibited initialization techniques 

The following sub-sections define initialization techniques which are not 
acceptable, for example due to the increased complexity of test development 
or use. 

Homing sequences (Repeat-until) 

Figure 8.3 shows a circuit which can be set to a known starting state by 
continuing to apply a clock until the required pattern appears at the circuit 
outputs. When this pattern is detected the test branches out of the initializing 
loop. 
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Figure 8.3 A circuit which requires a homing sequence for initialization. 

This style of initialization is not acceptable because: 

3 most logic simulators do not have test-and-branch capability; 
O the ATE cannot be guaranteed to have test-and-branch capability; 

and 
D faults can easily prevent initialization and can cause indefinite 

looping unless a limit is set on the number of clocks, etc. to be 
applied. 

8.2.5. Controlling initialization 

Connection to initialization controls 

The design must allow initialization to be controlled by application of 
defined signals to one or more inputs on a normal functional interface — for 
example, the edge connector. 

Dedicated test connections to the design (for example, bed-of-nails 
access through test lands) may be used to enhance the initialization 
capability provided through the normal functional interfaces, but cannot be 
used as the sole means of initializing the circuit. 

Power-on resets 

Where power-on resets are included to meet a design requirement, the circuit 
must provide an alternative input through which the ATE may cause 
initialization without having to disconnect power. Figure 8.4 shows the 
provision of a dedicated test input to complement initialization at power-up. 

If a power-on reset is used then time must be allowed for the output 
of the power supply to decay before it can be reapplied in order for the reset 
to be reliable. The requirement for an alternative means of triggering the 
reset allows test and diagnosis time to be reduced where it is necessary to 
initialize the circuit at several points during the test — not just at the 
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Figure 8.4 Power-on reset with test input. 

Figure 8.5 Methods of tying unused initialization control inputs. 

beginning — for example, to allow the test to be structured. Also, during 
guided probing for fault diagnosis the test will need to be repeated 
frequently — a process which would be considerably slower without the 
capability to cause a 'logical' reset. 

Unused initialization controls 

Unused initialization-control inputs (for example, load, preset, clear, and so 
on) must not be tied directly to power or ground. In addition, where there are 
several initialization controls for one component then these must not be 
connected together (see also Section 8.5.4). 



Figure 8.5 shows methods of tying such inputs in TTL-compatible 
circuits which satisfy the first requirement. Connections to be tied high for 
normal operation should be made through a suitable pull-up resistor. 
Connections to be tied low should be driven from the output of a gate (for 
example, an inverter) whose input is pulled high. In either case, a dedicated 
test connection to the test access point will allow the component to be 
initialized. 

The requirement that unused initialization controls must not be tied 
together is included to ensure determinate behaviour when the initialization 
condition is removed. For example, if the preset and clear inputs to a flip-
flop are connected together then the state after the combined signal changes 
from 0 to 1 will vary depending on propagation delays, and so on, in the 
circuit (Figure 8.5a). 

8.3. Architectural issues 

8.3.1. Mixed analogue/digital circuits 

Different test techniques are required for analogue and digital circuitry. 
While testing of each type of circuitry in isolation is relatively 
straightforward, significant test problems can arise when attempting to test 
mixed analogue/digital designs. 
An an example, consider the case of an analogue-to-digital (A-to-D) 
converter feeding into a complex digital circuit. Because of the performance 
tolerances inherent in the design of the A-to-D converter, a defined voltage 
applied at the analogue input may produce one of a range of digital patterns 
at the converter's output. If the converter's outputs are not directly accessible 
to the test system, then they will need to be propagated through the digital 
circuitry to signals which are connected to the ATE. This task is not 
necessarily straightforward, particularly if the individual output bits are 
processed separately. 

Figure 8.6 Testing a mixed analogue/digital circuit. 
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The variability of the A-to-D conversion process also impacts the 
task of testing the digital circuit. Digital circuit testing requires that defined 
inputs are applied, and that corresponding predefined outputs are observed. 
If the characteristics of the A-to-D converter cannot be accurately defined, 
then these requirements can only be achieved if the test system can control 
the inputs to the digital circuit directly, bypassing the converter. 

Test access must therefore be provided as close to the 
analogue/digital interface as possible — for example as shown in Figure 8.7. 

Figure 8.7 Partition analogue and digital circuits. 

8.3.2. Dynamic circuits 

Dynamic circuits must be operated at a minimum speed to avoid 
unintentional loss of data. There are, however, cases where this is difficult to 
achieve during testing — for example, when application of the test must 
pause to allow the ATE to fetch more data from backing memory. 

Such problems may be overcome through use of keep-alive clocks 
supplied either from the ATE or by circuitry within the product design. 
However, since the length of time between bursts of test activity cannot be 
accurately defined, the circuit must be capable of entering a hold state where 
no data changes occur for keep-alive clocks to be useful. 

Where possible, use a static design and avoid these problems. 

8.3.3. Asynchronous circuits 

Asynchronous stored-state circuits (for example, RS-latches, asynchronous 
finite state machines, and so on) cause significant test and reliability 
problems and are best avoided completely. Use a synchronous design 
instead. If this is not possible, restrict asynchronous circuitry to a small part 
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of the design which can be isolated from the remainder during test (for 
example, using techniques such as those catalogued in Chapter 5). 

A key test problem is caused by the rapid propagation of signals 
around asynchronous feedback loops. For faulty circuits, this capability 
allows the effects of a fault to appear instantaneously at all points in the 
loop, making diagnosis of the cause of the fault extremely difficult. 

Reliability problems can arise due to critical dependence on the 
timing properties of the components in the feedback loop. For example if 
combinational logic is used to control an asynchronous reset of a stored-state 
device, then it can generate spikes that could cause unwanted clearing unless 
it is carefully designed. (The combinational network in Figure 8.9a includes 
a logically-redundant gate whose purpose is to prevent glitches being applied 
to the flip-flop input.) 

Reliability problems of this sort not only impact the performance of 
the circuit in use, they cause mis-operation during testing with consequent 
'fault not found' during diagnosis. 

Note: An exception to the rule is the use of asynchronous preset, 
clear, and other inputs for circuit initialization (see Section 8.2). 

8.3.4. Redundant circuits 

Logically redundant circuitry may be included in a design for several 
purposes. Key examples are reliability improvement and removal of hazards 
in combinational logic networks. In other cases, redundant circuitry may be 
included accidentally — for example, by use of a four-bit counter stage 
which can only count up to 7 because of constraints imposed by the 
surrounding circuitry. 

Do not build redundant circuitry into a design unless it really is 
necessary. Where it is needed, then the design must allow each redundant 
block to be thoroughly tested in isolation (see, for example, Figures 8.8 and 
8.9). Failure to do this will, in general, act against the original purpose of 
including the redundancy — that is, it will make the overall result less 
reliable, or more susceptible to hazards, and so on. 

In Figure 8.8, the voter in circuit (a) is intended to masks faults at the 
output of any one of the logic blocks at its inputs. It also does this during 
test, preventing detection of logic block faults at the circuit output. In circuit 
(b), test access points and 3-state buffers have been inserted between the 
logic blocks and the voter to allow: 

D each logic block to be fully tested in isolation from the others; and 
O the voter to be fully tested in isolation from the logic blocks. 

In Figure 8.9, the top circuit contains a redundant term (highlighted 
gate output) to ensure that no glitches are fed to the asynchronous set input 
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Figure 8.8 Fault-tolerant redundant design. 

Figure 8.9 Redundancy for glitch suppression. 
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to the flip-flop. Without the redundant term, a glitch might be generated by 
the combinational network when moving between ABC=111 and ABC=110, 
for example. 

8.4. Function-oriented requirements 

8.4.1. Random-access memory 

Access requirements 

For thorough testing, test data must be written and read several times from 
each RAM word. Because RAM sizes are large, and increasing, the amount 
of test data required is also large. Any limitations in the ability to feed data 
in or read data out can therefore lead to significant test problems. 

For example, a limited test for stuck-at faults in a IK word RAM 
would require 3072 test patterns: 

& 1024 patterns to write the first set of words (for example, a unique 
bit pattern in each word) and thus initialize the memory 

D 1024 patterns to read back the first set of words while writing the 
second (inverse) set 

O 1024 patterns to read the second set of words. 

This assumes direct access to the RAM's terminals. If the surrounding circuit 
is such that 10 clocks are needed to deliver each input test and read each 
result then the number of test vectors required becomes 30,720. Clearly, for 
modern memories with >1 Mbit capacity, the inability to apply a test directly 
to the RAM data and address lines can present enormous problems. It is 
therefore a requirement that all RAM terminals (including the data and 
address lines, chip selects, and read/write controls) must be directly 
accessible to the tester, through test access facilities built into the design if 
appropriate. 

Dynamic devices 

The use of static RAMs is preferred. Where dynamic RAMs are used, 
internal refresh signals must be controllable from test points during testing. 

8.4.2. Read-only memory 

Testing the ROM 

ROM is tested by exhaustive examination of the stored data, either by 
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Figure 8.10 Provide a seed word to ensure a constant checksum. 

examining each word separately as it is read or by forming a checksum. In 
either case, it is necessary to be able to sequence through all memory 
addresses — for example, by applying a count to the address lines. If the 
basic circuit design does not allow this (perhaps because the ROM has been 
used as combinational logic — for example, to build a state machine), then 
test access must be provided to allow such a count to be applied. 

The memory outputs must be accessible at test points either to allow 
examination of each word or to allow the checksum to be created. 

Where ROM contents can change once the memory is assembled 
into the product (for example, where selection of a ROM is used to program 
the circuit function) provision must be made to ensure that all variants of the 
design can be tested with substantially the same test program. For example: 
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(1) If the ROM is electrically reprogrammable, allow the contents to be 
erased and rewritten in situ without damaging surrounding 
components. 

(2) Provide a 'seed' word that ensures that .the checksum result is 
constant regardless of the memory contents. Figure 8.10 shows how 
the use of a seed word can convert the checksum for the rest of the 
memory contents into a required result. (Information on checksum 
generators is contained in several of the texts referenced at the end of 
Chapter 1.) 

Testing the rest of the design 

A common technique for testing microprocessor-based board designs is to 
bypass the on-board ROM during appropriate parts of the test program and 
instead provide a ROM emulation in the ATE. This allows the rest of the 
product to execute a program supplied by the ATE, different from the one it 
will execute normally. 

There are two main techniques for achieving this: 

O Include a small section of code in the ROM which will be executed 
following reset of the microprocessor. This code should cause an 
conditional jump to an unused address. The code can inspect a logic 
level applied at a control input to determine whether the product is 
under test. 

O Modify the address decoding logic of the product so that the ROM 
components are permanently disabled when the test control is active. 

8.4.3. Monostables 

Monostables must not be used except in exceptional circumstances because 
they cause considerable test problems — for example due to variable output 
pulse widths and their sensitivity to transients on input signals. 

Where monostables have to be used to meet a design requirement the 
following requirements must be satisfied (Figure 8.11): 

(1) Monostables must not be cascaded. 
(2) Inputs and outputs of monostables must be connected to test points to 

allow accurate measurement of output pulse widths, and so on. 
(3) Test access must be provided to allow the component's outputs to be 

replaced by inputs from test points. 
(4) In cases where the output pulse is short (less than 300 nanoseconds) 

provision must be made to allow easy detection of the output pulse, 
either by lengthening the pulse during test or by including a 'glitch-
capture' circuit. 



FUNCTION-ORIENTED REQUIREMENTS 135 

Figure 8.11 Testability requirements for monostables. 

8.4.4. Clock generators 

The following requirements ensure that the circuit can be properly 
synchronized to the ATE during testing and, in cases where the normal 
operating speed of the circuit is in excess of the ATE's, that testing can be 
performed at a speed acceptable to the test system (Figure 8.12). For in-
circuit testing, the requirements also ensure that the tester does not need to 
over-drive a changing signal (which could cause unwanted spikes during the 
testing of devices supplied by the clock). 

Figure 8.12 Clock generators. 
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(1) Provision must be made for externally supplied signals to replace the 
outputs of built-in clock generators during test. 

(2) The outputs of built-in clock generators must be directly observable 
at a test point. 

(3) The use of multiple free-running built-in clocks is prohibited unless 
they can be independently disabled and replaced during testing. 

8.4.5. Counters 

Where long counters are included in designs they can result in an excessive 
number of test patterns being required for testing. This will have a direct 
impact on test costs, since the design will require more time on the test 
system and reduce throughput. 

The example in Figure 8.13 shows a common use of a long counter 
— to reduce the frequency of a supplied clock before it is applied to other 
logic. In this case, the counter stages form a part of a digital watch chip. 

In the top example, 86,400 clocks must be applied at the clock input 
to change the state of the programmable 'days-in-a-month' divider. This 
would lead to an excessive test time, even if the input clock frequency was 
increased from 1 Hz to 10 MHz during test (see Section 8.4.4). 

To avoid such excessive test lengths, the design should allow long 
counters to be modified during test such that no more than ten stages precede 
any output from the counter chain, for example as shown in the modified 
circuit in Figure 8.13. In this way, the majority of the testing can be done 

Figure 8.13 Long counters. 



FUNCTION-ORIENTED REQUIREMENTS 137 

while bypassing the counter chain, with a small number of tests being 
applied with the complete counter chain connected to verify overall circuit 
operation. 

For very long counters (say more than 16 stages) it is advisable to 
allow the chain to be divided into several shorter segments during testing so 
that a thorough test can be performed on the counter within an acceptable 
test time. 

8.4.6. Parity trees 

Parity trees should be constructed to allow segments of up to eight stages to 
be tested separately, and for outputs to other circuitry to be controlled 
directly from test points. 

This will considerably simplify the task of changing the state at the 
output of the tree, which will be necessary when testing the logic this drives. 

8.4.7. Adjust-on-test and select-on-test components 

Adjust-on-test (AOT) and select-on-test (SOT) components (for example, 
as used to set the pulse width of a monostable) should be avoided where 
possible. Their use increases the amount of operator interaction required 
during testing and significantly lengthens test times. 

Where AOT or SOT components must be used, then the following 
requirements must be satisfied: 

(1) No initial setting or selection should totally inhibit circuit operation. 
(2) The adjustment or selection required must be dictated by a rational 

electrical measurement made at a test point. 
(3) Interdependent AOT/SOT components are only permitted in 

exceptional circumstances where no other alternative is available. 
The number of interdependent AOT/SOT components must be kept 
to the absolute minimum. 

(4) A detailed adjustment or selection procedure must be supplied as a 
part of the design documentation. 

(5) For AOT components, the adjustment must be achievable without the 
use of unusual or specially designed tools. 

Additional requirements on the positioning and mounting of AOT and SOT 
components on printed circuit boards are given in Chapter 11. 

8.4.8. Switches 

Where switches are used the time required for testing is increased since 
operator intervention is required to change settings. 
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Alternatives such as 'handbag' links (that is, as shown in Figure 8.14) 
that can be completely removed during testing are preferred since, with the 
link removed, the connections can be easily controlled and/or observed. 

To allow testing to proceed at high speed where switches are used, 
access should be provided to allow the tester to control their outputs during 
test. This will allow the majority of testing to proceed without operator 
intervention, with a small number of checks involving the operator to verify 
the performance of the switches themselves. 

See Chapter 11 for requirements on the orientation and mounting of 
switches. 

Figure 8.14 'Handbag' link. 

8.4.9. Indicators and displays 

Test points should be provided to allow signals feeding indicators (LEDs, 
and so on) and displays to be examined directly by the test system. This will 
allow testing to proceed at high speed without operator intervention, with a 
small number of checks involving the operator to verify the performance of 
the displays and indicators. 

See Chapter 11 for requirements on the orientation and mounting of 
indicators and displays. 

8.5. Connection-oriented requirements 

8.5.1. Limit fan-out 

The load placed on any component output by other components in the design 
must allow sufficient margin for additional loading presented by guided or 
bed-of-nails probes (typically > 10 Kohm). As a guide, subtract one standard 
load for the logic family from each driver's capability. This is necessary to 
ensure that contacts made during testing do not significantly alter the 
behaviour of the circuit under test. 
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8.5.2. Edge-sensitive inputs 

Clock and other edge-sensitive inputs to the complete design should be 
buffered before use, for example using Schmitt trigger devices. This 
provides protection against unwanted operation of the components driven by 
the signals during testing, for example due to double-clocking caused by 
slowly rising edges from the ATE. 

8.5.3. Test connections 

Where components used in the design have dedicated test inputs or outputs 
these must be controllable from, or observable at, test points. 

8.5.4. Unused inputs 

Unused control or function-select inputs, test data inputs and controls must 
be tied to fixed logic levels via pull-up (for TTL), or pull-up/pull-down (for 
CMOS), or pull-down (for ECL) resistors, rather than through direct 
connections to power or ground. Where an input must be tied to zero (TTL) 
or one (ECL) this can be achieved through an arrangement such as that 
shown in Figure 8.15a, where the input to an inverter is pulled to the 
opposite logic level. 

Groups of unused inputs can be connected to the same pull-up/pull­
down network subject to the following requirements: 

(1) Inputs controlling different functions (for example, load, clear, 
enable) in a component must not be tied together (Figure 8.15a). 

(2) Functional data inputs for a component may be tied together. 
(3) Groups of inputs controlling a single function may be tied together 

provided that the function can be enabled/disabled by changing the 
state of the tied network. (For example, where multiple chip select 
inputs are provided — Figure 8.15b). 

(4) For 3-state enable inputs and other inputs that can force outputs to 
their high impedance state (for example, bus-request signals for 
microprocessors) it is preferred that inputs of different devices are 
not tied to common pull-up/pull-down networks. However, where 
this cannot be achieved, it is essential that 3-state enable inputs for 
devices that are otherwise connected together are not themselves tied 
together (Figure 8.15c). 

These requirements allow the inputs to be used during testing if 
required. A particular benefit is to in-circuit testing, where the ability to 
apply standard library tests for component types can be compromised if the 
tester is unable to change the state of one or more inputs. Requirement (4) 
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has a particular impact in in-circuit testing, since it allows component 
outputs to be placed in a high impedance state while the adjacent 
components are tested. This avoids the need for over-driving. 

Figure 8.15 Requirements for 'unused' pins. 

8.5.5. Wire-OR and wire-AND connections 

The presence of wire-OR or wire-AND connections in a design complicates 
fault diagnosis since the ATE must determine which driver is injecting the 
faulty information onto the connection. Wire-OR and wire-AND 
connections should therefore be avoided if possible. Where they are used, 
care in assignment of driving gates into integrated circuit packages can 
considerably ease diagnosis problems (see Chapter 11). 
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8.5.6.3-state connections and buses 

Access 

Those 3-state connections and buses that are not accessible at the design's 
functional interface (package pins, edge connector, and so on) must be 
connected to test points. 

Termination 

When none of the drivers is active, 3-state nodes enter a high-impedance 
state. This condition may occur either as part of the normal operation or due 
to faults in the various drivers. 

When probed, fault-free nodes in the high-impedance state will cause 
indeterminate signals to be captured by the ATE hardware and may therefore 
appear to be faulty. This would significantly confuse the diagnostic process 
and must be avoided. All 3-state connections within a design must therefore 
satisfy one of the following requirements: 

(1) The connection must be driven at all times (except during transitions 
between drivers). Where this is not required for the basic design, 
additional drivers can be introduced to cover the 'dead' states (Figure 
8.16 — option 1). 

Figure 8.16 Avoid floating nodes. 
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(2) The connection must be equipped with a pull-up or pull-down 
resistor of appropriate value that will force a known condition onto 
the bus in the absence of an active driver (Figure 8.16 — option 2). 

Control of bus drivers 

It must be possible to disable simultaneously all devices capable of driving a 
bus from a test point. It must also be possible for signals from test points to 
be used to determine which device is enabled onto the bus, in place of the 
built-in control circuitry. 

These requirements allow the bus to be tested for shorts between 
wires without interference from bus drivers. They also allow the bus to be 
used as a means of testing the blocks of circuitry connected to it, 
independently of one another. 

8.5.7. Feedback 

The presence of global feedback paths (that is, feedback paths outside of 
stored-state devices) significantly increases the cost of test development and 
can complicate fault diagnosis. 

In the former case, interference from feedback signals can make it 
difficult to propagate data needed for testing through the circuit. Data 
patterns may be corrupted by feedback signals, and paths may become 
blocked by unwanted feedback of control signals. 

Figure 8.17 Break feedback paths. 
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In the latter case, diagnosis is impeded since faults on components in 
the feedback loop will appear at every node in the loop, and can only be 
distinguished by the time at which the faulty condition arises. Some test 
techniques (for example, signature analysis) consider the results of the test as 
a whole and are therefore unable to diagnose faults in feedback loops. 
Asynchronous feedback loops cause problems for all test techniques because 
faulty signals propagate almost instantaneously around the loop (see also 
Section 8.3.3). 

To avoid these problems, facilities must be included in global 
feedback paths to allow feedback to be inhibited and/or for feedback signals 
to be replaced by data from test inputs at the appropriate stage of testing 
(Figure 8.17). 

8.6. Controllability and observability improvement 

In addition to the test access defined in the previous sections, the design 
should allow test access for control and/or observation at the following: 

(1) Data and address buses. 
(2) Read/write control lines. 
(3) Interrupt, hold, and halt lines. 
(4) Asynchronous controls. 
(5) Connections with fan-in or fan-out > 8 — for example, an output 

from an 8-input NAND gate or as in Figure 8.18. 

Figure 8.18 Placement of test points on connections with large fan-in or 
fan-out. 



CHAPTER 9. 

Supplying Power to 
the Product 

9.1 Introduction 9.4 Decoupling 
9.2 Safety during testing 9.5 Conversion and validation 
9.3 Power inputs 9.6 Power-on resets 

9.1. Introduction 

This chapter defines testability requirements for power supplies to the 
product and power distribution, including circuitry used to convert power 
voltage levels or to provide power line decoupling. 

9.2. Safety during testing 

The designer must ensure the safety of personnel involved in testing 
assembled printed circuit boards. In particular, the designer must ensure 
that test personnel are protected from (or made aware of) any safety hazards 
which might exist only during testing of the product, for example due to 
removal of casings, and so on. 
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9.3.1. Number of power supplies 

The number of different power supplies fed to the product should be less 
than or equal to three. This limit is necessary to remain within the 
capabilities of programmable automatic test equipment. 

9.3.2. AC power supplies 

The use of AC power supplies to printed circuit boards should be avoided 
where possible. 

9.3.3. Location of power pins 

Power is supplied to the product through hard-wired connector pins or 
appropriate bed-of-nails access points. Therefore, to allow a text fixture to 
be used to connect more than one product to the ATE, it is advisable for 
standardized locations to be used for power pins. More information on this 
topic is contained in Chapter 10. 

9.3.4. Power-on sequencing 

The power supplies for a product must be able to be turned on in any order 
without affecting performance or initialization and without causing damage 
to the product. 

9.3.5. Stabilization 

The total test time for a product could be excessive if power supplies take 
too long to settle to their steady-state levels, resulting in higher than 
necessary test costs. The stabilization time for any input power supply must 
therefore be kept to a minimum, ideally less than one second (see Table 9.1). 

Table 9.1 Stabilization time for power supplies. 

Grade Time to stabilize 
Best < 1 second 

1 to 5 seconds 
Worst 5 seconds to 1 minute 
Prohibited > 1 minute 
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Under no circumstances may a product power supply require in excess of 
one minute to achieve a stable level. 

9.4. Decoupling 

Power inputs to the following devices should be decoupled by the location 
of a capacitor as close to the component power pin(s) as possible: 

D clocked devices (especially counters) 
CI devices forming asynchronous stored-state circuits 
& devices feeding asynchronous inputs to stored-state circuits. 

9.5. Conversion and validation 

9.5.1. Regulators and converters 

The product design must allow all voltage regulators and converters to be 
tested at full rated load current before power is applied to the rest of the 
product (thereby avoiding any possibility of damage due to faults in power 
circuitry). Where faults in built-in regulators or converters could cause 
damage to other components in a product, then the derived power supplies 
must be disconnected from the remainder of the product during testing. 

9.5.2. Fuses and circuit breakers 

All fuses and circuit breakers must be accessible during testing and capable 
of being replaced or reset without having to dismantle the product. (See also 
Chapter 11.) 

9.6. Power-on resets 

Where power-on reset circuitry is incorporated in a product, the design must 
also permit initialization by a logic input from the ATE. This ensures that 
the product can be reset to a known starting state at intervals during the test 
process, but without having to disconnect and re-apply power (see also 
Section 8.2). 



CHAPTER 10. 

Connector Selection 
and Layout 

10.1 Introduction 10.3 Signal-to-pin mapping 
10.2 Connector selection 

10.1. Introduction 

There are two main ways of achieving satisfactory interconnection between 
the ATE and the unit under test (UUT) — through the product's normal 
functional connectors or through bed-of-nails probes. In either case, a test 
fixture must be constructed to convert between the format of the ATE's zero 
insertion force (ZIF) connector and the connector(s) used by the UUT (see 
Figure 10.1). 

This chapter discusses how the product's connectors can be chosen 
and configured to reduce test costs. A key aim is to ensure that, where 
products use the same connector types, the layout of signals to connector 
pins is sufficiently standardized that a single ATE fixture can be used for all 
the products. If this cannot be achieved then a different test fixture will be 
needed for each product, resulting in increased test costs. 

Design requirements aimed at reducing the cost of use of bed-of-nails 
test fixtures for printed circuit boards are contained in Chapter 11. 
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Figure 10.1 A view of the ATE pin electronics and test fixture. 

10.2. Connector selection 

10.2.1. Connector durability 

The ATE fixture will be constructed using one of more connectors 
compatible with the interface(s) to the UUT. Since these connectors will 
experience a larger number of insertions/removals than the connectors on the 
individual UUTs, they must be chosen to give reliable operation in the test 
environment. 

To ensure that ATE fixture reliability is not unnecessarily low, all 
UUT connectors must be chosen such that a high reliability companion 
connector is available that is specified to permit a minimum of 1000 
insertions without significant degradation of its performance (for example, 
increased contact resistance). 

10.2.2. Keyed connectors 

Where a UUT connector is equipped with a locating key (for example, to 
prevent an incorrect board type being inserted in a system backplane slot), 
the key must be defeatable during testing to allow a common test fixture to 
be used. 

10.3. Signal-to-pin mapping 

10.3.1. Industry standards 

Where an industry standard connector layout such as the VME-bus is used, it 
is recommended that the standard be followed without modification. This 
will permit the test engineer to reuse expertise previously gained in the 
operation of the interface. 
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10.3.2. Power and ground 

Power and ground connections to the UUT will be hard-wired to appropriate 
connector pins. Changes in the location of the power connections will 
therefore usually require the construction of a new test fixture, and should be 
avoided. 

A standard set of pins should be assigned to supply power and 
ground for all designs using the same connector type. Where a particular 
power supply connection is not used on a given design using the connector, 
then the pins assigned to that supply must not be reused for other purposes 
— either for alternative supply voltages or for signal connections. 

10.3.3. Signal placement and grouping 

For some test systems, certain facilities in the pin electronics (the electronics 
which drives signals into the UUT, or examines the UUTs response) cannot 
be set up on a pin-by-pin basis. The facilities must be uniformly used across 
groups of pins, typically across all sets of pin electronics contained on a 
single card in the ATE backplane (commonly 16 or 24 pins are driven or 
sensed per card — see Figure 10.1). 

Other restrictions occur due to the differences in performance (and 
hence cost) of the pin electronics, which may mean that only a small number 
of the pins on a given test system may be capable of connection to an 
'unusual' (for example, non-TTL compatible) signal on the UUT. 

This section provides guidelines for the mapping of signals onto 
connector pins that will increase fixture commonality between board designs 
given that the ideal goal of total flexibility in the ATE will not be achieved. 

Logic signals 

The majority of ATE is equipped to handle TTL-compatible technology as 
the 'standard' option. Therefore, TTL-compatible logic signals can normally 
be freely allocated to connector pins. 

For some lower-cost test systems, limitations may occur which limit 
the edge placement capabilities of the pin electronics. For example: 

O only pins on the same card can change state at the same time; 
O all pins on a card must have the same waveform characteristic (for 

example, return to 0/1/Z or surround by complement). 

Designers should therefore keep signals that have particular timing 
requirements in fixed positions on connectors. 
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'Unusual' signals 

'Unusual' signals such as: 

3 analogue signals 
O high performance signals 
d logic signals using unusual logic levels (for example, not TTL-

compatible) 

will need to be connected to ATE pin electronics with the appropriate 
capabilities. Such capabilities are likely to be confined to a small number of 
cards in the ATE system in order to reduce the cost of the equipment. The 
design of connectors for a range of cards using the same connector type 
should therefore ensure that such 'unusual' signals are wired to fixed 
connector pins. 

External terminations 

Typically the ATE pin electronics will provide for pull-up, pull-down, or a 
more complex programmable termination. These terminations will be 
needed at open-collector or balanced line driver outputs from the board, for 
example. 

A common limitation here is that all terminations on a single ATE 
pin electronics card must (if used) be set to the same value, imposing a 
limitation on the design of the connector pin-out. 

Problems arising from such ATE limitations can be avoided by 
ensuring that all signals that require termination use the same terminating 
network. 
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11.1. Introduction 

This chapter addresses the design and layout of printed circuit boards, 
including the grouping of logic elements (for example, NAND gates, and so 
on) into integrated circuit packages. 

The principal objective is to ensure that the physical contact required 
between the ATE and the assembled board can be easily and reliably 
achieved. Two forms of access are typically required, in addition to access 
through the product's connectors as discussed in Chapter 10: 
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O through a bed-of-nails interface to connections within the circuit, 
either for in-circuit testing or to supplement access through the 
connectors during functional testing; and 

d so that the ATE operator can manually probe inter-chip connections, 
and so on, as required during fault diagnosis. 

An additional objective is to ease the task of diagnosing detected faults, 
primarily by ensuring correct packaging of logic elements into integrated 
circuit packages and easy identification of components. 

The rules and guidelines in this chapter address only the test aspects 
of printed circuit board layout. Designers should ensure that the 
requirements placed on board layout to ensure compatibility with auto-
insertion equipment, and so on, are also met. 

11.2. Using this chapter 

11.2.1. Board design requirements versus design-for-test 

In Chapter 3 the impact of changes in integrated circuit and manufacturing 
technology on design-for-test was discussed. Of particular note is the move 
away from test techniques that depend on physical access into the core of the 
board (for example, in-circuit testing) towards techniques that require access 
primarily to the board's connectors (for example, ANSI/IEEE Std 1149.1). 
These changes have a significant impact on the design-for-test requirements 
for board layout. 

11.2.2. In-circuit test requirements 

For in-circuit testing, access is required to every component-to-component 
connection on a printed circuit board. This is achieved using a bed-of-nails 
interface fixture, as shown in Figure 11.1. 

To allow efficient and reliable use of a bed-of-nails fixture, it is 
necessary to impose a number of 'accessibility' requirements on the layout of 
a printed circuit board. These cover aspects such as: 

O the ease of achieving a vacuum seal (typically, a vacuum is required 
to pull the board down onto the spring-loaded probes); 

D the ease of contacting the probe target; and i 
3 ensuring that components on the probed side(s) of the board do not 

interfere with probing. 
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11.2.3. Functional test requirements 

For functional testing, a limited amount of access to internal connections 
using a bed-of-nails fixture may be required, for example to allow easier 
observation of internal circuit nodes or to gain access to test points added to 
improve the testability of the circuit design. In addition, physical access to 
the board will be required during fault diagnosis. This will typically involve 
the use of a hand-held 'guided' probe. 

To ensure reliable manual probing of the board during diagnosis, 
aspects of board layout such as: 

O the availability of probeable connections on the side(s) of the board 
accessible to the ATE operator during test; and 

D the positioning and numbering of components 

are of interest. After all, the aim is to test the assembled printed circuit 
board, not the competence of the ATE operator! 

In addition, the manner in which logic devices (for example, NAND 
gates, flip-flops, and so on) are allocated into integrated circuit packages at 
the start of the board layout process can have a significant impact on the 
quality of the eventual diagnosis. 

11.2.4. The impact of boundary-scan components 

As was discussed in Chapter 7, by selecting components for use on a board 
that are designed to meet ANSI/IEEE Std 1149.1, the requirements for 
physical access to the board during testing are considerably reduced. Where 
a board is constructed entirely from such components, physical access will 
be required only to the product's connector(s) and to those connections 
within the board that form the test access path. The result is that components 
can be placed closer together, and that fewer artwork features need to be 
added to a board layout to ensure its testability. 

Spring loaded probes 

Figure 11.2 Board on ATE fixture. 
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11.2.5. Which rules should I follow? 

Many of the rules and guidelines in this chapter apply to all boards, 
regardless of the test technique to be used. There are, however, some 
exceptions — notably the requirements for test access and component 
spacing. In these cases, the rules and guidelines apply only where in-circuit 
and/or functional testing are to be used. 

11.3. Terminology 

The terms 'top' and 'bottom' used in this chapter relate to the board as viewed 
by the operator when it is mounted on an ATE test fixture (Figure 11.2). 

For dual-in-line, plated-through-hole board construction the 
component side is the top, while the solder side is the bottom. For other 
styles of board construction, for example where components are mounted on 
both sides of the board, the top side remains accessible to the ATE operator 
during test while the bottom side is contacted by the ATE, for example 
through a bed-of-nails interface. Note that, while fixtures are available that 
permit simultaneous access to both sides of a board, these are expensive. 
Also, in many cases the accuracy of probing for the top side of the board is 
less than for the bottom side, therefore some artwork features (for example, 
test access pad sizes) must be larger. The objective of this chapter is 
therefore to ensure that all printed circuit boards can be tested using a bed-
of-nails fixture that contacts only one side of the board (the bottom), with 
the other side (the top) being available for manual guided probing. 

11.4. Overall layout 

11.4.1. Board shape 

The preferred shape for a printed circuit board is rectangular with no cut­
outs. Where cut-outs are used they must be surrounded by an area clear of all 
obstructions as discussed in Section 11.4.2. 

11.4.2. Clearance around board edge, cut-outs, etc. 

Bed-of-nails test fixtures are normally operated by a vacuum that draws the 
board down onto the spring-loaded nails. An amount of board area sufficient 
to accommodate an appropriate seal is therefore needed around the board 
edge, cut-outs, and any other features that could prevent a vacuum being 
established. 



The clear area must be free of components, other obstructions, and 
via holes and should extend for at least 5.08 mm (0.200 inches) from the 
edge of the board, or cut-out. In the case of tooling holes, the clear area 
should extend for 9.52 mm (0.375 inches). This requirement is illustrated in 
Figure 11.3. 

11.4.3. Locating holes 

The accurate positioning of the board on the test fixture is critical if reliable 
connection is to be made to test lands and the edge connectors. 

To allow accurate positioning, tooling holes with a diameter of 
3.175, +0.100/-0.025 mm (0.125, +0.004/-0.001 inch) must be provided at 
two diagonally opposite corners of the board artwork as shown in Figure 
11.3. If possible, a third tooling hole should be provided as marked. All 
tooling holes must be un-plated, because the accuracy with which the board 
can be positioned on the test fixture will be unacceptably reduced by the 
need to accommodate variations in plating thickness. 

The positional tolerance of the tooling holes should be: 

D +/-0.075 mm (+/-0.003 inches) between tooling hole centres 
O +/-0.050 mm (+/-0.002 inches) between the tooling hole centres and 

other artwork features, such as test lands. 

Note: The geometries defined in this chapter for other features (for example, 
test access point size) make the assumption that these requirements are met. 

There must be a clear area of at least 9.52 mm (0.375 inches) annular 
radius around each tooling hole (see Section 11.4.2). 

Figure 11.3 Tooling holes and clear area. 
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11.5. Interconnect, vias, etc. 

11.5.1. Via holes should fill with solder during assembly 

To ensure a reliable vacuum seal between the assembled printed circuit 
board and the test fixture, all via holes must be filled by the soldering 
process. 

Via holes must therefore be of an appropriate diameter to ensure that 
they are normally filled during flow-soldering. Alternatively, provision must 
be made to ensure that the holes are filled following assembly. 

There must also be sufficient clearance in any solder resist coating to 
allow via holes to be filled during soldering. 

11.5.2. Use of mounting holes 

To limit damage during repair of faulty boards, component mounting holes 
should not also be used to convey signals between layers of the board 
artwork. 

11.6. Packaging of logic elements 

When packaging logic elements into multi-element devices (for example, 
SN7400 NAND gates, or SN74374 latches) the following requirements must 
be satisfied where possible. These requirements should be satisfied in order 
from (1) — highest priority, to (3) — lowest priority. 

(1) Devices of the same type feeding onto a single wired junction or bus 
connection must be contained in the same package (Figure 11.4). 

(2) Gates, latches, and so on of the same type which are connected 
together must be located in the same package. Note: This 
requirement is obligatory where an asynchronous feedback path 
flows through two or more elements of the same type. (See Figure 
11.5.) 

(3) Gates, latches, and so on of the same type which are in the same part 
of the design hierarchy must be located in the same package. 

All these requirements, if followed, will ease the task of diagnosing a fault 
to a single replaceable part. 
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If bus is faulty, then diagnosis 
to failing driver is difficult. 

Diagnosis of failing driver 
is not required since all 

drivers are in same pack. 

Figure 11.4 Packaging of gates at wired junctions. 

BAD GOOD 

Due to fast asynchronous feedback, 
the ATE cannot distinguish faults 
between the two gates. The only 

possible repair action is to replace 
both components. 

Since both gates are in the same 
package, diagnosis of the failing 

gate is not needed. 

Figure 11.5 Packaging of interconnected elements. 
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Shaded locations are for test—support circuitry. 
Devices larger than one grid location spread into 

neighbouring locations. 

Figure 11.6 Regular board layout. 

11.7. Component placement 

11.7.1. Board layout 

To maximize performance of the ATE operator or repair technician during 
diagnostic probing, the preferred overall layout of the board is for the main 
components (for example, integrated circuits) to be placed on a rectangular 
grid (see Figure 11.6). As discussed in Section 11.7.3, all components 
should be oriented in the same direction with pin-1 of each device being 
placed on a grid intersection. Components that are too large to fit within a 
single position on the grid can spread into neighbouring positions. 

Note that Figure 11.6 shows a number of locations on the standard 
grid reserved for test support components. Since an amount of additional 
circuitry may be required to render the design testable according to the 
standards defined in this book, it is good practice to reserve space for the 
extra components from the outset — and to release it later if not required. 
Reserving a consistent set of locations for boards in a product range has 
benefits in terms of reduced cost of providing ATE interface fixtures. 
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11.7.2. Component mounting 

The preferred style of assembly is single-sided component mounting on 
plated-through-hole printed circuit boards, using either through-hole or 
surface-mount components. Other styles of assembly, notably double-sided 
component mounting, significantly increase the cost of building ATE 
interface fixtures and complicate the ATE operator's task during diagnostic 
probing. 

Where components must be mounted on both sides of an assembled 
board it is essential that the following factors are considered during 
component placement: 

O Where practical, all integrated circuits mounted on the bottom side 
should meet IEEE Std 1149.1, since this removes the need for 
physical probing of their pins. 

O Components on the bottom side may be in a vacuum during testing, 
which will inhibit cooling. These components must therefore be able 
to tolerate being in the vacuum for in excess of 15'minutes (to allow 
for fault diagnosis time). 

O Components on the bottom side must not obstruct the operation of 
the bed-of-nails fixture. In particular, they must be clear of test lands 
(see Section 11.9) and their height must be less than 4.00 mm (0.160 
inches) preferred, 9.00 mm (0.360 inches) absolute maximum. 

11.7.3. Component orientation 

The ease and accuracy with which an ATE or repair operator can locate a 
specified component pin for probing or examination can be significantly 
decreased if all components do not have the same orientation on the board. 
(Generally, a good operator can achieve around five probes per minute on a 
well laid out board.) 

To allow maximum diagnostic throughput to be achieved, all 
components must have the same orientation, with their axes parallel to either 
the X or the Y axis of the board. Note also that for reliable flow soldering, all 
dual-in-line packages should have the same orientation. 

Where it is necessary to adopt different component orientations, the 
following rules must be obeyed: 

O all packages of the same style (for example, all dual-in-line packaged 
devices) should have the same orientation; 

O package orientations should be at 90° intervals — that is, component 
axes must be parallel to the X or Y axis of the board; and 

d the position of pin 1 and the flow of pin numbers (that is, clockwise 
or anti-clockwise) should be prominently marked beside each 
component. 
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11.7.4. Space between components 

The rules contained in this sub-section must be followed unless neighbouring 
components conform to ANSI/IEEE Std 1149 J. 

To allow for accurate and reliable contact between a guided probe, chip clip, 
and so on, and a component pin or printed circuit track, there must be at 
least 3.810 mm (0.150 inches) separation between component pins and 
adjacent components, measured perpendicular to the side of the component 
on which the pin is located. The space between adjacent sides of components 
which do not have connections must exceed 1.27 mm (0.050 inches). 

These requirements are illustrated in Figure 11.7. Note that where 
sockets are used, the spacings are relative to the outer socket walls. 

Figure 11.7 Space between components. 
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11.7.5. Rules for specific component types 

Adjustable components 

Adjustable components must be placed on the top side of the board. All 
adjustable components must be mounted so that they can be adjusted with a 
screwdriver or other instrument held perpendicular to the printed circuit 
board. The direction of adjustment should be the same for all components 
(for example, clockwise/anticlockwise, left-to-right, top-to-bottom, and so 
on). 

Select-on-test components 

Select-on-test components must be placed on the top side of the board. The 
mounting arrangement must be compatible with the number of insertions 
and removals anticipated during the product's life. 

Indicators 

Light-emitting diodes and other indicators must be placed so that they are 
visible when the board is mounted on the ATE. 

Fuses and circuit breakers 

All fuses and circuit breakers must be visible during testing, and capable of 
being reset or replaced without any dismantling. 

Links and switches 

Links, switches, and so on, must be placed on the top side of the board and 
be capable of being changed or operated without any dismantling. 

11.8. Test access provision 

11.8.1. Test access requirements 

The following connections must be capable of being accessed through a bed-
of-nails fixture: 

(1) all input and output connections of the board; 
(2) test access points included in the circuit design to improve its 

testability (for example, as defined in Chapter 8); 
(3) signals that connect to the TCK, TDI, TDO, TMS, and TRST* pins 

of components that conform to ANSI/IEEE Std 1149.1; 
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(4) signals where one or more connected input and output pins is not a 
digital pin provided with boundary-scan capability to ANSI/IEEE 
Std 1149.1; and 

(5) each power connection (+5 V, ground, and so on) to a component 
whose signal pins are to be probed as a result of (4) above. 

For a board populated exclusively with components that conform to 
ANSI/IEEE Std 1149.1, only the limited number of test access points 
defined by (1), (2), and (3) above is required. This limited set of test access 
points would also be sufficient if it could be guaranteed that in-circuit 
testing will not be used during the life of the product. 

Note: 

O Test access points must be provided for all otherwise un-used 
component pins to permit testing for solder shorts, and so on. 

O Where jumpers, and so on, are used to complete a connection 
between two or more printed circuit tracks, each track is considered 
to be a separate interconnection and must be provided with its own 
test access point. Each signal connected to a jumper must be 
considered as an input or output connection of the board — category 
(1) above. 

All test access points must satisfy the requirements on spacing, and so on, 
contained in Section 11.9 and be placed on the bottom side of the board. 

11.8.2. Probe target provision 

Prior to the addition of dedicated test lands to the printed circuit design, the 
following design features may be considered as locations for test access 
points: 

(1) via hole pads of diameter > 1.575 mm (0.062 inches) that are filled 
by solder during the assembly process and are not coated with solder 
resist, dry film, and so on; 

(2) leads of through-hole mounted dual-in-line package (DIP) 
components; 

(3) leads of through-hole mounted single-in-line package (SIP) 
components; 

(4) leads of through-hole mounted resistors, capacitors, diodes, and so 
on; and 

(5) plated connector tabs. 

Where test access is not possible to one of the above design features, 
dedicated test lands designed according to the requirements of Section 11.9.2 
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must added to the printed circuit design. Optionally, dedicated test lands 
may be provided under other circumstances. 

Where there are several acceptable probe targets for a single signal, 
the priority of selection followed during the fixture manufacturing process is 
(in descending order): 

(1) dedicated test lands; 
(2) via hole pads; 
(3) leads of through-hole mounted DIP components; 
(4) leads of through-hole mounted SIP components; 
(5) leads of through-hole mounted resistors, capacitors, diodes, and so 

on; and 
(6) plated connector tabs. 

Note that access to the pins of surface-mounted components is not permitted 
due to the possibility of pressure from the bed-of-nails prqbes masking open 
circuit joints. Dedicated test lands are therefore required for all 
interconnections made exclusively between surface-mount devices unless 
electronic access is possible to all component pins connected to the network. 

Figure 11.8 Regular array of test lands. 
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11.8.3. Standardized test point placement 

Where only a limited number of test access points is required (that is, where 
all components conform to ANSI/IEEE Std 1149.1 or it can be guaranteed 
that in-circuit testing will not be used), it is possible to reduce the number of 
test fixtures required across a range of board designs. Examples would 
include cases where a board is one of a set forming a complete product, or 
where a widely used equipment practice is to be used (for example, 
Eurocard). In such cases, ATE interface fixtures can be reused if test access 
is achieved through dedicated test lands placed in standard locations. The 
benefit is substantially reduced cost of testing the product in production or 
repair. 

Examples of standardized test land placements which could be 
adopted are shown in Figures 11.8 and 11.9. In the example in Figure 11.8, 
one test land is placed adjacent to each chip on the board. 

Figure 11.9 shows clustered arrays of test lands surrounding board 
locations reserved for test support chips (for example, as described in 
Chapter 5). The locations shown are chosen to minimize the distance from 
the connection to be probed to a test land in the array. The locations reserved 
for test support chips may be released for other applications if not required 
for test purposes. 

Figure 11.9 Clustered test land arrays. 
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11.9. Test access point design 

This section details design requirements for test access points. 

11.9.1. Placement 

All test access points must be on the bottom side of the board. Where 
interconnections would not otherwise be accessible on the bottom side of the 
board, through-connections to dedicated test lands must be provided. A 
study of typical board designs (Bullock, 1987) showed that, in practice, a 
board will only contain a small number of such connections. 

11.9.2. Dedicated test lands 

Shape and size 

Dedicated test lands may be square or circular. The square shape is preferred 
since this clearly identifies features of the printed circuit artwork which 
cannot be moved (for example, during engineering changes) without 
requiring modification of the test fixture. 

The length of each side or the diameter (as appropriate) should be 
greater than 1.5 mm (0.060 inches) wherever possible, and must be greater 
than 1.0 mm (0.040 inches) in all cases. 

GOOD BAD 

Constriction prevents 
solder flow to test land 

Figure 11.10 Separation of test lands from mounting holes, and so on. 
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Placement 

Dedicated test lands must be separate from component mounting holes or 
pads. This avoids damage to bed-of-nails test fixtures due to attempts to 
contact uneven surfaces (for example, the solder meniscus) — for example, 
where the probe may slide off the solder surface and bend. 

The provision of a constriction between the mounting hole/pad and 
the test land inhibits an excessive build up of solder on the test land during 
soldering (see Figure 11.10). Note that, while Figure 11.10 shows a through-
hole mounted component, it is equally important that this rule is followed 
for surface-mounted devices. 

11.9.3. Surface 

The most reliable contact between a spring-loaded probe and an assembled 
board is achieved when the feature to be probed is coated with solder. This is 
because the softness of the solder allows the oxides that build up on its 
surface to be pierced by the probe. 

The assembly process should therefore ensure that all artwork 
features that will be used as test access points are coated in solder (for 
example, via wave soldering, or by printing solder paste prior to component 
mounting and reflow). 

11.9.4. Spacing 

The spacing between test access points (for example, as listed in Section 
11.8.2) must exceed 2.54 mm (0.100 inches) where possible, but may reduce 
to 1.27 mm (0.050 inches) where absolutely necessary. The objective is to 
minimize the number of probes on a 0.050 inch pitch since these probes can 
be unreliable in operation. 

Note that it is not permitted to contact the leads of surface-mount 
components directly. Dedicated test lands must therefore be provided for all 
interconnections made exclusively between surface-mount package pins. 
Where package pins are spaced closer together than 2.54 mm (0.100 inches), 
track configurations such as illustrated in Figure 11.11 can be used to allow 
the minimum test access point spacing to be maintained. 

11.9.5. Clearance around test access points 

The space between the centre of a test access point and edges of any 
adjacent components mounted on the bottom side of the board must exceed 
1.50 mm (0.060 inches) for all components, and 5.00 mm (0.200 inches) 
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Figure 11.11 Test land placement for devices with pin spacings less than 
0.100". 

where the height of the component exceeds 4.00 mm (0.160 inches). These 
requirements are illustrated in Figure 11.12. Note also the maximum height 
for components on the bottom side of the board defined in Section 11.7.2. 

The requirement for a component-free area around the test access 
points ensures that there is no interference between the spring-loaded probes 
on the fixture and the assembled board. 

The requirement concerning tall components is caused by the limited 
space between the bed-of-nails fixture base plate and the bottom surface of 
the printed circuit board. To accommodate large components on the bottom 
side of the board the probe base plate needs to be shaped, perhaps by 
inclusion of a cut-out: 

11.10. Labelling 

11.10.1. Text size 

All text on the printed circuit board should exceed 1.5 mm (0.060 inches) in 
height. 
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Figure 11.12 Clearance between test access points and components. 

11.10.2. Text orientation 

All text, including text on integrated circuit packages, must be at 0 degree 
(horizontal) or 90 degrees when viewed by the ATE operator. (See Figure 
11.13.) 

11.10.3. Board identification 

The type, revision level, and serial number must be clearly marked on the 
top side of the printed circuit board. 

Bar-code labels, where used, must also be on the top side of the 
board. (Note that the bar-code label may be the largest single item on a 
surface-mount board. The Texas Instruments SCOPE Diary component 
(Texas Instruments, 1990) allows board identification data such as revision 
and repair data to be held in an IC, rather than through a label. This 
component uses the ANSI/IEEE Std 1149.1 Test Access Port.) 

11.10.4. Component identification 

Unless all components are placed on a rectangular grid, all component 
identities must be marked on the printed circuit board adjacent to the 
component locations and must remain visible once the components are in 
place. 



Figure 11.13 Text orientation. 

Figure 11.14 Labelling when grid layout used. 
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Figure 11.15 Sequential labelling of components. 
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If components are placed on a rectangular grid, then component 
identities can be indicated by labelling the rows and columns as shown on 
Figure 11.14. Alternatively components may be numbered sequentially left-
to-right, top-to-bottom, starting at the top-left corner of the board (see 
Figure 11.15). 

11.11. Construction 

11.11.1. Multi-board construction 

Multi-board construction (for example, mother/daughter board) should not 
be used if at all possible, with the exception of the use of hybrids. 

Where daughter boards (hybrids) are to be mounted on a mother 
board, access must be provided to all components and interconnections of 
the combined assembly without dismantling, through provision of test lands 
on the daughter boards where necessary. Particular attention must be paid to 
the ability to access test data and control signals through contacts to the 
mother board (see Section 11.9). 



11.11.2. Coatings 

Where coatings are applied it is vital that points to which test access may be 
required are kept clear. Such points include: 

• test lands on the printed circuit board 

D via holes (to meet the requirement for vias to be filled by solder — 
Section 11.5.1). 

& component leads 

Coatings other than solder resist masks (for example, conformal coatings) 
should be avoided if at all possible. 

11.11.3. Covers, and so on 

Where all or part of a design is to be contained in a cover (for example for 
EMI screening) then the design must allow either: 

3 easy removal of the cover during testing, without affecting the 
operation or electrical performance of the circuit (EMC performance 
may, however, change); or 

O test, diagnosis, and adjustment (where required) with the cover in 
place — that is, all faults in the circuit contained within the cover 
must be diagnosable with the cover on, and adjustments must also be 
possible with the cover in place. 
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CHAPTER 12. 

Documentation 

12.1 Introduction 12.2 Documentation required for 
test 

12.1. Introduction 

This chapter defines the documentation required before detailed test 
development can commence. This documentation must be produced during 
the product development process. 

12.2. Documentation required for test 

The documentation generated by the product development team must 
include the following: 

• Bill of materials, showing the types and (where appropriate) vendors 
of all components needed to build the product. 

3 Detailed schematics. Ideally, these should be provided as part of a 
copy of the complete workstation database for the design. If 

173 



174 DOCUMENTATION 

hierarchic schematics are not available, then the detailed schematics 
should be accompanied by appropriate block schematics. 

G Board layout data, preferably in workstation format to permit 
extraction of the positional data needed to construct test fixtures. 

G Description of test-support features built into the product (e.g., 
location of test lands, self-test, loopback, etc.). 

G Programming data for ROMs, PLDs, etc. supplied as machine-
readable files (for example, in JEDEC format). 

G Data for custom ICs, including schematics, data sheets, test 
waveforms, and so on. 

G Set-up procedures for adjust-on-test, select-on-test, switches, and 
similar components. 

G Performance specifications showing maximum and minimum 
operating speeds, power consumption, and so on indicating 
especially those parameters that are critical to .the successful 
operation of the product. 

G Timing relationships between input/output signals, for example as 
would be found in a component data book, to show which signals 
precede others, set-up and hold times, and so on. 

G Functional test waveforms for the completed design, to form the 
basis of any functional tests required for production or maintenance 
(for example, the waveforms created on the engineering workstation 
during simulation of the design). Note, waveforms should include 
both the inputs applied and the expected outputs (for example, as in a 
simulation log file). Note also that any test waveforms which must be 
applied in order to guarantee that the product meets relevant 
standards (IEEE, CCITT, Ethernet, and so on) must also be supplied. 
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Testability Checklists 

A.l Introduction 

A.1. Introduction 

This Appendix contains a set of testability checklists for use at appropriate 
stages in the development of a loaded board design. 

General information on the use of these checklists is contained in 
Chapter 4. The checklists provide a reference to the section of this book 
where further information can be found on each specific topic. 
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Self-testing products 

(1) Product identity 

Product Version 

(2) Rules. The product must meet these requirements. 

Item 

2 

3 

Rule description 
Self-test is triggered by: 

(a) power-up 
(b) user-interface command 
(c) electronic interface 

command 
Test results are indicated at: 

(a) user-interface 
(b) electronic interface 

No hazardous data is applied to the 
product interfaces during self-test 

Ref. 
63 

6.4 

6.5 

Yes 

• 

No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

3 

Guideline description 
Kernel is separated from other 
circuitry during kernel test 
Component-specific tests are 
applied 
A dedicated self-test ROM is 
provided 

Ref. 
62 

6.6 

6.2.1 

% NIA 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

Role Signature Name Date 
Designer 

Test engineer 

Project manager 
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Component selection 

(1) Product identity 

Product Version \ 

(2) Rules. The product must meet these requirements. 

Item 
1 

Rule description 
All device-specific testability 
requirements have been 
implemented 

Ref. 
7.2.3 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

3 

4 

Guideline description 
Components are in the approved 
components list for the target 
manufacturer 
Simulation models are available 
for component used 
ICT test data is available for 
components used 
Components used contribute to the 
'buy testable' policy 

Ref. 
7.2.1 

7.2.1 

7.2.1 

7.2.2 

% NIA 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

Role Signature Name Date 
Designer 

Test engineer 

Project manager 
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Programmable device design 

(1) Product identity 
Product Version I 

(2) Rules. The product must meet these requirements. 

Item 
1 

2 

Rule description 
Device can be initialized 
All device outputs can be set to 
high impedance from a device 
input 

Ref. 
7.3.1 
7.3.2 

Yes No N/A 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

Guideline description 
Device is synchronous 

Ref. 
7.3.3 

% N/A 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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ASIC design 

(1) Product identity 

Product Version | I 

(2) Rules. The product must meet these requirements. 

Item 
1 
2 

3 

Rule description 
Device can be initialized 
All device outputs can be set to 
high impedance from a device 
input 
Test programme exists that detects 
more than 95% of target faults 

Ref. 
7.4.1 
7.4.2 

7.4.3 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

Guideline description 
Chip complies with ANSI/IEEE 
Std 1149.1-1990 
Scan or self-test techniques have 
been used where appropriate 

Ref. 
7A.2 

7.4.4 

% NIA 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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(1) Product identity 

Circuit design 

Product Version \ 

(2) Rules. The product must meet these requirements. 

Item 
1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 
14 

15 

Rule description 
All stored-state devices can be 
initialized 
Prohibited initialization techniques 
have not been used 
Power-on resets are provided with 
an alternative logic control 
Unused initialization control pins 
are not tied together 
Analogue and digital circuits can 
be separated during test 
All redundant circuits can be 
tested separately 
RAM and ROM terminals are 
directly accessible 
ROM can be disabled and replaced 
by tester 
No monostables used in the design 
All built-in clocks can be observed 
and replaced by ATE signals 
during test 
No AOT or SOT components in 
design 
Fan-out margin provided to drive 
probes 
Test pins on devices are accessible 
Unused device pins are tied to 
fixed logic levels to DFT 
requirements 
Test points provided on buses and 
3-state connections 

More rules follow... 

Ref. 
8.2 

8.2.4 

8.2.5 

8.2.5 

8.3.1 

8.3.4 

8.4.1 
8.4.2 
8.4.2 

8.4.3 
8.4.4 

8.4.7 

8.5.1 

8.5.3 
8.5.4 

8.5.6 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 
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Item 
16 

17 

18 

Rule description 
3-state connections cannot be high 
impedance in fault-free product 
ATE can determine bus driver 
during test 
Feedback paths can be disabled 

Ref. 
8.5.6 

8.5.6 

8.5.7 

Yes No N/A 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

Guideline description 
Initialization can be achieved 
within 20 clocks/patterns 
Static designs used in preference 
to dynamic 
Synchronous designs used in 
preference to asynchronous 
ROM contents can be made to 
give a consistent checksum 
Monostables meet all DFT 
requirements 
Long counters can be segmented 
for test 
Large parity trees, etc. can be 
segmented for test 
AOT and SOT components meet 
DFT requirements 
Handbag links, etc. used rather 
than switches 
Test points provided for LEDS 
and indicators 
Clock, etc. inputs enter via buffers 
No wire-OR, wire-AND 
connections 
Test access provided to key 
connections 

Ref. 
8.2.2 

8.3.2 

8.3.3 

8.4.2 

8.4.3 

8.4.5 

8.4.6 

8.4.7 

8.4.8 

8.4.9 

8.5.2 
8.5.5 

8.6 

% N/A 

Note: a response of <75% should be justified on an attached sheet 
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(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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Power supply and distribution 

(1) Product identity 

Product Version | I 

(2) Rules. The product must meet these requirements. 

Item 
1 

2 

3 

4 

5 

6 

Rule description 
Design offers no safety hazards for 
test personnel 
No more than 3 different power 
inputs 
Power supplied can be turned on 
in any order 
Stabilization time less than 1 
minute 
Power inputs to specified devices 
are decoupled close to device 
power pins 
Regulators, converters, etc. can be 
tested without risk of damage to 
other components 

Ref. 
9.2 

9.3.1 

9.3.4 

9.3.5 

9.4 

9.5.1 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 
2 

3 

Guideline description 
AC power supplies are not used 
Power pins are located in standard 
positions 
Stabilization time for power 
supplies (<1 sec = 100%, 
1-5 sec - 75%, 5 sec-1 min = 
50%) 

Ref. 
9.3.2 
9.3.3 

9.3.5 

% NIA 

Note: a response of <75% should be justified on an attached sheet 



184 TESTABIUTY CHECKUSTS 

(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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Connectors 

(1) Product identity 

Product Version 

(2) Rules. The product must meet these requirements. 

Item 
1 

2 

Rule description 
A high-reliability companion 
connector is available for each 
connector used 
Connector keys are defeatable 

Ref. 
10.2.1 

10.2.2 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 

2 

3 

Guideline description 
Relevant industry standard layout 
has been adhered to 
Non-standard signals are on 
consistent pins across product 
family 
Signal grouping requirements of 
target ATE have been met 

Ref. 
10.3.1 

10.3.2 

10.3.3 

% NIA 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

Role Signature Name Date 
Designer 

Test engineer 

Project manager 
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Printed circuit layout 

(1) Product identity 

Product Version | | 

(2) Rules. The product must meet these requirements. 

Item 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

/?w/e description 
5.08 mm clear area around board 
edge 
2 unplated tooling holes, in 
diagonally opposite corners 
9.5 mm clear area around tooling 
holes 
Via holes plated and clear of 
coatings 
Components on bottom side are 
< 9 mm tall 
All components oriented same 
way 
3.81 mm clear area from 
component pins 
1.27 mm clear area from 
component sides 
AOTs, SOTs, and indicators on 
top 
Fuses, circuit breakers, links, and 
switches accessible 
Test access point on bottom side 
for each node 
Test access points > 1.27 mm 
apart 
Test access points > 1.50 mm from 
components on bottom side 
Text at 0 or 90 degrees 

More rules follow... 

Ref. 
11.4.2 

11.4.3 

11.4.3 

11.5.1 

11.7.2 

11.7.3 

11.7.4 

11.7.4 

11.7.5 

11.7.5 

11.9.1 

11.9.4 

11.9.5 

11.10.2 

Yes No N/A 

Note: a negative response must be justified on an attached sheet 
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Item 
15 

16 
17 

Rule description 
Board identity, version, and serial 
on top 
Test access points clear of coatings 
Test and adjustment possible 
without removing covers 

Ref. 
11.10.3 

11.11.2 
11.11.3 

Yes No N/A 

Note: a negative response must be justified on an attached sheet 

(3) Guidelines. Meet these requirements where possible. 

Item 
1 
2 
3 

4 

5 

6 
7 

8 

9 
10 

11 
12 

Guideline description 
Board is square with no cut-outs 
Mounting holes not used as vias 
Devices of same type driving same 
node are in same package 
Devices of same type that are 
connected together are in same 
package 
Devices of same type in same part 
of design are in same package 
Board layout on a regular grid 
Components mounted on one side 
of board 
Dedicated test lands on bottom, 
square 
Text height > 1.5 mm 
Component identities or 
numbering regular 
No daughter boards 
No coating other than solder resist 

Ref. 
11.4.1 
11.5.2 
11.6 

11.6 

11.6 

11.7.1 
11.7.2 

11.9.2 

11.10.1 
11.10.4 

11.11.1 
11.11.2 

% N/A 

Note: a response of <75% should be justified on an attached sheet 

(4) Sign-off 

1 

2 

3 

Role 
Designer 

Test engineer 

Project manager 

Signature Name Date 
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(1) Product identity 

Documentation 

Product Version | I 

(2) Documentation. The following documentation has been provided 

Item 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 

Item description 
Bill of materials 
Detailed and block schematics 
Board layout data 
Documentation for test-support features 
Programming data for ROMs, PLDs, etc. 
Design data for ASICs 
Set-up procedures for AOTs, SOTs, 
switches, etc. 
Performance specifications 
Details of timing relationships between 
signals 
Functional test waveforms 

Yes No NIA 

Note: a negative response must be justified on an attached sheet 

(3) Sign-off 

Role Signature Name Date 
Designer 

Test engineer 

Project manager 
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3-state connections 141 
3-state devices 

use for test access 102 

adjust-on-test components 137, 
162 

analogue/digital circuits 128 
ANSI/IEEE Std 1149.1 53 

acceptance 91 
ASICs 118 
boundary-scan instructions 

65 
BYPASS instruction 62 
EXTEST instruction 68 
IDCODE instruction 63 
impact on board layout 154 
INTEST instruction 70 
RUNBIST instruction 73 
SAMPLE/PRELOAD 

instruction 66 
test access port 56 

USERCODE instruction 63 

application-specific IC, see ASIC 
ASIC 117 

ANSI/IEEE Std 1149.1 118 
initialization 117 
test quality targets 118 
testability budget 120 

asynchronous circuits 129 
automatic test equipment (ATE) 

4,14 
bare-board 15 
cluster 17 
functional 17 
in-circuit 16 
integrated circuit 14 

automatic test pattern generation 
34 

bare-board tester 15 
bed-of-nails 16,154 

use for test access 105 
BILBO, see built-in logic block 

observer 
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bill of materials (BOM) 85,173 
BIST, see self-test 
boundary-scan 39, 52 

chip test 41,70,73 
impact on board layout 154 
interconnect test 40, 68 
use of 76 

boundary-scan description 
language 75 

bridging faults 10 
built-in logic block observer 

(BILBO) 48 
built-in self-test (BIST), see self-

test 
buses 141 

circuit breakers 146, 162 
clock generators 135 
complexity 

impact on testability 24 
component design 113 
component orientation 160 
component placement 159 
component selection 113 
component spacing 161 
connectors 

design 147 
durability 148 
keyed 148 
selection 148 

connector *U* links 100 
controllability 12,143 
counters 136 
covers 172 

defect level 7 
design-for-test 21,24 

budget 94,120 
costs and benefits 22 
guidelines 27, 87 
introduction 21 
planning 83 
rules 87 
techniques 24 

design reviews 86 
design verification 4 

diagnosis 5,19 
displays 138, 162 
documentation 173 
dynamic circuits 129 

memory 132 

enclosures 172 

fan-out 138 
fault coverage 13,27 
fault dictionary 19 
fault masking 

inMISRs 46 
fault models 8 

bridging 10 
open-circuit 10 
stuck-at 9 
timing 10 

fault simulation 13 
fault simulator 12, 13 
feedback 30,142 

global 31 
local 31 
packaging of gates in feedback 

paths 157 
functional board testers 17 
fuses 146, 162 

guided probing 19 

in-circuit board testers 16 
indicators 138,162 
initialization 28, 123 

ASICs 117 
control of 126 
power-on 126 
preferred techniques 124 
programmable devices 115 
prohibited techniques 125 

integrated circuit testers 14 

labelling 168 
level-sensitive scan design 

(LSSD) 35 
linear-feedback shift register 

(LFSR) 43,112 
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macro test 50 
miniaturization 

impact on testability 25 
monostables 134 
multi-board construction 171 
multiple-input signature register 

(MISR) 46,112 
multiplexors 

use for test access 102 

observability 12, 143 
open circuit faults 10 
overdriving 16 

packaging of logic gates 157 
parity trees 137 
partial scan 38 
power supply 144 

AC 145 
connections 149 
conversion 146 
decoupling 146 
regulation 146 
stabilization 145 
turn-on sequencing 145 

power-on resets 126, 146 
printed circuit coatings 172 
printed circuit layout 151 

clearance at edge 155 
impact of boundary- scan 154 
locating holes 156 
requirements for functional 

test 152 
requirements for in-circuit test 

152 
shape 155 

process yield 7 
production testing 4 
programmable devices 115 

initialization 115 

quality 7 
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random-access memory (RAM) 
110,132 

random-access scan 36 
read-only memory (ROM) 110, 

132 
redundancy 130 
repair testing 4 
rule of 10s 8 

safety 144 
scan design 30 

boundary 39,52 
level-sensitive 35 
partial 38 
principle 31 
random-access 36 
shift register 33 

select-on-test components 137, 
162 

self-test 4,42,106 
ANSI/IEEE Std 1149.1 73 
microprocessor based 107 
RAM 110 
ROM 110 

shift registers 
use for test access 102 

signature analysis 44 
speed 

impact on testability 24 
stuck-at faults 9 
switches 137, 162 

test access 99,162 
test access point design 166 
test application 5, 14 
test costs 

for VLSI 7 
test development 5,8,11 
test generation, see test 

development 
test lands 166 
test point 100,165 
test support chips 104 
test strategy 90 
testability 5,7 
testability checklists 88, 89, 175 
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testers, see automatic test timing faults 10 
equipment 

text unused inputs 139 
orientation 169 
size 168 wire-AND connections 140 

time to market 5, 27 wire-OR connections 140 


