

[image: image]

The Essential Guide to
SAS® Dates and Times

Second Edition

Derek P. Morgan

[image: image] support.sas.com/bookstore

The correct bibliographic citation for this manual is as follows: Morgan, Derek P. 2014. The Essential Guide to SAS® Dates and Times, Second Edition. Cary, NC: SAS Institute Inc.

The Essential Guide to SAS® Dates and Times, Second Edition

Copyright © 2014, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-62959-066-0 (Hardcopy)
ISBN 978-1-62959-489-7 (EPUB)
ISBN 978-1-62959-490-3 (MOBI)
ISBN 978-1-62959-491-0 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more information about our offerings, visit sas.com/store/books or call 1-800-727-0025.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

About This Book

Acknowledgments

Chapter 1: Introduction to Dates and Times in SAS

1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)

1.2 Internal Representation

1.3 External Representation (Basic FORMAT Concepts)

1.4 Date and Time as Numeric Constants in SAS

1.5 Length and Numeric Requirements for Date, Time, and Datetime

1.6 General SAS Options for Dates

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times as We Know Them

2.1 How Do I Use a Format?

2.2 How Many Built-In Formats Are There for Dates and Times?

2.3 Date Formats, Justification, and ODS

2.4 Detailed Discussion of Each Format

2.4.1 Date Formats

2.4.2 Time Formats

2.4.3 Datetime Formats

2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT

2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT

2.7 Creating Custom Formats Using PROC FCMP for Processing

2.8 The PUT() Function and Formats

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values

3.1 Avoiding the Two-Digit Year Trap

3.2 Using Informats

3.3 The INFORMAT Statement

3.3.1 Using Informats with the INPUT Statement

3.3.2 Informats with the INPUT() Function

3.3.3 When the Informat Does Not Match the Data Being Read

3.4 Listing and Discussion of Informats

3.4.1 Date Informats

3.4.2 Time Informats

3.4.3 Datetime Informats

3.4.4 The "ANYDATE" Series of Informats

3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats?

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions

4.1 What Is ISO 8601?

4.2 ISO 8601 Formats

4.2.1 ISO Date Formats

4.2.2 ISO Time Formats

4.2.3 ISO Datetime Formats

4.3 ISO 8601 Informats

4.3.1 ISO Date Informats

4.3.2 ISO Time Informats

4.3.3 ISO Datetime Informats

4.4 Time Zone Functions

4.4.1 Introduction

4.4.2 The TIMEZONE= Option

4.4.3 List of Time Zone Functions

4.5 ISO 8601 Durations and Intervals

4.5.1 ISO Duration and Interval Representations

4.5.2 ISO 8601 Duration and Interval Formats

4.5.3 ISO 8601 Duration and Interval Informats

4.5.4 CALL IS8601_CONVERT

4.6 Conclusion

Chapter 5: Date and Time Functions

5.1 Current Date and Time Functions

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values

5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information

5.3.1 Introduction

5.3.2 List of Functions and Their Descriptions

5.4 Calculating Elapsed Time, and the HOLIDAY() Function

5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF()

5.5 The Basics of SAS Intervals

5.5.1 The Interval Calculation Functions: INTCK() and INTNX()

5.6 Modifying SAS Intervals

5.7 Creating Your Own SAS Intervals

5.8 Interval Functions about Intervals

5.8.1 INTFIT(argument-1,argument-2,type)

5.8.2 INTFMT('interval','size')

5.8.3 INTGET(argument1,argument2,argument3)

5.8.4 INTSHIFT('interval')

5.8.5 INTTEST('interval')

5.9 Retail Calendar Intervals and Seasonality

5.9.1 Retail Calendar Intervals

5.9.2 Seasonality Functions

Chapter 6 Deeper into Dates and Times with SAS

6.1 Macro Variables and Dates

6.1.1 Automatic Macro Variables

6.1.2 Putting Dates into Titles

6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in Macro Variables

6.1.4 Using Dates in Macros

6.2 Graphing Dates

Johnny's Savings Account

6.3 The Basics of PROC EXPAND

6.3.1 Capabilities of PROC EXPAND

6.3.2 Using PROC EXPAND to Convert to a Higher Frequency

6.3.3 Using PROC EXPAND to Convert to a Lower Frequency

6.3.4 Using PROC EXPAND to Interpolate Missing Values

6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC EXPAND

6.4 International Date, Time, and Datetime Formats and Informats

6.4.1 "EUR" Formats and Informats

6.4.2 NLS Formats

6.5 NLS Date, Time, and Datetime Conversion Functions

6.6 Date Formats and Informats for Other Calendars

6.6.1 Hebrew Date Formats

6.6.2 Japanese and Taiwanese Date Formats

6.6.3 Japanese and Taiwanese Date Informats

6.7 Other Software and Their Dates (Excel, Oracle, DB2)

6.7.1 The SASDATEFMT= System Option

6.8 Conclusion

Appendix A: A Quick Reference Guide to SAS Date, Time, and Datetime Formats

Appendix B: A Quick Reference Guide to NLS Date, Time, and Datetime Formats

Appendix C: Troubleshooting Dates 101

Index

About This Book

Purpose

This book is designed to provide a detailed look at how the SAS date facility works, including an in-depth look at intervals and the interval functions, ISO 8601 date and datetime handling, and the NLS formats and informats. It is intended to serve as both a reference and a teaching tool. Ultimately, this book will allow the reader to become more confident in their daily work with dates, times, and datetimes in SAS.

Is This Book for You?

This book is aimed at beginning to intermediate SAS programmers, or those who work with ISO 8601 data, intervals, and/or reporting in multiple languages.

What’s New in This Edition

This new edition includes updated information to reflect the changes in version 9 of SAS; an expanded discussion of intervals, including the ability to define your own intervals; a section on how SAS works with the ISO 8601 date standards; and a troubleshooting appendix for beginners.

Scope of This Book

This book does not cover the SAS/ETS product, except for an overview of the EXPAND procedure.

About the Examples

Software Used to Develop the Book's Content

SAS version 9.4 (TS level 1M0) was used to produce all the examples in this book.

Example Code and Data

Many of the examples used in this book have accompanying code and data.

You can access the example code and data for this book by linking to its author page at http://support.sas.com/publishing/authors. Select the name of the author. Then, look for the cover thumbnail of this book, and select Example Code and Data to display the SAS programs that are included in this book.

For an alphabetical listing of all books for which example code and data is available, see http://support.sas.com/bookcode. Select a title to display the book’s example code.

If you are unable to access the code through the website, send e-mail to saspress@sas.com.

Output and Graphics Used in This Book

Tables in this book were generated using ODS RTF, while graphics were generated as PNG files directly in SAS using the GPLOT and SGPLOT procedures. Screen captures were used to show the VIEWTABLE displays.

Additional Help

Although this book illustrates many analyses regularly performed in businesses across industries, questions specific to your aims and issues may arise. To fully support you, SAS Institute and SAS Press offer you the following help resources:

• For questions about topics covered in this book, contact the author through SAS Press:

◦ Send questions by email to saspress@sas.com; include the book title in your correspondence.

◦ Submit feedback on the author’s page at http://support.sas.com/author_feedback.

• For questions about topics in or beyond the scope of this book, post queries to the relevant SAS Support Communities at https://communities.sas.com/welcome.

• SAS Institute maintains a comprehensive website with up-to-date information. One page that is particularly useful to both the novice and the seasoned SAS user is its Knowledge Base. Search for relevant notes in the “Samples and SAS Notes” section of the Knowledge Base at http://support.sas.com/resources.

• Registered SAS users or their organizations can access SAS Customer Support at http://support.sas.com. Here you can pose specific questions to SAS Customer Support; under Support, click Submit a Problem. You will need to provide an email address to which replies can be sent, identify your organization, and provide a customer site number or license information. This information can be found in your SAS logs.

Meet the Author

[image: image]

Derek Morgan is a senior SAS programmer in the pharmaceutical industry who has been programming professionally in SAS for over 27 years. He spent 23 of those years at Washington University in St. Louis, where he received an A.B. in biology in 1985 and his first introduction to SAS as a student. During his career he has used SAS to create interactive data entry and management systems and to build and maintain research databases for analysis. In the late 1980s, he created a macro library to allow the use of nonproportional fonts in tables and listings on PostScript printers. He has taught introductory SAS programming and has presented many papers at local, regional, and national SAS Users Group conferences. Derek is married and has one son, and in his spare time he plays electric bass around the St. Louis area.

Learn more about this author by visiting his author page at http://support.sas.com/publishing/authors/morgan.html. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.

Keep in Touch

We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact us about a specific book, please include the book title in your correspondence.

Contact the Author through SAS Press

• By e-mail: saspress@sas.com

• Via the Web: http://support.sas.com/author_feedback

Purchase SAS Books

For a complete list of books available through SAS, visit sas.com/store/books.

• Phone: 1-800-727-0025

• E-mail: sasbook@sas.com

Subscribe to the SAS Training and Book Report

Receive up-to-date information about SAS training, certification, and publications via email by subscribing to the SAS Training & Book Report monthly eNewsletter. Read the archives and subscribe today at http://support.sas.com/community/newsletters/training!

Publish with SAS

SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress for more information.

Acknowledgments

A book is always a team effort, and I can honestly say that I have had a great one. Starting with the people at SAS Press whose efforts and patience on my behalf have resulted in this second edition, I would like to thank Julie Platt, Shelley Sessoms, and Stacey Hamilton but most especially my developmental editor, Stephenie Joyner, who kept me on task and moving forward. SAS guru Art Carpenter has been more than just an editor; he has been a mentor, and every time I run into him, I find myself knowing how to do something better than I did before. This second edition would not exist without his support. Another big thank you goes to Denise T. Jones, Stacy Suggs, and Robert Harris, all from SAS Press, who are responsible for producing this book from my manuscript.

Thanks to Andrew Karp for introducing me to the world of PROC EXPAND, and to Mike Forno of SAS Institute for answering my questions on it. I greatly appreciate the American Public Transportation Association (http://www.apta.com), which allowed me to use data compiled from its member transit agencies for the PROC EXPAND examples. The technical support group at SAS Institute deserves special mention; after 27 years of working as a computer programmer, I have come to the conclusion that you are, without a doubt, the best in the business. Thank you for all of your help throughout my SAS career.

I’d also like to thank the technical reviewers from SAS Institute—Richard Bell, Chris DeHart, Johnny Johnson, Rick Langston, and Kim Wilson—for their thoughtful comments and corrections. In addition, Paul Rowland deserves a big thank you for his willingness to provide a SAS user’s perspective.

Ultimately, this project would not have been possible without the support of my family, past and present. To my son, Terec, thank you for understanding my distraction during Formula I season, and thank you for the photo. To my wife, Billie, thank you for letting me work on our weekends and a good number of our evenings, and for contributing your knowledge of Microsoft Word to help me write the manuscript.

Chapter 1: Introduction to Dates and Times in SAS

1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)

1.2 Internal Representation

1.3 External Representation (Basic FORMAT Concepts)

1.4 Date and Time as Numeric Constants in SAS

1.5 Length and Numeric Requirements for Date, Time, and Datetime

1.6 General SAS Options for Dates

In the years that I've been working with SAS and teaching students how to use it, I find that two things consistently confuse those who are new to SAS. First is the default way that the DATA step works. Its implied DO-until-end-of-data generates many "How do I tell it how much data to read and when to stop?" questions. The second most confusing concept in SAS is that of how dates (and times) work within the software. I've seen many misuses of character strings masquerading as dates and/or times over the years, as well as unexpected results due to a failure to understand this fundamental part of SAS.

However, the way that SAS reads, stores, and displays dates and times is only the tip of the iceberg when it comes to the power and flexibility of SAS in handling this information. There is so much more than just having numbers represent date and time values. We'll start with the basics in the first three chapters, and then progress to some more advanced uses of those date and time values, taking advantage of many of the features available in SAS for that purpose.

1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)

SAS counts dates, times, and datetime values separately. The date counter started at zero on January 1, 1960. Any day before January 1, 1960, is a negative number, and any day after that is a positive number. Every day at midnight, the date counter is increased by one. The time counter is measured in seconds and runs from zero (at midnight) to 86,400 (the number of seconds in a day), when it resets to zero. SAS calculates datetimes as the number of seconds since midnight, January 1, 1960. Why January 1, 1960? The founders of SAS wanted to use the approximate birth date of the IBM 370 system to represent the beginning of the modern computing era, and they chose January 1, 1960, as an easy-to-remember approximation.

In deciding whether to use a date, a time, or a datetime, you should consider how you are going to use it. Datetimes are always date and time combined; therefore, if you will not always have a time available for each date, you should strongly consider using separate date and time variables and then calculate a datetime variable from the two components when needed. Normally, attempting to create a datetime without both a date and a time will cause an error, and the result will be a missing value for the datetime. However, in specific circumstances, it is possible to create a datetime value from a date and a missing time (see Section 4.3.3, "ISO Datetime Informats," for an example). In these cases, the time will be set automatically to midnight (0 seconds of the given date). You may want your datetime value to be missing when there is a date but no time available. In these specific circumstances, it is important to keep track of date and time separately. Many programs that handle dates (such as databases and spreadsheets) maintain their dates and times as a numeric value relative to some fixed point in time, although the date that represents zero is different across each package, and packages may vary in how they keep track of time of day. Ultimately, this makes calculating durations easy, and working with dates and times stored in this fashion becomes a matter of addition, subtraction, multiplication, and division.

1.2 Internal Representation

SAS stores dates as integers, while the datetime and time counters are stored as real numbers to account for fractional seconds. The origin of the algorithm used for SAS date processing comes from a January 14, 1980, Computerworld article by Dr. Bhairav Joshi of SUNY-Geneseo. The earliest date that SAS can handle with this algorithm is January 1, 1582 (essentially the implementation date of the current Gregorian calendar system). The latest date is far enough into the future that at least five digits will be required to display the year.

Dates as stored by SAS don't do us much good in the real world. The statement "I was born on -242" won't mean much to anyone else. However, "I was born on May 4, 1959," can easily be translated into something that most people can understand, or it can be used as is. Fortunately, SAS has a number of built-in facilities to perform automatic translation between the internal numbers stored in SAS and dates and times and their representation as understood by the rest of the world. These built-in tools include formats and informats (introduced in Section 1.3 and covered extensively in Chapters 2, 3, and 4), date and time constants (Section 1.4), and functions (Chapter 5).

1.3 External Representation (Basic FORMAT Concepts)

Formats perform an automatic translation between the actual value and the value to be displayed. Formats display the date, time, and datetime values in a fashion that is much more easily understood. Formats do not change the values themselves; they are just a way to display the values in any output.

When you have dates or times and want to translate them into SAS date and time values, you will use informats. Although you will need a statement, procedure, or a function to actually create the SAS values, informats describe what the data look like so that SAS can translate it correctly for storage. We will discuss formats and informats in detail in Chapters 2, 3, and 4 because there are dozens of them. Three of the most commonly used formats that work with SAS date, time, and datetime values are used in the following section.

1.4 Date and Time as Numeric Constants in SAS

We've talked about internal and external representation of dates and times. How do you put a specific date into a program as a constant? Formats only change the way the values are displayed in output, so you can't use them. Informats need a function or a SAS statement to translate the characters they are given, so you could use them, but then you would always need to use the INPUT() function to create a SAS date in a DATA step or PROC SQL. The INPUT function takes a series of characters that you give it and translates it using the informat that describes what the series of characters look like. That's very inefficient if you just want one specific date.

date = INPUT("04AUG2013",DATE9.);

Look at the program in Example 1.1 to see how date, time, and datetime constants are written into a SAS program. Take note of the quotation marks around the values for date, time, and datetime and the letters that follow each closing quote.

Example 1.1: Date Constants

DATA date_constants;

date = '04aug2013'd; /* This is a date constant */

time = '07:15:00't; /* This is a time constant */

datetime = '07aug1904:21:31:00'dt; /* This is a datetime constant

*/

RUN;

TITLE "Unformatted Constants";

PROC PRINT DATA=date_constants;

VAR date time datetime;

RUN;

TITLE "Formatted Constants";

PROC PRINT DATA=date_constants;

VAR date time datetime;

FORMAT date worddate32. time timeampm9. datetime datetime19.; /*

Format the constants */

RUN;

The quotes are used to create a literal value. You may use a pair of single or double quotes to specify the literal value. Dates have to be written as ddmonyyyy; times as hh:mm:ss (add a decimal point and more digits to represent fractional seconds if necessary); and datetimes as the date ddmonyyyy, followed by a separator (frequently seen as a colon [:]) and then the time (hh:mm:ss). Aside from the correct formatting of these literal values, the most important part of a date/time/datetime constant is the letter that immediately follows the last quote. The letter "D" stands for date, "T" for time, and "DT" for datetime. Upper or lower case is valid. If you put one of these strings in quotes without the letter at the end, you will create a character variable, not a numeric variable with a date, time, or datetime value. The difference might not become apparent until you try to do something with the variable you created that involves a calculation. Don't forget your "D," "T," or "DT"! This example demonstrates how these constants are defined and then automatically converted to their equivalent SAS values.

The first PROC PRINT statement displays the date, time, and datetime values we created with our constants without formats, so we can see the values as they are stored in the data set.

	Unformatted Constants

	date
	time
	datetime

	19574
	26100
	-1748226540

The second PROC PRINT shows the effect of associating the variable DATE with the WORDDATE. format, the variable TIME with the TIMEAMPM. format, and the variable DATETIME with the DATETIME. format.

	Formatted Constants

	date
	time
	datetime

	August 4, 2013
	7:15 AM
	07AUG1904:21:31:00

Without the formats, you can see that the date constants we used to create the values stored in the data set are displayed as their actual SAS date, time, and datetime values. They don't make much sense to us until a format is associated with the variable.

What happens if you forget to put the "D," "T," or "DT" after your date constant? In Example 1.2, the "D," "T," and "DT" have been removed from the same date, time, and datetime in Example 1.1.

Example 1.2: Incorrect Date Constants

DATA bad_date_constants;

date = '04aug2013'; /* This is NOT a date constant */

time = '07:15:00'; /* This is NOT a time constant */

datetime = '07aug1904:21:31:00'; /* This is NOT a datetime constant

*/

RUN;

TITLE "Unformatted Constants";

PROC PRINT DATA=bad_date_constants;

VAR date time datetime;

RUN;

Now we print out the values without formats. While the problem may not be apparent at first glance, this result does not look like the unformatted SAS date, time, and datetime values in the previous example.

	Unformatted constants

	date
	time
	datetime

	04aug2013
	07:15:00
	07aug1904:21:31:00

Now let's try to add one day to the date, and a minute (60 seconds) to both the time and datetime. Here is a partial log of what happens when we try this with the code in Example 1.2.

12 DATA bad_date_constants;

13 date = '04aug2013' + 1;

14 time = '07:15:00' + 60;

15 datetime = '07aug1904:21:31:00' + 60;

16 RUN;

NOTE: Character values have been converted to numeric

 values at the places given by: (Line):(Column).

 13:8 14:8 15:12

NOTE: Invalid numeric data, '04aug2013' , at line 13 column 8.

NOTE: Invalid numeric data, '07:15:00' , at line 14 column 8.

NOTE: Invalid numeric data, '07aug1904:21:31:00' , at line 15 column

 12.

❶ date=. time=. datetime=. _ERROR_=1 _N_=1

The "invalid numeric data" note in the log tells you that you tried to use a character value to do something that requires a numeric value. The boldface last line tells you that you have missing values for all three variables, because you were trying to do math with a character value. Remember that SAS dates, times, and datetimes are always stored as numbers. When you see "invalid numeric data" where you intended to use a date constant, it is highly probable that your date constant is missing its identifying "D," "T," or "DT."

1.5 Length and Numeric Requirements for Date, Time, and Datetime

You can take advantage of the fact that dates are stored as integers to save space when you create variables to store them. Instead of using the default length of 8 for numeric variables, set the length of the numeric variables where you are storing dates to 4. This will safely store dates from January 1, 1582 (the earliest date SAS can handle), to October 23, 7701. A length of 5 is overkill, although that would extend the ending date another 534,773,760 days! A length of 3 will not accurately store dates outside the range of January 1, 1960, and September 13, 1960. If you declare your date variables to be a length of 4, you will be able to store two dates in the space it would take to store one if you were using the SAS default length for numeric variables. This can save you a great deal of storage space in a large data warehouse.

Times may present a bit of a problem, because you may need to store fractional seconds. The rule is simple enough: If you want to store time values with fractional seconds, you must use a length of 8 to store them accurately. Otherwise, the length of 4 is long enough to store every possible time value from midnight to midnight down to the second. In these cases, not using the default length will allow you to store two times in the same amount of space as one.

Datetime values require more space, because a length of 4 will not store a datetime value with accuracy, regardless of whether you want fractional seconds. The number is just too big. As long as you are not storing fractional seconds, a length of 6 will store datetimes that accurately represent values from midnight on January 1, 1582, to 3:04:31 p.m. on April 9, 6315. Changing the range from the default of 8 to 6 for datetime values results in a 25 percent savings in space, which still may be significant depending on how much data you have. Of course, if you are going to maintain decimal places in your datetime values, you must use the default length of 8.

I have just provided the absolute minimum lengths required for accuracy. DO NOT attempt to save additional space by shrinking the variable lengths beyond 4, 6, or 8 as listed. You will lose precision, which could lead to unexpected results. Example 1.3 shows what can happen if you do not use enough bytes to store your date values. This example uses the value 19941, which represents the date of August 6, 2014, and it is in variables of lengths 3, 4, and 5.

Example 1.3: The Effect of LENGTH Statements on Dates

DATA date_length;

LENGTH len3 3 len4 4 len5 5;

len3 = 19941;

len4 = 19941;

len5 = 19941;

FORMAT len3 len4 len5 mmddyy10.;

RUN;

As the table below shows, when you try to store a date in fewer than 4 bytes, you do not get the correct value. Using a length of 4 to store your dates and times (without fractional seconds) is still a significant (50 percent) savings in the amount of storage required. You will create inaccuracies in your data if you try to save more than that. Saving additional space is not worth the risk of inaccurate data.

	len3
	len4
	len5

	08/05/2014
	08/06/2014
	08/06/2014

1.6 General SAS Options for Dates

Two options influence the default date and time stamp that SAS places on pages of output and the SAS log. The DATE/NODATE option causes the start date and time of the SAS job (or session) to appear on each page of the SAS log and SAS output. These values are obtained from the operating system clock and are displayed as 24-hour clock time, followed by the day of the week, month, day, and four-digit year. If you are running SAS interactively, then the date and time are printed only on the output, not the log. By default, the DATE system option is in effect when you start SAS. However, if you do not want this default display, then use the NODATE option. You probably don't want SAS to display its default date stamp if you are going to put your own date and/or time stamp in the title or in a footnote (see Chapter 6).

As mentioned in the previous paragraph, if the DATE option is enabled, SAS prints the date and time that the current SAS session started on each page. If you want a more exact date and time on those pages, you can use the DTRESET system option, which will cause SAS to retrieve the date and time from the operating system clock each time a page is written. That date and time will then be placed on the page instead of the time that the SAS job started. Since the time is displayed in hours and minutes, you will only see it change every minute. The DTRESET option can be useful in interactive applications or SAS programs that may have been running for days or weeks, where knowing when the output was generated is more important than knowing when the SAS session began. Since the DTRESET option affects the default SAS date and time stamp, it works only if the DATE option is enabled. When you use the NODATE option, using DTRESET will have no effect because you aren't using the SAS date and time stamp on your output.

Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times as We Know Them

2.1 How Do I Use a Format?

2.2 How Many Built-In Formats Are There for Dates and Times?

2.3 Date Formats, Justification, and ODS

2.4 Detailed Discussion of Each Format

2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT

2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT

2.7 Creating Custom Formats Using PROC FCMP for Processing

2.8 The PUT() Function and Formats

In SAS, date, time, and datetime values are stored as integers (unless you are storing fractional parts of seconds). They are all counted from a fixed reference point. SAS date values increment by 1 at midnight of each day, while SAS datetime values increment by 1 every second. SAS time values start at zero at midnight of each day, and also increment by 1 each second.

This scheme makes it easy to calculate durations in days and seconds, but it does not do much for figuring out what a given SAS date, time, or datetime value means in terms of how we talk about them. Therefore, SAS provides a facility that makes it easy to perform the translation from SAS into the common terminology of months, days, years, hours, and seconds. The translation is done through formats.

Formats are what SAS uses to control the way data values are displayed. They can also be used to group data values together for analysis. They are essential to dates and times in SAS because SAS does not store dates and times in an easily recognizable form, as we discussed in Chapter 1. SAS has many built-in formats to display dates, times, and datetime values. This chapter provides a detailed guide to all of the date, time, and datetime formats readily available in SAS. In addition, if any of these built-in formats don't fit your needs, you have the ability to create (and store for future use) your own formats. Creating your own formats is covered in Sections 2.5 and 2.6.

If you are looking for a quick reference, you can go to Appendix A, which lists all of the date, time, and datetime formats and provides a sample display using their default lengths. If the default does not give you what you want, Section 2.4 discusses each date, time, and datetime format in detail, including how to specify the length of the format and how that length affects the display.

2.1 How Do I Use a Format?

Formats are easy to use. You can permanently associate a format with a variable by using a FORMAT statement in a DATA step, as shown in Example 2.1.

Example 2.1: Permanently Associating a Format with a Variable

DATA test;

LENGTH date1 time1 4;

date1 = 19781;

time1 = 73000;

FORMAT date1 MMDDYY10. time1 TIMEAMPM11.;

RUN;

Example 2.1 creates a data set called TEST, which has two variables: date1 and time1. By using the FORMAT statement here, you have specified that whenever the values from this data set are displayed, the values stored in the variable date1 will always be displayed with the format MMDDYY10., and those stored in time1 will always be displayed using the TIMEAMPM11. format.

	date1
	time1

	02/27/2014
	8:16:40 PM

If you don't want to have your data values permanently associated with a format, then you can just apply the format when you are actually writing the values to your output. The same FORMAT statement is used, but the location has changed, from the DATA step to the PROC step. Example 2.2 illustrates this.

Example 2.2: Associating a Format with a Variable for the Duration of a Procedure

DATA test2;

LENGTH date2 time2 4;

date2 = 19781;

time2 = 73000;

RUN;

PROC PRINT DATA=test2;

FORMAT date2 DATE9. time2 TIMEAMPM11.;

RUN;

	date2
	time2

	02/27/2014
	8:16:40 PM

Although there is no format assigned to either date2 or time2 in the DATA step, you have told the PRINT procedure to write these values using the two formats listed, so there is no difference between the output from Example 2.1 and that from Example 2.2. Another handy thing about using the FORMAT statement with a SAS procedure is that if you use the FORMAT statement in a SAS procedure, it will override any format that has been permanently associated with the variables for the duration of that procedure. To illustrate, we'll take the data set TEST from Example 2.1. The variables date1 and time1 have been associated with the formats MMDDYY10. and TIMEAMPM11., respectively. What if your report needs the date printed out with the day of the week, along with the name of the month, day, and year, while the time needs to be seconds after midnight? The PROC PRINT step will look like this:

PROC PRINT DATA=test;

FORMAT date1 WEEKDATE37. time1;

RUN;

	date1
	time1

	Thursday, February 27, 2014
	73000

All SAS procedures will use the formats specified in the FORMAT statement that is part of the PROC step instead of the formats associated with the variable in the data set. Therefore, in the above example, date1 is printed using the WEEKDATE. format. What about time1? There's no format name given after the variable name in the FORMAT statement. This is how to tell SAS not to use any formats that might be associated with the variable. To remove a FORMAT from a variable, make sure that no format names of any kind follow it anywhere in the FORMAT statement.

Example 2.3: Removing Associated Formats in a Procedure

DATA test3;

date3 = 19067;

time3 = 18479;

date4 = 18833;

time4 = 45187;

FORMAT date3 date4 DATE9. time3 time4 TIME5.;

RUN;

PROC PRINT DATA =test3 NOOBS;

FORMAT date3 date4 time3 time4;

RUN;

	Data set test3 with all formats removed

	date3
	time3
	date4
	time4

	19067
	18479
	18833
	45187

What happens if there are format names after the one that you want to remove? Look at the code segment that follows this paragraph. The goal is to display the variable date3 with the MMDDYY10. format, remove the format from the variable date4, and apply the TIMEAMPM11. format to the time variables time3 and time4. So the FORMAT statement has MMDDYY10. for date3, nothing for date4, and TIMEAMPM11. for time3 and time4, right?

PROC PRINT DATA =test3 NOOBS;

FORMAT date3 MMDDYY10. date4 time3 time4 TIMEAMPM11.;

RUN;

	date3
	time3
	date4
	time4

	3/15/2012
	5:07:59 AM
	5:13:53 AM
	12:33:07 PM

What happened? The variable date4 is displayed as a time, when you didn't put a format name after the variable name in the FORMAT statement. The answer is that you gave a list of three variables to SAS and told it to apply the TIMEAMPM11. format to them (see boldface code below):

FORMAT date3 MMDDYY10. date4 time3 time4 TIMEAMPM11.;

How do you fix this? You have to make sure that date4 is the last variable listed in the FORMAT statement.

PROC PRINT DATA =test3 NOOBS;

FORMAT date3 MMDDYY10. time3 time4 TIMEAMPM11. date4;

RUN;

	date3
	time3
	date4
	time4

	3/15/2012
	5:07:59 AM
	18833
	12:33:07 PM

2.2 How Many Built-In Formats Are There for Dates and Times?

SAS has more than 70 ready-to-use formats to display dates, times, and datetimes. We will discuss each one in detail in Section 2.4, but if you're looking for a quick reference guide, see Appendix A. SAS continues to develop formats and informats, so it is always a good idea to check the documentation that came with your release of SAS, or the online documentation at support.sas.com. All SAS formats have a common syntax structure, beginning with the format name, followed by an optional width specification, and ending with a period. The period is critical. It is what allows SAS to recognize the word as a format and not some other SAS keyword or text. The width specification varies with each format, and all formats have a default width that is used if there is no width specification given. The width specification is very important to dates because SAS will abbreviate the displayed value if you do not specify enough characters for the width, and the abbreviation that SAS uses might not give you the output that you want. The default width is noted in the description for each format in Section 2.4, and it is usually the width that will accommodate the longest value to be displayed. For example, the default width for the DOWNAME. (day-of-week) format is 9. That will accommodate the string “Wednesday”, which is the longest English day-of-week name.

2.3 Date Formats, Justification, and ODS

Each date format has a default justification with respect to the width specification that you give it. Since numeric values are right-justified in SAS, most of the formats that are applied to date, time, or datetime formats are also right-justified, with a few exceptions (which will be clearly noted in the detailed explanations that follow). In ODS destinations other than LISTING, values are justified within a table column by SAS procedure default or by a user-defined ODS template. By default, SAS makes its columns wide enough to fit the widest item in a given column. Therefore, any leading spaces caused by specifying a width that is too wide to fit the formatted value won't show up in ODS output.

However, prior to ODS or version 9.3 in the LISTING destination, using a width specification that is wider than the output requires causes SAS to fill the empty spaces with blanks. For values that are right-justified, this might cause some of the output to shift to the right by a number of spaces. In Example 2.4, we use the MONNAME. format, which displays the text corresponding to the month of the date, to illustrate.

Example 2.4: How Justification Works in the LISTING Destination

	Format Name
	Result
	Comment

	MONNAME9.
	September
	

	MONNAME10.
	⏠September
	Leading space.

	MONNAME11.
	⏠⏠September
	Two leading spaces.

	MONNAME15.
	⏠⏠⏠⏠⏠⏠September
	Six leading spaces.

As you can see, making the width specification larger only adds leading spaces, and you could extend this all the way to the maximum width for the format.

Why should I worry about justification? I'm not using ODS LISTING, and I'm using SAS 9.3 or higher.

While it is true that justification is more of a concern in the traditional LISTING destination and only applicable to traditional column-based output, leading spaces can show up if you use the PUT() (or PUTN()) function to create character strings from SAS date, time, or datetime values. In cases such as these, the leading spaces are part of the output and as such might be displayed. You can use STRIP() or COMPRESS() to remove the leading spaces explicitly. If you are going to concatenate multiple items, use the CATX(), CATS(), or CATT() functions, all of which remove leading and trailing spaces of each item being concatenated.

If you do not specify column alignment in an ODS template or by using STYLE= directives, certain ODS destinations (such as RTF and PDF) will justify values within a column according to the justification of the format used in the column, without leading spaces.

2.4 Detailed Discussion of Each Format

This section gives a detailed explanation of all the current standard formats available for SAS date, time, and datetime values. In addition to the display that results from using a given format, the explanation includes information about the default width specification and its possible values, annotated examples of the display with varying width specifications, and usage notes. Date formats will be covered first, then time and datetime formats. Each subsection is arranged alphabetically.

2.4.1 Date Formats

A date format provides a set of instructions for how a SAS date is displayed so that it looks like a date in the way we normally express them. You can specify the width (number of characters) that the translated text will occupy, but each format has its own default width specification, shown as w in this text. The default width specification is given in the description of each format. Some, but not all, of the date formats allow you to specify the character that separates each element of the date. You must not use a date format to translate datetime values. If you try to translate a datetime value with a date format, you will get incorrect output. (For an example, see Example 2.5.)

DATEw.

DATEw. writes dates as the numerical day of the month followed by the three-letter month abbreviation and the year, without any separating characters. It is right-justified within the field. w can be from 5 to 11, and the default width is 7. If you want to display four-digit years, use DATE9. or DATE11. DATE11. will display four-digit years with a hyphen between the day, month abbreviation, and year. The following table shows the result when the date value is 19715, which corresponds to December 23, 2013.

	Format Name
	Result
	Comment

	DATE.
	23DEC13
	Default width of 7.

	DATE5.
	23DEC
	No room for year to be displayed.

	DATE7.
	23DEC13
	Same as date.

	DATE9.
	23DEC2013
	Four-digit year

	DATE11.
	23-DEC-2013
	Hyphens as delimiters.

This format is analogous to the DTDATE. format, which displays datetime values in the same manner.

DAYw.

DAYw. writes the numerical day of the month, and it is right-justified within the field. w can be from 2 to 32, and the default width is 2. Specifying anything longer than 2 will only place more spaces in the field to the left of the number, so it is not necessary to specify more than 2. The following table shows the result when the date value is 16739, which corresponds to October 30, 2005.

	Format Name
	Result
	Comment

	DAY2.
	30
	

DDMMYYw.

DDMMYYw. writes dates as day/numerical month/year, where the slash (/) is the separator, and it is right-justified within the field. w can be from 2 to 10, and the default width is 8. If you specify a width from 2 to 5, the date will be truncated on the right, as SAS tries to fit as much of the day and month as possible in the space allowed. If you use 6, no slashes will be printed. A width of 8 will use a two-digit year after the slashes. Use 10 to get a four-digit year with slashes. The following table shows the result when the date value is 19869, which corresponds to May 26, 2014.

	Format Name
	Result
	Comment

	DDMMYY5.
	26/05
	

	DDMMYY6.
	260514
	

	DDMMYY8.
	26/05/14
	

	DDMMYY10.
	26/05/2014
	

DDMMYYxw.

DDMMYYxw. is similar to the DDMMYY. format. It is also right-justified. However, with this format, you can specify what character separates the day, numerical month, and year. The x in the format name represents the separator between the day, month, and year. The following table lists what x can be.

	x
	Character Displayed in Output
	Comment

	B
	blank
	

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w is a maximum of 8, not 10.

	P
	period (.)
	

	S
	slash (/)
	Effectively the same as using the DDMMYY. format.

w can be from 2 to 10, with the default being 8. This works the same way as the DDMMYY. format with respect to what SAS fits in the space specified. Again, if you specify a width from 2 to 5, the date will be truncated on the right, as SAS tries to fit as much of the day and month as possible in the space allowed. If you use 6, no separator will be used. At 8, SAS will print a two-digit year. Use 10 to get a four-digit year with your separator. The following table shows the result when the date value is 19398, which corresponds to February 9, 2013.

	Format Name
	Result
	Comment

	DDMMYYP5.
	09.02
	Only space for day and month.

	DDMMYYB6.
	090213
	Not enough space for the blank separator.

	DDMMYYD8.
	09-02-13
	Enough space for two-digit year with separators.

	DDMMYYS8.
	09/02/13
	Enough space for two-digit year; same as using DDMMYY9. format.

	DDMMYYC10.
	09:02:2013
	Colon as separator.

DOWNAMEw.

DOWNAMEw. writes the date as the name of the day of the week. It is right-justified, so if you give it too much space, there will be leading blanks. w can be from 1 to 32, and the default is 9. If you don't specify w, SAS will always print the entire name of the day. However, if you specify w less than 9, then SAS will truncate the name of the day to fit as necessary. The following table shows the result when the date value is 20280, which corresponds to Saturday, July 11, 2015.

	Format Name
	Result
	Comment

	DOWNAME3.
	Sat
	

	DOWNAME6.
	Saturd
	

	DOWNAME8.
	Saturday
	

JULDAYw.

JULDAYw. writes the date as the Julian day of the year, which is a value from 1 to 366. It is right-justified. w can be from 3 to 32, and the default is 3. Note that the minimum width of the format will cause leading spaces if the Julian date is less than 100. This would become obvious if you are creating a character string using the PUT() or PUTN() functions and do not remove leading blanks.

	Format Name
	Result
	Comment

	JULDAY3.
	⏠⏠9
	There are 2 leading spaces here because there are fewer than 3 digits in the value displayed. The date value used here is 374, which corresponds to January 9, 1961.

	JULDAY3.
	⏠76
	There is a leading space here because there are fewer than 3 digits in the value displayed. The date value used here is 19068, which corresponds to March 16, 2012.

	JULDAY3.
	107
	There is no leading space here because there are 3 digits in the value displayed. The date value used here is 19465, which corresponds to April 17, 2013.

JULIANw.

JULIANw. writes your date value as a Julian date, with the year preceding the Julian day. It is right-justified. w can be from 5 to 7, and the default is 5. If you specify a width of 5, the year portion of the Julian date is two digits long. If you specify a width of 7, the year portion is four digits long. The following table shows the result when the date value is 18514, which corresponds to September 9, 2010.

	Format Name
	Result
	Comment

	JULIAN5.
	100252
	

	JULIAN7.
	2010252
	

MMDDYYw.

MMDDYYw. writes the date as numerical month/day/year, where a slash (/) is the separator. It is right-justified within the field. w can be from 2 to 10, and the default is 8. It is similar to the DDMMYY. format in that if you specify 2–5 for the width, the date will be truncated on the right, as SAS tries to fit as much of the day and month as possible in the space allowed. If you use 6, no slashes will be printed, but it will print a two-digit year. A width of 8 will put a two-digit year after the slashes. Use a width of 10 to get a four-digit year with slashes. The following table shows the result when the date value is 19655, which corresponds to October 24, 2013.

	Format Name
	Result
	Comment

	MMDDYY2.
	10
	Month only.

	MMDDYY4.
	1024
	Month and day, no separator.

	MMDDYY5.
	10/24
	Month and day with separating slash.

	MMDDYY6.
	102413
	Month, day, and year, no separator.

	MMDDYY8.
	10/24/13
	Year reduced to two-digit year to accommodate separators.

	MMDDYY10.
	10/24/2013
	

MMDDYYxw.

MMDDYYxw. displays the date in the same way that the MMDDYY. format does, except that you can specify the separator. The x in the format name specifies the separator that you want to use according to the following table.

	x
	Character Displayed in Output
	Comment

	B
	blank
	

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w is a maximum of 8, not 10.

	P
	period (.)
	

	S
	slash (/)
	Effectively the same as using the MMDDYY. format.

The date will be right-justified within the width that you specify. w can be from 2 to 10, and the default is 8. If you specify 2–5, the date will be truncated on the right, as SAS tries to fit as much of the day and month as possible in the space allowed. If you use a width of 6, no separator will be used. At 7, SAS will print a two-digit year without a separator, and widths of 8 or 9 will put a two-digit year after the separator. Use 10 to get a four-digit year with separators. The following table shows the result when the date value is 19188, which corresponds to July, 14, 2012.

	Format Name
	Result
	Comment

	MMDDYYD5.
	07-14
	No room for year.

	MMDDYYS6.
	071412
	No room for separators.

	MMDDYYC8.
	07:14:12
	Colon as separator; still two-digit year.

	MMDDYYP10.
	07.14.2012
	Period as separator.

	MMDDYYB10.
	07⏠14⏠2012
	

MMYYw.

MMYYw. displays the zero-filled month number and year for the given date value, separated by the letter M. It is right-justified, and w can be from 5 to 32, with a default width of 7. When w is less than 7, a two-digit year is used. Otherwise, a full four-digit year is displayed. Since this format only needs a maximum of 7 characters, any width greater than 7 will just add leading spaces. The following table shows the result when the date value is 19756, which corresponds to February 2, 2014.

	Format Name
	Result
	Comment

	MMYY5.
	02M14
	

	MMYY7.
	02M2014
	Four-digit year.

MMYYxw.

MMYYxw. displays the month number and year for a given date value in the same fashion that the MMYY. format does, except that you can specify the separator with x, according to the table below. Note that the blank is not valid with this format, while it is valid with the DDMMYYx. and MMDDYYx. formats.

	x
	Character Displayed in Output
	Comment

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w can be from 4 to 32, with a default of 6.

	P
	period (.)
	

	S
	slash (/)
	

The displayed date value will be is right-justified, and w can be from 5 to 32, with a default width of 7. When w is specified as 5 or 6, a two-digit year is used, unless you have specified "N," for no separator. Without a separator, there is enough space to display the two digits of the month, and four digits for the year. If w is 7 or more, a full four-digit year is always displayed. Since this format will only display a maximum of 7 characters, any value greater than 7 will just add leading spaces. The following table shows the result when the date value is 19628, which corresponds to September 27, 2013.

	Format Name
	Result
	Comment

	MMYYD5.
	09-13
	Two-digit year.

	MMYYN6.
	092013
	No separator, four-digit year.

	MMYYS6.
	⏠09/13
	Two-digit year because of separator and leading space.

	MMYYC7.
	09:2013
	Four-digit year.

	MMYYP7.
	09.2013
	Four-digit year.

MONNAMEw.

MONNAMEw. displays the name of the month. It is right-justified, and w can be from 1 to 32, with a default of 9. Using a value greater than 9 will only add leading spaces. SAS will truncate the month name as necessary to fit in the width. The following table shows the result when the date value is 18336, which corresponds to September 15, 2010.

	Format Name
	Result
	Comment

	MONNAME3.
	Sep
	Specifying a w of 3 will display the three-letter month abbreviation.

	MONNAME4.
	Sept
	

	MONNAME9.
	September
	

MONTHw.

MONTHw. displays the number of the month of the year. It is right-justified, and w can be from 1 to 21, with a default of 2. Using a w of 1 will display the month number as a hexadecimal value (1 through C). The following table shows the result when the date value is 19341, which corresponds to December 14, 2012.

	Format Name
	Result
	Comment

	MONTH1.
	C
	w of 1 always prints a single character, which is a hexadecimal digit.

	MONTH2.
	12
	

MONYYw.

MONYYw. displays the three-letter month abbreviation, followed by the year without any separating characters. It is right-justified, and w can be from 5 to 7, with a default of 5. Specifying a width of 5 will give you a two-digit year. A width of 6 gives you a two-digit year and one leading space in the displayed date, while 7 gives you a four-digit year. It is analogous to the DTMONYY. format, which is used with datetime values. The following table shows the result when the date value is 19718, which corresponds to December 26, 2013.

	Format Name
	Result
	Comment

	MONYY5.
	DEC13
	

	MONYY7.
	DEC2013
	

PDJULGw.

PDJULGw. writes a packed Julian date in hexadecimal format for IBM computers. Justification is not an issue, and w can range from 3 to 16. The default width is 4. The Julian date is written as follows: The four-digit Gregorian year is written in the first two bytes, and the three-digit integer that represents the day of the year is in the next one-and-a-half bytes. The last half-byte contains all binary 1s, which indicates the value is positive.

If the SAS date value being translated by this format is a date constant with a two-digit year, it will be affected by the YEARCUTOFF option. See the following SAS log.

246 OPTIONS YEARCUTOFF=1880;

247 DATA _NULL_;

248 date1 = "15JUN2004"d;

249 date2 = "15JUN04"d; /* Affected by YEARCUTOFF option */

250 juldate1 = put(date1,PDJULG4.);

251 juldate2 = put(date2,PDJULG4.);

252 PUT juldate1= $HEX8.;

253 PUT juldate2= $HEX8.;

254 RUN;

juldate1=2004167F

juldate2=1904167F

PDJULIw.

PDJULIw. writes a packed Julian date in hexadecimal format for IBM computers. It only differs from the PDJULG. format in that it writes the century in the first byte as a two-digit integer, followed by two digits of the year in the second byte. The next one-and-a-half-bytes store the three-digit integer that corresponds to the day of the year, while the last half-byte is filled with hexadecimal 1s that indicate a positive number. As with the PDJULG. format, justification is not an issue, and the default width is 4, with a width range of 3 to 16.

The century and year are calculated by subtracting 1900 from the four-digit Gregorian year. A year value of 1980 gives a century/year value of 0080 (1980-1900=80), while 2015 gives 0115 (2015-1900=115). Be aware that this format will not produce correct results for years preceding 1900. The example below demonstrates.

OPTIONS YEARCUTOFF=2000;

DATA _NULL_;

 date1 = "15JUN1804"d;

 date2 = "15JUN1996"d;

 date3 = "15JUN96"d;

 juldate1 = PUT(date1,pdjuli4.);

 juldate2 = PUT(date2,pdjuli4.);

 juldate3 = PUT(date3,pdjuli4.);

 PUT juldate1= $hex8.;

 PUT juldate2= $hex8.;

 PUT juldate3= $hex8.;

 should_be_date1 = INPUT(juldate1,pdjuli4.);

 PUT should_be_date1= mmddyy10.;

 PUT should_be_date1= ;

RUN;

Here is the resulting output:

juldate1=009609DF

juldate2=0096167F

juldate3=0196167F

should_be_date1=04/12/1996

should_be_date1=13251

The value of date1 corresponds to a date in 1804, causing the PDJULI. representation of date1 (juldate1) to be incorrect. While it should be the same day of the year (167) as date2 and date3, you can see that the day is incorrectly written as 09D, while the century value is also incorrect, marked as 00 when, by the algorithm, it should be expressed as a negative number. This is verified by using the PDJULI. informat to read juldate1, which gives a result of April 12, 1996, when it should be June 15, 18 04. (This is because there is no sign bit for julday1 to indicate that the value should be negative.) The difference between date2 and date3 is caused by the YEARCUTOFF option. The two-digit year 96 is translated as 2096, not 1996, because of the option's value.

QTRw.

QTRw. writes a date value as the quarter of the year. It is right-justified, and w can range from 1 to 32, with a default of 1. Since this format will only write 1 character, specifying a width greater than 1 will just add leading spaces. The following table shows the result when the date value is 18264, which corresponds to January 2, 2010.

	Format Name
	Result
	Comment

	QTR1.
	1
	

QTRRw.

QTRRw. also writes a date value as the quarter of the year, except that it displays the quarter as a Roman numeral. It is right-justified, and w can range from 3 to 32, with a default of 3. This format will write a maximum of 3 characters. A width specification greater than 3 will add leading spaces.

	Format Name
	Result
	Comment

	QTRR3.
	III
	The date value used is 17791 (September 16, 2008).

	QTRR3.
	⏠IV
	With a date value of 17882 (December 16, 2008), there is 1 leading space.

	QTRR5.
	⏠⏠III
	With a date value of 17791 (September 16, 2008), there are 2 leading spaces.

WEEKDATEw.

WEEKDATEw. writes date values as day-of-week name, month name, day, and year. It is right-justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a date in this format. Specifying anything longer than 29 will cause leading spaces to be added. If the width specified is too small to display the complete day of the year and month, SAS will abbreviate. The following table shows the result when the date value is 18164, which corresponds to September 24, 2009.

	Format Name
	Result
	Comment

	WEEKDATE3.
	Wed
	Three-letter day-of-week abbreviation.

	WEEKDATE9.
	Wednesday
	Will fit all day of week names. Leading spaces will be added for days other than "Wednesday."

	WEEKDATE17.
	Wed, Sep 24, 2009
	Full date information, abbreviated.

	WEEKDATE23.
	Wednesday, Sep 24, 2009
	Full day-of-week name and month name abbreviated.

	WEEKDATE29.
	Wednesday, September 24, 2009
	

WEEKDATXw.

WEEKDATXw. writes date values as day-of-week name, day, month name, and year. It differs from the WEEKDATE. format in that the day of the month precedes the month name. It is right-justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a date in this format. Specifying anything longer than 29 will cause leading spaces to be added. If the width specified is too small to display the complete day of the year and month, SAS will abbreviate. The following table shows the result when the date value is 19260, which corresponds to September 24, 2012.

	Format Name
	Result
	Comment

	WEEKDATX3.
	Wed
	Three-letter day-of-week abbreviation.

	WEEKDATX9.
	Wednesday
	Will fit all day-of-week names. Leading spaces will be added for days other than "Wednesday."

	WEEKDATX17.
	Wed, 24 Sep, 2012
	Full date information, abbreviated.

	WEEKDATX23.
	Wednesday, 24 Sep, 2012
	Full day-of-week name and month name abbreviated.

	WEEKDATX29.
	Wednesday, 24 September, 2012
	

WEEKDAYw.

WEEKDAYw. writes the date value as the number of the day of the week, where 1=Sunday, 2=Monday, and so on. It is right-justified, and w can be from 1 to 32. The default is 1. Since the maximum width of the display is always one character, specifying anything longer will just cause leading spaces to be added. The following table shows the result when the date value is 20569, which corresponds to Monday, April 25, 2016.

	Format Name
	Result
	Comment

	WEEKDAY1.
	2
	

WEEKUw.

WEEKUw. writes the date value as a week number in decimal format using the U algorithm. Unlike many other date, time, and datetime formats, it is left-justified. w can be from 1 to 200, and the default is 11. Specifying any value greater than 11 will display the same results as if w were 11. The U algorithm calculates weeks based on Sunday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. The display that this format presents varies, based on the width specification. The following table shows the result when the date value is 20885, which corresponds to March 7, 2017, which is a Tuesday in the tenth week of the year.

	Format Name
	Result
	Comment

	WEEKU3.
	W10
	"W" indicates week; week number follows, with a leading zero if necessary.

	WEEKU4.
	W10
	Same as WEEKU3. No leading spaces.

	WEEKU5.
	17W10
	Two-digit year precedes week.

	WEEKU6.
	17W10
	Same as WEEKU5.

	WEEKU7.
	17W1003
	Two-digit year precedes week, week followed by the number of the day of the week.

	WEEKU8.
	17W1003
	Same as WEEKU7.

	WEEKU9.
	2017W1003
	Four-digit year precedes week; week number is followed by number of the day of the week.

	WEEKU10.
	2017W1003
	Same as WEEKU9.

	WEEKU11.
	2017-W10-03
	Separator added between year, week number, and number of the day of the week.

	WEEKU12.
	2017-W10-03
	Same as WEEKU11.

WEEKVw.

WEEKVw. writes the date value as a week number in decimal format using the V algorithm, which is International Standards Organization (ISO) compliant. It is left-justified in the same fashion as the WEEKU. format. w can be from 1 to 200, and the default is 11. Specifying any value greater than 11 will display the same results as if w were 11. The V algorithm calculates weeks based on Monday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary.

This algorithm defines the first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are considered to be a part of week 53 of the previous calendar year. The following table shows the result when the date value is 19723, which corresponds to December 31, 2013. Note that although the date is in 2013, the algorithm used by this format places the date in the year 2014. Monday, December 30, 2013, is considered to be the first day of the first week for the year 2014.

	Format Name
	Result
	Comment

	WEEKV3.
	W01
	"W" indicates week; week number follows, with leading zero if necessary.

	WEEKV4.
	W01
	Same as WEEKV3. No leading spaces.

	WEEKV5.
	14W01
	Two-digit year precedes week.

	WEEKV6.
	14W01
	Same as WEEKV5.

	WEEKV7.
	14W0102
	Two-digit year precedes week; week followed by the number of the day of the week.

	WEEKV8.
	14W0102
	Same as WEEKV7.

	WEEKV9.
	2014W0102
	Four-digit year precedes week; week number is followed by number of the day of the week.

	WEEKV10.
	2014W0102
	Same as WEEKV9.

	WEEKV11.
	2014-W01-02
	Separator added between year, week number, and number of the day of the week.

	WEEKV12.
	2014-W01-02
	Same as WEEKV11.

WEEKWw.

WEEKWw. writes the date value as a week number in decimal format using the W algorithm. As with the WEEKU. and WEEKV. formats, it is left-justified. w can be from 1 to 200, and the default is 11. Specifying any value greater than 11 will display the same results as if w were 11. The W algorithm calculates weeks based on Monday being the first day of the week without any other restriction. The week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. The display that this format presents varies based on the width specification. The following table shows the result when the date value is 19723, which corresponds to December 31, 2013 (the same date used in the V algorithm example). Note that the W algorithm assigns the date as the second day of the last week of the calendar year 2013.

	Format Name
	Result
	Comment

	WEEKW3.
	W52
	"W" indicates week; week number follows with leading zero if necessary.

	WEEKW4.
	W52
	Same as WEEKW3. No leading spaces.

	WEEKW5.
	13W52
	Two-digit year precedes week.

	WEEKW6.
	13W52
	Same as WEEKW5.

	WEEKW7.
	13W5202
	Two-digit year precedes week; week followed by number of day of week.

	WEEKW8.
	13W5202
	Same as WEEKW7.

	WEEKW9.
	2013W5202
	Four-digit year precedes week; week number is followed by number of the day of the week.

	WEEKW10.
	2013W5202
	Same as WEEKW9.

	WEEKW11.
	2013-W52-02
	Separator added between year, week number, and number of the day of the week.

	WEEKW12.
	2013-W52-02
	Same as WEEKW11.

WORDDATEw.

WORDDATEw. displays the date value as name of month, day, and year. It is right-justified, and w can range from 3 to 32. The default is 18. If the width specified is less than 18, SAS will abbreviate the month name and add leading spaces as necessary, regardless of whether the specific date to be displayed will fit in the allocated space because of its value. This might have an impact if you are going to use the PUT() or PUTN() functions to create a character string using this format. The following table shows the result when the date value is 20328, which corresponds to August 28, 2015.

	Format Name
	Result
	Comment

	WORDDATE3.
	Aug
	

	WORDDATE12.
	Aug 28, 2015
	

	WORDDATE15.
	⏠⏠⏠Aug 28, 2015
	Three leading spaces.

	WORDDATE18.
	⏠⏠⏠August 28, 2015
	Full month name, but only 15 characters—therefore, 3 leading spaces.

	WORDDATE20.
	⏠⏠⏠⏠⏠August 28, 2015
	Five leading spaces.

WORDDATXw.

WORDDATXw. displays the date value as day, name of month, and year. It differs from the WORDDATE. format in that the day precedes the name of month. It is right-justified, and w can range from 3 to 32. The default is 18. If the width specified is less than 18, SAS will abbreviate the month name and add leading spaces as necessary, even if the date to be displayed will fit in the width specified. This might have an impact if you are going to use the PUT() or PUTN() functions to create a character string using this format. In the following table, you see that March is abbreviated for width specifications less than 18, even though there is room to print the entire date string. The table shows the result when the date value is 21259, which corresponds to March 16, 2018.

	Format Name
	Result
	Comment

	WORDDATX3.
	Mar
	

	WORDDATX12.
	⏠16 Mar 2018
	Leading space.

	WORDDATX14.
	⏠⏠⏠16 Mar 2018
	w is less than 18, so the format uses the abbreviated month name and adds leading spaces even though the text displayed would fit in 13 characters.

	WORDDATX16.
	⏠⏠⏠⏠16 Mar 2018
	w is still less than 18, so "March" is still abbreviated, and more leading spaces are added.

	WORDDATX18.
	⏠⏠⏠⏠⏠16 March 2018
	Printed with leading spaces because date string is only 13 characters long.

YEARw.

YEARw. displays the year for the given date value. It is right-justified, and w can be from 2 to 4, with a default width of 4. When w is specified as 2 or 3, a two-digit year is used. The following table shows the result when the date value is 18599, which corresponds to December 3, 2010.

	Format Name
	Result
	Comment

	YEAR2.
	10
	Two-digit year.

	YEAR3.
	⏠10
	Two-digit year with a leading space.

	YEAR4.
	2010
	Four-digit year.

YYMMw.

YYMMw. displays the year and month number for the given date value, separated by the letter M. It is right-justified, and w can be from 5 to 32, with a default width of 7. When w is specified as 5 or 6, a two-digit year is used. If w is 7 or more, a full four-digit year is displayed. Since this format can only display a maximum of 7 characters, anything more than 7 will just add leading spaces. The following table shows the result when the date value is 19517, which corresponds to June 8, 2013.

	Format Name
	Result
	Comment

	YYMM5.
	13M06
	Two-digit year.

	YYMM6.
	⏠13M06
	Leading space.

	YYMM7.
	2013M06
	Four-digit year.

	YYMM8.
	⏠2013M06
	Leading space.

YYMMxw.

YYMMxw. displays the year and month number for a given date value in the same manner as the YYMM. format above, except that you can specify the separator with x according to the table below. Unlike the DDMMYYx., MMDDYYx., and the YYMMDDx. formats, a blank is not a valid separator with this format.

	x
	Character Displayed in Output
	Comment

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w can be from 4 to 32, with a default of 6.

	P
	period (.)
	

	S
	slash (/)
	

YYMMxw. is right-justified, and w can be from 5 to 32, with a default width of 7. When w is specified as 5 or 6, a two-digit year is used. If w is 7 or more, a full four-digit year is displayed. Specifying no separator with "N" will change the range of w from 4 to 32, and the default width becomes 6. Since this format can only display a maximum of 7 characters, anything more than 7 will just add leading spaces. The following table shows the result when the date value is 19237, which corresponds to September 1, 2012.

	Format Name
	Result
	Comment

	YYMMN4.
	1209
	No separator; minimum width is 4; two-digit year.

	YYMMC5.
	12:09
	

	YYMMD6.
	⏠12-09
	One leading space; two-digit year.

	YYMMP7.
	2012.09
	Four-digit year.

	YYMMS8.
	⏠2012/09
	Four-digit year; 1 leading space.

YYMMDDw.

YYMMDDw. is a variation on the DDMMYY. and MMDDYY. formats. It writes the date as a year, followed by the numerical month, and then the day, with a dash (-) as the separator. It is right-justified within the field. w can be from 2 to 10, and the default is 8. It is similar to the MMDDYY. format in that if you specify the width from 2 to 5, the date will be truncated on the right, as SAS tries to fit as much of the year and month as possible in the space allowed. If you use 6, no dashes will be printed. At 7, SAS will print a two-digit year without a dash, and 8 or 9 will produce a two-digit year before the first dash. Use a width of 10 to get a four-digit year with dashes. The following table shows the result when the date value is 20031, which corresponds to November 4, 2014.

	Format Name
	Result
	Comment

	YYMMDD4.
	1411
	Two-digit year and month; not enough space for day.

	YYMMDD5.
	14-11
	Two-digit year and month with dash separator; not enough space for day.

	YYMMDD6.
	141104
	Two-digit year, month, and day; no separators.

	YYMMDD7.
	⏠141104
	One leading space; no separators.

	YYMMDD8.
	14-11-04
	Two-digit year.

	YYMMDD9.
	⏠14-11-04
	Two-digit year with leading space.

	YYMMDD10.
	2014-11-04
	Four-digit year.

YYMMDDxw.

YYMMDDxw. displays the date in the same way that the YYMMDD. format does, except that you can specify the separator. The x in the format name specifies the separator that you want to use according to the table below.

	x
	Character Displayed in Output
	Comment

	B
	blank
	

	C
	colon (:)
	

	D
	dash (-)
	Effectively the same as using the YYMMDD. format.

	N
	no separator
	w is a maximum of 8, not 10.

	P
	period (.)
	

	S
	slash (/)
	

The date will be right-justified within the width that you specify. w can be from 2 to 10, and the default is 8. If you specify 2–5, the date will be truncated on the right, as SAS tries to fit as much of the day and month as possible in the space allowed. If you use 6, no separator will be used. At 7, SAS will print a two-digit year without a separator, and 8 or 9 will put a two-digit year before the first separator. The following table shows the result when the date value is 19500, which corresponds to May 22, 2013.

	Format Name
	Result
	Comment

	YYMMDDN4.
	1305
	Two-digit year and month; not enough space for day.

	YYMMDDC5.
	13:05
	Two-digit year and month with colon separator; not enough space for day.

	YYMMDDD6.
	130522
	Two-digit year, month, and day; no separators.

	YYMMDDP7.
	⏠130522
	One leading space; not enough room for both separators.

	YYMMDDB8.
	13⏠05⏠22
	Two-digit year with a blank separator.

	YYMMDDN8.
	20130522
	Because there is no separator requested, a four-digit year is displayed.

	YYMMDDS9.
	⏠13/05/22
	Enough room for separators, but only a two-digit year with a leading space.

	YYMMDDD10.
	2013-05-22
	Four-digit year and dash separators; same as YYMMDD.

YYMONw.

YYMONw. writes dates as a two- or four-digit year followed by the three-letter month abbreviation. It is right-justified. w can be from 5 to 32, and the default is 7. Use a width of 7 to get a four-digit year. If w is less than 7, a two-digit year will be displayed. If w is larger than 7, leading spaces will be added. The following table shows the result when the date value is 20796, which corresponds to December 8, 2016.

	Format Name
	Result
	Comment

	YYMON5.
	16DEC
	Two-digit year.

	YYMON6.
	⏠16DEC
	Two-digit year with 1 leading space.

	YYMON7.
	2016DEC
	Four-digit year.

	YYMON10.
	⏠⏠⏠2016DEC
	Four-digit year with 3 leading spaces.

YYQw.

YYQw. writes date values as a two- or four-digit year, followed by the letter Q, and a single-digit representing the quarter of the year. It is right-justified, and w can be from 4 to 32. The default width is 6. Use 6 to get a four-digit year, while a width of 4 or 5 will give you a two-digit year.

Specifying a width larger than 6 will only add leading spaces. The following table shows the result when the date value is 21384, which corresponds to July 19, 2018.

	Format Name
	Result
	Comment

	YYQ4.
	18Q3
	Two-digit year.

	YYQ5.
	⏠18Q3
	Two-digit year with 1 leading space.

	YYQ6.
	2018Q3
	Four-digit year.

	YYQ8.
	⏠⏠2018Q3
	Four-digit year with 2 leading spaces.

YYQxw.

YYQxw. writes date values as a two- or four-digit year, followed by a separator that you specify, and a single-digit representing the quarter of the year. x is the letter that you use to indicate the separator according to the table below. Unlike the DDMMYYx., MMDDYYx., and the YYMMDDx. formats, a blank is not a valid separator with this format.

	x
	Character Displayed in Output
	Comment

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w can be from 3 to 32, with a default of 4. When w is 3 or 4, the year will be displayed with two digits.

	P
	period (.)
	

	S
	slash (/)
	

This format is right-justified, and w can be from 4 to 32. The default width is 6. Use a width of 6 to get a four-digit year, while 4 or 5 will give you a two-digit year. Specifying a width larger than 6 will add leading spaces. The following table shows the result when the date value is 19659, which corresponds to October 28, 2013.

	Format Name
	Result
	Comment

	YYQN3.
	134
	Two-digit year with no separator.

	YYQC4.
	13:4
	Two-digit year.

	YYQS5.
	⏠13/4
	Two-digit year with 1 leading space.

	YYQP6.
	2013.4
	Four-digit year.

	YYQD7.
	⏠2013-4
	Four-digit year with 1 leading space.

YYQRw.

YYQRw. writes date values as a two- or four-digit year, followed by the letter Q, and the quarter of the year is represented in Roman numerals. It is right-justified, and w can be from 6 to 32. The default width is 8. Use 8 to get a four-digit year, while 6 or 7 will give you a two-digit year. Specifying a width larger than 8 will add leading spaces.

The following table shows the result when the date value is 20312, which corresponds to August 12, 2015.

	Format Name
	Result
	Comment

	YYQR6.
	15QIII
	Two-digit year.

	YYQR7.
	⏠15QIII
	Two-digit year with 1 leading space for the third quarter only; four-digit year displayed for the 1st, 2nd, and 4th quarters without any leading space.

	YYQR8.
	2015QIII
	Four-digit year.

	YYQR12.
	⏠⏠⏠⏠2015QIII
	Four-digit year with 4 leading spaces.

YYQRxw.

YYQRxw. writes date values as a two- or four-digit year, followed by a separator that you specify, and the quarter of the year is displayed as a Roman numeral. x is the letter that you use to indicate the separator according to the following table. This is another format that cannot use a blank as the separator.

	x
	Character Displayed in Output
	Comment

	C
	colon (:)
	

	D
	dash (-)
	

	N
	no separator
	w can be from 5 to 32, with a default of 7. When w is 5 or 6, the year will be displayed with two digits.

	P
	period (.)
	

	S
	slash (/)
	

This format is right-justified, and w can be from 6 to 32. The default width is 8. Use 8 to get a four-digit year, while 6 or 7 will display a two-digit year. Specifying a width larger than 8 will add leading spaces. The following table shows the result when the date value is 19545, which corresponds to July 6, 2013.

	Format Name
	Result
	Comment

	YYQRP6.
	13.III
	Two-digit year.

	YYQRS7.
	⏠13/III
	Two-digit year with 1 leading space for the third quarter only; four-digit year displayed for the 1st, 2nd, and 4th quarters without any leading space.

	YYQRN8.
	⏠2013III
	Four-digit year with 1 leading space and no separator.

	YYQRC9.
	⏠2013:III
	Four-digit year with 1 leading space.

	YYQRD10.
	⏠⏠2013-III
	Four-digit year with 2 leading spaces.

YYWEEKUw.

YYWEEKUw. writes the date value as a week number in decimal format using the U algorithm. Unlike many other date, time, and datetime formats, it is left-justified. w can be from 3 to 8, and the default is 7. The U algorithm calculates weeks based on Sunday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. The display that this format presents varies based on the width specification. This format is similar to the WEEKU. format, except that it does not provide the numerical day of the week. The date value used in this example is 20041, which corresponds to November 14, 2014.

	Format Name
	Result
	Comment

	YYWEEKU3.
	W45
	"W" indicates week; week number follows; leading zero if necessary.

	YYWEEKU4.
	W45
	Same as WEEKU3. No leading spaces because this format is left-justified.

	YYWEEKU5.
	14W45
	Two-digit year precedes week.

	YYWEEKU6.
	14W45
	Same as WEEKU5.

	YYWEEKU7.
	2014W45
	Two-digit year precedes week; week followed by the number of the day of the week.

	YYWEEKU8.
	2014-W45
	WEEKU7 with a dash as the delimiter.

YYWEEKVw.

YYWEEKVw. writes the date value as a week number in decimal format using the V algorithm, which is International Standards Organization (ISO) compliant. It is left-justified in the same fashion as the YYWEEKU. format. w can be from 3 to 8, and the default is 7. This format is similar to the WEEKV. format, except that it does not provide the numerical day of the week. The V algorithm calculates weeks based on Monday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary.

This algorithm defines the first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are considered to be a part of week 53 of the previous calendar year. The date value used in this example is 20455, which corresponds to Saturday, January 2, 2016. Note that although the date is in 2016, the algorithm used by this format places the date in week 53 of the year 2015. The first week of the year 2016 starts on Sunday, January 3, 2016, as that contains the first Thursday of the year and January 4, 2016.

	Format Name
	Result
	Comment

	YYWEEKV3.
	W53
	"W" indicates week; week number follows; leading zero if necessary.

	YYWEEKV4.
	W53
	Same as WEEKU3. No leading spaces because this format is left-justified.

	YYWEEKV5.
	15W53
	Two-digit year precedes week.

	YYWEEKV6.
	15W53
	Same as WEEKU5.

	YYWEEKV7.
	2015W53
	Two-digit year precedes week; week followed by the number of the day of the week.

	YYWEEKV8.
	2015-W53
	WEEKU7 with a dash as the delimiter.

YYWEEKWw.

YYWEEKWw. writes the date value as a week number in decimal format using the W algorithm. As with the YYWEEKU. and YYWEEKV. formats, it is left-justified. w can be from 3 to 8, and the default is 7. This format is similar to the WEEKW. format, except that it does not provide the numerical day of the week. The W algorithm calculates weeks based on Monday being the first day of the week without any other restriction. The week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. The display that this format presents varies, based on the width specification. The following table shows the result when the date value 20455, which corresponds to Saturday, January 2, 2016 (the same date used in the YYWEEKV. algorithm example). Note that the W algorithm assigns the date as being in week zero of the calendar year 2016. Unlike the V algorithm, it does not consider the date as being a part of week 53 in 2015, but assigns it to week 0 in 2016. Week 1 is defined as the first full week in 2016.

	Format Name
	Result
	Comment

	YYWEEKW3.
	W00
	"W" indicates week; week number follows; leading zero if necessary.

	YYWEEKW4.
	W00
	Same as WEEKU3. No leading spaces because this format is left-justified.

	YYWEEKW5.
	16W00
	Two-digit year precedes week.

	YYWEEKW6.
	16W00
	Same as WEEKU5.

	YYWEEKW7.
	2016W00
	Two-digit year precedes week; week followed by the number of the day of the week.

	YYWEEKW8.
	2016-W00
	WEEKU7 with a dash as the delimiter.

2.4.2 Time Formats

Time formats translate seconds into one of several different ways of displaying time. Only the TIMEAMPM. and TOD. formats are specific to clock values, displaying clock values from 12:00:00 a.m. to 11:59:59 p.m. All other formats will display hours greater than 23 when translating a value greater than or equal to 86400, which would be midnight of the following day. The display of minutes always ranges from 0 to 59, except when you are using the MMSSw.d format. The built-in SAS formats always display seconds from 0 to 59.

The width specification for time (and datetime) values is different from the one for date formats because it has to allow for decimal parts of seconds. Instead of w, time and datetime formats are specified as w.d, where w is the overall width of the entire format, and the d accounts for the number of digits to the right of the decimal point. w must be greater than (d+1) to account for the decimal point. As with date formats, each of these formats has its own default width specification, which is detailed in the description of the format.

HHMMw.d

HHMMw.d displays SAS time values as hours:minutes. It is right-justified and does not display a leading zero in front of the hours. w can be from 2 to 20, with a default of 5, while d indicates the number of decimal places to the right of the minutes. As previously noted, w must be greater than d+1, to account for the decimal point. It is different from the TIMEw.d format in that it does not display seconds. If d is 0 or not present, SAS will round to the nearest minute. Otherwise, SAS will display the seconds in decimal minutes (seconds/60). Leading spaces will be added to the display based on the number of digits in the result. If the width specified is not long enough to accommodate the 3 spaces for the colon and the minutes, SAS will only display the hours and does not round the displayed value. The following table shows the result when the time value is 49794, which corresponds to 13 hours, 49 minutes, and 54 seconds.

	Format Name
	Result
	Comment

	HHMM2.
	13
	Hours only; no leading spaces because hour value is two digits.

	HHMM3.
	⏠13
	Hours only; 2 leading spaces for single-digit hours; 1 leading space for double-digit hours. No leading spaces for three-digit hours. Not enough room for more than 999 hours.

	HHMM5.
	13:50
	One leading space for single-digit hours, truncated to hours only if hours value is greater than 99.

	HHMM8.
	⏠⏠⏠13:50
	Three leading spaces

	HHMM8.2
	13:50.90
	54 seconds = .9 minutes.

HOURw.d

HOURw.d displays SAS time values as hours and decimal fractions of hours. It is right-justified. w can be from 2 to 20, with a default of 2. d is the number of decimal places to the right of the hours, and w must be greater than d+1 to account for the decimal point. If you do not specify any decimal places, SAS rounds to the nearest hour. The following table shows the result when the time value is 53706, which corresponds to 14 hours, 55 minutes, and 6 seconds.

	Format Name
	Result
	Comment

	HOUR2.0
	15
	Rounded to the nearest hour.

	HOUR4.2
	14.9
	55 minutes, 6 seconds, is .92 hours; does not leave enough space for a second decimal place.

	HOUR6.2
	⏠14.92
	One leading space.

	HOUR8.2
	⏠⏠⏠14.92
	Three leading spaces.

MMSSw.d

MMSSw.d displays SAS time values as minutes and seconds (mm:ss). It is right-justified. w can be from 2 to 20, with a default of 5. If you do not specify w large enough to fit minutes and seconds, SAS will round and display the minutes only. d will print decimal fractions (e.g., tenths or hundredths) of seconds. w must be greater than d+1 to account for the decimal point. The following table shows the result when the time value is 37269, which corresponds to the time 10:21:09 a.m. (10:21:09).

	Format Name
	Result
	Comment

	MMSS4.
	⏠621
	Leading space.

	MMSS5.
	⏠⏠621
	Two leading spaces.

	MMSS8.2
	621:09.0
	Only one decimal place for tenths of seconds, because there is not enough space to fit two. A w of 8 only leaves enough space for a d of 1 because of the decimal point.

	MMSS9.2
	621:09.00
	Two decimal places for hundredths of seconds.

TIMEw.d

TIMEw.d displays SAS time values as hours:minutes:seconds. It is right-justified and does not print a leading zero in front of the hours. w can be from 2 to 20, with a default of 8, while d indicates the number of decimal places to the right of the seconds. w must be greater than d+1 to account for the decimal point. d will print decimal fractions (e.g., tenths or hundredths) of seconds.

This format is not restricted to a 24-hour day; if hours is greater than 24, then it will display the actual value of hours, which means that the default length of 8 may not be enough to hold the entire formatted time value. It is different from the HHMM. format in that it displays seconds as opposed to decimal fractions of minutes. If d is 0 or not present, SAS will round to the nearest second. The time value used for the following table is 49794 seconds, the same value used for the HHMMw.d format. The time value corresponds to the time 1:49:54 p.m. (13:49:54).

	Format Name
	Result
	Comment

	TIME5.
	13:49
	

	TIME6.
	⏠13:49
	Leading space.

	TIME7.
	⏠⏠13:49
	Two leading spaces with seconds truncated. If this were a single-digit hour (i.e., 0 through 9), the entire time would be displayed without leading spaces because it would fit in 7 spaces.

	TIME8.
	13:49:54
	Default will accommodate up to 99 hours.

	TIME9.
	⏠13:49:54
	Leading space; may be necessary for hour values greater than 99.

TIMEAMPMw.d

TIMEAMPMw.d displays time in hours:minutes:seconds followed by a space and then AM or PM. It is right-justified. w can be from 2 to 20, and the default is 11. w must be greater than d+1, to account for the decimal point. Any time value greater than or equal to 86400 (midnight) will be displayed as the 12-hour clock time of the next day. This format does not print a leading zero. If you want the seconds to be printed, use at least 11 for the width. The following table shows the result when the time value is 11923, which corresponds to the time 3:18:43 a.m.

	Format Name
	Result
	Comment

	TIMEAMPM7.
	⏠3:18 AM
	Single-digit hour; 1 leading space; no seconds.

	TIMEAMPM9.
	⏠⏠3:18 AM
	Two leading spaces; not enough room for seconds to be displayed.

	TIMEAMPM11.
	⏠3:18:43 AM
	Single-digit hour leaves 1 leading space.

TODw.d

TODw.d displays time in hours:minutes:seconds using the 24-hour clock. It is right-justified. w can be from 2 to 20, and the default is 11. d is the decimal fraction of seconds. w must be greater than d+1, to account for the decimal point. Any time value greater than or equal to 86400 (midnight of the next day) will be marked as the 24-hour clock time of the next day. This format does not print a leading zero. If you want the seconds to be displayed, use 8 for the width. Use at least 10 if you want decimal fractions of seconds shown. The following table shows the result when the time value is 75122, which corresponds to the time 8:52:02 p.m. (20:52:02):

	Format Name
	Result
	Comment

	TOD5.
	20:52
	

	TOD8.
	20:52:02
	

	TOD11.
	⏠⏠⏠20:52:02
	Three leading spaces; useful when using fractions of seconds.

2.4.3 Datetime Formats

Datetime formats translate SAS datetime values into one of several different formats. SAS datetime values are the number of seconds since midnight, January 1, 1960. You can use a format to display both the date and time. Again, you need to pay attention to the width specification in datetime formats because it allows for decimal fractions of seconds. Instead of w, time and datetime formats are specified as w.d, where w is the overall width of the entire format, and the d accounts for the number of digits to the right of the decimal point. w must be greater than d+1 to account for the decimal point. As with date formats, each of these formats has its own default width specification, which is detailed in the description of the format.

Starting with SAS version 9, there are also a number of "DT" formats that will allow you to display just the date or just the time from a datetime value, eliminating the need to use the DATEPART() or TIMEPART() functions for display purposes. Although these "DT" formats appear to give the same result as their corresponding date or time formats, the results you get will be very different should you use a datetime format on a date value and vice versa. Datetime formats translate seconds since midnight, January 1, 1960, while date formats translate days since January 1, 1960.

Example 2.5 shows what happens when you use date formats to interpret datetime values and vice versa. If you translate the SAS date value 19855 using a date format, you will get the correct value of May 12, 2014 (❶ and ❷). However, if you use a datetime format to translate the same value, you will get 5:30:55 a.m. on January 1, 1960, which corresponds to 19,855 seconds after midnight, January 1, 1960 (❸ and ❹). In similar fashion, if you translate the value 1705587720 using a datetime format, you will get 2:22 p.m. on January 17, 2014 (❺ and ❻). This time, if you try to use a date format to translate this value, you will get a series of asterisks because the value is too far in the future for the SAS format algorithm to handle (❼ and ❽). Even if you try to get the month, day, and year of this value using the appropriate functions, it will not work.

Example 2.5: The Difference between Date and Datetime Values in Formats That Display Dates

DATA _NULL_;

date = 19855;

datetime = 1705587720;

PUT "MMDDYY10. representation of date=" date mmddyy10.; ❶

PUT "MONYY7. representation of date=" date monyy7.; ❷

PUT "DTMONYY7. representation of date=" date dtmonyy.; ❸

PUT "When value of date is used as a SAS *datetime* value, the date represented is:" date datetime20.; ❹

PUT "DATETIME20. representation of datetime=" datetime datetime20.; ❺

PUT "DTMONYY7. representation of datetime=" datetime dtmonyy7.; ❻

PUT "MONYY7. representation of datetime=" datetime monyy7.; ❼

PUT "When value of datetime is used as a SAS *date* value, the date represented is:" datetime mmddyy10.; ❽

RUN;

And here is the result.

MMDDYY10. representation of date=05/12/2014 ❶

MONYY7. representation of date=MAY2014 ❷

DTMONYY7. representation of date=JAN60 ❸

When value of date is used as a SAS *datetime* value, the date represented is: 01JAN1960:05:30:55 ❹

DATETIME20. representation of datetime= 17JAN2014:14:22:00 ❺

DTMONYY7. representation of datetime=JAN2014 ❻

MONYY7. representation of datetime=******* ❼

When value of datetime is used as a SAS *date* value, the date represented is:********** ❽

With that in mind, here are the formats that are applicable to datetime values.

DATEAMPMw.d

DATEAMPMw.d displays datetime values as ddmonyy(yy):hh:mm:ss.ss xx, where dd is the day of the month, mon is the three-letter abbreviation for the month, and yy(yy) is the two- or four-digit year. A colon follows the date, and the time is represented by hh:mm:ss.ss, followed by a space and then AM or PM. It is right-justified. w can be from 7 to 40, and the default is 19. d is the decimal fraction of seconds and must be less than w–1, to account for the decimal point. w must be at least 13 to print AM or PM. If w is 10, 11, or 12, the time is displayed as a 24-hour clock. Also, if w–d is less than 17, the decimal values will be truncated to fit the specified field width. This format produces two-digit years for widths of 19 or less. The following table shows the result when the datetime value is 1746745319.6, which corresponds to the time 11:01:59.6 p.m. on May 8, 2015.

Note the rounding to the nearest second, which causes the displayed result to be rounded to the nearest minute when there isn't enough room for the decimal.

	Format Name
	Result
	Comment

	DATEAMPM7.
	08MAY15
	No room for time.

	DATEAMPM12.
	⏠⏠08MAY15:11
	Two leading spaces; hours are given in 24-hour clock.

	DATEAMPM18.
	⏠⏠08MAY15:11:02 AM
	Two leading spaces; not enough room for seconds.

	DATEAMPM18.1
	⏠⏠08MAY15:11:02 PM
	Two leading spaces; not enough room for seconds.

	DATEAMPM19.
	08MAY15:11:02:00 PM
	

	DATEAMPM19.1
	08MAY15:11:02:00 PM
	Not enough room for decimal portion of seconds.

	DATEAMPM21.
	⏠⏠08MAY15:11:02:00 PM
	No decimal specified. Result is rounded with leading spaces.

	DATEAMPM21.1
	08MAY15:11:01:59.6 PM
	No leading spaces; entire result is displayed with no rounding.

DATETIMEw.d

DATETIMEw.d displays datetime values as ddmonyy(yy):hh:mm:ss.ss, where dd is the day of the month, mon is the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. A colon follows the date, and the time is represented by hh:mm:ss.ss. It is similar to the DATEAMPMw.d format, except that it uses the 24-hour clock and therefore does not display AM or PM. It is right-justified. w can be from 7 to 40, and the default is 19, which will provide enough room for seconds. Use a length of 15 if you only want hours and minutes to be displayed along with the date. d is the decimal fraction of seconds and must be less than w–1 to account for the decimal point. If w–d is less than 17, the decimal values will be truncated to fit the specified field width. If w–d is less than 19, this format produces two-digit years. The following table shows the result when the datetime value is 1698258126.84, which corresponds to the time 6:22:07 p.m. on October 24, 2013.

	Format Name
	Result
	Comment

	DATETIME16.
	24OCT13:18:22:07
	

	DATETIME18.
	⏠⏠24OCT13:18:22:07
	Two leading spaces.

	DATETIME18.1
	24OCT13:18:22:06.8
	One decimal place.

	DATETIME19.
	24OCT2013:18:22:07
	Four-digit year; not enough space requested for decimal point and decimal place.

	DATETIME19.1
	⏠24OCT13:18:22:06.8
	w–d =18, so the year is shown as a two-digit year with 1 leading space.

	DATETIME20.
	⏠⏠24OCT2013:18:22:07
	Two leading spaces.

	DATETIME20.1
	24OCT2013:18:22:06.8
	w–d = 19, so the year is shown as a four-digit year.

	DATETIME21.
	⏠⏠⏠24OCT2013:18:22:07
	Three leading spaces.

	DATETIME21.2
	24OCT2013:18:22:06.84
	Four-digit year; decimal seconds to 2 places.

DTDATEw.

DTDATEw. displays datetime values as the numerical day of the month, followed by the three-letter month abbreviation and the year without any separating characters. It is right-justified within the field. w can be from 5 to 9, and the default width is 7. If you want to display four-digit years, use DTDATE9. The output is identical to the output using the DATE. format. The difference is that this format will only work correctly with datetime values, while the DATE. format only works correctly with date values. The following table shows the result when the datetime value is 1729519835.7, which corresponds to the time 2:10:36 p.m. on October 21, 2014.

	Format Name
	Result
	Comment

	DTDATE5.
	21OCT
	

	DTDATE6.
	⏠21OCT
	Leading space; no year.

	DTDATE7.
	21OCT14
	

	DTDATE8.
	⏠21OCT14
	Leading space.

	DTDATE9.
	21OCT2014
	Four-digit year.

DTMONYYw.

DTMONYYw. displays the date from a datetime value as the three-letter month abbreviation followed immediately by the year. There are no separating characters. It is right-justified, and w can be from 5 to 7, with a default of 5. Specifying 5 or 6 will give you a two-digit year, while 7 will give you a four-digit year. Although this format appears to produce the same MMMyy(yy) result as the MONYY. format, the DTMONYY. format only works with datetime values, while the MONYY. format only works with date values. The following table shows the result when the datetime value is 1727036339.1, which corresponds to the time 8:18:59 p.m. on September 22, 2014.

	Format Name
	Result
	Comment

	DTMONYY5.
	SEP14
	

	DTMONYY6.
	⏠SEP14
	Leading space.

	DTMONYY7.
	SEP2014
	Four-digit year.

DTWKDATXw.

DTWKDATXw. writes datetime values as day of week name, day, month name, and year. It differs from the WEEKDATX. format in that it works on datetime values, not date values. It is right-justified, and w can range from 3 to 37. The default is 29, which is the maximum width of a date in this format. Specifying anything longer than 29 will cause leading spaces to be added. If the width specified is too small to display the complete day of the year and month, SAS will abbreviate. It will first abbreviate the month and then the day of the week as necessary. The following table shows the result when the datetime value is 1645971726, which corresponds to the time 2:22:06 p.m. on February 27, 2012.

	Format Name
	Result
	Comment

	DTWKDATX3.
	Mon
	

	DTWKDATX9.
	⏠⏠⏠Monday
	Full name of day with leading spaces. Not enough room to display the rest of the value.

	DTWKDATX15.
	⏠Mon, 27 Feb 12
	Leading space.

	DTWKDATX23.
	⏠⏠⏠⏠Monday, 27 Feb 2012
	Full name of day; month abbreviation; four-digit year.

	DTWKDATX29.
	⏠⏠⏠⏠⏠Monday, 27 February 2012
	Leading spaces in example, but will fit any date.

DTYEARw.

DTYEARw. displays the year for the given datetime value. The DTYEAR. format is identical in result to the YEAR. format, but it is used with datetime values instead of date values. It is right-justified, and w can be from 2 to 4, with a default width of 4. When w is specified as 2 or 3, a two-digit year is used. The following table shows the result when the datetime value is 1716310050.2, which corresponds to the time 4:47:30 p.m. on May 21, 2014.

	Format Name
	Result
	Comment

	DTYEAR2.
	14
	Two-digit year.

	DTYEAR3.
	⏠14
	Two-digit year with a leading space.

	DTYEAR4.
	2014
	Four-digit year.

DTYYQCw.

DTYYQCw. writes datetime values as a two- or four-digit year, followed by a colon, and a single-digit representing the quarter of the year. It is right-justified, and w can be from 4 to 6. The default width is 4. Use a width of 6 to get a four-digit year. Use 4 or 5 to get a two-digit year. This gives you the same result with datetime values that using the YYQC. format would yield with a date value. The following table shows the result when the datetime value is 1662064659.5, which corresponds to the time 8:37:40 p.m. on August 31, 2012.

	Format Name
	Result
	Comment

	DTYYQC4.
	12:3
	Two-digit year.

	DTYYQC5.
	⏠12:3
	Leading space; two-digit year.

	DTYYQC6.
	2012:3
	Four-digit year.

MDYAMPMw.

MDYAMPMw. writes datetime values in the following format: mm/dd/yy(yy) ⏠hh:mm⏠AM/PM. There are no leading zeroes in either the date or the time portions of this format. It is right-justified, and w can be from 8 to 40, with a default width of 19. The following table shows the result when the datetime value is 1716089122, which corresponds to the time 3:25:22 a.m. on May 19, 2014. Note that in the following example there are two spaces between the date and the time because the hour is only a single digit.

	Format Name
	Result
	Comment

	MDYAMPM8.
	⏠5/19/14
	In SAS versions earlier than 9.4, the date is represented as 0/0/0 for lengths less than 17.

	MDYAMPM15.
	5/19/14
	

	MDYAMPM16.
	5/19/14
	

	MDYAMPM17.
	5/19/14 3:25 AM
	

	MDYAMPM18.
	5/19/14 3:25 AM
	

	MDYAMPM19.
	5/19/2014 3:25 AM
	

	MDYAMPM21.
	5/19/2014 3:25 AM
	

	MDYAMPM24.
	5/19/2014 3:25 AM
	

2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT

In addition to the date and time formats supplied with SAS, you can create your own custom formats with the FORMAT procedure. With dates and times, you can modify the default display of an existing SAS format or create your own using the VALUE or the PICTURE statement. Below I show how to modify the default display of an existing SAS format using the VALUE statement.

Example 2.6: Creating Your Own Date Format with the VALUE Statement in PROC FORMAT

An access control company wants a report of the people whose security cards have expired as of January 1, 2014, and they have the expiration date for each card. Instead of having to read the report and determine which dates are prior to the cutoff, they want to display any date prior to January 1, 2014, as "EXPIRED," and dates after that using the MMDDYY10. format. Set the value to "EXPIRED" for dates prior to December 31, 2013, using that as the upper limit, and the special value "LOW" as the bottom of the range. For the remaining values, use the lower limit of January 1, 2014, and the special value "HIGH" as the upper limit, and indicate the SAS format to be applied to this range in brackets ❶. If you do not enclose the SAS format in brackets, you will get an error in the FORMAT procedure.

PROC FORMAT;

VALUE exp

LOW-'31DEC2013'd= "Expired"

'01JAN2014'd - HIGH=[MMDDYY10.] ;❶

RUN;

PROC PRINT DATA=access;

ID card_num;

VAR exp_date exp_date_raw;

FORMAT exp_date exp. exp_date_raw DATE9.;

RUN;

	 card_num
	 exp_date
	 exp_date_raw

	 84485598
	 11/14/2015
	 14NOV2015

	 16205371
	 11/27/2014
	 27NOV2014

	 63656754
	 01/14/2014
	 14JAN2014

	 10270040
	 Expired
	 01APR2013

	 94822015
	 Expired
	 04JUN2013

	 27800904
	 Expired
	 23OCT2013

	 97189418
	 08/14/2014
	 14AUG2014

	 70815194
	 03/14/2016
	 14MAR2016

	 50465401
	 Expired
	 26MAY2013

	 43034970
	 09/28/2014
	 28SEP2014

Example 2.7: Creating Your Own Time Format with the VALUE Statement in PROC FORMAT

In order to be able to drive the next stage in a road race, drivers must finish a previous stage in ten minutes or less, and the results are posted. This example shows that you can customize time and datetime formats as well as date formats. To customize datetime formats, you would specify a datetime format instead of a date or time format.

PROC FORMAT;

VALUE qualify

LOW-'00:10:00't=[MMSS5.];

'00:10:00't <- HIGH = 'Did Not Qualify';

RUN;

PROC PRINT DATA=racers;

ID name;

VAR time;

FORMAT time qualify.;

RUN;

	name
	time

	Bork
	 Did Not Qualify

	Bova
	 Did Not Qualify

	Brantley
	 08:31

	Brickowski
	 08:59

	Burkhart
	 07:10

	Burroughs
	 08:05

	Butler
	Did Not Qualify

2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT

To create your own date and time formats with the PICTURE statement in the FORMAT procedure, you need to use the DATATYPE= option. DATATYPE can take the values of "DATE," "TIME," or "DATETIME" to indicate the type of value you are formatting. You then need to define your display by using one or more of the picture format date directives shown in the list below. These directives are case-sensitive.

Table 2.1: Picture Format Date Directives

	Date Directive
	Description

	%a
	Locale's abbreviated weekday name. Locale is defined by the LOCALE= system option.

	%A
	Locale's full weekday name. Locale is defined by the LOCALE= system option.

	%b
	Locale's abbreviated month name. Locale is defined by the LOCALE= system option.

	%B
	Locale's full month name. Locale is defined by the LOCALE= system option.

	%d
	Day of the month as a decimal number (1–31), with no leading zero. Put a zero between the percent sign and the "d" to have a leading zero in the display.

	%H
	Hour (24-hour clock) as a decimal number (0–23), with no leading zero. Put a zero between the percent sign and the "H" to have a leading zero in the display.

	%I
	Hour (12-hour clock) as a decimal number (1–12), with no leading zero. Put a zero between the percent sign and the "I" to have a leading zero in the display.

	%j
	Day of the year as a decimal number (1–366), with no leading zero. Put a zero between the percent sign and the "j" to have a leading zero in the display.

	%m
	Month as a decimal number (1–12), with no leading zero. Put a zero between the percent sign and the "m" to have a leading zero in the display.

	%M
	Minute as a decimal number (0–59), with no leading zero. Put a zero between the percent sign and the "M" to have a leading zero in the display.

	%p
	Locale's equivalent of either a.m. or p.m. Locale is defined by the LOCALE= system option.

	%S
	Second as a decimal number (0–59), with no leading zero. Put a zero between the percent sign and the "S" to have a leading zero in the display.

	%U
	Week number of the year (Sunday as the first day of the week) as a decimal number (0–53), with no leading zero. Put a zero between the percent sign and the "U" to have a leading zero in the display.

	%w
	Weekday as a decimal number, where 1 is Sunday and Saturday is 7.

	%y
	Year without century as a decimal number (0–99), with no leading zero. Put a zero between the percent sign and the "y" to have a leading zero in the display.

	%Y
	Year with century as a decimal number (four-digit year).

	%%
	The percent character (%).

Note that if you are going to use these directives in a picture format, you will probably want to add the following line of code or some variant in the PICTURE statement to handle the display of missing values.

. - .z = "No Date Given"

Example 2.8 creates a format similar to the WORDDATE. format, except that leading zeroes are a part of the date display. Pay special attention to how the picture is created in line 4. When you are using any of the date directives from the table above, you must enclose your picture string in single quotes. If you use double quotes, SAS will try to interpret the directives as macro calls because of the percent sign (%). The PROC FORMAT step will execute without error, and you will not see any warnings in the SAS log until the format is used. The format will not work if you have a macro that has the same name as the format you created.

Example 2.8: Creating a Picture Format for Dates Using Date Directives

1 PROC FORMAT (DEFAULT=21);

2 PICTURE ZWDATE

3 . - .z = "No Date Given"

4 LOW - HIGH = '%B %0d, %Y' (DATATYPE=DATE);

5 RUN;

6 PROC PRINT DATA=pictest LABEL;

7 VAR date date2;

8 FORMAT date worddate. date2 zwdate21.;

9 LABEL date = "Date Using WORDDATE."

10 date2 = "Date using ZWDATE.";

11 RUN;

Line 3 defines the display for missing values. Without it, you will see the SAS missing value symbol: either a period (.) or a special missing value. Line 4 gives the picture of how the date is to be displayed. The zero preceding the day directive (%0d) causes the leading zero to be printed as a part of the date. The length of the string with the date directives determines the default width of the format. In this example, the default width is 10, but in order to make sure that all the dates print correctly, the FORMAT statement in line 8 sets the format width to 21. What follows is the resulting output.

	Date using WORDDATE.
	Date using custom
PICTURE format
ZWDATE.

	July 8, 2012
	July 08, 2012

	April 17, 2014
	April 17, 2014

	October 30, 2013
	October 30, 2013

	.
	No Date Given

	May 14, 2012
	May 14, 2012

	February 2, 2013
	February 02, 2013

	.
	No Date Given

	November 26, 2014
	November 26, 2014

Example 2.9: Using Date Directives with Text

This example defines a format that will display text along with the date and time. It provides a standardized date and time stamp that can be added as a title or footnote to reports (for examples of how to do this, see Sections 6.1.2 and section 6.1.3. In line 2 of the code below, the DEFAULT= option is used to specify a default length for the format. Without that option, this format would have a default length of 35, which is the number of characters between the quotes. However, there is no way that the default width can successfully print the entire date and time stamp for all cases, because full month names are always longer than two characters, which is all that the format directive "%B" makes room for. Similarly, the four-digit year will take up more than the two characters accounted for by the %Y directive. The code below uses the format width of 35 to illustrate what would happen without the DEFAULT= option.

In line 3, if the datetime stamp is missing, the datetime stamp displays the word "Missing." The picture for all other values is defined in line 4; "LOW-HIGH" specifies the range. The picture description begins with text, and the date is represented by the full month name (%B), followed by the numeric day (%d without a leading zero), a comma, and the four-digit year (%Y). The time follows the word "at" and is represented as a 12-hour clock time without seconds (%I:%0M), followed by AM or PM (%p). The DATATYPE= option tells the format that it will be receiving datetime values to translate.

SAS Code

1 PROC FORMAT;

2 PICTURE rptdate (DEFAULT=43)

3 . - .Z = 'Missing'

4 LOW-HIGH = 'Generated on %B %d, %Y at %I:%0M %p' (DATATYPE=DATETIME);

5 RUN;

6

7 DATA _NULL_;

8 rpt_date = "15dec2012:22:25:00"dt;

9 PUT 'SAS datetime value = ' rpt_date;

10 PUT 'Formatted with DATETIME. = ' rpt_date datetime.;

11 PUT 'Using custom format at width of 35 =' rpt_date rptdate35.;

12 PUT 'Using custom format at default width of 43 = ' rpt_date rptdate.;

12 RUN;

The Result

SAS datetime value = 1671229500

Formatted with DATETIME. = 15DEC12:22:25:00

Using custom format at width of 35 =Generated on December 15, 2012 at 1 ❶

Using custom format at default width of 43 = Generated on December 15, 2012 at 10:25 PM

As you can see, without the corrected default width, the resulting output is truncated at 35 characters.

2.7 Creating Custom Formats Using PROC FCMP for Processing

There is another possibility for custom formats beyond the functionality of the VALUE and PICTURE statements. You can actually process data using PROC FCMP to write your own functions and then display the result of that function as a formatted value. This can be helpful for handling dirty date data (missing values for month, day, or year) or imputing values for missing date components. While the specifics of PROC FCMP are beyond the scope of this book, the following section will demonstrate some of the capability.

Example 2.10: Using PROC FCMP to Impute Dates with Annotation for Imputed Dates

This example defines a format that will take a date, and if any component is missing, it will impute a value for display on the report along with an indicator of which component is missing. The advantage of doing this with a format is that the original value in the data set is untouched, allowing for investigation and later correction. The OUTLIB= option (❶) on the PROC FCMP statement defines the location where the compiled function is to be stored. The FUNCTION statement (❷) names the function and describes the input parameter (cdate; the $ indicates that it is a character value), and the second dollar sign indicates that the returned value will also be character.

PROC FCMP Code to Create the MAKEDATE() Function for Imputation

ODS ESCAPECHAR ='~';

PROC FCMP OUTLIB=control.functions.dates; ❶

 FUNCTION makedate(cdate $)$; ❷

 LENGTH dtstr $42 supr $16;

 supr=' '; /* Initialize superscript variable */

 /* assume that data is in MMDDYYYY form, but check */

 /* Parse date string, get elements */

 cmo = SCAN(cdate,1,'/-.: ','M');

 cdy = SCAN(cdate,2,'/-.: ','M');

 cyr = SCAN(cdate,3,'/-.: ','M');

 IF cyr EQ ' ' OR INDEX(cyr,'_') GT 0 OR cyr EQ '.' THEN

 y = .;

 ELSE

 y=INPUT(cyr,4.);

 /* Test year value - earliest date is 1990, cannot be in future */

 IF y ne . and (1990 LT y LT YEAR(TODAY())) THEN DO;

 /* assume year is good */

 IF cmo EQ ' ' OR INDEX(cmo,'_') GT 0 OR cmo EQ '.' THEN

 m = .;

 ELSE

 m=INPUT(cmo,2.);

 IF 1 LE m LE 12 THEN DO; /* month has to be between 1 and 12 */

 /* Month is good chk day */

 IF cdy EQ ' ' OR INDEX(cdy,'_') GT 0 OR cdy EQ '.' THEN

 d = .;

 ELSE

 d=INPUT(cdy,2.);

 IF d LE 1 OR d GT (DAY(INTNX('MONTH',MDY(m,1,y),0,'e'))) THEN DO;

 /* Day is bad for this month - impute middle of month */

 d = CEIL(DAY(INTNX('MONTH',MDY(m,1,y),0,'e'))/2);

 supr = '~{super Day}';

 END;

 END;

 ELSE DO;

 /* Month is bad - reset month and day */

 m=6;

 d=30;

 supr = '~{super Month}';

 END;

 /* Create the date value */

 date=MDY(m,d,y);

 dtstr = CATT(PUT(date,mmddyy10.),supr);

 END;

 ELSE DO;

 /* yr is bad -flag */

 dtstr = 'Unknown~{super Y}';

 END;

 RETURN(dtstr);

 ENDSUB;

RUN;

QUIT;

This section of the example will use the MAKEDATE() function created above inside of a custom format. It is important to note that the dates displayed are characters; therefore, the format is a character format (as indicated by the leading dollar sign [$]).The OTHER= keyword with no other format ranges defines a range of all possible values, and placing the function name inside the brackets (❷) applies the function.

Using the MAKEDATE() Function as a Custom Format

PROC FORMAT;

 VALUE $mkdt

 ❶ OTHER=[makedate()] ❷;

RUN;

DATA errorcnt;

INPUT recno @4 rptdt $10. errs;

DATALINES;

1 13/15/2013 374

2 09/08/2013 3

3 02/30/2013 32

4 __/15/2013 15

5 04/27/2013 195

6 05/__/2013 17

7 07/08/____ 20

8 06/04/013 5

9 08/32/2013 4

10 11//2013 6

11 01/23/2031 11

;;;;

RUN;

TITLE1 'Error Counts by Date';

PROC REPORT DATA=errorcnt NOWD SPLIT='\';

 COLUMN recno rptdt rptdt=dt errs;

 DEFINE recno / order 'Record #';

 DEFINE rptdt / 'Original\Date from\Error Log';

 DEFINE dt / 'Imputed\Date' f=$mkdt36.; ❶

 DEFINE errs / "Errors\Reported";

RUN;

The PROC REPORT step above uses the value that is stored in the data set and creates an alias (DT) for it. We apply the format we created to that aliased variable (❶) to show both the original and the on-the-fly imputation alias for it.

The Output

	Record #
	Original
Date from
Error Log
	Imputed
Date
	Errors
Reported

	1
	13/15/2013
	06/30/2013Month
	374

	2
	09/08/2013
	09/08/2013
	3

	3
	02/30/2013
	02/14/2013Day
	32

	4
	__/15/2013
	06/30/2013Month
	15

	5
	04/27/2013
	04/27/2013
	195

	6
	05/__/2013
	05/16/2013Day
	17

	7
	07/08/____
	UnknownY
	20

	8
	06/04/013
	UnknownY
	5

	9
	08/32/2013
	08/16/2013Day
	4

	10
	11//2013
	11/15/2013Day
	6

	11
	01/23/2031
	UnknownY
	11

It is important to realize that using this function as a format does not create imputed values in the data set. It is only a way to display the values from the data set.

2.8 The PUT() Function and Formats

What happens if you need to use the formatted value of a date in a character string you're assembling? If you use the variable that contains the date value, you'll get the actual SAS date value, regardless of any permanent formats assigned to the variable. The PUT() function is used to store the formatted value of a numeric value in a character variable. The syntax is:

PUT(value,format);

value is a constant or a variable (either numeric or character), and format is the name of a SAS format. If you are formatting a character variable or constant, then the format you use must be a character format. Similarly, if you are formatting a numeric value, the format must be a numeric format. Example 2.11 will demonstrate how to use the PUT() function. The PUT() function ❶ creates the character variable char_value. The length of the variable in this case is defined by the width of the format, 10. If you've already defined the length of the character variable where you store the result, it has to be at least as long as the format width, or your output will be truncated.

Example 2.11: Using the PUT() Function to Create a Character Date String

DATA sample281;

numeric_value = 18947;

fmt_num_value = 18947;

char_value = PUT(numeric_value,MMDDYY10.); ❶

FORMAT fmt_num_value mmddyy10.;

LABEL numeric_value="SAS Date\Value"

 fmt_num_value="Formatted\SAS Date\Value"

 char_value="Character Date\in String";

RUN;

ODS RTF FILE="c:\book\2ndEd\examples\putfunction.rtf";

PROC PRINT DATA=sample281 NOOBS SPLIT='\';

RUN;

ODS RTF CLOSE;

	SAS Date
Value
	Formatted
SAS Date
Value
	Character Date
in String

	18947
	11/16/2011
	11/16/2011

So what's the difference? The formatted value looks the same as the character date, right? However, in this simple PROC PRINT, one difference is apparent. The numeric variable is right-justified (the default for the MMDDYY. format is right-justified), while the character variable is left-justified (default for character variables). If you look at the labels, you will see that the labels also reflect the default justification. The labels for the numeric variables are right-justified, and the one for the character variable is left-justified.

Why would you need to use a character representation of a SAS date? If you are printing a date inside of a text string (e.g., in a title or footnote, or in the text of a form letter), you will need to create a character variable with the date. Example 2.12 puts the RPTDATE. format created in Section 2.6.1 on each page of a report as a footnote.

Example 2.12: Using a Character Date String in a Footnote

PROC FORMAT;

PICTURE rptdate (DEFAULT=43)

 . - .Z = 'Missing'

LOW-HIGH = 'Generated on %B %d, %Y at %I:%0m %p' (DATATYPE=DATETIME);

RUN;

In order to do this, we will have to create a macro variable to store the value so that it can be used in a FOOTNOTE statement. The method chosen here is via a DATA step and the CALL SYMPUTX statement. CALL SYMPUTX trims any trailing spaces as opposed to CALL SYMPUT. There are other ways to create the macro variable &RPTDTM as well (see Section 6.1.3).

DATA _NULL_;

CALL SYMPUTX('RPTDTM',PUT(DATETIME(),RPTDATE.));

RUN;

FOOTNOTE "&RPTDTM";

Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values

3.1 Avoiding the Two-Digit Year Trap

3.2 Using Informats

3.3 The INFORMAT Statement

3.4 Listing and Discussion of Informats

In Chapter 2, I discussed translating SAS dates to the way we express them. How can we do the reverse? After all, if you have a date, time, or date and time that you need to store or manipulate, it won't be represented as a SAS date, time, or datetime value (unless it comes from another SAS data set). The translation from common date and/or time terminology to SAS is almost as easy as going the other way, and it is done in one of two ways: The first, discussed in Section 1.4, uses date, time, and datetime literals. While this works for a small number of these values that are known at the time you write the program, how do you deal with multiple dates, or those that are known only at run time? By using informats to process them.

3.1 Avoiding the Two-Digit Year Trap

First, it is always good practice to use four-digit years in your date values. If this is not possible, SAS will handle dates with two-digit years without any problems, but this situation is where you, the user, should be concerned with the YEARCUTOFF= system option. Anytime that you translate a date or datetime from an everyday representation using two-digit years (for example, 05/16/89) to its SAS value, the YEARCUTOFF= system option will affect the resulting SAS value. The YEARCUTOFF= system option will define the beginning of the 100-year period for those two-digit years. In SAS 9.4, the SAS default value for this option is 1926, defining a range of 1926 through 2025. Therefore, two-digit years in the range from 26 through 99 will be assigned to the years 1926–1999, while year values from 00 through 25 will be set to the years 2000–2025. This rule applies to everything that has to be translated into a SAS date or datetime value and where there are only two digits representing the year. This means that the YEARCUTOFF= option applies to external data being processed with the INPUT statement, any date or datetime literals, as well as any functions (such as INPUT()) where the input string only has two digits representing the year. The example below shows how date and datetime literals are affected by the YEARCUTOFF= system option. It displays the actual SAS date or datetime value represented by the literal along with its formatted value.

Example 3.1: Effects of the YEARCUTOFF= System Option on Date and Datetime Literals

OPTIONS YEARCUTOFF=1920

	
	SAS Date
Literal
	Value as
Stored in SAS
	Formatted
Value

	a1
	'23MAR2005'd
	16518
	03/23/2005

	a2
	'23MAR1905'd
	-20007
	03/23/1905

	a3
	'23MAR05'd
	16518
	03/23/2005

	a4
	'19AUG1959:14:45:00'dt
	-11610900
	19AUG1959:14:45:00

	a5
	'19AUG2059:14:45:00'dt
	3144149100
	19AUG2059:14:45:00

	a6
	'19AUG59:14:45:00'dt
	-11610900
	19AUG1959:14:45:00

The variables a3 and a6 are date and datetime constants, respectively, with two-digit years as a part of the constant. While the literals with four-digit years are stored as their proper SAS dates, a3 is in the 21st century, but a6 is set in the 20th century. The 100-year range is 1920–2019. Therefore, '05' falls in the range 00–19 and is assigned to the year 2005, and '59' falls in the range 20–99 and is assigned to the year 1959. For the following example, let's use the same date and datetime literals, but change the value of the YEARCUTOFF= option.

OPTIONS YEARCUTOFF=1905

	
	SAS Date
Literal
	Value as
Stored in SAS
	Formatted
Value

	a1
	'23MAR2005'd
	16518
	03/23/2005

	a2
	'23MAR1905'd
	-20007
	03/23/1905

	a3
	'23MAR05'd
	-20007
	03/23/1905

	a4
	'19AUG1959:14:45:00'dt
	-11610900
	19AUG1959:14:45:00

	a5
	'19AUG2059:14:45:00'dt
	3144149100
	19AUG2059:14:45:00

	a6
	'19AUG59:14:45:00'dt
	-11610900
	19AUG1959:14:45:00

Now, a3 has moved to the 20th century. The literals with four-digit years remain stored as their proper SAS dates and a6 remains in the 20th century, but we have moved the 100-year range to start in 1905. Therefore, the range is now 1905–2004, and '05' falls in the 05–99 range, so it is assigned to 1905.

The same thing will happen when you use an informat to translate a date or datetime string where there are only two digits representing the year.

3.2 Using Informats

Formats take values and display them in a specific fashion, while informats take a series of alphanumeric characters and translate them into a single value. Dates and times are the best example of applying informats, since SAS date values are not normally how the majority of the planet expresses dates. A date such as 11/24/05, or 24-05-2002 contains non-numeric characters, so they would have to be read as character values, which is quite a distance from numeric SAS date values. As with formats, you can create (and store for future use) your own informats if one is not available within SAS to fit your needs. There are fewer SAS-supplied informats than formats , so you should be careful to only use the informats listed in this chapter to translate your date and datetime strings, and not the formats from Chapter 2.

Just as you can use the FORMAT statement to apply a format to a variable, you can use the INFORMAT statement to apply an informat to a variable in a procedure or a DATA step. However, the most common use of informats is with the INPUT statement in a DATA step, as data are being read in, or with the INPUT() function to translate character data that are already in data sets.

You specify an informat by giving the informat name, followed by an optional width specification and a period (.). Informats are like formats in that each informat has a default width that SAS will use if none is specified.

3.3 The INFORMAT Statement

The INFORMAT statement is analogous to the FORMAT statement. You use the INFORMAT statement to associate an informat with a variable in a SAS data set. You can also remove an informat that has been permanently associated with the variable by leaving the informat name blank. You might also use the INFORMAT statement to associate an informat with a variable for the duration of the procedure (which might be useful in certain procedures such as the FSEDIT procedure).

INFORMAT date1 mmddyy10.;

The statement above says that any time a character string is read into the variable date1, it will be translated into a SAS date value using the informat MMDDYY10 (detailed below). If the character string being processed is not in an MMsDDsYY(YY) (s stands for a separator), you will get a missing value stored in date1 and an error message in the SAS log.

Just as with formats, you can remove informats that have been permanently associated with a variable by using the variable name in the INFORMAT statement without an informat, as is shown below.

INFORMAT time3;

This statement will remove any informat that has been permanently associated with the variable time3.

3.3.1 Using Informats with the INPUT Statement

The basic syntax of an INPUT statement with an informat is as follows:

INPUT @1 date1 mmddyy10.;

First, you will usually specify a starting column. The default starting column is 1, but you can specify the starting column with the @ sign, followed by the column number. If you do not, the starting column will be set to the current location of the input pointer. You should also specify a width for the informat to indicate how many characters are to be read. The above INPUT statement will read the first ten characters in a line, starting at the first character in a data line, and SAS will expect it to look like mmsdds(yy)yy, where mm is the month from 01 to 12, s represents a separator character, dd is a day from 01 to 31, and (yy)yy is a two- or four-digit year. The following example demonstrates that the separator character does not have to be the same on every line, and the field does not have to be exactly ten characters long.

Example 3.2: INPUT Statement

1. DATA informats_are_smart;

2. INPUT @1 date1 :MMDDYY10.;

3. unformatted_date = date1;

4. DATALINES;

5. 10/17/2014

6. 05-04-59

7. 3-1-1940

8. RUN;

9. PROC PRINT;

10. FORMAT date worddatx.;

11. RUN;

The Result

	Obs
	date1
	unformatted_date

	1
	17 October 2014
	20013

	2
	4 May 1959
	-242

	3
	1 March 1940
	-7245

As you can see, the characters in each line of the DATALINES statement were converted to a SAS date value. The length of the informat must be long enough to read all of the characters in the date string. In the example, there are a maximum of 10 characters in the date string. Therefore, the width of the informat is specified as 10. The other important thing to note is the use of the colon (:, line 2, in bold) modifier preceding the informat name. It is best practice to use the colon modifier with any informat, not just those relating to dates and times, when you are dealing with varying length fields. The colon modifier ensures that it doesn't matter if the lengths of the character strings representing date in the data are less than the width specified for the informat.

If the characters read do not match that layout (for example, June 26, 2014, when the informat specified is MMDDYY.) or if the informat would yield an impossible value (for example, February 31), SAS will set the value of the variable date1 to missing and set the system variable _ERROR_ to 1. In general, you should know the layout of the characters before selecting an informat. Beginning with version 9 of SAS, if you do not know the layout of the dates ahead of time, the ANYDT family of informats (see Section 3.4.4) are designed to solve this problem.

3.3.2 Informats with the INPUT() Function

The INPUT() function is the parallel to the PUT() function, and it stores a numeric or character value as a numeric or character variable. The type of the result depends on the type of the informat that is used. A character informat (one that begins with a $) will return a character value. All informats used with dates, times, and datetimes are numeric. Therefore, the variable returned is numeric. The syntax is given below.

INPUT(character-value,informat-name);

If you want to define the informat that is to be applied during a SAS job (at run time), you will need to use the INPUTN(character-value,informat-name) function (or INPUTC(), if you want to produce a character variable) instead. informat-name represents a character variable or character constant that contains an informat name, while the INPUT() function needs an actual informat name. Make sure that you have defined the width of the informat so that it is long enough to capture all the characters in the entire character variable. The following examples illustrate the use of the INPUT() and INPUTN() functions:

Example 3.3: INPUT() Function

DATA _NULL_ ;

datestr = "15-NOV-2013";

sasdate = INPUT(a,date11.);

PUT sasdate=;

RUN

The INPUT() function translated the date in the character variable datestr into its equivalent SAS date value, 19677, and stored it in the numeric variable sasdate. The date11. informat accounts for the length of the character variable.

Example 3.4: INPUTN() Function

DATA _NULL_;

datestr = "15-NOV-2013";

inf = "DATE11.";

sasdate = INPUTN(a,inf);

PUT sasdate=;

RUN;

The INPUTN() function used the value of the character value inf (DATE11.) as the informat to use in translating the date in the character variable datestr into its equivalent SAS date value, 19677.

3.3.3 When the Informat Does Not Match the Data Being Read

Informats, like formats, are separated into classes according to the type of data that are being read. In most cases, if you use the wrong informat for the data type, informats will return an error (set the SAS automatic variable _ERROR_ to 1), and the value of the variable being read will be set to missing.

This behavior differs from date, time, and datetime formats in that if you use the wrong type of format to display a value (for example, if you use a date format to display a time value), no error will occur, and at worst, you will get a warning in the SAS log. However, incorrectly specifying a format will most likely cause the display to be incorrect. Example 3.5 shows what happens when you try to use an informat that does not match the character string that you are trying to process.

Example 3.5: Using the Wrong Informat

DATA bad_informat;

INPUT @1 date :datetime18.;

DATALINES;

11-06-1988

8-25-2004

4-24-2005

;;;;

RUN;

The Log

 1 DATA bad_informat;

 2 INPUT @1 date :datetime18.;

 3 DATALINES;

 NOTE: Invalid data for date in line 4 1-18.

 RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+

 4 11-06-1988

 date=. _ERROR_=1 _N_=1

 NOTE: Invalid data for date in line 5 1-18.

 5 8-25-2004

 date=. _ERROR_=1 _N_=2

 NOTE: Invalid data for date in line 6 1-18.

 6 4-24-2005

 date=. _ERROR_=1 _N_=3

 NOTE: The data set WORK.BAD_INFORMAT has 3 observations and 1 variables.

 NOTE: DATA statement used (Total process time):

 real time 0.53 seconds

 cpu time 0.03 seconds

 7 ;;;;

 8 RUN;

The Resulting SAS Data set

	Obs
	date

	1
	.

	2
	.

	3
	.

As you can see in the above example, using the DATETIME. informat to process a series of character strings that do not represent datetimes produces a note in the log. It also sets the automatic variable _ERROR_ to 1 for each record where it encountered a mismatch between the informat specified and the data that it attempted to read. The end result is that the value of the date variable in your output data set is missing because SAS was not able to process the characters using the specified informat. Remember to always check your log and your data set after reading a text file.

3.4 Listing and Discussion of Informats

Each discussion of an informat in this section will provide an explanation of the informat, its width specification, and the text it is designed to process. Each subsection is accompanied by a table that gives examples of the text that is to be processed, along with the informat (and its width specification) and the resulting SAS date, time, or datetime value. SAS continues to develop formats and informats, so it is always a good idea to check the online documentation at support.sas.com.

3.4.1 Date Informats

DATEw.

DATEw. reads dates in the form ddmonyy(yy), where dd represents the day of the month, mon is the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. The default value of w is 7, but you should specify 9 if you are reading four-digit years. dd, mon, and yy(yy) can be separated by blanks or special characters. If you separate them, you must account for the blanks (or special characters) in the width specification. If you have blanks after the month and the day, then you need to have a width of 9 for two-digit years or 11 for four-digit years. If the leading zero for dd is missing, it has no effect on the value. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	20sep15
	DATE7.
	20351
	Sunday, September 20, 2015

	4 feb 2014
	DATE11.
	19758
	Tuesday, February 4, 2014

	07-may-1960
	DATE11.
	127
	Saturday, May 7, 1960

DDMMYYw.

DDMMYYw. reads dates of the form ddmmyy(yy), where dd represents the day of the month, mm represents the number of the month, and yy(yy) is the two- or four-digit year. The default value of w is 6, but you should specify 8 if you are reading four-digit years. dd, mm, and yy(yy) can be separated by blanks or special characters. If you separate them, you must account for the separating characters in the width specification. If you have blanks after the month and the day, then you need to have a width of 8 for two-digit years or 10 for four-digit years. SAS will do its best to decipher the string if no separators are used, but some dates cannot be processed—for example, 2112008. Without place-holding zeros or separators, there is no way to know whether the date is 21 January 2008 or 2 November 2008. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	140390
	DDMMYY6.
	11030
	Wednesday, March 14, 1990

	06/09/05
	DDMMYY8.
	16685
	Tuesday, September 6, 2005

	22-04-2003
	DDMMYY10.
	15817
	Tuesday, April 22, 2003

JULIANw.

JULIANw. translates a Julian date in the form yy(yy)ddd, with the two- or four-digit year preceding the zero-filled day of the year. It is right-justified. w can be from 5 to 32, and the default is 5. If you specify 5, the year portion of the Julian date is two digits long. If you specify 7 or more, the year portion is four digits long. Zeros must fill the space between the year and day values: For example, the fifth day of the year must be given as "005." Any date preceding the year 1582 on the Gregorian calendar cannot be read as a Julian value. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	09284
	JULIAN5.
	18181
	Sunday, October 11, 2009

	2014005
	JULIAN7.
	19728
	Sunday, January 5, 2014

	2012168
	JULIAN7.
	19160
	Saturday, June 16, 2012

MMDDYYw.

MMDDYYw. reads dates of the form mmddyy(yy), where mm represents the number of the month, dd represents the day of the month, and yy(yy) is the two- or four-digit year. The default value of w is 6, but you should specify 8 if you are reading four-digit years. dd, mm, and yy(yy) can be separated by blanks or special characters. If you separate them, you must account for the blanks in the width specification. If you have blanks after the month and the day, then you need to have a width of 8 for two-digit years or 10 for four-digit years. SAS will do its best to decipher the string if no separators are used, but some dates cannot be processed—for example, 1272003. Without place-holding zeros or separators, there is no way to know whether the date is January 27, 2003, or December 7, 2003. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	041798
	MMDDYY6.
	13986
	Friday, April 17, 1998

	1/15/2013
	MMDDYY10.
	19373
	Tuesday, January 15, 2013

	08282015
	MMDDYY10.
	20328
	Friday, August 28, 2015

MONYYw.

MONYYw. reads dates of the form monyy(yy), where mon is the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. Using this informat will set the SAS date value that corresponds to the first day of the month. The default value of w is 5, but you should specify 7 if you are reading four-digit years. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	JAN15
	MONYY5.
	20089
	Thursday, January 1, 2015

	dec1920
	MONYY7.
	-14275
	Wednesday, December 1, 1920

	aug2020
	MONYY7.
	22128
	Saturday, August 1, 2020

PDJULG4.

PDJULG4. reads a packed Julian date in hexadecimal format for IBM computers. The width specification is always 4, because the Julian date is parsed as follows: the four-digit Gregorian year is written in the first two bytes, and the three-digit integer that represents the day of the year is in the next one-and-a-half bytes. The last half-byte contains all binary 1s, which indicates the value is positive. There is no example given for this informat because packed-decimal Julian dates yield nonprintable characters.

PDJULIw.

PDJULIw. also reads a packed Julian date in hexadecimal format for IBM computers. It differs from the PDJULG. informat in that it expects the two digits of the century in the first byte, followed by two digits of the year in the second byte. The next one-and-a-half-bytes store the three-digit integer that corresponds to the day of the year, while the last half-byte is filled with hexadecimal 1s, representing a positive number. The century and year are calculated by subtracting 1900 from the four-digit Gregorian year. Once again, there is no example, since packed-decimal Julian dates yield nonprintable characters.

YYMMDDw.

YYMMDDw. is used to read dates of the form yy(yy)mmdd, where yy(yy) is the two- or four-digit year, mm represents the number of the month, and dd represents the day of the month. The default value of w is 6, but you should specify 8 if you are reading four-digit years. yy(yy), mm, and dd can be separated by blanks or special characters. If you separate them, you must account for the separating characters in the width specification. If you have blanks after the month and the day, then you need to have a width of 8 for two-digit years or 10 for four-digit years. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	441205
	YYMMDD6.
	-5505
	Tuesday, December 5, 1944

	20150517
	YYMMDD8.
	20225
	Sunday, May 17, 2015

	2014-07-06
	YYMMDD10.
	19910
	Sunday, July 6, 2014

YYMMNw.

YYMMNw. reads dates of the form yy(yy)mm, where yy(yy) is the two- or four-digit year, and mm represents the number of the month. The day is automatically set to 1. The default value of w is 4, but you should specify 6 if you are reading four-digit years. The N in the informat name is necessary. Your data must not have any separating characters between the month and the year. This informat will produce a date value that is equal to the first day of the month given. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line. Note that line 2 of this table demonstrates what happens if you try to read a date with a two-digit year using the width of 6. In this case, SAS is translating the four digits as the year, so the month value is considered to be missing.

	
	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	1
	9905
	YYMMN4.
	14365
	Saturday, May 1, 1999

	2
	9905
	YYMMN6.
	.
	

	3
	201403
	YYMMN6.
	19783
	Saturday, March 1, 2014

	4
	201610
	YYMMN6.
	20728
	Saturday, October 1, 2016

YYQw.

YYQw. reads dates of the form yy(yy)Qq, where yy(yy) is the two- or four-digit year followed by the letter Q and q is a number from 1 to 4, indicating the quarter of the year. The date value produced by this informat will correspond to the first day of the given quarter. Use 6 for w if you are reading four-digit years, or 4 if you are reading two-digit years. The default w is 6. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	14Q1
	YYQ4.
	19724
	Wednesday, January 1, 2014

	2010Q3
	YYQ6.
	18444
	Thursday, July 1, 2010

	2015Q2
	YYQ6.
	20179
	Wednesday, April 1, 2015

	2013Q4
	YYQ6.
	19632
	Tuesday, October 1, 2013

YYMMDDw.

YYMMDDw. is used to read dates of the form yy(yy)mmdd, where yy(yy) is the two- or four-digit year, mm represents the number of the month, and dd represents the day of the month. The default value of w is 6, but you should specify 8 if you are reading four-digit years. yy(yy), mm, and dd can be separated by blanks or special characters. If you separate them, you must account for the separating characters in the width specification. If you have blanks after the month and the day, then you need to have a width of 8 for two-digit years or 10 for four-digit years. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	441205
	YYMMDD6.
	-5505
	Tuesday, December 5, 1944

	20150517
	YYMMDD8.
	20225
	Sunday, May 17, 2015

	2014-07-06
	YYMMDD10.
	19910
	Sunday, July 6, 2014

YYMMNw.

YYMMNw. reads dates of the form yy(yy)mm, where yy(yy) is the two- or four-digit year, and mm represents the number of the month. The day is automatically set to 1. The default value of w is 4, but you should specify 6 if you are reading four-digit years. The N in the informat name is necessary. Your data must not have any separating characters between the month and the year. This informat will produce a date value that is equal to the first day of the month given. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line. Note that line 2 of this table demonstrates what happens if you try to read a date with a two-digit year using the width of 6. In this case, SAS is translating the four digits as the year, so the month value is considered to be missing.

	
	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	1
	9905
	YYMMN4.
	14365
	Saturday, May 1, 1999

	2
	9905
	YYMMN6.
	.
	

	3
	201403
	YYMMN6.
	19783
	Saturday, March 1, 2014

	4
	201610
	YYMMN6.
	20728
	Saturday, October 1, 2016

YYQw.

YYQw. reads dates of the form yy(yy)Qq, where yy(yy) is the two- or four-digit year followed by the letter Q and q is a number from 1 to 4, indicating the quarter of the year. The date value produced by this informat will correspond to the first day of the given quarter. Use 6 for w if you are reading four-digit years, or 4 if you are reading two-digit years. The default w is 6. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	14Q1
	YYQ4.
	19724
	Wednesday, January 1, 2014

	2010Q3
	YYQ6.
	18444
	Thursday, July 1, 2010

	2015Q2
	YYQ6.
	20179
	Wednesday, April 1, 2015

	2013Q4
	YYQ6.
	19632
	Tuesday, October 1, 2013

The WEEK Informats

The WEEK informats read dates in the ISO-standard WEEK format. There are three algorithms used to calculate the WEEK value from a given date. The U algorithm calculates weeks based on Sunday being the first day of the week without any other restriction. The V algorithm defines the first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are considered to be a part of week 53 of the previous calendar year. It is also possible for calendar days at the end of a year to be considered as being in the first week of the next calendar year. Finally, the W algorithm calculates weeks based on Monday being the first day of the week without any other restriction.

The WEEK algorithms calculate dates differently, so it is critical that you use the correct algorithm for the week value that you are converting. This means that you need to know which algorithm was used to create the week value before you try to convert it. If you use a different week algorithm from the one that was used to create the week value, you will get the wrong actual date. Example 3.6 demonstrates this.

Example 3.6: The Difference between the Various WEEK Algorithms (U, V, W)

	
	Week value
	Date Formatted
with WEEKDATE
U Algorithm
	Date Formatted
with WEEKDATE
V Algorithm
	Date Formatted
with WEEKDATE
W Algorithm

	1
	W12
	Sunday, March 23, 2014
	Monday, March 17, 2014
	Monday, March 24, 2014

	2
	13W45
	Sunday, November 10, 2013
	Monday, November 4, 2013
	Monday, November 11, 2013

	3
	15W5303
	Tuesday, January 5, 2016
	Wednesday, December 30, 2015
	Wednesday, January 6, 2016

	4
	2014W2104
	Wednesday, May 28, 2014
	Thursday, May 22, 2014
	Thursday, May 29, 2014

	5
	2015-W01-02
	Monday, January 5, 2015
	Tuesday, December 30, 2014
	Tuesday, January 6, 2015

Example 3.6 demonstrates the differences that exist not only in the resulting date between the algorithms, but also in the day of the week, which depends on whether the algorithm uses Sunday or Monday as the first day of the week. Rows 3 and 5 highlight the differences in the way the first and last week of the calendar year are handled by the different algorithms. As you can see, if you use the wrong algorithm, not only can you end up with an unintended date, but the resulting date might not even be in the same year.

WEEKUw.

WEEKUw. is new as of SAS version 9.3. It is used to translate week values into SAS dates using the U algorithm. The U algorithm calculates weeks based on Sunday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. Week values are dates in the form yyyy-Wnn-dd, where yyyy is the optional year (can be two or four digits). W is the letter "W" for "Week"; nn is the week number ranging from 0 to 53; and dd is the optional day of the week. The dashes are optional separators, but they are the only separators that can be used in ISO 8601 week values and are used between the year, the week number, and the day (if present). The width specification, w, can range from 3 to 200 and tells SAS what to expect from the character string being processed according to the following table.

	Width (w)
	Pattern Expected
	Example
	Comment

	3–4
	Wnn
	W08
	W is the letter "W," and nn is the week number. If a year is not specified, the year is considered to be the current year. If a day is not given, the day is considered to be the first day of the week.

	5–6
	yyWnn
	14W08
	yy is a two-digit year, W is the letter "W," and nn is the week number. Without a day, the day is considered to be the first day of the week.

	7–8
	yyWnndd
	14W0803
	yy is a two-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	9–10
	yyyyWnndd
	2014W0803
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	11–200
	yyyy-Wnn-dd
	2014-W08-03
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week, each separated by dashes.

Specifying any value greater than 11 will have no effect on the date returned, although the implied cursor placement can cause an INPUT statement (not function) to yield unexpected results.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	W12
	WEEKU3.
	19805
	Sunday, March 23, 2014

	14W40
	WEEKU5.
	20001
	Sunday, October 5, 2014

	15W2801
	WEEKU7.
	20281
	Sunday, July 12, 2015

	2014W3304
	WEEKU9.
	19955
	Wednesday, August 20, 2014

	2015-W06-02
	WEEKU11.
	20128
	Monday, February 9, 2015

WEEKVw.

WEEKVw. is available as of SAS version 9.3. It is used to translate week values into SAS dates using the V algorithm. The V algorithm calculates weeks based on Monday being the first day of the week, and the week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. This algorithm defines the first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are considered to be a part of week 53 of the previous calendar year. Week values are dates in the form yyyy-Wnn-dd, where yyyy is the optional year (can be two or four digits). W is the letter "W" for "Week"; nn is the week number ranging from 0 to 53; and dd is the optional day of the week. The dashes are optional separators, but they are the only separators that can be used in ISO 8601 week values and are used between the year, the week number, and the day (if present). The width specification, w, can range from 3 to 200 and tells SAS what to expect from the character string being processed according to the following table:

	Width (w)
	Pattern Expected
	Example
	Comment

	3–4
	Wnn
	W08
	W is the letter "W," and nn is the week number. If a year is not specified, the year is considered to be the current year. If a day is not given, the day is considered to be the first day of the week.

	5–6
	yyWnn
	14W08
	yy is a two-digit year, W is the letter "W," and nn is the week number. Without a day, the day is considered to be the first day of the week.

	7–8
	yyWnndd
	14W0803
	yy is a two-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	9–10
	yyyyWnndd
	2014W0803
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	11–200
	yyyy-Wnn-dd
	2014-W08-03
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week, each separated by dashes

Specifying any value greater than 11 will have no effect on the date returned, although the implied cursor placement can cause an INPUT statement (not function) to yield unexpected results.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	W12
	WEEKV3.
	19799
	Monday, March 17, 2014

	14W40
	WEEKV5.
	19995
	Monday, September 29, 2014

	15W2801
	WEEKV7.
	20275
	Monday, July 6, 2015

	2014W3304
	WEEKV9.
	19949
	Thursday, August 14, 2014

	2015-W06-02
	WEEKV11.
	20122
	Tuesday, February 3, 2015

WEEKWw.

WEEKWw. is available as of SAS version 9.3. It is used to translate week values into SAS dates using the W algorithm. The W algorithm calculates weeks based on Monday being the first day of the week without any other restriction. The week number is displayed as a two-digit number from 0 to 53, with a leading zero if necessary. Week values are dates in the form yyyy-Wnn-dd, where yyyy is the optional year (can be two or four digits). W is the letter "W" for "Week"; nn is the week number ranging from 0 to 53; and dd is the optional day of the week. The dashes are optional separators, but they are the only separators that can be used in ISO 8601 week values and are used between the year, the week number, and the day (if present). The width specification, w, can range from 3 to 200 and tells SAS what to expect from the character string being processed according to the following table:

	Width (w)
	Pattern Expected
	Example
	Comment

	3–4
	Wnn
	W08
	W is the letter "W," and nn is the week number. If a year is not specified, the year is considered to be the current year. If a day is not given, the day is considered to be the first day of the week.

	5–6
	yyWnn
	14W08
	yy is a two-digit year, W is the letter "W," and nn is the week number. Without a day, the day is considered to be the first day of the week.

	7–8
	yyWnndd
	14W0803
	yy is a two-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	9–10
	yyyyWnndd
	2014W0803
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week.

	11–200
	yyyy-Wnn-dd
	2014-W08-03
	yyyy is a four-digit year, W is the letter "W," nn is the week number, and dd is the day of the week, each separated by dashes.

Specifying any value greater than 11 will have no effect on the date returned, although the implied cursor placement can cause an INPUT statement (not function) to yield unexpected results.

	Characters
Read
	Informat
	Resulting SAS
Date Value
	Formatted Date
Using WEEKDATE.

	W12
	WEEKW3.
	19806
	Monday, March 24, 2014

	14W40
	WEEKW5.
	20002
	Monday, October 6, 2014

	15W2801
	WEEKW7.
	20282
	Monday, July 13, 2015

	2014W3304
	WEEKW9.
	19956
	Thursday, August 21, 2014

	2015-W06-02
	WEEKW11.
	20129
	Tuesday, February 10, 2015

3.4.2 Time Informats

HHMMSSw.

HHMMSSw. is available as of SAS version 9.3. It will read time values in the form hh:mm:ss or hhmmss, where hh is hours, mm is minutes, and ss is seconds, with an optional separator. This informat will ignore fractional seconds. The default width for this format is 8, but w can range from 1 to 20. When there are six digits in the string being read, the first two digits will be translated into hours, the second two into minutes, and the last two into seconds.

	Characters
Read
	Informat
	Resulting SAS
Time Value
	Formatted Time
Using TIME8.

	143500
	HHMMSS6.
	52500
	14:35:00

	971406
	HHMMSS6.
	350046
	97:14:06

	000339
	HHMMSS6.
	219
	0:03:39

	081525
	HHMMSS6.
	29725
	8:15:25

The parsing and interpretation performed by this informat changes if there are fewer than six digits in the string being read and is based on the following rules: If there is an odd number of digits in the string being read, SAS will add a zero to the beginning of the string, and the first two digits will then be translated as hours. SAS will then add zeros to the end of the string until it has six digits and can be translated as hours, minutes, seconds.

	Characters
Read
	Informat
	Resulting SAS
Time Value
	Formatted Time
Using TIME8.
	What Happened?

	1
	HHMMSS6.
	3600
	1:00:00
	Because there is an odd number of digits in the string, SAS added a zero to the front of the string, making it "01," and then padded it with zeros out to six digits, making the string that is being read "010000."

	11
	HHMMSS6.
	39600
	11:00:00
	Here, there are an even number of digits, so SAS does not add a leading zero and reads the first two digits as hours. It pads the remainder of the string with zeros out to six digits, making the string "110000."

	112
	HHMMSS6.
	4320
	1:12:00
	With the odd number of digits, SAS adds a zero to the beginning of the string, making it "0112," and then pads the string with zeros, so the string being read is "011200."

	1127
	HHMMSS6.
	41220
	11:27:00
	At four digits, SAS will only pad the string with zeros, making the string being read "112700."

	11274
	HHMMSS6.
	4394
	1:13:14
	SAS adds a leading zero because of the odd number of digits in the string. The string that is being read is now "011274." This is translated into one hour, twelve minutes, and seventy-four seconds, which is 1:13:14.

	112745
	HHMMSS6.
	41265
	11:27:45
	String being read is six digits long. Therefore, no zeros are added at the front or the back of the string.

When there are more than six digits in the string that is being read, SAS will parse the string from right to left. The assumption is that since seconds and minutes normally cycle at 60, they will only ever require two digits. It will translate the last four digits of the string as minutes and seconds. All digits to the left of the final four digits will be translated into hours.

	Characters
Read
	Informat
	Resulting
SAS
Time Value
	Formatted
Time Using
TIME16.
	What Happened?

	172154
	HHMMSS10.
	62514
	17:21:54
	Parsed as hours, minutes, seconds. Result is as expected.

	1721543
	HHMMSS10.
	620143
	172:15:43
	Last four digits are "1543," which is translated as 15 minutes, 43 seconds. Preceding digits ("172") translated as hours.

	17215430
	HHMMSS10.
	6198870
	1721:54:30
	Last four digits are "5430," which is translated as 54 minutes, 30 seconds. Preceding digits ("1721") translated as hours.

	172154305
	HHMMSS10.
	61976585
	17215:43:05
	

	1721543058
	HHMMSS10.
	619756258
	172154:30:58
	

MSEC8.

MSEC8. reads IBM mainframe time values accurate to the nearest millisecond. The width is 8 because the OS TIME macro and STCK system instructions store their time values in 8 bytes.

PDTIME4.

PDTIME4. converts packed-decimal time values contained in SMF and RMF records produced by IBM mainframe systems to SAS time values. The width is shown as 4 because SMF and RMF records are 4 bytes long. While the informat RMFSTAMP8. also reads packed decimal RMF records, RMFSTAMP8. reads both the 4 bytes of time and 4 bytes of date information contained in the RMF record and creates a SAS datetime value from it. PDTIME4. only reads the 4 bytes of time information from an RMF record and creates a SAS time value.

RMFDUR4.

RMFDUR4. converts IBM mainframe RMF duration records into SAS time values. The width is shown as 4 because RMF records are 4-byte-long packed hexadecimal records.

STIMERw.

STIMERw. reads times produced by the STIMER System option in the SAS log. This informat has no default width. It reads times and interprets them based on colons and decimal points. If there is one colon, the first two digits are minutes and the last two are seconds. If there are two colons, the digits preceding the first colon are hours, the next set of two digits is minutes, and the last two are seconds. If there is a decimal point, the value following the decimal point is translated as a decimal fraction of seconds. It can read time values in the following formats, where hh corresponds to hours, mm corresponds to minutes, ss corresponds to seconds, and ff corresponds to decimal fractions of seconds.

ss

ss.ff

mm:ss

mm:ss.ff

hh:mm:ss

hh:mm:ss.ff

	Characters Read
	Informat
	Resulting SAS Time Value (seconds)
	Formatted Time Using TIME11.1.
	Comments

	33
	STIMER2.
	33.00
	0:00:33.00
	When there is no colon in the input string, it is translated as ss.

	51.60
	STIMER5.
	51.60
	0:00:51.60
	The decimal point causes the translation to be ss.ff.

	14:05
	STIMER5.
	845.00
	0:14:05.00
	One colon is interpreted as mm:ss.

	3:11.03
	STIMER7.
	191.03
	0:03:11.03
	One colon, and a decimal point is translated as mm:ss.ff.

	1:19:21
	STIMER7.
	4761.00
	1:19:21.00
	Two colons are translated as hh:mm:ss.

	1:46:17.74
	STIMER11.
	6377.74
	1:46:17.74
	Two colons and a decimal point, and the translation is hh:mm:ss.ff.

TIMEw.

TIMEw. will read times in the form hh:mm:ss.ff, where hh indicates the hours, mm is minutes, and ss is the number of seconds. They must be separated by a special character, such as a colon (:), period (.), or hyphen (-). ff indicates decimal fractions of seconds and must be separated from the seconds by a decimal point (.). Both seconds and their decimal fractions are assumed to be zero if they are not present. This informat can read a.m. and p.m. time values. If hh is greater than 24, and/or mm and ss are greater than 60, the time value read will give the correct number of seconds, even if it is greater than 86399.99 (the number of seconds in a day). This informat will parse the time string being read as hours, minutes, seconds from left to right. Therefore, if you are attempting to read only minutes and seconds, you must have leading zeros for the hours, and values for both minutes and seconds. Otherwise, your value will be translated as hours:minutes, not minutes:seconds. w ranges from 5 to 32 with a default of 8.

	
	Characters
Read
	Informat
	Resulting SAS Time Value
	Formatted Time Using TIME11.1.
	Comments

	1
	124:46
	TIME6.
	449160.0
	124:46:00.0
	124 hours, 46 minutes

	2
	14:11:03.3
	TIME10.
	51063.3
	14:11:03.3
	

	3
	08-15
	TIME5.
	29700.0
	8:15:00.0
	

	4
	00:10
	TIME5.
	600.0
	0:10:00.0
	parsed as hours:minutes

	5
	00:10:42
	TIME8.
	642.0
	0:10:42.0
	parsed as hours, minutes, seconds

	6
	10.42
	TIME10.
	38520.0
	10:42:00.0
	parsed as hours:minutes despite the period separator

	7
	00:10:42.5
	TIME10.
	642.5
	0:10:42.5
	hours:minutes:seconds.fractional seconds

TODSTAMP8.

TODSTAMP8. converts an eight-byte time-of-day stamp produced by the OS TIME macro or the STCK instruction on IBM mainframes into a SAS time value. The width is 8 because these calls return eight-byte time-of-day values. Use this informat when you are reading IBM mainframe time-of-day values on other operating systems.

TU4.

TU4. converts IBM mainframe timer units (38,400 timer units per second) to SAS time values. It is used when reading IBM mainframe timer unit values under other operating systems. The width is 4 because the OS TIME macro returns a four-byte word.

3.4.3 Datetime Informats

B8601CIw.d

B8601CIw.d is available as of SAS version 9.3. It reads IBM time values with a century marker of the form cyymmddhhmmss<fff>, where c represents the century digit. The century digit is calculated by subtracting 1900 from the current year, dividing by 100, and dropping the remainder. yy is the two-digit year from 00 to 99, the mm represents the number of the month, and dd represents the day of the month. The time is represented by hhmmss<fff>, where hh indicates the hours, mm is minutes, ss is the number of seconds, and fff indicates thousandths of seconds. w ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the fractional part of seconds.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME19.3.
	

	21504231905
	B8601CI16.
	4901108700.000
	23APR15:19:05:00.00

	1560928053505
	B8601CI16.
	3052964105.000
	28SEP56:05:35:05.00

	2140630102416454
	B8601CI19.3
	4875416656.454
	30JUN14:10:24:16.45

	2131216094500
	B8601CI16.
	4858479900.000
	16DEC13:09:45:00.00

	
	
	
	
	
	

B8601DJw.d

B8601DJw.d is available as of SAS version 9.3. It reads datetimes in standard Java date and time notation. yyyymmddhhmmss<ffffff>, where yyyy is the four-digit year, mm represents the number of the month, dd represents the day of the month, and time is represented by hhmmss<ffffff>, where hh indicates the hours, mm is minutes, ss is the number of seconds, and ffffff indicates millionths of seconds. w ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the fractional part of seconds. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME19.5.

	201607181108
	B8601DJ16.
	1784459280.0
	18JUL16:11:08:00.00000

	20141123054509
	B8601DJ16.
	1732340709.0
	23NOV14:05:45:09.00000

	201303070814433064
	B8601DJ21.4
	1678263283.3064
	07MAR13:08:14:43.30640

	201406241630254
	B8601DJ16.1
	1719246625.4
	24JUN14:16:30:25.40000

DATETIMEw.d

DATETIMEw.d reads SAS datetime values. The datetime value must be in the form ddmonyy(yy), followed by a blank or a special character, and then the time in the format hh:mm:ss.ff. dd represents the day of the month, mon is the three-letter month abbreviation, and yy(yy) is the two- or four-digit year. hh indicates the number of hours, mm is the number of minutes, and ss is the number of seconds. ff indicates fractional parts of seconds. Both seconds and fractional seconds are assumed to be zero if they are not present. w can be from 13 to 40, with a default of 18, while d can range from 0 to 6.

If you use a two-digit year, SAS will apply the YEARCUTOFF= system option in translating the year. This informat can also read a.m. and p.m. time values.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME22.1.

	22APR2014 5:23 PM
	DATETIME18.
	1713806580.0
	22APR2014:17:23:00.0

	22APR2014-17:23
	DATETIME16.
	1713806580.0
	22APR2014:17:23:00.0

	22APR2014:05:23:15 PM
	DATETIME22.
	1713806595.0
	22APR2014:17:23:15.0

	22APR2014/17:23:15.6
	DATETIME21.1
	1713806595.6
	22APR2014:17:23:15.6

MDYAMPMw.d

MDYAMPMw.d reads datetime values in the form of mm-dd-yy(yy) hh:mm:ss.ff AM|PM, where mm represents the number of the month, dd represents the day of the month, and yy(yy) is the two- or four-digit year, followed by the time where hh represents hours, mm represents minutes, ss represents optional seconds, ff represents optional fractional seconds, and AM|PM indicates a.m. or p.m. The separators are not optional and can be a hyphen (-), or period (.), or slash (/), or colon (:). The default value of w is 19 and ranges from 8 to 40, while d ranges from 0 to 39 for the fractional part of seconds. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line. Line 4 shows that this format can translate twenty-four-hour clock values without the AM|PM indicator.

	
	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME19.2.

	1
	05-08-2015 9:33 AM
	MDYAMPM18.
	1746696780.00
	08MAY15:09:33:00.00

	2
	10-26-2014 5:00 PM
	MDYAMPM18.
	1729962000.00
	26OCT14:17:00:00.00

	3
	04-25-2013 1:00:57.4 PM
	MDYAMPM22.3
	1682514057.40
	25APR13:13:00:57.40

	4
	08-09-2017 14:15
	MDYAMPM17.
	1817907300.00
	09AUG17:14:15:00.00

RMFSTAMP8.

RMFSTAMP8. converts IBM mainframe RMF date and time records into SAS datetime values. The width is shown as 8 because RMF records are packed-decimal records with 4 bytes of time information followed by 4 bytes of date information. While PDTIME4. also reads RMF records, it only reads the time portion of the RMF record and produces a SAS time value. RMFSTAMP8. reads both the date and time portions of the RMF record and produces a SAS datetime value.

SHRSTAMP8.

SHRSTAMP8. converts IBM mainframe SHR date and time records into SAS datetime values. The width is shown as 8 because SHR records are packed-decimal records with 4 bytes of date information followed by 4 bytes of time information.

SMFSTAMP8.

SMFSTAMP8. converts IBM mainframe SMF records into SAS datetime values. The width is shown as 8 because SMF records are packed-decimal records with 4 bytes of time information followed by 4 bytes of date information. This enables you to read SMF records without regard to operating system.

YMDDTTMw.d

YMDDTTMw.d reads datetime values in the form <yy>yy-mm-dd hh:mm:ss.ff, where special characters such as a hyphen (-), period (.), slash (/), or colon (:) are used to separate the year, month, day, hour, minute, and seconds. Separators are required for each component. The year can be either two or four digits. yy(yy) is the two- or four-digit year, mm represents the number of the month, and dd represents the day of the month. The time follows, where hh represents hours, mm represents minutes, ss represents optional seconds, and ff represents optional fractional seconds, which must be separated from the seconds by a decimal point (.). This informat will translate a.m. and p.m. time values. The default value of w is 19 and can range from 13 to 40, while d ranges from 0 to 39 for the fractional part of seconds.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME22.1.

	2014-07-18-11-08-05
	YMDDTTM19.
	1721300885.0
	18JUL2014:11:08:05.0

	2014/01/11:05:19:45
	YMDDTTM19.
	1705036785.0
	11JAN2014:05:19:45.0

	1983.02.18.05:59 PM
	YMDDTTM20.
	730058340.0
	18FEB1983:17:59:00.0

	2015-08-23-14:24:16.5
	YMDDTTM22.1
	1755959056.5
	23AUG2015:14:24:16.5

3.4.4 The "ANYDATE" Series of Informats

SAS 9 addressed an issue with the processing of dates and times that has always affected SAS users. Although informats handle the translation of a string of characters into SAS date and time values easily, in order to use them you had to know what the string of characters looked like before you processed them. Given the many ways that dates and times can be represented, it was not uncommon for several records to have incorrect values after processing because of an error in the underlying text strings being translated. For example, if you expect the dates to be in the form "ddMOMyyyy," but halfway through the file the strings were entered as "mmddyyyy," at least half of your resulting data set will have missing date values. The DATE. informat cannot read strings formatted to be read with the MMDDYY. informat, and vice versa. There are now three informats that will intelligently and, for the most part, successfully enable you to avoid this problem.

The ANYDTDTE., ANYDTDTM., and ANYDTTME. informats will translate dates, datetime values, and time values, respectively, into their corresponding SAS values. This translation will be performed without having to know the representation of these date, datetime, and time values in advance. Some limits exist as to the types of representations these informats will be able to translate, and in this era of big data you should also be aware that using these informats will require more CPU time than if you are able to use one of the regular informats to process your data.

The potential for confusion exists with DDMMYY, MMDDYY, and YYMMDD values, especially in the presence of two-digit year values. The SAS option DATESTYLE indicates how such confusions will be resolved. The possible values for the DATESTYLE= system option are shown in the following table.

	Value
	Explanations

	MDY
	Sets the default order as month, day, year. "10-03-12" would be translated as October 3, 2012.

	YMD
	Sets the default order as year, month, day. "10-03-12" would be translated as March 12, 2010.

	DMY
	Sets the default order as day, month, year. "10-03-12" would be translated as March 10, 2012.

	LOCALE
(default)
	Sets the default value according to the LOCALE= system option. When the default value for the LOCALE= system option is "English_US," this sets DATESTYLE to MDY. Therefore, by default, "10-03-12" would be translated as October 3, 2012.

Note: YDM, MYD, and DYM have been removed from SAS 9.3 and later versions. If you continue to use them in legacy code, no error will appear in the log, but any input strings that cannot be translated without knowing the DATESTYLE (for example, "10-03-12") will be translated as missing.

What happens when the input string cannot be translated using the DATESTYLE option in effect? The ANYDT series of informats will test the input string to see whether one of the other DATESTYLE options will work. If only one DATESTYLE produces a valid SAS date or datetime value, then SAS will process the input string using that DATESTYLE. However, it is entirely possible that the input string can be translated using more than one of the remaining DATESTYLE options. For example, the input string "270328" cannot be translated using MDY, but both YMD and DMY will produce a valid SAS date. SAS has an internal priority of which DATESTYLE takes precedence when the option in effect will not work, and two or more DATESTYLES will. It is based on the DATESTYLE option in effect. The following table details how the DATESTYLE is chosen if the DATESTYLE option in effect does not yield a valid SAS date value.

	DATESYTLE Option in Effect
	Input String
	DATESTYLEs Possible
	DATESTYLE Used
	Result

	MDY
	170514
	YMD, DMY
	YMD
	May 14, 2017

	YMD
	110845
	DMY, MDY
	DMY
	August 11, 1945

	DMY
	No ambiguity is possible. DMY will always take precedence.

In short, when the DATESTYLE is MDY, then any ambiguity will be resolved using YMD, and when the DATESTYLE is YMD, any ambiguity is resolved using DMY.

ANYDTDTEw.

ANYDTDTEw. will translate data that can be read with the following informats: DATE, DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME, YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS date values. This informat can also work with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w can range from 5 to 32, and the default width is 9. This informat extracts date values from a datetime string. However, if only a time value is given, the date is assumed to be January 1, 1960. The following table uses OPTIONS DATESTYLE=MDY as the default interpretation for two-digit year values.

	Characters
Read
	Informat
	Resulting SAS Date Value
	Formatted Date
Using WORDDATE.
	Comments

	05172014
	ANYDTDTE8.
	19860
	May 17, 2014
	

	20140517
	ANYDTDTE8.
	19860
	May 17, 2014
	

	2014Q2
	ANYDTDTE6.
	19814
	April 1, 2014
	First day of the 2nd quarter.

	051714
	ANYDTDTE6.
	19860
	May 17, 2014
	

	17052014
	ANYDTDTE8.
	19860
	May 17, 2014
	

	170514
	ANYDTDTE6.
	20953
	May 14, 2017
	The date string can be interpreted as YMD or DMY. YMD is used because the DATESTYLE in effect for this example is MDY.

	17MAY2014:15:12:06
	ANYDTDTE18.
	19860
	May 17, 2014
	

	15:12:06
	ANYDTDTE8.
	0
	January 1, 1960
	Time value, date is considered to be January 1, 1960.

	2014137
	ANYDTDTE7.
	19860
	May 17, 2014
	

	MAY2014
	ANYDTDTE7.
	19844
	May 1, 2014
	No day is given; day is set to first day of month.

	17MAY2014
	ANYDTDTE9.
	19860
	May 17, 2014
	

	May 17, 2014
	ANYDTDTE12.
	19860
	May 17, 2014
	

	14-05
	ANYDTDE9.
	19844
	May 1, 2014
	Two-digit year uses YEARCUTOFF= option. No day is given; day is set to first day of month.

	2014-05
	ANYDTDTE7.
	19844
	May 1, 2014
	No day is given; day is set to first day of month.

	05-2014
	ANYDTDTE7.
	19844
	May 1, 2014
	No day is given; day is set to first day of month.

	05-17-2014 3:12:06 PM
	ANYDTDTE21.
	19860
	May 17, 2014
	

	2014-05-17-15:12:06
	ANYDTDTE19.
	19860
	May 17, 2014
	

ANYDTDTMw.

ANYDTDTMw. will translate data that can be read with the following informats: DATE, DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME, YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS datetime values. This informat can also work with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w can range from 1 to 32, and the default width is 19.

This informat will parse time values from input strings based on colons and periods. If there is one colon (for example, 15:12), the first two digits are translated as hours and the last two as minutes. If there are two colons (for example, 15:12:06), the digits preceding the first colon are translated as hours, the next set of two digits as minutes, and the last two as seconds. If there is a single decimal point and one or more colons (for example, 12:06.5), the value following the decimal point is translated as a decimal fraction of seconds, and the value preceding the decimal point is considered to be seconds. A single colon is therefore interpreted as minutes:seconds.fractional seconds. In order to account for hours, the correct format would be hours:minutes:seconds.fractional seconds.

If there are multiple decimal points (for example, 15.12.06), then they are considered to be delimiters for date values and thus are not translated as time values.

This informat extracts datetime values from a string. If only a time value is given, the date is assumed to be January 1, 1960. If only a date value is given, the time is assumed to be midnight (0:00). The following table uses the same input data as is used in the ANYDTDTE. informat example above.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME22.

	05172014
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	20140517
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	2014Q2
	ANYDTDTM.
	1711929600
	01APR2014:00:00:00

	051714
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	17052014
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	170514
	ANYDTDTM.
	1810339200
	14MAY2017:00:00:00

	17MAY2014:15:12:06
	ANYDTDTM.
	1715958726
	17MAY2014:15:12:06

	15:12:06
	ANYDTDTM.
	54726
	01JAN1960:15:12:06

	2014137
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	MAY2014
	ANYDTDTM.
	1714521600
	01MAY2014:00:00:00

	17MAY2014
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	May 17, 2014
	ANYDTDTM.
	1715904000
	17MAY2014:00:00:00

	2014-05
	ANYDTDTM.
	1714521600
	01MAY2014:00:00:00

	05-2014
	ANYDTDTM.
	1714521600
	01MAY2014:00:00:00

	14-05
	ANYDTDTM.
	1714521600
	01MAY2014:00:00:00

	05-17-2014 3:12:06 PM
	ANYDTDTM.
	1715958726
	17MAY2014:15:12:06

	2014-05-17-15:12:06
	ANYDTDTM21.
	1715958726
	17MAY2014:15:12:06

ANYDTTMEw.

ANYDTTMEw. will translate data that can be read with the following informats: DATE, DATETIME, DDMMYY, JULIAN, MDYAMPM, MMDDYY, MMxYY, MONYY, TIME, YMDDTTM, YYMMDD, YYMMn, or YYQ into SAS time values. This informat can also work with the following standard date formats: "February 25, 2012," "08/2014," or "2015-05." w can range from 1 to 32, and the default width is 8. ANYDTTMEw. can extract time values from a datetime value. However, if only a date value is given, the time is assumed to be 12:00 a.m.

	Characters
Read
	Informat
	Resulting SAS Time Value
	Formatted Time Using TIME8.
	Comments

	17MAY2014:15:12:06
	ANYDTTME18.
	54726
	15:12:06
	Extracted time from datetime string.

	15:12:06
	ANYDTTME.
	54726
	15:12:06
	

	05-17-2014 3:12:06 PM
	ANYDTTME21.
	54726
	15:12:06
	Extracted time from datetime string, processed AM/PM correctly.

	2014-05-17-15:12:06
	ANYDTTME18.
	54726
	15:12:06
	Extracted time from datetime string.

	08.05
	ANYDTTME.
	.
	.
	Times are delimited with colons (:).

	08:05
	ANYDTTME.
	29100
	8:05:00
	

	08:05:05
	ANYDTTME.
	29105
	8:05:05
	

	17:15
	ANYDTTME.
	62100
	17:15:00
	

	2:45 PM
	ANYDTTME.
	53100
	14:45:00
	

	6 AM
	ANYDTTME.
	.
	.
	Need a delimiter to provide context for translation.

	6:00 AM
	ANYDTTME.
	21600
	6:00:00
	

	27:36:58
	ANYDTTME.
	99418
	27:36:58
	

3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats?

It is tempting to automatically use ANYDTDTE., ANYDTTM., or ANYDTTME. to process strings representing dates, datetimes, and times. You do not have to worry about the formatting of the input string, and SAS will make sense out of it. The "ANYDATE" informats do have limitations, and the rules that SAS follows might not be the rules that you need to apply.

First, there is the matter of the additional processing needed. These informats go through a decision tree to determine how to translate every single value encountered; therefore, the amount of additional processing will increase with the number of times each "ANYDATE" informat has to be used. This would have a negligible impact on a small amount of data, but if you need to use them on big data, you might want to consider standardizing the representation of your date, time, and datetime text values beforehand and using the corresponding informat. Second, it is entirely possible that you would want to consider a nonstandard value erroneous and don't want SAS to decide what to do with it without you being able to inspect it first. Third, exceptions can occur, even when the use of an ANYDATE informat is warranted. While it is always a good idea to check all data that you are converting to SAS from another source and especially when you are converting dates, times, and datetime values, it is critical if you are using the ANYDT. informats.

Finally, it is important to note that the ANYDATE series of formats are designed to handle the issue of varying ways of representing dates, but they, like all other date, time, and datetime informats, are not designed to handle dirty data. Missing separators, misspelled words, and missing date components are a few of the major data problems that are encountered when processing dates, times, and datetimes from sources other than SAS. Unless you specifically provide code to fix those problems on the fly or can ensure that your dates are clean before processing them, you will wind up with missing date, time, or datetime values in your data set. SAS programmers have written a great deal of code to handle this specific issue; King and Fleming show one such approach in the 2011 SAS Global Forum proceedings (see http://support.sas.com/resources/papers/proceedings11/117-2011.pdf). Example 3.7 is a skeleton of an approach using a user-written function and the ANYDATE. informat.

Example 3.7: A Simple Function to Handle Dates with Missing Separators

LIBNAME control "c:\book\2ndEd\examples";

ODS ESCAPECHAR='~';

OPTIONS CMPLIB=(control.functions);

PROC FCMP OUTLIB=control.functions.dates;

FUNCTION makedate(cdate $)$;

 LENGTH dtstr $42

 supr $16;

 supr=' ';

 * assume that date is in MMDDYY form, but check;

 * missing dates often have a form of __/__/____;

 IF SUBSTR(cdate,7,4) NOT IN (' ','____') THEN DO;

 * assume year is good;

 yy=INPUT(SUBSTR(cdate,7,4),4.);

 m=SUBSTR(cdate,1,2);

 IF '01' <= m <= '12' THEN DO;

 mm=INPUT(m,2.);

 * Month is good chk day;

 * Use INTNX to find the maximum number of days in current month;

 d=SUBSTR(cdate,4,2);

 IF '01' <= d <= PUT(DAY(INTNX('MONTH',MDY(mm,1,yy),0,'e')),z2.)

 THEN dd=INPUT(d,2.);

 ELSE DO;

 * Day is bad for this month;

 * Fix by dividing number of days in month by 2;

 dd = CEIL(DAY(INTNX('MONTH',mdy(mm,1,yy),0,'e'))/2);

 supr = '~{super Day}';

 END;

 END;

 ELSE DO;

 * Month is bad - reset month and day;

 mm=6;

 dd=31;

 supr = '~{super Month}';

 END;

 * Create the date value;

 date=MDY(mm,dd,yy);

 dtstr = CATT(PUT(date,MMDDDYY10.),supr);

 END;

 ELSE DO;

 * yr is bad;

 dtstr = 'Unknown~{super Y}';

 END;

 RETURN(dtstr);

ENDSUB;

RUN;

QUIT;

PROC FORMAT;

 VALUE $mkdt

 OTHER=[makedate()];

RUN;

The code in Example 3.7 created a function to be used as a format for our dates, which will impute a replacement date string when provided with a date string that may or may not have missing date components. Note that this is a character format because it has to treat the incoming date data as character strings. If you try to read date strings with missing date components as a SAS date, you will get a missing value.

Now let's read in some sample data. The data set RPTDATES contains production error tracking data from a legacy system. Unfortunately, some of the date data was corrupted, so there are missing and incorrect days, months, and years.

DATA rptdates;

INPUT recno @4 rptdt $10. errs;

DATALINES;

1 13/15/2013 374

2 09/08/2013 3

3 02/30/2013 32

4 __/15/2013 15

5 04/27/2013 195

6 05/__/2013 17

7 07/08/____ 20

8 06/04/013 5

9 08/32/2013 4

10 11//2013 6

11 01/23/2031 11

;;;;

RUN;

But now that we've created a function that is to be used as a format, let's use it. Below is a data set with some dates and a count of machine faults occurring on that date. As you can see, the dates have not been entered very well, with missing components (rows 3, 5, and 6) and typographical errors (rows 7 and 9). We're going to use the format $MKDT to impute the dates we can, and annotate each date that was imputed in the output string.

Figure 3.1: RPTDATES Data Set with Invalid Dates

[image: image]

Now we will use a PROC REPORT to display the table and format our bad data. In line 2, we alias the original date string as a second column in order to show it with and without the format that we created. We leave the original date string in the variable rptdt and in line 4 we apply the format that we created to the values in the aliased column dt.

1. PROC REPORT DATA=rptdates NOWD SPLIT='\';

2. COLUMN rptdt rptdt=dt errs;

3. DEFINE rptdt / DISPLAY "Original\Date from\Error Log";

4. DEFINE dt / 'Imputed\Date' f=$mkdt36.;

5. DEFINE errs / "Errors\Reported";

6. RUN;

The result of the PROC REPORT is below. The "Imputed Date" column is nothing more than the result of displaying the original date string using the $MKDT. format.

Output

	Original
Date from
Error Log
	Imputed
Date
	Errors
Reported

	13/15/2013
	06/30/2013Month
	374

	09/08/2013
	09/08/2013
	3

	02/30/2013
	02/14/2013Day
	32

	__/15/2013
	06/30/2013Month
	15

	04/27/2013
	04/27/2013
	195

	05/__/2013
	05/16/2013Day
	17

	07/08/____
	UnknownY
	20

	06/04/013
	UnknownY
	5

	08/32/2013
	08/16/2013Day
	4

	11//2013
	11/15/2013Day
	6

	01/23/2031
	UnknownY
	11

This capacity to use PROC FCMP to create functions that process character strings and then use the function you create in a custom informat (or format, for that matter) gives you the ability to create custom date informats. With a little creativity on your part, you can use this method to solve some of the more difficult date processing challenges that you may encounter.

Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions

4.1 What Is ISO 8601?

4.2 ISO 8601 Formats

4.3 ISO 8601 Informats

4.4 Time Zone Functions

4.5 ISO 8601 Durations and Intervals

4.6 Conclusion

4.1 What Is ISO 8601?

ISO 8601 is the name of an internationally accepted way of describing dates and times using numbers and is one of numerous international standards maintained by the International Standards organization (ISO). While using numbers eliminates the need for translating month names, the standard defines the order of date and time components in a date string, removing the confusion of whether 01-11-05 means January 11, 2005, November 1 2005, or November 5, 2001. This facilitates the exchange of data, especially between international parties. The complete standard (available from http://www.iso.org/iso/home.html) covers the following:

• Date

• Time of day

• Coordinated universal time (UTC)

• Local time with offset to UTC

• Date and time

• Time intervals

• Recurring time intervals

This standard has been adopted by the Clinical Data Interchange Standards Consortium (CDISC) for the representation of its date and time data, so those in the pharmaceutical industry are particularly familiar with it.

SAS has built-in formats specifically designed to display its date, time, and datetime values in the way described by the standard. There is also a complete set of informats designed to interpret strings that conform to the standard so that they can easily be converted to SAS date, time, and datetime values and therefore used in calculations and stored in SAS data sets. One major difference between the ISO formats and informats and their standard counterparts is that the ISO standard allows for missing components. For example, if you have a date value where you only know the month and year, it can be explicitly represented in an ISO-standard date string. The standard SAS date formats can only represent a complete SAS date value. Even the standard formats that only display month and year use complete SAS date values, but the days are not part of the display. The ISO informats are a little more intricate because of this feature of the standard; some of the informats perform a default substitution for any missing components in order to create a valid SAS date, time, or datetime value. By comparison, the standard SAS date, time, and datetime informats will return a missing value if you present them with a string that has a missing component. Therefore, while it might seem that some of the formats and informats that we described in Chapters 2 and 3 will produce results according to the standard, it is much more reliable to use the formats and informats described in this chapter when you are working with ISO standard dates and times.

As with standard SAS formats, it is critical that you only use date formats and informats for date values, time formats and informats with time values, and datetime formats and informats with datetime values.

4.2 ISO 8601 Formats

All the ISO 8601 formats are left-justified, as opposed to the majority of standard SAS date, time, and datetime formats, which are right-justified because they represent numeric values. The formats in the following descriptions are grouped by date, time, and datetime. Each format has a basic (format name starts with "B") and an extended (format name starts with "E") version. The extended version of the ISO formats uses delimiters between components, while the basic versions do not. All the following examples will present the basic version of the format, followed by the extended version of the same format with the same SAS value, so you can see the difference. It is important to note that SAS continues to develop formats and informats, so it is always a good idea to check the documentation that came with your release of SAS, or the online documentation at support.sas.com for any additional formats and/or informats.

4.2.1 ISO Date Formats

B8601DAw.

B8601DAw. writes date values in the ISO 8601 basic date notation yyyyMMdd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. It is left-justified within the field. w can be from 8 to 10, and the default width is 10. The following table shows the result when the date value is 19920, which corresponds to July 16, 2014.

	Format Name
	Result
	Comment

	B8601DA8.
	20140716
	

	B8601DA9.
	20140716
	

	B8601DA10.
	20140716
	

E8601DAw.

E8601DAw. writes date values in the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. It is left-justified. w is always 10. The following table shows the result when the date value is 19920, which corresponds to July 16, 2014.

	Format Name
	Result
	Comment

	E8601DA10.
	2014-07-16
	

4.2.2 ISO Time Formats

You can determine which of the ISO 8601 time formats you want to use by answering two questions. First, does the SAS time value that you are going to display represent UTC or local time? If it represents UTC, then you will use either the *8601TX. or the *8601TZ. format, and you have to determine whether you want to display UTC as its local time equivalent (based on the TIMEZONE= option setting). In that case, you would use the *8601TX. format. If you want to display the UTC time value as it is stored, use the *8601TZ. format. If the SAS time value represents local time, then use the *8601LZ. format. The TIMEZONE= option has no effect because the format understands that the time is the local time.

B8601TMw.d

B8601TMw.d writes time values in the ISO 8601 basic time notation hhmmssffffff, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. Note that there are no delimiters in the ISO basic time string, which might make the result difficult to read. w can be from 6 to 15, with a default width of 8. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result when the time value is 61479.468, which corresponds to the time 5:04:39 p.m. (17:04:39.468):

	Format Name
	Result
	Comment

	B8601TM6.
	170439
	

	B8601TM8.
	170439
	

	B8601TM10.2.
	17043947
	

	B8601TM12.
	170439
	

	B8601TM15.3.
	170439468
	

E8601TMw.d

E8601TMw.d writes time values in the ISO 8601 extended time notation hh:mm:ss.ffffff, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. Colons (:) delimit hours, minutes, and seconds, while a decimal point delimits the decimal portion of seconds. w can be from 8 to 15, with a default width of 8. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result when the time value is 61479.468, which corresponds to the time 5:04:39 p.m. (17:04:39.468):

	Format Name
	Result
	Comment

	E8601TM6.
	
	

	E8601TM8.
	17:04:39
	

	E8601TM10.2.
	17:04:39.5
	Note the rounding of the fractional seconds.

	E8601TM12.
	17:04:39
	

	E8601TM15.3.
	17:04:39.468
	

B8601TXw.d

This format is available as of SAS version 9.4. B8601TXw.d adjusts a Coordinated Universal Time (UTC) value to the user's local time. Since it is intended for clock times only, values greater than 86400 or less than 0 will show asterisks. The format writes the adjusted local time in the ISO 8601 basic time notation hhmmssffffff+|–hhmm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hhmm, all without delimiters, as this is a basic ISO format. The offset is calculated from the time at the zero meridian in Greenwich, England, using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time is based on the system clock. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. You will need to ensure that you have a large enough width specification, or else the time zone offset could be truncated or dropped completely. The value is left-justified. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time. As you can see, the value displayed changes with the time zone.

	Format Name
	Result
	OPTIONS TIMEZONE=

	B8601TX9.
	144730+04
	Asia/Kabul

	B8601TX12.
	171730+0700
	Asia/Omsk

	B8601TX14.
	052500-0500
	America/Winnipeg

	B8601TX16.
	221730+1200
	Pacific/Fiji

E8601TXw.d

This format is available as of SAS version 9.4. E8601TXw.d adjusts a Coordinated Universal Time (UTC) value to the user's local time. Since it is intended for clock times only, values greater than 86400 or less than 0 will show asterisks. The format writes the local time in the ISO 8601 extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The offset is calculated from the time at the zero meridian in Greenwich, England, using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time is based on the system clock. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time. As you can see, the value displayed changes with the time zone.

	Format Name
	Result
	OPTIONS TIMEZONE=
	Comment

	E8601TX9.
	12:17:30
	Africa/Harare
	Not enough space to display the offset, but the correct local time is displayed.

	E8601TX.
	12:17:30+02:00
	Africa/Harare
	Using the default length corrects the above problem.

	E8601TX12.
	15:47:30+05
	Asia/Calcutta
	

	E8601TX14.
	18:17:30+08:00
	Asia/Manila
	

	E8601TX16.
	12:17:30+02:00
	Europe/Copenhagen
	

B8601LZw.d

This format is available as of SAS version 9.4. B8601LZw.d displays SAS time values without any adjustments using the ISO 8601 basic time notation hhmmssffffff+|-hhmm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset from Coordinated Universal Time (UTC). The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hhmm, all without delimiters, as this is a basic ISO format. The offset is calculated based on the time zone at the local SAS session It is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The main difference between this format and the B8601TX. format is that the SAS time value is considered to be local time, not Greenwich Mean Time. For easier comparison, we will use the same SAS time value as with the *8601TX examples. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Central Daylight time.

	Format Name
	Result
	Comment

	B8601LZ9.
	101730Z
	Z is displayed in place of the offset because there is not enough space for the offset.

	B8601LZ12.
	101730-0500
	

	B8601LZ14.
	101730-0500
	

	B8601LZ16.
	101730-0500
	

E8601LZw.d

This format is available as of SAS version 9.4. E8601LZw.d displays SAS time values without any adjustments using the ISO 8601 extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset from Coordinated Universal Time (UTC). The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The offset is calculated based on the time zone at the local SAS session. It is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The main difference between this format and the E8601TX. format is that the SAS time value is considered to be local time, not Greenwich Mean Time. For easier comparison, we will use the same SAS time value as with the *8601TX examples. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Central Daylight time.

	Format Name
	Result
	Comment

	E8601LZ9.
	10:17:30Z
	Z is displayed in place of the offset because there is not enough space for the offset.

	E8601LZ12.
	10:17:30Z
	Z is displayed in place of the offset because there is not enough space for the offset.

	E8601LZ14.
	10:17:30-05:00
	

	E8601LZ16.
	10:17:30-05:00
	

B8601TZw.d

This format is available as of SAS version 9.4. B8601TZw.d displays a SAS time value as a Coordinated Universal Time (UTC) value. Since it is intended for clock times only, values greater than 86400 or less than 0 will show asterisks. The format writes the UTC time in the ISO 8601 basic time notation hhmmssffffff+|-hhmm where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset. The time offset is always going to be displayed as +0000, because the resulting time display is the time at the zero meridian in Greenwich, England. This format is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time.

	Format Name
	Result
	Comment

	B8601TX9.
	101730Z
	Z is displayed in place of the offset because there is not enough space for the offset.

	B8601TX12.
	101730+0000
	

	B8601TX14.
	101730+0000
	

	B8601TX16.
	101730+0000
	

E8601TZw.d

This format is available as of SAS version 9.4. E8601TZw.d displays a SAS time value as a Coordinated Universal Time (UTC) value. Since it is intended for clock times only, values greater than 86400 or less than 0 will show asterisks. The format writes the UTC time in the ISO 8601 extended time notation hh:mm:ss.ffffff+/-hh:mm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff represents decimal fraction of seconds, which is then followed by the time offset. The time offset is always going to be displayed as +00:00, because the resulting time display is the time at the zero meridian in Greenwich, England. This format is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table shows the result when the time value is 37050, which corresponds to the time 10:17:30 a.m. Greenwich Mean Time.

	Format Name
	Result
	Comment

	E8601TX9.
	10:17:30Z
	Z is displayed in place of the offset because there is not enough space for the offset.

	E8601TX.
	10:17:30+00:00
	Using the default length corrects the above problem.

	E8601TX12.
	10:17:30Z
	

	E8601TX14.
	10:17:30+00:00
	

	E8601TX16.
	10:17:30+00:00
	

4.2.3 ISO Datetime Formats

B8601DNw.

B8601DNw. writes dates from datetime values in the ISO 8601 basic date notation yyyyMMdd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. It is left-justified within the field. w can be from 8 to 10, and the default width is 10. Note that the basic date notation has no delimiters. The datetime value used in this example is 1664263800, which corresponds to 7:30:00 a.m. on Wednesday, September 26, 2012.

	Format Name
	Result
	Comment

	B8601DN8.
	20120926
	

	B8601DN9.
	20120926
	

	B8601DN10.
	20120926
	

E8601DNw.

E8601DNw. writes dates from datetime values in the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. It is left-justified. w is always equal to 10, and the default width is 10. The datetime value used in this example is 1664263800, which corresponds to 7:30:00 a.m. on Wednesday, September 26, 2012.

	Format Name
	Result
	Comment

	E8601DN10.
	2012-09-26
	

B8601DTw.d

B8601DTw.d writes datetime values in the ISO 8601 basic datetime notation yyyyMMddThhmmssffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601 delimiter for time. Note that there are no other delimiters in the ISO basic datetime string, including the decimal fractions, which might make the result difficult to read. w can be from 15 to 26, with a default width of 19. d can be from 0 to 6, with a default of 0. The value is left-justified. The datetime value used in this example is 1686408430.44, which corresponds to 2:47:10.44 p.m. on Sunday, June 9, 2013.

	Format Name
	Result
	Comment

	B8601DT15.2.
	20130609T144710
	Not enough width to display fractional seconds.

	B8601DT19.
	20130609T144710
	

	B8601DT19.2.
	20130609T14471044
	

	B8601DT24.1.
	20130609T1447104
	

	B8601DT26.
	20130609T144710
	

E8601DTw.d

E8601DTw.d writes datetime values in the ISO 8601 extended datetime notation yyyy-MM-ddThh:mm:ss.ffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601 delimiter for time. Colons (:) delimit hours, minutes, and seconds, while a decimal point delimits the decimal portion of seconds. w can be from 19 to 26, with a default width of 19. d can be from 0 to 6, with a default of 0.The value is left-justified. The datetime value used in this example is 1686408430.44, which corresponds to 2:47:10.44 p.m. on Sunday, June 9, 2013.

	Format Name
	Result
	Comment

	E8601DT19.
	2013-06-09T14:47:10
	

	E8601DT19.2.
	2013-06-09T14:47:10
	Width not large enough to display fractional seconds.

	E8601DT22.1.
	2013-06-09T14:47:10.4
	

	E8601DT24.
	2013-06-09T14:47:10
	

	E8601DT24.2.
	2013-06-09T14:47:10.44
	

B8601DXw.d

This format is available as of SAS version 9.4. B8601DXw.d adjusts a Coordinated Universal Time (UTC) datetime value to the user's local date and time. The format writes the adjusted local time in the ISO 8601 basic datetime and time zone notation yyyyMMddThhmmssffffff+|–hhmm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. Note that there are no delimiters in the ISO basic datetime string including the +/- of the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hhmm, all without delimiters. The offset is calculated from the time at the zero meridian in Greenwich, England, using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time is based on the system clock. w can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table uses the value 1763371185, which corresponds to 9:19 a.m. on November 17, 2015, Greenwich Mean Time. As you can see, the display does not change depending on the width specification, because the minimum length of 20 can accommodate the entire width of the output.

	Format Name
	Result
	OPTIONS TIMEZONE=

	B8601DX20.
	20151117T111945+0200
	Africa/Cairo

	B8601DX22.
	20151117T031945-0600
	America/Cancun

	B8601DX24.
	20151117T041945-0500
	America/Indianapolis

	B8601DX26.
	20151117T171945+0800
	Asia/Hong_Kong

	B8601DX28.
	20151117T194945+1030
	Australia/Adelaide

E8601DXw.d

This format is available as of SAS version 9.4. E8601DXw.d adjusts a Coordinated Universal Time (UTC) datetime value to the user's local date and time. The format writes the adjusted local datetime in the ISO 8601 extended datetime and time zone notation yyyy-MM-ddThhmmss.ffffff+/-hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The offset is calculated from the time at the zero meridian in Greenwich, England, using the TIMEZONE= system option. If TIMEZONE is not set, then the user local time is based on the system clock. w can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with a default of 0. The value is left-justified. The following table uses the value 1763371185, which corresponds to 9:19 a.m. on November 17, 2015, Greenwich Mean Time.

	Format Name
	Result
	OPTIONS TIMEZONE=
	Comment

	E8601DX20.
	2015-11-17T02:19:45
	America/Edmonton
	Not enough space for the time offset.

	E8601DX22.
	2015-11-17T05:19:45-04
	America/Halifax
	Not enough space for minutes of the time offset. As some offsets aren't full hours, this can give you an incorrect result.

	E8601DX26.
	2015-11-17T03:19:45-06:00
	America/Mexico_City
	

	E8601DX28.
	2015-11-17T19:49:45+10:30
	Australia/Adelaide
	

B8601DZw.d

B8601DZw.d displays a SAS datetime value based on the zero meridian Coordinated Universal Time (UTC) in the ISO 8601 basic datetime and time zone notation yyyyMMddThhmmssffffff+|–hhmm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is always going to be displayed as +0000, because the resulting time display is the time at the zero meridian in Greenwich, England. Therefore, this format is not affected by the TIMEZONE= system option. While the SAS documentation says that w can be from 16 to 35, with a default width of 26, you will get a warning and a missing value if you use a format width of less than 20. d can be from 0 to 6, with a default of 0. The value is left-justified. The datetime value used in this example is 1730398875, which corresponds to 6:21:15 p.m. on October 31, 2014, Greenwich Mean Time.

	Format Name
	Result
	Comment

	B8601DZ20.
	20141031T182115+0000
	Minimum format width to obtain a result.

	B8601DZ26.
	20141031T182115+0000
	

E8601DZw.d

E8601DZw.d displays a SAS datetime value based on the zero meridian Coordinated Universal Time (UTC) in the ISO 8601 extended datetime and time zone notation yyyy-MM-ddThhmmss.ffffff+/-hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is always going to be displayed as +00:00, because the resulting time display is the time at the zero meridian in Greenwich, England. Therefore, this format is not affected by the TIMEZONE= system option. w can be from 20 to 35, with a default width of 26, and the value is left-justified. d can be from 0 to 6, with a default of 0. The datetime value used in this example is 1730398875, which corresponds to 6:21:15 p.m. on October 31, 2014, Greenwich Mean Time.

	Format Name
	Result
	Comment

	E8601DZ20.
	2014-10-31T18:21:15Z
	Z is used to indicate that the format width isn't wide enough to accommodate the time zone notation.

	E8601DZ22.
	2014-10-31T18:21:15Z
	Z is used to indicate that the format width isn't wide enough to accommodate the time zone notation

	E8601DZ26.
	2014-10-31T18:21:15+00:00
	

	E8601DZ28.
	2014-10-31T18:21:15+00:00
	

4.3 ISO 8601 Informats

ISO 8601 informats are designed to process strings of characters that represent ISO 8601 dates, times, and datetimes and, when used with the INPUT statement or INPUT() or INPUTN() functions, will produce a SAS date, time, or datetime value when the string is read with the selected informat.

4.3.1 ISO Date Informats

B8601DAw.

B8601DAw. will read date values in both the ISO 8601 basic date notation yyyyMMdd and the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. w is always 10, and the default is 10. It is important to note that if either month or day is missing, SAS will use a value of 1 for the month and/or day to provide a SAS date value. However, this might not be what you want, as your situation might call for an algorithm to impute dates with missing months and/or days instead.

	Characters Read
	Informat
	SAS Date Value
	Formatted Value Using B8601DA. Format
	Comment

	20140504
	B8601DA.
	19847
	20140504
	

	201405
	B8601DA.
	19844
	20140501
	Missing day, so date is set to first of the month.

	2014
	B8601DA.
	19724
	20140101
	Missing month and day, so date is set to first of the year.

E8601DAw.

E8601DAw. reads date values in the ISO 8601 extended date notation yyyy-MM-dd, where yyyy is the four-digit year, MM is the zero-padded month, and dd is the zero-padded numerical day of the month. This informat can only have a length of 10, as that is the only length for a date in ISO 8601 extended date notation. Unlike the parallel basic date notation informat, SAS will not substitute a value of 1 for either missing month or day, and you will get a missing value for your SAS date.

	Characters Read
	Informat
	SAS Date Value
	Formatted Value Using B8601DA. Format
	Comment

	2014-05-
	E8601DA10.
	19847
	2014-05-04
	

	2014-05
	E8601DA10.
	
	
	Incomplete date yields missing value.

	2014
	E8601DA10.
	
	
	Incomplete date yields missing value.

4.3.2 ISO Time Informats

B8601TMw.d

B8601TMw.d reads time values in the ISO 8601 basic time notation hhmmssffffff, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. w can be from 6 to 15, with 8 as the default. Using a w of 6 will read time values with no decimal portion. d can be from 0 to 6, with a default of 0.

	Characters Read
	Informat
	SAS Time Value
	Formatted Value Using B8601TM. Format

	144535
	B8601TM8.
	53135.0
	144535

	0630
	B8601TM8.
	23400.0
	063000

	1208455
	B8601TM10.1
	43725.5
	120846

E8601TMw.d

E8601TMw.d reads time values in the ISO 8601 extended time notation hh:mm:ss.ffffff, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. w can be from 8 to 15, with 8 as the default. Using a w of 8 will read time values with no decimal portion. d can be from 0 to 6, with a default of 0.

	Characters Read
	Informat
	SAS Time Value
	Formatted Value Using E8601TM. Format
	Comment

	10:17:45
	E8601TM8.
	37065.00
	10:17:45.00
	

	18:05
	E8601TM8.
	65100.00
	18:05:00.00
	Only missing seconds are set to zero; any other missing components will result in a missing time value.

	07:15:12.25
	E8601TM12.2
	26112.25
	07:15:12.25
	

B8601TZw.d

B8601TZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 basic time notation hhmmssffffff,+|-hhmm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hhmm. The time zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS time value will be the time at the zero meridian. w can be from 9 to 20, with a default width of 14, while d can be from 0 to 6, with a default of 0. Since this informat is intended to only read clock times, values resulting in times greater than 24:00:00 or less than 00:00:00 will be adjusted appropriately so that the result will be within the 24-hour clock.

	Characters Read
	Informat
	SAS Time Value
	Formatted Value Using B8601TZ. Format
	Comment

	175200+0000
	B8601TZ14.
	64320
	175200+0000
	

	175200Z
	B8601TZ9.
	64320
	175200+0000
	If the time at the zero meridian is represented by a Z, you should use the format width of 9.

	091520+0600
	B8601TZ14.
	11720
	031520+0000
	

	210800-0500
	B8601TZ14.
	7680
	020800+0000
	Instead of 260800, the value is adjusted to 020800.

E8601TZw.d

E8601TZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 extended time notation hh:mm:ss.ffffff+|-hh:mm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The time zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS time value will be the time at the zero meridian. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. Since this informat is intended to only read clock times, values resulting in times greater than 24:00:00 or less than 00:00:00 will be adjusted appropriately so that the result will be within the 24-hour clock.

	Characters Read
	Informat
	SAS Time Value
	Formatted Value Using E8601TZ20.2 Format
	Comment

	17:52:00+00:00
	E8601TZ14.
	64320.00
	17:52:00.00+00:00
	

	17:52:00Z
	E8601TZ9.
	64320.00
	17:52:00.00+00:00
	If the time at the zero meridian is represented by a Z, you should use the format width of 9.

	06:00:30.57+08:00
	E8601TZ18.2
	79230.57
	22:00:30.57+00:00
	Adjusted to give the time value of 22:00:30.57 instead of -02:00:30.57.

	04:17:00-05:00
	E8601TZ14.
	33420.00
	09:17:00.00+00:00
	

You might wonder why a UTC value of 06:00:30.57+08:00 yields a time value of 22:00:30.57 at the zero median, and not 14:00:30.57. The +08:00 hour offset means that GMT plus 8 hours will give you the local time. Therefore, the conversion from local time to time at the zero median is local time minus the offset. 6-8=-2, which is then adjusted to 22 by adding 24 hours.

E8601LZw.d

E8601LZw.d reads Coordinated Universal Time (UTC) time values using the ISO 8601 extended time notation hh:mm:ss.ffffff+|–hh:mm, where hh represents zero-padded hours, mm represents zero-padded minutes, ss represents zero-padded seconds, and ffffff is decimal fractions of seconds, which is then followed by the time offset. The time offset is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The time zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS time value will be the time of the local SAS session, based on the system clock. It is not affected by the TIMEZONE= system option. w can be from 9 to 20, with a default width of 14. d can be from 0 to 6, with a default of 0. Since this informat is intended to only read clock times, values resulting in times greater than 24:00:00 or less than 00:00:00 will be adjusted appropriately so that the result will be within the 24-hour clock.

	Characters Read
	Informat
	SAS Time Value
	Formatted Value Using E8601LZ. Format
	Comment

	17:52:00+00:00
	E8601LZ14.
	64320.00
	17:52:00.00-05:00
	The time of the local SAS session is GMT-5.

	17:52:00Z
	E8601LZ9.
	64320.00
	17:52:00.00-05:00
	If the time at the zero meridian is represented by a Z, you should use the format width of 9.

	06:00:30.57+08:00
	E8601LZ18.2
	79230.57
	22:00:30.57-05:00
	

	04:17:00-05:00
	E8601LZ14.
	33420.00
	09:17:00.00-05:00
	

4.3.3 ISO Datetime Informats

B8601CIw.d

B8601CIw.d reads IBM time values with a century marker of the form cyyMMddhhmmss<fff>, where c represents the century digit. The century digit is calculated by subtracting 1900 from the current year, dividing by 100, and dropping the remainder. yy is the two-digit year from 00 to 99, MM represents the number of the month, and dd represents the day of the month. The time is represented by hhmmss<fff>, where hh indicates the hours, mm is minutes, ss is the number of seconds, and fff indicates thousandths of seconds. w ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the fractional part of seconds. However, it is important to note that there are only 3 places of decimal precision.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME25.3.

	11504231905
	B8601CI16.
	1745435100.0
	23APR2015:19:05:00.000

	0560928053505
	B8601CI16.
	-102795895.0
	28SEP1956:05:35:05.000

	1140630102416454
	B8601CI19.3
	1719743056.5
	30JUN2014:10:24:16.454

	2131216094500
	B8601CI16.
	4858479900.0
	16DEC2113:09:45:00.000

B8601DJw.d

B8601DJw.d reads datetimes in standard Java date and time notation yyyyMMddhhmmssffffff, where yyyy is the four-digit year, MM represents the number of the month, dd represents the day of the month, and time is represented by hhmmss<ffffff>, where hh indicates the hours, mm is minutes, ss is the number of seconds, and ffffff indicates millionths of seconds. w ranges from 10 to 26, with a default value of 16, while d ranges from 0 to 6 for the fractional part of seconds. The following table gives examples of how to apply this informat to yield the SAS date value that corresponds to the text shown in each line.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME25.4

	201607181108
	B8601DJ16.
	1784459280.0
	18JUL2016:11:08:00.0000

	20141123054509
	B8601DJ16.
	1732340709.0
	23NOV2014:05:45:09.0000

	201303070814433064
	B8601DJ21.4
	1678263283.3
	07MAR2013:08:14:43.3064

	201406241630254
	B8601DJ16.1
	1719246625.4
	24JUN2014:16:30:25.4000

B8601DTw.d

B8601DTw.d reads datetime values in the ISO 8601 basic datetime notation yyyyMMddThhmmssffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601 delimiter for time. Note that there are no other delimiters in the ISO basic datetime string, including the decimal fractions. w can be from 19 to 26, with a default width of 19. d can be from 0 to 6, with a default of 0. It is important to note that if either month or day is missing, SAS will use a value of 1 for the month and/or day to provide the date for the SAS datetime value, while setting the hours, minutes, and seconds to zero. However, this might not be what you want, as your situation might call for an algorithm to impute datetimes with missing months and/or days, and/or times instead.

	Characters
Read
	Informat
	Resulting SAS
Datetime Value
	Formatted Datetime
Using DATETIME25.4

	20141007T133008745
	B8601DT19.3
	1728307808.7
	07OCT2014:13:30:08.7450

	20150716T0859003315
	B8601DT19.4
	1752656340.3
	16JUL2015:08:59:00.3315

	20140331T1404
	B8601DT19.
	1711893840.0
	31MAR2014:14:04:00.0000

	20150903T06
	B8601DT19.
	1756879200.0
	03SEP2015:06:00:00.0000

	20140804
	B8601DT19.
	1722729600.0
	04AUG2014:00:00:00.0000

	201312
	B8601DT19.
	1701475200.0
	01DEC2013:00:00:00.0000

	2016
	B8601DT19.
	1767225600.0
	01JAN2016:00:00:00.0000

E8601DTw.d

E8601DTw.d reads datetime values in the ISO 8601 extended datetime notation yyyy-MM-ddThh:mm:ss.ffffff, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is decimal fractions of seconds. T is the ISO 8601 delimiter for time. w can be from 19 to 26, with a default width of 19. d can be from 0 to 6, with a default of 0. Unlike the parallel basic datetime informat, there is no default substitution for missing date and/or time components, so the result is a missing datetime value.

	Characters Read
	Informat
	SAS Datetime Value
	Formatted Value Using MDYAMPM21. Format
	Comment

	2014-10-07T13:30:08
	E8601DT19.
	1728307808
	10/7/2014 1:30 PM
	

	2015-07-16T08:59:00
	E8601DT19.
	1752656340
	7/16/2015 8:59 AM
	

	2014-03-31T14:04
	E8601DT19.
	1711893840
	3/31/2014 2:04 PM
	

	2015-09-03T06
	E8601DT19.
	
	
	Incomplete time yields a missing value.

	2014-08-04
	E8601DT19.
	
	
	No time provided. Therefore, datetime is missing.

	2013-12
	E8601DT19.
	
	
	Partial date; datetime is missing.

	2016
	E8601DT19.
	
	
	Partial date; datetime is missing.

B8601DZw.d

B8601DZw.d reads a SAS datetime value based on the zero meridian Coordinated Universal Time (UTC) in the ISO 8601 basic datetime and time zone notation yyyyMMddThhmmssffffff+|-hhmm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is the decimal fraction of seconds. This is followed by the time offset, which is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hhmm. The time zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS datetime value will be the datetime at the zero meridian. w can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with a default of 0.

	Characters Read
	Informat
	SAS Datetime Value
	Formatted Value Using E8601DZ. Format

	20150208T112705+0500
	B8601DZ.
	1738996025
	2015-02-08T06:27:05.00+00:00

	20150920T05045914-0400
	B8601DZ26.2
	1758359099.14
	2015-09-20T09:04:59.14+00:00

	20140511T211700Z
	B8601DZ.
	1715462220
	2014-05-11T21:17:00.00+00:00

	20140511T211700+0000
	B8601DZ.
	1715462220
	2014-05-11T21:17:00.00+00:00

E8601DZw.d

E8601DZw.d reads a SAS datetime value based on the zero meridian Coordinated Universal Time (UTC) in the ISO 8601 extended datetime and time zone notation yyyy-MM-ddThh:mm:ss.ffffff+|–hh:mm, where yyyy is the four-digit year, MM is the zero-padded month, dd is the zero-padded numerical day of the month, hh represents zero-padded hours, mm represents zero-padded minutes, ss represents seconds, and ffffff is the decimal fraction of seconds. This is followed by the time offset, which is a plus (for time zones east of the zero meridian) or a minus (for time zones west of the meridian), followed by the offset time represented as hh:mm. The time zone offset might also be indicated by the letter Z, representing the zero meridian. The offset is calculated from the time at the zero meridian in Greenwich, England, and the resulting SAS datetime value will be the datetime at the zero meridian. w can be from 20 to 35, with a default width of 26. d can be from 0 to 6, with a default of 0.

	Characters Read
	Informat
	SAS Datetime Value
	Formatted Value Using E8601DZ. Format

	2015-02-08T11:27:05+05:00
	E8601DZ26.
	1738996025
	2015-02-08T06:27:05.00+00:00

	2015-09-20T05:04:59.14-04:00
	E8601DZ29.2
	1758359099.14
	2015-09-20T09:04:59.14+00:00

	2014-05-11T21:17:00Z
	E8601DZ26.
	1715462220
	2014-05-11T21:17:00.00+00:00

	2014-05-11T21:17:00+00:00
	E8601DZ26.
	1715462220
	2014-05-11T21:17:00.00+00:00

4.4 Time Zone Functions

4.4.1 Introduction

There are several time zone functions available in SAS. They are provided as part of National Language Support (NLS), but these functions are covered in this section because this is where the formats and informats that provide for time zone offsets and support for UTC are detailed.

For all of the following functions, time-zone-id represents a SAS time-zone ID value. It is also an optional argument in these functions. If it is not provided, the function will use the current setting of the TIMEZONE= system option as the default. Before using these functions, you need to check the setting of your TIMEZONE= system option to make sure that it does have a value, or many of these functions will produce a missing result. This option can be locked by your SAS administrator.

4.4.2 The TIMEZONE= Option

Many of the ISO time and datetime formats use the TIMEZONE= system option, which is available as of SAS version 9.4. The TIMEZONE= system option allows you to set a time zone based on a geographical location. It is not set by default. This option affects the following:

• Times that are recorded in logs and events.

• Creation and modification time stamps on SAS data sets

• The DATE(), DATETIME(), TIME(), and TODAY() functions

• The time zone formats B8601DXw.d, E8601DXw.d, B8601LXw.d, E8601LXw.d, B8601TXw.d, E8601TXw.d, NLDATMZw., NLDATMTZw., and NLDATMWZw.

• The time zone functions described in Section 4.4.3.

The value of the option may be represented in one of two ways: It may be a three- or four-letter acronym that describes the time zone (for example, EST, for Eastern Standard Time), or a time-zone ID that specifies a region and an area, separated by a forward slash (/), such as "America/New_York." The time zone ID values are unique and compatible with Java time zone names, while the three- or four-letter abbreviations are not. Consider the abbreviation “CST”, which stands for "China Standard Time," or "Cuba Standard Time," or "Central Standard Time." How does SAS choose what "CST" represents in your program? It uses the value of the LOCALE= system option to decide what the correct region and area should be. Of course, if you are running a SAS program in the United States, but are using the LOCALE= system option to produce output for another geographical region, this may cause incorrect timing. I would recommend using the time zone ID instead of the acronyms as a best practice. There are over 500 time zone ID values; consult the SAS documentation to find the time zone ID values you need.

4.4.3 List of Time Zone Functions

Note that all of these functions are only available beginning with SAS version 9.4.

TZONEID(time-zone-id)

TZONEID will return either the current time zone ID if time-zone-id is a valid value, or a blank when time-zone-id is missing or invalid. Note: Prior to SAS 9.4 TS1M2, supplying a time-zone-id for this function will cause an error.

	Sample Function Call
	OPTIONS TIMEZONE=
	Result

	TZONEID()
	
	

	TZONEID()
	Africa/Addis_Ababa
	AFRICA/ADDIS_ABABA

	TZONEID()
	Africa/Brazzaville
	AFRICA/BRAZZAVILLE

	TZONEID()
	America/Montreal
	AMERICA/MONTREAL

TZONENAME(time-zone-id,datetime-value)

TZONENAME returns the current time zone name based on the time zone ID and any daylight saving time rules. This function will return a blank if time-zone-id is missing, or the TIMEZONE= system option has no value. In the following example, the TIMEZONE option is set to 'America/Chicago.'

	Sample Function Call
	Result
	Comment

	TZONENAME()
	CDT
	Based on the current time zone and time of year, Central Daylight Time is returned.

	TZONENAME('06JUN2014:08:00'dt)
	CDT
	Given the datetime value provided, Central Daylight Time is returned. Daylight saving time is in effect in June for the Central time zone.

	TZONENAME('06JAN2015:08:00'dt)
	CST
	Given the datetime value provided, Central Standard Time is returned. Daylight saving time is NOT in effect in January for the Central time zone.

TZONEOFF(time-zone-id,datetime-value)

TZONEOFF returns the time zone offset from Coordinated Universal Time (UTC) based on time zone name, and standard or daylight saving time rules. If time-zone-id is blank or missing, the offset will be determined from the system clock. In the following example, the TIMEZONE option is set to 'Europe/Stockholm.'

	Sample Function Call
	Result
	Comment

	TZONEOFF()
	2:00
	Based on the current time zone and time of year, Central European Summer Time is in effect.

	TZONEOFF('06JUN2014:08:00'dt)
	2:00
	Based on the datetime value provided, Central European Summer Time is in effect.

	TZONEOFF('06JAN2015:08:00'dt)
	1:00
	According to the datetime provided, Central European Standard Time is in effect.

TZONES2U(datetime-value, time-zone-id)

TZONES2U converts a SAS datetime value to a Coordinated Universal Time (UTC) datetime value based on the time zone and daylight saving rules. If time-zone-id is blank or missing, the offset will be determined from the system clock. In the following example, the TIMEZONE option is set to 'America/Chicago.'

	Sample Function Call
	Result

	TZONES2U('11NOV2014:12:00'dt)
	11NOV2014:18:00:00

	TZONES2U('11NOV2014:12:00'dt,'Pacific/Guam')
	11NOV2014:02:00:00

	TZONES2U('11NOV2014:12:00'dt,'Europe/Istanbul')
	11NOV2014:10:00:00

TZONEDSTNAME(time-zone-id)

TZONEDSTNAME returns the daylight saving time abbreviation for the time zone ID. If time-zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid argument to function TZONEDSTNAME()" message in the log. If the time zone provided does not follow daylight saving time, then the result will be missing. In the following example, the TIMEZONE option is set to 'America/Chicago.'

	Sample Function Call
	Result
	Comments

	TZONEDSTNAME()
	CDT
	

	TZONEDSTNAME('Asia/Calcutta')
	
	The Indian Time Zone does not observe daylight saving time, so the result is missing.

	TZONEDSTNAME('America/Sao_Paulo')
	BRST
	

TZONEDSTOFF(time-zone-id)

TZONEDSTOFF returns the time zone offset value for the specified daylight saving time. If time-zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid argument to function TZONEDSTOFF()" message in the log. In the following example, the TIMEZONE option is set to 'America/Chicago.'

	Sample Function Call
	Result
	Comments

	TZONEDSTOFF()
	-5:00
	

	TZONEDSTOFF('Asia/Calcutta')
	.
	The Indian Time Zone does not observe daylight saving time, so the result is missing.

	TZONEDSTOFF('America/Sao_Paulo')
	-2:00
	

TZONESTTNAME(time-zone-id)

TZONESTTNAME returns the standard time name for the time zone ID. This function differs from the TZONEDSTNAME() function in that it provides the standard time abbreviation as opposed to the daylight saving time abbreviation. If time-zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid argument to function TZONESTTNAME()" message in the log. In the following example, the TIMEZONE option is set to 'Pacific/Honolulu.'

	Sample Function Call
	Result

	TZONESTTNAME()
	HST

	TZONESTTNAME('Australia/Sydney')
	EST

	TZONESTTNAME('Asia/Dubai')
	GST

TZONESTTOFF(time-zone-id)

TZONESTTOFF returns the time zone offset value for the specified daylight saving time. If time-zone-id is missing, and the TIMEZONE= option is not set, you will receive a "NOTE: Invalid argument to function TZONESTTOFF()" message in the log. In the following example, the TIMEZONE option is set to 'Pacific/Honolulu.'

	Sample Function Call
	Result

	TZONESTTOFF()
	-10:00

	TZONESTTOFF('Australia/Sydney')
	10:00

	TZONESTTOFF('Asia/Dubai')
	4:00

TZONEU2S(UTC-datetime-value, time-zone-id)

TZONEU2S converts a Coordinated Universal Time (UTC) datetime value to a SAS datetime value. If time-zone-id is blank or missing, the offset will be determined from the system clock and according to daylight saving time rules in effect. In the following example, the TIMEZONE option is set to 'America/Chicago.'

	Sample Function Call
	Result

	TZONEU2S('11NOV2014:12:00'dt)
	11NOV2014:06:00:00

	TZONEU2S('11NOV2014:12:00'dt,'Pacific/Guam')
	11NOV2014:22:00:00

	TZONEU2S('11NOV2014:12:00'dt,'Europe/Istanbul')
	11NOV2014:14:00:00

4.5 ISO 8601 Durations and Intervals

The ISO 8601 standard also provides a way to describe the interval between two datetimes, or a period of time over which an event has occurred. An interval can be expressed by using the starting and ending datetimes, or a duration and a starting time. Durations can be expressed by providing the length of time in a common form. However, ISO 8601 durations and time intervals do not directly equate to a single point in time, while everything else in the SAS date and time facility represents one specific point in time. Nonetheless, SAS gives you the ability to handle durations and intervals so that you have access to all the functionality of the SAS date and time facility.

Unlike every other part of the SAS date and time facility, ISO 8601 durations and intervals are stored in character variables, but they are not stored as simple text. You cannot convert a datetime to a character string using the PUT() function and then concatenate it with a duration string or another datetime that has been converted to a character string. In order to use the SAS date and time capacity with ISO durations and intervals, you must first convert ISO duration and interval values to an internal representation. This is very much the same process that you have to undertake when you are working with dates and times as we understand them; you must turn them into values that SAS understands or take the values that SAS understands and translate them into the representation that we understand.

Therefore, SAS has formats and informats dedicated to translating this internal representation of ISO durations and intervals. The internal representation cannot be used without this translation. There is also one extremely important CALL routine that is used to effect the transformation between ISO durations and intervals to or from SAS date, time, and datetime values. First, we should talk about the forms of ISO durations and intervals.

4.5.1 ISO Duration and Interval Representations

ISO Duration Representations

ISO durations are represented in three ways. There is no preference or priority attached to any of the forms: Use the one that best fits your data. One form is PnYnMnDTnHnMnS, where P is the indicator for period, and is preceded by a minus sign if the period represented is negative (the "starting" date or datetime comes after the "ending" date or datetime), Y is the indicator for years, M for months, and D for days. The T is the indicator for time and must be present if there is a time component to the duration string. H is the indicator for hours, the M to the right of the T indicator is for minutes, and the S is the indicator for seconds. n represents a number. This form of duration description is the same for both the basic and extended notation, as there are no delimiters necessary.

Another duration form is PnW, which is only used to describe a duration measured in weeks. n represents a number, and the W is the indicator for weeks. As with the previous form, when the starting date or datetime is after the "ending" date or datetime, the P is preceded by a minus sign. Again, since there are no delimiters in this form, the output using basic and extended notation is identical.

The last of the duration forms is PyyyyMMddThhmmssfff in basic notation, or Pyyyy-MM-ddThh:mm:ss.fff, in the extended notation, where yyyy is the number of years, MM is the number of months, dd is number of days, hh represents number of hours, mm represents minutes, and ss represents seconds in the period, with fff as decimal fractions of seconds up to the millisecond. T is the ISO 8601 delimiter for time. This duration form can also be represented as PyyyyMMdd or Pyyyy-MM-dd if there is no time component. As with the other duration forms, if the "start" is later than the "end," the P will be preceded by a minus sign.

ISO Interval Representations

ISO intervals are represented by two datetimes that represent the start and end of the interval, or a duration and a datetime that represents either the start or end of the interval. The datetime/datetime form is yyyyMMddThhmmss/yyyyMMddThhmmss in the basic notation, or yyyy-MM-ddThh:mm:ss/yyyy-MM-ddThh:mm:ss in the extended notation. The slash or solidus (/) between the two datetimes is a required delimiter when using either notation.

In the basic notation, the duration/datetime form is: PnYnMnDTnHnMnS/yyyyMMddThhmmssfff when the datetime represents the end of the interval, or yyyyMMddThhmmssfff/PnYnMnDTnHnMnS when the datetime value represents the beginning of the interval. In extended notation, the forms are yyyy-MM-ddThh:mm:ss.fff/PnYnMnDTnHnMnS or PnYnMnDTnHnMnS/yyyy-MM-ddThh:mm:ss.fff. The duration segment is specified by P, the indicator for period, Y is the indicator for years, M for months, D for days. The T is the indicator for time, and must be present if there is a time component to the duration string. H is the indicator for hours, the M to the right of the T indicator is for minutes, and the S is the indicator for seconds. n represents a number.

4.5.2 ISO 8601 Duration and Interval Formats

The first thing you might notice about the ISO duration and interval formats is that, unlike any of the other date- and time-related formats in SAS, they are character formats, as indicated by the leading dollar sign ($). This is reasonable, since durations and intervals are stored as character values. Why do you need formats for character variables? SAS stores ISO durations and intervals in an internal form, so just as you need formats to convert between SAS date values and how we understand dates, you need these formats to perform the conversion from the stored form to the corresponding ISO 8601 representation. Here's an example that shows what the stored form of duration and interval values looks like, along with its formatted display. The example uses the CALL IS8601_CONVERT routine to create the internal representations, and we will discuss this routine, its syntax, and use in detail in section 4.5.4.

Example 4.1: Why Formats are Necessary with ISO Durations, Intervals, and Datetimes

1. DATA isostore;

2. SET isotest;

3. LENGTH result1-result2 $ 32;

4. CALL IS8601_CONVERT('dt/dt','du',dt1,dt2,result1);

5. CALL IS8601_CONVERT("dt/dt",'intvl',dt1,dt2,result2);

6. fmt_result1 = PUT(result1,$N8601E.);

7. fmt_result2 = PUT(result2,$N8601E.);

8. RUN;

The above code will take the datetime values dt1 and dt2 from a data set. The CALL IS8601_CONVERT in line 4 creates an ISO duration value in the variable result1, while the one in line 5 creates an ISO interval value in the variable result2. The two results are then formatted in new variables using the PUT function. The values in this data set are displayed below.

	Start of period (dt1)
	End of Period (dt2)
	Duration Value Stored in Dataset (result1)
	Formatted Duration Value (fmt_result1)

	04MAR2014:10:23:23
	28DEC2014:23:04:03
	FFFF924124040FFC
	P9M24DT12H40M40S

	Interval Value Stored in Dataset (result2)
	Formatted Interval Value (fmt_result2)

	20143041023230012014C28230403001
	2014-03-04T10:23:23.000/2014-12-28T23:04:03.000

Clearly, the stored duration and interval values (italicized in the above table) are not in the ISO 8601 format, so SAS provides the following formats to translate them into the desired representation.

$N8601Bw.d

$N8601Bw. writes duration, datetime, and interval values in the ISO 8601 basic notation. This format differs from the $N8601BA. format in that it displays durations in the form PnYnMnDTnHnMnS instead of PyyyymmddThhmmss. It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). The number of decimal places shown is dependent upon the format width. The format will display the duration value as an ISO duration and an interval value as an ISO interval without any additional programming. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• PnYnMnDTnHnMnS

• PnYnMnDTnHnMnS/yyyymmddThhmmssfff

• yyyymmddThhmmssfff

• yyyymmddThhmmssfff/PnYnMnDTnHnMnS

• yyyymmddThhmmssfff/yyyymmddThhmmssfff

$N8601BAw.d

$N8601BAw. writes duration, datetime, and interval values in the ISO 8601 basic notation. This format differs from the $N8601B. format in that it displays durations in the form PyyyymmddThhmmss instead of PnYnMnDTnHnMnS.) It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. If you attempt to display an interval with a width specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon the format width. The format will display the duration value as an ISO duration and an interval value as an ISO interval without any additional programming. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• PyyyymmddThhmmss

• yyyymmddThhmmss

• PyyyymmddThhmmss/yyyymmddThhmmss

• yyyymmddThhmmss/PyyyymmddThhmmss

• yyyymmddThhmmss/yyyymmddThhmmss

$N8601Ew.

$N8601Ew. writes duration, datetime, and interval values in the ISO 8601 extended notation. It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. If you attempt to display an interval with a width specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon the format width. The format will display the duration value as an ISO duration and interval values as an ISO interval without any additional programming. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• PnYnMnDTnHnMnS

• yyyy-mm-ddThh:mm:ss.fff

• PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss.fff

• yyyy-mm-ddThh:mm:ss.fff/PnYnMnDTnHnMnS

• yyyy-mm-ddThh:mm:ss.fff/yyyy-mm-ddThh:mm:ss.fff

$N8601EAw.

$N8601EAw. writes duration, datetime, and interval values in the ISO 8601 extended notation. It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. If you attempt to display an interval with a width specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon the format width. The format will display duration values as an ISO duration and interval values as an ISO interval without any additional programming. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff

• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

$N8601EHw.

$N8601EHw. writes duration, datetime, and interval values in the ISO 8601 extended notation, substituting hyphens for any missing components. With this format, omitted datetime components are always displayed. It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. If you attempt to display an interval with a width specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon the format width. The format will display duration values as an ISO duration and interval values as an ISO interval without any additional programming, and it will display them in one of the following forms. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff

• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

$N8601EXw.

$N8601EXw. writes duration, datetime, and interval values in the ISO 8601 extended notation, substituting the letter "x" for any missing components. With this format, omitted datetime components are always displayed. It is left-justified, and w can be from 1 to 200, with a default width of 50. In order to display datetime and duration values correctly, the width must be at least 16, while to display interval values correctly, the minimum width is 32. If you attempt to display an interval with a width specification of less than 32, you will get a series of asterisks (*) as your output. In version 9.4, SAS will automatically provide up to 3 decimal places for the seconds component of these values (indicated below by fff), regardless of significance (that is, if there is no decimal fraction of seconds, then zeros will be displayed). Whether one, two, or three decimal places are shown is dependent upon the format width. The format will display duration values as an ISO duration and interval values as an ISO interval without any additional programming. SAS chooses one of the following forms based on the information stored in the ISO duration, datetime, or interval variable:

• Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff

• Pyyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/Pyyyy-mm-ddThh:mm.ss.fff

• yyyy-mm-ddThh:mm.ss.fff/yyyy-mm-ddThh:mm.ss.fff

4.5.3 ISO 8601 Duration and Interval Informats

In order to store duration, interval, and datetime values that are already represented in their ISO 8601 form as character strings, you will need to use the following informats with the INPUT statement or INPUT() function. The CALL IS8601_CONVERT routine is designed to work with SAS date, time, and datetime values, not character strings.

$N8601Bw.

$N8601Bw. will translate duration, datetime, and interval strings written in the ISO 8601 basic or extended notation into the SAS internal representation for these values. Missing components are correctly processed as long as a single hyphen (-) is used in place of each missing component. w can be from 1 to 200, with a default width of 50. In order to process datetime and duration values correctly, w must be at least 16, while to process interval values correctly, w must be at least 32. The informat will process data in any one of the following forms:

	ISO Form Read
	Comment

	Pyyyy-mm-ddThh:mm:ss.fff
	This is a duration value, not a datetime. Therefore, it does not indicate a specific datetime but an event that extends over the time indicated.

	PyyyymmddThhmmss
	This is a duration value, not a datetime. Therefore, it does not indicate a specific datetime but an event that extends over the time indicated.

	PnYnMnDTnHnMn.fffS
	

	PnW
	

	yyyy-mm-ddThh:mm:ss.fff/yyyy-mm-ddThh:mm:ss.fff
	

	yyyymmddThhmmssfff/yyyymmddThhmmssfff
	

	PnYnMnDTnHnMn.fffS/yyyy-mm-ddThh:mm:ss.fff
	

	yyyy-mm-ddThh:mm:ss.fff/PnYnMnDTnHnMn.fffS
	

	yyyy-mm-ddThh:mm:ss.fff
	

	yyyymmddThhmmss.fff
	

$N8601Ew.

$N8601Ew. will translate duration, datetime, and interval strings written in the ISO 8601 extended notation into the SAS internal representation for these values. This informat differs from the $N8601B. informat in that it will only process values that are in the ISO 8601 extended format. If you attempt to read a value in the basic notation with this informat, you will get an error, and the stored result will be a missing value. This informat is useful when you need to enforce adherence to the extended notation. Missing components are correctly processed as long as a single hyphen (-) is used in place of each missing component. w can be from 1 to 200, with a default width of 50. In order to process datetime and duration values correctly, w must be at least 16, while to process interval values correctly, w must be at least 32.

To demonstrate the difference between the $N8601B. and $N8601E. informats, the example below will use the same duration string in both the basic and extended notations and try to process it with each informat.

Example 4.2: The $N8601B. Informat versus the $N8601E. Informat

stored = INPUTC(duration_string,inf);

Example 4.2 uses the above code to store the duration string. inf represents the informat being used.

Reading the ISO 8601 Basic Notation

	Informat Used
	Duration String
	Stored Representation
	Formatted Representation

	$N8601B.
	P00020806T0100
	00028060100FFFFC
	P2Y8M6DT1H0M

	$N8601E.
	P00020806T0100

As you can see, the $N8601E. informat failed to process the basic notation string, resulting in a missing value. When you try to process a string in the ISO basic notation using the extended notation-specific informat, you will get the following note in your log.

NOTE: Invalid argument to function INPUT at line xxx column yy.

Now let's see what happens when we try to process the extended notation string.

Reading the ISO 8601 Extended Notation

	Informat Used
	Duration String
	Stored Representation
	Formatted Representation

	$N8601B.
	P0002-08-06T01:00
	00028060100FFFFC
	P2Y8M6DT1H0M

	$N8601E.
	P0002-08-06T01:00
	00028060100FFFFC
	P2Y8M6DT1H0M

In this case, both informats caused SAS to store identical values. The $N8601B. informat can process both basic and extended notations, but the $N8601E. informat will only work with the extended notation. Use the $N8601E. informat if you want to make sure that the input data conform to the extended notation.

4.5.4 CALL IS8601_CONVERT

It is important to understand that although ISO durations and intervals are stored in character variables, they are not simple text. You cannot convert a datetime to a character string using the PUT() function and then concatenate it with a duration string or another datetime that has been converted to a character string. In order to use the SAS date and time capacity with ISO durations and intervals, you must first convert ISO duration and interval values to an internal representation that will allow this.

The formats and informats we just discussed will work on character values, but what if you have SAS date or datetime values, which of course are stored in numeric variables, and you want to use those to build your ISO durations and intervals? The CALL IS8601_CONVERT routine performs this conversion in both directions, so it will create your ISO durations and intervals from those SAS date and datetime values. It will also do the reverse, and transform your ISO durations and intervals into their individual date and datetime components. In order to create an interval or a duration, you will need two values: a start and an end (defined as dates or datetimes), or you can provide a duration, and either start or an end. Similarly, in order to convert an interval, you will be splitting the components into two variables, a duration and a datetime, or two datetimes. In addition, the routine can derive the starting or ending point of an ISO duration or interval.

The syntax for the CALL IS8601_CONVERT routine is:

CALL IS8601_CONVERT(convert-from,convert-to,from--variables,to-variables, replacements);

The convert-from argument describes the type of date/datetime/interval/duration data that you are converting. convert-from can be one of the following keyword values, enclosed in quotation marks, or might also be represented by a character variable that resolves to one of these values.

	Keyword Value
	Description

	'dn'
	Use this when the value that you want to convert consists of individual components of a date value. n is from 1 to 6, and indicates how many components are in the list of from-variables. You can create either a date or a datetime value with this argument type. The individual components from left to right are: month, day, year, hour, minute, and second.

	'dtn'
	Use this when the value that you want to convert are individual components of a datetime value. n is from 1 to 6, and indicates how many components are in the list of from-variables. You can create either a date or a datetime value with this argument type. The individual components from left to right are: month, day, year, hour, minute, and second.

	'dun'
	Use this when you want to convert a value consisting of individual components of a duration value. n is from 1 to 6, and indicates how many components are in the duration value. The individual components from left to right are the number of months, days, years, hours, minutes, and seconds in the duration.

	'dt/dt'
	Use this when you are converting two datetime values.

	'dt/du'
	Use this when you are converting a datetime/duration interval. This signifies that the datetime is the start of the interval that you are converting.

	'du/dt'
	Use this to convert a duration/datetime interval. This signifies that the datetime is the end of the interval that you are converting.

	'intvl'
	Use this to convert interval values.

The convert-to argument describes the form of the result from the CALL IS8601_CONVERT routine.

	Keyword Value
	Description
	

	'intvl'
	Use this to create an interval value.
	

	'dt/dt'
	Use this to create a datetime/datetime interval.
	

	'dt/du'
	Use this to create a datetime/duration interval. This signifies that the datetime is the beginning of the interval.
	

	'du/dt'
	Use this to create a duration/datetime interval. This signifies that the datetime is the end of the interval.
	

	'du'
	Use this to create a duration.
	

	'start'
	Use this to derive a starting date or duration from an interval value.
	

	'end'
	Use this to derive the ending date or duration from an interval value.
	

	'dn'
	Use this when you want to create individual components of a date value. n is from 1 to 6, and indicates how many components are in the list of from-variables. The individual components will be stored from left to right in the following order: month, day, year, hour, minute, and second.

	'dtn'
	Use this when you want to create individual components of a datetime value. n is from 1 to 6, and indicates how many components are in the list of from-variables. The individual components will be stored from left to right in the following order: month, day, year, hour, minute, and second.

	'dun'
	Use this to create individual components of a duration value. n is from 1 to 6, and indicates how many components are in the list of from-variables. The individual components will be stored from left to right in this order: the number of months, days, years, hours, minutes, and seconds.

from-variables are the variables containing the value(s) to be converted. Specify one variable if you are converting an interval and two for datetime and/or duration values. If you are converting individual components of a date or a datetime (using 'dn,' 'dtn,' or 'dun' in your convert-from argument), then you will need one variable for each component specified. If you are converting an interval, the variable must be at least 32 characters in length.

to-variables are the variables containing the result that the routine calculates. Specify one variable if you are creating an interval and two for datetime and/or duration values. If you want individual components of a date or a datetime from the function (using 'dn,' 'dtn,' or 'dun' in your convert-to argument), then you will need one variable for each component specified.

replacements enables you to provide your own value for the month, day, hour, minute, and second components to be used if any of those components are missing in the convert-from argument. The default is 1 for month and day, and 0 for hour, minute, and second. When you use this parameter, even though the year component is required for a valid ISO duration or interval value, you will need a leading comma as a placeholder for the year value, followed by all 5 replacement values, separated by commas. While it is possible to leave some of the replacement values blank (and thereby use the default), it is easier to read when a value is provided for each of the replacements, even if it is the same as the default.

The following examples demonstrate many of the capabilities of the CALL IS8601_CONVERT routine, including the ability to perform date and time calculations.

Example 4.3: How Long Is… in SAS time?

Most of the calculations involving SAS dates and times have a specific reference point in mind; in general, there is a date and/or a time involved, such as June 8, 2014, at 3:50 p.m. However, what can you do if you want to measure an ISO duration in SAS time? One possibility is to use a sample starting point and SAS intervals to obtain the endpoint. From there, it is just a matter of subtracting your dummy start point from your endpoint. Or you could use CALL IS8601_CONVERT. The first period is simple: How long is four weeks expressed in time? The second period asks the same question for 3 days, 4 hours, 27 minutes, and 16.8 seconds, which is not so easy to do with SAS intervals.

1. DATA howlong;

2. LENGTH period $ 16;

3. period = "P4W";

4. CALL IS8601_CONVERT('du','du',period,howlong);

5. howlong_disp = STRIP(PUT(howlong,time10.1));

6. OUTPUT;

7. period = "P3DT4H27M16.8S";

8. CALL IS8601_CONVERT('du','du',period,howlong);

9. howlong_disp = STRIP(PUT(howlong,time10.1));

10. OUTPUT;

11. RUN;

In lines 4 and 8, we use 'du' as the convert-to argument because there is no argument value that will explicitly give a time value. However, when you use the 'du' argument and do not specify the result as a character variable, CALL IS8601_CONVERT will create your duration in seconds (that is, a SAS time value). Here is the PROC PRINT of our HOWLONG data set:

	ISO 8601 Duration
	Time in Seconds
	Time in Seconds
Formatted as TIME10.1

	P4W
	2419200.0
	672:00:00.0

	P3DT4H27M16.8S
	275236.8
	76:27:16.8

Example 4.4: Converting Two Datetimes to an ISO Duration

This situation is one frequently encountered in clinical trials. The starting and ending datetimes for an event would be presented as text, and you need to calculate the duration and display it in ISO 8601 format according to the CDISC specification. In this example, we will take simulated event data (some of which has missing components and entire missing values), calculate the durations, and present the result according to the ISO standard. Here are the data shown in their original text representation.

	Obs
	Starting Date
	Ending Date

	1
	
	

	2
	2013-01-18T09:30
	2013-01-18T21:00

	3
	2012-12-30T11
	2013-01-01T14:00

	4
	2012-11
	2013-01-04

	5
	2012-11-19
	2013-01-04

	6
	2012-11-20T08:30
	2013-01-03

	7
	2012
	2013-02

	8
	2012-12-27
	

	9
	2012-11
	2012-11-20

	10
	2012-11-19T14:15
	2012-11-20

	11
	2012-12-17T08:20
	2013-01-02T09

The first step is to create these as SAS datetime values. Let's run a quick SAS program to create our example data set, AEDTM:

DATA book.aedtm;

INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;

INPUT aestdtm :E8601DT. aeendtm :E8601DT.;

FORMAT aestdtm aeendtm datetime20.;

RUN;

Executing this code results in this data set:

[image: image]

What happened here? Most of the datetime values are missing! This is a direct consequence of incomplete data for dates and times in the source data. Remember that SAS datetime values are a complete date and a complete time, so yes, the values are missing because there is no complete date and time in most of these cases. The ISO standard can accommodate partial dates and times, but the normal SAS date and time facility cannot. Let's try this a different way using the ISO8601 informats.

DATA book.aedtm2;

INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;

INPUT aestdtm :$N8601B. aeendtm :$N8601B.;

FORMAT aestdtm aeendtm datetime20.;

RUN;

This code didn't even run, giving an error in the log.

1 DATA book.aedtm2;

2 INFILE "eventdata.txt" PAD MISSOVER DLM='09'x FIRSTOBS=2 DSD;

3 INPUT aestdtm :$N8601B. aeendtm :$N8601B.;

4 FORMAT aestdtm aeendtm datetime20.;

 48

ERROR 48-59: The format $DATETIME was not found or could not be loaded.

5 RUN;

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set BOOK.AEDTM2 may be incomplete. When this step

 was stopped there were 0 observations and 2 variables.

The ISO informats only create character variables. Therefore, the error arises when you try to use a numeric format with a character variable. At this point, we are no closer to getting our durations than before. What happens when we take the FORMAT statement out?

[image: image]

Now we've got the internal representation of ISO datetimes in a SAS data set, which we have named AEDTM2. Let's format the two variables using the $N8601EH. format so that we can see the result with a proper ISO representation. The $N8601EH. format provides hyphens for missing components.

[image: image]

From here, we can calculate durations with CALL IS8601_CONVERT using the following code and the data set AEDTM2 that we created in the previous step. In line 3, we define the result variables as character so that we do not get a SAS time value. We are creating two for the purposes of this exercise, DURATION with the routine in line 4, and AEDUR in line 6, which is the ISO-formatted version of DURATION so that it can be shown alongside the internal representation of the duration.

1. DATA book.iso_durations;

2. SET book.aedtm2;

3. LENGTH duration aedur $ 16;

4. CALL IS8601_CONVERT('dt/dt','du',aestdtm,aeendtm,duration);

5. aedur = duration;

6. FORMAT aedur $N8601E.;

7. RUN;

[image: image]

One of the things that you might notice is that durations have been calculated for all the values that have an ending date, regardless of missing components in the starting and ending datetimes. The CALL IS8601_CONVERT routine imputes complete datetime values by using default values for missing components, so it has supplied 1 for missing months and days, and zeros for hours, minutes, and seconds. This causes any datetime with a missing time to be set at 12:00 a.m. of the following day. This simple imputation might not be what you want to use, and more elaborate coding might be necessary. You might have to start with parsing the input datetime string to determine which components are missing and apply your imputation algorithm from there. Nonetheless, once you have your imputed datetime values, CALL IS8601_CONVERT will create and store an ISO duration from those datetimes.

Example 4.5: Converting Two Datetimes to an ISO Interval

Let’s use the data from example 4.4 to quickly demonstrate the creation of an ISO interval using the CALL IS8601_CONVERT routine. We will start with the ISO datetime values stored in the data set AEDTM2.

[image: image]

The following code will create our ISO interval. Note that in line 3, the length of the result variable interval is set to 32, which is the minimum length for a variable that holds an ISO interval. The result is shown in the screen capture following the code. Once again, we are creating a copy of the result to show both the interval value as a stored value and the ISO-formatted interval value.

1. DATA book.iso_intervals;

2. SET book.aedtm2;

3. LENGTH interval formatted_interval $ 32;

4. CALL IS8601_CONVERT('dt/dt','intvl',aestdtm,aeendtm,interval);

5. formatted_interval = interval;

6. FORMAT formatted_interval $N8601E.;

7. RUN;

[image: image]

Example 4.6: Converting a Datetime and a Duration into an ISO Interval

In this example, we will create an ISO interval from a datetime and a duration using the following data set, SAMPLE, which contains a start datetime and an ISO duration.

[image: image]

Why don't we apply the $N8601E. format to AESTDTM and DURATION so that they are readable?

[image: image]

If this were true clinical data, there would be an error in the data at record 3, because the duration is negative, indicating that the start datetime is later than the ending datetime. While the ISO standard accounts for negative durations, this does not mean that negative durations are appropriate in your data.

This code looks similar to the code in the previous two examples. The difference is in the arguments used for the CALL IS8601_CONVERT routine in line 4. The 'dt/du' signifies that the datetime represents the start of the interval. We will show the unformatted and formatted result as a reminder that the character results are stored in their SAS internal representation:

1. DATA interval;

2. SET sample;

3. LENGTH interval formatted_interval $ 32;

4. CALL IS8601_CONVERT('dt/du','intvl',aestdtm,duration,interval);

5. formatted_interval = interval;

6. FORMAT formatted_interval $N8601E.;

7. RUN;

	Interval
	Formatted_Interval

	2012B221030FFFFDFFFFF072330FFFFC
	2012-11-22T10:30/P7DT23H30M

	2012C02FFFFFFFFDFFFF105FFFFFFFFC
	2012-12-02/P1M5D

	2012C121200FFFFDFEFFFFF12FFFFFFC
	2012-12-12T12:00/-PT12H

	2012C191000FFFFDFFFFF072130FFFFC
	2012-12-19T10:00/P7DT21H30M

	2013101FFFFFFFFDFFFFF29FFFFFFFFC
	2013-01-01/P29D

Example 4.7: Calculating the End of an Interval from a Datetime and a Duration

An additional capability of the CALL ISO_8601 routine is to calculate starting and ending datetimes from intervals, or a combination of duration and datetime. In this example, we will calculate the end datetimes for the ISO intervals that we created in example 4.6.

1. DATA interval_end;

2. SET interval;

3. CALL IS8601_CONVERT('intvl','end',interval,end);

4. FORMAT interval $N8601E. end DATETIME20.;

5. RUN;

You can see that this code is again slightly different from example 4.6. One large difference is that there is no LENGTH statement used to create the result as a character variable. This causes the routine to create the result as a SAS datetime value, not an ISO 8601 datetime character string. This is an important distinction. In line 3, we tell the routine that we are going to convert an interval, and we want the ending date based on that interval. Since the variable INTERVAL is still stored in its internal SAS representation, we have applied the $N8601E. format to that variable, as well as formatting the END variable with DATETIME20. so we can read them easily in the output. Here is the result.

	Interval
	End

	2012-11-22T10:30/P7DT23H30M
	30NOV2012:10:00:00

	2012-12-02/P1M5D
	07JAN2013:00:00:00

	2012-12-12T12:00/-PT12H
	11DEC2012:12:00:00

	2012-12-19T10:00/P7DT21H30M
	27DEC2012:07:30:00

	2013-01-01/P29D
	30JAN2013:00:00:00

Any of the preceding examples can be reversed; you can convert an ISO duration or interval into two datetimes or you can turn an interval into a duration and a datetime. To show you how it all connects to together, in this last example, we will take starting and ending ISO datetime values and create an ISO duration and an ISO interval, and then we will recalculate the starting and ending datetimes from that ISO interval, both as their ISO datetime values and their SAS datetime values.

Example 4.8: CALL IS8601_CONVERT: ISO Datetimes, Durations, and Intervals from Start to End and Back Again with One Routine

This code uses the data set EX4_8, which contains two ISO datetime values in the variables AESTDTM and AEENDTM. They are displayed using the $N8601E. format so you can read the values easily.

[image: image]

Because we want the results in this example as their ISO representations, we define the result variables that we are creating as character variables, including the ending datetimes. Note that the variable INTERVAL is 32 bytes in length because that is the minimum length for an ISO interval value. Line 4 creates the ISO duration and line 5 the ISO interval value, and we use that interval in lines 6 and 7 to produce the starting and ending ISO datetime values. Lines 8 and 9 lines recalculate the starting and ending datetimes as SAS datetime values. We will present the results separately.

1. DATA circle;

2. SET ex4_8;

3. LENGTH duration $ 16 interval $ 32 start_dt $ 16 end_dt $ 16;

4. CALL IS8601_CONVERT('dt/dt','du',aestdtm,aeendtm,duration);

5. CALL IS8601_CONVERT('dt/dt','intvl',aestdtm,aeendtm,interval);

6. CALL IS8601_CONVERT('intvl','start',interval,start_dt);

7. CALL IS8601_CONVERT('intvl','end',interval,end_dt);

8. CALL IS8601_CONVERT('intvl','start',interval,datetime_start);

9. CALL IS8601_CONVERT('intvl','end',interval,datetime_end);

10. FORMAT duration interval start_dt end_dt $N8601E.;

11. RUN;

	Original Starting ISO Datetime
	Original Ending ISO Datetime
	ISO Duration Value
	ISO Interval Value

	2012-11-21T09:12
	2012-11-30
	P8DT14H48M
	2012-11-21T09:12/2012-11-30

	2012-11-21T09:25
	2012-11
	-P21DT9H25M
	2012-11-21T09:25/2012-11

	2012-12-03T09:00
	2012-12-03T10:00
	PT1H
	2012-12-03T09:00/2012-12-03T10:00

	2012-12-14T09:12
	2013-01-17
	P1M2DT14H48M
	2012-12-14T09:12/2013-01-17

	2012-12-14
	2012-12-29
	P15D
	2012-12-14/2012-12-29

The one thing that you should take note of here is the negative duration value in the second row. Since the day component is missing from the ending datetime, CALL IS8601_CONVERT has used its default value for the day component, which is 1. Obviously, November 21 (the starting date) is after November 1, so you might want to use a different imputation for your ending dates. Next are the recalculated starting and ending dates, presented in separate tables to make it easy to see the result of the conversions.

	Original Starting ISO Datetime
	Recalculated ISO Starting Datetime
	Recalculated SAS Starting Datetime

	2012-11-21T09:12
	2012-11-21T09:12
	21NOV2012:09:12:00

	2012-11-21T09:25
	2012-11-21T09:25
	21NOV2012:09:25:00

	2012-12-03T09:00
	2012-12-03T09:00
	03DEC2012:09:00:00

	2012-12-14T09:12
	2012-12-14T09:12
	14DEC2012:09:12:00

	2012-12-14
	2012-12-14
	14DEC2012:00:00:00

	Original Ending ISO Datetime
	Recalculated ISO Ending Datetime
	Recalculated SAS Ending Datetime

	2012-11-30
	2012-11-30
	30NOV2012:00:00:00

	2012-11
	2012-11
	01NOV2012:00:00:00

	2012-12-03T10:00
	2012-12-03T10:00
	03DEC2012:10:00:00

	2013-01-17
	2013-01-17
	17JAN2013:00:00:00

	2012-12-29
	2012-12-29
	29DEC2012:00:00:00

Take note of the second row in the ending datetime table above. Not only does this point out the problem with relying on the automatic substitution of the routine, but the difference between the ISO datetime values and SAS datetime values. The ISO standard accommodates missing components, so it is legal to have the value "2012-11," which clearly indicates, "During the month of November, but the exact day is unknown," and, "At some time on the day of…" The SAS datetime value has to provide both exact date and exact time, so "2012-11" is set to 12:00 AM, November 1, 2012, using the default replacements for missing components.

4.6 Conclusion

The ISO 8601 standard has been developed for the clear communication of date and time information across countries, applications, and platforms. SAS has the capability to handle this standard to its full extent, even though on the surface there seem to be many incompatibilities between the SAS date and time facility and the ISO standard. The largest differences are with respect to incomplete data, and that alphabetic characters are used as more than simple delimiters makes the ISO 8601 handling facility in SAS unique when it comes to dates and times. It is the only piece of the SAS date and time capabilities that requires character variables.

Chapter 5: Date and Time Functions

5.1 Current Date and Time Functions

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values

5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information

5.4 Calculating Elapsed Time, and the HOLIDAY() Function

5.5 The Basics of SAS Intervals

5.6 Modifying SAS Intervals

5.7 Creating Your Own SAS Intervals

5.8 Interval Functions about Intervals

5.9 Retail Calendar Intervals and Seasonality

SAS has many functions to manipulate dates, times, and datetime values. The functions can be categorized according to what they do. You can obtain the current date, time, or datetime (as specified by the computer's clock). You can also easily extract pieces of dates, times, or datetimes as numerical values from their corresponding SAS values, or you can assemble SAS date, time, and datetime values from SAS variables or constants. Another set of functions operates with intervals such as weeks or months.

5.1 Current Date and Time Functions

Current date and time functions have no arguments and return SAS values as noted in the following table. The values are obtained from the operating system's clock.

Table 5.1: Current Date and Time Functions

	Date and Time Function
	Description

	DATE(), TODAY()
	These functions are identical, and both return the current date as a SAS date value.

	TIME()
	This returns the current time as a SAS time value.

	DATETIME()
	This returns the current date and time as a SAS datetime value.

5.2 Extracting Pieces from SAS Date, Time, and Datetime Values

The extraction functions all use a single argument (represented by arg in the following table), which represents a SAS date, time, or datetime value. This can be either a SAS variable name or the appropriate constant. If two-digit year values are used, the result will be subject to the YEARCUTOFF= option value in effect. They all return a numeric value as the result. The following tables are separated into functions that use dates as an argument, those that use datetimes as the argument, and those that use times as an argument. Each table gives examples of how to apply each function, along with relevant comments for each example.

Table 5.2: Functions Returning a Date Component and Requiring a SAS Date Value as an Argument

	Function Name
	Explanation
	Example

	DAY(arg)
	Extracts the number of the day of the month from a SAS date value.
	DAY("14OCT2015"d) = 14

	JULDATE(arg)
	Extracts the Julian date from a SAS date value. It will return a four- or five-digit value with a one- or two-digit year, if the year portion of the date falls within the 100-year span defined by the YEARCUTOFF= option. If you want to ensure four-digit year values, you should use the JULDATE7() function.
	JULDATE("09MAY2004"d) = 4130 (result is returned as a numeric value, so there are no leading zeros) JULDATE("09MAY2014"d)=14129 (note difference caused by 2014 versus 2004, above) JULDATE("09MAY1890"d) = 1890129

	JULDATE7(arg)
	Extracts the Julian date with a four-digit year from a SAS date value. This always returns a seven-digit number, regardless of the year.
	JULDATE7("09MAY2004"d) = 2004130 JULDATE7("09MAY2014"d) = 2014129 JULDATE7("09MAY1890"d) = 1890129

	MONTH(arg)
	Extracts the numerical month from a SAS date value.
	MONTH("22AUG2015"d) = 8

	QTR(arg)
	Extracts the quarter of the year from a SAS date value.
	QTR("8JAN2013"d) = 1

	WEEK(arg)
	Extracts the week number from a SAS date value, where Sunday is the first day of the week, which is the "U" algorithm. This function has been augmented in SAS versions 9.1.3 and above by the WEEK(arg,descriptor) function described immediately below.
	WEEK("02JAN2005"d) = 1

	(Version 9.1.3 and up) WEEK(arg,descriptor)
	Extracts the week number from a SAS date value. descriptor can be "U," "V," or "W" (case-insensitive), and it refers to the algorithm used to calculate the first week of the year.

	
	The U algorithm calculates weeks based on Sunday being the first day of the week.
	WEEK("02JAN2005"d,"U") = 1. January 2, 2005 was a Sunday, so the first week of the year has started.

	
	The V algorithm calculates weeks to the ISO standard. Monday is the first day of the week, and the first week of the year is defined as the one that contains both January 4 and the first Thursday of the year.
	WEEK("02JAN2005"d,"V") = 53. This week is defined as being the 53rd week in 2004, because it doesn't contain the first Monday or Thursday of the year.

	
	The W algorithm calculates weeks based on Monday being the first day of the week without restriction.
	WEEK("02JAN2005"d,"W") = 0. The year 2005 has started, but weeks are calculated with Monday as the first day of the week. Therefore, the first week of 2005 doesn't start until January 3, 2005, so this is week 0 of 2005.

	WEEKDAY(arg)
	Extracts the number of the day of the week, where Sunday=1, Monday=2, and so on from a SAS date value.
	WEEKDAY("14APR2011"d) = 4 (Wednesday, April 14, 2011)

	YEAR(arg)
	Extracts the year from a SAS date value. If you use a date constant (as in the example) and not a SAS date value, it is important to remember that the YEARCUTOFF= option affects two-digit years.
	If OPTIONS YEARCUTOFF=1920; YEAR("19JUL10"d) = 2010; YEAR("19JUL1910"d) = 1910

Table 5.3: Functions Returning a Datetime Component and Requiring a SAS Datetime Value as an Argument

	Function Name
	Explanation
	Example

	DATEPART(arg)
	Extracts the date from a SAS datetime value as a SAS date value.
	DATEPART('21MAR2012:17:07:00'dt) = 19073 (March 21, 2012)

	TIMEPART(arg)
	Extracts the time portion from a SAS datetime value as a SAS time value.
	TIMEPART("06SEP2012:13:36:33"dt) = 48993 (1:36:33 PM)

Table 5.4: Functions Returning a Time Component and Requiring a SAS Time Value as an Argument

	Function Name
	Explanation
	Example

	HOUR(arg)
	Extracts the hour from a SAS time value.
	HOUR("7:35:00"t) =7

	MINUTE(arg)
	Extracts the minutes from a SAS time value.
	MINUTE("12:17:43 PM"t) = 17

	SECOND(arg)
	Extracts the seconds from a SAS time value.
	SECOND("2:17:43"t) = 43

5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information

5.3.1 Introduction

This series of functions will create SAS date, time, and datetime values from numerical variables or constants. While informats take complete date, time, and datetime references and translate them to their corresponding SAS value, these functions will create a SAS value from discrete pieces such as month, day, and year.

5.3.2 List of Functions and Their Descriptions

DATEJUL(Julian-date);

DATEJUL(Julian-date); creates a SAS date value from a numeric value representing a Julian date. Julian-date must be of the type yy(yy)ddd, where yy(yy) is two or four digits representing the year, and ddd must be a number from 1 to 365 (366 if a leap year). If you use two digits for the year, the YEARCUTOFF= option will be used to determine the century. The following table gives examples of how to apply this function:

	Sample Function Call
	SAS Date Value
	Formatted with MMDDYY10. Format
	Comments

	OPTIONS YEARCUTOFF=1920; DATEJUL(21286)
	–13959
	10/13/1921
	With the YEARCUTOFF value of 1920, the 21 is interpreted as 1921.

	OPTIONS YEARCUTOFF=2000; DATEJUL(21286)
	22566
	10/13/2021
	If YEARCUTOFF is 2000, the 21 is interpreted as 2021.

	DATEJUL(2014174)
	19897
	06/23/2014
	

	DATEJUL(1989005)
	10597
	01/05/1989
	

	DATEJUL(00368)
	.
	.
	368 is not a valid value for a Julian day, so the function returns a missing value.

DHMS(date,hour,minute,second);

DHMS(date,hour,minute,second); creates a SAS datetime value. All four arguments are required. date is a SAS date value, which can be either a numeric value or a date constant. If you use a two-digit year in a date constant, the date will be translated according to the YEARCUTOFF= option. hour, minute, and second are all numeric variables and/or constants. Hour, minute, and second are not restricted to their clock times. Therefore, hour can be greater than 24, while minute and second can be greater than 60. The following table gives examples of how to apply this function:

	Sample Function Call
	Datetime
Value
	Formatted with DATETIME19. Format
	Comments

	DHMS("08JUN2015"d,15,24,0)
	1749396240
	08JUN2015:15:24:00
	

	DHMS("02FEB2014"d,11,54,15)
	1706961255
	02FEB2014:11:54:15
	

	DHMS("30JUN2012"d,8,7,93)
	1656662913
	30JUN1992:08:08:33
	The value 93 is just an argument. The function ultimately returns the datetime value in seconds and the formatted value converts the result. Therefore, 93 seconds becomes 1 minute, 33 seconds, which adds 1 to the minute value of 7, and reduces the seconds to 33.

Example 5.1: Using DHMS() When You Already Have a SAS Date and Time

If you need to create a datetime from a SAS date and a SAS time value, you do not have to use the HOUR(), MINUTE(), and SECOND() functions to extract those components from the time value. Remember that SAS keeps track of time in seconds since midnight and that the seconds argument in the DHMS function can be greater than 59. Therefore, if you supply the SAS time value as the seconds argument and set hour and minute to zeros, that will work just fine. The following example demonstrates:

1 DATA ex5_1;

2 INPUT row $ sasdate :date9. sastime :time8.;

3 result = DHMS(sasdate,0,0,sastime);

4 fmt_result = result;

5 format sasdate date9. sastime timeampm.;

6 DATALINES;

7 A 16oct2015 17:30

8 B 08jun2016 11:00

9 C 14apr2015 00:00

10 ;;;

11 RUN;

12 PROC PRINT DATA=ex5_1 NOOBS LABEL SPLIT='\';

13 ID row;

14 VAR sasdate sastime result fmt_result;

15 FORMAT fmt_result datetime19. sasdate sastime;

16 LABEL row='Row'

17 result = '~{text_align=c}SAS Datetime Value\Calculated
 Using\DHMS(sasdate,0,0,sastime)'

18 fmt_result = "Result Formatted with\DATETIME19. Format";

19 RUN;

The Result

	Row
	sasdate
	sastime
	SAS Datetime Value
Calculated Using
DHMS(sasdate,0,0,sastime)
	Result Formatted with
DATETIME19. Format

	A
	20377
	63000
	1760635800
	16OCT2015:17:30:00

	B
	20613
	39600
	1781002800
	08JUN2016:11:00:00

	C
	20192
	0
	1744588800
	14APR2015:00:00:00

The calculation of the datetime value is done in line 3 of the above program. The formats have been removed from the sasdate and sastime variables in the table for the purpose of illustrating the actual values that are being sent to the function. Row C above has been included to demonstrate that any valid SAS time value will work, even 0 seconds. What good is that? If you need to create a SAS datetime value and you only have a date without a time value, then you can use DHMS(sasdate,0,0,0) to convert your SAS date into a SAS datetime.

HMS(hour,minute,second);

HMS(hour,minute,second); creates a SAS time value. hour, minute, and second are all numeric variables and/or constants. None of the parameters are restricted to their clock times. Therefore, hour can be greater than 24, while minute and second can be greater than 60. All three arguments must be present or you will get a missing value as the result. The following table provides examples:

	Sample Function Call
	Time Value
	Formatted with TIME. Format
	Formatted with TIMEAMPM. Format
	Comments

	HMS(18,0,9)
	64809
	18:00:09
	6:00:09 PM
	

	HMS(7,45,80)
	27980
	7:46:20
	7:46:20 AM
	The time is not displayed as "7:45:80" because the value is returned as the total number of seconds, and the format is applied to that. Neither the TIME. nor the TIMEAMPM. formats display minute or second values greater than 59.

	HMS(15,03,35.56)
	54215.56
	15:03:36
	3:03:36 PM
	

	HMS(8,17,33)
	29853
	8:17:33
	8:17:33 AM
	

	HMS(21,14,28)
	76468
	21:14:28
	9:14:28 PM
	

MDY(month,day,year);

MDY(month,day,year); creates a SAS date value from the arguments. All three arguments are required. month, day, and year are all numeric variables or constants. If year is two digits, the century will be determined by the YEARCUTOFF= option. If a value given for any of the arguments is not valid or missing, such as MDY(2,31,2014) (February 31, 2014), the function will return a missing value and give you an "invalid argument to function" message in the log. The following table shows examples:

	Sample Function Call
	SAS Date Value
	Formatted with WEEKDATE. Format

	MDY(9,3,1876)
	–30434
	Sunday, September 3, 1876

	MDY(12,14,15)
	20436
	Monday, December 14, 2015

	MDY(3,26,1915)
	–16352
	Friday, March 26, 1915

	MDY(5,22,2014)
	19865
	Thursday, May 22, 2014

NWKDOM(n, weekday, month, year);

NWKDOM(n, weekday, month, year); creates a SAS date value for a given weekday in a given week number from a given month and year. All of the arguments are numeric and can be represented by constants or numeric variables. If any of the arguments are missing, or not valid, then the function will return a missing value. n ranges from 1 (first) to 5 (last). Sometimes using the value of 5 will give the same result as 4, if the fourth week of the month is also the last week of the month. weekday ranges from 1 to 7, where 1 represents Sunday, and 7 represents Saturday. month can range from 1 (January) to 12 (December). year represents the year and is subject to the YEARCUTOFF= option if you use two digits for the year.

You can use this function to find dates that are expressed as "The first Saturday in May," or the "last Tuesday in August," easily. The following table provides examples of how this function works.

	Date Description
	Sample Function Call
	SAS Date Value
	Date Formatted using WEEKDATE.

	First Tuesday in November.
	NWKDOM(1,3,11,2014)
	20031
	Tuesday, November 4, 2014

	Second Tuesday in December.
	NWKDOM(2,3,12,2014)
	20066
	Tuesday, December 9, 2014

	Third Wednesday in April.
	NWKDOM(3,4,4,2014)
	19829
	Wednesday, April 16, 2014

	Fourth Sunday in May.
	NWKDOM(4,1,5,2014)
	19868
	Sunday, May 25, 2014

	Last Sunday in May.
	NWKDOM(5,1,5,2014)
	19868
	Sunday, May 25, 2014

	First Sunday in June.
	NWKDOM(1,1,6,2018)
	21338
	Sunday, June 3, 2018

	Second Saturday in December.
	NWKDOM(2,7,12,2018)
	21526
	Saturday, December 8, 2018

	Third Saturday in May.
	NWKDOM(3,7,5,2018)
	21323
	Saturday, May 19, 2018

	Fourth Monday in October.
	NWKDOM(4,2,10,2018)
	21479
	Monday, October 22, 2018

	Last Monday in October.
	NWKDOM(5,2,10,2018)
	21486
	Monday, October 29, 2018

The bolded and italicized text above shows that the last week of the month and the fourth week of the month may or may not produce the same date.

YYQ(year,qtr);

YYQ(year,qtr); creates a SAS date value from the arguments. Both arguments are required. year is a numeric variable or constant representing the year, and qtr is a numeric variable or constant between 1 and 4, representing the quarter of the year. If year is two digits, the century will be determined by the YEARCUTOFF= system option. This function returns the date of the first day of the quarter in the given year. The following table provides examples of how this function works.

	Sample Function Call
	SAS Date Value
	Formatted with mmddyy10. Format
	Comment

	YYQ(2015,1)
	20089
	01/01/2015
	

	YYQ(99,3)
	14426
	07/01/1999
	

	YYQ(25,2)
	–12693
	04/01/1925
	When YEARCUTOFF=1920, 25 translates to 1925 because the range runs from 1920 through 2019.

	YYQ(25,2)
	23832
	04/01/2025
	In SAS 9.4, the YEARCUTOFF= option default is 1926, so the range is now 1926 through 2025, and 25 is now translated as 2025.

	YYQ(2015,2)
	20179
	07/01/2015
	

5.4 Calculating Elapsed Time, and the HOLIDAY() Function

Because SAS uses simple math as the basis for dates and times, you might think that calculating elapsed time or projecting into the future would be easy. It should be a matter of simple addition or subtraction. However, SAS provides several functions that deal with calculating elapsed time, and for the most part the function is going to be more accurate than simple math. For example, one of the mathematical equations for calculating age is (current date–date of birth)/365.25. This approximation uses the .25 to account for leap years, but it fails to take into account the exception for years that are divisible by 100 but not by 400. While you might rarely need such accuracy when calculating elapsed years, the efficiency of a SAS function might speed things perceptibly when working with big data.

5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF()

These two functions were originally developed for use with securities calculations for specific financial instruments.

DATDIF(start,end,basis);

DATDIF(start,end,basis); calculates the number of days between two dates. start is the starting date, which can be a date constant, a numeric variable, or a SAS expression. end is the ending date, also a date constant, a numeric variable, or a SAS expression. basis is a character constant or variable that tells SAS how to calculate the difference. The start and end arguments are required, while basis is optional. basis has two possible values. Note that if you use a character constant for basis, remember that it will need to be enclosed in quotation marks, or you will get an error.

1. '30/360', which sets each month to 30 days, and the year to 360 days, regardless of how many days are in each month or year in the span between the two dates. If a day is at the end of a month (for example, February 28/29 or March 31), it will be considered as the 30th of the month.

2. 'ACT/ACT', which uses the actual number of days in each month and year in the span between the two dates. This is the default, and it is identical to subtracting start from end.

	Sample Function Call
	Result
	Comment

	DATDIF('19JUL2015'd,'19JUL2016'd,'30/360')
	360
	basis is "30/360," indicating a year of 360 days by definition.

	DATDIF('19JUL2015'd,'19JUL2016'd,'ACT/ACT')
	366
	2016 is a leap year, so 366 days have elapsed between July 19, 2015, and July 19, 2016.

YRDIF(start,end,basis);

YRDIF(start,end,basis); calculates the number of years between two dates. It is almost always more accurate than using mathematical approximation, depending on the basis used and the desired result. start is the starting date, which can be a date constant, a numeric variable, or a SAS expression. end is the ending date, also a date constant, a numeric variable, or a SAS expression. basis is a character constant or variable that tells SAS how to calculate the difference. basis has five possible values, as compared with the two possibilities in the DATDIF() function:

1. '30/360', which sets each month to 30 days, and the year to 360 days, regardless of how many days are in each month or year in the span between the two dates. If a day is at the end of a month (for example, February 28/29 or March 31), it will be considered as the 30th of the month.

2. 'ACT/ACT', which uses the actual number of days in each month and year in the span between the two dates. This was the default basis through SAS version 9.2. You can use the alias "Actual," not 'ACT.'

3. 'ACT/360', which uses the actual number of days between the two dates to calculate the number of years, but it uses a 360-day year, regardless of how many days are in each year, so the result is number of days divided by 360.

4. 'ACT/365', which uses the actual number of days between the two dates to calculate the number of years, but uses a 365-day year, regardless of how many days are in each year, so the result is number of days divided by 365.

5. 'AGE', which is used to calculate a person's age. This is available starting with SAS version 9.3, and as of that release, 'AGE' is now the default.

	Sample Function Call
	Resulting value
	Comment

	YRDIF('07AUG1967'd,'24MAY2014'd,'30/360')
	46.797222
	A month is defined as having 30 days, and the year is 360 days long.

	YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/ACT')
	46.794521
	Actual days in a month and actual days in a year are used.

	YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/360')
	47.477778
	Actual number of days in a month are used; year is defined as having 360 days,

	YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/365')
	46.827397
	Actual number of days in a month are used; year is defined as having 365 days

As you can see, all four results are different, and this is due to the way they were calculated. Prior to version 9.3, this function was often used to calculate ages, but even the 'ACT/ACT' basis doesn't calculate ages precisely. The 'ACT/ACT' basis averages leap year days across the four years. Now let's examine the YRDIF function when the 'ACT/ACT' basis and the 'AGE' basis are used.

	Sample Function Call
	Resulting value

	YRDIF('07AUG1967'd,'24MAY2014'd,'ACT/ACT')
	46.794521

	YRDIF('07AUG1967'd,'24MAY2014'd,'AGE')
	46.794521

This looks as if the YRDIF() function will yield the same result for both the 'AGE' basis and the 'ACT/ACT' basis. Where is the difference? Let's look at another series of dates.

	
	Sample Function Call
	Resulting value

	A
	YRDIF('07AUG1968'd,'24MAY2014'd,'ACT/ACT')
	45.79342

	
	YRDIF('07AUG1968'd,'24MAY2014'd,'AGE')
	45.794521

	B
	YRDIF('07AUG1969'd,'24MAY2014'd,'ACT/ACT')
	44.794521

	
	YRDIF('07AUG1969'd,'24MAY2014'd,'AGE')
	44.794521

	C
	YRDIF('07AUG1971'd,'24MAY2014'd,'ACT/ACT')
	42.794521

	
	YRDIF('07AUG1971'd,'24MAY2014'd,'AGE')
	42.794521

	D
	YRDIF('07AUG1972'd,'24MAY2014'd,'ACT/ACT')
	41.79342

	
	YRDIF('07AUG1972'd,'24MAY2014'd,'AGE')
	41.794521

In groupings A and D, you see that the basis makes a difference, while in groupings B and C, the 'ACT/ACT' and 'AGE' return identical results. What makes groupings A and D so different? These are leap years, and the leap day is accounted for as a whole day for that given year, as opposed to the averaging of a quarter day per year performed by the 'ACT/ACT' algorithm.

(U.S. and Canada Only) HOLIDAY(holiday,year);

HOLIDAY(holiday,year); provides the date of selected holidays in any given year as a SAS date value. This function is valid for U.S. and Canada holidays only. holiday can be a character string enclosed in quotation marks or a character variable containing one of the arguments listed below. The valid values of holiday are listed in the table below. Note: If you use a character variable instead of a string, your variable should be at least 18 characters long to accommodate the longest argument.

	Argument Used in Function
	Holiday
	Observed Date

	BOXING
	Boxing Day
	December 26

	CANADA
	Canada Day
	July 1

	CANADAOBSERVED
	Canada Day observed
	July 1, or July 2 if July 1 is a Sunday

	CHRISTMAS
	Christmas
	December 25

	COLUMBUS
	Columbus Day
	2nd Monday in October

	EASTER
	Easter Sunday
	date varies

	FATHERS
	Father's Day
	3rd Sunday in June

	HALLOWEEN
	Halloween
	October 31

	LABOR
	Labor Day
	1st Monday in September

	MLK
	Martin Luther King, Jr. 's birthday
	3rd Monday in January beginning in 1986

	MEMORIAL
	Memorial Day
	last Monday in May (since 1971)

	MOTHERS
	Mother's Day
	2nd Sunday in May

	NEWYEAR
	New Year's Day
	January 1

	THANKSGIVING
	U.S. Thanksgiving Day
	4th Thursday in November

	THANKSGIVINGCANADA
	Canadian Thanksgiving Day
	2nd Monday in October

	USINDEPENDENCE
	U.S. Independence Day
	July 4

	USPRESIDENTS
	Abraham Lincoln's and George Washington's birthdays observed
	3rd Monday in February (since 1971)

	VALENTINES
	Valentine's Day
	February 14

	VETERANS
	Veterans Day
	November 11

	VETERANSUSG
	Veterans Day (U.S. government-observed)
	U.S. government-observed date for Monday–Friday schedule

	VETERANSUSPS
	Veterans Day (U.S. post office observed)
	U.S. government-observed date for Monday–Saturday schedule (U.S. Post Office)

	VICTORIA
	Victoria Day
	Monday on or preceding May 24

	Sample Function Call
	SAS Date Value
	Date Formatted using WEEKDATE.

	HOLIDAY("EASTER",2014)
	19833
	Sunday, April 20, 2014

	HOLIDAY("EASTER",2019)
	21660
	Sunday, April 21, 2019

	HOLIDAY("EASTER",2026)
	24201
	Sunday, April 5, 2026

	HOLIDAY("EASTER",2039)
	28954
	Sunday, April 10, 2039

	HOLIDAY("THANKSGIVINGCANADA",2014)
	20009
	Monday, October 13, 2014

	HOLIDAY("THANKSGIVINGCANADA",2019)
	21836
	Monday, October 14, 2019

	HOLIDAY("THANKSGIVINGCANADA",2026)
	24391
	Monday, October 12, 2026

	HOLIDAY("THANKSGIVINGCANADA",2039)
	29137
	Monday, October 10, 2039

	HOLIDAY("USINDEPENDENCE",2014)
	19908
	Friday, July 4, 2014

	HOLIDAY("USINDEPENDENCE",2019)
	21734
	Thursday, July 4, 2019

	HOLIDAY("USINDEPENDENCE",2026)
	24291
	Saturday, July 4, 2026

	HOLIDAY("USINDEPENDENCE",2039)
	29039
	Monday, July 4, 2039

5.5 The Basics of SAS Intervals

Some of the SAS functions described in section 5.4, such as DATDIF, are very good at calculating the exact amount of elapsed time between two SAS dates, and as demonstrated in some of the above examples, you can see the difference between the function and simple math. There aren't functions to project future dates, because it would seem simple enough: you just add a number of days, hours, or minutes, and you come up with an answer.

However, we frequently need to refer to units of time that are not uniform, such as months, which can be 28, 29, 30, or 31 days long. SAS provides functions to calculate intervals because, in many cases, simple math is still only an approximation. SAS has several standard interval definitions that are used with dates, times, and datetimes that represent many of the normal periods of time that we refer to, such as weeks or quarters. You are not restricted to the intervals given in the standard definitions, because you also have the ability to easily modify them. You can use multipliers and/or a shift index in conjunction with the standard intervals. Multipliers enable you to define intervals that are multiples of a standard interval and are not already defined, such as a decade or a century. A shift index enables you to define intervals that do not correspond with the starting values used by an interval (standard OR with a multiplier), such as a fiscal year that begins in July instead of January, or, to give you an example with a multiplier, a decade that starts in years ending in the number '5,' instead of years ending in 0. Section 5.6 will discuss the concepts of multipliers and the shift index in detail. If you need intervals that cannot be described by using multipliers and/or a shift index with the standard SAS intervals, SAS has the capacity for you to define your own intervals, and this is covered in depth in Section 5.7.

For the remainder of this book, when the term "interval" is used in a function definition, it means a SAS interval name, along with any multiplier and/or shift index unless explicitly specified otherwise. We will begin our discussion of intervals by providing a list of all the standard interval definitions and the periods that they describe in Table 5.5.

Table 5.5 SAS Interval Definitions Used with Dates, Times, and Datetimes

	Category
	Interval Name
	Definition
	Default Starting Point

	Date
	DAY
	Daily intervals
	Each day

	
	WEEK
	Weekly intervals of seven days
	Each Sunday

	
	WEEKDAYdaysW
	Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day work week with a Saturday-Sunday weekend). days identifies the individual numbers of the weekend day(s) by number (1=Sunday … 7=Saturday). By default, days="17," so the default interval is WEEKDAY17W.
	Each day

	
	TENDAY
	Ten-day intervals (a U.S. automobile industry convention)
	1st, 11th, and 21st of each month

	
	SEMIMONTH
	Half-month intervals
	First and sixteenth of each month

	
	MONTH
	Monthly intervals
	First of each month

	
	QTR
	Quarterly (three-month) intervals
	1-Jan
1-Apr
1-Jul
1-Oct

	
	SEMIYEAR
	Semi-annual (six-month) intervals
	1-Jan
1 Jul

	
	YEAR
	Yearly intervals
	1-Jan

	Datetime
	DTDAY
	Daily intervals
	Each day

	
	DTWEEK
	Weekly intervals of seven days
	Each Sunday

	
	DTWEEKDAYdaysW
	Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day work week with a Saturday-Sunday weekend). days identifies the individual weekend days by number (1=Sunday … 7=Saturday). By default, days="17," so the default interval is DTWEEKDAY17W.
	Each day

	
	DTTENDAY
	Ten-day intervals (a U.S. automobile industry convention)
	1st, 11th, and 21st of each month

	
	DTSEMIMONTH
	Half-month intervals
	First and sixteenth of each month

	
	DTMONTH
	Monthly intervals
	First of each month

	
	DTQTR
	Quarterly (three-month) intervals
	1-Jan
1-Apr
1-Jul
1-Oct

	
	DTSEMIYEAR
	Semiannual (six-month) intervals
	1- Jan
1 Jul

	
	DTYEAR
	Yearly intervals
	1-Jan

	
	DTSECOND
	Second intervals
	Seconds

	
	DTMINUTE
	Minute intervals
	Minutes

	
	DTHOUR
	Hour intervals
	Hours

	Time
	SECOND
	Second intervals
	Seconds

	
	MINUTE
	Minute intervals
	Minutes

	
	HOUR
	Hourly intervals
	Hours

5.5.1 The Interval Calculation Functions: INTCK() and INTNX()

The interval calculation functions INTCK() and INTNX() use SAS interval definitions. INTCK() counts the number of intervals between two given dates, times, or datetimes. INTNX() calculates the date, time, or datetime that results after a given number of intervals have been added to an initial date, time, or datetime value.

The syntax for the INTCK function is as follows.

INTCK(interval, start-of-period,end-of-period,method);

interval is the SAS designation for a period of time, and can be a character literal or character variable that corresponds to one of the defined time intervals (see Table 5.5). start-of-period is the beginning date, time, or datetime value, while end-of-period is the ending one. Both start-of-period and end-of-period can be anything that evaluates to a valid SAS date, time, or datetime value.

As of SAS version 9, method determines how SAS is going to count the intervals. There are two possible values: CONTINUOUS (or C or CONT) and DISCRETE or (D or DISC). The default is DISCRETE, and this has been how intervals have traditionally been calculated in SAS. When method is DISCRETE, the INTCK() function is counting the number of times that the period interval begins between start-of-period and end-of-period, inclusive. It does not count the number of complete intervals between start-of-period and end-of-period. This also means that the count does not begin with start-of-period, but at the beginning of the first interval after that. The following example demonstrates how INTCK() counts using the DISCRETE method. For example, take the dates Saturday, December 31, 2011, and Sunday, January 1, 2012.

Example 5.2: How the INTCK() Function Counts by Default (method Is DISCRETE)

	Function Call
	Result

	INTCK('DAY','31dec2011'd,'01jan2012'd);
	1

	INTCK('WEEK','31dec2011'd,'01jan2012'd)
	1

	INTCK('MONTH','31dec2011'd,'01jan2012'd)
	1

	INTCK('YEAR','31dec2011'd,'01jan2012'd)
	1

All of the intervals are equal to 1 even though only one day has passed! January 1, 2012, is the start of day, week, month, and year intervals. The starting day occurred on December 31, and the ending day began on January 1, so it is obvious that the result for the DAY interval should be 1, because the DAY interval boundary was crossed on January 1. However, when it comes to the WEEK interval, Sunday is the beginning of the week. Therefore, the week containing December 31st started on Sunday, December 25. Sunday, January 1, is the beginning of the next week, so you cross the WEEK interval boundary at January 1. This means that one WEEK interval has elapsed between the start of the week in December and the start of the week in January, so that causes the result for WEEK to be 1. Similarly, the month containing December 31 started on December 1, 2011, and the month for January 1, 2012, started on January 1. You are crossing the MONTH interval boundary on January 1, so one MONTH interval has elapsed between the start of the intervals for the two dates, and therefore, that result is 1 as well. Finally, the year for December 31, 2011, started on January 1 of 2011, while the year for January 1, 2012, starts on the same date. You cross the YEAR interval boundary at January 1, which causes the YEAR interval result to be 1. All of the values are equal to 1 because the INTCK() function is counting the DAY, WEEK, MONTH, and YEAR interval boundary, which occurs at Sunday, January 1, 2012, and not because of the number of days, weeks, months, or years that have passed.

Now let's look at the corresponding results when you use CONTINUOUS for the method.

Example 5.3: How the INTCK() Function Counts When method Is CONTINUOUS

	Function Call
	Result

	INTCK('DAY','31dec2011'd,'01jan2012'd,'C');
	1

	INTCK('WEEK','31dec2011'd,'01jan2012'd,'C')
	0

	INTCK('MONTH','31dec2011'd,'01jan2012'd,'C'
	0

	INTCK('YEAR','31dec2011'd,'01jan2012'd,'C')
	0

One day has passed, as in the DISCRETE example. However, this looks more like what you might expect when you ask how many weeks, months, and years have passed between December 31, 2011, and January 1, 2012. Only one day has passed, not an entire week, month, or year. The CONTINUOUS method calculates continuous time, and it uses the calendar definition of a week, month, or year, starting on the date supplied as the first argument. Let's change the ending dates appropriately to reproduce the results in Example 5.2.

Example 5.4: How the INTCK() Function Counts When method Is CONTINUOUS

	Function Call
	Result
	Days Elapsed

	INTCK('DAY','31dec2011'd,'01jan2012'd,'C');
	1
	1

	INTCK('WEEK','31dec2011'd,'07jan2012'd,'C')
	1
	7

	INTCK('MONTH','31dec2011'd,'31jan2012'd,'C'
	1
	31

	INTCK('YEAR','31dec2011'd,'31dec2012'd,'C')
	1
	366

Now the picture should be a little more clear that using CONTINUOUS causes the INTCK() function to look at continuous elapsed time, not interval boundaries. To firm up this demonstration of the CONTINUOUS method for the INTCK() function, let's look at how the definition of the MONTH interval can change.

Example 5.5: How the INTCK() Function Counts When method Is CONTINUOUS

	
	Function Call
	Result
	Days Elapsed

	A
	INTCK('MONTH','01jan2012'd,'01feb2012'd,'C');
	1
	31

	B
	INTCK('MONTH','01jan2012'd,'31jan2012'd,'C');
	0
	30

	C
	INTCK('MONTH','01apr2012'd,'01may2012'd,'C');
	1
	30

	D
	INTCK('MONTH','28feb2012'd,'28mar2012'd,'C');
	1
	29

	E
	INTCK('MONTH','29feb2012'd,'28mar2012'd,'C');
	0
	28

	F
	INTCK('MONTH','28feb2013'd,'28mar2013'd,'C');
	1
	28

Rows A and B look normal: 31 days is a month, while 30 days is not a month. However, row C states that 30 days is a month. This is only true for the months of April, June, September, and November. Finally, rows D through F demonstrate that, when you are using the CONTINUOUS method, the MONTH interval changes based on the month and the year. In leap years, a period of 29 days across February is considered a month (row D). However, a period of 28 days is not considered a month in leap years (row E). On the other hand, if it is not a leap year, 28 days in February is a month.

The CONTINUOUS method is useful for calculating anniversaries and milestones tied to dates, times, and datetimes. Although this method seems much more intuitive than the traditional (and still default) way that SAS handles intervals, you will have to be very cautious in choosing which method you use and when. It is not recommended that you replace all of your existing code to use this method instead of the default, because the two methods differ in their definition of interval boundaries. The CONTINUOUS method shifts the interval by the starting date provided. With the DISCRETE method, all values within an interval boundary are considered to be equivalent. That makes it possible to group observations occurring within an interval for analysis.

Since the CONTINUOUS method is more intuitive to the way we tend to look at periods of time, the remainder of this section on the INTCK() function will be devoted to the traditional DISCRETE method. Please remember that the DISCRETE method is the default, and in order to use the CONTINUOUS method, you will have to supply the proper method argument in the INTCK() function. All of the following examples rely on the default method, so there is no method argument used in the function calls.

To complete the picture of how the traditional use of the INTCK() function works, let's look at the effect that the ending date has on INTCK().

Example 5.6: How the INTCK() Function Counts

	Function Call
	Result

	INTCK('DAY','31dec2014'd,'06jan2015'd);
	6

	INTCK('WEEK','31dec2014'd,'06jan2015'd)
	1

	INTCK('MONTH','31dec2014'd,'06jan2015'd
	1

	INTCK('YEAR','31dec2014'd,'06jan2015'd)
	1

Here you can see that although 6 days have elapsed, still only 1 week, month, and year have elapsed according to INTCK()! That is because the start of the week, month, and year interval for January 6, 2015, is still January 1, 2015, and that is what INTCK() is counting. Here are some more examples of the use of the INTCK() function with its default of the DISCRETE method.

Example 5.7: The INTCK Function: The Basics

	Function Call
	Result

	INTCK('DAY','15jun2013'd,'22jun2013'd);
	7

	INTCK('WEEK','01jan2016'd,'01jan2017'd);
	53

	INTCK('DTDAY','01oct1872:08:00:00'dt,'20dec1872:18:00:00'dt);
	80

	INTCK('MONTH','05mar2000'd,'01may2000'd);
	2

Example 5.8: The INTCK Function: Counting Backward

	Function Call
	Result

	INTCK('YEAR','22dec2015'd,'16jul2010'd);
	-5

In this example, the from date is after the to date, and therefore, the answer is negative. Since INTCK() counts interval boundaries, the answer is –5 because it starts counting at the start of a year. The start of the year interval for December 22, 2015, is January 1, 2015, so it is not counted. January 1, 2014; January 1, 2013; January 1, 2012; January 1, 2011; and January 1, 2010, are the boundaries of the YEAR intervals that it is counting, which corresponds to the beginning dates of each year.

Example 5.9: The INTCK Function: Counting Weekdays

	
	Function Call
	Result

	A
	INTCK('WEEKDAY17W','12JAN2014'd,'14JAN2014'd);
	2

	B
	INTCK('WEEKDAY17W','13JAN2014'd,'14JAN2014'd);
	1

	C
	INTCK('WEEKDAY17W','17JAN2014'd,'18JAN2014'd);
	0

If you are counting the number of work weekdays that have elapsed, you must be careful to remember that INTCK() counts interval boundaries and that the starting date is not counted in the answer. Row A above seems perfectly reasonable. You would expect that there would be two weekdays between Sunday, January 12, 2014, and Tuesday, January 14, 2014. Even though the starting boundary for WEEKDAY17W is Monday, the starting date is Sunday, January 12, 2014, so it counts Monday and Tuesday. However, you might think that there are two weekdays in the span Monday, January 13, 2014, to Tuesday, January 14, 2014. In row B, the INTCK() function is counting only 1 weekday, because it doesn't include Monday, January 13, 2014 (the start argument used in the function), when it counts the interval boundaries. Why is row C equal to zero then? First, Friday is the starting day, and the starting day is never included in the count. January 18, 2014, is a Saturday, and since we've defined the weekend days as Saturday and Sunday, those days are outside of any interval boundaries, so by definition, no interval boundaries have been passed.

Example 5.10 illustrates the difference between the three methods that have been discussed for calculating elapsed years using SAS. We will use the YRDIF() function using both the 'AGE' basis and 'ACT/ACT' basis. Since the INTCK() function also counts elapsed intervals, we will use it and show both the DISCRETE and CONTINUOUS methods, and compare those with mathematical estimation.

Example 5.10: The YRDIF() Function as Opposed to Mathematical Estimation and INTCK()

This uses the same dates, August 7, 1963, and May 8, 2014, for all five methods, but row A uses the YRDIF() function with 'ACT/ACT,' row B uses the same function, but with the 'AGE' basis. The two values are equivalent with the YRDIF() function, but as we have seen earlier, 'AGE' and 'ACT/ACT' only yield different results when the year being tested is a leap year. The mathematical approximation divides the number of days between the two dates by 365.25, and although the discrepancy is minute in this example, the difference is caused by the fact that the number of leap years in the period (11) is not evenly divisible by 4, rendering the value 365.25 an approximation. The INTCK function using the DISCRETE method counts interval boundaries from their beginning, so it is counting the number of January firsts between January 1, 1963, and January 1, 2015. In effect, unless you were born on January 1, using the DISCRETE method with INTCK() to calculate your age will make you old before your time! It is more appropriate in this type of scenario to use the CONTINUOUS method with the INTCK() function, which yields the answer 50 years old.

	
	Calculation method
	Result

	A
	Using YRDIF() with actual days in month, actual year
	50.750685

	B
	Using YRDIF() with AGE basis
	50.750685

	C
	Using ('08may2014'd - '07aug1963'd)/365.25
	50.75154

	D
	Using INTCK('YEAR','07aug1963'd,'08may2014'd,'DISCRETE')
	51

	E
	Using INTCK('YEAR','07aug1963'd,'08may2014'd,'CONTINUOUS')
	50

Those are some examples of the use of the INTCK() function. Remember, as of SAS version 9, the INTCK() function has an additional argument that you can use to change the way that INTCK counts interval boundaries. However, any existing code using INTCK() does not need to be changed, because the default method is the 'DISCRETE' method, which is how INTCK() has always worked. Once again, it is not a good idea to change existing code without considering how INTCK is being used, because the methods differ significantly in their calculations.

The next of the interval functions that we will consider is the INTNX() function. This function takes a given SAS date, time, or datetime value and calculates a new value by incrementing by the given number of intervals. Where INTCK() calculates the number of intervals between any two date, time, or datetime values, INTNX() takes the start of the period and increments it by a number of intervals to give the end of the period. The syntax of the INTNX() function is as follows:

INTNX(interval,start-from,number-of-increments,alignment);

INTNX(interval,start-from,number-of-increments,alignment); is one of the SAS intervals defined in Table 5.5 and can be a character literal or character variable that evaluates to one of the defined intervals. start-from is the starting date, time, or datetime value, which can be a constant, numeric variable, or a SAS expression. number-of-increments is an integer constant or a numeric variable that indicates how many intervals to advance. If it is not an integer, only the integer portion of the value will be used. alignment sets the returned date, time, or datetime value according to one of four predefined settings. The function calculates the dates at the beginning of the interval period, and then the alignment argument adjusts the result. The values are: Beginning or B, Middle or M, End or E, and Same or S (Sameday is also acceptable as an alias). The default value for alignment is Beginning. The Sameday argument cannot be used with the DTQTR, DTSEMIYEAR, or DTYEAR intervals, and it has no effect on time values.

The next series of examples demonstrates various uses and effects of the INTNX() function. The first example is the default use of the function with each of the date, time, and datetime intervals, while the second shows what happens when you use a non-integer as the increment to the function. Example 5.14 illustrates the use of the alignment arguments to yield specific dates.

Example 5.11: The INTNX() Function with Default Alignment

Each of the examples below increments the date, time, or datetime value by 3 of the interval shown in bold italics. For dates and datetimes, the start date is the same: Thursday, November 6, 2014. The only difference is that datetime intervals (interval names starting with DT) return datetime values, not dates. The interval values for datetime values are calculated in seconds, not days. By default, the INTNX() function returns the beginning of the interval given. If you want to change this, use the alignment argument discussed above.

	Function Call
	Result
	Comment

	INTNX('DAY','06NOV2014'd,3)
	November 9, 2014
	

	INTNX('DTDAY','06NOV2014:15:00:00'dt,3)
	11/9/2014 12:00 AM
	The time returned is midnight of 11/09/2014, not 3 p.m.

	INTNX('WEEKDAY17W','06NOV2014'd,3)
	November 11, 2014
	The returned date is the following Tuesday. Saturday (7) and Sunday (1) don't count since they are defined as the weekend days.

	INTNX('DTWEEKDAY17W','06NOV2014:15:00:00'dt,3)
	11/11/2014 12:00 AM
	

	INTNX('WEEK','06NOV2014'd,3)
	November 23, 2014
	The value returned is the Sunday of the week, not 21 calendar days.

	INTNX('DTWEEK','06NOV2014:15:00:00'dt,3)
	11/23/2014 12:00 AM
	

	INTNX('TENDAY','06NOV2014'd,3)
	December 1, 2014
	The value returned is the first of the month, 25 calendar days, not 30. This interval will always return either the 1st, 11th, or 21st of the month.

	INTNX('DTTENDAY','06NOV2014:15:00:00'dt,3)
	12/1/2014 12:00 AM
	

	INTNX('SEMIMONTH','06NOV2014'd,3)
	December 16, 2014
	Although November has 30 days, the returned date is the 16th, not 45 calendar days, which would be the 21st.

	INTNX('DTSEMIMONTH','06NOV2014:15:00:00'dt,3)
	12/16/2014 12:00 AM
	

	INTNX('MONTH','06NOV2014'd,3)
	February 1, 2015
	The date returned is the beginning of the following month, not the same date. To get the same date, use the "S" (Sameday) alignment argument.

	INTNX('DTMONTH','06NOV2014:15:00:00'dt,3)
	2/1/2015 12:00 AM
	

	INTNX('QTR','06NOV2014'd,3)
	July 1, 2015
	The first day of the quarter is returned.

	INTNX('DTQTR','06NOV2014:15:00:00'dt,3)
	7/1/2015 12:00 AM
	

	INTNX('SEMIYEAR','06NOV2014'd,3)
	January 1, 2016
	The beginning of the 3rd semi-year after 11/02/2014 is January 1, 2016.

	INTNX('DTSEMIYEAR','06NOV2014:15:00:00'dt,3)
	1/1/2016 12:00 AM
	

	INTNX('YEAR','06NOV2014'd,3)
	January 1, 2017
	The beginning of the 3rd year after 11/02/2014 is January 1, 2017.

	INTNX('DTYEAR','06NOV2014:15:00:00'dt,3)
	1/1/2017 12:00 AM
	

	INTNX('SECOND','8:00:00 AM't,3)
	8:00:03 AM
	

	INTNX('MINUTE','8:00:00 AM't,3)
	8:03:00 AM
	

	INTNX('HOUR','8:00:00 AM't,3)
	11:00:00 AM
	

Example 5.12: The INTNX() Function: Using Non-Integer Increments

	INTNX('HOUR','16:45't,2.5)
	06:00 PM (18:00)

When the number of increments argument is not an integer, SAS will take the integer part as the value. In this case, 2.5 becomes 2. The beginning of the first hour increment is 17:00, and the second is 18:00. Since alignment is the default value of B or beginning, that sets the answer to the beginning of the hour, which gives the result of 18:00.

Example 5.13: Counting Backward with the INTNX() Function

	INTNX('DAY','29NOV2014'd,-4)
	25NOV2014

INTNX() always adds the number of intervals to the starting date, time, or datetime. If you want to find a prior date, then use a negative increment.

Example 5.14: The INTNX() Function with Alignment Arguments

	INTNX Call
	Date
	Comment

	INTNX('WEEK','02NOV2014'd,3,'B')
	11/23/2014
	Beginning of the week interval. Sunday, November 23, 2014

	INTNX('WEEK','02NOV2014'd,3,'M')
	11/26/2014
	Middle of the week interval. Wednesday, November 26, 2014

	INTNX('WEEK','02NOV2014'd,3,'E')
	11/29/2014
	End of the week interval. Saturday, November 29, 2014

	INTNX('WEEK','02NOV2014'd,3,'S')
	11/23/2014
	Same day, so the week interval ends on the same day of the week (Sunday), leaving the duration at 21 days. Sunday, November 23, 2014

Although the alignment arguments do change the value returned by the INTNX() function, it must be reiterated that the function performs the calculation based on the beginning of the interval, and the adjustment to the final result only occurs after that first calculation has been done.

5.6 Modifying SAS Intervals

The default SAS intervals don't match every situation. However, there are two ways to customize SAS intervals: You can modify the existing SAS intervals with multipliers and a shift index, or you can create your own intervals from a SAS data set. This section will discuss multipliers and the shift index. Section 5.7 will discuss creating your own intervals.

The interval function INTCK(interval,start-of-period,end-of-period,method) counts the number of intervals between two given SAS dates, times, or datetimes, while the INTNX(interval,start-from,number-of-increments,alignment) function advances a given date, time, or datetime by a specified number of intervals. Both functions use the standard SAS interval definitions. (See Table 5.6, below.) With the DISCRETE method, the INTCK() function counts at the starting point of a given interval, while the CONTINUOUS method adjusts the starting point of the interval based on the starting date and counts from there. Each method has its merits, and which one you use will depend on your analysis or reporting needs.

The INTNX() function always advances to the beginning of the given interval. The alignment argument available with INTNX() will adjust the result to the middle, end, or the same day of the interval. Nonetheless, the intervals are still measured from their starting point, and the adjustment is only applied after INTNX() has moved the specified number of intervals.

This behavior can lead to problems when your definition of an interval doesn't exactly match the standard SAS definition of that same interval. For example, the standard SAS definition of year has the first day of the year defined as starting January 1. What happens if your fiscal year starts on July 1, and that is how you want to measure your year? What if your semi-month period is truly 14 days long?

A shift index and interval multipliers enable you to do this. You have the ability to define the start of an interval definition by adding a shift index to it. The shift index defines the number of shift points to move the start of the interval. There is one restriction on the value of the shift index: It must be less than the number of shift points within the interval. For example, you can shift the start of a YEAR interval by up to 12 months, but not 13, as there are only 12 months in a year. This makes sense as if you were to shift a year by 13 months, you have shifted into the next YEAR interval, and this is much less intuitive than adding 1 year to the starting date(s) that you send to the interval function.

Table 5.6 shows the SAS interval name, definition, and the shift increment period for each one.

Table 5.6: SAS Intervals and Their Shift Points

	Category
	Interval
	Definition
	Shift Point

	Date
	DAY
	Daily intervals
	Days

	
	WEEK
	Weekly intervals of seven days
	Days

	
	WEEKDAY<daysW>
	Daily intervals with Friday-Saturday-Sunday counted as the same day. days identifies the individual weekend days by number (1=Sunday … 7=Saturday). By default, days="17," so the default interval is WEEKDAY17W.
	Days

	
	TENDAY
	Ten-day intervals
	Ten-day periods

	
	SEMIMONTH
	Half-month intervals
	Semimonthly periods

	
	MONTH
	Monthly intervals
	Months

	
	QTR
	Quarterly (three-month) intervals
	Months

	
	SEMIYEAR
	Semi-annual (six-month) intervals
	Months

	
	YEAR
	Yearly intervals
	Months

	Datetime
	DTDAY
	Daily intervals
	Days

	
	DTWEEK
	Weekly intervals of seven days
	Days

	
	DTWEEKDAY<daysW>
	Daily intervals with Friday-Saturday-Sunday counted as the same day. days identifies the individual weekend days by number (1=Sunday … 7=Saturday). By default, days="17," so the default interval is DTWEEKDAY17W.
	Days

	
	DTTENDAY
	Ten-day intervals
	Ten-day periods

	
	DTSEMIMONTH
	Half-month intervals
	Semimonthly periods

	
	DTMONTH
	Monthly intervals
	Months

	
	DTQTR
	Quarterly (three-month) intervals
	Months

	
	DTSEMIYEAR
	Semiannual (six-month) intervals
	Months

	
	DTYEAR
	Yearly intervals
	Months

	
	DTSECOND
	Second intervals
	Seconds

	
	DTMINUTE
	Minute intervals
	Minutes

	
	DTHOUR
	Hour intervals
	Hours

	Time
	SECOND
	Second intervals
	Seconds

	
	MINUTE
	Minute intervals
	Minutes

	
	HOUR
	Hourly intervals
	Hours

For our first example, let's use the standard case of a fiscal year that starts on July 1. Technically, a shift index says that you are moving the start of the interval to the beginning of one of the subperiods within that interval. Years are subdivided into months, so that is the shift unit. The start point is always included in the count of subperiods to be shifted. The easiest way for me to remember this is that shifting an interval by one subperiod is the same as the unshifted base interval. Think of this another way: while the start of the year is January 1, the beginning of the first month in the year is also January 1. If we use a shift index of 1 with our YEAR interval, we are shifting to the beginning of the first month in the year.

Therefore, in order to move your YEAR interval by seven months, you need to move it to the beginning of the seventh subperiod. (January 1, February 1, March 1, April 1, May 1, June 1, July 1—that's seven). The shift value is added to the interval name by appending it with a decimal point.

Therefore, in order to advance the start of the YEAR interval by seven months to July 1, you would use the interval "YEAR.7," as illustrated by the following:

Example 5.15: Moving the Start of a Year Interval from January 1 to July 1

	
	Sample Function Call
	Result

	A
	INTCK('YEAR','01jan2013'd,'06jul2014'd,'DISCRETE');
	1

	B
	INTCK('YEAR','01jan2013'd,'06jul2014'd,'CONTINUOUS');
	1

	C
	INTCK('YEAR.7','01jan2013'd,'06jul2014'd,'DISCRETE');
	2

	D
	INTCK('YEAR.7','01jan2013'd,'06jul2014'd,'CONTINUOUS');
	1

INTCK() counts the start of interval boundaries with the DISCRETE method (rows A and C). When the interval is "YEAR," it is measuring from January 1, 2013, until January 1, 2014 (the start of the year containing July 6, 2014). When the interval is "YEAR.7," you have shifted the beginning of the YEAR interval by 7 months, which declares that the year starts on July 1. In the example above, that shift causes the measurement to begin on July 1, 2012 (the start of the shifted "year" containing January 1, 2013) and end on July 1, 2014, which is the start of the year containing July 6, 2004. That is why the value returned in row C is 2, not 1. With the CONTINUOUS method, the shifted year starts on July 1, 2013, so the start date is before the start of the measurement. Therefore, the only interval boundary crossed is on July 1, 2014, so the answer in row D is 1.

While a shift index enables you to move the starting point of any given SAS interval, an interval multiplier enables you to define the length of your own intervals. You define your new interval by applying a multiplier value to an interval. For example, if you want to measure biweekly (14-day) periods, you would take the WEEK interval and multiply it by 2. You add the numeric multiplier to the end of the SAS interval name, so in this case your interval name would be "WEEK2." It measures 14-day periods starting on Sunday because the regular SAS interval WEEK starts on Sunday. Example 5.16 demonstrates the creation and use of a custom interval, by using the example of a multiplier of 2 for the WEEK interval. It also illustrates some of the features of custom intervals.

Example 5.16: Using an Interval Multiplier to Create a Custom Interval

	Sample Function Call
	Result

	INTNX('WEEK','09feb2014'd,2,'S');
	Sunday, February 23, 2014

	INTNX('WEEK2','09feb2014'd,2,'S');
	Sunday, March 9, 2014

In the above example, the start of the WEEK interval two weeks from February 9 is February 23, so it makes sense that the start of the second biweekly period from February 9 is March 9, because February 2014 has 28 days, which is the same as two of your WEEK2 intervals. This is not as simple as it seems. When using SAS intervals with the INTNX() function, you must keep in mind that intervals are always measured from the beginning of the starting interval to the beginning of the ending interval. This is independent of the starting and ending dates that you supply. Let's move the starting date in Example 5.16 backward by one week to February 2, 2014.

	
	Sample Function Call
	Result

	1
	INTNX('WEEK','02feb2014'd,2,'S');
	Sunday, February 16, 2014

	2
	INTNX('WEEK2','02feb2014'd,2,'S');
	Sunday, February 23, 2014

Advancing by two WEEKS (row 1) is still a difference of 14 days, as expected. What happened in row 2? Shouldn't you get 28 days instead of 21? No, because the start of the WEEK2 interval containing February 2, 2014, is January 24, 2014, and that is where the INTNX() function begins its count. Here is a sample program to produce the starting dates of the intervals:

Example 5.17: WEEK2 Intervals from January 1, 2014

DATA tricky;

DO intervals= 0 TO 5;

 interval_start = INTNX('WEEK2','01jan2014'd,intervals);

 OUTPUT;

END;

RUN;

PROC REPORT DATA=tricky NOWD SPLIT='\';

COLUMNS intervals interval_start;

DEFINE intervals / DISPLAY "Number of WEEK2\intervals from\January 1, 2014"
 STYLE={CELLWIDTH=1.25in TEXT_ALIGN=C};

DEFINE interval_start / FORMAT=weekdate32. "Starting Date of Interval";

RUN;

The above program creates a table that shows the starting dates for the first five WEEK2 intervals of 2014. If the date(s) supplied fall between the starting dates of any two boundaries, the interval count (or incrementing) will begin from the starting date of the previous interval. This is why moving the starting date of the INTNX function by one week doesn't necessarily move the result by one week. You can move up to 14 days within a WEEK2 interval before you change the interval boundary.

	Number of WEEK2
intervals from
January 1, 2014
	Starting Date of Interval

	0
	Sunday, December 29, 2013

	1
	Sunday, January 12, 2014

	2
	Sunday, January 26, 2014

	3
	Sunday, February 9, 2014

	4
	Sunday, February 23, 2014

	5
	Sunday, March 9, 2014

How does SAS determine what the starting date of a given interval is if you use a multiplier? It takes the multiplied interval that you've created and starts counting beginning with January 1, 1960. This is true for all multiplied intervals except multiplied WEEK intervals. Multiplied WEEK intervals are counted starting from Sunday, December 27, 1959, because weeks are defined as starting on Sundays, and January 1, 1960, was a Friday.

You can also use a multiplier and a shift indicator together if needed. Interval multipliers are directly appended to the interval name (for example, WEEK2), and shift indicators are appended to the interval name with a leading decimal point (for example, WEEK.5). To use both the multiplier and a shift index, you first append the multiplier to the interval name to create a new interval name (for example, WEEK2), and then you append the shift indicator to the interval name. Given a multiplier of 2, and a shift of 5, the interval name becomes "WEEK2.5." Again, you cannot use a shift index that is greater than the number of shift points in the interval. In the case of a WEEK2 interval, you would not be able to use a shift index greater than 14, as that would place the starting point of your interval into the next WEEK2 interval. In that case, it would be more intuitive to change the starting date(s) that you will supply to the interval function.

To demonstrate, let's expand on the scenario used in example 5.17. What if you wanted your biweekly periods to start on January 1, 2014? January 1, 2014, was a Wednesday, so you want to move the starting date to the fourth day of the week (Sunday=1, therefore, Wednesday=4). Now we'll generate the same table as above, using a shift indicator of 4 days in addition to the biweekly interval of WEEK2.

Example 5.18: Using Both an Interval Multiplier and Shift Index to Create a Custom Interval

DATA tricky;

DO intervals= 0 TO 5;

 plain_interval_start = INTNX('WEEK2','01jan2014'd,intervals);

 shifted_interval_start = INTNX('WEEK2.4','01jan2014'd,intervals);

 OUTPUT;

END;

RUN;

PROC REPORT DATA=tricky NOWD SPLIT='\';

COLUMNS intervals plain_interval_start shifted_interval_start;

DEFINE intervals / "Number of WEEK2\intervals from\January 1, 2014"

 STYLE={CELLWIDTH=1.25in TEXT_ALIGN=C} DISPLAY;

DEFINE plain_interval_start /. "Starting Date of WEEK2 Interval"

 FORMAT=weekdate32.;

DEFINE shifted_interval_start / "Starting Date of WEEK2.4 Interval"

 FORMAT=weekdate32.;

RUN;

	Number of WEEK2
Intervals from
January 1, 2014
	Starting Date of WEEK2 Interval
	Starting Date of WEEK2.4 Interval

	0
	Sunday, December 29, 2013
	Wednesday, January 1, 2014

	1
	Sunday, January 12, 2014
	Wednesday, January 15, 2014

	2
	Sunday, January 26, 2014
	Wednesday, January 29, 2014

	3
	Sunday, February 9, 2014
	Wednesday, February 12, 2014

	4
	Sunday, February 23, 2014
	Wednesday, February 26, 2014

	5
	Sunday, March 9, 2014
	Wednesday, March 12, 2014

When you use a multiplier, you also have the ability to define your shifts within the entire interval created by the multiplier. For example, let's create a decade interval by using YEAR10 as the interval. Remember that intervals start at the beginning of the boundary, so the decades would start at the beginning of the first year of the decade. What can you do if you want to define the decade as starting in May of the middle year in the decade (for example, May of 1955 as opposed to January of 1950)?

To shift intervals across years, you need to use the first nested interval within the YEAR interval, which is MONTH. So you would use (number of years to shift*12) to calculate the number of months that you need to shift. If you wanted to shift 5 years, you would use 5*12=60. Add 5 to that, which shifts the starting month from January to May, and your interval definition is now YEAR10.65. That would be decades starting in May of years that end in 5. The code below shows the effect of moving the interval by 65 months.

Example 5.19: Shifting a Multiplied Interval

DATA tricky3;

DO intervals= 0 TO 7;

 plain_interval_start = INTNX('YEAR10','01sep1950'd,intervals);

 shifted_interval_start =
INTNX('YEAR10.65','01sep1950'd,intervals);

 OUTPUT;

END;

RUN;

ods rtf file="c:\book\2ndEd\examples\ex5.6.5.rtf";

PROC REPORT DATA=tricky3 NOWD SPLIT='\';

COLUMNS intervals plain_interval_start shifted_interval_start;

DEFINE intervals / DISPLAY "Number of\intervals from\September 1, 1950"

 STYLE={CELLWIDTH=1in TEXT_ALIGN=C};

DEFINE plain_interval_start / FORMAT=weekdate32.

 "Starting Date of YEAR10 Interval";

DEFINE shifted_interval_start / FORMAT=weekdate32.

 "Starting Date of Shifted YEAR10 Interval";

RUN;

	Number of
Intervals from
September 1, 1950
	Starting Date of YEAR10 Interval
	Starting Date of Shifted YEAR10 Interval

	0
	Sunday, January 1, 1950
	Tuesday, May 1, 1945

	1
	Friday, January 1, 1960
	Sunday, May 1, 1955

	2
	Thursday, January 1, 1970
	Saturday, May 1, 1965

	3
	Tuesday, January 1, 1980
	Thursday, May 1, 1975

	4
	Monday, January 1, 1990
	Wednesday, May 1, 1985

	5
	Saturday, January 1, 2000
	Monday, May 1, 1995

	6
	Friday, January 1, 2010
	Sunday, May 1, 2005

	7
	Wednesday, January 1, 2020
	Friday, May 1, 2015

The first thing to note is that even though the date that we specified is September 1, the starting date of the interval is January 1, because that is the start of the YEAR interval. In the second column, you can see that the interval has been shifted. Even though the starting date of the YEAR10. interval is January 1, 1950, the shifted interval itself starts on Tuesday, May 1, 1945 (bold italics added), not May 1, 1955. Why? Because it is the start of the interval that contains January 1, 1950.

The next example will demonstrate the importance of making sure that you use the correct shift index and that you have to be aware of the starting date and/or datetime for your shifted, multiplied interval.

Example 5.20: The Interaction between the Starting Date and the Interval Starting Point: The "Working Shift" Interval

A company has a 24-hour production cycle that consists of three 8-hour working shifts per day. It is easy to create an interval that represents each shift by using HOUR8 as your base interval, but shifts do not start at midnight, 8 a.m., and 4 p.m., which would be the default for the HOUR8 interval. The table below shows when the HOUR8 interval starts based on the default.

	Function Call
	Starting Time

	INTNX('HOUR8','00:00't,0)
	12:00:00 AM

	INTNX('HOUR8','00:00't,1)
	8:00:00 AM

	INTNX('HOUR8','00:00't,2)
	4:00:00 PM

However, in this case, the actual shifts start at 6 a.m., 2 p.m., and 10 p.m., so we will need to use a shift index to align our HOUR8 interval with the actual shift hours. It is important to remember that when you are shifting intervals, a shift index of 1 moves the start of the interval to the start of the first subperiod within the interval—which is always the same as the start of the unshifted interval. Look at the following table, which will tell us what interval shift will give us the starting point at 6 a.m.

	Function Call
	Interval Name
	Starting Time
	Comment

	INTNX('HOUR8','6:00't,0);
	HOUR8
	12:00 AM
	

	INTNX(HOUR8.1,'6:00't,0)
	HOUR8.1
	12:00 AM
	Same as HOUR8 interval.

	INTNX(HOUR8.2,'6:00't,0)
	HOUR8.2
	1:00 AM
	

	INTNX(HOUR8.3,'6:00't,0)
	HOUR8.3
	2:00 AM
	

	INTNX(HOUR8.4,'6:00't,0)
	HOUR8.4
	3:00 AM
	

	INTNX(HOUR8.5,'6:00't,0)
	HOUR8.5
	4:00 AM
	

	INTNX(HOUR8.6,'6:00't,0)
	HOUR8.6
	5:00 AM
	

	INTNX(HOUR8.7,'6:00't,0)
	HOUR8.7
	6:00 AM
	This is what we want.

Notice that in the above table, we've used 6 a.m. as our reference time in the INTNX() function call, and we get the starting point of the interval by adding 0 intervals to our reference point. This method works for finding the starting point of any interval in relation to the reference point. Now we'll repeat our first table, showing the starting points for a 24-hour period starting at 6 a.m., with our HOUR8.7 interval to demonstrate that everything is correct.

	Function Call
	Starting Time

	INTNX('HOUR8.7','06:00't,0)
	6:00:00 AM

	INTNX('HOUR8.7','06:00't,1)
	2:00:00 PM

	INTNX('HOUR8.7','06:00't,2)
	10:00:00 PM

Although it might seem odd that a shift index of 7 is needed to get a change of 6 hours, you must remember that the shift index is the number of subperiods within the interval to move. The shift is always to the beginning of each subperiod within the interval. Therefore, the first subperiod within an interval always starts at the beginning of the interval. In this case, the HOUR8 interval starts at midnight, and the first hour within the HOUR8 interval also starts at midnight. That is why the shift index necessary is 7, not 6.

In summary, the most important thing to remember about using intervals, multipliers, and the shift index is that all intervals, no matter how they are defined, are measured from their beginning. If you are using the INTCK() function, the definition of "beginning" is dependent upon the method that you use, DISCRETE or CONTINUOUS. With DISCRETE, it is considered to be the beginning of the interval boundary, but with CONTINUOUS, beginning is defined based on the start date provided. The INTNX() function measures the beginning from the interval boundary; if it is easier to think of INTNX as always using the DISCRETE method, then you can do that. However, remember that the alignment arguments "B", "M", "E", and "S" for the INTNX() function do not adjust the date until after the function has executed and calculated its start-of-interval result (also remember that the alignment arguments only work with the INTNX() function). No matter what, you can use the interval multipliers and a shift index to move the starting point of an interval, and you can use them anywhere that you can use a date, time, or datetime interval.

5.7 Creating Your Own SAS Intervals

Another way to create intervals for use with interval functions is by creating a SAS data set that defines the boundaries of your interval. This data set defines the duration of periods within the interval and the period across which the interval applies as well, which is an important concept that will be discussed when it comes to errors with using user-defined intervals. User-defined intervals enable you to create intervals that do not correspond with shifted and/or multiplied SAS intervals, such as intervals with irregular boundaries, those that do not encompass an entire predefined SAS interval, or intervals that are specific to your job, company, or industry. However, if you needed to count working shifts in a situation where there are two 10-hour work shifts per day with a four-hour break in-between while the machinery resets, you could not do it by using multipliers and a shift index.

You can also redefine an interval. For example, the shift point for a day is the day; what happens if you want your "day" to start at 6 a.m. instead of midnight? DTHOUR24.7 would create an interval that runs 24 hours starting at 6 a.m. (See example 5.20, which does the same for an HOUR8 interval. The only difference is that there are 24-hour-long subperiods in a DTHOUR24 interval.) Unfortunately, the original question was to shift a DAY interval by 6 hours, but you can't do that with a date value. DTHOUR intervals only apply to datetime values. You would have to convert all of your date data to datetime data in order to use that interval. Defining your own interval where days start at the desired time would solve this problem.

The SAS data set you have to create consists of at least one variable named begin. It can also have two other optional variables, end and season. If you do not include the end variable, it is assumed to be one less than the start of the next period within that interval; for example, if your user-defined interval is based on days, the end will be the day before the begin value for the next record. While seasonality is a time series concept outside of the scope of this book, it can be accounted for with the variable season. One additional requirement is that begin (and end, if present in the data set) must have an appropriate date, time, or datetime format assigned at the time that the data set is created. In order to associate this data set with a user-defined interval, you need to use the INTERVALDS system option.

OPTIONS INTERVALDS=(interval-name1, dataset-with-interval-records1, interval-name2, dataset-with-interval-records2…)

This is where you name your user-defined interval and tell SAS which data set to use for that interval. You can specify as many user-defined intervals as you need in a single OPTIONS INTERVALDS statement. interval-name must conform to standard SAS naming conventions, and it cannot be a SAS reserved word. If you try to use a reserved word, you will get an error at the OPTIONS statement. This applies to names of existing intervals defined by SAS as well. You cannot change the definition of an existing SAS interval by creating one of your own with the same name. dataset-with-interval-records is a standard SAS data set reference of the type libref.dataset-name. Since this statement merely identifies a data set for association with your interval name, data set options are not allowed.

For our first example, let's define a SEMESTER interval, based on an academic calendar with two semesters and a summer session. The sessions are defined as follows: The fall semester begins the day following the first Monday in September and ends on the third Friday in December. The spring semester begins on the second Monday in January, unless that day falls on the Martin Luther King, Jr., holiday. In that case, it begins on the day following the holiday. The summer session starts on the last Tuesday in May and proceeds through the third Friday in August. The following example uses both the NWKDOM() and HOLIDAY() functions described in sections 5.3 and 5.4, respectively.

Example 5.21: Academic Calendar: Creating a SEMESTER Interval

OPTIONS INTERVALDS=(semester=semester); ❶

DATA semester;

DO year=2014 TO 2017; ❷

 /* Fall Semester */

 begin = NWKDOM(5,2,8,year); /* Last Monday in August */

 end = NWKDOM(3,6,12,year); /* Third Friday in December */

 OUTPUT;

 /* Spring Semester */

 begin = NWKDOM(2,2,1,year+1); /* Second Monday in January of
 following calendar year */

 if begin eq HOLIDAY('MLK',year+1) then /* If MLK day, then Tuesday */

 begin = begin + 1;

 end = NWKDOM(2,6,5,year+1); /* Second Friday in May */

 OUTPUT;

 /* Summer Session */

 begin = NWKDOM(1,2,6,year+1); /* First Monday in June */

 end = NWKDOM(3,6,8,year+1); /* Third Friday in August */

 OUTPUT;

END;

FORMAT begin end WEEKDATE.; /* Required */

RUN;

❶ tells SAS that we are defining an interval named "semester," and it is to be based on the data set WORK.SEMESTER.

❷ sets a definite limit on the interval, from the start of the 2014 academic year through the 2017 academic year, which ends in August 2018. Below is the resulting data set:

	begin
	end

	Monday, August 25, 2014
	Friday, December 19, 2014

	Monday, January 12, 2015
	Friday, May 8, 2015

	Monday, June 1, 2015
	Friday, August 14, 2015

	Monday, August 31, 2015
	Friday, December 18, 2015

	Monday, January 11, 2016
	Friday, May 13, 2016

	Monday, June 6, 2016
	Friday, August 12, 2016

	Monday, August 29, 2016
	Friday, December 16, 2016

	Monday, January 9, 2017
	Friday, May 12, 2017

	Monday, June 5, 2017
	Friday, August 11, 2017

	Monday, August 28, 2017
	Friday, December 15, 2017

	Monday, January 8, 2018
	Friday, May 11, 2018

	Monday, June 4, 2018
	Friday, August 10, 2018

You can then use the SEMESTER interval that you have created in the INTCK or INTNX interval functions. The following table shows how many semesters have elapsed from September 15, 2014, to the respective end dates shown.

Example 5.22: Using a User-Defined Interval with INTCK

	Function Call
	Result

	INTCK('SEMESTER',"15SEP2014"d,"22JUN2015"d);
	2

	INTCK('SEMESTER',"15SEP2014"d,"24NOV2016"d);
	6

	INTCK('SEMESTER',"15SEP2014"d,"01MAY2018"d);
	10

For a second example, let's consider a case where we need to count the actual number of working days for each year. The WEEKDAY interval is a useful approximation, but it doesn't account for holidays, so if you need to know the exact number of working days between two dates, this will solve that problem.

Example 5.23: Customized Company Working Days

OPTIONS INTERVALDS=(WorkingDays=Workdays);

DATA workdays (KEEP=begin); /* End variable not needed */

 start = '01JAN2014'D;

 stop = '31DEC2015'D;

 nweekdays = INTCK('WEEKDAY',start,stop); /* Based on Mon-Fri weekdays */

 DO i = 0 TO nweekdays;

 begin = INTNX('WEEKDAY',start,i);

 year = YEAR(begin);

 /* Company-specific holidays */

/* Company closes day after thanksgiving */

 xthanks = HOLIDAY("THANKSGIVING",year) + 1;

/* Christmas Eve */

 xmaseve = HOLIDAY('CHRISTMAS',year) - 1;

/* Friday before Easter */

 sprng = HOLIDAY("EASTER",year) - 2;

/* Founders Day Company Holiday. If on weekend, move forward or back */

 founders = MDY(8,6,year);

 SELECT(WEEKDAY(founders));

 WHEN(6) founders = founders - 1;

 WHEN(1) founders = founders + 1;

 OTHERWISE founders = founders;

 END;

 /* Exclude dates of standard and company holidays from interval data set */

 IF BEGIN ne HOLIDAY("NEWYEAR",year) AND

 BEGIN ne HOLIDAY("MLK",year) AND

 BEGIN ne HOLIDAY("USPRESIDENTS",year) AND

 BEGIN ne HOLIDAY("MEMORIAL",year) AND

 BEGIN ne HOLIDAY("USINDEPENDENCE",year) AND

 BEGIN ne HOLIDAY("LABOR",year) AND

 BEGIN ne HOLIDAY("VETERANS",year) AND

 BEGIN ne HOLIDAY("THANKSGIVING",year) AND

 BEGIN ne HOLIDAY("CHRISTMAS",year) AND

 BEGIN ne xmaseve AND

 BEGIN ne xthanks AND

 BEGIN ne sprng AND

 BEGIN ne founders THEN OUTPUT;

 END;

 FORMAT begin DATE9.;

RUN;

The following code generates a table showing the difference between the number of calendar days, the number of weekdays, and the number of working days for this company for the calendar year 2014.

DATA CountDays;

 start = '01JAN2014'D;

 stop = '01JAN2015'D;

 ActualDays = INTCK('DAYS',start,stop);

 Weekdays = INTCK('WEEKDAYS',start,stop);

 ProductionDays = INTCK('WORKINGDAYS',start,stop);

 LABEL ActualDays="Actual Days"

 Weekdays="Weekdays"

 ProductionDays = "Production Days"

 start = "Starting Date"

 end = "Ending Date"

 ;

 FORMAT start stop DATE9.;

RUN;

PROC PRINT DATA=CountDays NOOBS;

RUN;

	start
	stop
	ActualDays
	Weekdays
	ProductionDays

	01JAN2014
	01JAN2015
	365
	261
	248

How much of a difference can this make? Consider that this company has six product lines and the time to manufacture each product varies. A customer comes in with a large order and wants to know what the delivery date would be for each product. It is critical that the delivery be guaranteed to the day, so the contract calls for a substantial discount if the delivery date is not met. In the following table, the order date is June 27, 2014. We use the INTNX() function to add the corresponding number of production days for each product to the order date. The approximate delivery date is calculated using the SAS WEEKDAY interval, while the true delivery date uses our user-defined WORKINGDAYS interval.

DATA production_lines;

LENGTH product $ 40;

 orderDate = "27JUN2014"d;

 Product = "Std Product 1";

 days_from_order = 23;

 OUTPUT;

 Product = "Std Product 2";

 days_from_order = 32;

 OUTPUT;

 Product = "Std Product 3";

 days_from_order = 35;

 OUTPUT;

 Product = "Custom Product 1";

 days_from_order = 33;

 OUTPUT;

 Product = "Custom Product 2";

 days_from_order = 42;

 OUTPUT;

 Product = "Custom Product 3";

 days_from_order = 56;

 OUTPUT;

 FORMAT orderdate weekdate.;

RUN;

DATA ordertime;

SET production_lines;

deliveryDate = INTNX('WORKINGDAYS',orderdate,days_from_order,'S');

approx_deliveryDate = INTNX('WEEKDAY',orderdate,days_from_order,'S');

FORMAT deliverydate approx_deliveryDate weekdate.;

RUN;

PROC REPORT DATA=ordertime NOWD SPLIT='\';

COLUMNS product days_from_order approx_deliveryDate deliveryDate;

DEFINE product / "Product";

DEFINE days_from_order / "Production Days\Required"

 STYLE={TEXT_ALIGN=C};

DEFINE approx_deliveryDate / STYLE={TEXT_ALIGN=L}

 "~S={text_align=c}Approximate Delivery Date\using WEEKDAYS Interval";

DEFINE deliveryDate / "~S={TEXT_ALIGN=C}Actual Delivery Date\using Custom\WORKINGDAYS Interval" STYLE={TEXT_ALIGN=L};

RUN;

	Product
	Production Days
Required
	Approximate Delivery Date Using WEEKDAYS Interval
	Actual Delivery Date
Using Custom
WORKINGDAYS Interval

	Std Product 1
	23
	Wednesday, July 30, 2014
	Thursday, July 31, 2014

	Std Product 2
	32
	Tuesday, August 12, 2014
	Thursday, August 14, 2014

	Std Product 3
	35
	Friday, August 15, 2014
	Tuesday, August 19, 2014

	Custom Product 1
	33
	Wednesday, August 13, 2014
	Friday, August 15, 2014

	Custom Product 2
	42
	Tuesday, August 26, 2014
	Thursday, August 28, 2014

	Custom Product 3
	56
	Monday, September 15, 2014
	Thursday, September 18, 2014

There is one specific problem to be aware of when you are working with user-defined intervals. If a specific date, time, or datetime is not covered in the interval data set, and you try to use one of these values in a function, or one of these values is to be returned by a function, you will not get the answer that you expect. Such unexpected results can be avoided by ensuring that the dates that you define in the data set encompass all the dates that you may encounter. The next two examples will demonstrate what happens when you use a date that is out of the range of your user-defined interval. We will use the WORKINGDAYS interval as defined in the previous example. That interval is only defined for a period of 2 years, from January 1, 2014, through December 31, 2015. What happens if you try to calculate the number of working days using the INTCK() function with ending dates outside of that range, or you try to project a date using the INTNX() function that would be beyond that range?

Example 5.24: Out-of-Interval Calculation Using INTCK() and "WORKINGDAYS" Custom Interval

	Obs
	startDate
	endDate
	result

	1
	Wednesday, December 23, 2015
	Thursday, December 24, 2015
	0

	2
	Wednesday, December 23, 2015
	Friday, December 25, 2015
	0

	3
	Wednesday, December 23, 2015
	Saturday, December 26, 2015
	0

	4
	Wednesday, December 23, 2015
	Sunday, December 27, 2015
	0

	5
	Wednesday, December 23, 2015
	Monday, December 28, 2015
	1

	6
	Wednesday, December 23, 2015
	Tuesday, December 29, 2015
	2

	7
	Wednesday, December 23, 2015
	Wednesday, December 30, 2015
	3

	8
	Wednesday, December 23, 2015
	Thursday, December 31, 2015
	4

	9
	Wednesday, December 23, 2015
	Friday, January 1, 2016
	4

	10
	Wednesday, December 23, 2015
	Saturday, January 2, 2016
	4

	11
	Wednesday, December 23, 2015
	Sunday, January 3, 2016
	4

	12
	Wednesday, December 23, 2015
	Monday, January 4, 2016
	4

	13
	Wednesday, December 23, 2015
	Tuesday, January 5, 2016
	4

	14
	Wednesday, December 23, 2015
	Wednesday, January 6, 2016
	4

	15
	Wednesday, December 23, 2015
	Thursday, January 7, 2016
	4

Rows 1 through 4 make sense. There are no working days from Thursday through Sunday, as December 24 is a company holiday. Rows 5 through 8 count a working day for Monday through Thursday as you would expect. Friday, January 1, 2016, is also a company holiday. Therefore, you would not expect it to count as a working day, nor would you expect the following Saturday and Sunday to count as workdays. But what about that first full week in January, rows 12 through 15? Those days aren't company holidays, so why aren't they being counted as working days?

The answer is that they aren't part of the WORKINGDAYS interval. The definition of the interval ended on December 31, 2015. Because they are not in the data set, any dates before or after the dates specified in the data set will not be considered working days. This makes sense when you consider how we initially created the company holidays. We did not include those dates in the data set that created the interval. Therefore, this problem actually starts with January 1, 2016. It is merely coincidental that January 1st is a holiday, and the 2nd and 3rd are weekend days; that is not what is preventing them from being counted as working days. Their absence from the data set we used to create the interval is the only reason that they are not being counted. This next example shows the type of problem that can arise when using the INTNX() function in a similar fashion.

Example 5.25: Out-of-Interval Calculation with INTNX() and "WORKINGDAYS" Custom Interval

	Obs
	Function Call
	Result

	1
	INTNX('workingdays','26dec2015'd,1,'S');
	Monday, December 28, 2015

	2
	INTNX('workingdays','26dec2015'd,2,'S');
	Tuesday, December 29, 2015

	3
	INTNX('workingdays','26dec2015'd,3,'S');
	Wednesday, December 30, 2015

	4
	INTNX('workingdays','26dec2015'd,4,'S');
	Thursday, December 31, 2015

	5
	INTNX('workingdays','26dec2015'd,5,'S');
	.

	6
	INTNX('workingdays','26dec2015'd,6,'S');
	.

	7
	INTNX('workingdays','26dec2015'd,7,'S');
	.

	8
	INTNX('workingdays','26dec2015'd,8,'S');
	.

What happened here? Rows 1 through 4 count the working days as expected, Monday through Thursday. However, if you try to increment the starting date by more than 4 working days, the function call returns a missing value. SAS cannot do the calculation because the result is undefined; it ran out of possible results to return at December 31, 2015, because you did not provide any in the data set.

The ability to define your own intervals will cover situations when the combination of standard SAS intervals, a multiplier, and a shift index does not suffice. It is not difficult to create the data set upon which SAS will base your user-defined interval, but be aware that dates that are not included in the interval can cause problems when you try to use the intervals that you create. If you see unexpected results from using your user-defined interval, the first thing to investigate is to make sure that the range that you have defined for your interval encompasses the range of possible results.

5.8 Interval Functions about Intervals

SAS has a series of functions that provide information about intervals that are being used. They can tell you which interval is the best fit between two or three dates, or suggest a format for a given interval. There is a function to tell you the shift point in effect for a given interval. (For basic intervals, this returns the values in Table 5.5, but interval multipliers can change the returned value.) There is also a function that will tell you if the interval name that you are using is valid. This can allow for increased automation and building robust applications.

5.8.1 INTFIT(argument-1,argument-2,type)

INTFIT(argument-1,argument-2,type) takes two date, datetime, or observation numbers as the first two arguments and returns the interval between them deemed to be "the best fit." This function assumes that the alignment is "SAME," so that the exact values are matched between the two arguments. type can be one of three case-insensitive values:

	Interval Name
	Definition

	D
	Use when the two arguments are SAS date values. These can be date literals or variables containing SAS date values

	DT
	Use when the two arguments are SAS datetime values. These can be datetime literals or variables containing SAS datetime values

	OBS
	Use this when you want to find the interval between two observations by providing observation numbers. This will return an interval with the base name of "OBS."

You can use this function to give you the interval between two points in time. The interval returned might contain a multiplier and/or a shift index. As you can see in the table below, some of the intervals are not as you might anticipate.

	
	start
	end
	result

	A
	Tuesday, April 1, 2014
	Wednesday, April 2, 2014
	DAY

	B
	Tuesday, April 1, 2014
	Thursday, April 3, 2014
	DAY2

	C
	Tuesday, April 1, 2014
	Friday, April 4, 2014
	DAY3.3

	D
	Tuesday, April 1, 2014
	Saturday, April 5, 2014
	DAY4.3

	E
	Tuesday, April 1, 2014
	Sunday, April 6, 2014
	DAY5.5

	F
	Tuesday, April 1, 2014
	Tuesday, April 8, 2014
	WEEK.3

	G
	Tuesday, April 1, 2014
	Wednesday, April 9, 2014
	DAY8.7

	H
	Tuesday, April 1, 2014
	Friday, April 11, 2014
	TENDAY

	I
	Tuesday, April 1, 2014
	Sunday, April 13, 2014
	DAY12.3

	J
	Tuesday, April 1, 2014
	Tuesday, April 15, 2014
	WEEK2.10

	K
	Tuesday, April 1, 2014
	Wednesday, April 16, 2014
	SEMIMONTH

	L
	Tuesday, April 1, 2014
	Thursday, April 17, 2014
	DAY16.7

	M
	Tuesday, April 1, 2014
	Saturday, April 19, 2014
	DAY18.15

	N
	Tuesday, April 1, 2014
	Monday, April 21, 2014
	TENDAY2.2

	O
	5/1/2014 9:00 AM
	5/1/2014 2:00 PM
	DTHOUR5

	P
	5/1/2014 9:00 AM
	5/1/2014 8:45 PM
	DTMINUTE705.136

	Q
	5/1/2014 9:00 AM
	5/2/2014 3:30 AM
	DTMINUTE1110.61

The italicized rows show examples of intervals that can be puzzling. Remember that the function provides the exact intervals between the pair of dates or datetimes, and the lowest common denominator will be used for base interval. In addition, the dates are measured using the sameday alignment, which means that the interval is measured from the beginning of the interval, and then adjusted. At first glance, the DAY5.5 result in row E doesn't seem to be right; Tuesday is only the third day of the week, so shouldn't the shift be 3 as it is for the DAY3 and DAY4 intervals? The start of DAY 5 intervals are Sunday, then Friday. If you want to measure a DAY5 interval to a Sunday from a Tuesday, then you will have to measure from the Friday, which gives you a shift of 5. Rows P and Q demonstrate that it might become even more confusing with times and/or datetimes, as the base interval shift points become minutes and/or seconds, so the resulting multipliers and shift indices might be large enough so that you lose the context of the reference point.

The following table shows a sample result of using the INTFIT() function with the 'OBS' type. The records are from a sequential data set with Wednesday, April 2, 2014, as the first date. Since the dates are keyed by observation, the result of the INTFIT() function shows the interval as the relationship between observations, not the actual date values themselves.

	Sample Function Call
	Date
	Result

	INTFIT(1,1,'OBS')
	Wednesday, April 2, 2014
	

	INTFIT(1,4,'OBS')
	Saturday, April 5, 2014
	OBS3.2

	INTFIT(1,5,'OBS')
	Sunday, April 6, 2014
	OBS4.2

	INTFIT(1,10,'OBS')
	Friday, April 11, 2014
	OBS9.2

	INTFIT(1,12,'OBS')
	Sunday, April 13, 2014
	OBS11.2

	INTFIT(1,13,'OBS')
	Monday, April 14, 2014
	OBS12.2

	INTFIT(1,14,'OBS')
	Tuesday, April 15, 2014
	OBS13.2

	INTFIT(1,16,'OBS')
	Thursday, April 17, 2014
	OBS15.2

	INTFIT(1,19,'OBS')
	Sunday, April 20, 2014
	OBS18.2

5.8.2 INTFMT('interval','size')

INTFMT('interval','size') takes the interval that you give and returns a suggested format for date, time, or datetime values using this interval. interval can be any standard SAS interval (with multipliers and/or a shift index if desired), or a user-defined interval that you have created, as shown in Section 5.6. If interval is represented by a character string, then it must be enclosed in quotation marks, but you can use a character variable containing the name of an interval instead. size refers to whether the format returned will have a two-digit year ('short'/'s') or a four-digit year ('long'/'l'). This argument must be enclosed in quotation marks also, but as with the interval argument, you can use a character variable for the argument. There is one important usage note about the size argument: If you do not use lowercase, the function might return an unpredictable result (see Row A) in the example table below:

	
	Sample Function Call
	Result
	Comment

	A
	INTFMT('WEEK','LONG')
	
	size argument is in uppercase

	B
	INTFMT('WEEK','long')
	WEEKDATX17.
	

	C
	INTFMT('MONTH','long')
	MONYY7.
	

	D
	INTFMT('QTR','short')
	YYQC4.
	YYQC. format width is only 4 because it displays two-digit year when the size argument='short'

	E
	INTFMT('QTR','long')
	YYQC6.
	

	F
	INTFMT('YEAR','long')
	YEAR4.
	

	G
	INTFMT('YEAR10','l')
	YEAR4.
	Using alias 'l' for 'long'

	H
	INTFMT('YEAR100','l')
	YEAR4.
	Using alias 'l' for 'long'

	I
	INTFMT('DTMONTH','l')
	DTMONYY7.
	Using alias 'l' for 'long'

	J
	INTFMT('DTYEAR','l')
	DTYEAR4.
	Using alias 'l' for 'long'

	K
	INTFMT('HOUR','l')
	DATETIME10.
	Using alias 'l' for 'long'

	L
	INTFMT('WORKINGDAYS','l')
	DATE11.
	Using alias 'l' for 'long'

This function is most useful when you use the INTFIT or INTGET functions to determine the interval dynamically, so that you will always display a result in the proper context. See example 5.23 to see how this can be used to dynamically format results.

5.8.3 INTGET(argument1,argument2,argument3)

INTGET(argument1,argument2,argument3) determines an interval from three date or datetime values that you provide. The arguments can be variables or date/datetime literals, but they must be of the same type; you cannot mix dates and datetimes as arguments. The function calculates all intervals between the first two arguments, and then between the second and third arguments. If the intervals are the same, it will return that interval. If the intervals are not the same, then the function will test the interval between the second and third arguments to see whether it is a multiple of the interval between the first two arguments. If this is true, then the function will return the smaller of the two intervals. If neither of these cases are true, then the INTGET() function will return a missing value.

	
	Sample Function Call
	Result

	A
	INTGET('05SEP2013'd,20SEP2013'd,05OCT2013'd)
	SEMIMONTH

	B
	INTGET('15JAN2014'd,15APR2014'd,15OCT2015'd)
	QTR

	C
	INTGET('15JAN2014'd,15APR2015'd,15OCT2015'd)
	

	D
	INTGET('09JUL2015'd,09SEP2015'd,09MAR2016'd)
	MONTH2

	E
	INTGET('09JUL2015'd,29AUG2015'd,15SEP2015'd)
	DAY17.15

In row A, the period between the dates is 15 days, which corresponds to the SEMIMONTH interval. Row B demonstrates that the dates do not have to have the same interval. The gap between January and April is one quarter, but the gap between April and October of the following year is five quarters. Since the interval for the second pair of arguments would be 'QTR5,' since it is a multiple of the QTR interval, the function returns the unmultiplied interval. What happened in row C? Simply, the interval between January 2014 and April 2015 is now QTR5, but the interval between April and October 2015 is QTR2. Since QTR2 is not a multiple of QTR5, the result is missing. Row D shows that if the interval between two arguments is itself a multiplied interval (MONTH2 versus MONTH6), the function will return the interval with the smallest multiplier, while row E shows the ingenuity of the function: The DAY17 interval works if it is shifted by 15 days.

5.8.4 INTSHIFT('interval')

INTSHIFT('interval') takes the interval that you give and returns the shift point for that interval. interval can be any standard SAS interval (with multipliers and/or a shift index if desired). If interval is represented by a character string, then it must be enclosed in quotation marks, but you can use a character variable containing the name of an interval instead. If you try to use this function with a user-defined interval that you have created, the function will return a missing value.

	Sample Function Call
	Result
	Comment

	INTSHIFT('WEEK')
	DAY
	

	INTSHIFT('MONTH')
	MONTH
	

	INTSHIFT('QTR3.4')
	MONTH
	

	INTSHIFT('YEAR')
	MONTH
	

	INTSHIFT('YEAR10.5')
	MONTH
	

	INTSHIFT('YEAR100')
	MONTH
	

	INTSHIFT('DTMONTH')
	DTMONTH
	

	INTSHIFT('DTYEAR.7')
	DTMONTH
	

	INTSHIFT('HOUR')
	DTHOUR
	Note that shift points for time intervals are expressed as datetime shift points.

	INTSHIFT('WORKINGDAYS')
	
	User-defined interval, so no shift points can be calculated.

5.8.5 INTTEST('interval')

INTTEST('interval') takes the interval that you give and returns a 1 if it is a valid interval name, or 0 if it is not. You can use this to determine whether you have created a valid interval with multipliers and/or a shift index. interval can be any standard SAS interval (with multipliers and/or a shift index if desired). If interval is represented by a character string, then it must be enclosed in quotation marks, but you can use a character variable containing the name of an interval instead. If you try to use this function with a user-defined interval that you have created, the function will return a missing value.

	Sample Function Call
	Result
	Comment

	INTTEST('WEEK')
	1
	

	INTTEST('QTR.1')
	1
	You can shift a quarter by up to 3 months (counting the initial starting point as .1).

	INTTEST('QTR3.13')
	0
	The shift point for quarters is months, so the maximum number of months that you can shift in a 3-quarter period would be 9.

	INTTEST('YEAR.7')
	1
	

	INTTEST('YEAR10.14')
	1
	

	INTTEST('DTMONTH')
	1
	

	INTTEST('HOUR2.3')
	0
	Cannot shift 3 hours in a 2-hour interval.

	INTTEST('WORKINGDAYS')
	0
	This function does not recognize user-defined intervals.

5.9 Retail Calendar Intervals and Seasonality

This section covers intervals and functions that are most frequently used with time series analyses. Although the topic of time series analysis is beyond the scope of this book, these intervals and functions are described here because the intervals can be used with INTNX() and INTCK(), while the functions are a part of Base SAS. However, they are presented without context.

5.9.1 Retail Calendar Intervals

SAS has added intervals that are specifically designed for the retail industry. These intervals are ISO 8601 compliant, and can be used with any of the interval functions. They facilitate comparisons across years, because the weeks remain consistent between years. In order to facilitate this, some years will have leap weeks. Year definitions are based on the ISO 8601 definition of a week, which is the first Monday preceding January 4, which in some cases might place the beginning of the week in December. These intervals enable you to define the structure of your 52-week year, expecting that for the first 13-week period of your interval, there will be 1 month that has 5 weeks in it. This means that you can set the month pattern to 5-4-4, 4-5-4, or 4-4-5. You can work with years, months, or quarters in this fashion. The full list of retail intervals is given in Table 5.7.

Table 5.7: Retail Calendar Intervals

	Interval
	Description

	YEARV
	Specifies ISO 8601 yearly intervals. The ISO 8601 year begins on the Monday on or immediately preceding January 4. Note that it is possible for the ISO 8601 year to begin in December of the preceding year. Also, some ISO 8601 years contain a leap week. The beginning subperiod s is written in ISO 8601 weeks (WEEKV).

	R445YR
	Is the same as YEARV except that in the retail industry the beginning subperiod s is 4-4-5 months (R445MON).

	R454YR
	Is the same as YEARV except that in the retail industry the beginning subperiod s is 4-5-4 months (R454MON).

	R544YR
	Is the same as YEARV except that in the retail industry the beginning subperiod s is 5-4-4 months (R544MON).

	R445QTR
	Specifies retail 4-4-5 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a leap week. The beginning subperiod s is 4-4-5 months (R445MON).

	R454QTR
	Specifies retail 4-5-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a leap week. The beginning subperiod s is 4-5-4 months (R454MON).

	R544QTR
	Specifies retail 5-4-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a leap week. The beginning subperiod s is 5-4-4 months (R544MON).

	R445MON
	Specifies retail 4-4-5 monthly intervals. The 3rd, 6th, 9th, and 12th months are five ISO 8601 weeks long with the exception that some 12th months contain leap weeks. All other months are four ISO 8601 weeks long. R445MON intervals begin with the 1st, 5th, 9th, 14th, 18th, 22nd, 27th, 31st, 35th, 40th, 44th, and 48th weeks of the ISO year. The beginning subperiod s is 4-4-5 months (R445MON).

	R454MON
	Specifies retail 4-5-4 monthly intervals. The 2nd, 5th, 8th, and 11th months are five ISO 8601 weeks long with the exception that some 12th months contain leap weeks. R454MON intervals begin with the 1st, 5th, 10th, 14th, 18th, 23rd, 27th, 31st, 36th, 40th, 44th, and 49th weeks of the ISO year. The beginning subperiod s is 4-5-4 months (R454MON).

	R544MON
	Specifies retail 5-4-4 monthly intervals. The 1st, 4th, 7th, and 10th months are five ISO 8601 weeks long. All other months are four ISO 8601 weeks long with the exception that some 12th months contain leap weeks. R544MON intervals begin with the 1st, 6th, 10th, 14th, 19th, 23rd, 27th, 32nd, 36th, 40th, 45th, and 49th weeks of the ISO year. The beginning subperiod s is 5-4-4 months (R544MON).

	WEEKV
	Specifies ISO 8601 weekly intervals of seven days. Each week begins on Monday. The beginning subperiod s is calculated in days (DAY). Note that WEEKV differs from WEEK in that WEEKV.1 begins on Monday, WEEKV.2 begins on Tuesday, and so on.

5.9.2 Seasonality Functions

Seasonality is used in time series analysis and can be used in SAS/ETS. It helps to account for normal seasonal variations in patterns inside an analysis. While it is not strictly a date and time matter, it does use intervals. Therefore, the seasonality functions are documented here, but without context. For more information about seasonality and its application, you can refer to the SAS/ETS documentation, and support.sas.com is a great place to find more help on this topic.

INTCINDEX('interval',argument)

INTCINDEX('interval',argument) returns the index of the seasonal cycle based on interval for argument, where argument is a SAS date, time, or datetime value. interval can be any standard SAS interval (with multipliers and/or a shift index if desired).

INTCYCLE('interval',seasonality)

INTCYCLE('interval',seasonality) returns the interval of the seasonal cycle. interval can be any standard SAS interval (with multipliers and/or a shift index if desired). seasonality is an optional argument that enables you to define seasonal cycles, and it can be a number or a cycle (such as 'YEAR'). For example, you can use the seasonality argument to specify your year as having 53 weeks instead of 52.

INTINDEX('interval',argument,seasonality)

INTINDEX('interval',argument,seasonality) returns the seasonal index when given an interval, a SAS date, time, or datetime of the seasonal cycle. interval can be any standard SAS interval (with multipliers and/or a shift index if desired. argument is a SAS date, time, or datetime value. Note that the interval specified must be appropriate for the argument. seasonality is an optional argument that enables you to define seasonal cycles, and it can be a number or a cycle (such as 'YEAR'). The INTINDEX function returns the seasonal index, while the INTCINDEX function returns the cycle index.

INTSEAS('interval',seasonality)

INTSEAS('interval',seasonality) returns the number of intervals in a seasonal cycle. interval can be any standard SAS interval (with multipliers and/or a shift index if desired). seasonality is an optional argument that enables you to define seasonal cycles. This is a good function to be aware of if you are not familiar with concepts of seasonality, because the number of intervals in a seasonal cycle might not be intuitive. For example, while you might expect the number of intervals for the QTR interval to be 4 (because there are 4 quarters in a year), the number of intervals for a DAY interval is 7, for the number of days in the week. This can help you check your expectations.

Chapter 6 Deeper into Dates and Times with SAS

6.1 Macro Variables and Dates

6.2 Graphing Dates

6.3 The Basics of PROC EXPAND

6.4 International Date, Time, and Datetime Formats and Informats

6.5 NLS Date, Time, and Datetime Conversion Functions

6.6 Date Formats and Informats for Other Calendars

6.7 Other Software and Their Dates (Excel, Oracle, DB2)

6.8 Conclusion

6.1 Macro Variables and Dates

There is a high potential for confusion when it comes to the subject of macro variables and dates. Although you have access to dates and times in the SAS macro language with the automatic macro variables &SYSDATE, &SYSDATE9, &SYSDAY, and &SYSTIME, the display of these values is fixed, and therefore they do not give you the power of SAS formats, or of SAS date and time functions.

6.1.1 Automatic Macro Variables

None of these automatic macro variables can be assigned values with %LET or CALL SYMPUT(), or by any other means. They are read-only and work by reading the operating system clock when a SAS session is started. This means that they do not change within a given SAS session.

&SYSDATE

&SYSDATE cannot be modified and displays the system date as a SAS date value formatted with the DATE7. format. If the date according to the operating system when the SAS session starts is July 17, 2014, then &SYSDATE would be equal to "17JUL14."

&SYSDATE9

&SYSDATE9 is identical to &SYSDATE, except that it formats the system date with the DATE9. format and is therefore Y2K-compliant. If the operating system date is November 22, 2015, then &SYSDATE9 would be equal to "22NOV2015."

&SYSDAY

&SYSDAY displays the name of the day that the SAS session began (according to the operating system). If you started a SAS job or session on Monday, April 14, 2014, &SYSDAY would be equal to "Monday."

&SYSTIME

&SYSTIME displays the system time (according to the operating system) in TIME5. format. If the system time is 3:36 p.m. when you start SAS, then &SYSTIME would be equal to "15:36."

6.1.2 Putting Dates into Titles

One of the prime uses of dates in macro variables is for custom titles and footnotes. To use a macro variable in a title, you just need to enclose the TITLE or FOOTNOTE statement that contains the macro variable with double quotation marks like this:

TITLE "Today's Date is &SYSDATE9";

To see this in context, look at the following program:

Example 6.1: Using Automatic Macro Variables in a Title

TITLE "This is how to put a macro variable in a title: Today's Date is &SYSDATE9";

ODS RTF FILE="examples\title.rtf";

PROC PRINT DATA=sashelp.company (OBS=5);

ID job1;

VAR depthead;

RUN;

ODS RTF CLOSE;

Here is the resulting output:

[image: image]

While the automatic macro variables &SYSDATE, &SYSDATE9, &SYSDAY, and &SYSTIME might give you the information that you need, their formats are fixed and cannot be changed. Given the multiple ways that dates, times, and datetimes can be displayed, it would be good if you could use the formats and functions to get the display of dates and times that you want in your titles.

6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in Macro Variables

Many of the date and time functions, as well as formats, are available in the SAS macro language through the %QSYSFUNC() and %SYSFUNC() macro functions. When you are using one of these macro functions with dates and times, you can use two arguments: The first is the date, time, or datetime function that you wish to use. The second argument is optional, but you can specify the format that should be applied to the result.

Example 6.2: Date Functions with %SYSFUNC()

This example puts the formatted value of today's date into the macro variable &DATE and demonstrates the difference between unformatted and formatted dates in macro variables. The date value in &RAWDATE is stored in macro space as a text string and will need to be converted if you want to use it for any calculations. &DATE is also a text string in macro space, but it shows that the WORDDATE. format has been applied to the value.

%LET rawdate=%SYSFUNC(DATE());

%LET date=%SYSFUNC(DATE(),WORDDATE32.);

TITLE "Today's SAS Date Value is &rawdate";

TITLE2 "Formatted date: &date";

ODS RTF FILE="c:\book\2ndEd\examples\title2.rtf";

PROC PRINT DATA=sashelp.class (OBS=5);

ID name;

VAR age;

RUN;

ODS RTF CLOSE;

Now you can use the result in a title or footnote.

[image: image]

You can also use this as a part of an output file name or Excel worksheet name.

Example 6.3: Putting a Date Value into an Output File Name

%LET filedate=%SYSFUNC(DATE(),yymmddd10.);

ODS RTF FILE="Car_Report_&filedate..rtf";

PROC PRINT DATA=sashelp.cars NOOBS LABEL;

RUN;

ODS RTF CLOSE;

When you try this at home, you will see that you have generated an RTF file named "Car_report_yyyy-mm-dd.rtf."

Example 6.4: Naming Worksheets with the Date

In this example, we create a custom format to display dates as the full month name and 4-digit year and apply it to a copy of the date variable in the data set. Then we use that variable as the BY variable in the PRINT procedure. Not only does this put the name on each worksheet, but it also filters the dates into their correct worksheet without much extra coding required. There are many other ways that you can accomplish this task, but this is straightforward and simple. If you have a great deal of data, you might want to investigate a more efficient method than creating an additional variable in a data set. Lines 1–5 create the format using the PICTURE statement in PROC FORMAT and date directives discussed in section 2.6, and lines 6–13 create our duplicate variable with our custom format and also subset the data set. Note the date literals used as values in the BETWEEN operator in line 10. We remove the default BY line from the output in line 14. The SHEET_NAME option allows us to use the BY value token (#BYVAL1) as the name of the worksheet.

1 PROC FORMAT;

2 PICTURE namefmt

3 LOW-HIGH='%B %Y' (DATATYPE=date)

4 ;

5 RUN;

6 PROC SQL;

7 CREATE TABLE subset AS

8 SELECT date as sheet_date FORMAT=namefmt15., *

9 FROM sashelp.citiday

10 WHERE date BETWEEN '01JAN1988'd AND '31AUG1988'd

11 ORDER BY DATE

12 ;;;;

13 QUIT;

14 OPTIONS NOBYLINE;

15 ODS TAGSETS.EXCELXP FILE="ex6.1.4.xml" OPTIONS (SHEET_NAME="#BYVAL1");

16 PROC PRINT DATA=subset LABEL NOOBS;

17 BY sheet_date;

18 RUN;

19 ODS TAGSETS.EXCELXP CLOSE;

This is the resulting workbook:

[image: image]

6.1.4 Using Dates in Macros

While SAS can handle dates, times, and datetime values as numbers, getting the macro processor to accept them as numbers might involve an extra step or two. Let's look at the following code:

1 %MACRO date_loop;

2 %DO I='05JUN2014'd %TO '12JUN2014'd;

3 TITLE "Happy Kids Ice Cream Co. Sales for &i";

4 PROC PRINT DATA =sample.dailysales;

5 ID district;

6 VAR sales;

7 WHERE date EQ &i;

8 RUN;

9 %END;

10 %MEND;

We have used two date literals to provide the period over which we want the report run and used it in the title as well. What happens when this is submitted?

ERROR: A character operand was found in the %EVAL function or %IF condition where a numeric operand is required. The condition was: '05JUN2014'd

ERROR: The %FROM value of the %DO I loop is invalid.

ERROR: A character operand was found in the %EVAL function or %IF condition where a numeric operand is required. The condition was: '12JUN2014'd

ERROR: The %TO value of the %DO I loop is invalid.

ERROR: The macro DATE_LOOP will stop executing.

To the macro processor, the date literals are only text. They do not function as they do in the rest of SAS. How can we get around this? By using the %SYSEVALF() macro function to force the interpretation of the date literals. Let's replace line 2 with the following line:

%DO i=%SYSEVALF('05JUN2014'd) %TO %SYSEVALF('12JUN2014'd);

Now the loop will execute properly. However, the date in the title does not look good at all.

[image: image]

The date in the title doesn't look like a date. We need to make one more modification to the program to get our title to look right. The %LET statement added in line 3 creates a formatted value of the date in the macro loop for use. The PUTN() function is used here instead of the PUT() function because you can't use the PUT() function with %SYSFUNC() or QSYSFUNC().

1 %MACRO date_loop;

2 %DO I=%SYSEVALF('05JUN2014'd) %TO %SYSEVALF('12JUN2014'd);

3 %LET TITLEDATE=%SYSFUNC(PUTN(&i,WORDDATE.));

4 TITLE "Happy Kids Ice Cream Co. Sales for &titledate";

5 PROC PRINT DATA=sample.dailysales;

6 ID district;

7 VAR sales;

8 WHERE date EQ &i;

9 RUN;

10 %END;

11 %MEND;

And now we get the desired result.

[image: image]

Our final example of using dates in macros demonstrates how to get a date from a data set into a macro. For this example, we want to put the latest date from a given column into a macro variable so that it can be used in a title. Let's look at some timing variables from this sample data set. We want to put the latest date and time (which is in record 4) from the variable MODDATE (nicely formatted, of course) on the title of each page.

[image: image]

Method 1: Using CALL SYMPUT

The CALL SYMPUT() and SYMGET() functions are also used to communicate between the DATA step and the macro world. CALL SYMPUT()takes a value and stores it in macro space from within a DATA step, while SYMGET() takes a macro variable and enables you to use it in a DATA step. In this situation, I recommend that you use CALL SYMPUTX() instead of CALL SYMPUT(), because CALL SYMPUTX() suppresses any trailing blanks in the macro variable created, and the presence of trailing blanks might affect the justification of your title or footnote. The difference between run-time and compile time is very important. You cannot use a %LET statement to store macro values that are defined during execution of a DATA step. You also cannot use a macro variable reference (with an ampersand [&]) in the same DATA step where the macro variable is created with CALL SYMPUT(). The next example uses what was discussed in section 6.1.2 to show how you can obtain a date value from a SAS data set and then put it in a macro variable to use in a title. Since the DATETIME. format isn't formal enough for this report, we're going to create a RPTDATE. custom format.

PROC FORMAT;

PICTURE rptdate (DEFAULT=32)

. - .Z = 'Missing'

LOW-HIGH = '%B %d, %Y at %I:%0M %p' (DATATYPE=DATETIME);

RUN;

/* Get the maximum date in the variable */

PROC MEANS DATA=sample.pmdata MAX NOPRINT;

VAR moddate;

OUTPUT OUT=tmp MAX=max;

RUN;

/*Transfer it to a macro variable using CALL SYMPUTX() */

DATA _NULL_;

SET tmp;

CALL SYMPUTX('lastmod',STRIP(PUT(max,rptdate.)));

RUN;

%PUT lastmod=&lastmod;

Partial Log

42 %PUT lastmod=&lastmod;

lastmod=February 7, 2014 at 4:18 PM

Method 2: Using PROC SQL

For something as simple as the highest (or lowest) value in a date or datetime variable, you don't have to use a SAS procedure and a DATA step. PROC SQL can take the place of both.

PROC SQL NOPRINT;

SELECT DISTINCT STRIP(PUT(MAX(moddate),rptdate.)) LENGTH=32 INTO :lastmod

FROM sample.pmdata;

QUIT;

%PUT lastmod=&lastmod;

The Log

1 PROC SQL NOPRINT;

2 SELECT DISTINCT STRIP(PUT(MAX(moddate),rptdate.)) LENGTH=32 INTO

3 ! :lastmod

4 FROM sample.pmdata;

5 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.08 seconds

 cpu time 0.00 seconds

6

7 %PUT lastmod=&lastmod;

lastmod=February 7, 2014 at 4:18 PM

Whichever method you choose, the macro variable &LASTMOD, containing the value "February 7, 2014 at 4:18 PM", is ready to use in your report title.

6.2 Graphing Dates

When you use dates, times, or datetime values in your SAS graphics, you have to remember that they are numbers. This has a large impact on the axes and labeling of your graphics. Attempting to graph a result over a period of time without using formats or intervals will usually result in a graph that is not clear or well-defined. The good news is that you can use all the features associated with SAS dates to improve your graphics, such as formats and intervals. The following series of examples will illustrate. Example 6.5 will demonstrate the graphing of dates with SAS/GRAPH, while Example 6.6 will use ODS graphics to produce a series plot.

Johnny's Savings Account

When Johnny turned 10 years old on September 1, 1975, he took all the money that he had in his piggy bank and deposited it into a bank account that paid 3.5% interest annually, compounded daily. He promised himself that he would add two dollars at the end of each week and that he would take the money out when he reached the ripe old age of 50. When he was 10, Johnny thought he might have $4,000 by the time he reached age 50. He kept that promise, so let's look at Johnny's earnings from the time he was 10 until he was 50 using the following program:

Example 6.5: SAS/GRAPH

TITLE "Johnny's 50th Birthday Fund";

PROC GPLOT DATA=book.graph1;

PLOT fund*date / VREF=5000 LV=1 CV=blue;

RUN;

Here is the resulting graph:

[image: image]

Unfortunately, the result of this simple example isn't helpful. We can see that Johnny started around 6000, and he turned 50 somewhere around 20000. What does that mean? This should be easy enough to fix. Don't we just need to add a FORMAT statement?

TITLE "Johnny's 50th Birthday Fund";

PROC GPLOT DATA=book.graph1;

PLOT fund*date / VREF=5000 LV=1 CV=blue;

FORMAT date mmddyy10.; /* Add FORMAT statement */

RUN;

Here is the new GPLOT graph with the FORMAT statement:

[image: image]

What has happened here is that SAS chose the boundaries and figured out major and minor tick marks. In this example, it has selected major intervals at decade boundaries, and minor ones at year boundaries. That's not a bad choice for this example, but SAS/GRAPH doesn't always make such a good choice when selecting the boundaries of an axis. Can't you define the horizontal axis yourself? Of course, you can! Johnny was born in September, so it would make sense to chart his progress at his birthdays and restrict the span of the horizontal axis to the period during which he's contributing.

TITLE "Johnny's 50th Birthday Fund";

PROC GPLOT DATA=book.graph1;

PLOT fund*date / VREF=5000 LV=1 CV=blue

 HAXIS='01SEP1975'd TO '01SEP2015'd by YEAR;

FORMAT date mmddyy10.;

RUN;

Here is the new graph that we get from using the HAXIS option in the PLOT statement to specify the axis range:

[image: image]

What happened? We defined the horizontal axis as having tick marks every year, so SAS accommodated our request. Since there was not enough room to display the values horizontally, SAS automatically rotated the values 90 degrees. Unfortunately, that left less space for the graph itself. We need better spacing on our horizontal axis.

Since decades seemed to work well, let's use those as our intervals, but we want to start on Johnny's 10th birthday, and define the major horizontal axis points at September 1, 1975, September 1, 1985, September 1, 1995, September 1, 2005, and September 1, 2015. An interval multiplier of 10 will create the decade interval, and a shift operator of 69 (60 [months in 5 years] plus 9 [months from January to September]) will move the starting date of the 10-year interval to September 1975 so that it matches the starting point of the horizontal axis. Note that the only change from the previous version is in the interval definition.

TITLE "Johnny's 50th Birthday Fund";

PROC GPLOT DATA=book.graph1;

PLOT fund*date / VREF=5000 LV=1 CV=blue

 HAXIS='01SEP1975'd TO '01SEP2015'd by YEAR10.69;

FORMAT date mmddyy10.;

RUN;

Here is the final product:

[image: image]

Now that's what we wanted. This demonstrates that you have all of the interval types, as well as their multipliers and shift operators, available when you are defining axes that involve date, time, and datetime values in SAS/GRAPH. It makes defining the exact scope of the graph much easier, not to mention comprehending what you've graphed.

Example 6.6: ODS Graphics

We will continue to use Johnny's 50th birthday fund for the SGPLOT series of examples. The SGPLOT procedure has a way of assigning a time scale to an axis by setting the axis TYPE option in the XAXIS statement equal to TIME, and the SERIES style of plot is perfect for graphs of longitudinal data.

Here's the basic SGPLOT from the above code.

[image: image]

As with the GPLOT example, an unformatted date variable isn't very useful. However, even though we got our graph, SGPLOT did not run smoothly. In order to produce this graph, the procedure made some adjustments in order to produce the graph. Let's look at the log from the program that produced the above graph.

3 TITLE "Johnny's 50th Birthday Fund";

4 PROC SGPLOT DATA=book.graph1;

5 XAXIS TYPE=time;

6 SERIES X=date Y=fund;

7 RUN;

NOTE: PROCEDURE SGPLOT used (Total process time):

 real time 1.20 seconds

 cpu time 0.09 seconds

NOTE: Time axis can only support date time values. The axis type will be changed to LINEAR. ❶

NOTE: There were 2435 observations read from the data set

 BOOK.GRAPH1.

Note ❶ is telling us that you can't use the TYPE value of TIME. But aren't we graphing dates? The SGPLOT procedure relies on formats to determine that the data being graphed are dates or times. Without it, SGPLOT errs on the side of caution and just assumes that you are graphing linear data. This will create a plot for data graphed along a sequence (such as dates), so it looks right, but it is not clear that you are graphing dates.

Let's add the missing format to our SGPLOT:

TITLE "Johnny's 50th Birthday Fund";

PROC SGPLOT DATA=book.graph1;

XAXIS TYPE=time;

SERIES X=date Y=fund;

FORMAT date monyy7.;

RUN;

[image: image]

That looks better, even though SAS did not use the MONYY7. format that you requested and substituted one of its own as seen in note ❶ below.

51 TITLE "Johnny's 50th Birthday Fund";

52 PROC SGPLOT DATA=book.graph1;

53 XAXIS TYPE=time;

54 SERIES X=date Y=fund;

55 FORMAT date monyy7.;

56 RUN;

NOTE: PROCEDURE SGPLOT used (Total process time):

 real time 0.90 seconds

 cpu time 0.20 seconds

❶ NOTE: The column format MONYY7 is replaced by an auto-generated format

 on the axis.

This is really the same problem as with SAS/GRAPH when you haven't defined the tick marks on the X axis properly. The VALUES= option in the XAXIS statement allows us to define our scale in the same way that the HAXIS= option in the PLOT statement does in SAS/GRAPH. For a 50-year period, let's try 5-year intervals, starting when Johnny made his promise on September 1, 1975.

TITLE "Johnny's 50th Birthday Fund";

PROC SGPLOT DATA=book.graph1;

XAXIS TYPE=time VALUES=('01sep1975'd TO '01sep2015'd BY YEAR5);

SERIES X=date Y=fund;

FORMAT date monyy7.;

RUN;

Now the display looks much nicer, and we have our MONYY7. format displayed.

[image: image]

6.3 The Basics of PROC EXPAND

The EXPAND procedure is a part of SAS/ETS, which is used to prepare time series data for further analysis. It creates a SAS data set and does not produce printed output.

6.3.1 Capabilities of PROC EXPAND

PROC EXPAND will change the sampling frequency of the data that you have and convert it to a different one. It can interpolate values in time series data, for example, when you have quarterly data that you need to report or analyze on a monthly basis. It can perform the reverse operation, that is, to aggregate (collapse) data from a higher sampling frequency to a lower one, such as taking monthly data and turning it into quarterly data. PROC EXPAND can interpolate missing values even if you aren't changing the sampling frequency. It also provides for extensive data transformations and performs all of these functions without a lot of DATA step programming. The SAS/ETS documentation provides detail on the procedure, its statements, and the options for those statements. There are other procedures available in SAS/ETS, such as TIMESERIES and TIMEDATA, that can be used to manipulate time series data, and if you need to work with time series data on a regular basis, you should investigate the SAS/ETS product and its documentation more carefully.

PROC EXPAND uses SAS interval definitions. This includes interval multipliers and the shift index. For a detailed explanation of intervals, interval multipliers, and the interval shift index, see Sections 5.5 and 5.6 of this book. When you use these interval definitions (plus any shift index and/or multipliers), PROC EXPAND will automatically adjust for any calendar effects (leap years, varying number of days in a month). As with anything that uses these interval definitions, all measurements and calculations are considered to be at the beginning of the interval(s) specified. It is possible to change that definition with options in one of the PROC EXPAND statements, and those are discussed in Section 6.3.5.

PROC EXPAND Sample Data

The following data set will be used for the examples in this section. This is monthly total light rail ridership data obtained from the American Public Transportation Association for the years 2003 and 2004 and is used with their permission. The values for October and November 2003 were removed from the data to demonstrate some of the capabilities of PROC EXPAND.

	Date
	Riders (thousands)

	JAN2003
	2679.9

	FEB2003
	2421.9

	MAR2003
	2704.6

	APR2003
	2778.3

	MAY2003
	2718.6

	JUN2003
	2618.2

	JUL2003
	2999.0

	AUG2003
	3504.7

	SEP2003
	3329.4

	OCT2003
	.

	NOV2003
	.

	DEC2003
	2888.6

	JAN2004
	3132.9

	FEB2004
	2814.3

	MAR2004
	3067.3

	APR2004
	2928.8

	MAY2004
	2958.3

	JUN2004
	2966.3

	JUL2004
	3000.8

	AUG2004
	3071.2

	SEP2004
	2958.9

	OCT2004
	2992.8

	NOV2004
	3017.5

	DEC2004
	3038.4

6.3.2 Using PROC EXPAND to Convert to a Higher Frequency

You can use PROC EXPAND to convert data from a lower sampling frequency to a higher sampling frequency (for example, converting monthly data to daily or weekly data). It does so by interpolation, and the syntax to convert to a higher sampling frequency is as follows:

Example 6.7: Converting to a Higher Sampling Frequency

1 PROC EXPAND DATA=book.month OUT=seven_days FROM=MONTH TO=WEEK;

2 ID date;

3 CONVERT riders;

4 RUN;

The PROC EXPAND statement in line 1 specifies the output data set (SEVEN_DAYS) and explains how the data in BOOK.MONTH should be converted, from MONTH intervals to WEEK intervals. The ID statement in line 2 indicates the variable that identifies the time of each record. Since the WEEK interval begins on Sunday, the dates will be aligned on Sundays. If you want the dates to align to a different day of the week, use a shift indicator. The WEEK.2 interval will align the dates to Mondays; the WEEK.3 interval aligns to Tuesdays, and so on.

You will usually use an ID statement with PROC EXPAND. Otherwise, SAS will create an ID variable for the input records and use the starting point of January 1, 1960, which might not be what you want. The CONVERT statement identifies the variable(s) to convert. You can also rename the variable(s) being converted in the output data set like this: CONVERT input-var=output-var; Here are the first eight observations from the data set SEVEN_DAYS produced by the above code:

	date
	Riders
(thousands)

	29DEC2002
	2770.23

	05JAN2003
	2573.57

	12JAN2003
	2449.76

	19JAN2003
	2393.52

	26JAN2003
	2391.24

	02FEB2003
	2429.29

	09FEB2003
	2494.03

	16FEB2003
	2571.86

When you interpolate time series data to a higher frequency, consider that the interpolated values do not add any new information to the data because they have been derived mathematically, not observed. Therefore, any statistical analyses performed with these interpolated data should be viewed with caution.

6.3.3 Using PROC EXPAND to Convert to a Lower Frequency

You can convert data to a lower frequency with PROC EXPAND in two ways: First, you can use the same syntax as with converting to a higher sampling frequency, except that the TO= interval would be of a lower sampling frequency. When you convert your data this way, PROC EXPAND performs interpolation for missing values using a curve-fitting method, which allows for conversion between intervals that aren't nested. A nested interval is one that fits wholly inside another interval (for example, days nest within weeks, because there are exactly seven days in a week, but weeks do not nest within months, because most months have partial weeks). The following program will interpolate any missing values in our data by fitting a cubic spline function through the existing data before converting the data from a month frequency to a quarter frequency.

Example 6.8: Converting to a Lower Frequency

PROC EXPAND DATA=book.month OUT=quarterly FROM=MONTH TO=QTR;

ID date;

CONVERT riders;

RUN;

	Obs
	date
	Riders (thousands) After Interpolation
	
	Original Values From BOOK.MONTH

	1
	01JAN2003
	2679.90
	
	2679.9

	2
	01APR2003
	2778.30
	
	2778.3

	3
	01JUL2003
	2999.00
	
	2999.0

	4
	01OCT2003
	2993.28
	
	.

	5
	01JAN2004
	3132.90
	
	3132.9

	6
	01APR2004
	2928.80
	
	2928.8

	7
	01JUL2004
	3000.80
	
	3000.8

	8
	01OCT2004
	2992.80
	
	2992.8

The resulting data set QUARTERLY (above) has eight observations, four for each year, synchronized on the QTR interval boundaries. As you can see, the data that were missing from our original data set (for October 2003) are interpolated.

The second method enables you to perform simple aggregation (addition) without interpolation of missing values. The AGGREGATE method always produces an exact result without interpolation, and it requires that the intervals be nested. This program shows the result of a simple aggregation on our sample data:

Example 6.9: Performing Aggregation without Interpolation

PROC EXPAND DATA=book.month OUT=annual FROM=MONTH TO=YEAR;

ID date;

CONVERT riders / METHOD=AGGREGATE;

RUN;

	date
	Riders (thousands)
	

	2003
	.
	There are 2 missing observations for this year, which yields a missing result.

	2004
	35947.5
	Total across all 12 months.

Example 6.10: The Importance of the ID Statement in PROC EXPAND

The following PROC EXPAND step has no ID statement. Let's run it so that we can see the assumptions that SAS makes in its absence. This illustrates why the ID statement is almost always used with this procedure:

PROC EXPAND DATA=book.month OUT=ANNUAL FROM=MONTH TO=YEAR;

CONVERT riders;

RUN;

	date
	Riders
(thousands)

	01JAN1960
	2679.9

	01JAN1961
	3132.9

How did we wind up with data for 1960 and 1961 when we used data from 2003 and 2004? If there is no ID variable to indicate the dates, SAS will create ID values to label the input records, and it will start from its zero point, January 1, 1960.

6.3.4 Using PROC EXPAND to Interpolate Missing Values

PROC EXPAND can also be used to interpolate missing values without converting frequencies. There are two ways to do this; use the one that fits your situation. If you are interpolating missing values at specific points in time, leave off the FROM= and TO= options, but make sure that you use an ID statement to indicate the variable that contains the time points of the observed values. The time points do not have to be evenly spaced, nor do you need a record for each time point within the interval. PROC EXPAND will read the values supplied in the ID variable and will fit a spline function through the available data points. It then fills in the missing values based on that fitted spline. Remember that the data for the months of October and November are missing in our sample table. The following program demonstrates:

Example 6.11: Interpolating Missing Values

PROC EXPAND DATA=book.month OUT=nomiss;

ID date;

CONVERT riders;

RUN;

The bolded and italicized values in the following table are the result of the interpolation performed by PROC EXPAND.

	date
	Riders
(thousands)

	01JAN2003
	2679.90

	01FEB2003
	2421.90

	01MAR2003
	2704.60

	01APR2003
	2778.30

	01MAY2003
	2718.60

	01JUN2003
	2618.20

	01JUL2003
	2999.00

	01AUG2003
	3504.70

	01SEP2003
	3329.40

	01OCT2003
	2993.28

	01NOV2003
	2788.68

	01DEC2003
	2888.60

The second method interpolates missing values in a time series without converting the observation frequency. Use this when you want to fill in the missing values and maintain the same observation frequency. It requires the FROM= option, but leave off the TO= option, as shown here:

PROC EXPAND DATA=book.month OUT=nomiss2 FROM=MONTH;

ID date;

CONVERT riders;

RUN;

By default, the interpolation is performed by fitting the points to a cubic spline curve. You can request other methods of interpolation with the METHOD= option in the CONVERT statement, and these are detailed in the SAS/ETS documentation. PROC EXPAND will ignore observations that have missing values for the ID variable, even if there are data points for the CONVERT variable(s). Table 6.1 is a summary of what PROC EXPAND does when there are missing values for the ID variable and/or CONVERT data points.

Table 6.1: How PROC EXPAND Handles Interpolation of Missing Values in Input Data

	ID Variable
	Data
	PROC EXPAND Will

	Missing
	Missing
	Interpolate

	Not Missing
	Missing
	Interpolate

	Missing
	Not Missing
	Ignore

6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC EXPAND

As with the other uses of SAS date, time, and datetime intervals, the default for PROC EXPAND is to consider the values as being from the beginning of the intervals provided in the FROM= and TO= options. This is not always the case with real-world data, and it can cause very different results, especially if the values are not measured at the beginning of the given interval(s), or they do not represent a single observed value for a specific point in time. You can control how the SAS intervals are used with the OBSERVED option in the CONVERT statement. There are six possible values for the OBSERVED= option, as shown in Table 6.2:

Table 6.2: Values for the OBSERVED= Option

	Values
	Description

	BEGINNING
	Beginning of the period

	MIDDLE
	Middle of the period

	END
	End of the period

	TOTAL
	Totals for the period

	AVERAGE
	Averages across the period

	DERIVATIVE
	Only valid as the 'to' value when the cubic spline function is the conversion method

The syntax of the OBSERVED= option is:

1. OBSERVED=value OR

2. OBSERVED=(from-value, to-value)

value is one of the keywords in table 6.2, from indicates the characteristics of the data from which you are converting, and to represents the characteristics of the data resulting from the conversion. Using form 1 is the same as specifying the same value for both from and to; that is, OBSERVED=AVERAGE is the same as OBSERVED=(AVERAGE,AVERAGE). Again, if you do not supply an OBSERVED option for the conversion, it is the same as using OBSERVED=(BEGINNING,BEGINNING).

Examples 6.12 and 6.13 demonstrate how different combinations of the OBSERVED= option affect our sample data when we increase and decrease the sampling frequency. The program below shows the code to increase the sampling frequency. It also shows how to rename the output variables in the CONVERT statement by placing an equal sign (=) after the data set variable and providing the new variable name afterward.

Example 6.12: Effect of Different Values for OBSERVED= Option on Increased Frequency

/* The effect of the different values for the OBSERVED option of

 the CONVERT statement in PROC EXPAND on increased sample frequency */

PROC EXPAND DATA=book.month OUT=seven1 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=beginning / OBSERVED=BEGINNING /*Default */;

RUN;

PROC EXPAND DATA=book.month OUT=seven2 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=middle / OBSERVED=MIDDLE;

RUN;

PROC EXPAND DATA=book.month OUT=seven3 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=end / OBSERVED=END;

RUN;

PROC EXPAND DATA=book.month OUT=seven4 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=total / OBSERVED=TOTAL;

RUN;

PROC EXPAND DATA=book.month OUT=seven5 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=average / OBSERVED=AVERAGE;

RUN;

PROC EXPAND DATA=book.month OUT=seven6 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=begend / OBSERVED=(BEGINNING,END);

RUN;

PROC EXPAND DATA=book.month OUT=seven7 FROM=MONTH TO=WEEK;

ID date;

CONVERT riders=avetot / OBSERVED=(AVERAGE,TOTAL);

RUN;

DATA compare_lo;

MERGE seven1 seven2 seven3 seven4 seven5 seven6 seven7;

BY date;

LABEL

 beginning="BEGINNING" middle = "MIDDLE" end = "END" average = "AVERAGE"

 total = "TOTAL" begend = "BEGINNING,END" avetot = "AVERAGE,TOTAL"

;;;

FORMAT beginning--avetot 7.2;

RUN;

PROC REPORT DATA=compare_lo NOWD SPLIT='\';

COLUMNS date ('OBSERVED=\Option Value' beginning middle end average total);

FORMAT date DATE9.;

DEFINE date / display;

WHERE DATE LT '01MAR2003'd;

RUN;

PROC REPORT DATA=compare_lo NOWD SPLIT='\';

COLUMNS date ('OBSERVED=\Option Value' begend avetot);

FORMAT date DATE9.;

DEFINE date / display;

WHERE DATE LT '01MAR2003'd;

RUN;

OBSERVED= Option Is the Same for FROM= and TO=:

	
	OBSERVED=
Option Value

	date
	BEGINNING
	MIDDLE
	END
	AVERAGE
	TOTAL

	29DEC2002
	2770.19
	.
	.
	3260.80
	580.48

	05JAN2003
	2573.61
	.
	.
	2897.25
	597.97

	12JAN2003
	2449.83
	2708.88
	.
	2638.87
	608.44

	19JAN2003
	2393.59
	2536.09
	.
	2472.89
	613.17

	26JAN2003
	2391.28
	2436.82
	2652.65
	2384.91
	613.55

	02FEB2003
	2429.28
	2398.83
	2506.22
	2360.52
	610.98

	09FEB2003
	2493.99
	2409.06
	2428.26
	2385.33
	606.85

	16FEB2003
	2571.80
	2454.40
	2406.10
	2444.93
	602.56

	23FEB2003
	2649.08
	2521.78
	2427.05
	2524.93
	599.50

As you can see, the OBSERVED= option has a very large effect on the results that PROC EXPAND yields. The BEGINNING column is the default, and that is the interpolation calculated if the numbers are measured at the beginning of the month and converted to the BEGINNING of the week. MIDDLE and END do the calculation as if the numbers were measured and converted at the middle and the end of the month, respectively. That is why the interpolated values are missing in those columns in the above chart. The numbers are not available until the beginning of the interval (the beginning of the week containing the middle and end, respectively, of the month).

If you are measuring totals (which we are, since this is mass transit ridership data), the values are radically different. TOTAL means that the number being interpolated is not representative of a single point in the FROM= interval, but that it is obtained across the duration of the FROM= interval. Therefore, the numbers in that column of the above table represent the number of riders per week, since that is the interval to which we are converting our data. AVERAGE considers the numbers to be averages for both the FROM and TO= intervals.

It gets a little more interesting when we use different values for the OBSERVED option, but it is extremely important to remember that these are mathematically derived and not data-based, so you need to exercise some caution and judgment as to the usefulness of these numbers. The BEGINNING,END combination takes the original value as the value at the beginning of the MONTH interval, and then (using, in this case, the default SPLINE method) returns the value from that curve at the end of the WEEK interval. Similarly, the AVERAGE,TOTAL combination considers the original value to be the monthly average and calculates a weekly total based on the default SPLINE method. There are other methods available to use in the conversion of intervals, and I encourage you to read the SAS/ETS documentation for more in-depth information about converting to a higher sampling frequency.

Different FROM and TO Values in the OBSERVED= Option

	
	OBSERVED=
Option Value

	date
	BEGINNING,END
	AVERAGE,TOTAL

	29DEC2002
	2573.61
	22825.6

	05JAN2003
	2449.83
	20280.8

	12JAN2003
	2393.59
	18472.1

	19JAN2003
	2391.28
	17310.2

	26JAN2003
	2429.28
	16694.3

	02FEB2003
	2493.99
	16523.6

	09FEB2003
	2571.80
	16697.3

	16FEB2003
	2649.08
	17114.5

	23FEB2003
	2712.25
	17674.5

In contrast to Example 6.12, Example 6.13 will show the effect of the OBSERVED= option on a lower sampling frequency. Remember, since our original data had missing values, some interpolation will take place.

Example 6.13: Effect of Different Values for OBSERVED= Option on Lowered Frequency

/* The effect of the different values for the OBSERVED option of

 the CONVERT statement in PROC EXPAND with a decreased sample frequency */

PROC EXPAND DATA=book.month OUT=annual1 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=beginning / OBSERVED=BEGINNING /*Default */;

RUN;

PROC EXPAND DATA=book.month OUT=annual2 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=middle / OBSERVED=MIDDLE;

RUN;

PROC EXPAND DATA=book.month OUT=annual3 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=end / OBSERVED=END;

RUN;

PROC EXPAND DATA=book.month OUT=annual4 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=total / OBSERVED=TOTAL;

RUN;

PROC EXPAND DATA=book.month OUT=annual5 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=average / OBSERVED=AVERAGE;

RUN;

PROC EXPAND DATA=book.month OUT=annual6 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=begend / OBSERVED=(BEGINNING,END);

RUN;

PROC EXPAND DATA=book.month OUT=annual7 FROM=MONTH TO=YEAR;

ID date;

CONVERT riders=avetot / OBSERVED=(AVERAGE,TOTAL);

RUN;

DATA compare_hi;

MERGE annual1 annual2 annual3 annual4 annual5 annual6 annual7;

BY date;

LABEL

 beginning="BEGINNING" middle = "MIDDLE" end = "END" average = "AVERAGE"

 total = "TOTAL" begend = "BEGINNING,END" avetot = "AVERAGE,TOTAL"

;;;

FORMAT beginning--avetot 11.2;

RUN;

PROC REPORT DATA=compare_hi NOWD SPLIT='\';

COLUMNS date ('OBSERVED=\Option Value' beginning middle end average total);

FORMAT date YEAR4.;

DEFINE date / display;

RUN;

PROC REPORT DATA=compare_hi NOWD SPLIT='\';

COLUMNS date ('OBSERVED=\Option Value' begend avetot);

FORMAT date YEAR4.;

DEFINE date / display;

RUN;

OBSERVED= Option Is the Same for FROM= and TO=:

	
	OBSERVED=
Option Value

	date
	BEGINNING
	MIDDLE
	END
	AVERAGE
	TOTAL

	2003
	2679.90
	2764.22
	2888.60
	2861.76
	34476.22

	2004
	3132.90
	2972.48
	3038.40
	2996.92
	35947.50

BEGINNING, MIDDLE, and END don't give us a very good idea of yearly ridership, because they are considering the entire ridership as occurring on the beginning, middle, or end of each observation in the FROM= interval. TOTAL is the value for the entire year, and AVERAGE is calculated on the monthly values. However, all of these values are calculated with interpolation of the missing values in October and November 2003. Below, the interpolation for those missing values is still performed even though we are using different values for the from and to observation characteristics. Of special interest is the AVERAGE,TOTAL column. It considers the monthly data to be the average monthly ridership, so PROC EXPAND interpolates for the missing data and then provides a ridership total for each year based on that average monthly ridership.

Different FROM and TO Values in the OBSERVED= Option

	
	OBSERVED=
Option Value

	date
	BEGINNING,END
	AVERAGE,TOTAL

	2003
	3132.90
	1044544.20

	2004
	3153.51
	1096872.40

PROC EXPAND has many more capabilities, and the preceding examples give only the most basic information about how to use this powerful procedure with time series data. You can refer to the documentation for SAS/ETS to get a much more complete explanation of PROC EXPAND and its options.

6.4 International Date, Time, and Datetime Formats and Informats

Version 9 of SAS has formats for dates and times in languages other than U.S. English. It is included in Base SAS as a part of National Language Support (NLS). The key to NLS is in the LOCALE= or DFLANG= system options. The default value for the LOCALE option is defined in the SAS configuration file and is set during installation, but it can be changed with an OPTIONS statement or inside the OPTIONS window. The LOCALE= option implicitly sets two other options that can affect dates, times, and datetime values in SAS. It will set the DATESTYLE= option, which determines how the ANYDT informats will interpret character strings where the order of month, day, and year is ambiguous. The DFLANG= option defines the default language that SAS will use.

There are a few specific date formats for Taiwanese, Japanese, and Hebrew, but you can consider the majority of international formats and informats as falling into one of two informal categories: the "EUR" category or the NLS category. In general, it is recommended that you use the NLS formats and informats because you do not have to write code specific to a language. Changing languages using the NLS facility in SAS is a matter of changing the value of the LOCALE= option, which brings the formats in line with the rest of the SAS session. However, the "EUR" category can be useful. You can select the language based on either the DFLANG= system option or by replacing the "EUR" in the format name with a specific language abbreviation. Using the language abbreviations is handy if you are working with many languages on the same output, because they enable you to specify the language without regard to a system option, and you can use them exactly where you need them, for as long as you need them.

6.4.1 "EUR" Formats and Informats

Each of these formats and informats correspond to an English language format or informat. However, the minimum, maximum, and default widths for the format or informat are dependent upon the language being used at the time. Tables 6.3 and 6.4 list the English language formats and their EUR format names, and the EUR informats.

Table 6.3: International Format Names and Their English Language Equivalents

	English Language Format Name
	International Format Name

	DATE.
	EURDFDE.

	DATETIME.
	EURDFDT.

	DDMMYY.
	EURDFDD.

	DOWNAME.
	EURDFDWN.

	MONNAME.
	EURDFMN.

	MONYY.
	EURDFMY.

	WEEKDATX.
	EURDFWKX.

	WEEKDAY.
	EURDFDN.

	WORDDATX.
	EURDFWDX.

Table 6.4: International Informat Names and Their English Language Equivalents

	Informat
	Description

	EURDFDEw.
	Reads international date values in the form ddmonyy(yy), where dd represents the day of the month, mon is the three-letter month abbreviation in the language specified by the DFLANG= system option or by the appropriate three-letter prefix, and yy(yy) is the two- or four-digit year.

	EURDFDTw.
	Reads international datetime values in the form ddmonyy hh:mm:ss.ss or ddmonyyyy hh:mm:ss.ss.

	EURDFMYw.
	Reads month and year date values in the form monyy or monyyyy.

You replace "EUR" with a specific three-letter language prefix in any of the above formats or informats to define the language that you want to use. This overrides the DFLANG= system option and is a good way to display dates in multiple languages simultaneously. Table 6.5 is a list of all the valid languages with their three-letter prefix. In addition, we'll show the effect of using each three-letter prefix on the EURDFWKX. format by using the reference date of Tuesday, February 18, 2014. As a comparison, the table also includes the reference date formatted as the English equivalent using the WEEKDATX. format.

Table 6.5: International Date Formats with Language Abbreviations

	Language
Prefix
	Language
	Format
Name
	Formatted Date

	
	
	WEEKDATX.
	Tuesday, 18 February 2014

	AFR
	Afrikaans
	AFRDFWKX.
	Dinsdag, 18 Februarie 2014

	CAT
	Catalan
	CATDFWKX.
	Dimarts, 18 Febrer 2014

	CRO
	Croatian
	CRODFWKX.
	utorak, 18 veljaca 2014

	CSY
	Czech
	CSYDFWKX.
	úterý, 18 únor 2014

	DAN
	Danish
	DANDFWKX.
	tirsdag, den 18. februar 2014

	NLD
	Dutch
	NLDDFWKX.
	dinsdag, 18 februari 2014

	FIN
	Finnish
	FINDFWKX.
	Tiistaina, 18. helmikuuta 2014

	FRA
	French
	FRADFWKX.
	Mardi 18 février 2014

	DEU
	German
	DEUDFWKX.
	Dienstag, 18. Februar 2014

	HUN
	Hungarian
	HUNDFWKX.
	2014.február 18., kedd

	ITA
	Italian
	ITADFWKX.
	Martedì, 18 Febbraio 2014

	MAC
	Macedonian
	MACDFWKX.
	vtornik, 18 fevruari 2014

	NOR
	Norwegian
	NORDFWKX.
	tirsdag, 18. februar 2014

	POL
	Polish
	POLDFWKX.
	wtorek, 18 luty 2014

	PTG
	Portuguese
	PTGDFWKX.
	Terça-feira, 18 de fevereiro de 2014

	RUS
	Russian
	RUSDFWKX.
	Вторник, 18 Февраль 2014

	ESP
	Spanish
	ESPDFWKX.
	martes, 18 de febrero de 2014

	SLO
	Slovenian
	SLODFWKX.
	torek, 18 februar 2014

	SVE
	Swedish
	SVEDFWKX.
	Tisdag, 18 februari 2014

	FRS
	Swiss_French
	FRSDFWKX.
	Mardi 18 février 2014

	DES
	Swiss_German
	DESDFWKX.
	Dienstag, 18. Februar 2014

6.4.2 NLS Formats

The output from the NLS series of formats is defined by the LOCALE= system option. Unlike the "EUR" series, you cannot specify a language; the language is defined by the current value of the LOCALE= option. Use these formats when your output might be generated in several locations around the world, but you don't have to display multiple languages within the same output. These formats work by converting a SAS date, time, or datetime value to that of the specified locale and then formatting the result. These formats are also noteworthy in that the result is left-justified, as opposed to the right-justification of most of the other date, time, and datetime formats. This is true for all ODS destinations as well as for traditional column-based output. Of course, with ODS destinations, the justification of the column will be performed according to any STYLE in effect.

Tables 6.6, 6.7, and 6.8 list the NLS formats available for dates, datetimes, and times, respectively. Each table will give the NLS format name, a description of the output created by the format, the default format width, and width range. The description of the output can also contain a recommended width, which might differ from the default. The recommended width is the minimum format width necessary to display all possible date, datetime, or time values, because the length of the output might exceed the default width in the given format for some locale and encoding combinations. If you use the recommended widths given in the table(s) below, you will always get accurate output. Otherwise, your output could have a series of asterisks (*****) in place of the date string that you expected. In general, it is always better to specify a format width that is too long rather than one that is too short. ODS will handle most justification issues arising from overestimating how many characters will be returned from a format. Note that the width specifications for datetime and time formats can accommodate fractional seconds (w.d), and they will be displayed with the locale-specific decimal separator. Because there are so many NLS formats available, Appendix B will show the difference in output resulting from different LOCALE settings using a specific date, datetime, and time as appropriate for each of the NLS formats in the following three tables.

Table 6.6: NLS Date Formats

	Format Name
	Description
	Default Width
	Width Range

	NLDATEw.
	Displays the date as month name, day, and year in local format. SAS will use DATE. in local format or abbreviate the month name to fit the format width specified. It is recommended that you use a minimum format width of 25 to ensure accurate output across all supported languages.
	20
	10–200

	NLDATELw.
	Displays the date as month name, day, and year in local format. SAS will abbreviate month name or use only numbers and delimiters to fit the format width specified.
	18
	2–220

	NLDATEMw.
	Displays the date as the local abbreviation for month along with the day and year, but will use only numbers and delimiters to fit the format width specified.
	10
	2–200

	NLDATEMDw.
	Displays month name and day (no year) from a date value. SAS will use the local abbreviation for the month name if the format width cannot accommodate the full month name.
	16
	6–200

	NLDATEMDLw.
	Displays the full month name and day (no year) from a date value in local format. SAS will abbreviate the month name or use only numbers and delimiters for the month and day if the format width cannot accommodate the full month name.
	12
	5–200

	NLDATEMDMw.
	Displays the local abbreviation for the month name and the day (no year) from a date value. SAS will use only numbers and delimiters for the month and day to fit the format width specified.
	9
	5–200

	NLDATEMDSw.
	Displays the month and day (no year) from a date value using only numbers and delimiters.
	5
	5–200

	NLDATEMNw.
	Displays the month name from a date value in local format. SAS will abbreviate the month name to fit the format width specified.
	9
	4–200

	NLDATESw.
	Displays the date in local format using numbers and delimiters only.
	10
	2–200

	NLDATEWw.
	Displays a date value as day of the week and date in local format. SAS will abbreviate day-of-week, and/or month name as necessary to fit the format width given.
	29
	10–200

	NLDATEWNw.
	Displays a date value as the day of the week in local format. SAS will abbreviate as necessary to fit the format width given.
	9
	4–200

	NLDATEYMw.
	Displays month name and year from a date value in local format. SAS will abbreviate month name and/or use 2-digit year as necessary to fit the format width. Note that some format widths might be too small to accommodate the abbreviations. In that case, a series of asterisks (*****) will be displayed.
	16
	6–200

	NLDATEYMLw.
	Displays a date value as the full month name and the year in local format. If necessary, SAS will abbreviate the month name or use only numbers and delimiters for the month and year and/or a 2-digit year to fit the format width specified.
	14
	5–200

	NLDATEYMMw.
	Displays a date value as the local abbreviation for month name and the year. If necessary, SAS will use only numbers and delimiters for the month and year and/or a 2-digit year to fit the format width specified.
	11
	5–200

	NLDATEYMSw.
	Displays the month and year from a date value using only numbers and delimiters in local format. Will use 2-digit year if format width is 5 or 6.
	7
	5–200

	NLDATEYQw.
	Displays a date value as calendar quarter and year. It is recommended that you use a minimum format width of 20 to ensure accurate output across all supported languages.
	16
	4–200

	NLDATEYQLw.
	Displays a date value as the full length for the calendar quarter and the year (for example, "3e trimestre 2014"). A width of 4 will display a 2-digit year. SAS will abbreviate as necessary to fit the format width specified.
	18
	4–200

	NLDATEYQMw.
	Displays a date value as a quarter abbreviation and the year (for example, "T3 2015"). SAS will use only numbers and delimiters to fit the format width if necessary. A width of 4 will display a 2-digit year.
	7
	4–200

	NLDATEYQSw.
	Will display the year and calendar quarter from a date value in local format using only numbers and delimiters. A width of 4 will display a 2-digit year.
	6
	4–200

	NLDATEYRw.
	Will display the 2- or 4-digit year from a date value.
	16
	2–200

	NLDATEYWw.
	Displays a date value as the week number and the year (for example, "Week 15 2014"). Which week algorithm is used (U, V, or W) varies based on the value of the LOCALE= option. See the WEEKU., WEEKV., and WEEKW. format discussions in Section 2.4.1, Date Formats, for more information about the week algorithms.
	16
	5–200

	
	
	
	
	

Table 6.7: NLS Datetime Formats

	Format Name
	Description
	Default Width
	Width Range

	NLDATMw.d
	Displays a datetime value as a datetime in local format.
	30
	10–200

	NLDATMAPw.d
	Displays a datetime value as month name, day, year, and time in local format. SAS will abbreviate as necessary to fit the format width specified and may substitute numbers and delimiters for the month name, day, and year.
	32
	16–200

	NLDATMDTw.d
	Displays the date from a datetime value with the month name, day, and year in local format. SAS will abbreviate the month name or substitute numbers and delimiters in local format for the month name, day, and year as necessary to fit the supplied format width.
	18
	10–100

	NLDATMLw.d
	Displays the date from a datetime value with the month name, day, and year in local format. SAS will abbreviate the month name or substitute numbers and delimiters in local format for the month name, day, and year as necessary to fit the supplied format width.
	30
	9–200

	NLDATMMw.d
	Displays the date and time from a datetime value using the abbreviation for month name. SAS will use numbers and delimiters for the date if the format width is not wide enough and will further abbreviate the time to hours:minutes, then just hours if necessary.
	24
	9–200

	NLDATMMDw.d
	Displays the month and day from a datetime value. SAS will abbreviate the month name or use numbers and delimiters in local format (no year) if the format width cannot accommodate the full month name.
	16
	6–200

	NLDATMMDLw.d
	Displays the month and day from a datetime value. SAS will abbreviate the month name or use numbers and delimiters in local format (no year) if the format width cannot accommodate the full month name.
	9
	5–200

	NLDATMMDMw.d
	Displays the abbreviated month name and day from a datetime value. SAS will use numbers and delimiters in local format (no year) if the format width cannot accommodate the full month name.
	9
	5–200

	NLDATMMDSw.d
	Displays the month and day from a datetime value as numbers and delimiters only (for example, mm/dd or dd/mm).
	5
	5–200

	NLDATMMNw.d
	Displays the month name in local format from a datetime value. SAS will abbreviate if the full month name will not fit in the format width supplied.
	9
	4–200

	NLDATMSw.d
	Displays a datetime value as numbers and delimiters only, in local format (for example, 17/05/2014 13:47:06).
	19
	9–200

	NLDATMTMw.d
	Displays time of day from a datetime value in local time format.
	16
	16–200

	NLDATMTZw.d
	Displays time of day from a datetime value in hours and minutes and the time zone offset for the locale.
	32
	16–200

	NLDATMWw.d
	Displays a datetime value as day of the week, date, and time in the local format. It is recommended that you use a minimum format width of 49 to ensure accurate output across all supported languages.
	41
	16–200

	NLDATMWNw.d
	Displays the day of the week from a datetime value in local format. SAS will abbreviate if the format width is too small to accommodate the full day of week name.
	9
	4–200

	NLDATMWZw.d
	Displays day of the week and datetime in local format. SAS will abbreviate as necessary. It is recommended that you use a minimum format width of 55 to ensure accurate output across all supported languages.
	40
	16–200

	NLDATMYMw.d
	Displays the month name and year from a datetime value. SAS will abbreviate the month name and/or use a 2-digit year to fit the format width specified.
	16
	6–200

	NLDATMYMLw.d
	Displays the month name and year from a datetime value. SAS will abbreviate the month name or use the month number, and use a 2-digit year if necessary to fit the format width specified.
	14
	5–200

	NLDATMYMMw.d
	Displays the abbreviated month name and year from a datetime value. SAS will use the month number and a 2-digit year if necessary to fit the format width specified.
	11
	5–200

	NLDATMYMSw.d
	Displays the month and year from a datetime value using numbers and delimiters only. SAS will use a 2-digit year if necessary to fit the format width specified.
	7
	5–200

	NLDATMYQw.d
	Displays the year and quarter of the year from a datetime value in local format. SAS will abbreviate quarter and use a 2-digit year if necessary to fit the format width specified. It is recommended that you use a minimum format width of 20 to ensure accurate output across all supported languages.
	16
	4–200

	NLDATMYQLw.d
	Displays the year and quarter of the year from a datetime value in local format. SAS will abbreviate quarter, use numbers and delimiters only, and use a 2-digit year if necessary to fit the format width specified.
	18
	4–200

	NLDATMYQMw.d
	Displays the year and quarter of the year from a datetime value as an abbreviation in local format. SAS will use numbers and delimiters only and use a 2-digit year if necessary to fit the format width specified.
	7
	4–200

	NLDATMYQSw.d
	Displays the year and quarter of the year from a datetime value in local format as numbers and delimiters only. SAS will use a 2-digit year if necessary to fit the format width specified.
	6
	4–200

	NLDATMYRw.d
	Displays the year from a datetime value. SAS will use a 2-digit year if necessary to fit the format width specified.
	16
	2–200

	NLDATMYWw.d
	Displays a datetime value as the year and name of the week. SAS will abbreviate week and/or use a 2-digit year if necessary to fit the format width specified.
	16
	5–200

	NLDATMZw.d
	Displays a datetime value as a datetime string in local format with the time zone offset.
	40
	16–200

Table 6.8: NLS Time Formats

	Format Name
	Description
	Default Width
	Width Range

	NLTIMAPw.d
	Displays a time value as the time, followed by AM or PM in local format. It is recommended that you use a minimum format width of 22 to ensure accurate output across all supported languages.
	10
	4–200

	NLTIMEw.d
	Displays a time value as the time in local format.
	20
	10–200

Similar to the "EUR" informats, you can use NLS informats to process data according to the LOCALE= system option. Table 6.9 shows the NLS informats available, their default width specification, the width range, and the English language informat to which it is similar.

Table 6.9: NLS Time Informats

	Category
	Format Name
	Description
	Default Width
	Width Range

	Date
	NLDATEw.
	Reads local date strings of month name, day, and year in local format, or DDMMMYY(YY).
	20
	10–200

	Datetime
	NLDATMw.
	Reads local datetime value strings.
	30
	10–200

	Time
	NLTIMAPw.
	Reads local time strings containing AM and PM.
	10
	4–200

	
	NLTIMEw.
	Reads local time strings without AM and PM
	20
	10–200

The whole point of NLS formats and informats is that you do not have to worry about the specific language that will be using the format or informat. The LOCALE= system option will take care of it. In this way, the same SAS program can be used anywhere, and the output will be appropriate to the local language as long as the LOCALE= system option has been set correctly. It is important to understand that NLS formats and informats work just as well with the English language as with any other language, so there's no need to use SAS program code beyond the LOCALE= option to switch between English language formats/informats and other languages, unless you need a specific format that does not have an NLS equivalent. Also, bear in mind that any PICTURE formats you create for dates and times are NLS-compatible by default, and the display of date or time components such as month name are locale-sensitive.

6.5 NLS Date, Time, and Datetime Conversion Functions

There are three functions to help you work with date, time, and datetime values and provide output in the local language based on the LOCALE= system option in effect. The NLDATE(), NLTIME(), and NLDATM() functions take a date, time, or datetime value, respectively, and create a string variable according to a series of date and time directives. This is the same process that occurs if you create a custom format using the PICTURE statement (see Section 2.6), and then create a character variable by using the PUT function with your custom picture format and a date, time, or datetime value.

Example 6.14: Creating a Character Value Using a Custom Picture Format and the PUT() Function

PROC FORMAT;

PICTURE wordmonth (DEFAULT=15)

LOW-HIGH = '%B %Y' (DATATYPE=DATE);

RUN;

DATA picdate;

INPUT date :mmddyy10.;

month_and_year = PUT(date,wordmonth.);

FORMAT date date11.;

DATALINES;

05/15/2016

08/01/2012

10/31/2013

03/27/2014

;

RUN;

ODS RTF FILE="ex6.5.1.rtf";

PROC PRINT DATA=picdate NOOBS LABEL SPLIT='\';

label date="Original Date"

 month_and_year='Month and Year\Character Value'

;

RUN;

This is the resulting data set. Note that the numeric date variable, which has been formatted using the DATE. format, is right-justified, while the character string we created is left-justified.

	Original Date
	Month and Year
Character Value

	15-MAY-2016
	May 2016

	01-AUG-2012
	August 2012

	31-OCT-2013
	October 2013

	27-MAR-2014
	March 2014

Essentially, the three NLS functions do the same thing, but without having to create the picture format using the FORMAT procedure. You put the description of the output string directly into the function as an argument, which is called the descriptor. The descriptor can also contain fixed text with the date directives, but this is somewhat counter to the purpose of these functions, as the fixed text you insert will not change with the LOCALE= option setting.

There are more date directives available with these functions than with the PICTURE statement of the FORMAT procedure. Following is the list of date directives you can use with the NLDATE(), NLTIME(), and NLDATM() functions. Although several of the directives may seem identical to those used with picture formats, these directives all insert a leading zero by default, so keep that in mind when using these functions. You will receive an error if you try to use a time directive with NLDATE(), or a date directive with NLTIME().

Table 6.10: NLDATE(), NLTIME(), and NLDATM() Date Directives

	Date Directive
	Description

	#
	removes the leading zero from the result.

	%%
	Specifies the percent (%) character.

	%a
	Locale's abbreviated (3-character) weekday name.

	%A
	Locale's full weekday name.

	%b
	Locale's abbreviated (3-character) month name.

	%B
	Locale's full month name without padding. When you specify '%B %d,' there will always be one space between the month and day.

	%C
	Locale's full month name with blank padding. When you specify '%C %d,' there will be one or more spaces between the month and day, depending upon the length of the month's name.

	%d
	Zero-padded numerical day of the month. Use '#d' to suppress the leading zero.

	%e
	Blank-padded numerical day of the month. Use '#e' to suppress the leading blank.

	%F
	Locale's full weekday name, padded with blanks. If you only want a single space between the weekday name and the next item, use '%A'.

	%j
	Zero-padded day of the year as a decimal number (001–366). Use '#j' to suppress any leading zeroes.

	%H
	Zero-padded hour (24-hour clock) as a decimal number (00–23). Use '#H' to suppress the leading zero.

	%I
	Zero-padded hour (12-hour clock) as a decimal number (01–12). Use '#I' to suppress the leading zero.

	%m
	Zero-padded month as a decimal number (01–12). Use '#m' to suppress the leading zero.

	%M
	Zero-padded minute as a decimal number (00–59). Use '#M' to suppress the leading zero.

	%o
	Blank-padded month as a decimal number (1–12). Use '#o' to suppress the leading blank.

	%p
	Locale's equivalent of a.m. or p.m.

	%S
	Zero-padded second as a decimal number (00–59). Use '#S' to suppress the leading zero.

	%u
	Weekday as a number in the range 1–7, where 1 is Monday and Sunday is 7.

	%U
	Zero-padded week-number-of-year (00–53) using the U algorithm, where Sunday is considered the first day of the week.

	%V
	Zero-padded week-number-of-year (00–53) using the ISO 8601-standard V algorithm, which defines the first week of the year as containing both January 4 and the first Thursday of the year. Therefore, if the first Monday of the year falls on January 2, 3, or 4, the preceding days of the calendar year are considered to be a part of week 53 of the previous calendar year.

	%w
	Weekday as a number in the range 0–6 where 0 is Sunday and 6 is Saturday.

	%W
	Zero-padded week-number-of-year (00–53) using the W algorithm, which uses Monday as the first day of the week.

	%y
	Zero-padded year without century as a decimal number (00–99).

	%Y
	Year with century as a decimal number (4-digit year). The year ranges from 1970 to 2069.

Here are the NLS date functions. When you are using text for the descriptor, the date directives must be enclosed in single quotes, or SAS will try to interpret them as macro calls.

	Function Call
	Explanation

	NLDATE(SAS-date-value,descriptor)
	Converts a SAS date value into a character string in the form described by descriptor, which is a combination of the directives in table 6.10 enclosed by single quotes. descriptor may also be a character variable containing a valid descriptor string.

	NLDATM(SAS-datetime-value,descriptor)
	Converts a SAS datetime value into a character string in the form described by descriptor, which is a combination of the directives in table 6.10 enclosed by single quotes.
descriptor may also be a character variable containing a valid descriptor string.

	NLTIME(SAS-time-value,descriptor)
	Converts a SAS time value into a character string in the form described by descriptor, which is a combination of the directives in table 6.10 enclosed by single quotes.
descriptor may also be a character variable containing a valid descriptor string.

Table 6.11 shows the results for different OPTIONS LOCALE= settings when you use the NLDATE function to create a character string containing the day-of-week name (%A), the three-letter abbreviated month name (%b), numerical day (%d), and four-digit year (%Y).

Table 6.11: The NLDATE Function

	Sample
Function Call
	OPTIONS LOCALE=
	Result

	NLDATE('26OCT2014'd,'%A %b %d %Y');
	de_DE
	Sonntag Okt 26 2014

	NLDATE('26OCT2014'd,'%A %b %d %Y');
	en_US
	Sunday Oct 26 2014

	NLDATE('26OCT2014'd,'%A %b %d %Y');
	es_MX
	domingo oct 26 2014

	NLDATE('26OCT2014'd,'%A %b %d %Y');
	ru_RU
	в о с к р е с е н ь е о к т. 26 2014

	NLDATE('26OCT2014'd,'%A %b %d %Y');
	zh_SG
	星曣日 10 月 26 2014

Table 6.12 shows the results for different OPTIONS LOCALE= settings when you use the NLDATM function to create a character string containing the abbreviated day-of-week name (%a), numerical day without the leading zero (%#d), the four-digit year (%Y), and the colon-delimited 24-hour time with zero-padded hours and minutes (%H:%M).

Table 6.12: The NLDATM Function

	Sample
Function Call
	OPTIONS LOCALE=
	Result

	NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M');
	en_US
	Tue 6 May 2014 14:30

	NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M');
	fr_FR
	mar. 6 mai 2014 14:30

	NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M');
	ja_JP
	火 6 5月 2014 14:30

	NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M');
	pl_PL
	wt. 6 maja 2014 14:30

	NLDATM('06MAY2014:14:30:00'd,'%a %#d %B %Y %H:%M');
	sv_SE
	tis 6 maj 2014 14:30

Table 6.13 shows the results for different OPTIONS LOCALE= settings when you use the NLTIME function to create a character string containing the colon-delimited 12-hour time with zero-padded hours and minutes (%I:%M) and the locale's AM/PM indicator (%p).

Table 6.13: The NLTIME Function

	Sample
Function Call
	OPTIONS LOCALE=
	Result

	NLTIME('10:17:00'd,'%I:%M %p');
	da_DK
	10:17 f.m.

	NLTIME('10:17:00'd,'%I:%M %p');
	de_DE
	10:17 vorm.

	NLTIME('10:17:00'd,'%I:%M %p');
	en_US
	10:17 AM

	NLTIME('10:17:00'd,'%I:%M %p');
	es_SP
	10:17 f.m.

	NLTIME('10:17:00'd,'%I:%M %p');
	zh_CN
	10:17 上午

6.6 Date Formats and Informats for Other Calendars

SAS has the ability to handle dates from non-Julian calendars, such as Hebrew, Japanese, and Taiwanese. The date values continue to be stored as SAS dates, where January 1, 1960, is equal to zero, but these formats handle the conversion to the other calendars for the correct display of dates.

6.6.1 Hebrew Date Formats

HDATEw.

HDATEw. displays a SAS date value in Hebrew. You will need the correct character encoding installed on your system to display this correctly. The SAS date will be displayed as yyyy mmmmm dd, where yyyy is the year, mmmmm represents the month's name in Hebrew, and dd is the day-of-the-month. w can be from 9 to 17, with a default width of 17, and it is right-justified. Use odd numbers for w to get the best display.

HEBDATEw.

HEBDATEw. displays a SAS date value according to the Jewish calendar. It is a combined solar and lunar calendar. The Hebrew year is calculated by adding 3761 beginning in autumn of a specified year in the Gregorian calendar. w can be from 7 to 24, with a default width of 16, and it is right-justified. There are three forms of the display, long, default, and short, dependent upon the format width specified. Again, you will need the correct character encoding installed on your system, or you will get substitutions for nonprinting characters.

6.6.2 Japanese and Taiwanese Date Formats

MINGUOw.

MINGUOw. displays a SAS date value as a Taiwanese date value in the form yy(yy)mmdd, where yy(yy) is the year, mm is the number of the month, and dd is the day of the month. w can range from 1 to 10, with a default width of 8, and it is left-justified and zero-filled. The Taiwanese calendar uses 1912 as the base year (that is, 01/01/01 is January 1, 1912). Dates prior to this will display as a series of asterisks (*****). Also, the year values continue to increase past 100; they do not remain two-digit years and cycle, much like Julian dates. For example, January 1, 2012 is "100/01/01," not "00/01/01."

NENGOw.

NENGOw. writes a SAS date value in the form e.yymmdd, wheree is the first letter of the name of the emperor (Meiji, Taisho, Showa, or Heisei), yy is the year, mm is the month, and dd is the day of the month. w can be from 2 to 10, with a default width of 10, and it is left-justified. SAS will omit the period if w isn't big enough.

6.6.3 Japanese and Taiwanese Date Informats

JDATEMYDw.

JDATEMYDw. allows you to convert Japanese Kanji in the form yy(yy)mondd to SAS date values, where yy(yy) is the year, mon is the Kanji representation of the name of the month, and dd represents the day of the month. w can be from 12 to 32, with a default width of 12. You can separate (yy)yy, mon, and dd with special characters or blanks, but you must make sure that the width specification allows for any blanks and/or special characters in the input field. Two-digit years will be translated according to the YEARCUTOFF= option.

JNENGOw.

JNENGOw. reads Japanese Kanji date values in the form yymmdd, where yy is the year, mm is the Kanji representation of the name of the month, and dd represents the day of the month. Since yy is two digits long, this informat is always affected by the YEARCUTOFF= option. w can be from 16 to 32, with a default width of 16. You can separate yy, mon, and dd with special characters or blanks, but you must make sure that the width specification allows for any blanks and/or special characters in the input field.

MINGUOw.

MINGUOw. converts a Taiwanese date value into a SAS date value in the form yy(yy)mmdd, where yy(yy) is the year, mm is the number of the month, and dd is the day of the month. w can be from 6 to 10, with a default width of 6. You may use separators such as blanks, dashes, or slashes between the year, month, and day values, but they must be present between all of the values. The Taiwanese calendar uses 1912 as the base year (that is, 01/01/01 is January 1, 1912). In addition, the year values continue to increase past 100; they do not cycle. January 1, 2012, is "100/01/01," not "00/01/01." You will get a missing value if you use this format to read date strings where the year component is less than 1.

6.7 Other Software and Their Dates (Excel, Oracle, DB2)

Most software packages keep their dates in some sort of numerical form in much the same way that SAS does, while others have a special variable type for dates. Microsoft Excel stores dates as integers, but it uses January 1, 1900, instead of January 1, 1960, as day zero. Times are stored in Excel as fractions of days, so noon of a given day is .5 (exactly one-half of a day). Datetime values are stored in Excel as the day relative to 01/01/1900 plus the fraction of the day. In Excel, 6 p.m. on January 1, 1900, is represented as .75. Excel also has a major limitation on its date algorithm: It cannot store its dates as negative numbers. This means that any date prior to January 1, 1900, is going to be represented by a character string, not an Excel date value. Therefore, if you have historical dates in an Excel spreadsheet, you need to be aware that you will have to process any column(s) with historical dates as character columns, and use the INPUT() function to create your SAS date values. The ANYDT informats may also prove useful in situations like this. If you rely on an automated method of conversion from Excel to SAS, there is the possibility that a column with historical dates might be translated as a numeric column. If this occurs, then any dates (or datetimes) prior to January 1, 1900, will be missing in your SAS data set. You will run into the same problem exporting historical dates into Excel from SAS. You will have to export the column as a character column, and you won't be able to use any of the Excel date or math functions on cells containing them inside the spreadsheet.

These are conversion issues specific to Excel that may arise when you are trying to import or export data to or from Excel. When you import data from other software packages into SAS using the IMPORT procedure, one of the database engines, or with pass-through SQL processing, SAS should understand and convert the dates, even though the reference date for the other software may differ. There are exceptions to this rule, one of which is using a pass-thru WHERE clause inside PROC SQL for foreign databases. You will have to know the date, time, or datetime format for the foreign database to select records based on dates, times, or datetimes. There are specific cases where SAS does not have an informat for certain datetime strings from other databases and cannot translate those values into their SAS equivalent. The general strategy to pursue in these cases is to parse the datetime string and work from there with a combination of informats and/or functions to create your SAS datetime values. If you will need to do this on a regular basis, you could create a macro or use PROC FCMP to process your troublesome datetime strings.

Sending dates to other databases and software packages should be fine if you use the EXPORT procedure or one of the database engines. If you are determined to send dates to another database or software package the hard way, then you will have to produce SAS date, time, or datetime values as character strings in the format of the other software and then import them using the methods available to other software packages. You can use a picture format and the PUT statement to accomplish this, as long as you know the correct representation of the package for which you are creating the data. For details on creating picture formats, see Section 2.6. Example 6.15 shows how this is done for a DB2 database.

Example 6.15: Writing Datetime Values for DB2 Using a Picture Format

PROC FORMAT;

PICTURE dbdate

LOW-HIGH = '%Y-%0m-%0d:%0H:%0M:%0S' (DATATYPE=DATETIME)

. - .Z = '0000-00-00:00:00:00';

RUN;

DATA _NULL_;

now = '01JUL2014:20:18:32'dt;

PUT "now displayed as datetime value: " @33 now;

PUT "now displayed as datetime19.: " @33 now DATETIME19.;

PUT "now displayed as dbdate.: " @33 now DBDATE.;

RUN;

The Result

now displayed as datetime value: 1719865112

now displayed as datetime19.: 01JUL2014:20:18:32

now displayed as dbdate.: 2014-07-01:20:18:32

6.7.1 The SASDATEFMT= System Option

This system option can be useful when you are working with one of the following databases: Aster, DB2 under UNIX and PC Hosts, Greenplum, Impala, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, PostgreSQL, SAP HANA, Sybase, Sybase IQ, Teradata, or Vertica. It enables you to change the date format of a column in the DBMS. It is used to avoid data type mismatches between SAS date, time, or datetime values and the DBMS date columns when importing to SAS from a DBMS, or exporting to a DBMS from SAS. The syntax is as follows:

OPTIONS SASDATEFMT=(DBMS-date-column1 = SAS date-format1, DBMS-date-column2 = SAS date-format2,… DBMS-date-columnn = SAS date-formatn);
DBMS-date-column is the name of a date column in the DBMS, and SAS date-format is the name of a SAS date, time, or datetime format. This format must also have an informat of the same name to work in this option. For example, DATE9. is both a format and an informat, so it would be valid.

In order for this option to have an effect, the DBMS column must have a type of DATE, TIME, or DATETIME; any other data type will be ignored by this option. You use this when the default SAS date format (which is DBMS- and data type-specific, see the SAS/ACCESS documentation for details) does not match the SAS date format you want or vice-versa.

6.8 Conclusion

In summary, when working with dates and times and datetimes from other software, you first have to make sure that you are not working with character strings masquerading as dates. If you have a character string, you will have to convert it to a SAS date, time, or datetime yourself with the INPUT() function (Section 3.3.3). The reverse also holds true when you are exporting to other databases. While most of the methods to traverse between different software and SAS will handle the import and export of dates, times, and datetimes accurately, it is always important to check the results at your destination.

Appendix A: A Quick Reference Guide to SAS Date, Time, and Datetime Formats

This table shows the result when the same date, time, or datetime value is displayed with the corresponding format, using the default length for the given format.

The reference date for this table is Thursday, September 18, 2014.

	If You Want Your Date
to Look Like This
	Use This Format

	18SEP14
	DATE.

	18
	DAY.

	18/09/14
	DDMMYY.

	18 09 14
	DDMMYYB.

	18:09:14
	DDMMYYC.

	18-09-14
	DDMMYYD.

	18092014
	DDMMYYN.

	18.09.14
	DDMMYYP.

	18/09/14
	DDMMYYS.

	Thursday
	DOWNAME.

	261
	JULDAY.

	14261
	JULIAN.

	09/18/14
	MMDDYY.

	09 18 14
	MMDDYYB.

	09:18:14
	MMDDYYC.

	09-18-14
	MMDDYYD.

	09182014
	MMDDYYN.

	09.18.14
	MMDDYYP.

	09/18/14
	MMDDYYS.

	09M2014
	MMYY.

	09:2014
	MMYYC.

	09-2014
	MMYYD.

	092014
	MMYYN.

	09.2014
	MMYYP.

	09/2014
	MMYYS.

	September
	MONNAME.

	9
	MONTH.

	SEP14
	MONYY.

	3
	QTR.

	III
	QTRR.

	Thursday, September 18, 2014
	WEEKDATE.

	Thursday, 18 September 2014
	WEEKDATX.

	5
	WEEKDAY.

	2014-W37-05
	WEEKU.

	2014-W38-04
	WEEKV.

	2014-W37-04
	WEEKW.

	September 18, 2014
	WORDDATE.

	18 September 2014
	WORDDATX.

	2014
	YEAR.

	2014M09
	YYMM.

	2014:09
	YYMMC.

	2014-09
	YYMMD.

	14-09-18
	YYMMDD.

	14 09 18
	YYMMDDB.

	14:09:18
	YYMMDDC.

	14-09-18
	YYMMDDD.

	20140918
	YYMMDDN.

	14.09.18
	YYMMDDP.

	14/09/18
	YYMMDDS.

	201409
	YYMMN.

	2014.09
	YYMMP.

	2014/09
	YYMMS.

	2014SEP
	YYMON.

	2014Q3
	YYQ.

	2014:3
	YYQC.

	2014-3
	YYQD.

	20143
	YYQN.

	2014.3
	YYQP.

	2014QIII
	YYQR.

	2014:III
	YYQRC.

	2014-III
	YYQRD.

	2014III
	YYQRN.

	2014.III
	YYQRP.

	2014/III
	YYQRS.

	2014/3
	YYQS.

	2014W37
	YYWEEKU.

	2014W38
	YYWEEKV.

	2014W37
	YYWEEKW.

The reference time for this table is 2:45 p.m.

	If You Want Your Time
to Look Like This
	Use This Format

	14:35
	HHMM.

	15
	HOUR.

	875
	MMSS.

	14:35:00
	TIME.

	2:35:00 PM
	TIMEAMPM.

	14:35:00
	TOD.

The reference datetime for this table is 7:20 p.m. on Friday, December 12, 2014.

	If You Want Your Datetime
to Look Like This
	Use This Format

	12DEC14:07:20:00 PM
	DATEAMPM.

	12DEC14:19:20:00
	DATETIME.

	12DEC14
	DTDATE.

	DEC14
	DTMONYY.

	Friday, 12 December 2014
	DTWKDATX.

	2014
	DTYEAR.

	14:4
	DTYYQC.

	12/12/2014 7:20 PM
	MDYAMPM.

Appendix B: A Quick Reference Guide to NLS Date, Time, and Datetime Formats

This table shows the result when the same date, time, or datetime value is displayed with the corresponding format, using the default length for the given format.

The reference date for this table is Monday, July 7, 2014.

	Format Name
	Language

	OPTIONS
LOCALE=
'English_UnitedStates'
	OPTIONS
LOCALE=
'Dutch_Belgium'
	OPTIONS
LOCALE=
'Russian_Russia'

	NLDATE.
	July 07, 2014
	07 juli 2014
	07 июля 2014 г.

	NLDATEL.
	July 7, 2014
	7 juli 2014
	07.07.2014

	NLDATEM.
	Jul 7, 2014
	7-jul.-2014
	07.07.2014

	NLDATEMD.
	July 07
	07 juli
	07 июля

	NLDATEMDL.
	July 07
	07 juli
	07.07

	NLDATEMDM.
	Jul 07
	07 jul.
	07.07

	NLDATEMDS.
	07/07
	07/07
	07.07

	NLDATEMN.
	July
	juli
	Июль

	NLDATES.
	07/07/2014
	07/07/2014
	07.07.2014

	NLDATEW.
	Monday, July 7, 2014
	maandag 7 juli 2014
	пн, 7 июля 2014 г.

	NLDATEWN.
	Monday
	maandag
	Пн

	NLDATEYM.
	July 2014
	juli 2014

❶

	NLDATEYML.
	July 2014
	juli 2014
	07.2014

	NLDATEYMM.
	Jul 2014
	jul. 2014
	07.2014

	NLDATEYMS.
	07/2014
	07/2014
	07.2014

	NLDATEYQ.
	3rd quarter 2014
	Q3 2014
	3-й кв. 2014

	NLDATEYQL.
	3rd quarter 2014
	Q3 2014
	3-й кв. 2014

	NLDATEYQM.
	Q3 2014
	K3 2014
	2014.3

	NLDATEYQS.
	2014/3
	2014/3
	2014.3

	NLDATEYR.
	2014
	2014
	2014

	NLDATEYW.
	Week 27 2014
	Week 27 2014
	Week 27 2014

➊-The Russian text is too long for the default format width.

The reference time for this table is 11:20.

	Format Name
	Language

	OPTIONS
LOCALE=
'English_UnitedStates'
	OPTIONS
LOCALE=
'Dutch_Belgium'
	OPTIONS
LOCALE=
'Russian_Russia'

	NLTIMAP.
	11:20 AM
	11:20 AM
	11:20 AM

	NLTIME.
	11:20:00
	11:20:00 uur
	11:20:00

The reference datetime for this table is Saturday, September 27, 2014, 05:45:00 p.m.

	Format Name
	Language

	OPTIONS
LOCALE=
'English_UnitedStates'
	OPTIONS
LOCALE=
'Dutch_Belgium'
	OPTIONS
LOCALE=
'Russian_Russia'

	NLDATM.
	27Sep2014:17:45:00
	27 september 2014 17:45:00 uur
	27.09.2014, 17:45:00

	NLDATMAP.
	September 27, 2014 05:45:00 PM
	27 september 2014 05:45:00 PM
	27.09.2014, 17:45:00

	NLDATMDT.
	September 27, 2014
	27 september 2014
	27.09.2014

	NLDATML.
	September 27, 2014 05:45:00 PM
	27 september 2014 17:45:00
	27.09.2014, 17:45:00

	NLDATMM.
	Sep 27, 2014 05:45:00 PM
	27-sep.-2014 17:45:00
	27.09.2014, 17:45:00

	NLDATMMD.
	September 27
	27 september
	27 сент.

	NLDATMMDL.
	September 27
	27 september
	27.09

	NLDATMMDM.
	Sep 27
	27 sep.
	27.09

	NLDATMMDS.
	09/27
	27/09
	27.09

	NLDATMMN.
	September
	september
	Сент.

	NLDATMS.
	09/27/2014 17:45:00
	27/09/2014 17:45:00
	27.09.2014 17:45:00

	NLDATMTM.
	17:45:00
	17:45:00 uur
	17:45:00

	NLDATMTZ.
	17:45:00 -0500
	17:45:00 uur -0500
	17:45:00 -0500

	NLDATMW.
	Saturday, September 27, 2014 05:45:00 PM
	zaterdag 27 september 2014 17:45:00
	сб, 27 сент. 2014 г., 17:45:00

	NLDATMWN.
	Saturday
	zaterdag
	Сб

	NLDATMWZ.
	Sat, Sep 27, 2014 05:45:00 PM -0500
	za 27 sep. 2014 17:45:00 -0500
	сб, 27 сент. 2014 г. -0500

	NLDATMYM.
	September 2014
	september 2014
	**************** ➊

	NLDATMYML.
	September 2014
	september 2014
	09.2014

	NLDATMYMM.
	Sep 2014
	sep. 2014
	09.2014

	NLDATMYMS.
	09/2014
	09/2014
	09.2014

	NLDATMYQ.
	3rd quarter 2014
	Q3 2014
	3-й кв. 2014

	NLDATMYQL.
	3rd quarter 2014
	Q3 2014
	3-й кв. 2014

	NLDATMYQM.
	Q3 2014
	K3 2014
	2014.3

	NLDATMYQS.
	2014/3
	2014/3
	2014.3

	NLDATMYR.
	2014
	2014
	2014

	NLDATMYW.
	Week 38 2014
	Week 38 2014
	Week 38 2014

	NLDATMZ.
	27Sep2014:17:45:00 -0500
	27 september 2014 17:45:00 uur -0500
	27.09.2014, 17:45:00 -0500

➊-The Russian text is too long for the default format width.

Appendix C: Troubleshooting Dates 101

This appendix is intended to be a quick solutions guide for some of the most common issues people have with dates and SAS. I hope to keep the discussion going online, because people often remark to me how difficult dates are in SAS, and they shouldn't be. You can find out more about this troubleshooting project on the author page for this book. Again, these are intended to be simple solutions to common beginner's questions.

Every person experiencing a problem with dates, times, or datetimes should immediately check to see if they are working with character values or numeric values. You can do this by using PROC CONTENTS, by looking at the properties in the Explorer window in interactive SAS, or by using the Data Set Attributes Task (under Tasks → Data) in SAS Enterprise Guide. Unless you are working with ISO 8601 durations and intervals, you should be working with numeric values. If not, then the first step you should take is to convert that character value into a proper SAS date, time, or datetime value.

Question 1: How do I convert my character value into a SAS date, time, or datetime value?

Case 1: If you are reading a flat file (CSV, tab-delimited, and so on), you will need to use the INPUT statement with the appropriate date, time, or datetime informat.

Sample Code

OPTIONS DATESTYLE=MDY;

DATA convert_char;

INFILE 'char_dates.txt' PAD MISSOVER;

INPUT id $ date1 :mmddyy10. date2 :date9. date3 :anydtdte.;

RUN;

Data File 'char_dates.txt'

101 04/17/2012 06dec2015 06272014

102 09/29/2014 15JUN2013 09feb2014

103 11/12/2013 3mar2015 08/19/2015

When you run the program with the data above, you will get the following data set. The date variables have intentionally been left unformatted so you can see that the data in the flat file has been turned into SAS date values. The ANYDTDTE. informat was used to read in the DATE3 variable to demonstrate how it can be used if you don't know what your character dates look like, or if they are in different date forms. Chapter 3 contains detailed descriptions of the informats that you can use in conjunction with the INPUT statement.

The Resulting Data Set

[image: image]

Case 2: If you already have your data in a SAS data set, then you will have to use the INPUT function to translate your character dates into SAS dates.

Here is the data set we have with character dates:

[image: image]

Code to Convert Character Date Values into SAS Date Values

1. OPTIONS DATESTYLE=MDY;

2. DATA fix_char;

3. set already_char;

4. num_date1 = INPUT(date1,mmddyy10.);

5. num_date2 = INPUT(date2,date9.);

6. num_date3 = INPUT(date3,anydtdte11.);

7. RUN;

The INPUT function is used in lines 4, 5, and 6 to create the new variables num_date1, num_date2, and num_date3. The reason we are creating new variables is that you cannot change an existing variable from character to numeric, so you cannot use the variable names date1, date2, or date3 because they exist in the data set ALREADY_CHAR. The INPUT function uses the informats detailed in Chapter 3, just like the INPUT statement.

The Resulting Data Set

[image: image]

In general, when you are dealing with SAS dates, times, and datetimes, you should be working with numeric variables. The exception to this rule is ISO durations and intervals, which is covered in Chapter 4.

Question 2: Why do I get the log message "Variable xxxxxx has been defined as both character and numeric"?

You are trying to convert a character variable into a SAS date, but you're using the same variable name in the INPUT function and for the result.

date = INPUT(date,mmddyy10.);

Instead, you must use a different variable name to store the result of the INPUT function.

new_date = INPUT(date,mmddyy10.);

Question 3: Why do I get the log message "NOTE: Invalid argument to function INPUT" when I try to use the INPUT function to convert a character date into a SAS date?

You are using the wrong informat for the characters you are converting. As an example, if your character values look like "04MAY2015," you'll get this error if you don’t use the DATE. (or ANYDTDTE.) informat.

Quickest fix: Use one of the "ANYDATE" informats. Read Section 3.4.4 for details and the possible pitfalls of this strategy.

Best fix: Find the correct informat that fits the character string you're converting.

Question 4: Why do I get errors when I am reading a flat file with dates, and I know I'm using the correct informat?

This is most often an issue of not reading enough characters in the field, or of reading too many.

Best fix: Make sure you specify the correct length on your informat, and use the colon (:) modifier for your informat (see Example 3.2).

Question 5: Why doesn't my date comparison work?

This is generally a problem when you are importing data from another database. First, ensure that the variables you are working with are numeric. Second, many databases store their dates as datetime values, so even if using dates works in the database, it will not work when you try to compare that with a SAS date value.

Best fix: Once you've verified that your data aren't character, try using the DATEPART() function (Table 5.3) on the variable you've imported and compare that with your SAS date.

Question 6: My date values look right, so why can't get I my date comparison to work?

This frequently means that one of your values is character. Removing formats from a SAS date value is a good way to make sure that you've got a SAS date value. As an example, if the date is in 2014, it should be a number between 19724 and 20088.

Question 7: How can I subset my data before or after a specific date/time/datetime?

You have to use a date literal such as '01JAN2014'd, a time literal such as '14:00't, or a datetime literal such as '17OCT2014:07:00'dt.

DATA junestock;

SET sashelp.citiday;

WHERE date BETWEEN '01JUN1988'd AND '30JUN1988'd;

RUN;

This is one way to create a subset of data for June 1998 from the data set SASHELP.CITIDAY. However, don't let the format of the date fool you. Here's the same method applied to the data set SASHELP.CITIMON.

DATA stock8081;

SET sashelp.citimon;

WHERE date BETWEEN '01JAN1980'd AND '31DEC1981'd;

RUN;

Even though the dates are monthly, they are still SAS dates, so you have to specify the boundaries as complete SAS dates, not just a month and year.

Question 8: How do I get a date from a date and time?

Use the DATEPART() function after you've converted it to a SAS datetime value. If you just need the time, use the TIMEPART() function. This example takes a datetime value and separates it into date and time, formatted and unformatted versions.

DATA date_from_datetime;

datetime = '8APR2014:16:00'dt;

fmt_datetime = datetime;

date = DATEPART(datetime);

fmt_date = date;

time = TIMEPART(datetime);

fmt_time = time;

FORMAT fmt_datetime mdyampm21. fmt_date mmddyy10. fmt_time timeampm.;

RUN;

PROC PRINT DATA=date_from_datetime NOOBS;

RUN;

	datetime
	fmt_datetime
	date
	fmt_date
	time
	fmt_time

	1712592000
	4/8/2014 4:00 PM
	19821
	04/08/2014
	57600
	4:00:00 PM

Question 9: Why do my dates look like a bunch of numbers that don't make any sense, and how can I fix it?

If your date value looks like a number such as 16789, then it is displaying as its SAS date, and all you need to do is to format it using one of the date formats in Appendix A, or if you need one of the NLS formats to translate the date into a language other than English, see Section 6.4 and Appendix B.

Question 9a: I formatted my date and now all I get is a bunch of asterisks (************). What's wrong?

If your unformatted SAS value is more than 7 digits long, or you've used a date format and you get asterisks, you probably have a datetime value, and you need to use a datetime format. See Appendix A for the quick list.

Question 10: My date looks like "06/25/2014," but I need to make it look like "2014/06/25." I know it's a SAS date value in the data set, so how do I change it?

Use the FORMAT statement. It does not matter what format the variable has associated with it in the data set. As long as it is a SAS date, time, or datetime value, you can change the display by changing the format in the procedure where you are displaying the variable. However, if you get an error message along the lines of "Format $... not found," the dollar sign ($) is telling you that the variable you are trying to format is a character variable. In that case you will have to convert it to the corresponding SAS value.

Let's print out some records from a data set using this code:

ODS RTF FILE="apxc_10.rtf";

PROC PRINT DATA=book.dailysales (OBS=5);

VAR date;

RUN;

	Obs
	date

	1
	22MAY2014

	2
	23MAY2014

	3
	24MAY2014

	4
	25MAY2014

	5
	26MAY2014

What you see in the date column is just a SAS date that has been associated with the DATE9. format when the data set was created, so without any FORMAT statement in the PRINT procedure, that is what it looks like. Now we'll add a FORMAT statement.

1 PROC PRINT DATA=book.dailysales (OBS=5);

2 VAR date;

3 FORMAT date yymmdds10.;

4 RUN;

	Obs
	date

	1
	2014/05/22

	2
	2014/05/23

	3
	2014/05/24

	4
	2014/05/25

	5
	2014/05/26

And that's how you change the way a date, time, or datetime looks in output from its default format.

Question 11: My date is numeric, like 20140815. How do I get it to display as 08/15/2014?

This is usually the result of an import that went wrong. First, make sure that it really is the number 20,140,815. If this is true, then you can turn that number into a character string with the PUT function and convert it to a date value like you do with any other character date string. Here's one way:

DATA c11;

bad_date = 20140815;

char_date = PUT(bad_date,10.);

SAS_date = INPUT(STRIP(char_date),yymmdd8.);

fmt_SAS_date = SAS_date;

FORMAT fmt_SAS_date weekdate.;

RUN;

PROC PRINT DATA=c11 NOOBS;

RUN;

	bad_date
	char_date
	SAS_date
	fmt_SAS_date

	20140815
	20140815
	19950
	Friday, August 15, 2014

Question 12: How can I display just the month and year, when I have month, day, and year?

By definition, SAS dates are a specific day in a specific month during a specific year, so you can't just delete the day and store the month and year. If you want to display the value as only a month and a year, then just use a format that only displays the month and year.

Question 13: How do I convert from datetime format to date format?

In order to answer this question, you need to know what you want. If you need a SAS date value, then you need to convert it from seconds since midnight, January 1, 1960, to days since January 1, 1960, by using the DATEPART function. If you just want it to display like a date, and don't need or want the extra variable in your data set, then you can use a format. See Appendix A for the available SAS datetime formats and the output they produce.

DATA q12;

datetime = '31AUG2014:10:15'dt;

fmt_datetime = datetime;

date_from_datetime = DATEPART(datetime);

fmt_date = date_from_datetime;

FORMAT fmt_datetime dtwkdatx. fmt_date weekdatx.;

RUN;

PROC PRINT DATA=q12 NOOBS;

RUN;

Note the difference in the actual SAS values. Even though the formatted values are identical, the variable datetime is a SAS datetime value, while the variable date_from_datetime is a SAS date value created with the DATEPART function.

	datetime
	fmt_datetime
	date_value_from_datetime
	fmt_date

	1725099300
	Sunday, 31 August 2014
	19966
	Sunday, 31 August 2014

Question 14: I can't find a SAS format to make my date/time/datetime look the way I want. OR: I need to output my date so it looks like …

First, check Appendix A and the SAS documentation to see if you can find a format that matches your needs. If not, then use the FORMAT procedure with the PICTURE statement. Section 2.7 of the book provides all the details you need to create a custom format, including the SAS date directives that tell SAS what you want your date, time, or datetime to look like. Don't worry that you may be duplicating an existing SAS format; that will not cause a problem as long as you do not use the same name as a SAS-supplied format. You will see a note in the log, and your custom format will not be created.

Question 15: How can I read a date/time/datetime formatted like …?

The simple answer is to use one of the "ANYDATE" informats. Don't forget about the DATESTYLE= system option, and check your results carefully before using them. The "ANYDATE" informats are easy, but they can be fooled, even when four-digit years are used. See Section 3.4.4 for details.

Question 16: How can I convert a UTC time value to a specific time zone?

If your "time value" is a datetime, use the TZONEU2S() function. This changes the SAS value, so don't overwrite your original value unless this is what you want to do. If you have just a time value, you will need to get the offset via the TZONEOFF() function, which will return the offset from GMT for the time zone you supply.

DATA q16;

datetime = "26MAR2014:11:47:00"dt;

gmt_datetime = TZONES2U(datetime);

RUN;

PROC PRINT DATA=q16 NOOBS;

FORMAT datetime gmt_datetime mdyampm21.;

RUN;

	datetime
	gmt_datetime

	3/26/2014 11:47 AM
	3/26/2014 4:47 PM

Question 17: How can I make a single date variable from separate month, day, and year?

The MDY function will let you supply a numeric month, day, and year, and it will calculate the SAS date value. You see this often when reading Excel files, where the month, day, and year are in separate columns. We'll use in-stream comma-separated data instead of an Excel file for the example.

1 DATA Q17;

2 INFILE DATALINES DLM=',';

3 INPUT month day year;

4 SAS_date = MDY(month,day,year);

5 fmt_date = SAS_date;

6 FORMAT fmt_date mmddyyd10.;

7 DATALINES;

8 2,15,2013

9 9,6,2014

10 12,17,2013

11 5,22,2014

12 ;;;;

13 RUN;

14 PROC PRINT DATA=q17 NOOBS;

15 RUN;

The SAS_date column shows the SAS date value resulting from the use of the MDY function in line 4.

	month
	day
	year
	SAS_date
	fmt_date

	2
	15
	2013
	19404
	02-15-2013

	9
	6
	2014
	19972
	09-06-2014

	12
	17
	2013
	19709
	12-17-2013

	5
	22
	2014
	19865
	05-22-2014

Question 18: I have a date and a time. How can I make a SAS datetime from them?

This occurs when you import data into SAS and the date is in one column and the time is in another. The DHMS() function is what is used to create datetimes from dates and times. Although you might think that you have to break the time value into hours, minutes, and seconds to use the function, remember that SAS times are maintained in seconds since midnight, so you can leave hours and minutes set to zero and put the time variable into the seconds parameter. We will use in-stream data for the example. Pay attention to line 3. This is how you create a datetime from a SAS date and a SAS time.

1 DATA q18;

2 INPUT date : yymmdd10. time : time.;

3 datetime = DHMS(date,0,0,time);

4 fmt_date = date;

5 fmt_time = time;

6 fmt_datetime = datetime;

7 FORMAT fmt_date mmddyy10. fmt_time timeampm. fmt_datetime
 mdyampm21.;

8 DATALINES;

9 2014-8-17 5:45

10 2014-03-11 9:06

11 2015-02-27 15:43

12 2014-12-13 10:00

13 ;

14 RUN;

15 ODS RTF FILE='apxc_18.rtf';

16 PROC PRINT DATA=q18 NOOBS;

17 RUN;

date and time are the SAS values as read from the data, and datetime is the SAS value created in line 3 of the above code. We have created duplicate variables for formatting.

	date
	time
	datetime
	fmt_date
	fmt_time
	fmt_datetime

	19952
	20700
	1723873500
	08/17/2014
	5:45:00 AM
	8/17/2014 5:45 AM

	19793
	32760
	1710147960
	03/11/2014
	9:06:00 AM
	3/11/2014 9:06 AM

	20146
	56580
	1740670980
	02/27/2015
	3:43:00 PM
	2/27/2015 3:43 PM

	20070
	36000
	1734084000
	12/13/2014
	10:00:00 AM
	12/13/2014 10:00 AM

Question 19: How can I calculate the number of days between two dates?

There are multiple ways to calculate the difference between two dates, times, or datetimes in SAS. This is one of the best things about having them represented as numbers. The simplest way to find the difference is to subtract one date from another. It is important that you make sure that you are subtracting dates from dates, times from times, and datetimes from datetimes.

Question 20: How do I convert a numeric SAS date value into character format?

The first question you should ask yourself is why. Formatting the SAS date value will give you the display you want. Even when you are exporting to other software, as long as you put the date into a form that the other software understands, it should work fine. You don't need to do the character conversion, and you will not be able to do any calculations with that character variable. The only time that I would convert a date value into a character value is when I need to put the date inside of a long string of text such as, "The subject started the trial on January 15, 2012, and mastered task A within 15 minutes." It doesn't matter if a format is permanently associated with the date variable or what it looks like when you look at the data set; remember that you can change the way a date is displayed in any procedure where you can use a FORMAT statement.

Here's a data set with a variable that has been formatted with the WORDDATX. format. This means that anytime the variable DATE is displayed in a SAS procedure, it will be displayed with the WORDDATX. format as shown below.

[image: image]

Now, let's run a PROC PRINT, but I want to show the date as DD-MMM-YYYY, so I use the FORMAT statement to change the display for this run:

PROC PRINT DATA=q20 NOOBS;

FORMAT date date10.;

RUN;

Formatted with DATE10.

	date

	30JUN2014

	18SEP2014

	14MAR2014

	18JUL2014

	26APR2014

What if you want to see it as YYYY-MM-DD?

PROC PRINT DATA=q20 NOOBS;

FORMAT date yymmddd10.;

RUN;

Formatted with YYMMDDD10. (forces the separator to be the dash)

	date

	2014-06-30

	2014-09-18

	2014-03-14

	2014-07-18

	2014-04-26

But when we remove all the formats by using a FORMAT statement without a format name, we see the actual SAS date value:

PROC PRINT DATA=q20 NOOBS;

FORMAT date;

RUN;

Format Removed

	date

	19904

	19984

	19796

	19922

	19839

If you still want to convert your SAS date into a character value, then you can use the PUT function. Line 2 is a precaution to make sure that the character variable is long enough to hold the longest value. Note that you have to use a different name for the character variable you create in line 4.

1. DATA q20_plus;

2. LENGTH chardate $ 31;

3. SET q20;

4. chardate = PUT(date,weekdate.);

5. RUN;

	chardate
	date

	Monday, June 30, 2014
	19904

	Thursday, September 18, 2014
	19984

	Friday, March 14, 2014
	19796

	Friday, July 18, 2014
	19922

	Saturday, April 26, 2014
	19839

Index

Symbols and Numerics

& (ampersand) 192

= (equals sign) 207

$ (dollar sign) 61

%% date directive 49

A

%a date directive 49

%A date directive 49

AFR language prefix 214

ampersand (&) 192

ANYDTDTEw. informat 82–83

ANYDTDTMw. informat and 84–85

ANYDTTMEw. informat and 85–86

DATESTYLE= system option and 81, 82–83, 85–86

troubleshooting 239

ANYDTDTMw. informat 81, 84–85

automatic macro variables 186–189

B

%b date directive 49

%B date directive 49

B8601CIw.d informat 78, 108

B8601DAw. format 93

B8601DAw. informat 104

B8601DJw.d informat 79, 108

B8601DNw. format 99

B8601DTw.d format 99–100

B8601DTw.d informat 109

B8601DXw.d format 100–101

B8601DZw.d format 102

B8601DZw.d informat 110

B8601LZw.d format 96

B8601TMw.d format 94

B8601TMw.d informat 105

B8601TXw.d format 94–95

B8601TZw.d format 97–98

B8601TZw.d informat 105–106

C

calculations

INTCK() function and 151–156

INTNX() function and 156–159

number of days between dates 145–149

number of years between dates 146–147

CALL IS8601_CONVERT 123–136

CALL SYMGET() function 192–193

CALL SYMPUT() function 192–193

case sensitivity 48–49

CAT language prefix 214

CATS() function 14

CATT() function 14

CATX() function 14

character constants 61

character strings

DATETIME informat and 63

PUT() function and 55–56

character variables

INPUT() function and 61–62

INPUTC() function 61–62

PUT() function and 55–56

PUTN() function and 55–56

COMPRESS() function 14

constants, date and time as 3–5

CONVERT statement, EXPAND procedure

converting to higher frequency 202–203

METHOD= option 206

OBSERVED= option 206–212

CRO language prefix 214

CSY language prefix 214

D

%d date directive 49, 51

DAN language prefix 214

DATA step

FORMAT statement 10–137

%LET statement and 191, 192

DATADIF() function 145–146

DATALINES statement 61

DATATYPE= option 48, 51

date directives, picture format 50

DATE() function 187–188

&DATE macro variable 187–188

DATE system option 7

DATEAMPMw.d format 42–43, 233

DATEPART() function 140

datetime formats and 41–42

troubleshooting 241, 242–243, 245

dates

automatic macro variables 186–189

CALL SYMPUT() function and 192–193

as constants 3–5

counters for 1

creating character strings 55–56

custom formats 47–55

datetime values and 13–14, 41–42

default justification 13

Excel and 227–228

external representation of 2–3

formats for 14–37, 92–103

graphing 194–200

Hebrew formats 226

informats for 59, 61, 64–73, 81–86, 103–111

internal representation of 2

international formats and informats 212–220

interval definitions 149–151

interval functions 151–159

Japanese formats 226

Japanese informats 226–227

quick reference 231–233, 235–237

shifting intervals 159–168

%SYSFUNC() macro function and 187–189

Taiwanese formats 226

Taiwanese informats 226–227

in titles 186–187

troubleshooting 239–251

width specification 5–6, 13

YEARCUTOFF= system option and 57–59

DATESTYLE= system option

ANYDTDTEw. informat and 82–83, 85–86

ANYDTDTMw. informat and 84

LOCALE= system option and 212

missing values example 81

troubleshooting 246

DATESTYLE=DMY system option 81–82

DATESTYLE=LOCALE system option 81

DATESTYLE=MDY system option 81–82

DATESTYLE=YMD system option 81–82

DATETIME() function 138

datetime values

automatic macro variables and 186–189

CALL SYMPUT() function and 192–193

as constants 3–5

custom formats 47–55

date formats and 13–14, 41–42

default justification 13

Excel and 227–228

external representation of 2–3

formats for 41–46, 99–103

informats for 61, 78–81, 81–82, 108–111

internal representation of 2

international formats and informats 212–220

interval definitions 150–151

interval functions 151–159

quick reference 234, 235–237

shifting intervals 159–1682

%SYSFUNC() macro function and 187–189

width specification 5–6, 37, 41–42

YEARCUTOFF= system option and 57–59

DATETIMEw. informat

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

character strings and 63

DATETIMEw.d format 43–44, 79, 213, 233

DATEw. format 15

DTDATEw. format and 44

international format for 213

quick reference 231

DATEw. informat 64

ANYDTDTEw. informat 82

ANYDTDTMw. informat 84

ANYDTTMEw. informat 85–86

DATJUL() function 140–141

DAY() function 138

DAY interval 150

INTCK() function 152

INTNX() function 158

shift point 160

DAYw. format 15, 231

DB2 databases 227–228

DDMMYYB. format 17, 231

DDMMYYC. format 17, 231

DDMMYYD. format 17, 231

DDMMYYN. format 231

DDMMYYP. format 17, 231

DDMMYYS. format 231

DDMMYYw. format 15–16, 30–31

international format for 213

quick reference 231

YYMMDDw. format and 30–31

DDMMYYw. informat 64–65

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

DATASTYLE= system option 81–82

DDMMYYxw. format 16–17

MMYYxw. format and 20

YYMMxw. format and 30

YYQxw. format and 33–34

DES language prefix 214

DEU language prefix 214

DFLANG= system option 212

DHMS() function 141–142, 247–248

dollar sign ($) 61

dot (.)

See period

DOWNAMEw. format 17

international format for 213

quick reference 231

DTDATE9. format 44

DTDATEw. format 44

DATEw format and 15

quick reference 233

DTDAY interval 150

INTCK() function 155

INTNX() function 158

shift point 160

DTHOUR interval 151, 161

DTMINUTE interval 151, 161

DTMONTH interval 151

INTNX() function 158

shift point 161

DTMONYYw. format 44

MONYYw. format and 21

quick reference 233

DTQTR interval 151

INTNX() function 157, 158

shift point 161

DTRESET system option 7

DTSECOND interval 151, 161

DTSEMIMONTH interval 151

INTNX() function 158

shift point 161

DTSEMIYEAR interval 151

INTNX() function 157, 158

shift point 161

DTTENDAY interval 151

INTNX() function 158

shift point 161

DTWEEK interval 150

INTNX() function 157

shift point 161

DTWEEKDAY interval 151

INTNX() function 157

shift point 161

DTWKDATXw.format 45

quick reference 233

DTYEAR interval 151

INTNX() function 157, 158

shift point 161

DTYEARw. format 45, 233

DTYYQCw. format 46, 233

durations, ISO 8601 116–136

E

E8601DAw. format 93

E8601DAw. informat 104

E8601DNw. format 99

E8601DTw.d format 100

E8601DTw.d informat 109–110

E8601DXw.d format 101–102

E8601DZw.d format 102–103

E8601DZw.d informat 110–111

E8601LZw.d format 96–97

E8601LZw.d informat 107

E8601TMw.d format 94

E8601TMw.d informat 105

E8601TXw.d format 95–96

E8601TZw.d format 98–99

E8601TZw.d informat 106–107

equals sign (=) 207

ERROR automatic variable 6–63

ESP language prefix 214

"EUR" formats 213–214

"EUR" informats 213–214

EURDFDD. format 213

EURDFDEw. format 213

EURDFDN. format 213

EURDFDTw. format 213

EURDFDWN. format 213

EURDFMN. format 213

EURDFMYw. format 213

EURDFWDX. format 213

EURDFWKX. format 213

Excel (Microsoft) 227–228

EXPAND procedure

capabilities 200–202

CONVERT statement 206–212

converting to higher frequency 202–203

FROM= option 206, 209–212

ID statement 204–205

interpolating missing values 205–206

TO= option 206, 209–212

external representation, date and time 2–3

F

%F date directive 223

FCMP procedure 52–55

FIN language prefix 214

FOOTNOTE statement 186

FORMAT procedure

PICTURE statement 47–52

troubleshooting 246

VALUE statement 47–48

FORMAT statement

date directives and 50

functionality 10–13

INFORMAT statement and 59–60

troubleshooting 243–244

formats 10–13, 59

custom 47–55

date constants and 4–5

for dates 14–37

for datetime 41–46

datetime values 99–103

"EUR" 213–214

external representation of date, time and 2–3

graphing dates and 194–200

Hebrew 226

ISO 8601 92–103, 117–121

Japanese 226

"NLS" 214–220

PUT() function and 55–56

quick reference 231–233

Taiwanese 226

for time 37–41

using wrong 62–63

FRA language prefix 214

FROM= option, EXPAND statement 206, 209–212

FRS language prefix 214

FUNCTION statement 52–55

functions

calculating intervals 145–149

creating date, time 140–145

current date, time 137–138

extraction 138–140

G

graphing dates 194–200

Gregorian year

JULIANw. informat 65

PDJULG4. informat 66

PDJULGw. informat 22

PDJULIw. format 22

PDJULIw. informat 66

H

%H date directive 49, 223

HDATEw. format 226

HEBDATEw. format 226

Hebrew date formats 226

HHMMSSw. informat 73–75

HHMMw.d format 38, 233

HMS() function 143

HOLIDAY() function 148–149, 170

HOUR() function 140

HOUR interval 151

INTNX() function 158

shift point 161

HOURw.d format 38–39, 233

HUN language prefix 214

I

%I date directive 49, 223

ID statement, EXPAND procedure 204–205

imputed dates 52–55

INFORMAT statement 59–61, 59–63

informats

about 59

ANYDT variants 81–86

"EUR" 213–214

for dates 64–73

for datetime 78–81

for datetime values 108–111

for time 73–78

Hebrew 226

INFORMAT statement 59–63

ISO 8601 103–111

ISO 8601 duration and interval 121–123

Japanese and Taiwanese 226–227

"NLS" 220

using wrong 62–63

INPUT() function

functionality 3

informats and 59, 61–62

troubleshooting 240, 241

INPUT statement 60–61

INPUTC() function 61–62

INPUTN() function 61–62

INTCINDEX() function 183

INTCK() function 159, 161–162

calculating intervals 167–168

WORKINGDAYS interval 175–176

INTCYCLE() function 183

internal representation, date and time 2

interval multipliers

graphs and 194–200

shifting intervals and 162–163

intervals

basics of 149–151

creating 169–176

custom 162–163

INTCK() function 151–156

interval functions 176–181

INTNX() function 156–159

ISO 8601 116–136

measuring 167–168

number of days between dates 145–149

number of years between dates 146–147

retail calendar 181–183

shifting 159–168

INTFIT() function 177–178

INTFMT() function 178–179

INTGET() function 179–180

INTINDEX() function 183

INTNX() function 151, 156–160, 167–168

INTSEAS() function 183

INTSHIFT() function 180–181

INTTEST() function 181

ISO 8601 91–92

durations and intervals 116–136

formats 92–103

informats 103–111

ITA language prefix 214

J

%j date directive 49, 223

Japanese date formats 226

Japanese date informats 226–227

JDATEMYDw. informat 226–227

Jewish calendar 226

JNENGOW. informat 227

Joshi, Bhairav 2

JULDATE() function 138

JULDATE7() function 138

JULDAYw. format 17–18, 233

Julian date

JULDATE() function 138

JULDATE7() function 138

JULDAYw. format 17–18

JULIANw. format 18

JULIANw. informat 65

PDGJULI1. format 23

PDJULG. informat 66

PDJULG4. informat 66

PDJULGw. format 22

PDJULIw. format 22–23

PDJULIw. informat 66

JULIANw. format 231

JULIANw. informat 65

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

justification

date formats 13–14

PDJULIw. format and 22

K

Kanji representation 227

L

%LEFT() macro function 192

LENGTH statement 5–6

%LET statement 191, 192

LISTING destination 13–14

literal values

quotation marks and 3

YEARCUTOFF= system option and 57–59

LOCALE= system option 111, 214–215

M

%m date directive 49, 223

%M date directive 49

MAC language prefix 214

macro functions, date and time in 186–189

macro variables

CALL SYMPUT() function and 192–193

dates and 185–193

quotation marks and 186

MAKEDATE() function 52–55

MDY() function 143, 247

MDYAMPMw. format 46, 233

MDYAMPMw.d informat 79–80

METHOD= option, CONVERT statement (EXPAND) 206

Microsoft Excel 227–228

MINGUOw. format 226

MINGUOw. informat 227

MINUTE() function 140

MINUTE interval 151

INTNX() function 158

shift point 161

missing values

DATESTYLE= system option 81

EXPAND procedure and 205–206

symbol for 50

wrong informats and 62–63

MMDDYw. format 18

MMDDYYxw. format and 19

quick reference 231

YYMMDDw. format and 30–31

MMDDYY10. format 11–13, 18

MMDDYYB. format 19, 231

MMDDYYC. format 19, 231

MMDDYYD. format 231

MMDDYYN. format 231

MMDDYYP. format 19, 231

MMDDYYS. format 231

MMDDYYw. informat 65–66

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

DATESTYLE= system option and 81–82

MMDDYYxw. format 19

MMYYxw. format and 20

YYMMxw. format and 30

YYQxw. format and 33–34

MMSSw.d format 39, 233

MMYYC. format 20, 231

MMYYD. format 20, 231

MMYYN. format 20, 232

MMYYP. format 20, 232

MMYYS. format 232

MMYYw. format 19–20, 231

MMYYxw. format 20

MONNAMEw. format 14, 21

international format for 213

quick reference 232

MONTH() function 138

MONTH interval 150

example 202–203

INTCK() function 152

INTNX() function 158

shift point 160, 165–166

MONTHw. format 21, 232

MONYYw. format 21

DTMONYYw. format and 44

international format for 213

quick reference 232

MONYYw. informat 66

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

explanation of 66

MSEC8. informat 76

N

$N8601BAw.d format 119

$N8601Bw. informat 121–122

$N8601Bw.d format 118

$N8601EAw. format 120

$N8601EHw. format 120

$N8601Ew. format 119

$N8601EXw. format 121

$N8601Rw. informat 122–123

National Language Support (NLS) 111, 212

NENGOw. format 227

NLD language prefix 214

NLDATE. format 235

NLDATE() function 221–225

NLDATEL. format 215, 235

NLDATEM. format 235

NLDATEMD. format 215, 235

NLDATEMDL. format 215, 235

NLDATEMDM. format 216, 235

NLDATEMDS. format 216, 235

NLDATEMDT. format 217

NLDATEML. format 217

NLDATEMN. format 216, 235

NLDATES. format 216, 235

NLDATEw. format 215

NLDATEW. format 235

NLDATEWN. format 216, 235

NLDATEWw. format 216

NLDATEYM. format 216, 235

NLDATEYML. format 216, 235

NLDATEYMM. format 216, 235

NLDATEYMS. format 216, 235

NLDATEYQ. format 216, 235

NLDATEYQL. format 217, 236

NLDATEYQM. format 217, 236

NLDATEYQS. format 217, 236

NLDATEYR. format 217, 236

NLDATEYW. format 217, 236

NLDATM() function 221–225

NLDATMAPw. format 217

NLDATMw. format 215, 217

NLS (National Language Support) 111, 212

"NLS" formats 214–220

"NLS" informats 220

NLTIME. format 236

NLTIME() function 221–225

NLTIMEAP. format 236

NODATE system option 7

NOR language prefix 214

numeric variables

date, time as 3–5

functions from 140–145

INPUT() function and 61–62

LENGTH statement and 5–6

NWKDOM() function 144, 170

O

%o date directive 223

OBSERVED= option, CONVERT statement (EXPAND) 206–212

OBSERVED=AVERAGE option, CONVERT statement (EXPAND) 207–212

OBSERVED=BEGINNING option, CONVERT statement (EXPAND) 207–212

OBSERVED=DERIVATIVE option, CONVERT statement (EXPAND) 207–212

OBSERVED=END option, CONVERT statement (EXPAND) 207–212

OBSERVED=MIDDLE option, CONVERT statement (EXPAND) 207–212

OBSERVED=TOTAL option, CONVERT statement (EXPAND) 207–212

ODS destinations 13–14, 214–215

OPTIONS INTERVALDS= statement 169–176

OPTIONS statement

DATE/NODATE system option 7

LOCALE= system option 212

OS TIME macro 76, 78

OUTLIB= option 52–55

P

%p date directive 49, 223

PDF destination 14

PDJULG. informat 66

PDJULG4. informat 66

PDJULGw. format 22

PDJULI1. format 23

PDJULIw. format 22–23

PDJULIw. informat 23, 66

PDTIME4. informat 76

period (.)

format syntax and 16

in informats 59

missing values and 50

PICTURE statement, FORMAT procedure 47–52, 246

POL language prefix 214

PRINT procedure 11–12

PROC step 11

PTG language prefix 214

PUT() function 14, 17, 28, 55–56, 61–62, 221, 244–245

PUTN() function 14, 17, 28, 55–56

Q

%QSYSFUNC() macro function 187

QTR() function 138

QTR interval 150

INTNX() function 158

shift point 160

QTRRw. format 23–24, 232

QTRw. format 23, 232

R

&RAWDATE macro variable 187

retail calendar intervals 181–183

RMFDUR4. informat 76

RMFSTAMP8. informat 80

RTF destination 14

RUS language prefix 214

S

%S date directive 49, 223

sampling frequency

converting to higher 202–203

converting to lower 203–205

OBSERVED= option and 207–212

SASDATEFMT= system option 228–229

SAS/ETS 183, 200

SAS/GRAPH 194–200

seasonality functions 183

SECOND() function 140

SECOND interval 151

INTNX() function 158

shift point 161

SEMIMONTH interval 150

INTNX() function 158

shift point 160

SEMIYEAR interval 150

INTNX() function 158

shift point 160

shift operators, intervals and 159–162

SLO language prefix 214

SMFSTAMP8. informat 80

SMRSTAMP8. informat 80

SQL procedure 193

STIMER system option 76

STIMERw. informat 76–77

STRIP() function 14

SVE language prefix 214

&SYSDATE automatic macro variable 185, 187

&SYSDATE9 automatic macro variable 186, 187

&SYSDAY automatic macro variable 186, 187

%SYSFUNC() macro function 187–189

&SYSTIME automatic macro variable 186, 187

T

Taiwanese date formats 226

Taiwanese date informats 226–227

TENDAY interval 150

INTNX() function 158

shift point 160

time

automatic macro variables 186–189

CALL SYMPUT() function and 192–193

as constants 3–5

counters for 2

custom formats 47–55

default justification 13

Excel and 227–228

external representation of 2–3

formats for 37–41, 92–103

informats for 73–78, 81–82, 103–111

internal representation of 2

international formats and informats 212–220

interval definitions 150–151

interval functions 151–159

quick reference 233, 235–237

shifting intervals 159–168

%SYSFUNC() macro function and 187–189

width specification 5–6, 37

TIME() function 138

time zone functions 111–115

TIMEAMPM11. format 11–13

TIMEAMPMw.d format 40

clock values and 37

quick reference 233

TIMEPART() function 41–42, 140

troubleshooting 242–243

TIMEw. informat 77–78

ANDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

TIMEw.d format 39–40

HHMMw.d format and 38

quick reference 233

TIMEZONE= option 93, 111–112

TITLE statement 186

titles, date in 186–187

TO= option, EXPAND procedure 206, 209–212

TODAY() function 137

TODSTAMP8. informat 78

TODw.d format 40–41

clock values in 37

quick reference 233

troubleshooting dates 239–251

TU4. informat 78

two-digit year

extraction functions and 138–140

YEARCUTOFF= system options and 57–59, 79

TZONEDSTNAME() function 114

TZONEDSTOFF() function 114

TZONEID() function 112

TZONENAME() function 112–113

TZONEOFF() function 113, 246

TZONES2U() function 113

TZONESTTNAME() function 114–115

TZONESTTOFF() function 115

TZONEU2S() function 115, 246

U

U algorithm 25, 35, 69, 70, 139

%u date directive 223

%U date directive 49, 223

V

V algorithm 26–27, 36–37, 69–71, 139, 223

%V date directive 223

VALUE statement, FORMAT procedure 47–48

variables

See character variables; macro variables; numeric variables

W

W algorithm 27, 37, 69–72, 139, 223

%w date directive 49, 223

%W date directive 223

WEEK() function 139

WEEK informats 69–70

WEEK interval 150

INTCK() function 152

INTNX() function 157, 159

shift point 160, 161–162, 163–164

WEEKDATEw. format 11–12, 24

quick reference 232

WEEKDATXw. format and 24–25

WEEKDATXw. format 24–25

DTWKDATXw. format and 445

international format for 213–214

quick reference 232

WEEKDAY() function 139

WEEKDAY interval 150

INTNX() function 157

shift point 160

WEEKDAYw. format 25

international format for 213

quick reference 232

WEEKUw. format 25–26

quick reference 232

WEEKUw. informat 70–71

WEEKV interval 182–183

WEEKVw. format 26–27

quick reference 232

WEEKWw. format and 27

WEEKVw. informat 71–72

WEEKWw. format 27, 232

WEEKWw. informat 72–73

WHERE clause, SQL procedure 228

width specification

for date formats 5–6, 13–14

for datetime formats 5–6, 37, 41–42

for time formats 5–6, 37

formats and 13–14

informats and 59

WORDDATEw. format 28

FORMAT statement and 50

quick reference 232

WORDDATXw. format 28–29, 249

international format for 213

quick reference 232

WORKINGDAYS interval 175–176

Y

%y date directive 49, 223

%Y date directive 49, 51, 223

Y2K problem 185

YEAR() function 139

YEAR interval 150

INTCK() function 152

INTNX() function 158

shift point 160, 161–162, 165–166

YEAR10. interval 166–167

YEARCUTOFF= system option

DATJUL() function and 140–141

extraction functions and 138–140

Japanese/Taiwanese date informats 226–227

MDY() function 143

PDJULGw. format and 22

PDJULI. format 23

two-digit year and 57–59, 79

YYQ() function 144–145

YEARV interval 182

YEARw. format 29

DTYEARw. format and 45

quick reference 232

YMDDTTMw.d informat 80–81

YRDIF() function 146–147, 155–159

YYMM. format 232

YYMMC. format 30, 232

YYMMD. format 30, 232

YYMMDDB. format 32, 232

YYMMDDC. format 32, 232

YYMMDDD. format 32, 232

YYMMDDN. format 32, 232

YYMMDDP. format 32, 232

YYMMDDS. format 232

YYMMDDw. format 30–31

DATESTYLE= system option 81–82

quick reference 232

YYMMDDw. informat 66–67

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

DATESTYLE= system option and 81–82

YYMMDDxw. format 31–32

YYMMxw. format and 30

YYQxw. format and 33–34

YYMMN. format 30, 232

YYMMNw. informat 67

YYMMP. format 30, 232

YYMMS. format 232

YYMMw. format 29

YYMMxw. format 30

YYMONw. format 32, 232

YYQ() function 144–145

YYQC. format 33

DDTYQCw. format and 46

quick reference 233

YYQD. format 34, 233

YYQN. format 33, 233

YYQP. format 34, 233

YYQRC. format 35, 233

YYQRD. format 35, 233

YYQRN. format 35, 233

YYQRP. format 35, 233

YYQRS. format 233

YYQRw. format 34, 233

YYQRxw. format 34–35

YYQS. format 233

YYQw. format 32–33, 233

YYQw. informat 67–68

ANYDTDTEw. informat and 82

ANYDTDTMw. informat and 84

ANYDTTMEw. informat and 85–86

YYQxw. format 33–34

YYWEEKU. format 233

YYWEEKUw. format 35–36

YYWEEKV. format 233

YYWEEKVw. format 36

YYWEEKWw. format 37, 233

Table of Contents

	About This Book

	Acknowledgments

	Chapter 1: Introduction to Dates and Times in SAS

	1.1 How Does It Work? (January 1, 1960, and Midnight as Zero)

	1.2 Internal Representation

	1.3 External Representation (Basic FORMAT Concepts)

	1.4 Date and Time as Numeric Constants in SAS

	1.5 Length and Numeric Requirements for Date, Time, and Datetime

	1.6 General SAS Options for Dates

	Chapter 2: Displaying SAS Date, Time, and Datetime Values as Dates and Times as We Know Them

	2.1 How Do I Use a Format?

	2.2 How Many Built-In Formats Are There for Dates and Times?

	2.3 Date Formats, Justification, and ODS

	2.4 Detailed Discussion of Each Format

	2.4.1 Date Formats

	2.4.2 Time Formats

	2.4.3 Datetime Formats

	2.5 Creating Custom Date Formats Using the VALUE Statement of PROC FORMAT

	2.6 Creating Custom Date Formats Using the PICTURE Statement of PROC FORMAT

	2.7 Creating Custom Formats Using PROC FCMP for Processing

	2.8 The PUT() Function and Formats

	Chapter 3: Converting Dates and Times into SAS Date, Time, and Datetime Values

	3.1 Avoiding the Two-Digit Year Trap

	3.2 Using Informats

	3.3 The INFORMAT Statement

	3.3.1 Using Informats with the INPUT Statement

	3.3.2 Informats with the INPUT() Function

	3.3.3 When the Informat Does Not Match the Data Being Read

	3.4 Listing and Discussion of Informats

	3.4.1 Date Informats

	3.4.2 Time Informats

	3.4.3 Datetime Informats

	3.4.4 The "ANYDATE" Series of Informats

	3.4.5 So Why Not Just Use the "ANYDATE" Series of Informats?

	Chapter 4: ISO 8601 Dates, Times, Datetimes, Durations, and Functions

	4.1 What Is ISO 8601?

	4.2 ISO 8601 Formats

	4.2.1 ISO Date Formats

	4.2.2 ISO Time Formats

	4.2.3 ISO Datetime Formats

	4.3 ISO 8601 Informats

	4.3.1 ISO Date Informats

	4.3.2 ISO Time Informats

	4.3.3 ISO Datetime Informats

	4.4 Time Zone Functions

	4.4.1 Introduction

	4.4.2 The TIMEZONE= Option

	4.4.3 List of Time Zone Functions

	4.5 ISO 8601 Durations and Intervals

	4.5.1 ISO Duration and Interval Representations

	4.5.2 ISO 8601 Duration and Interval Formats

	4.5.3 ISO 8601 Duration and Interval Informats

	4.5.4 CALL IS8601_CONVERT

	4.6 Conclusion

	Chapter 5: Date and Time Functions

	5.1 Current Date and Time Functions

	5.2 Extracting Pieces from SAS Date, Time, and Datetime Values

	5.3 Creating Dates, Times, and Datetimes from Numbers or Other Information

	5.3.1 Introduction

	5.3.2 List of Functions and Their Descriptions

	5.4 Calculating Elapsed Time, and the HOLIDAY() Function

	5.4.1 Calculating Elapsed Time with DATDIF() and YRDIF()

	5.5 The Basics of SAS Intervals

	5.5.1 The Interval Calculation Functions: INTCK() and INTNX()

	5.6 Modifying SAS Intervals

	5.7 Creating Your Own SAS Intervals

	5.8 Interval Functions about Intervals

	5.8.1 INTFIT(argument-1,argument-2,type)

	5.8.2 INTFMT('interval','size')

	5.8.3 INTGET(argument1,argument2,argument3)

	5.8.4 INTSHIFT('interval')

	5.8.5 INTTEST('interval')

	5.9 Retail Calendar Intervals and Seasonality

	5.9.1 Retail Calendar Intervals

	5.9.2 Seasonality Functions

	Chapter 6 Deeper into Dates and Times with SAS

	6.1 Macro Variables and Dates

	6.1.1 Automatic Macro Variables

	6.1.2 Putting Dates into Titles

	6.1.3 Using %SYSFUNC() to Create Dates, Times, and Datetimes in Macro Variables

	6.1.4 Using Dates in Macros

	6.2 Graphing Dates

	Johnny's Savings Account

	6.3 The Basics of PROC EXPAND

	6.3.1 Capabilities of PROC EXPAND

	6.3.2 Using PROC EXPAND to Convert to a Higher Frequency

	6.3.3 Using PROC EXPAND to Convert to a Lower Frequency

	6.3.4 Using PROC EXPAND to Interpolate Missing Values

	6.3.5 The OBSERVED= Option for the CONVERT Statement in PROC EXPAND

	6.4 International Date, Time, and Datetime Formats and Informats

	6.4.1 "EUR" Formats and Informats

	6.4.2 NLS Formats

	6.5 NLS Date, Time, and Datetime Conversion Functions

	6.6 Date Formats and Informats for Other Calendars

	6.6.1 Hebrew Date Formats

	6.6.2 Japanese and Taiwanese Date Formats

	6.6.3 Japanese and Taiwanese Date Informats

	6.7 Other Software and Their Dates (Excel, Oracle, DB2)

	6.7.1 The SASDATEFMT= System Option

	6.8 Conclusion

	Appendix A: A Quick Reference Guide to SAS Date, Time, and Datetime Formats

	Appendix B: A Quick Reference Guide to NLS Date, Time, and Datetime Formats

	Appendix C: Troubleshooting Dates 101

	Index

ops/images/f197_01.jpg
Johnny's S0th Birthday Fund
fund
$11,00000 ¢

51000000 {
sacnoe]
$7.00000 {

ssoonon
5400000

sa00000]
s200000]
5100000

so00 . . .
osniters osniiess ooiiness 090172005 osni0ts

date

ops/images/f132_02.jpg
T VIEWTABLE: Work.Sample

aestdim duration
1 |201211-22T10:30 P7DTZ3HI0M
220121202 PIMSD

3 |2m21212T1200 PTIZH

4 |2m21219T10:00 P7DT2IHI0M

5

2013:01-01 P2aD

ops/images/f132_01.jpg
¥ VIEWTABLE: Work.Sample

aestdim | cuetion ||
1 [20128221030FFFFD FFFFFO/2330FFFFC
2| 2012C02FFFFFFFFD FFFFI0SFFFFFFFFC
3| 2012C121200FFFFD FEFFFFFIZFFFFFFC
4__[2012c191000FFFFD FFFFFO72130FFFFC
5 | 2013101FFFFFFFFD FFFFF29FFFFFFFFC

ops/images/f240_02.jpg
¥ VIEWTABLE: Work.Already_char =lalx
i detel | deter | cete3 4|
1 101 04/17/2012 06dec2015 06272014
102 09/29/2014 15JUN2013 09feb2014
3 103 111272013 3mar2015 08/19/2015

ops/images/f240_01.jpg
S =]}

detel dete? detes 4|
T 19100 2028 19901
2 e 19995 19524 19763
3 |03 19674 20150 20319

ops/images/f240_03.jpg
=lo|x]

) otel num_dotel dete2 um_gote? doto3 | numdee3 4|
101 ez 19100 6dec201s 20428 06272014 1901
102 oszgenia 19995 15JUN2013 19524 03002014 19783

103 1inzeos 19674 Imer20ts 20150 0871972015 20319

ops/images/f187_01.jpg
This s hoe o s o macrs variable i s Tody's Dt s 289UN2014.

ops/images/f192_01.jpg
moddate
1 |290CT08:2027.05 290CT10:2027.05
2 |13AUG07145938 13AUG07:145938
3 |310CT10130205 310CT10:130205
4 |270CT13:142800 07FEB14161800
5 |04FEBOB142243 01JUN10.09:37:24
5 |30MARI3143249 IOMARI31432.49
7 |010uN10:16:0400 01JUN1216:0400
8 |235EP07108520 01JUN09.09:37:44
9 |210U02125545 21JUL021255:45
10| 230UL04105238 23004105238
11 |03DEC0S17:57.02 03DEC06:1757:02

ops/images/f196_01.jpg

ops/images/9781629594897.jpg
§sas

The Essential Guide to
SAS’ Dates and Times

ops/images/f134_01.jpg
I VIEWTABLE: Work.Ex4_8 =lal>
aeendim -
1 [zn21Tosne 2012:11-30
2 |an211-21T0925 201211
3 |201212:037T0300 2012:12:03T10.00
4202121470312 20130117
520121214 2012:12:28
620121214
7 |2021215 2013011
8201212970800 2013-01-02T03:00
9 2012122 2013:0115.
10 |2013-01-12T17.00 2013-01-18T03.00

ops/images/f199_01.jpg
fund

Johnny's S0th Birthda

Fund

$10,000

55,000

56000

54000

52000

50

1975

1980

1985

1990 1995
date

2000

2005

2010

2015

ops/images/f130_01.jpg
durations’

dm duraion oad

2|10 s0- 1TO1ETA00- FFFFFFFIIFRFFC PTIIHIM

3 lemzreomn 1O10TIAN- FFFFFOFFFFFFC F2DTIH

4T 201301047 FRFFOFFFFFFFFC POMAD

5 |mznaeTes 201301047 FFFFIISFFFFFFFFC PIMISD

5 |eme11-20muss0- 21301037 FFFFUI2ISIOFFFFC PIMIZDTISHIOM

7 oo O00IFFFFFFFFFFC PIV2M
201212277

9 |amza-T- - FFFFFOFFFFFFFFC P20D

10 |o0r2118TI41S 201211207 FRFFFFFOMSFFFFC PTIHAM

1 |20121217T08.20- 2013:01-02709: FFFFFIGFFAOFFFFC P16DT4OM

ops/images/f130_02.jpg
WMM

1
2_|am3oreTosso- 13011872100~
3 |amzzTe- 13010171400~
4|zt 1301047
5|z 21301047
5 |amzn-20mos3n- 21301037
7 W1302Toon
3 |azToes 21211207+
1020211197145 1211207
M| 2012-1217T08.20- 20130102709~

ops/images/f195_01.jpg
fund
51100000

51000000
5900000
5800000
5700000
5600000

$5,00000
5400000

5300000
5200000
$1.00000

5000
o1011970 o1o1gE 0110171990 0110172000 01012010 01012020

ops/images/f009_01.jpg
JeL

ops/images/f191_01.jpg
Happy Kids Ice Cream Co. Sales for Thursday, June 5, 2014

ops/images/f128_01.jpg
‘sendin

T80AN13093000

20NOVaIT2083000

19NOV2012141500
170EC2012062000

1814N2013210000
010AN2013140000

ops/images/f189_01.jpg
'STOCK MKT INDEX:NY DOW JONES COMPOSITE, sToc

7402
7738

7504
75704
71138
2102

7152
71350

ops/images/f200_01.jpg
Johnny's 50th Birthday Fund

Sepl97s

Sepl9S0 Sepl9SS Sepl990 Sepl99s Sepd000 Sep00s
date

Sep2010

ops/images/f089_01.jpg
VIEWTABLE: Worl

recno | rptdt

©|o|~|o|o|a|w|m|=

11371542013
2 09/08/2013
3 02/30/2013
4 _1512013
5 04/27/2013
6 05/_/2013
7 02/08/___
8 06/04/013
9 08/32/2013
10 1172013

11 01/23/2031

ops/images/f198_01.jpg
fund

Johnny’s 50th Birthday Fund

$10,000 -
$8,000 -
$6,000 -
$4,000 -
$2,000 -

50,
5000

10000 15000
date

20000

ops/images/f131_01.jpg
2 |201301-16T0930- 201301-18T21:00- 20131180930FFFFDZ0131182100FFFF 2013-01-18T09.30/201301-18721:00
3 |20124230T11=- 201301011400+ 2012C301IFFFFFFD20131011400FFFF 2012-1230T11/201301-01T1400

4 |201201-To 0130104T-- 2012BFFFFFFFFFFD2013104FFFFFFF 2012120130104
5 |20121119T- 0130104T-o 2012B19FFFFFFFFDZ013104FFFFRFF 2012-11-19201301-04

6 |201211-20T0830- 201301-03T--- 2012B200830FFFFD2013103FFFFFFFF 2012-11-20T08:30/2013:01-03

7 |a0i2—T-o 201302-T- 2012FFFFRFFFFFFD2012FFFFFFFFF 2012201302

8 |aiz1227T-os

3 |20iz11-T- 2012:1-20T- 2012BFFFFFFFFFFD20IB20FFFFFFF 2012112012120

10| 20121119T1415= 2012:1-207- 20128191415FFFFD2012820FFFFFFFF 2012:11-19T1416/2012:1-20
10 |20121217T0820- 201301-02T08-- 2012C170820FFFFD201310208FFFFFF 2012:12-17T08:20/2013-01-02T03

ops/images/f249_01.jpg
30 June 2014

18 September 2014
14Morch 2014
18 July 2014
26 Apil 2014

ops/images/f190_01.jpg
Happy Kids Ice Cream Co. Sales for 19879

ops/images/f194_01.jpg
fund
51100000

51000000 |
5900000 {
5800000
s7.00000

5600000 {

sso0000
sa00000
sa00000
s200000
s1o0000

5000
4000 10000 12000 14000 16000 18000 20000 22000
dste

ops/images/f129_01.jpg
Aedtm2

ocendm
1| FFFFFFFRFFFRFFFRFFFRFFFRFFFRFF FRFFFRFFFRFFFRFFFRFFFRFFFRFFFE
2 |20131180330FFFFD. 20131182100FFFFD
3 |2012C3011FFFFFFD 20131011400FFFFD
4| 2012BFFFFFFFFFFD. 2013104FFFFFFFFD
5__|2012B19FFFFFFFFD 2013104FFFFFFFFD
6__|20128200830FFFFD. 2013103FFFFFFFFD
7| 2012FFFFRFFFRFFD 20132FFFFFFFFFFD
2012Co7FFFFFFFFD FFFFFFFFFFRFFFRFFFRFFFRFFFRFFR
3__|2012BFFFFFFFFFFD. 2012820FFFFFFFFD
10| 20128191 415FFFFD 2012820FFFFFFFFD
11201201 70820FFFFD 201310209FFFFFFD

ops/images/f129_02.jpg
WWM

i
2 |amzoremosso- 13011872100~
3 |amzzTi- 1301071400~
4 |amzn-T-es 213010472
5 |az1eTes 21301047
5 |amz1-20mos30- 21301037
7T 1302-Toon
201212277
3 |aziTos 21211207
1020211197145 1211207
M| 2012-12-17T08.20- 2013-01-02T09--

ops/images/f188_01.jpg
Today's SAS Date Value s 19902
Formatted date: June 28, 2014

ops/images/pub.jpg
OSas

