
Praise for The Old New Thing

"Raymond Chen is the original raconteur of Windows."

—Scott Hanselman, ComputerZen.com

"Raymond has been at Microsoft for many years and has seen many nuances

of Windows that others could only ever hope to get a glimpse of. With this

book, Raymond shares his knowledge, experience, and anecdotal stories,

allowing all of us to get a better understanding of the operating system that

affects millions of people every day. This book has something for everyone,

is a casual read, and I highly recommend it!"

—Jeffrey Richter, Author/Consultant, Cofounder of Wintellect

"Very interesting read. Raymond tells the inside story of why Windows

is the way it is."

—Eric Gunnerson, Program Manager, Microsoft Corporation

"Absolutely essential reading for understanding the history of Windows,

its intricacies and quirks, and why they came about."

—Matt Pietrek, MSDN Magazine's Under the Hood Columnist

"Raymond Chen has become something of a legend in the software industry,

and in this book you'll discover why. From his high-level reminiscences on

the design of the Windows Start button to his low-level discussions of

GlobalAlloc that only your inner-geek could love, The Old New Thing is a

captivating collection of anecdotes that will help you to truly appreciate the

difficulty inherent in designing and writing quality software."

—Stephen Toub, Technical Editor, MSDN Magazine

http://ComputerZen.com

THE OLD
NEW THING

THE OLD

NEW THING

Practical Development
Throughout the Evolution of Windows

Raymond Chen

Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris » Madrid

Capetown * Sydney * Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

C ^ l f l l V i ^'1LS ^°°k ts Safari Enabled
^ j m m 1 The Safari* Enabled icon on the cover of your favorite technology book means the book is available

MWMfHVWH t rough Safari Bookshelf When you buy this book, you get tree access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code samples,
download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessionaI.com/safarienabled
• Complete the brief registration form
• Enter the coupon code X2R8-XJGQ-LQQB-BNQE-RGW8

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-service@
safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Chen, Raymond.
The old new thing. Practical development throughout the evolution of Windows / Raymond Chen.

p. cm.
Includes index.
ISBN 0-321-44030-7 (pbk.: alk. paper)
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) 3. Computer software—Development. I. Title.

QA76.76.063C45747 2007
005.4'46—dc22 2006028949

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-44030-7

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, December 2006

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.awprofessionaI.com/safarienabled
http://safaribooksonline.com
http://www.awprofessional.com

FOR MY FAMILY

CONTENTS
,

Preface xxm

Acknowledgments xxvn

About the Author xxix

C H A P T E R ONE

Initial Forays into User Interface Design

Why do you have to click the Start button to shut down? 1

Why doesn't Windows have an "expert mode"? 2

The default answer to every dialog box is Cancel 3

The best setting is the one you don't even sense, but it's there,

and it works the way you expect 6

In order to demonstrate our superior intellect, we will now ask you

a question you cannot answer 7

Why doesn't Setup ask you if you want to keep newer versions of

operating system files? 7

Thinking through a feature 9

When do you disable an option, and when do you remove it? 12

When do you pu t . . . after a button or menu? 13

User interface design for vending machines 13

ix

CONTENTS

User interface design for interior door locks 15

The evolution of mascara in Windows UI 16

CHAPTER TWO

Selected Reminiscences on Windows 95

Why isn't my time zone highlighted on the world map? 19

Why didn't Windows 95 boot with more than 1GB of memory? 20

Why did Windows 95 have functions called BEAR, BUNNY,

and PIGLET? 22

What about BOZOSLIVEHERE and

T A B T H E T E X T O U T F O R W I M P S ? 23

What was in the Windows 95 Special Edition box? 25

Windows brings out the Rorschach test in everyone 25

The martial arts logon picture 26

Why a really large dictionary is not a good thing 27

An insight into the Windows 95 startup sound 27

It's a lot easier to write a column if you don't care about accuracy 28

Why does the System Properties page round the memory size? 29

Why does my hard drive light flash every few seconds? 29

The hunt for a faster syscall trap 30

One byte used to cost a dollar 31

Each product-support call costs a sale 32

Why isn't Tweak UI included on the Windows CD? 32

Turns out that you can't install Windows via xcopy 34

Buying an entire Egghead Software store 35

The history of the Windows PowerToys 35

How did Windows choose its final build numbers? 38

Why doesn't the build number increment for service packs? 39

C O N T E N T S J S S XI

42

43

44

44

C H A P T E R T H R E E

The Secret Life of GetWindowText

How windows manage their text

Enter GetWindowText

What if I don't like these rules?

Can you give an example where this makes a difference?

Why are the rules for GetWindowText so weird?

C H A P T E R FOUR

The Taskbar and Notification Area

Why do some people call the taskbar the tray ? 47

Why does the taskbar default to the bottom of the screen? 49

Why doesn't the clock in the taskbar display seconds? 50

Why doesn't the taskbar show an analog clock? 51

When I dock my taskbar vertically why does the word

"Start" disappear? 51

Why don't notification icons get a message when the user

clicks the "X" button? 52

C H A P T E R FIVE

Puzzling Interface Issues

What are those little overlay icons? 53

Why are these unwanted files/folders opening when I log on? 54

What do the text label colors mean for files? 56

Why does my advanced options dialog say O N and OFF after

every option? 57

What determines the order in which icons appear in the

Alt+Tab list? 58

Why is the read-only property for folders so strange? 59

Xll -S^N C O N T E N T S

What's with those blank taskbar buttons that go away when

I click on them? 59

What is the difference between Minimize All and Show Desktop? 60

What does boldface on a menu mean? 62

Where do those customized Web site icons come from? 62

Where did my task manager tabs and buttons go? 63

Will dragging a file result in a move or a copy? 64

Why does the Links folder keep re-creating itself? 65

Why are documents printed out of order when you

multiselect and choose Print? 66

Raymond spends the day doing product support 67

Blow the dust out of the connector 68

How much is that gigabyte in the window? 69

Why can't I remove the "For test/evaluation purposes only" tag? 70

C H A P T E R SIX

A History of the GlobalAlloc Function

The early years 71

Selectors 73

Transitioning to Win32 75

A peek at the implementation 76

C H A P T E R SEVEN

Short Topics in Windows Programming

The scratch program 79

Getting a custom right-click menu for the caption icon 85

What's the difference between CreateMenu and CreatePopupMenu? 86

When does the window manager destroy menus automatically? 88

Painting only when your window is visible onscreen 89

Determining whether your window is covered 93

C O N T E N T S J 9 k Xlll

Using bitmap brushes for tiling effects 95

What is the D C brush good for? 98

Using ExtTextOut to draw solid rectangles 100

Using StretchBlt to draw solid rectangles 102

Displaying a string without those ugly boxes 103

Semaphores don't have owners 110

An auto-reset event is just a stupid semaphore 112
J i i

C H A P T E R E I G H T

Window Management

Why do I get spurious W M _ M O U S E M O V E messages? 115

Why is there no W M _ M O U S E E N T E R message? 118

The white flash 118

What is the hollow brush for? 119

What's so special about the desktop window? 120

The correct order for disabling and enabling windows 121

A subtlety in restoring the previous window position 122

UI-modality versus code-modality 123

The W M _ Q U I T message and modality 126

The importance of setting the correct owner for modal UI 129

Interacting with a program that has gone modal 132

A timed MessageBox, the cheap version 133

The scratch window 135

The bonus window bytes at GWLP_USERDATA 136

A timed MessageBox, the better version 136

A timed context menu 138

Why does my window receive messages after it has been destroyed? 139

XIV J ^ s C O N T E N T S

C H A P T E R N I N E

Reminiscences on Hardware

Hardware backward compatibility 141

The ghost CD-ROM drives 142

The Microsoft corporate network: 1.7 times worse than hell 143

When vendors insult themselves 144

Defrauding the W H Q L driver certification process 145

A twenty-foot-long computer 146

The USB cart of death 147

New device detected: Boeing 747 147

There's an awful lot of overclocking out there 148

C H A P T E R T E N

The Inner Workings of the Dialog Manager

On the dialog procedure 151

The evolution of dialog templates 163

Why dialog templates, anyway? 196

How dialogs are created 197

The modal dialog loop 204

Nested dialogs and D S _ C O N T R O L 216

Why do we need a dialog loop, anyway? 224

Why do dialog editors start assigning control IDs with 100? 225

What happens inside DefDlgProc? 226

Never leave focus on a disabled control 228

What happens inside IsDialogMessage? 229

Why is the X button disabled on my message box? 237

C O N T E N T S -5S^ XV

C H A P T E R ELEVEN

General Software Issues

Why daylight saving time is nonintuitive 239

Why do timestamps change when I copy files to a floppy? 241

Don't trust the return address 242

Writing a sort comparison function 243

You can read a contract from the other side 245

The battle between pragmatism and purity 249

Optimization is often counterintuitive 250

On a server, paging = death 253

Don't save anything you can recalculate 254

Performance gains at the cost of other components 255

Performances consequences of polling 257

The poor man's way of identifying memory leaks 258

A cache with a bad policy is another name for a memory leak 259

C H A P T E R TWELVE

Digging into the Visual C++ Compiler

Do you know when your destructors run? 267

The layout of a C O M object 272

Adjustor thunks 274

Pointers to member functions are very strange animals 276

What is purecall? 280

C H A P T E R T H I R T E E N

Backward Compatibility

Sometimes an app just wants to crash 283

When programs grovel into undocumented structures 284

Why not just block the applications that rely on

undocumented behavior? 286

XVI 4B** C O N T E N T S "T>

Why 16-bit D O S and Windows are still with us 288

What's the deal with those reserved filenames such

as N U L and CON? 290

Why is a drive letter permitted in front of U N C paths

(sometimes)? 292

Do not underestimate the power of the game Deer Hunter 293

Sometimes the bug isn't apparent until late in the game 293

The long and sad story of the Shell Folders key 294
. . .

The importance of error code backward compatibility 297

Sure, we do that 298

When programs patch the operating system and mess up 299

The compatibility constraints of even your internal bookkeeping 300

Why does Windows keep your BIOS clock on local time? 301

Bad version number checks 302

The ways people mess up IUnknown::QueryInterface 303

When programs assume that the system will never change,

Episode 1 305

When programs assume that the system will never change,

Episode 2 306

The decoy Display Control Panel 308

The decoy visual style 309

C H A P T E R FOURTEEN

Etymology and History

What do the letters W and L stand for in WPARAM

and LPARAM? 311

Why was nine the maximum number of monitors in

Windows 98? 312

Why is a registry file called a hive? 312

The management of memory for resources in 16-bit Windows 312

C O N T E N T S * » s XV11

What is the difference between H I N S T A N C E and

HMODULE? 313

What was the purpose of the hPrevInstance parameter to

WinMain? 316

Why is the GlobalWire function called Global Wire? 317

What was the difference between LocalAlloc and GlobalAlloc? 318

What was the point of the GMEM_SHARE flag? 320

Why do I sometimes see redundant casts before casting to

LPARAM? 321

Why do the names of the registry functions randomly end in Ex? 322

What's the difference between SHGetMalloc, SHAlloc,

CoGetMalloc, and CoTaskMemAlloc? 324

Why is Windows Error Reporting nicknamed Dr. Watson? 329

What happened to DirectX 4? 330

Why are H A N D L E return values so inconsistent? 331

Why do text files end in Ctrl+Z? 333

Why is the line terminator CR+LF? 334

T E X T vs. _ T E X T vs. _ T and U N I C O D E vs. _ U N I C O D E 335

Why are dialog boxes initially created hidden? 335

When you change the insides, nobody notices 336

If FlushlnstructionCache doesn't do anything, why do you have

to call it? 337

If InitCommonControls doesn't do anything, why do you have

to call it? 338

Why did Interlockedlncrement/Decrement only return the sign

of the result? 339

Why does the function WSASetLastError exist? 340

Why are there broadcast-based mechanisms in Windows? 340

Where did windows minimize to before the taskbar was invented? 341

Why didn't the desktop window shrink to exclude the taskbar? 343

XV111 *m< CONTENTS

Why does the caret stop blinking when I tap the Alt key? 343

What is the deal with the ES_OEMCONVERT flag? 345

The story behind file system tunneling 346

Why do N T F S and Explorer disagree on filename sorting? 347

The Date/Time Control Panel is not a calendar 350

How did Windows 95 rebase DLLs? 351

What are S Y S T E M _ F O N T and DEFAULT_GUI_FONT? 353

Why do up-down controls have the arrows backward? 354

A ticket to the Windows 95 launch 355

CHAPTER FIFTEEN

How Window Messages Are Delivered and Retrieved

Sent and posted messages 358

The life of a sent message 363

The life of a posted message 364

Generated posted messages 365

When does SendMessageCallback call you back? 368

What happens in SendMessageTimeout when a message times out? 369

Applying what you've learned to some message processing myths 370

How can you tell who sent or posted you a message? 371

You can't simulate keyboard input with PostMessage 371

CHAPTER SIXTEEN

International Programming

Case mapping on Unicode is hard 373

An anecdote about improper case mapping 374

Why you can't rotate text 375

What are these directories called 0409 and 1033? 379

Keep your eye on the code page 379

Why is the default 8-bit codepage called "ANSI"? 388

C O N T E N T S ^e=s XIX

Why is the default console codepage called "OEM"? 388

Why is the OEM code page often called ANSI? 389

Logical but perhaps surprising consequences of converting

between Unicode and ANSI 391

C H A P T E R SEVENTEEN

Security

World-writable files

Hiding files from Explorer

Stealing passwords

Silent install of uncertified drivers

Your debugging code can be a security hole

Why shared sections are a security hole

Internet Explorer's Enhanced Security Configuration doesn't

trust the intranet 402

393

394

395

396

397

398

C H A P T E R E I G H T E E N

Windows 2000 and Windows XP

Why doesn't the new Start menu use Intellimenus in the All

Programs list? 403

Why is there no programmatic access to the Start menu pin list? 404

Why does Windows XP Service Pack 2 sometimes forget my

CD autoplay settings? 406

The unsafe device removal dialog 407

Two brief reminiscences on the Windows XP Comments? button 408

Why does Explorer eject the CD after you finish burning it? 408

Why does Windows setup lay down a new boot sector? 409

Psychic debugging: Why your expensive four-processor machine

is ignoring three of its processors 410

Psychic debugging: Why your CPU usage is hovering at 50% 411

XX ^S\ CONTENTS T)

What's the deal with the DS_SHELLFONT flag? 412

Why does D S _ S H E L L F O N T = DS_FIXEDSYS |

DS_SETFONT? 413

What other effects does D S _ S H E L L F O N T have on property

pages? 414

CHAPTER NINETEEN

Win32 Design Issues

Why does Win32 fail a module load if an import could not

be resolved? 417

Why are structure sizes checked strictly? 418

Why do I have to return this goofy value for

W M _ D E V I C E C H A N G E ? 421

The arms race between programs and users 422

Why can't you trap TerminateProcess? 424

Why do some processes stay in Task Manager after they've

been killed? 424

Understanding the consequences of W A I T _ A B A N D O N E D 425

Why can't I put hyperlinks in notification icon balloon tips? 427

Why can't I use the same tree item multiple times? 429

The kooky S T R R E T structure 429

Why can't you set UTF-8 as your ANSI code page? 431

When should you use a sunken client area? 432

Why is there no all-encompassing superset version of Windows? 433

Why is it even possible to disable the desktop, anyway? 433

What are the window and menu nesting limits? 435

What's the difference between H W N D _ T O P and

H W N D _ T O P M O S T ? 435

C O N T E N T S -SS\ XXI T)

C H A P T E R T W E N T Y

Taxes

Hierarchical Storage Management 438

Geopolitics 439

Remote Desktop Connection and Painting 440

Fast User Switching and Terminal Services 443

Multiple users 444

Roaming user profiles 445

Redirected folders 447

My Documents vs. Application Data 450

Large address spaces 451

Power management and detecting battery power 455

Intermittent network connectivity 457

Anti-aliased fonts and ClearType 459

High DPI displays 462

Multiple monitors 467

The work area 470

Displaying your pop-up windows in the right place 471

Accessibility 472

C H A P T E R T W E N T Y - O N E

Silliness

The much-misunderstood "nop" action 481

Don't let Marketing mess with your slides 482

Whimsical bug reports 482

Watch out for those sample URLs 483

No code is an island 484

But I have Visual Basic Professional 485

It's all about the translucent plastic 485

My first death threat 486

XX11 J ^ v C O N T E N T S

You can't escape those AOL CDs 487

Giving fair warning before plugging in your computer 487

Spider Solitaire unseats the reigning champion 488

There's something about Rat Poker 489

Be careful what you name your product group 490

The psychology of naming your internal distribution lists 490

Differences between managers and programmers 491

Using floppy disks as semaphore tokens 492

When a token changes its meaning midstream 492

Whimsical embarrassment as a gentle form of reprimand 493

Using a physical object as a reminder 494

The office disco party 495

The Halloween-themed lobby 495

Index 497

PREFACE

MUCH INK IS devoted to describing the "how" of using and developing soft

ware for Windows, but few authors go into the "why." What might appear at

first to be quirks often turn out to have entirely logical explanations, reflect

ing the history, evolution, and philosophy of the Microsoft Windows operat

ing system. This book attempts to provide knowledge not so much in the

form of telling what needs to be done (although there is certainly plenty of

that, too) but rather by helping to understand why things came to be that way.

Thus informed of the history and philosophy of Windows, you can become a

more effective Windows programmer.

The emphasis here, then, is on the rationale behind Windows. It is not a ref

erence or even a tutorial, but rather a "practical history," taking a conversational

rather than didactic approach in an attempt to give you an appreciation for the

philosophy of Windows through a series of brief, largely independent essays. You

can therefore skip freely to topics of momentary interest (or technical expertise).

Essays have been grouped into general themes, and there is the occasional

sequential pedagogical treatment when a topic is explored in depth; even in those

cases, however, the topic is confined to a single self-contained chapter.

Writer and commentator David Sedaris is often asked whether his stories

are true. He responds that they are "true enough." Like David Sedaris's stories,

xxni

XXIV ^S=> PREFACE

the material in this book is also "true enough." The focus is on the big picture,

not on the minutiae; on making a single point without getting distracted by

nitpicking detail. Key details are highlighted, but unimportant ones are set

aside, and potentially interesting digressions may be neglected if they do not

serve the topic at hand.

The primary audience is technology-savvy readers with an interest in

Windows history. About half of the essays require no programming back

ground. Most of the remaining topics assume a basic background in software

design and development, although nothing particularly advanced. Topics

specifically related to Windows programming assume reader familiarity with

Win32 user interface programming and COM. The table on page xxv provides

a breakdown of the chapters for nonprogrammers and for general program

mers who do not have an interest in Win32 specifically. Of course, you are wel

come to skim chapters not explicitly marked as of interest to you. Perhaps you

will find something interesting in them after all.

What will you get out of this book? As noted previously, the primary goal

is to convey the philosophy and rationale behind what might at first appear to

be an irrational design. You will also understand that when something can't be

done in Windows, it's often for a good reason; and you will gain an apprecia

tion of the lengths to which Windows goes to preserve backward compatibil

ity (and why it's important that it do so). And if nothing else, you will be able

to tell amusing stories about Windows history at cocktail parties (that is,

cocktail parties thrown by other geeks).

Much of the short-essay material here has already appeared in one form or

another on the author's Web site, The Old New Thing (http://blogs.msdn.

com/oldnewthing/), but is substantially supplemented by new material

better suited to book form.

Visit the Web page for this book (www.awprofessional.com/title/

0321440307) to download two bonus chapters, "Tales of Application

Compatibility" and "How to Ensure That Your Program Does Not Run

Under Windows 95." Think of them if you like as the book version of a

movie's unique and insightful deleted scenes. The Web page also contains the

code samples from the book as well as errata.

http://blogs.msdn
http://www.awprofessional.com/title/

PREFACE ^ S S XXV

Breakdown of Chapters by Audience

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

*
*

Title

Initial Forays into User Interface Design

Selected Reminiscences on Windows 95

The Secret Life of GetWindowText

The Taskbar and Notification Area

Puzzling Interface Issues

A History of the GlobalLock Function

Short Topics in Windows Programming

Window Management

Reminiscences on Hardware

General

Audience

X

X

X

X

X

The Inner Workings of the Dialog Manager

General Software Issues

Digging into the Visual C + + Compiler

Backward Compatibility

Etymology and History

How Window Messages Are Delivered

and Retrieved

International Programming

Security

Reminiscences on Windows 2000

and Windows X P

Win32 Design Issues

Taxes

Silliness

Tales of Application Compatibility

How to Ensure That Your Program

Doesn't Run Under Windows 95

X

X

First half

First half

X

X

General

Programmer

X

X

X

X

X

X

X

X

X

X

X

First half

Part

X

X

X

X

W i n 3 2

Programmer

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

* These bonus chapters can be downloaded from www.awprofessional.com/title/0321440307.

http://www.awprofessional.com/title/0321440307

ACKNOWLEDGMENTS

I WANT TO begin by thanking Joan Murray at Addison-Wesley for believing

in a book as unusual as this one. Without her support, this project would

never have come together. Others at Addison-Wesley have also been of great

help, including Tyrrell Albaugh, Patty Boyd, Keith Cline, Curt Johnson, and

Chris Zahn. Ben Ryan deserves credit for suggesting to me back in the late

1990s that I should write a book on Win32 (sorry it took so long), and I

blame Brad Abrams for flat-out telling me to start a Web log in 2003,

Additional thanks to Betsy Aoki, Jeff Davis, Henry Gabryjelski, Jeffery

Galinovsky, Michael Grier, Mike Gunderloy, Eric Gunnerson, Chris Guzak,

Johnson M. Hart, Francis Hogle, Ales Holecek, Michael Kaplan, KC

Lemson, Shelley McKinley, Rico Mariani, Joseph Newcomer, Adrian Oney,

Larry Osterman, Matt Pietrek, Jeffrey Richter, Mike Schmidt, Jan Shanahan,

Joel Spolsky, Stephen Toub, and Ed Wax for their assistance in various capac

ities throughout this entire project (either intentional or unwitting).

Finally, I must acknowledge all the people who visit my Web site, which

serves as the title as well as the inspiration for this book. They're the ones who

convinced me to give this book thing another try.

xxvn

ABOUT THE AUTHOR

RAYMOND C H E N IS a programmer in the Windows division at Microsoft.

His Web site The Old New Thing deals with Windows history and Win32

programming. He also writes the Windows Confidential column for TechNet

Magazine.

XXIX

/ i 30-

C H A P T E R O N E

INITIAL FORAYS INTO USER

INTERFACE DESIGN

IF YOU ASK ten people for their thoughts on user interface design, you will

get ten self-proclaimed expert opinions. Designing an interface for a single

user grants you the luxury of just asking your customer what they want and

doing it, but designing an interface for a large audience forces you to make

tough decisions. Here are some stories on the subject of user interface design,

starting with probably the most frequently asked question about the

Windows 95 user interface.

Why do you have to click
the Start button to shut down?

BACK IN THE early days of what would eventually be named Windows 95, the

taskbar didn't have a Start button. (Later, you'll learn that back in the early

days of the project, the taskbar wasn't called the taskbar.)

Instead of the Start button, three buttons were displayed in the lower-left

corner: the System button (icon: the Windows flag), the Find button (icon: an

2 *&< T H E OLD N E W T H I N G

eyeball), and the Help button (icon: a question mark). Find and Help are

self-explanatory. T h e System button gave you this menu:

Arrange Desktop Icons

Arrange Windows •

Shut Down Windows

Over time, the Find and Help buttons eventually joined the System button

menu, and the System button menu itself gradually turned into the Windows 95

Start menu. Some menu options such as Arrange Windows (which led to

options such as Cascade Windows and Tile Windows Horizontally) moved to

other parts of the user interface; others such as Task List vanished completely.

O n e thing kept showing up during usability tests as a major hurdle: People

turned on the computer and just sat there, unsure what to do next.

That's when someone got the idea of labeling the System menu Start. It

says,"Psst. Click here." W i t h this simple change, the usability results improved

dramatically because, all of a sudden, people knew what to click when they

wanted to do something.

So why is Shut down on the btart menu:

W h e n we asked people to shut down their computers, they clicked the

Start but ton. Because, after all, when you want to shut down, you have to start

somewhere.

Why doesnt Windows have
an expert mode ?

W E O F T E N GET requests like this:

There should be a slider bar somewhere, say on the Performance tab, that ranges from

Novice to Advanced. At the highest level, all the advanced settings are turned on. At

the Novice level, all the settings for beginners are turned on. In between, we can

gradually enable stuff

C H A P T E R ONE Initial Forays into User Interface Design -^~\ 3

We've been trying to do something like this since even before Windows 95,

and it doesn't work.

It doesn't work because those who might be whizzes at Excel will rate

themselves as Advanced even though they can't tell a page file from a box of

corn flakes. They're not stupid. They really are advanced users. Just not

advanced at the skill we're asking them about.

And before you go mocking the beginners: Even so-called advanced users don't

know everything. I know a lot about GUI programming, but I only know a

little about disk partitioning, and I don't know squat about Active Directory. So

am I an expert? When I need to format a hard drive, I don't want to face a dialog

box filled with incomprehensible options. I just want to format the hard drive.

In the real world, people who are experts in one area are probably not

experts in other areas. It's not something you can capture in a single number.

The default answer to every dialog box
is Cancel

THE PROBLEM WITH displaying a dialog box is that people will take every

opportunity to ignore it. One system administrator related a story in a

Network World magazine online contest of a user who ignored a dozen virus

security warnings and repeatedly tried to open an infected email attachment,

complaining, "I keep trying to open it, but nothing happens." When the

administrator asked why the user kept trying to open an attachment from a

stranger, the answer was, "It might have been from a friend! They might have

made up a new email address and didn't tell me!"1 This story is a template for

how users treat any unexpected dialog: They try to get rid of it.

We see this time and time again. If you are trying to accomplish task A, and

in the process of doing it, an unexpected dialog box B appears, you aren't going

to stop and read and consider B carefully. You're going to try to find the quickest

path to getting rid of dialog B. For most people, this means minimizing it or

clicking Cancel or just plain ignoring it.

l."Why Some People Shouldn't Be Allowed Near Computers," Network World, August 23, 2003,
http://napps.networkworld.com/compendium/archive/003362.html.

http://napps.networkworld.com/compendium/archive/003362.html

4 -SBS THE OLD NEW THING

This manifests itself in many ways, but the basic idea is, "That dialog box is

scary. I'm afraid to answer the question because I might answer it incorrectly and

lose all my data. So I'll try to find a way to get rid of it as quickly as possible."

Here are some specific examples, taken from conversations I have had with

real customers who called the Microsoft customer support line:

• "How do I make this error message go away? It appears every time I

start the computer.

"What does this error message say?"

"It says, 'Updates are ready to install.' I've just been clicking the X to

make it go away, but it's really annoying."

• "Every time I start my computer, I get this message that says that

updates are ready to install. Wha t does it mean?"

"It means that Microsoft has found a problem that may allow a computer

virus to get into your machine, and it's asking for your permission to fix the

problem. You should click on it so the problem can be fixed"

"Oh, that's what it is? I thought it was a virus, so I just kept clicking

'No.'"

• "When I start the computer I get this big dialog that talks about

automatic updates. I've just been hitting Cancel. How do I make it

stop popping up?"

"Did you read what the dialog said?"

"No. I just want it to go away."

"Sometimes I get the message saying that my program has crashed

and would I like to send an error report to Microsoft. Should I do it?"

"Yes, we study these error reports so we can see how we can fix the problem

that caused the crash"

"Oh, I've just been hitting Cancel because that's what I always do

when I see an error message."

Did you read the error message?

C H A P T E R ONE Initial Forays into User Interface Design

"Why should I? It's just an error message. All it's going to say

is 'Operation could not be performed because blah blah blah

blah blah.'"

When most people buy a car, they don't expect to have to learn how an

engine works and how to change spark plugs. They buy a car so that they can

drive it to get from point A to point B. If the car makes a funny noise, they

will ignore it as long as possible. Eventually, it may bother them to the point

of taking it to a mechanic who will ask incredulously, "How long has it been

doing this?" And the answer will be something like, "Oh, about a year."

The same goes for computers. People don't want to learn about gigabytes

and dual-core processors and security zones. They just want to send email to

their friends and surf the Web.

I myself have thrown out a recall notice because I thought it was junk mail.

And computers are so filled with pop-up messages that any new pop-up message

is treated as just another piece of junk mail to be thrown away.

Those who work at an information desk encounter this constantly. People

ignore unexpected information. For example, even when a sign on a door says

that"XYZ is closed today," you can bet that people will walk on in and ask, "Is

XYZ open today?"

"No, it's closed today. Didn't you see the sign on the door?"

"Hmm, yeah, now that you mention it, there was a sign on the door, but I

didn't read it."

Automobile manufacturers have learned to consolidate all their error mes

sages into one message called "Check engine." Most people are conditioned

to take the car in to a mechanic when the "Check engine" light goes on, and

let the mechanic figure out what is wrong. Is it even possible to have a "Check

engine" light for computers? Or would people just ignore that, too? How can

a computer even tell whether a particular change in behavior is normal or

unintended?

6 ^=v THE OLD NEW THING

The best setting is the one you
don't even sense, but it's there,

it works the way you expect

ONE SOLUTION THAT many people propose to the issue of "How should some

thing be designed" is "Design it in every imaginable way, then let the end users

pick the one they want with an option setting somewhere." This is a cop-out.

Computers need to be made simpler. This means fewer settings, not more.

One way to reduce the number of settings is to make them implicit. You'll see

more of this trend as researchers work on ways to make computers simpler,

not more complicated.

Your toaster has a slider to set the darkness, which is remembered for your

next piece of toast. There is no Settings dialog where you set the default

darkness, but which you can override on a slice-by-slice basis.

Yes, this means that if you spent three weeks developing the perfect toast

er slider position for Oroweat Honey Wheat Berry, and then you decide for a

change of pace to have a slice of rye bread instead, you're going to have to move

the slider and lose your old setting. People seem not to be particularly upset

by this. The toaster works the way they expect.

Perhaps, you, the power-toaster-user, would want all toasters to let you save

up to ten favorite darkness settings. But I suspect most people don't even

sense that there are "missing options." If you started adding options to toast

ers, people would start wishing for the old days when toasters were simpler

and easier to use.

"When I was a kid, you didn't have to log on to your toaster to establish

your personal settings."

CHAPTER ONE Initial Forays into User Interface Design ^-^ 7

In order to demonstrate
our superior intellect, we will now ask you

a question you cannot answer

DURING THE DEVELOPMENT of Windows 95, a placeholder dialog was added

with the title "In order to demonstrate our superior intellect, we will now ask

you a question you cannot answer." The dialog itself asked a technical ques

tion that you need a brain the size of a planet to answer. (Okay, your brain

didn't need to be quite that big.)

Of course, there was no intention of shipping Windows 95 with such a

dialog. The dialog was there only until other infrastructure became available,

permitting the system to answer the question automatically.

But when I saw that dialog, I was enlightened. As programmers, we often

find ourselves unsure what to do next, and we say,"Well, to play it safe, I'll just

ask users what they want to do. I'm sure they'll make the right decision."

Except that they don't. As we saw earlier, the default answer to every dialog

box is Cancel. If you ask the user a technical question, odds are that they're just

going to stare at it blankly for a while, then try to cancel out of it. The lesson

they've learned is this: Computers are hard to use.

So don't ask questions the user can't answer. It doesn't get you anywhere,

and it just frustrates the user.

Why doesn't Setup ask you if you want
to keep newer versions

of operating system files?

WINDOWS 95 SETUP would notice that a file it was installing was older than

the file already on the machine and would ask you whether you wanted to

keep the existing (newer) file or overwrite it with the older version.

T H E OLD N E W T H I N G

Asking the user this question at all turned out to have been a bad idea. It's

one of those dialogs that asks users a question they have no idea how to answer.

Suppose you're installing Windows 95 and you get the file version conflict

dialog box. "The file Windows is attempting to install is older than the one

already on the system. Do you want to keep the newer file?" What do you do?

Well, if you're like most people, you say, "Um, I guess I'll keep the newer

one," so you click Yes.

And then a few seconds later, you get the same prompt for some other file.

And you click Yes again.

And then a few seconds later, you get the same prompt for yet another file.

Now you're getting nervous. Why is the system asking you all these questions?

Is it second-guessing your previous answers? Often when this happens, it's

because you're doing something bad and the computer is giving you one more

chance to change your mind before something horrible happens. Like in the

movies when you have to type Yes five times before you can launch the nuclear

weapons.

Maybe this is one or those times.

Now you start clicking No. Besides, it's always safer to say "No," isn't it?

After a few more dialogs (clicking No this time), Setup finally completes.

The system reboots, and ... it blue-screens.

Why?
Because those five files were part of a matched set of files that together

form your video driver. By saying "Yes" to some of them and "No" to others,

you ended up with a mishmash of files that don't work together.

We learned our lesson. Setup doesn't ask this question any more. It always

overwrites the files with the ones that come with the operating system. Sure,

you may lose functionality, but at least you will be able to boot. Afterward,

you can go to Windows Update and update that driver to the latest version.

Some have suggested that expanding the dialog with more explanatory text

would solve the problem, but this misses the fact that people don't want to be

bothered with these dialogs to begin with, as well as the fact that more infor

mation doesn't help anyway because the user doesn't have the background

knowledge necessary to make an informed decision in the first place.

C H A P T E R ONE Initial Forays into User Interface Design

To a user, the dialog looks like this:

File Conflict f x]

A problem blah blah blah blah blah.

File: blahblah.blah

Description: blah blah blah

Current version: blah blah blah

blah blah: blah blah blah

blah blah: blah blah blah

If you blah blah blah blah blah blah, then blah blah blah blah.
Otherwise blah blah blah blah.

Yes No Yes to All Cancel j

Making the dialog longer just increases the number of blahs. It's like trying

to communicate with someone who doesn't speak your language by repeating

yourself louder and more slowly. Users just want to surf the Web and send

email to their grandchildren. Whatever you put in the dialog, they simply

won't read it. Giving the dialog more buttons merely increases the paralysis

factor.

Do you know the name of your printer driver? Or whether you should keep

version 4.12.5.101 or downgrade it to 4.12.4.8? I sure don't.

Thinking through a feature

EVERYONE HAS A suggestion for a taskbar grouping feature. It's just a little bit

of code; why not just do it?

Writing the code is the easy part.

Designing a feature is hard.

You have several audiences to consider. It's not just about the alpha geeks;

you have to worry about the grandmothers, the office workers, the IT depart

ments. They all have different needs. Sometimes a feature that pleases one

group offends another.

IO «BV T H E OLD N E W T H I N G

So let's look at some of the issues surrounding the proposed feature of

allowing users to selectively ungroup items in the taskbar.

One issue with selective grouping is deciding the scope of the feature.

Suppose the user ungroups Internet Explorer, then closes all the Internet

Explorer windows, and then opens two new Internet Explorer windows: Do

the new ones group?

If so, you now have an invisible setting. How do you configure grouping for

programs that aren't running? (How do you configure something that you

can't see?)

Suppose you've figured that out. That's fine for the alpha geeks, but what

about Grandma?

"The Internet is all disorganized."

"What do you mean?"

"My Internet windows are all disorganized."

"Can you explain a little more?"

"My taskbar used to be nice and organized, but now the Internet parts are

disorganized and spread out all over the place. It used to be nice and neat. I

don't know how it happened. I hate the Internet. It's always messing up my

computer."

What is the user interface for selective ungrouping? Anything that is on a

context menu will be executed accidentally by tens of thousands of people due

to mouse twitching. Putting the regroup onto the context menu isn't necessarily

good enough because those people don't even realize it was a context menu

that did it. It was just a mouse twitch.

Mouse twitches cause all sorts of problems. Some people accidentally dock

their taskbar vertically; others accidentally resize their taskbar to half the size

of the screen. Do not underestimate the havoc that can be caused by mouse

twitching.

Soon people will want to do arbitrary grouping. "I want to group this

command prompt, that Notepad window, and this Calc window together."

What about selective ungrouping? "I have this group of ten windows, but I

want to ungroup just two of them, leaving the other eight grouped together."

C H A P T E R ONE Initial Forays into User Interface Design Ŝ=̂ n

When you have selective/arbitrary grouping, how do you handle new

windows? What group do they go into?

Remember: If you decide, "No, that's too much," thousands of people will

be cursing you for not doing enough. Where do you draw the line? And also

remember that each feature you add will cost you another feature somewhere

else. Manpower isn't free.

But wait, the job has just begun. Next, you get to sit down and do the

usability testing.

Soon you'll discover that everything you assumed to be true is completely

wrong, and you have to go back to the drawing board. Eventually, you might

conclude that you overdesigned the feature and you should go back to the

simple on/off switch.

Wait, you're still not done. Now you have to bounce this feature off corpo

rate IT managers. They will probably tear it to shreds, too. In particular, they're

going to demand things such as remote administration and the capability to

force the setting on or off across their entire company from a central location.

(And woe unto you if you chose something more complicated than an on/off

switch: Now you have to be able to deploy that complex setting across tens of

thousands of computers, some of which may be connected to the corporate

network via slow modems.)

Those are just some of the issues involved in designing a feature.

Sometimes I think it's a miracle that features happen at all!

(Disclaimer: I'm not saying this is how the grouping feature actually came

to be. I just used it as an illustration.)

Curiously, when I bring up this issue, the reaction of most people is not to

consider the issue of trade-offs in feature design but rather to chip in with

their vision of how the taskbar should work. "All I want is for the taskbar to

do X. That other feature Y is useless." The value of X and Y changes from

person to person; these people end up unwittingly proving my point rather

than refuting it.

12 ^ ^ s T H E OLD N E W T H I N G

When do you disable an option,
and when do you remove it?

W H E N YOU'RE DISPLAYING a menu item or a dialog option, and the option is

not available, you can either disable it or you can remove it. What is the rule

for deciding which one to do?

Experiments have shown that if something is shown but disabled, users

expect that they will be able to get it enabled if they tinker around enough.

Therefore, leave a menu item shown but disabled if there is something the

user can do to cause the operation to become available. For example, in a media

playback program, the option to stop playback is disabled if the media file is not

playing. When it starts playing, however, the option becomes available again.

On the other hand, if the option is not available for a reason the user has no

control over, remove it. Otherwise the user will go nuts looking for the magic

way to enable it. For example, if a printer is not capable of printing color, don't

show any of the color management options, because there's nothing the user

can do with your program to make that printer a color printer.

By analogy, consider a text adventure game. The player tries something

clever, such as "Take the torch from the wall," and the computer replies, "You

can't do that, yet." This is the adventure game equivalent to graying out a menu

item. The user is now going to go nuts trying to figure out what's happening:

"Hmm, maybe I need a chair, or the torch is too hot, or I'm carrying too much

stuff, or I have to find another character and ask him to do it for me."

If it turns out that the torch is simply not removable, what you've done is

send the user down fruitless paths to accomplish something that simply can't

be done. For an adventure game, this frustration is part of the fun. But for a

computer program, frustration is not something people tend to enjoy.

Note that this isn't a hard-and-fast rule; it's just a guideline. Other

considerations might override this principle. For example, you may believe

that a consistent menu structure is more desirable because it is less confusing.

(A media playback program, for example, might decide to leave the video-related

options visible but grayed when playing a music file.)

C H A P T E R ONE Initial Forays into User Interface Design £SK 13

-—'

When do you put •••
after a button or menu?

SAVE AS... APPEARS on some menus. You'll also find plenty of Customize...

buttons. What is the rule for dots?

Many people believe that the rule for dots is this: "If it's going to display a

dialog, you need dots." This is a misapprehension.

The rules are spelled out in the Windows User Interface Design

Specifications and Guidelines (what a mouthful) in the section titled

"Ellipses."

You should read the guidelines for the full story, but here's the short ver

sion: Use an ellipsis if the command requires additional information before it

can be performed. Sometimes the dialog box is the command itself, such as

About or Properties. Even though they display a dialog, the dialog is the result,

as opposed to commands such as Print, where the dialog is collecting additional

information prior to the result

User interface design
for vending machines

How HARD CAN it be to design the user interface of a vending machine? You

accept money, you have some buttons, users push the buttons, and they get

their product and their change.

At least in the United States, many vending machines arrange their product

in rows and columns. To select a product, you press the letter of the row and

the number of the column. Could it be any simpler?

It turns out that subtleties lurk even in something this simple.

If the vending machine contains ten items per row, and you number them 1

through 10, a person who wants to buy product CIO has to push the buttons

C and 10. But in our modern keyboard-based world, there is no 10 key.

Instead, people press 1 followed by 0.

14 ^ S ^ THE OLD NEW THING

W h a t happens if you type C + 1 + 0? After you type the 1, product C l

drops. Then the user realizes that there is no 0 key. And he bought the wrong

product.

This is not a purely theoretical problem. I have seen this happen myself.

H o w would you fix this?

O n e solution is simply not to put so many items on a single row, considering

that people have difficulty making decisions if given too many options. O n the

other hand, the vendor might not like that design; their goal might be to

maximize the number of products.

Another solution is to change the labels so that the number of button

presses needed always matches the number of characters in the label. In other

words, no buttons with two characters on them (for example, a 10 button).

You could switch the rows and columns so that the products are labeled 1A

through IJ across the top row and 9A through 9J across the bottom. This

assumes you don't have more than nine rows, however. Some vending machines

have many more selections on display, resulting in a very large number of rows.

If you have exactly ten items per row, you can call the tenth column 0.

Notice, however that you also should remove rows I and O to avoid possible

confusion with 1 and 0.

Some vending machines use numeric codes for all items rather than a let

ter and a digit. For example, if the cookies are product number 23, you punch

2 + 3. If you want the chewing gum (product code 71), you punch 7 + 1.

W h a t are some problems with having your products numbered from 1 to 99?

Here are a few problems. You may have come up with others:

• Products with codes 11, 22, 33, and so on may be selected

accidentally. A faulty momentary switch might cause a single key

press to register as two, or a user may press the button twice by

mistake or frustration.

• Product codes less than ten are ambiguous. Is a 3 a request for prod

uct number 3, or is the user just being slow at entering 32? Solving

this by adding a leading zero will not work because people are in the

habit of ignoring leading zeros.

C H A P T E R ONE Initial Forays into User Interface Design 15

• Product codes should not coincide with product prices. If there is a bag of

cookies that costs 75 cents, users are likely to press 75 when they want the

cookies, even though the product code for the cookies is 23.

User interface design
for interior door locks

H o w HARD CAN it be to design the user interface of an interior door lock?

Locking or unlocking the door from the inside is typically done with a latch

that you turn. Often, the latch handle is in the shape of a bar that turns.

Now, there are two possible ways you can set up your lock. O n e is that a

horizontal bar represents the locked position, and a vertical bar represents the

unlocked position. T h e other is to have a horizontal bar represent the

unlocked position and a vertical bar represent the locked position.

For some reason, it seems that most lock designers went for the latter

interpretation. A horizontal bar means unlocked.

I his is wrong.

Think about what the bar represents. W h e n the deadbolt is locked, a hori

zontal bar extends from the door into the door jamb. Clearly, the horizontal bar

position should reflect the horizontal position of the deadbolt. It also resonates

with the old-fashioned way of locking a door by placing a wooden or metal bar

horizontally across the face. (Does no one say"bar the door" any more?)

Car doors even followed this convention, back when car door locks were little

knobs that popped up and down. The up position represented the removal of the

imaginary deadbolt from the door/jamb interface. Pushing the button down was

conceptually the same as sliding the deadbolt into the locked position.

But now, many car door locks don't use knobs. Instead, they use rocker

switches. (Forward means lock. O r is it backward? W h a t is the intuition

there?) The visual indicator of the door lock is a red dot. But what does it

mean? Red clearly means danger, so is it more dangerous to have a locked door

or an unlocked door? I can never remember; I always have to tug on the door

handle.

l 6 -fi^s T H E OLD N E W T H I N G

(Horizontally mounted power window switches have the same problem.

Does pushing the switch forward raise the window or lower it?)

The evolution of mascara
in Windows UI

T H E LOOK OF the Windows user interface has gone through fashion cycles.

In the beginning, there was Windows 1.0, which looked very flat because

screen resolutions were rather low in those days, and color depth was practically

nonexistent. If you had 16 colors, you were doing pretty well. You couldn't afford

to spend very many pixels on fluff such as borders, and shadows were out of the

question because of lack of color depth.

The flat look continued in Windows 2.0, but Windows 3.0 added a hint of

3D, with a touch of beveling in push buttons.

Other people decided that the 3D look was the hot new thing, and libraries

sprang up to add 3D shadow and outlining effects to nearly everything. The

library CTL3D.DLL started out as just an Excel thing, but it grew in popu

larity until it became the standard way to make your dialog boxes even more 3D.

Come Windows 95, and even more of the system had a 3D look. For exam

ple, beveling appeared along the inside edge of the panes in the Explorer window.

Furthermore, 3D-ness was turned on by default for all programs that marked

themselves as designed for Windows 95. For programs that wanted to run on

older versions of Windows as well, a new dialog style DS_3DLOOK was added, so

that they could indicate that they wanted 3D-ization if available.

And if the 3D provided by Windows 95 by default wasn't enough, you could

use CTL3D32.DLL to make your controls even more 3D than ever before. By

this point, things started getting really ugly. Buttons on dialog boxes had so

many heavy black outlines that it started to look like a really bad mascara job.

Fortunately, like many fashions that get out of hand, people realized that

too much 3D is not a good thing. User interfaces got flatter. Instead of using

3D effects and bold outlines to separate items, subtler cues were used. Divider

lines became more subdued and sometimes disappeared entirely.

CHAPTER ONE Initial Forays into User Interface Design . s ^ . 17

Microsoft Office and Microsoft Money were two programs that embraced the

less-is-more approach. The beveling is gone, and there are no 3D effects. Buttons

are flat and unobtrusive. The task pane separates itself from the content pane by

a simple gray line and a change in background shade. Even the toolbar has gone

flat. Office 2000 also went largely flat, although some simple 3D effects linger (in

the grooves and in the scrollbars, for example).

Windows XP jumped on the flat-is-good bandwagon and even got rid of the

separator line between the tasks pane and the contents pane. The division is

merely implied by the change in color. "Separation through juxtaposition" has

become the new mantra.

Office XP and Outlook 2003 continue the trend and flatten nearly everything

aside from the scrollbar elements. Blocks of color are used to separate elements

onscreen, sometimes with the help of simple outlines.

So now the pendulum of fashion has swung away from 3D back toward

flatness. Who knows how long this school of visual expression will hold

the upper hand? Will 3D return with a vengeance when people tire of the

starkness of the flat look?

C H A P T E R T W O

SELECTED REMINISCENCES

ON WINDOWS 95
• L

WINDOWS 95 WAS perhaps the most heavily anticipated software of its

era. At the Windows 95 tenth anniversary party, I happened to run

into one of the lead marketing people for Windows 95, and we got to remi

niscing about people lining up for hours at software stores to buy their copy

at the stroke of midnight. Having Jay Leno (an actual celebrity!) host the

launch event turned operating systems from boring software that only geeks

understood to something with mass appeal (that only geeks understood).

And he wrapped up our brief chat by saying/And we'll never see anything like

it ever again." Although you, my dear reader, weren't able to join us for our little

nostalgia trip, here are some stories you can use to pretend that you were.

Why isn't my time zone highlighted
i i i *

on the world map:
IN THE ORIGINAL release of Windows 95, you could change your time zone

by clicking on the map, and the time zone you selected would highlight.

Similarly, you could change your Region settings by clicking on the world map.

19

2 0 ^S=N T H E OLD N E W T H I N G

This was one of those little touches that made Windows 95 that much more

fun to use.

But we had to remove those features, even though we based both of the

maps on the borders officially recognized by the United Nations.

In early 1995, a border war broke out between Peru and Ecuador, and the

Peruvian government complained to Microsoft that the border was incorrectly

placed. Of course, if we complied and moved the border northward, wed get an

equally angry letter from the Ecuadorian government demanding that we move

it back. So we removed the map feature of the Region settings altogether.

The time zone map met a similar fate. The Indian government threatened

to ban all Microsoft software from the country because we assigned a disputed

region to Pakistan in the time zone map.1 (Any map that depicts an unfavorable

border must bear a government stamp warning the end user that the borders

are incorrect. You can't stamp software.) The drawing of regional boundaries

in the time zone map was removed from the International version of

Windows 95.

It isn't good enough to remove it only from the Indian version of Windows 95.

Maintaining multiple code bases is an expensive proposition, and besides, no

one can predict what country will get upset next.

Geopolitics is a sensitive subject.

Why didn't Windows 95 boot
with more than 1GB of memory?

SHORT VERSION: Windows 95 will fail to boot if you have more than around

480MB of memory. (This was considered an insane amount of memory back

then. Remember, Windows 95's target machine was a 4MB 386SX, and a

powerful machine had 16MB. So according to Moore's law, that gave us seven

years before we had to do something about it. One of my friends got 96MB

of memory on his machine to test that we didn't tank under "insanely huge

memory configurations," and we all drooled.)

1. Lance Lattig,"A Dispute Over India's Borders Had Microsoft Mapping a Retreat," Wall Street

Journal, August 24, 1995.

C H A P T E R TWO Selected Reminiscences on Windows 95 ^ 21

Windows 98 bumped the limit to 1GB because there existed a vendor (who

shall remain nameless) who was insane enough to want to sell machines with

1GB of memory and preinstall Windows 98 rather than the much more suitable

Windows NT.

Now the long version.

One of the first things that happens in the Windows 95 boot process after

you have transitioned into 32-bit mode is to initialize the 32-bit memory

manager. But now you have a chicken-and-egg problem: The memory manager

needs to allocate some memory to keep track of the memory it is managing

(keeping track of which pages are paged in and which are paged out, that sort

of thing). However, it can't allocate memory until the memory manager is

initialized. Eek!

The solution is to initialize the memory manager twice.

The first time the memory manager is initialized, it gets all its memory

from a fixed block of memory preallocated in the init-data segment. It sets up

this fixed block as the memory manager heap. So now a heap is available to

satisfy memory allocations.

Next, the memory manager starts looking for the real memory in the system,

and when it finds some, it allocates memory (from the initial fixed block) to

keep track of the real memory.

After the memory manager has found all the real memory in the system, it's

time to initialize the memory manager a second time: It carves out a chunk of

that real memory to use as the "real heap" and copies the information from the

heap that it has been using so far (the fixed-sized heap) to the "real heap."

After everything has been copied and all the pointers fixed up, the global

memory manager heap pointers are changed to point at the new ("real") heap,

and the original heap is abandoned.

The memory consumed by the original heap is reclaimed when the init-

data segment is discarded (which happens at the end of system initialization).

The total memory limitation occurs because the size of the fixed block in

the init-data segment needs to be large enough to satisfy all the memory

allocations performed during the memory scan. If you have too much memory,

an allocation during the memory scan fails, and the system halts.

22 J S S T H E OLD N E W T H I N G

The size of the init-data segment was chosen to balance two factors. The

larger you make it, the more memory you can have in the system before hitting

an allocation failure during the memory scan. But you can't make it too large

or machines with small amounts of memory won't even be able to load the

operating system into memory because of all the space required by your new,

bigger init-data segment.

The Windows N T series (which includes Windows 2000, Windows XP,

and Windows Vista) has a completely different kernel-mode architecture and

fortunately suffers from none of these problems.

Why did Windows 95 have functions
called BEAR, BUNNY, and PIGLET?

IF YOU DIG back into your Windows 95 files, you'll find that some internal

system functions are given names such as BEAR35, BUNNY73, and

PIGLET 12. Surely there is a story behind these silly names, isn't there?

Of course there is.

Bear is the name of the Windows 3.1 mascot, a stuffed teddy bear seemingly

obsessively carried around by Dave, one of the most senior programmers on

the team. If he came into your office, he might bounce Bear on your monitor

to get your attention. As a prank, we would sometimes steal Bear and take

him on "vacation," in the same way people take garden gnomes on vacation and

send back postcards.

If you play the Windows 3.1 Easter egg, one of the pictures you will see is

a cartoon of Bear.

Bear took a lot of abuse. He once had the power cord to an arcade-style

video game run through his head between his ears. Another developer tried

to stick a firecracker up Bear's butt (presumably not while it had the power

cord in its head).

By Windows 95, Bear was in pretty bad repair. (The children of one of the

program managers once took pity on Bear and did a nice job of getting Bear

back in cuddle-able condition.)

C H A P T E R TWO Selected Reminiscences on Windows 95 *&\ 2.3

So Bear was retired from service and replaced with a pink bunny rabbit,

named Bunny. We actually had two of them, a small one called 16-bit Bunny

and a big one called 32-bit Bunny. Two bunnies means twice as many oppor

tunities for theft, of course, and the two bunnies had their own escapades

during the Windows 95 project. (When Dave got married, we helped 32-bit

Bunny crash the party and sent back pictures of Bunny drunk on wine.)

Dave was primarily responsible for the user-interface side of things, so

you'll see the BEAR and BUNNY functions in the components responsible

for the user interface. On the kernel side, Mike had a Piglet plush toy (from

Winnie the Pooh). When we needed to name an internal kernel function, we

chose PIGLET. Piglet survived the Windows 95 project without a scratch.

What about BOZOSLIVEHERE and
TABTHETEXTOUTFORWIMPS?

FOR THIS, YOU need a deeper history lesson.

Back in the old days of real-mode Windows, all callback functions had to be

exported. The exporting was necessary because of the way real-mode Windows

managed memory, the details of which are unimportant here. Consequently, the

window procedures for all the standard window classes (edit controls, list boxes,

check boxes, and so on) were exported from USER. And those were on top of

the usual collection of internal functions that enabled USER, KERNEL, and

GDI to coordinate their efforts.

Some people reverse-engineered all these internal functions and printed

books about how they worked. As a result, a lot of programs actually used

them; which was quite a surprise to us because they were internal functions.

And then when we wanted to redesign these internal functions (for example,

to add a parameter, or if we decided that we didn't need it any more and tried

to delete it), we found that the programs stopped working.

So we had to put the functions back, with their old behavior. The new

features we were contemplating had to be redesigned, redirected, or possibly

even abandoned entirely. (If we wanted to delete a function, the work could

2 4 -5S=N T H E OLD N E W T H I N G

continue; but the old function had to stay around with its old behavior. It was

basically dead code from the operating system's point of view, hanging around

just because some random program or other decided to cheat and bypass the

documented way of doing things.) But to teach people a lesson, they often got

given goofy names.

For example, BOZOSLIVEHERE was originally the window procedure for the

edit control, with the rather nondescript name of EditWndProc. Then some

people who wanted to use the edit control window procedure decided that

GetwindowLong (GWL_WNDPROC) was too much typing, so they linked to

EditWndProc directly. Then when a later version of Windows no longer

required window procedures to be exported, we removed them all, only to

find that programs stopped working. So we had to put them back, but they

got goofy names as a way of scolding the programs that were doing these

invalid things.

Things got even worse in Windows 95, when all our window procedures

were converted to 32-bit versions. The problem is that the old window

procedures were only 16 bit. So we couldn't even simply export the 32-bit

window procedure under the name BOZOSLIVEHERE. We had to write a

conversion function that took an illegal 16-bit function call and converted it

to the corresponding illegal 32-bit function call.

This is just the tip of the iceberg with respect to application compatibility.

I can tell dozens upon dozens of stories about bad things programs did and

what we had to do to get them to work again (often in spite of themselves).

Which is why I get particularly furious when people accuse Microsoft of

maliciously breaking applications during operating system upgrades. If any

application failed to run on Windows 95,1 took it as a personal failure. I spent

many sleepless nights fixing bugs in third-party programs just so they could

keep running on Windows 95. (Games were the worst. Often the game vendor

didn't even care that their program didn't run on Windows 95!)

C H A P T E R TWO Selected Reminiscences on Windows 95 *S\ 25

What was in the Windows 95
Special Edition box?

AT THE WINDOWS 95 launch and at various other marketing events, guests were

given a copy of Windows 95 Special Edition. What is so special about the box?

Answer: the box.

The contents of the box are exactly the same as a regular copy of Windows 95.

The only thing special about it is the box itself.

\ }

Windows brings out the Rorschach
test in everyone

IT SEEMS THAT no matter what you do, somebody will get offended.

Every Windows 95 box has an anti-piracy hologram on the side. The

photographer chose his infant son as his model because the human face is

hard to copy accurately. The baby sits next to a computer, and as you turn the

hologram, his arm rises and points at the computer monitor, which bursts

into a Windows 95 logo.

How cute. And everybody loves babies.

Until we got a complaint from a government (who shall remain nameless

for obvious reasons) that was upset with Windows 95 because it depicted

naked children.

"Naked children!?" we all thought to ourselves.

They were complaining about the hologram on the box. The baby wasn't

wearing a shirt. Even though the baby was visible only from the waist up, the

offended government assumed that he wasn't wearing pants either.

We had to produce a new hologram. In the new hologram, the baby is

wearing a shirt and overalls. But because this was a rush job, we didn't have

time to do the arm animation.

So if you still have your copy of Windows 95, go look at the hologram. If

the baby in your hologram isn't wearing a shirt, you have a genuine collector's

2 6 5 ^ s T H E OLD N E W T H I N G

item. I have seen the "naked baby" hologram, but unfortunately my copy of

Windows 95 has a clothed baby.

If you hunt around the Web, you can find lots of other people who claim

to have found subliminal messages in Windows 95. My favorite is the one

who claims to have found images in the clouds bitmap. Hey, they're clouds.

They're nature's Rorschach test.

Windows XP had its own share of complaints. The original wallpaper for

Windows XP was Red Moon Desert, until people claimed that Red Moon

Desert looked like a pair of buttocks. People also thought that one of the

generic people used in the User Accounts Control Panel looked like Hitler.

And one government claimed the cartoon character in the original Switch

Users dialog looked like an indecent body part. We had to change them all.

But it makes me wonder about the mental state of our beta testers!

The martial arts logon picture

ALONG THE LINES of Windows as Rorschach test, here's an example of some

one attributing malicious behavior to randomness.

Among the logon pictures that come with Windows XP is a martial arts

kick. I remember one bug we got that complained, "Windows XP is racist.

It put a picture of a kung fu fighter next to my name, just because my name

is Chinese. This is an insult!"

The initial user picture is chosen at random from among the pictures in

the %ALLUSERSPROFILE%\Application D a t a \ M i c r o s o f t \ U s e r Account

Pictures \Def a u l t P i c t u r e s directory. It just so happened that the random

number generator picked the martial arts kick out of the 21 available pictures.

I'm also frustrated by people who find quirks in spell checkers and attribute

malicious intent to them. You know what I'm talking about. "Go to Word and

type in <some name that's not in the dictionary) and tell it to check your

spelling. Word will flag the word and recommend <some other word that is

somehow opposite to the first word in meaning> instead. This is an insult!

C H A P T E R T w o Selected Reminiscences on Windows 95 -s^s 27

Microsoft intentionally taught the spell checker to suggest <that word> when

you type <this word>. This is clear proof of <some bad thing>."

J - •

Why a really large dictionary
is not a good thing

SOMETIMES YOU'LL HEAR people brag about how many words are in their

spell-checking dictionary. It turns out that having too many words in a spell

checker's dictionary is worse than having too few.

Suppose you have a spell checker whose dictionary contains every word in

the Oxford English Dictionary. Then you hand it this sentence:

Therf werre eyght bokes.

That sentence would pass with flying colors because all the words in the

preceding sentence are valid English words, although most people would be

hard-pressed to provide definitions.

The English language has so many words that if you included them all,

common typographical errors would often match (by coincidence) a valid

English word and therefore not be detected by the spell checker. Which

would go against the whole point of a spell checker: to catch spelling errors.

So be glad that your spell checker doesn't have the largest dictionary possible.

If it did, it would end up doing a worse job.

A
An insight into the Windows 95

startup sound

Doo, DUDUDUDINGGGGGG ... ding ... ding ... ding.

In an interview with Joel Selvin at the San Francisco Chronicle, Brian Eno

explains how he came to compose"The Microsoft Sound," the default system

startup sound for Windows 95. He compared writing a 3.25-second music

2 8 J ^ s T H E OLD N E W T H I N G

piece to "making a tiny little jewel," and when he returned to writing longer

works, 3 minutes "seemed like oceans of time."2

The Windows 95 CD contained extra multimedia toss-ins. The ones I

remember are a cartoon or two by Bill Plympton, a Weezer music video, and

a music video of Edie Brickell singing "Good Times."

For some reason, everybody wanted to know the artist from the "Good

Times" video. Nobody was interested in the artists who did any of the other

stuff. (Okay, probably nobody asked about Weezer because, well, that's the

group right there in the filename.)

Hint: Right-click and select Properties. That will tell you the artist.

Oh, and the question nobody asked but I'm going to answer it anyway:

The composer of the Windows 95 Easter egg theme is Brian Orr. You can read

his story of how it came to be on his Web site (www.brianorr.com/music/

compositions/clients.asp).

It's a lot easier to write a column if you
don't care about accuracy

T H E GREAT THING about writing a rumors column is that you don't have to

be right! Even if you're wrong, you can just say, "Well, Microsoft changed it

before they shipped," and nobody can say you were wrong. It's a victimless

crime! The only victim is Microsoft!

A classic example from early 1995 came from a technology rumor columnist

who reported that Windows 95 would employ a hardware key, informally

known in the industry as a dongle. A dongle is a device that plugs into the

computer and that the software uses to confirm that the copy is legitimate.

The report concluded with "it should be classified as a rumor. Microsoft could

change its mind on the dongle security strategy tomorrow."

Note that last sentence. And the great thing is, if the story turns out untrue,

you can even take credit for it! "Thanks to public uproar over my amazing

scoop, Microsoft changed its mind and decided not to do this thing" (that it

wasnt planning on doing any way j .

2. Joel Selvin, "Q and A with Brian Eno," San Francisco Chronicle, June 2, 1996, www.sfgate.com/
cgi-bin/article,cgi?file=/chronicle/archive/1996/06/02/PK70006.DTL.

http://www.brianorr.com/music/
http://www.sfgate.com/

C H A P T E R Two Selected Reminiscences on Windows 95 ^ 29

It's frustrating reading rampant bogus rumors about your product and not

being able to do anything about it.

So remember, all you rumor-consumers: Just because you saw it in the

newspaper doesn't mean that it's true.

Why does the System Properties page
round the memory size?

DURING WINDOWS 95 beta testing, people ran the System Properties page

and complained about "missing memory."

The Windows 95 System Properties page reports the amount of memory

available to Windows as system memory, which is not necessarily the same as

the amount of memory installed in your computer.

For example, you may have an old D O S device driver that allocates a large

amount of memory for itself, which prevents Windows 95 from using it. Or

you may have a dreaded Unified Memory Architecture (UMA) machine,

where your so-called 8MB of memory is actually being divided between main

system memory and video memory. So if you have an 8MB UMA machine

and you're running at 800 X 600 pixels in 256 colors, you actually have only

7.5MB of memory; the other half megabyte got taken by the video card.

When we displayed the actual amount of memory available to Windows, we

got lots of bug reports from people asking,'! paid for 8 megabytes of memory,

where is it?"

That's why Windows 95 takes the actual amount of memory and rounds it

up to the nearest multiple of 4MB and displays that.

Why does my hard drive light flash
every few seconds?

BACK IN WINDOWS 95, people would notice that their hard drive light would

blink every few seconds. What's that all about?

30 0©s. THE OLD NEW THING

Actually, it wasn't the hard drive light after all.

Windows 95 was polling your CD-ROM drive to see whether you had

inserted a new CD. Some computers wired up the"hard drive light" not to the

hard drive but rather to the SCSI and/or IDE bus. So the light didn't indi

cate hard drive activity necessarily. It turned on for any bus activity.

Fortunately, motherboard manufacturers discovered their mistake, and

nowadays you don't find any of them that mis-wire the hard drive access light.

Or do you? I keep my computer under my desk, so I never see the hard

drive light anyway. I'm just surmising that in the past seven years, mother

board manufacturers have gotten their act together.

The hunt for a faster syscall trap

T H E PERFORMANCE OF the syscall trap gets a lot of attention.

I was reminded of a meeting that took place between Intel and Microsoft

more than 15 years ago. (Sadly, I was not myself at this meeting, so the story

is second-hand.)

Because Microsoft is one of Intel's biggest customers, their representatives

often visit Microsoft to show off what their latest processor can do, to lobby

the kernel development team to support a new processor feature, and to solicit

feedback on what sort of features would be most useful to add.

At this meeting, the Intel representatives asked, "So if you could ask for

only one thing to be made faster, what would it be?"

Without hesitation, one of the lead kernel developers (who happens to be a

bit of a jokester) replied, deadpan,"Speed up faulting on an invalid instruction."

The Intel half of the room burst out laughing. "Oh, you Microsoft engi

neers are so funny!" And so the meeting ended with a cute little joke.

After returning to their labs, the Intel engineers ran profiles against the

Windows kernel and, lo and behold, they discovered that Windows spent a

lot of its time dispatching invalid instruction exceptions. How absurd! Was

the Microsoft engineer not kidding around after all?

No, he wasn't.

CHAPTER TWO Selected Reminiscences on Windows 95 *s=s 31

It so happens that on the 80386 chip of that era, the fastest way to get

from 8086 emulation mode into kernel mode was to execute an invalid

instruction! Consequently, Windows/386 used an invalid instruction as its

syscall trap.

What's the moral of this story? I'm not sure. Perhaps it's that when you cre

ate something, you may find people using it in ways you had never considered.

One byte used to cost a dollar

BACK IN THE days when software was distributed on floppy disks (remember

floppy disks?), the rule of thumb for Windows was "one byte costs a dollar."

In other words, considering the cost of materials, the additional manufac

turing time, the contribution to product weight, the cost of replacing materials

that became defective after they left the factory (for example, during shipping),

after taking data compression into account, and so on, the incremental cost

of adding another megabyte to the Windows product was around $1,000,000

(or about $1 per byte).

This was a cute rule of thumb to have because it let you put a (admittedly

somewhat artificial) monetary value on code bloat. Was your feature even

worth the disk space?

Of course, the advent of the CD as the primary distribution medium

changed the mathematics, but there is still great concern over the size of the

operating system. It is my understanding that the Windows Server 2003 CD

is basically "full." It might not look full to you, but remember that your CD is

probably the 32-bit English version. Additional space needs to be reserved for

translations into other languages, and don't forget that the 64-bit edition of

Windows needs to contain two operating systems, the native 64-bit one and

the emulated 32-bit one. (It's not quite that bad, because some files can be

shared, and many 32-bit components can be jettisoned.)

-

32 iSBK T H E OLD N E W T H I N G

Each product-support call costs a sale

ANOTHER MONETARY RULE of thumb is that "each product-support call costs

a sale."

What this means is that, if you look at all the Windows product-support

calls—some of which are handled in minutes, others of which take days—the

average cost of a product-support call is approximately the same as the revenue

for one copy of Windows.

Sometimes you'll hear somebody say, "The odds of someone hitting this

problem are one in a million." I read one estimate that there are 200 million

Windows PCs in the world. Who knows how accurate that is, but it's enough

to illustrate my point.

Suppose something happens once a day and it has a one in a million chance

of going wrong. With 200 million Windows PCs, that's 200 failures a day, or

more than 70,000 failures a year. Congratulations, your one-in-a-million bug

just cost the company 70,000 copies' worth of Windows revenue each year

(not to mention, of course, 70,000 dissatisfied users).

Why isn't Tweak UI included
on the Windows CD?

W E TRIED THAT. It was a disaster.

In the original version of Windows 98, a copy of Tweak UI was placed in

an Extras folder on the CD. And it didn't take long for us to realize that this

was a bad idea.

Because there was no explicit download step, where you could see the Web

page and read all the warnings, people just ran the program and started fiddling

with their settings. Some time later, their computer would start acting strange,

and they would call the product-support lines to get help. The product-support

CHAPTER T w o Selected Reminiscences on Windows 95 ^ ^ 33

folks would spend hours trying to figure out what happened, only to discover

that the users had actually done it to themselves.

For example, they would go into Tweak UI's Control Panel page and hide

some Control Panel icons. A few weeks later, they would get an error message that

said something like, "Cannot connect to your printer. Please go to the Wireless

Link Control Panel and check your settings." But when they went to the Control

Panel, there was no Wireless Link icon.

The product-support people are smart, but they aren't psychic. There are

hundreds of reasons why the Wireless Link icon might be missing from the

Control Panel. It could be a corrupted file. It might be that the infrared port

is not being detected by Plug and Play. Maybe the user has the wrong infrared

driver. Or the infrared port is incompatible. The printer might be positioned at

the wrong angle, or the air might be too dusty to establish a good infrared

connection.

Tweak UI hides the Wireless Link icon by using Group Policy, which is

a technique that is used by corporations to apply settings to all computers

in their organization. But if a home user calls the product-support line,

the product-support people won't even bother looking into Group Policy

settings because home users don't use Group Policy. Group Policy is for

corporations.

Only after exhausting the most likely reasons will the product-support tech

nician be likely to say,"Hmm, I know this is a home computer and Group Policy

shouldn't be set, but let's go check it anyway." Then they'll find that the policy

has been set to hide the Wireless Link icon. "Oh, yeah, a few months ago, I used

that Tweak UI program to hide some icons I wasn't using. Was that wrong?"

The product-support person politely walks the user through reenabling the

Wireless Link icon via Group Policy and concludes the service call.

Based on feedback from the product-support team, the Windows team

realized that putting Tweak UI on the CD was a horrible mistake; and when

Windows 98 was updated as Windows 98 SE, one of the files missing from

the CD was Tweak UI.

34 < ^ \ THE OLD NEW THING

4S<

Turns out that you cant install
Windows via xcopy

A COLLEAGUE OF mine reminded me of a story from Windows 95. A major

magazine reviewer excoriated a beta of Windows 95 because it blue-screened

the moment he opened his Control Panel. We contacted the reviewer and

asked to borrow the machine to investigate the problem.

It turns out that this particular magazine reviewer decided that running the

Windows 95 Setup program was too much work. Instead, he copied the con

tents of the hard drive of an existing Windows 95 machine to his laptop.

Never mind that the old machine was a desktop and the new machine was a

laptop. Never mind that they had completely different hardware from different

manufacturers with different preinstalled drivers and utilities.

It so happens that it was one of these preinstalled utilities that was causing

the problem. It was a 16-bit Control Panel utility designed for controlling

various bonus features of Brand X computers.

The authors of this Control Panel utility didn't want to show their icon

unless they were running on an authentic Brand X computer. Therefore,

when the Control Panel started up and looked for icons, their utility said,

"Hang on a second, let me decide whether I should show an icon or not."

The utility allocated a selector manually and set its base and limit so that

it could grovel around the BIOS memory and then freed the temporary selec

tor. If it confirmed that the BIOS was a Brand X BIOS, the function returned

success, and the icon was shown. If it decided that you didn't have a Brand X

BIOS, it freed the selector and returned failure, thereby preventing the icon

from appearing in the Control Panel.

Do you see the bug?

Because the reviewer's laptop computer was not Brand X, the Control

Panel utility exercised its failure path, which contains a double-free bug,

resulting in a corrupted free list. It so happens that selectors are used a lot in

16-bit Windows, and the corrupted free list didn't take long to manifest itself

in a selector load failure, followed by more selector load failures trying to handle

C H A P T E R TWO Selected Reminiscences on Windows 95 ss\ 35

the first failure, and so on, until the recursive death spiral finally proved too

much for Windows to handle and it just gave up.

Such was the world of 16-bit Windows, where programs were trusted not

to screw up.

Buying an entire Egghead Software store

DURING THE DEVELOPMENT of Windows 95, application compatibility was

a high priority. To make sure that coverage was as broad as possible, the devel

opment manager for Windows 95 took his pickup truck, drove down to the

local Egghead Software store (back when Egghead still existed), and bought

one copy of every single PC program in the store.

He then returned to Microsoft, unloaded all the software onto tables in the

cafeteria, and invited every member of the Windows 95 team to come in and take

responsibility for up to two programs. The ground rules were that you had to

install and run the program, use it like a normal end user, and file a bug against

everything that didn't work right, even the minor stuff. (Of course, you had to

provide the program to the person investigating the bug upon request.) In

exchange for taking responsibility for ensuring that Windows 95 was compatible

with your adopted programs, you got to keep them after Windows 95 shipped.

If you did a good job with your two, you could come back for more.

The cafeteria was filled with Windows 95 team members, browsing through

the boxes upon boxes of software like bargain hunters at a flea market. And

there were the inevitable "What'd you get?" comparisons afterward.

I picked up only one program, an English/German automatic translator. It

ran fine but produced pretty bad translations (not that the quality of the

translations was in any way the fault of Windows!).

The history of the Windows PowerToys

DURING THE DEVELOPMENT of Windows 95, as with the development of

any project, the people working on the project wrote side programs to test the

36 JB< THE OLD NEW THING

features they were adding or to prototype a feature. After Windows 95

shipped, some of those programs were collected into the first edition of the

Windows 95 PowerToys.

As I recall, the first edition consisted of the following toys:

• Cab View. This was a handy internal tool that also served as a

test of the shell folder design.

• C D AutoPlay, DeskMenu, FlexiCD, QuickRes. These were side

toys originally written by shell developers for their own personal use.

• Command Prompt Here, Explore From Here. These were proof-
of-concept toys that tested the shell command extension design.

• Round Clock. This was a program to test regional windows.

• Shortcut Target Menu. This was a feature idea that didn't make
the final cut.

I wasn't around when the decision was made to package these toys up and

ship them, so I don't know what the rule was for deciding what was PowerToy-

worthy and what wasn't. N o r do I know where the name PowerToy came

from. (Probably somebody just made it up because it sounded neat.)

Upon the enormous success of the PowerToys, a second edition was devel

oped. This time, people knew that they were writing a PowerToy, in contrast

to the first edition of the PowerToys, which was merely cobbled together from

stuff lying around. T h e second edition of the Windows 95 PowerToys added

FindX, Send To X, the Telephony Locator Selector, XMouse, and Tweak UI .

Later, the kernel team released their own set of toys, known as the

Windows 95 Kernel Toys. Here was the original introductory text:

The Windows 95 Kernel PowerToys

The Windows 95 kernel team got kind of jealous of all the atten
tion the shell team has been getting from its PowerToys, so they
decided to polish off their own personal toys and make their own
web page. Mind you, the kernel folks aren't experts at intuitive
user interfaces, so don't expect to see jumping icons and friend
ly things to click on. (These are the people who do their taxes
in hexadecimal.)

C H A P T E R Two Selected Reminiscences on Windows 95 37

In reality, it was I who wrote all the Kernel Toys, except for the Time Zone

Editor, which came from the Windows N T Resource Kit. I also wrote the

somewhat whimsical original blurb.

This was all back in the day when it was easy to put up something for

download. No digital signatures, no virus checking, no paperwork. Just throw

it up there and watch what happens. Today, things are very different. Putting

something up for download is a complicated process with forms to fill out in

triplicate and dark rooms with card readers. I wouldn't be surprised if an

abandoned salt mine in Montana were somehow involved.

Nowadays, every team at Microsoft seems to have their own PowerToys,

trading on the good name of the Windows shell team who invented the whole

PowerToys idea. As far as I can tell, we don't get any royalties from other divi

sions calling their toys PowerToys.

What's frustrating is that because they are all called PowerToys, questions

about them tend to go to the shell team, because we are the ones who invented

PowerToys. We frequently have to reply, "Oh, no, you're having a problem with

the XYZ PowerToys, not the classic Windows PowerToys. We're the folks

who do the classic Windows PowerToys."

Some people claim that Tweak UI was written because Microsoft got tired

of responding to customer complaints. I don't know where they got that from.

Tweak UI was written because I felt like writing it.

People also claim that sometimes PowerToys vanish without warning.

That's true. A few years ago, all the Windows XP PowerToys were taken

down so that they could be given a security review. Some of them didn't survive

and didn't come back. Other times, a PowerToy is pulled because a serious

bug is found. Because PowerToys are spare-time projects, it can take a long

time for a bug to get fixed, tested, and republished. For example, the H T M L

Slide Show Wizard was pulled after a (somewhat obscure) data-loss bug was

found. Fixing the bug itself took just a few days, but testing and

filling out all the associated paperwork took six months.

There's no moral to this story. Just a quick history lesson.

38 JSS THE OLD NEW THING

How did Windows choose
its final build numbers?

IT VARIES FROM project to project.

Windows N T used a strictly incrementing build number scheme. It was

Windows 95 that first introduced the "cute" final build number. But there was

a serious reason behind the cuteness.

Windows 95 started with build number one and typically incremented the

build number each day. However, when a beta release approached, things got

interesting. The source code was forked into two versions: one that continued

to develop towards the final version, and one that developed towards the beta

release. For illustrative purposes, suppose that the build number at the time

or the fork was 123.

beta release code base 11241 *-* 1125| —* 1126|
/

primary code base 11221 —• 11231 —>• 12001 —»12011 —>• 12021 —• 12031 - * 12041 —• -

After the fork, work proceeds in two source trees simultaneously. Most

work continues in the primary code base, but important fixes are applied to

the beta fork as well as to the primary fork. During this time, both the beta and

primary build numbers increment daily.

Notice that at the point of the fork, the primary code base's build number

artificially jumps. This jump ensures that no two builds have the same number,

and ensures that any machine that installs the beta release can eventually

upgrade to a build from the primary code base (by keeping the primary build

number greater than any beta build number). The release management team

typically chooses a generous gap to ensure that there is absolutely no chance

that the two build numbers will ever collide.

Why such a generous gap? Because there's no benefit to conserving build

numbers. They're just numbers.

Okay, but this doesn't explain why the final build number is so cute.

C H A P T E R T W O Selected Reminiscences on Windows 95 .se*. 39

One of the big points of excitement surrounding the Windows 95 launch

was that there would be many programs available for sale that were specifical

ly designed for Windows 95. To coordinate this simultaneous release process,

software vendors needed a way to detect whether they were running on a beta

version of Windows 95 or the final version. Software vendors were told to

check the build number, with the assurance that the final version would

have a build number greater than or equal to 900. Less than 900 was a beta

version.

That's why the final Windows 95 release was build number 950. (More

precisely, it was build number 950.6. It took six release candidates before the

product was declared to have passed all exit criteria.) The value 950 met the re

quirement of being greater than or equal to 900, and it lent an air of "cuteness"

to the build number.

Windows 98 went through a similar procedure, settling upon the number

1998 for their release build number. Windows Me was released with a build

number of 2222.

The first product from the Windows N T series to use a cute final build

number was Windows XP, which chose the value 2600, a nod to a well-known

hacker magazine.

Why doesn't the build number increment
for service packs?

BECAUSE THERE'S A lot of software that uses strict equality checks for build

numbers. Rather than risk having all these programs fail with "Unsupported

operating system" when the user installs a service pack, it's safer just to hold the

operating system build number constant and update the service pack version

number instead.

"Why not use an application compatibility shim for those programs?"

Because the problem is so widespread that it would be unlikely that all such

affected programs would be found in the limited testing cycle of a service

pack. And even if they were, by some miracle, all found (highly unlikely because

4 0 <SS^ T H E OLD N E W T H I N G

many of them are probably not commercial programs but rather internal

programs used as a company's line of business applications), the application

compatibility database would be crammed to overflowing with entries for all

of these programs. This would in turn slow down overall application startup

because there would be many more entries to search through to determine

whether a program requires a compatibility shim.

C H A P T E R T H R E E

T H E SECRET LIFE

OF GETWINDOWTEXT

THE G E T W I N D O W T E X T function is more complicated than you think.

The documentation tries to explain its complexity with small words,

which is great if you don't understand long words, but it also means that the

full story becomes obscured.

Heres an attempt to give the full story.

How windows manage their text

THERE ARE TWO ways window classes can manage their text. They can do it

manually or they can let the system do it. The default is to let the system do it.

If a window class lets the system manage its text, the system will do the

following:

• Default handling of the WM_NCCREATE message takes the

lpWindowName parameter passed to CreateWindow/Ex and saves

the string in a "special place."

Default handling of the WM_GETTEXT message retrieves the string

from that special place.

4i

4 2 SB*. T H E OLD NEW T H I N G

• Default handling of the WM_SETTEXT message copies the string to

that special place.

O n the other hand, if a window class manages its window text manually,

the system does not do any special handling, and it is the window class's

responsibility to respond to the WM_GETTEXT/WM_SETTEXT messages and return/

save the strings explicitly.

Frame windows typically let the system manage their window text. Custom

controls typically manage their window text manually.

Enter GetWindowText

T H E G E T W I N D O W T E X T function has a problem: Window text needs to be

readily available without hanging. FindWindow needs to get window text to

find a window. Task-switching applications need to get window text so that

they can display the window title in the switcher window. It should not be

possible for a hung application to clog up other applications. This is particularly

true of the task-switcher scenario.

This argues against sending WM_GETTEXT messages, because the target

window of the WM_GETTEXT might be hung. Instead, GetWindowText should

use the "special place" because that cannot be affected by hung applications.

O n the other hand, GetWindowText is used to retrieve text from controls

on a dialog, and those controls frequently employ custom text management.

This argues for sending WM_GETTEXT messages, because that is the only way to

retrieve custom-managed text.

GetWindowText strikes a compromise:

• If you are trying to get the window text from a window in your own

process, GetWindowText will send the WM_GETTEXT message.

• If you are trying to get the window from a window in another

process, GetWindowText will use the string from the special place

and not send a message.

C H A P T E R T H R E E The Secret Life ofGetWindowText £&K 43

According to the first rule, if you are trying to get text from a window in

your own process, and the window is hung, GetwindowText will also hang.

But because the window belongs to your process, it's your own fault, and you

deserve to lose. Sending the WM_GETTEXT message ensures that text from

windows that do custom text management (typically, custom controls) are

properly retrieved.

According to the second rule, if you are trying to get text from a window in

another process, GetwindowText will not send a message; it just retrieves the

string from the special place. Because the most common reason for getting

text from a window in another process is to get the title of the frame, and

because frame windows typically do not do custom window text manipula

tion, this usually gets the right string.

The documentation simplifies this as "GetwindowText cannot retrieve text

from a window from another application."

What if I don't like these rules?

IF THE SECOND rule bothers you because you need to get text from a custom con

trol in another process, you can send the WM_GETTEXT message manually.

Because you are not using GetwindowText, you are not subject to its rules.

Note, however, that if the target window is hung, your application will also

hang because SendMessage will not return until the target window responds.

Note also that because WM_GETTEXT is in the system message range (0 to

WM_USER-l), you do not need to take any special action to get your buffer

transferred into the target process and to get the result transferred back to the

calling process (a procedure known as marshalling). In fact, any special steps

you take to this end are in error. The window manager does the marshalling

for you.

4 4 ^ P s THE OLD NEW THING

Can you give an example
where this makes a difference?

CONSIDER THIS CONTROL:

SampleWndProc(...)

{
case WM_GETTEXT:

lstrcpyn((LPTSTR)lParam, TEXT("BoogaI"), (int)wParam);
return Istrlen((LPTSTR)lParam);

case WM_GETTEXTLENGTH: return 7; // lstrlen("Booga!") + null

}

And application A, which does this:

hwnd = Crea teWindow("Sample" , "F rappy" , . . .) ;

Now consider process B, which gets the handle to the window created by

application A (by whatever means):

TCHAR szBuf [80] ;
GetWindowText(hwnd, szBuf, 80);

This will return szBuf = "Frappy" because it is getting the window text

from the special place. However

SendMessage(hwnd, WM_GETTEXT, 80, (LPARAM)szBuf);

will return szBuf = "Booga!"

Why are the rules
for GetWindowText so weird?

SET THE WAYBACK machine to 1983. Your typical PC had an 8086 processor

running at a whopping 4.7MHz, two 360K 5%-inch floppy drives (or if you

C H A P T E R T H R E E The Secret Life ofGetWindowText ss\ 45

were really loaded, one floppy drive and a 10MB hard drive), and 256KB of

memory

This was the world of Windows 1.0.

Windows 1.0 was a cooperatively multitasked system. No preemptive mul

titasking here. When your program got control, it had control for as long as it

wanted it. Only when you called a function such as PeekMessage or GetMessage

did you release control to other applications.

This was important because in the absence of a hardware memory manager,

you really had to make sure that your memory didn't get ripped out from

under you.

One important consequence of cooperative multitasking is that if your

program is running, not only do you know that no other program is running,

but you also know that every window is responding to messages. Why? Because if

they are hung, they won't release control to you!

This means that it was always safe to send a message. You never had to

worry about the possibility of sending a message to a hung window, because

you knew that no windows were hung.

In this simpler world, GetWindowText was a straightforward function:

int WINAPI
GetWindowText(HWND hwnd, LPSTR pchBuf, int cch)

{
// ah for the simpler days

return SendMessage(hwnd, WM_GETTEXT, (WPARAM)cch, (LPARAM)pchBuf);

)

This worked for all windows, all the time. No special handling of windows

in a different process.

It was the transition to Win32 and preemptive multitasking that forced the

change in the rules, because for the first time, there was the possibility that

(gasp) the window you were trying to communicate with was not responding

to messages.

Now you have the backward-compatibility problem. As noted previously,

many parts of the system and many programs rely on the capability to

retrieve window text without hanging. So how do you make it possible

4 6 ^ THE OLD NEW THING

to retrieve window text without hanging, while still enabling controls such as

the edit control to do their own window text management:1

The Win32 rules on GetWindowText are the result of this attempt to

reconcile conflicting goals.

C H A P T E R F O U R

HE TASKBAR AND

NOTIFICATION AREA

IF THE MOST noticeable element of the Windows 95 user interface is the

Start menu, the second most noticeable element of the Windows 95 user

interface is probably the taskbar. To achieve its simple and intuitive design

took quite a bit of work and experimentation. After a brief discussion of taskbar

nomenclature, we look at some of the decisions and rationales behind the

taskbar design.

Why do some people call
the taskbar the "tray"?

SHORT ANSWER: because they're wrong.

Okay, here's the long answer.

The official name for the thingy at the bottom of the screen is the taskbar.

The taskbar contains a variety of elements, such as the Start button, a collection

of taskbar buttons, the clock, and the taskbar notification area.

One of the most common errors is to refer to the taskbar notification area

as the tray or the system tray. This has never been correct. If you find any

documentation that refers to it as the tray, you've found a bug.

47

4 8 JBK THE OLD NEW THING

In early builds of Windows 95, the taskbar originally wasn't a taskbar; it was

a folder window docked at the bottom of the screen that you could drag/drop

things into/out of, sort of like the organizer tray in the top drawer of your

desk. That's where the name tray came from. (Some might argue that this was

taking the desktop metaphor a bit too far.)

Take a look at this artist's conception (that is, Raymond sat down with

Paint and tried to reconstruct it from memory) of what the tray looked like

at that time:

SBjC?1 I S PHNewsletter |] Bob's cell phone

The tray could be docked to any edge of the screen or it could be undocked

and treated like any other window.

Then we ditched the tray and replaced it with the taskbar. We went through

a doc scrub to change all occurrences of tray to taskbar. If you go through the

shell documentation, you should not find the word tray anywhere.

A little while later, we added notification icons to the taskbar.

I think the reason people started calling it the system tray is that Windows 95

contained a program called systray.exe that displayed some icons in the notifica

tion area: volume control, PCMCIA (as it was then called) status, battery meter.

If you killed systray.exe, you lost those notification icons. So people thought,

Ah, systray must be the component that manages those icons, and I bet its name

is system tray.'" Thus began the misconception that we have been trying to

eradicate for more than ten years!

Even worse, other groups (not the shell) picked up on this misnomer and

started referring to the tray in their own documentation and samples, some of

which even erroneously claim that system tray is the official name of the noti

fication area.

"But why do you care? That's what everybody calls it now, may as well go

with the flow."

How would you like it if everybody started calling you by the wrong name?

C H A P T E R FOUR The Taskbar and Notification Area ^~s 49

Summary: It is never correct to refer to the notification area as the tray. It

has always been called the notification area, and the icons that appear in the

notification icon are called notification icons.

Now, you might argue, "Well, come on, everybody knows what I mean what

I say system tray'" That might be true for your social circle, but if you talk

about the system tray to a member of the shell team, you'll probably get a con

fused look. That's because the taskbar internally retains the name tray as a

remnant from the days when it was, well, a tray.

Why does the taskbar default
to the bottom of the screen?

IT DIDN'T ALWAYS.

The original taskbar didn't look at all like what you see today. It defaulted

to the top of the screen and looked something like this:

I Hi Untitled - Notepad | f i | Solitaire J

File Edit Search Help

This is definitely not what it actually looked like. It has been so long I forgot

precisely what it looked like (I didn't realize there was going to be a quiz ten years

later), but this captures the basic flavor, at least for the purpose of this discussion.

The point is that the bar took the form not of buttons, but of tabs. Each tab

corresponded to a running window, which melded into the tab. You switched

windows by clicking the corresponding tab.

You can see vestiges of this style in the TCS_BUTTONS style in the tab con

trol. When we switched to the button look for the taskbar, we still

had a lot of switching code based on the tabs metaphor, and it was less

work to add a button look to the tab control than it was to rewrite all the

switching code.

50 ^ S ^ THE OLD NEW THING

The tabbed look was abandoned for various reasons, one of which was

what many people have noticed on their own: If you put the taskbar at the top

of the screen, lots of windows end up sliding under it, because they assume

that the usable area of the screen begins at (0, 0). Other windows "creep" up

the screen because they use GetWindowPlacement to save their window

position (which returns workspace coordinates, where (0, 0) is the first usable

pixel) but use SetWindowPos to restore it (which uses screen coordinates,

where (0, 0) is the upper-left pixel of the primary monitor).

Too many apps kept sliding under the top-docked taskbar, so we had to
1 1 1 * 1 1 1 1

abandon that idea and move it to the bottom.

It's somewhat disheartening to observe that now, ten years later, apps still

mess up their coordinate systems and keep sliding under a top-docked or left-

docked taskbar.

Why doesn't the clock
in the taskbar display seconds?

EARLY BETA VERSIONS of the taskbar clock did display seconds, and it even

blinked the colon like some clocks do. But we had to remove it.

Why?
Because that blinking colon and the constantly updating time were killing

our benchmark numbers.

On machines with only 4MB of memory (which was the minimum

memory requirement for Windows 95), saving even 4KB of memory had

a perceptible impact on benchmarks. By blinking the clock every second,

this prevented not only the code paths related to text rendering from

ever being paged out, it also prevented the taskbar's window procedure

from being paged out, plus the memory for stacks and data, plus all the

context structures related to the Explorer process. Add up all the memory

that was being forced to remain continuously present, and you had signifi

cantly more than 4KB.

C H A P T E R F O U R The Taskbar and Notification Area ^=^ 51

So out it went, and our benchmark numbers improved. T h e fastest code is

code that doesn't run.

Why doesn't the taskbar show
an analog clock?

BELIEVE IT OR not, we actually did studies on the possibility of having an

analog clock. Problem is, some disturbingly large percentage of people can't

read an analog clock. (Is it 30%f 60%? I forget, but it is a lot.) And besides, it's

hard to draw a readable analog clock in a 16 X 16-pixel space.

But the main reason for not having an analog clock is that it would have

been yet more code to be written, tested, and documented. You have to draw

the line somewhere or you'll be constantly adding features and never ship.

Windows 95 was originally Windows 93, after all.
b 1

When I dock my taskbar vertically,
why does the word "Start" disappear?

BECAUSE T H E ALTERNATIVE is even worse.

If the taskbar is not wide enough to display the entire word Start, then the

word Start is hidden. To get it back, resize the taskbar wider until the word

Start reappears.

This behavior is intentional. From a design point of view, a partial word

looks very broken.

Also, there is an apocryphal story of clipping text causing embarrassment

during localization. T h e word Start, after being translated into some language,

and then being clipped, tu rned into a rude word. (As an analogy,

suppose the text on the Start button said "Start button," but it got clipped

to "Start butt." N o w you have to explain to people why they have to click on

the Start butt.)

52 J&i T H E OLD N E W T H I N G

Why don't notification icons get
a message when the user clicks

the "X" button?

IF SUCH A notification were generated, ill-behaved programs would just react

to a click on the balloon's X button with an annoying follow-up dialog like,

"Are you sure you want to ignore my wonderful message?" So there was a

conscious decision not to give them the chance.

In the Before Time, software was trusted not to be actively evil, not to

second-guess a user's action, not to invade a user's private space.

Over the years, we've learned that this was a naive position to take. So now,

when we decide that something is an end-user setting, we actively avoid giv

ing programmatic access to it, so that programs won't be tempted to weasel

themselves into it.

C H A P T E R F I V E

PUZZLING INTERFACE ISSUES

HERE ARE SOME short answers to simple questions about the Windows

user interface. Behind many of the simple questions lie lessons for soft

ware designers, because the situations that lead to these questions are often

triggered by programming errors or by a suboptimal program design.

What are those little overlay icons?

WINDOWS XP SHIPS with a number of icon overlays:

• A small arrow. Everybody knows this one: It's the shortcut overlay.

• A hand, palm up. This is the "sharing" overlay. A folder with this

overlay is the root of a file share.

• A downward-pointing blue arrow. This is the "to be written to CD"

overlay.

• A pair of blue swirling arrows. This sometimes baffles people. This

means that the item is available offline. (You have to enable offline

folders to get this.)

53

54 ^ S THE OLD NEW THING

• A black clock. This really baffles people. This means that the file

has been archived to tape and will take a long time to access.

The black clock is particularly baffling because you sometimes see it even if

your system is not equipped with Hierarchical Storage Management. When

this happens, it's because some program (typically a setup program) didn't

check error codes properly.

void CopyFileAttributes(LPCTSTR pszSrc, LPCTSTR pszDst)

{
SetFileAttributes(pszDst, GetFileAttributes(pszSrc));

)

The preceding code fragment fails to check for an error code from

G e t F i l e A t t r i b u t e s . It so happens that G e t F i l e A t t r i b u t e s fails by

returning the value OxFFFFFFFF. If you fail to check this error code, you

end up setting every possible attribute on the destination, including

FlLE_ATTRlBUTE_OFFLINE, which is the attribute that indicates that a file has

been archived to tape.

Why are these unwanted files/folders
opening when I log on?

I GET CALLED on frequently to do troubleshooting, so I figure I'd share some

entries from my private bag of tricks. (And there are some remarks for pro

grammers hidden here, too.)

First problem: A folder like C: \Program Fi les \Li tWare opens each time

you log on.

Reason: Your system contains two sibling directories where one is a

strict prefix of the second (for example, C: \Program F i l e s \L i tWare and

C:\Program F i l e s \ L i t W a r e Deluxe). If you run the Registry Editor,

you will likely find under the Registry key

HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

file:///Program
file:///Program
file://C:/Program

C H A P T E R FIVE Puzzling Interface Issues ^SK 55

or

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

an entry that refers to a program in the longer directory, such as the following:

C:\Program Files\LitWare Deluxe\reminder.exe /silent

What's more, the reference such as the preceding one will not have quotation

marks to protect the embedded spaces in the name.

What's going on is that LitWare Deluxe wants to run C: \P rog ram F i l e s \

Li tWare D e l u x e \ r e m i n d e r . e x e , but because of the spaces, this first gets

parsed as this:

app = C:\Program

command line=Files\LitWare Deluxe\reminder.exe /silent

This fails, so the system tries again with the following:

app = C:\Program Files\LitWare

command line=Deluxe\reminder.exe /silent

And this succeeds because you have a folder called C: \Program F i l e s \

LitWare. Result: The C: \Program F i l e s \ L i t W a r e folder opens.

To fix this, edit the string and add the quotation marks, resulting in this:

"C:\Program Fi les \Li tWare Deluxe\reminder.exe" / s i l e n t

Note to programmers: This is why it's important to quote your filenames

if they contain spaces.

Second problem: A d e s k t o p . i n i file opens when you log on.

Reason: T h e System and Hidden attributes for the file d e s k t o p . i n i in

the directory

C:\Documents and S e t t i n g s \ A l l U s e r s \ S t a r t Menu\Startup

or

C:\Documents and Settings\yourname\Start Menu\Startup

file://C:/Program
file://Deluxe/reminder.exe
file:///Program
file://Deluxe/reminder.exe
file://C:/Program
file://Deluxe/reminder.exe
file://C:/Program
file://C:/Program
file:///Program
file://C:/Program
file://Deluxe/reminder.exe
file://C:/Documents
file://C:/Documents

56 « , T H E OLD N E W T H I N G

have been lost. Alternatively, you went to the advanced Folder Options and

disabled the Hide protected operating system files (Recommended) option.

If a file is marked with both the System and Hidden attributes, Explorer

will not enumerate it, thereby hiding it from the user. If you disable Hide

protected operating system files, this rule is suppressed.

When you log on, one of the things that Explorer does is enumerate the

contents of your Startup folders and run each file it finds. If the desktop. i n i

is not marked with both the System and Hidden attributes (or you disabled

the rule that filters them out), it will be opened.

What is this file for?

This file is used to support the Windows XP Multilingual User Interface,

which enables you to change the language you use to interact with Windows;

for example, you could say, "I want everything to be in French," and Windows

will translate all its menus, shortcuts, dialog boxes, and so on into French.

Specifically, this file instructs Windows how to translate the word Startup into

French, German, Spanish, and so forth.

Programmatically, you use the SHSetLocalizedName function to set the

multilingual name for a file or folder.

To fix this, restore the Hidden and System attributes to the desktop. i n i

file and reenable Hide protected operating system files.

What do the text label colors
mean for files?

BLUE MEANS COMPRESSED; green means encrypted.

Why the colors blue and green? Nothing profound; they just seemed like

good colors to choose. It's unfortunate that blue conflicts with the color of

hyperlinks, but the compressed file coloration was done long before Web

browsers burst onto the scene.

This is an example of one of those "come on, it's a tiny, simple feature"

requests. Yes, the code to do this isn't particularly complicated, but it adds

CHAPTER FIVE Puzzling Interface Issues j#K 57

another element of "I'm going to do something in a way that you will never

be able to figure out unless somebody tells you."

We get a lot of these little requests. If we accepted them all, you'd have icons

with so many decorations you'd never be able to figure out what all the colors

and markers mean. And each of those decorations would have to have a spec

ification and a test plan. Automated testing would have to be developed and

run to make sure the feature didn't break. It would create another burden for

the product-support teams. Its presence constrains future innovation because

of backward-compatibility concerns. (Nobody likes it when a favorite feature

is dropped from the next version of the operating system.)

So the next time you say to yourself, "Windows should change the appear

ance of X if simple condition Y," imagine what it would be like if we actually

did even 20 of those simple things.

As another example, a gray item on the Start menu indicates a program

that is available to run but has not yet been installed (or is only partially

installed). Instali-on-use is a feature of Windows Installer (MSI), which uses

the term advertised to describe a program in this available-but-not-installed state.

And I suspect you would never have figured this out on your own.

Why does my advanced options dialog say
O N and OFF after every option?

BECAUSE WINDOWS THINKS a screen reader is running.

If a screen reader is running, the Advanced Options dialog will add O N

and OFF to the end of each check box item so that the screen reader program

can read the state to a blind user. This mechanism for expressing the state of

the option is a throwback to the early days of ActiveAccessibility, where the

capability to annotate tree view items had not yet been developed. The

workaround for this missing functionality was to put the state of the option

directly in its text.

58 -SS^ THE OLD NEW THING

What determines the order
in which icons appear in the Alt+Tab list?

THE ICONS APPEAR in the same order as the windows appear on the screen, front

to back (known programmatically as the Z-order). When you switch to a win

dow, it comes to the top of the Z-order. If you minimize a window, it goes to the

bottom of the Z-order. The Alt+Esc hotkey (gosh, does anybody still use

Alt+Esc?) takes the current top window and sends it to the bottom of the Z-

order (and the window next in line comes to the top). The Alt+Shift+Esc

hotkey (I bet you didn't know that hotkey even existed) takes the bottom-most

window and brings it to the top, but does not open the window if it is

minimized.

The presence of an always-on-top window makes this a little more compli

cated. The basic rule is that an always-on-top window always appears on top

of a not-always-on-top window. So if the preceding rules indicate that a not-

always-on-top window comes to the top, it really just goes as high as it can

without getting on top of any always-on-top windows.

You may have run across the term fast task switching. This was the term used

to describe the precursor to the current Alt+Tab switching interface. The old

way of switching via Alt+Tab (Windows 3.0 and earlier) was just like

Alt+Esc, except that the window you switched to was automatically opened

if it had been minimized. When the new Alt+Tab was added to Windows 3.1,

we were concerned that people might prefer the old way, so there was a switch

in the control panel to set it back to the slow way. (There was also a setting

SPI_SETFASTTASKSWITCH that let you change it programmatically.) It turns

out nobody complained, so the old slow way of task switching was removed

entirely, and the setting now has no effect.

This does highlight the effort we take to try to allow people who don't like

the new way of doing something to go back to the old way. It turns out that

corporations with 10,000 employees don't like it when the user interface

changes, because it forces them to spend millions of dollars retraining all their

employees. If you open up the Group Policy Editor, you can see the zillions

C H A P T E R F I V E Puzzling Interface Issues -sSv 59

of deployment settings that I T administrators can use to disable a variety of

new Windows user interface features.

Why is the read-only property
for folders so strange?

IT 'S ACTUALLY A signal to Explorer to look harder. It doesn't mean that the

directory is read-only.

If a folder has the Read-only or System flag set, Explorer looks for a d e s k

t o p . i n i file, which describes the folder customizations. For performance rea

sons, Explorer does this only if the directory has the + R or + S flag. (This is

enormously important on slow networks.)

Two Knowledge Base articles deal with this subject, and I defer to them for

the gory details. Article Q326549 applies to Windows X P and Windows

Server 2003, and article Q256614 applies to older versions of Windows,

although the UseSys t emForSys t emFo lde r s policy still applies.

Programmers should use the function Pa thMakeSys temFolder to mark a

folder as requiring special attention from Explorer.

< = i

What's with those blank taskbar buttons
that go away when I click on them?

S O M E T I M E S YOU'LL FIND a blank taskbar button that goes away when you

click on it. What 's the deal with that?

Some basic rules apply as to which windows go into the taskbar (as spelled

out in more detail in M S D N) . In short

• If the WS_EX_APPWINDOW extended style is set, it shows (when

visible).

• If the window is a top-level unowned window, it shows (when visible).

• Otherwise, it doesn't show.

6o 4B*. THE OLD NEW THING

(However, the ITaskbarLis t interface muddies this up a bit.)

When a taskbar-eligible window becomes visible, the taskbar creates a button

for it. When a taskbar-eligible window becomes hidden, the taskbar removes

the button.

The blank buttons appear when a window changes between taskbar-eligible

and taskbar-ineligible while it is visible. Follow:

• Window is taskbar-eligible.

• Window becomes visible: Taskbar button created.

• Window goes taskbar-ineligible.

• Window becomes hidden: Because the window is not

taskbar-eligible at this point, the taskbar ignores it.

Result: a taskbar button that hangs around with no window attached to it.

This is why the documentation also advises, "If you want to dynamically

change a window's style to one that doesn't support visible taskbar buttons,

you must hide the window first (by calling the ShowWindow function with

SW_HIDE), change the window style, and then show the window."

Bonus question: Why doesn't the taskbar pay attention to all windows as

they come and go?

Answer: because that would be expensive. The filtering out of windows

that aren't taskbar-eligible happens inside the window manager, and it then

notifies the taskbar (or anybody else who has installed a WH_SHELL hook) via

one of the HSHELL_* notifications only if a taskbar-eligible window has

changed state. That way, the taskbar code doesn't get paged in when there's

nothing for it to do.

What is the difference between Minimize
All and Show Desktop?

T H E KEYBOARD SHORTCUT for "Minimize All" is 112+M and the keyboard

shortcut for "Show Desktop" is 10 +D. How are they different?

C H A P T E R FIVE Puzzling Interface Issues -dBk, 61

"Minimize All" is easier to describe. It minimizes all the windows that support

the "Minimize" command. You can minimize a window by selecting Minimize

from its System menu, or by clicking the LJ button in the title bar. Minimize All

is effectively the same as going to each window that is open and clicking the

Minimize button. If there is a window that doesn't have a Minimize button, it is

left alone. To undo the Minimize All command, press UB +Shift+M.

Show Desktop takes Minimize All one step further. After minimizing all the

windows that can be minimized, it then takes the desktop and "raises" it to the

top of the window stack so that no other windows cover it. (Well, okay, topmost

windows continue to cover it.) As a result, Show Desktop manages to get a few

more windows out of your way than Minimize All.

Note, however, that when you return the desktop to its normal state (either

by pressing 10 +D again, selecting Show Open Windows, or just by switching

to another window), all the un-minimizable windows come back because the

desktop has "lowered" itself back to the bottom of the window stack.

You may have noticed that occasionally when you undo a Minimize All or

Show Desktop, the windows are not stacked in precisely the order they were

stacked when you issued the original command. Why is that?

Because the alternative is worse.

Guaranteeing that the window order is restored can result in Explorer

hanging.

When the windows are restored when you undo a Show Desktop, Explorer

goes through and asks each window that it had minimized to restore itself. If

each window is quick to respond, the windows are restored, and the order is

preserved.

However, if there is a window that is slow to respond (or even hung), it

loses its chance, and Explorer moves on to the next window in the list. That

way, a hung window doesn't cause Explorer to hang, too. But it does mean

that the windows restore out of order.

•

6 2 4 * S T H E OLD N E W T H I N G

What does boldface
on a menu mean?

O N MANY CONTEXT menus, you will see an item in boldface. For example, if

you right-click a text file, you will most likely see Open in boldface at the top

of the menu. What does the boldface mean?

The boldface menu item is the default command for that menu. It repre

sents the action that would have occurred if you had double-clicked the item

instead of viewing its context menu.

In this example, the fact that Open is in boldface means that if you had

double-clicked the text file instead of right-clicking it, you would have opened

the document.

Programmatically, the default menu item is set via the SetMenuDef au l t l tem

function and can be retrieved with the corresponding GetMenuDef au l t l tem

function.

If you put a default menu item in a submenu, Windows invokes the default

item in the submenu when you double-click the submenu's parent. If you put

a default menu item in a top-level pop-up menu (that is, not on a submenu), it

is your responsibility to invoke the default menu item when the user double

clicks the object that led to the menu. After all, the menu manager doesn't get

involved when you handle a double-click event. It's all up to your program.

, ,

Where do those customized Web site
icons come from?

MANY PEOPLE HAVE noticed the customized icon that appears in the Internet

Explorer address bar ... sometimes.

There's actually method to the madness.

Each Web site can put a customized icon called f avicon. ico into the root

of the site, or the page can use a custom LINK tag in the H T M L to specify a

CHAPTER F I V E Puzzling Interface Issues ^B*. 63

nondefault location for that icon (handy if the page author does not have

write permission into the root directory of the server).

For the favicon. ico to show up in the address bar, (1) the site needs to

offer a customized icon, (2) you have to have added the site to your favorites,

and (3) the site icon must still be in your Internet Explorer cache.

When this feature was introduced, Internet Explorer was careful not to go

and hit every site you visit for a favicon. ico file; that would have put too

much strain on the server. Only when you added the site to your Favorites did

Internet Explorer go looking for the favicon. ico and stash it in the cache

for future use.

Mind you, when the favicon. ico feature was first introduced, many Web

server administrators blew a gasket, calling it pollution, exceedingly obnoxious,

and even declaring the feature enough reason not to use Internet Explorer. And

this from Internet Explorer probing for favicon. ico files at all Imagine the

apoplectic fits people would have had if Internet Explorer had probed for the

file at every hit!

Paradoxically, one of them declared, "One can only hope Netscape among

others does not repeat this mistake." Indeed, Netscape repeated this "mistake"

and took it a step further, downloading the favicon. ico file upon first visit,

even before you chose to add it to your Favorites.

Who's wasting bandwidth now?

"*" 3

Where did my task manager tabs
and buttons go?

A H , WELCOME TO "tiny footprint mode."

This mode exists for the ultra-geeks who want to put a tiny little CPU

meter in the corner of the screen. To switch between normal mode and tiny

footprint mode, double-click in a blank gray area of the Task Manager window

(not counting the menu or status bar).

This is an excellent example of one of those geek features that has created

more problems than it solved. Sure, the geeks get their cute little CPU meter

6 4 Jflkt THE OLD NEW THING

in the corner; but for each geek that does this, there are thousands of normal

users who accidentally go into tiny mode and can't figure out how to get back.

Will dragging a file result
in a move or a copy?

SOME PEOPLE ARE confused by the seemingly random behavior when you

drag a file. Do you get a move or a copy?

And you're right to be confused because it's not obvious until you learn the

secret. Mind you, this secret hasn't changed since 1989, but an old secret is still

a secret just the same. (Worse: An old secret is a compatibility constraint.)

• If Ctrl+Shift are held down, the operation creates a shortcut.

• If Shift is held down, the operation is a move.

• If Ctrl is held down, the operation is a copy.

• If no modifiers are held down and the source and destination are on

the same drive, the operation is a move.

• If no modifiers are held down and the source and destination are on

different drives, the operation is a copy.

This is one of the few places where the fact that there are things called

drives makes itself known to the end user in a significant way.

But why make the distinction between intra-drive and inter-drive moves?

Consider various scenarios:

• Dragging a file from a CD to your hard drive. This is obviously a

copy operation, r/ r

• Dragging a file from your hard drive to a floppy. This is also obvi-

ously a copy operation.

• Dragging a file from one folder on your hard drive to another. This

time, you are rearranging documents on your machine, so it is obvi

ously a move operation.

C H A P T E R F I V E Puzzling Interface Issues ^ S ^ 65

Any rules that you come up with need to do the "obvious" thing when faced

with these three scenarios, but should nevertheless be simple enough that the

results can be explained. (And, of course, the rule needs to make sense in

the context of 1989 technology, because that's when the rule was invented.)

The "Am I crossing a drive boundary?" test satisfies these criteria.

If you can't keep these rules in your head, you can always drag with the right

mouse button. When you drop the files, you will get a context menu asking you

what you would like to do. At this point, you can specify explicitly whether

you want to move, copy, or create a shortcut.

Why does the Links folder keep
re-creating itself?

THOSE OF YOU who dislike the Links folder have probably tried to delete it,

only to discover that it keeps coming back. Why is that?

This is Internet Explorer trying to do some auto-repair. It noticed that the

Links folder is missing, so it figures, "Gosh, it must be corrupted! I'd better fix

the problem by creating a replacement"

People complain that computers can't perform self-repair, and then when

the software tries to perform self-repair, they get mad. "But I wanted it to stay

broken." You can't win.

The way to indicate "Yes, I know about the Links folder, but I don't want to

use it" is to hide it: View its properties and check the Hidden box.

This is extraordinarily similar to a problem some people have with Device

Manager. They don't want Windows to use a particular device, so they delete

it. And then it gets redetected and added back.

Because when you delete the device, you're saying, "Forget everything you

know about this device." Then when it gets redetected, Windows says, "Gosh,

here's a device I've never seen before! The user must have bought it recently.

Let me add it to the device tree so that the user can use it."

In other words, Windows behaves the way it does because the alternative is

even worse: You buy a device, plug it in, and nothing happens.

6 6 J 0 l j T H E OLD N E W T H I N G

If you have a device that you don't want Windows to use, go into the Device

Manager and disable it rather than deleting it. This means,"Yes, I know about

this device, but I don't want to use it."

Why are documents printed out of order
when you multiselect and choose Print?

I F YOU SELECT five files, for example, and then right-click them and choose

Print, they tend to print in a random order. Why?

T h e shell invokes the Print verb on each file in turn, and depending on how

the program responsible for printing the document is registered, one of several

things can happen:

Most commonly, the program that prints the document registered a

simple command line under the s h e l l \ p r i n t \ c o m m a n d Registry

key. In this case, the program is launched five times, each with a

different file. All these print commands are now racing to the printer,

and it's a question of which copy of the program submits its print

job first that determines the order in which they come out of the

printer. (You're probably going to see the shortest and simplest

documents come out first because they take less time to render.)

A program could, in principle, detect that another copy is already

printing and coordinate the printing of all the documents so that the

order is preserved, but in practice, extremely few programs go to this

extra effort.

Occasionally, the program that prints the document registered a

D D E verb under the s h e l l \ p r i n t \ d d e e x e c Registry key. In this

case, one copy of the program is launched, and it is given each file

name one at a time. Wha t it does with those filenames is now up to

the program. If the program supports background printing, it will

probably shunt the printing of the document onto a background

thread, and now you're roughly in the same fix as the previous

C H A P T E R FIVE Puzzling Interface Issues J ^ N 67

scenario: five background threads each racing to see who can submit

their print job first.

Extremely rarely, the program that prints the document registered a

drop handler under the s h e l l \ p r i n t \ D r o p T a r g e t key. In this

case, the drop target is instantiated and is given the list of files. It is

then up to the drop target to decide what to do with the

documents.

These three ways of registering print actions are described in the M S D N

documentation section titled "Verbs and File Associations." The common

thread is that in all cases, it is up to the program that prints the document to

decide what to do when multiple documents are being printed simultaneously;

as a general rule, few programs go to the effort of trying to preserve the

original print order.

Raymond spends the day
doing product support

I GOT UP at five one morning to spend the day at Product Support Services

answering phones: It was the day the Blaster worm launched its second wave.

And by a startling coincidence, the person at the station next to me was Michael

Howard, our Senior Security Program Manager and author of Writing Secure

Code (Microsoft Press, 2003). Getting Michael Howard to help you secure your

computer is like getting Lance Armstrong to help you change a flat tire on your

bicycle.

As enlightening yet humbling experiences go, for a software designer, it's

hard to top (1) watching a usability session, and (2) answering product-support

calls. You get to observe users—customers, the people your job it is to make

more productive—struggle with the software you helped create.

Usability sessions are particularly frustrating because you are hidden behind

a one-way mirror, watching somebody struggle to accomplish something you

designed to be the most obvious thing on the planet. It's a hard lesson to learn:

68 ^ ? N THE OLD NEW THING

Not everybody is a geek like you. (Watching a usability session is a lot like

being a member of the studio audience at The Price Is Right trying to help the

contestant onstage guess the price of a new car.)

Product-support calls let you participate in the other end of the pipeline.

The software is written, it's out there, and now you have to pay for all your

mistakes and bad designs when people call in with their problems. It's software

karma.

*—-

Blow the dust
out of the connector

OKAY, I'M ABOUT to reveal one of the tricks of product support.

Sometimes you're on the phone with somebody and you suspect that the

problem is something as simple as forgetting to plug it in, or that the cable was

plugged into the wrong port. This is easy to do with those PS/2 connectors

that fit both a keyboard and a mouse plug, or with network cables that can fit

both into the upstream and downstream ports on a router.

Here's the trick: Don't ask, "Are you sure it's plugged in correctly?"

If you do this, they will get all insulted and say indignantly, "Of course it is!

Do I look like an idiot?" without actually checking.

Instead, say, "Okay, sometimes the connection gets a little dusty and the

connection gets weak. Could you unplug the connector, blow into it to get the

dust out, and then plug it back in?"

They will then crawl under the desk, find that they forgot to plug it in (or

plugged it into the wrong port), blow out the dust, plug it in, and reply, "Urn,

yeah, that fixed it, thanks."

If the problem was that it was plugged into the wrong port, the act of

unplugging it and blowing into the connector takes their eyes off the port. Then

when they go to plug it in, they will look carefully and get it right the second

time because they're paying attention.

Customer saves face, you close a support case, everybody wins.

C H A P T E R FIVE Puzzling Interface Issues *&*. 69

The face-saving aspect is also important when customers are in a situation

where they cannot admit that they made a mistake. For example, their boss or

client may be in the room with them. If you offer to shoulder the blame for

the problem—perhaps by admitting, "You're right, that dialog box really is

confusing, isn't it"—that may make them more willing to work with you

toward the solution.

This technique has many variations. For example, instead of asking, "Are

you sure it's turned on?" ask them to turn it off and back on. For symmetric

cables, you can ask them to reverse the cable: This ensures that both ends are

plugged in. The underlying trick is to have the user perform some nonthreat-

ening action that tricks them into doing something they would normally

resist doing.

How much is that gigabyte
in the window?

IN 2003, A lawsuit charging computer manufacturers of misleading con

sumers over hard drive capacity caused a momentary uproar. The manufac

turers use the ISO definition, wherein a gigabyte is one billion bytes, even

though most people consider a gigabyte to be 1,024 megabytes.

This is a tricky one. The computer industry is itself inconsistent as to

whether the kilo, mega, and so on prefixes refer to powers of ten or powers of

two. The only place powers of two have the upper hand is when describing

storage capacity. Everything else is powers of ten: Your 1GHz processor is

running at one billion cycles per second, not 1,073,741,824 cycles per second.

Your 28.8K modem has a theoretical top speed of 28,800 bits per second, not

29,491. And your 19-inch monitor measures only 17.4 inches diagonally.

(Okay, that last one was a joke, but it's another case where the quoted value

isn't necessarily measured the way you expect.)

7 0 ^ = ^ T H E OLD NEW T H I N G

IEC standard designations do exist for power-of-two multipliers. A kibibyte

(KiB) is 1,024 bytes, a mebi byte (MiB) is 1,024 KiB, and a gibibyte (GiB) is

1,024 MiB. Good luck finding anybody who actually uses these terms.

At least they don't report sizes in terms of unformatted capacity any more.

Why cant I remove the "For test/
evaluation purposes only tag:

" W H Y CAN'T I remove the'For test/evaluation purposes only' tag? I know I'm

running an evaluation edition; I don't need it rubbed in my face."

This prevents unscrupulous manufacturers from selling machines with the

evaluation edition of the product rather than the retail version. Yes, this has

happened before, many times. For example, one major manufacturer appar

ently couldn't wait for Windows 95 to be released, so they shipped thousands

of machines with a late beta version of Windows 95 instead. This worked out

really great. For six months. And then all their computers expired. They had

a lot of cleaning up to do.

The "For test purposes only" tag prevents computer manufacturers from

selling machines with uncertified drivers. (You learn more about driver-cheat

ing later in the section titled "Defrauding the W H Q L driver certification

process" in Chapter 9, "Reminiscences on Hardware.") To install an uncerti

fied driver without a warning prompt, you need to install the test root certifi

cate. The presence of the test root certificate causes the "For test purposes

only" tag to appear.

We have also had many cases of corporate customers (and technology

reporters!) who have had machines expire because they forgot that they were

running the evaluation edition. When the machines expire on them, they are

stuck with thousands of machines that don't work. This tends to make them

rather unhappy.

In summary, the tag is there for your own good. It's there to remind you

that what you're running is not the real thing.

C H A P T E R S I X

.if ii;S

A HISTORY OF THE

GLOBALALLOC FUNCTION

[""'HE G L O B A L A L L O C F U N C T I O N was once the center of Windows memory

JL allocation. Everything came from G l o b a l A l l o c , be it code or data, private

application data, or shared clipboard data. In this chapter, we follow the history

of this function (as well as its close friend Globa lLock) from its salad days as

the king of the heap to its current position of faded glory in Win32 . And as

you'll see, many of the strange requirements regarding the use of memory

allocated on the global heap date back to the days when the global heap

behaved very differently from how it does today.

I he early years

O N C E UPON A time, there was Windows 1.0. This was truly the Before Time.

640K. Segments. Near and far pointers. N o virtual memory. Cooperative

multitasking.

Because there was no virtual memory, swapping had to be done with the

cooperation of the application. W h e n there was an attempt to allocate memory

(either for code or data) and insufficient contiguous memory was available, the

71

7 2 J » T H E OLD NEW T H I N G

memory manager had to perform a process called compaction to make the

desired amount of contiguous memory available.

Code segments could be discarded completely because they could be

reloaded from the original EXE. (No virtual memory—there is no such thing

as paged out) Discarding code requires extra work to make sure that the next

time the code is called, it is refetched from memory. How this was done is not

relevant here, although it was quite a complicated process in and of itself.

Memory containing code could be moved around, and references to the

old address were patched up to refer to the new address. This was also a

complicated process not relevant here.

Memory containing data could be moved around, but references to the old

addresses were not patched up. It was the application's job to protect against its

memory moving out from under it if it had a cached pointer to that memory.

Memory that was locked or fixed (or a third category, wired, which we'll see

in Chapter 14, "Etymology and History") would never be moved.

When you allocated memory via the GlobalAlloc function, you first had

to decide whether you wanted movable memory (memory that could be shuf

fled around by the memory manager) or fixed memory (memory that was

immune from motion). Conceptually, a fixed memory block was like a

movable block that was permanently locked.

Applications were strongly discouraged from allocating fixed memory

because it gummed up the memory manager. Think of it as the memory

equivalent of an immovable disk block faced by a defragmenter.

The return value of the GlobalAlloc function was a handle to a global

memory block, or an HGLOBAL. This value was useless by itself. You had to call

the GlobalLock function to convert this HGLOBAL into a pointer that you

could use.

The GlobalLock function did a few things.

It forced the memory to be present if it had been discarded. Other memory

blocks may have needed to be discarded or moved around to make room for

the memory block being locked.

If the memory block was movable, it also incremented the lock count on the

memory block, thus preventing the memory manager from moving the memory

C H A P T E R s ix A History of the Global Alloc Function ^ ^ 73

block during compaction. (Lock counts on fixed memory aren't necessary

because they can't be moved anyway.)

Applications were encouraged to keep global memory blocks locked only as

long as necessary to avoid fragmenting the heap. Pointers to unlocked mov

able memory were forbidden because even the slightest breath—like calling a

function that happened to have been discarded—would cause a compaction

and invalidate the pointer.

Okay so how did this all interact with the GlobalReAlloc function?

It depends on how the memory was allocated and what its lock state was.

If the memory was allocated as movable and it wasn't locked, the memory

manager was allowed to find a new home for the memory elsewhere in the

system and update its bookkeeping so the next time somebody called the

GlobalLock function, the caller got a pointer to the new location.

If the memory was allocated as movable but it was locked, or if the memory

was allocated as fixed, the memory manager could only resize it in place. It

couldn't move the memory either because (if movable and locked) there were still

outstanding pointers to it, as evidenced by the nonzero lock count, or (if fixed)

the fixed memory was allocated on the assumption that it would never move.

If the memory was allocated as movable and was locked, or if it was allocat-

ed as fixed, you can pass the GMEM_MOVEABLE flag to override the "may only resize

in place" behavior, in which case the memory manager attempts to move the

memory if necessary. Passing the GMEM_MOVEABLE flag means, "No, really, I

know that according to the rules, you can't move the memory, but I want you

to move it anyway. I promise to take the responsibility of updating all pointers

to the old location to point to the new location."

(Raymond actually remembers using Windows 1.0. Fortunately, the

therapy sessions have helped tremendously.)

Selectors

W I T H THE ADVENT of the 80286, Windows could take advantage of that

processor's protected mode. There was still no virtual memory, but you did have

7 4 •«•*) T H E OLD N E W T H I N G

memory protection. Global handles turned into descriptors, more commonly

known as selectors.

Architectural note: The 80286 did have support for both a local descriptor

table and a global descriptor table, thereby making it possible to have each

process run in something vaguely approximating a separate address space, but

doing so would have broken compatibility with real-mode Windows, where

all memory was global.

Addresses on the 80286 in protected mode consisted of a selector and an

offset rather than a segment and an offset. This change might seem trivial, but

it actually is important because a selector acts like a handle table in hardware.

When you created a selector, you specified a whole bunch of attributes,

such as whether it was a code selector or a data selector, whether it was pres

ent or discarded, and where in memory it resided. (Still no virtual memory, so

all memory is physical.)

The GlobalAlloc function now returned a selector. If you wanted to, you

could just use it directly as the selector part of an address. When you loaded a

selector, the CPU checked whether the selector was present, discarded, or invalid.

If present, everything was fine.

If discarded, a"not present" exception was raised. (Wow, we have exceptions

now!) The memory manager trapped this exception and did whatever was

necessary to make the selector present. This meant allocating the memory

(possibly compacting and discarding to make room for it), and if it was a code

selector, loading the code back off the disk and fixing it up.

If the selector was invalid, an Unrecoverable Application Error was raised,

the infamous UAE.

Because memory accesses were now automatically routed through the

descriptor table by the hardware, it meant that memory could be moved

around with relative impunity. All existing pointers would remain valid

because the selector remains the same; all that changes is the internal book

keeping in the descriptor table that specified which section of memory the

descriptor referred to.

What's more, because global handles were really selectors, reallocating

memory could be done without changing the numeric value of the selector.

C H A P T E R s ix A History of the GlobalAlloc Function *&< 75

All the memory manager had to do was copy the memory to its new location

and update the descriptor table. As a result, the GlobalReAlloc function had

only two return values: If the memory could not be reallocated, it returned

NULL. If the memory was reallocated successfully, it returned the original han

dle back. (There was an exception to this rule for memory blocks larger than

64KB, but let's not go there.) In other words, the following code fragment

actually worked:

HGLOBAL hglob = GlobalAlloc(GMEM_MOVEABLE, 100);
if (hglob) {

void *p = MAKELP(hglob, 0); // p points to the data!
if (GlobalReAlloc(hglob, 200, GMEM MOVEABLE)) {

— L

// p still points to the data, even if it moved!
// hglob is still the correct handle to the data

GlobalFree(hglob);

For compatibility with real-mode Windows, the GlobalAlloc function

continued to emulate all the rules on movable memory as before. It's just that

the numeric value of the selector never really changed any more.

Transitioning to Win32

Now THAT YOU know how the 16-bit memory manager handled the global

heap, it's time to see how this got transitioned to the new 32-bit world.

The GlobalAlloc function continued to emulate all its previous rules on

movable memory, but the return value of GlobalAlloc was no longer a selector

because Win32 used the processor in flat mode.

This means that the trick described earlier of not having to update any

pointers after a GlobalReAlloc no longer worked.

The rules on movable memory were preserved. Memory blocks still had a

lock count, even though it didn't really accomplish anything because Win32

never compacted memory. (Recall that the purpose of the lock count was to

prevent memory from moving during a compaction.)

j6 JS^ THE OLD NEW THING

Movable memory and locking could have been eliminated completely if it

weren't for the G l o b a l F l a g s function. This function returns several strange

bits of information—now entirely irrelevant—the most troubling of which is

the lock count. Consequently the charade of locking must be maintained just

in case there's some application that actually snoops at the lock count, or a

program that expected the G l o b a l R e A l l o c function to fail on a locked block.

Aside from that, movable memory gets you nothing aside from overhead.

The L o c a l A l l o c function also carries the movability overhead; but because

local memory was never passed between DLLs in W i n l 6 , the local heap

functions don't carry as much 16-bit compatibility overhead as the global heap

functions. L o c a l A l l o c is preferred over G l o b a l A l l o c in Win32 for that

reason. (Of course, many functions require a specific type of memory allocation,

in which case you don't have any choice. T h e clipboard, for example, requires

movable global handles. You'll learn more about the peculiar memory require

ments of the clipboard when we discuss the GMEM_SHARE flag.)

>•, ;

A peek at the implementation

O N ONE OF our internal discussion mailing lists, someone posted the following

question:

We have some code that was using D r a g Q u e r y F i l e to extract file paths. The

prototype for D r a g Q u e r y F i l e appears as follows:

UINT DragQueryFile(HDROP hDrop, UINT i F i l e ,
LPTSTR I p s z F i l e , UINT cch) ;

In the code we have, instead of passing an HDROP as the first parameter, we were

passing in a pointer to a D R O P F I L E S structure. This code was working fine for the last

few months until some protocol changes we made in packet layouts over the weekend.

I know that the bug is that we should be passing an HDROP handle instead of a pointer,

but I am just curious as to why this worked so flawlessly until now. In other words,

what determines the validity of a handle and how come a pointer can sometimes be

used instead of a handle?

C H A P T E R s ix A History of the GlobalAlloc Function .se*. 77

The GlobalLock function accepts HGLOBALs that refer to either

GMEM_MOVEABLE or GMEM_PIXED memory. The rule for Win32 is that for fixed

memory the HGLOBAL is itself a pointer to the memory whereas for movable

memory the HGLOBAL is a handle that needs to be converted to a pointer.

The GlobalAlloc function works closely with the GlobalLock function

so that the GlobalLock function can be fast. If the memory happens to be

alignedjust right and to pass some other tests, the GlobalLock function says,

"Woo-hoo, this is a handle to a GMEM_FIXED block of memory so I should

just return the pointer back."

The packet layout changes probably altered the alignment, which in turn

caused the GlobalLock function no longer to recognize (mistakenly) the

invalid parameter as a GMEM_FIXED handle. It then went down other parts of

the validation path and realized that the handle wasn't valid at all.

This is not, of course, granting permission to pass bogus pointers to the

GlobalLock function; I'm just explaining why the problem kicked up all of a

sudden even though it has always been there.

With that lead-in, what's the real story behind GMEM_MOVEABLE in Win32?

GMEM_MOVEABLE memory allocates a handle. This handle can be converted

to memory via the GlobalLock function. You can call the GlobalReAlloc

function on an unlocked GMEM_MOVEABLE block (or a locked GMEMJYIOVEABLE

block when you pass the GMEM_MOVEABLE flag to the GlobalReAlloc function,

which means "move it even if it's locked") and the memory will move, but the

handle will continue to refer to it. You have to relock the handle to get the new

address it got moved to.

The GMEM_MOVEABLE flag is largely unnecessary; it provides additional

functionality that most people have no use for. Most people don't mind

when GlobalRealloc hands back a value that differs from the original. The

GMEM_MOVEABLE flag is primarily for the case where you hand out a memory

handle, and then you decide to reallocate it behind the handle's back. If you use

GMEM_MOVEABLE, the handle remains valid even though the memory it refers to

has moved.

This might sound like a neat feature, but in practice it's much more trouble

than it's worth. If you decide to use movable memory, you have to lock it

78 < ^ N THE OLD NEW THING

before accessing it, and unlock it when done. All this lock/unlock overhead

becomes a real pain because you can't use pointers any more. You have to use

handles and convert them to pointers right before you use them. (This also

means no pointers into the middle of a movable object.)

Consequently, movable memory is useless in practice.

Note, however, that GMEM_MOVEABLE still lingers on in various places for com

patibility reasons. For example, clipboard data must be allocated as movable. If

you break this rule, some programs will crash because they made undocument

ed assumptions about how the heap manager internally manages handles to

movable memory blocks instead of calling the GlobalLock function to convert

the handle to a pointer.

A common error is forgetting to lock global handles before using them.

If you forget and instead just cast a movable memory handle to a pointer, you

will get strange results (and will likely corrupt the heap). Specifically, global

handles passed via the hGlobal member of the STGMEDIUM structure,

returned via the GetClipboardData function, as well as lesser-known places

such as the hDevMode and hDevNames members of the PRINTDLG structure

are all potentially movable. What's scary is that if you make this mistake, you

might actually get away with it for a long time (if the memory you're looking

at happens to be allocated as GMEM_FIXED), and then one day it crashes

because all of a sudden somebody gave you memory that was allocated as

GMEM_MOVEABLE.

Yes, I've seen this happen. It's not pretty.

^ j

C H A P T E R S E V E N

SHORT TOPICS IN WINDOWS

PROGRAMMING

I 'M SORRY TO do this, but I'm going to have to introduce some code. I'll try

to make it only as long as necessary, however. Nonprogrammers may want

to skip this chapter and the next. I'll see you when we talk about hardware.

All of these topics were inspired by actual programming problems people

were having. Some of the problems were solved with clever tricks; others were

solved by clearing up a misconception.

Do not be distracted by the code, however. The code exists only to illustrate

the principles being presented. To that end, the code presentation is unusually

compact so as not to distract from the text. I don't want this to become one of

those books with page after page of tiresome program listings. I know you don't

read those listings; I don't either.

-J

The scratch program

OCCASIONALLY, THERE IS need to illustrate a point with a full program. To

avoid reproducing the boring parts of the program, let's agree on using the fol

lowing template for our sample programs. This is a program skeleton I have

kept around for years for when I need a quick-and-dirty program to test out

79

80 ^=S THE OLD NEW THING

an idea; it's called a scratch program because it is typically used one time and then

thrown away. This program contains only one item of interest, but it's buried

amid the boilerplate. (If you're in a hurry, skip ahead to the WM_PRINTCLIENT

message handler.)

For expository purposes, I won't use a C++ class. I'll just keep all my variables

global. In a real program, of course, the data would be attached to the window

instead of being global variables. However, the additional work necessary to keep

track of this so-called instance data would be distracting from the point of the

program, so I will take the perhaps ill-advised approach of merely using global

variables.

We will be using a handful of header files rather often, so I'll just make

them part of the template:

#define STRICT
ttinclude <windows.h>
ttinclude <windowsx.h>
#include <ole2.h>
#include <commctrl.h>
ttinclude <shlwapi.h>

The windowsx. h header file is a collection of handy macros that give more

meaningful names to many Windows programming idioms. It was introduced

in Windows 3.1 to facilitate the transition to 32-bit Windows. If your 16-bit

program used these macros (especially the so-called message cracker macros),

it was much easier to port to 32-bit Windows because the macros hid the

details of message passing, particularly those details that changed between 16-

bit and 32-bit Windows. Of course, the capability to compile your source code

as a 16-bit Windows program is not very compelling nowadays, but the macros

are nevertheless quite handy, and I use them liberally.

A few of our sample programs are really just wrappers around another con

trol such as a list view control. The g_hwndChild variable holds the handle to

that inner control, if any. Keeping it in a variable saves us the trouble of having

to hunt for it each time we want to do something with our child window.

Sometimes my test program has multiple child windows, in which case having

all the child window handles available in variables is a significant convenience:

C H A P T E R S E V E N Short Topics in Windows Programming .se^ 81

HINSTANCE g _ h i n s t ; / * T h i s a p p l i c a t i o n ' s HINSTANCE */
HWND g_hwndChild; / * O p t i o n a l c h i l d window */

If we are wrapping another control, we position it to fill our client area

when we are resized:

void
OnSize(HWND hwnd, UINT state, int ex, int cy)

{
if (g_hwndChild) {

MoveWindow(g_hwndChild, 0, 0, ex , cy , TRUE);
}

}

This skeleton of an OnCreate function is fleshed out with actual work when

we get around to making this template program do something interesting:

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT l p c s)

{
r e t u r n TRUE;

}

Because this is our main window, closing it ends

message to tell the message pump to exit:

v o i d
OnDestroy(HWND hwnd)

{
P o s t Q u i t M e s s a g e (0) ;

}

the program. Post a quit

Here is another skeleton function that will be filled in as necessary. To

make it agree with what most programmers expect to see in a paint function,

I make the second parameter a PAINTSTRUCT:

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{
}

82 JSK THE OLD NEW THING

All painting gets funneled through the PaintContent function. The obvious

first case where we want to paint content is when actually handling a WM_PAINT

message:

void
OnPaint(HWND hwnd)

{
PAINTSTRUCT ps;
BeginPaint (hwnd, &ps) ,-
PaintContent(hwnd, &ps);
EndPaint(hwnd, &ps) ;

j
The less-obvious second case where we want to paint content is when han

dling a WM_PRINTCLIENT message. In this case, we use a fake PAINTSTRUCT

structure so that the PaintContent function is blissfully unaware that the

rendering is being redirected. (Supporting the WM_PRINTCLIENT message

also permits the window to be animated with the AnimateWindow function.)

In addition to the obvious steps of setting the DC and paint rectangle, we

also set the f Erase member to FALSE because the WM_PRINT message han

dler will already have taken care of erasing the background for us. This last

step is not necessary in principle because paint handlers don't erase the back

ground (it was done by the BeginPaint function), but we'll set it for the

sake of completeness:

void
OnPrintClient(HWND hwnd, HDC hdc)

{
PAINTSTRUCT p s ;
p s . h d c = h d c ;
G e t C l i e n t R e c t (h w n d , & p s . r c P a i n t) ;
p s . f E r a s e = FALSE;
P a i n t C o n t e n t (h w n d , &ps) ;

]
Our window procedure takes advantage of the message-cracker macros in the

windowsx. h header file. The WM_PRINTCLIENT message, however, did not exist

in Windows 3.1, so there is no corresponding HANDLE_WM_PRINTCLIENT macro

we can use. We have to dispatch the WM_PRINTCLIENT message manually:

C H A P T E R SEVEN Short Topics in Windows Programming ^=^ 83

LRESULT CALLBACK
WndProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

switch (uiMsg) {
HANDLE_MSG(hwnd, WM_CREATE, OnCreate);
HANDLE_MSG(hwnd, WM_SIZE, OnSize);
HANDLE_MSG(hwnd, WM_DESTROY, OnDestroy);
HANDLE_MSG(hwnd, WM_PAINT, OnPaint);
case WM_PRINTCLIENT: OnPrintClient(hwnd, (HDC)wParam); return 0;

}

return DefWindowProc(hwnd, uiMsg, wParam, lParam);

J
Initialization consists of registering our window class and initializing the

common controls library, just in case we need a common control in a sample

program someday. (The history behind the InitCommonControlsEx function

is taken up later in the section "If InitCommonControls doesn't do anything,

why do you have to call it?")

BOOL
InitApp(void)

J
WNDCLASS WC;

wc. style = 0 ;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0 ;
wc.hlnstance = g_hinst;
wc.hlcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1) ;
wc.IpszMenuName = NULL;
wc.lpszClassName = TEXT("Scratch");

if (IRegisterClass(&wc)) return FALSE;

InitCommonControls() ; /* In case we use a common control */

return TRUE;

8 4 <*•*, T H E OLD N E W T H I N G

The main program initializes the application as well as COM, because

some of our sample programs may need to use COM, so we initialize it in the

template so that we don't need to worry about it in the future:

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

LPSTR lpCmdLine, int nShowCmd)

{
MSG msg;

HWND hwnd;

g_hinst = hinst;

if (!InitApp()) return 0;

if (SUCCEEDED(Colnitialize(NULL))) {/* In case we use COM */

hwnd = CreateWindow(
TEXT("Scratch"), /* Class Name */
TEXT("Scratch"), /* Title */
WS_OVERLAPPEDWINDOW, /* Style */
CW_USEDEFAULT, CWJJSEDEFAULT, /* Position */
CWJJSEDEFAULT, CWJJSEDE FAULT, /* Size */
NULL, /* Parent */
NULL, /* No menu */
hinst, /* Instance */
0); /* No special parameters */

ShowWindow(hwnd, nShowCmd);

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);

DispatchMessage (&msg) ,-

}

CoUninitialize();

}

return 0;

Other than the trickiness with painting, there really isn't anything here that

you shouldn't already know. The point of this program is to be a template for

the other programs in this chapter.

C H A P T E R S E V E N Short Topics in Windows Programming J ® ^ 85

Getting a custom right-click menu for
the caption icon

WHEN YOU RIGHT-CLICK on the miniature icon in the upper-left corner of

the caption of an Explorer window on Windows XP, the context menu that

appears is not the standard system menu but rather the context menu for the

folder itself.

It's a simple matter of detecting a context menu on the caption icon and dis

playing a custom context menu. Here are the simple changes to our scratch

program to display a rather pointless one-item menu:

// Add to WndProc
case WM_CONTEXTMENU:

if (lParam != -1 &&
SendMessage(hwnd, WM_NCHITTEST,

0, lParam) == HTSYSMENU) {
HMENU hmenu = Crea t ePopupMenu() ;
i f (hmenu) {

AppendMenu(hmenu, MF_STRING, 1,
TEXT("Custom m e n u ")) ;

TrackPopupMenu(hmenu, TPM_LEFTALIGN |
TPM_TOPALIGN |
TPM_RIGHTBUTTON,

GET_X_LPARAM(lParam),
GET_Y_LPARAM(lParam), 0, hwnd,
NULL);

Des t royMenu(hmenu) ;

}
r e t u r n 0;

}
b r e a k ;

When we receive a WM_CONTEXTMENU message, we check that it did not

come from the keyboard (lParam ! = -1) and that the mouse is on the

caption icon (called HTSYSMENU because it displays the system menu by

default). If so, we create a little pop-up menu and display it. Don't forget to

return 0 instead of passing the message to Def windowProc, because the

default behavior is to display the system menu.

86 ^ ^ THE OLD NEW THING

(Of course, in real life, you probably would use the LoadMenu function to

get the menu so that you could just use the resource editor to create it, rather

than creating it in code. I just created it in code to keep the sample short.)

Beware of the HANDLE_WM_C0NTEXTMENU macro from windowsx. h. If you

give it a closer look, you'll see that it uses the LOWORD and HIWORD macros to

extract the coordinates rather than using the multiple-monitor-friendly

GET X LPARAM and GET Y LPARAM macros we use here.
— — — —

You might also notice that on a multiple-monitor system, the coordinates

(-1 , -1) are valid even though they are used here as a sentinel value. It means

that if you manage to right-click at the pixels immediately above and to the

left of the origin of the primary monitor, the system will mistake it for a

keyboard-triggered context menu. This is sad but true, and the reason for this

is historical.

The WM_CONTEXTMENU message was introduced in Windows 95, whereas

support for multiple monitors didn't appear until Windows 98. As a result, the

people who designed the WM_CONTEXTMENU message chose a sentinel value that

made sense at the time, unaware that it would cause problems in the future. But

what's done is done, and the somewhat-suboptimal sentinel value is retained for

compatibility purposes.

What's the difference between
CreateMenu and CreatePopupMenuf

T H E CREATEMENU FUNCTION creates a horizontal menu bar, suitable for

attaching to a top-level window. This is the sort of menu that says "File, Edit,"

and so on. The LoadMenu function loads menu bars, too.

The CreatePopupMenu function creates a vertical pop-up menu, suitable for

use as a submenu of another menu (either a horizontal menu bar or another

pop-up menu) or as the root of a context menu.

If you get the two confused, you can get strange menu behavior. Windows on

rare occasions detects that you confused the two and converts as appropriate,

CHAPTER SEVEN Short Topics in Windows Programming ^s\ 87

but I wouldn't count on Windows successfully reading your mind. (Indeed, I

was surprised when I ran across this behavior myself.)

There is no way to take a menu and ask it whether it is horizontal or vertical.

You just have to know.

Note that menu resources are always menu bars. But what if you want to

load a pop-up menu from a resource? Simple: Put the pop-up menu inside a

placeholder horizontal menu bar:

1 MENU
BEGIN

POPUP ""
BEGIN

MENUITEM "Custom Menu", 1
MENUITEM "Another Menu", 2
MENUITEM "Cancel", 3

END
END

Here is a short function that illustrates how we can display this pop-up

menu embedded inside a horizontal menu:

// Sample usage: UsePopupMenu(hwnd, g_hinst, MAKEINTRESOURCE(1));
void UsePopupMenu(HWND hwnd, HINSTANCE hinst, LPCTSTR pszMenu)

{
HMENU hmenu = LoadMenu(hinst, pszMenu);
if (hmenu) {
HMENU hmenuPopup = GetSubMenu(hmenu, 0);
TrackPopupMenu(hmenuPopup,

TPM_LEFTALIGN | TPM_TOPALIGN | TPM_RIGHTBUTTON,
GET_X_LPARAM(lParam),
GET_Y_LPARAM(lParam), 0, hwnd, NULL);

DestroyMenu(hmenu);

}
]

We load the horizontal menu, extract the submenu via GetSubMenu (which

is a pop-up menu), and track the pop-up menu. When the pop-up menu is no

longer needed, we destroy the horizontal menu.

T H E OLD N E W T H I N G

It can be cumbersome keeping track of both the horizontal menu and the

pop-up menu. An alternative method is to detach the pop-up menu from

the horizontal menu, destroy the horizontal menu, and return the pop-up:

HMENU LoadPopupMenu(HINSTANCE hinst, LPCTSTR pszMenu)

HMENU hmenuPopup = NULL;
HMENU hmenu = LoadMenu(hinst, pszMenu)
if (hmenu) {
hmenuPopup = GetSubMenu(hmenu, 0);
RemoveMenu(hmenu, 0, MF_BYP0SITI0N);
DestroyMenu (hmenu) ,-

return hmenuPopup;

}

// sample usage
void Sample(HWND hwnd)

{
HMENU hmenuPopup = LoadPopupMenu(gjiinst, MAKEINTRESOURCE(1)) ;
if (hmenuPopup) {
TrackPopupMenu(hmenuPopup,

TPM_LEFTALIGN | TPMJTOPALIGN | TPM_RIGHTBUTTON,
GET_X_LPARAM(lParam),

GET_Y_LPARAM(lParam) , 0, hwnd, NULL);

DestroyMenu(hmenuPopup);

J
The LoadPopupMenu thus functions as the pop-up version of LoadMenu.

When does the window manager destroy
menus automatically?

W H E N A WINDOW is destroyed, its menu is also destroyed. When a menu is

destroyed, the entire menu tree is destroyed. (All its submenus are destroyed,

all the submenu's submenus, and so forth). And when you destroy a menu, it

had better not be the submenu of some other menu. That other menu would

have an invalid menu as a submenu!

C H A P T E R SEVEN Short Topics in Windows Programming

If you remove a submenu from its parent, you become responsible for

destroying it, because it no longer gets destroyed automatically when the parent

is destroyed.

It is legal (although highly unusual) for a menu to be a submenu of multiple

parent menus. Doing this is not recommended, because if one of the parents is

destroyed, it will destroy the submenu with it, leaving the other parent with an

invalid submenu.

Painting only when your window
is visible onscreen

SOMETIMES YOU WANT to perform an activity, such as updating a status window,

only so long as the window is not covered by another window. After all, what's

the point of going to the effort of updating something the user can't see anyway?

The easiest way to determine this is by not actually trying to determine it.

For example, here's how the taskbar clock updates itself:

1. It computes how much time will elapse before the next minute

ticks over.

2. It calls Se tT imer with the amount of time it needs to wait.

3. When the timer fires, it does an I n v a l i d a t e R e c t of itself and kills

the timer.

4. The WM_PAINT handler draws the current time, then returns to step 1.

If the taskbar clock is not visible, because it got auto-hidden or because

somebody covered it, Windows will not deliver a WM_PAINT message, so the

taskbar clock will simply go idle and consume no C P U t ime at all. Here's

how we can make our scratch program do the same thing.

Our scratch program will display the current time in its client area as well as

in the title bar, so we can watch the taskbar to see the painting action (or lack

thereof) when the window is covered or minimized. (This is just a scratch pro

gram, so let's not obsess over the right way of obtaining the time in string form.)

9 0 J8BK T H E OLD NEW T H I N G

PaintContent(HWND hwnd, PAINTSTRUCT *pps)
void
Pi

{
TCHAR szTime[100];
if (GetTimeFormat(LOCALE_USER_DEFAULT, 0, NULL, NULL,

szTime, 100)) {
SetWindowText(hwnd, szTime);
TextOut(pps->hdc, 0, 0, szTime, lstrlen(szTime));

Here is the timer callback that fires when we decide it's time to update. It

merely kills the timer and invalidates the rectangle. The next time the window

becomes uncovered, we get a WM_PAINT message. (And if the window is

uncovered right now, we get one almost immediately.)

void CALLBACK
InvalidateAndKillTimer(HWND hwnd, UINT uMsg,

UINT PTR idTimer, DWORD dwTime)

KillTimer(hwnd, idTimer);

InvalidateRect(hwnd, NULL, TRUE);

)

Finally, we add some code to our WM_PAINT handler to restart the timer

each time we paint a nonempty rectangle before continuing with our normal

processing with PaintContent :

void
OnPaint(HWND hwnd)

{
PAINTSTRUCT ps;
BeginPaint(hwnd, &ps);

fc
rsRectEInpty (&ps. rcPaint)) {
/ compute time to next update - we update once a second
YSTEMTIME st;
etSystemTime(&st) ;
WORD dwTimeToNextTick = 1000 - st.wMilliseconds;
etTimer(hwnd, 1, dwTimeToNextTick,

InvalidateAndKillTimer) j

PaintContent(hwnd,&ps);
EndPainUhwnd, &ps) ;

C H A P T E R SEVEN Short Topics in Windows Programming ^S% 91

Run this program on Windows XP, and watch it update the time. When

you minimize the window or cover it with another window, the time stops

updating. If you take the window and drag it to the bottom of the screen so

only the caption is visible, it also stops updating: The WM_PAINT message is

used to paint the client area, and the client area is no longer onscreen.

This method also stops updating the clock when you switch to another

user or lock the workstation, although you can't really tell because there's no

taskbar you can consult to verify. But you can use your speakers: Stick a call

to MessageBeep (-1) ; in the PaintContent () function, so you will get an

annoying beep each time the time is repainted. When you switch to another

user or lock the workstation, the beeping will stop.

Note the significance of putting this update logic in the OnPaint function

rather than PaintContent . In particular, putting the repaint-detection logic

in the PaintContent handler would result in WM_PRINTCLIENT messages

interfering with our repaint timer. (Although our design is somewhat

resilient to this type of mistake: Notice that if the timer is mistakenly

restarted, it corrects itself after one tick.) Programs should not perform

so-called business logic while painting; paint handlers should worry them

selves only with drawing. But what we're doing here is not business logic; it's

just some work to optimize how we draw, and doing that from a draw

handler is perfectly legitimate.

This technique of invalidation can be extended to cover the case where only

one section of the screen is interesting: Instead of invalidating the entire client

area, invalidate only the area that you want to update, and restart the timer

only if that rectangle is part of the update region. For example, suppose that

our window is responsible for displaying multiple pieces of information as

well as the current time. If we had used the technique previously described,

we would be updating the clock if any part of our window was visible, even if

the clock itself was covered. Here are the changes we need to make to run the

clock only if the clock portion of the window is visible:

/ / We'll put our clock here
RECT g_rcClock = { 50, 50, 200, 100 } ;

92 .35^ THE OLD NEW THING

When the timer fires, we invalidate only the clock rectangle rather than the

entire client area. (As an optimization, I disabled background erasure for reasons

you'll see later.)

void CALLBACK
InvalidateAndKillTimer(HWND hwnd, UINT uMsg,

UINT_PTR idTimer, DWORD dwTime) {
KillTimer(hwnd, idTimer);

'".' InvalidateRect(hwnd, &g_rcClock, FALSE);
]

To make it more obvious where the clock rectangle is, we draw it in the high

light color and put the time inside it. By using the ETO_OPAQUE flag, we draw

both the foreground and background simultaneously. Consequently, we don't

need to have it erased for us:

v o i d
PaintContent(HWND hwnd, PAINTSTRUCT *pps)
f

TCHAR szTime[10 0] ;
i f (GetTimeFormat(LOCALE_USER_DEFAULT, 0, NULL, NULL, szTime,

100)) {
SetWindowText(hwnd, s z T i m e) ;

I
COLORREF c l r T e x t P r e v = S e t T e x t C o l o r (p p s - > h d c ,

GetSysColor(COLOR.HIGHLIGHTTE*
COLORREF c l r B k P r e v = S e t B k C o l o r (p p s - > h d c ,

GetSysColor(COLORJHIGHLIGHT));
E x t T e x t O u t (p p s - > h d c , g _ r c C l o c k . l e f t , g _ r c C l o c k . t o p ,

ETO_CLIPPED | ETO_OPAQUE, &g_rcClock,
szTime, l s t r l e n (s z T i m e) , NULL);

S e t B k C o l o r (p p s - > h d c , c l r B k P r e v) ;
S e t T e x t C o l o r (p p s - > h d c , c l r T e x t P r e v) ;

}

Finally, the code in the WM_PAINT handler needs to check the clock rectangle

for visibility instead of using the entire client area:

Void
OnPaint(HWND hwnd)

{
PAINTSTRUCT ps;
BeginPaint(hwnd, &ps);

C H A P T E R S E V E N Short Topics in Windows Programming 48^. 93

i f (R e c t V i s i b l e (p s . h d c , &g_rcClock)} {
/ / compute t i m e t o n e x t u p d a t e - we u p d a t e once a s econd
SYSTEMTIME S t ;
Ge tSys t emTime(&s t) ;
DWORD dwTimeToNextTick = 1000 - s t . w M i l l i s e c o n d s ;
SetTimer(hwnd, 1, dwTimeToNextTick, I n v a l i d a t e A n d K i l l T i m e r) ;

K H H H H H • • • • • • • • • H i
P a i n t C o n t e n t (h w n d , & p s) ;
EndPa in t (hwnd, &ps) ;

}
Run this program and do various things to cover up or otherwise prevent

the clock rectangle from painting. Observe that when you cover it up, the title

stops updating.

This is one of those simple ideas, a small detail that nevertheless makes a

big difference in the quality of your program. Notice, for example, that stop

ping the timer when there is nothing to do eliminates a source of polling,

which has a significant impact on overall system performance.

As noted previously, this technique is usually enough for most applications,

but there is an even more complicated (and more expensive) method, too,

which we take up next.

Determining whether your
window is covered

THE METHOD PREVIOUSLY described works great if you are using the window

visibility state to control painting, because you're using the paint system itself

to do the heavy lifting for you.

To obtain this information outside of the paint loop, you can use GetDC

and GetClipBox. The HDC that comes out of GetDC is clipped to the visible

region, and then you can use GetClipBox to extract information out of it.

Start with a new scratch program and add these lines:

void CALLBACK
PolITimer(HWND hwnd, UINT uMsg, UINT_PTR idTimer, DWORD dwTime)

94 5=S THE OLD N E W THING

HDC hdc = GetDC(hwnd);
if (hdc) {

RECT rcClip, rcClient;
LPCTSTR pszMsg;
switch (GetClipBox(hdc, &rcClip)) {
case NULLREGION:

pszMsg = TEXT("completely covered") ;
break;

case SIMPLEREGION:
GetClientRect(hwnd, &rcClient);
if (EqualRect(&rcClient, &rcClip)) {

pszMsg = TEXT("completely uncovered")
} else {

pszMsg = TEXT("partially covered");

break;
case COMPLEXREGION:

pszMsg = TEXT("partially covered");
break;

default:
pszMsg
break;

TEXT("Error"

}
// If we want to, we can also use RectVisible
// or PtVisible - or go totally overboard by
// using GetClipRgn
ReleaseDC(hwnd, hdc);

}

SetWindowText(hwnd, pszMsg)

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

}

SetTimer(hwnd, 1, 1000, PollTimer)
return TRUE;

Once per second, the window title will update with the current visibility

of the client rectangle. The GetClipBox function returns the bounding

box of the D C s clip region as well as an integer describing what type of

shape the clip region is, which is what we are primarily interested in. The

CHAPTER S E V E N Short Topics in Windows Programming J&*. 95

null and complex region cases are straightforward, but the simple region is

a bit tricky because a rectangular clip region could mean either that the

window is complete uncovered (allowing the entire client region to show)

or that the window is covered by a collection of other windows arranged so

that the visible portion of the window just happens to be rectangular in

shape. To distinguish these two cases, we need to compare the region's

shape against the client rectangle. Fortunately, in the case of a simple clip

region, the bounding box equals the region itself, so we can compare the

result of GetCl ientRect against the clip region bounding box.

Note that we avoided using the GetClipRgn function. Most of the time,

when you query information about a region's shape, the bounding box and

shape type give you what you need. Only if you need to dig into the details of

a complex clip region should you call functions such as GetRegionData.

As previously noted, polling is much more expensive than letting the paint

system do the work for you, so do try to use the painting method first.

Note that the Windows Vista desktop composition feature changes the

rules for painting significantly. If desktop composition is enabled, then all

nonminimized windows behave as if they are completely uncovered because

windows no longer draw directly to the screen but rather to offscreen buffers,

which are then composed for final display. As a result, our sample programs

act as if they are fully visible whenever they are restored, regardless of

whether they are actually covered by other windows, because the composi

tion engine maintains a copy of the entire window. The window contents are

continuously available, for example, when the user views the window with

the Flip3D feature or views the window thumbnail in the Alt+Tab window.

In that sense, then, your window is always visible.

Using bitmap brushes for tiling effects

BITMAP BRUSHES USED to be these little 8 x 8 monochrome patterns that you

could use for hatching and maybe little houndstooth patterns if you were really

crazy. But you can do better.

96 *B THE OLD NEW THING

The CreatePat ternBrush function lets you pass in any old bitmap—even

a huge one—and it will create a brush from it. The bitmap will automatically

be tiled, so this is a quick way to get bitmap tiling. Let GDI do all the math for

you! You can see this in some programs that have "watermark" effects such as

the one Internet Explorer 3 used on its main toolbar.

This is particularly handy when you're stuck with a mechanism where you

are forced to pass an HBRUSH but you really want to pass an HBITMAP (for

example, when responding to one of the WM_CTLCOLOR messages). Convert

the bitmap to a brush and return that brush instead.

For example, let's take our scratch program and give it a custom tiled

background by using a pattern brush:

HBRUSH CreatePatternBrushFromFile(LPCTSTR pszFile)

{

}

HBRUSH hbr = NULL;
HBITMAP hbm = (HBITMAP)Loadlmage(g_hinst, pszFile,

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE) ;
if (hbm) {

hbr = CreatePatternBrush(hbm);
DeleteObject(hbm);

}
return hbr;

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

BOOL
InitApp(LPSTR lpCmdLine)

{
BOOL fSuccess = FALSE;
HBRUSH hbr = CreatePatternBrushFromFile(lpCmdLine);
if (hbr) {

WNDCLASS wc;

wc . style = 0 ;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = g_hinst;
wc.hlcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARR0W);
wc.hbrBackground = hbr;
wc.IpszMenuName = NULL;
wc.lpszClassName = TEXT("Scratch");

C H A P T E R SEVEN Short Topics in Windows Programming ^ 5 ^ 97

}

uccess = RegisterClasst&wc) ; ^ ^ • • • • • • H H
// Do not delete the brush - the class owns it now

return fSuccess;

With a corresponding adjustment to WinMain so that we know which file

to use as the basis for our background brush:

if (!InitApp(lpCmdLine)) return 0;

Pass the path to a BMP file on the command line, and bingo, the window will

tile its background with that bitmap. Notice that we did not have to change

anything other than the class registration. No muss, no fuss, no bother.

Filling a shape with an image is another case where you wish you could use a

bitmap rather than a brush, and therefore a case where bitmap brushes again

save the day. Start with a new scratch program, copy the preceding

CreatePatternBrushFromFile function, and make the following additional

changes to draw a filled ellipse. The details of how the drawing is accomplished

aren't important. All we're interested is the way the shape is filled:

HBRUSH g hbr; / / the pattern brush we created

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

BeginPath(pps->hdc);
Ellipse(pps->hdc, 0, 0, 200, 100);
EndPath(pps->hdc) ;
HBRUSH hbrOld = SelectBrush(pps->hdc, g_hbr);
FillPath(pps->hdc) ;
SelectBrush(pps->hdc, hbrOld);

And add the following code to WinMain before the call to CreateWindowEx:

g_hbr = CreatePatternBrushFromFile(lpCmdLine);
if (!g_hbr) return 0;

This time, because we are managing the brush ourselves, we need to remem

ber to destroy it, so add this to the end of the WinMain function before it returns:

DeleteObject(g_hbr);

98 -S=^ THE OLD NEW THING

This second program draws an ellipse filled with your bitmap. The

F i l l Path function uses the currently selected brush, so we select our

bitmap brush (rather than a boring solid brush) and draw with that. Result: a

pattern-filled ellipse. Without a bitmap brush, you would have had to do a

lot of work manually clipping the bitmap (and tiling it) to the ellipse.

What is the D C brush good for?

T H E DC BRUSH you obtain by calling GetStockObject (DC_BRUSH) is a

stock brush associated with the device context. Like the system color brushes

you obtain by calling the GetSysColorBrush function, the color of the DC

brush changes dynamically; but whereas the system color brushes change

color based on the system colors, the color of the DC brush changes at your

command.

The DC brush is handy when you need a solid color brush for a short time,

because it always exists and doesn't need to be created or destroyed. Normally,

you have to create a solid color brush, draw with it, and then destroy it. With the

DC brush, you set its color and start drawing. But it works only for a short time,

because the moment somebody else calls the SetDCBrushColor function on

your DC, the DC brush color is overwritten. In practice, this means that the DC

brush color is not trustworthy after you relinquish control to other code. (Note,

however, that each DC has its own DC brush color, so you need only worry

about somebody on another thread messing with your DC simultaneously,

which doesn't happen under any of the painting models I am familiar with.)

The D C brush is quite useful when handling the various WM_CTLCOLOR

messages. These messages require you to return a brush that will be used to

draw the control background. If you need a solid-color brush, this usually

means creating the solid-color brush and caching it for the lifetime of the

window, and then destroying it when the window is destroyed. (Some people

cache the brush in a static variable, which works great until somebody creates

two copies of the dialog/window. Then you get a big mess.)

C H A P T E R SEVEN Short Topics in Windows Programming -as^ 99

Let's use the DC brush to customize the colors of a static control. The

program is not interesting as a program; it's just an illustration of one way

you can use the DC brush.

Start, as always, with our scratch program and make the following changes:

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{
9

i f

hwndChild

0 9 .

» CreateWindow(TEXT(
WS VISIBLE
hwnd,

JhwndCh
NULL

i l d)

| WS CHILD, 0,
g__hinst , 0) ;

r e t u r n FALSE;

• s t a t i c "
0, 0, 0

} , NULL,
, : : ; ' • ; : •

WKSmmWmmmm
return TRUE;

}

HBRUSH OnCtlColor(HWND hwnd, HDC hdc, HWND hwndChild, int type)

{
FORWARD_WM_CTLCOLORSTATIC(hwnd, hdc, hwndChild, DefWindowProc);
SetDCBrushColor(hdc, RGB(255,0,0));
return GetStockBrush(DC BRUSH);

} Hi
HANDLE_MSG(hwnd, WM_CTLCOLORSTATIC, OnCtlColor);

Run this program and observe that we changed the background color of

the static window to red.

The work happens inside the OnCtlColor function. When asked to cus

tomize the colors, we first forward the message to the DefWindowProc function

so that the default foreground and background text colors are set (not relevant

here because we draw no text, but a good thing to do on principle). Because we

want to override the background brush color, we set the DC brush color to red

and then return the DC brush as our desired background brush.

The static control then takes the brush we returned (the DC brush) and

uses it to draw the background, which draws in red because that's the color we

set it to.

Normally, when customizing the background brush, we have to create a

brush, return it from the WM_CTLCOLORSTATIC message, and then destroy it

when the parent window is destroyed. But by using the DC brush, we avoided

having to do all that bookkeeping.

IOO J S < T H E OLD N E W T H I N G

There is also a DC pen, GetStockObject (DC_PEN), that behaves in an

entirely analogous manner.

Using ExtTextOut to draw
solid rectangles

WHEN YOU NEED to draw a solid rectangle, the obvious choice is to call the

Rectangle function. If you look at what the Rectangle function requires,

however, you'll see that there's quite a bit of preparation necessary. You have

to initialize the current pen to the null pen, select a solid-color brush, and

then remember to increase the height and width of the rectangle by one to

account for the decrement that the Rectangle function performs when given

the null pen:

BOOL DrawSolidRectl(HDC hdc, LPCRECT pre, COLORREF clr)

{
BOOL fDrawn = FALSE;
HPEN hpenPrev = SelectPen(hdc, GetStockPen(NULL_PEN));
HBRUSH hbrSolid = CreateSolidBrush(clr);
if (hbrSolid) {
HBRUSH hbrPrev = SelectBrush(hdc, hbrSolid);
fDrawn = Rectangle(hdc, prc->left, prc->top, prc->right + 1,

prc->bottom + 1) ;
SelectBrush(hdc, hbrPrev);
DeleteObject(hbrSolid) ;

SelectPen(hdc, hpenPrev);

return fDrawn;

1
Slightly more convenient is the F i l lRec t function, because you don't need

to bother with the null pen:

BOOL DrawSolidRect2(HDC hdc, LPCRECT pre, COLORREF clr)

{
BOOL fDrawn = FALSE;
HBRUSH hbrSolid = CreateSolidBrush(clr);
if (hbrSolid) {
fDrawn = FillRect(hdc, pre, hbrSolid);

C H A P T E R SEVEN Short Topics in Windows Programming J S ^ IOI

DeleteObject(hbrSolid);

}
return fDrawn;

}
Note, however, that we still end up creating a GDI object and throwing it

away shortly thereafter. We can avoid this if we allow ourselves to take advantage

of the DC brush. (Doing so means that your program will not run on versions of

Windows prior to Windows 2000.)

BOOL DrawSolidRect3(HDC hdc, LPCRECT pre, COLORREF clr)

{
BOOL fDrawn = FALSE;
COLORREF clrPrev = SetDCBrushColor(hdc, clr);
if (clrPrev != CLR_INVALID) {
fDrawn = FillRect(hdc, pre, GetStockBrush(DC_BRUSH));
SetDCBrushColor(hdc, clrPrev);
}
return fDrawn;

]
At some point early in the days of Windows, developers who worry about

such things experimented with all of these techniques and more (well, except

for DrawSolidRect3, because the DC brush hadn't been invented yet) and

found the fastest way to draw a solid rectangle: using the ExtTextOut function.

The ETO_OPAQUE flag specifies that the contents of the rectangle parameter

should be filled with the text background color, and it is this side effect that we

will take advantage of:

BOOL DrawSolidRect4(HDC hdc, LPCRECT pre, COLORREF clr)

{
BOOL fDrawn = FALSE;
COLORREF clrPrev = SetBkColor(hdc, clr);
if (clrPrev != CLR_INVALID) {
fDrawn = ExtTextOut(hdc, 0, 0, ETO_OPAQUE, pre, NULL, 0, NULL);
SetBkColor(hdc, clrPrev);

}
return fDrawn;

1
The DrawSolidRect4 function was the champion for many years, and its

superiority faded into folklore. If you ask old-timers for the best way to draw

1 0 2 S&s T H E OLD N E W T H I N G

solid rectangles, they'll tell you to use the ExtTextOut function. This created

its own feedback loop: Driver vendors recognized that programs were using

ExtTextOut to draw solid rectangles and consequently optimized for that

scenario, thereby securing ExtTextOut's superiority into the next generation.

Even in Windows XP, after multiple changes in the video driver model,

ExtTextOut still puts in a good showing compared to the other methods for

drawing solid rectangles, coming in first place or tied for first place.

Using StretchBlt to draw solid rectangles

IT IS A common need to fill a rectangle with a solid color taken from the upper-

left pixel of an existing bitmap. For example, if you set the SS_CENTERIMAGE

style on a static control, the image will be centered in the control's client area,

using the color of the upper-left pixel of the bitmap as the background color. If

you are providing a framework for laying out controls and bitmaps, you may

find yourself having to do something similar. In these cases, the bitmap in

question will already have been selected into a device context for rendering;

while you're there, you can use a simple S t r e t chBl t to fill the background.

Start with a fresh scratch program and make the following changes:

HBITMAP g_hbm;

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

HDC hdcMem = CreateCompatibleDC(pps->hdc) ;
if (hdcMem) {
HBITMAP hbmPrev = SelectBitmap(hdcMem, g_hbm);
if (hbmPrev) {

BITMAP bm;
if (GetObject(g_hbm, sizeof(bm), &bm)) {
RECT rcClient;
GetClientRect(hwnd, &rcClient);
int cxClient = re.right - re.left;
int cyClient = re.bottom - re.top;
StretchBlt(pps->hdc, re.left, re.top, cxClient, cyClient,

hdcMem, 0, 0, 1, 1, SRCCOPY);

C H A P T E R S E V E N Short Topics in Windows Programming •*&< 103

BitBl t (pps->hdc, r e . l e f t , r e . t o p , cxCl ient , cyCl ien t ,
hdcMem, 0, 0, SRCCOPY);

}
SelectBitraap(hdcMem, hbmPrev);

DeleteDC(hdcMem);

}

To WinMain, add before the call to CreateWindowEx:

g_hbm = (HBITMAP)Loadlmage(g_hinst , lpCmdLine,
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);

i f (!g_hbm) r e t u r n 0;

with a matching

DeleteObject(g_hbm);

at the end of WinMain before it returns.

When you run this program (with the name of a bitmap file on the command

line, of course), the bitmap is drawn in the upper-left corner of the screen, and

the one call to the St re tchBl t function fills the unused portion of the client

area with the upper-left pixel of the bitmap. Because we already had to set up the

memory DC to draw the bitmap in the first place, a single call to S t re tchBl t is

much more convenient than calling GetPixel to obtain the color and creating a

solid brush to perform the fill.

Displaying a string
without those ugly boxes

YOU'VE ALL SEEN those ugly boxes. When you try to display a string and the

font you have doesn't support all the characters in it, you get an ugly box for

the characters that aren't available in the font.

Start with our scratch program and add this to the PaintContent function:

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

1 0 4 ^ ^ s T H E OLD N E W T H I N G

{

TextOutW(pps->hdc, 0, 0,

L"ABC\xO410\xO411\x0412\x0E0l\x0E02\xOE03", 9);

]
That string contains the first three characters from three alphabets: ABC

from the Roman alphabet, ABB from the Cyrillic alphabet, and 0*0*11 from

the Thai alphabet.

If you run this program, you get a bunch of ugly boxes for the non-Roman

characters because the SYSTEM font is very limited in its character set support.

But how to pick the right font? What if the string contains Korean or Japanese

characters? There is no single font that contains every character defined by

Unicode (or at least, none that is commonly available). What do you do?

This is where font linking comes in.

Font linking enables you to take a string and break it into pieces, where

each piece can be displayed in an appropriate font.

The lMLangFontLink2 interface provides the methods necessary to do

this breaking. The lMLangFontLink2 : :GetStrCodePages method takes

the string apart into chunks, such that all the characters in a chunk can be

displayed by the same font, and the iMLangFontLink: :MapFont method

creates the font.

Okay, so let's write our font-link-enabled version of the TextOut function.

We'll do this in stages, starting with the kernel of our solution. The idea kernel

is my name for the "so this is what it all comes to" moment of programming.

Most programming techniques are simple, but getting to that simple idea often

entails many lines of tedious preparation that, although essential, also obscure

the main point. Let's pretend that all the preparatory work has already been

done: Somebody already set up the DC, created an lMLangFontLink2 pointer

in the pf 1 variable, and is keeping track of where the text needs to go. All that's

left is this loop:

#include <mlang.h>

HRESULT TextOutFL(HDC hdc, int x, int y, LPCWSTR psz, int cch)

{

C H A P T E R SEVEN Short Topics in Windows Programming JSŜ . 105

while (cch > 0) {
DWORD dwActualCodePages;
long cchActual;
pfl->GetStrCodePages(psz, cch, 0, kdwActualCodePages,

&cchActual) ,-
HFONT hfLinked;
pfl->MapFont(hdc, dwActualCodePages, 0, ShfLinked);
HFONT hfOrig = SelectFont(hdc, hfLinked);
TextOut(hdc, ?, ?, psz, cchActual);
SelectFont(hdc, hfOrig);
pfl->ReleaseFont(hfLinked);
psz += cchActual;

cch - = cchActual;

}

}

We walk through the string asking IMLangFontLink2 : : GetStrCodePages

to give us the next chunk of characters and opaque information about what code

pages those characters belong to. From that, we ask lMLangFontLink2 : : MapFont

to create a matching font and then use TextOut to draw the characters in that

font at the right place. Repeat until all the characters are done.

The rest is refinement and paperwork.

First of all, what is the right place? We want the next chunk to resume where

the previous chunk left off. For that, we take advantage of the TA_UPDATECP

text-alignment style, which says that GDI should draw the text at the current

position and update the current position to the end of the drawn text (there

fore, in position for the next chunk).

Therefore, part of the paperwork is to set the DCs current position and set

the text mode to TA_UPDATECP:

SetTextAlign(hdc, GetTextAlign(hdc) | TAJJPDATECP);
MoveToEx(hdc, x, y, NULL);

Then we can just pass 0, 0 as the coordinates to TextOut, because the coor

dinates passed to TextOut are ignored if the text alignment mode is

TA_UPDATECP; it always draws at the current position.

Of course, we can't just mess with the DCs settings like this. If the caller

did not set TAJJPDATECP, the caller is not expecting us to be meddling with

I 0 6 ^SS THE OLD NEW THING

the current position. Therefore, we have to save the original position and

restore it (and the original text alignment mode) afterward:

POINT p tOr ig ;
DWORD dwAlignOrig = GetTextAlign(hdc) ;
SetTextAlign(hdc, dwAlignOrig [TAJJPDATECP);
MoveToEx(hdc, x, y, &ptOrig);
while (cch > 0) {

TextOut(hdc, 0, 0, psz, cchActual);

•
/ / i f c a l l e r d id not want CP updated, then r e s t o r e i t
/ / and r e s t o r e the t e x t alignment mode too
i f (!(dwAlignOrig & TAJJPDATECP)) {

SetTextAlignfhdc, dwAlignOrig) ,-
MoveToEx(hdc, p t O r i g . x , p tOr ig .y , NULL);

Next is a refinement: We should take advantage of the second parameter to

IMLangFontLink2: :Ge tS t rCodePages , which specifies the code pages we

would prefer to use if a choice is available. Clearly, we should prefer to use the

code pages supported by the font we want to use, so that if the character can

be displayed in that font directly, we shouldn't map an alternate font:

HFONT hfOrig = (HFONT)GetCurrentObject(hdc, OBJ_FONT);
DWORD dwFontCodePages = 0;
pf!->GetFontCodePages(hdc, hfOrig, &dwFontCodePages);

W:i-::;

while (cch > 0) {
pfl->GetStrCodePages(psz, cch, dwFontCodePages,

&dwActualCodePages, &cchActual) ;
if (dwActualCodePages & dwFontCodePages) {

// our font can handle it - draw directly using our font
TextOutChdc, 0, 0, psz, cchActual);

} else { I^^BHflH5£lS»P
.. . MapFont etc . . .

H M ' ' . • • • • • • • • • • • • • • •
}

O f course, you probably wonder where this magical pf 1 comes from. It

comes from the MultiLanguage Object in the MLang library:

C H A P T E R SEVEN Short Topics in Windows Programming <ss^ 107

IMLangFontLink2 *p£l;
CoCreatelnstance(CLSID CMultiLanguage,

IID_IMLangFontLink2,

^SRnHHHHHHHHHHHSHHP- ivoiu 1 ocprx;

NULL,CLSCTX_ALL,

- _ t> 1 M HnMHHSUm

And of course, all the errors we've been ignoring need to be taken care of.

This does create a bit of a problem if we run into an error after we have

already made it through a few chunks. What should we do?

I'm going to handle the error by drawing the string in the original font, ugly

boxes and all. We can't erase the characters we already drew, and we can't just

draw half of the string (for our caller won't know where to resume). So we just

draw with the original font and hope for the best. At least it's no worse than

it was before font linking.

Put all of these refinements together and you get this final function:

HRESULT TextOutFL(HDC hdc, int x, int y, LPCWSTR psz, int cch)

HRESULT hr;
IMLangFontLink2 *pfl;
if (SUCCEEDED(hr = CoCreatelnstance(CLSID_CMultiLanguage,

NULL, CLSCTX_ALL,IID_IMLangFontLink2,
(void**)&pfl))) {

HFONT hfOrig = (HFONT)GetCurrentObject(hdc, OBJ_FONT);
POINT ptOrig;
DWORD dwAlignOrig = GetTextAlign(hdc);
if (!(dwAlignOrig & TA_UPDATECP)) {

SetTextAlign(hdc, dwAlignOrig | TAJJPDATECP);

MoveToEx(hdc, x, y, kptOrig);
DWORD dwFontCodePages = 0 ;
hr = pfl->GetFontCodePages(hdc, hfOrig, &dwFontCodePages);
if (SUCCEEDED(hr)) {

while (cch > 0) {
DWORD dwActualCodePages;
long cchActual;
hr = pfl->GetStrCodePages(psz, cch, dwFontCodePages,

&dwActualCodePages, &cchActual);
if (FAILED(hr)) {

break;

}

I08 J8K. THE OLD NEW THING

if (dwActualCodePages & dwFontCodePages) {
TextOut(hdc, 0, 0, psz, cchActual);

} else {
HFONT hfLinked;
if (FAILED(hr = pf1->MapFont(hdc, dwActualCodePages,

0, &hfLinked))) {
break;

}
SelectFont(hdc, hfLinked);
TextOut(hdc, 0, 0, psz, cchActual);
SelectFont(hdc, hfOrig);
pfl->ReleaseFont(hfLinked);

}
psz += cchActual;
cch -= cchActual;

}
if (FAILED(hr)) {

// We started outputting characters so we must finish.
// Do the rest without font linking since we have
// no choice.
TextOut(hdc, 0, 0, psz, cch);

hr = S_FALSE;

} }

pfl->Release () ;

if (!(dwAlignOrig & TAJJPDATECP)) {
SetTextAlign(hdc, dwAlignOrig);
MoveToEx(hdc, ptOrig.x, ptOrig.y, NULL)

}

return hr;

}

Finally, we can wrap the entire operation inside a helper function that

first tries with font linking, and then if that fails, just draws the text the

old-fashioned way:

void TextOutTryFL(HDC hdc, int x, int y, LPCWSTR psz, int cch)

{
if (FAILED(TextOutFL(hdc, x, y, psz, cch)) {

TextOut(hdc, x, y, psz, cch);
}

}

C H A P T E R SEVEN Short Topics in Windows Programming ^=^ 109

Okay, now that we have our font-linked TextOut with fallback, we can go

ahead and adjust our PaintContent function to use it:

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

TextOutTryFL(pps->hdc, 0, 0,

L"ABC\x0410\x0411\x0412\xOE01\xOE02\xOE03", 9);

]
Observe that the string is now displayed with no black boxes.

One refinement I did not do was to avoid creating the IMlangFontLink2

pointer each time we want to draw text. In a real program, you would proba

bly create the multilanguage object one time per drawing context (per window,

perhaps) and reuse it to avoid going through the whole object creation code

path each time you want to draw a string.

This technique of using the IMlangFontLink2 interface to break a string

up into pieces falls apart when you add right-to-left languages, however.

(Try it and see what happens, and then see whether you can explain why.)

The interface was introduced with Internet Explorer 4.0 to address a signif

icant portion of the multilingual needs of the Web browser, but the solution

is not perfect. With Internet Explorer 5.0 came Uniscribe, a more complete

solution to the problem of rendering text. Rendering text with Uniscribe is

comparatively anticlimactic given what we had to go through with the

IMlangFontLink2 interface:

#include <uspl0.h>

HRESULT TextOutUniscribe(HDC hdc, int x, int y,LPCWSTR psz
int cch)

{
if (cch == 0) return S_OK;
SCRIPT_STRING_ANALYSIS ssa;
HRESULT hr = ScriptStringAnalyse (hdc, psz, cch, 0, -1,

SSA_FALLBACK | SSA_GLYPHS, MAXLONG,
NULL, NULL, NULL, NULL, NULL, &ssa) ;

if (SUCCEEDED(hr)) {
hr = ScriptStringOut(ssa, x, y, 0, NULL, 0, 0, FALSE);
ScriptStringFree(&ssa);
}

IIO 4 S ^ T H E OLD NEW T H I N G

r e t u r n hr ;
]

Rendering a single line of text is quite straightforward because the designers

of Uniscribe streamlined the common case where all you want to do is display

text. Most of the complexity of Uniscribe resides in the work you have to do if

you intend to support editing of text. If you merely want to display it, things are

simple. The single function ScriptStr ingAnalyse takes a string and produces

a SCRIPT_STRING_ANALYSIS that describes the string in an internal format

known only to Uniscribe. Passing the SSA_FALLBACK flag instructs Uniscribe to

do font linking automatically, and the SSA_GLYPHS flag says that we want to see

the characters themselves. Because we are an English program, the ambient text

direction is left to right, and we are rendering the string all at once, so there is no

context that needs to be carried over from one call to the next. Consequently, we

don't need to pass any special SCRIPT_C0NTR0L or SCRIPT_STATE.

When S c r i p t S t r i n g A n a l y s e has performed its analysis, we ask

Scr ip tS t r ingOut to display the string, and then free the data structure that

was used to perform the analysis. All that's left is to change our PaintContent

function to use the TextOutUniscribe function rather than the TextOutFL

function. Rendering mixed right-to-left and left-to-right text is an extremely

difficult operation; fortunately, we can let the Uniscribe library do the work

for us.

If Uniscribe does the right thing, why did I start by introducing iMLangFont

Link2? First of all, lMLangFontLink2 predated Uniscribe, so I was presenting

the technologies in chronological order. But more important, the purpose of the

exploration of IMLangFontLink2 was to show how a simple idea kernel can be

built up into a complete function.

Semaphores don't have owners

UNLIKE MUTEXES AND critical sections, semaphores don't have owners. They

merely have counts. The ReleaseSemaphore function increases the count

associated with a semaphore by the specified amount. (This increase might

C H A P T E R S E V E N Short Topics in Windows Programming A III

release waiting threads.) But the thread releasing the semaphore need not be

the same one that claimed it originally. This differs from mutexes and critical

sections, which require that the claiming thread also be the releasing one.

Some people use semaphores in a mutex-like manner: They create a sema

phore with initial count 1 and use it like this:

WaitForSingleObject(hSemaphore, INFINITE);
... do stuff ..
ReleaseSemaphore (hSemaphore , 1, NULL);

If the thread exits (or crashes) before it manages to release the semaphore,

the semaphore counter is not automatically restored. Compare mutexes,

where the mutex is released if the owner thread terminates while holding it.

For this pattern of usage, a mutex is therefore preferable.

A semaphore is useful if the conceptual ownership of a resource can cross

threads:

W a i t F o r S i n g l e O b j e c t (h S e m a p h o r e , INFINITE);
. . . do some work . .
... continue on a background thread ...
HANDLE hThread = CreateThread(NULL, 0, KeepWorking, . . !) ;
if (!hThread) {

... abandon work ...
ReleaseSemaphore(hSemaphore, 1, NULL); // release resources

DWORD CALLBACK KeepWorking(void* lpParameter)

{
.. . finish working . . .
ReleaseSemaphore(hSemaphore, 1, NULL);

return 0;

}

This trick doesn't work with a mutex or critical section because mutexes

and critical sections have owners, and only the owner can release the mutex or

critical section.

Note that if the KeepWorking function exits and forgets to release the

semaphore, the counter is not automatically restored. The operating system

doesn't know that the semaphore "belongs to" that work item.

112 JBt THE OLD NEW THING

Another common usage pattern for a semaphore is the opposite of the

resource-protection pattern: It's the resource-generation pattern. In this model,

the semaphore count normally is zero, but is incremented when there is work

to be done:

. . . produce some work and add i t t o a work l i s t . . .
ReleaseSemaphore(hSemaphore, 1, NULL);

/ / There can be more than one worker th read .
/ / Each time a work item i s s igna led , one th read w i l l
/ / be chosen to process i t .
DWORD CALLBACK ProcessWork(void* lpParameter)
{

for (; ;) {
// wait for work to show up
WaitForSingleObject(hSemaphore, INFINITE);
... retrieve a work item from the work list ...
. . . perform the work . . .

// NOTREACHED

Notice that in this case, there is not even a conceptual "owner" of the

semaphore, unless you count the work item itself (sitting on a work list

data structure somewhere) as the owner. If the ProcessWork thread exits,

you do not want the semaphore to be released automatically; that would

mess up the accounting. A semaphore is an appropriate object in this case.

An auto-reset event is just
a stupid semaphore

W H E N YOU CREATE an event with the CreateEvent function, you get to

specify whether you want an auto-reset event or a manual-reset event.

Manual-reset events are easy to understand: If the event is clear, a wait on the

event is not satisfied. If the event is set, a wait on the event succeeds. Doesn't

matter how many people are waiting for the event; they all behave the same way,

and the state of the event is unaffected by how many people are waiting for it.

C H A P T E R S E V E N Short Topics in Windows Programming ,ss^ 113

Auto-reset events are more confusing. Probably the easiest way to think

about them is as if they were semaphores with a maximum token count of

one. If the event is clear, a wait on the event is not satisfied. If the event is set,

one waiter succeeds, and the event is reset; the other waiters keep waiting.

The gotcha with auto-reset events is the case where you set an event that is

already set. Because an event has only two states (set and reset), setting an

event that is already set has no effect. If you are using an event to control a

resource producer/consumer model, the "setting an event that is already set"

case will result in you appearing to "lose" a token. Consider the following

intended pattern:

Producer

Produce work

S e t E v e n t

Produce work

S e t E v e n t

Consumer

Wait

Wake up and reset event

Do work

Wait

Wake up and reset event

Do work

But what if the timing doesn't quite come out? What if the consumer

thread is a little slow to do the work (or the producer thread is a little fast in

generating it):

Prodi; Const

Wait
Produce work
SetEvent

Wake up and reset event

114 J**\ T H E OLD N E W T H I N G

Producer Cons

Produce work

S e t E v e n t

Produce work

Do work

S e t E v e n t (has no effect)

Wait (satisfied immediately)

and reset event

Do work

W '

Notice that the producer produced three work items, but the consumer

performed only two of them. The third SetEvent had no effect because the

event was already set. (You have the same problem if you try to increase a

semaphore's token count past its maximum.) If you want the number of

wakes to match the number of sets, you need to use a semaphore with a

maximum token count as high as the maximum number of outstanding

work items you will support.

Moral of the story: Know your tools, know their limits, and use the right

tool for the right job.

^)

C H A P T E R E I G H T

WINDOW MANAC
•

1
ANAGEMENT

J*'

WF

THIS CHAPTER FOCUSES on the window manager, starting with some

basic design points and then introducing some code to illustrate the various

types of modality and then investigating ways we can harness the design of

Windows modal loops to accomplish some neat tricks. Nonprogrammers are

welcome to skip to the next chapter when the subject matter here becomes a

bit too technical.

Why do I get spurious
WM_MOUSEMOVE messages?

To UNDERSTAND THIS properly, it helps to know where WM_MOUSEMOVE

messages come from.

When the hardware mouse reports an interrupt, indicating that the physical

mouse has moved, Windows determines which thread should receive the

mouse move message and sets a flag on that thread's input queue that says,

"The mouse moved, in case anybody cares." (Other stuff happens, too, which

115

I l 6 i S ^ T H E OLD N E W T H I N G

we ignore here for now. In particular, if a mouse button event arrives, a lot of

bookkeeping happens to preserve the virtual input state.)

When that thread calls a message retrieval function such as GetMessage,

and the "The mouse moved" flag is set, Windows inspects the mouse position

and does the work that is commonly considered to be part of mouse movement:

determining the window that should receive the message, changing the cursor,

and determining what type of message to generate (usually WM_MOUSEMOVE or

perhaps WM_NCMOUSEMOVE).

If you understand this, you already see the answer to the question "Why does

my program not receive all mouse messages if the mouse is moving too fast?"

If your program is slow to call GetMessage, multiple mouse interrupts may

arrive before your program calls GetMessage to pick them up. Because all

that happens when the mouse interrupt occurs is that a flag is set, if two inter

rupts happen in succession without a message retrieval function being called,

the second interrupt merely sets a flag that is already set, which has no effect.

The result is that the first interrupt acts as if it has been "lost" because nobody

bothered to pick it up.

You should also see the answer to the question "How fast does Windows

deliver mouse movement messages?"

The answer is,"As fast as you want." If you call GetMessage frequently, you

get mouse messages frequently; if you call GetMessage rarely, you get mouse

messages rarely.

Okay, so back to the original question,"Why do I get spurious WM_MOUSEMOVE

messages?"

Notice that the delivery of a mouse message includes lots of work that is

typically thought of as being part of mouse movement. Often, Windows wants

to do that follow-on work even though the mouse hasn't actually moved. The

most obvious example is when a window is shown, hidden, or moved. When

that happens, the mouse cursor may be over a window different from the window

it was over previously (or in the case of a move, it may be over a different part

of the same window). Windows needs to recalculate the mouse cursor (for

example, the old window may have wanted an arrow but the new window

wants a pointy finger), so it artificially sets the "The mouse moved, in case anybody

CHAPTER EIGHT Window Management JSV. 117

cares" flag. This causes all the follow-on work to happen, a side effect of which

is the generation of a spurious WM_MOUSEMOVE message.

So if your program wants to detect whether the mouse has moved, you

need to add a check in your WM_MOUSEMOVE that the mouse position is different

from the position reported by the previous WM_MOUSEMOVE message.

Note that even though Windows generates spurious WM_MOUSEMOVE

messages, it does so only in response to a relevant change to the window hier

archy. Some people have observed that their program receives a spurious

WM_MOUSEMOVE message every two seconds even when the system is idle. This

behavior is not normal. A constant stream of message traffic would quickly

draw the attention of the performance team because it has the same effect as

polling. If you are seeing a stream of spurious WM_MOUSEMOVE messages when

the system is idle, you probably have a program that is continuously manipu

lating the window hierarchy or the mouse position. These programs typically

do this to "enhance" the system in some way, such as translating the word

under the cursor or animating a screen element to entertain you, but as a side

effect keep fiddling with the mouse.

In addition to the problem of the spurious WM_MOUSEMOVE, there is also the

problem of the missing WM_MOUSEMOVE. This typically happens when a pro

gram fails to update the cursor even though the content beneath it has

changed, usually when the content changes as the result of scrolling. You can

test this out yourself: Find a program where the cursor changes depending on

where you are in a document. For example, a Web browser changes the cur

sor from an arrow to a hand if you are over a link; a word processor changes

the cursor from an I-beam to an arrow when you move into the left margin.

Position the mouse over the document and make a note of the cursor. Now

use the keyboard or mouse wheel to scroll the document so that the cursor is

now over a portion of the document where the cursor should be something

different. Did your cursor change? If you try this out on a handful of different

programs, you'll probably find that some correctly change the cursor after

scrolling and others don't.

If you haven't figured it out by now, here's the reason for the problem of the

missing WM_MOUSEMOVE: Because the mouse cursor is updated as the result of

I l 8 J S ^ T H E OLD NEW T H I N G

a WM_SETCURSOR message, operations that change what lies under the mouse

(scrolling being the most common example) do not generate the WM_SETCURSOR

message and consequently do not result in the cursor being updated to match

the new contents. The solution to this problem is to put your cursor compu

tation in a function that you call when you receive a WM_SETCURSOR message.

After you make a change that requires the cursor to be recalculated, check

whether the cursor is in your window, and if so, call that helper function.

The "missing WM_MOUSEMOVE" problem is quite common. It's admittedly a

subtle problem, but when it happens, it can lead to end-user confusion

because the cursor ends up being "wrong" until the user wiggles the mouse to

"fix" it. To me, programs that exhibit this problem just feel unfinished.

Why is there no
WM_MOUSEENTER message?

THERE IS A WM_MOUSELEAVE message. Why isn't there a WM_MOUSEENTER message?

Because you can easily figure that out for yourself.

Here's what you do. When you receive a WM_MOUSELEAVE message, set a flag

that says, "The mouse is outside the window." When you receive a WM_MOUSE-

MOVE message and the flag is set, the mouse has entered the window (And you

should clear the flag while you're at it.)

Note that this provides another use for that spurious WM_MOUSEMOVE

message: If the window appears at the mouse location, the spurious WM_MOUSE-

MOVE message will cause your program's "mouse has entered" code to run, which

is what you want.

The white flash

IF YOU HAD a program that didn't process messages for a while, but it needed

to be painted for whatever reason (say, somebody uncovered it), Windows

would eventually lose patience with you and paint your window white.

CHAPTER EIGHT Window Management 4pk 119

Or at least, that's what people would claim. Actually, Windows is painting

your window with your class background brush. Because most people use

COLOR_WINDOW and because C0L0R_WIND0W is white in most color schemes,

the end result is a flash of white.

Why paint the window white? Why not just leave it alone?

Well, that's what it used to do in Windows 3.1, but the result was that the

previous contents of the screen would be shown where the window would be.

Suppose you were looking at Explorer, and then you restored a program that

stopped responding. Inside the program's main window would be ... a picture

of Explorer. And then people would try to double-click on what they thought

was Explorer but was really a hung program.

In Windows XP, the behavior for a window that has stopped painting is

different. Now, the system captures the pixels of the unresponsive window

and just redraws those pixels if the window is unable to draw anything itself.

Note, however, that if the system can't capture all of the pixels—say because

the window was partially covered—then the parts that it couldn't get are filled

in with the class brush.

Which is usually white.

What is the hollow brush for?

THE HOLLOW BRUSH is a brush that doesn't do anything. You can use it when

you're forced to use a brush but you don't want to.

As one example, you can use it as your class brush. Then when your

program stops responding and Windows decides to do the "white flash," it

grabs the hollow brush and ends up not drawing anything. (At least, that's

how it worked on Windows 2000. Things have changed in Windows XP, as

described previously.)

Another place you can use the hollow brush is when handling the WM_CTL-

COLOR* messages. Those messages require you to return a brush, which will

be used to erase the background. If you don't want to erase the background, a

hollow brush does the trick.

120 J S S T H E OLD N E W T H I N G

What's so special about the
desktop window?

T H E WINDOW RETURNED by the GetDesktopWindow function is very special,

and I see people abusing it all over the place.

For example, many functions in the shell (such as IShe l lFo lde r : :

EnumObj ec t s) accept a window handle parameter to be used in case a dialog

box is needed.

What happens if you pass GetDesktopWindow () ?

If a dialog box does indeed need to be displayed, you hang the system.

Why?

• A modal dialog disables its owner.

• Every window is a descendant of the desktop.

• When a window is disabled, all its descendants are also disabled.

Put this together: If the owner of a modal dialog is the desktop, the

desktop becomes disabled, which disables all of its descendants. In other

words, it disables every window in the system. Even the one you're trying

to display!

You also don't want to pass GetDesktopWindow () as your hwndParent. If

you create a child window whose parent is GetDesktopWindow (), your win

dow is now glued to the desktop window. If your window then calls something

like MessageBox (), well, that's a modal dialog, and then the rules above kick

in and the desktop gets disabled and the machine is toast.

The situation in real life is not quite as dire as I described it, however. The

dialog manager detects that you've passed GetDesktopWindow () as the

hwndParent and converts it to NULL. You'll see more details on this subject

when we discuss the workings of the dialog manager.

So what window do you pass if you don't have a window?

If there is no UI being displayed on the thread yet, pass NULL. To the window

manager, an owner equal to NULL means "Create this window without an

CHAPTER EIGHT Window Management ^ ^ ill

owner." To the shell, a UI window of NULL typically means "Do not display

UI," which is likely what you wanted anyway.

Be careful, however: If your thread does have a top-level unowned window,

creating a second such window modally will create much havoc if the user

switches to and interacts with the first window. (You'll see more of this when

we discuss modality.) If you have a window, use it.

The correct order for disabling
and enabling windows

IF YOU CHOOSE to display a modal window manually rather than using a

function such as DialogBoxParam or MessageBox, you need to disable the

owner and enable the modal child, and then reverse the procedure when the

modal child is finished.

And if you do it wrong, focus will get all messed up.

If you are finished with a modal dialog, your temptation would be to clean

up in the following order:

1. Destroy the modal dialog.

2. Reenable the owner.

But if you do that, you'll find that foreground activation doesn't go back to

your owner. Instead, it goes to some random other window. Explicitly setting

activation to the intended owner "fixes" the problem, but you still have all the

flicker, and the Z-order of the interloper window gets all messed up.

What's going on?

When you destroy the modal dialog, you are destroying the window with

foreground activation. The window manager now needs to find somebody

else to give activation to. It tries to give it to the dialog's owner, but the owner

is still disabled, so the window manager skips it and looks for some other window,

somebody who is not disabled.

That's why you get the weird interloper window.

122 48^. T H E OLD N E W T H I N G

The correct order for destroying a modal dialog is

1. Reenable the owner.

2. Destroy the modal dialog.

This time, when the modal dialog is destroyed, the window manager looks

to the owner and, hey, this time it's enabled, so it inherits activation.

No flicker. No interloper.

A subtlety in restoring
the previous window position

A COMMON FEATURE for many applications is to record their screen location when

they shut down and reopen at that location when relaunched. Even if you do the

right thing and use the GetWindowPlacement and SetWindowPlacement

functions mentioned in "Why does the taskbar default to the bottom of the

screen?" (Chapter 4) to save and restore your window positions, you can still run

into a problem if you restore the window position unconditionally.

If a user runs two copies of your program, the two windows end up in

exactly the same place on the screen. Unless the user is paying close attention

to the taskbar, it looks like running the second copy had no effect. Now things

get interesting.

Depending on what the program does, the second copy may encounter a

sharing violation, or it may merely open a second copy of the document for

editing, or two copies of the song may start playing, resulting in a strange echo

effect because the two copies are out of sync. Even more fun is if the user

clicks the Stop button and the music keeps playing! Why? Because only the

second copy of the playback was stopped. The first copy is still running.

I know one user who not infrequently gets as many as four copies of a

multimedia title running, resulting in a horrific cacophony as they all play

their opening music simultaneously, followed by mass confusion as the user

tries to fix the problem, which usually consists of hammering the Stop button

C H A P T E R EIGHT Window Management ^ S ^ 123

on the topmost copy. This stops the topmost instance, but the other three are

still running!

If a second copy of the document is opened, the user may switch away from

the editor, switch back to the first instance, and think that all the changes were

lost. Or the user may fail to notice this and make a conflicting set of changes

to the first instance. Then all sorts of fun things happen when the two copies

of the same document are saved.

Moral of the story: If your program saves and restores its screen position,

you may want to check whether a copy of the program is already running

at that screen position. If so, move your second window somewhere else so that

it doesn't occupy exactly the same coordinates, or just use the CW_USEDEFAULT

values to ask the window manager to choose a position for you.)

Ul-modality versus code-modality

FROM THE END-USERS' point of view, modality occurs when the users are

locked into completing a task after it is begun, with the only escape being to

cancel the entire operation. Opening a file is an example of a modal operation:

When the Open command has been selected, users have no choice but to

select a file for opening (or to cancel the operation). While attempting to open

a document, the users cannot interact with the existing document, say, to

scroll it around to look for some text that would give a clue as to what file to

open next. This is typically manifested in the window manager and exhibited

to the end user by disabling the document window for the duration of the

task (for example, while the common File Open dialog is displayed).

From a programmer's point of view, modality can be viewed as a function that

performs some operation that displays UI and doesn't return until that operation

is complete. In other words, modality is a nested message loop that continues

processing messages until some exit condition is reached. In our example above,

the modality is inherent in the GetOpenFileName function, which does not

return until the user selects a filename or cancels the dialog box.

124 ^®S THE OLD NEW THING

Note that these two senses of modality do not necessarily agree. You can

create something that is Ul-modal-—that is, does not let the user interact

with the main window until some other action is complete—-while internally

coding it as a nonmodal function.

Let's code up an example of this behavior, to drive the point home.

As always, start with our scratch program from Chapter 7, "Short Topics

in Windows Programming," and then make the following changes:

#include <commdlg.h>

HWND g_hwndFR;
TCHAR g_szFind[80];
FINDREPLACE g_fr = { sizeof(g_fr) };
UINT g_uMsgFindMsgString;

void CreateFindDialog(HWND hwnd)

{
if (!g_hwndFR) {

g_uMsgFindMsgString = RegisterWindowMessage(FINDMSGSTRING)
if (g_uMsgFindMsgString) {

g_fr.hwndOwner = hwnd;
g_fr.hlnstance = g_hinst;
g_fr.IpstrFindWhat = g szFind;
g_fr.wFindWhatLen • 80;
g_hwndFR = FindText(&g_fr);

}
i

}

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{
switch (ch) {
case ' ': CreateFindDialog(hwnd); break;

void OnFindReplace(HWND hwnd, FINDREPLACE *pfr)
{

if (pfr->Flags & FR DIALOGTERM) {
DestroyWindow(g_hwndFR);
gJiwndFR = NULL;

}
}

C H A P T E R E I G H T Window Management ^ 125

/ / Add to WndProc
HANDLE_MSG(hwnd, WM_CHAR, OnChar);

de f au l t :
if (uiMsg == g_uMsgFindMsgString && g_uMsgFindMsgString)

OnFindReplace(hwnd, (FINDREPLACE*)lParam);

}
break;

// Edit WinMain
while (GetMessage(&msg, NULL, 0, 0)) {

if (g_hwndFR && IsDialogMessage(g_hwndFR, &msg)) {
} else {

TranslateMessage(&msg);
DispatchMessage(&msg); ' ! • • • • • • • • • • • • •

This is an unexciting example of a modeless dialog; in our case, the Find

dialog is displayed when you press the spacebar. Observe that you can click

back to the main window while the Find dialog is up; that's because the Find

dialog is modeless. As is typical for modeless dialogs, dispatching its messages

is handled in the main message loop with a call to the I s D i a l o g M e s s a g e

function.

We can turn this into a Ul-modal dialog very simply:

void CreateFindDialog(HWND hwnd)

if (!g_hwndFR) {
g_uMsgFindMsgString = RegisterWindowMessage(FINDMSGSTRING);
if (g_uMsgFindMsgString) {

g_fr.hwndOwner = hwnd;
g_fr.hlnstance = g_hinst;
g_fr.IpstrFindWhat = g_szFind;
g_fr.wFindWhatLen = 80;
g_hwndFR = FindText(&g_fr);
if (g_hwndFR) {

EnableWindowfhwnd, FALSE);

}
}

} -

126 -S^S T H E OLD NEW T H I N G

void OnFindReplace(HWND hwnd, FINDREPLACE *pfr)

{
if (pfr->Flags & FR_DIALOGTERM) {

EnableWindow{hwnd, TRUE) ,•
DestroyWindow(g_hwndFR);
g_hwndFR = NULL;

}
]

Notice that we carefully observed the rules for enabling and disabling windows.

When you run this modified program, everything seems the same except

that the Find dialog is now modal. You can't interact with the main window

until you close the Find dialog. The Find dialog is modal in the UI sense.

However, the code is structured in the nonmodal manner. There is no dialog

loop; the main window loop dispatches dialog messages as necessary.

You typically do not design your modal UI in this manner because it makes

the code harder to structure. Observe, for example, that the code to manage

the dialog box is scattered about, and the management of the dialog needs to

be handled as a state machine because each phase returns back to the main

message loop. The purpose of this demonstration is to show that UI modal

ity need not be coupled to code modality.

It is also possible to have code modality without UI modality. In fact, this

is far more common than the Ul-modal-but-not-code-modal scenario.

You encounter modal loops without a visible change in UI state when you

drag the scrollbar thumb, drag the window caption, display a pop-up menu,

or initiate a drag/drop operation, among other places. Any time a nested mes

sage loop is constructed, you have code modality.

The W M _ Q U I T message and modality

THE TRICK WITH modality is that when you call a modal function, the responsi

bility of message dispatch is handled by that function rather than by your main

program. Consequently, if you have customized your main program's message

pump, those customizations are lost when you lose control to a modal loop.

C H A P T E R E I G H T Window Management 4BK 127

The other important thing about modality is that a WM_QUIT message

always breaks the modal loop. Remember this in your own modal loops! If

ever you call the PeekMessage function or the GetMessage function and get

a WM_QUIT message, you must not only exit your modal loop, but you must

also regenerate the WM_QUIT message (via the PostQuitMessage function) so

that the next outer layer sees the WM_QUIT message and does its cleanup, too.

If you fail to propagate the message, the next outer layer will not know that it

needs to quit, and the program will seem to "get stuck" in its shutdown code,

forcing the user to terminate the process the hard way.

Here's the basic idea of how your modal loops should repost the quit message

to the next outer layer:

BOOL WaitForSomething(void)
I

MSG msg;
BOOL fResult = TRUE; / / assume i t worked
while (!SomethingFinished ()) {

i f (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

} e l s e {
/ / We received a WM_QUIT message; b a i l out !
CancelSomething();
II Re-post the message t h a t we r e t r i e v e d
PostQuitMessage(msg.wParam);
fResult = FALSE; / / qu i t before something f in i shed
break;

}
}
r e tu rn fResul t ;

Suppose your program starts some operation and then calls Wait

ForSomething (). While waiting for something to finish, some other part of

your program decides that it's time to exit. (Perhaps the user clicked on a Quit

button in another window.) That other part of the program will call Post

QuitMessage (wParam) to indicate that the message loop should terminate.

The posted quit message will first be retrieved by the GetMessage in the

WaitForSomething function. The GetMessage function returns FALSE if

128 -^~K T H E OLD NEW T H I N G

the retrieved message is a WM_QUIT message. In that case, the "else" branch of

the conditional is taken, which cancels the "Something" operation in progress,

and then posts the quit message back into the message queue for the next

outer message loop to handle.

When WaitForSomething returns, control presumably will fall back out

into the programs main message pump. The main message pump will then

retrieve the WM_QUIT message and do its exit processing before finally exiting

the program.

And if there were additional layers of modality between WaitForSomething

and the programs main message pump, each of those layers would retrieve the

WM_QUIT message, do their cleanup, and then repost the WM_QUIT message

(again, via PostQuitMessage) before exiting the loop.

In this manner, the WM_QUIT message gets handed from modal loop to

modal loop, until it reaches the outermost loop, which terminates the

program. Reposting the WM_QUIT message ensures that the program really

does quit.

"But wait," I hear you say. "Why do I have to do all this fancy WM_QUIT foot

work? I could just have a private little global variable named something like

g_f Qui t t ing . When I want the program to quit, I just set this variable, and

all of my modal loops check this variable and exit prematurely if it is set.

Something like this:

// Warning: This code is wrong
BOOL MyWaitForSomething(void)

{
MSG msg;
while (!SomethingFinished()) {

if (g_fQuitting) {
CancelSomethingO ;
return FALSE;

)
if (GetMessage(&msg, NULL, 0, 0)) {

TranslateMessage(&msg) ,•
DispatchMessage(&msg);

i

}
return TRUE;

C H A P T E R EIGHT Window Management -se^ 129

"And so I can solve the problem of the nested quit without needing to do

all this PostQuitMessage nonsense."

And you'd be right, if you controlled every single modal loop in your program.

But you don't. For example, when you call the DialogBox function, the dialog

box code runs its own private modal loop to do the dialog box UI until you

get around to calling the EndDialog function. And whenever the user clicks

on any of your menus, Windows runs its own private modal loop to do the

menu UI. Indeed, even the resizing of your application's window is handled

by a Windows modal loop.

Windows, of course, has no knowledge of your little g_f Qui t t ing variable, so

it has no idea that you want to quit. It is the WM_QUIT message that serves this

purpose of coordinating the intention to quit among separate parts of the system.

Notice that this convention regarding the WM_QUIT message cuts both

ways. You can use this convention to cause modal loops to exit, but it also

obliges you to respect this convention so that other components (including the

window manager itself) can get your modal loops to exit.

The importance of setting
the correct owner for modal UI

IF YOU DECIDE to display some modal UI, it is important that you set the cor

rect owner for that UI. If you fail to heed this rule, you will find yourself chasing

some very strange bugs.

Let's return to our scratch program and intentionally set the wrong owner

window, so that you can see the consequences:

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{
switch (ch) {
case ' ' :

// Wrong!
MessageBox(NULL, TEXT("Message"), TEXT("Title"), MB_OK);
if (!IsWindow(hwnd)) MessageBeep(-1);
break;

}
}

130 J S ^ T H E OLD NEW T H I N G

// Add to WndProc
HANDLE_MSG(hwnd, WM_CHAR, OnChar);

Run this program, press the spacebar, and instead of dismissing the mes

sage box, click the X button in the corner of the main window. Notice that

you get a beep before the program exits.

What happened?

The beep is coming from our call to the MessageBeep function, which in

turn is telling us that our window handle is no longer valid. In a real program

that kept its state in per-window instance variables (instead of in global vari

ables like we do), you would more likely crash because all the instance variables

would have gone away when the window was destroyed. In this case, the win

dow was destroyed while inside a nested modal loop. As a result, when control

returned to the caller, it is now a method running inside an object that has

been destroyed. Any access to an instance variable is going to access memory

that was already freed, resulting in memory corruption or an outright crash.

The visual state has fallen out of sync with the stack state.

Here's an explanation in a call stack diagram:

WinMain
DispatchMessage(hwnd, WM_CHAR)
OnChar
MessageBox(NULL)
. . . modal dialog loop ...
DispatchMessage(hwnd, WM_CLOSE)
DestroyWindow(hwnd)
WndProc(WM DESTROY)

. . . clean up the window ...

When you clean up the window, you typically destroy all the data struc

tures associated with the window. Notice, however, that you are freeing data

structures that are still being used by the OnChar handler deeper in the stack.

Eventually, control unwinds back to the OnChar, which is now running with

an invalid instance pointer. (If you believe in C++ objects, you would find

that its t h i s pointer has gone invalid.)

C H A P T E R E I G H T Window Management 131

This was caused by failing to set the correct owner for the modal MessageBox

call, allowing the user to interact with the frame window at a time when the

frame window isn't expecting to have its state changed.

Even more problematic, the user can switch back to the frame window and

press the spacebar again. The result: another message box. Repeat another

time and you end up with a stack that looks like this:

WinMain
Dispa tchMessage(hwnd, WM_CHAR)

OnChar
MessageBox(NULL)

. . . modal d i a l o g l o o p . . .
Dispa tchMessage(hwnd, WM_CHAR)

OnChar
MessageBox(NULL)

. . . modal d i a l o g l oop . . .
D i spa tchMessage(hwnd , WM_CHAR)

OnChar
MessageBox(NULL)

. . . modal d i a l o g l o o p . . .

There are now four top-level windows, all active. If the user dismisses them in

any order other than the reverse order in which they were created, you're going to

have a problem on your hands. For example, if the user dismisses the second mes

sage box first, the part of the stack corresponding to that nesting level will end up

returning to a destroyed window when the third message box is finally dismissed.

Here is the very simple fix:

/ / p a s s t h e c o r r e c t owner window
MessageBox(hwnd, TEXT("Message") , T E X T (" T i t l e ") , MBJOK);

Because MessageBox is modal, it disables the owner while the modal UI is

being displayed, thereby preventing the user from destroying or changing the

owner window's state when it is not expecting it.

This is why functions that can potentially display UI accept a window handle

as one of its parameters. They need to know which window to use as the owner for

any necessary dialogs or other modal operations. If you call such functions from a

thread that is hosting UI, you must pass the handle to the window you want to use

132 ^ ^ s T H E OLD NEW T H I N G

as the UI owner. If you pass NULL (or worse, GetDesktopWindow), you may find

yourself in the same bad state that our buggy sample program demonstrated.

If you are displaying a modal dialog from another modal dialog, it is important

to pass the correct window as the owner for the second dialog. Specifically, you

need to pass the modal dialog initiating the subdialog and not the original

frame window. Here's a stack diagram illustrating:

MainWindow
DialogBox(hwndOwner = main window) [dialog 1]
. . . dialog manager . . .
DlgProc
DialogBox(hwndOwner = dialog 1) [dialog 2]

If you mess up and pass the main window handle when creating the second

modal dialog, you will find yourself back in a situation analogous to what we

had last time: The user can dismiss the first dialog while the second dialog is

up, leaving its stack frames orphaned.

Interacting with a program
that has gone modal

So FAR, WE'VE been highlighting the importance of setting the right owner

window for modal UI. It is also important, when manipulating a window, to

respect its modality. For example, consider the program we ended up with last

time, the one which calls the MessageBox function to display a modal dialog.

If we want to get that program to exit and send a WM_CLOSE message to

the main window instead of its modal pop-up, the main window would likely

exit and leave the message box stranded, resulting in the same stack trace with

out support we saw when we neglected to set the correct owner for the

MessageBox.

Respect the modality of a window. If it is disabled, don't try to get it to do

things; it's disabled because it doesn't want to do anything right now. You can

go hunting for its modal pop-up and talk to that pop-up. (Unless, of course,

that pop-up is itself disabled; in which case, you get to keep on hunting.)

C H A P T E R E I G H T Window Management ^=^ 133

A timed MessageBox,
the cheap version

As NOTED PREVIOUSLY, when you know the conventions surrounding the

WM_QUIT message, you can put them to your advantage.

The more robust you want the TimedMessageBox function to be, the more

work you need to do. Here's the cheap version, based on the sample in Know

ledge Base article Q181934, but with some additional bug fixes:

static BOOL s_fTimedOut;
static HWND s hwndMBOwnerEnable;

—
void CALLBACK
CheapMsgBoxTooLateProc(HWND hWnd, UINT uiMsg,

UINT_PTR idEvent, DWORD dwTime)
{

s_f TimedOut = TRUE;
if (sJiwndMBOwnerEnable)

EnableWindow(s_hwndMBOwnerEnable, TRUE);
PostQuitMessage(0) ; // value not important

// Warning! Not thread-safe! See discussion,
int CheapTimedMessageBox(HWND hwndOwner, LPCTSTR ptszText,

LPCTSTR ptszCaption, UINT uType, DWORD dwTimeout)

{
s_fTimedOut = FALSE;
s_hwndMBOwnerEnable = NULL;
if (hwndOwner && IsWindowEnabled(hwndOwner)) f

s_hwndMBOwnerEnable = hwndOwner;
1

UINT idTimer = SetTimer(NULL, 0, dwTimeout,
CheapMsgBoxTooLateProc);

int iResult = MessageBox(hwndOwner,
ptszText, ptszCaption, uType);

if (idTimer) KillTimer(NULL, idTimer);
if (s_fTimedOut) { // We timed out

MSG msg;
// Eat the fake WM_QUIT message we generated
PeekMessage(&msg, NULL, WM_QUIT, WM_QUIT, PM_REM0VE);
iResult = -1;

}
return iResult;

}

134 ^ S ^ THE OLD NEW THING

This CheapTimedMessageBox function acts just like the MessageBox

function, except that if the user doesn't respond within dwTimeout milliseconds,

we return - 1 . The limitation is that only one timed message box can be active at

a time. If your program is single threaded, this is not a serious limitation, but if

your program is multithreaded, this will be a problem.

Do you see how it works?

The global static variable s_fTimedOut tells us whether we generated a

fake WM_QUIT message as a result of a timeout. When the MessageBox func

tion returns because we timed out, we use the PeekMessage function to

remove the fake WM_QUIT message from the queue before returning.

Note that we remove the WM_QUIT message only if we are the ones who

generated it. In this way, WM_QUIT messages generated by other parts of the

program remain in the queue for processing by the main message loop.

Note further that when we decide that the timeout has occurred, we

reenable the original owner window before we cause the message box to bail

out of its message loop by posting a quit message. Those are the rules for the

correct order for disabling and enabling windows.

Note also that we used a thread timer rather than a window timer. That's

because we don't own the window being passed in and therefore don't know

what timer IDs are safe to use. Any timer ID we pick might happen to collide

with a timer ID being used by that window, resulting in erratic behavior.

Recall that when you pass NULL as the hwnd parameter to the Set

Timer function and also pass zero as the nIDEvent parameter, the SetTimer

function creates a brand new timer, assigns it a unique ID, and returns the ID.

Most people, when they read that part of the specification for SetTimer,

scratch their heads and ask themselves, "Why would anybody want to use

this?"

Well, this is one scenario where this is exactly what you want.

Next comes the job of making the function a tad more robust. But before

we do that, we'll need to cover two side topics.

CHAPTER EIGHT Window Management JB< 135

The scratch window

SOMETIMES YOU NEED a quick-and-dirty window and you don't want to go

through all the hassle of registering a class for it. For example, you might

need a window to listen for notifications, or you just need a window to own

a message box.

To save yourself the trouble of registering a class for every single thing you

might need a window for, you can get lazy and register a single "scratch win

dow" class and simply subclass it on an as-needed basis:

ATOM RegisterScratchWindowClass(void)

{
WNDCLASS wc = {

0, // style
DefWindowProc, // lpfnWndProc
0, // cbClsExtra
0, // cbWndExtra
g_hinst, // this file's HINSTANCE
NULL, // hlcon
LoadCursor(NULL, IDC_ARROW), // hCursor
(HBRUSH)(COLOR_BTNFACE+l), // hbrBackground
NULL, // IpszMenuName

TEXT("ScratchWindow"), // IpszClassName

) f

return RegisterClass(&wc);

HWND
CreateScratchWindow(HWND hwndParent, WNDPROC wp)

HWND hwnd;
hwnd = CreateWindow(TEXT("ScratchWindow"), NULL,

hwndParent ? WS_CHILD : WS_0VERLAPPED,
0, 0, 0, 0, hwndParent, NULL, NULL, NULL);

if (hwnd) {
SubclassWindow(hwnd, wp) ;

}
return hwnd;

I 3 6 ^ K T H E OLD NEW T H I N G

Now if you need a quick one-off window, you can just create a scratch

window instead of creating a custom window class just to handle that

specific task.

The bonus window bytes at
GWLP_USERDATA

THE WINDOW MANAGER provides a pointer-sized chunk of storage you can access

via the GWLPJJSERDATA constant. You pass it to the GetwindowLongPtr and

SetwindowLongPtr functions to read and write that value. Most of the time,

all you need to attach to a window is a single pointer value anyway, so the free

memory in GWLP_USERDATA is all you need.

Officially, these window bytes belong to the window class and not to the

code that creates the window. However, this convention is not adhered to

consistently. If you cannot be sure that your clients will keep their hands off

the GWLP_USERDATA bytes, then it's probably safest to avoid those bytes.

•->•

A timed MessageBox,
the better version

W E CAN NOW address a limitation of our first attempt at a timed MessageBox,

namely that it could be used from only one thread at a time. Now we work to

remove that limitation.

As you might recall, the reason why it could be used from only one thread at

a time was that we kept the "Did the message box time out?" flag in a global. To

fix it, we will move the flag to a per-instance location, namely a helper window.

Start with the scratch program, add the code for the scratch window class,

and then add the following:

#define IDT_TOOLATE 1

typedef struct TOOLATEINFO {
BOOL fTimedOut;

C H A P T E R E I G H T Window Management 4tos 137

HWND hwndReenable;
} TOOLATEINFO;

void CALLBACK
MsgBoxTooLateProc(HWND hwnd, UINT uiMsg,

UINT_PTR idEvent, DWORD dwTime)

{
TOOLATEINFO *ptli = reinterpret_cast<TOOLATEINFO*>(

GetWindowLongPtr(hwnd, GWLP_USERDATA));
if (ptli) {

ptli->fTimedOut • TRUE;
if (ptli->hwndReenable) {

EnableWindow(ptli->hwndReenable, TRUE);
}
PostQuitMessage(0);

}
}

int TimedMessageBox(HWND hwndOwner, LPCTSTR ptszText,
LPCTSTR ptszCaption, UINT uType, DWORD dwTimeout)

{
TOOLATEINFO tli;
tli.fTimedOut • FALSE;
BOOL fWasEnabled = hwndOwner && IsWindowEnabled(hwndOwner) ,•
tli.hwndReenable = fWasEnabled ? hwndOwner : NULL;

HWND hwndScratch = CreateScratchWindow(hwndOwner,
DefWindowProc);

if (hwndScratch) {
SetWindowLongPtr(hwndScratch, GWLPJJSERDATA,

reinterpret_cast<LONG_PTR>(&tli));
SetTimer(hwndScratch, IDT_TOOLATE,

dwTimeout, MsgBoxTooLateProc);

}
int iResult = MessageBox(hwndOwner, ptszText,

ptszCaption, uType);
if (hwndScratch) {

KillTimer(hwndScratch, IDT_TOOLATE);
if (tli.fTimedOut) { // We timed out

MSG msg;
// Eat the fake WM_QUIT message we generated
PeekMessageUmsg, NULL, WM_QUIT, WM_QUIT, PM_REMOVE) ;
iResult = -1;

)
DestroyWindow(hwndScratch);

138 -SS^ THE OLD NEW THING

return iResult;

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)
{

switch (ch) {
case ' ' :

TimedMessageBox(hwnd, TEXT("text"), TEXT("caption"),
MB_OK, 2000) ;

break;
}

}

// add to WndProc
HANDLE_MSG(hwnd, WM_CHAR, OnChar);

// add to InitApp
RegisterScratchWindowClass() ;

This is basically the same as the previous cheap version, just with slightly

different bookkeeping.

The state of the timed message box is kept in the structure TOOLATEINFO.

But how to pass this state to the timer callback? You can't pass any parame

ters to timer callbacks.

Aha, but timer callbacks do get a window handle. As we discovered above,

however, we can't just hang the callback off the hwndOwner window because we

don't know how to pick a timer ID that doesn't conflict with an existing one.

The solution: Hang it on a window of our own creation. That way, we get

a whole new space of timer IDs to play in, separate from the timer IDs that

belong to hwndOwner. The scratch window is a convenient window to use. We

don't pass an interesting window procedure to CreateScratchWindow because

there is no need; all we wanted was a window to own our timer.

A timed context menu

T H I S IS SORT of in the same spirit as our preceding exercise in writing a

timed message box, but this is much easier. Here, we use the handy-dandy

WM_CANCELMODE message to get us out of menu mode:

C H A P T E R E I G H T Window Management -sev 139

void CALLBACK
MenuTooLateProc(HWND hwnd, UINT uiMsg,

UINT_PTR idEvent, DWORD dwTime)

{
SendMessage(hwnd, WM_CANCELMODE, 0, 0) ;

}

BOOL
TimedTrackPopupMenuEx(HMENU hMenu, UINT u F l a g s , i n t x , i n t y ,

HWND hwnd, LPTPMPARAMS pTpm, DWORD dwTimeout)

UINT idTimer = SetTimer(NULL,0,
dwTimeout, MenuTooLateProc) ;

BOOL f R e s u l t = TrackPopupMenuEx(hMenu, u F l a g s , x , y ,
hwnd, pTpm);

i f (idTimer) Kil lTimer(NULL, i d T i m e r) ;
r e t u r n f R e s u l t ;

}

Before displaying the menu, we set a timer. (And we use a thread timer

because we don't own the hwnd window and therefore don't know what timer

IDs are safe to use.) If the timer fires, we send ourselves a WM_CANCELMODE

message to cancel menu mode. This causes the system to act as if the user had

dismissed the menu without selecting anything, either by pressing the Escape

key or clicking outside the menu. The call to the TrackPopupMenuEx function

returns after the user has selected something (or the timeout has elapsed), at

which point we clean up by destroying our timer before returning.

Why does my window receive messages
after it has been destroyed?

WHAT LOOKS LIKE a window receiving a message after it was destroyed usu

ally, upon closer inspection, isn't. For example, you might have a function that

goes like this:

Victim(HWND hwnd)

{
Something* p = GetSomethingAssociatedWithWindow(hwnd);
p->BeforeSomethingElse();

I4-0 JS=N THE OLD NEW THING

DoSometh ingEl se (hwnd) ;
p - > A f t e r S o m e t h i n g E l s e () ; / / c r a s h h e r e !

}

When you investigate this in the debugger, you see a stack trace like this:

YourApp!Victim
YourApp!WndProc
user32!...

And when you ask the debugger for the condition of the window hwnd, it tells

you that it isn't a valid window handle. How did your window procedure get

a message for a window after it was destroyed?

Because the window still existed when the message was delivered.

What has usually happened is that somewhere during the processing of the

DoSomething function, the window hwnd was destroyed. As part of its destruc

tion, its associated Something data was also destroyed. After the DoSomething

function returns, the v ic t im function tries to use the pointer p, which is no

longer valid because the object was destroyed when the window was. The stack

trace looks, on casual inspection, as if the window procedure was called for a

window after it was destroyed. But a deeper study of the steps that led up to this

condition usually reveals that the real problem is that the window was destroyed

while it was busy processing a message.

.

C H A P T E R N I N E

REMINISCENCES ON HARDWARE

ONE OF THE roles of an operating system is to insulate applications from

hardware to some degree or other. This is hard enough with properly

functioning hardware, but bad hardware makes the problem even more difficult.

Here are some hardware-related stories, some dealing with bad hardware, and

others just with the complexity of dealing with hardware in the first place,

even the type that works just fine.

^ >

Hardware backward compatibility

BACKWARD COMPATIBILITY APPLIES not only to software. It also applies to hard

ware. And when hardware goes bad, the software usually takes the blame.

The HLT instruction tells the CPU to stop ("halt") executing instructions

until the next hardware interrupt. This is a big win on laptops because it reduces

power consumption and thereby saves your lap from third-degree burns.

One of my colleagues had this implemented and working in Windows 95 but

discovered to his dismay that many laptops (some from a major manufacturer)

locked up unrecoverably if you issued a HLT instruction.

So we had to back it out.

141

1 4 2 4 = ^ T H E OLD NEW T H I N G

Then the aftermarket HLT programs came out and people wrote, "Stupid

Microsoft. Why did they leave this feature out of Windows:1" I had to sit

quietly while people accused Microsoft of being stupid and/or lazy and/or

selfish.

But now the statute of limitations has expired, so at least I can say something

(although I'm still not going to name that major manufacturer, nice try).

My favorite bad hardware, however, was a system which would crash if the

video card was put in an expansion slot too far away from the power supply.

Manufacturers will do anything to save a nickel.

And yet Windows 95 ran on almost all of this bad hardware. Why did we

go to all this effort to accommodate bad hardware? Consider the following:

• You have a computer that works okay.

• You go to the store and buy Windows 95.

• You take it home and install it.

• Your computer crashes.

Whom do you blame? Hint: not your computer manufacturer.

The ghost CD-ROM drives

M Y FAVORITE BAD CD-ROM drive from Windows 95 was one where the

manufacturer cut a corner to save probably twenty-five cents.

The specification for CD-ROM controllers indicates that each can host up

to four CD-ROM drives. When you talk to the controller, you specify which

drive you want to communicate with.

The manufacturer of a certain brand of CD-ROM controller decided that

listening for the"Which drive?" was too much work, so they ignored the drive

number in every I /O request and always returned the status of drive 1. When

Windows 95 Plug and Play went off to detect your CD-ROM drives, it first

asked the controller, "Is drive 1 installed?"

The controller responded, "Yes, it is."

C H A P T E R N I N E Reminiscences on Hardware ^=^ 143

Then Plug and Play asked, "Is drive 2 installed?"

Because the controller ignored the drive number in the request, it interpreted

this as a request for the status of drive 1 and consequently responded, "Yes, it is."

Repeat for drives 3 and 4.

Result: Windows 95 detected four CD-ROM drives.

Apparently, this was a popular card because the question came up about

once a week. (And the solution was to go into the Device Manager and disable

three of the devices. Deleting them doesn't work, as mentioned in Chapter 5,

"Puzzling Interface Issues," when we discussed why the Links folder keeps

re-creating itself.)

The Microsoft corporate network:
1*7 times worse than hell

O N E OF THE tests performed by Windows Hardware Quality Labs (WHQL)

was the network card packet stress test that had the nickname Hell. The purpose

of the test was to flood a network card with an insane number of packets, to see

how it handled extreme conditions. It uncovered packet-dropping bugs, timing

problems, all sorts of great stuff. Network card vendors used it to determine

what size internal hardware buffers should be to cover "all reasonable network

traffic scenarios."

It so happened that at the time this test had currency (1996 era), the traffic

on the Microsoft corporate network was approximately 1.7 times worse than

the N C T packet stress test. A card could pass the Hell test with flying colors,

yet drop 90% of its packets when installed on a computer at Microsoft because

the card simply couldn't keep up with the traffic.

The open secret among network card vendors was, "If you want your card

to work with Windows, submit one card to W H Q L and send another to a

developer on the Windows team."

Why was the Microsoft corporate network so horrible? Because there was

more traffic going over the corporate network than in any other network that

anyone had ever seen. Vendors would regularly show up at Microsoft to pitch

144 J * S THE OLD NEW THING

their newest coolest hardware solutions. And wed put them on the corporate

network and watch the vendors' solutions collapse under the traffic. Few vendors

had systems that could handle the load.

The Microsoft network administrators selected the NetBEUI protocol as

the campus standard. This was really a "best of a bad lot" decision, because

none of the existing network standards supported by Windows could handle

a single network as large as Microsoft's. T C P / I P was not a good choice at this

time, because neither the Domain Name Service (DNS) nor the Dynamic

Host Configuration Protocol (DHCP) had been invented yet. Static host

tables are absurd on a network with 50,000 computers.

NetBEUI had the major shortcoming of not being a routable protocol; as

a result, name resolution had to be performed via broadcasts. Consequently,

an unbelievable amount of broadcast traffic was going out on the network.

The shift from NetBEUI to T C P / I P began around 1996 and was made

possible by the availability of D H C P and Windows Internet Name Services

(WINS) to bring the tasks of IP address assignment and name resolution

down to a manageable level. Although Microsoft long ago moved away from

NetBEUI, an insane amount of traffic is still on our corporate network. The

Microsoft corporate network is one of the most complicated corporate net

works in the world, and it's a remarkable tribute to the IT department that it

just works.

When vendors insult themselves

DURING WINDOWS 95, when we were building the Plug and Play infrastructure,

we got an angry letter from a hardware vendor (who shall remain nameless)

complaining that we intentionally misspelled the vendor company name in

our configuration files in a manner that made the name similar to an insult

ing word.

Of course, this is a serious accusation, and we set to work to see what

happened. It didn't take long to find the misspelling. The question now was

why we spelled it wrong.

C H A P T E R N I N E Reminiscences on Hardware a&. 145

Further investigation revealed that the reason the company name was

misspelled is that they misspelled their own name in their hardware devices'

firmware. When Plug and Play asked the device for its manufacturer name,

it replied with the misspelled name. So, of course, our INF file had to have

an entry with the misspelled name so that we could identify the device when

the user connected it. (The name displayed to the user did not contain the

misspelling.)

We sent a polite letter to the company explaining the reason for the

misspelling. As far as I am aware, they never brought up the subject again.

Defrauding the W H Q L driver
certification process

PEOPLE HAVE HAD all sorts of interesting experiences with drivers. Some

people noticed a driver that blue-screened under normal conditions, but when

you enabled the Driver Verifier (to try to catch the driver doing whatever bad

thing it was doing), the problem went away. Others bemoan that certification

by the Windows Hardware Quality Labs (WHQL) didn't seem to improve

the quality of the drivers.

Video drivers will do anything to outdo their competition. Every so often,

a company is caught cheating on benchmarks, for example. I remember one

driver that ran the DirectX "3D Tunnel" demonstration program extremely

fast, demonstrating how totally awesome their video card was. Except that if

you renamed TUNNEL . EXE to FUNNEL . EXE, it ran slowly again.

Another one checked whether you were printing a specific string used by a

popular benchmark program. If so, it only drew the string a quarter of the

time and merely returned without doing anything the other three-quarters of

the time. Bingo! Their benchmark numbers just quadrupled.

Anyway, similar shenanigans are not unheard of when submitting a driver

to W H Q L for certification. Some unscrupulous drivers detect that they are

being run by W H Q L and disable various features so that they pass certification.

Of course, they also run dog slow in the W H Q L lab, but that's okay, because

146 *&. THE OLD NEW THING

W H Q L is interested in whether the driver contains any bugs, not whether

the driver has the fastest triangle fill rate in the industry.

The most common cheat I've seen is drivers that check for a secret "Enable

Dubious Optimizations" switch in the Registry or some other place external

to the driver itself. They take the driver and put it in an installer which does

not turn the switch on and submit it to W H Q L . When W H Q L runs the

driver through all its tests, the driver is running in "safe but slow" mode and

passes certification with flying colors.

The vendor then takes that driver (now with the W H Q L stamp of approval)

and puts it inside an installer that enables the secret "Enable Dubious Optimi

zations" switch. Now the driver sees the switch enabled and performs all sorts

of dubious optimizations, none of which were tested by W H Q L .

A twenty-foot-long computer

BACK IN THE days of Windows 95, when Plug and Play was in its infancy, one

of the things the Plug and Play team did was push a newly introduced interface

card standard to an absurd extreme.

They took a computer and put it at one end of a hallway. They then built

a chain of bridge cards that ran down the hallway, and at the end of the chain,

plugged in a video card.

And then they turned the whole thing on.

Amazingly, it actually worked. The machine booted and used a video card 20

feet away. (I'm guessing at the distance. It was a long time ago.) It took two peo

ple to operate this computer, one to move the mouse and type, and another to

watch the monitor at the other end and report where the pointer was and what

was happening on the screen.

And the latency was insane.

But it did work and served as a reassuring test of Plug and Play.

Other Plug and Play trivia: The phrase Plug and Play had already been

trademarked at the time, and Microsoft had to obtain the rights to the phrase

from the original owners.

C H A P T E R NINE Reminiscences on Hardware ^ S ^ 147

The USB cart of death

DURING THE WINDOWS 2000 project, the USB team did something similar

to what the Windows 95 Plug and Play team did with their 20-foot-long

computer. To test Plug and Play and to test the Driver Verifier, they created

the "USB Cart of Death."

They started with a two-level cart similar to what you'd see in a library.

About ten eight-port hubs were wired together, and then every port was filled

with some different type of USB device. A USB steering wheel adorned the

back of the cart, and a USB radio provided the antenna. Two cameras were on

the front. All power went to a USB UPS. The entire cart, completely mobile,

came down to two cables (power and USB). The final USB cable was plugged

into a USB PCMCIA card.

They plugged the card into a laptop, watched the operating system start up

the 50 or so devices on it, and then (before or after it finished) unceremoni

ously yanked the PCMCIA card. If a blue screen occurred or the Driver

Verifier detected a bug, the appropriate developer was asked to look at the

machine. In the meantime, the cart was wheeled to the next laptop, in hopes

of finding a different bug.

New device detected:
Boeing 747

BACK IN 1994, Boeing considered equipping each seat with a serial modem.

Laptop users could hook up to the modem and dial out. (Dial-up was the

primary means of connecting to the Internet back in those days.)

We chuckled at the thought of attaching the serial cable and getting a Plug

and Play pop-up message: "New device detected: Boeing 747."

I48 40k THE OLD NEW THING

There's an awful lot of
overclocking out there

A BUNCH OF us were going through some Windows crashes that people sent

in by clicking the Send Error Report button in the crash dialog. And there

were huge numbers of them that made no sense whatsoever. For example,

there would be code sequences like this:

mov ecx, dword p t r [someValue]
mov eax, dword p t r [otherValue]
cmp ecx, eax
jnz generateErrorReport

This code generates an error report if the ecx and eax registers are

unequal. Yet when we looked at the error report, the ecx and eax registers

were equal! There were other crashes of a similar nature, where the CPU

simply lost its marbles and did something "impossible."

We had to mark these crashes as "possibly hardware failure." Because the crash

reports are sent anonymously, we have no way of contacting the submitter to ask

them follow-up questions. (The ones that my group was investigating were fail

ures that were hit only once or twice, but were of the type deemed worthy of

close investigation because the types of errors they uncovered—if valid—were

serious.)

One of my colleagues had a large collection of failures where the program

crashed at the instruction

xor eax, eax

How can you crash on an instruction that simply sets a register to zero?

And yet there were hundreds of people crashing in precisely this way.

He went through all the published errata to see whether any of them would

affect an xor eax, eax instruction. Nothing.

The next theory was some sort of hardware failure. Overheating, perhaps?

Or overclocking?

C H A P T E R N I N E Reminiscences on Hardware -ŝBK 149

Overclocking is analogous to setting a musician's metronome to a higher

speed than the person was trained to play at. Sure, the music is faster, but it's

more stressful on the musician, and the likelihood of an eventual mistake

increases. A computer has a so-called clock chip whose purpose is to serve as

the computer's metronome. Overclockers increase the speed of that clock

chip to get the computer to "play music faster." There is an entire subculture

devoted to overclocking.

My colleague sent email to some Intel people he knew to see whether they

could think of anything else that could have caused this problem. They said

that the only other thing they could think of was that perhaps somebody had

mis-paired memory chips on the motherboard, but their description of what

sorts of things go wrong when you mis-pair didn't match this scenario.

Because the failure rate for this particular error was comparatively high (cer

tainly higher than the one or two I was getting for the failures I was looking

at), he requested that the next ten people to encounter this error be given the

opportunity to leave their email address and telephone number so that he

could call them and ask follow-up questions. Some time later, he got word that

ten people took him up on this offer, and he sent each of them email asking

various questions about their hardware configurations, including whether they

were overclocking.

Five people responded saying,"Oh, yes, I'm overclocking. Is that a problem?"

The other half said, "What's overclocking?" He called them and walked

them through some configuration information and was able to conclude

that they were indeed all overclocked. But these people were not overclock

ing on purpose. The computer was already overclocked when they bought it. These

"stealth overclocked" computers came from small, independent "Bob's

Computer Store"-type shops, not from one of the major computer manufac

turers or retailers.

For both groups, he suggested that they stop overclocking or at least not

overclock as aggressively. And in all cases, the people reported that their

computer that used to crash regularly now runs smoothly.

Moral of the story: There's a lot of overclocking out there, and it makes

Windows look bad.

150 JB^. THE OLD NEW THING

I wonder whether it would be possible to detect overclocking from software

and put up a warning in the crash dialog, "It appears that your computer is

overclocked. This may cause random crashes. Try running the CPU at its

rated speed to improve stability." But it takes only one false positive to get

people saying, "Oh, there goes Microsoft blaming other people for its buggy

software again."

C H A P T E R T E N

T H E INNER WORKINGS

OF THE DIALOG MANAGER

ITHINK A lot of confusion about the dialog manager stems from not really

understanding how it works. It's not that bad. After some warm-up discus

sion on dialog procedures, I go into the history of dialog templates, using

that as a basis for understanding how dialog boxes are created, then move on

to the dialog message loop, and wrap up with some topics regarding

navigation.

On the dialog procedure

THERE REALLY ISN'T much to a dialog procedure. For each message, you can

choose to handle it or not, just like a window procedure. But unlike a window

procedure, the way you express this decision is done by the return value.

Returning values from a dialog procedure

For some reason, the way values are returned from a dialog procedure confuses

people, so I'm going to try to explain it a different way.

151

152 ^ ^ s T H E OLD N E W T H I N G

The trick with dialog box procedures is realizing that they actually need to

return two pieces of information:

• Was the message handled?

• If so, what should the return value be?

Because two pieces of information have to be returned, but a C function

can have only one return value, there needs to be some other way to return the

second piece of information.

The return value of the dialog procedure is whether the message was han

dled. The second piece of information—what the return value should be—is

stashed in the DWLP_MSGRESULT window long.

In other words, Def DlgProc goes something like this:

LRESULT CALLBACK DefDlgProc(
HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{
DLGPROC dp = (DLGPROC)GetWindowLongPtr(hdlg, DWLPJ3LGPROC);
SetwindowLongPtr(hdlg, DWLP_MSGRESULT, 0);
INT_PTR fResult = dp(hdlg, uMsg, wParam, lParam);
if (fResult) return GetWindowLongPtr(hdlg, DWLP_MSGRESULT);
else ... do default behavior . . .

1
If you return anything other than 0, the value you set via

SetwindowLongPtr (hdlg, DWLP_MSGRESULT, value) is used as the mes

sage result.

(Old-timers might wonder what happened to GetwindowLong and

DWL_MSGRESULT. With the introduction of 64-bit Windows, functions like

GetwindowLong gained "pointer-sized" counterparts like GetWindowLongPtr,

which operate on integer values the same size as a native pointer. Because the

return value from a window procedure is a 64-bit value on 64-bit Windows,

the name of the window bytes that store the desired return value from a dialog

procedure changed from DWL_MSGRESULT to DWLP_MSGRESULT, with the P indi

cating that the parameter should be used with SetwindowLongPtr rather than

C H A P T E R TEN The Inner Workings of the Dialog Manager 153

SetwindowLong. If this is too much of a shock to your system, you can ignore

the p's for now and make a mental note to learn about 64-bit programming later.)

For example, many WM_NOTIFY notifications allow you to override default

behavior by returning TRUE. To prevent a list view label from being edited, you

can return TRUE from the LVN_BEGINLABELEDIT notification. If you are

doing this from a dialog procedure, however, you have to do this in two steps:

SetWindowLongPtr(hdlg, DWLP_MSGRESULT, TRUE);
return TRUE;

The second line sets the return value for the dialog procedure, which tells

Def DlgProc that the message has been handled and default handling should

be suppressed. The first line tells Def DlgProc what value to return back to

the sender of the message (the listview control). If you forget either of these

steps, the desired value will not reach the listview control.

Notice that Def DlgProc sets the DWLP_MSGRESULT to zero before sending

the message. That way, if the dialog procedure neglects to set a message result

explicitly, the result will be zero.

This also highlights the importance of calling SetWindowLongPtr immedi

ately before returning from the dialog procedure and no sooner. If you do any

thing between setting the return value and returning TRUE, that may trigger a

message to be sent to the dialog procedure, which would set the message

result back to zero.

Caution: A small number of "special messages" do not follow this rule. The

list is given in the documentation for DialogProc in MSDN. Why do these

exceptions exist? Because when the dialog manager was first designed, it was

determined that special treatment for these messages would make dialog box

procedures easier to write, because you wouldn't have to go through the extra

step of setting the DWLP_MSGRESULT. Fortunately, since those original days,

nobody has added any new exceptions. The added mental complexity of

remembering the exceptions outweighs the mental savings of not having to

write SetWindowLongPtr.

154 *^S THE OLD NEW THING

A different type of dialog procedure

But what if you prefer the window procedure design for your dialog procedure,

where you just call DefDlgProc to do default actions rather than returning

TRUE/FALSE? (Some people prefer this model because it makes dialog proce

dures and window procedures more similar.)

Well, let's do that. In fact, we're going to do it twice in completely different

ways. Each method consists of a simple kernel of an idea; the rest is just scaf

folding to make that idea work.

The first way uses a recursive call from the dialog procedure back into

DefDlgProc to make DefDlgProc perform the default behavior. This tech

nique requires that you have a flag that lets you detect (and therefore break)

the recursion. Because you typically have data attached to your dialog box

anyway, it's not too hard to add another member to it.

The key idea is to detect that this recursive call is taking place and break

the recursion. DefDlgProc calls your dialog procedure to see what you want

to do. When you want to do the default action, just call DefDlgProc recur

sively. The inner DefDlgProc calls your dialog procedure to see whether you

want to override the default action. Detect this recursive call and return

FALSE ("do the default"). The recursive DefDlgProc then performs the

default action and returns its result. Now you have the result of the default

action, and you can modify it or augment it before returning that as the result

for the dialog box procedure, back to the outer DefDlgProc, which returns

that value back as the final message result.

Here's the flow diagram, for those who prefer pictures:

Message delivered
-> DefDlgProc

-> your dialog procedure
decide what to do
want to do the default action
-> DefDlgProc

-> your dialog procedure
detect recursion

<- return FALSE
DefDlgProc sees FALSE
performs default behavior

C H A P T E R TEN The Inner Workings of the Dialog Manager ^ S ^ 155

<- returns result of default behavior
you do other stuff (perhaps modify
default behavior after it occurred)
set DWLP_MSGRESULT to desired result

<- return TRUE
retrieve DWLP_MSGRESULT

<- return it as message result

Given this sketch, you should be able to write it up yourself. Here's what I

came up with. I call it a Wndproc-like dialog:

class WLDialogBox

{
public:

virtual LRESULT WLDlgProc(HWND hdlg, UINT uMsg,
WPARAM wParam, LPARAM lParam)

return DefDlgProcEx(hdlg, uMsg, wParam, lParam,
&m_fRecursing);

INT_PTR DoModal(HINSTANCE hinst, LPCTSTR pszTemplate,
HWND hwndParent)

m_fRecursing = FALSE;
return DialogBoxParam(hinst, pszTemplate, hwndParent,

s DlgProc, (LPARAM)this);

.
private:

static INT_PTR CALLBACK s_DlgProc(HWND hdlg, UINT uMsg,
WPARAM wParam, LPARAM lParam)

{
if (uMsg == WM_INITDIALOG) {

SetWindowLongPtr(hdlg, DWLP_USER, lParam);

}
WLDialogBox *self =

(WLDialogBox*)GetWindowLongPtr(hdlg, DWLPJJSER);
if Uself) {

return FALSE;

CheckDefDlgRecursion(&self->m fRecursing);

return SetDlgMsgResult(hdlg, uMsg,
self->WLDlgProc(hdlg, uMsg, wParam, lParam));

156 4 ~ k T H E OLD N E W T H I N G

}
.

private:
BOOL m_fRecursing;

h

Let's walk through this class.

T h e WLDlgProc method is virtual because we expect derived classes to do

custom actions in their dialog procedure that we invoke from our s_DlgProc.

T h e default implementation in the base class uses the Def DlgProcEx macro

from windowsx. h to do the dirty work. That's right; this technique has been

published by Microsoft since 1992. If you look at DefDlgProcEx, it sets

the recursion flag to TRUE and then calls DefDlgProc, which triggers the

recursive call.

I could have had a separate WLDef DlgProc method that calls DefDlgProcEx

and have WLDlgProc call WLDefDlgProc. (In fact, my first version did exactly

that.) But I decided against this design because people would be tempted to call

WLDefDlgProc from their WLDlgProc instead of forwarding to the WLDlgProc

of their base class. Instead, the design is simply to forward unhandled messages

to the base class's implementation of WLDlgProc.

T h e s_DlgProc method is the dialog procedure used for all instances of

Wndproc-l ike dialogs. It initializes itself in the WM_INITDIALOG message so

that future messages can identify which instance of the dialog is handling the

message. After short-circuiting messages that arrive before the dialog box has

initialized, it uses the CheckDef D lgRecu r s ion macro, also from windowsx. h.

This macro checks the recursion flag; if set, it resets the flag and just returns

FALSE immediately. This is what stops the recursion. Otherwise, it calls the

WLDlgProc method (which has probably been overriden in a derived class),

and then sets the dialog procedure return value and returns.

T h e Se tDlgMsgResu l t macro also comes from windowsx.h: It stores

the return value into the DWLP_MSGRESULT and returns TRUE. Well, unless

the message is one of the special exceptions, in which case it returns the

value directly. No te to 64-bit developers: There is a bug in this macro as

currently written. T h e expression (BOOL) (r e s u l t) should be changed to

C H A P T E R T E N The Inner Workings ofthe Dialog Manager ^=^ 157

(INT_PTR) (r e s u l t) so that the upper 32 bits of the return value are not

truncated.

The last method is DoModal, which initializes the recursion flag and kicks

off the dialog box.

Here's a sample program that illustrates the use of this class:

c l a s s SampleWLDlg : pub l i c WLDialogBox

(
LRESULT WLDlgProc(HWND hdlg, UINT uMsg,

WPARAM wParam, LPARAM lParam)

{
switch (uMsg) {
HANDLE_MSG(hdlg, WM_COMMAND, OnCommand);
HANDLE_MSG(hdlg, WM_SETCURSOR, OnSetCursor);
}
return super::WLDlgProc(hdlg, uMsg, wParam, lParam);

};

void OnCommand(HWND hdlg, int id,
HWND hwndCtl, UINT codeNotify)

switch (id)
case IDCANCEL:

MessageBoxthdlg, TEXT("Bye"), TEXT("Title"), MB_OK);
EndDialogthdlg, In

break;

}

BOOL OnSetCursor(HWND hdlg, HWND hwndCursor,
UINT codeHitTest, UINT msg)

if (codeHitTest == HTCAPTION) {
SetCursor(LoadCursor(NULL, IDC_SIZEALL));
return TRUE;

return FORWARD_WM_SETCURSOR(hdlg, hwndCursor,
codeHitTest, msg, super::WLDlgProc);

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,
LPSTR lpCmdLine, int nShowCmd)

SampleWLDlg dig;

158 ***. THE OLD NEW THING

dlg.DoModal(hinst, MAKEINTRESOURCE(1), NULL);
return 0;

1 DIALOGEX DISCARDABLE 0, 0, 200,200
STYLE DS_SHELLFONT | WS_POPUP | WS_VISIBLE |

WS_CAPTION | WS_SYSMENU
CAPTION "sample"
FONT 8, "MS Shell Dig"
BEGIN
DEFPUSHBUTTON "&Bye",IDCANCEL,"Button",WS_TABSTOP, 7 , 4 , 5 0,14
END

To illustrate a custom return value, I override the WM_SETCURSOR message

to display a custom cursor when the mouse is over the caption area. It's not

exciting, but it gets the point across.

Observe that in two places, we forwarded the message to our base class by

calling super : : WLDlgProc. The super keyword is a Visual C+ +

extension that resolves to the base class of your derived class. This is quite

handy because it saves the reader the trouble of figuring out "So which level

in the class hierarchy are we forwarding this call to?" If you wanted to

forward a call to your grandparent class, you would use this:

s u p e r : : s u p e r : : WLDlgProc .

If your compiler doesn't support super, you can fake it by adding this

line to the definition of SampleWLDlg

typedef WLDialogBox super;

and using super : :WLDlgProc without the underscores. In fact, this is the

technique I use because I was doing it before the Visual C++ folks added the

super keyword and now it's just habit.

As written, the m_f Recur s ing member is an instance member. Does it

need to be? Can it be global? What is the weakest condition you can place on

m_fRecursing?

The m_f Recur s ing flag does not need to be per instance. It only needs to

be valid long enough that the recursive call that comes immediately afterward

can be detected. However, a global variable would not work because two

C H A P T E R T E N The Inner Workings of the Dialog Manager ^ 159

threads might be inside the recursive DefDlgProc call simultaneously. But a

thread-local variable would work.

Another different type of dialog procedure

The other method of using a window-procedure-like dialog box is to change

the rules of the game. Normally, the window procedure for a dialog box is the

DefDlgProc function, which calls the dialog procedure and then takes action

if the dialog procedure indicated that it desired the default action to take

place.

The dialog procedure is subservient to DefDlgProc, providing advice when

requested. The kernel of the idea for this technique is to "turn the tables."

Make DefDlgProc be the one who gives advice and you be the one that asks

for the advice when you want it.

We do this by making the window procedure be our own function which

decides whether it wants the default action to happen. If so, it calls DefDlgProc

to do it, after giving the dialog a dummy dialog procedure that always says

"Just do the default."

Here's the flow diagram:

Message delivered
-> WLWndProc

-> your WLDlgProc
decide what to do
want to do the default action
-> DefDlgProc

•> dummy dialog procedure
<- always returns FALSE
DefDlgProc does default action

<- returns result of default behavior
you do other stuff (perhaps modify
default behavior after it occurred)

<- returns result
returns result

1 6 0 4S=N T H E OLD N E W T H I N G

To do this, we need to register a custom dialog class. You always wondered

what that was for. Now you know.

BOOL
InitApp(void)

WNDCLASS WC;

wc.style = CS DBLCLKS I CS SAVEBITS I CS BYTEALIGNWINDOW;
wc.lpfnWndProc = WLWndProc,-
wc.cbClsExtra = 0;
wc.CbWndExtra = DLGWINDOWEXTRA + sizeof(WLDLGPROC);
wc.hlnstance = g_hinst;
wc.hlcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = NULL
wc.IpszMenuName = NULL;
wc.hbrBackground = NULL;

wc.lpszClassName = TEXT("WLDialog");

if (!RegisterClass(&wc)) return FALSE;

return TRUE;

]
This creates a new window class called WLDialog, which we will use as

our custom dialog class. When you create a custom dialog class, you must

set the cbWndExtra to DLGWINDOWEXTRA bytes, plus any additional bytes you

want to use for yourself. We need to store an extra WLDLGPROC, so we add

that in.

To use our custom dialog procedure, the dialog template must use the

CLASS keyword to specify the custom dialog class:

1 DIALOGEX DISCARDABLE 0, 0, 200,200
STYLE DS_SHELLFONT | WS_POPUP | WS_VISIBLE |

WS_CAPTION | WS_SYSMENU
CLASS "WLDialog"
CAPTION "sample"
FONT 8, "MS Shell Dig"
BEGIN

DEFPUSHBUTTON "&Bye", IDCANCEL, 7,4,5 0,14, WSJTABSTOP
END

C H A P T E R T E N The Inner Workings of the Dialog Manager -sSSk 161

This is exactly the same as a regular dialog box template, except that there

is a CLASS entry that specifies that this dialog box should use our new class.

Paralleling the DialogBoxParam function we have our own:

typedef LRESULT (CALLBACK* WLDLGPROC)(HWND, UINT, WPARAM, LPARAM);

Struct WLDIALOGINFO {
WLDLGPROC wldp;
LPARAM lParam;

I '•

INT_PTR
WLDialogBoxParam(HINSTANCE hinst, LPCTSTR pszTemplate,

KWND hwndParent, WLDLGPROC wldp, LPARAM lParam)

{
WLDIALOGINFO w l d i = { wldp, lPa ram };
r e t u r n D i a l o g B o x P a r a m (h i n s t , p s z T e m p l a t e ,

hwndParen t , WLDlgProc, (LPARAM)&wldi);

]
This packages up the WndProc-like dialog procedure and its reference data

so that we can recover it in our window procedure:

LRESULT CALLBACK
WLWndProc(HWND hdlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{

if (uiMsg == WM_INITDIALOG) {
WLDIALOGINFO *pwldi = (WLDIALOGINFO*)lParam;
SetWindowLongPtr(hdlg, DLGWINDOWEXTRA,

(LONG_PTR)pwldi->wldp);
lParam = pwldi->lParam;

}
WLDLGPROC wldp = (WLDLGPROC)GetWindowLongPtr(hdlg,

DLGWINDOWEXTRA);
if (wldp) {

return wldp(hdlg, uiMsg, wParam, lParam);
} else {

}
}

return DefDlgProc(hdlg, uiMsg, wParam, lParam);

This is the window procedure for the custom dialog. When the

WM_INITDIALOG message comes in, we recover the original parameters to

WLDialogBoxParam. The WLDLGPROC we save in the extra bytes we reserved,

162 S^k. THE OLD NEW THING

and the original LPARAM becomes the IParam that we pass to the WLDLGPROC.

Then for each message that comes in, we pass the message and its parameters

directly to the WLDLGPROC and return the value directly. No DWLP_MSGRESULT

The last piece of the puzzle is the dialog procedure we actually hand to the

dialog manager:

INT_PTR CALLBACK
WLDlgProc(HWND hdlg, UINT uiMsg, WPARAM wParam, LPARAM IParam)

{
r e t u r n FALSE;

All it says is, "Do the default thing."

Okay, so let's write yet another version of our sample program, using this

new architecture:

LRESULT CALLBACK SampleWLDialogProc(
HWND hdlg, UINT uiMsg, WPARAM wParam, LPARAM IParam)

{
switch (uiMsg) {
case WM_INITDIALOG:

break;

case WM_COMMAND:
switch (GET_WM_COMMAND_ID(wParam, IParam)) {
case IDCANCEL:

MessageBox(hdlg, TEXT("Bye"), TEXT("Title"), MB_OK);
EndDialog(hdlg, 1) ;
break;

break;

case WM SETCURSOR: —
if (LOWORD(IParam) == HTCAPTION) {

SetCursor(LoadCursor(NULL, IDC_SIZEALL)
return TRUE;

}
break;

return DefDlgProc(hdlg, uiMsg, wParam, IParam);

I , MB_OK);

CHAPTER TEN The Inner Workings of the Dialog Manager S N 163

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,
LPSTR lpCmdLine, int nShowCmd)

{
InitApp();
WLDialogBoxParam(hinst, MAKEINTRESOURCE(1),

NULL, SampleWLDialogProc, 0);

return 0;

]
In this style of WndProc-like dialog, we just write our dialog procedure as

if it were a window procedure, calling DefDlgProcO to perform default

behavior. And to get this new behavior, we use WLDialogBoxParam rather

than DialogBoxParam.

Now I've developed two quite different ways you can write WndProc-like

dialog procedures. You might not like either one of them, so go ahead and

write a third way if you prefer. But at least I hope you learned a little more

about how Def DlgProc works.

The evolution of dialog templates

IN THE HISTORY of Windows, there have been four versions of dialog templates.

And despite the changes, you'll see that they're basically all the same.

My secret goal in this chapter is to address questions people have had along

the lines of "I'm trying to generate a dialog template in code, and it's not

working. What am I doing wrong?"

As it turns out, you can get the resource compiler to tell you what you're

doing wrong. Take the template that you're trying to generate, create an * . re

file for it and run it through the resource compiler. Attach the resource to

a dummy program and dump the bytes! Compare the compiler-generated

template against the one you generated. Look for the difference.

In other words: To see what you're doing wrong, take somebody who does

it right and compare. Clearly there's a difference somewhere. It's just bytes.

164 -SŜ s THE OLD NEW THING

Anyway enough of the rant against laziness. The next several pages cover

the evolution of the dialog template, with annotated byte dumps for people

who are trying to figure out why their dialog template isn't working. We trace

the evolution of dialog templates from the original 16-bit classic template to

the two types of modern 32-bit templates, both of which you need to be

familiar with if you intend to generate or parse dialog templates on your own.

(The 16-bit templates, by comparison, are merely of historical interest.) The

discussion does assume that you're familiar with how dialog templates are

defined in the Resource Compiler and focuses on how those definitions turn

into bytes in a template.

16-bit classic templates

First, there was the classic 16-bit dialog template as originally defined by

Windows 1.0. It starts like this:

DWORD dwStyle; // dialog style
BYTE cltems; // number of controls in this dialog
WORD x; // x-coordinate
WORD y; // y-coordinate
WORD ex; // width
WORD cy ; / / h e i g h t

Notice that this is where the 255-controls-per-dialog limit comes from on

16-bit Windows, because the field that records the number of controls on the

dialog is only a byte.
O I t

After this header comes a series of strings. All strings in the 16-bit dialog

template permit a null-terminated ANSI string. For example, if you want to

store the string "Hello", you write out the six bytes
48 65 6C 6C 6F 00 : " H e l l o "

(As a special case of this: If you write out a single 0 0 byte, that represents

a null string—handy when you don't actually want to store a string but the

dialog format requires you to store one.)

C H A P T E R T E N The Inner Workings of the Dialog Manager £&**. 165

Sometimes you are allowed to specify a 16-bit ordinal value rather than a

string. In that case, you write out the byte OxFF followed by the ordinal. For

example, if you want to specify the ordinal 42, you write out the three bytes

FF 2A 00 ; FF followed by WORD (little-endian)

Okay, back to the dialog template. After the header, there are three strings:

• The menu name, which can be a string or an ordinal. This is typically

null, indicating that you don't want a menu. If non-null, the menu is

loaded via LoadMenu using the specified string or resource from

the instance handle passed to the dialog creation function via the

HINSTANCE parameter.

• The class, which must be a string (no ordinals allowed). This is typi

cally also null, indicating that you want the default dialog class. We

saw how you can override the default dialog class if you would like a

completely different window procedure for your dialog box. If non-null,

the class will be also be looked up relative to the instance handle

passed to the dialog creation function via the HINSTANCE parameter.

• The dialog title, which must be a string (no ordinals allowed).

If the DS_SETFONT style is set, what follows next is a WORD indicating the

point size and a string specifying the font name. Otherwise, there is no font

information.

That's the end of the header section. Next come a series of dialog item tem

plates, one for each control. Each item template begins the same way:

WORD
WORD
WORD
WORD
WORD

x;

y;
ex;
cy;
wID;

//
//
//
//
//

x-coordinate (DLUs)
y-coordinate (DLUs)
width (DLUs)
height (DLUs)
control ID

DWORD dwStyle; // window style

Recall that the dialog coordinates are recorded in dialog units (DLUs).

Four x-DLUs and eight y-DLUs equal one "average" character.

166 .d&j THE OLD NEW THING

After the fixed start of the item template comes the class name, either as a

null-terminated ANSI string or (and this is particularly weird) as a single

byte in the range 0x80 through OxFF, which encodes one of the "standard"

window classes:

0x8 0 "button" 0x80

0x81

0x82

0x83

0x84

0x85

"button"

"edit"

"static"

"listbox"

"scrollbar"

"combobox"

(Note that this encoding means that the first character of a window class

name cannot be an extended character if you want to use it in a dialog template!)

After the class name comes the control text, either as a null-terminated

string or as an ordinal. If you use an ordinal, the IpszName member of the

CREATESTRUCT is a pointer to the three-byte ordinal sequence (oxFF followed

by the ordinal); otherwise, it's a pointer to the string. The only control I know

of that knows what to do with the ordinal is the static control if you put it

into one of the image modes (ss_ICON or SS_BITMA.p), in which case the

ordinal is a resource identifier for the image that the static control displays.

After the control text comes up to 256 bytes of "extra data" in the form of

a byte count, followed by the actual data. If there is no extra data, use a byte

count of zero.

When the dialog manager creates a control, it passes a pointer to the extra

data as the final LPVOID parameter to the CreateWindowEx function. (As far

as I can tell, there is no way to tell the resource compiler to insert this extra

data. It's one of those lurking features that nobody has taken advantage of yet.)

Okay, that's all great and theoretical. But sometimes you just need to see it

in front of you to understand it. So let's take apart an actual 16-bit dialog

resource. I took this one from COMMCTRL . DLL; it's the search/replace dialog:

0000 CO 00 C8 80 0B 24 00 2C-00 E6 00 5E 00 00 00 52 $.,...A...R
0010 65 70 6C 61 63 65 00 08-00 48 65 6C 76 00 04 00 eplace. . . Helv. . .
0020 09 00 30 00 08 00 FF FF-00 00 00 50 82 46 69 26 ..0 P.Fi&

CHAPTER TEN The Inner Workings of the Dialog Manager JSSfc. 167

0030

0040

0050

0060

0070

0080

0090

00A0

OOBO

OOCO

OODO

OOEO

OOFO

0100

0110

0120

0130

6E

OC

00

63

OC

00

26

00

80

04

6E

00

00

80

00

6E

00

64

00

08

65

00

OC

57

00

4D

00

64

00

00

52

37

63

00

20

80

00

20

81

00

68

05

61

32

20

04

AE

65

00

65

03

57

04

FF

57

04

10

6F

00

74

00

4E

00

00

70

32

6C

50

68

80

FF

69

80

04

6C

3E

63

OE

65

00

26

6C

00

00

80

61

00

00

74

00

03

65

00

68

00

78

03

00

61

OE

00

26

74

83

00

68

83

00

20

3B

20

01

74

50

32

63

00

AE

48

3A

50

00

3A

50

03

57

00-

26

00

00

80

00

65

02

00

65

-00

81

-50

-00

-81

-50

-6F

OC

-43

-01

-00

-26

OE

-20

00

-4B

-6C

00

00

82

00

00

80

72

00

61

00

AE

52

00

26

00

00

70

36

00

52

36

00

4D

64

11

73

03

00

65

01

41

00

32

00

00

04

65

00

05

61

20

04

65

50

15

70

04

6C

03

00

00

07

00

26

18

00

74

4F

03

00

80

00

6C

00

6C

50

OE

00

1A

70

00

2E

63

6E

00

00

26

32

61

00

00

80

00

72 00 nd What:..6...r.
00 30 P 0
6C 61 P.Re&pla
72 00 ce With: . .6. . .r.
00 68 P h
68 20 P.Match
6C 79 kWhole Word Only
01 50>.; P
AE 00 .Match &Case....
46 69 . .2 P.&Fi
0 0 OE nd Next 2 . .
63 65 P.&Replace
03 50&. 2 P
00 AE .Replace SA11...
43 61 .7.2 P.Ca
OE 04 ncel....K.2

. . . P.&Help..

Let's start with the header:

0000 CO 00 C8 80 // dwStyle

0004 OB // cltems

0005 24 00 2C 00 // x, y

0009 E6 00 5E 00 // ex, cy

In other words, the header says this:

dwStyle

cltems

X

y
ex

cy

=

=
=
=
=
=

0X80C800C0

OxOB

0x0024

0X002C

0x00E6

0x005E

= WS_POPUP I WS_CAPTION | WS_SYSMENU

DS_SETFONT | DS_MODALFRAME

= 11

= 36

= 44

= 230

= 94

After the header come the menu name, class name, and dialog title:

000D 00 // no menu

OOOE 00 // default dialog class

000F 52 65 70 6C 61 63 65 00 // "Replace"

Now, because the DS_SETFONT bit is set in the style, the next

describes the font to be used by the dialog:
section

0017 08 00 // wSize = 8

0019 48 65 6C 76 00 // "Helv"

168 i ^ s THE OLD NEW THING

Aha, this dialog box uses 8pt Helv. Next come the 11 dialog item templates:

001E 04 00 09 00 // x, y
0022 30 00 08 00 // ex, cy
0026 FF FF // wID
0028 00 00 00 50 // dwStyle

So this dialog item template says this:

X

y

C X

cy
wID

dwStyle

=
=
=

=
=
=

0x0004

0x0009

0x0030

0x0008

OxFFFF

0x50000000

=
=

=
=
-
=

4

9

48

8

-1

WS_ CHILD | WS_VISIBLE | SS_LEFT

How did I know that the style value 0x0 000 should be interpreted as
SS_LEFT and not, say, BS_PUSHBUTTON? Because the window class tells me
that what I have is a static control and therefore that the low word should be
treated as a combination of SS_* values:

002C 82 / / " s t a t i c "

After the class name comes the control text:

002D 46 69 26 6E 64 20 57 68 61 74 3A 00 // "Fi&nd What:"

And finally (for this dialog item template), we specify that we have no extra data:

0039 00 / / no e x t r a d a t a

Now we repeat the preceding exercise for the other ten controls. I'll just

summarize here:

// Second control
003A 36 00 07 00 // x, y
003E 72 00 0C 00 // ex, cy
0042 80 04 // wID
0044 80 00 83 50 // dwStyle
0048 81 // "edit"
0049 00 // ""
004A 00 // no extra data

C H A P T E R T E N The Inner Workings of the Dialog Manager

II Third control
004B 04 00 1A 00 // x, y
004F 30 00 08 00 // ex, cy
0053 FF FF // wID
0055 00 00 00 50 // dwStyle
0059 82 // "static"
005A 52 65 26 70 6C 61 63 65 20 57 69 74 68 3A 00

// "Re&place With:"
0069 00 // no extra data

// Fourth control
006A 36 00 18 00
006E 72 00 0C 00
0072 81 04
0074 80 00 83 50
0078 81
0079 00
007A 00

// x, y
// ex, cy
// wID
// dwStyle
// "edit"

// ""
// no extra data

// Fifth control
007B 05 00 2E 00 // x, y
007F 68 00 0C 00 // ex, cy
0083 10 04 // wID
0085 03 00 03 50 // dwStyle
0089 80 // "button"
008A 4D 61 74 63 68 20 26 57 68 6F 6C 65 20 57

6F 72 64 20 4F 6E 6C 79 00
// "Match &Whole Word Only"

00A1 00 // no extra data

// Sixth control
00A2
0 0A6
00AA
00AC
00B0
00B1

00BD

05
3B
11
03
80
4D

00

00 3E
00 OC
04
00 01

61 74

00
00

50

63

// Seventh control
00BE
00C2
00C6
00C8

oocc

AE
32
01
01
80

00 04
00 0E
00
00 03

00
00

50

//
//
//
//
//

68 2C

//
//

//
//
//
//
//

x, y
ex, cy
WID
dwStyle
"button"
26 43 61 73 65
"Match &Case"
no extra data

x, y
ex, cy
wID
dwStyle
"button"

00

170 -£S\ THE OLD NEW THING

OOCD

00D8

26 46 69 6E

00

// Eighth control
00D9
OODD
00E1
00E3
00E7
00E8

AE 00 15 00
32 00 0E 00
00 04
00 00 03 50
80
26 52 65 70

64

6C

20

//
//

//
//
//
//
//
: 61

4E 65 78 74 00
"&Find Next"
no extra data

x, y
ex, cy
wID
dwStyle
"button"
63 65 00

00F1 00 // no extra data

// Ninth control
00F2 AE 00 26 00 // x, y
00F6 32 00 0E 00 // ex, cy
00FA 01 04 // wID
00FC 00 00 03 50 // dwStyle
0100 80 // "button"
0101 52 65 70 ec 61 63 65 20 26 41 6C 6C 00

// "Replace SAll"
010E 00 // no extra data

// Tenth control
010F AE 00 37 00 // x, y
0113 32 00 0E 00 // ex, cy
0117 02 00 // wID
0119 00 00 03 50 // dwStyle
011D 80 // "button"
011E 43 61 6E 63 65 6C 00

// "Cancel"
0125 00 // no extra data

// Eleventh control
0126 AE 00 4B 00 // x, y
012A 32 00 0E 00 // ex, cy
012E 0E 04 // wID
0130 00 00 03 50 // dwStyle
0134 80 // "button"
0135 26 48 65 6C 70 00

// "&Help"
013B 00 // no extra data

And that's the dialog template. We can now reconstruct the resource com

piler source code from this template:

C H A P T E R T E N The Inner Workings of the Dialog Manager J 9 \ I 71

DIALOG 36, 44, 230, 94
STYLE WS_POPUP I WS_CAPTION | WS_SYSMENU |

DS_MODALFRAME | NOT WS_VISIBLE
CAPTION "Replace"
FONT 8, "Helv"
BEGIN

CONTROL "Fi&nd What:", -1, "static", SS_LEFT,
4, 9, 48, 8

CONTROL "", 0x0480, "edit",
WS_BORDER I WS_GROUP | WSJTABSTOP | ES_AUTOHSCROLL,
54, 7, 114, 12

CONTROL "Re&place With:", -1, "static", SS_LEFT,
4, 26, 48, 8

CONTROL "", 0x04 81, "edit",
WS_BORDER I WS_GROUP | WSJTABSTOP | ES_AUTOHSCROLL,
54, 24, 114, 12

CONTROL "Match &Whole Word Only", 0x0410, "button",
WS_GROUP I WS_TABSTOP | BS_AUTOCHECKBOX,
5, 46, 104, 12

CONTROL "Match &Case", 0x0411, "button",
WSJTABSTOP I BS_AUTOCHECKBOX,
5, 62, 59, 12

CONTROL "&FindNext", IDOK, "button",
WS_GROUP I WS_TABSTOP | BS_DEFPUSHBUTTON,
174, 4, 50, 14

CONTROL "&Replace", 0x0400, "button",
WS_GROUP I WSJTABSTOP | BS_PUSHBUTTON,
174, 21, 50, 14

CONTROL "Replace &A11", 0x0401, "button",
WS_GROUP I WSJTABSTOP | BS_PUSHBUTTON,
174, 38, 50, 14

CONTROL "Cancel", IDCANCEL, "button",
WS_GROUP I WSJTABSTOP | BS_PUSHBUTTON,
174, 55, 50, 14

CONTROL "Cancel", 0x040E, "button",
WSJGROUP I WSJTABSTOP | BS_PUSHBUTTON,
174, 75, 50, 14

END

172 *&} THE OLD NEW THING

Notice that we didn't explicitly say DS_SETFONT in the dialogs STYLE directive

because that is implied by the FONT directive. And because WS_VISIBLE is on

by default, we didn't have to say it; instead, we had to explicitly refute it in the

places it wasn't wanted.

Now if you take a look in the Windows header files, you'll find digs .h and

f ind tex t .dig which pretty much match up with the preceding template, giv

ing names to the magic values like 0x0400 and positioning the controls in the

same place as earlier. You'll find some minor differences, however, because the

Windows header files are for the 32-bit Find/Replace dialog and the one here is

the 16-bit Find/Replace dialog, but you'll see that it still matches up pretty well.

32-bit classic templates

We take the next step in the evolution of dialog templates and look at the 32-

bit classic dialog template.

There really isn't much going on. Some 8-bit fields got expanded to 16-bit

fields, some 16-bit fields got expanded to 32-bit fields, extended styles were

added, and all strings got changed from ANSI to Unicode.

The template starts like this:

/ / d i a log s t y l e
/ / extended d ia log s t y l e
/ / number of con t ro l s in t h i s d ia log
/ / x -coord ina te
/ / y -coord ina te
/ / width
/ / he ight

This is basically the same as the 16-bit dialog template, except that there's

a new dwExStyle field, and the clteras went from a BYTE to a WORD.

Consequently, the maximum number of controls per 32-bit dialog is 65535.

That should be enough for a while.

After this header come a series of strings, just like in 16-bit dialog templates.

But this time, the strings are Unicode. For example, if you want to store the

string "Hello", you write out the 12 bytes:

48 00 65 00 6C 00 6C 00 6F 00 00 00 ; "Hello"

DWORD
DWORD
WORD
WORD
WORD
WORD
WORD

dwStyle;
dwExStyle
cltems;
x;

y;
CX;

cy;

C H A P T E R T E N The Inner Workings ofthe Dialog Manager .se^ 173

As with the 16-bit case, in the 32-bit dialog template, you can often specify

an ordinal rather than a string. Here, it's done by writing the bytes FF 0 0

followed by the 16-bit ordinal (in little-endian format). For example, if you

want to specify the ordinal 42, you write out the four bytes:

FF 00 2A 00 ; 00FF followed by WORD (little-endian)

The three strings are the same as last time:

• The menu name, which can be a string or an ordinal

• The class, which must be a string (no ordinals allowed)

• The dialog title, which must be a string (no ordinals allowed)

If the DS_SETFONT style is set, what follows next is a WORD indicating the

point size and a string specifying the font name. Otherwise, there is no font

information (same as in the 16-bit dialog template).

bo rar, everything has been woRD-aligned.

After the header comes a series of dialog item templates. Each item template

begins on a DWORD boundary, inserting padding if required to achieve this. The

padding is necessary to ensure that processors that are sensitive to alignment

can access the memory without raising an exception:

DWORD dwStyle; //window style
DWORD dwExStyle; // window extended style
WORD x; // x-coordinate (DLUs)
WORD y; // y-coordinate (DLUs)
WORD ex; // width (DLUs)
WORD cy; // height (DLUs)
WORD wID; // control ID

As before, the dialog coordinates are recorded in dialog units (DLUs).

Next comes the class name, either as a null-terminated Unicode string, as

an integer atom (which is of not much use in practice), or as an ordinal. A

class name is encoded as a null-terminated Unicode string. An integer atom is

encoded as the word 0x0OFF followed by the word integer atom. An ordinal is

encoded as OxFFFF followed by a word specifying the ordinal code of one of

174 ^SS THE OLD NEW THING

the six "standard" window classes, which are the same as for 16-bit dialog

templates:

0x0082 " s t a t i c "

0x0080

0x0081

0x0082

0x0083

0x0084

0x0085

"button"

"edit"

"static"

"listbox"

"scrollbar"

"combobox"

After the class name comes the control text, either as a null-terminated

string or as an ordinal, following the same rules as for the 16-bit template.

Extra weirdness: To specify an ordinal here, use FFFF rather than 0 0FF as the

ordinal marker. I don't know why.

After the control text come up to 65535 bytes of "extra data" in the form of

a 16-bit count, followed by the actual data. If there is no extra data, use a

count of zero.

And that's all there is. As with last time, I'll present an annotated dialog

template:

0000 C4 20 C8 80 00 00 00 00-0B 00 24 00 2C 00 E6 00 $ • , • • •

0010 5E 00 00 00 00 00 52 00-65 00 70 00 6C 00 61 00 * R.e.p.l.a.

0020 63 00 65 00 00 00 08 00-4D 00 53 00 20 00 53 00 c.e M.S. .S.

0030 68 00 65 00 6C 00 6C 00-20 00 44 00 6C 00 67 00 h.e.1.1. .D.l.g.

0040 00 00 00 00 00 00 02 50-00 00 00 00 04 00 09 00 P

0050 30 00 08 00 FF FF FF FF-82 00 46 00 69 00 26 00 0 P.1.&,

0060 6E 00 64 00 20 00 77 00-68 00 61 00 74 00 3A 00 n.d. .w.h.a.t.:.

0070 00 00 00 00 80 00 83 50-00 00 00 00 36 00 07 00 P. ...6...

0080 72 00 0C 00 80 04 FF FF-81 00 00 00 00 00 00 00 r

0090 00 00 02 50 00 00 00 00-04 00 1A 00 30 00 08 00 ...P 0...

00A0 FF FF FF FF 82 00 52 00-65 00 26 00 70 00 6C 00 R.e.&.p.l.

00B0 61 00 63 00 65 00 20 00-77 00 69 00 74 00 68 00 a.c.e. .w.i.t.h.

00C0 3A 00 00 00 00 00 00 00-80 00 83 50 00 00 00 00 : P....

00D0 36 00 18 00 72 00 0C 00-81 04 FF FF 81 00 00 00 6...r

00E0 00 00 00 00 03 00 03 50-00 00 00 00 05 00 2E 00 P

00F0 68 00 0C 00 10 04 FF FF-80 00 4D 00 61 00 74 00 h M.a.t.

0100 63 00 68 00 20 00 26 00-77 00 68 00 6F 00 6C 00 c.h. .fc.w.h.o.l.

0110 65 00 20 00 77 00 6F 00-72 00 64 00 20 00 6F 00 e. .w.o.r.d. .o.

0120 6E 00 6C 00 79 00 00 00-00 00 00 00 03 00 01 50 n.l.y P

0130 00 00 00 00 05 00 3E 00-3B 00 0C 00 11 04 FF FF >. ;

0140 80 00 4D 00 61 00 74 00-63 00 68 00 20 00 26 00 ..M.a.t.c.h. .&.

0150 63 00 61 00 73 00 65 00-00 00 00 00 01 00 03 50 c.a.s.e P

C H A P T E R T E N The Inner Workings of the Dialog Manager 4©< 17 5

0160

0170

0180

0190

01A0

01B0

01C0

OlDO

01E0

01F0

0200

0210

0220

0230

00

80

65

00

80

65

AE

65

41

00

80

00

32

6C

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

26

78

00

26

00

26

70

6C

00

43

00

OE

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

AE

46

74

AE

52

00

32

6C

6C

AE

61

00

OE

00

00

00

00

00

00

00

00

00

00

00

00

00

04

00

04

69

00

15

65

00

OE

61

00

37

6E

01

FF

00

00

00

00

00

00

00

00

00

00

00

00

50

FF

00

-32

-6E

-00

-32

-70

-00

•01

-63

00

-32

-63

-00

-80

00 OE 00 01 00 FF FF 2
00 64 00 20 00 4E 00 . . & . F . i . n . d . .N.
00 00 00 00 00 01 50 e.x.t P
00 OE 00 00 04 FF FF 2
00 6C 00 61 00 63 00 . . &. R. e .p. 1. a . c .
00 01 50 00 00 00 00 e P....
04 FF FF 80 00 52 00 . .&.2 R.
00 65 00 20 00 26 00 e.p.l.a.c.e. .&.
00 00 00 00 00 01 50 A.1.1 P
00 OE 00 02 00 FF FF 7.2
00 65 00 6C 00 00 00 . .C.a.n.c.e.1. . .
00 00 00 AE 00 4B 00 P K.
00 26 00 48 00 65 00 2 &.H.e.

1-P

As before, we start with the header:

0000

0004

0008

0 0 0A

000E

C4

00

OB

24

E6

20

00

00

00

00

C8

00

2C

5E

80

00

00

00

/ /
/ /
/ /
/ /
/ /

dwStyle
dwExStyle
cltems

x, y
ex, cy

In other words, the header says this:

X

dwStyle = 0x80C820C4 = WS_POPUP | WS_CAPTION | WS_SYSMENU |

DS_CONTEXTHELP | DS_SETFONT |

DS MODAL FRAME I

DS 3DLOOK

—
dwExStyle - 0x00000000

cltems = OxOOOB = 11

= 0x0024 = 36

y = 0X002C = 44

ex = 0x00E6 = 230

cy = 0x005E = 94

After the header come the menu name, class name, and dialog title:

0012 00 00 // no menu

0014 00 00 // default dialog class

0016 52 00 65 00 70 00 6C 00 61 00 63 00

65 00 00 00 // "Replace"

I 7 6 jQS. THE OLD NEW T H I N G

Again, because the DS_SETFONT bit is set in the style, the next section

describes the font to be used by the dialog:

0026 08 00 // wSize - 8
0028 4D 00 53 00 20 00 53 00 68 00 65 00 6C 00

6C 00 20 00 44 00 6C 00 67 00 00 00
// "MS Shell Dig"

This dialog box uses 8pt MS Shell Dig as its dialog font.

Next come the 11 dialog item templates. Now remember that each template

must be DWORD-aligned, so we need some padding here to get up to a four-byte

boundary:

0042 00 00 // Padding for alignment

Now that we are once again DWORD-aligned, we can read the first dialog

item template:
r

0044
0048
004C
0050
0054
0056
005A
0060
0070
0072

00
00
04

30
FF
FF
46
6E
00
00

00
00

00
00
FF
FF
00

00
00
00

02

00
09

08

82
69
64

50
00
00

00

00
00

00

26
20

/ /
/ /
/ /
/ /
/ /
/ /
00
00

/ /
/ /

dwSty l e
dwExStyle
x , y
ex , cy
wID

" s t a t i c "

77 00-68 00 61 00 74 00 3A 00
"Fi&nd w h a t : "
no e x t r a d a t a

Notice here that the "static" class was encoded as an ordinal. The template

for this item is therefore as follows:

dwSty le

dwExStyle

X

y
ex

cy

wID

szClass
szText

-

=

=
=
=
=
=
=

0x50020000

0x00000000

0x0004

0x0009

0x0030

0x0008

OxFFFF

o r d i n a l 0x0082

-

=
=
=
=
=
=
a

ws_

ws

4

9

4 8

8

- 1

CHILD | WS_VISIBLE |

GROUP | SS_LEFT

" s t a t i c "

"Fi&nd w h a t : "

C H A P T E R T E N The Inner Workings of the Dialog Manager * ^ 177

The other controls are similarly unexciting:

// Second
0074
0078
007C
0080
0084
0086
008A
008C
008E

// Th
0090
0094
0098
009C
O0AO
00A2
00A6
00B0
ooco
00C4
00C6

80
00
36
72
80
FF
00
00
00

ird
00
00
04
30
FF
FF
52
61
3A
00
00

control
00
00
00
00
04
FF
00
00
00

83
00
07
OC

81

50
00
00
00

00

control
00
00
00
00
FF
FF
00
00
00
00
00

02
00
1A
08

82
65
63
00

50
00
00
00

00
00
00
00

// Fourth control
00C8
OOCC
00D0
00D4
00D8
OODA
OODE
00E0
00E2

// Fi
00E4
00E8
OOEC
00FO
00F4
00F6
OOFA
0100

80
00
36
72
81
FF
00
00
00

fth
03
00
05
68
10
FF
4D
63

00
00
00
00
04
FF
00
00
00

83
00
18
OC

81

50
00
00
00

00

control
00
00
00
00
04
FF
00
00

03
00
2E
OC

80
61
68

50
00
00
00

00
00
00

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

/ /
/ /
/ /
/ /
/ /
/ /

26 OC
65 OC

//
//
//

//
//
//
//
//
//
//
//
//

//
//
//
//
//
//

dwStyle
dwExStyle

X< y
ex, cy
wID
"edit"
n 11

no extra iata
padding to achieve

dwStyle
dwExStyle

x, y
ex, cy
wID
"static"
70 00 6C
20 00 77
"Re&place
no extra
padding t

dwStyle
dwExStyle
x, y
ex, cy
wID
"edit"
1111

no extra

00
00 69 00
with:"
iata
D achieve

data
padding to achieve

dwStyle
dwExStyle
x, y
ex, cy
wID
"button"

74 00
20 00 26 00 77 00 68 00

DWORD

74 00

DWORD

DWORD

6F 00

alignment

68 00

alignment

alignment

6C 00

I78 ^ S ^ THE OLD NEW THING

0110 65 00 20 00 77 00 6F 00 72 00 64 00 20 00 6F 00
0120 6E 00 6C 00 79 00 00 00

// "Match &whole word only"
0128 00 00 // no extra data
012A 00 00 // padding to achieve DWORD alignment

// Sixth control
012C 03 00 01 50 // dwStyle
0130 00 00 00 00 // dwExStyle
0134 05 00 3E 00 // x, y
0138 3B 00 0C 00 // ex, cy
013C 11 04 // wID
013E FF FF 80 00 // "button"
0142 4D 00 61 00 74 00 63 00 68 00 20 00 26 00
0150 63 00 61 00 73 00 65 00 00 00

// "Match &case"
015A 00 00 // no extra data

// Seventh control
015C 01 00 03 50 // dwStyle
0160 00 00 00 00 // dwExStyle
0164 AE 00 04 00 // x, y
0168 32 00 0E 00 // ex, cy
016C 01 00 // wID
016E FF FF 80 00 // "button"
0172 26 00 46 00 69 00 6E 00 64 00 20 00 4E 00
0180 65 00 78 00 74 00 00 00

// "&Find Next"
0188 00 00 // no extra data
018A 0000 // padding to achieve DWORD alignment

// Eighth control
018C 00 00 01 50 // dwStyle
0190 00 00 00 00 // dwExStyle
0194 AE 00 15 00 // x, y
0198 32 00 0E 00 // ex, cy
019C 00 04 // wID
019E FF FF 80 00 // "button"
01A2 26 00 52 00 65 00-70 00 6C 00 61 00 63 00
01B0 65 00 00 00 // "&Replace"
01B4 00 00 // no extra data
01B6 00 00 // padding to achieve DWORD alignment

// Ninth control
01B8 00 00 01 50 // dwStyle
01BC 00 00 00 00 // dwExStyle

CHAPTER TEN The Inner Workings of the Dialog Manager ̂
) 179

01C0
01C4
01C8
01CA
OICE
OlDO
OlEO

01E8
OlEA

AE
32
01
FF
52
65
41

00
00

// Tenth
OlEC
OlFO
01F4
01F8
01FC
OlFE
0202

0210
0212

00
00
AE
32
02
FF
43

00
0 0

00
00
04
FF
00
00
00

00
00

26
OE

80

70
6C

00
00

00

00
00

control
00
00
00
00
00
FF
00

00
00

01
00
37
OE

80
61

50
00
00
00

00
00

/ /
/ /
/ /
/ /

6C OC
6C OC

//
//
//

//
//
//
//
//
//

6E OC

//
//
//

x, y
ex, cy
wID
"button"

61 00 63
00 00
"Replace
no extra

00 65 00

&A11"
data

padding to achieve

dwStyle
dwExStyle

x, y
ex, cy
wID
"button"
63 00 65
"Cancel"
no extra

00 6C 00

data
padding to achieve

20 00

DWORD

00 00

DWORD

26 00

alignment

alignment

// Eleventh control
0214 00 00 01 50

00 00 00 00
AE 00 4B 00
32 00 0E 00
0E 04
FF FF

0218
021C
0220
0224
0226
022A

0236 00 00

// dwStyle
// dwExStyle
// x, y
// ex, cy
// wID
// "button"

26 00 48 00 65 00 6C 00 70 00 00 00
// "&Help"
// no extra data

30 00

Whew. Tedious and entirely unexciting. Here's the original resource compiler

source code that we reverse-engineered:

DIALOG 36, 44, 230, 94
STYLE WS_POPUP I WS_CAPTION | WS_SYSMENU |

DS_MODALFRAME | DS_3DLOOK | NOT WS_VISIBLE
CAPTION "Replace"
FONT 8, "MS Shell Dig"
BEGIN

CONTROL "Fi&nd What:", -1, "static", WS_GROUP | SS_LEFT,
4, 9, 48, 8

I80 -as ^ T H E OLD NEW T H I N G

CONTROL "", 0x0480, "edit",
WS_BORDER | WS_GROUP I WS TABSTOP | ES AUTOHSCROLL,

54, 114, 12

CONTROL "Re&place with:", -1, "static", WS_GROUP | SS_LEFT,
4, 26, 48, 8

CONTROL "", 0x0481, "edit",
WS_BORDER | WS_GROUP | WS_TABSTOP | ES_AUTOHSCROLL,
54, 24, 114, 12

CONTROL "Match &whole word only", 0x0410, "button",
WS_GROUP | WS_TABSTOP | BS_AUTOCHECKBOX,
5, 46, 104, 12

CONTROL "Match &case", 0x0411, "button",
WS_TABSTOP | BS_AUTOCHECKBOX,
5, 62, 59, 12

CONTROL "&Find Next", IDOK, "button",
WS_GROUP | WS_TABSTOP | BS_DEFPUSHBUTTON,
174, 4, 50, 14

CONTROL "&Replace", 0x0400, "button",
WS_TABSTOP | BS_PUSHBUTTON,
174, 21, 50, 14

CONTROL "Replace &A11", 0x0401, "button",
WS_TABSTOP | BS_PUSHBUTTON,
174, 38, 50, 14

CONTROL "Cancel", IDCANCEL, "button",
WS_TABSTOP | BS_PUSHBUTTON,
174, 55, 50, 14

CONTROL "Cancel", 0x040E, "button",
WSJTABSTOP | BS_PUSHBUTTON,
174, 75, 50, 14

END

As before, we didn't explicitly say DS_SETFONT in the dialogs STYLE directive

because that is implied by the FONT directive, and we took advantage of the

fact that WS_VISIBLE is on by default.

CHAPTER TEN TJje Inner Workings ofthe Dialog Manager J = ^ 181

And you probably recognize this dialog. It's the Replace dialog from

f ind tex t . dig. (Although it's not literally the same because the f i n d t e x t . d ig

template uses some shorthand directives such as DEFPUSHBUTTON instead of

manually writing out the details of the button control as a CONTROL.)

16-bit extended templates

The next step in the evolution of dialog templates is the extended dialog, or

DIALOGEX. First, let's look at the 16-bit version.

The 16-bit extended dialog template is purely historical. The only operating

systems to support it were Windows 95 and its successors. It is interesting only

as a missing link in the evolution toward the 32-bit extended dialog template.

The basic rules are the same as for the nonextended template. The extended

dialog template starts off with a different header:

WORD
WORD
DWORD
DWORD
DWORD
BYTE
WORD
WORD
WORD
WORD

wDlgVer;
wSignature;
dwHelpID;
dwExStyle;
dwStyle;
cltems;
x;

y;
CX;

cy;

//
//
//
//
//
//
//
//
//
//

version number - always 1
always OxFFFF
help ID
window extended style
dialog style
number of controls in this dialog
x-coordinate
y-coordinate
width
height

The first two fields specify a version number (so far, only version 1 extended

dialogs have been defined), and a signature value OxFFFF that allows this

template to be distinguished from a nonextended dialog template.

Next come two new fields. The help identifier is an arbitrary 32-bit value

that you can retrieve from the dialog later with the GetWindowContextHelpid

function. The extended dialog style you've seen before.

As before, after the header come the strings. First comes the menu, then the

class, and then dialog title, all encoded the same way as with the nonextend

ed template.

If the DS_SETFONT style is set, a custom font exists in the template. The

format of the font information is slightly different for extended templates.

l 8 2 ^ h . T H E OLD NEW T H I N G

In classic templates, all you get is a WORD of point size and a font name. But in

the extended template, the font information is a little richer:

WORD wPoint; // point size
WORD wWeight; // font weight
BYTE bltalic; // 1 if italic, 0 if not
BYTE bCharSet; // character set (see CreateFont)
CHAR szFontName[]; // variable-length

New fields are the weight, character set, and whether the font is italic.

After the header come the dialog item templates, each of which looks like this:

DWORD dwHelpID; // help identifier
DWORD dwExStyle; // window extended style
DWORD dwStyle; // window style
WORD x; // x-coordinate (DLUs)
WORD y; // y-coordinate (DLUs)
WORD ex; // width (DLUs)
WORD cy; // height (DLUs)
DWORD wID; // control ID
CHAR szClassName[]; // variable-length (possibly ordinal)
CHAR szText[]; // variable-length (possibly ordinal)
WORD cbExtra; // amount of extra data
BYTE rgbExtra[cbExtra]; // extra data follows (usually none)

This takes the classic item template and adds the following:

• New dwHelpID and dwExStyle fields

• dwStyle field moved

• Control ID expanded to DWORD

• cbExtra expanded to WORD

Expanding the control ID to a 32-bit value doesn't accomplish much in 16-bit

Windows, but it's there nonetheless.

And that's all.

Now the obligatory annotated hex dump:

0000 01 00 FF FF 00 00 00 00-00 00 00 00 C4 00 C8 80
0010 0B 24 00 2C 00 E6 00 5E-00 00 00 52 65 70 6C 61 .$.,... *...Repla
0020 63 65 00 08 00 90 01 00-00 4D 53 20 53 68 65 6C ce MS Shel
0030 20 44 6C 67 00 00 00 00-00 00 00 00 00 00 00 02 Dig
0040 50 04 00 09 00 30 00 08-00 FF FF FF FF 82 46 69 P....0 Fi

CHAPTER TEN The Inner Workings ofthe Dialog Manager J©k 183

0050

0060

0070

0080

0090

00A0

OOBO

OOCO

OODO

OOEO

OOFO

0100

0110

0120

0130

0140

0150

0160

0170

0180

0190

01A0

01B0

01C0

Ag

0000
0002
0004
0008
oooc
0010
0011
0015

26 6E

00 00

80 04

00 00

82 52

00 00

18 00

00 00

OC 00

6F 6C

00 00

3B 00

63 61

00 03

26 46

00 00

00 00

00 00

00 32

65 20

00 00

00 80

00 00

04 00

6 4

00

00

02

65

00

72

00

10

65

00

OC

73

50

69

00

04

00

00

26

00

43

00

00

2 0

00

00

5 0

26

00

00

00

04

20

0 0

00

65

AE

6E

00

00

00

OE

41

03

61

00

80

7 7

80

81

04

70

00

OC

00

00

77

00

11

00

00

64

00

0 0

00

00

6C

50

6E

00

26

6 8

00

00

00

6C

00

00

00

00

6F

00

04

00

04

20

00

8 0

00

01

6C

AE

63

03

48

61

83

00

1A

61

00

81

03

80

72

00

00

00

00

4E

00

26

00

04

00

00

65

50

65

74-3A

50-36

00-00

00-30

63-65

00-00

04-00

00-03

4D-61

64-20

00-03

00-80

00-00

32-00

65-78

03-50

52-65

00-00

00-00

00-00

37-00

6C-00

AE-00

6C-70

ain, we start with the header

01 00
FF FF
00 00 00 00
00 00 00 00
C4 00 C8 80
OB
24 00 2C
E6 00 5E

30
30

//
//
//
//
//
//
//
//

00 00

00 07

00 00

00 08

20 77

00 80

00 81

50 05

74 63

6F 6E

00 01

4D 61

00 00

OE 00

74 00

AE 0 0

70 6C

00 00

80 52

00 00

32 00

00 00

4B 00

00 00

wVersion
wSignature
dwHelpID
dwExStyle
dwStyle
cltems

x, y
ex, cy

00

00

00

00

69

00

00

00

68

6C

50

74

00

01

00

15

61

03

65

00

OE

00

32

00

00

72

00

FF

74

83

00

2E

20

79

05

63

00

00

00

00

63

50

70

00

00

00

00

00

00

00

FF

68

50

00

00

26

00

00

68

00

00

00

32

65

AE

6C

00

02

00

OE

00

OC

00

FF

3A

36

00

68

77

00

3E

20

00

00

00

00

00

00

61

00

00

00

00

00

00

00

FF

00

00

00

00

68

00

00

26

01

80

00

OE

00

26

63

00

00

00

OE

&nd what:

P6...r...

. . .P. . . .0

.Re&place with:.
P6 .

. . r

P h.
Match &wh

ole word only...
P..>.

; Match &

. .P. . . .2

StFind Next

P. . . .2..

P. .&

.2 Replac

e SA11

....P. .7.2

..Cancel
P. .K.2. . ..

....fcHelp...

The header breaks down as follows:

wVersion

wSignature

dwHelpID

dwExStyle

dwStyle

cltems

0x0001

OxFFFF

0x00000000

0x00000000

0X80C800C4

OxOB

0

0

WS_POPUP I WSJCAPTION | WS_SYSMENU |

DS_SETFONT | DS_MODALFRAME | DS_3DLOOK

11

184 5S> THE OLD NEW THING

x

y
ex

cy

0x0024

0x002C

0x00E6

0x005E

= 3S

= 44

= 230

= 94

Next come the menu name, class name, and dialog title:

0019 00 // no menu

001A 00 // default dialog class

001B 52 65 70 6C 61 63 65 00 // "Replace"

Same as the 16-bit classic template.

The presence of DS_SETFONT means that there's font information ahead.

This looks slightly different:

0023 08 00 // wSize = 8

0025 90 01 // wWeight = 0x02BC = 700 = FW_NORMAL

0027 00 // Italic

0028 00 // Character set = 0x00 = ANSI_CHARSET

0029 4D 53 20 53 68 65 6C 20 44 6C 67 00

// "MS Shell Dig"

Now follow the extended dialog item templates. This should all be old hat

by now, so I won't go into detail:

/ / F i r s t con t ro l
0035

0039

003D

0041

0045

0049

004D

004E

005A

00

00

00

04

30

FF

82

46

00

00

00

00

00

00

FF

69

00

00 00

00 00

02 50

09 00

08 00

FF FF

26 6E

// Second control

005C

0060

0064

0068

006C

00

00

80

36

72

00

00

00

00

00

00 00

00 00

83 50

07 00

0C 00

//

//

//

//

//

//

//
64 2C

//

//

//

//

//

//

//

dwHelpID

dwExStyle

dwStyle

x, y
ex, cy

dwID

szClass =

) 77 68 61

ordinal 0x82 =

74 3A 00

"Fi&nd what:"

no extra

dwHelpID

dwExStyle

dwStyle

x, y
ex, cy

data

" s t a t i c "

0070 80 04 00 00 / / dwID

C H A P T E R T E N The Inner Workings of the Dialog Manager

0074 81 // "edit"
0075 00 // ""
0076 00 00 // no extra data

// Third control
0078 00 00 00 00 // dwHelpID
007C 00 00 00 00 // dwExStyle
0080 00 00 02 50 // dwStyle
0084 04 00 1A 00 // x, y
0088 30 00 08 00 // ex, cy
008C FF FF FF FF // dwID
0090 82 // "static"
0091 52 65 26 70 6C 61 63 65 20 77 69 74 68 3A

// "Re&place with:"
00A0 00 00 // no extra data

// Fourth control
00A2

00A6

00AA

0 0AE

00B2

00B6

00BA

00BB

00

00

80

36

72

81

81

00

00

00

00

00

00

04

00

0 0

83

18

OC

00

00

00

50

00

00

00

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

dwHelpID

dwExStyle

dwStyle

x, y
ex, cy

dwID

"edit"
11 It

00BC 00 00 // no extra data

// Fifth control
O0BE 00 00 00 00 // dwHelpID

// dwExStyle
// dwStyle
// x, y
// ex, cy
// dwID
// "button"

68 20 26 77 68 6F 6C 65 20 77
6F 6E 6C 79 00

// "Match &whole word only"
00EE 00 00 // no extra data

// Sixth control
00F0 00 00 00 00 // dwHelpID
00F4 00 00 00 00 // dwExStyle
00F8 03 00 01 50 // dwStyle
00FC 05 00 3E 00 // x, y
0100 3B 00 0C 00 // ex, cy

00C2

00C6

00CA

00CE

00D2

00D6

00D7

00

03

05

68

10

80

4D

6F

0 0

0 0

00

00

04

61

7 2

00

03

2E

OC

00

74

64

00

50

00

00

00

63

20

186 4 9 l THE OLD NEW T

0104 11 04 00 00

0108 80

0109 4D 61 74 63 68

0115 00 00

// Seventh control

0117

011B

011F

0123

0127

012B

012F

0130

00

00

01

AE

32

01

80

26

00

00

00

00

00

00

46

00

00

03

04

0E

00

69

00

00

50

00

00

00

6E

013B 00 00

// Ed
013D

0141

0145

0149

014D

0151

0155

0156

.ghtfc

00

00

00

AE

32

00

80

26

. control

00

00

00

00

00

04

52

00

00

03

15

0E

00

65

00

00

50

00

00

00

70

015F 00 00

// Ni

0161

0165

0169

016D

0171

0175

0179

017A

.nth

00

00

00

AE

32

01

80

52

control

00

00

00

00

00

04

65

00

00

03

26

0E

00

70

00

00

50

00

00

00

6C

0187 00 00

// Tenth control

0189 00 00 00 00

018D 00 00 00 00

0191 00 00 03 50

// dwID

// "button"

20 26 63 61 73 65 00

// "Match &case"

// no extra data

// dwHelpID

// dwExStyle

// dwStyle

// x, y

// ex, cy

// dwID

// "button"

20 4E 65 78 74 00

// "&Find Next"

// no extra data

// dwHelpID

// dwExStyle

// dwStyle

// x, y

// ex, cy

// dwID

// "button"

61 63 65 00

// "&Replace"

// no extra data

// dwHelpID

// dwExStyle

// dwStyle

// x, y

// ex, cy

// dwID

// "button"

63 65 20 26 41 6C 6C

// "Replace &A11"

// no extra data

// dwHelpID

// dwExStyle

// dwStyle

C H A P T E R T E N The Inner Workings ofthe Dialog Manager £&< 187

0195

0199
019D

01A1

01A2

01A9

AE
32

02

80

43

00

00

00

00

61

00

// Eleventh

01AB
01AF

01B3

01B7

01BB
01BF

01C3

01C4

01CA

00

00

00

AE

32

OE

80

26

00

00

00

00

00

00
04

48

00

37

OE

00

6E

00

00

00

63

contro

00
00

03

4B

OE

00

65

00
00

50

00

00

00

6C

// x, y
// ex, cy

// dwID

// "button"

65 6C 00

// "Cancel"

// no extra

1
// dwHelpID

// dwExStyle

// dwStyle

// x, y
// ex, cy

// dwID

// "button"

70 00
// "&Help"

// no extra

data

data

The original dialog template is the one you've seen twice already, with only

one change: The DIALOG keyword has been changed to DIALOGEX.

DIALOGEX 36, 44, 230, 94

32-bit extended templates

At last we reach the modern era with the 32-bit extended dialog template,

known in resource files as DIALOGEX. I will celebrate this with a gratuitous

commutative diagram:

16-bit DIALOG 32 32-bit DIALOG

J EX JEX

16-bit DIALOGEX 32 32-bit DIALOGEX

188 J ^ k THE OLD NEW THING

(So-called commutative diagrams are used in several branches of higher

mathematics to represent the relationships among functions. Informally

speaking, a commutative diagram says that if you pick a starting point and an

ending point, then no matter which set of arrows you use to get from one to

the other, you always get the same result.)

Okay, so let's get going. The 32-bit extended dialog template is the 32-bit ver

sion of the 16-bit extended dialog template, so you won't see any real surprises

if you've been following along.

Again, we start with a header, this time the 32-bit extended header:

/ / ve r s ion number - always 1
/ / always OxFFFF
/ / he lp ID
/ / window extended s t y l e
/ / d ia log s t y l e
/ / number of con t ro l s in t h i s d ia log
/ / x -coord ina te
/ / y -coord ina te
/ / width
/ / he igh t

The first two fields serve exactly the same purpose as the 16-bit extended

template: They identify this header as an extended dialog template.

As before, the next two fields are new. The help identifier is attached to the

dialog via the SetwindowContextHelpId function, and the extended dialog

style shouldn't be a surprise.

You know the drill: Next come the three strings for the menu, class, and

dialog title. Because this is the 32-bit template, the strings are Unicode.

As with the 16-bit extended template, the optional custom font consists of

a little more information than the nonextended template:

WORD wPoint; / / po in t s i z e
WORD wWeight; / / f o n t w e i g h t
BYTE b l t a l i c ; / / 1 i f i t a l i c , 0 i f n o t
BYTE b C h a r S e t ; / / c h a r a c t e r s e t
WCHAR s z F o n t N a m e [] ; / / v a r i a b l e - l e n g t h

As before, the point, weight, italic, and character set are all passed to the

CreateFont function.

WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD
WORD
WORD
WORD

wDlgVer;
wSignature
dwHelpID;
dwExStyle;
dwStyle;
cltems;
x;

y;
CX;

cy;

C H A P T E R T E N The Inner Workings of the Dialog Manager 189

After the header come the dialog item templates, each of which must be

aligned on a DWORD boundary:

DWORD

DWORD

DWORD

WORD

WORD
WORD
WORD
DWORD
WCHAR
WCHAR
WORD
BYTE

dwHelpID;
dwExStyle;
dwStyle;
X;

y;
CX;

cy;
dwID ;
szClassName[]
szText [] ;
cbExtra;
rqbExtra[cbEx

//
//
//
//
//
//
//
//

• //
//
//

:ra]

help identifier
window extended style
window style
x-coordinate (DLUs)
y-coordinate (DLUs)
width (DLUs)
height (DLUs)
control ID
variable-length (possibly ordinal)
variable-length (possibly ordinal)
amount of extra data
; // extra data follows (usually none)

The changes here are as follows:

• New dwHelpID and dwExStyle fields.

• The dwStyle field has moved.

• The control ID has grown to a 32-bit value.

Not that expanding the control ID to a 32-bit value helps any, because

WM_COMMAND and similar messages still use a 16-bit value to pass the control

ID. So in practice, you can't use a value greater than 16 bits. (Well, you can

always ignore the control ID field and retrieve the full 32-bit control ID via

the GetDlgCtrllD function, assuming you have the window handle of the

control available.)

And that's all there is to it.

Here's the customary annotated hex dump:

0000

0010

0020

0030

0040

0050

0060

0070

0080

0090

00AO

00B0

01

0B

65

00

6C

00

30

26

3A

80

FF

0 0

00

00

00

00

00

00

00

00

00

00

FF

00

FF

24

70

00

6C

00

08

6E

00

83

81

02

FF

00

00

01

00

00

00

00

00

50

00

50

00

2C

6C

4D

20

00

FF

64

00

36

00

04

00

00

00

00

00

00

FF

00

00

00

00

00

00

E6

61

53

44

00

FF

20

00

07

00

1A

00-

00

00

00

00

00

FF

00

00

00

00

00

00

5E

63

-20

-6C

-00

-FF

-57

-00

-72

-00

-30

00

00

00

00

00

00

FF

00

00

00

00

00

00

00

65

53

67

02

82

68

00

OC

00

08

00

00

00

00

00

50

00

00

00

00

00

00

C4

00

00

68

00

04

46

61

00

80

00

FF

00

00

00

00

00

00

00

00

00

04

00

FF

C8

52

08

65

00

09

69

74

00

00

00

FF

80

00

00

00

00

00

00

00

00

00

00

FF

e

1

0

&

$

p

1

n

.]

1

1

M

d

>6

3

a

S

D

C

1

W

r

0

e. .

S.h

9- •

.P.

. .F

h.a

R.

e

i .

t

1 9 0 T H E OLD N E W T H I N G

ooco
00D0

OOEO

00F0

0100

0110

0120

0130

0140

0150

0160

0170

0180

0190

01A0

O1B0

01C0

01D0

01E0

01F0

0200

0210

0220

0230

0240

0250

0260

0270

FF

63

00

36

00

05

4D

68

64

00

3B

74

65

01

FF

4E

00

00

6C

00

01

61

00

AE

4 3

00

32

65

FF

00

00

00

00

00

00

00

00

00

00

00

00

00

FF

00

00

04

00

00

04

00

00

00

00

00

00

00

82

65

00

18

00

2E

61

6F

20

00

OC

63

00

03

80

65

00

00

61

00

00

63

00

37

61

00

OE

6C

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

52

20

00

72

00

68

74

6C

6F

00

11

68

00

AE

26

78

00

FF

63

00

FF

65

00

32

6E

00

OE

70

00

00

00

00

00

00

00

00

00

00

04

00

00

00

00

00

00

FF

00

00

FF

00

00

00

00

00

04

00

65

77

00

OC

00

OC

63

65

6E

00

00

20

00

04

46

74

01

80

65

01

80

20

00

OE

63

00

00

00

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

00-

50-

00-

00-

50-

00-

00-

00-

00-

00-

00-

00-

00-

-26

-69

-00

-81

-00

-10

-68

-20

-6C

-03

-FF

-26

-00

-32

-69

-00

-AE

-26

-00

-AE

-52

-26

-00

-02

-65

-00

-FF

-00

00

00

00

04

00

04

00

00

00

00

FF

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

FF

00

70

74

00

00

00

00

20

77

79

01

80

63

00

OE

6E

00

15

52

00

26

65

41

00

00

6C

01

80

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

6C

68

80

FF

03

FF

26

6F

00

05

4D

61

00

01

64

00

32

65

00

32

70

6C

00

FF

00

AE

26

00

00

00

FF

00

FF

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

FF

00

00

00

61 00R.e. &.p. 1 .a.

3A oo c.e. .w.i.t.h.;..
83 50 P
81 00 6...r
03 50 P
80 00h
77 00 M.a.t.c.h. .&.w.
72 00 h.o.1.e. .w.o.r.
00 00 d. .o.n.l.y
3E 00 P. .>.
61 00 ; M.a.
73 00 t.c.h. .&.c.a.s.

00 00 e

00 00 ...P. . . .2

20 00 ...-k.F.i.n.d. .

00 00 N.e.x.t

OE 00 P. . . .2. . .

70 00 &.R.e.p.

00 00 1.a.c.e
OE 00 P. .Sc.2 . . .
6C 00 R.e.p.l .

6C 00 a.c.e. . fc.'A.'l.l.

01 50 P
80 00 . .7.2
00 00 C.a.n.c.e.l
4B 00 P. .K.
48 00 2 &.H.

e.1.p

As always, the header comes first:

0000

0002

0004

0008

OOOC

0010

0012

0016

01

FF

00

00

C4

OB

24

E6

00

FF

00

00

00

00

00

00

00 00

00 00

C8 80

2C 00

5E 00

//
//
//
//
//
//

//

//

wVersion

wSignature

dwHelpID

dwExStyle

dwStyle

cltems

x, y
ex, cy

Nothing surprising here; you've seen it before:

wVersion = 0x0001

wSignature = OxFFFF

dwHelpID = 0x00000000

dwExStyle = 0x00000000

dwStyle = 0x80C800C4 = WS_POPUP | WS^CAPTION | WS_SYSMENU |

C H A P T E R T E N The Inner Workings ofthe Dialog Manager J©> 191

cltems

X

y
ex

cy

= OxOOOB

= 0x0024

= 0x002C

= 0x00E6

= 0x005E

=
-
=

=

DS_SETFONT

11

36

44

230

94

DS_MODALFRAME | DS_3DL00K

After the header come the menu name, class name, and dialog title:

001A 00 00 // no menu

001C 00 00 // default dialog class

001E 52 00 65 00 70 00 6C 00 61 00 63 00

65 00 00 00 // "Replace"

And because DS_SETFONT is set in the dialog style, font information comes

next. Notice that the additional font characteristics are included in the

extended template:

// wSize = 8
// wWeight = 0x0000 = FW_DONTCARE

// Italic

// Character set = 0x01 = DEFAULT_CHARSET
4D 00 53 00 20 00 53 00 68 00 65 00 6C 00
6C 00 20 00 44 00 6C 00 67 00 00 00

// "MS Shell Dig"

You've seen this all before. Here come the extended dialog item templates.

Remember, these must be DWORD-aligned:

002E

0030

0032

0033

0034

08

00

00

01

4D

00
00

00

004E 00 00 // padding to achieve DWORD alignment

// First control

0050

0054

0058
005C

0060

0064

0068

006C

0070

0080
0084

00

00

00

04

30

FF
FF

46

26
3A

00

00

00

00
00

00
FF

FF

00

00

00

00

00

00

02

09

08
FF

82
69

6E

00

00

00

50
00

00
FF

00
00

00

00

/ /
/ /
/ /
//
//
//
//

64 00

//
//

dwHelpID

dwExStyle
dwStyle

x, y

ex, cy
wID

szClass =

20 00 77

ordinal 0x0082

00 68 00 61

"Fi&nd what:"

no extra data

00

= "static"

74 00

1 9 2 T H E OLD N E W T H I N G

0086 00 00 // padding to achieve DWORD alignment

// Second control
0088
008C
0090
0094
0098
009C
0 0A0
00A4
0 0A6

// Th
0 0A8
00 AC
OOBO
00B4
0OB8
00BC
ooco
00C4
00D0
00E0
00E2

00
00
80
36
72
80
FF
00
00

ird
00
00
00
04
30
FF
FF
52
63
00
00

00
00
00
00
00
04
FF
00
00

00
00
83
07
OC
00
81

contrc
00
00
00
00
00
FF
FF
00
00
00
00

00
00
02
1A
08
FF
82
65
65

00
00
50
00
00
00
00

il
00
00
50
00
00
FF
00
00
00

// Fourth control
00E4
00E8
00EC
00F0
00F4
00F8
0OFC
0100
0102

00
00
80
36
72
81
FF
00
00

00
00
00
00
00
04
FF
00
00

00
00
83
18
OC
00
81

00
00
50
00
00
00
00

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

/ /
/ /
/ /
/ /
/ /
/ /
/ /

26 00
20 00

//
//

//
//
//
//
//
//
//
//
//

dwHelpID
dwExStyle
dwStyle

x, y
ex, cy
wID
"edit"
IT II

no extra

dwHelpID
dwExStyle
dwStyle

x, y
ex, cy
wID
"static"
70 00 6C
77 00 69
"Re&place
no extra

dwHelpID
dwExStyle
dwStyle

x, y
ex, cy
wID
"edit"
11 11

no extra

data

00 61 00
00 74 00 68 00
with:"
data

data

3A 00

// Fifth control
0104 00 00 00 00
0108 00 00 00 00
010C 03 00 03 50
0110 05 00 2E 00
0114 68 00 0C 00
0118 10 04 00 00
011C FF FF 80 00

// dwHelpID
// dwExStyle
// dwStyle

//
//
// wID
// "button"

x, y
ex, cy

C H A P T E R T E N The Inner Workings of the Dialog Manager -se^ 193

0120 4D 00 61 00 74 00 63 00 68 00 20 00 26 00 77 00
0130 68 00 6F 00 6C 00 65 00 20 00 77 00 6F 00 72 00
0140 64 00 20 00 6F 00 6E 00 6C 00 79 00 00 00

// "Match &whole word only"
014E 00 00 // no extra data

// Sixth control
0150
0154
0158
015C
0160
0164
0168
016C
0170
0180
0184
0186

00
00
03
05
3B
11

00 00
00 00
00 01
00
00
04

FF FF
4D 00
74 00 63
65 00 00
00 00
00 00

00
00
50

3E 00
0C 00
00 00
80
61

00
00
00
00

// dwHelpID
// dwExStyle
// dwStyle
// x, y
// ex, cy
// wID
// "button"

68 00 20 00 26 00 63 00 61 00 73 00
// "Match &case"
// no extra data
// padding to achieve DWORD alignment

// Seventh control
0188 00 00 00 00
018C
0190
0194
0198
019C
01A0
01A4
01B0

01BA

00
01
AE
32
01
FF
26
4E

00

00
00
00
00
00
FF
00
00

00

00
03
04
0E
00
80
46
65

00
50
00
00
00
00
00
00

// Eighth control
01BC
01C0
01C4
01C8
01CC
01D0
01D4
01D8

00
00
00
AE
32
00
FF
26

00
00
00
00
00
04
FF
00

00
00
03
15
0E
00
80
52

00
00
50
00
00
00
00
00

01E0 6C 00 61 00
01EA 00 00

// dwHelpID
// dwExStyle
// dwStyle
// x, y
// ex, cy
// wID
// "button"

69 00 6E 00 64 00 20
78 00 74 00 00 00

// "&Find Next"
// no extra data

// dwHelpID
// dwExStyle
// dwStyle
// x, y
// ex, cy
// wID
// "button"

65 00 70 00
// "&Replace"

63 00 65 00 00 00
// no extra data

00

i 9 4 * * , THE OLD N E W THING

// Ninth control
01EC 00 00 00 00 // dwHelpID
01F0 00 00 00 00 // dwExStyle
01F4 00 00 03 50 // dwStyle
01F8 AE 00 26 00 // x, y
01FC 32 00 0E 00 // ex, cy
0200 01 04 00 00 // wID
0204 FF FF 80 00 // "button"
0208 52 00 65 00 70 00 6C 00
0210 61 00 63 00 65 00 20 00 26 00 41 00 6C 00 6C 00
0220 00 00 // "Replace &A11"
0222 00 00 // no extra data

// Tenth control
0224 00 00 00 00 // dwHelpID
0228 00 00 00 00 // dwExStyle
022C 00 00 01 50 // dwStyle
0230 AE 00 37 00 // x, y
0234 32 00 0E 00 // ex, cy
0238 02 00 00 00 // wID
023C FF FF 80 00 // "button"
0240 43 00 61 00 6E 00 63 00 65 00 6C 00 00 00

// "Cancel"
024E 00 00 // no extra data

// Eleventh control
0250 00 00 00 00 // dwHelpID
0254 00 00 00 00 // dwExStyle
0258 00 00 03 50 // dwStyle
025C AE 00 4B 00 // x, y
0260 32 00 0E 00 // ex, cy
0264 0E 04 00 00 // wID
0268 FF FF 80 00 // "button"
026C 26 00 48 00
0270 65 00 6C 00 70 00 00 00

// "&Help"
0278 00 00 // no extra data

The original dialog template is, of course, the one you're probably sick of by

now. The only change is that the DIALOG keyword has been changed to

DIALOGEX:

DIALOGEX 3 6 , 4 4 , 2 3 0 , 94

CHAPTER TEN Tht Inner Workings of the Dialog Manager ^5x 19 5

Summary

For those who want to compare the four forms of dialog templates, the

highlights appear in tabular form on page 196. The table doesn't contain any

new information, but it might give you a little glimpse into how things evolved

to see the small changes highlighted against each other.

Why dialog templates,
anyway?

USING TEMPLATES IS hardly the only way dialogs could have been designed.

A popular competing mechanism is to generate dialogs entirely in code, hav

ing each dialog explicitly create and position its child windows. This is the

model used by some programming models such as Windows Forms. Win32

settled on the dialog template for a variety of reasons.

For one, memory was at a premium in the early days of Windows. A table-

based approach is much more compact, requiring only one copy of the code

that parses the template and generates the controls. Using a dialog procedure

model means that the common behavior of dialog boxes need be written only

once rather than repeated in each code-based dialog, especially because most

dialog boxes have a fairly simple set of actions that can be covered in most part

by the dialog manager itself.

Another reason for using resources is that it enables the use of interactive

tools to design dialogs. These tools can read the dialog template and preview

the results on the screen, allowing the designer to modify the layout of a

dialog quickly.

Another important reason for using resources is to allow for localization.

Isolating the portions of the program that require translation allows transla

tion to be performed without having to recompile the program. Translators

can use that same interactive tool to move controls around to accommodate

changes in string lengths resulting from translation.

i g o T H E OLD N E W T H I N G

16-Bit Classic 32-Bit Classic

16-Bit Extended 32-Bit Extended

Header

Style

8-bit item count

Coordinates

Extended style, style

16-bit item count

Coordinates

Help ID, extended style, style

8-bit item count

Coordinates

Help ID, extended style, style

16-bit item count

Coordinates

Menu

Caption

A S C I I Z or ordinal

A S C I I Z or ordinal

A S C I I Z or ordinal

A S C I I Z or ordinal

A S C I I Z

A S C I I Z

U N I C O D E Z or ordinal

U N I C O D E Z or ordinal

U N I C O D E Z or ordinal

U N I C O D E Z or ordinal

U N I C O D E Z

U N I C O D E Z

Font

(ifDS_SHELLFONT)

Size

A S C I I Z font name

Size

U N I C O D E Z font name

Size, weight, italic, charset

A S C I I Z font name

Size, weight, italic, charset

U N I C O D E Z font name

Item template

alignment

BYTE DWORD

BYTE DWORD

Item templates

Size, position

16-bit ID

Style

Class, A S C I I Z text/ordinal

8-bit extra data

Size, position

16-bit ID

Extended style, style

Class, U N I C O D E Z text/ordinal

16-bit extra data

Size, position

32-bit ID

Help ID, extended style, style

Class, A S C I I Z text/ordinal

16-bit extra data

Size, position

32-bit ID

Help ID, extended style, style

Class, U N I C O D E Z text/ordinal

16-bit extra data

C H A P T E R T E N The Inner Workings ofthe Dialog Manager -s©s 197

How dialogs are created

Now THAT YOU'VE seen how templates are constructed, we can move on to

the next step in a dialogs life, namely its creation. This section relies heavily

on previous topics covered in Chapter 8, "Window Management." It also

assumes that you are already familiar with dialog templates and dialog styles.

Dialog creation warm-ups

All the CreateDialogXxx functions are just front ends to the real work that

happens in the CreateDialoglndirec tParam function. Some of them are

already visible in the macros: CreateDialog is just a wrapper around

CreateDialogParam, with a parameter of zero. Similarly, CreateDialog

Ind i r ec t is just a wrapper around CreateDia loglndi rec tParam with a

zero parameter.

Here's a slightly less-trivial wrapper:

HWND WINAPI CreateDialogParam(HINSTANCE hinst,
LPCTSTR pszTemplate, HWND hwndParent,
DLGPROC lpDlgProc, LPARAM dwInitParam)

{
HWND hdlg = NULL;
HRSRC hrsrc = FindResource(hinst, pszTemplate,

RT_DIALOG);
if (hrsrc) {

HGLOBAL hglob = LoadResource (hinst, hrsrc);
if (hglob) {

LPVOID pTemplate = LockResource(hglob);
if (pTemplate) {

hdlg = CreateDialoglndirectParam(hinst,
pTemplate, hwndParent, lpDlgProc,
dwInitParam);

}
FreeResource (hglob) ,-

I

return hdlg;

}

198 ^ ^ s THE OLD NEW THING

All the CreateDialogParam function does is use the h i n s t and

pszTemplate parameters to locate the lpTemplate, and then use that tem

plate in CreateDialoglndirectParam.

Creating the frame window

The dialog template describes what the dialog box should look like, so the

dialog manager walks the template and follows the instructions therein. It's

pretty straightforward; there isn't much room for decision making. You just do

what the template says.

For simplicity, I'm going to assume that the dialog template is an extended

dialog template. This is a superset of the classic DLGTEMPLATE, SO there is no

loss of generality.

Furthermore, I will skip over some of the esoterica (such as the

WM_ENTERIDLE message) because that would just be distracting from the

main point. I am also going to ignore error checking for the same reason.

Finally, I assume you already understand the structure of the various dialog

templates and ignore the parsing issues.

The first order of business is to study the dialog styles and translate the

DS_* styles into ws_* and WS_EX_* styles.

Dialog Style

DS MODALFRAME

DS_CONTEXTHELP

DS^CONTROL

Window Style

R e m o v e WS_CAPTION

R e m o v e WS_SYSMENU

Extended Window Style

A d d WS_EX_DLGMODALFRAME

A d d WS_EX_WINDOWEDGE

A d d WS_EX_CONTEXTHELP

A d d WS_EX_CONTROLPARENT

The DS_CONTROL style removes the WS_CAPTION and WS_SYSMENU styles to

make it easier for people to convert an existing dialog into a DS_CONTROL sub-

dialog by simply adding a single style flag. Note, however, that it does not add

the WS_CHILD style, so you need to remember to specify that yourself.

If the template includes a menu, the menu is loaded from the instance handle

passed as part of the creation parameters:

C H A P T E R T E N The Inner Workings of the Dialog Manager -sa^ 199

hmenu = LoadMenu(hinst, <resource i d e n t i f i e r in templa te>) ;

This is a common theme in dialog creation: The instance handle you pass

to the dialog creation function is used for all resource-related activities during

dialog creation.

The algorithm for getting the dialog font goes like this:

if (DS_SETFONT) {
use font specified in template

} else if (DS FIXEDSYS) {
use GetStockFont(SYSTEM FIXED FONT)j

} else {
use GetStockFont(SYSTEM FONT);

}

Notice that DSJSETFONT takes priority over DS_FIXEDSYS. The historical

reason for this will be taken up in Chapter 18, when we ask, "Why does

DS_SHELLFONT = DS_FIXEDSYS | DS_SETFONT?"

When the dialog manager has the font, it is measured so that its dimen

sions can be used to convert dialog units (DLUs) to pixels, because everything

in dialog box layout is done in DLUs. In explicit terms:

/ / 4 xdlu = 1 average cha rac t e r width
/ / 8 ydlu = 1 average cha rac t e r he ight
ttdefine XDLU2Pix(xdlu) MulDiv(xdlu, AveCharWidth, 4)
#define YDLU2Pix(ydlu) MulDivfydlu, AveCharHeight, 8)

The dialog box size comes from the template:

cxDlg = XDLU2Pix(DialogTemplate.cx);
cyDlg = YDLU2Pix(DialogTemplate.cy);

The dialog size in the template is the size of the client area, so we need to

add in the nonclient area, too:

RECT rcAdjust = { 0, 0, cxDlg, cyDlg };
AdjustWindowRectExt&rcAdjust, dwStyle, hmenu != NULL, dwExStyle);
int cxDlg = rcAdjust.right - rcAdjust.left;
int cyDlg = rcAdjust.bottom - rcAdjust.top;

2 0 0 5S^ THE OLD NEW THING

How do I know that it's the client area instead of the full window including

nonclient area? Because if it were the full window rectangle, it would be

impossible to design a dialog! The template designer doesn't know what nonclient

metrics the end-user's system will be set to and therefore cannot take it into

account at design time.

This is a special case of a more general rule: If you're not sure whether

something is true, ask yourself, "What would the world be like if it were true?"

If you find a logical consequence that is obviously wrong, you have just proven

(by contradiction) that the thing you're considering is indeed not true. Many

engineering decisions are really not decisions at all; of all the ways of doing

something, only one of them is reasonable.

If the DS_ABSALIGN style is set, the coordinates given in the dialog template

are treated as screen coordinates; otherwise, the coordinates given in the dia

log template are relative to the dialog's parent:

POINT p t = { XDLU2Pix (Dia logTempla t e .x) ,
YDLU2Pix(Dia logTempla te .y) };

C l i e n t T o S c r e e n (h w n d P a r e n t , & p t) ;

But what if the caller passed hwndParent = NULL? In that case, the dialog

position is relative to the upper-left corner of the primary monitor. But a well-

written program is advised to avoid this functionality, which is retained for

backward compatibility.

On a multiple-monitor system, it puts the dialog box on the primary mon

itor, even if your program is running on a secondary monitor.

The user may have docked the taskbar at the top or left edge of the screen,

which will cover your dialog.

Even on a single-monitor system, your program might be running in the

lower-right corner of the screen. Putting your dialog at the upper-left corner

doesn't create a meaningful connection between the two.

If two copies of your program are running, their dialog boxes will cover

each other precisely. You saw the dangers of this earlier ("A subtlety in restoring

previous window position").

C H A P T E R T E N The Inner Workings ofthe Dialog Manager ^S\ 201

Moral of the story: Always pass a hwndParent window so that the dialog

appears in a meaningful location relative to the rest of your program, (And as

you saw earlier, don't just grab GetDesktopWindow () either!)

Okay, we are now all ready to create the dialog: We have its class, its font,

its menu, its size, and position.

Oh wait, we have to deal with a subtlety of dialog box creation, namely that

the dialog box is created initially hidden. (For an explanation, see the section

"Why are dialog boxes initially created hidden?" in Chapter 14, "Etymology

and History.")

BOOL fWasVisible = dwStyle & WSJVISIBLE;
dwStyle &= ~WS_VISIBLE;

The dialog class and title come from the template. Pretty much everyone

just uses the default dialog class, although I explained earlier in this chapter

how you might use a custom dialog class.

Okay, now we have the information necessary to create the window:

HWND h d l g = CreateWindowEx(dwExStyle , p s z C l a s s ,
p s z C a p t i o n , dwSty le & OxFFFFOOOO, p t . x , p t . y ,
cxDlg, cyDlg, hwndParen t , hmenu, h i n s t , NULL);

Notice that we filter out all the low style bits (per class) because we already

translated the DS_* styles into "real" styles.

This is why your dialog procedure doesn't get the window creation mes

sages like WM_CREATE. At the time the frame is created, the dialog procedure

hasn't yet entered the picture. Only after the frame is created can the dialog

manager attach the dialog procedure:

// Set the dialog procedure
SetWindowLongPtr(hdlg, DWLP_DLGPROC, (LPARAM)lpDlgProc);

The dialog manager does some more fiddling at this point, based on the

dialog template styles. The template may have asked for a window context

help ID. And if the template did not specify window styles that permit resiz

ing, maximizing, or minimizing, the associated menu items are removed from

the dialog box's system menu.

2 0 2 - 5 S \ T H E OLD NEW T H I N G

And it sets the font:

SetWindowFont(hdlg, hf, FALSE);

This is why the first message your dialog procedure receives happens to be

WM_SETFONT: It is the first message sent after the DWLP_DLGPROC has been set.

Of course, this behavior can change in the future; you shouldn't rely on mes

sage ordering.

Now that the dialog frame is open for business, we can create the controls.

Creating the controls

This is actually a lot less work than creating the frame, believe it or not.

For each control in the template, the corresponding child window is created.

The control's sizes and position are specified in the template in DLUs, so of

course they need to be converted to pixels:

int x = XDLU2Pix(ItemTemplate .x) ;
int y = YDLU2Pix(ItemTemplate.y) ;
int ex = XDLU2Pix(ItemTemplate.ex);
int cy = YDLU2Pix(ItemTemplate.cy);

Note that the width and height of the control are converted directly from

DLUs, rather than converting the control's rectangle as the following code

fragment does:

// This is not how the dialog manager computes
// the control dimensions
int cxNotUsed = XDLU2Pix(ItemTemplate.x + ItemTemplate.ex) - x;
int cyNotUsed = YDLU2Pix(ItemTemplate.y + ItemTemplate.cy) - y;

The difference between ex and cxNotUsed is not normally visible, but it

can manifest itself in discrepancies of up to two pixels if the rounding inher

ent in the DLU-to-pixel conversion happens to land just the wrong way. Let

this be another warning to designers not to become attached to pixel-precise

control positioning in dialogs. In addition to the DLU-to-pixel rounding

C H A P T E R T E N The Inner Workings ofthe Dialog Manager -s©\ 203

we see here, you can also see this discrepancy when fonts change size and

shape when the system's DPI (dots per inch) setting changes.

The class name and caption also come from the template. There are also

the optional extra bytes pExtra that nobody uses but that nevertheless

remain in the template definition, as you saw earlier in this chapter. When

that information has been collected, we're ready to go:

HWND hwndChild = CreateWindowEx(
ItemTemplate.dwExStyle | WS_EX_NOPARENTNOTIFY,
pszClass, pwzCaption, ItemTemplate.dwStyle,
x, y, ex, cy, hdlg, ItemTemplate.dwld,
hinst, pExtra);

Notice that the WS_EX_NOPARENTNOTIFY style is forced on for dialog con

trols. There's no real point in notifying the parent window of the child win

dow's comings and goings, because the parent is the dialog box, which is

already quite aware of the child controls by other means.

This next part often trips people up. "When I try to create my dialog, it

fails, and I don't know why." It's probably because one of the controls on the

dialog could not be created, usually because you forgot to register the window

class for that control. (For example, you forgot to call the initCommon

ControlsEx function or you forgot to LoadLibrary the appropriate version

of the RichEdit control.)

if (!hwndChild) {
DestroyWindow(hdlg);
return NULL;

_J
The DS_NOFAILCREATE style suppresses the failure check above.

But if the control did get created, it needs to be initialized:

SetWindowContextHelpId(hwndChild, ItemTemplate.dwHelpID);
SetWindowFont(hwndChild, hf, FALSE);

Repeat once for each item template, and you now have a dialog box with all

its child controls. Tell the dialog procedure that it can initialize its child windows,

2 0 4 -f&s THE OLD NEW THING

show the (now-ready) dialog box if we had deferred the WS_VISIBLE bit

when constructing the frame, and return the dialog box to our caller, ready for

action:

// The default focus is the first item that is a valid tab-stop
HWND hwndDefaultFocus = GetNextDlgTabItem(hdlg, NULL, FALSE);
if (SendMessage(hdlg, WM_INITDIALOG,

hwndDefaultFocus, lParam)) {

SetDialogFocus(hwndDefaultFocus);

}

}

if (fWasVisible) ShowWindow(hdlg);
return hdlg;

You will see the SetDialogFocus function in more detail later in this

chapter; it sets the focus in a dialog-friendly manner.

So there you have it: You have now seen how dialog box sausages are made.

(Actually, reality is much sausagier, because I skipped over all the applica

tion compatibility hacks! For example, there's a program out there that relies

on the subtle placement and absence of the ws_BORDER style to decide

whether a control is a combo box or a list box. I guess the GetClassName

function was too much work?)

The modal dialog loop

THE NEXT STEP in a dialog box's life is the modal loop that pumps and dis

patches messages to the dialog. We start with a discussion of the basic dialog,

then use that as a springboard for more advanced versions of the loop.

The basic dialog loop

The dialog loop is actually quite simple. At its core, it's a simple loop:

w h i l e (< d i a l o g s t i l l a c t i v e > &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f (! I s D i a l o g M e s s a g e (h d l g , &msg)) {
T r a n s l a t e M e s s a g e (& m s g) ;

c H A p T E R T E N The Inner Workings ofthe Dialog Manager

DispatchMessage(&msg);

}
}

If you want something fancier in your dialog loop, you can take the preceding

loop and tinker with it.

But let's start from the beginning. The work happens in DialogBox

IndirectParam. (We already saw how to convert all the DialogBoxXxx

functions into DialogBoxIndirectParam.)

INT_PTR WINAPI DialogBoxIndirectParam(
HINSTANCE hinst,
LPCDLGTEMPLATE lpTemplate, HWND hwndParent,
DLGPROC lpDlgProc, LPARAM lParam)

{
/*
* App hack! Some people pass GetDesktopWindow()
* as the owner instead of NULL. Fix them so the
* desktop doesn't get disabled!

*/

if (hwndParent == GetDesktopWindow())
hwndParent = NULL;

That's right, we start with an application compatibility hack. We discussed

earlier the special position of the desktop window. ("What's so special about

the desktop window?") So many people make the mistake of passing the

desktop window instead of NULL that we had to put this application hack into

the core operating system. It would be pointless to make a shim for it because

that would mean that thousands of applications would need to be shimmed.

Because only top-level windows can be owners, we have to take the puta

tive hwndParent (which might be a child window) and walk up the window

hierarchy until we find a top-level window:

i f (hwndParent)
hwndParent = G e t A n c e s t o r (h w n d P a r e n t , GA_ROOT);

(If you paid close attention, you might have noticed that there is still a way

to sneak through the two layers of hwndParent parameter "repair" and end up

with a dialog box whose owner is the desktop window, namely by creating a

2 0 5

2 0 6 ^SS THE OLD NEW THING

window as a child of the desktop and using it as the hwndParent for a dialog

box. So don't do that.)

With that second application compatibility hack out of the way, we create

the dialog:

HWND h d l g = C r e a t e D i a l o g I n d i r e c t P a r a m (h i n s t
lpTempla
l P a r a m) ;
l p T e m p l a t e , hwndParen t , l p D l g P r o c ,

Note that as before, I am going to ignore error checking and various dialog

box esoterica because it would just be distracting from the main point of this

discussion.

As you saw earlier in our discussion of modality, modal windows disable

their parent, so do it here:

BOOL fWasEnabled = EnableWindow(hwndParent, FALSE) ;

We then fall into the dialog modal loop:

MSG msg;
w h i l e (< d i a l o g s t i l l a c t i v e > &&

GetMessage(&msg, NULL, 0, 0)) {
i f (H s D i a l o g M e s s a g e (h d l g , &msg)) {

T r a n s l a t e M e s s a g e (& m s g) ;
DispatchMessage(&msg) ;

}

We observe the convention on quit messages by reposting any quit message

we may have received so the next outer modal loop can see it:

if (msg.message == WM_QUIT) {
PostQuitMessage((int)msg.wParam);

J
(Astute readers might have noticed an uninitialized variable bug: If

EndDialog was called during WM_INITDIAL0G handling, msg.message is

never set. I decided to ignore this fringe case for expository purposes.)

Now that the dialog is complete, we clean up. As you saw earlier ("The

correct order for disabling and enabling windows"), it is important to enable

the owner before destroying the owned dialog:

C H A P T E R T E N The Inner Workings of the Dialog Manager dCK 207

if (fWasEnabled)
EnableWindow(hwndParent, TRUE);

DestroyWindow(hdlg);

A n d that's all. Return the result:

return <value passed to EndDialog>;

}

Congratulations, you are now an expert on the dialog loop. Now we'll put

this new expertise to good use after a brief digression.

Why is the dialog loop structured
this way, anyway?

The dialog loop is structured the way it is because of the way input messages are

routed. The window manager delivers mouse input messages to the window that

contains the coordinates of the cursor and it delivers keyboard input messages to

the window with keyboard focus. This works out well under normal circum

stances; but if we follow this model for dialogs, we quickly run into a problem:

Because keyboard input is delivered to the window with keyboard focus, the dia

log manager wouldn't get a chance to see them and implement dialog keyboard

navigation. To see the messages before they continue on their way to the window

with keyboard focus, the dialog loop needs to sneak a peek at the message before

translating and dispatching it. The function that does this peeking is called

IsDialogMessage. We take up the inner workings of isDialogMessage after

we finish exploring the details of the dialog modal loop.

Converting a nonmodal dialog box
to a modal one

Let's convert a modeless dialog box into a modal one. Start with the scratch

program and make the following additions:

INT_PTR CALLBACK DlgProc(
HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

208 J S ^ THE OLD NEW THING

switch (uMsg) {
case WM_INITDIALOG:
SetWindowLongPtr(hdlg, DWLP_USER, lParam);
return TRUE;

case WM_COMMAND:
switch (GET_WM_COMMAND_ID(wParam, lParam)) {
case IDOK:
EndDialog(hdlg, IDOK);
break;

case IDCANCEL:
EndDialog(hdlg, IDCANCEL
break;
}

return FALSE;

}

int DoModal(HWND hwnd)

{
return DialogBox(g_hinst, MAKEINTRESOURCE(1) , hwnd, DlgProc);

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat

{
switch (ch) {
case ' ': DoModal(hwnd); break;
i

}

// Add to WndProc
HANDLE_MSG(hwnd, WM_CHAR, OnChar);

// Resource file
1 DIALOGEX DISCARDABLE 32, 32, 200, 40
STYLE DS_MODALFRAME | DS_SHELLFONT | WS_POPUP |

WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Sample"
FONT 8, "MS Shell Dig"
BEGIN
DEFPUSHBUTTON "OK",IDOK,20,20,50,14
PUSHBUTTON "Cancel",IDCANCEL,74,20,50,14

END

Not a very exciting program, I grant you that. It just displays a dialog box

and returns a value that depends on which button you pressed. The DoModal

function uses the DialogBox function to do the real work.

C H A P T E R T E N The Inner Workings ofthe Dialog Manager f&< 209

Now let's convert the DoModal function so that it implements the modal

loop directly Why? Just to see how it's done, because the best way to learn

how something is done is by doing it. In real life, of course, there would nor

mally be no reason to undertake this exercise; the dialog box manager does a

fine job. But when you understand how the modal loop is managed, you will

be on more solid ground when you need to add something a little out of the

ordinary to your own dialog procedures. (In an extreme case, you might need

to write code like this after all; for example, you might be developing your own

modal dialog-box-like component such as a property sheet.)

First, we need to figure out where we're going to keep track of the flag we

called <dialog s t i l l ac t ive> last time. We'll keep it in a structure that

we hang off the dialog box's DWLPJJSER window bytes. (I sort of planned

ahead for this by having the DlgProc function stash the lParam into the

DWLPJJSER extra bytes when the dialog is initialized.)

/ / fEnded t e l l s us i f the d ia log has been ended.
/ / When ended, iResul t conta ins the r e s u l t code.

typedef s t r u c t DIALOGSTATE {
BOOL fEnded;
int iResult;
} DIALOGSTATE;

void EndManualModalDialog<HWND hdlg, int iResult)

{
DIALOGSTATE *pds = reinterpret_cast<DIALOGSTATE*>

(GetWindowLongPtr(hdlg, DWLP_USER));
if (pds) {
pds->iResult = iResult;
pds->fEnded = TRUE;

The EndManualModalDialog takes the place of the EndDialog function:

Instead of updating the dialog manager's internal "is the dialog finished?" flag,

we update ours.

2 I O T H E OLD N E W T H I N G

All we have to do to convert our DlgProc from one using the dialog man

ager's modal loop to our custom modal loop, therefore, is to change the calls

to EndDialog to call our function instead:

INT_PTR CALLBACK DlgProc(
HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM IParam)

{
switch (uMsg) {
case WM_INITDIALOG:
SetWindowLongPtr(hdlg, DWLP_USER, IParam)
return TRUE;

case WMJCOMMAND:
switch (GET_WM_COMMAND_ID(wParam, IParam)
case IDOK:
EndManualModeDialog(hdlg, IDOK);
break;

case IDCANCEL:
EndManualModeDialog(hdlg, IDCANCEL);
break;

•

}
}

return FALSE;

All that's left is to write the custom dialog message loop:

i n t DoModal(HWND hwnd)

{
DIALOGSTATE ds = { 0 } ;
HWND hdlg = CreateDialogParam(gjiinst, MAKEINTRESOURCE(1) ,

hwnd, DlgProc, reinterpret_cast<LPARAM>(&ds)) ;
if (Ihdlg) {
return -1;
}

EnableWindow(hwnd, FALSE);
MSG msg;
msg.message = WM_NULL; // anything that isn't WM_QUIT
while (Ids.fEnded && GetMessage(&msg, NULL, 0, 0)) {
if (!IsDialogMessage(hdlg, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
if (msg.message WM QUIT)

C H A P T E R T E N The Inner Workings of the Dialog Manager ^=^ 211

PostQuitMessage((int)msg.wParam);

}
EnableWindow(hwnd, TRUE);
DestroyWindow(hdlg) ;
return ds.iResult;

Most of this should make sense given what you've learned earlier.

We start by creating the dialog modelessly passing a pointer to our dialog state

as the creation parameter, which as we noted earlier, our dialog procedure squir

rels away in the DWLP_USER window bytes for EndManualModalDialog to use.

Next we disable the owner window; this is done after creating the modeless

dialog, observing the rules for enabling and disabling windows. We then fall

into our message loop, which looks exactly like what we said it should look

like. All we did was substitute !ds.fEnded for the pseudocode <dialog

s t i l l ac t ive>. After the modal loop is done, we continue with the standard

bookkeeping: reposting any quit message, reenabling the owner before

destroying the dialog, and then returning the result.

As you can see, the basics of modal dialogs are really not that exciting. But

now that you have this basic framework, you can start tinkering with it.

First, however, we're going to patch up a bug in the preceding code. It's

rather subtle. See whether you can spot it. Hint: Look closely at the interaction

between EndManualModalDialog and the modal message loop.

Subtleties in message loops

The subtlety is that EndManualModalDialog sets some flags but does nothing

to force the message loop to notice that the flag was actually set. Recall that

the GetMessage function does not return until a posted message arrives in

the queue. If incoming sent messages arrive, they are delivered to the corre

sponding window procedure, but the GetMessage function doesn't return. It

just keeps delivering incoming sent messages until a posted message finally

arrives.

The bug, therefore, is that when you call EndManualModalDialog, it sets the

flag that tells the modal message loop to stop running, but doesn't do anything

212 ^ ? N THE OLD NEW THING

to ensure that the modal message loop will wake up to notice. Nothing happens

until a posted message arrives, which causes GetMessage to return. The posted

message is dispatched and the while loop restarted, at which point the

code finally notices that the f Ended flag is set and breaks out of the modal

message loop.

There are a few ways of fixing this problem. The quick solution is to post a

meaningless message:

v o i d EndManualModalDialog(HWND h d l g , i n t i R e s u l t)

{
DIALOGSTATE *pds = reinterpret_cast<DIALOGSTATE*>

(GetWindowLongPtr(hdlg, DWLPJJSER));
if (pds) {
pds->iResult = iResult;
pds->fEnded = TRUE;
PostMessage(hdlg, WM_NULli, 0, 0) ;
}

J
This forces the GetMessage to return, because we made sure there is at

least one posted message in the queue waiting to be processed. We chose the

WM_NULL message because it doesn't do anything. We aren't interested in what

the message does, just the fact that there is a message at all.

More subtleties in message loops

We solved the problem with the EndManualDialog function by posting a

harmless message. Now let's solve the problem in an entirely different way,

because it illustrates other subtleties of message loops.

The idea here is to make sure the modal message loop regains control, even

if all that happened were incoming sent messages, so that it can detect that the

f Ended flag is set and break out of the modal loop.

Instead of changing the EndManualModalDialog function, we will change

the modal message loop:

i n t DoModal(HWND hwnd)
{

DIALOGSTATE ds = { 0 } ;

C H A P T E R T E N The Inner Workings of the Dialog Manager *&< 213

HWND hdlg = CreateDialogParam(g_hinst, MAKEINTRESOURCE(1)
hwnd, DlgProc, reinterpret_cast<LPARAM>(&ds)

if (Ihdlgj {
return -1;

}

EnableWindow(hwnd, FALSE);
MSG msg;
msg.message = WM_NULL; // anything that isn't WM_QUIT
while (Ids. fEnded) {
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
if (msg.message == WM_QUIT) {
break;

if (!IsDialogMessage(hdlg, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

•
. JMMMMI

if (msg.message == WM_QUIT) {
PostQuitMessage((int)msg.wParam);

}
EnableWindow(hwnd, TRUE)
DestroyWindow(hdlg);
return ds.iResult;

}

We changed the call to GetMessage into a call to the PeekMessage function,

asking to remove the peeked message if any. Like GetMessage, this delivers

any incoming sent messages, and then checks whether there are any posted

messages in the queue. T h e difference is that whereas GetMessage keeps

waiting if there are no posted messages, PeekMessage returns and tells you

that there were no posted messages.

That's the control we want. If PeekMessage says that it couldn't find a

posted message, we check our f Ended flag once again, in case an incoming

sent message set the f Ended flag. If not, we call the WaitMessage function to

wait until there is something to do (either an incoming sent message or a

posted message).

214 ^ ^ S THE OLD NEW THING

Note that because we shifted from GetMessage to PeekMessage, we

also have to check for the WM_QUIT message in a different way. Whereas the

GetMessage function returns FALSE when the WM_QUIT message is received,

the PeekMessage function does not call out that message in any special way.

As a result, we need to check for it explicitly.

If the whole point was to regain control after sent messages are delivered,

why isn't there a test of the f Ended flag immediately after D i spa tchMessage

returns? Actually, the test is there. Control goes back to the top of the w h i l e

loop, where the f Ended flag is tested.

Custom navigation in dialog boxes

Some dialog boxes contain custom navigation that goes beyond what the

IsDialogMessage function provides. For example, property sheets use Ctrl+Tab

and Ctrl+Shift+Tab to change pages within the property sheet. Remember the

core of the dialog loop:

w h i l e (< d i a l o g s t i l l a c t i v e > &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f (! I s D i a l o g M e s s a g e (h d l g , &msg)) {
Trans la t eMessage (&msg) ;
DispatchMessage(&msg) ;

}
]

(Or the modified version we created in the previous section.)

To add custom navigation, just stick it in before calling I sDia logMessage :

w h i l e (< d i a l o g s t i l l a c t i v e > &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f (msg.message == WM_KEYDOWN &&
msg.wParam =- VK_TAB &&
GetKeyState(VK_CONTROL) < 0) {

T r a n s l a t e M e s s a g e (& m s g) ;
D i spa t chMessage (&msg) ;

|

}

C H A P T E R T E N The Inner Workings ofthe Dialog Manager J©*k 215

After retrieving a message, we check whether it was Ctrl+Tab before

dispatching it or indeed even before letting isDialogMessage see it. If so,

treat it as a navigation key.

Note that if you intend to have modeless dialogs controlled by this message

loop, your test needs to be a little more focused, because you don't want to

pick off keyboard navigation keys destined for the modeless dialog:

w h i l e (< d i a l o g s t i l l a c t i v e > &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f ((h d l g == msg.hwnd | | l s C h i l d (h d l g , msg.hwnd)) &&
msg.message == WM_KEYDOWN &&
msg.wParam == VK_TAB &&
GetKeyState(VK_CONTROL) < 0) {

. . . do cus tom n a v i g a t i o n . . .
} e l s e i f (! I s D i a l o g M e s s a g e (h d l g , &msg)) {

T r a n s l a t e M e s s a g e (& m s g) ;
Dispa tchMessage(&msg) ;

Next, you'll see another way of accomplishing this same task

Custom accelerators in dialog boxes

The method for adding custom navigation can also be used to add custom

accelerators to your dialog box. (In a sense, this is a generalization of custom

navigation, because you can make your navigation keys be accelerators.)

So, let's use accelerators to navigate instead of picking off the keys manually.

Our accelerator table might look like this:

IDA_PROPSHEET ACCELERATORS
BEGIN

VK_TAB ,IDC_NEXTPAGE ,VIRTKEY,CONTROL
VK_TAB ,IDC_PREVPAGE ,VIRTKEY,CONTROL,SHIFT

END

Here you can see my comma-placement convention for tables. I like to put

commas at the far end of the field instead of jamming it up against the last

word in the column. Doing this makes cut/paste a lot easier, because you can

2 l 6 ^ ^ THE OLD NEW THING

cut a column and paste it somewhere else without having to go back and twid

dle all the commas.

Assuming you've loaded this accelerator table into the variable hacc , you

can use that table in your custom dialog loop:

while (<dialog s t i l l ac t ive> &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f ([Trans l a t eAcce le ra to r (hd lg , hacc, &msg) &&
! I s D i a l o g M e s s a g e (h d l g , &msg)) {

T r a n s l a t e M e s s a g e (& m s g) ;
D i spa t chMessage (&msg) ;

}

]

T h e T r a n s l a t e A c c e l e r a t o r function checks whether the message

matches any entries in the accelerator table. If so, it posts a WM_COMMAND mes

sage to the window passed as its first parameter. In our case, we pass the dia

log box handle. N o t shown above is the WM_COMMAND handler in the dialog

box that responds to IDC_NEXTPAGE and IDC_PREVPAGE by performing a

navigation.

As before, if you think there might be modeless dialogs owned by this mes

sage loop, you will have to do filtering so that you don't pick off somebody

else's navigation keys:

while (<dialog still active> &&
GetMessage(&msg, NULL, 0, 0, 0)) {

if (!((hdlg == msg.hwnd || IsChild(hdlg, msg.hwnd)) &&
!TranslateAccelerator(hdlg, hacc, &msg)) &&

!IsDialogMessage(hdlg, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}

Nested dialogs and DS_CONTROL

A N I M P O R T A N T E N H A N C E M E N T to the dialog manager that first appeared

in Windows 95 is support for nested dialogs via the DS_CONTROL style.

C H A P T E R T E N Tfce Inner Workings ojthe Dialog Manager *&< 217

You're probably accustomed to seeing nested dialogs without even realizing it.

Property sheets, for example, are a highly visible example: Each page on a

property sheet is its own dialog, all of which are nested inside the property

sheet frame. You also see nested dialogs when an application customizes the

common file dialogs. For example, when you perform a Save As with Notepad,

the encoding options at the bottom are a nested dialog.

Starter kit

Let's create a nested dialog so that we can see one in action, starting with the

following program:

#include <windows.h>
ttinclude <windowsx.h>

HINSTANCE g_hinst;

INT_PTR CALLBACK
OuterDlgProc(HWND hdlg, UINT wm, WPARAM wParam, LPARAM lParam)

{
switch (wm) {
case WM_INITDIALOG:
return TRUE;

case WM_COMMAND:
switch (GET_WM_COMMAND_ID(wParam, lParam)) {
case IDOK:
EndDialog(hdlg, IDOK);
break;

case IDCANCEL:
EndDialog(hdlg, IDCANCEL);
break;
}
}
return FALSE;

}

int PASCAL
WinMain(HINSTANCE hinst, HINSTANCE, LPSTR, int nShowCmd)

{
g_hinst = hinst;
INT_PTR iRc = DialogBox(g_hinst, MAKEINTRESOURCE(1),

NULL, OuterDlgProc);

return 0;

}

2l8 .*SS THE OLD NEW THING

Coupled with the following resource file:

1 DIALOG 0, 0, 212, 188
STYLE DS_SHELLFONT | WS_POPUP | WSJVISIBLE |

WS_CAPTION | WS_SYSMENU
CAPTION "Sample"
FONT 8, "MS Shell Dig"
BEGIN

CONTROL "",100,"static",SS_GRAYRECT,0,0,212,16 0
DEFPUSHBUTTON "OK",IDOK,98,167,50,14
PUSHBUTTON "Cancel",IDCANCEL,155,167,50,14

END

If you run this program, all you get is a rather bland dialog box with OK

and Cancel buttons, and a large gray box filling the body Let's fill the gray box

with a nested dialog. Make the following changes to our program:

/ / New f u n c t i o n
INT_PTR CALLBACK
InnerDlgProc(HWND h d l g , UINT wm, WPARAM wParam, LPARAM IParam)

{
switch (wm) {
case WM_INITDIALOG:
return TRUE;
}
return FALSE;

// New function
void GetWindowRectRelative(HWND hwnd, LPRECT pre)

{
GetWindowRect(hwnd, pre);

MapWindowRect(NULL, GetAncestor(hwnd, GA_PARENT), pre);

}

// New function
void OnInitDialog(HWND hdlg)

{
HWND hdlglnner = CreateDialog(gjiinst, MAKEINTRESOURCE(2) ,

hdlg, InnerDlgProc);
if (hdlglnner) {
RECT re;
GetWindowRectRelative(GetDlgltem(hdlg, 100), &rc) ;
SetWindowPos(hdlglnner, HWNDJTOP, re.left, re.top,

re.right - re.left, re.bottom - re.top,

C H A P T E R TEN The Inner Workings of the Dialog Manager -^S 2 I 9

SWP_NOACTIVATE);
} else {

EndDialog(hdlg, IDCANCEL);

}
}

// Add to OuterDlgProc
case WM_INITDIALOG:

OnlnitDialog(hdlg);
return TRUE;

In the dialog procedure for our outer window, we respond to the WM_

INITDIALOG message by creating the inner dialog box and positioning it in

the outer dialog, using the gray box as a guide. The helper function Get

WindowRectRelative is like GetWindowRect, except that it returns the

window rectangle in parent-relative coordinates, which is the coordinate sys

tem of choice when performing child window positioning computations. The

dialog procedure for the inner dialog box doesn't do anything, because this is

just a demonstration:

1 DIALOG 0, 0, 212, 188
STYLE DS_SHELLFONT | WS_POPUP | WS__VISIBLE |

WS_CAPTION | WS_SYSMENU
CAPTION "Sample"
FONT 8, "MS Shell Dig"
BEGIN

CONTROL "",100,"static",
SS_GRAYRECT | NOT WSJVTSIBLE , 0 , 0 , 212 , 160

DEFPUSHBUTTON "OK",ID0K,98,167,50,14
PUSHBUTTON "Cancel",IDCANCEL,155, 167,50, 14

END

2 DIALOG 0, 0, 212, 160
STYLE DS_SHELLFONT | DS_CONTROL | WS_CHILD | WS_VISIBLE
CAPTION "Inner"
FONT 8, "MS Shell Dig"
BEGIN

GROUPBOX "&Options",-1,7,7,198,153
AUTOCHECKBOX "SAutosave",100,14,24,184,10
AUTOCHECKBOX "&Resize images to fit window",

101,14,36,184,10
END

2 2 0 THE OLD NEW THING

Because the gray box is merely a positioning guide, we remove the WS_

VISIBLE style so that it doesn't appear on the screen.The second dialog, the inner

dialog, looks like a normal dialog, except that the styles are different: We add the

DS_CONTROL style to indicate that this is a nested dialog. We also need to set the

ws_CHlLD style because it will be the child of the outer dialog. For the same rea

son, we remove the WS_POPUP, WS_CAPTION, and WS_SYSMENU styles. These steps

are important to get the nested dialog to play friendly with its new parent.

Even with this limited example, many aspects of nested dialogs are appar

ent. First is the subservience of the nested dialog. The outer dialog takes

responsibility for the combined dialog, running the message loop, managing

the default button, and preserving the focus window across changes in activation.

The inner dialog is reduced to merely managing its own controls.

Much more obvious is the unified tab order. The controls on the nested dia

log are treated as if they belonged to the outer dialog, allowing the user to tab

through all the controls seamlessly. The way this works is quite simple: When the

dialog manager enumerates windows, it recurses into windows with the

WS_EX_CONTROL PARENT extended style. Without the style, the dialog manager

treats the window as a control; with the style, the dialog manager treats the win

dow as a container. If a window is treated as a container, it loses the ability to

receive focus directly; instead, its children become eligible for receiving focus.

Another way to visualize the effect of the WS_EX_CONTROLPARENT extended

style is to treat it as a window that "promotes" its children.

C H A P T E R TEN The Inner Workings of the Dialog Manager 2 2 1

Without the WS__EX_CONTROLPARENT extended style, the outer dialog sees

three children, namely "Inner", "OK", and "Cancel". When the WS_EX_

CONTROLPARENT extended style is added to " Inner", the children of the inner

dialog are treated as if they were children of the outer dialog.

Either way you look at it, the effect is the same: The resulting tab order is

the combination of the tab orders of the outer and inner dialogs.

It is important to be mindful of the unification of the tab order to avoid

sending the dialog manager into an infinite loop. When you ask the GetNext

DlgTabltem function to look for the previous item, it takes the control you

pass as a starting point and walks through the controls on the dialog until it

comes back to that starting point, at which point it returns the one it saw

before that one. If you forget to mark your dialog as DS_CONTROL, and focus

started out in the subdialog, the control enumeration will not recurse into the

subdialog, and consequently the starting point will never be found. The dia

log manager will just keep looping, hunting for that starting-point control and

never finding it.

(This problem exists even without DS_CONTROL. If you start out on a disabled

or invisible control, the walk through the controls will again never find the

starting point, because disabled and invisible controls are skipped over when

tabbing through a dialog.)

One aspect of nested dialogs we've conveniently glossed over is the commu

nication between the outer and inner dialogs. There is no predefined protocol

for the two dialogs to use; you get to invent whatever mechanism you feel

works best for you. Typically, you pass information from the outer dialog to

the inner dialog by passing it as the final parameter to the CreateDialog

Param function. This at least lets the inner dialog know why it is being created.

2 2 2 ^ ^ T H E OLD NEW T H I N G

J

Communication between the two dialogs after that point is up to you. The

shell property sheet, for example, uses WM_N0TIFY messages to communicate

from the outer to the inner dialog, and PSM_* messages to communicate from

the inner back to the outer.

Resizing based on the inner dialog

Our previous example required a fixed size for the inner dialog; but in the case

where the inner dialog is an extensibility point, you may choose to adapt to the

size of the inner dialog rather than enforcing a size upon it. Implementing this

is comparatively straightforward; it's just a variation on the general case of the

resizable dialog. Replace the Onlni tDialog function with this version:

void OnlnitDialog(HWND hdlg)
{
HWND hdlglnner = CreateDialog(g_hinst,

MAKEINTRESOURCE(2), hdlg, InnerDlgProc) ;
if (hdlglnner) {
RECT rclnner;
GetWindowRectRelative(hdlglnner, &rclnner);
RECT rcDst;
GetWindowRectRelative(GetDlgltem(hdlg, 100),
SetWindowPos(hdlglnner, HWND_TOP, rcDst.left

SWP_NOSIZE | SWP_NOACTIVATE);

int cxlnner = rclnner.right - rclnner. left,-
int cylnner = rclnner.bottom - rclnner.top;
int cxDst = rcDst.right - rcDst.left;
int cyDst = rcDst.bottom - rcDst.top;
int dx = cxlnner - cxDst;
int dy = cylnner - cyDst;
SlideWindow(GetDlgltem(hdlg, IDOK), dx, dy) ;
SlideWindow(GetDlgltem(hdlg, IDCANCEL), dx, dy) ;
GrowWindow(hdlg, dx, dy);
} else {
EndDialog(hdlg, IDCANCEL);

After creating the inner dialog, we measure it and position it. This time,

instead of forcing the inner dialog to our desired size, we leave it at its original

&rcDst);
r cDs t . t op , 0 , 0 ,

C H A P T E R T E N The Inner Workings ofthe Dialog Manager ^S> 223

size and adapt the dialog to fit. We take advantage of the following helper

functions:

void SlideWindow(HWND hwnd, int dx, int dy)
r

RECT re;
GetWindowRectRelative(hwnd, &rc) ;
SetWindowPos (hwnd, NULL, re. left + dx, re. top + dy, 0, 0,

SWPJSTOSIZE I SWP_NOZORDER | SWP_NOACTIVATE) ;

}

void GrowWindow(HWND hwnd, int dx, int dy)

{
RECT re;
GetWindowRectRelative(hwnd, &rc) ;
int ex = re.right - re.left;
int cy = re.bottom - re.top;
SetWindowPos (hwnd, NULL, 0, 0, ex + dx, cy + dy,

SWP_NOMOVE I SWP_NOZORDER | SWP_NOACTIVATE);

}
These two simple functions move or resize a window given pixels deltas

and should not be very much of a surprise.

To illustrate this dynamically resizable container dialog, we'll make some

adjustments to the dimensions of the inner dialog:

2 DIALOG 0, 0, 148, 62
STYLE DS_SHELLFONT | DS_CONTROL | WS_CHILD | WS_VISIBLE
CAPTION "Inner"
FONT 8, "MS Shell Dig"
BEGIN

GROUPBOX "&Options",-1,7,7,134,55
AUTOCHECKBOX "&Autosave",100,14,24,120,10
AUTOCHECKBOX "&Resize images to fit

window",101,14,36,12 0,10

END

I've reduced the overall size of the dialog box and tightened the controls.

When you run the program with this dialog box, you'll see that it fits inside

the outer dialog box, and the outer dialog box adjusts its size accordingly.

This technique can be extended to scenarios like tabbed property sheets,

where multiple inner dialogs are displayed one at a time based on a user selection,

224 ^8^ , THE OLD NEW THING

but I'll stop here because I've given you the building blocks you need to build

it; all that's left for you is to put them together: You now know how to create,

measure, and position inner dialogs. Earlier I discussed how you can imple

ment custom navigation in dialogs (so that, for example, you can use

Ctrl+Tab to change pages in a property sheet), and I emphasized that when

you have nested dialogs, it is the outermost dialog that controls the show. All

that's left for you to do is to hide and show the appropriate inner dialog based

on the user's selection.

Why do we need a dialog loop,
anyway?

W H Y IS THERE a dialog loop in the first place?

The first reason is modality. When you call the MessageBox function, you

expect the function to wait for the user to respond to the dialog before return

ing. To wait, the thread needs some sort of message pump so that the user

interface can respond to the user's actions.

But why do we need the IsDialogMessage function? Can't DefDlgProc

do all the work?

The reason for the IsDialogMessage function is that input messages are

directed to the target window. If keyboard focus is on a button control, say, and

the user presses the Tab key, the WM_KEYDOWN message is created with the button

control as the destination window. If no special action were taken, the

DispatchMessage would deliver the message directly to the window procedure

of the button control. The dialog window itself never sees the message, and

consequently DefDlgProc doesn't get a chance to do anything about it.

For the dialog manager to get a chance to see the message, it needs to intercept

the message at some point between the GetMessage and the button control's

window procedure. How could this have been designed?

One possible solution would be for the dialog manager to subclass all the

controls on the dialog. This approach requires that applications that add controls

C H A P T E R T E N The Inner Workings ofthe Dialog Manager ^©k 225

to the dialog dynamically go through a special procedure for creating those

controls so that the dialog manager can subclass the new control.

Another possible solution would be to give the DispatchMessage itself

special knowledge of dialog boxes. Not only would this violate the layering

between the lower-level window manager and the higher-level dialog manag

er, it would tie the window manager to one specific dialog manager. If this had

happened, many of the extensions to the dialog manager we've been experi

menting with would have been impossible.

Therefore, given the design of the window manager, the simplest solution

is add an explicit call to the dialog manager in the message loop so that it can

intercept input messages destined for controls on the dialog and use them for

dialog navigation and related purposes.

The people who developed the Windows Presentation Foundation had the

advantage of more than a dozen years of experience with the Windows dialog

manager and were able to come up with an elegant event-routing model that

generalizes the Win32 method to situations such as control containment.

Whereas Win32 requires an explicit call to the dialog manager, the Windows

Presentation Foundation uses "event tunneling" by means of preview events.

These tunneled events travel through the equivalent of the dialog box frame,

at which point they can be handled in the manner of isDialogMessage.

Why do dialog editors start assigning
control IDs with 100?

W H E N YOU USE a dialog editor and insert new controls, they typically are

assigned control IDs starting at around 100. Why?

Because the small numbers are already taken:
_

* Dialog Box Command IDs

*/
#define IDOK 1
#define IDCANCEL 2
#define IDABORT 3

#define
#define
#define
#define
#define
#define
#define
#define

226 i

IDRETRY
IDIGNORE
I DYES
IDNO
IDCLOSE
IDHELP
IDTRYAGAIN
IDCONTINUE

Sv T

4
5
6
7
8
9
10
11

HE OLD NI

The dialog manager knows about these special values and assumes that if

your dialog box has a control whose ID matches one of these special values, it

also behaves in a certain way.

The dialog manager assumes that a control whose ID is IDOK is an OK

button. The default action when the user presses Enter is to push the default

button; if no default button can be found, the OK button is pushed. Similarly,

a control whose ID is IDCANCEL is assumed to be a Cancel button. If the user

presses Esc or clicks the X button in the corner, the default behavior is to treat

it as if the Cancel button had been pushed.

If your dialog box has OK and Cancel buttons, make sure to give them the

IDOK and IDCANCEL control IDs so that they act like proper OK and Cancel

buttons. Conversely, any control with those IDs had better be proper OK and

Cancel buttons.

.—s

What happens inside Def DlgProc?

T H E DEFAULT DIALOG box window procedure handles some bookkeeping,

but it's really IsDialogMessage that does most of the heavy lifting, because

it is in dialog navigation that most of the complexity of the dialog manager

resides.

The most important job of the DefDlgProc function is to restore focus to

the control on the dialog that most recently had focus when the dialog regains

activation. This allows you to switch away from a dialog box then return to it,

and the dialog box focus goes back to the control that had it when you

switched away, as if nothing had happened.

C H A P T E R T E N Tfce Inner Workings of the Dialog Manager ^S\ 227

As noted previously, the default dialog box window procedure treats the

WM_CLOSE message as a click on the Cancel button. And the default dialog box

window procedure also handles the WM_NEXTDLGCTL message, as we show in

the next sections.

How to set focus in a dialog box

Setting focus in a dialog box is more than just calling the SetFocus function.

The MSDN documentation for the DM_SETDEFID message notes that

messing directly with the default ID carelessly can lead to odd cases like a dialog

box with two default buttons. Fortunately, you rarely need to change the

default ID for a dialog.

A bigger problem is using SetFocus to shove focus around a dialog. If you

do this, you are going directly to the window manager, bypassing the dialog

manager. This means that you can create "impossible" situations such as hav

ing focus on a pushbutton without that button being the default!

To avoid this problem, don't use SetFocus to change focus on a dialog.

Instead, use the WM_NEXTDLGCTL message:

v o i d SetDialogFocus(HWND h d l g , HWND hwndCont ro l)

{
SendMessage(hd lg , WM_NEXTDLGCTL, (WPARAM)hwndControl, TRUE);

)

As the remarks for the WM_NEXTDLGCTL message observe, the Def DlgProc

function handles the WM_NEXTDLGCTL message by updating all the internal

dialog manager bookkeeping, deciding which button should be the default, all

that good stuff.

Now you can update dialog boxes like the professionals, avoiding oddities

such as having no default button, or worse, multiple default buttons!

Why doesn't the SetFocus function manage
default IDs for me?

The Windows dialog manager is built on top of the window manager. The

SetFocus function belongs to the window manager; consequently, it has no

2 2 8 **b T H E OLD N E W T H I N G

knowledge of whether the window receiving focus is part of a dialog box. You

can't just check the window class of the parent to see whether it is a dialog box,

because, as noted earlier, an application can register a custom dialog class. As

you also saw earlier, applications can use the isDialogMessage function to

support keyboard navigation in windows that aren't dialog boxes at all. The

window manager can't just send a DMjGETDEFID message to the focus window's

parent, because DM_GETDEFID has a numeric value equal to WMJJSER, which is

in the class-defined message range. If the parent window isn't a dialog box, the

result of sending it the WM_USER message is entirely unpredictable.

If you need to set focus in a dialog box, you need to talk to the dialog man

ager. This means using the WM_NEXTDLGCTL message and allowing the

Def DlgProc function to handle the focus change.

Never leave focus on a disabled control

O N E O F T H E big no-no's in dialog box management is disabling the control that

has focus without first moving focus somewhere else. When you do this, the

keyboard becomes dead to the dialog box, because disabled windows do not

receive input. For users who don't have a mouse (say, because they have physical

limitations that confine them to the keyboard), this kills your dialog box.

I've seen this happen even in Microsoft software. It's very frustrating.

Before you disable a control, check whether it has focus. If so, move focus

somewhere else before you disable it so that the user isn't left stranded.

If you don't know which control focus should go to, you can always let the dialog

manager decide. The WM_NEXTDLGCTL message again comes to the rescue:

void DialogDisableWindow(HWND hdlg, HWND hwndControl)

{
if (hwndControl == GetFocusO) {

SendMessage(hdlg, WM_NEXTDLGCTL, 0, FALSE);

)
EnableWindow(hwndControl, FALSE);

}

C H A P T E R TEN The Inner Workings ofthe Dialog Manager &&. 229

And of course, you should never disable the last control on a dialog. That

would leave the user completely stranded with no hope of escape!

Why does the window manager even let you disable the focus window, any

way? Suppose it tried to stop you. That adds another complication to the

window manager. It also means that a call to DestroyWindow could fail even

though the parameter is a valid window; this could lead to strange bugs,

possibly even a security hole, because a program would end up leaving a window

enabled when it intended for it to be disabled. After all, the program might be

in a transition state where it disables the focus window momentarily, intending

to move focus to an enabled window before returning to the message loop. In

reality, the window manager is fine with a disabled focus window, just like it's

fine with no focus window at all! From a user interface perspective, these

conditions should be merely transitory; before you resume interacting with

the user, you need to fix up your focus.

What happens inside IsDialogMessage?

As NOTED PREVIOUSLY, the job of the IsDialogMessage is to process input

ahead of the destination window to implement keyboard navigation and other

behaviors. The bulk of IsDialogMessage deals with keyboard accelerators,

and the functionality is actually relatively straightforward. But before we dig

into the details of IsDialogMessage, you need to understand a few other

topics.

Using the Tab key to navigate in nondialogs

The IsDialogMessage function works even if you aren't a dialog. As long as

your child windows have the WSJTABSTOP and/or WS_GROUP styles, they can

be navigated as if they were part of a dialog box. One caveat is that

IsDialogMessage sends DM_GETDEFID and DM_SETDEFID messages to your

window, which are message numbers WM_USER and WM_USER+I, SO you should

avoid using those messages in your window procedure for some other purpose.

2 3 0 ^S*s T H E OLD NEW T H I N G

These changes to our scratch program illustrate how you can use the Tab

key to navigate within a nondialog:

HWND g hwndLastFocus;

void OnSetFocus(HWND hwnd, HWND hwndOldFocus)
{

if (g_hwndLastFocus) {
SetFocus(g_hwndLastFocus);

}

void OnActivate(HWND hwnd, UINT state,

{
HWND hwndActDeact, BOOL fMinimized)

if (state == WA_INACTIVE) {
g hwndLastFocus = GetFocus():

}
}

// Just display a messagebox so you can see something
void OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify)

{
switch (id) {
case 100:

MessageBox(hwnd, TEXT("Button 1 pushed"),
TEXT("Title"), MB_OK);

break;
case 101:

MessageBox(hwnd, TEXT("Button 2 pushed"),
TEXT("Title"), MB OK);

-
break;

case IDCANCEL:
MessageBox(hwnd, TEXT("Cancel pushed"),

TEXT("Title"), MB OK);
break;

}
}

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)
f

HWND hwndChild =
CreateWindow(
TEXT("button"), /* Class Name */
TEXT("Button &1"), /* Title */

C H A P T E R TEN Tke Inner Workings of the Dialog Manager 231

WS CHILD WS VISIBLE WS TABSTOP
BS TEXT, BS_DEFPUSHBUTTON

0, 0, 100, 100,
hwnd,
(HMENU)100,
q hinst, —
0) 1

if (IhwndChild) return FALSE;
g_hwndLastFocus = hwndChild;

/* Style */
/* Position and size */
/* Parent */
/* Child ID */
/* Instance */
/* Special parameters */

hwndChild =
CreateWindow(
TEXT("button"),
TEXT("Button &2"),
WS_CHILD I WSJVISIBLE
BS_PUSHBUTTON | BS_TEXT,
100, 0, 100, 100,
hwnd,
(HMENU)101,
g_hinst,

0) ;
if (IhwndChild) return FALSE;

/* Class Name */
/* Title */

WSJTABSTOP I
/* Style */
/* Position and size */
/* Parent */
/* Child ID */
/* Instance */
/* Special parameters */

hwndChild =
CreateWindow(
TEXT("button"),
TEXT("Cancel"),
WS CHILD I WS VISIBLE

/* Class Name */
/* Title */

WS TABSTOP I
BS_PUSHBUTTON | BSJTEXT,
200, 0, 100, 100,
hwnd,
(HMENU)IDCANCEL,
g_hinst,
0) ;

if (IhwndChild) return FALSE;

/* Style */
/* Position and size */
/* Parent */
/* Child ID */
/* Instance */
/* Special parameters */

}

//

return TRUE;

Add to WndProc

HANDLE_MSG(hwnd, WM_COMMAND, OnCommand
HANDLE_MSG(hwnd, WM_ACTIVATE, OnActivate
HANDLE MSG(hwnd, WM SETFOCUS, OnSetFocus

0 ;
0 ; '

232 5BK THE OLD N E W THING

// Add blank case statements for these
// to ensure we don't use them by mistake,
case DM_GETDEFID: break;
case DM_SETDEFID: break;

// Change message loop
MSG msg;
while (GetMessage(&msg, NULL, 0, 0)) {

if (IsDialogMessage(hwnd, &msg)) {
/* Already handled by dialog manager */

} else {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

One subtlety is the additional handling of the WM_ACTIVATE and WM_SET-

FOCUS messages to preserve the focus when the user switches away from the

window and back. Notice also that we picked Button 1 as our initial default

button by setting it with the BS_DEFPUSHBUTTON style.

Observe that all the standard dialog accelerators now work. The Tab key

navigates, the Alt+1 and Alt+2 keys act as accelerators for the two buttons,

the Enter key presses the default button, and the Esc key pushes the Cancel

button because its control ID is IDCANCEL.

What is the "default ID" for a dialog box?

We glossed over those two messages DM_GETDEFID and DM_SETDEFID when

we showed how to use the IsDialogMessage function to provide support for

tabbing in nondialogs. But what is the "default ID"?

Recall that the default behavior when the user presses the Enter key in a

dialog box is for the default button to be pushed. The default button is drawn

with a distinctive look, typically a heavy outline or a different color. Program-

matically, the default button identifies itself by having the BS_DEFPUSHBUTTON

window style and by responding DLGC_DEFPUSHBUTTON to the WM_GETDLGCODE

message. Note that default button status should not be confused with focus.

For example, the Run dialog from the Start menu contains an edit control and

three buttons. When it first appears, the OK button is the default button, but

CHAPTER TEN The Inner Workings of the Dialog Manager ^ S ^ 233

it does not have focus. Focus is instead on the edit control where you can type

the command you want to run.

The rules for managing the default button are rather simple: If focus is on

a pushbutton, that pushbutton is the default button. If focus is on some

other control, the dialog manager sends the dialog the DM_GETDEFID mes

sage to determine which button it should make the default button. The

default implementation of the DM_GETDEFID message returns the ID of the

button that was the default button when the dialog box was first created, but

you can change that ID by sending the dialog the DM_SETDEFID message.

(Astute observers might have noticed that the value returned by the

DM_GETDEFID message packs the control ID in the low word and puts a sig

nature in the high word. Consequently, control IDs are limited in practice to

16-bit values. Another scenario where the expansion of dialog control IDs to

32-bit values doesn't actually accomplish much.)

How to use the
W M GETDLGCODE message

— &
The dialog manager uses the WM_GETDLGCODE message to learn about the

controls on a dialog box. A control that wants to influence the behavior of the

dialog manager should handle the WM_GETDLGCODE message by returning a

bitmask of the DLGC_* values. These values break down into two groups:

• The "want" group. This group consists of the DLGC_WANTARROWS,

DLGC WANTTAB, DLGC WANTALLKEYS (also k n o w n as

DLGC WANTMESSAGE), and DLGC WANTCHARS flags. These values

indicate which type of messages you want the dialog manager to pass

through to the control. For example, if you return DLGC_WANT -

ARROWS DLGC_WANTTAB, the dialog manager lets arrows and tabs

go through to your control instead of using them for dialog box nav

igation. The window that would normally have received the message

is the one that gets to decide whether it wants it.

* The"type" group. This group consists of the DLGC_HASSETSEL

(edit control) , DLGC_DEFPUSHBUTTON, DLGCJJNDEFPUSHBUTTON,

234 &&s THE OLD NEW THING

DLGC_RADIOBUTTON, DLGC_BUTTON and DLGC_STATIC flags. You

should return at most one of these flags (except for DLGC_BUTTON,

which can be combined with the other button flags). They indicate

what type of control the window is.

The dialog manager relies on the control reporting its own type rather than

looking at the class name because looking only at the class name would cause

the dialog manager to fail to recognize superclassed windows. Many user

interface frameworks register their own enhanced versions of the standard

window controls, and the dialog manager needs to know to treat an enhanced

edit control as an edit control rather than as an unknown control. Because the

superclass window procedure forwards to the original window procedure, the

original window procedure's WM_GETDLGCODE handler will be available to

report the "true" control type.

You rarely need to manipulate the dialog codes in the "type" group, but here

they are for completeness.

The DLGC_SETSEL flag indicates that the window is an edit control and

should have its contents selected when the user changes focus to the window.

If you have an edit control on your dialog and you don't want this auto-select

behavior, you can subclass the edit control and strip out the DLGC_SETSEL flag

from the value returned by the original window procedure's WM_GETDLCCODE

handler. (This is the only one of the "type" group of dialog codes that you will

likely have need to tinker with.)

T h e DLGC_DEFPUSHBUTTON a n d DLGC_UNDEFPUSHBUTTON flags allow t h e

dialog manager to determine which controls are pushbuttons and of them,

which is the current default. The dialog manager needs to know this so that

it can change the button from BS_PUSHBUTTON to BS_DEFPUSHBUTTON when

it becomes the default button and to change it back when it ceases to be the

default button.

The DLGC_RADlOBUTTON dialog code is used by button controls with the

BS_AUTORADIOBUTTON style so that it can identify other radio buttons in its

group and automatically uncheck all the other radio buttons when one of

them is checked.

C H A P T E R T E N The Inner Workings of the Dialog Manager ^s=s 235

The DLGC_BUTTON dialog code tells the dialog manager that the window is

a button control. The dialog manager knows that buttons should be clicked

when the user types the corresponding accelerator (assuming there is only one

window with that mnemonic). If you return any of the other DLGC_xxxBUTTON

flags, then you also need to return DLGC_BUTTON.

The DLGC_STATIC dialog code is important because it tells the dialog

manager that it should check for the SS_NOPREFlx style before scanning the

control text for keyboard mnemonics.

One oft-neglected aspect of the WM_GETDLGCODE message is that if the win

dow is being asked to produce its dialog code because the dialog manager

wants to know whether it should process the message itself or let the control

handle it, the 1 Par am parameter to the message points to the MSG structure

for the message being processed. Otherwise, the lParam is zero. If you want

the dialog manager to pass a particular message to your window and it isn't

covered by one of the existing "want" codes such as DLGC_WANTARROWS, you

can look at the message yourself and return DLGC_WANTMESSAGE if the mes

sage is one that you want your window to process.

Consequently, many of the "want" codes are merely conveniences. For exam

ple, DLGC_WANTTAB is theoretically redundant, because you could simulate it

by inspecting the message to see whether it is a WM_KEYDOWN or WM_CHAR with

VK_TAB in the wParam and returning DLGC_WANTMESSAGE if so. Redundant

they may be, but it's much easier just to say DLGC_WANTTAB instead of writing

the code to see whether the message is a Tab keypress.

Okay, now what happens inside
IsDialogMessage?

Now that we understand the WM_GETDLGCODE message, we can dig into how

IsDialogMessage performs keyboard navigation.

When a character is typed, either with or without the Alt key pressed, the

IsDialogMessage function tries to interpret it as a keyboard accelerator.The

control's dialog code can override this behavior: If the DLGC_WANTMESSAGE (or

DLGC_WANTCHARS in the case of a character typed without the Alt key) flag is

236 «9k THE OLD NEW THING

set in the dialog code, the isDialogMessage function will not interpret the

key as an accelerator and instead will allow it to be delivered to the control

normally. If you want your control to react to certain keys but not others, you

can look at the message structure passed in the lParam parameter to decide

whether your control wants to take the key. For example, check boxes return

DLGC_WANTCHARS if the key is a space because they use the space bar to toggle

the check mark.

If the control permits the IsDialogMessage to process the key as an accel

erator, the IsDialogMessage function first looks for a matching accelerator

inside the group that contains the control with focus, and then searches the

entire dialog. The details of the searching algorithm are not worth repeating

here because most discussions of the dialog manager cover the effect of the

WS_GROUP and WS_TABSTOP styles, as well as the effect of hiding or disabling

a control. The new wrinkle is the impact of the dialog code, for it is the dia

log code that controls how the accelerator is determined. In addition to the

other rules that govern which controls are searched, if the control's dialog

code has the DLGC_WANTCHARS flag set, or if it has the DLGC_STATIC flag set

and the control's window style includes the SS_NOPREFix style, the control is

skipped over in the search for a matching accelerator. The dialog manager also

checks for the DLGC_DEFPUSHBUTTON and DLGCJJNDEFPUSHBUTTON codes

because pushbuttons do not take focus when their accelerator is pressed; they

merely fire the BN_CLICKED notification.

The processing for other keys is similarly straightforward, complicated only

by constantly checking the dialog codes of the controls to see what type of

special behaviors are required. Pressing an arrow key checks for DLGC_

WANTARROWS (or the wildcard DLGC_WANTMESSAGE) before using the arrow

key to navigate within a control group; and if the user navigated to a DLGC_

RADIOBUTTON control that is an auto-radio button, the radio button is given

a chance to uncheck its group siblings. Pressing the Tab key checks for

DLGC_WANTTAB (or the wildcard DLGC_WANTMESSAGE) before using the Tab

key to navigate among tab stops. Finally, pressing the Enter and Esc keys

invokes the default button or the IDCANCEL button, respectively, again after

checking with DLGC_WANTMESSAGE.

C H A P T E R T E N The Inner Workings of the Dialog Manager *e&^ 237

Why is the X button disabled
on my message box?

S O M E PEOPLE HAVE noticed that if you display a message box such as the

following;

MessageBoxfNULL, TEXT("Are you ready?") , TEXT("Message"),
MB_YESNO);

the X button in the corner of the window is disabled. T h e reason for this is

simultaneously obvious and subtle.

It's subtle in that it falls out of the default behavior of dialog boxes. Recall

that the X button corresponds to WM_SYSCOMMAND/sc_CLOSE, which turns

into WM_CLOSE, which cancels the dialog box by pressing the IDCANCEL but

ton. But a Yes/No dialog doesn't have an IDCANCEL button; the buttons are

IDYES and IDNO. N o cancel but ton means nothing for the close but ton to do.

The answer is obvious by just looking at the question. Suppose the X button

actually did something. W h a t should it do? Does X mean Yes, or does it mean

No? Certainly if it chose something at all, it should choose the safer option,

but whether Yes or N o is the safer answer depends on the question! Because

there is no way to cancel out of a Yes/No question, there is no meaning that

can be applied to the X button.

Note, however, that if you add Cancel to the list of responses, the X but ton

becomes enabled and corresponds to the Cancel but ton.

T h e corollary to this little logic lesson is that if you are designing your own

dialog box, and the only interactive control is a but ton (which I hope you have

called O K or Close), you should give it the control I D IDCANCEL SO that users

can use the X button or press the Esc key to dismiss the dialog. More gener

ally, you can use this trick any time you want the X but ton or Esc key to push

a particular button on the dialog: Give that but ton the I D IDCANCEL.

C H A P T E R E L E V E N

j ^ * - ™ * ^

GENERAL SOFTWARE

ISSUES

ALTHOUGH THESE TOPICS may take Windows as their starting point,

they are nonetheless applicable to software development in general.

We start with the insanity of time zone, then explore some simple software

engineering principles, and end with topics related to performance.

\ \ T\ 1 1 - 1

Why daylight saving time
I 1 O O is nonintuitive

A COMMON COMPLAINT is that all the Win32 time zone conversion functions

such as FileTimeToLocalFileTime apply the current daylight saving time

(DST) bias rather than the bias that was in effect at the time in question.

(Outside North America, daylight saving time is typically called summer

time.)

For example, suppose you have a FILETIME structure that represents

1 January 2000 12:00AM. If you are in Redmond, Washington, during the

summer time, this converts to 31 December 1999 5:00PM, seven hours dif

ference, even though the time difference between Redmond and coordinated

239

24-0 T H E OLD NEW T H I N G

universal time (UTC) was eight hours at that time. (When people in London

were celebrating the New Year, it was 4 p.m. in Redmond, not 5 p.m.)

The reason is that the time got converted from 1 January 2000 12:00AM

UTC to 31 December 1999 5:00PM PDT. So, technically, the conversion is cor

rect. Of course, nobody was using Pacific daylight time (PDT) on December 31,

1999, in Redmond; everybody was on Pacific standard time (PST).

Why don't the time zone conversion functions use the time zone appropriate

for the time of year?

One reason is that it means that FileTimeToLocalFileTime and

LocalFileTimeToFileTime would no longer be inverses of each other. If

you had a local time during the "limbo hour" during the cutover from standard

time to daylight time, it would have no corresponding UTC time because there

was no such thing as 2:30 a.m. local time. (The clock jumped from 2 a.m. to

3 a.m.) Similarly, a local time of 2:30 a.m. during the cutover from daylight

time back to standard time would have two corresponding UTC times.

Another reason is that the laws regarding DST are in constant flux. For exam

ple, during 1974 and 1975, DST in the United States began in mid-winter

because of the energy crisis. Of course, this information isn't encoded anywhere

in the TIME_ZONE_INFORMATION structure. Similarly, during World War II, the

United States went on DST all year round. And between 1945 and 1966, the

DST rules varied from region to region.

DST rules are in flux even today. The DST cutover dates in Israel had

been decided on a year-by-year basis by the Knesset before stabilizing in 2005.

In the United States, new rules take effect in 2007. The dates in Brazil are

determined every year by presidential decree. As a result, there is no deter

ministic formula for the day, and therefore no way to know it ahead of time.

The .NET Framework takes a different approach: They apply the time

zone that was in effect at the time in question, on the assumption that the

same DST transition rules applied then as they do now. Compare the last-

modified time of a file as reported by Fi le lnfo .LastWri teTime with what

you see in the property sheet for a file that was last written to on the other

side of the D S T transition. For example, suppose the file was last modified on

October 17, during DST but DST is not currently in effect. Explorer's file

CHAPTER E L E V E N General Software Issues 241

properties reports Thursday, October 17, 2003, 8:45:38 AM, but the .NET

Framework's F i l e l n f o reports Thursday, October 17, 2003, 9:45 AM.

To reiterate, Win32 does not attempt to guess which time zone rules were in

effect at that other time. Win32 says,"Thursday, October 17,2002, 8:45:38 AM

PST"Note: Pacific standard time. Even though October 17 was during Pacific

daylight time, Win32 displays the time as standard time because that's what

time it is now.

.NET says, "Well, if the rules in effect now were also in effect on October

17, 2003, then that would be daylight time," so it displays "Thursday, October

17, 2003, 9:45 AM PDT"—daylight time.

So .NET gives a value which is more intuitively correct, but is also potentially

incorrect, and which is not invertible. Win32 gives a value that is intuitively

incorrect, but is strictly correct.

:,—:

Why do timestamps change
when I copy files to a floppy?

FLOPPY DISKS USE the FAT file system, as do DOS'based and Windows 95-

based operating systems. On the other hand, Windows NT-based systems

tend to use the N T F S file system. (Although you can format a hard drive as

FAT on Windows NT-based systems, it is not the default option.)

The N T F S and FAT file systems store times and dates differently. Most

notable, NTFS records file timestamps in UTC, whereas FAT records them

in local time. Furthermore, FAT records last-write time only to two-second

accuracy. Consequently, if you copy a file from N T F S to FAT, the last-write

time can change by as much as two seconds.

Why is FAT so much lamer than NTFS? Because FAT was invented in

1977, back before people were worried about such piddling things like time

zones, much less Unicode. And it was still a major improvement over CP /M,

which didn't have timestamps at all. (Heck, C P / M didn't even keep track of

how many bytes in size your file was!)

2 4 2 JS^ T H E OLD NEW T H I N G

It is also valuable to read and understand the consequences of FAT storing

file times in local time, compared to N T F S storing file times in UTC. In

addition to the D S T problems discussed earlier, you also will notice that the

timestamp will appear to change if you take a floppy across time zones. Create

a file at, say, 9 a.m. Pacific time, on a floppy disk. Now move the floppy disk

to mountain time. The file was created at 10 a.m. mountain time, but if you

look at the disk it will still say 9 a.m., which corresponds to 8 a.m. Pacific time.

The file traveled backward in time one hour. (In other words, the timestamp

failed to change when it should have.)

Don't trust the return address

SOMETIMES PEOPLE ASK,T know that I can use the _ReturnAddress () intrinsic

to get my function's return address, but how do I figure out what module that

return address belongs to? I'm going to use this to make a security decision."

Beware.

Even if you call the GetModuleHandleEx function and pass the GET_MOD-

ULE_HANDLE_EX_FLAG_FROM_ADDRESS flag, that doesn't mean that that is

actually the DLL that called you.

A common trick is to search through a "trusted" DLL for some code bytes

that coincidentally match ones you (the attacker) want to execute. This can be

something as simple as a r e t d instruction, which is quite abundant. The

attacker then builds a stack frame that looks like this, for, say, a function that

takes two parameters:

t r u s t ed_ re tu rn_addres s
hacked parameter 1
hacked parameter 2
hacker_code_addr

After building this stack frame, the attacker then jumps to the start of the

function being attacked.

C H A P T E R ELEVEN General Software Issues -i&\ 243

The function being attacked looks at the return address and sees t r u s t e d _

r e t u r n _ a d d r e s s , which resides in a trusted DLL. It then foolishly trusts the

caller and allows some unsafe operation to occur, using hacked parameters 1

and 2. The function being attacked then does a r e t 8 to return and clean the

parameters. This transfers control to the t r u s t e d _ r e t u r n _ a d d r e s s , which

performs a simple r e t , which now gives control to the hacker_code_addr , and

the hacker can use the result to continue his nefarious work

This is why you should be concerned if somebody says, "This code verifies

that its caller is trusted." H o w do they know who the caller really is?

Note that these remarks are in the context of unmanaged code, where

malicious code can do things such as manipulate the call stack. Managed code

(in the absence of unsafe operations) does not have the capability to manipulate

arbitrary memory and consequently operates under a different set of rules.

j*—&

Writing a sort comparison function

T H E RULES FOR sort comparison functions have some interesting consequences.

W h e n you are writing a sort comparison function (say, to be passed to

L i s t V i e w _ S o r t I t e m s or q s o r t) , your comparison function needs to follow

these rules:

• Reflexivity. Compare (a , a) = 0.

• Anti-Symmetry. Compare (a , b) has the opposite sign of

Compare (b, a) , where 0 is considered to be its own opposite.

• Transitivity. If Compare (a, b) < 0 and Compare (b, c) < 0,

then Compare (a , c) < 0,

Here are some logical consequences of these rules (all easily proved). T h e

first two are obvious, but the third might be a surprise:

• Transitivity of equality. If Compare (a, b) = 0 and

Compare(b, c) = 0, then Compare(a , c) = 0.

2 4 4 ^=S THE OLD NEW THING

• Transitivity of inequality. If Compare (a, b) < 0 and

Compare (b, c) < 0, then Compare (a, c) < 0.

• Substitution. If Compare (a, b) = 0, then Compare (a, c)

has the same sign as Compare (b , c) .

O f the original three rules, the first two are hard to get wrong, but the

third rule is often hard to get right if you try to be clever in your comparison

function.

For one thing, these rules require that you implement a total order. If you

merely have a partial order, you must extend your partial order to a total order

in a consistent manner.

I've seen people get into trouble when they try to implement their comparison

function on a set of tasks, where some tasks have other tasks as prerequisites.

T h e comparison function implemented the following algorithm:

• If a is a prerequisite of b (possibly through a chain of

intermediate tasks), then a < b .

• If b is a prerequisite of a (again, possibly through a chain of inter

mediate tasks), then a > b.

Otherwise, a = b. "Neither task is a prerequisite of the other, so I

don't care what order they are in."

Sounds great. T h e n you can sort with this comparison function and

you get the tasks listed in some order such that all tasks come after their

prerequisites.

Except that it doesn't work. Trying to sort with this comparison function

results in all the tasks being jumbled together with apparently no regard for

which tasks are prerequisites of which. W h a t went wrong?

Consider this dependency diagram:

a —• b

c

Task a is a prerequisite for b, and task c is unrelated to both of them. If you

used the above comparison function, it would declare that a = c and b = c

CHAPTER E L E V E N General Software Issues JJBK 245

(because c is unrelated to a or b), which in turn implies by transitivity that a = b,

which contradicts a < b, because a is a prerequisite for b. If your comparison

function is inconsistent, you will get garbled results.

Moral of the story: W h e n you write a comparison function, you really have

to know which items are less than which other items. Don't just declare two

items "equal" because you don't know which order they should be in.

You can read a contract
from the other side

A N INTERFACE IS a contract, but remember that a contract applies to both

parties. Most of the time, when you read an interface, you look at it from the

point of view of the client side of the contract, but often it helps to read it

from the server side.

For example, let's look at the interface for control panel applications, docu

mented in M S D N under the topic "Control Panel Items."

Most of the time, when you're reading this documentation, you are wearing your

"I am writing a Control Panel application" hat. So, for example, the documentation

says this:

When the controlling application first loads the Control Panel application, it retrieves

the address of the CPlApple t function and subsequently uses the address to call the

function and pass it messages.

With your'I am writing a Control Panel application" hat, this means,"Gosh, I had

better have a function called CPlApplet and export it so I can receive messages."

But if you are instead wearing your "I am hosting a Control Panel application"

hat, this means/ 'Gosh, I had better call Ge tP rocAddres s () to get the address

of the applications CPlApple t function so that I can send it messages."

Similarly, under the "Message Processing" section, it lists the messages that

are sent from the controlling application to the Control Panel application. If

you are wearing your "I am writing a Control Panel application" hat, this

means, "Gosh, I had better be ready to receive these messages in this order."

2 4 6 ^^ THE OLD NEW THING

But if you are wearing your "I am hosting a Control Panel application" hat,

this means, "Gosh, I had better send these messages in the order listed."

And finally, when it says, "The controlling application releases the Control

Panel application by calling the FreeLibrary function," your "I am writing a

Control Panel application" hat says, "I had better be prepared to be unloaded,"

whereas your "I am hosting a Control Panel application" hat says, "This is

where I unload the library"

So let's try it. As always, start with our scratch program and change the

WinMain:

i n c l u d e < c p l . h >

i n t WINAPI WinMain(HINSTANCE h i n s t , HINSTANCE h i n s t P r e v
LPSTR lpCmdLine, i n t nShowCmd)

{
HWND h w n d ;

g_hinst = hinst;

if (JlnitAppO) return 0 ;

if (SUCCEEDED(Colnitialize(NULL {/* In case we use COM */

•

/* Class Name */
/* Title */
/* Style */
/* Position */
/* Size */
/* Parent */
/* No menu */

hwnd = CreateWindow(
"Scratch",
"Scratch",
WS_OVERLAPPEDWINDOW,
CWJJSEDEFAULT, CWJJSEDEFAULT
CWJJSEDEFAULT, CW_USEDEFAULT
NULL,
NULL,
hinst,
0) ;

if (hwnd) {
TCHAR szPath[MAX_PATH];
LPTSTR pszLast;
DWORD cch = SearchPath(NULL, TEXT("access.cpl"},

NULL, MAX_PATH, szPath, &pszLast);
if (cch > 0 && cch < MAX_PATH) {

RunControlPanel(hwnd, szPath);
}

/* Instance */
/* No parameters */

}
CoUninitialize () ;

C H A P T E R ELEVEN General Software Issues 2 4 7

}
r e tu rn 0;

Instead of showing the window and entering the message loop, we start acting

like a Control Panel host. Our victim today is a c c e s s . cp l , the accessibility Control

Panel. After locating the program on the path, we ask RunControl Pane l to do

the heavy lifting:

void RunControlPanel(HWND hwnd, LPCTSTR pszPath)

{
// — We'll talk about these lines later

// Maybe this control panel application has a custom manifest

ACTCTX act = { 0 };

act.cbSize = sizeof (act) ,-

act.dwFlags * 0;

act.lpSource = pszPath;

act.lpResourceName = MAKEINTRESOURCE(123)

HANDLE hctx = CreateActCtx(Skact) ;

ULONG_PTR ulCookie;

if (hctx -« INVALID_HANDLE_VALUE ||

ActivateActCtx(hctx, &ulCookie)) {

LoadLibrary(pszPath)

(APPLET_PROC)

"CPlApplet");

HINSTANCE hinstCPL

if (hinstCPL) {

APPLET_PROC pfnCPlApplet =

GetProcAddress(hinstCPL,

if (pfnCPlApplet) {

if (pfnCPlApplet(hwnd, CPL_INIT, 0, 0)) {

int cApplets = pfnCPlApplet(hwnd, CPL_GETCOUNT,

// We're going to run application zero

// (In real life we might show a list of them

// and let the user pick one)

if (cApplets > 0) {

0) ;

CPLINFO cpli;

pfnCPlApplet(hwnd,

pfnCPlApplet(hwnd,

pfnCPlApplet(hwnd,

CPL_INQUIRE

CPL_DBLCLK,

CPL STOP, 0

}
pfnCPlApplet(hwnd, CPL_EXIT,

0, (LPARAM)&cpli)

0, cpli.lData);

cpli . IData) ,-

0)

FreeLibrary(hinstCPL)

248 *SS> THE OLD NEW THING

}

// We'll talk about these lines later
if (hctx ! = INVALID_HANDLE_VALUE) {
DeaotivateActCtx(0, ulCookie);
ReleaseActCtx(hctx);

* •HHHHHHHHHHHI^I^HIHHMMHHHHHHHHHMHHHMI
}

)

Ignore the highlighted lines for now; we discuss them later.

All we're doing is following the specification but reading it from the host

side. So we load the library locate its entry point, and call it with CPL_INIT,

then CPL_GETCOUNT. If there are any Control Panel applications inside this

library file, we inquire after the first one, double-click it (this is where all the

interesting stuff happens), and then stop it. After all that excitement, we clean

up according to the rules set out for the host (namely, by sending a CPL_EXIT

message.)

So that's all. Well, except for the highlighted parts. What's that about?

Those lines are to support Control Panel applications that have a custom

manifest. This is something new with Windows XP and is documented in

M S D N under the topic "Using Windows XP Visual Styles."

If you go down to the "Using ComCtl32 Version 6 in Control Panel or a

DLL That Is Run by RunDll32.exe" section, you'll see that the application

provides its manifest to the Control Panel host by attaching it as resource

number 123. That's what the shaded code does: It loads and activates the

manifest, then invites the Control Panel application to do its thing (with its

manifest active), and then cleans up. If there is no manifest, CreateActCtx

returns INVALID_HANDLE_VALUE. We do not treat that as an error, because

many programs don't yet provide a manifest.

These details regarding manifests and activation aren't important to the

discussion; I included them only for completeness. The point of this exercise

is showing how to read documentation from the point of view of the host

rather than the client.

CHAPTER E L E V E N General Software Issues .ss^ 2 4 9

The battle between pragmatism
and purity

As DISCUSSED IN "Why are these unwanted files/folder opening when I log on?"

(Chapter 5), the CreateProcess function will try multiple times to split the

command line into a program and arguments in an attempt to correct command

lines that were mistakenly left unquoted. Why does the CreateProcess function

do autocorrection at all?

Programs that weren't designed to handle long filenames would make

mistakes like taking the path to the executable and writing it into the registry,

unaware that the path might contain a space that needs quoting. (Spaces,

although technically legal, were vanishingly rare in short filenames.) The

CreateProcess function had to decide whether to"autocorrect" these invalid

paths or to let those programs simply stop working.

This is the battle between pragmatism and purity.

Purity says, "Let them suffer for their mistake. We're not going to sully our

beautiful architecture to accommodate such stupidity." Of course, such an

attitude comes with a cost: People aren't going to use your "pure" system if it

can't run the programs that they require.

Put another way, it doesn't matter how great your 1.0 version is if you don't

survive long enough to make a 2.0.

Your choice is between "being pure and unpopular" or "being pragmatic and

popular." Look at all the wonderful technologies that died for lack of popularity

despite technical superiority. Sony Betamax, Mattel Intellivision. (And, in the

United States: the metric system.)

Electric cars are another example. As great as electric cars are, they never

reached any significant market success. Only after conceding to popularity

and "sullying" their "purity" by adding a gasoline hybrid engine did they finally

gain acceptance.

I see this happening over and over again. A product team that, hypothetically,

makes automated diagramming software, says, "I can't believe we're losing to Z.

Sure, Z's diagrams may be fast and snazzy, but ours gets <subtle detaib right, and

250 ^ = ^ THE OLD NEW THING

when you go to < extreme case> their diagrams come out a little distorted, and

they're faster only because they don't try to prevent X and Y from overlapping

each other in < scenario Q>. We're doing all those things; that's why we're slower,

but that's also why we're better. Those people over at Z just don't get it."

Guess what. People are voting with their wallets, and right now their wallets

are saying that Z is better in spite of all those "horrible flaws." Whatever part of

it they don't get, it's certainly not the "make lots of people so happy that they send

you money" part.

Optimization is often counterintuitive

ANYBODY WHO'S DONE intensive optimization knows that optimization is

often counterintuitive. Things you think would be faster often aren't.

Consider, for example, the exercise of obtaining the current instruction

pointer. There's the naive solution:

/ / I n l i n i n g t h i s funct ion would produce the wrong _ReturnAddress,
/ / so l e t ' s d i s ab l e i t .
_ d e c l s p e c (n o i n l i n e)
void *GetCurrentAddress()
{

r e t u r n _ReturnAddress() ;
}

.

void *currentInstruction = GetCurrentAddress() ;

If you look at the disassembly, you'll get something like this:

GetCurrentAddress:
mov eax, [esp] *
r e t

call GetCurrentAddress
mov [currentlnstruction], eax

"Pah," you say to yourself, "look at how inefficient that is. I can reduce that

to two instructions. Watch:

C H A P T E R E L E V E N General Software Issues 251

void * c u r r e n t I n s t r u c t i o n ;

"That's half the instruction count of your bloated version."

But if you sit down and race the two code sequences, you'll find that the

function-call version is faster by a factor of two! How can that be?

The reason is the "hidden variables" inside the processor. All modern

processors contain much more state than you can see from the instruction

sequence. You can read about TLBs, LI and L2 caches, all sorts of stuff that

you can't see in the instruction stream. The hidden variable that is important

here is the return address predictor.

Modern x86 processors maintain an internal stack that is updated by each

CALL and RET instruction. When a CALL is executed, the return address is

pushed both onto the real stack (the one that the ESP register points to) as well

as to the internal return address predictor stack; a RET instruction pops the

top address of the return address predictor stack as well as the real stack.

The return address predictor stack is used when the processor decodes a

RET instruction. It looks at the top of the return address predictor stack and

says, "I bet that RET instruction is going to return to that address." It then

speculatively executes the instructions at that address. Because programs

rarely fiddle with return addresses on the stack, these predictions tend to be

highly accurate.

That's why the "optimization" turns out to be slower. Let's say that at the point

of the CALL Ll instruction, the return address predictor stack looks like this:

Return address predictor stack: callerl —• caller2 —*> caller3 —»• ...

Actual stack: callerl —• caller2 —*• caller3 —• ...

Here, callerl is the function's caller, callerl is the function's caller's caller,

and so on. So far, the return address predictor stack is right on target. (I've

drawn the actual stack below the return address predictor stack so you can see

that they match.)

call Ll
Ll: pop currentlnstruction

2 5 2 ^ ^ s T H E OLD NEW T H I N G

Now you execute the CALL instruction. The return address predictor stack

and the actual stack now look like this:

Return address predictor stack: L1 —*• calleM —• caller2 —• caller3 —• ...

Actual stack: L1 —*• calleM —• caller2 —• caller3 —• ...

But instead of executing a RET instruction, you pop off the return address.

This removes it from the actual stack, but doesn't remove it from the return

address predictor stack.

Return address predictor stack: L1 —• calleM —• caller2 —<- caller3 —* ...

Actual stack: calleM —*• caller2 —• caller3 —• caller4 —• ...

I think you can see where this is going.

Eventually your function returns. The processor decodes your RET instruction

and looks at the return address predictor stack and says,"My predictor stack says

that this RET is going to return to LI. I will begin speculatively executing there."

But oh no, the value on the top of the real stack isn't LI at all. It's callerl.

The processors return address predictor predicted incorrectly, and it ended

up wasting its time studying the wrong code!

The effects of this bad guess don't end there. After the RET instruction, the

return address predictor stack looks like this:

Return address predictor stack: callerl —•> caller2 —» caller3 —*• ...

Actual stack: caller2 —• caller3 —• caller4 —• ...

Eventually your caller returns. Again, the processor consults its return address

predictor stack and speculatively executes at callerl. But that's not where you're

returning to. You're really returning to caller2.

And so on. By mismatching the CALL and RET instructions, you managed to

cause every single return address prediction on the stack to be wrong. Notice in

the diagram that, in the absence of somebody playing games with the return

address predictor stack of the type that created the problem initially, not a single

prediction on the return address predictor stack will be correct. None of the

predicted return addresses matches up with the actual return address.

C H A P T E R ELEVEN General Software Issues £&*. 253

Your peephole optimization has proven to be shortsighted.

Some processors expose this predictor more explicitly. The Alpha AXP, for

example, has several types of control flow instructions, all of which have the

same logical effect, but which hint to the processor how it should maintain its

internal predictor stack. For example, the BR instruction says, "Jump to this

address, but do not push the old address onto the predictor stack." On the

other hand, the JSR instruction says, "Jump to this address, and push the old

address onto the predictor stack." There is also a RET instruction that says,

"Jump to this address, and pop an address from the predictor stack." (There's

a fourth type that isn't used much.)

Moral of the story: Just because something looks better doesn't mean that

it necessarily is better.

On a server, paging = death

I HAD OCCASION to meet somebody from another division who told me this

little story: They had a server that went into thrashing death every 10 hours,

like clockwork, and had to be rebooted. To mask the problem, the server was

converted to a cluster, so what really happened was that the machines in the

cluster took turns being rebooted. The clients never noticed anything, but the

server administrators were really frustrated. ("Hey Clancy, looks like number

two needs to be rebooted. She's sucking mud.")

ihe reason for the servers death? raging.

There was a four-bytes-per-request memory leak in one of the programs

running on the server. Eventually, all the leakage filled available memory and

the server was forced to page. Paging means slower response, but of course the

requests for service kept coming in at the normal rate. So the longer it took to

turn a request around, the more requests piled up, and then it took even

longer to turn around the new requests, so even more piled up, and so on. The

problem snowballed until the machine just plain keeled over.

After much searching, the leak was identified and plugged. Now the servers

chug along without a hitch. (Furthermore, because the reason for the cluster

254 * ^ \ THE OLD NEW THING

was to cover for the constant crashes, I suspect they reduced the size of the

cluster and saved a lot of money.)

„ .

Don't save anything you
can recalculate

NOWADAYS, A MAJOR barrier to performance for many classes of programs is

paging. We just saw that paging can kill a server. Let's look at another example

of how performance became tied to paging.

The principle is "Don't save anything you can recalculate." This of course,

seems counterintuitive: Shouldn't you save the answer so you don't have to

recalculate it?

The answer is, "It depends."

If recalculating the answer isn't very expensive and has good data locality, you

might be better off recalculating it than saving it, especially if saving it reduces

locality. For example, if the result is stored in a separate object, you now have to

touch a second object—risking a page fault—to get the saved answer.

The window manager uses this principle, using the WM_PAINT message to

generate the pixels on the screen instead of saving them. (An important

consideration in the early days of Windows when there was precious little

memory to go around.) Later, we will see how Windows 95 applied this

principle so that rebasing a DLL didn't thrash your machine. I'm told that the

Access team used this principle to reap significant performance gains. Instead

of caching results, they just threw them away and recalculated them the next

time they were needed.

Whether this technique works for you is hard to predict. If your program

is processor bound, caching computations is probably a good idea. But if your

program is memory bound, you may be better off getting rid of the cache,

because the cache is just creating more memory pressure.

CHAPTER E L E V E N General Software Issues £&-. 255

Performance gains at the cost
of other components

IN THE OPERATING systems group, we have to take a holistic view of performance.

The goal is to get the entire system running faster, balancing applications against

each other for the greater good.

Applications, on the other hand, tend to have a selfish view of performance:

"I will do everything possible to make myself run faster. T h e impact on the

rest of the system is not my concern."

Some applications will put themselves into the Startup group so that they will

load faster. This isn't really making the system run any faster; it's just shifting the

accounting. By shoving some of the application startup cost into operating system

startup, the amount of time between the user double-clicking the application

icon and the application being ready to run has been reduced. But the total

amount of time hasn't changed.

For example, consider the following time diagram. T h e asterisk (*) marks

the point at which the user turns on the computer, the plus sign (+) marks

the point at which Explorer is ready and the user double-clicks the application

icon, and the exclamation point (!) marks the point at which the application

is ready.

OS Startup Application Startup

T h e application developers then say, "Gosh, that Application Startup' sec

tion is awfully big. W h a t can we do to make it smaller? I know, let's break our

application startup into two pieces ...

OS Startup Application Startup 1 Application Startup 2 !

256 «0v THE OLD NEW THING

"... and put part of it in the Startup group.

OS Startup Application Startup 1 Application Startup 2

"Wow, look, the distance between the plus sign and the exclamation point

(which represents how long it takes for our application to get ready after the

user double-clicks the icon) is much shorter now!"

The team then puts this new shorter value in their performance status report,

everybody gets raises all around, and maybe they go for a nice dinner to celebrate.

Of course, if you look at the big picture, from the asterisk all the way to the

exclamation point, nothing has changed. It still takes the same amount of

time for the application to be ready from a cold start. All this "performance"

improvement did was rob Peter to pay Paul. The time spent doing

"Application Startup 1" is now charged against the operating system and not

against the application. You shuffled numbers around, but the end user gained

nothing.

In fact, the user lost ground. For the preceding diagrams assume that the

user wants to run your application at all! If users didn't want to run your

application but instead just wanted to check their email, they are paying for

"Application Startup 1" even though they will reap none of the benefits.

Another example of applications having a selfish view of performance came

from a company developing an icon overlay handler. The shell treats overlay

computation as a low-priority item, because it is more important to get icons on

the screen so that users can start doing whatever it is they wanted to be doing.

The decorations can come later. This company wanted to know whether they

could somehow improve their performance and get their overlay onto the screen

even before the icon shows up, demonstrating a phenomenally selfish interpretation

of "performance."

Performance is about getting the user finished with their task sooner.

If that task does not involve running your program, your "performance improve

ment" is really a performance impediment. I'm sure your program is very nice,

but it would also be rather presumptuous to expect all users who install your

program to think that it should take priority over everything else they do.

C H A P T E R E L E V E N General Software Issues ^S=s 257

Performances consequences
of polling

POLLING KILLS.

A program should not poll as a matter of course. Doing so can have serious

consequences on system performance. It's like checking your watch every

minute to see whether it's 3 o'clock yet instead of just setting an alarm.

First of all, polling means that a small amount of CPU time gets eaten up

at each poll even though there is nothing to do. Even if you tune your polling

loop so that its CPU usage is only, say, a measly one-tenth of 1%, when this

program is placed on a Terminal Server with 800 simultaneous connections,

your 0.1% CPU usage has magnified into 80% CPU usage.

Next, the fact that a small snippet of code runs at regular intervals means

that it (and all the code that leads up to it) cannot be pruned from the sys

tem's working set. They remain present just to say, "Nope, nothing to do." If

your polling code touches any instance data (and it almost certainly will),

that's a minimum of one page's worth of memory per instance. On an x86-class

machine, that is 4KB times the number of copies of the program running. On

that 800-user Terminal Server machine, you've just chewed up 3MB of memory,

all of which is being kept hot just in case some rare event occurs.

Finally, polling has deleterious effects even for people who aren't running

humongous Terminal Server machines with hundreds of users. A single laptop

will suffer from polling, because it prevents the CPU from going to more

power-efficient sleep states, resulting in a hotter laptop and shorter battery

life. Instead of polling, use a notification-based mechanism. That way, your

code runs only when there is actually something to do.

Of course, Windows itself is hardly blame-free in this respect. But the

performance team remains on the lookout for rogue polling in Windows and

works with the people responsible for the offending component to fix the

problem.

258 JOI^ T H E OLD N E W T H I N G

The poor mans way
of identifying memory leaks

MANY DIFFERENT TOOLS are available for identifying resource leaks, but one

method requires no tools or special compiler switches or support libraries:

Just let the leak continue until the source becomes blatantly obvious.

Nightly automated stress testing is a regular part of any project. Some

teams use a custom screen saver to initiate the stress test, others use a custom

program, still others require manual launching of the stress test; but by

whatever means, after you've gone home for the day, your computer connects

to a central server and receives a set of tests that it runs all night.

One of the things that these overnight tests often turn up is a memory leak

of one sort or another, identified by the stress team because your program's

resource usage has gone abnormally high. But how do you debug these failures?

These machines aren't running a special instrumented build with your leak

detection tool, so you can't use that.

Instead, you use the "target-rich environment" principle.

Suppose you're leaking memory. After 15 hours of continuous heavy usage,

your program starts getting out-of-memory failures. You're obviously leaking

something, but what?

Think about it: If you are leaking something, there are going to be a lot of

them. Whereas things you aren't leaking will be few in number. Therefore, if

you grab something at random, it will most likely be a leaked object! In math

ematical terms, suppose your program's normal memory usage is 15MB, but

for some reason you've used up 1693MB of dynamically allocated memory.

Because only 15MB of that is normal memory usage, the other 1678MB must

be the leaked data. If you dump a random address from the heap, you have a

greater-than-99% chance of dumping a leaked object.

So grab a dozen or so addresses at random and dump them. Odds are you'll

see the same data pattern over and over again. That's your leak. If it's a C+ +

object with virtual methods, dumping the vtable will quickly identify what

C H A P T E R E L E V E N General Software Issues J ^ s 259

type of object it is. If it's a simple chunk of data, you can usually identify what

it is by looking for string buffers or pointers to other data.

Your mileage may vary but I've found it to be an enormously successful

technique. Think of it as applied psychic powers.

A cache with a bad policy is another name
for a memory leak

A COMMON PERFORMANCE trick is to reduce time spent in the heap by caching

the last item freed (or maybe the last few) so that a subsequent allocation can

just reuse the item instead of having to go make a new one. But you need to

be careful how you do this or you can end up making things worse rather than

better. Here's an example motivated by an actual problem the Windows

performance team researched.

Consider a cache of variable-sized buffers. I will use only a one-entry cache

for simplicity. In real life, the cache would be more complicated: People tend

to have a deeper cache of 4 to 10 entries, and you would have to ensure that

only one thread used the cache at a time; typically this is done by associating

the cache with something that has thread affinity. Furthermore, you probably

would keep the size of the cached buffer in a member variable instead of

calling Local Size all the time. I've left out all these complications to keep the

presentation simple:

class BufferCache {
public:
BufferCache() : m_pCache(NULL) { }
~BufferCache() { LocalFree(m_pCache); }

void *GetBuffer(SIZE_T cb);
void ReturnBuffer(void *p);

private:
void *m_pCache;

};

2 6 0 ^=S THE OLD NEW THING

If a request for a memory buffer arrives and it can be satisfied from the cache,

the cached buffer is returned. Otherwise, a brand new buffer is allocated:

void *BufferCache::GetBu£fer(SIZE_T cb)

{
// Satisfy from cache if possible
if (m_pCache && LocalSize(m_pCache) <= cb) {
void *p = m_pCache;
m_pCache = NULL;
return p;

}
return LocalAlloc(LMEM FIXED, cb) ;

When a buffer is returned to the cache, this particular implementation

compares it against the item already in the cache and keeps the bigger one, on

the theory that it is more likely to satisfy a GetBuf f e r in the future. (In the

general case of a multiple-entry cache, we would free the smallest entry.)

/ / Flawed design - see d i scuss ion
void BufferCache::ReturnBuffer(void *p)

SIZE_T cb = Loca lS ize (p) ;
i f (cb > LocalSize(m_pCache)) {

/ / Returned buffer i s b igger than the cache:
/ / Keep the re tu rned buffer
LocalFree(m_pCache);
m_pCache = p ;

} e l s e {
/ / Returned buffer i s smal ler than the cache:
/ / Keep the cache
Loca lFree(p) ;

j
}

This algorithm seems entirely reasonable at first, reasonable enough that

I've seen it in production code more than once. Why is this a flawed design?

The distribution of buffer sizes in most programs is rarely uniform. The

most common distribution is that small buffers are popular, with larger and

larger buffers being required less and less often. Let's write a sample program

that allocates and frees memory according to this pattern. To make the bad

CHAPTER ELEVEN General Software Issues JS\ 261

behavior easier to spot in a short run, I'm going to use a somewhat flat distri

bution and say that half of the buffers are small, with larger buffers becoming

less popular according to exponential decay. In practice, the decay curve is

usually much, much steeper:

#include <vector>
ttinclude <iostream>

// Since this is just a quick test, we're going to be sloppy
using namespace std; // sloppy
int cdecl main(int argc, char **argv)

{
BufferCache b;

// seeding the random number generator is not important here
// in fact, the distribution isn't important either
vector<void *> v; // keeps track of allocated memory
for (;;) {
// randomly allocate and free

if (v.sizeO == 0 I I (randO & 1)) { // allocate
SIZE_T cb = 100;
while (cb < 1024 * 1024 && (randO & 1)) {
cb *= 2; // exponential decay distribution up to 1MB

}
void* p = b.GetBuffer(cb);
if (P) {
cout << " A" << LocalSize(p) << "/" << cb;
v.push_back(p); // append to vector

}
} else { // free
int victim = rand () % v.sizeO; // choose one at random
cout << " F" << LocalSize(v[victim]);
b.ReturnBuffer(v[victim]); // free it
v[victim] = v.backO; // remove it from the vector
v.pop_back() ;
}

1

This short program randomly allocates and frees memory from the buffer

cache, printing (rather cryptically) the size of the blocks allocated and freed.

When memory is allocated, it prints "Ax/y" where x is the size of the block

actually allocated and y is the size requested. When freeing memory, it prints

2 6 2 -S8&S T H E OLD NEW T H I N G

"Fz" where z is the size of the block allocated. Run this program, let it do its

thing for maybe 10, 15 seconds, then pause the output and study it. I'll wait.

If you're too lazy to actually compile and run the program (or perhaps you're

unable to because you're reading this on the bus away from a computer), I've

included some sample output for you to study. For example, the first few

entries of this output say, "We freed a block of size 102400, then we allocat

ed 102400 bytes to fulfill a request for 400 bytes, and then we freed 800 bytes."

F102400 A102400/400 F800 F200 A800/100 A200/200 A400/400
A400/400 A200/200 F1600 A1600/100 F100 F800 F25600 A25600/200
F12800 A12800/200 F200 F400 A400/100 F200 A200/100 A200/200
A100/100 F200 F3200 A3200/400 A200/200 F51200 F800 F25600
F1600 F1600 A51200/100 F100 A100/100 F3200 F200 F409600 F100
A409600/400 A100/100 F200 F3200 A3200/800 A400/400 F800 F3200
F200 F12800 A12800/200 A100/100 F200 F25600 F400 F6400
A25600/100 F100 F200 F400 F200 F800 F400 A800/800 A100/100

Okay, maybe you don't see it. Let's make the effect even more obvious by

printing some statistics periodically. Of course, to generate the statistics, we

need to keep track of them, so we'll have to remember how big the requested

buffer was (which we'll do in the buffer itself):

int cdecl main(int argc, char **argv)

i

BufferCache b;

// seeding the random number generator is not important here
// in fact, the distribution isn't important either

vector<void *> v; // keeps track of allocated memory
SIZE_T cbAlloc = 0, cbNeeded = 0; // memory statistics
for (int count = 0 ; ; count++) {
// randomly allocate and free
if (v.sizeO == 0 | | (rand() & 1)) { // allocate
SIZE_T cb = 100;
while (cb < 1024 * 1024 && !(rand() % 4)) {
cb *= 2; // exponential decay distribution up to 1MB

}
void* p = b.GetBuffer(cb) ;
i f (P> {
(SIZE_T)p = cb; // remember requested size
cbAlloc += LocalSize(p); // update total memory allocate'

•v.

d

C H A P T E R E L E V E N General Software Issues 263

cbNeeded += c b ;
v . p u s h _ b a c k (p) ;

}

// update total memory requested
// append to vector

} else { // free
int victim = rand() % v.size(i

•
cbAlloc -= LocalSize(v[victim]

// choose one at random
// total memory allocated

cbNeeded -• *(SIZE_T*)v[victim]; // total memory requested
b.ReturnBuffer(v[victim]); // free it
v [victim] = v.backO;
v.pop_back() ;

} , a_m
if (count % 100 == 0) { W M • • •
cout << count « ": " << v.size 0 << " buffers, "

<< cbNeeded << "/" << cbAlloc « "="
« cbNeeded * 100.0 / cbAlloc «

COU'

}
}

u s e d " << e n d l ;

This new version keeps track of how many bytes were allocated in addition

to how many were actually needed, and prints a summary of those statistics

every hundred allocations. Here is some sample output:

0: 1 buffers, 400/400=100% used
100
200
300
400
500

7 buffers, 4300/106600=4.03377% used
5 buffers, 1800/103800=1.7341% used
19 buffers, 9800/115800=8.46287% used
13 buffers, 5100/114000=4.47368% used
7 buffers, 2500/28100=8.8968% used

37200
37300
37400
37500
37600
37700
37800
37900

65 buffers, 129000/2097100=6.15135% used
55 buffers, 18100/2031400=0.891011% used
35 buffers, 10400/2015800=0.515924% used
43 buffers, 10700/1869100=0.572468% used
49 buffers, 17200/1874000=0.917823% used
75 buffers, 26000/1889900=1.37573% used
89 buffers, 30300/1903100=1.59214% used
91 buffers, 29600/1911900=1.5482% used

By this point, the problem should be obvious: We're wasting insane quantities

of memory. For example, after step 37900, we've allocated 1.8MB of memory

when we needed only 30KB, for a waste of over 98%.

How did we go horribly wrong?

2 6 4 ^ S ^ THE OLD NEW THING

Recall that most of the time, the buffer being allocated is a small buffer, and

most of the time, a small buffer is freed. But it's the rare case of a large buffer

that messes up everything. The first time a large buffer is requested, it can't

come from the cache, because the cache has only small buffers, so it must be

allocated. And when it is returned, it is kept, because the cache keeps the

largest buffer.

The next allocation comes in, and it's probably one of the common-case

small buffers, and it is given the cached buffer—which is big. You're wasting a

big buffer on something that needs only 100 bytes. Some time later, another

rare big buffer request comes in, and because that other big buffer got wasted

on a small allocation, you have to allocate a new big buffer. You allocated two

big buffers even though you need only one. Because big buffers are rare, it is

unlikely that a big buffer will be given to a caller that actually needs a big

buffer; it is much more likely to be given to a caller that needs a small buffer.

Bad effect 1 : Big buffers get wasted on small callers.

Notice that after a big buffer enters the system, it is hard to get rid of,

because a returned big buffer will be compared against what is likely to be a

small buffer, and the small buffer will lose.

Bad effect 2: Big buffers rarely go away.

The only way a big buffer can get freed is if the buffer in the cache is itself

already a big buffer. If instead of a one-entry cache like we have here, you keep,

say, 10 buffers in your buffer cache, then in order to free a big buffer, you have

to have 11 consecutive ReturnBuf f e r calls, all of which pass a big buffer.

Bad effect 3: The more efficient you try to make your cache,
the more wasteful it gets!

What's more, when that eleventh call to ReturnBuf fer is made with a big buffer,

it is only the smallest of the big buffers that gets freed. The biggest buffers stay.

Bad effect 4: When a big buffer does go away, it's only because you are keeping
an even bigger buffer!

Corollary: The biggest buffer never gets freed.

CHAPTER E L E V E N General Software Issues ^ ? N 265

What started out as an "obvious" decision in choosing which buffer to keep

has turned into a performance disaster. By favoring big buffers, you allowed them

to "poison" the cache, and the longer you let the system run, the more allocations

end up being big "poisoned" buffers. It doesn't matter how rare those big blocks

are; you will eventually end up in this state. It's just a matter of time.

When the performance team tries to explain this problem to people, many

of them get the mistaken impression that the problem is merely that there is

wasted space in the cache. But look at our example: Our cache has only one

entry and we are still wasting over 90% of the memory. That's because the waste

is not in the memory being held by the cache, but rather is in the memory that

the cache hands out. (It's sort of like that scene in It's a Wonderful Life where

George Bailey is explaining where all the money is. It's not in the bank; it's in

all the places that got money from the bank.)

My recommendations: First, instrument your cache and understand what

your program's memory allocation patterns are. Use that information to pick a

size cutoff point beyond which you simply will not use the cache at all. This

ensures that big buffers never get into the cache in the first place. Now, although

you've taken the big buffers out of the picture, you will still have the problem

that all the buffers in the cache will gradually grow up to your cutoff size. (That

is, you still have the same problem, just in miniature.) Therefore, if the cache is

full, you should just free the most recently returned buffer regardless of its size.

And finally, reinstrument your cache to ensure that you're not suffering from yet

some other pathological behavior that I haven't taken into account.

Here's a new ReturnBuf f er implementation that takes the above advice

into account. Instrumentation shows that most allocations are in the 100-200

byte range, so let's cap our cache at 200 bytes:

v o i d Buff e rCache :- .ReturnBuf f e r (vo id *p)

{
i f (m_pCache == NULL && L o c a l S i z e (p) <= 200) {

m pCache = p ;
} e l s e {

L o c a l F r e e (p) ;
}

}

266 T H E OLD NEW T H I N G

With this one seemingly minor change, our efficiency stays above 90% and

often gets close to 100%:

0: 1 buffers, 400/400=100% used

100: 7 buffers, 4300/4400=97.7273% used

200: 5 buffers, 1800/1800=100% used

300: 19 buffers, 9800/9800=100% used

400: 13 buffers, 5100/5100=100% used

500: 7 buffers, 2500/2600=96.1538% used

37200

37300

37400

37500

37600

37700

37800

37900

65 buffers, 129000/130100=99.1545% used

55 buffers, 18100/18700=96.7914% used

35 buffers, 10400/11000=94.5455% used

43 buffers, 10700/11000=97.2727% used

49 buffers, 17200/18000=95.5556% used

75 buffers, 26000/26800=97.0149% used

89 buffers, 30300/31900=94.9843% used

91 buffers, 29600/30600=96.732% used

Our performance guru Rico Mariani likes to point out that "caching implies

policy." As he explained to me, "Cache policy is everything, so you must be

dead certain that your policy is working as you intended. A cache with a bad

policy is another name for a memory leak."

C H A P T E R T W E L V E

DIGGING INTO THE

VISUAL C+ + COMPILER

FOR A LITTLE while, I'm going to abandon compiler agnosticism and dig

into some details of Microsoft's Visual C++ compiler. Actually, the opening

discussion on destructors applies to C++ in general, and the layout of a

COM object is part of the Win32 application binary interface, so it is applicable

to all compilers and languages that support COM, not just Microsoft's Visual

C++ compiler. But as we dig deeper, we get into details that are more and

more compiler specific.

Do you know when your destructors run?

DESTRUCTORS ARE A magical part of C++. They are not invoked explicitly

under normal circumstances; instead, the compiler inserts calls to the destruc

tor at appropriate points in program execution. And if you don't know when

those points are, you can find yourself trying to figure out at a very nasty bug.

The classic example of mysterious destructor execution is in the destruc

tion of global variables. Consider the following:

ttinclude < s t d a f x . h > / / L e t ' s u s e ATL
CComPtr<IUnknown> g_pUnk;

267

268 ^=S THE OLD NEW THING

i n t cdecl main(in t a rgc , char **argv)
{

i f (SUCCEEDED(Colnitialize(NULL)) {
g_pUnk.CoCreate!nstance(CLSID_IXMLDOMDocument);

C o U n i n i t i a l i z e () ;
}

}

When you run this program, you'll discover that it crashes in the destructor

for the g_pUnk variable. The reason is that the destructors for global variables

run after the main program exits, in particular after COM has already been

torn down by the main program. Part of COM teardown includes freeing all

the dynamic link libraries (DLLs) that it had loaded because it "knows" that

you aren't using them any more by virtue of the fact that you are shutting down

COM entirely.

And then when you try to release one of those pointers that was squirreled

away into a global variable, you crash trying to talk to a DLL that is no longer

there.

But this problem is not exclusive to global objects. You need to take care

even with local objects. Consider the following:

void Sample()

if (SUCCEEDED(Colnitialize(NULL))) {
CComPtr<IXMLDOMDocument> p;
if (SUCCEEDED(p.CoCreatelnstance(CLSID_IXMLDOMDocument))) {

} . . . , . „ CoUninitialize0 ;

}

Easy as pie. And there's a bug here. When does the destructor for that

smart-pointer run? It runs when the object goes out of scope, which is at the

closing brace of the outer i f statement, after the CoUnin i t i a l i ze call. Your

function shuts down COM and then tries to access a pointer to a COM

object, resulting in the same type of crash you saw in the preceding example.

C H A P T E R TWELVE Digging into the Visual C+ + Compiler ss^ 269

To fix this problem, you have to release all your C O M pointers before the

C o U n i n i t i a l i z e . O n e way would be to insert a p . R e l e a s e () at the end of

the inner i f . (But of course, if you're going to do that, why bother using a

smart pointer?) An alternate fix is to introduce a seemingly unnecessary

scope:

v o i d Sample()
r

if (SUCCEEDED(Colnitialize(NULL))) {

CComPtr<IXMLDOMDocument> p;
if (SUCCEEDED(p.CoCreatelnstance(CLSID_IXMLDOMDocument))) {

1

} II ensure p is destructed before the CoUninit

CoUninitialize();

}

Make sure you leave that comment there or the next person to come across

this code is going to "clean it up" by removing the "redundant" braces.

Some might consider that solution too subtle. Here's another solution: Pu t

the C o U n i n i t i a l i z e inside a destructor of its own!

class CCoInitialize {
public:
CCoInitialize() : m_hr(Colnitialize(NULL)) { }
-CCoInitialize() { if (SUCCEEDED(m_hr)) CoUninitialize(); }
operator HRESULT() const { return m_hr; }
HRESULT m_hr;

'

void Sample()

{
CCoInitialize init;
if (SUCCEEDED(init)) {
CComPtr<IXMLDOMDocument> p;
if (SUCCEEDED(p.CoCreateInstance(CLSID_IXMLDOMDocument))) {

}'
}

} // CoUninitialize happens here

270 ^ S ^ THE OLD NEW THING

This technique works even if you put the smart pointer at the same scope,

as long as you put it after the CCoIn i t i a l i z e object:

void Sample()

{
CCoInitialize init;
CComPtr<IXMLDOMDocument> p; // must declare after CCoInitialize
if (SUCCEEDED(init) &&

SUCCEEDED(p.CoCreatelnstance(CLSID_IXMLDOMDocument))) {

}
}

This works because objects with automatic storage duration are destructed

in reverse order of declaration, so the object p will be destructed first, then the

object i n i t . Mind you, this is basically subtle no matter now you slice it.

Nobody said programming was easy.

Up until now, we've seen destructors that run at the wrong time. Now, we're

going to see destructors that don't run at all!

Assume there's an Ob j ectLock class that takes a lock in its constructor and

releases it in its destructor:

DWORD ThreadProc(LPVOID p)

{
. . . do s t u f f . . .
Ob jec tLock l o c k (p) ;
. . . do s t u f f . . .
r e t u r n 0;

j
Pretty standard stuff. The first batch of stuff is done without the lock, and

the second batch is done inside the lock. When the function returns, the lock

is automatically released. But suppose somebody adds a little code to this

function like this:

DWORD ThreadProc(LPVOID p)

{
... do stuff ...
ObjectLock lock(p);

if (p->cancelled) ExitThread(1);

CHAPTER TWELVE Digging into the Visual C++Compiler J S ^ 271

r e tu rn 0;

The code change was just to add an early exit if the object was cancelled.

But when does that Obj ectLock destructor run?

It runs at the r e t u r n statement, because that's when the lock goes out of

scope. In particular, it is not run before you call ExitThread. Result: You left

an object locked permanently.

Some might argue that calling ExitThread is poor programming practice,

that threads must always be exited by falling through to the end of the thread

procedure. But there is still a case in which you must exit a thread via one of

the thread exit functions, and that is if you are a worker thread whose lifetime

is not explicitly managed but whose code resides in a DLL. In that case, the

standard approach is to use the LoadLibrary function to increment the load

count for the DLL when the worker thread is started and to use the Free-

LibraryAndExitThread function when the worker thread ends. (You can

also use the GetModuleHandleEx function to increment the load count.) In

that case, the thread procedure will look something like this:

DWORD ThreadProc(LPVOID p)

{
... do stuff . . .
ObjectLock lock(p);

FreeLibraryAndExitThread(g_hinst, 0);
// not reached

}

where g_hinst is a global variable that holds the DLLs instance handle.

In this case, you suffer from the same problem described previously:

The ObjectLock destructor runs at the function close brace, but the Free

LibraryAndExi tThread function exits the thread never to return.

272 *SK T H E O L D N E W T H I N G

The destructor never runs. Again, a nested scope is needed to force the

destructor to run earlier than normal:

DWORD ThreadProc(LPVOID p)

{
{
... do stuff . .
ObjectLock lock(p);

} // ObjectLock destructor runs here
FreeLibraryAndExitThread(g_hinst, 0);
// not reached
}

The layout of a C O M object

THE W1N32 COM calling convention specifies the lavout of the virtual method

table (vtable) of an object. If a language/compiler wants to support COM, it

must lay out its object in the specified manner so other components can use it.

It is no coincidence that the Win32 COM object layout matches closely the

C++ object layout. Even though COM was originally developed when C was

the predominant programming language, the designers saw fit to "play friendly"

with the up-and-coming new language C++.

The layout of a COM object is made explicit in the header files for the var

ious interfaces. For example, here's i P e r s i s t from o b j i d l .h, after cleaning

up some macros:

t y p e d e f s t r u c t I P e r s i s t V t b l

HRESULT (STDMETHODCALLTYPE * Q u e r y I n t e r f a c e) (
I P e r s i s t * T h i s ,
/ * [in] * / REFIID r i i d ,
/ * [i i d _ i s] [o u t] * / v o i d * * p p v O b j e c t) ;

ULONG (STDMETHODCALLTYPE *AddRef) (
I P e r s i s t * T h i s) ;

ULONG (STDMETHODCALLTYPE * R e l e a s e) (
I P e r s i s t * T h i s) ;

C H A P T E R T W E L V E Digging into the Visual C+ + Compiler ^ 273

HRESULT (STDMETHODCALLTYPE *GetClass ID) (
I P e r s i s t * T h i s ,
/ * [out] * / CLSID * p C l a s s I D) ;

I P e r s i s t V t b l ,

s t r u c t I P e r s i s t

c o n s t s t r u c t I P e r s i s t V t b l * l p V t b l ;

This corresponds to the following memory layout:

IpVtbl Querylnterface

AddRef

Release

GetClassID

What does this mean?

A COM interface pointer is a pointer to a table of function pointers called

a vtable. Each function in the list takes that interface pointer (p) as its first

parameter (th i s) .

The magic to all this is that because your function gets p as its first

parameter, you can "hang" additional stuff onto that vtable

Querylnterface

AddRef

Release

GetClassID

The functions in the vtable can use offsets relative to the interface pointer

to access its other stuff.

If an object implements multiple interfaces but they are all descendants of

each other, a single vtable can be used for all of them. For example, the object

above is already set to be used either as an IUnknown or as an I P e r s i s t , because

274 « * THE OLD NEW THING

the methods of the lUnknown interface are a subset of those of the i P e r s i s t

interface, with the extra I P e r s i s t method coming at the end of the table.

On the other hand, if an object implements multiple interfaces that are not

descendants of each other, you get multiple inheritance, in which case the

object is typically laid out in memory like this:

P

q

IpVtbl

IpVtbl

other stuff

Querylinterface (2)

AddRef (2)

Release (2)

Querylnterface (1)

AddRef (1)

Release (1)

If you are using an interface that comes from the first vtable, the interface

pointer is p. But if you're using an interface that comes from the second vtable,

the interface pointer is q. Each of the methods in the first vtable can use off

sets relative to p to access the "other stuff," whereas the methods in the second

vtable can use offsets relative to q. Because the lUnknown interface is multi

ply-derived, however, there are now two copies of the lUnknown methods:

Querylnter face , AddRef, and Release. The compiler could generate two

copies of the function, one using p as its point of reference and the other using

q, but that would result in multiple copies of the same function. Instead, the

compiler uses a so-called adjustor thunk.

Adjustor thunks

IF YOU FIND yourself debugging in disassembly, you'll sometimes find strange

little functions called adjustor thunks. Let's take another look at the object we

laid out last time, giving it a bit more concreteness:

c l a s s CSample : pub l i c I P e r s i s t , pub l i c IServiceProvider
{
p u b l i c :

/ / *** lUnknown ***

CHAPTER TWELVE Digging into the Visual C+ + Compiler ^ ^ 275

STDMETHODIMP Querylnterface(REFIID riid, void** ppv);
STDMETHODIMP_(ULONG) AddRef();
STDMETHODIMP_(ULONG) Release();
// *** IPersist ***
STDMETHODIMP GetClassID(CLSID* pClassID);
// *** IQueryService ***
STDMETHODIMP QueryService(REFGUID guidService,

REFIID riid, void** ppv);
private:

LONG m_cRef;

} ; " '

In the diagram, p is the pointer returned when the I P e r s i s t interface is

needed, and q is the pointer for the IQueryService interface.

Now, there is only one Querylnterf ace method, but there are two entries,

one for each vtable. Remember that each function in a vtable receives the corre

sponding interface pointer as its t h i s parameter. That's just fine for

Querylnterf ace (1); its interface pointer is the same as the object's interface

pointer. But that's bad news for Querylnterf ace (2), because its interface

pointer is q, not p.

This is where the adjustor thunks come in.

The entry for Querylnterf ace (2) is a stub function that changes q to p,

and then lets Querylnterf ace (1) do the rest of the work. This stub function

is the adjustor thunk:

[thunk]:CSample::Querylnterface'adjustor{4}':
sub DWORD PTR [esp+4], 4 ; this -= sizeof(lpVtbl)
jmp CSample::Querylnterface

The adjustor thunk takes the t h i s pointer and subtracts the size of the vtable

pointer, converting q into p, and then it jumps to the Querylnterf ace (1)

function to do the real work.

Whenever you have multiple inheritance and a virtual function is imple

mented on multiple base classes, you will get an adjustor thunk for the second

and subsequent base class methods in order to convert the t h i s pointer into

a common format.

2 7 6 THE OLD NEW THING

Pointers to member functions
are very strange animals

WELL, OKAY, IF you only use single inheritance, pointers to member functions

are just a pointer to the start of the function, because all the base classes share

the same t h i s pointer:

c l a s s S imple { i n t s,- v o i d SimpleMethod () ; } ;
c l a s s Simple2 : p u b l i c S imple

{ i n t s 2 ; v o i d Simple2Method() ; } ;
c l a s s S imple3 : p u b l i c Simple2

{ i n t s 3 ; S i m p l e 3 M e t h o d () ; };

P - * Simple::s

Simple2::s2

Simple3::s3

Because they all use the same t h i s pointer (p), a pointer to a member

function of Base can be used as if it were a pointer to a member function of

Derived2 without any adjustment necessary.

The size ofa pointer-to-member-function of a class that uses

only single inheritance is just the size of a pointer.

But if you have multiple base classes, things get interesting:

class Basel { int bl; void BaselMethod(); },
class Base2 { int b2; void Base2Method() ; },
class Derived : public Basel, Base2

{ int d; void DerivedMethod () ; } ;

Basel ::b1

Base2::b2

Derived::d

C H A P T E R TWELVE Digging into the Visual C+ + Compiler JSS^ 277

There are now two possible t h i s pointers. The first (p) is used by both

Derived and Basel, but the second (q) is used by Base2.

A pointer to a member function of Basel can be used as a pointer to a

member function of Derived because the two classes use the same t h i s

pointer. But a pointer to a member function of Base2 cannot be used as-is as

a pointer to a member function of Derived because the t h i s pointer needs to

be adjusted.

There are many ways of solving this. Here's how the Visual Studio compiler

decides to handle it: A pointer to a member function of a multiply-inherited

class is really a structure.

Address of function (pointer)

Adjustor (integer)

The size ofa pointer-to-mem9er-junction of a ciass that uses multiple

inheritance is the size of a pointer plus the size of a s i z e _ t .

Compare this to the case of a class that uses only single inheritance.

The size of a pointer -to-memSer-function can

cbanae dependtna on the class!

To call through a pointer to a member function, the t h i s pointer is adjust

ed by the adjustor, and then the function provided is called. A call through a

function pointer might be compiled like this:

void (Derived::*pfn)();
Derived d;

(d.*pfn)();

lea ecx, d ; ecx = "this"
add ecx, pfn[4] ; add adjustor
call pfn[0] ; call

When would an adjustor be nonzero? Consider the case above. The func

tion Derived: :Base2Method() is really Base2 : :Base2Method () and

278 SS\ THE OLD NEW THING

therefore expects to receive q as its t h i s pointer. To convert a p to a q, the

adjuster must have the value s izeof (Basel), so that when the first line of

Base2 : : Base2Method () executes, it receives the expected q as its t h i s

pointer.

"But why not just use a thunk instead of manually adding the adjuster?" In

other words, why not just use a simple pointer to a thunk that goes like this:

Derived::Base2Method thunk:
add ecx, sizeof(Basel) ; convert p to q
jmp Base2::Base2Method ; continue

A n d use that thunk as the function pointer?

The reason: function pointer casts. Consider the following code:

void (Base2::*pfnBase2)();
void (Derived::*pfnDerived) 0;

pfnDerived = pfnBase2;

mov ecx, pfnBase2 ; ecx = address
mov pfnDerived[0] , ecx

mov pfnDerived[4], sizeof(Basel) ; adjustor!

We start with a pointer to a member function of Base2, which is a class

that uses only single inheritance, so it consists of just a pointer to the code. To

assign it to a pointer to a member function of Derived, which uses multiple

inheritance, we can reuse the function address, but we now need an adjustor

so that the pointer p can properly be converted to a q.

Notice that the code doesn't know which function pfnBase2 points to, so

it can't just replace it with the matching thunk. It would have to generate a

thunk at runtime and somehow use its psychic powers to decide when the

memory can safely be freed. (This is C++. No garbage collector here.)

Notice also that when pf nBase2 got cast to a pointer to a member function

of Derived, its size changed, because it went from a pointer to a function in a

class that uses only single inheritance to a pointer to a function in a class that

uses multiple inheritance.

C H A P T E R TWELVE Digging into the Visual C++ Compiler ^SK 279

Casting a junction pointer can

change its size!

Consider the class:

class Base3 { int b3; void Base3Method () ; } ;
class Derived2 : public Base3, public Derived { };

How would the following code be compiled?

void (Derived::*pfnDerived)();
void (Derived2::*pfnDerived2()

pfnDerived2 = pfnDerived;

Answer: The generated code for this sequence is likely to look something

like this:

mov ecx, pfnDerived[0]
mov pfnDerived2[0], ecx

mov ecx, pfnDerived2[4]
add ecx, sizeof(Base3)
mov pfnDerived2[4], ecx

ecx = address

ecx = adjustor
adjust the adjustor!

Let's use one of our fancy pictures:

Base3::b3

Base2

Basel

Derived

:b2

:b1

:d

Just for fun, I swapped the order of Basel and Base2. There is no require

ment in the standard about the order in which storage is allocated for base

classes, so the compiler is completely within its rights to put Base2 first, if it

thinks that would be more efficient.

A pointer to member function for class Derived expects the t h i s pointer

to be at q. When we have a p, we need to add s izeof (Base3) to it to convert

2 8 0 ^S^s T H E OLD NEW T H I N G

it to q, on top of whatever other adjustment the original function pointer

wanted. That 's why we add s i z e o f (Base3) to the existing adjustor to make

a new combined adjustor.

What is purecallf

B O T H C + + AND C# have the concept of virtual functions. These are func

tions that always invoke the most heavily derived implementation, even if

called from a pointer to the base class. However, the two languages differ on

the semantics of virtual functions during object construction and destruction.

C# objects exist as their final type before construction begins, whereas

C + + objects change type during the construction process. Here's an example

of a C + + class:

class Base {
public:

Basel) { f 0 ; }
virtual void f() { cout << 1; }
void g() { f () ; }

class Derived : public Base {
public:

Derived() { f (); }
v i r t u a l void f() { cout << 2; }

W h e n a D e r i v e d object is constructed, the object starts as a Base, and

then the B a s e : :Base constructor is executed. Because the object is still a

Base, the call to f () invokes B a s e : :f and not D e r i v e d : :f, After the

B a s e : : Base constructor completes, the object then becomes a Der ived , and

the D e r i v e d : : D e r i v e d constructor is run. This time, the call to f () invokes

D e r i v e d : : f .

In other words, constructing a D e r i v e d object prints 12.

C H A P T E R TWELVE Digging into the Visual C+ + Compiler -S^N 281

Similar remarks apply to the destructor. T h e object is destructed in pieces,

and a call to a virtual function invokes the function corresponding to the stage

of destruction currently in progress.

This is why some coding guidelines recommend against calling virtual

functions from a constructor or destructor. Depending on what stage of con

struction/destruction is taking place, the same call to f () can have different

effects. For example, the preceding function Base : :g() will call Base : :f if

called from the Base : : Base constructor or destructor, but will call D e r i v e d : : f

if called after the object has been constructed and before it is destructed.

O n the other hand, if this sample were written (with suitable syntactic

changes) in C#, the output would be 2 2 because a C# object is created as its

final type. Both calls to f () invoke D e r i v e d : : f, because the object is always

a Der ived . This means a method can be invoked on a C# object before its constructor

has run (and after its destructor has run).

Sometimes your C + + program may crash with the error R6025 - p u r e v i r

t u a l f u n c t i o n c a l l . This message comes from a function called p u r e c a l l .

Wha t does it mean?

C + + and C# both have the concept of a pure virtual function (which C# calls

abstract). This is a method which is declared by the base class, but which

derived classes must override. Typically, the base class provides no implemen

tation whatsoever. In C + + , the syntax for this is = 0:

class Base {
public:

Base() { f (); }
virtual void f()

h

If you attempt to create a D e r i v e d object, the base class will at tempt to call

Base : : f, which is not implemented in the base class. W h e n this happens, the

"pure virtual function call" error is raised and the program is terminated.

Of course, the mistake is rarely as obvious as this. Typically, the call to the

pure virtual function occurs deep inside the call stack of the constructor.

This raises the side issue of the n o v t a b l e optimization. As noted previ

ously, the identity of the object changes during construction. This change of

0 ;

2 8 2 JS=N T H E OLD NEW T H I N G

identity is performed by swapping the vtables around during construction. If

you have a base class that is never instantiated directly but always via a derived

class, and if you have followed the rules against calling virtual methods during construc

tion or destruction, you can use the novtable optimization to get rid of the

vtable swapping during construction of the base class.

If you use this optimization, then calling virtual methods during the base

class's constructor or destructor will result in undefined behavior. It's a nice opti

mization, but it's your own responsibility to make sure you conform to its

requirements.

Why does C# not do type morphing during construction? One reason

is that it would result in the possibility, given two objects A and B, that

typeof (A) == typeof (B) yet s izeof (A) ! = s izeof (B). This would hap

pen if A were a fully constructed object and B were a partially constructed

object on its way to becoming a derived object.

Why is this so bad? Because the garbage collector is really keen on know

ing the size of each object so that it can know how much memory to free. It

does this by checking the object's type. If an object's type did not completely

determine its size, this would result in the garbage collector having to do extra

work to figure out exactly how big the object is, which means extra code in the

constructor and destructor, as well as space in the object, to keep track of

which stage of construction/destruction is currently in progress. And all this

for something most coding guidelines recommend against anyway.

C H A P T E R T H I R T E E N

• H B

BACKWARD COMPATIBILITY

DEPENDING ON WHOM you ask, backward compatibility is either Windows's

greatest strength or its greatest weakness. The purpose of this chapter is

to illustrate some of the efforts that go into maintaining backward compatibility

and highlight the obstacles that often stand in the way. More of these types of

stories can be found in the bonus chapter, "Tales of Application Compatibility,"

available at www.awprofessional.com/title/0321440307.

Sometimes an app just wants to crash

I THINK IT was Internet Explorer 5.0 when we discovered that a third-party

browser extension had a serious bug, the details of which aren't important.

The point was that this bug was so vicious, it crashed Internet Explorer pretty

frequently. Not good. To protect the users from this horrible fate, we marked

the object as "bad" so that Internet Explorer wouldn't load it.

And then we got an angry letter from the company that wrote this browser

extension. They demanded that we remove the marking from their object and

let Internet Explorer crash in flames every time the user wanted to surf the

Web. Why? Because they also wanted us to hook up Windows Error

283

http://www.awprofessional.com/title/0321440307

284 ^ s T H E OLD N E W T H I N G

Reporting to detect this crash and put up a dialog that says, "A fix for the

problem you experienced is available. Click here for more information," and

the "more information" was a redirect to the company's Web site, where you

could upgrade to version x.y of Program ABC for a special price of only $nnn!

(Actually I forget whether the upgrade was free or not, but the story is funnier

if you had to pay for it.)

In other words, they were crashing on purpose in order to drive upgrades.

Astute readers may have noticed an additional irony: If the plug-in crashed

Internet Explorer, how could the users view the company's Web page so that

they could purchase and download the latest version?

When programs grovel
into undocumented structures

T H R E E EXAMPLES OFF the top of my head of the consequences of groveling

into and relying on undocumented structures:

• Defragmenting things that can't be defragmented

In Windows 2000, there are several categories of data structures in the

N T F S file system that cannot be defragmented: directories, exclusively

opened files, the master file table (MFT) , the pagefile, and so forth.

That didn't stop a certain software company from doing it anyway in

their defragmenting software. They went into kernel mode, reverse-

engineered NTFS's data structures, and modified them on-the-fly.

Yee-haw cowboy! And then when the N T F S folks added support for

defragmenting the M F T to Windows XP, these programs went in,

modified NTFS's data structures (which changed in the meanwhile),

and corrupted your disk.

Of course, there was no mention of this illicit behavior in the

documentation. So when the background defragmenter corrupted

their disks, Microsoft got the blame.

C H A P T E R T H I R T E E N Backward Compatibility J©V 285

• Parsing the Explorer view data structures

A certain software company decided that they wanted to alter the

behavior of the Explorer window from a shell extension. Because

there is no way to do this (a shell extension is not supposed to mess

with the view; the view belongs to the user), they decided to do it

themselves anyway.

From the shell extension, they used an undocumented window mes

sage to get a pointer to one of the internal Explorer structures. Then

they walked the structure until they found something they recog

nized. Then they knew, "The thing immediately after the thing that

I recognize is the thing that I want."

Well, the thing that they recognized and the thing that they wanted

happened to be base classes of a multiply-derived class. If you have a

class with multiple base classes, there is no guarantee from the com

piler which order the base classes will appear in memory. It so hap

pened that they appeared in the order X,Y,Z in all the versions of

Windows this software company tested against.

Except Windows 2000.

In Windows 2000, the compiler decided that the order should be

X,Z,Y. So now they groveled in, saw the X, and said/Aha, the next

thing must be a Y," but instead they got a Z . And then they crashed

your system some time later.

I had to create a "fake X,Y" so that when the program went looking

for X (so it could grab Y), it found the fake one first.

This took the good part of a week to figure out.

Reaching up the stack

A certain software company decided that it was too hard to take the

coordinates of the NM_DBLCLK notification and hit-test it against

the tree view to see what was double-clicked. So instead, they took the

address of the NMHDR structure passed to the notification, added 60 to

286 T H E OLD NEW T H I N G

it, and dereferenced a DWORD at that address. If it was zero, they did

one thing, and if it was nonzero, they did some other thing.

It so happens that the NMHDR is allocated on the stack, so this

program is reaching up into the stack and grabbing the value of

some local variable (which happens to be two frames up the stack!)

and using it to control their logic.

For Windows 2000, we upgraded the compiler to a version that did a

better job of reordering and reusing local variables, and now the pro

gram couldn't find the local variable it wanted and stopped working.

I got tagged to investigate and fix this. I had to create a special

NMHDR structure that "looked like" the stack the program wanted to

see and pass that special "fake stack."

I think this one took me two days to figure out.

I hope you understand why I tend to go ballistic when people recommend relying

on undocumented behavior. These weren't hobbyists in their garage seeing what

they could do. These were major companies writing commercial software.

W h e n you upgrade to the next version of Windows and you experience

(1) disk corruption, (2) sporadic Explorer crashes, or (3) sporadic loss of

functionality in your favorite program, do you blame the program or do you

blame Windows?

If you say, "I blame the program," the first problem is of course figuring out

which program. In cases (1) and (2), the offending program isn't obvious.

Why not just block the applications
that rely on undocumented behavior?

BECAUSE EVERY APPLICATION that gets blocked is another reason for people

not to upgrade to the next version of Windows. If you run the Registry Editor

and look at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\

C u r r e n t V e r s i o n \ C o m p a t i b i l i t y , you'll see a list of programs that would

CHAPTER THIRTEEN Backward Compatibility a&. 287

have stopped working when you upgraded from Windows 3.0 to Windows

3.1. Actually, this list is only partial. Many times, the compatibility fix is made

inside the core component for all programs rather than targeting a specific

program, as this list does.

N O T E : On Windows XP, the application compatibility database is stored
in your C:\wiNDOWS\AppPatch directory, in a binary format to permit
rapid scanning. To inspect its contents, you can run the Compatibility
Administrator tool, which is part of the Application Compatibility Toolkit.

Would you have bought Windows XP if you knew that all these programs

were incompatible?

It takes only one incompatible program to sour an upgrade.

Suppose you're the IT manager of some company. Your company uses

Program X for its word processor and you find that Program X is incompatible

with Windows XP for whatever reason. Would you upgrade?

Of course not! Your business would grind to a halt.

"Why not call Company X and ask them for an upgrade?"

Sure, you could do that, and the answer might be, "Oh, you're using

Version 1.0 of Program X. You need to upgrade to Version 2.0 for $150 per

copy." Congratulations, the cost of upgrading to Windows XP just tripled.

And that's if you're lucky and Company X is still in business.

I recall a survey taken a few years ago by our Setup/Upgrade team of

corporations using Windows. Pretty much every single one has at least one

"deal-breaker" program, a program which Windows absolutely must support or

they won't upgrade. In a high percentage of the cases, the program in question

was developed by their in-house programming staff, written in Visual Basic

(sometimes even 16-bit Visual Basic), and the person who wrote it doesn't work

there any more. In some cases, they don't even have the source code any more.

And it's not just corporate customers. This affects consumers, too.

For Windows 95, my application compatibility work focused on games.

Games are the most important factor behind consumer technology. The video

card that comes with a typical computer has gotten better over time because

games demand it. (Outlook certainly doesn't care that your card can do 20

file://C:/wiNDOWS/AppPatch

2 8 8 iSK T H E OLD NEW T H I N G

bajillion triangles a second.) And if your game doesn't run on the newest version

of Windows, you aren't going to upgrade.

Anyway, game vendors are very much like those major corporations. I made

phone call after phone call to the game vendors trying to help them get their

game to run under Windows 95. To a one, they didn't care. A game has a shelf

life of a few months, and then it's gone. Why would they bother to issue a

patch for their program to run under Windows 95? They already got their

money. They're not going to make any more off that game; its three months are

over. The vendors would slipstream patches and lose track of how many versions

of their program were out there and how many of them had a particular problem.

Sometimes they wouldn't even have the source code any more.

They simply didn't care that their program didn't run on Windows 95. (My favorite

was the one that tried to walk me through creating a DOS boot disk.)

Oh, and that Application Compatibility Toolkit I mentioned earlier. It's a

great tool for developers, too. One of the components is the Application Verifier:

If you run your program under the verifier, it will monitor hundreds of

operating system calls and break into the debugger when you do something

wrong (such as close a handle twice or allocate memory with GlobalAlloc

but free it with LocalAlloc).

The new application compatibility architecture in Windows XP carries

with it one major benefit (from an OS development perspective): See all those

DLL files in your C: \wlNDOWS\AppPatch directory? That's where many of

the compatibility changes live now. The compatibility workarounds no longer

sully the core OS files. (Not all classes of compatibility workarounds can be

offloaded to a compatibility DLL, but it's a big help.)

Why 16-bit DOS and Windows
are still with us

MANY PEOPLE ARE calling for the abandonment of 16-bit DOS and 16-bit

Windows compatibility subsystems. And trust me, when it comes time to pull

file:///wlNDOWS/AppPatch

CHAPTER THIRTEEN Backward Compatibility 289

the plug, I'll be fighting to be the one to throw the lever. (How's that for a

mixed metaphor.)

But that time is not yet here.

You see, folks over in the Setup and Deployment group have gone and

visited companies around the world, learned how they use Windows in

their businesses, and one thing keeps showing up, as it relates to these

compatibility subsystems: Companies still rely on them. Heavily.

Every company has its own collection of line-of-business (LOB) applications.

These are programs that the company uses for its day-to-day business, programs

the company simply cannot live without. For example, at Microsoft two of our

critical LOB applications are our defect tracking system and our build system.

And like Microsoft's defect tracking system and build system, many of

the LOB applications at major corporations are not commercially available

software; they are internally developed software, tailored to the way that

company works, and treated as trade secrets. At a financial services company,

the trend analysis and prediction software is what makes the company

different from all its competitors.

The LOB application is the deal-breaker. If a Windows upgrade breaks a

LOB application, it's game over. No upgrade. No company is going to lose a

program that is critical to their business.

And it happens that a lot of these LOB applications are 16-bit programs.

Some are DOS. Some are 16-bit Windows programs written in some ancient

version of Visual Basic.

"Well, tell them to port the programs to Win32."

Easier said than done.

• Why would a company go to all the effort of porting a program when

the current version still works fine? If it ain't broke, don't fix it.

• The port would have to be debugged and field tested in parallel with

the existing system. The existing system is probably ten years old. All

its quirks are well understood. It survived that time in 1998 when there

was a supply-chain breakdown and when production finally got back

online, they had to run at triple capacity for a month to catch up. The

2 9 0 -S©\ T H E OLD NEW T H I N G

new system hasn't been stress tested. W h o knows whether it will han

dle these emergencies as well as the last system?

• Converting it from a D O S program to a Windows program would

incur massive retraining costs for its employees. "I have always used

F4 to submit a purchase order. Now I have this toolbar with a bunch

of strange pictures, and I have to learn what they all mean." Imagine if

somebody took away your current editor and gave you a new one

with different key bindings. "But the new one is better."

• Often the companies don't have the source code to the programs any

more, so they couldn't port it if they wanted to. It may use a third-

party VB control from a company that has since gone out of busi

ness. It may use a custom piece of hardware for which they have the

driver but no source code. And even if they did have the source code,

the author of the program may no longer work at the company. In

the case of a driver, there may be nobody at the company qualified to

maintain the 32-bit Windows driver.

Perhaps with a big enough carrot, these companies could be convinced to

undertake the effort (and risk!) of porting (or in the case of lost source code

and /o r expertise, rewriting from scratch) their LOB applications.

But it'll have to be a really big carrot.

Real example: Just this past weekend I was visiting a friend who lived in a

very nice, professionally managed apartment complex. We had occasion to go

to the office, and I caught a glimpse of their computer screen. The operating

system was Windows XP. And the program they were running to do their

apartment management? It was running in a D O S box.

What's the deal with those reserved
filenames such as NUL and CON?

S E T T H E WAYBACK machine to D O S 1.0.

D O S 1.0 didn't support subdirectories, lowercase, or filenames longer

than 8.3.

C H A P T E R T H I R T E E N Backward Compatibility .^^ 291

W h e n you ran the assembler (or compiler if you were really fancy) the con

versation went something like this:

A>asm foo the ".asm" extension on "foo" is implied
Assembler version blah blah blah
Source f i le : FOO.ASM
Listing file [FOO.LST] : just hit Enter to accept the default
Object file [FOO.OBJ] : just hit Enter to accept the default
Assembler cranks away

You only had to type the base name of the file; the . LST and . OBJ extensions

were appended automatically. In fact, I don't think you could disable the

extensions; they were always added.

But what if you didn't want a listing file? The assembler demanded a filename,

and if you didn't type any filename at all, it created one with the same basename

as your source file.

That's where the magic filenames come in. Suppose you wanted the listing

file to go straight to the printer. You didn't want to create a file on your floppy

drive because there might not be enough space to hold it or because you didn't

want to waste the time creating a file just to delete it anyway. So you typed

PRN as the filename.

Now, the assembler doesn't know about these magic filenames. So the

assembler will try to create the file PRN. LST and then start writing to it. Little

does the assembler realize that the output is actually going to the printer.

If you wanted to discard the output entirely, you would type NUL, of course.

And if you wanted it to go to the screen, you would type CON.

Now, if you followed closely, you can see that this story explains two things

already:

• Why are the magic filenames magical even if I add an extension?

Answer: If an extension removed the magic, then when the assem

bler added . LST to the filename, it would no longer be recognized as

magical, thereby defeating the purpose of the magic.

• Why do these magic files exist in every directory?

Answer: Because D O S 1.0 didn't have subdirectories. There was only

one directory, which today we would call the root directory; but back

292 ^ S ^ THE OLD NEW THING

then, there was no such thing as a subdirectory, so there was no need to

talk about directories in the first place, much less give the only one you

have a name. It was just called "the files on your disk." If magic files

didn't work in subdirectories, then when you tried to, for example,

c h d i r into a subdirectory and then run the assembler, you wouldn't be

able to type NUL as the filename and get the magic.

But why do we carry these magic filenames forward even today?

Because everybody still relies on them. Just look at all the batch files that

do things such as redirect to > NUL or test whether a directory exists by asking

if exist d i r e c t o r y n a m e \ n u l , or all the documentation that says to create a

file with copy CON f i l e n a m e .

Why is a drive letter permitted in front
of U N C paths (sometimes)?

A L I T T L E - K N O W N quirk is that the file system accepts and ignores a drive let

ter in front of a U N C path. For example, if you have a directory called

\ \ s e r v e r \ s h a r e \ d i r e c t o r y , you can say

a i r P : \ \ s e r v e r \ s h a r e \ a x r e c t o r y

and the directory will be listed to the screen. T h e leading P: is ignored. W h y

is that?

Rewind to 1984 and the upcoming release of M S - D O S 3.1, which added

networking support. U p to this point, all fully qualified file specifications

consisted of three components: a drive letter, a path, and a filename. Many

programs relied on this breakdown and did things like "helpfully" prepend a

drive letter if it looks like you "forgot" one. For example, if you told it to save

the results to \ \ s e r v e r \ s h a r e \ f i l e . t x t , it would say, "Oh dear, that's not

good, the user forgot the drive letter! I'll pu t the current drive in front to make

things better," resulting in C : \ X s e r v e r \ s h a r e \ f i l e . t x t . Other programs

would prompt you with "Please enter a drive letter," and you couldn't say, "No,

file:////server/share/directory
file:////server/share/axrectory
file:////server/share/f
file://C:/Xserver/share/file.txt

CHAPTER THIRTEEN Backward Compatibility *&< 293

there's no drive letter, just take the path and use it." They insisted on a drive

letter, and you darn sure better give them one.

(Compare the UNIX programs that "helpfully" rewrite / / se rver /vo lume/

f i l e as / s e r v e r / v o l u m e / f i l e because they "know" that consecutive slashes

collapse, unaware of the special exception for two leading slashes.)

To retain compatibility with programs that provided this sort of "unwanted

help," the designers of the networking support in MS-DOS decided to allow

the strange syntax C: \ \ s e r v e r \ s h a r e \ d i r e c t o r y and treat it as if the drive

letter simply weren't there. Some (but not all) of this quirk of path parsing

persists today.

Do not underestimate the power
c \ r~v T T

or the game Deer Hunter
DURING THE RUN-UP to Windows XP Service Pack 2 Beta, there was a list

of five bugs that the release management team decided were so critical that

they were going to slip the beta until those bugs got fixed.

The third bug on the list: Deer Hunter 4 won't run.

Deer Hunter has the power to stop a beta.

Sometimes the bug isn't apparent
until late in the game

I DIDN'T DEBUG it personally, but I know the people who did. During Windows

XP development, a bug arrived on a computer game that crashed only after

you got to one of the higher levels.

After many saved and restored games, the problem was finally identified.

The program does its video work in an offscreen buffer and transfers it to the

screen when it's done. When it draws text with a shadow, it first draws the text

in black, offset down one and right one pixel, and then draws it again in the fore

ground color.

file:////server/share/directory

2 9 4 T H E OLD NEW T H I N G

So far so good.

Except that it didn't check whether moving down and right one pixel was

going to go beyond the end of the screen buffer.

That's why it took until one of the higher levels before the bug manifested

itself. Not until then did you accomplish a mission whose name contained a

lowercase letter with a descender! Shifting the descender down one pixel

caused the bottom row of pixels in the character to extend past the video

buffer and start corrupting memory.

After the problem had been identified, fixing it was comparatively easy. The

application compatibility team has a bag of tricks, and one of them is called

"HeapPadAllocation." This particular compatibility fix adds padding to every

heap allocation so that when a program overruns a heap buffer, all that gets

corrupted is the padding. Enable that fix for the bad program (specifying the

amount of padding necessary, in this case, one row's worth of pixels), and run

through the game again. No crash this time.

What made this interesting to me was that you had to play the game for

hours before the bug finally surfaced.

The long and sad story
of the Shell Folders key

W H E N YOU ARE attempting to architect an operating system, backward com

patibility is something you just have to accept. But when new programs rely on

application hacks designed for old programs, that makes you want to scream.

Once upon a time, in what seems like a galaxy far, far away (a Windows 95

beta release known as M3), we documented a registry key called Shell Folders

that programs could read to obtain the locations of various special folders like

the Fonts folder or the My Documents folder.

The developers who received Windows 95 M3 Beta followed the docu

mentation and used that key.

In the meantime, Windows 95 work continued, and we realized that a registry

key was the wrong place to store this information. In part, because a lot of

C H A P T E R T H I R T E E N Backward Compatibility ^ s ^ 295

things (such as the Control Panel) aren't disk directories and so they wouldn't

be expressible there. And in another part, because we had forgotten to take

into account a feature of Windows N T called roaming user profiles, where

your user profile can move around from place to place, so a hard-coded path

in the registry is no good.

So we created the function S H G e t S p e c i a l F o l d e r L o c a t i o n , and updated

the documentation to instruct developers to use this new function to obtain

the locations of various special folders. T h e documentation on the old Shell

Folders key was removed.

But to ease the transition from the M 3 documentation to the final docu

mentation, we left the old Shell Folders registry key around, "temporarily," but

it was no longer the location where this information was kept. It was just a

shadow of the "real" data stored elsewhere (User Shell Folders).

We shipped Windows 95 with this "temporary" key because there were still

a small number of programs (let's say four) that hadn't finished converting to

the new S H G e t S p e c i a l F o l d e r L o c a t i o n function. But the support for this

registry key was severely scaled back, so it was just barely good enough for

those four programs. After all, this was just a backward compatibility hack.

All new programs should be using S H G e t S p e c i a l F o l d e r L o c a t i o n .

In other words, the Shell Folders key exists solely to permit four programs

written in 1994 to continue running on the release version of Windows 95.

You can guess what happened next.

Windows 95 came out and everybody wanted to write programs for it. But

reading documentation is a lot of work. So when there's some setting you

want to retrieve, and you don't want to read documentation, what do you do?

You search the registry! (Sound familiar? People still do this today.)

So now there were hundreds, thousands of programs which didn't call

S H G e t S p e c i a l F o l d e r L o c a t i o n ; theyjust went directly for the Shell Folders

key. But they didn't realize that the support for Shell Folders was only barely

enough to keep those four original programs working.

For example, did you know that if you never open your Fonts folder, and if

no program ever calls S H G e t S p e c i a l F o l d e r L o c a t i o n (CSIDL_FONTS), there

will not be a Fonts entry in the Shell Folders key? That's because those entries

296 ^-^ THE OLD NEW THING

are created only if somebody asks for them. If nobody asks for them, they

aren't created. No point setting up an application hack until it is needed.

Of course, when you're testing your program, you don't reformat your hard

disk, install Windows 95 from scratch, and then run your program. You just

put your program on a Windows 95 machine that has been running for

months and see what happens. At some point during all those months, you

opened your Font folder at least one time. As a result, the "Fonts" entry exists

and you are happy.

And then back in our application compatibility labs, your program gets a

"Fail" grade because our lab reformats the computer before installing each

application to make sure there is nothing left over from the previous program

before installing the next one.

And then the core development team gets called in to figure out why this

program is getting a Fail grade, and we find out that in fact, this program,

when faced with a freshly formatted machine, never worked in the first place.

Philosophical question: If a program never worked in the first place, is it

still a bug that it doesn't work today?

Now there are those of you who are licking your lips and saying, "Wow,

there's this User Shell Folders key that's even cooler than the Shell Folders

key, let me go check it out." I implore you to exercise restraint and not rely on

this new key. Just use the function SHGetFolderPath, which returns the path

to whatever folder you want. Let the User Shell Folders key rest in peace.

Because in Windows Vista, we're doing even more stuff with user profiles, and

I would personally be very upset if we had to abandon the User Shell Folders

key as "lost to backward compatibility" and set up shop in a new Real User

Shell Folders key,

I strongly suspect that of those four original programs for which the Shell

Folders key was originally created, not a single one is still in existence today.

CHAPTER THIRTEEN Backward Compatibility .SS< 297

The importance of error code
backward compatibility

I REMEMBER A bug report that came in on an old MS-DOS program (from

a company that is still in business, so don't ask me to identify them) that

attempted to open the file "". That's the file with no name.

This returned error 2 (file not found). But the program didn't check the

error code and thought that 2 was the file handle. It then began writing data

to handle 2, which ended up going to the screen because handle 2 is the standard

error handle, which by default goes to the screen.

It so happened that this program wanted to print the message to the screen

anyway.

In other words, this program worked completely by accident.

Because of various changes to the installable file system in Windows 95, the

error code for attempting to open the null file changed from 2 (file not found)

to 3 (path not found) as a side effect.

Watch what happens.

The program tries to open the file "". Now it gets error 3 back. It mistakenly

treats the 3 as a file handle and writes to it. What is handle 3? The standard

MS-DOS file handles are as follows:

Handle Name Meaning

0

1

2

3

4

stdin

scdout

stderr

stdaux

stdprn

standard input

standard output

standard error

standard auxiliary (serial port)

standard printer

What happens when the program writes to handle 3? It tries to write to the

serial port. Most computers don't have anything hooked up to the serial port.

The write hangs. Result: dead program.

298 jrtfc< T H E OLD N E W T H I N G

T h e file system folks had to tweak their parameter validation so that they

returned error 2 in this case.

Sure, we do that

T H E D I R E C T X VIDEO driver interface for Windows 95 had a method that

each driver exposed called something like D o e s D r i v e r S u p p o r t (REFGUID

g u i d C a p a b i l i t y) where we handed it a capability G U I D and it said

whether or not that feature was supported.

There were various capability G U I D s defined, things such as GUlD_Can

S t r e t c h A l p h a to ask the driver whether it was capable of stretching a bitmap

with an alpha channel.

There was one driver that returned TRUE when you called DoesDr ive r

S u p p o r t (GUID_XYZ), but when DirectDraw tried to use that capability, it

failed, and in a pretty spectacular manner.

O n e of the DirectDraw developers called the vendor and asked them,

"Does your card do XYZ?"

Their response: "What 's XYZ?"

Turns out that their driver's implementation of D o e s D r i v e r S u p p o r t was

something like this:

BOOL DoesDriverSupport(REFGUID g u i d C a p a b i l i t y)

{
r e t u r n TRUE;

In other words, whenever DirectX asked,"Can you do this?" they answered,

"Sure, we do that," without even checking what the question was.

(T h e driver must have been written by the sales department.)

So the DirectDraw folks changed the way they queried for driver capabili

ties. O n e of the developers went into his boss's office, took a network card,

extracted the M A C address, and then smashed the card with a hammer.

You see, this last step was important: T h e G U I D generation algorithm is

based on a combination of time and space. W h e n you ask the CoCreateGuid

C H A P T E R T H I R T E E N Backward Compatibility JS\ 299

function to create a new GUID, it encodes the time of your request in the first

part of the GUID and information that uniquely identifies your machine (the

network card's MAC address, which is required to be unique by the standards

that apply to network cards).

By smashing the network card with a hammer, he prevented that network

card from ever being used to generate a GUID.

Next, he added code to DirectDraw so that when it starts up, it manufactures

a random GUID based on that network card (which, by its having been

destroyed, can never be validly created) and passes it to DoesDriverSupport.

If the driver says, "Sure, we do that," DirectDraw says/Aha! Caught you! I will

not believe anything you say from now on."

When programs patch
the operating system and mess up

HAVING YOUR PROGRAM patch portions of the operating system to hook into

various functions is a bad idea, but that doesn't stop people from trying. And

messing up.

As you saw earlier, the ExtTextOut function is a fast way of drawing a

solid rectangle. But we discovered on Windows 95 that if you were running a

particular piece of software, Explorer would start crashing in a location outside

the normal operating system code, but inside a call to the ExtTextOut-based

fast solid rectangle fill function, where it passed NULL as the string pointer and

zero as the character count.

The reason for the crash is that the software product patched several oper

ating system functions, including ExtTextOut, redirecting the call to code

installed by that product. And the redirected version of the ExtTextOut

function dereferenced the string parameter without checking whether the

character count parameter was zero. I guess it never occurred to them that

somebody would be crazy enough to call a text-drawing function without any

text! As a result, when Explorer attempted to draw a solid rectangle, the system

crashed inside the patched ExtTextOut function.

3 0 0 -SS^s T H E OLD N E W T H I N G

The shell team was forced to change their "draw solid rectangle" function

to pass a pointer to a valid (but unused) string as the string pointer parameter.

In other words, the function went something like this:

BOOL DrawSolidRect(HDC hdc, LPCRECT pre, COLORREF clr)

{
BOOL fDrawn = FALSE;
COLORREF clrPrev = SetBkColor(hdc, clr);
if (clrPrev != CLR_INVALID) {
fDrawn = ExtTextOut(hdc, 0, 0,ETOJDPAQUE, pre, TEXT("") , 0, NULL) ;
SetBkColor(hdc, clrPrev);

}
r e t u r n fDrawn;

)

Explorer continues to use this modified function even though the product

that was responsible for it no longer exists. Once bitten, twice shy.

The compatibility constraints
of even your internal bookkeeping

T H E LISTVIEW CONTROL, when placed in report mode, has a child header

control that it uses to display column header titles. This header control is the

property of the listview, but the listview is kind enough to let you retrieve the

handle to that header control.

And some programs abuse that kindness.

It so happens that the original listview control did not use the lParam of

the header control item for anything. So some programs said, "Well, if you're

not using it, then I will!" and stashed their own private data into it.

Then a later version of the listview decided, "Gosh, there's some data I need

to keep track of for each header item. Fortunately, because this is my header

control, I can stash my data in the lParam of the header item."

And then the application compatibility team takes those two ingredients

(the program that stuffs data into the header control and the listview that

does the same) to their laboratory, mixes them, and an explosion occurs.

CHAPTER T H I R T E E N Backward Compatibility js©k 301

After some forensic analysis, the listview development team figures out what

happened and curses that they have to work around yet another program that

grovels into internal data structures. The auxiliary data is now stored in some

other less-convenient place so that those programs can continue to run without

crashing.

The moral of the story: Even if you change something that nobody should

be relying on, there's a decent chance that somebody is relying on it.

(I'm sure there will be the usual chorus of people who will say, "You

should've just broken them." What if I told you that one of the programs that

does this is a widely used system administration tool? Eh, that probably

wouldn't change your mind.)

,—.

Why does Windows keep your
BIOS clock on local time?

EVEN THOUGH WINDOWS N T uses UTC internally, the BIOS clock stays on

local time. Why is that?

There are a few reasons. One is a chain of backward compatibility.

In the early days, people often dual-booted between Windows N T and

MS-DOS/Windows 3.1. MS-DOS and Windows 3.1 operate on local time,

so Windows N T followed suit so that you wouldn't have to keep changing

your clock each time you changed operating systems.

As people upgraded from Windows N T to Windows 2000 to Windows XP,

this choice of time zone had to be preserved so that people could dual-boot

between their previous operating system and the new operating system.

Another reason for keeping the BIOS clock on local time is to avoid con

fusing people who set their time via the BIOS itself. If you hit the magic key

during the power-on self-test, the BIOS will go into its configuration mode,

and one of the things you can configure there is the time. Imagine how con

fusing it would be if you set the time to 3 p.m., and then when you start

Windows, the clock reads 11 a.m.

3 0 2 J&< T H E OLD NEW T H I N G

"Stupid computer. Why did it even ask me to change the time if it's going

to screw it up and make me change it a second time?"

And if you explain to them, "No, you see, that time was UTC, not local

time," the response is likely to be" What kind of totally propeller-headed non

sense is that? You're telling me that when the computer asks me what time it

is, I have to tell it what time it is in London? (Except during the summer in

the northern hemisphere, when I have to tell it what time it is in Reykjavik!?)

Why do I have to remember my time zone and manually subtract four hours?

Or is it five during the summer? Or maybe I have to add. Why do I even have

to think about this? Stupid Microsoft. My watch says three o'clock. I type

three o'clock. End of story."

(What's more, some BlOSes have alarm clocks built in, where you can pro

gram them to have the computer turn itself on at a particular time. Do you

want to have to convert all those times to UTC each time you want to set a

wake-up call?)

Bad version number checks

VERSION NUMBERS. Very important. And so many people check them wrong.

This is why Windows 95's GetVersion function returned 3.95 rather than

4.0. A lot of code checked the version number like this:

UINT Ver = GetVersion();
UINT MajorVersion = LOBYTE(uVer) ;
UINT MinorVersion = HIBYTE(uVer) ;
if (MajorVersion < 3 | MinorVersion < 10) {
Error("This program requires Windows 3.1");

_J
Now consider what happens when the version number is reported as 4.0.

The major version check passes, but the minor version check fails because 0 is

less than 10.

C H A P T E R T H I R T E E N Backward Compatibility •$&< 303

This bug was so rife that we gave up adding a compatibility entry every

application that had the problem and just decided, "Fine. If anybody asks, say

that the Windows version is 3.95."

The ways people mess up
IUnknown::Query Interface

W H E N YOU'RE DEALING with application compatibility, you discover all sorts

of things that worked only by accident. Consider some of the "creative" ways

people mess up the IUnknown: : Q u e r y I n t e r f a c e method.

Now, you'd th ink/ 'This interface is so critical to C O M , how could anybody

possible mess it up?" Here's how:

• Forgetting to respond to IUnknown

Sometimes you get so excited about responding to all these great

interfaces that you forget to respond to IUnknown itself. We have

found objects where

IShel lFolder *psf = some ob jec t ;
IUnknown *punk;
psf->QueryInterface(IID_IUnknown, (void**)&punk);

fails with E_NOINTERFACE!

• Forgetting to respond to your own interface

There are some methods that return an object with a specific inter

face. And if you query that object for its own interface, its sole rea

son for existing, it says, "Huh?"

IShel lFolder *psf = some ob jec t ;
IEnumlDList *pe id l , *pe id l2 ;
psf->EnumObjects(. . . , &peidl) ;
peidl->Query!nterface(IID_IEnumIDList , (void**)&peidl2);

3 0 4 ^ ^ N THE OLD NEW THING

There are some objects which return E_NOINTERFACE to the

Q u e r y l n t e r f a c e call, even though you're asking the object for

itself! "Sorry, I don't exist," it seems they're trying to say.

• Forgetting to respond to base interfaces

When you implement a derived interface, you implicitly implement

the base interfaces, so don't forget to respond to them, too.

IShellView *psv = some object;
IOleView *pow;
p s v - > Q u e r y I n t e r f a c e (I I D _ I 0 1 e V i e w , (void**)&pow);

Some objects forget and the Q u e r y l n t e r f a c e fails with

E_NOINTERFACE.

• Requiring a secret knock

In principle, the following two code fragments are equivalent:

IShellFolder *psf;
IUnknown *punk;
CoCreatelnstance(CLSID_xyz, ..., IID_IShellFolder, (void**)&psf);
psf->QueryInterface(IID_IUnknown, (void**)&punk);

and

C o C r e a t e l n s t a n c e (C L S I D _ x y z , . . . , IID_IUnknown, (void**)&punk) ;
p u n k - > Q u e r y I n t e r f a c e (I I D _ I S h e l l F o l d e r , (v o i d * *) & p s f) ;

In reality, some implementations mess up and fail the second call to

C o C r e a t e l n s t a n c e . The only way to create the object successfully

is to create it with the I S h e l l F o l d e r interface.

• Forgetting to say "no" properly

One of the rules for saying "no" is that you have to set the output

pointer to N U L L before returning. Some people forget to do that.

CHAPTER THIRTEEN Backward Compatibility *©k 305

IMumble *pmbl;
punk->QueryInterface(IID_IMumble, (void**)&pmbl);

If the Querylnter face succeeds, then pmbl must be non-NULL

on return. If it fails, pmbl must be NULL on return.

The shell has to be compatible with all these buggy objects because if it

weren't, customers would get upset and the press would have a field day. Some

of the offenders are big-name programs. If they broke, people would report,

"Don't upgrade to Windows XYZ, it's not compatible with <big-name pro

grams" Conspiracy-minded folks would shout, "Microsoft intentionally broke

<big-name program>! Proof of unfair business tactics!"

When programs assume that the system
will never change, Episode 1

AN EXAMPLE, ALL too frequent, of ways programs assume that the user inter

face will never change is reaching into system binaries and sucking out undoc

umented resources. In the shell, we have fallen into the reluctant position of

carrying "dead" icons around for the benefit of programs that assumed that

they would always be available. However, we often make these "orphaned"

icons blank so that these programs don't crash, but they don't necessarily look

all that wonderful either.

Recently, I learned of a new type of resource stealing: stealing animations.

For Windows Vista, there have been many changes to the way the system

internally organizes its resources to support the Multilingual User Interface

feature. One of the things we found was a handful of programs that reach

directly into Shell32.dll to obtain the file copy animation.

Remember, resources in system files should be treated as implementation

details, unless explicitly documented otherwise.

306 ^S=> THE OLD NEW THING

When programs assume that
the system will never change, Episode 2

O N E OF THE stranger application compatibility puzzles was solved by a col

league of mine who was trying to figure out why a particular program couldn't

open the Printers Control Panel. Upon closer inspection, the reason became

clear. The program launched the Control Panel, used Findwindow to locate

the window, and then accessed that window's "File" menu and extracted

the strings from that menu looking for an item that contained the word

Printer. It then posted a WM_COMMAND message to the Control Panel window

with the menu identifier it found, thereby simulating the user clicking on the

Printers menu option.

With Windows 95's Control Panel, this method fell apart pretty badly.

There is no Printers option on the Control Panel's File menu. It never

occurred to the authors of the program that this was a possibility. (Mind you,

it was a possibility even in Windows 3.1; if you were running a non-English

version of Windows, the name of the Printers option would be something like

Skrivare or Drucker. Not that it mattered, because the File menu will be called

something like Arkiv or Datei! The developers of this program simply assumed

that everyone in the world speaks English.)

The code never checked for errors; it plowed ahead on the assumption that

everything was going according to plan. The code eventually completed its

rounds and sent a garbage WM_COMMAND message to the Control Panel win

dow, which was, of course, ignored because it didn't match any of the valid

commands on that window's menu.

The punch line is that the mechanism for opening the Printers Control

Panel was rather clearly spelled out on the very first page of the "Control

Panel" chapter of the Windows 3.1 SDK:

The following example shows how an application can start Control Panel and the

Printers application from the command line by using the WinExec function:

W i n E x e c (" c o n t r o l p r i n t e r s " , SW_SHOWNORMAL);

CHAPTER THIRTEEN Backward Compatibility 307

In other words, they didn't even read past the first page.

The solution: Create a "decoy" Control Panel window with the same class

name as Windows 3.1, so that this program would find it. The purpose of

these "decoys" is to draw the attention of the offending program, taking the

brunt of the mistreatment and doing what they can to mimic the original

behavior enough to keep that program happy. In this case, the decoy waited

patiently for the garbage WM_COMMAND message to arrive and dutifully

launched the Printers Control Panel.

Nowadays, this sort of problem would probably be solved with the use of a

shim. But this was back in Windows 95, when application compatibility tech

nology was still comparatively immature. All that was available at the time

were application compatibility flags and hot-patching of binaries, wherein the

values are modified as they are loaded into memory. Using hot-patching tech

nology was reserved for only the most extreme compatibility cases, because

getting permission from the vendor to patch their program was a compara

tively lengthy legal process. Patching was considered a'last-resort" compatibil

ity mechanism not only for the legal machinery necessary to permit it, but

also because patching a program fixes only the versions of the program the

patch was developed to address. If the vendor shipped ten versions of a pro

gram, ten different patches would have to be developed. And if the vendor

shipped another version after Windows 95 was delivered to duplication, that

version would be broken when Windows 95 hit the shelves.

It is important to understand the distinction between what is a documented

and supported feature and what is an implementation detail. Documented and

supported features are contracts between Windows and your program.

Windows will uphold its end of the contract for as long as that feature exists.

Implementation details, on the other hand, are ephemeral; they can change at

any time, be it at the next major operating system release, at the next service

pack, even with the next security hotfix. If your program relies on implemen

tation details, you're contributing to the compatibility cruft that Windows

carries around from release to release.

308 40k THE OLD NEW THING

The decoy Display Control Panel

W H E N SUPPORT FOR multiple monitors was being developed, a major obsta

cle was that a large number of display drivers hacked the Display Control

Panel directly instead of using the documented extension mechanism. For

example, instead of adding a separate page to the Display Control Panel's

property sheet for, say, virtual desktops, they would just hack into the Settings

page and add their button there. Some drivers were so adventuresome as to

do what seemed like a total rewrite of the Settings page. They would take all

the controls, move them around, resize them, hide some, show others, add

new buttons of their own, and, generally speaking, treat the page as a lump of

clay waiting to be molded into their own image. (Here's a handy rule of

thumb: If your technique works only if the user speaks English, you probably

should consider the possibility that what you're doing is relying on an imple

mentation detail rather than something that will be officially supported going

forward.)

To support multiple monitors, the Settings page on the Display Control

Panel underwent a major overhaul. But when you tried to open the Display

Control Panel on a system that had one of these aggressive drivers installed,

it would crash because the driver ran around rearranging things like it always

did, even though the things it was manipulating weren't what the developers

of the driver intended!

The solution was to create a "decoy" Settings page that looked exactly like

the classic Windows 95 Settings page. The decoy page's purpose in life was to

act as bait for these aggressive display drivers and allow itself to be abused

mercilessly, letting the driver have its way. Meanwhile, the real Settings page

(which is the one that was shown to the user), by virtue of having been

overlooked, remained safe and unharmed.

There was no attempt to make this decoy Settings page do anything inter

esting at all. Its sole job was to soak up mistreatment without complaining. As

a result, those drivers lost whatever nifty features their shenanigans were trying

to accomplish, but at least the Display Control Panel stayed alive and allowed

CHAPTER THIRTEEN Backward Compatibility *&< 309

users to do what they were trying to do in the first place: adjust their display

settings.

The decoy visual style

DURING THE DEVELOPMENT of Windows XP, the visual design team was

very cloak-and-dagger about what the final visual look was going to be. They

had done a lot of research and put a lot of work into their designs and wanted

to make sure that they made a big splash at the Electronic Entertainment

Expo (nicknamed E3) when the Windows XP design, code-named Luna, was

unveiled. Nobody outside the visual styles team, not even me, knew what

Luna was going to look like.

On the other hand, the programmers who were setting up the infrastructure

for visual styles needed to have something to test their code against. And

something had to go out in the betas.

The visual styles team came up with two styles. In secret, they worked on

Luna. In public, they worked on a "decoy" visual style called Mallard. The ruse

was so successful that people were busy copying the decoy and porting it to

other operating systems.

C H A P T E R F O U R T E E N

ETYMOLOGY AND HISTORY
sM«iiiiii<"

WE TAKE A break from explicit programming topics to look at historical

topics, with some attention paid to how things got their names. Some of

this discussion may lead to some insight into how Win32 evolved from 16-bit

Windows, but most of it is just for fun.

—̂̂

What do the letters W and L stand
for in WPARAM and LPARAM?

ONCE UPON A time, Windows was 16 bit. Each message could carry with it

two pieces of data, called WPARAM and LPARAM. The first one was a 16-bit value

(word), so it was called W. The second one was a 32-bit value (long), so it was

called L. You used the W parameter to pass things like handles and integers.

You used the L parameter to pass pointers.

When Windows was converted to 32 bit, the WPARAM parameter grew to a

32-bit value, too. So even though the W stands for word, it isn't a word any

more. (And in 64-bit Windows, both parameters are 64-bit values!)

It is helpful to understand the origin of the terms. If you look at the design

of window messages, you will see that if the message takes a pointer, the

3ii

312 ^ S ^ THE OLD NEW THING

pointer is usually passed in the LPARAM; whereas if the message takes a

handle or an integer, it is passed in the WPARAM. (And if a message takes both,

the integer goes in the WPARAM and the pointer goes in the LPARAM.)

Once you learn this, it makes remembering the parameters for window

messages a little easier. Conversely, if a message breaks this rule, it sort of

makes your brain say, "No, that's not right."

Why was nine the maximum number
of monitors in Windows 98?

WINDOWS 98 WAS the first version of Windows to support multiple moni

tors. And the limit was nine.

Why nine?
Because that allowed you to arrange your monitors in a three-by-three

grid, just like in the television program The Brady Bunch, You have early 1970s

television to thank.

Why is a registry file called a hive?

BECAUSE ONE OF the original developers of Windows N T hated bees. So the

developer who was responsible for the registry snuck in as many bee refer

ences as he could, just to annoy his colleague. A registry file is called a hive,

and registry data are stored in cells, which is what honeycombs are made of.

The management of memory
for resources in 16-bit Windows

IN I6-BIT WINDOWS, resources were not loaded until explicitly requested:

• The FindResource function located the entry for the resource in

the resource directory and returned it in the form of a HRSRC.

C H A P T E R FOURTEEN Etymology and History a©v 313

• The LoadResource function took that resource handle, allocated

some movable memory (HGLOBAL), and loaded the referenced

resources off the disk into that memory

• The LockResource function took that global handle and locked it,

returning a pointer to the resource bytes themselves.

• The UnlockResource function unlocked the global handle.

• The F r e e R e s o u r c e function freed the memory that had been allo

cated to hold the resource.

Actually, it was more complicated than this. Additional bookkeeping ensured

that if two people tried to load the same resource, the same memory block got

used for both, and the F reeResource didn't actually free the memory until the

reference count went back to zero.

Actually, it was even more complicated than this. If the resource was marked

DISCARDABLE, the memory wasn't actually freed when the reference count

dropped to zero. Instead, the global handle was marked as discardable

(GMEM_DISCARDABLE), so the handle remained valid, but when the system

came under memory pressure, the memory behind the handle would get freed,

and the next time you did a LoadResource , it would get reloaded from disk.

So now you know what that DISCARDABLE keyword in resource files

means. O r at least what it used to mean. Win32 doesn't do any of this; the

DISCARDABLE flag is ignored but remains for compatibility.

What is the difference between
HINSTANCE and HMODULE?

T H E Y MEAN T H E same thing today but at one time they were quite different.

It all comes from 16-bit Windows.

In those days, a module represented a file on disk that had been loaded into

memory, and the module handle was a handle to a data structure that described

the parts of the file, where they come from, and where they had been loaded into

memory (if at all). O n the other hand, an instance represented a set of variables.

314 ii&v T H E OLD NEW T H I N G

One analogy that might (or might not) make sense is that a module is

like the code for a C + + class: It describes how to construct an object, it

implements the methods, it describes how the objects of the class behave.

On the other hand, an instance is like a C++ object that belongs to

that class: It describes the state of a particular object that is a member of

the class.

In C# terms, a module is like a type, and an instance is like an object.

(Except that modules don't have things like static members, but it was a weak

analogy anyway.)
bl I 1 ' Here's a diagram:

USER HMODULE

code segment descriptor

code segment descriptor

code segment descriptor

data segment descriptor

HRSRC

HRSRC

HRSRC

exports table

USER HINSTANCE
USER data

USER code

(not in memory)

USER code

(not in memory)

(not in m

USER resource

emory)

In 16-bit Windows, all programs ran in a single address space, and if a

DLL was used by five programs, it was loaded only one time into memory.

In particular, it got only one copy of its data segment. (In C+ + /C# terms, a

DLL is like a singleton class.)

That's right, DLLs were system global rather than per process. The DLL

did not get a separate copy of its data for each process that loaded it. If that

was important to your DLL, you had to keep track of it yourself.

In geek terms, there was only one instance of a DLL in the system.

C H A P T E R F O U R T E E N Etymology and History 315

NOTEPAD HMODULE

code segment descriptor

code segment descriptor

data segment descriptor

HRSRC

HRSRC

NOTEPAD HINSTANCE
NOTEPAD data

NOTEPAD HINSTANCE
NOTEPAD data

NOTEPAD code

(not in memory)

(not in memory)

NOTEPAD resource

On the other hand, if you ran two copies of a program, say, Notepad, each

one got its separate set of variables; there were two instances.

Both running copies of Notepad shared the N O T E P A D module (so the

code and resources were shared), but each had its own copy of its variables

(separate data segment). There were two instances of Notepad.

The instance handles in the above diagrams are the data segments.

Programs were identified by their instance handle. You can't use the module

handle, because the two copies of Notepad have the same module handle

(because the same code is running in each). The thing that makes them different

is that each has its own set of global variables.

This is why the winExec and She l lExecu te functions return a

HINSTANCE: They are holdovers from 16-bit Windows, where HINSTANCEs

were the way to identify running programs.

When it came time to design Win32, the question then arose, "What do

we do with HINSTANCE and HMODULE for Win32?" Because programs ran in

separate address spaces, you didn't have instance handles visible across

process boundaries. So the designers took the only thing they had: the base

address of the module. This was analogous to the HMODULE, because the file

header describes the contents of the file and its structure. And it was also

3 l 6 ^ ~ N T H E OLD NEW T H I N G

analogous to the HINSTANCE, because the data was kept in the data segment,

which was mapped into the process directly. In Win32, therefore, HINSTANCE

and HMODULE are both just the base address of the module.

What was the purpose
of the hPrevInstance parameter

to WinMain:1

A F T E R YOUR AVERAGE Windows program picks itself up off the ground, con-

trol begins at your WinMain function. T h e second parameter, h P r e v I n s t a n c e ,

is always zero in Win32 programs. Certainly it had a meaning at some point?

O f course it did.

In 16-bit Windows, there was a function called G e t l n s t a n c e D a t a . This

function took an HINSTANCE, a pointer, and a length, and copied memory

from that instance into your current instance. (It's sort of the 16-bit equiva

lent to the ReadProcessMemory function, with the restriction that the sec

ond and third parameters had to be the same.)

N O T E : Because 16-bit Windows had a common address space, the
GetlnstanceData function was really nothing more than an hmemcpy,
and many programs relied on this and just used raw hmemcpy instead of
using the documented method. The 16-bit version of Windows was actually
designed with the possibility of imposing separate address spaces in a future
version—observe flags such as GMEM_SHARED—but the prevalence of tricks
such as hmemcpying your previous instance reduced this potential to an
unrealized dream.

This was the reason for the h P r e v I n s t a n c e patametet to WinMain. If

h P r e v I n s t a n c e was non-NULL, it was the instance handle of a copy of the

ptogram that is already running. You can use G e t l n s t a n c e D a t a to copy data

from it, getting yourself up off the ground fastet. For example, you might want

to copy the main window handle out of the previous instance so you could

communicate with it.

CHAPTER FOURTEEN Etymology and History -ss^ 317

Whether hPrevlns tance was NULL or not told you whether you were the

first copy of the program. Under 16-bit Windows, only the first instance of a

program registered its classes; second and subsequent instances continued to

use the classes that were registered by the first instance. (Indeed, if they tried,

the registration would fail because the class already existed.) Therefore, all

16-bit Windows programs skipped over class registration if hPrev lns tance

was non-NULL.

The people who designed Win32 found themselves in a bit of a fix when it

came time to port WinMain: what to pass for hPrevlnstance? The whole

module/instance thing didn't exist in Win32, after all, and separate address

spaces meant that programs that skipped over reinitialization in the second

instance would no longer work. So Win32 always passes NULL, making all

programs believe that they are the first one.

And amazingly, it actually worked.

Why is the GlobalWire function
called GlobalWire?

FIRST, SOME BACKGROUND for those who never had to write 16-bit

Windows programs: The GlobalWire function was similar to the 16-bit

GlobalLock function, except that it had the bonus feature of relocating the

memory to the lowest available linear address. You used this function as a

courtesy if you intended to leave the memory locked for a long time. Moving

it to the edge of the address space means that it is unlikely to become an

obstacle in the middle of the address space that would otherwise prevent

future large memory allocations from succeeding.

But why wire?

This employs a colloquial sense of the word wire as a verb that has lost its

currency in the intervening years. To wire means to fasten securely in a very

strong sense. It is probably related to the phrase bard-wired, which means

"permanently attached in circuitry." Therefore, "wiring" memory into place

ensures that it doesn't move around.

3l8 -^S\ THE OLD NEW THING

What was the difference between
LocalAlloc and GlobalAlloc?

BACK IN THE days of 16-bit Windows, the difference was significant. In

16-bit Windows, memory was accessed through values called selectors, each of

which could address up to 64KB. There was a default selector called the data

selector; operations on so-called near pointers were performed relative to the

data selector. For example, if you had a near pointer p whose value was 0x12 34

and your data selector was 0x012F, when you wrote *p, you were accessing the

memory at 012F: 1234. (When you declared a pointer, it was near by default.

You had to say FAR explicitly if you wanted a far pointer.)

Important: Near pointers are always relative to a selector, usually the data

selector.

The GlobalAlloc function allocated a selector that could be used to

access the amount of memory you requested. (If you asked for more than

64KB, something exciting happened, which is not important here.) You

could access the memory in that selector with a far pointer. A far pointer is

a selector combined with a near pointer. (Remember that a near pointer is

relative to a selector; when you combine the near pointer with an appropri

ate selector, you get a far pointer.)

Every instance of a program and DLL got its own data selector, known as

the HINSTANCE, which we learned about earlier. The default data selector

for code in a program executable was the HINSTANCE of that instance of the

program; the default data selector for code in a DLL was the HINSTANCE of

that DLL. Therefore, if you had a near pointer p and accessed it via *p from

a program executable, it accessed memory relative to the program instance's

HINSTANCE. If you accessed it from a DLL, you got memory relative to your

DLL's HINSTANCE.

The memory referenced by a selector could be turned into a local heap by

calling the L o c a l I n i t function. Initializing the memory referenced by the

HINSTANCE selector as a local heap was typically one of the first things a

program or DLL did when it started up. (For DLLs, it was usually the only

CHAPTER FOURTEEN Etymology and History .ssSv 319

thing it did!) When you have a local heap, you can call LocalAlloc to allo

cate memory from it. The LocalAlloc function returned a near pointer rel

ative to the default selector, so if you called it from a program executable, it

allocated memory from the executable's HINSTANCE; if you called it from a

DLL, it allocated memory from the DLL's HINSTANCE.

If you were clever, you realized that you could use LocalAlloc to allocate

from memory other than HlNSTANCEs. All you had to do was change your

default selector to the selector for some memory you had allocated via

GlobalAlloc, call the LocalAlloc function, and then restore the default

selector. This gave you a near pointer relative to something other than the

default selector, which was a very scary thing to have; but if you were smart and

kept careful track, you could keep yourself out of trouble.

Observe, therefore, that in 16-bit Windows, the LocalAlloc and Global

Alloc functions were completely different! LocalAlloc returned a near point

er, whereas GlobalAlloc returned a selector.

Pointers that you intended to pass between modules had to be in the form

of far pointers because each module has a different default selector. If you

wanted to transfer ownership of memory to another module, you had to use

GlobalAlloc because that permitted the recipient to call GlobalFree to

free it. (The recipient can't use LocalFree because LocalFree operates on

the local heap, which would be the local heap of the recipient, not the same

as your local heap.)

This historical difference between local and global memory still has vestiges

in Win32. If you have a function that was inherited from 16-bit Windows and

it transfers ownership of memory, it will take the form of an HGLOBAL. The clip

board functions are a classic example of this. If you put a block of memory onto

the clipboard, it must have been allocated via HGLOBAL because you are trans

ferring the memory to the clipboard, and the clipboard will call GlobalFree

when it no longer needs the memory. Because OLE data objects are based on

the clipboard, the STGMEDIUM structure used to represent clipboard data also

uses an HGLOBAL to represent blocks of memory.

Even in Win32, you have to be careful not to confuse the local heap with

the global heap. Memory allocated from one cannot be freed on the other. The

320 dB*. THE OLD NEW THING

functional differences have largely disappeared; the semantics are pretty much

identical by this point. All the weirdness about near and far pointers disap

peared with the transition to Win32. But the local heap functions and the

global heap functions are nevertheless two distinct heap interfaces.

Because all the data-sharing functions use the global heap, the local heap

functions in Win32 can be fractionally faster than the corresponding global

heap functions. The global heap functions have to perform a small amount of

additional bookkeeping to make data sharing possible, bookkeeping which the

local heap functions (and the low-level heap functions like HeapAllocate) do

not need to do.

Although the historical background of the LocalAlloc and GlobalAlloc

functions is not essential information for writing programs in Win32, under

standing how the functions evolved to their current state may help you

understand why certain classes of functions prefer memory from one heap or

another, such as we saw with the clipboard functions.

What was the point
of the GMEM_SHARE flag?

T H E GLOBALALLOC FUNCTION has a GMEM_SHARE flag. What is it for?

In 16-bit Windows, the GMEM_SHARE flag controlled whether the memory

should outlive the process that allocated it. By default, all memory allocated

by a process was automatically freed when that process exited.

Passing the GMEM_SHARE flag suppresses this automatic cleanup. That's why

you have to use this flag when allocating memory to be placed on the clipboard

or when you transfer it via OLE to another process. Because the clipboard exists

after your program exits, any data you put on the clipboard needs to outlive the

program. If you neglect to set this flag, then when your program exits, the mem

ory that you put on the clipboard will be cleaned up, resulting in a crash the next

time someone tries to read that data from the clipboard. (The GMEM_SHARE flag

also controls whether the memory can be freed by a process other than the one

that allocated it. This makes sense given the preceding semantics.)

CHAPTER FOURTEEN Etymology and History £S\ 321

Note that the cleanup rule applies to global memory allocated by DLLs on

behalf of a process. Authors of DLLs had to be careful to keep track of

whether any particular memory allocation was specific to a process (and

should be freed when the process exited) or whether it was something the

DLL was planning on sharing across processes for its own internal bookkeeping

(in which case it shouldn't be freed). Failure to be mindful of this distinction

would lead to puzzling crashes.

Thank goodness this is all gone in Win32 .

Why do I sometimes see redundant casts
before casting to LPARAM?

IF YOU READ through old code, you will often find casts that seem redundant:

SendMessage(hwndListBox, LB__ADDSTRING, 0, (LPARAM)(LPSTR)"str");

W h y was " s t r " cast to LPSTR? It's already an LP STR!

These are leftovers from 16-bit Windows. Recall that in 16-bit Windows,

pointers were near by default. Consequently, " s t r " was a near pointer to a

string. If the code had been written as

SendMessage(hwndListBox, LB_ADDSTRING, 0, (LPARAM)"str");

it would have taken the near pointer and cast it to a long. Because a near

pointer is a 16-bit value, the pointer would have been zero-extended to the

32-bit size of a long.

However, all pointers in window messages must be far pointers because

the window procedure for the window might very well be implemented in a

different module from the sender. Recall that near pointers are interpreted

relative to the default selector, and the default selector for each module is dif

ferent. Sending a near pointer to another module will result in the pointer

being interpreted relative to the recipient's default selector, which is not the

same as the sender's default selector.

The intermediate cast to LPSTR converts the near pointer to a far pointer,

LP being the Hungarian prefix for far pointers (also known as long pointers).

3 2 2 T H E OLD NEW T H I N G

Casting a near pointer to a far pointer inserts the previously implied default

selector, so that the cast to LPARAM captures the full 16:16 far pointer.

Aren't you glad you don't have to worry about this any more?

Why do the names of
the registry functions randomly end in Ex?

SOME PEOPLE HAVE noticed that the names of the recommended registry

functions sometimes end in Ex and sometimes don't:

RegCreateKeyEx

RegEnumKeyEx

RegOpenKeyEx

RegQueryValueEx

RegSetValueEx

RegCloseKey

RegDeleteKey

RegDelete Value

RegEnum Value

RegQueryValue

RegSetValue

The reason, as you might suspect, is historical. For this to make sense, you

need to know about the original 16-bit registry.

A section of the 16-bit registry might look like this:

HKEY_CLASSES_ROOT
.txt = "txtfile"
txtfile = "Text Document"

Defaultlcon = "notepad.exe,1"

There are three keys in this registry (aside from HKEY_CLASSES_ROOT),

n a m e l y HKEY_CLASSES_ROOT\. tx t , HKEY_CLASSES_ROOT\ tx t f i l e , a n d

HKEY_CLASSES_ROOT\txtf i l e \ D e f a u l t l c o n . Those three keys have the

corresponding values t x t f i l e , Text Document, and notepad, exe, 1.

There are several things to notice about the 16-bit registry:

Each key had a value, which was always a string.

CHAPTER F O U R T E E N Etymology and History js©k 323

• There was nothing that corresponds to what the 32-bit registry calls

a named value. Each key contained only one piece of information,

namely that string value (what in the 32-bit registry goes by the

name default value).

The 16-bit registry had only seven functions:

• RegOpenKey opened an existing key given a name.

• RegCreateKey opened an existing key given a name or created it if

it did not already exist.

• RegCloseKey closed the key handle returned by RegOpenKey or

RegCreateKey.

• RegDeleteKey deleted a key by name.

• RegEnumKey enumerated the subkeys of a given key.

• RegQueryValue and RegSetValue read and wrote the string data

associated with a registry key.

This is why the RegQueryValue and RegSetValue functions operate only

on strings rather than accepting a registry data type: T h e original 16-bit reg

istry supported only strings to begin with.

The people responsible for porting the registry to 32-bit Windows added secu

rity, which necessitated the Ex functions RegOpenKeyEx and RegCreateKeyEx,

which accept a security access mask. Additional metadata such as the last-write

time were exposed via the new Ex function RegEnumKeyEx.

They also added the concept of named values, name-associated data of

arbitrary type that can be stored underneath a key. I think the choice of the

word value to represent this concept was a poor one, because the word value

was already being used for something else. Overloading the term jus t creates

confusion. I would have used a word such as item.

At any rate, what's done is done, and functions needed to be created to

access these "new values." Because they chose the same word value to represent

these new objects, the functions that access them need to be named Ex to

324 ^Bv THE OLD NEW THING

distinguish them from the old 16-bit versions (hence, RegQueryValueEx and

RegSetValueEx) .

Brand new functions for manipulating these new values didn't need the

Ex because there was no old function to conflict with. Hence we have the

non-Ex functions RegDeleteValue and RegEnumValue that operate on

new values.

With the introduction of 64-bit Windows, a new RegDeleteKeyEx func

tion was added that permits you to specify which registry (the 32-bit or 64-bit

registry) you want to delete your key from. In Windows Vista, even more reg

istry helper functions have been introduced, such as RegCopyTree: These do

not have an Ex because there was no old function by the same name that it

would have conflicted with.

In summary, then, the rule for whether a function is Ex or non-Ex is sim

ple: If there is already a function by the same name, the new function must be

called Ex. The historical background is knowing which functions existed at

the point a new function was introduced.

What's the difference between
SHGetMalloc, SHAlloc, CoGetMalloc,

and CoTaskMemAlloc?

IF YOU'VE DONE programming with the Windows shell, you've no doubt seen

(and possibly even used) the SHGetMalloc function, which returns a pointer to

the shell task allocator, the memory allocator that is used by shell interfaces to

allocate and free memory. On the other hand, there is also the CoGetMalloc

function, which returns a pointer to the COM task allocator, which is the mem

ory allocator used by COM interfaces to allocate and free memory. To confuse

matters even more, there are the functions SHAlloc and CoTaskMemAlloc,

which also allocate memory. Why are there so many functions that seem to do

the same thing? How are they related?

C H A P T E R FOURTEEN Etymology and History 325

Let's get the easy ones out of the way. First, CoTaskMemAlloc is exactly the

same as allocating memory with the C O M task allocator, and CoTaskMemFree

is the same as freeing memory with the C O M task allocator. In other words, call

ing CoTaskMemAlloc is the same as calling CoGetMalloc to obtain the C O M

task allocator, and then allocating memory from it. The CoTaskMemAlloc and

CoTaskMemFree functions (and the less-used CoTaskMemRealloc) are just con

venience functions that save you the trouble of having to mess with

CoGetMalloc yourself. Consequently, you can safely allocate memory by using

CoGetMalloc () , and then free it with CoTaskMemFree, and vice versa. It's all the

same allocator.

Similarly, SHAlloc and SHFree are just wrappers around SHGetMalloc,

which allocate/free the memory via the shell task allocator. Memory you

allocated via SHGetMalloc can be freed with SHFree and vice versa.

So far, we have this diagram:

Shell task allocator OLE task allocator

SHAlloc/
SHFree

SHGetMalloc ?? CoGetMalloc CoTaskMemAlloc/
CoTaskMemFree

Now what about those question marks? If you read the comments in

shlobj.h, you may get a bit of a hint:

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Task allocator API

All the shell extensions MUST use the task allocator (see OLE 2.0
programming guild for its definition) when they allocate or free
memory objects (mostly ITEMIDLIST) that are returned across any
shell interfaces. There are two ways to access the task allocator
from a shell extension depending on whether or not it is linked with
OLE32.DLL or not (purely for efficiency).

(1) A shell extension which calls any OLE API (i.e., linked with
OLE32.DLL) should call OLE's task allocator (by retrieving
the task allocator by calling CoGetMalloc API) .

326 ^S=N THE OLD NEW THING

// (2) A shell extension which does not call any OLE API (i.e., not
// linked with OLE32.DLL) should call the shell task allocator API
// (defined below), so that the shell can quickly loads it when
// OLE32.DLL is not loaded by any application at that point.
//
// Notes:
// In next version of Windowso release, SHGetMalloc will be replaced
// by the following macro.

// ttdefine SHGetMalloc(ppmem) CoGetMalloc(MEMCTX_TASK, ppmem)
II

(Yes, those typos like "guild" and "Windowso" have been there since 1995.)

This discussion strongly hints at what's going on.

When Windows 95 was being developed, computers typically had just 4MB

of memory. (The cool people got 8MB.) But Explorer was also heavily reliant

upon COM for its shell extension architecture, and loading OLE32.DLL into

memory was a significant kick in the teeth. Under such tight memory conditions,

even the loss of 4KB of memory was noticeable.

The solution: Play "OLE Chicken."

The shell, it turns out, used only a very limited subset of COM. As a

result, the shell team wrote a"mini-COM" that supported only those oper

ations and used it rather than the real thing. (It helped that one of the

high-ranking members of the shell team was a COM super-expert.) The

shell had its own miniature task allocator (SHGetMalloc), its own minia

ture binder (SHCoCreatelnstance), its own miniature drag-drop loop

(sHDoDragDrop), everything it needed provided you didn't run any other

programs that used OLE32.

Once some other program that used OLE32 started running, you had a prob

lem: There were now two separate versions of OLE in the system: the real thing

and the fake version inside the shell. Unless something was done, you wouldn't

be able to interoperate between real-COM and fake-shell COM. For example,

you wouldn't be able to drag/drop data between Explorer (using fake-shell

COM) and a window that was using real COM.

The solution: With the help of other parts of the system, the shell detected

that "COM is now in the building" when anybody loaded OLE32.DLL, and

CHAPTER FOURTEEN Etymology and History <®N 327

it transferred all the information it had been managing on its own into the

world of real COM. When it did this, all the shell pseudo-COM functions

switched to real COM, too. For example, after OLE32.DLL got loaded, calls

to the shell's fake task allocator just went to the real task allocator.

But what is OLE Chicken? This is another variation of the various "chicken"-

type games, perhaps the most famous of which is Schedule Chicken. Schedule

Chicken is a game of nerves played by groups in a dysfunctional project. Each

group promises an unreasonably optimistic schedule, knowing full well that

they cannot make it, but betting that some other group is lying about their

schedule even more. The game is "won" when that other group becomes the one

to miss a target date and force the schedule to slip, thereby buying your group

more time. In extreme cases, the game can play out multiple times within a

single release cycle. The name comes from a deadly test of nerves in the movie

Rebel Without a Cause wherein two cars race toward a cliff, and the first driver to

leap out of his car is declared the "chicken."

In OLE Chicken, each program would avoid loading OLE32.DLL as long

as possible, so that it wouldn't be the one blamed for the long pause as

OLE32.DLL got itself off the ground and ready for action. (Remember, we're

talking 1995-era machines where allocating 32KB of memory would bring

the wrath of the performance team down upon your head.)

Okay, so let's look at that comment block again.

The opening paragraph mentions the possibility that a shell extension does

not itself link with OLE32.DLL. Option (1) discusses a shell extension that

does use OLE32, in which case it should use the official OLE functions such

as CoGetMalloc. But Option (2) discusses a shell extension that does not use

OLE32. Those shell extensions are directed to use the shell's fake-COM

functions such as SHGetMalloc, rather than the real-COM functions, so that

no new dependency on OLE32 is created. Therefore, if OLE32 is not yet

loaded, loading these shell extensions will also not cause OLE32 to be loaded,

thereby saving the cost of loading and initializing OLE32.DLL.

328 •SSK T H E OLD NEW T H I N G

The completion of our diagram for 1995-era programs would therefore be

something like this:

Before OLE32.DLL is loaded:

Shell task allocator OLE task allocator

SHAlloc/
SHFree

SHGetMalloc £ CoGetMalloc
CoTaskMemAlloc/
CoTaskMemFree

And after OLE32.DLL is loaded:

Shell task allocator OLE task allocator

SHAlloc/
SHFree

SHGetMalloc CoGetMalloc
CoTaskMemAlloc/
CoTaskMemFree

The final "Note" hints at the direction the shell intended to go. Eventually,

loading OLE32.DLL would not be as painful as it was in Windows 95, and

the shell can abandon its fake C O M and just use the real thing. At this point,

asking for the shell task allocator would become the same as asking for the

C O M task allocator.

That time actually arrived a long time ago. The days of 4MB machines are

now the stuff of legend. The shell has ditched its fake COM and now just

uses real COM everywhere.

Therefore, the diagram today is the one with the equals sign. All four functions

are interchangeable in Windows XP and beyond.

What if you want to run on older systems? Well, it is always acceptable to

use CoTaskMemAlloc/coTaskMemFree. Why? You can puzzle this out logi

cally. Because those functions are exported from OLE32.DLL, the fact that

you are using them means that OLE32.DLL is loaded—you loaded it! At this

point the "After" diagram above with the equals sign kicks in, and everything

is all one big happy family.

The case where you need to be careful is if your DLL does not link to

OLE32.DLL. In that case, you don't know whether you are in the "Before" or

CHAPTER FOURTEEN Etymology and History j©k 329

"After" case, and you have to play it safe and use the shell task allocator for the

things that are documented as using the shell task allocator.

I hope this discussion also provides the historical background of the function

SHLoadOLE, which today doesn't do anything because OLE is already always

loaded. But in the old days, this signaled to the shell, "Okay, now is the time

to transfer all the information being maintained by your fake COM into the

real COM." But because the shell no longer uses fake COM, there is no longer

any information to transfer.

Why is Windows Error Reporting
nicknamed Dr* Watson?

THE NICKNAME FOR the feature known as Windows Error Reporting is Dr.

Watson. Where did that name come from?

As you have probably guessed, the name Dr. Watson was inspired by the

character of Dr. Watson, the assistant to Sherlock Holmes in the stories by

Arthur Conan Doyle.

It is my understanding that the doctor was originally developed as part of

Windows 3.0 beta testing. His job was to record data about application

crashes to a file so that the file could be uploaded and included with bug

reports. The icon was (and continues to be) a friendly doctor using his

stethoscope to investigate a problem.

The doctor has remained true to the "capture information about an error"

aspect of his job. In the meantime, the word Watson has expanded its mean

ing to encompass anonymous end-user feedback mechanisms in general, such

as Content Watson, which is a feedback tool the Office division uses to

improve their documentation.

But if you hear "Watson" by itself, the speaker is almost certainly talking

about error reporting.

What most people probably don't know is that Dr. Watson's name wasn't

originally Dr. Watson. The original name of the diagnostic tool was Sherlock,

whose icon was a lit drop-stem pipe. I remember chatting about the doctor

330 4Ck THE OLD NEW THING

with its original author, whose office was just a few doors down from mine. In

1991, he had to change the name from Sherlock to Dr. Watson because there

was already a debugging tool called Sherlock that had come out a few years

previously. The name had to change, and the doctor stepped in to fill

Sherlock's shoes. The icon was originally a doctors bag, but it changed to the

stethoscope-wielding general practitioner a few months later. (I'm told that

the Windows N T team was slow to learn of the doctor's new icon, and they

used a medical bag, only to have to change the icon at the last minute because

the red cross on the bag incorrectly suggested an affiliation with the interna

tional relief organization.)

What happened to DirectX 4?

IF YOU GO through the history of DirectX, you'll see that there is no DirectX 4.

It went from DirectX 3 straight to DirectX 5. What's up with that?

After DirectX 3 was released, development on two successor products took

place simultaneously: a shorter-term release called DirectX 4 and a more sub

stantial longer-term release called DirectX 5.

But the feedback from the game development community said that they

didn't really care about the small features in DirectX 4; what they were much

more interested in were the features of DirectX 5. So it was decided to cancel

DirectX 4 and roll all of its features into DirectX 5.

So why wasn't DirectX 5 renamed to DirectX 4?

Because there were already hundreds upon hundreds of documents that

referred to the two projects as DirectX 4 and DirectX 5. Documents that said

things such as "Feature XYZ will not appear until DirectX 5." Changing the

name of the projects mid-cycle was going to create even more confusion. You

would end up with headlines like "Microsoft removes DirectX 5 from the

table; kiss good-bye to feature XYZ" and conversations reminiscent of the

Abbott and Costello routine "Who's on First?"

"I have some email from you saying that feature ABC won't be ready until

DirectX 5. When do you plan on releasing DirectX 5?"

CHAPTER FOURTEEN Etymology and History *s=̂ 331

"We haven't even started planning DirectX 5; we're completely focused on

DirectX 4, which we hope to have ready by late spring."

"But I need feature XYZ and you said that won't be ready until DirectX 5."

"Oh, that email was written two weeks ago. Since then, DirectX 5 got

renamed to DirectX 4, and DirectX 4 was cancelled."

"So when I have a letter from you talking about DirectX 5, I should pre

tend it says DirectX 4, and when it says DirectX 4,1 should pretend it says a

project that has since been cancelled'?"

"Right, but check the date at the top of the letter, because if it's newer than

last week, then when it says DirectX 4, it really means the new DirectX 4."

"And what if it says DirectX 5?"

"Then somebody screwed up and didn't get the memo."

"Okay, thanks. Clear as mud."

Why are HANDLE return values
so inconsistent?

IF YOU LOOK at the various functions that return HANDLES, you'll see that

some of them return NULL (like CreateThread) and some of them

return INVALID_HANDLE_VALUE (like Crea teFi le) . You have to check the

documentation to see what each particular function returns on failure.

Why are the return values so inconsistent?

The reasons, as you may suspect, are historical.

The values were chosen to be compatible with 16-bit Windows. The 16-bit

functions OpenFile, _lopen and _ l c r e a t return - l on failure, so the 32-bit

Crea teF i le function returns INVALID_HANDLE_VALUE to facilitate porting

code from Winl6.

(Armed with this, you can now answer the following trivia question: Why

do I call Crea teF i l e when I'm not actually creating a file? Shouldn't it be

called OpenFile? Answer: Yes, OpenFile would have been a better name, but

that name was already taken.)

332 JRk THE OLD NEW THING

On the other hand, there are no Winl6 equivalents for CreateThread or

CreateMutex, so they return NULL.

Because the precedent had now been set for inconsistent return values,

whenever a new function got added, it was a bit of a toss-up whether the new

function returned NULL or INVALID_HANDLE_VALUE.

This inconsistency has multiple consequences.

First, of course, you have to be careful to check the return values properly.

Second, it means that if you write a generic handle-wrapping class, you

have to be mindful of two possible "not a handle" values.

Third, if you want to pre-initialize a HANDLE variable, you have to initialize

it in a manner compatible with the function you intend to use. For example,

the following code is wrong:

HANDLE h = NULL;
if (UseLogFileO) {

h = CreateFile(...);

DoOtherStuff();
if (h) {

Log(h);

}
DoOtherStuff();
if (h) {

CloseHandle(h);

This code has two bugs. First, the return value from Crea teF i l e is

checked incorrectly. The code above checks for NULL rather than

INVALID_HANDLE_VALUE. Second, the code initializes the h variable incor

rectly. Here's the corrected version:

HANDLE h = INVALID_HANDLE_VALUE;
if (UseLogFileO) {

h = CreateFile(...);

DoOtherStuff();
if (h != INVALID HANDLE VALUE) {

— — L

Log(h);
}
DoOtherStuff() ;

CHAPTER FOURTEEN Etymology and History *s=̂ . 333

if (h != INVALID_HANDLE_VALUE) {

CloseHandle(h);

]
Fourth, you have to be particularly careful with the INVALID_HANDLE_VALUE

value: By coincidence, the value INVALID_HANDLE_VALUE happens to be

numerically equal to the pseudo-handle returned by GetCurrentProcess ().

Many kernel functions accept pseudo-handles; so if you mess up and acciden

tally call, say, WaitForSingleObject on a failed INVALID_HANDLE_VALUE

handle, you will actually end up waiting on your own process. This wait will, of

course, never complete, because a process is signaled when it exits, so you ended

up waiting for yourself.

Why do text files end in Ctrl+Z?

ACTUALLY, TEXT FILES don't need to end in Ctrl+Z, but the convention per

sists in certain circles. (Though, fortunately, those circles are awfully small

nowadays.)

This story requires us to go back to CP/M, the operating system that MS-

DOS envisioned itself as a successor to. (Because the 8086 envisioned itself

as the successor to the 8080, it was natural that the operating system for the

8086 would view itself as the successor to the primary operating system on

the 8O0O.J

In CP/M, files were stored in sectors of 128 bytes each. If your file was 64

bytes long, it was stored in a full sector. The kicker was that the operating sys

tem tracked the size of the file as the number of sectors. If your file was not

an exact multiple of 128 bytes in size, you needed some way to specify where

the "real" end of file was.

That's where Ctrl+Z came in.

By convention, the unused bytes at the end of the last sector were padded

with Ctrl+Z characters. According to this convention, if you had a program

that read from a file, it should stop when it reads a Ctrl+Z, because that

meant that it was now reading the padding.

334 *&\ THE OLD NEW THING

To retain compatibility with CP/M, MS-DOS carried forward the

Ctrl+Z convention. That way, when you transferred your files from your old

C P / M machine to your new PC, they wouldn't have garbage at the end.

Ctr l+Z hasn't been needed for years; MS-DOS records file sizes in bytes

rather than sectors. But the convention lingers in the COPY command, for

example.

X T 71 .1 ! • Why is the line terminator
CR+LR

T H I S PROTOCOL DATES back to the days of teletypewriters. CR stands for

"carriage return"; the CR control character returned the print head (carriage)

to column 0 without advancing the paper. LF stands for "linefeed"; the LF

control character advanced the paper one line without moving the print head.

So if you wanted to return the print head to column zero (ready to print the

next line) and advance the paper (so it prints on fresh paper), you needed both

CR and LF.

If you go to the various Internet protocol documents, such as RFC 0821

(SMTP), RFC 1939 (POP), RFC 2060 (IMAP), or RFC 2616 (HTTP) ,

you'll see that they all specify CR+LF as the line termination sequence. So

the real question is not "Why do CP/M, MS-DOS, and Win32 use CR+LF

as the line terminator?" but rather "Why did other people choose to differ

from these standards documents and use some other line terminator?"

UNIX adopted plain LF as the line termination sequence. If you look at

the s t t y options, you'll see that the on lc r option specifies whether a LF

should be changed into CR+LF. If you get this setting wrong, you get stair-step

text, where each

line

begins where the previous line left off. So even UNIX,

when left in raw mode, requires CR+LF to terminate lines. The implicit CR

before LF is a UNIX invention, probably as an economy, because it saves one

byte per line.

CHAPTER FOURTEEN Etymology and History *©v 335

The UNIX ancestry of the C language carried this convention into the

C language standard, which requires only \n (which encodes LF) to terminate

lines, putting the burden on the runtime libraries to convert raw file data

into logical lines.

The C language also introduced the term newline to express the concept of

"generic line terminator." I'm told that the ASCII committee changed the

name of character OxOA to newline around 1996, so the confusion level has

been raised even higher.

TEXT vs. _TEXT vs. T,
and UNICODE vs. .UNICODE

So WHAT'S WITH all these different ways of saying the same thing?

There's actually a method behind the madness.

The plain versions without the underscore affect the character set the

Windows header files treat as default. So if you define UNICODE, GetWindowText

will map to GetwindowTextw rather than GetwindowTextA, for example.

Similarly, the TEXT macro will map to L " . . . " rather than " . . . " .

The versions with the underscore affect the character set the C runtime

header files treat as default. So if you define _UNICODE, _ t c s l e n will map to

wcslen rather than s t r l e n , for example. Similarly, the _TEXT macro will map

to L". . ." rather than " . . . " .

What about _T? Okay, I don't know about that one. Probably it was just to

save somebody some typing.

Why are dialog boxes initially
created hidden?

You MIGHT NOT have noticed it until you looked closely, but dialog boxes are

actually created hidden initially, even if you specify WSJVTSIBLE in the template.

The reason for this is historical.

336 dB*i T H E OLD NEW T H I N G

Rewind back to the old days (we're talking Windows 1.0): Graphics cards

are slow, and CPUs are slow and memory is slow. You can pick a menu option

that displays a dialog and wait a second or two for the dialog to get loaded off

the floppy disk. (Hard drives are for the rich kids.) And then you have to wait

for the dialog box to paint.

To save valuable seconds, dialog boxes are created initially hidden and all

typeahead is processed while the dialog stays hidden. Only after the type

ahead is finished is the dialog box finally shown. And if you typed far ahead

enough and press Enter, you might even have been able to finish the entire

dialog box without it ever being shown! Now that's efficiency.

Of course, nowadays, programs are stored on hard drives and you can't

(normally) out-type a hard drive, so this optimization is largely wasted, but

the behavior remains for compatibility reasons.

Actually this behavior still serves a useful purpose: If the dialog were initially

created visible, the user would be able to see all the controls being created into

it, and watch as WM_INITDIALOG ran (changing default values, hiding and

showing controls, moving controls around ...) This is both ugly and distracting.

("How come the box comes up checked, then suddenly unchecks itself before

I can click on it?")

|^

-<

When you change the insides,
nobody notices

I FIND IT puzzling when people complain that Calc and Notepad haven't changed.

In fact, both programs have undergone changes over the years. (Notepad gained

some additional menu and status bar options. Calc got a severe workover.)

I wouldn't be surprised if these are the same people who complain, "Why

does Microsoft spend all its effort on making Windows look cool? They

should spend all their efforts on making technical improvements and just stop

making visual improvements."

And with Calc, that's exactly what happened: massive technical improve

ments. No visual improvement. And nobody noticed. In fact, the complaints

just keep coming. "Look at Calc, same as it always was."

C H A P T E R F O U R T E E N Etymology and History *©k 337

The innards of Calc—the arithmetic engine—were completely thrown

away and rewritten from scratch. The standard IEEE floating-point library

was replaced with an arbitrary-precision arithmetic library. This was done

after people kept writing ha-ha articles about how Calc couldn't do decimal

arithmetic correctly (that, for example, computing 10.21 - 10.2 resulted in

0.0100000000000016). These all came from people who didn't understand

how computers handle floating point. Everybody should read the essay

"What every computer scientist should know about floating point." Use your

favorite search engine to find a copy.

Today, Calc's internal computations are done with infinite precision for

basic operations (addition, subtraction, multiplication, division) and 32 digits

of precision for advanced operations (square root, transcendental operators).

Try it: 1 / 3 * 10000000000 - 3333333333 =. The result is one-third exactly.

Type 1/x - 3 = and you get zero back. (Of course, if you don't believe that, repeat

the sequence * 10000000000 - 3333333333 = until you're bored and notice that

the answer always comes back as 0.33333333333333333333333333333333. If it

were fixed precision, the 3s would eventually stop coming.)

Thirty-two positions of precision for inexact results not good enough? The

Power Calculator PowerToy uses the same arithmetic engine as Calc and lets

you crank the precision to an unimaginable 512 digits.

Anyway, my point is that—whether you like it or not—if you don't change

the UI, nobody notices. That's why so much effort is spent on new UI.

If FlushlnstructionCache doesn't
do anything, why do you have to call it?

IF YOU LOOK at the implementation of F lushlns t ruc t ionCache on Windows

95, you'll see that it's just a return instruction. It doesn't actually do anything.

So why do you have to call it?

Because the act of calling it is the whole point. The control transfers implicit

in calling a function suffice to flush the instruction cache on a Pentium. The

function doesn't have to do anything else; it is the fact that you called a function

that is important.

338 ^S=N T H E OLD NEW T H I N G

If InitCommonControls doesn't do
anything, why do you have to call it?

ONE OF THE problems beginners run into when they start using shell common

controls is that they forget to call the InitCommonControls function. But if you

were to disassemble the InitCommonControls function itself, you'll see that it,

like the Flushlnstruct ionCache function, doesn't actually do anything.

Then why do you need to call it?

As with Flushlnstruct ionCache, what's important is not what it performs,

but just the fact that you called it.

Recall that merely listing an import library in your dependencies doesn't

actually cause your program to be bound to the corresponding dynamic link

library (DLL). You have to call a function in that DLL in order for there to be

an import entry for that DLL. And InitCommonControls is that function.

Without the InitCommonControls function, a program that wants to use

the shell common controls library would otherwise have no reference to

COMCTL32.DLL in its import table. This means that when the program

loads, COMCTL32.DLL is not loaded and therefore is not initialized.

Which means that it doesn't register its window classes. Which means that

your call to the CreateWindow function fails because the window class has

not been registered.

That's why you have to call a function that does nothing. It's for your own

good.

The documentation for the InitCommonControls function recommends

that you call the initCommonControlsEx function instead. The reason is that

the InitCommonControlsEx function lets you specify which controls you

wish to initialize.The older InitCommonControls function remains for com

patibility with Windows 95; if you call it, you initialize the controls that were

available in the Windows 95 version of the common controls library (see the

documentation of the ICC_WIN95_CLASSES flag for details). If you want

access to any of the newer controls (such as the date and time picker), you need

to use the InitCommonControlsEx function.

C H A P T E R FOURTEEN Etymology and History *&-. 339

Why did Interlockedlncrement/
Decrement only return the sign

of the result?

IF YOU READ the fine print of the I n t e r l o c k e d l n c r e m e n t and I n t e r l o c k e d -

Decrement functions, you'll see that on Windows N T 3.51 and earlier and

on Windows 95, the return value only matches the sign of the result of the

increment or decrement. W h y is that?

The 80386 instruction set supports interlocked increment and decrement,

but the result of the increment/decrement operation is not returned. Only

the flags are updated by the operation. As a result, the only information you

get back from the C P U about the result of the operation is whether it was

zero, positive, or negative. (Okay you also get some obscure information such

as whether there were an even or odd number of 1 bits in the result, but that's

hardly useful nowadays.)

Because those operating systems supported the 80386 processor, their imple

mentations of the I n t e r l o c k e d l n c r e m e n t and I n t e r l o c k e d D e c r e m e n t

functions were limited by the capabilities of the processor.

The 80486 introduced the X A D D instruction, which returns the original

value of the operand. Wi th this additional information, it now becomes pos

sible to return the result of the operation exactly.

Windows N T 4 dropped support for the 80386 processor, requiring a min

imum of an 80486, so it could take advantage of this instruction. Windows 98

still had to support the 80386, so it couldn't.

So how did Windows 98 manage to implement an operation that was not

supported by the CPU?

Windows 98 detected whether you had a C P U that supported the new

X A D D instruction. If not, it used an alternate mechanism that was mind-

bogglingly slow: It called a driver whenever you wanted to increment or

decrement a variable. T h e driver would then emulate the X A D D instruction

by disabling interrupts and performing the operation in locked memory.

Because Windows 98 was a uniprocessor operating system, it didn't have to

3 4 0 dSfc, THE OLD NEW THING

worry about a second processor changing the memory at the same time; all it

needed to ensure was that the single processor didn't get interrupted while it

was performing the "atomic" operation.

Why does the function
WSASetLastError exist?

W H Y DOES THE function WSASetLastError exist when there is already the

perfectly good function SetLastError?

Actually, you know the answer, too, if you sit down and think about it.

Winsock was originally developed to run on both 16-bit Windows and

32-bit Windows. Notice how the classic Winsock functions are based on

window messages for asynchronous notifications. In the 16-bit world, there

was no Se tLas tEr ro r function. Therefore, Winsock had to provide its own

version for the 16-bit implementation. And because source code compatibil

ity is important, there was a 32-bit version, too. Of course, the 32-bit version

looks kind of stupid in retrospect if you aren't aware of the 16-bit version.

Why are there broadcast-based
mechanisms in Windows?

MANY WINDOWS INFORMATION mechanisms are based on message broad

casts, among them DDE, WM_FONTCHANGE, and changes in system settings.

Why do these mechanisms use broadcasts, when we know that broadcasts

can result in the system grinding to a halt because of windows that have

stopped processing messages?

Because in 16-bit Windows, you didn't have this problem.

Recall that 16-bit Windows was cooperatively multitasking. When a pro

gram received control of the CPU, it could do anything it wanted, knowing

that no other programs could run until it explicitly yielded control by calling

a function such as GetMessage or PeekMessage. The downside of this, of

CHAPTER FOURTEEN Etymology and History ^~\ 341

course, was that a single hung program caused the entire system to hang,

because it wasn't releasing the CPU.

The upside, however, was that if your program was running, you knew, a

priori, that there were no hung programs in the system. How do you know

that? Because if there were a hung program, it would he running and not you.

If there's only one thing, and you have it, you know that nobody else is

hogging it.

Therefore, broadcasting messages was completely safe in 16-bit Windows.

You didn't have to worry about nonresponsive programs because you had

proof that there weren't any.

Of course, when the switch to preemptive multitasking occurred, this assump

tion no longer applied, but by then it was too late. The broadcast-based model

was already in use, and consequently had to be preserved for compatibility rea

sons. (It would be bad if, for example, Lotus 1-2-3 stopped working on Windows

N T because DDE broadcasts were no longer supported. If the Windows N T

team had tried that gambit, nobody would have upgraded and Windows N T

wouldn't have survived to make a second version.)

On the other hand, given the risks involved in DDE broadcasts, you prob

ably would be better off designing your program to not use dynamic data

exchange as a data communication mechanism, thereby avoiding the pitfall of

message broadcasts. No point contributing to the problem.

Where did windows minimize to before
the taskbar was invented?

BEFORE EXPLORER WAS introduced in Windows 95, the Windows desktop

was a very different place.

The icons on your desktop did not represent files; rather, when you mini

mized a program, it turned into an icon on the desktop. To open a minimized

program, you had to hunt for its icon, possibly minimizing other programs to

get them out of the way, and then double-click it. (You could also Alt+Tab to

the program.)

3 4 ^ ^--^ THE OLD NEW THING

Explorer changed the desktop model so that icons on your desktop

represent objects (files, folders) rather than programs. The job of managing

programs fell to the new taskbar.

But where did the windows go when you minimized them?

Under the old model, when a window was minimized, it displayed as an

icon, the icon had a particular position on the screen, and the program drew

the icon in response to paint messages. (Of course, most programs deferred to

DefwindowProc, which just drew the icon.) In other words, the window

never went away; it just changed its appearance.

But with the taskbar, the window really does go away when you minimize

it. Its only presence is in the taskbar. The subject of how to handle windows

when they were minimized went through several iterations, because it seemed

that no matter what we did, some program somewhere didn't like it.

The first try was very simple: When a window was minimized, the

Windows 95 window manager set it to hidden. That didn't play well with

many applications, which cared about the distinction between minimized

(and visible) and hidden (and not visible).

Next, the Windows 95 window manager minimized the window just like the

old days, but put the minimized window at coordinates (-32000, -32000). This

didn't work because some programs freaked out if they found their coordinates

were negative.

So the Windows 95 window manager tried putting minimized windows at

coordinates (32000, 32000). This still didn't work because some programs

freaked out if they found their coordinates were positive and too large!

Finally, the Windows 95 window manager tried coordinates (3000, 3000).

This seemed to keep everybody happy. Not negative, not too large, but large

enough that it wouldn't show up on the screen (at least not at screen resolu

tions that were readily available in 1995).

If you have a triple-monitor Windows 98 machine lying around, you can

try this: Set the resolution of each monitor to 1200x1024 and place them corner

to corner. At the lower-right corner of the third monitor, you will see all your

minimized windows parked out in the boonies.

(Windows N T stuck with the -32000 coordinates and didn't pick up the

compatibility fixes for some reason. I guess they figured that by the time

CHAPTER FOURTEEN Etymology and History ^S\ 343

Windows N T became popular, all those broken programs would have been

fixed. In other words: Let Windows 95 do your dirty work!)

Why didn't the desktop window shrink
to exclude the taskbar?

T H E TASKBAR CREATED all sorts of interesting problems because the work

area was not equal to the entire screen dimensions. (Multiple monitors

created similar problems.) "Why didn't the functions that that returned

the screen dimensions return the usable workspace instead?"

That would have made things even worse.

Lots of programs want to cover the entire screen. Games, for example, are

very keen on covering the entire screen. Slideshow programs also want to cover

the entire screen. (This includes both slideshows for digital pictures as well as

business presentations.) Screen savers of course must cover the entire screen.

If the desktop window didn't include the taskbar, those programs would

leave a taskbar visible while they did their thing. This is particularly danger

ous for screen savers because a user could just click on the taskbar to switch

to another program without going through the screen saver's password lock!

And if the taskbar were docked at the top or left edge of the screen, this

would have resulted in the desktop window not beginning at coordinates

(0, 0), which would no doubt have caused widespread havoc. (Alternatively,

one could have changed the coordinate system so that (0, 0) was no longer the

upper-left corner of the screen, but that would have broken so many programs

it wouldn't have been funny.)

^ = \

Why does the caret stop blinking
when I tap the Alt key?

HERE'S A LITTLE quiz. Open the Run dialog. Observe the happily blinking

caret in the edit control. Now tap the Alt key. The caret stops blinking. What

happened?

3 4 4 <•*) THE OLD NEW THING

Here are some clues:

• After tapping the Alt key, pressing any other key results in a beep.

With two exceptions. Find those two exceptions and see if the result

sheds any light.

• Perform this same exercise, but with Notepad rather than the Run

dialog. Pay close attention to what changes on the screen. Press the

right arrow key a few times. But observe what happens when you

press the right arrow key when the highlight is on the Help menu.

• (Somewhat unfair.) If you have access to a computer running

Windows 3.1, repeat the experiment there.

W h a t happened is that tapping the Alt key once highlights the System

menu button. T h e System menu is the menu you get when you click on the

mini-icon in the upper-left corner of a window or right-click on the caption

bar. Back in Windows 3.1, the System menu got its own button that looked

like a horizontal bar. (I'm sure part of this was to provide a mnemonic for the

keyboard accelerator that opens the System menu: Alt+Space.) If you tapped

the Alt key, you put the window into "menu browsing mode." That's why you

see the Notepad menu highlight after you tap the Alt key once, and why the

arrow keys let you browse around the Notepad menu.

The System menu participates in menu browsing mode; indeed, if the win

dow doesn't have a menu, then the System menu is the only menu available to

be browsed! In Windows 3.1, when the System menu button was selected, it

turned gray. But starting in Windows 95, there is no System menu button any

more. You just have to use your imagination and pretend you see a highlighted

System menu button.

W h y does this oddity persist? For keyboard backward compatibility. Tapping

the Alt key to enter menu browsing mode was a common scenario, and preserving

it avoided having to retrain peoples "muscle memory."

CHAPTER FOURTEEN Etymology and History J&< 345

What is the deal with
the ES_OEMCONVERT flag?

THE ES_OEMCONVERT EDIT control style is a holdover from 16-bit Windows.

An ancient MSDN article from the Windows 3.1 SDK describes the flag thus:

ES_OEMCONVERT causes text entered into the edit control to be converted from ANSI to

OEM and then back to ANSI. This ensures proper character conversion when the applica

tion calls the AnsiToOem function to convert a Windows string in the edit control to OEM
characters. ES_OEMCONVERT is most useful for edit controls that contain filenames.

Set the wayback machine to, well, January 31,1992, the date of that article.

At this time, the predominant Windows platform was Windows 3.0.

Windows 3.1 was still a few months away from release, and Windows N T 3.1

was over a year away. The predominant file system was 16-bit FAT, and the rele

vant feature of FAT of this era for the purpose of this discussion is that filenames

were stored on disk in the OEM character set. (We'll see more of the history

behind the schism between the OEM and ANSI code pages in Chapter 16.)

Because GUI programs used the ANSI character set, but filenames were

stored in the OEM character set, the only characters that could be used in

filenames from GUI programs were those that exist in both character sets. If

a character existed in the ANSI character set but not the OEM character set,

there would be no way of using it as a filename; and if a character existed in

the OEM character set but not the ANSI character set, the GUI program

couldn't manipulate it.

The ES_OEMCONVERT flag on an edit control ensures that only characters that

exist in both the ANSI and OEM character sets are used, hence the remark

"ES_OEMCONVERT is most useful for edit controls that contain filenames."

Fast-forward to today.

All the popular Windows file systems support Unicode filenames and have

for ten years. There is no longer a data loss converting from the ANSI charac

ter set to the character set used by the file system. Therefore, there is no need to

filter out any characters to prevent the user typing a character that will be lost

346 SS\ THE OLD NEW THING

during the conversion to a filename. In other words, the ES_OEMCONVERT flag is

pointless today. It's a leftover from the days before Unicode.

Indeed, if you use this flag, you make your program worse, not better, because

it unnecessarily restricts the set of characters that the user will be allowed to use

in filenames. A user running the U.S.-English version of Windows would not

be allowed to enter Chinese characters as a filename, for example, even though

the file system is perfectly capable of creating files whose names contain those

characters.

The story behind file system tunneling

O N E OF T H E file system features you may find yourself surprised by is tun

neling, wherein the creation timestamp and short/long names of a file are

taken from a file that existed in the directory previously. In other words, if you

delete some file "File with long name.txt" and then create a new file with the

same name, that new file will have the same short name and the same creation

time as the original file.

Why does tunneling exist at all?

When you use a program to edit an existing file, then save it, you naturally

expect the creation timestamp on the updated file to be the same as the cre

ation timestamp on the original. After all, you're editing a file, not creating a

new one. But internally, many programs save a file by performing a combina

tion of save, delete, and rename operations, and without tunneling, the creation

time of the file would seem to change even though from the end user's point of

view, no new file got created.

As another example of the importance of tunneling, consider that file "File

with long name.txt," whose short name is, say, FILEWI~1.TXT. You load this

file into a program that is not long-filename aware and save it. It deletes the old

FILEWI~1.TXT and creates a new one with the same name. Without tunnel

ing, the associated long name of the file would be lost. Instead of a friendly long

name, the filename got corrupted into this thing with squiggly marks. Not good.

But where did the name tunneling come from? From quantum mechanics.

CHAPTER FOURTEEN Etymology and History ^ss 347

A B

Consider the following analogy: You have two holes in the ground, and a

particle is in the first hole (A) and doesn't have enough energy to get out. It

only has enough energy to get as high as the dotted line.

You get distracted for a little while, maybe watch the Super Bowl halftime

show, and when you come back, the particle somehow is now in hole B. This

is impossible in classical mechanics, but thanks to the wacky world of quantum

mechanics, it is not only possible, but actually happens. The phenomenon is

known as tunneling because it's as if the particle "dug a tunnel" between the two

holes, thereby allowing it to get from one hole to another without ever going

above the dotted line.

In the case of file system tunneling, it is information that appears to violate

the laws of classical mechanics. The information was destroyed (by deleting

or renaming the file), yet somehow managed to reconstruct itself on the other

side of a temporal barrier.

The developer who was responsible for implementing tunneling on Windows 95

got kind of carried away with the quantum mechanics analogy: The fragments of

information about recently deleted or recently renamed files are kept in data

structures called quarks.

Why do N T F S and Explorer disagree
on filename sorting?

IF YOU'VE USED the F i n d F i r s t F i l e and FindNextFile functions to enu

merate the contents of a directory on an N T F S drive, you may have noticed

that the filenames are returned in sorted order, but sorted in a manner dif

ferent from Explorer. Why is that?

348 T H E OLD NEW T H I N G

For illustration purposes, I created files with the following names:

Name Code Point Description

a

b

X

a

0

U+0061

U+0062

U+00D7

U+00E5

U+00F8

Latin small letter A

Latin small letter B

Multiplication sign

Latin small letter A with ring above

Latin small letter O with stroke

And here's the sort order for various scenarios, at least on my machine.

(You'll later see why it's important whose machine you test on.)

• Plain d i r command

Name

a

b

a

X

0

Code Point

U+0061

U+0062

U+00E5

U+00D7

U+00F8

Description

Latin small letter A

Latin small letter B

Latin small letter A with ring above

Multiplication sign

Latin small letter O with stroke

• d i r / o n

Name Code Point Description

X

a

a

b

0

U+00D7

U+0061

U+00E5

U+0062

U+00F8

Multiplication sign

Latin small letter A

Latin small letter A with ring above

Latin small letter B

Latin small letter O with stroke

Explorer sorted by name

Name Code Point Descr: ptn

X
a

U+00D7

U+0061

Multiplication sign

Latin small letter A

CHAPTER FOURTEEN Etymology and History *s^ 349

Latin small letter A with ring above

Latin small letter B

Latin small letter O with stroke

4

b

0

U+00E5

U+0062

U+00F8

First, notice that Explorer and d i r / o n agree on the alphabetic sort order.

(When you throw digits into the mix, things diverge.) This is not a coincidence.

Both are using the default locale's word sort algorithm.

Why does the raw N T F S sort order differ? Because NTFS's raw sort order

has different goals.

The d i r / o n and Explorer output are sorting the items for humans. When

sorting for humans, you need to respect their locale. If my computer were in

Sweden, Explorer and d i r /on would have sorted the items in a different order:

Name

X

a

b

a

0

Code Point

U+00D7

U+0061

U+0062

U+00E5

U+00F8

Description

Multiplication sign

Latin small letter A

Latin small letter B

Latin small letter A with ring above

Latin small letter O with stroke

You can ask a Swede why this is the correct sort order if you're that curious.

My point is that different locales have different sorting rules.

NTFS's raw sort order, on the other hand, is not for humans. As we saw

above, sorting for humans can result in different results depending on which

human you ask. But there is only one order for files on the disk, and N T F S

needs to apply a consistent rule so that it can find a file when asked for it later.

To maintain this consistency, the NTFS raw sort order cannot be dependent

upon such fickle properties as the current user's preferred sort order. It needs

to lock in a sort algorithm and stick to it for the lifetime of the volume. And

because NTFS is case preserving but not case sensitive (under normal circum

stances), it needs to know the relationship between lowercase and uppercase

letters. It does this by capturing the case mapping table at the time the drive is

formatted and using that table to convert filenames from lowercase to uppercase,

even if the operating system's case mapping tables change subsequently. After

3 5 ° *©=< T H E OLD N E W T H I N G

the filename has been converted to uppercase, it then needs to be sorted.

Because this is not for humans, there's no need to implement the complex rules

regarding secondary and tertiary weights, the interaction between alphanu-

merics and punctuation, and all the other things that make sorting hard. It just

compares the code points as numbers.

In summary, therefore, Explorer sorts the items so you (a human) can find

them. N T F S sorts the items so it (the computer) can find them.

The Date/Time Control Panel
is not a calendar

ALTHOUGH MANY PEOPLE use the Date/Time Control Panel to flip through

a calendar, that's not what it is for. In fact, if you use it that way, you can cre-

ate all sorts or havoc!

In its original incarnation in Windows 95, the Date/Time Control Panel

changed your date and time. If you clicked through the calendar to see next

month, you actually changed your system clock to next month. If you changed your

mind and clicked Cancel, the Date/Time Control Panel undid its changes

and restored the date to the original date.

In other words, here's what happened, step by step:

• On April 1, you open the Date/Time Control Panel.

• You change the month to May. The Date/Time Control Panel changes

your system date to May 1. If you are running an appointment calen

dar program, all appointments from the month of April will fire (for

example, your April 15 alarm to remind you to file your income taxes).

You are annoyed by all these alerts and you cancel them.

• You decide you didn't want to change the month to May after all and

click Cancel.

• The Date/Time Control Panel changes the date back to April 1.

• On April 15, your income tax alarm fails to fire because you cancelled

it, remember?

CHAPTER F O U R T E E N Etymology and History ,s^s 351

In other words, the Date/Time Control Panel was not designed for let'

ting you flip through a calendar. It was designed for changing the system

date and time.

Unaware of its design, people have been using the Date/Time Control

Panel as if it were a calendar, not realizing that it was doing all sorts of scary

things behind the scenes. It's like using a cash register as an adding machine.

Sure, it does a great job of adding numbers together, but you're also messing

up the accounting back at the main office!

For Windows 2000, in reluctant recognition of the way people had been

misusing the Date/Time Control Panel, it was rewritten so that it doesn't

change the system time until you hit the Apply button.

How did Windows 95 rebase DLLs?

W H E N YOU PRODUCE a DLL, one of the things you specify is its preferred

base address, the virtual address at which the DLL will be optimized to be

loaded. When a DLL must be loaded at an address different from its pre

ferred address (because the preferred address is unavailable), the kernel must

rebase the DLL, which consists of updating (fixing up) all addresses in the

DLL so that they refer to its new location in memory. A table of fix-ups

describes all the places in the DLL that need to be adjusted in this way.

Windows 95 handled DLL rebasing very differently from Windows NT.

When Windows N T detects that a DLL needs to be loaded at an address

different from its preferred load address, it maps the entire DLL into memory

as copy-on-write, fixes it up (causing all pages that contain fix-ups to be

copied into the page file), and then restores the original read-only/read-write

state to the pages.

Windows 95, on the other hand, rebases the DLL incrementally, subscrib

ing to the principle "Don't save anything you can recalculate." This is another

concession to Windows 95's very tight memory requirements. Remember, it

had to run on a 4MB machine. If it fixed up DLLs the way Windows N T did,

then loading a 4MB DLL and fixing it up would consume all the memory on

the machine, pushing out all the memory that was actually worth keeping!

352 T H E OLD NEW T H I N G

When a DLL needed to be rebased, Windows 95 would merely make a

note of the DLLs new base address but wouldn't do much else. The real work

happened when the pages of the DLL ultimately got swapped in. The raw

page was swapped off the disk, and then the fix-ups were applied on-the-fly

to the raw page, thereby relocating it. The fixed-up page was then mapped

into the process's address space and the program was allowed to continue.

This method has the advantage that the cost of fixing up a page is not paid

until the page is actually needed, which can be a significant savings for large

DLLs of mostly dead code. Furthermore, when a fixed-up page needed to be

swapped out, it was merely discarded, because the fix-ups could just be applied

to the raw page again.

And there you have it, demand-paging rebased DLLs instead of fixing up

the entire DLL at load time. What could possibly go wrong?

Hint: It's a problem that is peculiar to the x86.

The problem is fix-ups that straddle page boundaries. This happens only

on the x86 because the x86 architecture is the weirdo, with variable-length

instructions that can start at any address. If a page contains a fix-up that

extends partially off the start of the page, you cannot apply it accurately until

you know whether or not the part of the fix-up you can't see generated a carry.

If it did, then you have to add one to your partial fix-up.

To record this information, the memory manager associates a flag with each

page of a relocated DLL that indicates whether the page contained a carry off

the end. This flag can have one of three states:

• Yes, there is a carry off the end.

• No, there is no carry off the end.

• I don't know whether there is a carry off the end.

To fix up a page that contains a fix-up that extends partially off the start of

the page, you check the flag for the previous page. If the flag says, "Yes," add

one to your fix-up. If the flag says, "No," do not add one.

But what if the flag says, "I don't know?"

CHAPTER FOURTEEN Etymology and History ^ ^ 353

If you don't know, you have to go find out. Fault in the previous page and fix

it up. As part of the computations for the fix-up, the flag will get to indicate

whether there is a carry out the end. After the previous page has been fixed

up, you can check the flag (which will no longer be a "Don't know" flag), and

that will tell you whether to add one to the current page.

And there you have it, demand-paging rebased DLLs instead of fixing up

the entire DLL at load time, even in the presence of fix-ups that straddle page

boundaries. What could possibly go wrong?

Hint: What goes wrong with recursion?

The problem is that the previous page might itself have a fix-up that strad

dled a page boundary at its start, and the flag for the page two pages back

might be in the "I don't know" state. Now you have to fault in and fix up a

third page.

In theory, this recursion could continue for quite some time, but in practice

it never went beyond three fix-ups.

(Of course, another way to stop the recursion is to do only a partial fix-up

of the previous page, applying only the straddling fix-up to see whether there

is a carry out and not attempting to fix up the rest. But Windows 95 went

ahead and fixed up the rest of the page because it figured, hey, I paid for this

page, I might as well use it.)

What are SYSTEM_FONT
and DEFAULT_GUI_FONT?

AMONG THE THINGS you can get with the GetStockObject function are

two fonts called SYSTEM_FONT and DEFAULT_GUI_FONT. What are they?

They are fonts nobody uses any more.

Back in the old days of Windows 2.0, the font used for dialog boxes was a

bitmap font called System. This is the font that SYSTEM_FONT retrieves, and it

is still the default dialog box font for compatibility reasons. Of course, nobody

nowadays would ever use such an ugly font for the dialog boxes. (Among other

354 ^ v THE OLD NEW THING

things, it's a bitmap font and therefore does not look good at high resolutions,

nor can it be anti-aliased.)

DEFAULT_GUI_FONT has an even less illustrious history. It was created during

Windows 95 development in the hopes of becoming the new default GUI font,

but by July 1994, Windows itself stopped using it in favor of the various fonts

returned by the SystemParametersInf o function, but nobody remembered to

remove it from the header file.

That these two stock fonts continue to exist is merely a remnant of history.

Why do up-down controls
have the arrows backward?

W H E N YOU CREATE an up-down control (some people call it a "spinner" con

trol) in its default configuration, the up-arrow decrements the value and the

down-arrow increments it. Most people expect the up-arrow to increment

and the down-arrow to decrement. Why is it backward?

The up-down control is a victim of Windows' reversed y-axis.

Mathematically, the (0, 0) coordinate should be at the lower-left corner of

the screen (and in fact that's where OS/2 puts it), with y increasing as you

move up the screen. Windows, on the other hand, puts the (0, 0) coordinate

at the upper-left corner, with y increasing as you move down the screen.

What does that have to do with anything?

The up-down control can be positioned horizontally or vertically. Lets first

look at the less problematic horizontal configuration. Windows and mathe

matics agree that the x coordinate increases to the right, and the right-arrow

(the arrow with higher x coordinate) causes the value to increase. (Let's leave

right-to-left languages out of the picture for the purpose of this discussion.)

After you have the horizontal version of the control working, converting it

to a vertical control is a simple matter of interchanging the x- and y-axes.

That's why the up-arrow decreases the value. The up-arrow points toward

smaller y coordinates and consequently decrements the value.

CHAPTER FOURTEEN Etymology and History *ev 355

It's perfectly logical and simultaneously counterintuitive. (It's slightly more

intuitive if you imagine the value attached to the up-down control as control

ling the y coordinate of an imaginary object on the screen. In that case, click

ing the up-arrow causes the y coordinate to decrease and the object moves up

the screen.)

Fortunately this wackiness doesn't last long, because the moment you change

the range of the up-down control from the (not very useful) default of 0-100 to

whatever you actually need, the arrows behave "normally" again.

Perhaps intuitiveness should have won out over logic. But what's done is

done, and, as noted above, the problem goes away soon enough.

A ticket to the Windows 95 launch

A LIMITED NUMBER of seats at the Windows 95 launch were available to the

product team, so there was a lottery to see who would get one of those tick

ets. The remainder of the team would be standing on bleachers hidden behind

the stage, to be unveiled at the grand climax of the product launch festivities.

I happened to have been a winner in the ticket lottery, but the fact that

there weren't enough seats for everybody created some degree of grousing

among the have-nots. As a show of solidarity, I forewent the special VIP pass

and ticket, instead taking my place in the crowd of red, blue, yellow, and green

T-shirts waiting backstage and giving the pass and ticket to a colleague who

really wanted to be in the tent.

While I waited in the staging room to be positioned for the grand finale, I

was somewhat surprised to see my colleague in the room with me. She gave

me back my unused VIP pass and ticket, saying, "It didn't feel right being out

there in the tent. This is where I belong."

I probably have the only unused ticket to the Windows 95 launch.

While standing on the bleachers behind the screen, we could hear everything

going on. When Jay Leno disappeared backstage to head off to his next scene,

he emerged between the two sets of bleachers. We silently waved at him, but he

was obviously focused on his job and didn't have time to schmooze with us.

356 4S^ THE OLD NEW THING

It was very hard staying quiet for so long backstage. Our presence was sup

posed to be a surprise; any noise would give us away. There were moments

where whispers got out of hand and people had to wave frantically (or—

heavens—shush!) to restore quiet. I thought for certain one of our out-of-

control moments had let the cat out of the bag, but from talking to people

afterward who were in the tent, I learned that nobody noticed a thing.

Our only instructions from the director were "Wave, clap, and cheer!"

(keeping up the energy until the last of the crowd had filed out). Everything

beyond that was improvised. Somebody started up a cheer, with half of the

bleachers shouting "Windows!" and the other half responding "95!" I'm sure

there were other things we did to maintain the excitement, though I can't

remember any of it now. I just remember that after a while I got tired of

smiling and clapping but kept it up because I was on the aisle next to all the

attendees, and that's show business!

My colleague Danny Glasser also won the lottery, but unlike me, he decided

to watch the launch from within the tent. He admits, "While it was very exciting

there, I knew from that day that I'd made the wrong decision."

Not everything related to the Windows 95 launch went well. As with many

heavily anticipated products, many stores held a "midnight madness" sale, where

in the product would be available for purchase at the stroke of midnight. The St.

Louis Post-Dispatch reported that a local CompUSA store found that their cash

registers crashed at midnight, forcing eager customers to wait 90 minutes before

the problem could be resolved. The cause: A bug in the cash register software

that had lain undiscovered because the store had never stayed open past mid

night before! In a sense, Windows 95 crashed a cash register.

C H A P T E R F I F T E E N

I f

How WINDOW MESSAGES ARE

DELIVERED AND RETRIEVED
ill #' :#

IN MY INTERACTIONS with Windows programmers, I often find that the

understanding of how window messages are delivered and retrieved is not

entirely complete. Nearly everyone gets the basic idea, but some details—

often crucial details—end up garbled. (Unfortunately, the M S D N docu

mentation is often a source of this garbling.) Because many people have

already attempted to explain the basics and the intricacies of window mes

sage delivery, it was not clear to me at first how to go about this task, but then

I realized the solution is not to add to the existing information, but merely

to restate it in a different way.

Optional prerequisite reading for this section is the discussion in M S D N

on queued and nonqueued messages and their interaction with the

GetMessage and PeekMessage functions, which you can find in M S D N in

the section titled "About Messages and Message Queues." If you've read that

discussion or discussion from other authors, you may find the explanation

below redundant; but if you find things still somewhat hazy in your mind, you

may find that a fresh angle on the subject may help clarify.

357

358 JVk THE OLD NEW THING

Sent and posted messages

THE TERMINOLOGY I will use here is nonstandard, but I'm using it because I

think it's a little clearer than the standard terminology. For the purpose of this

discussion, I'm going to say that the messages associated with a thread fall into

three buckets rather than the more standard two:

What I'll call them Standard terminology

Incoming sent messages Non-queued messages

Posted messages 1
> Queued messages

Input messages J

In reality, the message breakdown is more complicated than this, but we'll

stick to the above model for now, because it's "true enough."

Note also that under standard terminology, nonqueued messages are not

considered to be in the thread's message queue. Only queued messages are in

the queue.

One immediate consequence of the above breakdown of messages into

three categories is that it gives the first indication why you cannot simulate

input with the PostMessage function: Posted messages go into the posted

message list, whereas input messages go into the input message list, and you'll

see later in this chapter that the two are processed at different times.

The members of the SendMessage family of functions (which includes

SendNotifyMessage, SendMessageCallback, and SendMessageTimeout)

all behave the same with respect to the message bookkeeping: If the sender and

receiver are on the same thread, then the window procedure of the receiver is

called directly (bypassing the message pump). If the sender and receiver are on

different threads, the message is added to the incoming sent messages of the

receiver, and the receiver is "woken" to process the incoming message.

The PostMessage and PostThreadMessage functions add the message to

the posted messages and wake the receiver.

User input (or synthesized user input, such as that produced by the Sendlnput

function) is added to the input messages, and they also wake the receiver.

CHAPTER F I F T E E N How Window Messages Are Delivered and Retrieved ^S=s 359

Because some people do better with pictures, here's a picture of a hypothet

ical thread showing how messages arrive in each of the three buckets:

incoming sent
messages

message S1

message S2

t
SendMessage

posted
messages

message P1

message P2

message P3

t
postMessage

input
messages

message 11

t
input

Waking the receiver means that if the receiver is blocked in a GetMessage,

WaitMessage, MsgWai tForMul t ip leObjec t s , or similar function, the receiv

ing thread is unblocked so that it can process the new messages, assuming that

the receiving thread is waiting for the type of message that was added.

Now that you've seen how messages enter a thread, let's look at how they

get back out.

O n the message receiving side, there are three ways messages can be received,

and each of them processes messages slightly differently, but they all follow the

same basic principles: r r

• Incoming sent messages are delivered directly to the window

procedure.

• Posted messages are retrieved (if GetMessage or PeekMessage).

• Input messages are retrieved (if GetMessage or PeekMessage) .

Because the message receiving functions are all variations on the same basic

idea, I'm going to write some pseudo-code helper functions so that the simi

larities are clearer. The first pseudo-function is one that delivers a message.

Delivering a message is the climax of the entire message process; it consists of

calling the window procedure with the message directly, and it goes roughly

like this:

LRESULT DeliverMessage(HWND hwnd, UINT uMsg, WPARM wParam,
LPARAM lParam)

36O ^Sk THE OLD NEW THING

{
WNDPROC lpfnWndProc =

(WNDPROC)GetWindowLongPtr(hwnd, GWLP_WNDPROC);

return CallWindowProc(lpfnWndProc, hwnd, uMsg, wParam, lParam);

]
All the complexity of message processing resides in how the system gets to

the point where it can deliver the message and what it does with the answer.

As noted previously, one of the principles of message processing is the

delivery of incoming sent messages. You'll see that this operation is performed

at very specific points in the course of message processing:

void DeliverlncomingSentMessages()
r

while (an incoming sent message exists) {
MSG msq = that messaqe;
remove it from the incoming sent message list;
if (it is a special pseudo-message) {
handle the pseudo-message; // we'll learn about these later
} else {
DeliverMessage(msg.hwnd, msg.message, msg.wParam, msg.lParam);
get return value back to sender somehow;

I

]
Armed with these helper functions, we can start looking at each of the mes

sage retrieval functions in turn and see how they follow the preceding guidelines.

First, there's PeekMessage. The pseudo-code for PeekMessage goes like

this:

BOOL PeekMessage(LPMSG pmsg, HWND hwnd, UINT wMsgFilterMin,
UINT wMsgFilterMax, UINT flags)

{
DeliverlncomingSentMessages() ;
if (a posted message exists that satisfies the filter) {
*pmsg = that message;
if (flags & PM_REMOVE) remove it from the posted message list;
return TRUE;

}
if (an input message exists that satisfies the filter) {
*pmsg = that message;
if (flags & PM_REMOVE) remove it from the input message list;

C H A P T E R FIFTEEN How Window Messages Are Delivered and Retrieved J S V 361

r e t u r n TRUE;

r e t u r n FALSE;

]
In other words, the PeekMessage function first delivers all incoming sent

messages that are waiting to be processed (if any). After that's done, it looks

for a candidate message in the posted message list, and, failing that, in the

input message list. If one such is found, the message is removed from the cor

responding message list (if the PM_REMOVE flag was passed), and that message

is retrieved (not delivered). If there are no such messages, PeekMessage

returns FALSE.

Note that incoming sent messages are handled very differently from posted

and input messages. You cannot filter out incoming sent messages; they are

always processed. Filtering applies only to posted and input messages. Also,

incoming sent messages are dispatched internally by PeekMessage, whereas

posted and input messages are merely returned to the caller via the pmsg

parameter, and it is the callers responsibility to decide what to do with the

message. (Usually, the decision is,"Dispatch it," but you'll see below that that is

not always the case.)

The GetMessage function is just like PeekMessage, except that it doesn't

return until it gets a posted or input message. If there is no message to be

retrieved, it just keeps waiting until one finally arrives:

BOOL GetMessage(LPMSG pmsg, HWND hwnd, UINT wMsgFilterMin,
UINT wMsgFilterMax)

{
while (!PeekMessage(pmsg, hwnd,

wMsgFilterMin, wMsgFilterMax, PM_REMOVE)) {
WaitMessage () ,- // wait for a new message to arrive
/
return pmsg->message != WM_QUIT;

}

The final case in which incoming sent messages are dispatched is when the

thread is waiting for an inter-thread SendMes sage to complete. All the

SendMessage-like functions are basically the same, just with slightly different

frills, so I discuss them all together. For expository purposes, I am ignoring

3 6 2 4 9 * T H E OLD N E W T H I N G

error checking and assuming that the sender and receiver are on different

threads, because messages sent within a thread are converted into direct calls

to the window procedure, as already noted.

SendToAnotherThread(...)

add the message to the incoming sent message list
of the receiver;

// these two functions wait for the receiver to respond
if (Function == SendMessage || Function == SendMessageTimeout) {
while (Imessage reply received && Itimed out) {
DeliverlncomingSentMessages();
wait for a new message or (if SendMessageTimeout)
timeout elapses;

. I

The message is added to the incoming sent message list of the thread that

the target window belongs to; and in the case of SendMessage and

SendMessageTimeout, the sending thread dispatches incoming sent mes

sages until the target window returns an answer (or the message times out).

There are additional details concerning how SendMessageCallback per

forms the callback and how SendMessageTimeout cleans up if the message

times out, but those details aren't relevant to the discussion here, so I defer

them for now.

One point to bear in mind is that these three scenarios (PeekMessage,

GetMessage, and inter-thread SendMessage) are the only ones that will dis

patch incoming sent messages. If you're debugging a problem with a thread

that isn't receiving incoming sent messages, make sure it's actually doing one

of these three things.

That's it for the basics of sent and posted messages. It's really not that compli

cated. Just keep those three ground rules in mind, and you've got it in a nutshell.

CHAPTER FIFTEEN How Window Messages Are Delivered and Retrieved .se=v 363

-J

The life or a sent message

So FAR, WE'VE been looking at messages from the thread's point of view, how

a thread delivers and receives messages. Let's change our point of view to that

of the message itself, starting by following a sent message through the system.

The easy case is when a thread sends a message to a window that belongs

to that same thread. In that case, the window procedure of the receiving win

dow is called directly:

LRESULT SendMessage_SameThread(HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)

{
return DeliverMessage(hwnd, uMsg, wParam, lParam);

J
Notice that an intra-thread sent message bypasses everything. It doesn't go

onto the posted message list or even the incoming sent message list. Conse-

quently, it doesn't go through the message pump either. It goes straight to the

destination window procedure.

The more interesting case for a sent message is the inter-thread case. As

noted previously, the message is added to the incoming sent message list of the

destination window. There it waits until the thread responsible for the destina

tion window does one of the three things listed above that processes incoming

sent messages: PeekMessage, GetMessage, or an inter-thread SendMessage.

When the thread that receives the message returns from the window proce

dure, the message result is transferred back to the sending thread, at which

point the sending thread can continue on its merry way.

There is a variation on this message life cycle that involves the ReplyMessage

function. If the receiving thread calls ReplyMessage during the processing of an

incoming sent message, the value passed to the ReplyMessage function is

returned to the sending thread as if the receiving thread had returned from its

window procedure. As a result, both the sending thread and the receiving thread

are executing simultaneously. The sending thread is executing because it is no

longer waiting for the message result, while the receiving thread is executing

3 6 4 *8?> THE OLD NEW THING

because it hasn't yet returned from its window procedure. (When the window

procedure finally returns a value, that value is ignored, of course, because the

sender was already given a result and you can't go back in time and change a value

that was already returned!)

The life of a posted message

T H E LIFE OF a posted message is a bit more complicated than that of a sent

message. As noted previously, a posted message is appended to the posted

message list of the thread that owns the destination window. There it waits

until the receiving thread calls the GetMessage or PeekMessage function, at

which point the message is copied to the MSG structure provided by the appli

cation. What happens next depends on who retrieved the message.

In principle, a program can do anything it wants with that message. It could

throw it away or it could modify it or it could even (horrors!) dispatch the

message. Because anything could happen, a comprehensive list of possibilities

is impossible, but let's look at some of the more likely scenarios.

Most likely the message was retrieved by the thread's primary message

pump, which goes something like this:

while (GetMessage(&msg, NULL, 0, 0)) {
if (!TranslateAccelerator(hwndMain, hacc, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

1

If that's the case, the retrieved message will be checked against the accelerator

table and, if a match is found, a WM_COMMAND (or WM_SYSCOMMAND) message will

be posted to the window specified by hwndMain. In that case, message process

ing ends, and the message is never delivered to the window procedure (something to

bear in mind if you're debugging a problem where a posted message appears

never to reach its destination window).

C H A P T E R F I F T E E N How Window Messages Are Delivered and Retrieved -ss^ 365

If the message does not match an accelerator, it is typically delivered to the

window procedure by the DispatchMessage function, but exceptions apply:

If the message is a thread message, there is no window to deliver the

message to. Consequently, thread messages are not dispatched.

If the message is a WM_TIMER message and the lParam is nonzero,

the lParam is treated as a TIMERPROC, and the callback function is

called directly.

The next most common scenario is the dialog loop. As you already know,

the basic dialog loop looks like this:

w h i l e (< d i a l o g s t i l l a c t i v e > &&
GetMessage(&msg, NULL, 0, 0, 0)) {

i f (! I s D i a l o g M e s s a g e (h d l g , &msg)) {
T r a n s l a t e M e s s a g e (& m s g) ;
Dispa tchMessage(&msg) ;

}

This looks like a normal message pump but for the introduction of

IsDialogMessage. Thus, the new twist is that an additional class of mes

sages will never reach their destination window: dialog box navigation

messages. (We discussed the details of IsDialogMessage in Chapter 10,

"The Inner Workings of the Dialog Manager.")

A small fraction of modal loops do not fall into the two categories above,

but they tend to share the same basic characteristics. The posted message is

retrieved, preprocessed, and (assuming it survives preprocessing) is delivered

to the destination window. And because the message is posted, the return

value of the message is discarded since there is nowhere to return it to.

, .

Generated posted messages

W H E N I INTRODUCED the three types of messages, I admitted that reality is

more complicated. Some "special" types of messages don't fall neatly into one

of those three buckets.

366 *&. THE OLD NEW THING

One of those special messages is the WM_MOUSEMOVE message. As you saw

earlier, the message is not added as an input message when the mouse moves;

instead, a "the mouse moved" flag is set. When the window manager goes

looking for an input message and the "the mouse moved" flag is set, it clears

the flag and generates a WM_MOUSEMOVE message on the fly, adding it to the list

of input messages (or coalescing it with an existing WM_MOUSEMOVE message).

Other special messages that fall into this "generated on the fly" category

are the WM_PAINT, WM_TIMER and WM_QUIT messages. The first two messages

are generated even later in the message search process, only after no applicable

input message list was found, and only if the message filter indicates that that

type of message is being requested. (The WM_QUIT message is even shier than

the paint and timer messages, because it emerges only after the posted message

list is empty. On the other hand, the WM_QUIT message is also bolder, in that

it ignores the message filter.)

Given these adjustments, the PeekMessage function takes the following

more complex form:

BOOL PeekMessage(LPMSG pmsg, HWND hwnd, UINT wMsgFilterMin,
UINT wMsgFilterMax, UINT flags)

{
DeliverlncomingSentMessages();

if (a posted message exists that satisfies the filter) {
*pmsg = that message;
if (flags & PM__REMOVE) remove it from the posted message list;
return TRUE;

// note that WM_QUIT ignores the filter
if (a WM_QUIT message is pending and

there are no posted messages) {
clear the "WM_QUIT is pending" flag;
*pmsg = a WM_QUIT message;

return TRUE;

}

if (the mouse has moved and input messages satisfy the filter) {
clear the "mouse has moved" flag;
append a WMJVIOUSEMOVE message into the input message list;

C H A P T E R F I F T E E N How Window Messages Are Delivered and Retrieved *&< 367

i f (an input message e x i s t s t h a t s a t i s f i e s the f i l t e r) {
*pmsg = tha t message;
if (f lags & PM_REMOVE) remove i t from the input message l i s t ;
r e t u r n TRUE;

/

if (a window needs to be painted and
the WM_PAINT message satisfies the filter) {

*pmsg = a WM_PAINT message;
return TRUE;
}

if (a timer has elapsed and
the WM_TIMER message satisfies the filter) {

append a WM_TIMER message to the posted message list;
*pmsg = that message;
if (flags & PM_REMOVE) remove it from the posted message list;
return TRUE;

return FALSE;

}

Here's a puzzle: I noted earlier that the generated WM_MOUSEMOVE message

might be coalesced with an existing message. How can that be if the message

isn't generated until the application requests it?

The WM_MOUSEMOVE and WM_TIMER messages are particularly strange:

When it is time for them to be generated, they become real messages in the

queue! This has subtle consequences for programs that call PeekMessage

with the PM_NOREMOVE flag. If you peek and don't remove a WM_MOUSEMOVE or

WMJTIMER message, the message stays in the queue. If you are sufficiently devi

ous, you can inadvertently fill your queue with multiple copies of these messages

by assiduously refusing to remove them.

This quirk of the WM_MOUSEMOVE and WMJTIMER messages also answers our

puzzle: If the mouse message was generated but left in the queue because the

caller passed PM_NOREMOVE, the message remains in the input message list, at

which point a subsequent mouse move message will be coalesced with it.

368 *©< THE OLD NEW THING

When does SendMessageCallback
call you back?

W H E N YOU CALL the SendMessageCallback function, you pass a function

pointer that the system will call when the sent message is processed by the

recipient. How does that callback happen?

Basically, it arrives "as if" the recipient sent a message back to you.

In other words, when the recipient finishes processing the message, it per

forms the moral equivalent of a SendMessage to the thread that

sent the message: A pseudo-message is added to the incoming sent message

list, and the window manager "dispatches" the pseudo-message by calling the

callback function you provided. These are the pseudo-messages we men

tioned briefly when we sketched out the DeliverlncomingSentMessages

function.

The window manager uses these pseudo-messages as a way to transfer exe

cution between threads in a controlled manner. Because the pseudo-message

is retrieved as part of normal message processing, the window manager knows

that when the pseudo-message is processed, the application is in a stable state.

This is a general principle of thread interruptions: You cannot interrupt a

thread unpredictably because you will have no idea what the thread was in the

middle of doing.

For example, if you interrupt a thread while it owns a critical section, the

code in your interrupt will find itself running while that critical section is

owned, something the code was probably not designed to handle, which can

in turn result in deadlocks. Worse, you might attempt to enter that same

critical section (which will succeed, because the thread that owns a critical

section is allowed to enter it again), and you are now under the mistaken

belief that you are the only code that is modifying the data structure that

the critical section protects, when in fact the code you interrupted is also

modifying it.

CHAPTER F I F T E E N How Window Messages Are Delivered and Retrieved ^S^, 369

More generally, if you interrupt the thread while some data structures are

unstable (say, for example, while it was in the middle of updating a linked list),

the code in your interrupt had better not attempt to access those data structures.

Effectively, your interrupt can't reliably do much of anything, which makes it a

not-very-useful sort of interrupt.

That's why the window manager uses pseudo-messages to transfer control

between threads: When the code runs on the target thread, the thread is in a

known stable state. (This is entirely analogous to how overlapped I /O and

asynchronous procedure calls in general run only at specific points, again,

because running them as interrupts would make it effectively impossible to

use them in any meaningful way.)

,—.

What happens in SendMessageTimeout
when a message times out?

W H E N THE SENDMESSAGETIMEOUT function times out, what happens to

the message you were trying to send?

The message is cancelled, subject to the laws of physics as we currently

understand them.

If the timeout period elapses without the receiving thread having replied

to the message, the SendMessageTimeout cancels the message. If the message

has yet to be delivered, the cancellation is complete: The destination window

never receives the message. However, if the message has been delivered, but

the recipient has not replied, the cancellation is only partial. The window

manager ignores any attempt by the recipient to return a result, but it can't

go back in time and prevent the recipient from receiving the message in the

first place.

The bad news for the programmer is that there is no indication

from the SendMessageTimeout function which of the two scenarios

has occurred.

3 7 0 ^S=s T H E OLD N E W T H I N G

s = t

Applying wnat youve learned Applying what you've learned
to some message processing myths

ARMED WITH ALL this new knowledge about how messages are delivered and

retrieved, we can bust the following myths, each of which came from an actual

Win32 developer:

Myth. SendNot i fyMessage behaves just like Pos tMessage if the

window is on another thread.

The SendNotifyMessage belongs to the SendMessage family of

functions and as such shares much more with SendMessage than it

does with PostMessage.The message sent with SendNotifyMessage

is added to the incoming sent message list, not to the posted message

list; this distinction is important because it alters the order in which the

message is processed relative to other messages. Sending with

SendNotifyMessage puts the message ahead of all existing posted

messages (since incoming sent messages are processed before posted

messages), whereas Pos tMessage puts the message after any existing

posted messages. Also, messages sent with SendNotifyMessage are

delivered as part of the D e l i v e r l n c o m i n g S e n t M e s s a g e s step we

discussed above, which means that they not only bypass the message

pump, but they can also be delivered while waiting for a response from

an outbound SendMessage; neither of these statements apply to post

ed messages.

• Myth. Posting a message is just an asynchronous send.

Actually, the SendNot i fyMessage function produces an asynchro

nous send. The differences between Pos tMessage and the asynchro

nous send produced by SendNot i fyMessage were discussed above.

• Myth. If you send a message to a window that belongs to another

thread, the message is posted into the destination threads message

queue at a higher priority than posted messages.

C H A P T E R F I F T E E N How Window Messages Are Delivered and Retrieved -SS=N 371

Sent messages go into the incoming sent messages list, not the post

ed messages list. Because the sent messages list is processed before

the posted messages list, it may look like a high-priority posted mes

sage, but as noted previously, sent and posted messages are processed

very differently by the window manager.

How can you tell who sent
or posted you a message?

You CAN'T, BECAUSE not even the window manager knows. The window

manager doesn't keep track of this information for posted messages or mes

sages sent via SendNotif yMessage. The window manager does keep track of

the sender if the sender needs to be informed of the result of the message (for

example, if the message was sent via SendMessage), but this information is

not exposed by the window manager.

If you need this information, you must provide it yourself. For example, the

WM_N0TIFY message specifies that the sender of the message must set the

hwndFrom member of the NMHDR structure to the handle of the window to

which the message applies. Similarly, the rules for the Dynamic Data Exchange

(DDE) messages require the sender to pass an appropriate window handle as

the messages' wParam.

But these are all conventions. They aren't enforced by the system. If people

really want to confuse you, they can send you a WM_NOTIFY message with

incorrect information in the NMHDR structure. But of course, they then deserve

what they get!

You. can't simulate keyboard input
with PostMessage

SOME PEOPLE ATTEMPT to simulate keyboard input to an application by

posting keyboard input messages, but this is not reliable for many reasons.

372 4 0 1 THE OLD NEW THING

First of all, keyboard input is a more complicated matter than those who

imprinted on the English keyboard realize. Languages with accent marks have

dead keys, Far East languages have a variety of Input Method Editors, and I

have no idea how complex script languages handle input. There's more to typ

ing a character than just pressing a key.

Second, even if you manage to post the input messages into the target win

dow's queue, that doesn't update the other state associated with input. For

example, when the code behind the window calls the GetKeyState function

or the GetAsyncKeyState function, it's going to see the "real" keyboard state

and not the fake state that your posted messages have generated. Similarly,

GetQueueState will report a posted message (QS_POSTMESSAGE) rather than

input (QS_INPUT), which in turn has consequences for programs that are

dependent on the queue state, for example, those that use the MsgWait

ForMult ipleObjects function.

The Sendlnput function was designed for injecting input into Windows. If

you use that function, at least the states of the shift and other modifier keys will

be reported correctly. You still have other problems ahead of you, however. For

example, many keyboard layouts (such as those for East Asian languages) have

complicated input states that go beyond simply converting character codes to

scan codes.

What should you do, then? If your program exposes an automation interface,

your tests can use that. Alternatively, you can use your program's accessibility

interfaces. Indeed, using the accessibility interfaces in your tests is an excellent

way of validating that your program is in fact accessible to people with physical

disabilities. We will get our feet wet with accessibility in Chapter 20, "Taxes."

C H A P T E R S I X T E E N

INTERNATIONAL

PROGRAMMING

J

THE WORLD is an international place, and although few people intention

ally exclude portions of the world from using their software, you may

end up inadvertently creating problems as the result of design and imple

mentation decisions taken during software development. Here are some

musings on the topic of international programming. I also wholeheartedly

recommend the Web site of my colleague Michael Kaplan. Sorting It All Out,

http://blogs.msdn.com/michkap/, goes into even greater depth on the sub

ject of international programming, Unicode, and (as you might surmise from

the site's title) collation.

Case mapping on Unicode is hard

OCCASIONALLY, I'M ASKED,"I have to identify strings that are identical, case-

insensitively. How do I do it?"

The answer is, "Well, it depends. Whose case-mapping rules do you want

to use?"

Sometimes the reply is, "I want this to be language-independent."

Now you have a real problem.

373

http://blogs.msdn.com/michkap/

374 * ^ \ THE OLD NEW THING

Every locale has its own case-mapping rules. Many of them are in conflict

with the rules for other locales. For example, which of the following pairs of

words compare case-insensitive equal? (In the mind of a native speaker, not

necessarily how Windows treats them.)

1. Gif GIF

2. Mafe MASSE

3. Mafie Masse

4. Meme MEME

The answers may surprise you:

1. No in Turkey, yes in the United States.

2. No in the United States, yes in Germany.

3. No in the United States, no in Germany, yes in Switzerland!

(Though you would probably never see it written as"Mafo" in

bwitzerland.)

4. Yes in France, no in Quebec!

(And I've heard that the capitalization rules for German are context-sensi

tive. Maybe that changed with the most recent spelling reform.) Unicode

Technical Report 21 has more examples.

Just because you're using Unicode doesn't mean that all your language prob

lems are solved. Indeed, being able to represent characters in nearly all the

world's languages means that you have more things to worry about, not fewer.

An anecdote about improper
case mapping

X X C

INTERNET EXPLORER HAD a case-mapping bug that transformed somebody's

name into a dead body.

This bug occurred because Internet Explorer tried to convert the characters

in the name "Yamada" to lowercase but was not mindful of the character-

combining rules of the double-byte 932 character set used for Japanese. In this

C H A P T E R S I X T E E N International Programming f&<. 375

character set, a single glyph can be represented either by one or two bytes. The

Roman character "A" is represented by the single byte 0x41. On the other

hand, the character "(D" is represented by the two bytes: 0x82 OxCC.

When you parse a Japanese string in this character set, you need to main

tain state. If you see a byte that is marked as a"DBCS lead byte," then it and

the byte following must be treated as a single unit. There is no relationship

between the character represented by 0x8E 0x52 (|_L|) and 0x8E 0x72 (H)

even though the second bytes happen to be related when taken on their own

(0x52 = "R" and 0x72 = "r").

Internet Explorer forgot this rule and merely inspected and converted each

byte to lowercase independently. So when it came time to convert the characters

making up the name "Yamada," the second bytes in the pairs were erroneously

treated as if they were Roman characters and were "converted to lowercase"

accordingly.

Characters Encoding Meaning

l l | B9 0x8E 0x52 0x93 0x63 Yamada

f l E 9 0x8E 0x72 0x93 0x63 corpse + rice field

The result was that the name "Yamada" turned into the characters meaning

"corpse" and "rice field." You can imagine how Mr. Yamada felt about this.

Converting the string to Unicode would have helped a little, since the

Unicode capitalization rules would certainly not have connected two unrelated

characters in that way. But there are still risks in character-by-character capi

talization: In some languages, capitalization is itself context-sensitive. For

example, in Hungarian, "sZ" and"SZ" are not the same thing when compared

case-insensitively.

Why you can't rotate text

W H E N PEOPLE READ the explanation about why the word "Start" disappears

when you dock the taskbar vertically, some suggest, "Why not draw the text

vertically?"

376 J S ^ THE OLD NEW THING

Ah, now you get to learn about the exciting world of vertical text.

We originally intended to run text vertically in the new XP Start menu. In

original designs for the menu, your name ran vertically up the left side of the

menu instead of running across the top.

Rotating text is problematic in languages that traditionally run vertically,

such as Chinese. Consider my name, |^Jf^j£. In traditional vertical text, it

would be written as shown in Example 1. In contexts where a person who

doesn't read Chinese may encounter the name, the Western name can be

appended to the Chinese name, as I have done here. Notice that the English

text is rotated clockwise. This convention preserves the top-to-bottom reading

order.

m

&
*%

8*

BL
5"

Example 1

As a concession to Western influences, it is permissible to render Chinese

characters left-to-right, in which case my name would be written as"Pj|5tfni£

(Raymond Chen)".

Compare this to the traditional Western way of rotating text. Text that

would normally be rendered as "Raymond Chen" is rotated counterclockwise

(Example 2).

CHAPTER SIXTEEN International Programming S N 377

4>

u
C3
O

erf

Example 2

Now consider what happens if you take a Chinese name rendered the

Western way—"WMi^n- (Raymond Chen)"—and rotate it the Western way.

The result is shown in Example 3. Notice that from a Chinese point of view,

everything is upside-down! The character that is supposed to be at the top

(W.) is now at the bottom.

c
1
U
g

1

.\m/ m.
Example 3

For many years now, Windows has been multilingual. This means that the

same underlying code runs, regardless of language. Changing a language

merely changes the strings being displayed. Consequently, there can be no

language-specific user interface. In this case, it means that we can't have sepa

rate rotation rules for Chinese as opposed to English or German.

378 J 0 k THE OLD NEW THING

N O T E : Even if we were allowed to have separate rotation rules, we would
have to be able to tell whether the name was in the form we've been working
with so far, or was in the form Raymond Chen (Pjfl:Ej?gi£). In the "English
first" form, we should rotate it as in Example 2, since this is an English string
with Chinese characters embedded, as opposed to Example 1, where we had
a Chinese string with English characters embedded. Those of you who have
seen Arabic and English mixed together have seen punctuation marks
bandied about with similar degrees of confusion.

Multilingual support also explains why you see things like "1 folder(s)"

instead of "1 folder" and "2 folders." W h y not have two format strings, one for

when the number of items is exactly one, and another for when the number

of items is two or more?

Well, for one reason, that would significantly increase the number of strings

we would have to carry around. (If you say 'just add 5 to make the plural," then

you really need to get out more!)

For another reason, some languages (such as Slovene) have a "dual" number

in addition to singular and plural. T h e Lahir language has singular (one), dual

(two), trial (three), paucal (a few), and plural (many). So now you need per

haps five versions of every string that contains a replaceable number.

This also explains why you see a lot of strings of the form "Property: Value"

(for example, "Last modified: Monday, September 29, 2003") instead of a

phrase ("Last modified on Monday, September 29, 2003"). This is necessary

to avoid problems caused by grammar. If you attempt to compose a phrase,

you have to worry about subject-verb agreement, gender and number agree

ment, declensions, and all sorts of other things that computers aren't good at.

T h e only safe solution is to avoid grammar entirely and use the "Property:

Value" notation instead. (And even this isn't good enough for many languages.

Swedish, for example, requires that adjectives be declined even when they ate

used absolutely.)

We did get one special exception to the grammar-independence rule:

Personalized folders. W h e n you view somebody else's My Documents folder, it

says "Chris's Documents." We made this request to the ttanslators, and they

worked hard to make sure that the templates for possessive forms were accurate

C H A P T E R S I X T E E N International Programming « ^ 379

in all the languages we support. (Fortunately, we didn't have to deal with lan

guages whose form of the template depended on us knowing whether Chris is

a man or a woman.)

What are these directories called
0409 and 1033?

MICROSOFT PRODUCTS OFTEN have subdirectories called 0409 and 1033. Or

at least they do if you're in the United States, because 1033 is the locale iden

tifier for "English (United States)," whose hexadecimal value is 0x0409. You

may also find directories called 0409. Some programs use hex codes and some

use decimal. Go figure.

The value of a locale identifier is given by the formula

p r i m a r y l a n g u a g e + 1024 * s u b - l a n g u a g e

For example, Swiss German is LANG_GERMAN + 1024 * SUBLANG_GERMAN_

SWISS = 7 + 1024 * 2 = 2055.

Why would a program create a directory named after a language code in

the first place?

Many Microsoft products support a multilingual user interface. This means

that the same program can be used to display its user interface in multiple lan

guages. Office and Windows are the two biggest examples. Language-specific

resources need to be broken out into their own directories so that they won't

conflict with resources corresponding to some other language.

Keep your eye on the code page

REMEMBER THAT THERE are typically two 8-bit code pages active, the so-called

ANSI code page and the so-called OEM code page. GUI programs usually use

the ANSI code page for 8-bit files (though UTF-8 is becoming more popular

lately), whereas console programs usually use the OEM code page. (We'll learn

more about the names ANSI and OEM later.)

380 ^-^ THE OLD NEW THING

This means, for example, that when you open an 8-bit text file in Notepad,

it assumes the ANSI code page. But if you use the TYPE command from the

command prompt, it will use the OEM code page.

This has interesting consequences if you frequently switch between the

GUI and the command line.

The two code pages typically agree on the first 128 characters, but nearly

always disagree on the characters from 128 to 255 (the so-called extended

characters). For example, on a U.S.-English machine, character 0x80 in the

OEM code page is C, whereas in the ANSI code page it is €.

Consider a directory that contains a file named Q. If you type d i r at a com

mand prompt, you see a happy Q on the screen. On the other hand, if you do

d i r >f i l e s . t x t and open files.txt in a GUI editor like Notepad, you will

find that the C has changed to a €, because the 0x80 in the file is being inter

preted in the ANSI character set instead of the OEM character set.

Stranger yet, if you mark/select the filename from the console window and

paste it into Notepad, you get a C. That's because the console window's

mark/select code saves text on the clipboard as Unicode; the character saved

into the clipboard is not 0x80 but rather U+00C7, the Unicode code point for

"Latin Capital Letter C With Cedilla." When this is pasted into Notepad,

the character is converted from Unicode to the ANSI code page, which on a

U.S.-English system encodes the C character as 0xC7.

But wait, there's more. The command processor has an option (/U) to

generate all piped and redirected output in Unicode rather than the OEM

code page.

Ir you run the command

cmd /U /C d i r > f i l e s . t x t

then the output will be in Unicode and therefore will record the C character

as U+00C7, which Notepad will then be able to read back.

This has serious consequences for batch files.

Batch files are 8-bit files and are interpreted according to the OEM charac

ter set. This means that if you write a batch file with Notepad or some other

program that uses the ANSI character set for 8-bit files, and your batch file

CHAPTER SIXTEEN International Programming J S ^ 381

contains extended characters, the results will not match what you see in your

editor.

Following through on this topic, let's take a look at the consequences of

code page selection on source code. Here's a trick question. Predict the output

of the following program:

#include <stdio.h>

int cdecl main(int argc, char **argv)

pr intf ("£") ; / / capital C cedil la
return 0;

Why is this a trick question?

I didn't tell you what code page the source code is in. In fact, depending on

what text editor you used, you will get different results. Note: For the purpose

of this discussion, I'll take a U.S.-centric view of the various system code

pages. The ANSI code page will be assumed to be 1252 (Western European),

and the OEM code page 437. The principles involved apply generally, but I

chose these two code pages for concreteness.

Perhaps you created the file from an editor that uses the OEM code page.

This is typical of text-mode editors like edit.com. It's also what you get if you

use the copy con command to create a file directly from the command

prompt:

> copy con test.cpp
#include <stdio.h>

int cdecl main(int argc, char **argv)

{
printf ("?"),; // capital C cedilla
return 0;

1

Ẑ
1 file (s) copied.

If you went the OEM code page route, the character in the source file is 0x8 0,

because that is the value for g in the OEM code page (437).

http://edit.com

382 * & . THE OLD NEW THING

On the other hand, perhaps you used an editor that employs the ANSI

code page, which is typical of graphical editors like Notepad. In that case, the

character in the source file is 0xC7, which is the value for Q in the ANSI code

page (1252).

Because I didn't specify what code page the source file was in, the problem

was underspecified. (Besides, the question was itself an illegal question; the g

character is not part of the required standard source character set. But we're

going to soldier on, anyway, because people often find themselves in this situ

ation and don't understand why they're getting what they're getting.)

Now that we understand the consequences of using non-ASCII characters

on your text editor, let's next look at the consequences on the compiler.

In this case, the compiler doesn't have to do any work. It just takes the bytes

between the quotation marks and emits them into the object file.

In our example in which the source file used the OEM code page, the string

generated into the object file is 0x8 0 0x0 0, because the source file contains

the byte 0x8 0 between the quotation marks. Similarly, in the second example

with the ANSI code page, the string generated into the object file is 0xC7

0x0 0, because in that case, the source file contains the byte 0xC7 between the

quotation marks.

Okay, now that we know how the string being passed to the p r i n t f func

tion is interpreted at compile time, we can next look at how the string behaves

at run time.

Because p r i n t f sends its output to the console, the characters will be dis

played in the OEM code page. In the first case, then, the string 0x8 0 0x0 0 is

interpreted as £, which is what you see on the screen. On the other hand, if

your text editor uses the ANSI code page, then you get the string 0xC7 0x0 0,

which is interpreted as the line-drawing character ||-.

As you can see, the factor that controls what actually gets printed to the

screen isn't the compiler or the runtime; it's your text editor!

And the weirdness doesn't stop there. Let's change the p r i n t f to

MessageBox(NULL, "£", "Test", MB_OK);

If you understood what happened with p r in t f , then predicting what this

will do should be a piece of cake.

CHAPTER SIXTEEN International Programming .s^s 383

If your text editor uses the OEM character set, then, as we noted, the string

generated into the object file is 0x8 0 0x0 0. Because the MessageBox func

tion is a GUI function, it treats 8-bit character strings in the ANSI character

set, which means that 0x8 0 xOO becomes €.

If your text editor uses the ANSI character set, then the string generated

into the object file is 0xC7 0x0 0, which when interpreted in the ANSI char

acter set results in Q,

You might decide that the lesson here is that if you are writing a console

program, you should use a console-based text editor, whereas if you're writing

a GUI program, you should use a GUI text editor. But what if you have a pro

gram that does both? Consider the program that uses both p r i n t f (for

debugging) and MessageBox.

printf("g");
MessageBox(NULL, "Q", "Test", MB_OK) ;

In this case, no matter which editor you use, somebody will lose. But in fact

it's even worse than that.

Instead of using an 8-bit string, let's create a Unicode string in our little

program by changing the p r i n t f and MessageBox calls to

w p r i n t f (L " g ") ;
MessageBoxW(NULL, L"g", L"Test", MB_OK);

Again, there are two cases, depending on whether your text editor uses the

OEM or ANSI code page. As before, let's look at the OEM case first.

When the compiler sees an L " . . . " string, it takes the bytes between the quo

tation marks and converts them to Unicode according to an implementation-

defined mapping between the so-called source character set and the so-called

execution character set. The Microsoft Visual Studio compiler by default uses

the CP_ACP code page to perform this conversion, although you can change this

with the #pragma s e t l o c a l e () directive. (Just what we need, yet another vari

able that influences the interpretation of bytes as characters.)

Taking all this into consideration, we see that the string L"g", if stored in the

OEM character set, comes out as 0x8 0 0x00. When interpreted according to

the CP_ACP code page, the 0x8 0 is treated as the € character. Consequently, the

resulting Unicode string is u+2 0AC u+ 0 0 0 0.

38 4 T H E OLD NEW T H I N G

The wprintf function takes its Unicode input and converts it to 8-bit out

put according to the current locale as set by the s e t l o c a l e function in C or

the s t d : : l o c a l e object in C++. Since we did not modify the locale in our

test program, the runtime library uses the default locale, which is the "C"

locale. The"C" locale is a bare-bones locale that assumes that the 8-bit values

0 to 255 map to the same values 0 to 255 as a wchar_t. Conversely, the map

ping from a wchar_t to an 8-bit value is to convert wchar_t values 0 to 255

to 8-bit values 0 to 255. Wide characters whose values are 256 or greater are

considered inconvertible.

Therefore, when the preceding code fragment is run, the wprintf function

attempts to convert the Unicode string to an 8-bit string, but cannot because

the character U+2 0AC has a numerical value greater than 255. As a result, you

get no output at all from the wprintf, because the conversion from Unicode

failed. (If you step through with the debugger, you'll see that wprintf returns

- 1 , which indicates that an error occurred, and er rno is EILSEQ, which indi

cates an encoding error.)

The call to MessageBoxW is much easier to predict. It prints the € charac

ter, because there is no conversion involved; MessageBoxW can display

Unicode strings directly.

Now let's consider the result if the source code were written in the ANSI

code page. The analysis is similar: The string L"Q", if stored in the ANSI

code page, comes out as 0xC7 0x0 0. Converting this to Unicode according to

the CP_ACP code page results in the rather unsurprising U+00C7 U+0000.

When this string is passed to the wprintf function, the conversion from a

Unicode string to an 8-bit string is successful because all the code points have

numerical values less than or equal to 255. The result is the string 0xC7 0x00,

which appears on the console as the line-drawing character f because the con

sole uses the OEM character set. When that same string is passed to the

MessageBoxW function, it displays as Q, again because MessageBoxW does not

perform any conversion, rendering the Unicode string directly.

Well, that exercise was influenced by the runtime library's choice of "C" as

the default locale. What if we bypass the runtime library and generate our

output directly to the console?

C H A P T E R S I X T E E N International Programming J © N 385

DWORD cchWritten;
WriteConsoleW(GetStdHandle(STDJ}UTPUT_HANDLE), L"C", 1,

&cchWritten, NULL);

As we've already seen, the string that is passed to WriteConsoleW will be

either U+20AC U+0000 or U+00C7 U+0000, depending on whether the source

code is in the OEM or ANSI character set. As we saw with the wprintf func

tion, the U+2 0AC character cannot be converted to the OEM character set, but

instead of failing, the WriteConsoleW function succeeds and prints a question

mark. Working backward, you can infer that the conversion from Unicode to the

OEM character set is performed with the wideCharToMultiByte function,

which by default uses a question mark to represent characters that could not be

converted. On the other hand, if the source code is in the ANSI character set,

the string U+00C7 u+0000 converts to 0x80 0x00 in the OEM character set,

which displays on the screen as a capital C with cedilla.

As I noted earlier, the #pragma s e t l o c a l e () directive adds another wrin

kle to this exercise by changing the rules that govern how the compiler con

verts bytes to characters. As a result, even if you can somehow control which

editor various people are using to edit source code, you still don't know how

8-bit character strings are going to be converted to Unicode. An include file

somewhere may have decided to use that #pragma to change the ambient

code page behind your back.

Believe it or not, it gets even worse than this. We've so far been looking at

the mass mayhem that occurs if you embed characters outside the 7-bit

ASCII character set in your source code. Let's move on to integer promotions.

Consider the following program:
or b

#include <stdio.h>

in t cdecl main(int argc , char **argv)
{

i n t i l = ' C' ;
i n t 12 = L ' C ' ;
p r i n t f (" % d %d\n", i l , i 2) ;

wchar_ t wchl = ' C I ;
wchar_ t wch2 = L'_£' ;

;

386 -SS=s THE OLD NEW THING

printf("%d %d\n", wchl, wch2);

return 0;

}

Ag;
saved

-128
65408

rin, we

in the

8364
8364

: need to

OEMch
look at the two

aracter set,

possible source

the output will be

code character sets. If

Do you understand w

The value of i l is set from an integer character constant. In the OEM

character set, ' g' has the value 0x8 0, which as a signed character has the dec

imal value -128. On the other hand, L' g • follows the rules for 8-bit-to-

Unicode conversion that we saw earlier. The result is the character U+2 0AC,

which has the decimal value 8364. That explains the first line.

On the second line, the values are stored into variables of type wchar_t,

which in Win32 is a 16-bit unsigned type. Consequently, the value -128 is

sign-extended to 0xFF8 0, which then has the unsigned value 65408. The sec

ond value 8364 is determined by the same logic that we used to obtain the

value on the first line.

If the file were saved in the ANSI code page, the output would be

-57 199
65479 199

The character ' g' has the numeric value 0xC7, which as a signed character

has the decimal value -57. When sign-extended to a 16-bit unsigned value, it

becomes 65479. The value 199 is the Unicode code point value for L' g' =

U+00C7.

Observe the importance of distinguishing your 8-bit character literals from

your wide character literals. Adding or removing an L can result in wild

changes in the values you ultimately obtain from the compiler. And if you

don't understand where these results come from, then you may have difficulty

tracking down these issues to the presence or absence of that crucial L.

What's the moral of the story? In my opinion, the moral is never to put

characters that do not fit in the 7-bit ASCII range in source code. As we saw,

hy?

CHAPTER SIXTEEN International Programming ^Sv 387

the interpretation of such characters depends heavily on what type of editor

you use and what language is preferred by the person compiling your pro

gram. The interpretation can also be influenced by what #pragma directives

are buried in your header files. Even worse, the simple error of omitting the L

prefix on character constants can generate the wrong constants.

Given all the variables (many of which may be beyond your control), it is

simply not reasonable to expect that everybody who uses your source code is

going to edit and compile it with the same environmental conditions that you

used. If you need to encode character or string constants that do not fit in the

7-bit ASCII range, specify their code points explicitly. If we change our pre

vious sample program to the following:

#include <stdio.h>

int cdecl main(int argc, char **argv)

int il = '\xC7'•
int 12 = L'\xOOC7';
printf("%d %d\n", il, i2);

int wchl = '\xC7';
int wch2 = L1\x00C7';
printf("%d %d\n", wchl, wch2);

return 0;

}

expressing the character code point explicitly via the \x escape, then the pro

gram no longer depends on the text editor or the ambient code page. If you

find yourself doing this a lot, you may wish to set up some macros:

#define CH_CAPCCEDILLA_85 0 !\xC7' // correct value for code
// page 850

#define WCH_CAPCCEDILLA L'\x00C7'
#define STR_CAPCCEDILLA_8 5 0 "\xC7" // correct value for code

II page 850
ftdefine WSTR_CAPCCEDILLA L"\x00C7"

wprintf(WSTR_CAPCCEDILLA "a va?");

I admit that this technique is extremely unwieldy, but in practice there

should be little need to embed language-specific strings into source code,

file:///x00C7

«©S T H E OLD NEW T H I N G

since all language-specific strings should have been placed into resources to

begin with.

Why is the default 8-bit
J 11 J "A X T C T ' M

code page called A N M r
T H I S A P P A R E N T I N C O N S I S T E N C Y is explained by Kathy Wissink, program

manager at Microsoft:

The term "ANSI" as used to signify Windows code pages is a historical reference, but

is nowadays a misnomer that continues to persist in the Windows community. The

source of this comes from the fact that the Windows code page 1252 was originally

based on an ANSI draft, which became ISO Standard 8859-1. However, in adding

code points to the range reserved for control codes in the ISO standard, the Windows

code page 1252 and subsequent Windows code pages originally based on the ISO

8859-x series deviated from ISO. To this day, it is not uncommon to have the devel

opment community, both within and outside ... Microsoft, confuse the 8859-1 code

page with Windows 1252, as well as see ANSI" or "A' used to signify Windows code

page support.1

J

Why is the default console
code page called "OEM"?

N O T ONLY IS the A N S I code page not actually A N S I , but the O E M code

page isn't actually O E M , either.

Back in the days of M S - D O S , there was only one code page, namely, the

code page that was provided by the original equipment manufacturer in the

form of glyphs embedded in the character generator on the video card. W h e n

Windows came along, the so-called A N S I code page was introduced and the

name OEM was used to refer to the M S - D O S code page.

1. Kathy Wissink, "Unicode and Windows XP," 21st International Unicode Conference, Dublin,
May 2002, available at http://download.microsoft.com/download/5/6/8/56803da0-e4a0-4796-
a62c-ca920b73bbl7/21-Unicode_WinXP.pdf.

http://download.microsoft.com/download/5/6/8/56803da0-e4a0-4796-

C H A P T E R S I X T E E N International Programming *&*. 389

Why the discrepancy between GUI programs and console programs over

how 8-bit characters should be interpreted.

The reason is, of course, historical.

In the long-ago days when MS-DOS reigned, the code page was what today

is called the OEM code page. For U.S.-English systems, this is the code page

with the box-drawing characters and the fragments of the integral signs. It con

tained accented letters, but not a very big set of them, just enough to cover the

German, French, Spanish, and Italian languages. And Swedish. (Why Swedish,

yet not Danish and Norwegian, I don't know.) The characters in the OEM code

page were controlled by the video card provided by the original equipment

manufacturer. (At the time, the original manufacturer was effectively synony

mous with IBM, there being no other significant manufacturer of PCs.)

When Windows came along, it decided that those box-drawing characters

were wasting valuable space that could be used for adding still more accented

characters, so out went the box-drawing characters and in went characters for

Danish, Norwegian, Icelandic, and Canadian French. (As we saw earlier,

Canadian French uses characters that European French does not.)

Thus began the schism between console programs (MS-DOS) and GUI

programs (Windows) over how 8-bit character data should be interpreted.

Over the years, Windows has relied less and less on the character generator

embedded in the video card, to the point that the term OEM character set no

longer has anything to do with the original equipment manufacturer. It is just a

convenient term meaning "the character set used by MS-DOS and console pro

grams." Indeed, if you take a machine running U.S.-English Windows (OEM

code page 437) and install, say, Japanese Windows, then when you boot into

Japanese Windows, you'll find that you now have an OEM code page of 932.

Why is the OEM code page
often called ANSI?

IT HAS BEEN pointed out that the documentation for the cmd.exe program says

/A Causes the output of internal commands to a pipe or file
to be ANSI

390 -SS\ THE OLD NEW THING

even though the output is actually in the OEM code page. Why do errors

such as this persist?

Because ANSI sometimes means OEM.

The "A" versions of the console functions accept characters in the OEM

code page despite the "A" suffix that would suggest ANSI. What's more, if you

call the SetFileAPlsToOEM function, then "A" functions that accept file

names will also interpret the filenames in the OEM code page rather than the

ANSI code page.

I've heard it said that there are two types of people in the world: those who

believe that the world can be divided into two types of people, and those who

do not.

And there are those who mentally divide the world of characters into two

groups: Unicode and 8-bit. And as you can see, many of these people were

involved in the original design of Win32. There are"W" functions (Unicode)

and "A" functions (ANSI). There are no"0" functions (OEM). Instead, the

OEM folks got lumped in with the ANSI folks.

There are also those (like me) who realize the distinction, but out of lazi

ness or convenience often use ANSI as an abbreviation for "an appropriate

8-bit character set, determined from context." In the context of console pro

gramming, the appropriate 8-bit character set is the OEM character set.

Let's take another look at the online help for cmd.exe:

/A Causes the output of internal commands to a pipe or file to be
ANSI

/U Causes the output of internal commands to a pipe or file to be
Unicode

The person who wrote this clearly meant ANSI to mean "that thing that

isn't Unicode." I'll leave you to decide whether this author belongs to the

"Everything is either Unicode or ANSI" camp or the "just being casual" camp.

C H A P T E R S I X T E E N International Programming ^ e ^ 391

Logical but perhaps surprising
consequences of converting between

Unicode and ANSI

CONSIDER THE FOLLOWING code fragment:

WIN3 2_FIND_DATA wfd;
HANDLE hf f = F i n d F i r s t F i l e (" * . x y z " , &wfd) ;
i f (hff != INVALID_HANDLE_VALUE) {

F i n d C l o s e (h f f) ;
HANDLE h = C r e a t e F i l e (w f d . c F i l e N a m e , . . .) ;

If you compile this code as ANSI, you can find yourself in a difficult situa

tion: The F i n d F i r s t F i l e function might return a filename that isn't legal.

The mapping between Unicode and ANSI is not one-to-one. Many

Unicode characters have no equivalent ANSI representation. If you have one

of those characters in a filename, calling the ANSI version of the

F i n d F i r s t F i l e function will return a cFileName with question marks for

the characters that could not be converted. Too bad the question mark is not

a legal filename character. This problem is unavoidable due to the inability of

expressing all Unicode characters in the ANSI character set. When faced

with one of these inexpressible characters, you have to punt.

You might try using the short filename as a fallback, but that won't get you

anywhere if the file system doesn't support short filenames (say, if it's HPFS,

or it's NTFS with short names disabled).

But wait, it's worse.

Even if the string can be converted, remember that there is no requirement

that the length of the Unicode string in WCHARs be the same as the length of

the ANSI equivalent in CHARs. For example, consider the situation in which

the ANSI code page is DBCS and you have a filename consisting of 200

copies of a Unicode character that requires two bytes to represent. This is a

3 9 ^ ^S=N T H E OLD NEW T H I N G

perfectly valid filename, well under the MAX_PATH limit. But if a program

compiled in ANSI tries to find it, the program can't, because the equivalent

ANSI string is 400 CHARS long, which exceeds the MAX_PATH limit.

The solution to all this nonsense is just to use the Unicode versions of the

functions. That way, there is no conversion and no loss of data.

IF I HAD a nickel each time somebody asked for a feature that was a security

hole ...

I'd have a lot of nickels.

We begin this chapter by looking at features that are actually security holes

and then move on to other security-related matters.

World-writable files

"I WANT A file that all users can write to. My program will use it as a common

database of goodies."

This is a security hole. For a start, there's an obvious denial-of-service

attack by having a user open the file in exclusive mode and never letting go.

There's also a data-tampering attack, where the user opens the file and writes

zeros all over it or merely alters the data in subtle ways. Your music index

suddenly lost all its Britney Spears songs. (Then again, maybe that's a good

thing. Sneakier would be to edit the index so that when somebody tries to

play a Britney Spears song, they get Madonna instead.)

393

394 <•*) THE OLD NEW THING

A colleague from the security team pointed out another problem with this

design: disk quotas. Whoever created the file is charged for the disk space

consumed by that file, even if most of the entries in the file belong to some

one else. If you create the file in your Setup program, it will most likely be

owned by an administrator. Administrators are exempt from quotas, which

means that everybody can party data into the file for free! (Particularly devi

ous users might hide the data inside what's known as an NTFS alternate data

stream so that it won't affect normal users of the file.) And if the file is on the

system partition (which it probably is), users can try to fill up all the available

disk space and crash the system.

If you have a shared resource that you want to let people mess with, one

way to do this is with a service. Users do not access the resource directly but

rather go through the service. The service decides what the user is allowed to

do with the resource. Maybe some users are permitted only to increment the

"number of times played" counter, whereas others are allowed to edit the song

titles. If a user is hogging the resource, the server might refuse connections

from that user for a while.

A file doesn't give you this degree of control over what people can do with it.

If you grant write permission to a user, that user can write to any part of the file.

The user can open the file in exclusive mode and prevent anybody else from

accessing it. The user can put fake data in the file in an attempt to confuse the

other users on the machine.

In other words, the user can make a change to the system that impacts how

other users can use the system. This sort of "impact other users" behavior is

something that is reserved for administrators. Unprivileged users should be

allowed only to mess up their own lives; they shouldn't be allowed to mess up

other users' lives.

Hiding hies rrom hxplorer

BY DEFAULT, EXPLORER does not show files that have the FILE_ATTRIBUTE_

HIDDEN flag, because somebody deliberately wanted to hide those files

from view.

CHAPTER SEVENTEEN Security *&. 395

You can, of course, ask that such files be shown anyway by going to Folder

Options and selecting Show hidden files and folders. This shows files and

folders even if they are marked as FILE_ATTRIBUTE_HIDDEN.

On the other hand, files that are marked as both FILE_ATTRIBUTE_

HIDDEN and FILE_ATTRIBUTE_SYSTEM remain hidden from view. These are

typically files that are involved in the plumbing of the operating system; messing

with these can cause various types of "excitement." They are files like the page

file, folder configuration files, and the System Volume Information folder.

If you want to see those files, too, you can uncheck Hide protected operating

system files.

Let's look at how far this game of hide/show Ping-Pong has gone:

t>how Hide

1. Normal file

2. Hidden file

3. Show hidden hies

4. Hidden + System

5. "Show protected operating system files"

Youd think this would be the end of the hide/show arms race, but this

doesn't stop people from wanting to add a sixth level and make something

invisible to Explorer, overriding the five existing levels.

At some point this back and forth has to stop, and for now, it has stopped at

level five. Adding just a sixth level without a seventh would create a security

hole, because it would allow a file to hide from the user. As a matter of security,

a sufficiently privileged user must always have a way of seeing what is there or

at least know that there is something there that can't be seen. Nothing can be
J Ll • • L!

undetectably invisible.

If you add a sixth level that lets a file hide from level five, there must be a

level seven that reveals it.

Stealing passwords

SOMETIMES PEOPLE ASK for features that are such blatant security holes I

don't know what they were thinking.

396 T H E OLD NEW T H I N G

"Is there a way to get the current user's password? I have a program that

does some stuff, then reboots the system, and I want to have the current user's

password so I can log that user back in when I'm done, then my program can

resume its operation."

This is if you're lucky and they explain why they need the user's password.

Often they just come right out and ask for it without any background.

Imagine the fantastic security hole if this were possible. Anybody could

write a program that steals your password without even having to trick you

into typing it. The person would just call the imaginary GetPasswordOf-

CurrentUser function, and bingo! there is your password.

Even if you didn't want the password itself but merely some sort of "cookie"

that could be used to log users on later, you still have a security hole. Let's call

this imaginary function GetPasswordCookieOfCurrentUser; it returns a

"cookie" that can be used to log users on instead of using their password.

This is just a thinly disguised GetPasswordOf CurrentUser because that

"cookie" is equivalent to a password. Log on with the cookie and you are now that

person.

-J

Silent install of uncertified drivers

PROBABLY THE SINGLE greatest source of blue-screen crashes in Windows XP

is buggy device drivers. Because drivers run in kernel mode, no higher authori

ty is checking what they're doing. If some user-mode code runs amok and

corrupts memory, it's just corrupting its own memory. The process eventually

crashes, but the system stays up. On the other hand, if a driver runs amok and

corrupts memory, it's corrupting your system and eventually your machine dies.

In acknowledgment of the importance of having high-quality drivers,

Windows XP warns you when an uncertified driver is being installed. Which

leads to a question from a device driver author.

"When I try to install any driver, I get a User Consent Dialog box that tells

the user that this is an unsigned driver. Is it possible to author a driver instal

lation package that bypasses this user consent dialog box?"

CHAPTER S E V E N T E E N Security jse*v 397

The whole purpose of that dialog is to prevent the situation you desire

from happening! If you don't want the warning dialog, submit your driver for

certification. (For testing purposes, you can sign your drivers with the test

root certificate and install the test root certificate before running your setup

program. Of course, installing the test root certificate also causes the desktop

to read "For test purposes only" as a reminder that your machine is now allow

ing test-signed drivers to be installed.)

Driver writers, of course, find the certification process cumbersome and

will do whatever they can to avoid it. Because, naturally, if they submit their

driver for certification, it might fail! As we saw in "Defrauding the W H Q L

driver certification process" (Chapter 9), this has led to varying degrees of

shenanigans to trick the W H Q L team into certifying a driver different from

the one they intend to use.

My favorite stunt was related to me by a colleague who was installing a

video card driver whose setup program displayed a dialog that read, roughly,

"After clicking OK, do not touch your keyboard or mouse while we prepare

your system." After you click OK, the setup program proceeds to move the

mouse programmatically all over the screen, opening the Display Control

Panel, clicking on the Advanced button, clicking through various other con

figuration dialogs, a flurry of activity for what seems like a half a minute.

When faced with a setup program that does this, your natural reaction is to

scream, "Aaaiiiiigh!"

Your debugging code
can be a security hole

W H E N YOU'RE DEVELOPING your debugging code, don't forget that just

because it's only for debugging doesn't mean that you can forget about security.

I remember one vendor who asked, "We have a service and for testing

purposes we want to be able to connect to this service and extract the private

data that the service is managing, the data that normally nobody should be

allowed to see. That way, we can compare it against what we think the data

39o ^W\ THE OLD NEW THING

should be. This is just for testing purposes and will not be called during normal

operation. How do you recommend we do this?"

Remember that hackers don't care whether the code you wrote was for

normal use or for diagnostic purposes. If it's there, they will attack it.

The vendor went to a lot of effort to protect this internal data, making sure

that none of the service operations disclose it directly, but then in a haze

of "this would make debugging easier," they lost their heads and added a

debugging backdoor that gives direct access to this data that they had worked

so hard to protect.

It doesn't matter how much you protect the front door if you leave the service

entrance wide open.

I have a printer driver that insists on creating a log file in the root of the drive.

This log file, which is world-readable, contains among other things, the URLs of

every single Web page I have printed. If I log on as an administrator and delete

the log file, it just comes back the next time I print a document.

I assume the printer vendor created this log file for diagnostic purposes, but

it also creates a security hole. Everybody on the system can see the URL of

any Web page that was printed by anybody else.

Why shared sections are
a security hole

•

MANY PEOPLE RECOMMEND using shared data sections as a way to share data

between multiple instances of an application. This sounds like a great idea,

but in fact it's a security hole.

Proper shared memory objects created by the CreateFileMapping function

can be secured. They have security descriptors that let you specify which users

are allowed to have what level of access. By contrast, anybody who loads your

EXE or DLL gets access to your shared memory section.

Consider the following program:

#include <stdio .h>
ttinclude <windows.h>

C H A P T E R S E V E N T E E N Security j©k 399

/ / These d i r e c t i v e s p lace the g_iShared v a r i a b l e i n s i d e a shared
/ / memory s e c t i o n .
#pragma comment(linker, "/SECTION:.shared,RWS")
#pragma da ta_seg(" . shared")
i n t g_iShared = 0;
#pragma data_seg()

yoid printitO

char sz [5] ;
sprintf(sz, "%d", g_iShared);
puts(sz);

I

int cdecl main(int argc, char **arqv)

while (true) {
printit();
// ignore the race condition; that's not the point here
int iNew = g_iShared + 1;
if (iNew == 10) iNew = 0;
g_iShared = iNew;
Sleep(1000) ;
}

}_

Go ahead and run this program. It counts from 0 to 9 over and over again.

Because we never let g_iShared go above 9, the s p r i n t f is safe from buffer

overflow.

Or is it?

Run this program. Then use the runas utility to run a second copy of this

program under a different user. For extra fun, make one of the users an admin

istrator and another a nonadministrator.

Notice that the counter counts up at double speed. That's to be expected

because the counter is shared.

Okay, now close one of the copies and relaunch it under a debugger. (It's more

fun if you let the administrator's copy run free and run the nonadministrator's

copy run under a debugger.) Let both programs run, and then break into the

debugger and change the value of the variable g_iShared to something really

big, say, 1000000.

4 0 0 £&< THE OLD NEW THING

Now, depending on how intrusive your debugger is, you might or might

not see the crash. Some debuggers try to be "helpful" and "unshare" shared

memory sections when you change their values from the debugger. Helpful

for debugging (maybe), bad for my demonstration (definitely).

Here's how I did it with the ntsd debugger that comes preinstalled with

Windows XP. (You are not expected to understand all these steps; I provide

it only to "show my work.") I opened a command prompt, which runs as

myself (and I am not an administrator). I then used the runas utility to run

the scratch program as administrator. It is the administrator's copy of the

scratch program that I'm going to cause to crash even though I am just a bor

ing normal nonadministrative user.

From the normal command prompt, I typed ntsd sample to run the scratch

program under the debugger. From the debugger prompt, I typed u main to

disassemble the main function, looking for

01001143 a300300001 mov [g _ i s h a r e d (0 1 0 0 3 0 0 0)] , e a x

(Note: your numbers may differ.) I then typed g 1001143 to instruct the

debugger to execute normally until that instruction is reached. When the

debugger reached that one-time breakpoint, I typed r eax=0nl00000 0; t to

change the value of the eax register to the decimal value 1000000 and then

trace one instruction. That one-instruction trace wrote the out-of-range

value into shared memory, and one second later, the administrator version of

the program crashed with a buffer overflow.

What happened?

Because the memory is shared, all running copies of the scratch program

have access to it. All I did was use the debugger to run a copy of the scratch

program and change the value of the shared memory variable. Because the

variable is shared, the value also changes in the administrator's copy of the

program, which then causes the s p r i n t f buffer to overflow, thereby crashing

the administrator's copy of the program.

You might argue, "Well, obviously the bug is that the program used the

unsafe s p r i n t f function," but you're missing the forest for the trees. Suppose

there is a pointer in the shared memory block. (In practice, because the address

CHAPTER SEVENTEEN Security je^. 401

of a shared memory block is not guaranteed to be the same between processes,

the programmer would have used a so-called based pointer; that is, a pointer rel

ative to another location. This detail does not affect the underlying attack, how

ever, so we will ignore it.) An attacker can corrupt that shared pointer, causing

the copy of the program running under the administrator account to access any

memory you choose. You can set the pointer to a garbage value and get the other

copy of the program to crash, or you can set it to a value that causes the pro

gram to read or modify memory that you find particularly valuable. If there is a

string in the shared memory block, you can remove the null terminator and

cause it to become "impossibly" long, resulting in a potential buffer overflow if

somebody copies it without checking the length. Or you can just modify the

string: Perhaps it's a filename, and you've thereby tricked the administrator's

copy of the program to operate on a file of your choosing.

And if there is a C++ object with a vtable, you have just hit the mother

lode! (The program of course couldn't share the C++ object because the

function pointers wouldn't necessarily be meaningful in other processes,

but perhaps the administrator's copy of the program placed the object in

shared memory even though only no other process actually uses it.) If you

find yourself in this situation, you can redirect the vtable to a bogus vtable

(which you construct in the shared memory section), and put a function

pointer entry in that vtable that points into some code that you generated

(also into the shared memory section) that takes over the machine. (If Data

Execution Prevention is enabled, the scope of the attack is reduced, but there

is still an attack.)

Even the most paranoid program that carefully validates everything in

shared memory before using it is still vulnerable because an attacker can just

modify the shared variables (by filling the page with random numbers, say) to

the point where the program can't make any sense of them any more. The pro

gram may not crash, but you've at least accomplished a denial of service because

whatever those shared variables were supposed to be doing, they sure aren't

doing it now!

Moral of the story: Avoid shared memory sections. Because you cannot

attach an access control list (ACL) to the section, any process which can load

4 0 2 SB< THE OLD NEW THING

your EXE or DLL can modify your variables and cause havoc in another

instance of the program that is running at a higher security level.

Internet Explorer s Enhanced Security
Configuration doesnt trust the intranet

WINDOWS SERVER 2003 comes with a feature called Internet Explorer

Enhanced Security Configuration that cranks the security settings for Explorer

and Internet Explorer through the roof. Think of it as "Internet Explorer with

a tinfoil hat." It's special to the Server edition of Windows because companies

who shell out thousands of dollars for a server-class machine typically don't

want their employees reading online comics on the company's central payroll

database server! The payroll database server should be browsing only to Web

sites that have to do with managing the payroll database server.

One of the more significant changes is that the intranet is considered just as

unsafe as the Internet. Why is that?

Because the intranet is also a scary place.

Any random employee on your intranet can plug in and start hosting Web

pages that are not trustworthy. Server administrators are paranoid and don't

even normally allow scripts to execute.

If there is an intranet site that you do trust, you can add it to your trusted

sites list.

The term intranet is not as well defined as one would like. If you're in a

college dorm, is everybody in your building your "intranet"? Why should you

trust a student two floors downstairs more than you trust a computer in a

country you've never heard of? Many (most?) cable modem providers are set

up so that everybody in your neighborhood is on the same local-area network

(LAN) (gives a whole new meaning to network neighborhood). Why should you

trust that creepy neighbor down the street just because that person lives in

your neighborhood?

C H A P T E R E I G H T E E N

JT / A I
WINDOWS 2000 AND

WINDOWS XP

^™'1

WINDOWS 2000 AND Windows XP continued the evolution of the

Windows user interface introduced in Windows 95. They faced the

dual challenge of changing the user interface while still maintaining backward

compatibility as well as coping with an increasingly hostile software environ

ment. Gone are the days when you could assume that software vendors

wouldn't actively abuse their customers.

Why doesn't the new Start menu use
Intellimenus in the All Programs list?

COMMON REQUEST: "I want to be able to turn on personalized menus

(Intellimenus) when in XP Start Menu mode."

Imagine if Intellimenus were enabled with the XP Start menu.

You use five programs; the rest are not used much. (Studies show that five

is the typical number of unique applications users run on a regular basis. All

the rest are rare.)

Those five programs are on the "most frequently used (MFU) programs"

list on the Start menu.

403

4 0 4 ^SS THE OLD NEW THING

You decide today you want to run some other program, one of those other

programs that you run rarely

You click All Programs.

You can't find the program because it was hidden by Intellimenus because

it's a rarely run program. If it were a popular program, it would be on the

MFU already!

If you are a naive user, you say, "Hey, who uninstalled all my programs? It's

missing from All Programs!" It's kind of a misnomer to call it "All Programs"

when in fact it doesn't show all your programs.

If you are an experienced user, you say, "Sigh, why do I have to keep click

ing this chevron? The whole reason I'm going to All Programs' is that I want

to run a program I haven't run in a long time, dub. The chevrons should be

pre-expanded, save me a click!"

In other words, if we had Intellimenus enabled on All Programs, it would

just show you your MFU again, because the MFU and Intellimenus are both

showing the same information, just in different ways. That's clearly pointless.

Think of All Programs as a really hig chevron. The MFU is the collapsed

version. All Programs is the expanded version.

Why is there no programmatic access
to the Start menu pin list?

W E LEARNED OUR lesson the hard way.

In the earlier, simpler days, Windows was designed in a more open manner.

Internal file formats were documented. Programs could manipulate the sys

tem in a wide variety of ways. The assumption was that software developers

would exercise this power responsibly and for the benefit of the user. After all,

if a program abused its customers, it wouldn't have customers for very long.

Programs therefore had an incentive to treat the user with respect. That

was then.

In Windows 95, we gave programmatic access to the Start menu "Fast

items" list, the list of items that appear at the top of the classic Start menu

C H A P T E R EIGHTEEN Windows 2000 and Windows XP 4 0 5

above the Programs list. This area was meant for users to customize with

their favorite links, but programs quickly saw an opportunity and added

themselves to it every chance they got.

In Internet Explorer, we gave programmatic access to the Favorites menu,

and once again, programs took it upon themselves to add an entry to it.

In Windows XP, we intentionally did not give programmatic access to the

bold list of items at the top of the Start menu (the "pin list"). The pin list is

for users to list their favorite icons. It is not the place for a program to decide

unilaterally, "I am so cool. I am your favorite icon. I just know it. So I'll put

myself there because, well, I'm so cool."

From our experience with the Fast Items list and the Favorites menu, we

knew that the moment we let programs mess with the pin list, they would

install themselves into it, and the pin list would become meaningless (and

annoying).

What's particularly galling are the programs that, as part of their install,

decide that they are so cool they want to be everywhere to make sure you don't

miss out on the coolest most amazing program ever written in the history of mankind,

so they go into the Start menu, into the Fast items, and onto the desktop.

They go into the Quick Launch, onto your Favorites, and take over as your

default autoplay handler. They even hang out as an icon next to the clock on

the taskbar just in case you somehow missed all those other places. And each

time you run them, they go and re-create those icons and settings in case you

"accidentally lost them."

I hate those programs.

There are plenty of other examples of things for which there exist no pro

grammatic control out of fear that the power would be used for evil. There is

no interface for manipulating the taskbar notification icons of another program,

nor is there one for adding or removing a band in the taskbar. Imagine the

havoc if programs were allowed to manipulate these highly sensitive components

of the user interface.

System policies suffer as a consequence of all these decisions. Each system

policy that controls these highly attractive features becomes an attractive target

for these unscrupulous programs. Your typical home user does not have a

4 0 6 ^ S ^ THE OLD NEW THING

domain. Under this configuration, there is no domain policy to override local

machine policy, and therefore a malicious program can abuse the user by setting

a local machine policy that promotes their program.

We're sorry it turned out this way, but at least I hope you'll understand

what brought us to this state.

Why does Windows XP Service Pack 2
sometimes rorget

my CD autoplay settings?

IT DIDN'T FORGET them; it's just double-checking with you.

There were two problems with the way the original version of Windows

XP handled CD autoplay.

First, when you installed a new program that included CD autoplay capa

bility, many users didn't know how to select that new program as their default

CD autoplay program. If they had previously selected a program and ticked

"Always perform this action," there was no easily discoverable way to undo the

"always" flag to make the dialog reappear and allow the user to select the new

program instead.

Second, many programs, upon installation, secretly hacked the undocu

mented CD autoplay settings to set themselves as the default CD autoplay

handler, gleefully overriding the user's previously stated preference (because

these programs egotistically believed themselves to be the coolest most amazing

program ever written in the history of mankind).

In other words, the two problems were, "I just installed this program and I

want it to be the CD autoplay program," and its converse, "I just installed this

program and I don't want it to be the CD autoplay program."

Windows XP Service Pack 2 (SP2) introduced new behavior related to

CD autoplay in an attempt to address these problems: When it sees that a

new CD autoplay handler is available, it shows you the CD autoplay dialog

one more time. This gives you a chance to (a) pick that new program you just

CHAPTER E I G H T E E N Windows 2000 and Windows XP s~< 4 0 7

installed, or (b) unpick that program you just installed (if it was presumptu

ously rude enough to set itself as your default).

The first time you insert a CD into your computer after upgrading to

Windows XP SP2, you will also get the CD autoplay dialog. This is a "better

late than never" dialog to cover for any handlers that were installed before you

upgraded to Windows XP SP2.

What's the moral of the story? Whereas in the old days you only had to

worry about helping other programmers interface with your feature, in the

new software landscape you also have to worry about stopping programmers

who are trying to abuse your interface.

The unsafe device removal dialog

WHAT WAS THE deal with the unsafe device removal dialog in Windows

2000, and why is it gone in Windows XP?

When Windows 2000 showed the unsafe device removal dialog, the device

was indeed removed unsafely. If it was a USB storage device, for example, there

may have been dirty I /O buffers. If it were a printer, there may have been an

active print job. The USB subsystem doesn't know for sure. (Those are concepts

at a higher layer that the USB subsystem doesn't know about.) All it knows is

that it had an active channel with the device and now the device is gone, so it

gets upset and yells at you.

In Windows XP, it still gets upset, but it now keeps its mouth shut. You're

now on your honor not to rip out your USB drive while a program still has a

file open on the drive, to wait two seconds for all I /O to flush before remov

ing the drive, not to unplug your printer while a job is printing, etc. If you do,

your drive gets corrupted or a print job is lost and you're on your own.

The "Safely Remove Hardware" icon is still there, and it still works. All that

changed is that Windows XP no longer scolds you when you remove a device

unexpectedly. Personally, I recommend using the "Safely Remove Hardware"

icon anyway. More than once that icon saved me when I thought I had exited

4 0 8 <S^s T H E OLD NEW T H I N G

all programs that were using my USB drive, only to have the "Safely Remove

Hardware" icon remind me that I had forgotten one of them.

Two brief reminiscences on the
Windows XP Comments? button

IN BETA VERSIONS of Windows XP, there was special code in the window

manager to give every window a link in the upper-right corner called Comments?

which if clicked displayed a dialog that allowed you to submit feedback to

Microsoft about that window.

Because this was a beta release, there was no anonymity when you submitted

feedback. (You signed away your anonymity when you agreed to the special

beta license agreement and typed in your beta ID number.) Yet we got more

than one feedback submission that began, "Hi, I pirated this copy of Windows

XP, and here's some feedback."

In its initial incarnation, the word in the title bar was Lame, but people with

a weaker sense of humor changed it to the less-confrontational Comments?

The name Lame was a tribute to a recurring sketch on a local comedy show

Almost Live! called "The Lame List, or What's Weak This Week (brought to

you with the help of Seattle's Heavy Metal community)." In this sketch, mem

bers of the Seattle band Soundgarden would respond to proposed topics by

shouting "Lame!" It was a simple but oddly effectively sketch.

Why does Explorer eject the CD
after you finish burning it?

PARTLY AS A convenience, but partly to work around buggy hardware.

Most CD drives cache information about the disc in their internal memory

to improve performance. However, some drives have a bug where they fail to

update the cache after the CD has been written to. As a result, you can write

some data to a CD, then ask the CD drive for the data you just wrote, and it

CHAPTER EIGHTEEN Windows 2000 and Windows XP s^ 409

won't be there! The drive is returning the old cached data rather than the new

data. For most drives, ejecting and reinserting the CD is enough to force the

drive to update its internal cache.

"But wait, it gets worse!" I'm told.

Some drives are "smart" and realize you've reinserted the same media, and

then don't update. These drives require that you put in another type of media

(or pressed CD-ROM media) to force them to update. These drives were

manufactured around 2002, and new drives don't have it this bad, but some

still have the above problem requiring an eject/insert cycle.

So there's your tip for the day. If you are burning data to a CD and you find

the data isn't there, try ejecting the disc and reinserting it. If your drive is

particularly buggy, you'll have to eject the disc, insert a different disc, and then

eject that second disc and reinsert the first one.

Why does Windows setup
lay down a new boot sector?

BECAUSE THE ALTERNATIVE is worse.

You would expect that after installing an operating system, the operating

system should boot. If your boot sector is damaged—perhaps because this is

a brand new hard drive with no boot sector, or because it was infected with a

boot sector virus—you expect the operating system's setup program to

replace the boot sector with a good one. If it didn't, you'd have an operating

system that didn't boot.

Not the greatest introduction to a new operating system.

I know some people are going to suggest, "Why doesn't the setup program

ask before overwriting the boot sector?" But think about it. It's Christmas

Day, you're installing Windows XP on your computer, you go through the

setup process, and it asks you a question you can't answer. "Gosh, the comput

er says that I have a custom boot sector. It says that this could be for legiti

mate reasons, or it could be due to a virus. How the heck am I supposed to

know the difference?" That's assuming they even read the dialog. A much

4-IO 3&* T H E OLD NEW T H I N G

more realistic scenario is, "Eek! The computer is asking me a scary question!

How do I cancel out of this? I hate computers. They're so hard to use."

Yes, this means that if you are an ultradweeb with a custom boot sector, you

will lose it when you install Windows. But Windows isn't picking on you. It even

destroys itself. If you take a Windows XP machine and install Windows 2000

onto it, the Windows 2000 setup program will lay down a new boot sector that

knows how to boot Windows 2000 but doesn't know about Windows XP. You'll

have to restore the Windows XP boot files to restore that functionality.

Things are a little better starting with Windows XP SP2 and Windows

Server 2003 SP1, though. Those and future versions of Windows setup check

the version of the Windows N T boot loader file and will leave a newer

version of the boot loader intact rather than overwriting it with an older

version.

Psychic debugging: Why your expensive
four-processor machine is ignoring

three of its processors

O N ONE OF our internal mailing lists, someone was wondering why his

expensive four-processor computer appeared to be using only one of its

processors. From Task Manager's Performance tab, the chart showed that the

first processor was doing all the work and the other three processors were sitting

idle. Using Task Manager to set each process's processor affinity to use all four

processors made the computer run much faster, of course. What happened

that messed up all the processor affinities?

At this point, I invoked my psychic powers. Perhaps you can, too.

First hint: My psychic powers successfully predicted that Explorer also had

its processor affinity set to use only the first processor.

Second hint: Processor affinity is inherited by child processes.

Here was my psychic prediction:

C H A P T E R E I G H T E E N Windows 2000 and Windows XP £&< 411

"My psychic powers tell me that

Explorer has had its thread affinity set to one processor ...

• because you previewed an M P G file ...

• whose decoder calls S e t P r o c e s s A f f i n i t y M a s k in its

DLL_PROCESS_ATTACH . . .

• because the authors of the decoder couldn't fix their multiprocessor

bugs ...

• and therefore locked the process's thread affinity to a single processor

in order to 'fix' the bugs."

Although my first psychic prediction was correct, the others were wide of

the mark, although they were on the right track and successfully guided fur

ther investigation to uncover the culprit.

The real problem was that there was a third-party shell extension whose

authors presumably weren't able to fix their multiprocessor bugs, so they

decided to mask them by calling the S e t P r o c e s s A f f i n i t y M a s k function to

lock the current process (Explorer) to a single processor. Woo-hoo, we fixed

all our multiprocessor bugs at one fell swoop! Let's all go out and celebrate!

Because processor affinity is inherited, every program launched by Explorer

winds up using only one of the four available processors. O n e bad shell exten

sion can ruin your whole day.

(Yes, the vendor of the offending shell extension has been contacted, and they

claim that the problem has been fixed in more recent versions of the software.)

Psychic debugging: Why your CPU usage
is hovering at 50%

SOMETIMES PSYCHIC DEBUGGING consists merely of seeing the bigger picture.

O n one of our internal bug-reporting mailing lists, someone asked, "How

come when I do X Y Z , my C P U usage goes to 50%?"

My psychic answer: "Because you have two processors."

412 S E \ THE OLD NEW THING

T h e response was genuine surprise and amazement. H o w did I know they

had two processors? Simple: If they had only one processor, the C P U usage

would be 100%. This seems unhelpful on its face, but it actually does help

diagnose the problem, because now they can search the bug database for bugs

in the X Y Z feature tagged "100% C P U " to see whether any of those apply to

their situation. (And in this case, it turns out that one did.)

What's the deal with
the DS_SHELLFONT flag?

I T I N D I C A T E S T H A T you want the Windows 2000 default shell font. But that

doesn't mean that you're going to get it.

To indicate that you would like the "Windows 2000" look for your dialog,

you have to do three things and hope for a fourth:

• Use a DIALOGEX template rather than a DIALOG template.

• Set the DS_SHELLFONT flag in your dialog styles.

• Set the dialog font to M S Shell Dig.

• Hope that you're running on Windows 2000 or later on a system

that has the new Windows 2000 dialog font enabled.

If all four conditions are satisfied, your dialog gets the Windows 2000 look.

If any condition fails, you get the "classic" dialog font. Note that the fourth

condition is not within your program's control. Consequently, you have to make

sure your dialog looks good in both the classic dialog font and the new one.

For property sheet pages, things are more complicated.

It would be visually jarring for there to be a mix of fonts on a property

sheet. You wouldn't want the Advanced but ton to be in M S Sans Serif but the

Apply button in Tahoma. To avoid this problem, the property sheet manager

looks at all the pages in the property sheet. If they are all using the Windows

2000 look, the property sheet uses the Windows 2000 look, too. But if there

is even a single page that does not use the Windows 2000 look, the property

CHAPTER EIGHTEEN Windows 2000 and Windows XP ^S\ 413

sheet reverts to the classic look and converts all the Windows 2000-look pages to

classic look.

In this way all the pages in the property sheet have the classic look instead

of having a mishmash of some pages with the classic look and some with the

Windows 2000 look.

That's why you will occasionally find that a shell property sheet has reverted

to the classic look. Some shell extension infected the property sheet with a

page that does not have the Windows 2000 look, and for the sake of visual

consistency the property sheet manager set all the pages on the property sheet

to classic look.

This is another reason it is important that you test your property sheet

pages both with the Windows 2000 look and the classic look. If your property

sheet page ends up sharing a property sheet with a non-Windows 2000-look

page, your page is going to be reverted to classic look.

Why does DS_SHELLFONT =
DS_FIXEDSYS | DS_SETFONT?

You MIGHT HAVE noticed that the numeric value of the DS_SHELLFONT flag

is equa l t o DS_FIXEDSYS | DS_SETFONT.

#define DSJ3ETFONT 0x40L
#define DS_FIXEDSYS 0x0O08L
#define DS_SHELLFONT (DS_SETFONT | DS_FIXEDSYS)

Surely that isn't a coincidence.

The value of the DS_SHELLFONT flag was chosen so that older operating

systems (Windows 95, Windows 98, Windows N T 4) would accept the flag

while nevertheless ignoring it. This allowed people to write a single program

that got the Windows 2000 look when running on Windows 2000 and got

the classic look when running on older systems. (If you make people have to

write two versions of their program, one that runs on all systems and one that

runs only on the newer system and looks slightly cooler, they will usually not

bother writing the second one.)

414 ^ ^ N THE OLD NEW THING

The DS_FIXEDSYS flag met these conditions. Older systems accepted the

flag because it was indeed a valid flag, but they also ignored it because the

DS_SETFONT flag takes precedence.

This is one of those backward compatibility exercises: How do you design

something so that it is possible to write one program that gets the new features

on new systems while at the same time degrading gracefully on old systems?

What other effects does
DS S H E L L F O N T have on

—

property sheet pages?
W H E N YOU INVENT a new flag, you can start using it to fix errors of the past

without breaking backward compatibility.

One of the errors of the past was that property sheet page dimensions were

taken relative to the MS Sans Serif font, even if the page used some other font.

DLG_SAMPLE DIALOGEX 32, 32, 212, 188
CAPTION "Caption"
FONT "Luc ida Sans Unicode"

This sample dialog template says that it is 212 dialog units (DLUs) wide

and 188 DLUs tall. If the dialog template were used for a standalone dialog,

those DLU values would be calculated relative to the font on the dialog,

namely Lucida Sans Unicode.

However, if the dialog template were used for a property sheet page, earlier

versions of Windows would interpret the values 212 and 188 relative to the

font of the property sheet frame (usually MS Sans Serif), not relative to the font

associated with the page itself. Many people worked around this problem by

giving their pages pre-adjusted sizes, so that when Windows measured the

dialog against MS Sans Serif, the adjustments cancelled out.

In other words, suppose that Lucida Sans Unicode is 25% wider than MS

Sans Serif. (I'm just making up numbers.) Then to get a 212-DLU-wide dialog

CHAPTER EIGHTEEN Windows 2000 and Windows XP ^ ^ 415

relative to Lucida Sans Unicode, the dialog template would specify a width of

212 DLU + 25% = 265 DLU
Because people were now relying on this behavior, it couldn't be changed. If

you went in and "fixed" it, all those pre-adjusted dialogs would now come out

at the wrong size.

Ah, but now there is a new flag, DS_SHELLFONT. Starting in Windows

2000, if you specify the DS_SHELLFONT dialog style for your DIALOGEX dialog

template, the dialog dimensions are taken relative to the font you specified in

your template (which is probably what you wanted) rather than relative to

the property sheet frame font. If you leave off the flag (as older programs will),

the property sheet measurement code remains bug-for-bug compatible with

previous versions.

C H A P T E R N I N E T E E N

SJ& LI
W I N 3 2 DESIGN ISSUES

\
am

Jr jf

,,;,'

BY NOW YOU'VE probably gotten a feel for some of the types of decisions

that went into the design of Win32. Making it easier to port a program

from 16-bit Windows to 32-bit Windows, for example, was a major motivator

in the early days. Here, we dig a little deeper into the philosophy of Win32,

starting with how Win32 was shaped by lessons learned from 16-bit Windows.

J

Why does Win32 fail a module load
if an import could not be resolved?

BECAUSE WE TRIED it the other way and it was much worse.

In 16-bit Windows, a module that didn't satisfy all its imports would still

load. So long as you didn't call a missing import, you were fine. If you did try

to call a missing import, you crashed pretty spectacularly with the dreaded

Unrecoverable Application Error dialog.

The Win32 folks decided that this was a bad design, because often people

would take Fred Application, designed for Windows 3.1, and run it on Windows

3.0, and it would run great for about an hour, at which point Fred Application

417

418 J 0 k THE OLD NEW THING

would call a function that was available only in Windows 3.1 (such as, say,

GetSaveFileName) and crash as a result.

The Win32 folks decided that if an import could not be resolved, the

program should fail loading. If the makers of Fred Application wanted to run

on Windows 3.0 after all, they could indicate this by using GetProcAddress

explicitly. Because if you have to call GetProcAddress explicitly, it'll probably

occur to you to check the return value.

This issue comes up occasionally when people wish out loud, "Gosh, there

should be a way I could mark an import as optional.' If an optional import

can't be resolved, the load should not fail. It would be the program's responsi

bility to verify that the bind succeeded before calling it." These people are

unwittingly asking for history to repeat itself.

Note that Microsoft's Visual C linker does provide functionality called

"delay-load" that allows you to return to something similar to the 16-bit Win

dows behavior regarding missing imports. References to functions in a

dynamic-link library that has been marked for delay-loading are not resolved

until the first time each function is called. If the function does not exist, an

exception is raised (although you can override this behavior).

Why are structure sizes checked strictly?

You MIGHT HAVE noticed that Windows as a general rule checks structure

sizes strictly. For example, consider the MENUITEMINFO structure:

typedef struct tagMENUITEMINFO {
UINT cbSize;
UINT fMask;
UINT fType;
UINT fState;
UINT WID;
HMENU hSubMenu;
HBITMAP hbmpChecked;
HBITMAP hbmpUnchecked;
ULONG_PTR dwItemData;
LPTSTR dwTypeData;

CHAPTER N I N E T E E N Win32 Design Issues 419

UINT CCh;
#if(WINVER > = 0x0500)

HBITMAP hbmpltem; // available only on Windows 2000 and higher
#endif
} MENUITEMINFO, *LPMENUITEMINFO;

Notice that the size of this structure changes depending on whether WINVER

>= 0x05 00 (that is, whether you are targeting Windows 2000 or later). If you

take the Windows 2000 version of this structure and pass it to Windows N T 4,

the call will fail because the sizes don't match.

"But the old version of the operating system should accept any size that is

greater than or equal to the size it expects. A larger value means that the struc

ture came from a newer version of the program, and it should just ignore the

parts it doesn't understand."

We tried that. It didn't work.

Consider the following imaginary-sized structure and a function that con

sumes it. This will be used as the guinea pig for the discussion to follow:

typedef struct taglMAGINARY
UINT cbSize;
BOOL fDance;
BOOL fSing;

#if IMAGINARYJVERSION > = 2
// v2 added new features
IServiceProvider *psp; // where to get more info

#endif
} IMAGINARY;

// perform the actions you specify
STDAPI DoImaginaryThing(const IMAGINARY *pimg);

// query what things are currently happening
STDAPI GetlmaginaryThingtIMAGINARY *pimg);

First, we found lots of programs that simply forgot to initialize the cbSize

member altogether:

IMAGINARY img;
img.f Dance = TRUE;
img.fSing = FALSE;
DoImaginaryThing(&img)

4 2 0 JSv. THE OLD NEW THING

They got stack garbage as their size. The stack garbage happened to be a large

number, so it passed the "greater than or equal to the expected cbSize" test and

the code worked. Then the next version of the header file expanded the structure,

using the cbSize to detect whether the caller is using the old or new style. Now,

the stack garbage is still greater than or equal to the new cbSize, so version 2

of DolmaginaryThing says, "Oh cool, this is somebody who wants to provide

additional information via the iServiceProvider field." Except of course that

there is no psp member in the structure that the program allocated. Version 2

of DolmaginaryThing ends up reading from whatever memory happens to follow

the version 1 IMAGINARY structure, which is highly unlikely to be a pointer to

an IServiceProvider interface. The most likely result is a crash when

version 2 tries to call the IServiceProvider : :QueryService method on an

invalid pointer.

Now consider this related scenario:

IMAGINARY img;
GetlmaginaryThing(&img);

The next version of the header file expanded the structure, and the stack

garbage happened to be a large number, so it passed the "greater than or equal

to the expected cbSize" test, so it returned not just the f Dance and f Sing

flags, but also returned a psp. Oops, but the caller was compiled with version 1,

so its structure doesn't have a psp member. The psp gets written past the end

of the structure, corrupting whatever came after it in memory. Ah, so now we

have one of those dreaded buffer overflow bugs.

Even if you were lucky and the memory that came afterward was safe

to corrupt, you still have a bug: By the rules of C O M reference counts,

when a function returns an interface pointer, it is the caller's responsibility

to release the pointer when no longer needed. But the caller that was

compiled with version 1 of the header file doesn't know about this psp

member, so it certainly doesn't know that it needs to be Release () d. So

now, in addition to memory corruption (as if that wasn't bad enough),

you also have a memory leak.

CHAPTER NINETEEN Win32 Design Issues 4 2 1

Wait, I'm not done yet. Now let's see what happens when a program

written in the future runs on an older system.

Suppose somebody is writing a program intending it to be run on version 2.

The program sets the cbSize to the larger version 2 structure size and sets the

psp member to a service provider that performs security checks before allow

ing any singing or dancing to take place (for example, makes sure everybody

paid the entrance fee). Now somebody takes this program and runs it on

version 1. The new version 2 structure size passes the "greater than or equal to

the version 1 structure size" test, so version 1 will accept the structure and Do

the ImaginaryThing. Except that version 1 didn't support the psp field, so your

service provider never gets called and your security module is bypassed. Now

everybody is coming into your club without paying.

Now, you might say, "Well those are just buggy programs. They deserve to

lose." You might be able to argue this for the first case of a caller who failed to

initialize the cbSize member, but what of the caller who is expecting version 2

but gets version 1 instead? If you stand by that argument, prepare to take the

heat when you read magazine articles like "Microsoft intentionally designed

<Product X> to be incompatible with <software from a major competitors

Where is the Justice Department when you need them?"

Why do I have to return this goofy value
for WM_DEVICECHANGE?

To DENY A device removal query, you must return the special value BROADCAST_

QUERY_DENY, which has the curious value 0x424D5144. What's the story

behind that?

Well, we first tried following the pattern set by WM_QUERYENDSESSION,

where returning TRUE allows the operation to proceed and returning FALSE

causes the operation to fail. But when we did this, we found that lots of pro

grams were denying all Plug and Play removal requests—programs that were

written for Windows 3.1 which didn't have Plug and Play! How could this be?

4 2 2 5 ^ T H E OLD N E W T H I N G

These programs decided, "Well, I have the Windows 3.1 documentation

right here in front of me and I looked at all the messages. The ones I care

about, I handled, and for all the others, I will just return zero instead of calling

DefWindowProc." And they managed to get this to work in Windows 3.1

because they read the SDK carefully and found the five or six messages that

require a nonzero return value and made sure to return that nonzero value.

The rest got zero.

And then when we added a new message that required a nonzero return

value (which DefWindowProc provided), these programs continued to return

zero and caused all device removal queries to fail.

So we had to change the "cancel" return value to something that wasn't zero.

To play it extra safe, we also made the "cancel" return value something other

than 1, because we suspected that there would be lots of programs who were

just returning TRUE to all messages and we didn't want to have to rewrite the

specification another time.

That's why the special return value is 0x424D5l44: It's a value that nobody

is likely to be returning by mistake. (And if you know your ASCII character

codes, you recognize it as the letters BMQD, which stand for "broadcast

message query deny.")

The arms race between
programs and users

THERE IS A constant struggle between people who write programs and the

people who actually use them. For example, you often see questions such as,

"How do I make my program so the user can't kill it?"

Now, imagine if there were a way to do this. Ask yourself, "What would the

be like lr this were possible?

Well, then there would be some program, say, xyz.exe, that is unkillable.

Now suppose you're the user. There's this program xyz.exe that has gone hay

wire, so you want to exit it. But it won't let you exit. So you try to kill it, but

you can't kill it, either.

C H A P T E R N I N E T E E N Win32 Design Issues 423

This is just one of several arms races that you can imagine.

"I don't want anybody to kill my process" versus "How do I kill this run

away process?"

• "I want to shove this critical dialog in the user's face" versus "How do

I stop programs from stealing focus?"

• "I don't want anybody to delete this file" versus "How do I delete

this file that refuses to be deleted?"

• "How do I prevent this program from showing up in Task

Manager?" versus "How can I see all the programs that are running

on my computer?"

Eventually you have to decide which side wins, and Windows has decided

to keep users in control of their own programs and data, keep administrators

in control of their own computer, and keep network administrators in control

of all computers on the network. Thus , users can kill any process they want

(given sufficient privileges), they can stop any program from stealing focus,

and they can delete any file they want (again, given sufficient privileges).

Programs can try to make themselves more difficult to kill (deny PROCESS_

TERMINATE access, deny PROCESS_CREATE_THREAD access so that people can't

Crea teRemoteThread(EndProcess) , deny PROCESS_VM_WRITE so that peo

ple can't scribble into your stack and make you double fault, deny PROCESS_

SUSPEND_RESUME SO that they can't suspend you), but eventually you just can't

stop them from, say, elevating to Debug privilege, debugging your process, and

jumping to E x i t P r o c e s s .

Notice that you can kill CSRSS. EXE and WINLOGON . EXE if you like. Your

computer will get very angry at you, but you can do it. (Save your work first!)

Another useful question to ask yourself: "What's to prevent a virus from

doing the same thing?" If there were a way to do these things, then a virus

could take advantage of them and make itself invisible to Task Manager,

undeletable, and unkillable. Clearly you don't want that, do you?

4 2 4 T H E OLD NEW T H I N G

Why cant you trap TerminateProcess?

IF A USER fires up Task Manager and clicks the End Task button on the

Applications tab, Windows first tries to shut down your program nicely, by send

ing WM_CLOSE messages to GUI programs and CTRL_CLOSE_EVENT events to

console programs. But you don't get a chance to intercept TerminateProcess.

Why not?

TerminateProcess is the low-level process-killing function. It bypasses

DLL_PROCESS_DETACH and anything else in the process. When you kill with

TerminateProcess, no more user-mode code will run in that process. It's

gone. Do not pass go. Do not collect $200.

If you could intercept TerminateProcess, you would be escalating the

arms race between programs and users. Suppose you could intercept it. Well,

then if you wanted to make your program unkillable, you would just hand in

your TerminateProcess handler! And then people would ask for "a way to

kill a process that is refusing to be killed with TerminateProcess," and we'd

be back to where we started.

Why do some processes stay in
Task Manager after they've been killed?

W H E N A PROCESS ends (either of natural causes or because of something

harsher like TerminateProcess), the user-mode part of the process is thrown

away. But the kernel-mode part can't go away until all drivers are finished with

the thread, too.

For example, if a thread was in the middle of an I /O operation, the kernel

signals to the driver responsible for the I /O that the operation should be

cancelled. If the driver is well-behaved, it cleans up the bookkeeping for the

incomplete I /O and releases the thread.

If the driver is not as well behaved (or if the hardware that the driver is man

aging is behaving strangely), it may take a long time for the driver to clean up the

CHAPTER NINETEEN Win32 Design Issues ^e^ 425

incomplete I/O. During that time, the driver holds that thread (and therefore

the process that the thread belongs to) hostage. This is a simplification of what

actually goes on, but it's close enough for the purpose of this discussion.

Note to kernel-mode debugging nerds: If you think your problem is a

wedged driver, you can drop into the kernel debugger, find the process that is

stuck, and look at its threads to see why they aren't exiting. You can use the

! i r p debugger command to view any pending IRPs (I /O request packets) to

see what device is not completing.

After all the drivers have acknowledged the death of the process, the meat

of the process finally goes away. All that remains is the process object, which

lingers until all handles to the process and all the threads in the process have

been closed. (You did remember to CloseHandle the handles returned in the

PROCESS_lNFORMATION structure that you passed to the CreateProcess

function, didn't you?)

In other words, if a process hangs around after you've terminated it, it's really

dead, but its corpse will remain in the system until all drivers have cleaned up

their process bookkeeping, and all open handles to the process have been closed.

Understanding the consequences
ofWAlT_ABANDONED

O N E OF THE important distinctions between mutexes and the other synchro

nization objects is that mutexes have owners. If the thread that owns a mutex

exits without releasing the mutex, the mutex is automatically released on the

thread's behalf.

But if this happens, you're in big trouble.

One thing many people gloss over is the WAlT_ABANDONED return value

from the synchronization functions such as WaitForSingleObject. They

typically treat this as a successful wait, because it does mean that the object

was obtained, but it also tells you that the previous owner left the mutex

abandoned and that the system had to release it on the owner's behalf.

Why are you in big trouble when this happens?

4 2 6 OBS. THE OLD NEW THING

Presumably you created that mutex to protect multiple threads from

accessing a shared object while it is an unstable state. Code enters the mutex,

then starts manipulating the object, temporarily making it unstable, but even

tually restabilizes it, and then releases the mutex so that other threads can

access the object.

For example, you might have code that manages an anchored doubly linked

list in shared memory that goes like this:

void MyClass::ReverseList()

{
WaitForSingleObject(hMutex, INFINITE);
int i = 0; // anchor
do {
int next = m_items[i].m_next;
m_items[i].m_next = m_items[i].m_prev;
m_items[i].m_prev = next;
i = next;

} while (i != 0) ;
ReleaseMutex(hMutex);
}

There is nothing particularly exciting going on. Basic stuff, right?

But what if the program crashes while holding the mutex? (If you believe

that your programs are bug-free, consider the possibility that the program is

running over the network and the network goes down, leading to an in-page

exception. Or simply that the user went to Task Manager and terminated

your program while this function is running.)

In that case, the mutex is automatically released by the operating system,

leaving the linked list in a corrupted state. The next program to claim the

mutex will receive WAlT_ABANDONED as the status code. If you ignore that

status code, you end up operating on a corrupted linked list. Depending on

how that linked list is used, it might result in a resource leak or the system

creating an unintended second copy of something, or perhaps even a crash.

The unfortunate demise of one program causes other programs to start

behaving strangely.

Then again, the question remains, "What do you do, then, if you get

WAlT_ABANDONED?"The answer is, "Good question."

CHAPTER NINETEEN Win32 Design Issues ^ s 427

You might try to repair the corruption, if you keep enough auxiliary infor

mation around to recover a consistent state. You might even design your data

structures to be transactional, so that the death of a thread manipulating the

data structures does not leave them in a corrupted state. Or you might just

decide that because things are corrupted, you should throw away everything

and start over, losing the state of work in progress, but at least allowing new

work to proceed unhindered. (Although in this case, you probably should let

the user know that there was loss of data.)

Or you might just choose to ignore the error and continue onward with a

corrupt data structure, hoping that whatever went wrong won't result in cas

cade failures down the line. This is what most people do, although usually

without even being aware that they're doing it. And it's really hard to debug

the crashes that result from this approach.

Exercise: Why did we use subscripts instead of pointers in our linked list

data structure?

Answer: Because the data structure resides in shared memory, it can have a

different virtual address in different processes; therefore, simple pointers can

not be used because the address of a particular element varies depending on

which process is looking at it. Therefore, some sort of relative addressing is

necessary, and subscripts are one way of implementing said relative addressing.

Why cant I put hyperlinks in notification
icon balloon tips?

THE SHORT ANSWER: because there is no NIF_PARSELINKS flag.

The long answer:

When balloon tips were first developed, there was no support for links.

Consequently, programs were free to put insecure text in balloon tips, because

there was no risk that they would become "live." So, for example, a virus scanner

might say, "The document 'XYZ' has been scanned and found to be free of

viruses."

428 ^ = ^ THE OLD NEW THING

Now suppose hyperlinks were supported in balloon tips. Look at how this

can be exploited: I can write a Web page that goes

<TITLE>

Party plans</TITLE>

I then rename the file to Par ty p lans . html, attach it to some email, and

send it to you.

You download the message and because you are a cautious person, you ask

your virus scanner to check it out. The balloon appears:

Virus Scan Complete

The document 'Party plans' has been scanned and found to be
free of known viruses.

"Oh, how convenient," you say to yourself."The virus scanner even included

a hyperlink to the document so I can read it."

And then you click on it and your hard drive gets reformatted.

"So why don't you add an NIF_PARSELINKS flag, so people who want to

enable hyperlinks in their balloon tips can do so, and still remain compatible

with people who wrote to the old API?" (I've heard of one person trying to

pass a TTF_PARSELINKS flag in the NOTIFYlCONDATA.uFlags member. I

hope it's obvious to everybody why this had no chance of working.)

Because that would just be passing the buck. Anybody who used this proposed

flag would then have to be extra careful not to put untrusted links in the balloon

tips. Most people would just say, "Wow! A new flag! That's awesome!" and start

using it without considering the serious security implications. Then somebody

can trick the program into putting untrusted text into a balloon tip and thereby

exploit the security hole.

"Aw, come on, who would be so stupid as to write code without considering

all the security implications?"

I hope that was a joke question.

The best way to make sure things are secure is to make it impossible to be

insecure.

file:///Windows/system32/f

CHAPTER NINETEEN Win32 Design Issues JBf^ 429

Why can't I use the same tree item
multiple times?

IT'S THE CONTINUING balance between ease of use and generality.

At a literal level, you can't use the same tree items in multiple places in the

tree, because then various properties would become ambiguous, properties

like TVGN_PARENT or TVIS_EXPANDED. (If a tree item could be in two places,

it would have two parents, for example.)

Of course, this problem could have been solved by separating the item con

tent from the item presence. So instead of just having an HTREEITEM, there

would be, say, HTREENODE and HTREENODECONTENTS. The node would repre

sent a physical location in the tree, and the item contents would represent the

contents of that node: its name, icon, and so on.

Sure, that could have been done, but remember the balance. You're making

the common case hard in order to benefit the rare case. Now everybody who is

manipulating tree views has to worry about twice as many objects. (What used

to be one item is now a node plus contents.) This is generally not the balance

you want to strike when designing an interface.

When you design an interface, you want to make the common case easier

than the rare case.

A program that wants this separation can, of course, do the separation

manually. Put all the contents in a separate sharable structure and have your

HTREEITEMs refer to that shared structure in their IParams. This is more

work for the program, but now the cost is being shouldered by the one who

wants the extra functionality.

The kooky S T R R E T structure

IF YOU'VE DEALT with the shell namespace, you've no doubt run across the kooky

STRRET structure, which is used by the IShe l lFolder : :GetDisplayNameOf

method to return names of shell items. If you read its documentation, you'll see

4 3 0 «HK THE OLD NEW THING

that a STRRET is sometimes an ANSI string buffer, sometimes a pointer to a

Unicode string, sometimes (and this is the kookiest bit) an offset into a shell

data structure called an item ID list. What is going on here?

The STRRET structure burst onto the scene during the Windows 95 era.

Computers during this time were still comparatively slow and memory con

strained. (Windows 95's minimum hardware requirements were for 4MB of

memory and a 386DX processor, which ran at a whopping 25MHz.) It was

much faster to allocate memory off the stack (a simple sub instruction) than

to allocate it from the heap (which might take thousands of instructions!), so

the STRRET structure was designed so the common (for Windows 95) scenarios

could be satisfied without needing a heap allocation.

The STRRET_OFFSET flag took this to an even greater extreme. Often, you

kept the name inside the pidl, and copying it into the STRRET structure would

take, gosh, 200 clocks! To avoid this wasteful memory copying, STRRET_OFFSET

allowed you to return just an offset into the pidl, which the caller could then

copy out of directly.

Woo-hoo, you saved a string copy.

Of course, as time passed and computers got faster and memory became

more readily available, these micro-optimizations have turned into annoy

ances. Saving 200 clock cycles on a string copy operation is hardly worth it any

more. On a 1GHz processor, a single soft page fault costs you more than a

million cycles; a hard page fault costs you tens of millions.

You can copy a lot of strings in twenty million cycles.

What's more, the scenarios that were common in Windows 95 aren't

quite so common any more, so the original scenario that the optimization

was tailored for hardly occurs any more. It's an optimization that has out-

lived its usefulness.

Fortunately, you don't have to think about the STRRET structure any

more. Several helper functions such as StrRetToBSTR and St rRetToStr

take the STRRET structure and turn it into something much easier to

manipulate.

The kookiness of the STRRET structure has now been encapsulated away.

Thank goodness.

CHAPTER NINETEEN Win32 Design Issues ss^ 431

—J

Why cant you set UTF-8 as your
ANSI code page?

AFTER ALL, IF you could set your ANSI code page to UTF-8, the program

could call the A versions of all the Win32 functions and avoid all the UTF-8

to UTF-16 conversions that would have to be done to call the W version. All

the benefit of Unicode without the hassle of having to rewrite.

There are a few reasons why this is not practical, pointed out to me by my

colleague Michael Grier.

First, some programs expect to get locale information from code pages.

You might roll your eyes at the thought of it, but it's something people do.

"Oh, your default code page is 949? You must be in Korea." Or even stranger,

"What is the name of the second month of the year in code page 950?" But

UTF-8 doesn't carry any locale information, because it's not associated with

any culture or part of the world.

The second point, however, is much worse. There's a boatload of code out

there that assumes that the maximum length of a character encoding is two

bytes. In other words, they support SBCS (single byte character sets), DBCS

(double byte character sets), but not a generalized MBCS (multi-byte character

set). If the GetCPInfo function ever returned a CPlNFO.MaxCharSize greater

than two, the programs would keel over. For UTF-8, CPlNFO.MaxCharSize is

a whopping four.

Sometimes this dependency on a maximum of two bytes per character is

subtle. For example, suppose you're writing your own Read-type function

that reads characters from s t d i n and converts them to Unicode. The basic

algorithm is to read bytes from s t d i n and produce Unicode characters as

they are complete. At the end of the buffer, there may be some bytes that do

not fully encode a character; you just push those bytes back into the input

stream via ungetch so that they can be processed later. Eventually, the trail

bytes for that partial character show up, and you successfully read the bytes

for that (now complete) character out of s td in , convert that character to

Unicode, and continue on your way.

432 ^ ^ THE OLD NEW THING

But this algorithm fails on UTF-8, because a single UTF-8 character can

be as large as four bytes, requiring up to 4 - 1 = 3 bytes of pushback. Too bad

ungetch provides only one pushback character.

What's more, when you have a three- or four-byte character, the first char

acter is obviously a lead byte, and the last character isn't, but what about the

middle characters? Very few programs are prepared for the existence of these

"middle bytes." Consider, for example, the trick of identifying character

boundaries by looking for runs of lead bytes and placing boundaries depend

ing on whether the run length is even or odd. That would fall apart when

faced with a three-byte UTF-8 character.

Which is all too bad because making the ANSI code page UTF-8 would

certainly have made many things simpler. But you can't always get what

you want.

When should you use a
sunken client area?

THE WS_EX_CLIENTEDGE EXTENDED window style allows you to create a

window whose client area is "sunken." When should you use this style?

The section "Design of Visual Elements," in Guidelines for User Interface

Developers and Designers (http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/dnwue/html/chl4c.asp), says that the sunken border

should be used "to define the work area within a window."

Specifically, what this means is that a sunken client area indicates that the

window is a "container." So, for example, the Explorer contents pane gets a

sunken client area because a folder "contains" its elements. Users expect to be

able to manipulate the items inside a container. By contrast, a dialog box is not

a container, so it doesn't get a sunken client area.

http://msdn.microsoft.com/library/default.asp

C H A P T E R N I N E T E E N Win32 Design Issues ^-^ 433

Why is there no all-encompassing
superset version of Windows?

W H Y IS THERE no single version of Windows that contains everything?

Instead, as you move up the ladder, say, from Windows XP Professional to

Windows Server 2003, you gain server features and lose workstation features.

Why lose features when you add others?

Because it turns out no actual customers want to keep the workstation

features on their servers. Only developers want to have this "all-encompassing"

version of Windows, and making it available to them would result in develop

ers testing their programs on a version of Windows no actual customer owns.

I think one of my colleagues who works in security support explained it best:

"When customers ask why their server has Internet Explorer, NetMeeting,

Media Player, Games, Instant Messenger, and so forth installed by default, it's

hard for the support folks to come up with a good answer. Many customers

view each additional installed component as additional risk, and want their

servers to have the least possible amount of stuff installed."

If you're the CIO of a bank, the thought that your servers are ready to play

Quake must give you the heebie-jeebies.

« *)

Why is it even possible to disable
the desktop, anyway?

T H I S IS SIMPLY an artifact of the history of the philosophy of the Windows

operating system design.

Back in the old days, memory was tight, hard drives were luxuries, the

most popular CPU for the IBM PC didn't have memory protection, and

software development was reserved for the rarefied elite who could afford to

drop a few thousand dollars on the Windows Software Development Kit.

This had several consequences:

4 3 4 ^S=s THE OLD NEW THING

• Tight memory means that anything optional had to be left behind.

• Software developers were trusted not to be stupid.

• Software developers were trusted not to be malicious.

• Software developers were trusted to do the right thing.

Certainly there could have been a check in all the places where windows

can be disabled to reject attempts to disable the desktop window, but that

would have made one window "more special" than others, undermining

the "simplicity" of the window manager. Anything optional had to be left

behind.
Software developers were trusted not to make the sort of stupid mistakes

that led to the desktop being disabled. If such a serious mistake were to

creep in, certainly their testing department would have caught it before the

program was released. Software development was hard because nobody said

this was going to be easy.

Software developers were trusted to treat their customers with respect.

Because, after all, software developers who abuse their customers won't have

customers for very long. If a program put itself in the Startup group, it was doing

so not for selfish reasons but rather because the customer actually wanted it.

The window manager was left fairly exposed, granting software developers

the power to do things such as install hooks, subclass windows that were

owned by other processes, and manipulate the contents of the Startup group,

with the assumption that software developers would use the power for good,

not for evil. Don't bother stopping a program from disabling the desktop win

dow, because maybe that program is doing it for a good reason that we hadn't

thought of. Similarly, don't stop a program from disabling the focus window

or even setting focus to NULL, because we're trusting that the program is doing

this for a good reason we hadn't anticipated.

The world of software has changed much since those simpler days.

CHAPTER NINETEEN Win32 Design Issues ^e^ 435

What are the window and
menu nesting limits?

IN THE OLD days, Windows didn't bother enforcing a nesting limit because,

well, if you wanted to nest windows 200 deep, that was your decision. (In the

same way that if you wanted to disable the desktop, well, that was your deci

sion, too.) Many window operations are recursive, but because everything

happened on the application's stack, it was your own responsibility to make

your stack big enough so that it didn't overflow.

But Windows N T moved the window manager off the application stack

(first into a separate process, then into kernel mode). So now the window

manager needs to watch out for stack overflow attacks from people creating

too many nested windows.

The window nesting limit was set to 100 for the early days of Windows

NT. For Windows XP, it dropped to 50 because increased stack usage in some

internal functions caused the stack to overflow at around 75. Dropping to 50

created some breathing room.

The menu nesting limit is 25 on Windows XP. This limit, like the window

nesting limit, is subject to change at any time. (As with window nesting,

Windows 95 let you go ahead and nest menus all you wanted. In fact, you could

go really evil and create an infinite loop of menus. You crashed pretty quickly

thereafter, of course.)

What's the difference between
H W N D _ T O P

and H W N D TOPMOST?

THE SPECIAL VALUES HWND_TOP and HWND_TOPMOST have similar names but do

completely different things when passed as the hWndlnsertAf t e r parameter to

the Def erWindowPos function (or its moral equivalents such as SetWindowPos).

436 ^SS THE OLD NEW THING

As a backgrounder, you should start off by reading the MSDN Documentation

for the Def erWindowPos function, which is perfectly accurate as far as it goes.

Here, I discuss the issue from a historical perspective in the hopes that looking

at it from a different direction might improve understanding.

Sibling windows are maintained in an order called the Z-order. (For the

purpose of this discussion, top-level windows are also treated as siblings. In

fact, it is the Z-order of top-level windows that most people think of when

they say "Z-order.")

The Z-order should be visualized as a vertical stack, with windows "above"

or "below" siblings.

Before Windows 3.0, the behavior was simple: HWND_TOP brings the window

to the top of the Z-order.

Windows 3.0 added the concept of "topmost" windows. These are top-level

windows that always remain "above" non-topmost windows. To make a win

dow topmost, call Def erWindowPos (or one of its moral equivalents) with

HWND_TOPMOST as the hWndlnsertAf t e r . To make a window non-topmost,

use HWND_NOTOPMOST.

As a result of the introduction of "topmost" windows, HWND_TOP now

brings the window "as high in the Z-order as possible without violating the

rule that topmost windows always appear above non-topmost windows."

What does this mean in practice?

• If a window is topmost, HWND_TOP puts it at the very top of the

Z-order.

• If a window is not topmost, HWND_TOP puts it at the top of all non-

topmost windows (that is, just below the lowest topmost window,

if any).

Owner and owned windows add a layer of complication to the discussion,

but the underlying principle is still valid: Topmost windows always appear

over non-topmost windows, and HWND_TOP puts you as high as you can go in

the Z-order without violating that principle.

C H A P T E R T W E N T Y

AT THE 2005 Professional Developer Conference, the Tablet PC team

had a tough task ahead of them: They had to get people to care about

power management.

The reason why this is tough is that power management is rarely a deal-

maker. If a user is evaluating, say, personal finance software, how much weight

are they going to place on which program consumes less battery power? That's

probably a third- or fourth-level tiebreaker. No amount of power manage

ment is going to overcome the fact that your program's interface is harder to

use than your competitor's. Nobody ever said, "Oh, yeah, I switched my word

processor from X to Y because X was chewing too much battery power."

When a battery doesn't last very long, users tend to blame the battery, not the

software that is draining it.

Power management falls into a category some development teams call

"taxes." It's something you do, not because it actually benefits you specifically,

but because it benefits the software landscape as a whole. We'll spend this

chapter looking at a variety of software taxes and how you should go about

paying them.

437

4 3 8 iS=N T H E OLD N E W T H I N G

O f course, not all development teams in the world are so diligent as to pay

all their taxes. I suspect most cheat on their taxes, and some of them just don't

pay any at all. Are you a tax cheat?

Hierarchical Storage Management

T H E SHORT DESCRIPTION of Hierarchical Storage Management is that it is a

way of archiving data transparently. W h e n a file is due for archival, it is trans

ferred to a slower (but less expensive) storage medium, such as magnetic tape,

leaving a stub behind. T h e stub retains some of the file's original metadata,

such as last-modified time and file size, but none of the original file's contents

are recorded by the stub. If a program tries to read from or write to the stub,

the original file is "recalled" from tape backup, a process that can take minutes.

Programmatically, you can detect that you stumbled across one of these

stubs by checking for the FlLE_ATTRIBUTE_OFFLlNE file attribute. (Note that

this is not the same as Offline Files.) We already saw that Explorer indicates

such files with a black clock. The command prompt indicates such files by put

ting the file size in parentheses. If your program encounters a file with this

attribute, it should not read from or write to the file unless the user explicitly

asked it to do so. Examples of operations that should be suppressed for an

offline file in the absence of explicit user action include the following:

• Auto-preview

Content indexing

Searching

Scanning for viruses

Searching

Extracting data from file content

For example, a context menu handler should not read from an offline file

just to see which context menu options to offer. Right-clicking a file is not a

strong enough reason to recall it from tape. Note that merely opening the file

doesn't recall the file. T h e recall happens when you access data that has been

C H A P T E R T W E N T Y Taxes ^©k 4 3 9

archived to tape; for example, by reading the file contents or accessing alternate

data streams. (There is also the strange flag FILE_FLAG_OPEN_NO_RECALL,

which indicates that the file should not be recalled, even if you access offline

data. When you access the offline data, the file data are retrieved from tape but

the stub remains a stub and the data remain on tape.)

Failing to respect the FILE_ATTRIBUTE_0FFLINE file attribute when per

forming a search would result in all files accessed during the search being

recalled from tape. If left unchecked, this will eventually recall every single

file on the system, completely negating the act of archiving the files to tape

in the first place!

Geopolitics

WE'VE ALREADY SEEN that the Windows time zone and regional settings dialogs

created international unrest. When Internet-based maps burst onto the scene in

2005, companies rediscovered the minefield known as international mapmaking.

Those new to the business failed to recognize extremely sensitive issues such as

the name of the body of water that lies between Korea and Japan or how to label

the island of Taiwan. Like many issues regarding naming, these subjects are tied

up in history with strong feelings on both sides. As we saw in the time zone

example, deferring to United Nations-approved boundaries or terminology is

not always sufficient to calm the parties involved in a dispute.

This is why you tend to see the word region used in Microsoft products rather

than country. There are still many parts of the world where sovereignty is a highly

contentious issue. If you call something a country, you have effectively taken

sides in a dispute you probably would be better off staying out of.

Geopolitics wasn't so much of an issue in the past, when you could control

where in the world your program was running by virtue of controlling where

your distributors were. But with the Internet, everything you post instantly

becomes available to an international audience.

Unfortunately, I don't have any good advice on this particular tax. My

personal rule is this: Stay far, far away from maps.

44-0 ^ ^ , THE OLD NEW THING

Remote Desktop Connection
and Painting

AN INCREASINGLY IMPORTANT developer tax is supporting Remote Desk

top Connection properly. When the user is connected via a Remote Desktop

Connection, video operations are transferred over the network connection to

the client for display. Because networks have high latency and nowhere near the

bandwidth of a local video card, you need to adapt to the changing cost of

drawing to the screen.
o

If you draw a line on the screen, the "draw line" command is sent over the

network to the client. If you draw text, a "draw text" command is sent (along

with the text to draw). So far so good. But if you copy a bitmap to the screen,

the entire bitmap needs to be transferred over the network.

Let's write a sample program that illustrates this point. Start with our
^ 1 J 1 ^L C 11 I

scratch program and make the following changes:
// new function
void Draw(HWND hwnd, HDC hdc, PAINTSTRUCT *pps)
r

FillRect(hdc, &pps->rcPaint, (HBRUSH)(COLOR_WINDOW + 1));
RECT re;
GetClientRect(hwnd, &rc) ;
for (int i = -10; i < 10; i + +) {
TextOut(hdc, 0, i * 15 + re.bottom / 2, TEXT("Blah blah"), 9);

}
}

void PaintContent(HWND hwnd, PAINTSTRUCT *pps)

Draw(hwnd, pps->hdc, pps);

/

// Add to WndProc
case WM_ERASEBKGND: return 1;

BOOL
InitApp(void)

C H A P T E R T W E N T Y Taxes ss~ 4 4 1

WNDCLASS wc;

w c . s t y l e = CS_VREDRAW
. . . a s b e f o r e . . .

}

CS_HREDRAW; / / change

There is an odd division of labor here; the PaintContent function doesn't

actually do anything aside from handing the work off to the Draw function to

do the actual drawing. (You'll see why soon.) Make sure the Show window

contents while dragging option is enabled and run this program and resize it

vertically. Ugh, what ugly flicker. We fix this by the traditional technique of

double-buffering:

v o i d PaintContent(HWND hwnd, PAINTSTRUCT *pps)
{
if (UsRectEmpty(&pps->rcPaint)) {
HDC hdc = CreateCompatibleDC (pps->hdc) ,-
if (hdc) {
int x = pps->rcPamt. lett ;
int y = pps->rcPaint.top;
int ex = pps->rcPaint.right - pps->rcPaint.left;
int cy = pps->rcPaint.bottom - pps->rcPaint.top;
HBITMAP hbm = CreateCompatibleBitmap(pps->hdc, ex,
if (hbm) {
HBITMAP hbmPrev = SelectBitmap(hdc, hbm);
SetWindowOrgEx(hdc, x, y, NULL);

cy)

}
}

Draw(hwnd, hdc, pps);

BitBlt (pps->hdc, x, y, ex, cy, hdc, x, y, SRCCOPY) ;

SelectObject(hdc, hbmPrev);
DeleteObject(hbm);

}
DeleteDC(hdc);

Our new PaintContent function creates an offscreen bitmap and asks the

Draw function to draw into it. After that's done, the results are copied to the

screen at one go, thereby avoiding flicker. If you run this program, you'll see that

its resizing behavior is nice and smooth.

4 4 2 T H E OLD NEW T H I N G

Now connect to the computer via a Remote Desktop Connection and run

it again. Because Remote Desktop Connection disables the Show window

contents while dragging option, you can't use resizing to trigger redraws.

Instead, maximize the program and restore it a few times. Notice the long

delay before the window is resized when you maximize it. That's because we

are pumping a huge bitmap across the Remote Desktop Connection as part

of that B i tB l t call.

Go back to the old version of the PaintContent method, the one that just

calls Draw, and run it over Remote Desktop Connection. Ah, this one is fast.

That's because the simpler version doesn't transfer a huge bitmap over the

Remote Desktop Connection; it just sends 20 Text Out calls on a pretty short

string of text. These take up much less bandwidth than a 1024X768 bitmap.

We have one method that is faster over a Remote Desktop Connection,

and another method that is faster when run locally. Which should we use?

We use both, choosing our drawing method based on whether the program

is running over a Remote Desktop Connection:

void PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{
if (GetSystemMetrics(SM_REMOTESESSION)) {
Draw(hwnd, pps->hdc, pps) ;
} else if (!IsRectEmpty(&pps->rcPaint)) {
... as before . . .

}

Now we get the best of both worlds. When run locally, we use the double-

buffered drawing, which draws without flickering; but when run over a

Remote Desktop Connection, we use the simple Draw method, which draws

directly to the screen rather than to an offscreen bitmap.

This is a rather simple example of adapting to Remote Desktop Connection.

In a more complex world, you might have more complicated data structures

associated with the two styles of drawing, or you might have background activ

ities related to drawing that you may want to turn on and off based on whether

the program is running over a Remote Desktop Connection. Because the user

can dynamically connect and disconnect, you can't just assume that the state of

CHAPTER T W E N T Y Taxes £S\ 4 4 3

the Remote Desktop Connection when your program starts will be the state for

the lifetime of the program. You'll see next how we can adapt to a changing

world.

Fast User Switching and
Terminal Services

WHEN THE WORKSTATION is locked or disconnected, you should turn off

nonessential timers, minimize background activities, and generally send your

program into a quiet state. If you already used the technique of painting only

when your window is visible on the screen, you get all of this for free, because a

locked workstation and a disconnected session do not generate paint messages.

If you have other activities that you want to scale back or shut down when

the user has locked the workstation or disconnected, you can register to be

notified when the state changes. Knowing about these state changes is also

important so that you can tell when your display is local or remote. As we saw

last time, drawing on Remote Desktop Connection is much slower than on a

local display, because all the bitmaps need to be transferred over the network

to the Remote Desktop client.

Because locking a workstation and disconnecting a session prevent us from

using visual feedback to indicate our program's state, we'll use the speaker.

Start with our scratch program and make the following changes:

#include <wtsapi32.h>

BOOL OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{
WTSRegisterSessionNotification(hwnd, NOTIFY_FOR_THIS_SESSION);

return TRUE;

}

void OnWTSSessionChange(WPARAM wParam)

{
switch (wParam) {
case WTS_CONSOLE_DISCONNECT:
case WTS REMOTE DISCONNECT:

4 4 4 -^\ THE OLD NEW THING

case WTS_SESSION_LOCK:
case WTS_SESSION_LOGOFF:
Beep(440, 250); break;

case WTS_C0NS0LE_C0NNECT:
case WTS_REMOTE_CONNECT:
case WTS_SESSION_UNLOCK:
case WTS_SESSION_LOGON:

Beep (880, 250) ; break;

}
}

// add to WndProc
case WM_WTSSESSION_CHANGE:

OnWTSSessionChange(wParam);
return 0;

In this program, we register for a session notification when we create our main

window, and listen for the session change message in our window procedure. If

we see one of the "going away" messages, we make a low beep; if we see one of the

"coming back" messages, we make a high beep.

Run this program and then lock the workstation or use Fast User Switching

to switch away. You should be greeted by a low beep, although you might have

to listen carefully if you have a sound associated with the action you per

formed, because the low beep will be mixed in with it. When you switch back,

you should hear a high beep.

Of course, a real program would respond to the notifications by starting or

stopping its background tasks. The purpose of this program was merely to show

how to get the notifications in the first place.

Multiple users

REMEMBER THAT THE Windows directory and the HKEY_LOCAL_MACHlNE portion

of the registry are system-wide, whereas the user's profile and the HKEY_

CURRENT_USER portion of the registry are per user. Many programs make the

unfortunate assumption that the computer has only one user and consequently

do not maintain the separation between global and per-user state.

C H A P T E R T W E N T Y Taxes ISK 445

User preferences, such as window positions, most recently used files, and

auto-complete history, must be stored in per-user locations. The obvious

reason is that if there are two users, both of whom use your program, each

one may have different customizations and history. It would not only be

annoying for one user to see another user's auto-complete history, but it

would also most likely be an information-disclosure security vulnerability.

Furthermore, the users running your program might not have administrator

privileges on the local computer, which means your program can't modify

global state even if it wanted to.

The existence of multiple users also means that programs should be wary of

requesting exclusive access to shared files. If you open a global configuration

file with exclusive access, for example, only one user can run your program at a

time; the second copy of the program will get a sharing violation when it tries

to open the global configuration file.

Another consequence of multiple users is that a program cannot use the

computer name or computer's IP address as a unique identifier when commu

nicating with a server. The consequences of this type of mistake will vary

depending on how this allegedly unique identifier is used. For example, when

a second copy of the program is run by another user, the first copy may lose

its connection to the server (because the server assumes that the first copy

crashed when the second copy connects), or even worse, the data from the two

copies of the program may get mixed together.

Fortunately, these type of multiple-user problems have become rarer now

that Windows XP and Fast User Switching have become prevalent. When

simultaneous multiple users required an expensive Terminal Server, these

types of errors often went unnoticed.

Roaming user profiles

O N E OF THE less-known features of Windows is the roaming user profile. I

know that this is not well known because I often see suggestions that fail to

take the roaming user profile scenario into account. Indeed, if your program

4 4 6 -SS\ THE OLD NEW THING

behaves badly enough, you can cause data loss. (More on this later.) Let's start

with the obvious question: What is a roaming user profile?

Well, your user profile is the collection of things that reside under your

%USERPROFILE% directory. (This is not quite true, but it's a good enough approx

imation for the purpose of this discussion. We look at an important exception

later.) Your per-user registry is kept in %USERPROFlLE%\ntuser .dat, so your

per-user registry is part of your user profile.

In highly managed environments (corporations), system administrators

can set up user profiles on a centralized server, so that users log on to any

machine and have available their files and settings. This is accomplished by

copying the user profile from the server when the user logs on and copying it

back to the server when the user logs off. (Of course, there is also caching

involved to save time if the user logs back on to the same machine.)

What does this mean for you, the programmer?

For one thing, it means that the path to the user's profile can change from

one logon session to the next. If the user runs your program from Computer

A, the user profile directory might be C: \Documents and Se t t i ngs \F red ,

but when the user logs off from Computer A and logs on to Computer B, the

directory to the user profile might change to C:\wlNNT\Profiles\Fred. In

particular, that file that used to be at C: \Documents and Se t t ings \Fred \

My Documents\Proposal . txt has moved to C:\WINNT\Profiles\Fred\

My Documents\Proposal. t x t . If your program has a feature where it offers

a list of recently used files (or auto-opens the most recently used file), you

might find that the file no longer exists at its old location. The solution is to

use profile-relative paths, or even better, shell virtual folder-relative paths

(for example, recording the path relative to CSIDL_MYDOCUMENTS), SO that

when the profile roams to a machine with a different user profile path, your

program can still find its files.

For another thing, you cannot just cruise through the HKEY_LOCAL_

MACHINE\SOFTWARE\Microsoft\Windows N T \ C u r r e n t V e r s i o n \ P r o f i l e L i s t

registry key expecting to find all the user profiles and possibly even modify

them, because the copy of the user profile on the local computer might not be

the authoritative one. If the profile is a cached roaming profile, any changes

file:///Documents
file://C:/wlNNT/Profiles/Fred
file:///Documents
file://Documents/Proposal.txt
file://C:/WINNT/Profiles/Fred/

CHAPTER TWENTY Taxes s^ 447

you make will either (1) be lost when the user roams back to the computer

after using another computer, or (2) cause the local profile to be considered

newer than the master copy on the server, causing the changes the user made

to the copy on the server to be lost! (Which of the two bad scenarios you find

yourself in depends on the time you change the cached profile and the time

the target user logs off that other computer.)

Another consequence of roaming user profiles is that your program can effec

tively see itself changing versions constantly. If Computer A has version 1.0 of

your program and Computer B has version 2.0, as the profile roams between the

two computers, both versions 1.0 and 2.0 will be operating on the user profile in

turn. If versions 1.0 and 2.0 use the same registry keys to record their settings,

your registry formats had better be both upward and downward compatible.

This is a particularly painful requirement for operating system components,

which consequently need to maintain bidirectional registry format compatibility

with systems as old as Windows N T 4. (Windows N T 3.51 had a different

model for roaming user profiles.)

Yet another consequence of roaming user profiles applies to services. Prior

to Windows XP, if a service holds a registry key open after the user logged off,

the registry hive cannot be unloaded and consequently (1) consumes memory

for that profile even though the user is no longer logged on, and (2) prevents

the user's local registry changes from being copied back to the server. This "hive

leakage" problem was so rampant that in Windows XP, the profile unload code

takes a more aggressive stance against services that hold keys open too long: If

60 seconds after a user logs off there are still open keys, the profile manager

copies the user's registry to the server anyway. The profile still takes up

memory until the last key is closed, but at least the user's registry is updated on

the server.

Redirected folders

A POPULAR FEATURE used in conjunction with (or as an alternative to) roaming

user profiles is redirected folders, which is a way for a domain administrator to

448 ^ T H E OLD NEW T H I N G

specify that selected folders in the user profile (for example, the Desktop, the

Start menu, the My Documents directory) are not stored in the user profile but

rather on a separate server, which for the purpose of discussion I call the "folder

server," although that is hardly standard terminology. Note that this feature can

be turned on independently of roaming user profiles. Roaming user profiles

copies the user profile around; redirected folders let you pull folders out of the

user profile. There are four combinations of these two settings, and each of them

has its merits. If you've been following along so far, you already see how they

interact, but I'll spell it out in pictures this time. I will abbreviate the "roaming"

and "nonroaming" portions of the user profile as simply R profile and NR profile.

For illustration purposes, I show only two redirectable folders, although in

reality there are plenty more.

Local computer

The first case is the common case: The profile neither roams nor contains

redirected folders. Because there is nothing roamed or redirected, the fact that

everything is kept on the local computer is hardly surprising. This is the most

common configuration on consumer machines, where there is no IT department

running the show.

Local computer Local computer (D:)
Drive C or Folder server

NR profile

R profile

Start menu

My Documents

In this second configuration, the profile is still local, but we've redirected the

My Documents folder to another location. (Although just to prove a point, I left

NR profile

R profile

Start menu

My Documents

CHAPTER TWENTY Taxes ^~~ 449

the Start menu unredirected.) Some people redirect their My Documents to

another, presumably much larger, drive on the same machine. Another common

configuration in this same model (local profile + redirected folder) consists of

redirecting My Documents to a folder server. This alternate configuration might

be seen in a corporate network, so that each user's documents are kept on a file

server that is regularly backed up and has shadow copies enabled so that the files

can be recovered easily. You might even see it in a home network if you have

accounts on multiple machines but want to keep all your documents in a central

location. The downside of this arrangement is that if your My Documents

server becomes unavailable, you lose access to all your documents.

Local computer Profile server

NR profile

R profile

Start menu

My Documents

R profile

Start menu

My Documents

sync •

Next is the configuration with a roaming user profile but no redirected

folders. As we learned earlier, the master copy of the user profile resides on the

profile server. When you log on, the server copy of the profile is pulled down

to update the local profile, and when you log off, changes to the local profile

are pushed back to the server. This is the classic roaming profile configuration

where all user data lives in the profile. Because the document folders are not

redirected, the profile server can go offline and you can still do your work

because your documents are cached locally.

Folder server

Start menu

My Documents

Local computer

NR profile

R profile

Profile server

«— sync —<- R profile

In our final configuration, we have enabled both roaming profiles and

redirected folders. This is another common corporate configuration because

45Q T H E OLD NEW T H I N G

it reduces the amount of copying that happens at logon and logoff but still

keeps the user's profile and documents on managed servers so that they can

be backed up and otherwise centrally administered.

A common gotcha for keeping the files entirely on a folder server is that if

the folder server becomes unavailable, you lose access to your documents. This

is particularly painful in laptop scenarios where the computer spends a lot of

its time not connected to the network that houses the folder server. You can

use offline files, however, to make these scenarios much more tolerable.

What is the lesson here?

First, as previously noted when we discussed roaming profiles, one reason

why you can't manipulate the profile of a user who is not logged on is that the

profile you may happen to find might not be the master copy, and what's worse,

modifying the local copy can result in it becoming the master, ultimately

resulting in data loss when the two versions are reconciled.

Second, even if you somehow manage to get the user to log on so that the local

copy is the master, and even if you are running as local administrator, the user's

files may have been redirected to another server where the local computer's

administrator account does not have access.

The upshot is that you simply cannot manipulate another user's profile

without actually running in the context of that user. You need to be aware of

these other scenarios where the user's data is simply not accessible to you.

My Documents vs* Application Data

T H E MOST IMPORTANT difference between My Documents and Application

Data is that My Documents is where users store their files, whereas

Application Data is where programs store their files.

In other words, if you put something in CSIDL_MYD0CUMENTS (My

Documents), you should expect the user to be renaming it, moving it, deleting

it, emailing it to their friends, all the sorts of things users do with their files.

Therefore, files that go there should be things that users will recognize as "their

stuff": documents they've created, music they've downloaded, that sort of thing.

C H A P T E R T W E N T Y Taxes •»< 451

On the other hand, if you put something in CSIDL_APPDATA (Application

Data), the user is less likely to be messing with it. This is where you put your

program's supporting data that isn't really something you want the user

messing with, but which should still be associated with the user: high score

tables, program settings, customizations, spell check exceptions, and so on.

There is another directory called CSIDL_LOCAL_APPDATA that acts like

CSIDL_APPDATA, except that it does not get copied if the user profile roams.

(The Local Settings branch is not copied as part of the roaming user profile.)

Think of it as a per-user, per-machine storage location. Caches and similar

nonessential data should be kept here, especially if they are large. Other

examples of nonroaming per-user data are your %TEMP% and Temporary

I n t e r n e t F i l e s directories.

Large address spaces

ALTHOUGH THE TRADITIONAL split in the 4GB address space of 32-bit

Windows gives user mode 2GB and kernel mode 2GB, Windows can be put

into a mode where the user/kernel mode address space split gives 3GB to user

mode and squeezes kernel mode into 1GB. This is typically done on machines

dedicated to heavy data processing such as computer-aided design or databases.

Programs have to opt into the expanded address space (by setting the

/LARGEADDRESSAWARE flag in their header), but dynamic link libraries

(DLLs) have no choice in the matter. If your DLL is used only by applications

under your control, then you yourself decide whether the program will mark

itself as large-address-space compatible, and presumably you won't set the

/LARGEADDRESSAWARE flag until you've made sure that the program and all its

DLLs are indeed ready for large address spaces.

On the other hand, there's a good chance that you do not control all the

applications that can load your DLL. If your DLL is a COM in-process server,

it can be loaded by any process that creates an object from your DLL. And, of

course, if your DLL is a plug-in for another application, you are at the mercy of

the address space established by your host application. Indeed, you might fall

452 * 5 N THE OLD NEW THING

into this category without even realizing it: If you use the regsvr32 program to

install your DLL, you are letting the regsvr32 program determine the address

space, and it so happens that regsvr32 is marked as large-address-space aware.

In those cases where you do not have complete control over the applications

that will load your DLL, you must code your DLL with the possibility in

mind that your host will have a large address space.

What does it mean to be ready for large address spaces? It means that your

program or DLL does not assume that all valid pointers lie below the 2GB

boundary. There are many ways code can make this sort of assumption, some

times explicit, but often inadvertent.

The most common explicit way code can make this sort of assumption is

by using the high bit of the address as a tag bit. For example, you might decide

to encode integers inside pointers by setting the high bit:

// Do not use these macros or functions — see text
#define ENCODINGMASK 0x80000000
#define ENCODEINTEGERASLPWSTR(i) (LPWSTR)(ENCODINGMASK | (i))
#define ISENCODEDINTEGER (p) ((int)(p) & ENCODINGMASK)
#define DECODELPWSTRTOINTEGER(p) ((int)(p) & -ENCODINGMASK)

void DoSomething(LPWSTR pszNameOrlnt)

CommonBehavior();
if (ISENCODEDINTEGER(pszNameOrlnt)) {
DoSomethingWithlnteger(DECODELPWSTRTOINTEGER(pszNameOrlnt));
} else {
DoSomethingWithString(pszNameOrlnt);

}
}

// Call it either with an integer (smuggled inside a pointer)
DoSomething(ENCODEINTEGERASLPWSTR(3));

// or call it with a proper string
DoSomething(L"hello");

These sorts of tricks are often pulled when you have an operation that can

be performed either with an integer or a pointer, and you don't want to write

two functions, so instead you write one function that takes a pointer or a

CHAPTER TWENTY Taxes ,s~. 453

"smuggled integer" and alters its behavior slightly depending on whether the

actual parameter is a string or a smuggled integer. Using the high bit of the

address as a tag bit means that when your DLL runs inside a large address

space, it will mistake genuine pointers in the 2GB-to-3GB range for smuggled

integers. For example, in that second call above, where we pass L"hel lo" , it's

possible that the string is stored at a high address, say, 0x90102030. In that

case, the DoSomething function will treat it not as a string but rather as if it

were an encoding of the integer 0x10102030. The result of this case of mis

taken identity will almost certainly be undesirable.

Another place I've seen people explicitly use the high bit of an address as a

tag bit is where they want to encode an error inside a pointer:

// Do not use these functions -- see text
LPWSTR GetNameOfThing(Thing *pThing)

{
HRESULT hr =
if (FAILED(hr)) return (LPWSTR)hr;

return pName;

}

// sample usage — do not use — see text
LPWSTR pszName = GetNameOfThing(pThing) ;
if (FAILED((HRESULT)pszName)) ...

The poorly designed GetNameOf Thing function tries to be clever and returns

either the thing's name or an HRESULT cast to a pointer. Callers cast the pointer

back to an HRESULT to see whether the function succeeded. This trickery falls

apart in a large address space, because the value 0x80070006 could either be a

pointer that happens to point slightly above the 2GB boundary, or it could be the

error E_HANDLE.

If you've been pulling stunts like this, how do you fix them? In the first

example, where integers were being smuggled inside pointers, you can use the

MAKEINTRESOURCE macro to do your integer smuggling. The encoding method

used by MAKEINTRESOURCE takes advantage of the fact that the bottom 64KB

of the address space are roped off as invalid; therefore, pointers in the range

4 5 4 ^S THE OLD NEW THING

0x0000 0000 through OxOOOOFFFF must be smuggled integers. (Note that you

can, in principle, remove the rope and allocate genuine memory at those very

low addresses, but doing such is not recommended.) This technique does limit

the range of integers you can encode in this manner to 16-bit values, however.

If you need to encode a larger range, you should just pass two parameters, one

a pointer and one an integer.

In the second case, where the encoding is happening in the return value, the

MAKEINTRESOURCE trick won't work because HRESULTS are not 16-bit values.

You should rewrite the function to return an HRESULT (either an error code

or S_OK on success) and return the pszName through an additional output

parameter:

HRESULT GetNameOfThing(Thing *pThink, OUT LPWSTR *ppwszOut);

A pleasant side effect of both of these solutions (the MAKEINTRESOURCE

approach or merely using two values, one a pointer and one an integer) is that

they also make your program Win64 compatible, because the code no longer

assumes that pointers are 32-bit values.

An example of inadvertently assuming that the address space is only 2GB

can be found in the following function:

// Do not use this function - see text
#define BUFFER_SIZE 32768
BOOL IsPointerlnsideBuffer(const BYTE *p, const BYTE *buffer)

{
return p >= buffer && p - buffer < BUFFER_SIZE;

]
If the address space is greater than 2GB, the pointer p may be more than

2GB away from the buffer. Consider, hypothetically, that buffer=0x2 00 00 000

and p=0x90 0000 0 0. This pointer clearly does not point inside the buffer

(which goes from 0x2 0000000 to 0x20007FFF), but look at how the function

is evaluated.

First, we evaluate p >= buf fe r . This computes 0x90000000>=

0x20000000, which is true. Next, we evaluate p - buffer <BUFFER_SIZE.

This computes 0x20000000-0x90000000<32768.The result of the subtrac

tion is 0x90000000, but this is treated as a negative number because the

CHAPTER TWENTY Taxes *&. 455

difference of two pointers is a signed integer. Consequently, the comparison

also succeeds, because a negative number is less than the positive number

32768. Result: You think that p points into the buffer even though it doesn't.

There are many ways of fixing this function. My personal favorite is this:

BOOL IsPointerlnsideBuffer(const BYTE *p, const BYTE *buffer)

return (ULONG_PTR)(p - buffer) < BUFFER_SIZE;

)

One way of looking at this approach is to observe that negative numbers,

when cast to unsigned, turn into extremely large positive numbers. (Win32

requires two's complement arithmetic.) A more clever way of seeing it is to

observe that you're "rotating the address space" so that the buffer appears to

begin at address zero, at which point a single range check suffices.

One particularly subtle case I've seen of code that inadvertently assumed a

2GB address space was a function that did a binary search through a byte array.

It attempted to compute the midpoint between the low and high pointers by

calculating ((uiNT)low + (UlNT)high) / 2. In a large address space, the

sum of the two pointers may overflow, resulting in inadvertent truncation and

an access violation when the resulting midpoint pointer is dereferenced.

Power management
and detecting battery power

POWER MANAGEMENT WAS the topic that inspired the entire discussion of

taxes. The simplest form of power management is just scaling back or can

celling background operations when the computer is running on battery

power. Let's start our scratch program and make the following changes:

// If we cannot determine the power status,
// assume we're not on battery
BOOL IsOnBatteryPower()

SYSTEM POWER STATUS sps;
— —

return GetSystemPowerStatus(&sps) && sps.ACLineStatus == 0;

4 5 6 ^ = N T H E OLD N E W T H I N G

}

BOOL g^fTimerRunning = FALSE;
char g_chBackground = ' 0' i n < •

void CALLBACK OnBackgroundTimer(HWND hwnd, UINT uMsg,
UINT PTR idTimer, DWORD tm)

g_chBackground++;
if (g_chBackground == '9' + 1) g^chBackground = '0';
InvalidateRect(hwnd, NULL, TRUE);

void OnPowerChange(HWND hwnd)

{
BOOL fWantTimerRunning = !!IsOnBatteryPower();
if (g_fTimerRunning != fWantTimerRunning) {
g_fTimerRunning = fWantTimerRunning;
if (fWantTimerRunning) {
SetTimer(hwnd, IDT_BACKGROUND, 250, OnBackgroundTimer);
} else {
KillTimer(hwnd, IDT^BACKGROUND);
}
}
}

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{
OnPowerChange(hwnd);
return TRUE;

LRESULT OnPowerBroadcast(HWND hwnd, WPARAM wParam, LPARAM IParam)

{
switch (wParam) f
case PBT_APMPOWERSTATUSCHANGE:

OnPowerChange(hwnd);
break;

return TRUE;

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{
TextOut(pps->hdc, 0, 0, &g_chBackground, 1);

C H A P T E R T W E N T Y Taxes *ss^ 457

/ / Add to WndProc
c a s e WM_POWERBROADCAST:

r e tu rn OnPowerBroadcast(hwnd, wParam, lParam);

This simple program sets up a "background task" that simply counts from

zero to nine over and over again. (Of course, in real life, your "background task"

would probably be something much more complicated and presumably more

useful.) There are two key functions here. The first is IsOnBatteryPower,

which determines whether the computer is running on battery power. We use

this function in OnPowerChange to decide whether we want the background

task running or not and either starting or stopping it, accordingly.

The second key function is OnPowerBroadcast, which handles the

WM_POWERBROADCAST message. When we are told that the power status has

changed, we ask OnPowerChange to start or stop our background task. The

PBT_APMPOWERSTATUSCHANGE notification can be raised for things other

than going on and off battery power, such as the battery charge level crossing

certain thresholds. See M S D N for additional information.

This is the most basic type of battery-sensitive power management. If you are

feeling particularly generous, you can listen for other types of power

notifications. For example, the PBT_APMBATTERYLOW notification tells you that

the user's battery has reached a low-power state, at which point you might

decide to become even more conservative with your background activities.

,—.

Intermittent network connectivity

IN RECENT YEARS, it has become more common for network connectivity to

be an intermittent resource. When your laptop computer is in the office, it is

connected to the corporate network; when you go to the coffee shop, you're on

an unsecured wireless network; and when you come home, you're on your

home wireless network. Adapting to changes in network connectivity will

become increasingly important for many classes of applications.

458 ^ S ^ THE OLD NEW THING

There is one simple function that you can use to be notified of changes in

network connectivity at least if your program uses TCP/ IP for its networking.

Notif yAddrChange will notify you when the IP address on any network inter

face has changed. Although the function has both blocking and nonblocking

forms, you almost certainly want to use the nonblocking variant instead of

consuming an entire thread merely to wait for something that happens only

occasionally.

As always, start with our scratch program and make the following changes:

i n c l u d e < i p h l p a p i . h >

OVERLAPPED g_0;
HANDLE g _ h R e g i s t e r ;

v o i d R e g i s t e r F o r A d d r C h a n g e ()
{
HANDLE h ;
NotifyAddrChange(&h, &g_o);

/

void CALLBACK OnAddrChanged(void *p, BOOLEAN fTimedOut)

MessageBeep(O);
RegisterForAddrChange() ;
}

void Cleanup()

{
if (g_hRegister) {
UnregisterWaitEx(g_hRegister, INVALID_HANDLE_VALUE);
g_hRegister = NULL;

if (g_o.hEvent) {
CloseHandle(g_o.hEvent) ;

g_o.hEvent = NULL;

}

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

g_o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (g_o.hEvent &&

C H A P T E R T W E N T Y Taxes J«»N 459

RegisterWaitForSingleObject(&g_hRegister, g_o.hEvent,
OnAddrChanged, NULL, INFINITE,
0)) {

RegisterForAddrChange();
return TRUE;

}
Cleanup();
return FALSE;

'

void
OnDestroy(HWND hwnd)

{
Cleanup();
PostQuitMessage (0) ;

}

The key here is the RegisterForAddrChange function, which requests

that the handle in the OVERLAPPED structure be signaled when an IP address

changes. (If we had passed NULL as both parameters, the call would have

blocked until an address change occurred.) We register the event handle with

the thread pool so that the OnAddrChanged function is called when the event

is signaled. All we do here is beep the speaker; although in a real program, you

would probably inspect the condition of the network interfaces and perhaps

attempt to initiate a connection after discarding any cached information you

had about the previous network connection. For example, if the IP address

changes, you might want to restart your network discovery process to figure

out how the new network differs from the old one.

Anti-aliased fonts and ClearType

WINDOWS PROVIDES A variety of technologies for rendering monochrome text

on color displays, taking advantage of display characteristics to provide smoother

results. These include grayscale anti-aliasing as well as the more advanced

ClearType technique. Both of these methods read from the background pixels to

decide what pixels to draw in the foreground. This means that rendering text

requires extra attention.

46O <©k THE OLD NEW THING

If you draw text with an opaque background, there is no problem because

you are explicitly drawing the background pixels as part of the text-drawing

call, so the results are consistent regardless of what the previous background

pixels were. If you draw text with a transparent background, however, you

must make sure the background pixels that you draw against are the ones you

really want.

The most common way people mess this up is by drawing text multiple

times. I've seen programs that draw text darker and darker the longer you use

them. We'll see here how this can happen and what you need to do to avoid

it. Start with the scratch program and make these changes:

HFONT g_hfAntialias;
HFONT g_hfClearType;

BOOL
OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{
g_hfAntialias = CreateFont(-20, 0, 0, 0, FW_NORMAL, 0, 0, 0,

DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
ANTIALIASED_QUALITY, DEFAULT_PITCH, TEXT("Tahoma"));

g_hfClearType = CreateFont (-20, 0, 0, 0, FWJSTORMAL, 0, 0, 0,
DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
CLEARTYPE_QUALITY, DEFAULT_PITCH, TEXT("Tahoma"));

return g_hfAntiAlias && g_hfClearType;

}
void
OnDestroy(HWND hwnd)

if (g_hfAntialias) DeleteObject(g_hfAntialias);
if (g_hfClearType) DeleteObject(g_hfClearType);
PostQuitMessage(0);

void MultiPaint(HDC hdc, int x, int y, int n)

{
LPCTSTR psz =

TEXT("The quick brown fox jumps over the lazy dog.");
int cch = lstrlen(psz);
for (int i = 0; i < n; i++) {

TextOut(hdc, x, y, psz, cch);

}

C H A P T E R T W E N T Y Taxes 4 6 1

}

v o i d
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

int iModePrev = SetBkMode(pps-
HFONT hfPrev = SelectFont(pps-
MultiPaint(pps->hdc, 10, 0, 1
MultiPaint(pps->hdc
MultiPaint(pps->hdc
SelectFont(pps->hdc
MultiPaint(pps->hdc
MultiPaint(pps->hdc
MultiPaint(pps->hdc
SelectFont(pps->hdc
SetBkMode(pps->hdc,

•hdc,

•hdc,

10, 20, 2)
10, 40, 3)
g_hfClearType)
10, 80, 1)
10,100, 2)
10,120, 3)
hfPrev);
iModePrev);

TRANSPARENT);
g_hfAntialias

}

Run this program and take a close look at the results. Observe that in

each set of three rows of text, the more times we overprint, the darker the

text. In particular, notice that overprinting the anti-aliased font makes the

result significantly uglier and uglier! What went wrong?

The first time we drew the text, the background was a solid fill of the window

background color. But when the text is drawn over itself, the background it sees

is the previous text output. When the algorithm decides that "This pixel should

be drawn by making the existing pixel 50% darker," it actually comes out 75%

darker because the pixel is darkened twice. And if you draw it three times, the

pixel comes out 88% darker.

When you draw text, draw it exactly one time, and draw it over the

background you ultimately want. This allows the anti-aliasing and ClearType

engines to perform their work with accurate information.

The programs that darken the text are falling afoul of the overprinting

problem. When the programs decide that some text needs to be redrawn (for

example, if the focus rectangle needs to be drawn or removed), they "save time"

by refraining from erasing the background and merely drawing the text again

(but with/without the focus rectangle). Unfortunately, if you don't erase the

background, the text ends up drawn over a previous copy of itself, resulting

in darkening. The solution here is to draw text over the correct background.

4 6 2 *&< THE OLD NEW THING

If you don't know what background is on the screen right now, you need to

erase it to set it to a known state. Otherwise, you will be blending text against

an unknown quantity, which leads to inconsistent (and ugly) results.

Another case where you run into the overprinting problem is if you don't

pay close attention to the flags passed in the DRAWITEMSTRUCT that is passed

to the WM_DRAWITEM message. For example, some people simply draw the

entire item in response to the WM_DRAWITEM message, even though the window

manager passed the ODA_FOCUS flag, indicating that you should only draw or

erase the focus rectangle. This is not a problem if drawing the entire item

includes erasing the background; but if you assume that the WM_ERASEBKGND

message had erased the background, you will end up overprinting your text in

the case where you were asked only to draw the focus rectangle. In that case,

the control is not erased; all you have to do is draw the focus rectangle. If you

also draw the text, you are doing what the Mult iPaint function did: drawing

text over text; and the result is text that gets darker each time it repaints.

High DPI displays
VIDEO DISPLAYS WITH high pixel density (measured in dots per inch or DPI) are

becoming increasingly common. Whereas on an older display, 72 pixels made

up one inch on the screen, newer displays can have 96 or over 200 pixels per

inch. Windows allows users to specify the relationship between screen pixels

and physical dimensions to accommodate these displays.

What does this mean for your program? First, because the mapping

between point and pixels changes, all point-based computations are affected

by changes to the DPI, and the most visible place this can be seen is with

fonts. For example, on a 72DPI display, a font that is specified as 10 point will

be 10 pixels high, but on a 96DPI display, the font will be closer to 13 pixels

high. Because dialog units (DLUs) are relative to the font size, this means that

a change in DPI will also change the size of your dialog boxes.

Fonts do not scale perfectly linearly. Increasing the height of a font by 50%,

say, will not necessarily increase its width by the same amount. As a result, a

C H A P T E R T W E N T Y Taxes ^ ? s 4 6 3

dialog box layout that looked good at 96DPI may end up with truncated or

overlapping elements when rendered at 120DPI. Unfortunately, these conse

quences are hard to predict; you will have to run your program at a variety of

DPI settings to ensure that the dialog boxes look acceptable at each of them.

(For Windows Vista, the recommended DPI settings are 96, 120, 144, and

192; so you should make sure your program looks acceptable at each of these

settings at a minimum.)

Although the system automatically scales fonts with DPI, you're on your own

with pixel-based computations. For example, if you blindly draw a one-pixel-

wide separator line, you will find that at high DPI settings, the line becomes

nearly invisible. Any hard-coded pixel size should be treated as suspect. Instead,

you should operate with points (or some other physical unit) and convert it to

pixels based on the current DPI setting.

Perhaps the easiest way to do this is to make your physical unit the 96DPI

pixel. This allows you to operate internally in pixels as before, but perform a

final DPI adjustment before drawing to the screen:

int g_xDPI, g_yDPI;

BOOL InitializeDPI()

{
HDC hdc = GetDC(NULL); // get screen DC
if (!hdc) return FALSE;
g_xDPI = GetDeviceCaps(hdc, LOGPIXELSX);
g_yDPI = GetDeviceCaps(hdc, LOGPIXELSY);

ReleaseDC(NULL, hdc);

}

int AdjustXDPI(int ex)

{
return MulDiv(cx, g_xDPI, 96);

}

int AdjustYDPI(int cy)

{
return MulDiv(cy, g_yDPI, 96);

// Compute the size of some screen element in "96 DPI pixels"
x = GetWidth() ;

464 dB*> THE OLD N E W THING

y = GetHeight();
// Convert it to real pixels based on DPI
x = AdjustXDPI(x);
y = AdjustXDPI(y);

The program should call the i n i t i a l i z e D P i function as part of its

startup; the function retrieves the screen DPI in both the horizontal and

vertical directions and saves them for future reference. Subsequently, after

you've computed the size of a screen element in pixels (or at least, in "what

would have been pixels if the screen were at 96DPI"), you can pass the

dimensions to the AdjustXDPI and AdjustYDPI functions to do the final

DPI scaling to adjust for the user's actual screen DPI.

Another place where you may be relying on pixel dimensions is bitmaps, in

particular, bitmaps set into static controls on dialog boxes. As noted earlier,

dialog boxes scale with DPI, which means that a static control which was per

fectly sized for your 160x200 bitmap on a 96DPI screen ends up being too

small when the dialog box is displayed on a 120DPI screen. The result of this

mismatch depends on what styles you gave to the static control.

C H A P T E R T W E N T Y Taxes 4 6 5

If you specify no special styles for the static bitmap control (aside from

SS_BITMAP, of course), the bitmap will be aligned against the upper-left corner

of the static control. If the static control is larger than the bitmap, there will be

gaps where the bitmap failed to cover the entire control.

If you specify the SS_REALSlZECONTROL style, the bitmap will be stretched to

the size of the static bitmap control. Depending on the type of image, this might

be acceptable. Line drawings do not stretch well, but photographs tend to do bet

ter. Note, however, that the stretching is done by a simple St re tchBl t ; so even

in the photograph case, you probably want to pre-stretch your bitmap using a

higher-quality stretching algorithm so that the result is visually acceptable. If the

image is a line drawing, you might simply have to have a series of bitmaps, each

designed for one of the common DPI values, and select the closest match at run

time, stretching as necessary to reach the exact size desired.

4 6 6 £=± T H E OLD N E W T H I N G

On the other hand, you can specify the SS_CENTERIMAGE style for the static

bitmap control. In this case, the bitmap will be centered within the control and

the gaps surrounding the bitmap will be filled with the color of the upper-left

pixel of the bitmap. For this technique to work, the upper-left pixel of the bitmap

must be a suitable fill color, but for line drawings this is typically not a problem.

Indeed, for line drawings, a combination of the second and third techniques

may result in the best results: Author a series of images, one at each of the

common DPI values, and choose the one that comes the closest to the target

bitmap dimensions without going over, and then center it.

Finally, the window manager in Windows Vista has recognized that high

DPI is so badly botched by most applications that it has taken the same

approach as the power management team: If people can't get it right, take the

decision out of their hands. In Windows Vista, the Desktop Window

CHAPTER TWENTY Taxes)*k 467

Manager (DWM) emulates a 96DPI display, regardless of what the user

specified. Programs that inquire after the screen DPI will merely get a value

of 96 back. When the program draws its content, the D W M will scale the

output to the actual screen DPI.

This visualization has its advantages and disadvantages. The advantage is

that the user will no longer see strange gaps, overlapping, or truncation when

the DPI is set to a value other than 96. The disadvantage is that while those

awful scenarios are avoided, the result is still not ideal because of the stretching.

Programs are strongly encouraged to opt out of DPI virtualization. This can be

done either programmatically by calling the SetProcessDPlAware function or,

preferably, declaratively by specifying in your application manifest that your

program is DPI aware and does not require virtualization:

<asmv3:application
xmlns:asmv3="urn:schemas-microsoft-com:asm.v3">
<asmv3 .-windowsSettings
xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">

<dpiAware>true</dpiAware>
</asmv3:windowsSettings>

</asmv3:application>

If you do either of these things, your program gets to see the true screen DPI,

but the responsibility is now yours to scale your user interface appropriately.

Multiple monitors

ALTHOUGH MULTIPLE MONITORS have been supported by Windows since 1998,

it disappoints and frustrates me that so many applications fail to handle them

properly. Eventually, you may want to investigate taking greater advantage of

multiple monitors; but for now, here is the minimum you need to know so

that your program at least doesn't fall apart on a multiple-monitor system.

First, only the primary monitor will have its upper-left corner at the

coordinates (0, 0). Secondary monitors will have other positions; in particu

lar, a secondary monitor can have negative coordinates relative to the primary.

For example, consider the dual-monitor arrangement depicted here.

http://schemas.microsoft.com/SMI/2005/WindowsSettings

468 JS* T H E OLD N E W T H I N G

(-800,0)
Secondary

(0,600)

(0,0)

Primary

(1024,768)

In this monitor configuration, the secondary monitor has its upper-left corner

at (-800, 0) and its lower-right corner at (0, 600). Observe also that the two

monitors are different sizes. In fact, they could even be different color depths.

(For example, the one on the left might be set to use 16 bits per pixel, whereas

the one on the right could be using 24 bits per pixel.)

Make sure you don't assume that negative coordinates are invalid. In the

above configuration, the coordinate (- 800, 0) is a perfectly acceptable position

for a window to be. It corresponds to the upper-left corner of the secondary

monitor. Some programs "helpfully" reposition items so that they have positive

coordinates, thereby keeping them "on the screen"; these programs become very

frustrating to use on a multiple-monitor system setup like we have here because

they keep shoving their objects onto the primary monitor. For example, one

program I use displays all its menus on the primary monitor, even if the pro

gram's main window is on the secondary.

Another thing to note is that the values of GetSystemMetries

(SM_CXSCREEN) and GetSystemMetrics (SM_CYSCREEN) refer only to the pri

mary monitor. These system metrics remain behind in order to provide compat

ibility with applications written before the advent of multiple monitors, but new

applications should avoid them because they do not take into account secondary

monitors. If you want to know the size of the screen, you first have to decide

which screen you're talking about!

You identify a display monitor to the window manager with an HMONITOR.

There are two ways of obtaining monitor handles, either by the advanced

technique of enumerating them explicitly (via a function such as

EnumDisplayMonitors) or by the more basic technique of using one of the

MonitorFromXxx functions.

If you want to do the least amount of work to support multiple monitors, you

can just restrict yourself to the monitor the user has put your window on by

calling the MonitorFromWindow function. (If the window straddles multiple

CHAPTER TWENTY Taxes -se^ 469

monitors, the monitor that has the largest area of intersection with the window

will be chosen.) You can then pass that monitor handle to GetMonitorlnf o to

get the coordinates of that monitor:

void GetMonitorRectFromWindow(HWND hwnd, OUT RECT *prc)

{
MONITORINFO mi = { sizeof(mi) };
HMONITOR hmon = MonitorFromWindow(hwnd,

MONITOR_DEFAULTTONEAREST);
if (hmon && GetMonitorlnfo(hmon, &mi)) {
*prc = mi.rcMonitor;
} else {
// Can't get monitor from window - use the primary monitor
prc->left = prc->top = 0;
prc->right = GetSystemMetrics(SM_CXSCREEN);

prc->bottom = GetSystemMetrics(SMJCYSCREEN);

}
]

This function takes the window and obtains the nearest monitor. The

MonitorFromXxx functions let you specify which monitor you want if the

window is not on any monitor; here, we ask for the window manager to

give us the closest monitor. If we still cannot get a monitor from the

window (perhaps the window handle was invalid), we return values appro

priate for the primary monitor.

Your program should use this function (or a function like it) where it would

have previously asked for the dimensions of the screen. Note that because a rec

tangle is returned, you need to position your objects within a rectangle rather

than assuming that the rectangle's origin is (0, 0). For example, if you want to

compute the center of a window's monitor, you would use something like this:

RECT rcMonitor;
GetMonitorRectFromWindow(hwnd, &rcMonitor);
int x = rcMonitor.left + (rcMonitor.right - rcMonitor.left) / 2;
int y = rcMonitor.top + (rcMonitor.bottom - rcMonitor.top) / 2;

Performing your computations on the correct monitor is essential if your

program has a full-screen mode. Many laptop computers are capable of going

into a multiple-monitor configuration with the laptop's built-in LCD as the

4 7 0 ^-\ THE OLD NEW THING

primary and the external monitor as secondary. It would not be unreasonable

for users to want to run your program full screen on the external monitor

(which is, say, connected to a projector for a presentation) while keeping their

notes visible on the LCD panel in another window. For this to work, your

program needs to go full screen onto the correct monitor.

I know another program that tries to go full screen but misses. Although it

does go onto the correct monitor, it uses the dimensions of the primary monitor!

Because my primary and secondary monitors are not the same size, this results

in a rather distorted full-screen window on the secondary monitor.

But wait, there's more to coordinate management than merely being monitor

aware. We take up those additional topics next.

The work area

As YOU SAW in "Why does the taskbar default to the bottom of the screen?"

(Chapter 4), many programs fail to distinguish between screen coordinates

and work area coordinates. Along the edges of each monitor, space can be

reserved by the taskbar or application toolbars, leaving a rectangular region in

the center for normal application windows. (Note that the taskbar can appear

on a secondary monitor.) This region is known as the work area, and you can

obtain its dimensions by calling GetMonitorlnf o and looking at the rework

member of the MONITORINFO structure:

void GetWorkAreaFromWindow(HWND hwnd, OUT RECT *prc)

MONITORINFO mi = { sizeof(mi) };
HMONITOR hmon = MonitorFromWindow(hwnd,

MONITOR_DEFAULTTONEAREST);
if (hmon && GetMonitorlnfo(hmon, &mi)) {
*prc = mi.rcWork;

1 i r } else {
// Can't get monitor from window - use the primary monitor
SystemParametersInfo(SPI_GETWORKAREA, 0, pre, 0);

}
}

C H A P T E R T W E N T Y Taxes «Bv 4 7 1

This is basically the same as the GetMonitorRectFromWindow function

except that we return the rework member to get the work area of the moni

tor the window resides on. If we cannot obtain the monitor for the window,

we use the work area of the primary monitor.

To be honest, few programs run afoul of the work area when they do their

coordinate computations because most programs just let the user do the window

positioning. The place where they run into trouble is when they try to mix

GetwindowPlacement with SetWindowPos. The restored window rectangle in

the WINDOWPLACEMENT structure (used by the GetwindowPlacement and

SetwindowPlacement functions) is given in work area coordinates, not screen

coordinates. W h e n programs "slide up under the taskbar" they are using a

WINDOWPLACEMENT as screen coordinates, causing the window to slide up and to

the left by the amount of space taken up by application bars at the top and left

of the screen.

T h e simple solution to this problem is not to mix the two coordinates. If

you retrieve the window position via Ge twindowPlacemen t , use the

SetwindowPlacement function to restore it.

The Se twindowPlacement function is the preferred way to restore

window positions because it takes into account changes in screen resolution,

multiple monitors, and changes in the work area. T h e function checks that the

window coordinates passed in, when converted from workspace coordinates

to screen coordinates, will result in a window that is visible on at least one

monitor. If the result is a window that would be completely off the screen, the

SetwindowPlacement function moves the window back onscreen.

4SBk

Displaying your pop-up windows
in the right place

W H E N YOU DECIDE to display a centered window, make sure you center it

against the correct thing. If you are displaying a pop-up message, you should

position it based on the location of the object that generated the pop-up. For

example, if a particular window wants to display a pop-up, the pop-up should

4 7 2 T H E OLD NEW T H I N G

be positioned relative to that window (centered, corner-aligned, whatever).

Many times I see programs that blindly center the window onto the primary

monitor, which is wrong for multiple reasons.

First, of course, is that the window might be on the wrong monitor entirely.

If the program is running on a secondary monitor, its pop-ups should display

on that same monitor.

Second, you may have noticed that monitors have been getting bigger over the

years. If you center your pop-up on the monitor rather than on the owner win

dow, you might end up putting your pop-up far away from its owner, causing

users to overlook it and be baffled as to why your program appears to have dis

abled itself. To get your program reenabled, the users have to deal with a pop-up

window that is so far away from the main window that it appears unrelated.

The problem of poorly chosen centering is a special case of the more gen

eral problem of using absolute positioning rather than relative positioning.

Absolute positioning is appropriate only if you have control of the entire

screen (for example, if your program has gone into full-screen presentation

mode). If your program is sharing the screen with other programs, you should

present your interface elements in locations relative to other interface ele

ments. Failing to adhere to this principle results in your interface elements

appearing in inappropriate (and possibly confusing) locations.

Accessibility

PERHAPS THE MOST-NEGLECTED software tax is accessibility. Indeed, accessibility

is a tax that I myself have been glossing over throughout this book in the

interest of not cluttering the presentation. (The discussion here is brief, too,

because my goal is merely to raise awareness of the issue rather than explore it

in depth.)

Let's go back to our program that illustrated painting only when the window

is visible on the screen and make it accessible. This particular program is both

complicated and simple from an accessibility point of view.

CHAPTER TWENTY Taxes « \ 473

It's complicated because the program paints its own text rather than relying

on a system-provided control such as a static text control or a list box. If you use

a system-provided control, you can take advantage of the accessibility

functionality of those controls. For example, if a program uses a dialog box that

consists entirely of system-provided controls and doesn't use owner-draw, it

doesn't need to take any special actions to make the dialog box accessible

because all the system-provided controls take care of the accessibility for you.

Unfortunately, our sample draws text directly and therefore must also shoulder

the accessibility burden of exposing that text to assistive technology programs.

On the other hand, our sample is a simple case of a custom accessible window

because it consists of just one element (the text) with no subelements.

Before we start tweaking our program, let's set some groundwork:

#include <oleacc.h>

class BaseAccessible : public IAccessible

public:
// *** IUnknown ***
STDMETHODIMP Querylnterface(REFIID riid, void **ppv)

IUnknown *punk = NULL;
if (riid == IID_IUnknown) {
punk = static_cast<IUnknown*>(this);
} else if (riid == IID_IDispatch) {
punk = static_cast<IDispatch*>(this);
} else if (riid == IID_IAccessible) {
punk = static_cast<IAccessible*>(this)

*ppv = punk;
if (punk) {
punk->AddRef();
return S_OK;
} else {

return E_NOINTERFACE;

}

STDMETHODIMP_(ULONG) AddRef()
{ return Interlockedlncrement(&m_cRef); }

STDMETHODIMP (ULONG) Release()

ULONG cRef = InterlockedDecrement(&m cRef)

474 ^ ^ THE OLD N E W THING

if (cRef == 0) delete this;

return cRef;

}

// *** IDispatch ***
STDMETHODIMP GetTypelnfoCount(UINT *pctinfo)

{
return m_paccStd->GetTypeInfoCount(pctinfo);

!
STDMETHODIMP GetTypelnfo(UINT lTInfo, LCID lcid,

ITypelnfo **ppTInfo)
{
return m_paccStd->GetTypeInfo(iTInfo, lcid, ppTInfo);
}
STDMETHODIMP GetlDsOfNames(REFIID riid, LPOLESTR *rgszNames,

UINT cNames, LCID lcid, DISPID
*rgDispId)

return m_paccStd->GetIDsOfNames(riid, rgszNames, cNames,
lcid, rgDispId);

i

STDMETHODIMP Invoke(DISPID dispIdMember, REFIID riid, LCID lcid,
WORD wFlags, DISPPARAMS *pDispParams,
VARIANT *pVarResult, EXCEPINFO *pExcepInfo,
UINT *puArgErr)

{
return m_paccStd->Invoke(dispIdMember, riid, lcid,wFlags,

pDispParams, pVarResult, pExcepInfo, puArgErr);
}

// *** IAccessible ***
STDMETHODIMP get_accParent(IDispatch **ppdispParent)

{
return m_paccStd->get_accParent(ppdispParent);

}
STDMETHODIMP get accChildCount(long *pcountChildren)
{
return m_paccStd->get_accChildCount(pcountChildren);
}
STDMETHODIMP get_accChild(VARIANT varChild,

IDispatch **ppdispChild)
{
return m_paccStd->get_accChild(varChild, ppdispChild);

}
STDMETHODIMP get_accName(VARIANT varChild, BSTR *pbsName)
{

C H A P T E R T W E N T Y Taxes ^S^ 475

return m_paccStd->get_accName(varChild, pbsName);

STDMETHODIMP get_accValue(VARIANT varChild, BSTR *pbsValue)
f

return m_paccStd->get_accValue(varChild, pbsValue) ,-

STDMETHODIMP get_accDescription(VARIANT varChild, BSTR *pbsDesc)

return m_paccStd->get_accDescription(varChild, pbsDesc);

STDMETHODIMP get_accRole(VARIANT varChild, VARIANT *pvarRole)
{
return m_paccStd->get_accRole(varChild, pvarRole);

STDMETHODIMP get_accState(VARIANT varChild, VARIANT *pvarState)

return m_paccStd->get_accState(varChild, pvarState);
}
STDMETHODIMP get_accHelp(VARIANT varChild, BSTR *pbsHelp)

return m_paccStd->get_accHelp(varChild, pbsHelp);

STDMETHODIMP get_accHelpTopic(BSTR *pbsHelpFile,VARIANT varChild,
long *pidTopic)

{
return m_paccStd->get_accHelpTopic(pbsHelpFile, varChild,

pidTopic);

STDMETHODIMP get_accKeyboardShortcut(VARIANT varChild,BSTR
*pbsKey)

return m_paccStd->get_accKeyboardShortcut(varChild, pbsKey);

STDMETHODIMP get_accFocus(VARIANT *pvarChild)
{
return m_paccStd->get_accFocus(pvarChild);

STDMETHODIMP get_accSelection(VARIANT *pvarChildren)
/

return m_paccStd->get_accSelection (pvarChildren) ,-

STDMETHODIMP get_accDefaultAction(VARIANT varChild,BSTR
*pbsDefAction)

return m_paccStd->get_accDefaultAction(varChild, pbsDefAction);

4 7 6 T H E OLD N E W T H I N G

STDMETHODIMP accSelect(long flagsSelect, VARIANT varChild)

{
return m_paccStd->accSelect(flagsSelect, varChild);

}
STDMETHODIMP accLocation(long *pxLeft, long *pyTop,

long *pcxWidth, long *pcyHeight,
VARIANT varChild)

{
return m_paccStd->accLocation(pxLeft, pyTop, pcxWidth,pcyHeight,

varChild);
}
STDMETHODIMP accNavigate(long navDir, VARIANT varStart,VARIANT

*pvarEndUpAt)

{
return m__paccStd->accNavigate (navDir, varStart, pvarEndUpAt);

}
STDMETHODIMP accHitTest(long xLeft, long yTop,VARIANT *pvarChild)
{
return m_paccStd->accHitTest(xLeft, yTop, pvarChild);

}
STDMETHODIMP accDoDefaultAction(VARIANT varChild)
{
return m_paccStd->accDoDefaultAction(varChild);

}
STDMETHODIMP put_accName(VARIANT varChild, BSTR bsName)
{
return m_paccStd->put_accName(varChild, bsName);

}
STDMETHODIMP put_accValue(VARIANT varChild, BSTR bsValue)
{
return m_paccStd->put_accValue(varChild, bsValue);

protected:
BaseAccessible(IAccessible *paccStd)
: m_cRef(l), m_paccStd(paccStd)

{
m_paccStd->AddRef();

}
-BaseAccessible() { m_paccStd->Release(); }

private:
LONG m cRef;

protected:
IAccessible *m paccStd;

};

CHAPTER TWENTY Taxes «B=v 4 7 7

As you can see, this class is not particularly interesting. It just wraps an

existing lAccess ib le object inside another one. The value of this class is to

allow you to modify the behavior of the wrapped lAccess ib le interface by

overriding selected methods. In our case, we will override the get_accName

and get_accValue methods to return our custom data:

class ScratchAccessible : public BaseAccessible

{
public:
static HRESULT Create(HWND hwnd, LONG idObject,REFIID riid,

void **ppv)

*ppv = NULL;
lAccessible * paccStd;
HRESULT hr = CreateStdAccessibleObject(hwnd, idObject,

IID_IAccessible,
(void **)&paccStd);

if (SUCCEEDED(hr)) {
// note: uses non-throwing "new"
ScratchAccessible *psa = new ScratchAccessible(paccStd) ;
if (psa) {
hr = psa->QueryInterface(riid, ppv) ;
psa->Release();
} else {
hr = E_OUTOFMEMORY;

}
paccStd->Release();
}
return hr;
}

// Selective overriding of lAccessible
STDMETHODIMP get_accName(VARIANT varChild, BSTR *pbsName)

{
if (varChild.vt == VT_I4 && varChild.lVal == CHILDID_SELF) {
*pbsName = SysAllocString(L"Current time");
return *pbsName ? S_OK : E_OUTOFMEMORY;
}
return m_paccStd->get_accName(varChild, pbsName);
}
STDMETHODIMP get_accValue(VARIANT varChild, BSTR *pbsValue)
{
if (varChild.vt == VT_I4 && varChild.lVal == CHILDID_SELF) {
WCHAR szTime[100];
if (GetTimeFormatW(LOCALE USER DEFAULT, 0, NULL, NULL,

478 JSBK T H E OLD N E W T H I N G

szTime, 100)) {
*pbsValue = SysAllocStr ing(szTime);
r e t u r n *pbsValue ? S_0K : E_0UT0FMEM0RY;

}

}
r e t u r n m_paccStd->get_accValue(varChild, pbsValue);

i

p r i v a t e :
Scra tchAccess ib le (IAccess ib le *paccStd)

: BaseAccessible(paccStd) { }

Our static Create method uses the CreateStdAccessibleObj ect function

to get the IAccessible that would have been used if we didn't provide our own

implementation. We wrap that interface inside our ScratchAccessible object,

which overrides the get_accName method by returning "Current time" as the

accessible name for the object and the current time as its value.

Now we can hook this up to our sample program:

void
PaintContent(HWND hwnd, PAINTSTRUCT *pps)

TCHAR szTime[100];
if (GetTimeFormat(LOCALE_USER_DEFAULT, 0, NULL, NULL,

szTime, 100)) {
// SetWindowText(hwnd, szTime); // delete
TextOut(pps->hdc, 0, 0, szTime, lstrlen(szTime));

}

void CALLBACK
InvalidateAndKillTimer(HWND hwnd, UINT uMsg,

UINT_PTR idTimer, DWORD dwTime)

KillTimer(hwnd, idTimer);
InvalidateRect(hwnd, NULL, TRUE);
NotifyWinEvent(EVENT_OBJECT_VALUECHANGE, hwnd,

OBJID_CLIENT, CHILDID_SELF);

}

// new function
LRESULT OnGetObject(HWND hwnd, WPARAM wParam, LPARAM IParam)

{
if (IParam == OBJID CLIENT) {

C H A P T E R T W E N T Y Taxes ^ ^ 4 7 9

IAccessible *pacc;
HRESULT hr = ScratchAccessible::Create(hwnd,(LONG)lParam,

IID_IAccessible,
(void**)&pacc);

if (FAILED(hr)) return hr;
LRESULT lr = LresultFromObject(IID_IAccessible, wParam, pace);
pacc->Release () ;
return lr;

j

return DefWindowProc(hwnd, WM_GETOBJECT, wParam, lParam);
1

// Add to WndProc
case WM_GETOBJECT: return OnGetObject(hwnd, wParam, lParam);

The change to the PaintContent function merely removes the caption

change from our timer. We do this just to reduce the number of things chang

ing in the system so that it's easier to watch the effect of the accessibility

changes without being distracted by other changes.

The change to the invalidateAndKillTimer function is one that is often

overlooked by people who implement the IAccess ib le interface: firing acces

sible events when the state of an object changes. You need to fire accessible

events for your custom IAccess ible implementation so that accessibility

tools will know that the onscreen content has changed. They can then fetch the

new accessible properties and take action such as reading the new value

to the user.

The ball is set into motion by the WM_GETOBJECT handler. If we are being

asked for the accessible object for the window client area, we create our wrap

per object and return it. Note the careful way this object is returned: The

LresultFromObject function takes the accessible object and encodes it into

an LRESULT, which we return. The encoding process (assuming it is successful)

takes its own reference on the interface; we are still on the hook for releasing

our reference.

With these changes, you can run the program in conjunction with accessibil

ity tools such as Narrator (which comes with Windows XP) or Inspect (which

is part of the Active Accessibility SDK) to see that your custom-painted window

now exposes its name and value via Active Accessibility, thereby allowing accessible

4 8 0 5S=N T H E OLD NEW T H I N G

technology programs such as screen readers to retrieve information about your

programs display and present it to users with disabilities.

Now, this seems like an awful lot of work, and it is. As noted before, this

work was necessary because we are custom painting our content rather than

using a system-provided window class such as a static control. If we had used

a static control to display the time, the accessibility support already built in to

the static control would have done this work for us.

Our job was also complicated by the fact that the value constantly changes. If

the value were static, we could have used Direct Annotation to set the value when

the window was created and allow the default lAccessible implementation to

do all the work. You can learn more about Direct Annotation and the rest of

Active Accessibility from the Active Accessibility documentation in MSDN.

Remember also that accessibility is not just for users with disabilities.

Because the accessibility interfaces are programmable, any program can use

them to extract text and other information from your application. For example,

a dictionary program can use the accessible interfaces to retrieve the text

beneath the mouse cursor and display a translation or definition in a helper

window. If your program doesn't support accessibility, those helper programs

will be unable to retrieve text from your program, leaving the user stymied.

^ >

C H A P T E R T W E N T Y-O N E

^ S I L L I N E S S ^ '

. * : • . , . ^

IFE is NOT all seriousness, of course. Here are some sillier things that

happened.
r r

The much-misunderstood "nop" action

THE PRINTERS WERE reconfigured in our building, and we got an announce

ment that went like this:

Subject: Printer/Copier Reconfiguration

* Action Required*

blah blah blah printers are being reconfigured blah blah blah

Action(s) to be taken: No action is required, as the print path information

will remain the same.

Sometimes you have to do nothing, and that counts as doing something.

481

4 8 2 ^ ^ THE OLD NEW THING

Don't let Marketing mess
with your slides

I FORGET WHICH conference it was, maybe GCDC 1996. We were all busy

preparing our presentations and submitted them to the Microsoft conference

representatives so that they could apply the standard template, clean them up,

print out copies to go into the handouts, all that stuff.

What about that "clean them up" step?

We didn't realize what clean them up meant until we showed up at the con

ference and looked at the handouts.

Part of cleaning up was inserting 8 and ™ symbols as necessary, which meant

that they also took every occurrence of the abbreviation VB and changed it to

Microsoft Visual Basic®. They even did this to the presentation on vertex

buffers. The abbreviation for vertex buffers is also VB.

You can imagine what the effect was.

Whimsical bug reports

WHIMSICAL BUG REPORTS, although not a common occurrence, aren't exactly

unheard of either. They are a popular way to vent a shared frustration and

lighten the mood.

The company changed milk suppliers for our cafeterias. Well, more accu

rately, the previous milk supplier was bought by another milk company. The

problem is that the single-serving milk cartons from the new company are

hard to open.

So, of course, what you do is file a bug.

Bug: New milk cartons are hard to open.

To Reproduce: Go to cafeteria, get milk carton, attempt to open it, get napkins,

and clean up mess.

C H A P T E R T W E N T Y - O N E Silliness 483

(The reason is that the milk company bought a brand new machine that

seals the cartons with too much glue. The fix was to adjust the seal.)

A few workarounds were suggested, including bringing your own cow and a

three-step process of freezing the milk, tearing the carton open, then allowing

the milk to thaw. Others explained that the fix is held up in testing: "Currently

only three testers are handling this component and they can only drink eight

cartons a day. The team could conduct more carton-opening tests but carton-

tasting, milk-flow testing, and carton pressure tests are still remaining." Plus, of

course, a security review needs to be made of the consequences of a weaker seal.

This is a particularly software-oriented joke, because it highlights how hard

it is to make bug fixes in software—by applying the software testing regimen

to something that isn't software. You can't assume that a simple, local change

such as adjusting the amount of glue applied to the carton will result in a sim

ple, local change in the final product (a more acceptable seal strength).

Software is nonlinear. A simple change can have effects (some catastrophic,

some subtle) far, far away from the point of change.

^ ^

Watch out for those sample URLs

WHEN WRITING DOCUMENTATION, you might have to come up with a sample

URL to illustrate some point or other. When you do, make sure the sample

URL is under your control. I remember a Windows beta that used the sam

ple URL http://www.xxxxx.com/ in a dialog box. You can imagine where that

actually goes.

(Raymond's strange dream story: One night I dreamed that I found a Web

site devoted to the cartoon Dilbert, and for some reason the name of the site

was"Wally World." In the morning, I checked out the site and was in for a big

surprise: It's a gay porn site.)

So play it safe. When you need a sample URL, don't just make something up.

If you do, odds are good that somebody is going to rush in and register it. Make

your sample URLs point back to your company's home page, or use

http://www.example.com, which has been reserved for use in sample URLs.

http://www.xxxxx.com/
http://www.example.com

4 8 4 *&\ THE OLD NEW THING

(The promise is only that the domain example.com will always be safe to use in

documentation; there is no promise that visiting the site will actually reveal

anything interesting.) If that's too unsatisfying, you can always go out and regis

ter the domain you want to use as your sample, so that nobody else can sneak in

and steal it. (And with the price competition for domain names nowadays, it

won't cost you much at all.) If you choose to register your own domain, make

sure to renew it when its registration expires. The scripting team used the Web

site scripthappens.com as a sample URL, but they were slow to renew the

domain when it came up for expiration, and it's been a porn site ever since. Plenty

of other companies have fallen into the same trap. Learn from their mistakes.

No code is an island

As AN EXAMPLE of the nonlocal effects of a simple change, consider that on

Windows 2003 Server the Display Adapter Troubleshooting slider still lists

"full acceleration" as the recommended setting even though the default for

Server is "full minus one."

This is one of those "Oh, that's an easy change" bugs. The discussion probably

went like this:

Some guy whose idea this was: "For stability reasons, we want to

lower the default video acceleration for Server a notch. Dear Video

Setup team, can you do that for us?"

Video Setup team: "Sure thing, that's no problem. The default set

ting is all done by us; it should not have any impact on anybody else.

We'll just do it and be done with it."

Guy: "Sweet. Thanks."

And bingo, the default video acceleration dropped to one notch below full

on Server, and everyone was happy.

Except that there's this text tucked away in the Display Control Panel that

has the word (recommended) next to "full acceleration." That didn't get updated.

http://example.com
http://scripthappens.com

CHAPTER TWENTY-ONE Silliness ^S\ 485

Oops. (I wouldn't be surprised if there is also some help text that didn't get

updated for this change.)

No code is an island.

So when you complain, "Aw come on, it's a one-line change. What's taking

so long?" think about the little video acceleration slider.

But I have Visual Basic Professional

BACK IN 1995,1 was participating in a chat room on M S N on the subject of

Windows 95 kernel-mode device drivers (known as VxDs). One of the peo

ple in the chat room asked, "Can I write a VxD in Visual Basic?"

I replied,"VxDs are typically written in low-level languages such as C or

even assembly language."

Undaunted, the person clarified: "But I have Visual Basic Professional"

It's all about the translucent plastic

A FRIEND OF mine used to work on the development of the USB specification

and subsequent implementation. One of the things that happens at these

meetings is that hardware companies would show off the great USB hard

ware they were working on. It also gave them a chance to try out their hardware

with various USB host manufacturers and operating systems to make sure

everything worked properly together.

One of the earlier demonstrations was a company that was making USB floppy

drives. The company representative talked about how well the drives were doing

and mentioned that they make two versions, one for PCs and one for Macs.

"That's strange," the committee members thought to themselves. "Why are

there separate PC and Mac versions? The specification is very careful to make

sure that the same floppy drive works on both systems. You shouldn't need to

make two versions."

4 8 6 ^ ^ s THE OLD NEW THING

O n e of the members asked the obvious question. "Why do you have two

versions? What 's the difference? If there's a flaw in our specification, let us

know and we can fix it."

T h e company representative answered, "Oh, the two floppy drives are com

pletely the same electronically. T h e only difference is that the Mac version

comes in translucent blue plastic and costs more."

Th i s company was, of course, hardly the first to capitalize on the iMac-

inspired translucent plastic craze. My favorite is the iMac-styled George

Foreman Grill. (I'm told the graphite ones cook faster.)

My first death threat

ACTUAL FEEDBACK SUBMITTED to the microsoft.com Web site many years ago:

id: 13726

Date : 1996-07-29 17:27:41.997

TsJ^tTia., ***********

Email: *************

Area: Windows 95

Comments :

PLEASE read this entire email as it is quite serious. I just discovered today that in the

Windows 95 operating system, there are no switches, command line options, or any

way whatsoever to have the XCOPY command include hidden/system files in its oper

ations. It is clear that at some point in the development of the Windows 95 product,

that somebody made a conscious decision to implement the xcopy command in this

manner. It is also clear from looking at the Windows N T XCOPY command that it

can be implemented in the manner 1 describe. Therefore, let me give fair warning.

This may not be easy, and I will expect no help from Microsoft in finding out who this

person (or persons) was that made this decision, but... eventually I will find out who

made this decision, and I will kill them. This is not an idle threat — I will pursue

this matter until it is resolved . . . whoever is responsible for this incredibly ridiculous

implementation of what would be an otherwise useful tool will die at my hands, hope

fully in a bloody, painful fashion. You will not get away. —J*hn ******

http://microsoft.com

CHAPTER TWENTY-ONE Silliness -s—̂ . 487

J*hn, if you're still out there ... the switch for copying hidden files on

Windows 95 is /H. Same as Windows NT.

Please don't kill me.

You can't escape those AOL CDs

O N E OF MY colleagues was unpacking one of those $30,000 quad-processor

more-memory-than-you-know-what-to-do-with super-server computers.

The kind that require their own electrical substation.

And it came with an AOL CD.

It's like buying a giant plasma television set and finding an advertisement

for an aerial antenna in the box.

Apparently one of the questions AOL tech support asks when people call

in complaining that they can't get their AOL CD to work is, "Do you have a

computer?"1 because so many people who don't have computers stick the CD

into their stereo or DVD player and can't get it to work.

Giving fair warning before plugging
in your computer

THAT COLLEAGUE WHO gave me the AOL CD that came with his big-iron server

later received a prototype Itanium computer for testing purposes. The early

Itaniums were behemoths. They weighed a ton, sounded like a weed whacker,

and put out enough heat to keep you comfortably warm through the winter.

(If you opened them up, you would probably see several carefully shaped

Styrofoam blocks with the label "Do not remove! Engineering Styrofoam!" I

never though I would ever see the phrase engineering Styrofoam used seriously.)

Never one to read all the safety labels before playing with a new toy, my

colleague took the heavy-duty double-capacity power cables and ran them to

the normal wall socket. Then he threw the power switch.

And the power went out in the entire building wing.

1. Wait, Wait, Don't Tell Me, National Public Radio, November 13, 2004. Opening Panel Round, sec
ond question, available at http://www.npr.org/programs/waitwait/archrndwn/2004/nov/
041113.waitwait.html.

http://www.npr.org/programs/waitwait/archrndwn/2004/nov/

4 8 8 J ^ s T H E OLD N E W T H I N G

The power surge from the Itanium overloaded the poor wall socket and

tripped the wing's circuit breaker. Everybody went through the standard

power-outage drill, while speculating with one another what the cause for this

one might be.

It didn't take long for word to get out. "X plugged in his Itanium."

After the electricians came by to check that everything was okay, they reset

the circuit breaker and everybody got back to work.

My colleague re-cabled the machine to be more friendly to the building's

power circuitry. Then he sent out email to the entire team.

.'m turning it on! "I'm turning it on!"

We all saved our work and waited.

The power stayed up.

Then we all smiled to ourselves and resumed our typing.

_ _ -
Spider Solitaire unseats
the reigning champion

SOME TIME AGO, the usability research team summarized some statistics they

had been collecting on the subject of what people spend most of their time

doing on the computer at home. Not surprisingly, surfing the Internet was

number one. Number two was playing games, and in particular, I found it

notable that the number one game is no longer Klondike Solitaire (known to

most Windows users as just plain Solitaire).

That title now belongs to Spider Solitaire. The top three games (Spider

Solitaire, Klondike Solitaire, and FreeCell) together account for more than

half of all game-playing time.
O I / O

Personally, I'm a FreeCell player.

Exercise: Why aren't games such as Unreal Tournament or The Sims in the

top three?

CHAPTER TWENTY-ONE Silliness JSs, 489

There's something about Rat Poker T > 1 1 I • 1 T-k T~» 1

W H E N PERFORMING USABILITY tests, one of the standard tasks we give peo

ple is to install a game, and the game we usually use is The Puzzle Collection.

(Yes, it's an old game, but changing the game makes it less valid to compare

results from one year to the next.)

One of the things that the game's setup does that always confuses people is

that it asks you where you want to install it and suggests a directory. If you

accept the default, a warning box appears that reads,"The directory C:\Program

Files\Microsoft Puzzle Collection does not exist. Do you wish to create it?"

People see this dialog box and panic.

Why?
Because it's an unexpected dialog, and unexpected dialogs create confusion

and frustration. From a programming perspective, this is a stupid dialog

because it's hardly a surprise that the directory doesn't exist. You're installing

a new program! From a usability point of view, this is a stupid dialog because

it makes users second-guess themselves. "Gosh, did I do something wrong?

The computer is asking me if I'm sure. It only does that when I'm about to do

something really stupid." They then click No (it's always safest to say No),

which returns them to the dialog asking them to specify an installation direc

tory, and they'll poke around trying to find a directory that won't generate an

"error message." I've seen users install the Puzzle Collection into their

Windows directory because that was the first directory they could think of

that didn't generate the error message.

Anyway, after the program is installed (one way or another), we tell them

to relax and play a game. We say it as if we're giving them a reward for a job

well done, but it's actually still part of the test. We want to see how easily users

can find whatever it is they just installed.

One thing you can count on is that when faced with the collection of games

available, for some reason, they always pick Rat Poker.

Always.

file://C:/Program

490 ^SK T H E OLD N E W T H I N G

Each of us has our own pet theory why people always pick Rat Poker.

Personally, I think it's that the Rat Poker icon is the most friendly looking of

the bunch. Many of them are abstract, or they depict scary creatures, but

awww, look at that cute rat with the big nose. He looks so cheerful!

Click. Another vote for Rat Poker.

Be careful what you name
your product group

THEY THOUGHT THEY were so clever when they named the Desktop

Applications Division. And the abbreviation is DAD, isn't that cute? It com

plements the Microsoft Office Manager toolbar (MOM)."

And then the troubles started.

Shortly after the new product group was formed, everybody in the product

group started getting email talking about strange nonbusiness things. How's

the garden doing? Did you get my letter? When will the twins be coming

home from college?

The reason is that the email address for sending mail to the entire division

was, naturally, DAD. But it so happens that many people have a nickname for

their father in their address book, named, of course, dad. People thought they

were sending email to their dad, when in fact it was going to DAD.

The email address for sending mail to the entire division was quickly

changed to something like deskapps or dappdiv.

The psychology of naming
your internal distribution lists

ONE PROBLEM THAT I'm sure everybody has run into is what I'm going to call

the comp.unix.wizards problem. People who have a problem with UNIX are

looking for someone who can help them, and given the choice between a

general questions group and a wizard group, they're obviously going to choose

CHAPTER TWENTY-ONE Silliness j©v 491

the wizards because that's where the smart people are! Of course, this annoys

the wizards who created the group so they could focus on advanced UNIX

topics.

Here's a trick. Give your nontechnical discussion group the name XYZ

Technical Discussion. Meanwhile, name your technical discussion group

something less attractive like XYZ Infrastructure Committee. Your "technical

discussion" distribution list will get the support questions, and people will feel

like they're getting a "more direct line" to the technical staff. In reality, of

course, the technical staff read both the XYZ Technical Discussion and the

XYZ Infrastructure Committee groups.

(Now, by revealing this trick, I risk ruining it.)

Differences between managers
t>

and programmers
IF YOU FIND yourself in a meeting with a mix of managers and programmers,

here's one way to tell the difference between them: Look at what they brought

to the meeting.

Did they bring a laptop computer? Score bonus points if the laptop com

puter is actually turned on during the meeting or if the laptop is special in some

way. (Back when I developed this rule, having a wireless card or a Tablet PC

was special enough.) If so, that person is probably a manager.

Did they come to the meeting empty-handed or with a spiral-bound note

book? If so, that person is probably a programmer.

It's not an infallible test, but it works with surprisingly high accuracy.

Here's another trick: If you are attending a talk, you can tell whether the

person at the lectern is a manager or a programmer by looking at their

PowerPoint presentation.

If it's black-and-white, all-text, multimedia free, and rarely has more than

ten bullet points on a page, the presenter is probably a programmer.

If it's colorful, with graphics, animation, and pages crammed with information

bordering on illegibility, the presenter is probably a manager.

4 9 2 <5—^ T H E OLD NEW T H I N G

It's fun watching a manager try to rewind their presentation to a particular

page. As you step over pages, you still have to sit through the animations,

which means that instead of "hit space five times" to go forward five pages, you

have to "hit space fifteen times, waiting three seconds between each press of

the spacebar" because each page has three animations that you must sit

through and experience again.

Using floppy disks as semaphore tokens

IN THE VERY early days of Windows 95, the distribution servers were not

particularly powerful. The load of having the entire team installing the

most recent build when it came out put undue strain on the server. The

solution (until better hardware could be obtained) was to have a stack of

floppy disks in the office of the "build shepherd." (The job of build shep

herd was to perform the initial diagnosis of problems with the build itself

or with verification testing and make sure the right developer is called in to

address the problem.)

If you wanted to install the latest build, you had to go to the build shepherd's

office and take one of the specially marked floppy disks. When you finished

installing, you returned the disk.

In other words, the floppy disk acted as a real-world semaphore token.

When a token changes
its meaning midstream

THE PROJECT LEADER for the Microsoft Virtual Machine for Java was well

known for wearing Hawaiian shirts. I'm told that the team managers decided

to take one of those shirts and use it as an award to the team member who

fixed the most bugs or some similar thing. What the team managers failed to

take into account was that nobody actually liked being given a Hawaiian shirt

("Does this mean I have to wear it?"), especially not one that had been worn by

CHAPTER TWENTY-ONE Silliness 493

somebody else. If you happened to be the person who fixed the most bugs, you

sort of reluctantly accepted the shirt even though you really didn't want it.

And then a wonderful thing happened. The meaning of the shirt flipped.

The details are lost to the mists of time, but it happened while the project

leader was out on vacation. During this time, the holder of the "shirt award"

chose to "reward" the person responsible for a build break by giving him the

shirt. This proved to be the turning point: The shirt became a symbol of dis

approval. I believe the unofficial rule was that to get rid of the shirt, you had

to find somebody who messed up at least as bad as whatever you did to earn

the shirt in the first place.

When the project leader returned from vacation, he was rather surprised to

see what had happened to his "award."

My colleague Jeff Davis explains that a similar thing happened in the M S N

Explorer team. The development manager bought a singin'-dancin James

Brown as a reward. It was cool but incredibly annoying to have people stop in,

press the button, and have to listen to "I Feel Good." After about the twentieth

listen, the trophy instantly metamorphosed into something you got when you

broke the build or otherwise made a horrific mistake.

The team was reorganized, and James Brown continued its duties on the

shell team. Eventually Jeff ended up with it when the guy across the hall from

him moved offices and left it in his office rather than pack it, the sneaky devil.

Jeff retired the James Brown doll and found it a nice home away from the

office where it can do no more harm.

Whimsical embarrassment as
a gentle form of reprimand

DURING THE DEVELOPMENT of Windows Vista project, I messed up a cross-

component check-in and broke the build. I'm not proud of it. (In my excite

ment over finally having passed a few weeks' worth of testing requirements,

I absently submitted only one of the components for check-in! My change was

99% within one component, and I forgot about the other 1%.) My submission

4 9 4 ^ S ^ THE OLD NEW THING

cleared the "single-component check-in" queue at around 4:30 a.m., and before

I got a chance to fix the problem at 8 a.m„ a complex job was submitted into

the "multi-component check-in" queue. That job failed, of course, because I

neglected to update the second component.

A few hours later, I was greeted with a large inflatable bunny rabbit in my

office. His name is "Bug Bunny," and it is my lot to be Bug's keeper until

somebody else breaks the build. (But hey, at least I fixed it before 5 p.m. At

5 p.m., my team's lab kicks off its nightly builds; and if you break those

builds, the next morning's "official team build" doesn't get released, and

testers don't have anything to install.)

Many groups have an object with a similar purpose, namely to be "bestowed

upon" the person who most recently messed up. And as we saw earlier, the

"object of shame" may not even have started out its life with that purpose.

Using a physical obiect as
a reminder

ONOURTEAM,we have a mailing list where people can report problems. Those

people could be testers from our team or they could be people from elsewhere in

the company. All members of the team are expected to keep an eye on the

messages and debug problems in their areas. The job of monitoring the mailing

list to ensure that every issue is addressed rotates according to a predetermined

schedule; and in addition to receiving a piece of reminder mail at 4 p.m. the

business day before it's your turn, you will also find a Mickey Mouse ears hat on

your desk when you arrive in the morning.

I bought this hat in Disneyland a few years ago and somehow managed

to convince the person operating the sewing machine to stitch the name

Dev O'Day on the back. It's an Irish name, I explained, but it also stands for

Developer of the Day, which is the title we use for the person who monitors

the mailing list.

One of our team members went on vacation to Disneyland the following

year and brought back a backup hat, which sits in my office. The backup hat

CHAPTER TWENTY-ONE Silliness £S\ 495

is occasionally brought into service when the primary Dev O'Day hat goes

missing, at which point a Search and Rescue mission is undertaken to locate

the hat and restore it to circulation. (It's usually just sitting in the office of

someone who was Developer of the Day recently and merely forgot to hand

the hat off at the end of the day.)

The office disco party

O N E OF THE long-standing traditions at Microsoft is to play a prank on some

one's office while that person is away on vacation. You can imagine what most of

these pranks are like, filling someone's office with packing peanuts or other mate

rials, or relocating the office to an unlikely part of the building (the bathroom,

the cafeteria), or something more subtle like mirror-reversing all the furniture in

the office. Redecorating an office is a common theme, such as turning a co-worker's

office into a French bistro or a golf course (with real grass).

One particularly memorable office redecoration was from 1996 or so. One

of the managers, let's call him Bob, had a bit of a reputation for being cool in

a nightclubby sort of way. While Bob was away on vacation, his team set to

work. They emptied his office completely, painted the walls black, removed

the ceiling tiles to give it that "industrial" look, and installed a disco dance

floor, disco lights, and a stereo with turntable.

It was Disco Bob's Party Palace.

When Bob returned, there was quite a happenin' disco party waiting for him.

The Halloween-themed lobby

DURING THE WINDOWS 95 project, the window manager team stayed late

one night and redecorated the lobby. They suspended a variety of Halloween-

themed objects from fishing lines: spiders, ghosts, witches, jack-o'-lanterns,

that sort of thing. The fishing line went up and over pulleys, rigged so that the

objects spookily rose and fell seemingly of their own volition. It was quite an

impressive display.

4 9 6 ^ 3 ^ THE OLD NEW THING

The fishing lines were anchored to various doors in the building. Because

the doors they chose were highly trafficked, this ensured a random pattern of

motion for the objects suspended from the fishing line. Of course, no spooky

Halloween display would be complete without a spider rigged to the front

door, rapidly descending upon the poor victim coming in for a meeting.

^

•

