

Vagrant	Virtual	Development
Environment	Cookbook

Table	of	Contents

Vagrant	Virtual	Development	Environment	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Setting	Up	Your	Environment

Introduction

Installing	Vagrant	and	VirtualBox

Getting	ready

How	to	do	it…

Installing	VirtualBox

Installing	Vagrant

How	it	works…

See	also

Initializing	your	first	environment

Getting	ready

How	to	do	it…

How	it	works…

Installing	Vagrant	providers

Getting	ready

How	to	do	it…

How	it	works…

See	also

Finding	additional	Vagrant	boxes

Getting	ready

How	to	do	it…

Finding	boxes

Initializing	an	environment	with	a	new	box:

Adding	a	new	box	without	initializing	an	environment:

There’s	more…

Using	existing	virtual	machines	with	Vagrant

Getting	ready

How	to	do	it…

Packaging	the	VirtualBox	machine

Configuring	a	Vagrant	environment

How	it	works…

2.	Single	Machine	Environments

Introduction

Defining	a	single	machine	Vagrant	environment

How	to	do	it…

Simple	Vagrant	environment

A	defined	single	machine	environment

How	it	works…

Forwarding	ports	from	a	Vagrant	machine

How	to	do	it…

How	it	works…

Starting	a	GUI	with	Vagrant

Getting	ready

Introducing	Atlas

How	to	do	it…

How	it	works…

There’s	more…

Sharing	Vagrant	guest	folders	with	the	host

Getting	ready

How	to	do	it…

How	it	works…

See	also

Sharing	folders	using	Network	File	Systems

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Sharing	folders	with	rsync

Getting	ready

How	to	do	it…

How	it	works…

See	also

Customizing	virtual	machine	settings	(VirtualBox)

Getting	ready

How	to	do	it…

How	it	works…

Customizing	virtual	machine	settings	(VMware	Desktop)

Getting	ready

How	to	do	it…

How	it	works…

Sharing	environments	with	source	control

Getting	ready

How	to	do	it…

How	it	works…

See	also

3.	Provisioning	a	Vagrant	Environment

Introduction

Running	basic	shell	commands

How	to	do	it…

How	it	works…

Executing	shell	scripts	in	a	Vagrantfile

Getting	ready

How	to	do	it…

How	it	works…

Shell	scripting	in	vagrant	machines

Script	idempotency

See	also

Provisioning	with	external	shell	scripts

Getting	ready

How	to	do	it…

How	it	works…

Shell	provisioning

Provisioning	with	different	shell	languages

See	also

4.	Provisioning	with	Configuration	Management	Tools

Introduction

Configuration	management	and	Vagrant	boxes

Configuring	Vagrant	environments	with	Puppet

Getting	ready

How	to	do	it…

Setting	up	the	Vagrant	environment

Configuring	Puppet

How	it	works…

There’s	more…

See	also

Configuring	Vagrant	environments	with	Chef

Getting	ready

How	to	do	it…

Setting	up	the	Vagrant	environment

Setting	up	Chef	provisioning

How	it	works…

There’s	more…

Managing	environments	with	Berkshelf

Provisioning	with	Chef	Server

See	also

Provisioning	Vagrant	environments	with	Salt

Getting	ready

How	to	do	it…

Configuring	the	Vagrant	environment

Configuring	Salt	provisioning

How	it	works…

See	also

Provisioning	Vagrant	environments	with	Ansible

Getting	ready

How	to	do	it…

Setting	up	the	Vagrant	environment

Setting	up	Ansible	playbooks

How	it	works…

See	also

5.	Networked	Vagrant	Environments

Introduction

Creating	a	local	network

Getting	ready

How	to	do	it…

Using	a	static	IP	address	with	a	hosts	file

How	it	works…

There’s	more…

See	also

Defining	a	multimachine	environment

Getting	ready

How	to	do	it…

How	it	works…

Specifying	the	order	of	machine	provisioners

Getting	ready

How	to	do	it…

How	it	works…

Creating	clusters	of	Vagrant	machines

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Configuring	DNS	with	plugins

Configuring	a	cluster	with	etcd

Clustering	with	Apache	Mesos

See	also

6.	Vagrant	in	the	Cloud

Introduction

Using	Vagrant	with	Amazon	Web	Services

Getting	ready

How	to	do	it…

Creating	a	Vagrant	IAM	account

Setting	up	a	VPC

Creating	a	security	key	for	Vagrant	instances

Installing	the	Vagrant-AWS	plugin

Gathering	required	information	for	the	provider

Setting	up	the	Vagrant	AWS	environment

How	it	works…

Saving	configuration	data	outside	the	Vagrantfile

Overriding	Vagrantfile	defaults

Specifying	AWS	details

There’s	more…

See	also

Using	Vagrant	with	DigitalOcean

Getting	ready

Creating	a	DigitalOcean	API	token

Creating	a	new	SSH	key	pair

How	to	do	it…

How	it	works…

See	also

Sharing	local	machines	with	HashiCorp	Atlas

Getting	ready

How	to	do	it…

How	it	works…

See	also

Sharing	web	applications	with	HashiCorp	Atlas

Getting	ready

How	to	do	it…

How	it	works…

See	also

7.	Packaging	Vagrant	Boxes

Introduction

Packaging	Vagrant	boxes	from	ISO	files

Getting	ready

How	to	do	it…

Preparing	a	virtual	machine

Packaging	the	virtual	machine	as	a	Vagrant	box

Installing	the	new	Vagrant	box

How	it	works…

There’s	more…

See	also

Building	Vagrant	boxes	with	Packer

Getting	ready

How	to	do	it…

How	it	works…

The	building	blocks	of	Packer	templates

Building	Vagrant	boxes	with	VeeWee

See	also

Sharing	Vagrant	boxes

Getting	ready

How	to	do	it…

How	it	works…

Sharing	Vagrant	boxes	with	Atlas

Getting	ready

How	to	do	it…

There’s	more…

See	also

A.	Vagrant	Plugins

Setting	up	a	Ruby	runtime	environment

Getting	ready

How	to	do	it…

How	it	works…

See	also

B.	A	Puppet	Development	Environment

Setting	up	a	Puppetmaster	with	the	puppet	apply	provisioner

How	to	do	it…

Setting	up	a	source	controlled	Puppetmaster

Bootstrapping	a	Puppetmaster

Provisioning	nodes	with	a	Puppetmaster

There’s	more…

See	also

C.	Using	Docker	with	Vagrant

Introduction

Running	Docker	containers	with	Vagrant

How	to	do	it…

Installing	a	Docker	image	from	a	repository

Building	a	Docker	image	with	Vagrant

See	also

Mixed	environments	–	the	Docker	provisioner

How	to	do	it…

See	also

Index

Vagrant	Virtual	Development
Environment	Cookbook

Vagrant	Virtual	Development
Environment	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-374-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Chad	Thompson

Reviewers

Emilien	Kenler

Darius	Krištapavičius

Marcelo	Pinheiro

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Richard	Brookes-Bland

Content	Development	Editor

Arwa	Manasawala

Technical	Editors

Vijin	Boricha

Humera	Shaikh

Copy	Editor

Relin	Hedly

Project	Coordinator

Danuta	Jones

Proofreaders

Simran	Bhogal

Bridget	Braund

Indexer

Hemangini	Bari

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Chad	Thompson	is	a	software	developer,	architect,	and	DevOps	specialist	in	Central
Iowa.	He	has	15	years	of	experience	in	creating	and	deploying	applications	for	the	Web.
Chad	began	using	Vagrant	3	years	ago	when	he	was	trying	to	solve	a	tough	problem	in
legacy	application	development.	Since	then,	he	has	made	use	of	Vagrant	and	configuration
management	tools	to	support	the	development	and	deployment	of	several	web	applications
in	data	centers	and	cloud	platforms.	He	holds	certifications	in	Puppet	and	Oracle
technologies	and	has	enjoyed	the	pleasure	of	speaking	before	several	technical
conferences	and	camps.	Chad	holds	two	degrees	in	physics	and	can	be	found	playing	low
brass	instruments	in	ensembles	around	the	state	of	Iowa.

Chad	has	written	articles	for	O’Reilly	web	publications	and	the	IOUG	SELECT	Journal
(where	he	briefly	worked	as	an	executive	editor).	Recently,	he	reviewed	the	book	Creating
Development	Environments	with	Vagrant	for	Packt	Publishing,	and	recorded	a	set	of	video
presentations	titled	Learning	Git	by	Infinite	Skills.

I	owe	a	great	measure	of	gratitude	to	many	people	for	helping	me	with	the	production	of
this	book.	I	would	like	to	thank	my	colleagues	at	Dice	Holdings	Inc.	for	their	support	and
feedback	during	the	development	of	the	book.	I	would	like	to	thank	Zach	Arlen	of
FullContact	in	Denver,	CO,	for	introducing	me	to	Vagrant	as	a	solution	to	a	problem	years
ago.	Mostly,	I	would	like	to	thank	my	family	for	their	continued	love	and	support.

With	the	publication	of	this	book,	I	would	also	like	to	offer	my	gratitude	to	Dr.	Robert
Merlino	and	the	late	Dr.	Nicola	D’Angelo	of	the	University	of	Iowa.	They	both	taught	me
a	great	deal	about	formulating	ideas	and	teaching	others,	which	I	hope	serves	the	readers
of	this	book.

About	the	Reviewers
Emilien	Kenler,	after	working	on	small	web	projects,	began	focusing	on	game
development	in	2008	while	he	was	in	high	school.	Until	2011,	he	worked	for	different
groups	and	specialized	in	system	administration.

In	2011,	he	founded	a	company	that	sold	Minecraft	servers	while	studying	computer
science	engineering.	Emilien	created	a	lightweight	IaaS
(https://github.com/HostYourCreeper/)	based	on	new	technologies	(such	as	Node.js	and
RabbitMQ).

Thereafter,	he	worked	at	TaDaweb	as	a	system	administrator,	building	its	infrastructure
and	creating	tools	to	manage	deployments	and	monitoring.

In	2014,	he	began	a	new	adventure	at	Wizcorp,	Tokyo.	In	2014,	Emilien	graduated	from
the	University	of	Technology	of	Compiègne.

For	Packt	Publishing,	Emilien	has	also	contributed	as	a	reviewer	on	other	books:

Learning	Nagios	4,	Wojciech	Kocjan	(http://www.packtpub.com/learning-nagios-
4/book)
MariaDB	High	Performance,	Pierre	MAVRO	(https://www.packtpub.com/big-data-
and-business-intelligence/mariadb-high-performance)
OpenVZ	Essentials,	Mark	Furman,	(https://www.packtpub.com/virtualization-and-
cloud/openvz-essentials)

Darius	Krištapavičius	attended	Vilnius	University	and	studied	software	engineering	as
his	major	subject.	In	2009,	Darius	started	working	with	web	application	development	and
since	then,	he	gained	considerable	experience	and	particularly	developed	various	e-
commerce	systems.	While	working	in	this	field,	he	learned	the	PHP	programming
language	and	different	frameworks	(such	as	CodeIgniter	and	Symfony2).	At	present,
Darius	is	working	as	a	professional	web	developer	and	is	actively	engaged	in	DevOps
method,	process	automation,	principles	of	Agile,	and	other	associated	subjects	of	web
development.

Marcelo	Pinheiro	is	a	software	engineer	from	Porto	Alegre,	Brazil.	In	2000,	he	started	to
work	as	a	web	designer	and	programmer	with	ASP	and	PHP.	Marcelo	is	still	in	touch	with
Microsoft	.NET	Framework	and	Java	to	run	their	respective	choice	of	databases	for	web
applications.	Since	2003,	he	has	been	using	Linux-	and	Unix-related	operational	systems,
from	Slackware	to	GoboLinux,	Arch	Linux,	CentOS,	and	Debian.	At	present,	he	uses	OS
X,	and	he	also	uses	FreeBSD	to	some	extent.	Marcelo	lost	a	few	nights	compiling	and
applying	patches	on	the	Linux	kernel	to	make	their	desktop	work.	He	is	an	open	source
enthusiast	and	acts	as	a	problem	solver,	irrespective	of	the	programming	language,
database,	or	platform.

After	a	few	years,	he	moved	to	São	Paulo	to	work	with	newer	technologies	(such	as
NoSQL,	cloud	computing,	and	Ruby),	where	he	began	to	present	tech	talks	with	these
technologies	in	Locaweb,	and	RS	on	Rails,	the	biggest	Ruby	conference	in	South	Brazil.

https://github.com/HostYourCreeper/
http://www.packtpub.com/learning-nagios-4/book
https://www.packtpub.com/big-data-and-business-intelligence/mariadb-high-performance
https://www.packtpub.com/virtualization-and-cloud/openvz-essentials

As	an	observer,	he	created	some	tools	to	standardize	development	using	tools	(such	as
Vagrant	and	Ruby	gems),	some	of	these	in	their	GitHub,	in	Locaweb	to	ensure	fast
application	packaging	and	reduce	deployment	rollbacks.	In	2013,	Marcelo	shifted	his
career	focus	to	become	a	full-stack	developer	and	began	to	follow	the	DevOps	movement.
In	2014,	he	attended	QConSP-International	Software	Development	Conference	as	a
speaker	and	spoke	about	Packer	and	its	use	in	Locaweb.	Currently,	Marcelo	works	as	a
DevOps	engineer	at	Moip	Pagamentos,	where	he	is	responsible	for	creating	continuous
deployment	solutions,	which	cover	non-PCI	or	PCI	compliance	environments.	He	is
currently	using	Go	as	a	preferable	programming	language.

He	loves	playing	the	guitar	and	spending	time	with	his	beloved	wife	and	his	cats,	apart
from	traveling	and	drinking	beer.	He	can	be	found	on	his	blog	(http://salizzar.net),	Twitter
(https://twitter.com/salizzar),	GitHub	(https://github.com/salizzar),	and	Linkedin
(https://www.linkedin.com/in/salizzar).

First,	I	want	to	thank	my	wife	for	her	patience,	especially	on	days	when	I	came	home	from
work,	ate	something	quickly,	and	went	straight	to	my	office,	returning	only	to	sleep.
Secondly,	I	want	to	thank	my	friends,	who	believed	in	my	potential	since	the	beginning
and	kept	in	touch	with	me	despite	the	distance,	and	lastly,	my	mentors	Gleicon	Moraes
and	Roberto	Gaiser	for	the	incentive	and	tips	that	helped	me	become	a	better	software
engineer.

http://salizzar.net
https://twitter.com/salizzar
https://github.com/salizzar
https://www.linkedin.com/in/salizzar

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
If	you	have	written	software	on	a	desktop	computer	and	attempted	to	deploy	your	code	to
another	computer	(a	server),	you	have	already	encountered	the	challenges	presented	when
deploying	software.	Developers	and	administrators	frequently	struggle	with	errors	and
defects,	when	development	environments	are	different	from	the	eventual	production
machines.	There	can	be	a	number	of	differences	introduced	when	the	environments	are
different	at	the	operating	system	level.	Development	with	desktop	operating	systems	(such
as	Windows	or	OS	X)	can	introduce	many	issues	when	deploying	to	production
environments	that	run	a	Unix	(or	Linux)	environment.

The	introduction	of	desktop	hypervisor	software	allowed	developers	to	develop	and	test
software	using	virtual	machines.	A	virtual	machine	is	essentially	a	system	within	a	system,
wherein	developers	working	on	a	desktop	operating	system	can	develop	and	deploy	with	a
copy	of	the	operating	system	and	environment	that	closely	mimics	the	eventual	production
environment.	When	desktop	hypervisors	became	available,	development	teams	found	that
they	could	share	development	environments	by	sharing	the	files	used	by	the	hypervisors	to
store	the	state	of	virtual	machines.	In	many	cases,	sharing	a	virtual	machine	involved
passing	around	copies	of	files	on	a	portable	hard	drive	or	a	shared	network	folder.

A	few	years	ago,	I	encountered	this	specific	example	when	working	on	a	project	that
involved	adding	new	features	to	software	that	ran	on	an	environment,	which	we	could	not
support	with	our	modern	desktop	hardware.	As	many	projects	reveal,	technical	debt	was
introduced	to	the	application	by	using	some	very	specific	features	of	the	Java
Development	Kit	(version	1.5),	an	environment	that	was	impossible	to	work	on	with	a	64-
bit	OS	X	machine.	This	machine	had	dual	problems	of	being	a	64-bit	machine	and	it	also
lacked	native	support	for	Java	1.5	XML	libraries.	The	solution	to	this	problem	was	the
creation	of	a	single	virtual	machine	that	was	shared	between	developers,	passing	around	a
copy	of	the	machine	created	by	a	team	lead	and	using	it	locally	to	compile	and	test	our
modifications.

As	time	passed	by,	changes	to	the	environment	became	an	issue,	as	we	began	struggling
with	the	differences	between	not	only	the	development	and	production	environments,	but
also	between	our	individual	development	environments	as	changes	were	made,	making
sure	that	each	developer	was	working	on	the	latest	version	of	the	virtual	machine	on	that
portable	hard	drive,	which	soon	had	a	few	different	versions	itself.

Eventually,	the	problem	of	maintaining	development	environments	was	large	enough	to
begin	looking	for	new	solutions.	Configuration	management	approaches	helped	us	to	start
defining	our	environment	in	code,	but	we	still	had	issues	with	sharing	and	maintaining	our
base	environment.	We	found	immediate	use	of	an	open	source	project	called	Vagrant,
which	was	gaining	some	traction.

Vagrant	(http://vagrantup.com)	is	a	tool	that	allows	you	to	define	a	virtual	environment
with	code.	A	single	file	allows	you	to	define	a	basic	environment	for	a	virtual	machine	as
well	as	a	series	of	provisioning	actions	that	prepare	the	environment	for	use.	Vagrant
works	by	running	code	(Vagrantfiles)	on	top	of	packaged	operating	system	images	called

http://vagrantup.com

boxes.	The	Vagrant	code	and	box	files	can	be	versioned	and	distributed	using	automated
tooling.	This	allows	you	to	share	virtual	machines,	which	is	not	much	different	than	the
process	of	software	development	that	uses	source	control.

Using	Vagrant	boxes	and	provisioning	controlled	by	Vagrantfiles	not	only	simplified	the
process	of	distributing	virtual	machines	(and	updates	to	virtual	machines),	but	it	also	made
the	virtual	machines	we	were	working	with	inexpensive	in	terms	of	effort	to	rebuild.	The
amazing	thing	that	we	found	was	that	Vagrant	not	only	made	it	simple	to	distribute	virtual
machines,	but	also	gave	developers	more	freedom	to	experiment	and	make	deeper
modifications	to	the	code	without	losing	time	due	to	changes	in	the	development
environment	that	could	not	be	rolled	back.	This	flexibility	and	a	simplified	on-boarding
process	for	new	developers	made	it	much	simpler	for	the	team	to	spend	more	time	doing
software	development	(and	tackling	that	technical	debt!),	rather	than	attempting	to	fix	and
find	problems	due	to	environments.

I’ve	found	Vagrant	to	be	an	invaluable	tool	in	my	work.	I	hope	that	this	book	can	be	a
valuable	resource	for	you	in	getting	started	with	Vagrant,	or	perhaps,	using	Vagrant	in	new
and	different	ways.

What	this	book	covers
Chapter	1,	Setting	Up	Your	Environment,	covers	a	few	basics	about	hypervisor	technology,
the	installation	of	Vagrant	and	VirtualBox,	and	some	simple	recipes	to	get	started	with
Vagrant	machines.

Chapter	2,	Single	Machine	Environments,	contains	recipes	to	get	started	with	writing
single	machine	Vagrantfiles,	including	booting	machines,	forwarding	ports,	and
customizing	the	virtual	machine	environment.

Chapter	3,	Provisioning	a	Vagrant	Environment,	introduces	the	concept	of	provisioning
Vagrant	machines,	installing	software,	and	customizing	the	environment	to	develop	and
deploy	software.	This	chapter	focuses	on	using	shell	(bash)	scripting	to	modify	the
Vagrant	environment.

Chapter	4,	Provisioning	With	Configuration	Management	Tools,	contains	simple	recipes	to
provision	Vagrant	machines	with	four	common	configuration	management	tools:	Puppet,
Chef,	Ansible,	and	Salt.	These	tools	allow	easier	configuration	of	machines	that	have
more	complex	environments.	They	also	allow	Vagrant	machines	to	share	the	same
provisioning	instructions	as	other	environments.

Chapter	5,	Networked	Vagrant	Environments,	contains	recipes	focused	on	networking
Vagrant	machines	with	external	hosts	and	with	each	other.	We	cover	a	few	topics	from	the
basics	of	assigning	host	entries	to	networking	a	cluster	of	Vagrant	machines	with	Consul.

Chapter	6,	Vagrant	in	the	Cloud,	contains	recipes	to	use	Vagrant	with	cloud	providers
(specifically,	Amazon	Web	Services	and	DigitalOcean).	It	also	contains	the	use	of
Hashicorp’s	Atlas	tool	to	share	Vagrant	environments	with	remote	users.

Chapter	7,	Packaging	Vagrant	Boxes,	introduces	methods	to	package	Vagrant	boxes	for
others	to	use.	Recipes	include	the	packaging	of	boxes	using	manual	and	automated	tools
and	tips	to	share	your	box	with	others	on	Atlas.

Appendix	A,	Vagrant	Plugins,	gives	a	short	introduction	on	how	to	extend	the	capabilities
of	Vagrant	by	developing	plugins.

Appendix	B,	A	Puppet	Development	Environment,	expands	on	the	introduction	in	Chapter
4,	Provisioning	With	Configuration	Management	Tools,	to	set	up	a	more	robust
configuration	environment	to	develop	Puppet	scripts.	While	the	focus	is	on	using	Puppet
to	provision,	similar	environments	can	be	created	to	support	the	configuration
management	environment	of	your	choice.

Appendix	C,	Using	Docker	With	Vagrant,	is	an	introduction	to	use	Vagrant	to	create,
deploy,	and	test	Docker	(http://docker.io)	containers.	This	appendix	introduces	techniques
to	launch	Docker	containers	with	Vagrant	as	well	as	build	and	test	a	complete	Docker
environment.

http://docker.io

What	you	need	for	this	book
To	use	the	recipes	in	this	book,	you	will	need:

A	development	machine	capable	of	running	virtual	machines	with	hypervisor
software,	such	as	VirtualBox	(http://virtualbox.org)	or	VMware	desktop	products
(http://vmware.com).	You	would	want	to	get	started	with	the	freely	available
VirtualBox	product	and	later	on	purchase	the	plugin	to	support	VMware	desktop
products.	Keep	in	mind	that	you	will	need	a	machine	that	is	capable	of	running	both
your	host	operating	system	and	also	the	guest	operating	systems	that	you	will	be
creating	with	Vagrant.	You	will	also	want	to	ensure	that	you	have	enough	storage
(disk	space)	for	virtual	machine	files.	The	disks	created	by	Vagrant	machines	will
typically	be	approximately	the	size	required	to	operate	the	guest	operating	systems
(approximately,	5-20	GB	of	disk	space).
If	you	plan	on	running	64-bit	guests,	you	will	also	want	to	ensure	that	your	processor
is	capable	of	Intel	hardware	virtualization	(VT-x).	In	most	cases,	processors	that
support	64-bit	operating	systems	already	have	this	support	built-in	(with	some
exceptions,	such	as	older	Intel	Celeron	processors).	See
https://www.virtualbox.org/manual/ch10.html	for	more	background	on	the
requirements	for	hardware	virtualization.
Using	cloud	recipes	(particularly,	recipes	involving	Amazon	Web	Services	and
DigitalOcean)	will	require	accounts	with	cloud	providers.	Running	the	examples
might	incur	charges	to	your	account,	so	make	sure	that	you	understand	the	financial
impacts	of	running	the	examples	and	how	to	ensure	that	all	created	instances	have
been	stopped	or	terminated	to	avoid	extra	charges	for	the	use	of	computational
resources.	The	recipes	in	this	book	are	not	expensive	to	run,	but	they	are	also	not
free.	Machines	that	are	left	running	for	a	period	of	time	could	also	end	up	costing
more	than	you	had	planned	on,	so	make	sure	that	any	instance	created	with	Vagrant	is
eventually	destroyed.

http://virtualbox.org
http://vmware.com
https://www.virtualbox.org/manual/ch10.html

Who	this	book	is	for
This	book	is	for	developers	and	administrators	of	nearly	all	skill	levels.	Throughout	the
book,	I	make	a	general	assumption	that	you	are	creating	Vagrant	machines	to	support	the
development	of	other	software.	Vagrant	itself	does	not	become	interesting	or	useful	until
you	use	it	to	support	the	deployment	and	development	of	other	software.	Vagrant	makes	it
simple	to	create	local	environments	that	mimic	production	environments	and	takes
advantage	of	the	same	provisioning	techniques	used	on	production	servers.	If	you	have	a
mature	and	robust	deployment	pipeline,	Vagrant	allows	you	to	reproduce	this	process	on
development	machines.	If	you	do	not	have	a	robust	development	pipeline,	Vagrant	can
help	you	begin	developing	the	scripts	and	processes,	making	your	development	and
deployment	environments	more	consistent.	Consistent	environments	will	help	you	to
reduce	the	problems	associated	with	the	deployment	process,	which	allows	you	to	focus
on	producing	better	software.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
Vagrant	installer	will	extract,	copy	files,	and	add	the	vagrant	command	to	the	executable
path.”

A	block	of	code	is	set	as	follows:

-rw-------		0	cothomps	staff	1960775680	Jul	24	20:42	./box-disk1.vmdk

-rw-------		0	cothomps	staff						12368	Jul	24	20:38	./box.ovf

-rw-r--r--		0	cothomps	staff								505	Jul	24	20:42	./Vagrantfile

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

config.vm.box	=	"chad-thompson/ubuntu-trusty64-gui"		config.vm.provider	

"virtualbox"	do	|vbox|

				vbox.gui	=	true

		end

end

Any	command-line	input	or	output	is	written	as	follows:

vagrant	box	add	http://servername/boxes/environment.box

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“A	new	installation	of
VirtualBox	will	display	a	welcome	message	in	a	window	titled	Oracle	VM	VirtualBox
Manager.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Setting	Up	Your	Environment
In	this	chapter,	we	will	cover:

Installing	Vagrant	and	VirtualBox
Initializing	your	first	environment
Installing	Vagrant	providers
Finding	additional	Vagrant	boxes
Using	existing	virtual	machines	with	Vagrant

Introduction
Over	the	past	decade,	data	centers	and	server	architectures	have	been	revolutionized	with
the	practice	of	virtualization—the	ability	to	host	computational	resources	that	once
depended	on	hardware	in	specialized	software	containers.	The	ability	to	use	flexible
virtual	environments	on	shared	computational	resources	allowed	system	administrators	to
become	more	flexible	on	how	software	is	configured	and	deployed.	More	recently,	the
advantages	of	virtualization	got	extended	to	the	desktop.	Software	packages	such	as	the
VMware	Desktop	(Fusion	for	OS	X,	Workstation	for	Windows	and	Linux)	along	with
Oracle	VirtualBox	make	it	possible	to	run	different	operating	systems	and	environments	in
the	context	of	the	desktop	operating	systems.	Web	developers,	for	example,	can	run	a
Linux-based	web	server	on	their	desktop	without	modifying	the	parent	operating	system
or	running	entirely	separate	physical	computers.

Vagrant	was	originally	launched	as	an	open	source	project	by	Mitchell	Hashimoto	with	the
core	idea	to	make	virtual	machines	simpler	to	manage.	Virtual	machines	have	been	used
for	software	development	for	some	time.	Some	software	development	teams	developed
workflows	around	building	virtual	machines	and	shared	them	with	others—often	through
the	creation	of	a	completely	configured	virtual	machine	(referred	to	as	a	“golden	image”)
and	shared	by	users.	If	you	have	worked	with	virtual	environments	for	any	length	of	time,
you	are	likely	to	be	familiar	with	the	process	of	downloading	a	multigigabyte	virtual
machine	or	passing	around	a	portable	drive	with	virtual	machine	files.	Vagrant	makes	it
possible	to	share	consistent	and	reproducible	environments	with	code	rather	than	binary
files.	In	practical	terms,	this	means	that	a	virtual	machine	is	often	used	by	checking	out	the
source	definitions	from	version	control	and	running	a	vagrant	up	command	rather	than
finding	ways	to	create,	copy,	and	manage	up-to-date	versions	of	large	binary	files.	More
recently,	Vagrant	proved	to	be	so	useful	and	pervasive	that	Hashimoto	founded	HashiCorp
to	support	the	ongoing	development	and	support	of	Vagrant.	In	addition	to	core	Vagrant
development,	HashiCorp	created	add-on	software	that	allows	Vagrant	to	use	other
hypervisor	software	(plugins	for	VMware	Fusion	and	Workstation)	as	well	as	other
software	projects.	More	recently,	Vagrant	has	been	extended	with	the	provider	framework
in	order	to	make	development	with	containers	(such	as	Docker	available	at
http://docker.io)	simpler.	Developing	with	containers	gives	developers	the	option	to	create
lightweight	isolated	Linux	environments	that	can	be	easier	and	faster	to	work	with	these
virtual	machines.

In	any	case,	the	first	step	when	using	Vagrant	is	to	set	up	a	working	environment	in	order
to	define	and	run	Vagrant	machines.	With	Vagrant,	a	virtual	machine	and	the	software	that
runs	inside	the	machine	can	be	defined	in	a	special	file	called	a	Vagrantfile.	A	Vagrantfile
defines	a	virtual	machine,	how	this	virtual	machine	interacts	with	the	outside	world,	and
how	software	is	installed	on	the	virtual	machine.

Before	we	start	with	Vagrant,	let’s	review	some	terminology	that	we	will	use	in	this
chapter	and	throughout	the	book.

A	virtual	machine	is	a	computing	node	that	runs	within	a	software	process	that	mimics

http://docker.io

the	behavior	of	a	physical	computer.	The	software	process	(often	called	a	hypervisor)
provides	infrastructure	to	virtual	machines	such	as	computing	power	(CPU),	memory
(RAM),	and	interfaces	to	external	resources	(such	as	networking	interfaces	and	physical
(disk)	storage).

A	host	machine	is	a	computer	that	runs	a	hypervisor	to	host	virtual	machines.	A	host
machine	will,	most	likely,	run	one	of	two	types	of	hypervisor:

A	Type	1	hypervisor	that	runs	natively	on	host	machine	hardware.	A	Type	1
hypervisor	does	not	require	a	separate	operating	system;	the	hypervisor	itself	controls
access	to	physical	resources	and	shares	them	between	hosted	virtual	environments.
Most	modern	shared	virtual	environments	are	Type	1	hypervisors	(common	examples
include	VMware	ESX/ESXi,	Oracle	VM	Server,	and	some	versions	of	Microsoft
Hyper-V).	These	environments	are	typically	installed	as	shared	resources	that	define
server	infrastructure	or	other	shared	resources.
A	Type	2	hypervisor	is	a	software	that	runs	on	top	of	a	traditional	operating	system.
In	this	case,	the	hypervisor	uses	the	underlying	operating	system	to	control	(or
define)	resources	and	gain	access	to	resources.	Most	use	cases	for	Vagrant	use	Type	2
hypervisors	as	host	environments	for	virtual	machines	and	this	will	be	the
environment	that	will	be	used	throughout	this	book.	The	two	common	Type	2
hypervisors	are	Oracle	VirtualBox	and	the	VMware	Workstation	/	Fusion	family	of
software.	We’ll	take	a	look	at	these	products	later	on	in	this	chapter.

In	both	cases,	the	hypervisor	is	responsible	for	managing	physical	resources	and	sharing
them	with	one	or	many	virtual	machines.

A	guest	machine	is	a	virtual	machine	that	runs	within	the	hypervisor.	The	machines	that
we	will	define	with	Vagrant	are	guest	machines	that	operate	within	the	environment
controlled	by	our	hypervisor.	Guest	machines	are	often	entirely	different	operating
systems	and	environments	from	the	host	environment—something	we	can	definitely	use	to
our	advantage	when	developing	software	to	be	executed	on	a	different	environment	from
our	host.	(For	example,	a	developer	can	write	software	within	a	Linux	environment	that
runs	on	a	Windows	host	or	vice	versa.)

As	we	proceed	with	the	recipes,	you’ll	see	that	Vagrant	is	a	useful	tool	to	manage	the
complexities	of	hypervisors	and	virtual	machines.	Vagrant	also	allows	a	consistent	API	to
operate	virtual	machines	on	different	hypervisors—something	that	can	make	sharing
virtual	environments	much	simpler	between	teams	and	people	working	on	different
platforms.

Installing	Vagrant	and	VirtualBox
Before	we	explore	how	to	use	Vagrant,	we’ll	first	need	to	install	the	software	required	to
manage	a	virtual	machine	environment	(a	hypervisor)	as	well	as	the	Vagrant	software
itself.	In	this	recipe,	we	will	install	VirtualBox	to	use	it	with	Vagrant.	VirtualBox	is	an
open	source	hypervisor	that	was	initially	the	only	hypervisor	supported	by	Vagrant.	As
such,	VirtualBox	is	broadly	supported	by	the	Vagrant	community.

Getting	ready
Before	we	install	the	VirtualBox	and	Vagrant	software,	we’ll	need	to	obtain	its	latest
versions.

VirtualBox	can	be	downloaded	from	the	project	website	at	http://virtualbox.org.	You’ll
notice	that	while	VirtualBox	has	a	corporate	sponsor	(Oracle),	the	VirtualBox	software	is
open	source	and	freely	available	for	use.	VirtualBox	is	also	supported	on	a	wide	variety	of
host	platforms	with	a	few	limitations:

VirtualBox	is	supported	only	on	Intel	or	AMD	hardware.	The	Intel/AMD	platform
constitutes	the	vast	majority	of	personal	computing	platforms	in	use	today,	but	there
are	always	exceptions.	Make	sure	to	check	the	VirtualBox	manual	for	supported
operating	systems.
While	the	VirtualBox	specifications	note	fairly	minimal	system	requirements,	keep	in
mind	that	your	single	workstation	will	be	supporting	two	(or	more)	running	operating
systems	at	the	same	time.	A	rough	guideline	for	system’s	RAM	is	to	have	minimal
RAM	to	support	your	host	operating	system,	plus	the	operating	system	requirements
of	the	individual	guests.	This	will	vary	depending	on	the	guest	operating	system.	For
example,	if	you	are	running	your	Vagrant	environments	on	a	Windows	machine	with
8	GB	of	RAM,	you’ll	want	to	limit	your	Vagrant	machine	to	use	6	GB	of	RAM,
leaving	enough	working	memory	for	the	host	operating	system.	If	the	operating
systems	are	using	too	much	memory,	you’ll	notice	some	significant	performance
issues	as	the	host	operating	system	begins	paging	to	disk.

The	packages	downloaded	from	the	VirtualBox	site	will	be	native	to	your	particular
operating	system.	Take	particular	care	when	downloading	Linux	packages;	you’ll	want	to
ensure	that	the	downloaded	package	is	compatible	with	the	operating	system	and	system
architecture.	(Linux	users	might	also	find	VirtualBox	in	repositories	provided	by	your
operating	system	provider.	These	packages	are	often	outdated,	but	they	may	work	with
Vagrant.	Be	sure	to	check	the	minimum	versions	required	in	the	Vagrant	documentation.)

Vagrant	packages	are	operating	system-specific	and	can	be	downloaded	from	the	Vagrant
website	at	http://vagrantup.com.	Download	the	version	appropriate	for	your	system.

Note
Warning

Vagrant	was	initially	available	for	download	through	the	use	of	RubyGems	and	is	still
available	through	gem	install.	This	version,	however,	is	significantly	outdated	and
unable	to	support	most	of	the	features	that	will	be	covered	in	this	book.	Due	to	the
complexity	of	managing	Ruby	dependencies,	the	Vagrant	maintainers	decided	to	ship
Vagrant	as	a	standalone	package	with	an	embedded	Ruby	interpreter	to	avoid	possible
conflicts.	It’s	recommended	that	you	use	the	package	distributions	from
http://vagrantup.com,	wherever	possible.

http://virtualbox.org
http://vagrantup.com
http://vagrantup.com

How	to	do	it…
Installing	Vagrant	and	VirtualBox	is	similar	to	other	software	installation	for	your
particular	operating	system.	The	project	sites	include	detailed	instructions	to	install
Vagrant	or	VirtualBox	on	the	software	platform	of	your	choice.	We’ll	go	through	the
installation	of	Vagrant	and	VirtualBox	on	OS	X.	There	are	versions	available	for	Windows
and	a	wide	variety	of	Linux	distributions.	In	any	case,	the	installers,	all	roughly,	follow	the
same	procedure	for	the	OS	X	installation	demonstrated	here.

Installing	VirtualBox
1.	 Download	a	copy	of	the	installer	from	the	VirtualBox	website.	In	this	example,	we’ll

choose	the	version	for	OS	X	hosts.

2.	 Start	the	VirtualBox	installer	by	opening	the	downloaded	(OS	X	disk	image)	file.	The
disk	image	will	include	an	installer	along	with	documentation	for	VirtualBox	and,	if
necessary,	an	uninstall	tool.	Double-click	on	the	installer	package	to	begin	the
VirtualBox	installation.

Note
The	VirtualBox	installation	will	require	administrator	permissions	to	both	install	the
package	and	to	modify	system	network	settings.	The	installation	of	the	VirtualBox
hypervisor	requires	the	installer	to	create	a	set	of	new	network	interfaces,	which	will
allow	network	communications	between	the	host	and	guest	operating	systems.

3.	 Once	the	installation	is	complete,	the	installer	will	give	you	the	option	to	open
VirtualBox.	A	new	installation	of	VirtualBox	will	display	a	welcome	message	in	a
window	titled	Oracle	VM	VirtualBox	Manager.	Once	a	few	virtual	machines	are
created,	this	dialog	displays	information	about	the	machines	created	using	VirtualBox
(or	the	Vagrant	VirtualBox	provider).

After	the	installation	is	completed	and	we	are	presented	with	the	VirtualBox	Manager
dialog	box,	we	can	proceed	with	the	installation	of	Vagrant	itself.

Installing	Vagrant
1.	 Download	a	copy	of	the	Vagrant	installer	from	the	Vagrant	website

(http://vagrantup.com).	Select	the	appropriate	version	for	your	operating	system.	In
this	case,	we	will	download	the	OS	X	universal	installer	that	will	download	an
installer	that	will	work	for	both	32	and	64-bit	machines.	For	the	features	discussed	in
this	chapter	(and	for	the	majority	of	recipes	in	the	book),	you’ll	want	to	ensure	that
the	Vagrant	version	is	1.5	or	greater.

http://vagrantup.com

2.	 The	OS	X	download	contains	an	installation	package	and	an	uninstall	tool.	Double-
click	on	the	installer	to	begin	the	installation.	The	Vagrant	package	installer	is	a
native	OS	X	package	that	will	run	the	OS	X	software	installer.	Installing	Vagrant	will
not	be	much	different	than	installing	other	OS	X	software.

3.	 The	Vagrant	installer	will	extract,	copy	files,	and	add	the	vagrant	command	to	the
executable	path.	On	OS	X,	this	will	install	Vagrant	to	the	default	OS	X
Applications/	directory.	Vagrant	is	a	command-line	driven	application,	however,
there	are	no	programs	accessed	from	the	OS	X	Finder.

4.	 Verify	that	Vagrant	is	working	by	opening	a	terminal	window	and	executing	the
vagrant	version	command.

With	both	software	packages	installed	successfully,	we’re	ready	to	start	using	Vagrant!

Note
If	you	are	a	Ruby	user	or	programmer,	you	might	also	note	that	a	version	of	Vagrant	is
available	via	the	Ruby	gem	package	manager	(gem	install	vagrant).	When	Vagrant	2.0
was	released,	the	official	distributions	were	released	as	packages	with	an	embedded	Ruby
runtime.	As	such,	the	versions	installed	with	the	gem	installer	are	outdated	and	will	not
work	with	most	of	the	examples	in	this	book.

How	it	works…
What	we’ve	done	here	is	installed	a	working	Vagrant	environment	that	consists	of:

A	hypervisor	application	that	can	contain	virtual	machines
Vagrant,	a	tool	that	makes	managing	these	machines	simpler	and	available	in	code

It’s	important	here	to	note	that	Vagrant	is	simply	a	framework	to	manage	virtual	machines,
not	an	application	to	create	and	host	virtual	machines.	When	using	a	Vagrant	environment,
you’ll	often	encounter	errors	that	are	not	only	related	to	Vagrant	itself,	but	also	related	to
the	hypervisor	application.	For	this	reason,	the	choice	of	hypervisor	becomes	important
when	working	with	Vagrant.	Many	users	can	find	tools	that	make	VMware	Desktop
applications	(Fusion	and	Workstation)	simpler	to	troubleshoot	when	working	with	many
virtual	machines,	whereas	some	will	find	it	simpler	to	use	external	hypervisors	(such	as
Amazon	EC2	or	DigitalOcean).	Some	experimentation	might	find	the	right	workflow	for
you—keep	in	mind	that	Vagrant	is	a	layer	on	top	of	many	choices.

See	also
VirtualBox:	http://virtualbox.org.	In	particular,	note	the	installation	instructions	for
platforms	other	than	OS	X.
Vagrant:	http://vagrantup.com.
Vagrant	installation	instructions:	https://docs.vagrantup.com/v2.

http://virtualbox.org
http://vagrantup.com
https://docs.vagrantup.com/v2

Initializing	your	first	environment
Once	we	have	a	working	Vagrant	environment	with	a	hypervisor,	we	can	initialize	our	first
environment.	There	are	two	ways	with	which	we	can	often	work	with	Vagrant:

In	a	new	environment	with	a	newly	initialized	Vagrantfile
In	an	environment	maintained	in	source	control	that	has	a	Vagrantfile	included	in	a
project

Keeping	Vagrantfiles	and	projects	in	a	source	control	system	(such	as	Git,	SVN,	and	so
on)	is	a	powerful	technique	to	manage	and	track	changes	in	Vagrant	environments.	The
use	of	source	control	systems	allows	developers	and	users	to	check	in	Vagrant	projects,
which	makes	modification	of	the	project	less	risky	and	makes	the	sharing	of	Vagrant
projects	much	simpler.	The	use	of	source	code	repositories	reinforces	the	concept	of
infrastructure	as	code,	giving	administrators	the	ability	to	recreate	environments	in	a
consistent	and	repeatable	way.

No	matter	how	you	use	Vagrant,	knowing	how	to	initialize	a	new	environment	will	aid
you	to	effectively	use	Vagrant.	In	this	example,	we	will	initialize	a	new	environment	and
look	at	the	basic	configuration	of	a	Vagrantfile.

Getting	ready
We’ve	seen	in	the	previous	section	that	Vagrant	itself	is	a	command-line-driven
application.	There	are	some	GUI	tools	available	that	can	help	start	and	stop	environments,
but	in	order	to	truly	understand	how	Vagrant	works,	we’ll	use	the	command-line	interface
to	initialize	and	interact	with	our	environment.

For	this	example	(and	others	in	the	book),	you’ll	need	to	open	a	terminal	window	(a	Unix
terminal	program	in	Mac	OS	X,	or	Linux,	or	the	windows	command	application).	Verify
that	Vagrant	is	installed	by	typing	the	command:

vagrant	version

A	full	example	of	what	the	command-line	session	would	look	like	is	given	in	the
following	screenshot:

If	you	encounter	errors	or	if	the	system	cannot	find	Vagrant,	you	might	either	need	to
repeat	the	installation	steps	to	install	Vagrant	in	the	previous	recipe,	or	adjust	your	system
path	to	include	Vagrant.	In	most	cases,	the	installer	should	complete	this	step	for	you.

Before	proceeding	with	this	first	command,	you	might	also	want	to	make	sure	that	your
desktop	machine	is	connected	to	the	Internet	with	a	fairly	reliable	and	fast	connection.	In
this	example,	you	will	be	downloading	a	Vagrant	box	file	that	can	be	a	few	hundred
megabytes	in	size.	(Using	a	12	MB/s	download	connection,	I	often	note	that	Vagrant	box
downloads	can	take	between	6	to	10	minutes	on	average.)

Once	you’ve	verified	your	command-line	environment,	we	can	proceed	to	initialize	our
first	environment.

How	to	do	it…
With	a	terminal	window	open	and	the	command	getting	executed	in	a	directory	of	your
choice,	run	the	command:

vagrant	init	puppetlabs/ubuntu-14.04-32-nocm

This	command	should	return	a	brief	text	summary	of	your	action,	informing	you	that	a
new	Vagrantfile	has	been	created	in	the	current	directory.	With	this	file	in	place,	execute
the	command:

vagrant	up

This	command	might	output	several	results;	we’ll	note	a	few	important	ones:

A	status	message	indicating	that	the	default	machine	is	being	started	with	the
VirtualBox	provider.
If	you	are	running	this	command	for	the	first	time,	a	message	will	also	be	displayed
noting	that	the	box	(in	this	case,	puppetlabs/ubuntu-14.04-32-no-cm)	cannot	be
found.	Vagrant	will	automatically	attempt	to	download	a	box	file.	This	might	take	a
while	depending	on	the	bandwidth	available	between	you	and	the	box	provider.	After
starting	a	box	for	the	first	time,	Vagrant	will	cache	the	box	file	itself	so	that
subsequent	uses	of	the	box	(even	for	different	Vagrantfiles)	will	not	trigger	the
download.
After	the	box	file	is	downloaded,	you	should	see	messages	that	note	machine	startup,
port	forwarding,	shared	folders,	and	networking.

After	Vagrant	returns	to	the	command	line,	executing	the	vagrant	ssh	command	will
open	a	command-line	interface	in	the	newly	initialized	virtual	machine.	In	this	example,
the	operating	system	is	Ubuntu	14.04,	which	is	specified	in	the	return	prompt:

With	the	virtual	machine	running,	feel	free	to	modify	the	machine—create	files,	install
programs,	or	make	any	modifications	you	wish.	Once	you	are	finished	with	this
environment,	log	out	of	the	virtual	machine	either	with	a	control-d	command,	or	by
typing	exit.	At	this	point,	we	can	either	keep	the	machine	active	as	a	background	process
or	we	might	wish	to:

Stop	the	machine,	keeping	the	environment	available	for	later	use.	This	is
accomplished	with	the	vagrant	halt	command.
Destroy	the	machine,	discarding	the	entire	working	environment.	This	is
accomplished	with	the	vagrant	destroy	command.

In	this	example,	we’ll	discard	the	virtual	machine	by	typing	vagrant	destroy.

Vagrant	will	now	prompt	you	to	make	sure	that	you	want	to	destroy	the	environment;	type
y	to	proceed	with	destroying	the	environment	and	deleting	the	VM.	The	entire	machine
can	be	recreated	in	this	directory	again	with	the	vagrant	up	command.

How	it	works…
What	we’ve	done	in	this	example	is	use	Vagrant	to	create	and	destroy	a	virtual	machine—
an	instance	of	Ubuntu	running	within	the	VirtualBox	hypervisor.	The	information	that
Vagrant	requires	to	create	the	environment	is	stored	in	a	special	type	of	file	called	a
Vagrantfile.	While	Vagrantfiles	can	grow	to	become	quite	complex,	this	Vagrantfile
contains	only	a	few	basic	items	of	configuration.

Let’s	open	the	Vagrantfile	we’ve	created	to	see	what	our	basic	configuration	instructs
Vagrant	to	do.	The	first	thing	you’ll	notice	when	opening	this	file	is	that	the	initial
Vagrantfile	contains	quite	a	bit	of	instruction	on	how	to	use	the	file—from	box	definitions
to	provisioning	instructions.	The	only	parts	of	the	initial	file	that	are	not	commented	are:

A	definition	of	the	Vagrant	environment	itself
A	definition	of	the	box	that	serves	as	the	base	template	of	the	environment	itself

The	opening	of	the	Vagrantfile	looks	like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	you're	

doing!

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		#	All	Vagrant	configuration	is	done	here.	The	most	common	configuration

		#	options	are	documented	and	commented	below.	For	a	complete	reference,

		#	please	see	the	online	documentation	at	vagrantup.com.

		#	Every	Vagrant	virtual	environment	requires	a	box	to	build	off	of.

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

…

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

You	might	notice	a	few	features	of	the	Vagrantfile	itself:

Take	note	that	the	Vagrantfile	uses	the	syntax	of	the	Ruby	programming	language
(http://ruby-lang.org).	In	fact,	the	Vagrantfile	itself	is	Ruby	code—something	we’ll
use	later	on	when	we	create	more	complex	Vagrantfiles.
The	Vagrantfile	uses	an	API	version.	In	this	case,	version	2:	the	most	current	version.
Version	1	Vagrantfiles	can	still	be	found	in	use	in	a	few	projects	as	Vagrant	itself	can
be	backwards	compatible.	For	most	new	projects,	however,	the	latest	revision	of	the
API	will	be	the	one	that	is	used.

http://www.packtpub.com
http://www.packtpub.com/support
http://ruby-lang.org

The	sole	line	of	uncommented	code	is	the	definition	of	the	config.vm.box	parameter.
This	parameter	was	initialized	with	our	init	command	that	used	this	box	name	as	a
parameter.	If	we	wished	to	change	the	base	box	for	our	project,	we	could	do	that	in
the	definition	of	the	config.vm.box	parameter.

This	Vagrantfile	can	be	expanded	to	include	more	complex	requirements,	which	will	be
explored	in	later	recipes.

Installing	Vagrant	providers
Vagrant	and	VirtualBox	are	a	great	environment	to	get	started	with.	However,	there	might
be	instances	where	the	use	of	other	desktop	hypervisors	would	be	preferred,	such	as	the
VMware	Desktop	products	(Fusion	and	Desktop).	Recent	versions	of	Vagrant	(1.1	or
higher)	support	VMware	as	a	commercial	addition.	The	VMware	Fusion	provider	was	the
first	commercial	product	released	by	HashiCorp	and	was	quickly	followed	by	VMware
Desktop	support.	You	can	find	more	information	about	Vagrant	and	VMWare	support	at
http://www.vagrantup.com/vmware.

Many	users	(including	myself)	immediately	found	the	VMware	provider	to	be
tremendously	useful	for	its	improved	speed	and	stability	of	the	VMware	platform.	In	this
recipe,	we’ll	look	at	installing	the	plugins	for	VMware	Fusion,	keeping	in	mind	that	the
VMware	Desktop	products	and	the	Vagrant	provider	for	the	VMware	Desktop	are
commercial	products.	You’ll	need	to	have	on	hand	a	VMware	Desktop	license	for	your
platform	and	need	to	purchase	the	Vagrant	provider	for	VMware	from	HashiCorp.	In	this
example,	we’ll	look	at	the	installation	of	the	provider,	but	keep	in	mind	that	all	the
examples	in	this	book	should	also	work	with	the	freely	available	VirtualBox	or	Vagrant
environment.

http://www.vagrantup.com/vmware

Getting	ready
Before	we	can	start	with	this	example,	we’ll	have	to	assume	that	you	have	purchased	and
installed	the	VMware	Desktop	product	for	your	platform:	Fusion	for	OS	X,	Workstation
for	Windows	or	Linux.	These	products	can	be	purchased	from	a	number	of	retailers	or
directly	from	VMware	(http://www.vmware.com).

With	VMware	installed,	we’ll	have	to	obtain	a	copy	of	the	Vagrant	provider	directly	from
HashiCorp.	At	the	time	of	writing	this	book,	the	plugin	is	not	available	through	third
parties.	You	can	purchase	the	VMware	plugin	at	http://vagrantup.com/vmware.

Once	you	have	paid	for	the	plugin,	HashiCorp	will	send	an	e-mail	with	the	download
instructions	and	some	basic	instructions	on	how	to	install	the	provider.	We’ll	walk	through
this	installation	in	this	recipe.

http://www.vmware.com
http://vagrantup.com/vmware

How	to	do	it…
Vagrant	providers	rely	on	Vagrant’s	plugin	capability—the	ability	to	extend	Vagrant
through	the	Ruby	environment.	To	install	the	plugin,	open	a	command-line	environment
and	execute	Vagrant	with	the	plugin	command.

In	this	example,	we’ll	install	the	VMware	Fusion	plugin,	although	the	plugin	installation
will	be	similar	for	any	number	of	providers.	(See
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins	for	a	relatively	up-
to-date	listing	of	maintained	plugins.)

1.	 Install	the	VMware	Fusion	plugin	with	the	vagrant	plugin	install	vagrant-
vmware-fusion	command.

This	will	download	the	plugin	and	add	the	code	to	your	local	Vagrant	installation.
With	many	plugins,	this	will	be	the	final	step—installation	itself	is	pretty
straightforward.	In	this	case,	however,	we’ll	need	to	install	the	license	for	the	plugin.

2.	 Install	the	plugin	license	using	the	plugin	license	command	from	the	directory
where	the	license	file	was	placed:

vagrant	plugin	license	vagrant-vmware-fusion-license.lic

This	will	install	the	plugin	license	and	ready	the	plugin	for	use.

3.	 Verify	the	plugin	installation	with:

vagrant	plugin	list

A	list	of	currently	installed	plugins	is	returned,	including	some	that	are	packaged	with
the	distribution,	these	are	marked	system.

4.	 Start	a	VMware	environment	by	initializing	a	new	environment.	This	will	be
identical	to	the	steps	in	the	prior	recipe.

5.	 With	a	terminal	window	open	and	the	command	executing	in	a	directory	of	your
choice,	execute	the	vagrant	init	puppetlabs/ubuntu-14.04-32-nocm	command

This	will	create	a	new	Vagrantfile	that	is	identical	to	the	previous	example.	This	time,
we’ll	start	the	environment	with	the	provider	option:

vagrant	up	–provider=vmware_fusion

A	boot	sequence	will	be	presented	with	the	difference	to	the	prior	example	being	that
a	new	environment	(box	file)	will	be	downloaded	and	booted.	This	new	machine	will
use	the	VMware	Fusion	hypervisor	to	manage	the	Vagrant	virtual	machine.

https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

How	it	works…
This	example	installed	a	new	bit	of	functionality	within	Vagrant;	the	expanded
functionality	of	plugins	allows	Vagrant	to	manage	different	virtual	environments	with	an
identical	API.	In	general,	Vagrant	plugins	can	be	used	to	extend	Vagrant	in	a	number	of
different	ways—providers	are

You	might	have	noticed	that	the	only	difference	in	starting	the	Vagrant	environment	from
the	previous	recipe	was	the	use	of	the	provider	option	when	starting	the	machine.	If	you
want	to	ensure	that	a	virtual	machine	always	uses	a	specific	provider	when	starting,	set	the
VAGRANT_DEFAULT_PROVIDER=vmware_fusion	environment	variable.

Setting	an	environment	variable	depends	on	your	system	and	terminal	shell	in	a	Unix-
based	system	(OS	X,	Linux);	you	might	set	this	variable	in	your	login	shell	profile	(either
.bash_profile	or	.bashrc),	and	for	Microsoft	Windows,	this	variable	is	set	in	the
Environment	Variables…	dialog.	Consult	the	documentation	for	your	platform	on	how
to	create	system	variables.

With	a	VMware	Desktop	plugin	installed,	you	can	use	VMware	to	manage	virtual
environments,	whereas	with	other	plugins,	we	can	also	use	Vagrant	to	manage	virtual
machines	locally	with	other	hypervisors	(for	example,	Parallels	on	OS	X)	or	even	in
remote	hypervisors	(for	example,	VMware	ESXi	environments,	Amazon	Web	Services).
We’ll	see	examples	on	how	to	use	Vagrant	in	these	environments	in	later	recipes	in	the
book.

See	also
VMware:	http://vmware.com.	VMware	provides	a	wide	variety	of	hypervisor
platforms	from	the	desktop	platforms	used	in	this	book	to	hypervisor	infrastructures
for	data	center	management.
A	list	of	currently	available	Vagrant	plugins:
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins.	The	Vagrant
project	keeps	a	list	of	plugins	that	are	available	to	extend	the	functionality	of	Vagrant.
The	VMware	providers	are	only	one	example	of	a	wide	variety	of	plugins	available.

http://vmware.com
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

Finding	additional	Vagrant	boxes
Up	to	this	point,	we	have	provisioned	Vagrant	environments	using	a	single	box—a	version
of	Ubuntu	14.04	LTS	(Trusty	Tahr)	provided	by	PuppetLabs,	a	company	that	sponsors	the
open	source	Puppet	configuration	management	software	as	well	as	commercial	Puppet
products.	(We’ll	see	how	to	use	Puppet	with	Vagrant	in	later	recipes.)	There	are	two
reasons	why	we	used	this	box	in	the	examples:

PuppetLabs	packaged	Ubuntu	14.04	boxes	for	a	few	different	hypervisors
(VirtualBox	and	VMware).
PuppetLabs,	as	a	company,	offered	a	relatively	stable	set	of	boxes	to	develop	Puppet.
These	should	be	broadly	available	after	the	publication	of	this	book.

Most	users	will	likely	want	to	use	Vagrant	boxes	that	reflect	the	eventual	production
deployment	environment	of	the	code	being	developed	inside	Vagrant	boxes	and	not	just
the	single	distribution	we’ve	seen	so	far.

To	use	different	operating	systems	and	operating	environments,	we	need	to	obtain	(or
create)	different	Vagrant	boxes.	A	Vagrant	box	is	a	packaged	virtual	machine	that	consists
of	a	virtual	machine	image	(a	set	of	VMDK	files	for	VMware,	OVF	files	for	VirtualBox)
and	a	metadata	file	that	specifies	(at	minimum)	the	provider	that	the	box	file	uses	along
with	other	information	that	box	users	might	need.	Several	Vagrant	workflows	use	a	base
box	along	with	provisioning	to	create	new	development	environments,	where	the	base	box
is	the	operating	system	that	is	eventually	used	in	a	production	environment.	For	example,
if	a	production	environment	has	standardized	on	CentOS	6.5	as	an	operating	system	to
host	a	web	application,	developers	can	use	a	Cent	OS	6.5	Vagrant	box	as	a	development
environment,	ensuring	that	the	web	server	versions	and	configurations	are	identical
between	environments.

There	are	many	cases	where	you	will	want	to	build	an	environment,	but	in	this	example,
we’ll	take	a	look	at	finding	Vagrant	boxes	on	the	Vagrant	Cloud	(http://vagrantcloud.com).

http://vagrantcloud.com

Getting	ready
Vagrant	Cloud	is	an	offering	from	HashiCorp	to	use	and	share	Vagrant	environments.
Vagrant	Cloud	allows	box	providers	and	other	users	the	ability	to	publish	and	share
Vagrant	boxes	with	other	users.	In	many	cases,	these	shared	boxes	will	have	certain
software	preinstalled	for	your	use,	and	in	other	cases,	the	boxes	will	be	basic	operating
system	installations	for	you	to	provision	and	configure.

The	navigation	option	DISCOVER	BOXES	on	the	top	menu	will	take	you	to	a	repository
(https://vagrantcloud.com/discover)	for	you	to	search	for	boxes	and	view	information
about	box	versions	and	what	might	be	installed.

Note
A	note	on	types	of	boxes

In	this	example,	we	will	be	downloading	and	using	64-bit	Vagrant	boxes,	which	might
cause	problems	with	some	environments.	In	particular,	64-bit	guests	require	systems	to
have	Intel	processors	that	support	Intel	Virtualization	Technology	(Intel	VT)	and	have
Intel	VT	support	enabled	in	the	BIOS	settings	of	the	host	operating	system.	If	you	are
unsure	of	the	support	available	for	your	platform,	there	is	a	useful	article	on	the	VMware
Knowledge	Base	with	some	tools	to	test	the	ability	of	your	desktop	system	to	support	64-
bit	guests.	The	article	can	be	found	here:

http://kb.vmware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1003944

https://vagrantcloud.com/discover
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003944

How	to	do	it…
HashiCorp	provides	a	repository	of	box	files	that	can	be	downloaded	for	use	in	the
Vagrant	Cloud	repository.	At	the	time	of	writing	this	book,	HashiCorp	is	also	migrating
the	Vagrant	Cloud	repository	to	the	new	Atlas	platform.	While	Atlas	might	have	additional
features,	HashiCorp	has	committed	to	keeping	the	Vagrant	Cloud	features	free	to	the
community,	including	the	box	repository.

Finding	boxes
Within	the	Vagrant	Cloud	box	repository,	we	can	search	for	boxes	based	on	providers,
operating	systems,	or	software	packages	installed.	At	the	time	of	writing	this	book,	the
Ubuntu	14.04	LTS	release	(Trusty	Tahr)	is	starting	to	come	into	more	widespread	use	a
few	months	after	release.	As	an	example,	let’s	find	a	basic	installation	of	Ubuntu	14.04	to
use	in	our	environment.

1.	 On	the	box	repository	page	(https://vagrantcloud.com/discover),	enter	the	search	term
ubuntu	14.04.	You’ll	notice	that	by	default,	the	discovery	page	displays	a	list	of
featured	boxes—these	are	boxes	that	are	popular	or	noted	by	the	community	as	being
of	high	quality	or	useful	for	a	wide	variety	of	environments.	In	our	case,	the	Ubuntu
release	has	not	been	published	as	a	featured	environment	as	of	yet.

Once	the	search	term	has	been	entered,	the	repository	allows	you	to	filter	search
results;	this	is	useful	if	you	are	looking	for	a	specific	desktop	version	(for	example,
VirtualBox	or	VMware).

https://vagrantcloud.com/discover

Another	item	you	might	wish	to	note	about	the	search	results	is	that	the	repository
also	follows	the	naming	convention	for	box	naming	of	box	creator	or	box	name.
Looking	through	the	search	results	for	ubuntu	14.04	and	using	the	virtualbox	filter,
you’ll	find	a	box	called	ubuntu/trusty64.	This	box	was	created	by	the	Ubuntu
project	itself	and	is	fairly	popular.	At	the	time	of	writing	this	book,	it	has	been
downloaded	over	200,000	times.

2.	 The	box	name	is	a	link	to	a	page,	which	displays	some	detail	about	the	box.	The	box
providers	might	publish	some	further	information	about	the	box	and	how	it	can	be
used.	There	is	also	a	stanza	that	can	be	copied	and	used	to	initialize	a	new
environment.

Now	that	we	have	found	a	box	to	use,	there	are	a	few	ways	that	we	can	use	this	box	in	our
environment.

Initializing	an	environment	with	a	new	box:

Initializing	an	environment	with	our	new	box	is	identical	to	how	we	initialized	our	first

environment	in	the	previous	recipe.	In	this	case,	we	can	even	copy	the	line	presented	in
the	detailed	description	of	the	box	in	the	Vagrant	Cloud	repository.	In	this	example,	copy
the	vagrant	init	ubuntu/trusty64	line	into	a	new	terminal	window.	This	will	generate
a	Vagrantfile	with	the	config.vm.box	=	"ubuntu/trusty64"	box	definition.

As	before,	a	simple	vagrant	up	command	will	prompt	Vagrant	to	download	the	box	(if	it
has	not	been	previously	downloaded)	and	boot	a	new	virtual	machine	instance.	We	now
have	an	environment	to	begin	provisioning	and	configuring.

Adding	a	new	box	without	initializing	an	environment:

The	other	option	to	use	a	new	box	is	to	simply	add	the	box	to	our	local	Vagrant	cache	for
later	use	in	Vagrantfile	definitions.

Vagrant	maintains	a	local	cache	of	downloaded	boxes	for	later	use.	New	environments
will	simply	copy	the	base	image	to	boot	new	environments	from	the	cache,	rather	than
triggering	downloads	every	time	Vagrant	is	initialized.	This	is	particularly	handy	when
developing	system	configurations;	destroying	and	rebuilding	boxes	will	copy	and
provision	clean	images	without	requiring	users	to	be	concerned	about	maintaining
snapshots,	copies,	or	other	artifacts	of	the	virtual	machine	environment	itself.

To	cache	a	box	for	later	use,	execute	this	command	in	a	terminal	window:

vagrant	box	add	ubuntu/trusty64

In	this	case,	we’re	using	the	vagrant	box	command	to	manage	our	box	cache.	Using	the
add	command	will	trigger	the	download	of	the	box	from	the	Vagrant	Cloud	repository	to
the	local	cache.	With	the	box	cached	locally,	we	can	use	it	later	to	initialize	new
environments	without	triggering	a	download.	(As	you	might	suspect,	you	can	also	clean
up	your	cache	by	using	the	vagrant	box	remove	command,	or	see	a	list	of	the	boxes
present	in	the	cache	along	with	the	provider	information	about	the	box	by	using	the
vagrant	box	list	command.)

There’s	more…
While	there	are	several	boxes	to	discover	and	use	on	the	Vagrant	Cloud,	you	might	also
encounter	situations	where	there	are	different	boxes	or	repositories	used	for	Vagrant
projects.	In	these	cases,	you	can	specify	an	HTTP	URL	to	the	vagrant	box	commands	to
cache	boxes	for	later	use.	For	example,	a	frequent	case	might	be	development	teams
sharing	custom	boxes	on	an	internal	server.	In	this	case,	adding	the	box	would	use	the
URL	of	the	box	file	itself,	as	such:

vagrant	box	add	http://servername/boxes/environment.box

Assuming	the	example	here,	servername	represents	a	known	web	server	address	with	a
box	called	environment.box	served	from	the	boxes	path	on	the	web	server.	In	this	way,
teams	can	share	and	use	box	files	without	requiring	the	use	of	the	Vagrant	Cloud	service,
or	sharing	Vagrant	boxes	using	source	control.

Using	existing	virtual	machines	with
Vagrant
Using	Vagrant	to	create	new	environments	for	use	up	to	this	point	has	been	pretty	simple
so	far.	In	the	previous	recipes,	we	have	downloaded	existing	Vagrant	boxes,	created	new
Vagrantfiles,	and	booted	entirely	new	environments.	This	is	a	pretty	suitable	use	for	new
software	(or	configuration)	projects,	or	to	possibly	create	environments	in	order	to	migrate
existing	projects.	This	isn’t	such	a	good	workflow	if	your	team	or	you	have	existing
virtual	environments	in	use	(such	as	the	virtual	machine	on	a	network	share	or	a	flash
drive	that	is	passed	around	between	team	members).

Fortunately,	we	can	repackage	existing	environments	to	use	with	Vagrant,	replacing	the
shared	disk	with	a	new	box	file.	While	box	files	are	still	essentially	virtual	machines,
boxes	can	be	published	(and	updated)	and	even	have	additional	configuration	applied	after
booting.	These	box	files	can	make	managing	virtual	machines	and	different	versions	of
these	virtual	machines	vastly	simpler,	especially,	if	you	don’t	want	to	build	environments
from	base	boxes	every	time.

Getting	ready
In	this	example,	we’ll	assume	that	we	have	an	existing	virtual	machine	environment	built
with	Oracle	VirtualBox.

Note
Warning!

This	example	will	use	a	VirtualBox-only	feature	to	set	up	box	packaging,	as	Vagrant	has	a
built-in	shortcut	to	package	existing	VirtualBox	environments	into	box	files.	Creating
Vagrant	boxes	for	other	platforms	will	be	covered	in	later	chapters.

In	this	example,	I’ll	choose	an	existing	environment	based	on	the	CentOS	operating
system	that	has	been	created	as	a	VirtualBox	machine.	In	this	case,	the	virtual	machine	has
a	few	properties	we’ll	want	to	note:

In	this	case,	the	virtual	machine	was	created	from	an	ISO	installation	of	CentOS	6.5.
There	is	a	user	account	present	on	the	machine	that	we	want	to	reuse.	The	credentials
are:

Username uaccount

Password passw0rd

The	machine	is	used	as	a	development	web	server;	we	typically	access	the	machine
through	terminal	sessions	(SSH).

Note
WARNING!

We’ll	want	to	make	sure	that	any	machine	that	we	will	access	using	the	vagrant	ssh
method	has	the	SSH	server	daemon	active	and	set	to	start	on	machine	start.	We’ll	also
want	to	make	one	adjustment	to	the	sshd	configuration	before	packaging.

With	the	machine	created	and	active	on	a	development	workstation,	the	listing
appears	in	the	VirtualBox	Manager	console:

If	this	machine	boots	locally	and	allows	us	to	SSH	into	the	machine	normally,	we	can
proceed	to	convert	the	virtual	machine	into	a	Vagrant	box.

How	to	do	it…
If	we	use	an	existing	virtual	machine	with	VirtualBox,	we	can	use	a	few	simple	commands
to	export	a	new	Vagrant	box.

Packaging	the	VirtualBox	machine
Before	we	can	use	the	virtual	machine	with	Vagrant,	we	need	to	package	the	machine	into
an	appropriate	box	format.

1.	 Note	the	name	that	VirtualBox	assigns	to	the	machine.	In	this	case,	our	virtual
machine	is	named	CentOS	as	displayed	in	the	left-hand	menu	of	the	VM	VirtualBox
Manager	console:

2.	 Create	a	temporary	workspace	to	package	the	box.	As	with	all	Vagrant	commands,
you	will	do	this	on	the	command	line.	If	you	are	working	on	a	Unix	machine	(Linux
or	OS	X),	you	can	create	a	working	directory	with	the	mkdir	~/box-workspace
command.	This	will	create	a	folder	in	your	home	directory	called	box-workspace.
Change	directories	to	this	workspace	with	cd	~/box-workspace.

3.	 Execute	the	packaging	command.	(Warning!	This	is	for	VirtualBox	only.)	This
command	is:

vagrant	package	--base=CentOS	--output=centos64.box

We’ll	discuss	a	bit	more	about	this	in	the	following	section.	For	now,	Vagrant	will
return	some	text:

==>	CentOS:	Exporting	VM…

This	command	might	take	some	time	to	execute;	Vagrant	is	copying	the	existing
VirtualBox	machine	into	a	box	file	along	with	some	metadata	that	allows	Vagrant	to
recognize	the	box	file	itself.	When	this	command	is	finished,	you’ll	end	up	with	a
single	file	called	centos64.box	in	the	working	directory.

4.	 Import	the	box	file	into	your	environment.	In	this	case,	we	will	directly	add	the	box
for	use	to	our	local	Vagrant	environment	so	that	we	can	proceed	to	test	the	new	box
with	a	Vagrantfile.	It	is	also	possible	at	this	stage	to	simply	publish	the	box	to	a	web
server	for	use	by	others,	but	it	is	highly	recommended	to	attempt	to	boot	the	box	and
access	it	with	an	example	Vagrantfile.	Your	users	will	appreciate	it.	Add	the	box	with
the	command:

vagrant	box	add	centos64.box	--name=centos64

This	command	will	copy	the	box	to	your	local	Vagrant	cache,	so	you	are	now	ready

to	directly	use	the	box!

Configuring	a	Vagrant	environment
Now	that	the	box	is	added	to	our	local	cache,	we’ll	need	to	configure	a	new	Vagrant
environment	to	use	the	box.

1.	 Initialize	a	new	Vagrant	environment	with	our	new	box.	Do	this	by	executing	the
vagrant	init	centos64	command.	This	will	create	a	basic	Vagrantfile	that	uses	our
new	centos64	box.

2.	 Configure	the	Vagrantfile	to	use	the	correct	user	to	SSH	into	the	machine.	We’ll	use
the	supplied	username	and	password	given	in	the	preceding	table.	Edit	the	Vagrantfile
created	in	the	previous	step	to	include	two	new	lines	that	specify	parameters	for	the
config.ssh	parameters:

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		#	All	Vagrant	configuration	is	done	here.	The	most	common	

configuration

		#	options	are	documented	and	commented	below.	For	a	complete	

reference,

		#	please	see	the	online	documentation	at	vagrantup.com.

		#	Every	Vagrant	virtual	environment	requires	a	box	to	build	off	of.

		config.vm.box	=	"centos64"

		config.ssh.username="uaccount"

		config.ssh.password="passw0rd"

By	default,	Vagrant	relies	on	a	common	public	key	that	is	used	by	most	box
publishers	that	allows	access	to	an	account	called	vagrant.	In	this	case,	our
environment	will	not	have	this	key	installed,	we	can	instead	configure	the	Vagrantfile
to	use	a	username	and	password.	After	the	first	login,	Vagrant	will	place	a	key	in	the
appropriate	account;	so,	if	desired,	the	password	can	be	removed	from	the	Vagrantfile
after	the	first	boot.

3.	 Boot	the	environment.	You	might	need	to	specify	the	provider	along	with	the
vagrant	up	command:

vagrant	up	--provider=virtualbox

In	this	case,	you	will	note	quite	a	bit	of	output;	the	typical	Vagrant	boot	messages
along	with	some	information	about	logging	in	with	the	password,	replacing	the
password	with	the	key,	and	so	on.	You	might	also	(depending	on	how	the	box	was
packaged)	see	some	information	about	Guest	Additions.	While	Vagrant	can	use	a
virtual	machine	that	has	the	guest	additions	disabled,	some	features	(shared	folders,
port	forwarding,	and	so	on)	rely	on	the	VirtualBox	guest	additions	to	be	installed.	It’s
likely	that	your	virtual	machine	has	these	already	installed,	especially	if	it	has	been
used	previously	in	a	VirtualBox	environment.	Newly	packaged	boxes,	however,	will
need	to	have	the	guest	additions	installed	prior	to	packaging.	(See	the	VirtualBox
manual	on	the	installation	of	guest	additions	at
https://www.virtualbox.org/manual/ch04.html.)

https://www.virtualbox.org/manual/ch04.html

Once	the	environment	is	booted,	you	can	interact	with	the	virtual	machine,	as	you	did
previously,	either	through	SSH	or	other	services	available	on	the	machine.

How	it	works…
Using	Vagrant	with	virtual	machines	is	entirely	dependent	on	the	Vagrant	box	format.	In
this	example,	we	used	a	built-in	feature	of	Vagrant	to	export	an	existing	VirtualBox
environment	into	Vagrant.	It’s	also	possible	to	package	box	files	for	other	environments,	a
topic	we’ll	revisit	later	in	the	book.	In	this	case,	the	package	command	generated	a	box
file	automatically.

The	Vagrant	box	file	is	a	file	in	a	Unix	Tape	ARchive	(TAR)	format.	If	we	untar	the	box
file	with	the	tar	xvf	centos64.box	command,	we	can	look	at	the	contents	of	the	box	to
see	how	it	works.	The	following	are	the	contents	of	the	untarred	file:

-rw-------		0	cothomps	staff	1960775680	Jul	24	20:42	./box-disk1.vmdk

-rw-------		0	cothomps	staff						12368	Jul	24	20:38	./box.ovf

-rw-r--r--		0	cothomps	staff								505	Jul	24	20:42	./Vagrantfile

So,	the	box	file	contains	two	files	required	to	operate	a	VirtualBox	virtual	machine	(the
vmdk	file	that	defines	the	virtual	hard	drive,	and	the	ovf	file	that	defines	the	properties	of
the	virtual	machine	used	by	VirtualBox).	The	third	file	is	a	custom	Vagrantfile	that
contains	(primarily)	the	MAC	address	of	the	packaged	virtual	machine.	There	might	also
be	custom	files	added	to	packaged	boxes	(such	as	metadata),	describing	the	box	or	custom
files	required	to	operate	the	environment.

Chapter	2.	Single	Machine	Environments
In	this	chapter,	we	will	cover:

Defining	a	single	machine	Vagrant	environment
Forwarding	ports	from	a	Vagrant	machine
Starting	a	GUI	with	Vagrant
Sharing	Vagrant	guest	folders	with	the	host
Sharing	folders	using	Network	File	Systems
Sharing	folders	with	rsync
Customizing	virtual	machine	settings	(VirtualBox)
Customizing	virtual	machine	settings	(VMware	Desktop)
Sharing	environments	with	source	control

Introduction
Creating	simple	Vagrant	environments	is	rather	straightforward.	The	recipes	presented	in
the	first	chapter	consisted	of	booting	Vagrant	box	files	with	simple	Vagrant	environments.
Vagrant	is,	of	course,	a	much	more	powerful	tool	to	customize	and	manage	custom	server
environments.	The	Vagrant	API	(used	in	Vagrantfiles)	contains	a	number	of	different
options	to	customize	virtual	machines.	This	chapter	will	demonstrate:

The	definition	of	single	virtual	machines	and	how	machines	are	defined	in
Vagrantfiles
Sharing	resources	between	virtual	machines	and	the	host	operating	system
Customizing	virtual	machine	settings	for	a	specific	hypervisor	software

Defining	a	single	machine	Vagrant
environment
The	most	basic	mode	of	defining	a	Vagrant	is	the	definition	of	a	single	machine
environment.	This	type	of	environment	defines	a	single	virtual	machine	that	is	managed
with	a	simple	vagrant	up	command.	In	the	first	chapter,	all	of	the	Vagrant	machines
defined	were	single	machine	environments.	In	this	recipe,	we’ll	take	a	closer	look	at	how
these	machines	are	defined.

How	to	do	it…
There	are	two	ways	we	can	define	single	machine	environments.	A	simple	environment
with	global	configurations	can	be	used	to	create	a	single	environment,	or	a	defined
environment	can	be	used	as	the	start	of	a	multimachine	environment.	This	chapter	will
focus	on	single	environments,	but	you	might	find	that	defining	virtual	machines	is	a	more
flexible	configuration.

Simple	Vagrant	environment
1.	 Initialize	a	Vagrant	environment.	This	is	very	similar	to	how	we	initialized

environments	in	Chapter	1,	Setting	Up	Your	Environment,	in	this	case,	start	with	an
empty	Vagrantfile	by	entering	the	vagrant	init	command.

This	will	create	a	largely	empty	file	with	a	single	definition:

config.vm.box	=	"base"

There	might	be	many	other	lines	commented	out,	but	for	now,	we	are	interested	in	the
box	definition.

2.	 Define	the	box	for	this	single	environment.	Edit	the	config.vm.box	definition	to	the
following	code:

config.vm.box="puppetlabs/ubuntu-14.04-64-nocm"

Save	the	Vagrantfile	once	this	edit	is	made.

3.	 Start	the	box	by	issuing	the	vagrant	up	command.	This	will	start	the	virtual
environment,	possibly	downloading	the	box	and	booting	a	new	machine.	This	is	the
mode	in	which	we	defined	machines	and	environments	in	the	first	chapter.	For	many
purposes,	this	type	of	definition	is	acceptable,	particularly	if	the	environment	we
want	to	create	is	a	single	machine	environment	or	one	that	communicates	with
external	resources.	A	good	example	of	a	single	machine	environment	might	be	a
development	environment	for	a	web	application	that	communicates	with	an	external
database.	In	this	case,	the	Vagrant	box	can	be	defined	in	a	single	environment	with
connection	strings	that	connect	to	an	external	database,	either	a	shared	resource	or
even	a	database	that	is	installed	on	the	host	machine.

A	defined	single	machine	environment
In	some	cases,	we	might	wish	to	not	have	the	environment	to	be	defined	by	a	default
machine.	Instead,	we	might	choose	to	define	a	named	environment	that	allows	us	to	make
the	machine	definition	clearer	or,	perhaps,	serve	as	a	start	to	a	multimachine	environment.
To	create	a	named	environment:

1.	 Initialize	a	new	environment	(you’ll	want	to	do	this	in	a	different	location,	rather	than
where	we	created	the	Vagrantfile	in	the	first	part	of	this	recipe).	Initialize	a	new
environment	by	issuing	the	vagrant	init	command.	This	will	again	create	a	blank
Vagrantfile	for	us	to	edit.

2.	 Define	our	new	environment.	Let’s	do	this	by	removing	the	config.vm.box="base"
line.

While	we’re	here,	let’s	also	remove	all	of	the	commented	lines	in	the	generated	file;
this	will	allow	us	to	see	the	complete	example.	With	the	config.vm.box	definition
removed,	the	complete	file	looks	like:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

end

3.	 Create	a	definition	for	our	new	machine.	We’ll	do	this	by	adding	a	definition	in	the
main	configure	block.	The	complete	file	now	looks	like:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web"	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

		end

end

In	this	case,	we	will	define	a	single	machine	that	we	will	refer	to	as	web—perhaps
because	we	will	define	this	environment	as	a	simple	web	server.	Note	here	that	the
definition	of	the	machine	name	is	the	first	parameter	"web"	after	config.vm.define.
The	|web|	syntax	is	a	Ruby	syntax	that	defines	a	block;	the	code	within	this	block
and	the	definitions	within	the	block	are	local	to	the	block	itself.	Larger	and	more
complicated	environments	can	take	advantage	of	these	blocks	to	define	variable
scope,	something	that	is	of	great	utility	in	multi-machine	environments.

At	this	point,	we	can	execute	a	command	to	start	the	environment,	this	time	also
including	our	defined	environment	in	the	start	command:

vagrant	up	web

In	this	command,	the	web	tag	tells	Vagrant	that	we	wish	to	start	the	defined	box
named	web.	When	defining	a	machine	in	this	manner,	we	also	need	to	specify	the
machine	name	when	we	start	the	machine.	In	this	case,	web	is	the	name	of	the
machine	we	wish	to	start.

We	can	again	shorten	the	command	by	passing	a	primary	flag	to	the	machine
definition.	When	doing	so,	the	complete	Vagrantfile	will	look	like:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

		end

end

Note
Note	the	addition	to	the	definition	of	web—primary:	true.	This	ensures	that	we	can
once	again	start	the	environment	by	passing	the	vagrant	up	command.

How	it	works…
In	this	recipe,	we’ve	used	two	ways	to	define	a	single	machine	environment	with	Vagrant:
one	using	a	simple	definition	of	a	single	environment	using	the	config	parameter,	the
second	defining	a	separate	configuration	altogether.	You’ll	want	to	note	two	things	about
these	configurations:

A	configuration	object	is	the	basic	unit	of	a	Vagrantfile.	Each	Vagrantfile	will	require
at	least	one	configuration.	The	configuration	object	represents	a	virtual	machine;
operations	added	on	to	the	configuration	will	define	the	operation	of	the	machine	and
any	operations	that	are	executed	against	the	machine.
The	configuration	objects	themselves	(in	fact,	the	Vagrantfile	itself)	are	created	using
the	syntax	of	the	Ruby	programming	language.	We	can	use	Ruby	to	define	other
objects	and	how	we	define	Vagrant	machines.

Forwarding	ports	from	a	Vagrant
machine
Although	running	a	virtual	machine	in	a	completely	standalone	mode	can	be	useful,	we
can	also	use	Vagrant	to	extend	the	utility	of	local	computing	environments.	For	example,
when	developing	web	applications,	Vagrant	can	be	used	to	create	a	virtual	machine	for	the
runtime	environment	of	the	application.	When	testing	the	application,	however,	it	might
be	simpler	to	refer	to	the	application	as	running	on	the	host	machine:	a	localhost	URL.
Using	localhost	URLs	allows	for	simpler	configuration:	a	localhost	configuration	avoids
the	need	to	maintain	configuration	settings	to	use	the	application	in	the	virtual	machine.
We	can	enable	a	Vagrant	virtual	machine	to	listen	on	localhost	ports	through	a	technique
known	as	port	forwarding.	Port	forwarding	allows	us	to	forward	a	port	on	the	Vagrant
machine	to	a	port	on	the	host	machine.	For	example,	forwarding	port	80	(the	standard
HTTP	port)	on	the	Vagrant	machine	to	port	8080	on	the	host	machine	allows	us	to	access	a
web	server	on	the	virtual	machine	by	accessing	the	http://localhost:8080/	URL.	This
can	be	helpful	to	manage	and	interact	with	a	development	environment	on	a	Vagrant
machine.

In	this	recipe,	we	will	install	a	simple	service	(a	web	server)	and	forward	the	port	of	the
virtual	machine	to	a	port	on	the	host	machine.

How	to	do	it…
1.	 We’ll	start	with	a	simple	Vagrantfile	that	defines	a	single	machine.	(This	is	the	same

Vagrantfile	that	was	created	in	the	previous	recipe.)

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

		end

end

2.	 Configure	the	Vagrant	machine	to	forward	the	port	from	the	guest	to	the	host.	In	the
definition	section	of	the	web	machine,	assign	a	value	to	the	web.vm.network
parameter:

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

		end

3.	 We’ll	need	to	install	a	service	that	will	run	on	port	80	of	the	guest	machine.	To	do
this,	we’ll	add	a	simple	provisioning	command.	The	complete	Vagrantfile	now	looks
like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

		end

end

This	Vagrantfile	defines	the	machine,	the	forwarded	port,	and	installs	a	web	server
(nginx)	to	listen	on	port	80	of	the	guest	machine.

4.	 Start	the	machine	with	the	vagrant	up	command.	This	will	generate	output	on	the
forwarded	port	along	with	the	output	related	to	the	installation	of	the	nginx	web
server.

5.	 Once	the	virtual	machine	starts,	open	a	web	browser	on	your	host	machine	at
http://localhost:8888.	This	should	present	the	nginx	Welcome	page:

How	it	works…
The	configuration	of	the	forwarded_port	option	instructs	the	hypervisor	application	to
route	a	port	that	listens	for	requests	on	the	guest	machine	to	a	port	that	will	listen	for
requests	on	the	host	machine.	The	general	technique	is	referred	to	as	port	forwarding.	Port
forwarding	allows	a	single	host	machine	to	service	requests	on	behalf	of	one	(or	more)
virtual	machine(s)	running	on	the	machine.	Port	forwarding	is	typically	used	in	server
applications	to	make	network	management	simpler,	something	we	will	repeat	on	the
desktop.	With	forwarded	ports,	the	Vagrant	machines	running	on	your	desktop	can	be
referred	to	as	local	services	rather	than	networked	services.

There	is	also	something	else	to	be	noted;	in	this	example,	we	will	instruct	Vagrant	to
forward	the	HTTP	port	(port	80)	on	the	Vagrant	machine,	specifically	to	port	8888	on	the
host	machine	with	this	configuration:

				web.vm.network	"forwarded_port",	guest:80,	host:8888

If	port	8888	on	the	host	machine	is	blocked	by	another	process,	the	Vagrant	startup	will
fail	as	the	Vagrant	machine	will	be	unable	to	associate	to	port	8888.	To	avoid	these	types
of	scenarios,	known	as	port	collisions,	we	can	instruct	Vagrant	to	automatically	reassign
to	a	different	port	using	the	auto_correct	option:

web.vm.network	"forwarded_port",	guest:80,	host:8888,	auto_correct:	true

With	the	auto_correct	option,	Vagrant	will	first	attempt	to	connect	to	the	specified	port
(in	this	example,	8888),	then	fail	over	to	a	different	port	if	the	one	specified	is	being	used
by	another	process.	You	might	have	noticed	this	correction	already	when	starting	up
virtual	machines.	Vagrant	uses	auto	correction	that	allows	the	SSH	port	on	the	guest
machines	to	forward	different	ports	on	the	host.	This	allows	Vagrant	to	maintain	a	list	of
both	virtual	machines	and	available	ports	so	that	each	machine	can	be	accessed	with	the
vagrant	ssh	command.

Starting	a	GUI	with	Vagrant
So	far,	we’ve	seen	how	to	start	Vagrant	using	virtual	machines	that	run	in	a	mode	that	is
not	running	a	graphical	interface,	which	is	most	often	referred	to	as	server	or	headless
mode.	There	are	also	cases	where	virtual	machines	that	host	a	graphical	environment	must
be	shared	(from	experimentation	or	development	of	GUI	software	to	sharing	entire
development	environments).

The	key	to	start	a	GUI	with	Vagrant	is	to	use	(or	create)	a	box	that	has	a	windowing
environment	installed.	In	some	cases,	you	can	create	an	environment	from	scratch;	in	this
case,	we’ll	find	a	box	with	a	windowing	environment	installed	from	the	Vagrant	Cloud.

Getting	ready
Before	we	can	start	a	machine	and	configure	it	for	use	with	a	graphical	user	interface,	we
will	need	to	find	a	box	that	has	the	graphics	libraries	installed	and	active.	These	boxes	can
be	somewhat	large	due	to	the	extra	software	required	by	GUI	environments,	so	there	are
typically	not	many	of	them	published	to	public	repositories.

Introducing	Atlas
Before	we	can	start	a	Vagrant	box	with	an	installed	GUI,	we	first	need	to	find	a	Vagrant
box	configured	to	run	a	graphical	user	interface.	HashiCorp	(the	original	authors	and
sponsors	of	Vagrant)	provides	such	a	tool	with	Atlas,	which	is	a	centralized	portal	and
repository	for	nearly	every	HashiCorp	product.	Atlas	(https://atlas.hashicorp.com)	is
accessible	(at	the	time	of	writing	this	book)	in	a	technical	preview	and	will	continue	to
support	free	features	for	the	Vagrant	community.

Note
While	it	is	not	strictly	necessary	to	register	for	an	Atlas	account,	it	might	be	simpler	to
search	for	boxes	and	access	other	features	with	a	registered	account.	In	this	case,	we	are
going	to	use	the	box	repository	that	is	freely	available,	yet	not	listed	on	the	public
homepage.	The	URL	for	the	Vagrant	box	repository	is
https://atlas.hashicorp.com/boxes/search.

After	accessing	the	Vagrant	box	repository	(https://atlas.hashicorp.com/boxes/search),	we
can	search	for	boxes	using	the	Atlas	search	feature.	A	simple	search	for	GUI	provides	a
few	examples	of	Vagrant	boxes	configured	with	user	interfaces;	although,	due	to	the	sheer
size	of	boxes	with	graphical	user	interfaces,	there	are	not	many	that	are	shared	through	the
Atlas	repository.

https://atlas.hashicorp.com
https://atlas.hashicorp.com/boxes/search
https://atlas.hashicorp.com/boxes/search

There	are	also	many	other	boxes	available	with	GUI	environments	and	installed
applications	(one	of	them	on	the	Atlas	repository	might	meet	your	particular	need).	For
this	example,	we’ll	use	a	box	created	specifically	for	this	recipe	at
https://atlas.hashicorp.com/chad-thompson/boxes/ubuntu-trusty64-gui.

Starting	GUI	environments	in	Vagrant	can	also	differ	by	provider;	in	this	specific	example,
we	will	look	at	starting	up	a	GUI,	where	the	box	provider	is	VirtualBox.

https://atlas.hashicorp.com/chad-thompson/boxes/ubuntu-trusty64-gui

How	to	do	it…
1.	 Initialize	our	new	box	environment.	We’ll	do	this	with	the	init	command:

vagrant	init	chad-thompson/ubuntu-trusty64-gui

This	will	create	a	new	Vagrantfile.	If	we	edit	out	the	commented	lines,	our	compact
Vagrantfile	will	look	like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"chad-thompson/ubuntu-trusty64-gui"

end

2.	 To	enable	the	GUI,	we	will	need	to	add	a	provider-specific	block	to	the	configuration.
In	this	case,	the	provider	is	"virtualbox".	The	Vagrantfile	with	the	added	code	block
is	shown	in	the	following	code	snippet:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

config.vm.box	=	"chad-thompson/ubuntu-trusty64-gui"		config.vm.provider	

"virtualbox"	do	|vbox|

				vbox.gui	=	true

		end

end

3.	 Start	the	environment	with	the	vagrant	up	command.

This	will	start	the	virtual	machine;	you	should	note	that	VirtualBox	opens	a	new	window
that	displays	the	Ubuntu	startup	screen	and	after	boot,	the	box	immediately	logs	in	as	the
vagrant	user.	In	this	case,	you	might	note	that	the	boot	takes	a	bit	more	time	to	start	a
headless	server,	and	Vagrant	might	display	an	SSH	timeout	message	or	two.	This	is	not	a
problem	as	Vagrant	will	continue	retrying	the	SSH	connection	until	the	machine	boot	is
complete.

How	it	works…
As	Vagrant	is	simply	an	interface	to	other	hypervisor	software	(in	this	case,	VirtualBox),
starting	a	GUI	requires	using	specific	functions	of	the	hypervisor.	In	the	Vagrantfile,	we
added	a	provider-specific	block	with	a	single	configuration	parameter:	the	gui	parameter:

		config.vm.provider"virtualbox"	do	|vbox|

				vbox.gui	=	true

		end

This	prompts	Vagrant	to	initialize	the	environment	with	properties	specific	to	the	provider
being	used.

As	the	blocks	are	provider-specific,	we	can	also	make	our	Vagrantfiles	a	bit	more	generic.
A	Vagrantfile	can	include	multiple	provider	blocks	in	the	same	file,	provided	that	you	have
box	files	for	each	provider	type.	For	example,	if	we	have	box	files	for	VirtualBox	and
VMware	Fusion,	we	can	specify	the	blocks	to	execute	for	each	one	of	these	providers.	For
example,	we	can	extend	our	Vagrantfile	to	boot	a	GUI	for	either	VirtualBox	or	VMware
Fusion:

		config.vm.provider	"virtualbox"	do	|vbox|

				vbox.gui	=	true

		end

		config.vm.provider	"vmware_fusion"	do	|fusion|

				fusion.gui	=	true

		end

Now,	if	we	use	our	Vagrantfile	with	a	VMware	Fusion	box	file	and	provider,	VMware
Fusion	will	boot	the	GUI,	whereas	the	VirtualBox	provider	block	will	be	ignored.

There’s	more…
In	the	first	part	of	this	recipe,	we	modified	a	Vagrantfile	created	with	the	Vagrant	init
command,	which	created	a	Vagrantfile	for	us	to	modify.	In	the	most	recent	versions	of
Vagrant	(1.7	or	greater),	the	vagrant	up	command	also	supports	using	a	box	name	for	an
argument.	For	example,	the	entire	initialization	and	boot	process	can	occur	with	a	single
command:

vagrant	up	chad-thompson/ubuntu-trusty64-gui	--provider	virtualbox

This	will	initialize	a	default	Vagrantfile	and	boot	the	machine,	downloading	the	box	file	if
necessary.	Using	the	simple	vagrant	up	command	would	not	work	for	this	specific
example,	as	the	Vagrantfile	required	modification	for	the	user	interface.	When	searching
for	boxes	in	the	Atlas	repository,	you’ll	note	that	the	vagrant	up	command	is	provided	as
a	shortcut	to	download	and	test	the	box.	Be	aware	that	in	most	cases,	the	one	line
command	will	not	start	a	Vagrant	machine	with	the	desired	features.

Sharing	Vagrant	guest	folders	with	the
host
There	are	a	number	of	cases	where	it	is	useful	to	share	a	folder	between	the	host	operating
system	and	a	Vagrant	machine	guest.	When	using	Vagrant	to	develop	software,	shared
folders	can	quickly	become	the	primary	advantage	to	use	Vagrant.	A	shared	folder	allows
us	to	execute	code	within	a	server	environment,	while	having	access	to	the	full	suite	of
development	tools	available	for	our	host	operating	system.

Getting	ready
Before	setting	up	a	shared	folder	scheme,	it	will	be	useful	to	plan	how	you	would	like	to
set	up	folder	sharing.	There	are	a	few	tips	to	keep	in	mind:

Sharing	a	folder	will	only	work	for	folders	that	exist	on	the	host	operating	system
before	starting	Vagrant.	This	will	also	ensure	that	the	contents	of	these	folders	remain
even	if	the	Vagrant	machine	is	destroyed.
If	you	wish	to	share	data	generated	by	a	Vagrant	machine	with	the	host,	you	will	need
to	configure	services	to	write	to	a	previously	existing	shared	folder.
Plan	ahead	when	thinking	about	folder	sharing	schemes.	It	can	often	be	useful	to
share	folders	that	map	to	system	directories,	such	as	a	root	directory	for	a	web	server.
Keep	in	mind	that	Vagrant	shares	the	working	directory	of	the	Vagrantfile	in	the	root
vagrant	directory	by	default.	Executing	the	ls	/vagrant/	command	(on	a	Linux
guest)	should	return	at	minimum	a	listing	of	the	Vagrantfile	and	any	files	present	in
the	working	directory.	This	can	be	handy	in	provisioning	machines.	Shared	folders
are	set	up	prior	to	executing	provisioning;	this	will	allow	assets	in	the	working
directory	of	the	Vagrantfile	to	be	copied	or	executed	within	the	guest.

How	to	do	it…
Let’s	look	at	an	example	of	using	shared	folders	to	set	up	a	web	server	to	develop	HTML
files.	To	do	this,	the	host	will	need	to	share	a	source	folder	that	contains	HTML	documents
with	the	guest.	Before	starting	the	environment,	let’s	create	a	sample	HTML	file	to	serve
from	the	Vagrant	machine.

1.	 In	a	working	directory,	create	a	new	directory	called	vagrantsite	that	will	hold	our
working	HTML	files.

2.	 In	the	vagrantsite	directory,	use	your	favorite	text	editor	to	create	a	file	named
index.html‘.	For	this	example,	the	contents	of	index.html	are:

<html>

		<body>

				<div	align="center">Vagrant	Machine</div>

		</body>

</html>

3.	 Create	a	new	Vagrantfile	in	the	directory	where	the	vagrantsite	directory	created	in
step	1	is	located.	For	this	example,	lets	start	with	a	Vagrantfile	that	was	created	in	an
earlier	recipe	to	start	a	machine	and	provision	a	web	server.	Here	is	the	complete
Vagrantfile:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

		end

end

4.	 Add	a	synced_folder	directive	to	the	web	server	configuration.	Immediately,	after
the	definition	of	the	box,	add	the	line:

				web.vm.synced_folder	"vagrantsite/",	"/opt/vagrantsite"

This	will	link	the	vagrantsite	directory	we	created	in	step	1	to	the
/opt/vagrantsite	directory	on	the	guest	machine.

5.	 Finally,	add	an	additional	command	to	the	web.vm.provision	line	in	the	Vagrantfile
to	create	a	symbolic	link	from	this	directory	to	a	directory	in	the	nginx	default	web
directory.	The	complete	Vagrantfile	(with	the	addition	to	the	provisioning	command)
is:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",

				guest:80,	host:8888

				web.vm.synced_folder	"vagrantsite/",	"/opt/vagrantsite"

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx;	ln	-s	

/opt/vagrantsite	/usr/share/nginx/html/vagrantsite"

		end

end

Note	that	we	are	executing	the	provisioning	command	as	a	single	command	that	will	be
executed	once	on	machine	startup.	Creating	the	symbolic	link	will	ensure	that	the
index.html	page	created	in	step	2	is	ready	to	serve	when	the	machine	starts.

Now	that	the	machine	is	defined,	executing	vagrant	up	will	allow	us	to	open	the	page	by
opening	http://localhost:8888/vagrantsite/	in	a	web	browser:

This	index.html	file	is	the	one	we	created	in	the	working	directory	of	the	Vagrantfile.	We
can	also	edit	index.html	(and	other	HTML	documents)	on	the	host	machine.	Having
access	to	tools	on	the	host	with	code	being	executed	on	the	server	will	allow	us	to	modify
index.html	with	design	and	development	tools	on	the	host	machine	while	the	pages	are
served	(or	executed)	from	the	runtime	of	the	virtual	machine.

How	it	works…
Creating	a	shared	folder	with	a	Vagrant	environment	is	similar	to	other	Vagrant	commands
in	which	Vagrant	does	not	implement	any	new	functionality,	but	rather	relies	on	the
underlying	functions	of	the	hypervisor.	In	the	case	of	VirtualBox	and	VMware	Desktop,
sharing	a	folder	uses	the	shared	folders	functions	of	the	hypervisor	software.

Note
Sharing	folders	will	require	that	the	proper	tools	to	share	folders	with	host	operating
systems	are	installed.	For	VirtualBox,	this	means	having	the	guest	additions	installed	in
the	packaged	box	file.	For	VMware	Desktop,	this	means	having	the	VMware	tools
installed.	Most	boxes	you’ll	find	on	the	Vagrant	Cloud	will	have	these	tools	installed.	If
you	are	packaging	your	own	box,	installing	these	additions	will	be	important	prior	to
packaging.

Shared	folders	can	also	be	implemented	in	different	ways.	Sharing	content	between	host
and	guest	can	also	be	accomplished	by:

Using	networked	file	systems	such	as	NFS	(Linux,	OS	X,	and	other	Unix	hosts)	and
SMB	(for	Windows	hosts).	These	options	might	offer	better	file-sharing	performance
than	shared	folder	functionality	of	the	hypervisor.	Many	VirtualBox	users	in
particular	have	noted	better	I/O	(input/output	operations	on	disk)	performance	when
using	NFS	sharing	over	using	the	guest	additions	method	that	is	demonstrated	here.
See	the	next	recipe,	Sharing	folders	using	Networked	File	Systems.

Note
The	use	of	NFS	on	systems	that	support	the	export	of	file	shares	such	as	NFS	(OS	X
and	Linux)	can	offer	significant	performance	improvements	with	applications	that
require	frequent	disk	access	to	shared	folders.	A	significant	example	is	the	use	of
Java	application	servers	within	a	Vagrant	machine;	the	startup	and	bootstrapping
processes	can	generate	significant	file	I/O	on	start	and	stop	procedures.	Enabling
NFS	in	these	situations	is	almost	a	necessity	when	using	the	VirtualBox	hypervisor.
Mitchell	Hashimoto	compared	the	performance	of	shared	folder	implementations	and
file	I/O	(visit	http://mitchellh.com/comparing-filesystem-performance-in-virtual-
machines	for	more	information.)

A	Vagrant	machine	executing	on	a	remote	hypervisor	(such	as	a	cloud	service)	will
usually	not	have	shared	filesystems	available.	In	this	case,	Vagrant	provides	methods
to	copy	files	from	host	to	guest	using	the	rsync	protocol.	We’ll	see	examples	of	this
type	of	sharing	in	later	recipes.

http://mitchellh.com/comparing-filesystem-performance-in-virtual-machines

See	also
Vagrant	documentation	on	shared/synced	folders:
http://docs.vagrantup.com/v2/synced-folders/index.html
Comparing	Filesystem	Performance	in	Virtual	Machines,	Mitchell	Hashimoto:
http://mitchellh.com/comparing-filesystem-performance-in-virtual-machines

http://docs.vagrantup.com/v2/synced-folders/index.html
http://mitchellh.com/comparing-filesystem-performance-in-virtual-machines

Sharing	folders	using	Network	File
Systems
The	previous	recipe	showed	us	how	to	share	folders	between	a	host	operating	system	and
a	virtual	machine	guest	using	the	hypervisor	tool.	This	typically	works	for	the	majority	of
cases,	but	there	are	some	situations	where	virtual	machines	can	take	advantage	of
networked	file	systems	for	ease	of	use	or	better	performance.

Vagrant	supports	two	different	networked	file	systems:

The	Unix	Networked	File	System	(NFS)
The	Windows	Server	Message	Block	(SMB)	protocol

Keep	in	mind	that	the	protocol	that	you	will	use	depends	on	your	host	operating	system	as
a	shared	volume	will	be	presented	to	the	guest	virtual	machine.	In	this	example,	we’ll
demonstrate	using	VirtualBox	on	Mac	OS	X	to	share	a	folder	between	the	host	(OS	X)
operating	system	to	an	Ubuntu	guest.

Before	we	begin	this	recipe,	we’ll	address	a	bit	of	the	reasons	behind	using	the	NFS	over
shared	folder	mechanism.	The	primary	use	case	to	use	NFS	is	due	to	performance,	and
primarily	the	performance	of	the	VirtualBox	shared	folder	implementation.	In	many	cases,
this	performance	difference	is	not	noticeable,	particularly	in	typical	development	cases
where	a	developer	is	working	on	a	few	files	at	a	time,	whereas	performance	does	become
noticeable	when	many	file	operations	are	performed	that	require	access	to	shared	folders.
A	good	example	here	is	the	use	of	automated	test	suites	against	a	Vagrant	machine;	many
operations	in	a	short	period	of	time	can	make	the	Vagrant	machine	sluggish	if	the	system
cannot	complete	read/write	operations	fast	enough	for	the	automated	process.	This
performance	difference	is	not	as	noticeable	with	the	VMware	providers,	but	if	you	note
that	Vagrant	machines	seem	unusually	slow	or	display	a	large	uptime	due	to	being	I/O
bound,	consider	using	networked	folders	(or	perhaps	copying	files	with	rsync)	instead	of
native	shared	folder	implementations.

Getting	ready
Sharing	directories	from	the	host	operating	system	will	require	the	host	system	to	export	a
directory	for	use	by	the	guest	machine.	When	using	NFS,	for	example,	this	means	that
Vagrant	will	add	an	entry	to	the	native	/etc/exports	file	to	define	the	rule	to	export	the
specified	directory	to	the	guest	machine.

Note
You	will	need	to	ensure	that	you	have	administrative	privileges	on	your	computer	before
proceeding	with	this	recipe.

You’ll	note	after	a	while	that	Vagrant	adds	entries	to	/etc/exports,	but	does	not	remove
them.	This	can	be	somewhat	problematic	if	you	have	NFS	settings	already	defined	or	if
you	create	or	destroy	many	Vagrant	machines	with	NFS	mounts.	It	can	be	a	good	practice
to	clean	up	unneeded	exports	from	time	to	time.

Prior	to	starting,	you	will	also	need	to	ensure	that	Network	File	Share	Daemon	(nfsd)	is
installed	on	your	OS	X	or	Linux	machine.	This	is	installed	by	default	on	OS	X,	but	might
require	a	package	installation	on	Linux.

How	to	do	it…
Let’s	start	with	a	sample	Vagrantfile	that	has	some	basic	setup	(and	folder	sharing)
completed.	This	Vagrantfile	is	the	one	developed	for	shared	folders	in	the	previous	recipe:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.synced_folder	"vagrantsite/",	"/opt/vagrantsite"

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx;	ln	-s	

/opt/vagrantsite	/usr/share/nginx/html/vagrantsite"

		end

end

This	example	will	start	an	NFS	mount	on	a	host	OS	X	operating	system

1.	 With	the	preceding	Vagrantfile,	modify	the	synced_folder	line	to	include	a	type
option.	The	complete	file	line	is	as	follows:

				web.vm.synced_folder	"vagrantsite/",

						"/opt/vagrantsite",	type:"nfs"

The	only	difference	in	the	Vagrantfile	in	this	recipe	and	the	prior	one	is	the	definition
of	the	synced_folder	type.

2.	 Start	the	Vagrant	environment	(in	this	case,	OS	X	or	Linux)	with	vagrant	up.
3.	 During	startup,	Vagrant	notes	the	installation	of	the	NFS	client	in	the	virtual	machine

and	will	prompt	you	for	your	administrator	password.	Vagrant	requires	this	password
in	order	to	modify	the	system/etc/exports	file	that	defines	a	filesystem	to	export	to
the	virtual	machine.

4.	 After	entering	your	administrator	password,	Vagrant	will	complete	the	machine
startup	and	provisioning	of	a	web	server	on	the	system.	In	this	case,	the	vagrantsite
folder	that	is	in	our	HTML	document	directory	is	shared	from	the	host	operating
system	to	the	guest	with	NFS.	You	can	verify	this	by	opening	an	SSH	session	to	the
Vagrant	machine	(vagrant	ssh)	and	executing	the	mount	command	(assuming	a
Linux	guest).	The	mount	command	should	contain	an	entry	that	looks	like	this	(in	this
case,	the	IP	address	is	autogenerated):

192.168.30.1:/Users/<<PATH	TO	FOLDER>>/vagrantsite	on	/opt/vagrantsite	

type	nfs	(rw,vers=3,udp,addr=192.168.30.1)

How	it	works…
Sharing	folders	from	a	host	machine	to	Vagrant	guests	is	similar	to	how	you	might
configure	a	server	to	share	volumes	on	a	network.	Vagrant	automates	the	process	of
configuring	the	host	exports	and	the	guest	mounts,	making	the	use	of	a	networked
filesystem	easy	to	manage.

There’s	more…
The	main	example	in	this	recipe	demonstrated	the	use	of	a	Unix-based	host	operating
system,	which	only	supports	the	use	of	NFS	filesystems.	Windows	hosts	will	be	a	little
different.	Instead	of	NFS,	Windows	hosts	can	export	SMB	shares	to	be	used	in	the	Vagrant
guest.	The	Vagrantfile	is	simply	modified	by	changing	the	synced_folder	type.	In	the
example,	for	this	recipe,	modify	the	synced_folder	directive	to:

web.vm.synced_folder	"vagrantsite/",	"/opt/vagrantsite",	type:"smb"

However,	before	starting	the	Vagrant	environment,	keep	in	mind	that	similar	to	Unix	and
NFS	mounts,	the	Vagrant	command	will	need	to	be	run	as	an	administrative	user.	Running
a	shell	with	administrator	privileges	will	allow	Windows	to	export	an	SMB	share	to	be
mounted	on	the	guest	machine.	One	method	for	doing	this	is	to	start	a	command	window
(or	a	PowerShell	window)	with	administrative	privileges.	For	example,	executing
PowerShell	as	an	administrator	requires	you	to	right-click	on	the	PowerShell	executable
and	select	Run	as	Administrator:

After	executing	the	vagrant	up	command	to	start	the	environment,	Vagrant	will	prompt
for	the	username	and	password	of	the	current	administrative	user	to	start	the	SMB	share.

Sharing	folders	with	rsync
Sharing	files	and	folders	with	Vagrant	machines	is	a	typical	use	of	Vagrant	in	a
development	environment.	Files	on	a	host	machine	can	be	shared	with	a	running	Vagrant
machine,	giving	developers	the	advantage	of	being	able	to	execute	code	in	a	production-
like	environment	while	having	the	ability	to	use	desktop	productivity	tools	(IDEs	and	text
editors)	to	modify	code.	There	are	some	cases	where	sharing	folders	between	a	host	and	a
guest	might	not	be	possible,	or	might	not	perform	well	for	the	task	at	hand.

Two	possible	examples	are:

Processes	that	generate	significant	disk	activity	(I/O)	on	shared	folders:
Hypervisor	folder	sharing	(particularly	VirtualBox)	can	cause	Vagrant	processes	to
become	I/O	bound.	Using	NFS	can	help,	but	might	not	always	be	available.
(Exporting	NFS	shares	require	root	access	to	the	host	machine	and	in	a	few	cases,	it
might	not	be	available	at	all.)
Vagrant	can	be	used	to	control	virtual	machines	in	remote	locations	(even	in
remote	data	centers	accessed	over	the	public	Internet):	In	this	case,	sharing
folders	can	introduce	I/O	issues	in	a	Vagrant	machine	due	to	basic	network	latency.

In	these	cases	(and	others	where	shared	folders	won’t	work),	a	better	solution	would	be	to
copy	files	and	folders	required	by	the	Vagrant	machine	to	the	local	disk	of	the	Vagrant
machine	itself.	Vagrant	provides	(in	versions	later	than	Vagrant	1.5)	a	feature	to	copy	files
and	folders	with	the	rsync	utility.	This	feature	allows	Vagrant	to	copy	files	and	folders	to	a
remote	machine	on	machine	startup	and	also	with	the	vagrant	rsync	command.

In	this	recipe,	we’ll	take	a	look	at	setting	up	a	simply	synced	folder	with	rsync	and
Vagrant.

Getting	ready
Before	we	can	start	with	copying	files	with	rsync,	we	will	need	to	ensure	that	our	system
has	a	working	copy	of	rsync	prior	to	creating	the	Vagrant	machine.	Most	operating
systems	(or	package	repositories)	have	a	version	of	rsync	available	(make	sure	that	you
have	a	version	installed	for	Vagrant	to	use).	Linux	and	OS	X	typically	have	rsync
installed	as	part	of	the	operating	system	installation	(or	available	with	a	quick	installation
using	native	package	management).	Windows	users	might	need	to	install	rsync	that	uses
Unix	toolkits	such	as	Cygwin	to	install	rsync.

How	to	do	it…
1.	 Start	our	project	with	a	simple	Vagrantfile.	This	Vagrantfile	simply	starts	a	new

Vagrant	machine:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.synced_folder	"html",	"/opt/html",	type:"rsync"

end

2.	 In	the	working	directory,	create	a	folder	called	html	that	will	hold	content	that	will	be
copied	to	the	Vagrant	machine.

3.	 Create	a	simple	file	to	copy	to	the	Vagrant	machine.	In	this	case,	a	simple
index.html	file	will	allow	us	to	demonstrate	rsyncing	folders:

<html>

		<body>A	synced	folder</body>

</html>

When	the	setup	is	complete,	our	working	directory	will	have	the	following	structure:

.

├──	Vagrantfile

└──	html

				└──	index.html

4.	 With	the	working	html	directory	in	place,	create	a	synced	folder	definition	for	the
folder	using	rsync.	This	definition	is	similar	to	other	shared	folders;	the	main
difference	is	that	we	are	defining	the	folder	type	to	be	rsync.	Add	the	following	line
immediately	below	the	config.vm.box	definition:

		config.vm.synced_folder	"html",	"/opt/html",	type:"rsync"

This	will	sync	our	html	directory	on	the	host	machine	to	the	/opt/html	folder	on	the
guest.

Note
In	this	example,	we	will	see	that	our	working	directory	will	also	be	shared	with	the
Vagrant	machine,	using	the	default	/vagrant	directory	in	the	Vagrant	machine	as
well.	While	we	might	not	want	to	use	this	in	a	real	scenario,	in	this	example,	it	will
allow	us	to	demonstrate	the	actions	of	the	vagrant	rsync	command	later	on.

5.	 With	the	synced	folder	definition	in	place,	start	the	Vagrant	machine	with	the
vagrant	up	command.	Note	that	the	output	of	the	Vagrant	startup	will	also	include	a
notification	of	the	folder	synchronization.

6.	 If	we	access	the	machine	with	the	vagrant	ssh	command,	we	can	also	see	that	the
index.html	file,	that	we	previously	defined,	is	now	in	two	locations	in	our	Vagrant
machine:	/vagrant/html/index.html	and	/opt/html/index.html.	By	running	the
diff	command,	we	can	also	see	that	there	are	no	differences	between	them.

7.	 Make	a	change	to	the	index.html	file	on	the	host	machine.	The	change	in	this	file
will	be	immediately	shared	with	the	Vagrant	machine	in	the	shared	folder	at
/vagrant/html/index.html:

<html>

		<body>A	synced	folder	-	modified	to	demonstrate	the	rsync	process.

</body>

</html>

8.	 Access	the	Vagrant	machine	again	with	the	vagrant	ssh	command.	If	we	execute	the
diff	command	on	the	index.html	file	in	the	/vagrant/html	folder	and	the
/opt/html	folder,	we	can	now	see	that	the	files	are	different.

9.	 Synchronize	the	/opt/html	directory	by	executing	the	vagrant	rsync	command	in
the	working	directory	on	the	host.	Note	that	the	command	produces	output	from	the
rsync	process.

10.	 Access	the	machine	again	with	the	vagrant	ssh	command	and	compare	the
/vagrant/html/index.html	and	/opt/html/index.html	files.

Note
Note	that	once	again	there	is	no	difference	in	the	shared	folder	(using	hypervisor	folder
sharing)	and	the	rsynced	copy.

How	it	works…
The	use	of	the	rsync	command	creates	a	shared	folder	on	the	Vagrant	machine	that	is
updated	on	either	system	reload	or	repeated	executions	of	the	vagrant	rsync	command.
This	allows	our	Vagrant	machine	to	access	working	files	on	the	local	disk	that	is	not
bound	by	I/O	considerations	of	shared	or	remote	folders.

Using	rsynced	folders	is	most	useful	in	situations	where	file	I/O	or	network	constraints
introduce	bottlenecks	in	Vagrant	system	performance.	We	could	also	use	an	rsynced	folder
as	part	of	a	provisioning	workflow	within	a	Vagrant	machine.

For	example,	a	Java	build	process	might	generate	an	executable	that	we	wish	to	deploy	to
an	application	server	running	on	a	Vagrant	machine.	Rsyncing	build	artifacts	might	allow
us	to	more	easily	deploy	compiled	code	to	an	app	server;	copying	a	WAR	file	allows	you
to	build	artifact	in	order	to	be	deployed.	Any	compilation	steps	in	the	app	server	(such	as	a
JSP	compilation)	would	have	the	added	benefit	to	generate	compiled	files	without	the
overhead	of	shared	or	networked	folder	performance.

The	other	prominent	example	is	the	synchronization	of	files	to	remote	servers.	In	fact,
many	Vagrant	cloud	providers	(such	as	the	AWS	provider)	use	rsyncing	by	default	to	share
folders	between	a	local	Vagrant	process	and	a	remote	virtual	machine.

In	either	case,	synchronization	of	folders	using	rsync	gives	developers	more	flexibility	to
use	Vagrant	in	order	to	meet	specific	performance	or	to	test	use	cases.

See	also
The	rsync	project:	https://rsync.samba.org/
Cygwin	Unix	utilities	for	Windows:	https://www.cygwin.com
Vagrant	rsync	synced	folders:	https://docs.vagrantup.com/v2/synced-
folders/rsync.html

https://rsync.samba.org/
https://www.cygwin.com
https://docs.vagrantup.com/v2/synced-folders/rsync.html

Customizing	virtual	machine	settings
(VirtualBox)
Up	to	this	point,	we	have	seen	the	creation	and	execution	of	Vagrant	environments	largely
as	it	is.	Every	environment	started	has	been	controlled	either	by	the	default	settings	or
settings	that	have	been	provided	in	packaged	boxes.	This	is	sometimes	okay,	but	it	is	often
desirable	to	use	the	Vagrantfile	to	control	settings	on	the	virtual	machine	in	order	to	allow
the	virtual	machine	to	run	as	efficiently	on	the	host	as	possible.	The	primary	example	is,	of
course,	changing	the	settings	of	the	virtual	machine	to	use	more	(or	less)	system	memory
(RAM)	and	virtual	processors.

Getting	ready
Modifying	the	runtime	settings	of	a	virtual	machine	is	dependent	on	the	features	of	the
hypervisor.	Changing	the	runtime	for	VirtualBox	will	be	slightly	different	for	VMware
Desktop	and	other	hypervisors.	Vagrant	provides	a	few	shortcuts	to	common	items	(RAM,
CPU),	but	modifying	these	settings	require	the	use	of	provider-specific	blocks	in	the
Vagrantfile.

How	to	do	it…
To	start	the	example,	create	a	Vagrantfile	that	we	have	built	in	previous	recipes.	This	file
creates	a	single	box	named	web	and	installs	the	nginx	web	server.	Here	is	the	complete
Vagrantfile	to	start	the	example:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

		end

end

In	this	recipe,	we’ll	modify	the	runtime	of	the	virtual	machine	to	use	2	GB	of	RAM	and	2
virtual	CPUs	to	run	our	web	server.

Note
When	changing	memory	settings,	make	sure	to	note	the	settings	of	the	box	that	you	are
using,	in	particular,	check	whether	the	box	and	OS	install	are	32-bit	or	64-bit	operating
systems.	If	the	box	is	an	installation	of	a	32-bit	operating	system	(as	in	this	example),	then
the	maximum	RAM	that	the	virtual	machine	can	support	is	4	GB.

1.	 Define	a	configuration	block	for	the	web	server	that	is	VirtualBox-specific.	Add	this
(empty)	block	after	the	web.vm.provision	line:

				web.vm.provider	"virtualbox"	do	|vbox|

				end

2.	 With	the	provider	block	defined,	add	two	provider	configurations:	one	defines	an
amount	of	memory	(system	RAM),	the	second	defines	a	number	of	virtual	CPUs.	The
block	within	the	two	parameters	is	as	follows:

				web.vm.provider	"virtualbox"	do	|vbox|

						vbox.memory	=	2048

						vbox.cpus	=	2

				end

Note
The	amount	of	system	memory	here	is	in	megabytes.	Take	care	to	ensure	that	you	are
not	assigning	more	RAM	to	your	virtual	machine	than	the	host	operating	system	can
support.	Keep	in	mind	that	the	host	operating	system	will	also	require	resources	to
operate.

The	complete	Vagrantfile	for	this	example	is:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

						web.vm.provider	"virtualbox"	do	|vbox|

						vbox.memory	=	2048

						vbox.cpus	=	2

				end

		end

end

3.	 Start	the	virtual	machine	with	the	vagrant	up	command.
4.	 Verify	that	the	system	has	the	amount	of	memory	allocated.	On	Ubuntu	(and	most

Linux	distributions	in	general),	you	can	find	this	value	in	the	/proc/meminfo	file.
Look	at	the	first	few	lines	of	this	file	with	the	head	command:

vagrant@localhost:~$	head	/proc/meminfo

MemTotal:				2072440	kB

MemFree:					1893628	kB

…

Keep	in	mind	that	these	RAM	calculations	will	not	be	precise,	but	the	system	is
reporting	approximately	2	GB	of	RAM	that	we	specified	in	the	Vagrantfile.

How	it	works…
Provider-specific	settings	(such	as	memory	and	virtual	CPU)	rely	heavily	on	the
functionality	(and	API)	of	the	underlying	hypervisor.	For	VirtualBox	in	particular,	this
requires	the	use	of	the	VBoxManage	utility	and	the	modifyvm	command.	Vagrant	provides
a	shortcut	for	the	common	modifications	of	setting	the	amount	of	RAM	and	number	of
CPUs,	but	we	can	also	access	the	VBoxManage	commands	directly.

For	example,	two	lines	can	be	added	to	the	configuration	block	in	order	to	start	a	GUI	on
the	vagrant	up	command,	but	use	the	VBoxManage	command	to	fade	the	VirtualBox
startup	logo	immediately:

web.vm.provider	"virtualbox"	do	|vbox|

		vbox.memory	=	2056

		vbox.cpus	=	2

		vbox.gui	=	true

		vbox.customize	["modifyvm",	:id,	"--bioslogofadein",	"off"]

		end

A	full	listing	of	available	options	to	modify	the	runtime	is	available	in	the	VirtualBox
documentation	for	the	VBoxManage	command.	(At	the	time	of	writing	this	book,	it	is
https://www.virtualbox.org/manual/ch08.html.)

The	use	cases	to	modify	Vagrant	environments	beyond	RAM	and	CPU	are	rare,	but	it	is
important	to	note	that	Vagrant	allows	you	to	use	VirtualBox	commands	to	modify	the
environment	directly.

https://www.virtualbox.org/manual/ch08.html

Customizing	virtual	machine	settings
(VMware	Desktop)
The	customization	options	that	are	available	through	the	VMware	Desktop	(Fusion	and
Workstation)	are	somewhat	limited	in	comparison	to	VirtualBox.	VMware	does	not
publish	a	documented	API	to	control	virtual	machines	in	the	desktop	environment	(the
Vagrant	documentation	only	provides	a	firm	example	to	configure	the	amount	of	RAM
and	CPU).

This	example	will	demonstrate	configuring	RAM	and	CPU	using	the	VMware	Fusion
provider.

Getting	ready
Modifying	runtime	parameters	of	a	virtual	machine	are	dependent	on	the	commands
exposed	by	the	hypervisor	application.	In	the	case	of	VMware	Desktop	products,	this
takes	the	form	of	key/value	pairs	that	the	runtime	maintains	in	a	vmx	file.	Vagrant
essentially	modifies	this	file	prior	to	booting	the	machine,	as	such,	it	is	possible	to
overwrite	parameters	that	Vagrant	uses	to	manage	the	machine,	or	even	parameter	settings
required	for	the	virtual	machine	to	operate.

As	we	proceed	through	this	example,	also	note	that	there	are	two	VMware	products	that
will	behave	identically,	yet	have	different	provider	names:

For	OS	X,	the	hypervisor	application	is	called	VMware	Fusion.	This	provider	is
specified	in	the	Vagrantfile	with	the	name	vmware_fusion.
For	Windows	and	Linux,	the	hypervisor	application	is	called	VMware	Desktop.	This
provider	is	specified	in	the	Vagrantfile	with	the	name	vmware_desktop.

How	to	do	it…
To	start	this	example,	create	a	Vagrantfile,	which	we	have	built	in	previous	recipes.	This
file	creates	a	single	box	named	web	and	installs	the	nginx	web	server.	Here	is	the	complete
Vagrantfile	to	start	the	example:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

		end

end

In	this	recipe,	we’ll	modify	the	runtime	of	the	virtual	machine	to	use	2	GB	of	RAM	and	2
virtual	CPUs	to	run	our	web	server.

Note
When	changing	memory	settings,	make	sure	to	note	the	settings	of	the	box	that	you	are
using,	in	particular,	check	whether	the	box	and	OS	install	are	32-bit	or	64-bit	operating
systems.	If	the	box	is	an	installation	of	a	32-bit	operating	system	(as	in	this	example),	then
the	maximum	RAM	that	the	virtual	machine	can	support	is	4	GB.

1.	 Define	a	configuration	block	for	the	web	server	that	is	VirtualBox-specific.	Add	this
(empty)	block	after	the	web.vm.provision	line:

				web.vm.provider	"vmware_fusion"	do	|vmware|

				end

In	this	case	(VMware	Fusion	on	OS	X),	using	vmware_fusion	is	the	proper	value	for
the	provider;	VMware	Workstation	users	will	use	the	vmware_workstation	provider
name.

2.	 With	the	provider	block	defined,	add	two	provider	configurations,	one	that	defines
the	amount	of	memory	(system	RAM),	the	second	that	defines	a	number	of	virtual
CPUs.	The	block	with	the	two	parameters	is	as	follows:

				web.vm.provider	"vmware_fusion"	do	|vmware|

						vmware.vmx["memsize"]	=	"2048"

						vmware.vmx["numvcpus"]	=	"2"

				end

Note
The	amount	of	system	memory	here	is	in	megabytes.	Take	care	to	ensure	that	you	are
not	assigning	more	RAM	to	your	virtual	machine	than	the	host	operating	system	can
support.	Keep	in	mind	that	the	host	operating	system	will	also	require	resources	to
operate.

The	complete	Vagrantfile	for	this	example	is:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:80,	host:8888

				web.vm.provision	"shell",	inline:	"apt-get	install	-y		nginx"

						web.vm.provider	"vmware_fusion"	do	|vmware|

						vmware.vmx["memsize"]	=	"1024"

						vmware.vmx["numvcpus"]	=	"2"

				end

		end

end

3.	 Start	the	virtual	machine	with	the	vagrant	up	command.
4.	 Verify	that	the	system	has	the	amount	of	RAM	that	we	specified	in	the	provider

configuration	block.	On	Ubuntu	(and	most	Linux	distributions	in	general),	you	can
find	this	value	in	the	/proc/meminfo	file.	Look	at	the	first	few	lines	of	this	file	with
the	head	command:

vagrant@localhost:~$	head	/proc/meminfo

MemTotal:								2064268	kB

MemFree:									1942356	kB…

Keep	in	mind	that	these	RAM	calculations	will	not	be	precise,	but	the	system	reports
approximately	2	GB	of	RAM	that	we	specified	in	the	Vagrantfile.

How	it	works…
Provider-specific	settings	(such	as	memory	and	virtual	CPU)	rely	heavily	on	the
functionality	(and	API)	of	the	underlying	hypervisor.	VMware	does	not,	unfortunately,
publish	documentation	about	all	the	options	available	to	virtual	machines	in	the	desktop
hypervisor	products.	These	options	are	available	to	users	using	the	key/value	syntax	that
was	used	in	the	recipe	to	modify	the	RAM	and	CPU	count.	For	example,	the
vmware.vmx["key"]	=	"value"	line	would	set	the	"key"	property	in	machine	boot	to
"value".	It	is	rare	that	desktop	users	will	modify	these	parameters	directly,	but	Vagrant
exposes	these	options	for	users	that	require	them.

Sharing	environments	with	source	control
The	biggest	challenge	that	users	(and	development	teams)	typically	face	when	working
with	virtual	machines	on	the	desktop	is	sharing	and	maintaining	versions	of	virtual
environments.	Traditionally,	this	has	meant	placing	virtual	machine	files	(for	either
VirtualBox	or	VMware)	in	a	shared	network	location	or	even	on	a	USB	thumb	drive	that
is	shared	among	the	team	to	copy	to	a	workstation.	These	methods	also	mean	that	each
virtual	machine	has	to	be	configured	for	each	use.	The	combination	of	large	file	sizes	and
individual	configurations	makes	shared	virtual	machines	difficult	to	use	in	traditional	file-
sharing	scenarios.

Vagrant,	on	the	other	hand,	relies	strictly	on	text	files	(namely	the	Vagrantfile)	to	define
virtual	environments.	Text	files	are	easy	to	modify,	track,	and	share	using	traditional
source	control	methods.	Vagrantfiles	can	even	be	kept	in	the	same	repository	that	hosts
source	code,	giving	developers	the	opportunity	to	store	both	application	source	and	server
configurations	in	the	same	repository.

In	this	recipe,	we’ll	take	a	look	at	using	source	control	to	keep	(and	share)	a	project	with	a
source	control	system.

Getting	ready
With	this	example,	we’ll	use	GitHub	as	a	source	repository	to	host	our	project	using	the
Git	source	control	system.	You	can	find	more	information	on	GitHub	(and	Git	in	general)
at	http://github.com.	While	an	account	is	not	necessary	to	clone	and	use	code	published	in
a	public	repository,	creating	new	repositories	will	require	an	account	with	GitHub.

http://github.com

How	to	do	it…
In	this	example,	we’ll	start	from	an	existing	Vagrant	project—in	particular,	the	web	project
created	in	the	Sharing	folders	with	Network	File	Systems	recipe,	a	Vagrant	environment
that	represents	a	simple	HTML	website	with	a	Vagrantfile	that	defines	a	simple	web
server.	The	file	listing	for	our	beginning	directory	looks	like	this:

For	this	example,	we	wish	to	share	our	Vagrant	environment	using	GitHub.	The	steps	here
will	create	a	local	repository	and	push	it	to	a	public	repository.	(This	repository	is
available	at	https://github.com/chad-thompson/vagrantbook-web).

1.	 Initialize	a	local	Git	repository	with	the	command-line	client.	Open	the	directory
where	our	Vagrantfile	resides	and	issues	the	git	init	command.	This	will	initialize	a
repository	on	our	local	filesystem.

2.	 Create	a	file	named	.gitignore:	a	file	instructing	Git	to	not	operate	on	certain	files.
In	this	case,	we’ll	create	a	.gitignore	file	with	only

3.	 Add	our	files	to	this	repository	using	the	add	command.	From	the	same	directory	as
step	1,	execute:

git	add	–all

Verify	this	command	by	executing:

git	status

This	will	display	all	files	that	we	have	selected	to	add	to	the	repository.

https://github.com/chad-thompson/vagrantbook-web

4.	 Commit	the	added	files	to	the	local	repository.	From	our	directory	location,	execute:

git	commit	–m	"Initial	Import	of	Vagrant	Web	Project"

This	will	package	a	new	commit	to	our	local	repository.	Before	we	can	share	this
repository,	we	will	need	to	create	a	public	remote	endpoint	that	can	be	used	by	other
developers.	(Keep	this	terminal	window	open	for	later.)

5.	 Log	in	to	GitHub	(see	the	Getting	ready	section	for	information	about	GitHub
accounts)	and	select	the	New	Repository	option.	The	new	repository	dialog	will
prompt	for	a	repository	name	and	description.	Deselect	(if	selected)	the	option	to
Initialize	this	repository	with	a	README.

Note
There	are	also	options	for	public	or	private	repositories.	Private	repositories	are,
however,	a	paid	feature	of	GiHub.

Once	the	name,	description	and	other	options	are	correct,	select	Create	repository.

6.	 Note	the	instructions	for	the	new	repository.	An	empty	repository	will	display
instructions	along	with	some	options	that	we	will	use	to	push	our	local	repository	to
this	new	GitHub	repository.

7.	 Add	the	GitHub	repository	as	a	remote	to	our	local	repository.	In	the	command
window	we	left	open	in	step	3	(a	command	prompt	open	to	the	directory	where	our
Vagrantfile	is	located),	execute:

git	remote	add	origin	git@github.com:chad-thompson/vagrantbook-web.git

Make	sure	to	substitute	the	name	of	the	account	or	repository	for	your	own	account.
This	command	is	available	in	the	documentation	described	in	step	5.

8.	 With	the	remote	defined,	push	the	local	repository	and	set	upstream	tracking	with:

git	push	–u	origin	master

This	will	push	our	local	repository	to	our	public	GitHub	repository.	With	the
repository	available	in	GitHub,	other	developers	can	access	the	code	(including	the
Vagrantfile)	with	a	simple	git	clone	operation.

Once	these	steps	are	complete,	sharing	the	Vagrant	environment	is	as	simple	as	allowing
other	developers	to	access	the	source	repository	and	cloning	the	repository.	Once	a	new
developer	clones	the	repository,	a	new	development	environment	can	be	started	with	the

simple	vagrant	up	command,	provided	that	the	other	developer	also	has	Vagrant	and	a
hypervisor	application	installed.	Modifications	to	both	the	source	code	and	environment
are	managed	through	source	control,	and	not	through	shared	binary	files.

How	it	works…
Unlike	the	traditional	methods	of	sharing	virtual	machines	with	large	binary	files,	Vagrant
environments	are	largely	managed	with	text	files.	Text	files	are	both	small	and	easy	to
manage	with	source	control.	In	this	case,	we	are	managing	source	with	a	Git	repository,
but	any	form	of	source	control	(SVN,	CVS,	and	so	on)	would	work	just	as	well.	With
Vagrant,	it	is	also	possible	to	include	an	operating	environment	with	the	source	of	the
application	that	allows	for	joint	development	of	code	and	server	environments,
particularly	when	configuration	management	tools	are	used	to	ensure	consistency	between
development,	testing,	and	production	environments.

A	few	tips	to	keep	in	mind	are:

While	Vagrantfiles	and	accompanying	provisioning	scripts	are	simple	to	maintain	in
source	control,	box	files	will	require	a	different	publishing	mechanism	if	you	have
packaged	custom	boxes.	There	are	options	to	publish	boxes	from	web	servers	on	a
local	network	to	publication	in	a	box	repository	(such	as	the	Vagrant	Cloud).
Environments	and	Vagrantfiles	can	be	modified	and	shared,	but	it	might	require	other
developers	to	destroy	and/or	reprovision	local	Vagrant	machines	for	those	changes	to
take	effect.	Make	sure	that	changes	to	server	environments	(including	Vagrant
environments)	are	accompanied	with	plenty	of	discussion	and	notification	between
anyone	using	the	Vagrant	environment.

See	also
GitHub:	http://github.org,	a	popular	open	Git	repository.	There	are	also	other	options
available	to	host	Git	such	as	BitBucket	(http://bitbucket.org).
TryGit:	http://try.github.io,	a	resource	to	learn	the	basics	of	using	Git	and	the
command	line.
Getting	Git	Right:	https://www.atlassian.com/git/,	a	set	of	tutorials	published	by
Atlassian	that	are	a	good	introduction	to	both	using	Git	and	development	workflows
for	Git.

http://github.org
http://bitbucket.org
http://try.github.io
https://www.atlassian.com/git/

Chapter	3.	Provisioning	a	Vagrant
Environment
In	this	chapter,	we	will	cover:

Running	basic	shell	commands
Executing	shell	scripts	in	a	Vagrantfile
Provisioning	with	external	shell	scripts

Introduction
Starting	a	basic	operating	system	environment	from	a	Vagrantfile	can	be	useful,	but	the
real	power	of	Vagrant	is	the	ability	to	not	only	define	operating	parameters,	but	also	to
provision	environments	in	a	repeatable	way.	Vagrant	implements	a	number	of	methods	to
install	and	configure	software	wherein	each	different	method	is	referred	to	as	a
provisioner.

This	chapter	introduces	and	expands	on	the	basic	concept	of	provisioning	a	Vagrant
environment.	In	the	previous	chapters,	we	have	seen	how	to	launch	and	configure	basic
environments,	some	of	which	included	basic	provisioning	such	as	installing	a	web	server.
In	reality,	simply	installing	software	is	only	the	beginning	(the	process	of	configuring
software	for	use	is	where	the	real	work	begins).	Automating	this	process	through	scripts
and	configuration	management	will	give	you	the	dual	advantage	of	saving	time	and
environment	stability.	Vagrant	is	an	ideal	tool	to	test	configuration	management—creating,
provisioning,	testing,	destroying,	and	iterating	on	environment	configuration	becomes
simple	with	Vagrant.

Running	basic	shell	commands
The	most	basic	method	of	provisioning	is	to	run	simple	shell	commands	in	the	Vagrant
machine.	For	Linux	environments,	this	typically	means	executing	basic	shell	commands
with	shells	that	are	typically	bundled	with	distributions	(sh,	bash,	zsh,	and	so	on).	The
provisioning	process	can	also	execute	other	command-line	applications	if	runtime
environments	are	installed	(such	as	system	provisioning	with	Ruby	or	Perl).

In	this	example,	we’ll	use	a	shell	command	to	install	a	basic	Message	of	The	Day
command	to	output	a	greeting	on	login	using	the	vagrant	ssh	command.

How	to	do	it…
1.	 We’ll	start	this	example	with	a	simple	Vagrantfile	that	boots	a	basic	Ubuntu

environment.	Here	is	the	complete	Vagrantfile:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

end

Booting	this	environment	with	vagrant	up	will	start	a	basic	Ubuntu	operating
system.	Before	starting	the	system,	let’s	add	our	provisioning	command.

2.	 To	display	a	message	to	users	on	login,	we’ll	have	to	place	this	message	in	the
/etc/motd	file.	We	can	write	this	file	in	a	Unix	shell,	directing	the	output	of	the	echo
command	into	a	file.	The	basic	command	is:

echo	'Vagrant	Cookbook	Example	Environment'	>	/etc/motd

Vagrant	can	execute	this	command	using	a	provision	definition	in	the	Vagrantfile.
Adding	a	command	to	be	executed	using	the	provision	definition	looks	like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	"shell",	

				inline:	"echo	'Vagrant	Cookbook	Example	Environment'	>	/etc/motd"

end

3.	 Start	the	environment	with	the	vagrant	up	command.	When	running	this	Vagrantfile,
you’ll	note	the	output	of	the	provisioner:

4.	 Once	the	machine	is	booted,	access	the	machine	with	the	vagrant	ssh	command,	the

login	shell	will	display	the	message	created	with	the	inline	shell	method	along	with
the	default	Ubuntu	messages.	(In	this	example,	0029).

How	it	works…
In	this	case,	we	have	provisioned	a	single	file	(/etc/motd)	with	a	simple	Unix	command.
This	was	all	accomplished	with	a	single	line:

		config.vm.provision	"shell",	

				inline:	"echo	'Vagrant	Cookbook	Example	Environment'	>	/etc/motd"

The	provisioning	command	here	is	executed	with	the	Vagrant	provision	command.	The
command	took	two	arguments:

The	type	of	provisioner	being	executed,	in	this	case,	the	shell	provisioner
The	command	to	be	executed	by	the	shell	with	the	inline	argument	that	contained
the	command	that	was	executed

Now	that	a	provisioner	has	been	defined,	Vagrant	allows	provisioners	to	be	executed
multiple	times	on	an	environment	with	the	vagrant	provision	command.

Executing	the	vagrant	provision	command	will	only	execute	commands	defined	in
provisioners.	For	example,	if	the	Vagrantfile	in	the	example	was	edited	to	contain	a
different	message:

		config.vm.provision	"shell",	

				inline:	"echo	'Knock	Knock!'	>	/etc/motd"

Then,	executing	the	vagrant	provision	command	will	execute	only	the	provisioning
cycle:

Accessing	the	machine	with	the	vagrant	ssh	command	will	show	our	new	message	on
login:

While	this	provisioning	command	will	work	well	for	our	simple	command	that	simply
overwrites	the	/etc/motd	file,	in	more	complex	examples,	there	might	need	to	be	a	little
work	done	to	make	sure	that	shell	commands	do	not	leave	our	system	in	a	broken	state
(particularly	when	the	commands	are	executed	multiple	times	with	provisioning
commands).	Commands	that	leave	our	system	in	the	desired	state	without	causing
provisioning	failures	are	referred	to	as	idempotent,	a	concept	that	we	will	explore	further
in	our	next	recipe	and	in	Chapter	4,	Provisioning	with	Configuration	Management	Tools,
when	we	discuss	provisioning	Vagrant	machines	with	configuration	management
software.

Executing	shell	scripts	in	a	Vagrantfile
Provisioning	a	Vagrant	machine	with	single	inline	string	arguments	can	make	simple
provisioning	tasks	easy,	but	more	complicated	requirements	can	require	more	complicated
scripts.	Scripts	can	be	defined	within	Vagrantfiles	using	the	multiline	string	feature	of
Ruby.	A	multiline	string	will	allow	a	definition	of	a	set	of	commands	that	can	be	executed
with	the	Vagrant	inline	command.

This	example	will	also	demonstrate	how	we	can	make	a	script	idempotent,	which	is
capable	of	being	executed	multiple	times	without	changing	the	end	state	of	the	machine
after	every	run.

Getting	ready
In	this	example,	we	will	provision	a	new	Vagrant	environment,	install	the	nginx	web
server,	and	replace	the	default	web	directory	with	a	directory	in	our	working	directory.
The	working	directory	that	holds	the	Vagrantfile	is	shared,	by	default,	with	the	guest
operating	system	as	the	/vagrant	folder.

Before	we	start	our	Vagrant	environment,	create	a	directory	named	html	in	the	working
directory.	Most	Vagrant	boxes	(including	the	box	used	in	this	recipe)	automatically	share
the	working	directory	with	the	virtual	machine.	On	the	virtual	machine,	this	file	is	often
mounted	on	the	root	filesystem	as	/vagrant.	We	can	modify	these	files	and	see	the
changes	immediately	(if	the	synced	folder	is	mounted	with	a	shared	folder,	NFS	or	SMB
mount)	or	after	a	reload	or	rsync	command,	if	the	folder	is	synced	with	rsync.	By
creating	an	html	directory	in	the	working	directory,	we	can	access	this	folder	in	the	guest
at	the	/vagrant/html	location.

In	the	html	directory	(which	we	will	link	to	become	our	web	root),	create	a	file	named
index.html	that	is	a	very	simple	HTML	document.	The	entire	file	looks	like	this:

<html>

		<body>

				The	index.html	file	in	the	Vagrant	directory.

		</body>

</html>

This	will	be	the	file	served	as	the	default	page	by	the	web	server	running	in	our	Vagrant
environment.

How	to	do	it…
1.	 To	start,	define	a	basic	Vagrantfile	that	defines	a	simple	box	definition:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

end

2.	 At	the	top	of	the	Vagrantfile,	define	a	variable	that	will	hold	the	script	named
nginx_install.	We’ll	start	this	variable	with	the	syntax	required	for	a	Ruby
multiline	string:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

$nginx_install	=	<<SCRIPT

SCRIPT

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

end

3.	 In	this	script,	add	the	logic	to	install	nginx.	Note	that	we’ll	use	an	if	command	to
determine	whether	or	not	to	install	the	package.

Note
Note	that	the	installation	instructions	here	are	specific	to	the	installation	on	the
Ubuntu	operating	system.	The	location	of	executables	and	configuration	can	vary
based	on	the	operating	system	and	the	specific	installation	package.	For	this	recipe,
we	will	simply	be	relying	on	the	defaults	provided	in	the	nginx	package	in	the
Ubuntu	14.04	repositories.	The	script	can	easily	be	modified	for	different
environments	by	changing	the	installation	instructions	(such	as	yum	install	nginx
for	Fedora	or	Red	Hat	variants).

The	script	block	will	then	look	like	the	following	code:

$nginx_install	=	<<SCRIPT

		if	[!	-x	/usr/sbin/nginx];	then

				apt-get	install	-y	nginx;

		fi

SCRIPT

4.	 With	the	nginx	install	command	in	place,	add	a	section	to	the	script	following	the
nginx	install	to	determine	whether	or	not	the	default	nginx	root	directory	is	a
symbolic	link.	This	section	will	do	a	simple	test	to	see	whether	the	directory	is	a

static	link	(making	the	assumption	here	that	only	our	script	would	create	this	static
link)	or	a	real	directory.	If	the	directory	is	not	a	static	link,	remove	it	and	replace	the
nginx	root	directory	with	a	symbolic	link:

$nginx_install	=	<<SCRIPT

		if	[!	-x	/usr/sbin/nginx];	then

				apt-get	install	-y	nginx;

		fi

		#	Default	NGINX	directory:	/usr/share/nginx/html

		#	Replace	this	with	symbolic	link	to	vagrant	directory.

		if	[!	-L	/usr/share/nginx/html];	then

				rm	-rf	/usr/share/nginx/html

				ln	-s	/vagrant/html	/usr/share/nginx/html

		fi

SCRIPT

5.	 Now	that	the	provisioning	script	has	been	written,	add	a	provision	property	to	the
box	definition	that	will	use	our	script	in	a	Ruby	variable:

		config.vm.provision	"shell",	inline:	$nginx_install

With	this	line	(and	an	addition	of	a	networking	setting	to	forward	the	port),	the
complete	Vagrantfile	is	as	follows:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

$nginx_install	=	<<SCRIPT

		if	[!	-x	/usr/sbin/nginx];	then

				apt-get	install	-y	nginx;

		fi

		#	Default	NGINX	directory:	/usr/share/nginx/html

		#	Replace	this	with	symbolic	link	to	vagrant	directory.

		if	[!	-L	/usr/share/nginx/html];	then

				rm	-rf	/usr/share/nginx/html

				ln	-s	/vagrant/html	/usr/share/nginx/html

		fi

SCRIPT

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	"shell",	inline:	$nginx_install

		config.vm.network	"forwarded_port",	guest:80,	host:8080

end

6.	 With	the	Vagrantfile	complete,	execute	the	vagrant	up	command	in	the	working
directory.	When	the	machine	is	booted,	open	http://localhost:8080	in	a	local
browser	to	see	the	HTML	file	in	our	working	html	directory:

7.	 As	a	test	of	idempotency,	execute	the	vagrant	provision	command	in	the	current
working	directory.	You	should	note	that	this	command	will	exit	rather	quickly,	as	all
conditions	within	the	script	should	be	satisfied.

How	it	works…
In	this	example,	we	will	execute	a	shell	script	within	the	Vagrant	machine.	Configuration
of	Unix	environments	with	shell	scripts	is	a	common	task,	but	there	are	a	few	things	to
keep	in	mind	when	provisioning	Vagrant	machines.

Shell	scripting	in	vagrant	machines
We	might	have	not	noticed	in	prior	examples	where	simple	commands	were	executed,	but
in	the	case	of	larger	scripts,	it	becomes	important	to	know	how	to	write	Vagrant	shell
provisioning	scripts.	Vagrant	will	(by	default)	use	the	default	shell	for	the	box,	which	is
typically	the	default	shell	for	the	operating	system.	In	most	Linux	distributions,	this	is
typically	the	Bourne	Again	Shell	(bash),	so	many	examples	will	use	bash	scripting	or
scripting	for	the	Bourne	Shell	(sh).	These	two	Unix	shells	might	cover	a	vast	majority	of
cases,	although	other	scripting	languages	can	be	used	when	executing	shell	commands
with	external	scripts.	We’ll	investigate	this	a	bit	further	in	the	next	recipe.

Script	idempotency
The	definition	of	a	script	within	a	Vagrantfile	relies	on	using	Ruby	syntax	to	define	a
multiline	string.	The	ability	to	script	also	allows	our	scripts	to	be	idempotent	if	we
implement	checks	on	actions	or	the	existence	of	resources.	In	particular,	the	shell	script
checks	for	the	existence	of	the	nginx	executable	using	the	-x	flag:

		if	[!	-x	/usr/sbin/nginx];	then

				apt-get	install	-y	nginx;

		fi

The	script	also	checks	for	the	existence	of	a	symbolic	link	using	the	-L	flag:

		if	[!	-L	/usr/share/nginx/html];	then

				rm	-rf	/usr/share/nginx/html

				ln	-s	/vagrant/html	/usr/share/nginx/html

		fi

When	this	script	is	executed	twice	in	a	row,	this	should	yield	in	no	action	being	taken	in
subsequent	calls	to	vagrant	provision.	This	allows	you	to	not	only	avoid	repeating
actions,	but	also	to	allow	for	easy	iteration	on	the	environment.	Subsequent	provisioning
operations	should	only	apply	changes,	not	the	entire	script.

See	also
Vagrant	documentation	on	the	shell	provisioner:
http://docs.vagrantup.com/v2/provisioning/shell.html.
ShellHacks	has	a	good	overview	of	bash	commands	to	verify	file	existence:
http://www.shellhacks.com/en/HowTo-Check-If-a-File-Exists.
Linux	Shell	Scripting	Cookbook,	Second	Edition,	Shantanu	Tushar	and	Sarath
Lakshman,	Packt	Publishing.	This	is	a	good	guide	to	get	started	with	shell	scripting
with	some	recipes	on	more	complex	cases	than	what	will	be	covered	in	this	book.

http://docs.vagrantup.com/v2/provisioning/shell.html
http://www.shellhacks.com/en/HowTo-Check-If-a-File-Exists

Provisioning	with	external	shell	scripts
While	inline	scripts	can	be	a	useful	tool	to	execute	larger	command	blocks,	some
provisioning	operations	are	so	large	and/or	complex	that	it	can	be	useful	to	create	and
maintain	them	separately	from	the	Vagrantfile	itself.	Maintaining	these	scripts	separately
can	also	make	maintaining	provisioning	scripts	and	Vagrantfiles	much	simpler.

Getting	ready
In	this	recipe,	we’ll	modify	the	nginx-install	script,	which	was	created	in	the	previous
recipe.	In	that	example,	a	provisioning	script	was	defined	within	a	Ruby	variable:	a	string
embedded	within	the	Vagrantfile	itself.	When	provisioning	scripts	begin	growing	to
involve	multiple	steps	or	different	logic,	it	can	be	difficult	to	create	and	modify	scripts
within	a	Vagrantfile.	In	most	cases,	we	will	want	to	remove	the	scripting	from	the
Vagrantfile	and	instead	execute	provisioning	from	standalone	scripts.

Before	we	create	new	provisioning	scripts,	let’s	recreate	our	html	directory	configuration
of	the	previous	recipe.	In	a	working	directory,	initialize	a	Vagrantfile	and	create	a
subdirectory	named	html.	This	html	directory,	in	our	working	directory,	will	be	shared
with	our	guest	machine,	which	is	mounted	from	the	root	filesystem	at	/vagrant/html.
This	will	become	the	document	root	for	the	web	server	running	in	the	Vagrant	machine.

In	this	html	directory,	create	a	file	named	index.html	(this	will	be	the	default	page	for	the
web	server).	In	this	example,	the	full	content	of	the	index.html	file	will	be:

<html>

		<body>

				The	index.html	file	in	the	Vagrant	external	script	directory.

		</body>

</html>

With	this	file	in	place,	our	working	directory	will	look	similar	to	the	previous	recipe:

├──	Vagrantfile

├──	html

│			└──	index.html

In	this	recipe,	we	will	add	a	provisioning	script	that	will	install	the	nginx	web	server	and
link	the	default	document	root	to	the	shared	/vagrant/html	directory	in	the	Vagrant
machine.

How	to	do	it…
1.	 In	our	working	directory,	create	a	script,	which	will	hold	provisioning	instructions

named	nginx-install.sh.	The	contents	of	this	file	will	hold	a	simple	script	that	will
install	nginx	and	create	a	symbolic	link	from	the	default	nginx	root	to
/vagrant/html.

Note
This	recipe	assumes	that	we	are	using	the	Ubuntu	14.04	LTS	distribution	specified	in
the	Vagrantfile.	We	will	use	the	nginx	package	in	the	default	Ubuntu	14.04
repositories	(this	assumes	that	the	nginx	binary	will	be	installed	at	/usr/bin/nginx
with	the	web	server	document	root	being	at	/usr/share/nginx/html).	This	recipe
can	be	modified	for	other	Linux	operating	systems	(such	as	Fedora	and	Red	Hat
variants)	by	using	the	yum	package	(yum	install	nginx)	and	the	configurations	for
the	yum	package.

The	contents	of	the	shell	scripts	will	be	similar	to	the	string	defined	in	the	previous
recipe:

#!/bin/bash

		if	[!	-x	/usr/sbin/nginx];	then

				apt-get	install	-y	nginx;

		fi

		#	Default	NGINX	directory:	/usr/share/nginx/html

		#	Replace	this	with	symbolic	link	to	vagrant	directory.

		if	[!	-L	/usr/share/nginx/html];	then

				rm	-rf	/usr/share/nginx/html

				ln	-s	/vagrant/html	/usr/share/nginx/html

		fi

2.	 With	the	shell	script	in	place	and	the	html	directory	as	described	in	the	preceding
section,	start	with	a	simple	Vagrantfile:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

end

3.	 Add	configuration	directives	to	execute	the	shell	script	with	a	path	command,	and
add	a	directive	to	forward	web	traffic	on	the	guest	(port	80)	to	our	host	port	(8080).
The	complete	Vagrantfile	is	as	follows:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	"shell",	path:	"nginx-install.sh"

		config.vm.network	"forwarded_port",	guest:80,	host:8080

end

4.	 Execute	the	vagrant	up	command.	After	the	machine	successfully	starts,	open
http://localhost:8080	in	a	web	browser.	The	HTML	file	in	the	working	directory
is	displayed	as	follows:

How	it	works…
Executing	shell	scripts	outside	of	the	Vagrantfile	provides	a	few	distinct	advantages	to
inline	scripting.

Shell	provisioning
The	use	of	external	shell	scripts	enables	us	to	create	more	complex	scripts	(perhaps	testing
and	maintaining	them	outside	the	Vagrantfile	itself).	This	is	typically	the	case	when
executing	more	than	one	or	two	commands	or	perhaps	using	conditional	logic	when
provisioning.	Shell	scripting	can	also	be	combined	with	other	shell	commands	or	even
different	provisioners.	One	example	can	be	to	use	a	shell	script	in	order	to	bootstrap
configuration	management	software	before	executing	the	appropriate	provider.	A
Vagrantfile	that	bootstraps	a	working	Puppet	environment	prior	to	executing	the	Puppet
provisioner	might	look	like	the	following	code:

config.vm.provision	"shell",	path:	"bootstrap.sh"

config.vm.provision	"puppet"	do	|puppet|

		...

end

Provisioning	with	different	shell	languages
The	other	ability	that	external	shell	scripts	allows	is	the	ability	to	define	and	use	scripts
written	using	languages	other	than	the	default	shell	scripting	languages	of	the	box.	For
example,	we	could	write	a	Perl	script	to	install	our	nginx	web	server:

#!/usr/bin/perl	-w

			

unless(-e	'/usr/sbin/nginx'){

		`apt-get	install	-y	nginx`

}

If	we	save	this	script	as	ngnix.pl,	we	can	execute	this	Perl	script	using	the	Vagrant	shell
provisioner.	The	definition	of	this	provisioner	in	a	Vagrantfile	would	be:

		config.vm.provision	"shell",	path:	"nginx.pl"

As	long	as	the	scripting	environment	(such	as	Perl	or	Ruby)	is	installed,	the	Vagrant	shell
provisioner	can	be	used	to	execute	provisioning	scripts	that	are	written	in	a	number	of
scripting	languages.

See	also
Vagrant	shell	provisioner	documentation:
http://docs.vagrantup.com/v2/provisioning/shell.html

http://docs.vagrantup.com/v2/provisioning/shell.html

Chapter	4.	Provisioning	with
Configuration	Management	Tools
In	this	chapter,	we	will	cover:

Configuring	Vagrant	environments	with	Puppet
Configuring	Vagrant	environments	with	Chef
Configuring	Vagrant	environments	with	Salt
Configuring	Vagrant	environments	with	Ansible

Introduction
Vagrant	environments	can	be	provisioned	using	various	scripting	languages	and	the
Vagrant	shell	provisioner,	but	in	many	cases,	developers	and	administrators	might	find
advantages	in	provisioning	Vagrant	environments	using	configuration	management	tools.
The	number	of	configuration	management	tools	available	to	users	is	large	(and	growing).
In	these	recipes,	we	will	focus	on	four	primary	configuration	management	tools	in	Vagrant
environments:

Puppet
Chef
Salt
Ansible

These	four	tools	are	(at	the	time	of	this	writing)	the	most	popular	choices	to	manage	not
only	Vagrant	environments,	but	also	large-scale	systems’	deployments.	These	tools	can	be
used	to	manage	Vagrant	environments	alone,	but	in	many	cases,	the	configuration	scripts
developed	for	Vagrant	environments	can	be	deployed	across	larger	environments,	allowing
configurations	used	for	development	to	ultimately	be	used	in	production	websites.	Vagrant
is	then	the	glue	that	helps	systems	administrators	tie	development	environments	into
something	that	very	closely	mirrors	configurations	in	production	environments.

The	choice	of	configuration	management	tools	typically	relies	on	development	skills	and
the	types	of	environment(s)	that	are	being	managed.	This	chapter	cannot	cover	all	the
options	and	features	of	each	environment,	but	will	hopefully	give	a	quick	introduction	to
each	of	them.	In	all	cases,	the	configuration	management	tools	will	enable	administrators
to	create	provisioning	scripts	that	are:

Cross-platform:	Scripts	written	in	a	development	environment	on	one	platform	can
often	be	applied	to	other	environments	with	less	modification	than	shell	scripting.
Reusable:	Most	configuration	management	tools	allow	developers	to	create	modular
code	that	can	be	reused	in	different	scenarios	and	use	cases.	For	example,	installing
and	configuring	software	packages	from	repositories	is	rarely	a	task	that	will	be
performed	in	specific	environments.	For	example,	the	deployment	and	configuration
of	a	web	server	such	as	the	Apache	web	server	is	a	task	that	is	identical	in	different
environments,	making	an	Apache	module	an	ideal	case	for	a	reusable	package.

Configuration	management	and	Vagrant	boxes
The	primary	difference	in	approach	between	the	various	configuration	management	tools
is	the	agent	infrastructure.	Some	tools	(such	as	Puppet	or	Chef)	rely	on	software	installed
on	the	virtual	machine	(or	node)	itself	to	manage	provisioning	tasks.	Other	tools	(such	as
Ansible)	rely	on	software	installed	on	a	single	machine	(such	as	the	host	machine	in	a
Vagrant	setup)	to	perform	remote	commands	on	a	target	node	(or	virtual	machine),
requiring	software	installation	on	the	host	machine	rather	than	the	guest.

Due	to	this	difference,	tools	that	require	agents	often	provide	Vagrant	boxes	with	the	agent
installed	(Puppet	Labs	provides	these	machines	through	the	Vagrant	Cloud),	or	developers
could	write	bootstrap	scripts	to	prepare	a	virtual	machine	to	configure	management	agents.

Configuring	Vagrant	environments	with
Puppet
Puppet	Labs	(http://puppetlabs.com)	is	a	suite	of	configuration	management	tools	to
manage	servers	and	desktops.	Puppet	comes	in	two	flavors:	open	source	versions	that	are
the	core	functionality	of	the	suite	and	the	commercial	Puppet	Enterprise	that	combines	and
extends	the	open	source	core	to	be	a	complete	product	for	data	center	management.	Puppet
is	also	a	cross-platform	configuration	management	tool;	scripts	can	be	written	with	Puppet
that	can	configure	most	Unix	(Linux,	OS	X)	and	Windows	machines.

Vagrant	machines	use	the	Puppet	agent	infrastructure	to	perform	provisioning	operations
on	a	machine.	Puppet	agents	can	function	in	one	of	two	ways:

By	connecting	to	a	Puppetmaster	to	retrieve	configuration	information.	A
Puppetmaster	is	a	server	(or	cluster	of	servers)	that	is	a	centralized	location	for
systems	to	retrieve	system	configurations.
By	executing	a	puppet	apply	command	to	interpret	and	apply	configurations	locally.
This	is	often	referred	to	as	the	masterless	Puppet	approach.

The	use	of	Puppet	will	vary	based	on	how	Vagrant	environments	are	managed.	It	might	be
desirable	to	manage	stable	environments	from	a	centralized	Puppetmaster,	or	it	might	be
desirable	to	allow	for	local	modification	(or	Puppet	development)	from	configurations
locally	executed.

In	this	recipe,	we	will	use	the	masterless	approach	to	apply	Puppet	configurations	locally
with	some	reusable	code	(a	Puppet	module)	that	is	obtained	from	the	Puppet	Forge
repository.

http://puppetlabs.com

Getting	ready
Before	we	can	start	with	configuring	a	machine	with	Puppet,	we	will	need	to	note	a	few
things	about	our	environment:

When	we	install	software	with	Puppet,	it	is	necessary	to	use	a	Vagrant	box	that	either
has	the	Puppet	agent	installed	or	creates	a	bootstrapping	script	that	configures
package	repositories	and	installs	the	Puppet	agent	in	the	virtual	machine.	In	this	case,
we	can	use	a	Vagrant	box	provided	by	Puppet	Labs	that	can	be	found	in	the	Vagrant
Cloud	repository.	In	this	specific	example,	we	will	use	an	Ubuntu	14.04	box	that
contains	the	Puppet	agent:

https://vagrantcloud.com/puppetlabs/ubuntu-14.04-64-puppet

If	the	environment	being	created	is	for	Puppet	development,	it	might	also	be
necessary	to	install	the	Puppet	agent	on	the	host	machine.	Having	the	agent	installed
on	the	host	will	allow	for	management	of	Puppet	modules	and	resources	by	the	host
for	Vagrant	guests	to	be	provisioned.	A	common	example	is	to	use	the	puppet
module	utility	(or	the	librarian-puppet	tool)	to	manage	and	use	modules.	For
example,	the	apache	module	code	used	in	this	example	can	be	downloaded	directly
from	the	Puppet	Forge	by	executing	the	command	(with	vagrant_directory	being
the	location	of	the	Vagrantfile):

puppet	module	install	puppetlabs-apache	\

	--modulepath	<<vagrant_directory>>/puppet/modules

https://vagrantcloud.com/puppetlabs/ubuntu-14.04-64-puppet

How	to	do	it…
To	use	Puppet	(or	any	configuration	management	tool),	there	are	typically	two	main	items
to	manage:	the	Vagrant	environment	(Vagrantfile)	and	the	configuration	management	code
executed	by	a	provisioner.	This	recipe	will	use	Puppet	to	install	and	start	the	Apache	web
server	in	our	Vagrant	environment.

Setting	up	the	Vagrant	environment
1.	 Setting	up	the	Vagrant	environment	starts	with	defining	a	basic	Vagrantfile.	In	this

example,	we	will	use	a	Vagrant	box	provided	by	Puppetlabs	that	has	the	Puppet	agent
preinstalled.	We	will	also	define	the	default	box	as	web	and	forward	port	80	on	the
guest	(the	standard	HTTP	port)	to	port	8080	on	the	host	machine:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

				config.vm.define	"web",	:primary	=>	true	do	|web|

						web.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

						web.vm.hostname	=	"web"

						web.vm.network	"forwarded_port",	guest:	80,	host:	8080

		end

end

2.	 Create	a	puppet	directory	to	hold	the	Puppet	code.	While	not	strictly	necessary,
keeping	provisioning	code	in	a	separate	directory	can	make	managing	multiple
provisioners	simpler.	Within	this	directory,	create	a	manifests	directory	and	a
modules	directory.	With	all	directories	in	place,	the	structure	(including	the
Vagrantfile)	should	look	like	this:

.

├──	Vagrantfile

└──	puppet

				├──	manifests

				└──	modules

3.	 Configure	the	Puppet	provisioner	in	the	Vagrantfile.	The	Puppet	provisioner	requires
parameters	to	be	set	that	define	paths	to	our	manifest	and	modules	directories	that
we	created	in	the	previous	step,	as	well	as	a	manifest	filename.	(In	this	case,
site.pp.)	We	will	create	this	file	in	the	next	section:

					web.vm.provision	"puppet"	do	|puppet|

							puppet.manifests_path	=	"puppet/manifests"

							puppet.manifest_file		=	"site.pp"

							puppet.module_path	=	"puppet/modules"

					end

Note
There	is	no	requirement	for	a	modules	directory	when	running	the	Puppet	provisioner
or	Puppet	in	general.	It	is	a	rare	case	where	a	project	does	not	use	modules,	so	we
have	included	a	modules	directory	and	module	path	directory.

With	the	Puppet	provisioner	configured,	we	can	start	writing	our	Puppet	code.

Configuring	Puppet
With	the	Vagrant	environment	in	place,	we	can	start	putting	together	the	Puppet
configuration.	In	this	example,	we’ll	use	a	bit	of	reusable	code	downloaded	from	the
Puppet	Forge	to	install	the	Apache	web	server.

1.	 Open	Puppet	Forge	(http://forge.puppetlabs.com)	in	a	web	browser.	The	Puppet
Forge	contains	a	large	number	of	reusable	modules	to	install	and	configure	many
types	of	software.

2.	 Search	for	an	apache	module	by	entering	the	term	apache	in	the	search	box.	The
search	results	will	give	you	a	large	number	of	modules	available	to	manage	the
Apache	web	server:

3.	 Select	the	puppetlabs/apache	module.	This	module	page	will	give	you	some
information	about	the	module	as	well	as	instructions	on	how	to	install	the	module	and
documentation	on	how	to	use	the	module	in	your	environment:

http://forge.puppetlabs.com

4.	 Install	the	puppetlabs/apache	module	into	the	modules	directory.	There	are	two
ways	you	can	do	this:

1.	 If	you	have	puppet	installed	on	your	host	machine	(not	in	the	Vagrant	box),
install	the	module	with	the	puppet	module	command	from	the	directory	that
contains	the	puppet	directory,	which	was	created	in	an	earlier	step:

puppet	module	install	--modulepath=puppet/modules	puppetlabs-apache

Note	that	the	puppet	module	tool	resolves	dependencies	and	downloads	them	as
well	as	the	specified	module	itself.	The	output	of	the	command	will	specify	the
dependencies	downloaded	to	support	the	apache	module:

└─┬	puppetlabs-apache	(v1.1.1)

		├──	puppetlabs-concat	(v1.1.0)

		└──	puppetlabs-stdlib	(v4.3.2)

2.	 Download	the	.tar.gz	file	from	the	Puppet	Forge	and	extract	it	into	the
modules	directory.	As	this	method	does	not	resolve	dependencies,	this	is
something	that	will	need	to	be	done	manually.	In	the	apache	module	itself,	there
is	a	file	named	metadata.json	(older	modules	might	use	a	Modulefile	instead).
In	this	file,	there	is	a	snippet	that	contains	the	module	dependencies:

		"dependencies":	[

				{

						"name":	"puppetlabs/stdlib",

						"version_requirement":	">=	2.4.0"

				},

				{

						"name":	"puppetlabs/concat",

						"version_requirement":	">=	1.0.0"

				}

]

These	modules	are	also	available	on	the	Puppet	Forge.	These	will	have	to	be
found,	downloaded,	and	extracted	similar	to	how	the	puppetlabs-apache
module	was	installed.

Note
There	is	also	a	tool	that	can	manage	Puppet	module	dependencies	called	librarian-
puppet	that	many	Puppet	developers	find	useful.	We	will	cover	the	use	of
librarian-puppet	in	Appendix	B,	A	Puppet	Development	Environment.

5.	 With	the	module	dependencies	installed,	we	need	to	create	a	manifest	file	that	will
govern	how	resources	and	modules	are	used.	In	the	Vagrant	provisioning	snippet
created	earlier,	a	manifest	file	was	specified:

						puppet.manifest_file		=	"site.pp"

We’ll	create	this	file	now	in	the	manifests	directory,	which	was	also	created	earlier.
The	code	of	this	file	(manifests/site.pp)	will	look	like	this:

node	web	{

		class{"apache":

				default_vhost	=>	false,

		}

		

		apache::vhost{"default-host":

				docroot	=>	"/var/www/html",

				docroot_owner	=>	'www-data',

				docroot_group	=>	'www-data',

				default_vhost	=>	true,

				logroot	=>	'/var/log/apache2',

				port	=>	80,

		}

}

This	rather	simple	manifest	file	does	three	things:	specifies	an	action	for	the	web	node
(our	Vagrant	machine	name),	calls	the	apache	class	to	install	the	Apache	web	server,
and	defines	an	apache::vhost	type	that	will	create	a	default	virtual	host	for	our	web
server.

Note
Note	that	the	defined	virtual	host	is	specific	to	the	apache2	package	present	in	the
Ubuntu	repositories.	Puppet	manifests	and	modules	can	be	written	to	allow	for
different	actions,	based	on	facts,	to	be	taken.	Consult	the	Puppet	documentation
(http://docs.puppetlabs.com)	to	learn	more	about	how	to	create	Puppet	modules.

6.	 With	the	manifest	file	in	place,	run	the	vagrant	up	command	in	our	working

http://docs.puppetlabs.com

directory	(the	one	with	the	Vagrantfile).	The	Vagrant	startup	will	output	the	results	of
the	Vagrant	startup	as	well	as	run	the	Puppet	agent,	once	Puppet	indicates	the	end	of
catalog	run:

==>	web:	Notice:	Finished	catalog	run	in	9.93	seconds

Opening	http://localhost:8080	in	a	web	browser	will	display	the	default	Ubuntu
start	page:

How	it	works…
The	recipe	presented	here	provisioned	a	Vagrant	machine	by	interacting	with	a	Puppet
agent	installed	on	the	Vagrant	machine	with	the	Puppet	provider.	Specifically,	we	defined
two	separate	folders	to	hold	our	Puppet	logic:

The	manifests	directory	that	holds	Puppet	manifests.	These	manifests	are	how	the
agent	(or	in	a	distributed	case,	the	Puppetmaster)	determines	how	the	catalog	will	be
compiled.	In	this	case,	note	that	our	Vagrant	machine	hostname	(web)	matches	the
definition	of	a	node:

node	web	{

…

}

By	default,	a	node	is	identified	by	the	hostname	that	is	defined	in	our	Vagrantfile:

					web.vm.hostname	=	"web"

The	manifest	file	can	also	use	regular	expressions	to	match	defined	hostnames	to
nodes.

The	Puppet	modules	directory	contains	Puppet	modules	and	packaged	reusable	code.
In	this	example,	we	used	modules	downloaded	from	the	Puppet	Forge	(although,	this
directory	could	also	hold	modules	developed	for	our	own	software	projects).	Puppet
determines	where	to	find	these	modules	by	the	definition	of	a	modulepath,	which	our
Vagrantfile	specifies	with	the	definition:

							puppet.module_path	=	"puppet/modules"

A	Puppet	modulepath	can	include	multiple	directories,	something	that	can	be	used	to
separate	modules	downloaded	from	the	Puppet	Forge	from	modules	being	developed
to	support	our	own	software	projects.

The	Puppet	agent	uses	the	node	definition	to	determine	the	resources	required	to	be
defined	by	the	manifest	files	and	modules.	The	agent	compiles	a	catalog	of	resources	to	be
applied,	then	applies	the	catalog,	creates	resources,	installs	packages,	and	so	on.

There’s	more…
Provisioning	a	Vagrant	machine	with	Puppet	can	take	a	number	of	different	forms.	In	this
case,	we’ve	relied	on	using	the	masterless	puppet	apply	command	to	compile	and
execute	generated	catalogs.	If	the	purpose	of	Vagrant	machines	is	not	to	develop	system
configurations,	but	rather	to	publish	them	to	a	larger	team,	it	might	be	advantageous	to
have	catalogs	generated	from	a	centralized	location.	Puppet	does	this	through	the
Puppetmaster	infrastructure.	A	Puppetmaster	infrastructure	will	hold	all	the	manifest	and
module	code	and	accept	requests	from	remote	nodes	to	compile	catalogs.	A	calling	Puppet
agent	can	execute	catalogs	created	by	Puppetmasters	and	report	back	on	the	results	and
success	or	failure	of	the	catalog	application.

To	use	a	Puppetmaster,	Vagrant	also	bundles	a	provisioner	called	the	puppet	server
provisioner.	If	our	web	manifests	and	modules	were	hosted	on	a	remote	Puppetmaster
(such	as	puppetmaster.mycompany.com),	the	provisioning	section	in	the	Vagrantfile	would
be:

				web.vm.provision	"puppet_server"	do	|puppet|

						puppet.puppet_server	=	"puppetmaster.mycompany.com"

				end

Rather	than	applying	local	manifests,	the	Puppet	agent	in	the	Vagrant	machine	will
attempt	to	retrieve	a	catalog	rather	than	compiling	one	locally.

See	also
There	are	many	great	resources	and	training	opportunities	to	learn	Puppet	and	the	various
components	of	the	Puppet	ecosphere.	Here	are	a	few	resources	to	get	you	started:

Puppet	Labs:	http://www.puppetlabs.com
Puppet	Labs	Documentation:	http://docs.puppetlabs.com
Puppet	Apply	Provisioner:
https://docs.vagrantup.com/v2/provisioning/puppet_apply.html
Puppet	Agent	Provisioner:
https://docs.vagrantup.com/v2/provisioning/puppet_agent.html

http://www.puppetlabs.com
http://docs.puppetlabs.com
https://docs.vagrantup.com/v2/provisioning/puppet_apply.html
https://docs.vagrantup.com/v2/provisioning/puppet_agent.html

Configuring	Vagrant	environments	with
Chef
Vagrant	environments	can	be	provisioned	using	the	Chef	(http://www.getchef.com/chef/)
configuration	management	tool.	Chef	is	a	configuration	management	tool	that	defines
system	resources	with	reusable	components	called	recipes.	The	Chef	client	interprets	these
recipes	into	resources	(such	as	packages,	files,	and	so	on)	to	be	configured.

Chef	recipes	can	also	be	applied	in	one	of	two	ways:

Applying	local	Chef	recipes	with	the	chef-solo	tool
Contacting	a	centralized	Chef	Server	to	obtain	recipes	to	be	applied	to	a	local	node
by	the	client	application

The	client-server	and	local	modes	of	Chef	operation	are	very	similar	to	the	architecture
deployed	by	Puppet	in	the	previous	recipe,	with	the	architectural	choices	of	solo	or	client-
server	operation	being	determined	by	project	requirements.

This	recipe	will	demonstrate	the	use	of	the	Vagrant	chef-solo	provisioner	to	apply	Chef
recipes	to	install	and	configure	a	basic	Apache	web	server.

http://www.getchef.com/chef/

Getting	ready
Using	the	chef-solo	provisioner	requires	that	the	Vagrant	machine	has	a	client	application
installed	prior	to	executing	the	provisioner.	The	client	can	be	installed	in	a	Vagrant	box
prior	to	use,	or	we	can	enable	Vagrant	itself	to	manage	the	installation	and	configuration
of	the	Chef	client.	The	Chef	project	publishes	an	installation	tool	for	the	client	called	the
Chef	Omnibus,	a	script	that	performs	all	installation	tasks	for	the	Chef	client.	The
Omnibus	installer	itself	is	a	simple	shell	script	that	can	be	executed	using	the	command:

curl	-L	https://www.getchef.com/chef/install.sh	|	sudo	bash

This	will	install	the	Chef	client	on	the	machine	where	the	command	is	executed.	To	ease
the	installation	process	in	a	Vagrant	environment,	there	is	a	Vagrant	extension	(a	Vagrant
plugin)	that	we	can	install	to	enable	some	additional	commands	in	our	Vagrantfiles.	This
plugin	is	called	the	vagrant-omnibus	plugin.	(The	See	also	section	has	links	to	the
GitHub	project	with	more	information.)

Install	the	Vagrant	plugin	on	your	host	machine	by	executing	a	Vagrant	command:

vagrant	plugin	install	vagrant-omnibus

This	will	download	the	plugin	code	and	install	it	locally	for	use	in	our	projects.

Additionally,	when	developing	Chef	code,	we	might	want	to	install	Chef	on	our	host
machine	as	well	as	the	Vagrant	guests.	This	allows	us	to	use	the	knife	tool	on	the	host
machine	to	download	reusable	code	and	dependencies.	Install	the	Chef	development	tools
on	your	workstation	by	following	the	instructions	for	your	platform	at
http://downloads.getchef.com/chef-dk.

If	the	tools	are	installed	correctly,	you	should	be	able	to	use	knife	from	the	command	line.
Executing	knife	--version	should	yield	the	following	output	(for	the	version	of	Chef	at
the	time	of	this	writing):

▶	knife	--version
Chef:	11.14.6

http://downloads.getchef.com/chef-dk

How	to	do	it…
In	this	example,	we’ll	do	things	a	bit	manually,	adding	cookbooks	locally	using	the	knife
tool.	This	will	demonstrate	the	functions	of	cookbooks	and	how	they	can	be	reused	for
basic	tasks	in	Chef	provisioning.

Setting	up	the	Vagrant	environment
First,	let’s	set	up	the	Vagrant	environment.	Our	Vagrant	environment	will	perform	three
tasks:	booting	a	machine,	bootstrapping	with	the	Chef	client,	and	executing	the	chef-solo
provisioner.

1.	 In	a	new	directory,	create	a	Vagrantfile.	To	start,	this	will	be	a	pretty	basic	Vagrantfile
using	chef/ubuntu-14.04	box:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

								web.vm.box	="chef/ubuntu-14.04"

								web.vm.network	"forwarded_port",	guest:80,	host:8080

		end		

end

This	Vagrantfile	defines	a	web	server	and	forwards	the	default	HTTP	port	(80)	to	our
localhost	port	8080.

2.	 Install	the	latest	version	of	the	Chef	client.	Using	the	vagrant-omnibus	plugin
installed	in	the	Getting	ready	section,	Omnibus	can	be	executed	with	a	new
web.omnibus.chef_version	property	in	the	web	machine	definition:

		config.vm.define	"web",	primary:	true	do	|web|

				web.omnibus.chef_version	=	:latest

				web.vm.box	="chef/ubuntu-14.04"

				web.vm.network	"forwarded_port",	guest:80,	host:8080

		end

This	will	prompt	the	installation	of	the	latest	version	of	the	Chef	client	on	the	web
machine.

3.	 Define	the	chef-solo	provisioner	along	with	a	single	cookbook	named	webserver	in
the	web	machine	definition:

		config.vm.define	"web",	primary:	true	do	|web|

				web.omnibus.chef_version	=	:latest

				web.vm.box	="chef/ubuntu-14.04"

				web.vm.network	"forwarded_port",	guest:80,	host:8080

				web.vm.provision	"chef_solo"	do	|chef|

						chef.add_recipe	"webserver"

				end

		end

This	will	instruct	the	provisioner	to	apply	the	cookbook	named	“webserver"	to	the
Vagrant	environment.	With	this	defined,	we	now	need	to	set	up	Chef	provisioning.

Setting	up	Chef	provisioning
Setting	up	the	Chef	provisioner	will	require	us	to	create	our	new	webserver	cookbook	and
the	dependencies	required	for	the	web	server.

1.	 Create	a	directory	in	the	working	directory	called	cookbooks.	By	default,	the	Vagrant
chef-solo	provisioner	searches	for	cookbooks	to	apply	from	this	directory.	The
directory	structure	should	look	like	this:

├──	Vagrantfile

├──	cookbooks/

2.	 In	the	cookbooks	directory,	create	a	new	cookbook	with	the	knife	utility:

knife	cookbook	create	webmaster	--cookbook-path	.

This	will	create	a	new	folder	named	webmaster	(this	is	where	we	will	write	our	Chef
code).

3.	 Find	the	apache2	cookbook	in	the	Chef	Supermarket.	To	install	an	Apache	web
server,	we’ll	want	to	find	an	appropriate	cookbook.	In	a	web	browser,	open	the
https://community.opscode.com/cookbooks	URL.	The	Supermarket	is	a	web
application	that	allows	you	to	browse	and	search	for	available	cookbooks.	Search	for
apache2.

https://community.opscode.com/cookbooks

4.	 Take	a	look	at	the	search	result	for	apache2.	The	search	result	will	link	to	a	detailed
page	with	information	and	instructions	on	how	to	use	the	apache2	module:

Note	the	two	sections	of	the	page	shown	in	the	preceding	screenshot:	the	first	tabbed
interface	with	sections	detailing	how	to	use	the	module	with	Berkshelf,	Librarian,
or	Knife,	and	a	second	tabbed	interface	with	a	README	and	defined
Dependencies.

5.	 Find	the	command	used	to	download	the	cookbook	using	knife.	This	appears	in	the
tab	called	Knife.	(Keep	the	browser	window	open	at	this	step.)

6.	 In	your	local	cookbooks	directory,	execute	the	knife	download	command:

knife	cookbook	site	download	apache2

This	will	download	a	file	that	ends	with	a	tar.gz	extension.

7.	 Extract	the	tar.gz	file	using	the	tar	command.	In	this	case:

tar	xzvf	apache2-2.0.0.tar.gz

This	will	extract	the	contents	of	the	file	into	a	directory	named	apache2.

8.	 In	the	web	browser,	find	the	tab	named	Dependencies	at	the	bottom	tab	panel:

This	is	a	list	of	the	other	cookbooks	we	will	need	to	download	in	order	to	support	the
apache2	cookbook.

9.	 Download	the	other	dependencies	with	the	knife	utility.	Do	this	by	executing	three
commands:

knife	cookbook	site	download	iptables

knife	cookbook	site	download	logrotate

knife	cookbook	site	download	pacman

This	will	download	three	tar.gz	files,	one	for	each	cookbook.

10.	 Extract	the	downloaded	files	with	the	tar	utility,	specifically:

tar	xzvf	iptables-0.14.0.tar.gz

tar	xzvf	logrotate-1.6.0.tar.gz

tar	xzvf	pacman-1.1.1.tar.gz

After	extracting	all	cookbooks,	we	will	have	four	directories:	apache2,	iptables,
logrotate,	and	pacman.

11.	 With	a	text	editor,	open	the	default	recipe	file	created	when	we	used	the	knife	utility
to	generate	the	webserver	cookbook.	After	the	cookbook	generation,	the	file	is	in	our
created	webserver	folder:	webserver/recipes/default.rb.	The	contents	of	this	file
are	boilerplate	code	generated	by	the	knife	utility:

#

#	Cookbook	Name::	webserver

#	Recipe::	default

#

#	Copyright	2014,	YOUR_COMPANY_NAME

#

#	All	rights	reserved	-	Do	Not	Redistribute

#

12.	 Add	some	code	to	include	our	apache2	module,	define	a	virtual	host,	and	instruct	the
apache2	service	to	start.	This	will	be	added	after	the	comment	blocks	in	default.rb:

include_recipe	"apache2"

web_app	"localhost"	do

		docroot	"/var/www/html"

		cookbook	'apache2'

end

service	"apache"	do	

		action	:start

end

Note
Note	that	the	Chef	code	here	looks	like	the	Ruby	code	that	defines	our	Vagrantfiles.
Chef	itself	uses	the	Ruby	language	and	a	Ruby	object	model	to	define	the
provisioning	actions.

13.	 Once	we	have	defined	the	use	of	the	apache2	cookbook,	we’ll	want	to	add	this
dependency	to	our	webserver/metadata.rb	file.	Add	our	dependency	at	the	end	of
the	file:

depends	"apache2"

14.	 With	all	files	saved,	return	to	the	directory	where	our	Vagrantfile	is	and	execute	the
vagrant	up	command.	The	Vagrant	command	should	return	text	relaying	the	status
of	the	provisioner	and	the	output	of	the	Chef	provisioning	run.

15.	 Once	the	provisioning	run	is	complete,	open	http://localhost:8080	in	a	web
browser.	This	should	display	the	default	Ubuntu	Apache2	holding	page:

We	have	now	completed	our	first	provisioning	run	with	the	chef-solo	provisioner.

How	it	works…
When	using	the	chef-solo	provisioner,	we’ve	seen	a	few	features	of	Vagrant.

Rather	than	a	fully	Chef-enabled	Vagrant	box,	we’ve	bootstrapped	a	new	instance
using	a	Vagrant	plugin.	A	Vagrant	plugin	is	a	way	to	extend	Vagrant	to	provide	more
functions,	namely:

	web.omnibus.chef_version	=	:latest

A	Vagrant	plugin	can	save	a	few	steps	in	environment	bootstrapping.	Even	if	you	are
planning	to	use	your	scripts	to	bootstrap	server	instances,	you	might	want	to	write
and	execute	bootstrap	scripts	using	the	shell	provisioner.

We	used	the	Chef	knife	tool	to	download	open	source	cookbooks	from	the	Chef
Supermarket.	Chef	comes	with	a	rich	set	of	tools	to	manage	virtual	environments;
we’ve	only	seen	a	small	bit	of	what	knife	can	do,	and	will	mention	briefly	a
cookbook	management	tool	called	Berkshelf	in	the	following	There’s	more…
section.
We	used	the	chef-solo	provisioner	to	provision	an	Apache	web	server	in	our	virtual
environment.

Chef	is	a	large	and	varied	project	with	many	tools	and	options	that	cannot	be	covered	here,
but	even	the	basic	provisioning	options	available	make	Chef	a	useful	tool	when
provisioning	Vagrant	environments.

There’s	more…
Chef	is	a	very	powerful	tool	for	managing	systems	with	many	features.	Vagrant
developers	may	wish	to	be	aware	of	two	important	techniques	for	combining	Chef	and
Vagrant.

Managing	environments	with	Berkshelf
When	using	Chef,	there	are	a	number	of	alternative	tools	to	set	up	and	use	Vagrant
environments.

A	prominent	example	is	the	Berkshelf	tool	(http://berkshelf.com)	that	is	included	in	the
Chef	Development	Kit,	which	we	installed	on	our	host	machine	in	the	Getting	ready
section.	When	creating	a	new	cookbook,	the	berks	init	function	to	generate	cookbook
stubs	automatically	includes	a	Vagrantfile	to	run	and	test	the	cookbook.	In	our	case,	as	we
created	a	new	cookbook	called	webserver,	we	could	start	a	new	project	by	simply
executing:

berks	init	webserver

A	new	Vagrantfile	is	created	that	performs	all	the	preceding	listed	steps—adds	the
Omnibus	installer:	an	appropriate	Vagrant	box,	and	executes	the	chef-solo	provisioner.
Berkshelf	also	manages	cookbook	dependencies,	making	individual	download	and
extraction	of	Chef	cookbooks	unnecessary.	When	starting	new	cookbooks	(or
development	environments),	using	Berkshelf	to	generate	the	entire	environment	might	be
your	preferred	option.

Provisioning	with	Chef	Server
Along	with	the	chef-solo	provisioner,	Chef	environments	can	also	be	managed	with	a
Chef	Server:	a	centralized	resource	to	store	and	manage	cookbooks.	A	machine	can
retrieve	provisioning	instructions	from	the	server	and	apply	them	using	the	chef-client
tool.	Vagrant	contains	a	separate	chef-client	provisioner	to	interact	with	Chef	Servers.
Interacting	with	the	server	requires	two	items	of	information:

A	valid	Chef	Server	URL
A	valid	PEM	key	to	authenticate	with	the	Chef	Server

With	both	these	items,	a	chef-client	provisioner	can	be	configured	as	follows:

Vagrant.configure("2")	do	|config|

		config.vm.provision	"chef_client"	do	|chef|

				chef.chef_server_url	=	"SERVER	URL"

				chef.validation_key_path	=	"<PATH	TO	KEY>/validkey.pem"

		end

end

In	this	case,	the	Chef	client	in	the	Vagrant	machine	(which	still	requires	the	vagrant-
omnibus	plugin)	can	contact	the	Chef	server	to	obtain	a	run	list	for	the	client.	There	are
also	other	options	to	configure	the	client	interaction	with	the	server	(see	the	Vagrant
documentation	for	the	provider	for	a	list	of	options	available	to	use	the	chef-client

http://berkshelf.com

provisioner):

https://docs.vagrantup.com/v2/provisioning/chef_client.html

https://docs.vagrantup.com/v2/provisioning/chef_client.html

See	also
The	Chef	provisioner:	http://www.getchef.com/chef/
The	Chef	Omnibus	installer:	https://docs.getchef.com/install_omnibus.html
Vagrant	Omnibus	plugin:	https://github.com/schisamo/vagrant-omnibus
Berkshelf:	http://berkshelf.com
Vagrant	documentation	–	Chef	Client	Provisioner:
https://docs.vagrantup.com/v2/provisioning/chef_client.ht

http://www.getchef.com/chef/
https://docs.getchef.com/install_omnibus.html
https://github.com/schisamo/vagrant-omnibus
http://berkshelf.com
https://docs.vagrantup.com/v2/provisioning/chef_client.ht

Provisioning	Vagrant	environments	with
Salt
Vagrant	machines	can	also	be	provisioned	using	Salt	(http://www.saltstack.com).	Salt	is	a
combination	of	configuration	management	and	system	orchestration	software.	Salt	relies
on	a	master/minion	architecture	to	enable	configuration	and	control	of	large	clusters	of
machines,	but	in	this	example,	we	will	use	masterless	salt	to	provision	a	basic	web	server
and	develop	our	own	salt	states	that	define	system	configurations.

http://www.saltstack.com

Getting	ready
Compared	to	other	configuration	management	provisioners,	getting	started	with	the
Vagrant	Salt	provisioner	is	rather	easy;	the	provisioner	itself	will	check	for	the	existence
of	the	salt-call	command.	If	the	command	does	not	exist	in	the	Vagrant	machine,	the
provisioner	will	bootstrap	the	environment	without	plugins	or	bootstrapping	scripts.

In	this	example,	we’ll	write	a	simple	state	to	provision	the	apache2	web	server	and	apply
the	state	using	masterless	Salt	to	apply	our	state.

How	to	do	it…
Provisioning	a	Vagrant	machine	with	Salt	follows	a	similar	approach	to	provisioning	with
Chef	or	Puppet	tools.	There	are	a	few	crucial	differences	in	setting	up	Salt	provisioning.

Configuring	the	Vagrant	environment
1.	 As	the	Salt	provisioner	does	not	require	bootstrapping	or	setup,	we	can	start	with	a

simple	Vagrantfile.	In	this	case,	we’ll	use	an	Ubuntu	14.04	machine	and	forward	the
HTTP	port	on	the	guest	machine	to	port	8080	on	the	host.	The	complete	Vagrantfile	is
as	follows:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:	80,	host:8080

		end

end

2.	 Create	a	folder	to	hold	our	Salt	configurations	and	state	files.	This	folder	will	be
named	salt,	and	will	contain	a	folder	named	roots	that	will	hold	our	state	files.	In
our	working	directory	(with	the	Vagrantfile),	our	working	tree	should	look	like	the
following	code:

├──	Vagrantfile

└──	salt

				└──	roots

3.	 Share	the	salt	directory	with	our	Vagrant	machine.	We	will	need	to	follow	a
convention	for	masterless	Salt	and	mount	our	local	salt/roots	directory	to	the	guest
machine’s	/srv/salt	directory.	Add	the	synced	folder	configuration	to	our	web
definition:

				web.vm.synced_folder	"salt/roots/",	"/srv/salt/"

4.	 Specify	the	Salt	provisioner.	We’ll	largely	use	default	runtime	here,	specifying	a
configuration	file	(we’ll	add	this	in	the	next	step)	and	specify	that	we	should	run
highstate:	the	provisioning	step	for	masterless	Salt:

				web.vm.provision	:salt	do	|salt|

						salt.minion_config	=	"salt/minion"

						salt.run_highstate	=	true

				end

This	will	trigger	the	Salt	provisioning	steps	once	we	configure	and	create	our	state
files.

Configuring	Salt	provisioning
1.	 Configure	the	Salt	Minion.	Minion	is	the	process	that	will	drive	provisioning	of	the

system	and	has	a	rather	large	set	of	configurations.	For	our	purposes,	the	minion
configuration	can	consist	of	two	lines	in	a	file	named	minion	in	the	salt/	directory.
The	file	containing	two	lines	is	as	follows:

master:	localhost

state_top:	top.sls

This	will	specify	that	the	file	will	run	locally	and	look	for	the	file	top.sls	to	drive
provisioning	in	a	default	directory.	(The	code	examples	included	for	this	chapter
include	a	complete	minion	configuration	file.)

2.	 Create	our	top.sls	file	in	the	salt/roots	directory	in	our	working	directory.	This
file	will	determine	the	application	of	other	states	applied	to	the	Vagrant	machine.
These	files	are	in	YAML	format,	where	spacing	is	important.	Here	is	the	complete
top.sls	file:

base:

		'*':

webserver

The	top.sls	file	here	specifies	that	all	machines	(in	this	case,	only	a	single	Vagrant
machine)	apply	the	webserver	state.

3.	 Create	the	web	server	state	by	creating	the	webserver.sls	file	in	the	same	directory
as	top.sls,	which	was	created	in	the	previous	step.	The	contents	of	webserver.sls
will	be:

apache2:															#	ID	declaration

		pkg:																#	state	declaration

				-	installed							#	function	declaration

This	will	declare	that	the	apache2	package	should	be	installed	in	our	environment.

4.	 With	our	state	files	now	complete,	start	the	environment	with	the	vagrant	up
command.	The	command	should	return	output	about	bootstrapping	Salt.	If	the	salt-
call	command	is	not	present,	then	output	information	about	the	installation	of	the
default	Apache	configuration.

5.	 Verify	the	environment	by	opening	the	http://localhost:8080	page	in	a	web
browser.	The	Ubuntu	Apache2	install	page	should	be	visible:

If	the	page	is	visible,	then	the	Vagrant	environment	has	been	successfully	provisioned	with
the	Salt	provisioner.

How	it	works…
What	we’ve	seen	in	this	recipe	is	an	example	of	using	the	Salt	Minion	to	provision	a
Vagrant	machine.	The	Salt	Minion	is	somewhat	similar	to	other	provisioning	agents,	but
the	configurations	can	be	somewhat	different	when	using	standalone	mode.	In	particular:

In	this	example,	we	relied	on	a	default	mount	for	the	root	directory	that	held	the	state
files,	these	(and	many	other)	configurations	can	be	overridden	in	the	minion
configurations.	The	source	code	that	accompanies	this	example	contains	a	generated
file	with	many	other	options	and	documentation	of	minion	configurations.
We	created	a	few	simple	example	state	files	that	are	executed	using	the	highstate
command.	Salt	configuration	consists	of	a	number	of	states,	each	with	a	different
purpose.	In	practice,	most	configuration	with	Salt	is	done	at	the	sls	level	with	the
highstate	command	executing	the	highest	state	in	the	Salt	stack,	which	is	typically
top.sls.

The	Salt	provisioner	also	has	many	options	to	either	bootstrap	a	Salt	master,	or	interact
with	a	master/minion	architecture.	The	Salt	Provisioner	documentation
(https://docs.vagrantup.com/v2/provisioning/salt.html)	is	a	good	place	to	get	started	with
more	advanced	Salt	configurations.

https://docs.vagrantup.com/v2/provisioning/salt.html

See	also
SaltStack:	http://saltstack.com
The	SaltStack	Walk-through:
http://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
The	Vagrant	Salt	Provisioner	documentation:
https://docs.vagrantup.com/v2/provisioning/salt.html

http://saltstack.com
http://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
https://docs.vagrantup.com/v2/provisioning/salt.html

Provisioning	Vagrant	environments	with
Ansible
Ansible	(http://www.ansible.com)	is	a	configuration	management	tool	that	takes	a
different	approach	to	system	management.	Rather	than	using	an	agent-driven	model	to
drive	provisioning,	Ansible	executes	commands	on	remote	nodes	using	SSH.	For	our
purposes,	setting	up	Ansible	provisioning	is	somewhat	simpler	as	there	is	not	an	agent	or
infrastructure	to	bootstrap,	as	there	were	in	the	previous	three	recipes.	Ansible	does,
however,	require	that	the	Ansible	software	be	installed	on	the	host	machine,	as
provisioning	operations	begin	and	are	performed	by	the	host	on	Vagrant	machines.

Note
As	Ansible	is	designed	to	execute	commands	using	SSH;	support	for	Windows	operating
systems	is	not	currently	available.	At	the	time	of	writing	this	book,	the	Ansible	team	has
announced	some	Windows	support	and	plans	to	expand	Ansible	support	for	PowerShell
infrastructure.	See	http://www.ansible.com/blog/windows-is-coming	for	further	details.
This	recipe	will	apply	only	to	Unix-based	operating	systems,	mainly	Linux	and	OS	X.

http://www.ansible.com
http://www.ansible.com/blog/windows-is-coming

Getting	ready
To	use	Ansible,	we	first	need	to	install	Ansible	on	the	host	machine;	there	are	no
requirements	to	install	software	on	the	guest	Vagrant	machines.	Ansible	is	widely
distributed	in	package	repositories	and	might	be	available	for	your	platform.	Consult	the
installation	documentation	(http://docs.ansible.com/intro_installation.html#installing-the-
control-machine)	for	the	instructions	for	your	operating	system.

If	you	wish	to	run	the	latest	versions,	Ansible	can	also	be	installed	using	the	python	pip
command:

sudo	pip	install	ansible

If	you	are	running	OS	X,	Ansible	is	also	available	from	the	Homebrew	repositories
(http://brew.sh)	and	can	be	installed	with	a	simple	command:

brew	install	ansible

There	are	also	options	to	install	from	source,	consult	the	Ansible	installation
documentation	for	information	on	how	to	build	and	deploy	Ansible	on	your	system.

This	recipe	will	demonstrate	the	use	of	the	Ansible	provisioner	to	execute	a	simple
playbook	or	set	of	Ansible	commands.

http://docs.ansible.com/intro_installation.html#installing-the-control-machine
http://brew.sh

How	to	do	it…
To	use	the	Vagrant	Ansible	provisioner,	we’ll	need	to	set	up	a	basic	Vagrantfile	as	well	as
the	Ansible	playbooks.

Setting	up	the	Vagrant	environment
1.	 For	this	environment,	we’ll	start	with	a	simple	Vagrantfile:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web",	primary:	true	do	|web|

				web.vm.box	="puppetlabs/ubuntu-14.04-32-nocm"

				web.vm.network	"forwarded_port",	guest:	80,	host:8080

		end	

end

This	Vagrantfile	will	start	a	base	Ubuntu	14.04	machine	and	forward	port	80	on	the
Vagrant	machine	to	port	8080	on	the	localhost.

2.	 Create	a	directory	to	hold	our	Ansible	playbooks.	For	this	example,	we’ll	name	the
directory	ansible	so	that	our	working	directory	consists	of	our	Vagrantfile	and	the
ansible	directory.

3.	 Configure	the	Ansible	provisioner	in	our	Vagrantfile	by	adding	the	provisioner	code
below	the	web.vm.network	definition.	The	provisioner	code	that	we’ll	add	specifies
our	playbooks	to	run.	It	also	specifies	that	Ansible	should	execute	with	the	sudo
command	in	the	virtual	machine:

								web.vm.provision	"ansible"	do	|ansible|

										ansible.playbook="ansible/playbook.yml"

										ansible.sudo	=	true

								end

Once	this	is	in	place,	we	can	proceed	to	write	our	Ansible	playbook.

Setting	up	Ansible	playbooks
1.	 Create	a	playbook	file	by	creating	the	playbook.yml	file	(a	YAML-formatted

document)	in	the	ansible	directory:

-	hosts:	all

		remote_user:	vagrant

		tasks:

		-	name:	Install	apache2	web	server

				apt:	name=apache2	state=present

This	playbook	will	instruct	Ansible	to	apply	this	to	all	hosts	with	the	vagrant	user	and
a	single	task	in	order	to	install	the	Apache	web	server.

2.	 With	this	playbook	in	place,	execute	the	vagrant	up	command	to	boot	and	provision
the	Vagrant	environment.	Vagrant	will	then	output	information	about	booting	the
machine	and	the	output	of	the	Ansible	provisioner.

3.	 Verify	that	the	command	is	completed	successfully	by	opening
http://localhost:8080	in	a	web	browser:

How	it	works…
As	we	noted	in	the	Getting	ready	section,	Ansible	operates	by	issuing	SSH	commands	to
run	from	our	host	machine	to	the	guest	(Vagrant)	machines.	Setting	up	SSH	in	most
situations	can	be	a	little	tricky,	as	there	are	often	a	few	steps	involved	in	setting	up	users
and	the	required	private/public	key	infrastructure.	Our	Vagrant	environment	can	use
Ansible	quite	simply	for	two	main	reasons:

When	setting	up	the	Ansible	playbook,	we	choose	to	execute	commands	as	the
Vagrant	user	(the	user	that	is	typically	present	in	publically	distributed	Vagrant
boxes).	If	you	are	using	a	custom	box,	you’ll	want	to	be	sure	that	your	user	is	added
to	the	playbook	files.
The	Vagrant	user	can	use	sudo	commands	without	the	need	to	type	a	password.
Again,	this	is	true	for	most	publically	distributed	Vagrant	boxes.

Ansible	interprets	the	playbook	documents	(written	in	YAML	format)	into	a	series	of	SSH
commands	that	are	used	to	provision	the	Vagrant	machine.

See	also
Ansible:	http://www.ansible.com/home
Installing	Ansible:	http://docs.ansible.com/intro_installation.html#installing-the-
control-machine

http://www.ansible.com/home
http://docs.ansible.com/intro_installation.html#installing-the-control-machine

Chapter	5.	Networked	Vagrant
Environments
In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	local	network
Defining	a	multimachine	environment
Specifying	the	order	of	machine	provisioners
Creating	clusters	of	Vagrant	machines

Introduction
Standalone	Vagrant	environments	can	meet	the	needs	of	a	variety	of	use	cases.	A	common
case	would	be	using	Vagrant	to	facilitate	web	and	application	development.	In	this	case,
forwarding	the	Vagrant	guest	web	server	port	(usually	port	80)	to	a	port	on	the	localhost
would	allow	applications	hosted	on	the	web	server	to	be	accessed	through	a	localhost
address.	(For	example,	opening	http://localhost:8080	in	a	browser.)

The	port	forwarding	model	might	not	work	well	for	a	few	use	cases.	For	example:

Situations	where	a	machine	must	be	addressed	using	a	real	hostname,	either	in	cases
where	a	web	application	requires	it	or	when	a	machine	is	using	SSL	certificates.
Modeling	deployment	environments	where	different	services	are	installed	on
dedicated	machines.	A	common	example	would	be	developing	a	web	application
where	a	web	application	is	installed	and	configured	on	a	machine	that	connects	to	a
database	running	on	a	separate	virtual	machine.
Modeling	clustered	environments	where	virtual	machines	might	register	themselves
for	discovery.	As	an	example,	Vagrant	can	be	a	useful	tool	to	model	and	develop
systems	with	Consul	(https://consul.io)	or	CoreOS	(http://coreos.com).
Vagrant	can	be	used	to	assign	IP	addresses	or	set	up	service	discovery	that	allows
virtual	machines	to	have	fixed	(or	discoverable)	IP	addresses	to	be	used	by	other
services.	This	chapter	contains	recipes	with	basic	Vagrant	networking	and	use	cases
where	a	network	of	virtual	machines	is	required.

Note
While	Vagrant	networking	makes	setting	up	networks	rather	simple,	keep	in	mind	that
virtual	machines	will	still	use	the	local	system’s	RAM	and	CPU.	The	number	of	virtual
machines	that	can	be	used	in	a	Vagrant	network	are	limited	by	the	resources	of	the	host
machine.	If	you	have	the	need	to	create	larger	networks	of	machines,	Vagrant	can	facilitate
the	use	of	cloud	providers	to	create	virtual	machines	using	the	compute	resources	of	cloud
services.	This	effectively	allows	you	to	rent	computing	space	for	a	development
environment.	These	use	cases	will	be	covered	in	the	next	chapter.

https://consul.io
http://coreos.com

Creating	a	local	network
Creating	a	local	network	is	the	process	of	assigning	an	IP	to	a	Vagrant	machine.

Getting	ready
Before	setting	up	a	network,	you	might	want	to	consider	the	type	of	network	you	wish	to
create.	Vagrant	essentially	offers	two	options:

A	local	network	that	limits	access	to	Virtual	Machines	(VMs)	running	on	the	host
computer.	The	hypervisor	software	typically	specifies	an	address	range.
A	bridged	network	that	will	obtain	an	IP	address	from	outside	the	local	range.	This
means	that	the	Vagrant	machine	can	be	accessed	as	any	other	machine	on	the	host
computer	network.	You	can,	for	example,	specify	bridged	networking	if	you	want
your	Vagrant	machine	to	be	a	shared	resource	among	many	different	people	in	your
office.	The	downside	is	that	the	Vagrant	machine	will	obtain	an	IP	that	cannot	be
controlled	by	the	Vagrant	environment	and	will	rely	on	the	larger	network
environment.	This	will	make	it	difficult	to	create	machine	networks	and	we	will	not
cover	bridged	networking	in	any	depth	here.

In	this	recipe,	we’ll	create	a	simple	Vagrant	machine	running	Ubuntu	14.04	LTS	and
assign	an	IP	to	the	machine.	We’ll	also	discuss	how	we	can	use	these	machines	on	our	host
environment.

Note
A	quick	note	regarding	static	IP	addresses

When	using	a	static	IP	address	on	a	local	machine,	we’ll	want	to	ensure	that	we	are	using
IP	ranges	reserved	for	private	networks	to	avoid	any	possible	collisions	with	our	outside
environment.	The	IP	ranges	for	private	networks	are	established	by	the	Internet
Engineering	Task	Force	and	are	reserved	for	use	by	private	networks.	The	three	ranges	are
defined	in	RFC1918	(http://tools.ietf.org/html/rfc1918)	as:

10.0.0.0-10.255.255.255	(10/8	prefix)
172.16.0.0-172.31.255.255	(172.16/12	prefix)
192.168.0.0-192.168.255.255	(192.168/16	prefix)

When	assigning	static	IPs	in	a	Vagrantfile,	choose	one	of	these	ranges	to	assign	IPs	in.
More	specifically,	you’ll	likely	want	to	assign	ranges	in	either	the	172	or	192	ranges,	many
corporate	(or	even	home)	networks	use	the	10	range	for	resources	located	within	the	wider
network	by	default.	Your	hypervisor	software	will	typically	alert	you	if	you	are	running
into	an	IP	address	conflict.

http://tools.ietf.org/html/rfc1918

How	to	do	it…
1.	 Start	with	a	simple	Vagrantfile.	In	this	case,	we’ll	start	with	a	basic	machine

definition:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

end

2.	 To	this	configuration,	assign	an	IP	to	the	Vagrant	machine	using	the
config.vm.network	parameter.	Add	this	parameter	after	the	box	definition:

		config.vm.network	"private_network",	ip:	"192.168.99.100"

This	will	assign	the	"192.168.99.100"	IP	to	the	Vagrant	machine.

3.	 Start	the	machine	with	the	vagrant	up	command.
4.	 Once	the	machine	starts,	verify	that	the	IP	address	has	been	set	by	using	vagrant	ssh

to	access	the	machine.	Once	at	a	command	prompt	for	the	Vagrant	machine,	verify
the	IP	ranges	of	the	machine	by	using	the	ifconfig	command.	This	will	display
information	about	the	machine’s	network	environment.	For	this	example,	the	inet
addr	sections	are	the	most	important.

Note	that	the	Vagrant	machine	has	two	separate	IPs	on	different	interfaces	defined
here	as	eth0	and	eth1.	The	machine	can	respond	to	either	of	the	IPs	(one	is	assigned
by	the	hypervisor,	while	the	other	is	defined	in	the	Vagrant	configuration).

Note
It	is	entirely	possible	that	there	is	only	one	(the	assigned)	IP	address	for	our	Vagrant
machine.	For	this	example,	the	hypervisor	added	our	IP	address	as	a	second	interface,
while	keeping	the	other	address	for	internal	consistency.

Using	a	static	IP	address	with	a	hosts	file
Now	that	we	have	a	machine	with	an	assigned	static	IP	address,	there	are	a	few	ways	that
can	be	used	to	access	the	machine.	In	many	cases,	with	static	IPs,	we	will	want	to	refer	to
the	machine	with	a	real	hostname	(that	is,	referring	to	this	as	web.local	rather	than
192.168.99.100).	Computers	are	usually	assigned	these	addresses	through	the	Domain
Name	System	(DNS)	where	you	register	an	address	and	hostname	with	a	DNS	entry,	but
for	local	development,	DNS	can	be	overridden	with	a	local	hosts	file.	On	Unix	(Linux	and
OS	X	included),	the	hosts	file	is	/etc/hosts.	Windows	machines	also	have	hosts	files
typically	in	the	\Windows\system32\drivers\etc\hosts	file,	although	this	has	been
different	for	some	versions;	consult	your	system	documentation	for	the	proper	path	to	the

hosts	file.

Note
Warning!

You	will	require	administrator	privileges	on	your	machine	to	modify	your	/etc/hosts
file.	Modifying	this	file	can	have	some	adverse	effects	on	your	system	and	even	leave	your
computer	open	to	attack,	should	an	override	be	added	to	the	hosts	file.	If	you	modify	this
file,	make	sure	that	the	localhost	entry	is	left	untouched	(with	IP	address	127.0.0.1).

You	know	about	every	entry	added	to	this	file	(some	system	attacks	attempt	to	add	entries
to	the	file	in	order	to	override	DNS	entries	to	sensitive	sites	in	an	attempt	to	trick	a	user
into	handing	over	sensitive	data).	By	default,	the	only	definition	in	the	file	is	localhost,
make	sure	that	the	only	items	in	here	are	entries	that	are	added	by	you	or	with	your
explicit	permission.

To	use	our	Vagrant	machine	as	a	real	IP	address	(say,	for	instance,	web.local),	we	can	add
a	new	entry	with	the	IP	address	assigned	in	the	Vagrantfile.	A	complete	/etc/hosts	file
with	only	the	addition	of	web.local	assigned	to	our	static	IP	of	192.168.99.100	would
look	like	this:

The	Vagrant	machine	can	then	be	accessed	using	the	web.local	name	address.	(For
example,	opening	a	default	web	server	on	the	Vagrant	machine	would	be
http://web.local	rather	than	a	forwarded	port	address	of	something	like
http://localhost:8080.)

How	it	works…
In	this	recipe,	we	assigned	a	static	IP	address	to	a	Vagrant	address	and	assigned	a	URL	to
this	IP.	Assigning	a	static	IP	address	requires	a	Vagrantfile	parameter	with	an	unused	IP
address	on	a	local	network.	(Be	sure	to	use	addresses	in	the	local	range	as	specified	in	the
Getting	ready	section	of	this	recipe.)

Vagrant	itself	will	use	an	internal	network	defined	by	the	hypervisor	software.	IP	routing
is	managed	by	a	virtualized	infrastructure	embedded	in	the	hypervisor.	You	might	have
noticed	this	when	Vagrant	outputs	messages	about	vmnet	(if	using	VMware	–	other
messages	for	different	hypervisors)	during	the	bootup	cycle.

One	issue	that	you	might	encounter	when	starting	or	stopping	many	Vagrant	hosts	(or
virtual	machines	in	general)	is	that	an	occasional	error	can	be	thrown	when	the	virtual
networking	infrastructure	runs	into	collisions	assigning	IPs.	In	these	cases,	it	might	be
okay	to	restart	the	affected	virtual	machine,	but	in	many	cases,	a	clean	reboot	of	the	host
system	might	be	required	to	reset	the	hypervisor	network.

There’s	more…
There	are	a	few	different	ways	that	we	could	manage	static	IPs	and	real	URLs	without
manually	editing	the	/etc/hosts	file,	with	some	simple	methods	using	Vagrant	plugins.
There	are	many	plugins	to	choose	from	and	we	will	not	be	able	to	cover	all	the	options.
See	https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins	for	an	up-to-date
list	of	available	plugins.	Plugins	dealing	with	assigning	real	addresses	fall	into	two
categories:

Using	/etc/hosts	files:	There	are	a	number	of	plugins	available	to	manage	host
machine’s	/etc/host	files.	One	of	the	most	commonly	used	plugins	is	the	vagrant-
hosts	plugin	that	can	be	installed	with	the	command:

vagrant	plugin	install	vagrant-hosts

The	vagrant-hosts	plugin	will	supply	another	option,	available	in	the	Vagrantfile,
that	allows	assigned	IPs	to	be	added	to	the	host	machine’s	/etc/hosts	files	with	an
additional	attribute	added	along	with	an	IP	assignment:

				web.vm.provision	:hosts

When	starting	a	Vagrant	machine	with	a	plugin	that	edits	the	/etc/hosts	file,
Vagrant	will	prompt	for	a	password;	editing	the	hosts	file	will	always	require
administrator	privileges.	Using	plugins	to	manage	this	file	might	be	simpler	for
frequent	use,	but	be	sure	that	all	users	of	the	created	Vagrantfile	have	the	plugin
installed.

Using	/etc/resolver	for	local	DNS:	There	are	also	Vagrant	plugins	that	create	local
DNS	servers	and	modify	the	resolver	files	on	the	guest	and	host	operating	systems.
Some	of	them	(such	as	landrush)	are	quite	fully	featured	and	can	cover	many
complex	scenarios	for	local	development.	Again,	these	plugins	might	require
administrator	privileges	as	DNS	configuration	can	also	have	some	adverse	effects.
You	might	wish	to	consider	the	type	of	network	that	you	are	establishing	(whether	or
not	it	is	a	host	only	DNS	setting	or	a	setting	shared	between	guests	and	hosts)	and	the
operating	systems	supported	by	the	plugins	before	choosing	an	appropriate	one.

https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

See	also
IETF	RFC	1918:	Address	Allocation	for	Private	Internets
(http://tools.ietf.org/html/rfc1918)
Wikipedia	hosts	(file)	entry	is	a	nice	summary	of	how	you	can	override	DNS	settings
on	your	local	machine:	http://en.wikipedia.org/wiki/Hosts_(file)
Currently	available	(and	listed)	Vagrant	plugins	are	at
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

http://tools.ietf.org/html/rfc1918
http://en.wikipedia.org/wiki/Hosts_(file)
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

Defining	a	multimachine	environment
The	primary	reason	we	wish	to	create	networks	of	Vagrant	machines	is	often	because	we
wish	to	model	an	environment	of	more	than	one	machine.	A	common	example	might	be
the	desire	to	model	a	web	application	with	dedicated	web	server	machines	and	database
machines,	or	even	an	environment	that	creates	a	cluster	of	identical	virtual	machines.

In	this	recipe,	we	will	create	a	simple	multimachine	environment	as	well	as	look	at
techniques	to	create	clusters	of	Vagrant	machines.

Getting	ready
Before	we	start	with	creating	an	environment	of	many	machines,	let’s	review	the
technique	of	defining	machine	names.	When	creating	a	multimachine	environment,	we’ll
want	to	ensure	that	each	machine	has	a	unique	name.	A	unique	name	can	be	assigned	by
defining	a	new	Vagrant	machine:

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"definedmachine"	do	|	definedmachine	|

				<<	Actions	>>

		end

end

The	config.vm.define	method	is	how	we	define	machines	and	specify	actions	that	will
be	performed	on	a	specific	host.

How	to	do	it…
In	this	example,	we	will	create	a	small	network	of	two	virtual	machines	that	defines	a
simple	two-tier	web	application	with	a	web	server	and	a	database	server.	These	two
servers	will	be	defined	in	a	single	Vagrantfile,	and	we	will	manage	our	networks	using
/etc/hosts	methods	rather	than	using	DNS.

1.	 Start	with	a	simple	Vagrantfile	without	a	machine	or	box	definition:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

end

2.	 In	the	|config|	section,	define	a	database	server	using	a	Vagrant	machine	definition.
We’ll	add	some	detail	about	this	machine,	namely,	the	box	that	it	will	use	to	boot	the
machine,	and	a	unique	hostname.	In	a	multimachine	environment,	we’ll	usually	want
to	define	a	machine	IP	(particularly	in	the	case	where	one	Vagrant	machine	(a	web
server)	will	need	to	connect	to	another	(a	database	server):

		config.vm.define	"database"	do	|db|

				db.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

				db.vm.hostname	=	"db01"

				db.vm.network	"private_network",	ip:	"192.168.55.100"

		end

3.	 Create	a	second	defined	machine	in	a	block	after	the	|db|	code	block.	This	will	be
the	web	machine:

		config.vm.define	"web"	do	|web|

				web.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

				web.vm.hostname	=	"web01"

				web.vm.network	"private_network",	ip:"192.168.55.101"

		end

4.	 Verify	that	both	these	machines	are	defined	using	the	vagrant	status	command.
This	command	will	provide	a	list	of	all	defined	Vagrant	machines	in	the	file:

The	vagrant	status	command	will	provide	a	list	of	defined	machines,	and	their
status,	as	well	as	the	provider	that	will	be	used.

5.	 To	complete	the	example,	we’ll	use	the	shell	provisioner	to	define	the	/etc/hosts
file	in	the	web	server.	This	allows	the	web	server	to	refer	to	the	database	server	with
the	db01	hostname.	The	complete	web	server	definition	will	include	this	provisioning
command.	(In	this	case,	we	will	overwrite	the	/etc/hosts	file,	which	will	allow	our
provisioning	to	be	idempotent,	although	we	will	need	to	take	care	to	define	the
localhost	entry):

		config.vm.define	"web"	do	|web|

				web.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

				web.vm.hostname	=	"web01"

				web.vm.network	"private_network",	ip:"192.168.55.101"

				web.vm.provision	"shell",

						inline:	"echo	'127.0.0.1	localhost	web01\n192.168.55.100	db01'	>	

/etc/hosts"

		end

6.	 Start	both	machines	by	executing	the	vagrant	up	command.	This	command	will
return	the	startup	commands	of	both	machines.	(In	the	case	of	using	local	hypervisors
such	as	VMware	Fusion,	the	machines	will	also	boot	in	the	order	that	is	specified	in
the	Vagrantfile.)

Note
There	might	be	cases	where	we	wish	to	start	a	single	machine	in	the	Vagrantfile.	This
can	be	accomplished	by	defining	the	machine	that	will	be	booted	or	provisioned.	For
example,	to	only	boot	the	database	server,	we	would	execute	the	vagrant	up
database	command.

7.	 Once	the	machines	have	booted,	the	status	can	be	verified	once	again	using	the
vagrant	status	command:

8.	 Access	the	web	machine	by	using	the	vagrant	ssh	command,	specifying	that	we
wish	to	connect	to	the	web	machine:

9.	 Verify	that	the	web	server	can	contact	the	database	with	the	db01	hostname:

With	this	network	in	place,	we	can	proceed	to	the	task	of	setting	up	our	web	application	by
using	Vagrant	provisioners	(such	as	shell	scripts,	Puppet,	Chef,	and	so	on)	to	install	and
configure	database	and	web	servers	with	the	appropriate	software	and	configurations	for
your	application.

How	it	works…
Setting	up	multimachine	environments	in	this	simple	context	works	by:

Defining	specific	hosts	and	hostnames:	In	the	example,	we	defined	a	specific	web
server	and	a	specific	database	server.
Defining	the	network	settings	required	to	make	our	environment	work:
Specifically,	we	gave	our	web	server	the	ability	to	locate	the	database	server	by
modifying	the	web	server’s	/etc/hosts	file.	This	allows	the	web	server	to	find	the
database	server,	but	it	will	not	allow	the	database	server	to	contact	the	web	server.

As	such,	this	environment	is	relatively	static,	but	will	not	require	additional	infrastructure
to	manage	network	and/or	DNS;	we	have	an	environment	where	a	web	(or	application
server)	can	connect	to	a	database	server	using	a	hostname	defined	in	an	/etc/hosts	file.
For	many	scenarios,	this	is	sufficient	to	allow	for	local	development.

Defining	different	machines	locally	will	also	allow	for	separation	of	concerns.	There
might	be	cases	where	a	developer	is	actively	doing	web	server	development	using	local
provisioners,	but	the	details	of	how	the	database	is	created	are	not	particularly	important.
In	this	case,	it	might	be	desirable	to	allow	the	web	server	to	use	local	provisioning	scripts,
allowing	the	database	server	to	be	provisioned	using	a	centralized	provisioning	tool	such
as	a	Puppet	master.	Using	separate	machines	allows	developers	to	model	entire	systems
while	working,	hopefully	mimicking	a	production	deployment	early	in	the	development
process.

Specifying	the	order	of	machine
provisioners
When	setting	up	multimachine	environments,	it	is	often	important	to	specify	how
machines	will	provision	and	the	order	in	which	they	will	provision.

Getting	ready
Before	we	start	with	an	example,	there	are	a	few	important	things	to	keep	in	mind	about
the	ordering	of	Vagrant	resources:

Ordering	and	dependencies	in	Vagrant	environments	are	often	dependent	on	the	type
of	resource	being	provisioned.	In	the	case	of	desktop	hypervisors,	a	Vagrant	boot
cycle	will	proceed	in	the	order	in	which	resources	are	defined	as	the	Vagrantfile	will
wait	for	the	process	to	exit.	In	the	case	of	provisioning	cloud	environments,	the	return
to	the	calling	Vagrant	process	will	be	nearly	immediate	(as	the	call	itself	is	to	an
asynchronous	RESTful	API),	so	the	boot	order	can	be	difficult	to	enforce	without
modifying	the	Vagrantfile	to	use	cloud	service	APIs	in	order	to	check	for	boot	health.
Vagrant	will	also	evaluate	code	blocks	from	the	outside	in	order	with	the	code	in	the
inner	blocks	either	overriding	(should	the	property	be	the	same)	or	in	an	outside	in
order,	which	is	especially	important	for	provisioners.

In	this	recipe,	we	will	demonstrate	overriding	and	ordering	in	a	simple	Vagrantfile.

How	to	do	it…
1.	 Start	with	a	simple	Vagrantfile.	In	this	case,	simply	a	Vagrantfile	with	a	default	box

name	(something	that	could	be	generated	with	a	vagrant	init	command):

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

end

2.	 Add	a	default	hostname	and	provisioner	to	the	Vagrantfile	below	the	box	definition:

		config.vm.hostname	=	"override_me"

		config.vm.provision	"shell",	inline:	"echo	'First	Command	to	

Execute'"

With	this	file,	a	vagrant	up	command	would	boot	with	a	hostname	of	override_me
and	text	from	the	first	provisioner	would	be	output	to	the	console.

3.	 Add	a	machine	definition	block	with	an	override	for	the	hostname	and	box	type.	In
this	case,	we	will	name	the	machine	second,	override	the	box	type	(to	a	box	with
Puppet	installed),	and	execute	a	second	provisioner.	Our	complete	Vagrantfile	looks
like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"second"	do	|second|

				second.vm.box						=	"puppetlabs/ubuntu-14.04-64-puppet"

				second.vm.hostname	=	"second"

				second.vm.provision	"shell",	inline:	"echo	'Second	Command	to	

Execute'"

		end

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

		config.vm.hostname	=	"first"

		config.vm.provision	"shell",	inline:	"echo	'First	Command	to	

Execute'"

end

4.	 Execute	this	Vagrantfile	with	the	vagrant	up	command.	The	output	will	show	us	the
results	of	our	hostname	and	the	order	of	provisioning:

Note	a	few	results	from	this	Vagrantfile:

Despite	an	initial	name	defined	outside	a	block,	the	booted	machine	(and	in	this	case,
there	is	only	one)	is	referred	to	by	the	second	hostname
The	second	host	booted	with	a	Vagrant	box	that	has	Puppet	installed
Two	separate	provisioners	executed	on	our	box	(one	defined	globally	and	one	defined
within	our	|second|	code	block)

The	ordering	of	execution	and	overriding	is	important	in	multimachine	environments,	as
we	can	define	provisioners	that	can	run	globally	on	all	machines	(such	as	an	apt-get
update	command	to	be	executed	prior	to	other	provisioning	on	a	network	of	Ubuntu
machines)	or	to	define	global	rules	with	a	few	exceptions,	such	as	the	type	of	Vagrant	box
that	will	be	available	in	the	network.

How	it	works…
Vagrant	defines	variables	and	executions	using	ID	fields	for	each	parameter.	Some
parameters	can	only	be	defined	once,	such	as	the	rule	that	each	Vagrant	machine	can	only
be	started	from	a	single	box,	which	causes	box	definitions	in	code	blocks	to	override
global	parameters.	In	this	case,	we	have	a	box	override	defined	in	our	Vagrantfile:

config.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

config.vm.define	"second"	do	|second|

		second.vm.box						=	"puppetlabs/ubuntu-14.04-64-puppet"

end

The	override	specifies	that	the	second	box	will	use	the	puppetlabs/ubuntu-14.04-64-
puppet	box	file.

Provisioners,	on	the	other	hand,	are	not	overwritten	as	they	are	executed	in	an	outside	in
order.	Provisioners	defined	in	a	code	block	are	executed	after	other	provisioners	outside
the	block	are	executed	in	a	top-down	manner.	In	this	case,	the	order	specified	in	the
Vagrantfile	caused	the	output	of	First	Command	to	Execute,	although	it	was	listed	below
the	code	block:

config.vm.define	"second"	do	|second|

		second.vm.provision	"shell",	inline:	"echo	'Second	Command	to	Execute'"

end

config.vm.provision	"shell",	inline:	"echo	'First	Command	to	Execute'"

By	default,	provisioners	are	assigned	different	IDs,	so	overriding	a	provisioner	requires
specification	of	an	ID	in	the	Vagrantfile.	Specifying	an	ID	parameter	will	cause
provisioners	of	identical	IDs	to	perform	an	override.	In	this	example,	we	can	modify	our
provisioners	to	include	the	shell_provisioner	ID	definition:

config.vm.define	"second"	do	|second|

		second.vm.provision	"shell",	inline:	"echo	'Second	Command	to	Execute'",	

id:"shell_provisioner"

end

config.vm.provision	"shell",	inline:	"echo	'First	Command	to	Execute'",	

id:"shell_provisioner"

With	identical	ID	tags,	executing	a	Vagrant	provision	operation	only	echoes	output	from
the	provisioner	in	the	|second|	code	block:

==>	second:	Second	Command	to	Execute

The	ordering	and	overriding	of	provisioners	and	variables	is	especially	important	in
multimachine	Vagrant	environments.	A	multimachine	Vagrantfile	can	specify	global
parameters	(such	as	boxes	or	common	provisioning	tasks)	that	allow	for	individual
machines	to	override	the	global	parameters.

Creating	clusters	of	Vagrant	machines
While	the	scenario	of	mimicking	defined	application	architectures	(for	example,	the	two-
tier	or	three-tier	web	application)	can	be	accomplished	using	simple	hosts	files	and	hosts
file	modifications,	creating	clusters	of	Vagrant	machines	will	require	a	bit	of	additional
complexity,	namely,	the	ability	for	machines	to	discover	one	another	using	either	DNS
servers	or	through	service	discovery.

In	this	example,	we	will	create	a	cluster	of	Vagrant	machines	that	can	communicate	with
DNS	connections	using	two	additional	tools:

Consul	(https://consul.io):	This	is	a	tool	that	allows	services	and	machines	to
discover	one	another	over	a	distributed	network.	In	our	case,	we	will	use	Consul	very
simply	and	set	up	a	single	Consul	server	that	will	serve	multiple	agents.	We	will,	for
this	example,	also	limit	our	use	of	Consul	to	node	discovery.	This	will	essentially
define	a	local	DNS	infrastructure.
Dnsmasq	(http://www.thekelleys.org.uk/dnsmasq/doc.html):	This	is	a	utility	that
allows	local	services	(such	as	Consul)	to	serve	DNS	requests	from	local	processes.	In
this	case,	Dnsmasq	allows	our	system	to	use	the	DNS	interface	of	a	local	Consul
agent	in	order	to	serve	DNS	requests.

https://consul.io
http://www.thekelleys.org.uk/dnsmasq/doc.html

Getting	ready
This	recipe	will	install	a	number	of	different	services	using	the	combination	of	shell
provisioners	and	Puppet.	We	will	highlight	some	of	the	important	aspects	of	the	approach
(the	full	source	code	is	available	in	examples	provided	in	the	book).

How	to	do	it…
1.	 Start	our	example	with	a	simple	Vagrantfile.	This	Vagrantfile	will	define	a	global	box

file	that	will	be	used	to	start	all	our	machines.	We’ll	choose	a	box	that	has	the	Puppet
provisioner	installed,	as	this	is	how	we	will	provision	the	Consul	server	and	agents:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		#	Define	a	global	box	file	to	be	used	by	all	machines.

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

end

2.	 Define	our	Consul	server.	In	this	case,	we’re	also	going	to	use	a	variable	to	define	a
static	network	IP	that	we	can	point	our	cluster	members	to	in	order	to	join	the	cluster.
On	the	server,	we	will	also	add	provisioners	that	will	execute	an	apt-update
command	(and	install	an	unzip	program)	prior	to	executing	the	puppet	run
command.	The	Puppet	scripts	will	install	and	initialize	the	Consul	server	(see	the
code	example	for	full	details):

VAGRANTFILE_API_VERSION	=	"2"

$consul_server_ip	=	"192.168.30.130"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		#	Define	a	global	box	file	to	be	used	by	all	machines.

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

		#	Create	and	provision	a	Consul	server	machine.

		config.vm.define	"consul"	do	|consul|

				consul.vm.hostname	=	"consul"

				consul.vm.network	"private_network",	ip:	$consul_server_ip

				consul.vm.provision	"shell",	inline:	"apt-get	update	&&	apt-get	

install	-y	unzip"

				consul.vm.provision	"puppet"	do	|puppet|

						puppet.manifests_path	=	"puppet/manifests"

						puppet.module_path				=	"puppet/modules"

						puppet.manifest_file		=	"site.pp"

				end

		end

3.	 Define	a	variable	that	allows	us	to	create	an	arbitrary	number	of	cluster	members	in
our	system.	Add	this	variable	before	the	definition	of	the	consul_server_ip	variable
in	the	previous	step.	These	variables	are	global	throughout	the	Vagrantfile	and	can	be
used	by	each	Vagrant	machine	defined.	In	fact,	we	will	use	the	consul_server_ip
variable	when	we	instruct	our	cluster	members	to	join	the	cluster	in	this	example:

#	Define	a	variable	-	the	number	of	web	nodes.

$cluster_nodes	=	3

$consul_server_ip	=	"192.168.30.130"

4.	 Define	the	Consul	server	and	provisioning	steps.	This	will	include	two	provisioning
steps:	a	shell	script	that	updates	the	apt-repositories	command	(this	is	a	step	that

is	only	necessary	on	Ubuntu	or	Debian	Linux	distributions)	and	installs	the	unzip
package.	The	second	runs	the	puppet	apply	provisioner	against	the	Vagrant
machine.	The	Puppet	scripts	will	install	and	start	the	Consul	server:

		config.vm.define	"consul"	do	|consul|

				consul.vm.hostname	=	"consul"

				consul.vm.network	"private_network",	ip:	$consul_server_ip

				consul.vm.provision	"shell",	inline:	"apt-get	update	&&	apt-get	

install	unzip"

				consul.vm.provision	"puppet"	do	|puppet|

						puppet.manifests_path	=	"puppet/manifests"

						puppet.module_path				=	"puppet/modules"

						puppet.manifest_file		=	"site.pp"

				end

		end

5.	 With	the	Consul	server	in	place,	we’ll	now	define	the	cluster	members.	Recall	that
we	defined	a	parameter	named	$cluster_nodes	(we’ll	use	this	to	create	a	number	of
Vagrant	machines).	We’ll	do	this	by	using	a	Ruby	iterator.	Create	a	new	code	block
that	contains	this	iterator:

(1..$cluster_nodes).each	do	|i|

		<<	Code	To	Define	Nodes>>

end

This	will	create	an	execution	loop	that	will	define	the	number	of	desired	machines.

6.	 In	the	loop,	define	a	virtual	machine	by	using	the	i	iterator	to	define	a	unique	name
to	the	cluster.	We	can	define	the	vm_name	constant	and	assign	this	constant	as	the
hostname	of	our	machine:

				config.vm.define	vm_name	=	"cluster%02d"	%	i	do	|cluster|

						cluster.vm.hostname	=	vm_name

				end

With	the	definition	of	the	cluster	machines	in	place,	the	Vagrantfile	can	be	verified	by
executing	the	vagrant	status	command.	This	command	should	return	a	list	of	all
the	defined	machines,	including	those	defined	in	our	looping	construct:

7.	 Now,	define	the	provisioning	steps	required	to	join	the	cluster	virtual	machines	to
the	Consul	cluster.	We’ll	do	this	in	three	steps	for	a	client:	the	update	for	our
Ubuntu/Debian	machines,	a	puppet	run	command	to	install	and	configure	the
clients,	and	finally	a	step	to	execute	a	join	command	using	the	defined	server	IP:

		(1..$cluster_nodes).each	do	|i|

				config.vm.define	vm_name	=	"cluster%02d"	%	i	do	|cluster|

						cluster.vm.hostname	=	vm_name

						cluster.vm.provision	"shell",	inline:	"apt-get	update	&&	apt-get	

install	-y	unzip"

						cluster.vm.provision	"puppet"	do	|puppet|

								puppet.manifests_path	=	"puppet/manifests"

								puppet.module_path				=	"puppet/modules"

								puppet.manifest_file		=	"site.pp"

						end

						cluster.vm.provision	"shell",	inline:	"consul	join	#

{$consul_server_ip}"

				end

		end

8.	 With	all	the	provisioners	(including	our	Puppet	modules)	in	place,	start	the
environment	with	the	vagrant	up	command.	This	command	should	note	that	four
machines	will	start:

Starting	these	separate	machines	could	take	a	while	to	boot,	but	after	a	few	minutes,
the	Vagrant	startup	should	complete.

9.	 Access	the	first	cluster	machine	with	the	vagrant	ssh	cluster01	command.
10.	 Verify	that	a	Consul	cluster	is	active	by	executing	the	consul	members	command.

This	should	return	the	list	of	three	servers:

11.	 The	individual	cluster	members	can	also	be	pinged	using	the	Consul	DNS	interface.
From	the	cluster01	machine,	the	cluster02	machine	can	be	pinged	with	the
cluster02.node.vagrant.consul	hostname:

12.	 Verify	that	other	nodes	can	be	pinged	by	using	the
<hostname>.node.vagrant.consul	pattern.	In	this	case,	we	should	be	able	to	ping
consul.node.vagrant.consul	and	cluster02.node.vagrant.consul	with	them
responding	as	a	normal	host.	In	this	case,	however,	rather	than	using	a	centralized
DNS	server,	the	hosts	in	the	consul	domain	are	identified	by	the	DNS	interface	of	a
local	Consul	agent.

With	the	machines	running	and	responding	to	DNS,	the	machines	consist	of	an	effective
cluster.	We	can	expand	our	provisioning	to	install	software	that	we	wish	to	run	on
clustered	machines	(such	as	load-balanced	web	servers	or	shared	database	instances).

How	it	works…
In	this	example,	the	cluster	is	effectively	bound	together	with	Consul.	In	our	simple
environment	(only	a	handful	of	machines),	we	created	a	dedicated	Consul	server	and
connected	agents	through	this	server	IP.	It	should	be	noted	that	a	larger	Consul
deployment	would	use	a	number	of	servers	possibly	spread	across	geographic	distributions
and	data	centers.	Consul	is	designed	to	allow	for	service	discovery	and	failover	for	large
clusters.

In	our	recipe,	we	are	using	Consul	to	provide	flexible	DNS	services	to	a	number	of	cluster
members.	There	is	no	requirement	(other	than	host	system	resources)	on	the	number	of
servers	that	can	join	the	cluster.	In	each	case,	the	DNS	entry	follows	the	pattern:

<hostname>.node.vagrant.consul

The	hostname	can	also	be	discovered	without	prior	knowledge	for	the	rest	of	the	cluster	by
using	the	cluster	members	command	to	retrieve	a	list	of	hostnames	that	are	present	in	the
cluster.	The	reason	for	the	longer	DNS	name	is	that	the	DNS	interface	to	Consul	will
define	machines	by	hostname	(defined	by	the	machine),	the	type	of	service	being	accessed
(in	this	case,	a	node),	the	definition	of	a	data	center	(vagrant),	and	the	standard	top-level
domain	defined	by	the	Consul	interface	of	consul.	The	datacenter	parameter	is	defined
in	Consul	configurations	present	on	the	agent	and	server.	We	simplify	the	deployment	by
specifying	a	single	data	center	(or	cluster	of	machines)	named	vagrant.

The	Consul	environment	is	defined	by	using	the	Puppet	scripts	executed	by	the	puppet
apply	provisioner.	The	Puppet	scripts	are	shared	by	all	environments	with	each
environment	being	given	a	catalog	by	definitions	in	the	site.pp	file.	The	site.pp	file
defines	two	types	of	hosts:	servers	and	cluster	members:

node	/^consul/{

		class{"consul::server":	}

}

node	/^cluster/{

		include	consul

}

The	Consul	module	referenced	in	this	recipe	does	four	basic	things:

Installs	the	Consul	software	from	a	released	ZIP	package
Configures	Consul	to	run	as	a	service
Configures	Consul	to	run	in	server	or	agent	mode	through	configuration	files
Installs	and	configures	Dnsmasq	to	forward	DNS	requests	for	the	consul	domain	to
the	Consul	agent

With	a	simple	Consul	server/agent	configuration,	we	can	create	clusters	of	Vagrant
machines	without	configuring	DNS	servers	or	relying	on	machine-specific	configurations.
We	can	also	use	this	infrastructure	to	expand	our	Vagrant	environment	to	different
hypervisor	or	cloud	computing	environments.

There’s	more…
There	are	many	different	ways	we	could	implement	similar	solutions,	Consul	is	only	one
of	the	choices.	This	list	is	not	an	exhaustive	list	of	possibilities,	but	there	are	some	more
popular	methods	to	manage	clusters	of	machines,	including	our	clustered	Vagrant
environment.

Configuring	DNS	with	plugins
There	are	a	number	of	Vagrant	plugins	that	create	lightweight	DNS	servers	to	serve
hostnames	and	IP	addresses	to	servers	configured	to	use	the	lightweight	DNS	server.	This
would	be	sufficient	for	simple	local	clusters,	although	plugins	might	not	be	accessible	in
all	deployment	environments.

Configuring	a	cluster	with	etcd
Another	solution	to	cluster	machines	is	provided	by	the	CoreOS	project
(http://coreos.com).	CoreOS	aims	to	create	massive	clusters	of	CoreOS	machines	that
operate	nearly	entirely	by	managing	Docker	container	deployments	with	etcd	acting	as	a
service	discovery	layer	for	the	containers	as	well	as	the	fleet	orchestration	tool.	The
CoreOS	project	hosts	a	project	demonstrating	this	type	of	clustering	with	CoreOS	at
https://github.com/coreos/coreos-vagrant.

Clustering	with	Apache	Mesos
Another	popular	method	for	clustering	and	cluster	management	is	Apache	Mesos.	The
Mesos	project	also	provides	a	Vagrant-based	project	to	learn	how	to	manage	servers	using
Mesos	at	https://mesosphere.com/docs/getting-started/.

http://coreos.com
https://github.com/coreos/coreos-vagrant
https://mesosphere.com/docs/getting-started/

See	also
Consul	(https://consul.io):	a	tool	for	service	discovery.	Consul	is	also	sponsored	by
HashiCorp,	the	same	company	that	supports	Vagrant	itself.
Dnsmasq	(http://www.thekelleys.org.uk/dnsmasq/doc.html):	a	network	utility	to
forward	and	serve	DNS	requests.
Running	CoreOS	on	Vagrant	(https://coreos.com/docs/running-
coreos/platforms/vagrant/):	a	project	provided	by	the	CoreOS	project	to	start	clusters
of	CoreOS	machines.
Apache	Mesos	(http://mesos.apache.org)	and	Mesosphere	(https://mesosphere.com).

https://consul.io
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://coreos.com/docs/running-coreos/platforms/vagrant/
http://mesos.apache.org
https://mesosphere.com

Chapter	6.	Vagrant	in	the	Cloud
In	this	chapter,	we	will	cover	the	following	topics:

Using	Vagrant	with	Amazon	Web	Services
Using	Vagrant	with	DigitalOcean
Sharing	local	machines	with	HashiCorp	Atlas
Sharing	web	applications	with	HashiCorp	Atlas

Introduction
While	developing	applications	with	local	Vagrant	machines	is	a	very	handy	tool	for
development,	there	are	a	few	cases	where	our	local	environments	can	be	somewhat
limited.	Cloud-based	services	can	be	utilized	with	Vagrant	to	create	more	powerful
development	environments	or	perhaps	even	simply	share	resources	with	other	developers.

This	chapter	contains	recipes	that	address	two	primary	use	cases:

The	case	where	our	development	environments	of	one	(or	multiple)	machines	require
more	computational	resources	that	are	available	on	a	development	workstation
The	case	where	we	wish	to	share	our	environments	with	other	developers	or	end
users

These	cases	can	be	met	by	using	cloud	services	(such	as	Amazon	Web	Services	or
DigitalOcean)	for	greater	computational	power	and	a	publically	accessible	deployment.
Simple	cases	of	sharing	and	demonstrating	resources	can	also	be	accomplished	fairly
simply	by	using	another	HashiCorp	service:	Atlas	(http://atlas.hashicorp.com).

This	chapter	will	cover	how	to	create	and	launch	Vagrant	machines	with	two	fairly	large
cloud	service	providers.	One	is	Amazon	Web	Services	that	provides	a	full	feature	set	of
private	clouds	and	security	rules	and	the	second	is	DigitalOcean	that	provides	simpler	and
cheaper	computational	instances	without	other	infrastructure	offerings.	There	are	also
many	other	cloud	providers,	such	as	Rackspace	(https://github.com/mitchellh/vagrant-
rackspace),	the	Google	Compute	Engine	(https://github.com/mitchellh/vagrant-google)
and,	even	a	provider	created	by	Microsoft	for	use	with	Microsoft	Azure
(https://github.com/MSOpenTech/vagrant-azure).	It	seems	that	getting	started	with
Amazon	Web	Services	and	Digital	Ocean	will	provide	a	jumping-off	point	to	understand
how	Vagrant	could	also	be	used	with	these	other	cloud	providers.

Note
Nearly	all	cloud	providers	will	require	some	type	of	billing	information	in	order	to	charge
for	computational	resources.	Take	care	in	making	sure	that	instances	you	launch	with
Vagrant	are	also	destroyed	after	use.	It	might	even	be	useful	to	verify	that	in	your	cloud
provider’s	console	the	instances	you	have	created	have	been	destroyed.	Leaving	instances
running	can	often	lead	to	a	rather	surprising	month-end	bill.

http://atlas.hashicorp.com
https://github.com/mitchellh/vagrant-rackspace
https://github.com/mitchellh/vagrant-google
https://github.com/MSOpenTech/vagrant-azure

Using	Vagrant	with	Amazon	Web	Services
One	of	the	more	popular	cloud	platforms	in	recent	years	has	been	Amazon	Web	Services
(http://aws.amazon.com),	an	Infrastructure	as	a	Service	(Iaas)	platform	that	has	several
categories	of	services,	ranging	from	simple	computational	instances	(Elastic	Compute
Cloud	or	EC2)	to	fully	managed	application	deployment	services	such	as	Amazon
Beanstalk.

Vagrant	can	be	used	with	Amazon	Web	Services	(AWS)	as	either	an	extension	of	a
desktop	computing	environment,	using	AWS	to	provide	more	computational	power	and
better	networking	than	you	might	have	available	in	a	desktop	environment,	or	as	a	way	to
develop	and	test	code	written	to	interact	with	other	Amazon	applications	or	data	services.

http://aws.amazon.com

Getting	ready
Before	we	can	spin	up	and	use	EC2	instances	with	Vagrant,	we’ll	need	to	set	up	an
account	with	Amazon	Web	Services.	While	setting	up	the	initial	account	is	beyond	the
scope	of	this	recipe,	we	can	note	a	few	practices	that	you	will	want	to	be	aware	of	before
starting	with	AWS:

Signing	up	for	an	AWS	account	is	relatively	straightforward	(Amazon	Web	Services
makes	this	process	as	simple	as	possible).	At	the	time	of	writing	this	book,	get	started
by	clicking	on	the	Get	Started	for	Free	button	on	the	AWS	homepage	at
http://aws.amazon.com.	This	setup	allows	you	to	create	an	account	and	associate	a
billing	method	with	your	new	account.
When	creating	resources	(which	you	can	do	outside	of	Vagrant),	note	that	AWS
provides	a	free	tier	for	beginners.	New	accounts	can	launch	and	run	certain	services
free	of	charge.	The	free	tier	is	typically	limited	to	smaller	resource	sizes	(such	as
t2.micro	EC2	instances,	and	single	Availability	Zone	database	instances,	and	so	on).
Amazon	also	offers	very	inexpensive	storage	for	files	using	the	Simple	Storage
Service	(S3)	that	can	be	used	to	store	and	serve	large	files	(such	as	Vagrant	boxes).
When	using	AWS,	it	is	always	a	good	idea	to	limit	users	to	a	‘least	privilege’	set	of
permissions.	What	this	means	is	that	only	allow	users	(including	machine	‘users’	for
automated	scripts	or	Vagrantfiles)	the	privileges	they	require	to	perform	their
required	tasks.	In	this	recipe,	we	will	create	a	user	that	will	be	able	to	create	and
manage	EC2	instances	(a	user	that	will	have	rather	broad	permissions	in	order	to
execute	instructions	in	general).	In	a	‘real’	scenario,	you	might	want	to	limit	these
permissions	further	to	restrict	the	user	to	specific	AWS	regions	or	other	conditions.
Consult	the	IAM	documentation	on	how	to	tailor	AWS	permissions	to	your	specific
uses.

Note
An	important	corollary	here	is	that	never	use	the	root	account	to	directly	manage
resources.	After	signing	up	for	an	Amazon	Web	Services	account,	use	this	single	user
(the	root	user)	to	create	new	IAM	users	to	perform	actions.	In	addition,	make	sure	to
set	up	multifactor	authentication	on	the	root	account	and	never	create	API	keys	for
the	root	user.	See	the	AWS	IAM	Best	Practices	document	for	information	on	how	to
safely	set	up	and	use	your	new	account	at
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html.

If	you	suspect	suspicious	activity	in	your	AWS	account,	contact	AWS	customer
support	immediately	as	they	can	help	you	sort	out	what	happened	and	can	help	settle
any	financial	issues	related	to	unauthorized	use.

Make	sure	that	any	unused	resources	(including	Vagrant	boxes)	are	not	left	running.
The	largest	costs	often	encountered	in	typical	AWS	usage	are	associated	with	running
EC2	instances.	If	your	instance	does	not	need	to	run	constantly,	feel	free	to	either
stop	(or	terminate)	the	instance	in	order	to	avoid	being	charged	for	the	use	of
computational	resources.	Consult	the	EC2	pricing	guide	for	an	overview	of	instance

http://aws.amazon.com
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html

types	and	their	associated	costs	at	http://aws.amazon.com/ec2/pricing/.
If	you	do	frequently	use	EC2	instances	(including	Vagrant	use),	you	can	consider
instance	reservations.	Reserving	an	instance	includes	an	up-front	fee,	but	can	yield
cost	savings	in	hourly	charges	later	on.

In	this	recipe,	we’ll	look	at	setting	up	an	AWS	account	to	launch	Vagrant	machines,	which
allows	us	to	control	a	cloud-based	environment	as	simply	as	a	desktop-based	one.

http://aws.amazon.com/ec2/pricing/

How	to	do	it…
Before	we	can	spin	up	Vagrant	instances	in	AWS,	we’ll	need	to	prepare	a	little
groundwork.	What	we’ll	do	in	preparation	is	as	follows:

1.	 We’ll	create	an	Amazon	Identity	and	Access	Management	(IAM)	account	that	will
be	used	to	create	our	Vagrant	boxes.	Creating	separate	accounts	is	also	a	good	idea,
as	the	credentials	that	will	be	needed	to	create	EC2	instances	could	be	used	to
potentially	create	instances	that	you	will	be	billed	for.	It	is	critically	important	that
the	credentials	you	use	to	create	instances	have	limited	access	and	should	never	be
credentials	that	can	access	your	root	account.

2.	 Set	up	a	Virtual	Private	Cloud	(VPC)	to	host	our	Vagrant	instances.	A	VPC	can	be
used	to	isolate	cloud	resources,	giving	us	the	ability	to	define	security	rules	around
the	resources	that	we	will	create.	It’s	a	good	idea	to	isolate	the	ability	to	access	the
EC2	instances	that	we	will	create	to	a	fixed	set	of	IP	addresses	(or	in	many	cases,	a
single	IP	address).

Creating	a	Vagrant	IAM	account
Creating	an	IAM	account	and	assigning	credentials	is	part	of	the	AWS	IAM	service,
available	under	the	Administration	&	Security	menu.	This	example	will	show	you	how
to	create	a	new	user	with	credentials	that	requires	either	the	Amazon	root	account	(the
account	created	when	you	signed	up	with	AWS)	or	another	IAM	user	with	administrative
privileges	to	the	account.

1.	 In	the	IAM	console,	choose	Users	from	the	navigation	menu:

2.	 The	users	page	will	have	an	option	to	create	new	users.	Select	this	option.

3.	 Create	a	new	user	with	the	username	vagrant-user.	There	will	be	an	option
(checked	by	default)	to	generate	an	access	key	for	each	user.	The	access	keys
generated	in	this	step	will	be	the	credentials	that	will	be	required	for	Vagrant	to	create
new	instances	(ensure	that	this	box	is	checked).	We	can	also	modify	the	access
credentials	of	this	user	later	on,	should	we	wish	to	create	or	revoke	these	credentials.

4.	 After	creating	the	users,	the	next	page	will	display	two	options	immediately	on	the
page	along	with	an	option	to	download	credentials	in	a	text	file	to	manage	the	newly
created	credentials.	Either	way,	this	will	be	the	last	time	that	the	new	credentials	will
be	available.	After	this	step,	credentials	will	need	to	be	revoked	and	recreated.	At	this
point,	our	new	user	does	not	have	permissions	to	perform	any	action.	We	will	need	to
grant	permissions	for	this	new	user	to	create	EC2	instances.	It’s	a	good	idea	at	this
stage	to	download	the	credentials	file	and	store	it	in	a	safe	location.

5.	 Now	that	the	user	has	been	created	and	we’ve	downloaded	the	user	credentials	(save
these	for	later),	we’ll	want	to	grant	permissions	to	our	new	user.	Return	to	the	Users
page	that	we	saw	in	step	2	(we	can	get	there	with	the	left-hand	navigation).	On	the
Users	page,	our	new	vagrant-user	will	be	present.	Click	on	the	user	to	bring	up	the
Details	page:

6.	 Clicking	on	the	user	brings	up	a	user	detail	page.	The	detail	page	will	have	some
general	detail	about	the	user	(an	ARN	identifier,	password	settings,	and	so	on).	Scroll
down	the	page	until	we	come	to	the	permissions	section,	and	in	particular	the	section

labeled	User	Policies.	Click	on	this	button	to	add	new	permissions:

7.	 For	this	example,	we	are	going	to	grant	our	vagrant-user	fairly	expansive
permissions	to	EC2	in	our	account.	The	Manage	User	Permissions	page	will	present
a	list	of	options.	In	our	example,	we	are	going	to	select	the	Amazon	EC2	Full
Access	policy	template:

Note
You	will	often	not	wish	to	grant	your	users	full	access	to	EC2.	Instead,	you’ll	want	to	limit
user	access	based	on	both	permission	sets	(creating,	assigning	IPs,	and	so	on)	and
geography	(choosing	a	region	that	you	will	launch	your	instances	into).	In	this	case,	full
access	is	granted	that	allows	you	(the	reader)	to	start	with	Vagrant/EC2	without
implementing	security	for	specific	AWS	regions.	You	might	be	in	the	situation	where	you
are	launching	instances	into	the	AWS	Singapore	region,	others	might	be	launching	into
AWS	Ireland,	and	so	on.	Be	aware	that	granting	full	access	to	users	increases	the	chance
that	computational	resources	could	be	created	(intentionally	or	unintentionally)	that	you
will	be	charged	for.	Make	sure	that	your	access	credentials	are	secure	and	that	you	review
the	number	of	EC2	instances	you	are	running	frequently.

With	an	account	set	up	with	credentials,	we’ll	want	to	do	one	last	thing	before	launching
EC2	instances	with	Vagrant:	securing	our	Vagrant	machines	from	the	outside	world	with	a
VPC.

Setting	up	a	VPC
Amazon	has	recommended	the	creation	of	Virtual	Private	Clouds	(VPCs)	for	all	EC2
instances	created	in	the	AWS	cloud,	including	the	Vagrant	machines	that	we	will	be
launching.	A	VPC	gives	us	the	ability	to	control	access	to	AWS	resources	from	both	the
open	Internet	and	other	AWS	resources	by	defining	subnets.	For	example,	a	VPC	could	be
set	up	to	service	a	large	number	of	developers	and	development	services	(or	even

production	resources)	with	subnets	restricting	access	from	certain	classes	of	Virtual
machines	(such	as	our	Vagrant	machines)	to	specific	resources	(such	as	an	Amazon	RDS
database	that	is	set	up	specifically	for	development	or	QA	access	while	isolating
production	databases	in	the	same	VPC).

We’ll	set	up	a	simple	VPC	that	allows	full	access	from	the	VPC	to	our	development
workstation.	There	are	many	resources	(including	the	Amazon	Web	Services
documentation)	to	help	set	up	VPCs	for	more	complex	use	cases.	If	you	use	AWS
resources	extensively,	you’ll	also	want	to	automate	the	creation	of	networks	and	resources
using	CloudFormation	templates.	In	this	example,	we’ll	create	our	VPC	using	the	web
console	in	our	account.

1.	 Access	the	VPC	settings	in	the	AWS	Management	Console.	You’ll	find	the	VPC	link
under	Networking:

2.	 We’ll	use	the	simplest	approach	to	create	our	VPC	with	the	VPC	wizard.	There
should	be	an	option	to	start	the	wizard	from	the	VPC	console:

3.	 The	VPC	that	we	are	going	to	create	is	the	simplest	type	(a	single	public	subnet
within	a	VPC).	We’ll	control	access	with	security	groups,	but	our	Vagrant	machines
will	require	direct	access	to	the	Internet	to	retrieve	software	packages	and
configurations.	This	configuration	of	having	machines	able	to	access	the	outside
Internet	without	NAT	network	setups	is	what	AWS	refers	to	as	a	public	subnet.	The
wizard	has	a	preconfigured	VPC	for	this	purpose:

4.	 The	final	step	in	the	wizard	will	prompt	you	to	assign	some	names	and	network
information	about	our	new	VPC.	In	this	case,	we’ll	name	our	VPC	vagrant-vpc	with
a	single	subnet	named	Vagrant	Subnet.	For	our	case,	the	default	network	settings
will	work.	These	would	likely	only	change	if	our	new	VPC	is	designed	to	connect	to
a	local	network	using	VPN	connections	between	the	VPC	and	a	hardware	(or
software)	router.

Once	the	Create	VPC	button	is	pressed,	a	dialog	box	appears	with	information	about
the	VPC	and	the	resources	that	it	requires.

Note
Amazon	has	not	been	charging	for	the	creation	of	VPCs	themselves.	The	only	billing
related	to	VPCs	are	EC2	instances	launched	into	the	VPC	and	VPN	connection
bandwidth	into	and	out	of	the	VPC.

5.	 Once	the	VPC	has	been	created,	we’ll	make	one	last	change	(we’ll	restrict	access	to
VPC	resources	to	our	current	IP	address).	There	are	two	ways	we	could	do	this:
through	access	control	lists	to	the	entire	network	or	through	security	group	rules.	It’s
often	simpler	to	set	up	and	modify	security	group	rules	in	our	simple	case.	To	do	this,
open	the	EC2	console,	you	can	get	to	this	from	the	main	console	or	the	dropdown
under	the	Services	menu:

6.	 In	the	EC2	console,	select	the	Security	Groups	option	from	the	left-hand	navigation:

7.	 The	Security	Groups	list	will	display	a	list	of	available	security	groups	in	the
account,	one	of	them	will	be	a	security	group	assigned	to	our	VPC.	There	should	be

only	one	security	group	for	this	example.	Select	the	security	group	by	checking	the
box	on	the	left-hand	side.	In	this	case,	we’ll	select	the	security	group	that	has	an
assigned	VPC	ID	for	the	VPC	we	created:

8.	 With	the	security	group	selected,	choose	the	Inbound	tab.	The	tab	will	show	a	list	of
security	groups:

9.	 Add	a	new	security	group	by	clicking	on	the	Edit	button	to	open	a	pop	up	with	a	list
of	security	rules.	Select	Add	Rule	and	create	a	rule	that	allows	for	all	traffic	from	the
IP	you	are	connecting	from.	Security	rules	can,	of	course,	be	more	complicated	and
allow	for	different	levels	of	access,	but	this	will	be	enough	for	us	to	launch	Vagrant
machines	into	a	VPC.

This	will	create	a	security	group	to	launch	Vagrant	resources.	Now,	we	need	only	one
additional	item:	a	security	key	to	access	our	AWS	boxes.

Creating	a	security	key	for	Vagrant	instances
EC2	instances	are	accessed	by	the	use	of	a	private	key	that	is	created	specifically	to	access
the	instance.	We	will	create	(and	keep!)	a	private	key	for	our	Vagrant	instances.	Like	other
AWS	credentials,	this	key	can	only	be	generated	once—the	keys	cannot	be	recovered.

1.	 Access	the	Key	Pairs	option	in	the	EC2	dashboard	under	the	NETWORK	&
SECURITY	menu:

2.	 The	key	pair	interface	will	have	a	button	to	create	a	new	key	pair	instance.	Select	the
Create	Key	Pair	button	and	give	our	new	key	pair	a	name	(in	this	case,
vagrantkey):

3.	 On	creating	the	key	pair,	a	file	should	download	from	AWS	that	contains	the	content
of	our	new	key	pair.	Save	this	to	a	secure	location	on	your	system.

With	the	VPC,	security	group	and	key	pair	created,	our	Amazon	account	is	ready	to	host
our	Vagrant	machines.

Installing	the	Vagrant-AWS	plugin
The	Vagrant	AWS	functionality	is	a	part	of	the	Vagrant	plugin.	To	install	the	plugin	and
prepare	Vagrant	to	use	AWS,	we	will	need	to	install	the	plugin	by	executing	the	following
command	from	the	command	prompt:

vagrant	plugin	install	vagrant-aws

We’ll	also	need	to	install	a	dummy	box	for	use	with	the	provider.	Install	the	dummy	box
with	the	command:

vagrant	box	add	dummy	https://github.com/mitchellh/vagrant-

aws/raw/master/dummy.box

(Up-to-date	documentation	on	the	plugin	is	available	at
https://github.com/mitchellh/vagrant-aws)

Gathering	required	information	for	the	provider
Finally,	we’ll	need	to	gather	a	bit	of	information	for	the	AWS	provider,	much	of	this	is
created	earlier	in	this	section:

The	AWS	access	key	or	secret	key	for	your	account.
The	name	of	the	EC2	key	pair	(in	this	case	vagrantkey).
The	name	of	the	region	you	wish	to	launch	instances	into.	This	will	be	the	same
region	where	you	created	your	VPC.
The	AMI	ID	of	the	instance	type	you	wish	to	launch.	This	can	be	found	by	choosing
Launch	Instance	in	the	EC2	dashboard.	You	won’t	complete	the	launch	process
here,	but	you	can	find	the	AMI	ID	of	the	instance	type	that	you	would	like	to	create.
In	this	case,	we’ll	grab	the	AMI	ID	of	the	latest	version	of	Ubuntu	supported	by
AWS:

The	instance	type	that	you	would	like	to	launch.	You	can	find	a	list	of	instance	types
and	pricing	at	http://aws.amazon.com/ec2/instance-types/.	In	this	case,	we’ll	use	the
free	tier	available	type	of	t2.micro.	Be	sure	to	match	your	instance	size	for	the
workload	you	are	planning	to	use	(make	sure	that	you	understand	the	pricing	or	cost
ramifications	of	launching	new	instances).	Amazon’s	pricing	model	will	incur	an
hourly	cost	for	each	instance	launched.
The	Subnet	ID	of	our	public	subnet.
The	security	group	ID	of	our	public	security	group	(added	in	the	preceding	section).

https://github.com/mitchellh/vagrant-aws
http://aws.amazon.com/ec2/instance-types/

With	these	seven	points,	we	can	begin	to	set	up	our	Vagrant	AWS	provider.

Setting	up	the	Vagrant	AWS	environment
With	the	rather	considerable	setup	to	using	AWS	securely,	we	can	start	launching	Vagrant
machines	into	our	new	subnet.

1.	 Let’s	start	this	project	by	creating	a	directory	structure	to	hold	a	few	files.	In	a
working	directory	(which	will	eventually	hold	our	Vagrantfile),	create	a	directory
named	aws.	In	this	example,	I’m	copying	the	security	key	generated	as	vagrantkey	in
the	Getting	ready	section	to	a	file	called	vagrantkey.pem.

2.	 In	the	aws	directory,	create	a	file	called	config.rb.	This	file	will	have	the
configuration	variables	we’ll	need	to	launch	instances.	It	will	also	likely	have
information	that	you	will	not	want	to	check	for	version	control.	The	content	of	the
file	will	look	like	this:

$aws_options	=	{}

$aws_options[:access_key]	=	"ACCESS_KEY"

$aws_options[:secret_key]	=	"SECRET_KEY	"

$aws_options[:ec2_keypair]	=	"vagrantkey"

$aws_options[:region]	=	"us-east-1"

$aws_options[:ami_id]	=	"ami-9eaa1cf6"

$aws_options[:instance_type]	=	"t2.micro"

$aws_options[:subnet_id]	=	"subnet-17a37860"

$aws_options[:security_group]	=	"sg-4a370b2f"

(These	values	will,	of	course,	be	different	for	different	VPC	environments.)

3.	 With	the	two	files	in	the	aws	directory,	place	a	Vagrantfile	in	the	main	working
directory.	For	this	example,	the	Vagrantfile	will	look	like	this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

CONFIG	=	"#{File.dirname(__FILE__)}/aws/config.rb"

if	File.exist?(CONFIG)

		require	CONFIG

end

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"web"	do	|web|

						web.vm.box															=	"dummy"

						web.vm.provider	"aws"	do	|aws,	override|

								override.ssh.username									=	"ubuntu"

								override.ssh.private_key_path	=	"#

{File.dirname(__FILE__)}/aws/vagrantkey.pem"

								aws.access_key_id					=	$aws_options[:access_key]

								aws.secret_access_key	=	$aws_options[:secret_key]

								aws.keypair_name						=	$aws_options[:ec2_keypair]

								aws.region												=	$aws_options[:region]

								aws.ami															=	$aws_options[:ami_id]

								aws.instance_type					=	$aws_options[:instance_type]

								aws.subnet_id									=	$aws_options[:subnet_id]

								aws.associate_public_ip		=	"true"

								aws.security_groups		=	$aws_options[:security_group]

								aws.tags	=	{

												'Name'	=>	'Vagrant	Web	Server',

								}

				end

		end

end

4.	 With	this	Vagrantfile	in	place	(and	the	configuration	variables	in	our	config.rb	file),
start	the	environment	with	the	command:

vagrant	up	web	–provider=aws

This	should	start	the	Vagrant	environment.	If	everything	starts	correctly,	the	startup
should	exit	with	a	final	message	about	syncing	the	vagrant	folder	from	the	local
system	to	the	new	AWS	machine.

5.	 Verify	that	you	can	access	this	AWS	instance	with	both	vagrant	ssh	web	to	access
the	instance	with	SSH	and	by	verifying	that	an	instance	is	running	in	the	AWS	EC2
console:

6.	 When	you’re	finished	with	the	instance,	be	sure	to	take	it	down	with	the	vagrant
destroy	command	to	avoid	incurring	charges	to	run	an	on-demand	instance	in	EC2.
After	destroying	the	instance	with	Vagrant,	it	should	appear	in	the	AWS	console	as
terminated.	Halting	will	also	stop	the	instance	for	a	later	restart	without	incurring	the
full	cost	of	running	EC2	instances.

How	it	works…
As	we’ve	seen	in	the	previous	two	sections,	there	can	be	quite	a	bit	of	setup	work	with
AWS	to	use	Vagrant	machines,	but	this	setup	allows	us	to	launch	virtual	instances
securely.	Our	Vagrantfile	does	contain	a	few	new	items	that	require	a	bit	of	explanation.

Saving	configuration	data	outside	the	Vagrantfile
One	of	the	primary	additions	to	our	Vagrantfile	is	the	inclusion	of	an	external	file:	a
configuration	file	that	holds	specific	account	details.	Storing	these	type	of	details	in	an
external	file	allows	you	to	keep	these	details	confidential,	while	at	the	same	time	it	allows
you	to	share	your	Vagrantfile.	Including	this	file	is	done	with	a	Ruby	style	include
statement:

CONFIG	=	"#{File.dirname(__FILE__)}/aws/config.rb"

if	File.exist?(CONFIG)

		require	CONFIG

end

Including	this	file	allows	the	main	Vagrant	file	to	access	the	details	in	the	$aws_config
object	that	is	defined	in	the	config.rb	file.

Overriding	Vagrantfile	defaults
In	the	Vagrantfile,	we	also	used	the	concept	of	overriding	Vagrant	defaults.	In	this
example,	we	wanted	to	create	an	AWS	machine	that	uses	the	defaults	for	the	EC2	machine
image	(AMI)	rather	than	Vagrant	defaults.	In	particular,	the	EC2	instance	would	not	have
the	default	user	(vagrant)	installed,	nor	would	it	have	the	private	key	that	is	used	for
published	Vagrant	boxes.	To	change	this	behavior,	an	override	was	specified,	overriding
both	the	default	username	(in	this	case,	ubuntu,	on	Red	Hat-based	EC2	types,	the	value
would	be	ec2-user)	along	with	the	private	key	created	in	the	AWS	console:

						web.vm.provider	"aws"	do	|aws,	override|

								override.ssh.username									=	"ubuntu"

								override.ssh.private_key_path	=	"#

{File.dirname(__FILE__)}/aws/vagrantkey.pem"

Specifying	AWS	details
The	final	item	in	the	Vagrantfile	is	the	specification	of	AWS	details.	The	information
related	to	account	details,	private	key	names,	and	so	on,	is	common	for	any	AWS
connection,	but	there	are	a	few	variables	that	we	specified	to	meet	a	particular	need:

We	require	that	our	Vagrant	box	receive	a	public	IP	address.	In	our	VPC,	the	public
address	is	what	allows	Vagrant	to	connect	to	the	machine	running	in	AWS.	If	we	wish
to	use	private	IP	addresses	(in	the	10.*	range),	we	need	to	establish	an	active	VPN
connection	to	our	VPC.
We	specified	an	AWS	tag	for	our	instance,	in	this	case,	simply	giving	our	instance	a
name.	AWS	provides	the	ability	to	tag	resources	for	later	use	and	reporting	(if	we
needed	to	separate	our	main	account	from	billing	chargebacks,	tags	could	identify
machine	owners	and	accounts).

The	one	item	here	that	we	did	not	do	to	our	instance	is	specify	a	private	IP.	Although,	we
cannot	access	the	machine	directly	with	a	private	IP,	machines	in	the	subnet	(such	as
multiple	Vagrant	machines)	can	access	each	other	with	private	10.*	addresses.

There’s	more…
Workflows	and	deployment	with	Amazon	Web	Services	is	a	vast	topic	(a	full	treatment	of
EC2	patterns,	security	requirements	and	deployment	workflows	are	somewhat	beyond	the
scope	of	this	recipe.)	A	good	place	to	start	on	a	general	introduction	to	Amazon	Web
Services	(and	the	features	offered)	is	the	official	documentation	at
http://aws.amazon.com/documentation/.

http://aws.amazon.com/documentation/

See	also
The	Amazon	Web	Services	homepage	(http://aws.amazon.com)	is	where	you	will
need	to	go	to	sign	up	for	an	account	and	get	started	with	using	Amazon	Web
Services.	Similar	to	most	cloud	services,	you	will	need	to	have	a	source	of	payment
on	file,	although	Amazon	does	offer	a	free	tier	for	new	users	that	will	help	you	get
started	with	using	AWS	(and	use	this	example)	free	of	charge.
IAM	Best	Practices
(http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html)—AWS
strongly	recommends	the	use	of	IAM	users	when	creating	and	using	AWS	resources.
The	Vagrant	AWS	plugin	(https://github.com/mitchellh/vagrant-aws)	will	need	to	be
installed	in	order	to	use	the	AWS	provisioner.
A	handy	guide	to	EC2	instance	types,	which	includes	information	about	the	machine
specifications	(RAM/CPU)	along	with	pricing	information	is	available	at
http://aws.amazon.com/ec2/instance-types/.
When	getting	started	with	AWS	Services,	the	AWS	Documentation
(http://aws.amazon.com/documentation/)	provides	a	useful	overview	and	introduction
to	available	services.

http://aws.amazon.com
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html
https://github.com/mitchellh/vagrant-aws
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/documentation/

Using	Vagrant	with	DigitalOcean
DigitalOcean	(http://digitalocean.com)	is	a	cloud	computational	service	provider	that	has
quickly	gained	a	positive	reputation	among	many	development	communities	for	fast,
reliable,	and	inexpensive	compute	instances	(virtual	machines).	DigitalOcean	has	also
implemented	a	rich	API	layer	to	access	compute	instances,	making	it	easy	for	developers
to	integrate	with	DigitalOcean.

This	recipe	will	require	a	DigitalOcean	account	(sign	up	at	http://digitalocean.com).	Note
that	a	new	account	will	require	a	method	of	payment	as	DigitalOcean	does	not	offer	a	free
tier.

http://digitalocean.com
http://digitalocean.com

Getting	ready
To	use	DigitalOcean	as	a	provider,	we’ll	need	to	install	the	provider	as	a	plugin.	The
plugin	is	available	with	a	simple	install:

vagrant	plugin	install	vagrant-digitalocean

(More	detail	about	the	plugin,	installation,	and	options	is	also	available	at	the	GitHub	site:
https://github.com/smdahlen/vagrant-digitalocean.)

Once	the	plugin	is	downloaded,	there	are	only	two	other	items	that	you	will	need	to	create.

Creating	a	DigitalOcean	API	token
The	Vagrant	DigitalOcean	plugin	uses	the	DigitalOcean	API	to	launch	new	droplets	for
use	with	Vagrant.	To	use	the	API,	we	will	need	to	generate	an	API	token.

1.	 After	creating	a	DigitalOcean	account,	logging	in	to	DigitalOcean	will	display	a
control	panel.	The	default	view	will	list	any	running	droplets:

2.	 From	the	console,	select	Apps	&	API.	This	dialog	box	has	a	function	that	allows	for
the	creation	of	a	Personal	Access	Token	(if	one	is	not	already	present)	that	can	be
used	to	access	the	DigitalOcean	API:

https://github.com/smdahlen/vagrant-digitalocean

3.	 Select	the	Generate	new	token	option.	On	the	new	token	screen,	give	the	token	a
name	and	allow	the	token	to	write	(the	write	permissions	will	be	needed	to	launch
instances):

Note
This	new	token	can	access	the	API	and	launch	instances	that	could	be	billed	under
your	account.	Take	care	to	protect	generated	tokens	as	you	would	protect	a
username/password.	If	a	token	is	inadvertently	shared,	make	sure	to	revoke	the	token
to	keep	your	account	safe.

4.	 Select	the	Generate	Token	button	after	the	name	and	permissions	are	set.	This	will
create	a	new	token	with	read/write	permissions.	We’ll	need	this	token	for	our	later
Vagrant	configuration.	Copy	and	save	this	token	now	as	it	will	not	be	available	after
leaving	the	generation	page:

Creating	a	new	SSH	key	pair
The	last	setup	step	we’ll	need	to	do	is	the	generation	of	a	new	key	pair	to	connect	with	a
DigitalOcean	instance.	This	key	pair	will	be	used	to	enable	SSH	communication	between
your	workstation	and	the	remote	DigitalOcean	droplet.

1.	 In	a	working	directory	(where	we’ll	create	our	Vagrantfile),	create	a	new	key	pair
with	the	ssh-keygen	-f	vagrant	command.

This	will	generate	a	key	pair	with	a	public/private	key.	(For	more	information	on
generating	key	pairs,	see	http://www.openssh.com/.	It’s	likely	that	OpenSSH	is	either
in	use	or	available	for	your	platform.)

2.	 Do	not	enter	a	passphrase	for	these	keys	except	for	the	default	(blank)	values.	This
will	leave	you	with	two	files	in	the	directory:	vagrant	and	vagrant.pub.	We’ll	use
these	keys	in	our	Vagrantfile.

http://www.openssh.com/

How	to	do	it…
Now	that	we	have	the	setup	steps	completed,	we	can	create	a	Vagrantfile	to	start	a
DigitalOcean	droplet.	Our	Vagrantfile	will	need	to	override	some	default	behavior	as	well
as	specify	some	variables	that	are	unique	to	a	DigitalOcean	configuration.

1.	 Start	with	a	basic	Vagrantfile.	In	this	example,	we	will	create	a	single	machine
Vagrantfile,	so	we	can	begin	by	defining	the	file	along	with	an	override	section	for
our	provider:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.provider	:digital_ocean	do	|provider,	override|

		end

end

2.	 In	our	provider	block,	specify	a	few	override	parameters.	The	first	will	be	a	path	to
the	private	key	(the	private	and	public	keys	must	be	kept	in	the	same	directory).	If	the
keys	are	in	the	same	directory	as	the	Vagrantfile,	we	can	specify	this	location	by
using	the	Ruby	File.dirname	method	to	obtain	the	current	working	directory.	We
will	also	need	to	override	the	box	to	use	a	dummy	box	for	Vagrant	operation.	Setting
the	hostname	will	also	correspond	to	the	name	of	the	machine	in	the	DigitalOcean
console:

				override.ssh.private_key_path	=	"#{File.dirname(__FILE__)}/vagrant"

				override.vm.box	=	'digital_ocean'

				override.vm.hostname	=	'vagrantbox'

				override.vm.box_url	=	"https://github.com/smdahlen/vagrant-

digitalocean/raw/master/box/digital_ocean.box"

3.	 Following	the	overrides,	specify	a	few	parameters	for	the	provider:

				provider.ssh_key_name	=	"vagrant-key"

				provider.token	=	'<<	TOKEN	>>'

				provider.image	=	'Ubuntu	14.04	x64'

				provider.region	=	'nyc2'

				provider.size	=	'512mb'

The	SSH	key	name	will	be	used	to	name	and	submit	the	public	key	portion	of	our
generated	key	pair	to	DigitalOcean	(which	will	be	available	in	the	console).	The
provider.token	variable	will	be	the	token	we	generated	earlier.	The	image,	region,
and	size	are	specific	to	the	type	of	droplet	you	would	like	to	launch.	We’ll	discuss
how	to	find	these	values	in	the	next	section.

4.	 Once	the	override	and	provider	sections	are	complete,	the	instance	should	launch
with	the	command:

vagrant	up	--provider=digital_ocean

Once	this	instance	is	launched,	it	should	be	accessible	with	a	vagrant	ssh	command
and	be	listed	in	the	Vagrant	console:

Once	we	are	finished	with	our	droplet,	a	vagrant	destroy	command	will	destroy	the
droplet.	Be	sure	to	verify	that	the	droplet	has	been	destroyed	(DigitalOcean	will	charge	for
any	operational	droplet	on	an	hourly	basis).	Once	we	have	a	working	Vagrantfile,	we	can
create	and	destroy	DigitalOcean	droplets	as	needed,	using	provisioners	to	install	and
configure	software	and	applications.	The	provider	will	also	use	the	rsync	protocol	to	copy
the	entire	working	directory	(where	the	Vagrantfile	is)	to	the	/vagrant	directory	in	the
DigitalOcean	droplet.

How	it	works…
The	DigitalOcean	provider	makes	use	of	the	DigitalOcean	API	to	launch	and	manage
Droplets.	When	we	generated	a	token	for	use	with	Vagrant,	we	generated	a	general	use
API	token.	The	DigitalOcean	provider	uses	this	token	to	create	instances,	but	we	can	also
use	the	API	to	find	information	about	our	droplets	and	functions	that	are	available	to	us.
For	example,	we	can	use	the	API	token	to	retrieve	a	list	of	images,	regions,	and	sizes
available	for	us	to	use	in	our	Vagrantfile.	Simply	execute	a	curl	command	to	access	the
API:

curl	-X	GET	"https://api.digitalocean.com/v2/images/"	\

					-H	"Authorization:	Bearer	<<	TOKEN	>>"

Where	our	API	token	is	used	in	place	of	<<	TOKEN	>>.	This	will	return	a	rather	large
JSON	file,	but	we	can	find	an	entry	with	information	about	the	name	and	available	regions
for	an	image.	One	example	is:

{"id":6918735,

"name":"Ubuntu	14.04	x32",

"distribution":"Ubuntu",

"slug":"ubuntu-14-04-x32",

"public":true,

"regions":

["nyc1","ams1","sfo1","nyc2","ams2","sgp1","lon1","nyc3","ams3","nyc3"],"

created_at":"2014-10-17T20:13:41Z"}

In	our	Vagrantfile,	provider.image	will	be	the	name	of	the	image	and	the	regions	where
the	image	can	be	launched	are	in	the	regions	array.	The	image	size,	however,	can	be	found
on	the	pricing	page	(https://www.digitalocean.com/pricing/)	with	the	size	being	the
amount	of	RAM	for	the	droplet	(for	example,	512mb,	1gb,	2gb,	4gb,	8gb).

There	are	also	more	options	available	to	interact	with	the	DigitalOcean	API	through	the
provider,	see	the	plugin	homepage	(https://github.com/smdahlen/vagrant-digitalocean)	for
more	information.

https://www.digitalocean.com/pricing/
https://github.com/smdahlen/vagrant-digitalocean

See	also
Vagrant	DigitalOcean	plugin:	https://github.com/smdahlen/vagrant-digitalocean
The	DigitalOcean	API:	https://developers.digitalocean.com

https://github.com/smdahlen/vagrant-digitalocean
https://developers.digitalocean.com

Sharing	local	machines	with	HashiCorp
Atlas
One	of	the	reasons	that	we	might	use	cloud	providers	is	due	to	their	ability	to	share
Vagrant	resources	with	outside	users	(either	at	the	machine	(SSH)	level,	or	even	to	simply
demonstrate	progress	on	web	applications).	HashiCorp	has	launched	its	Atlas	project	to
support	the	use	of	Vagrant	(along	with	other	HashiCorp	tooling)	to	develop	and	deploy
infrastructure.	Atlas	supports	several	features	that	are	useful	for	Vagrant	users.	These
include:

A	repository	of	Vagrant	boxes	that	can	be	downloaded	for	use	for	a	number	of
providers
Sharing	features	that	allow	Vagrant	users	to	share	HTTP	services	between	Vagrant
machines
Sharing	features	that	allow	Vagrant	users	to	access	remote	Vagrant	machines	with	the
SSH	protocol

Note
The	features	supported	by	Atlas	and	the	prior	Vagrant	Cloud	product	require	a
version	of	Vagrant	later	than	version	1.6.	Versions	prior	to	1.7	will	also	likely	yield
messages	that	refer	to	Vagrant	Cloud	rather	than	Atlas.	In	any	case,	the	APIs	have
remained	identical,	although	the	naming	conventions	have	changed.

Using	Atlas	to	share	virtual	machines	is	a	free	service,	but	does	require	an	Atlas	account.

Getting	ready
Joining	Atlas	is	simple,	especially	for	the	free	account	tier.

Note
At	the	time	of	writing	this	book	(early	2015),	Atlas	is	still	in	a	technical	preview	state.	The
functions	described	here	are	carried	over	from	the	prior	Vagrant	Cloud	product	and	will	be
available	for	some	time	to	come.	As	HashiCorp	develops	Atlas,	there	will	be	more
features	added	(some	freely	available	and	some	only	available	with	a	payable	account).
While	the	processes	described	here	should	remain	in	use	for	the	foreseeable	future,	keep	in
mind	that	some	of	the	specifics	could	change	as	more	features	and	products	are	added	to
Atlas.	Consult	the	Atlas	documentation	for	up-to-date	information.

1.	 Open	http://atlas.hashicorp.com	in	a	web	browser.

2.	 Select	the	option	(there	are	a	few	ways)	to	SIGN	UP	FOR	FREE.
3.	 This	signup	will	prompt	you	to	choose	a	username	and	enter	a	valid	e-mail	address

and	password.	This	username	and	password	will	be	used	to	log	in	from	the	Vagrant
application	later	on.

http://atlas.hashicorp.com

How	to	do	it…
To	demonstrate	the	use	of	Vagrant	Share,	we’ll	create	a	simple	Vagrant	machine	(with	a
local	provider)	that	installs	the	Apache	web	server	and	installs	a	simple	web	page.	We’ll
enable	machine	sharing	that	allows	another	user	to	access	the	machine	via	SSH.

1.	 Start	with	a	simple	Vagrantfile	that	defines	a	machine	and	a	shell	provisioner.	The
complete	Vagrantfile	is	as	follows:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

$script	=	<<SCRIPT

apt-get	update

apt-get	install	-y	apache2

echo	"Shared	With	Atlas"	>	/var/www/html/index.html

SCRIPT

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	"shell"	,	inline:	$script

end

2.	 Before	launching	the	Vagrant	machine,	log	in	to	your	Atlas	account	using	your
existing	account,	or	perhaps	the	credentials	created	in	the	Getting	ready	section.	Do
this	by	running	the	vagrant	login	command.

Vagrant	will	prompt	you	for	a	username	and	password.	It	will	display	a	success
message	(You’re	now	logged	in!)	if	the	login	is	successful:

3.	 Start	the	machine	with	the	vagrant	up	command.	The	box	should	proceed	to	boot
normally,	outputting	the	results	of	the	installation	commands.

4.	 Once	the	box	has	booted	(and	Atlas	login	was	successful),	start	a	sharing	session	by

executing	the	vagrant	share	--ssh	command.

This	will	output	some	information	about	sharing	the	session	and	will	leave	the
sharing	session	open	(and	active)	in	the	foreground.	Before	the	share	is	available,
Vagrant	will	also	prompt	for	a	key	password.	When	sharing	the	machine,	a	remote
user	will	require	this	password	to	log	in	to	the	machine.

When	sharing,	the	output	will	remain	in	the	terminal	window,	while	the	Vagrant
sharing	process	remains	in	the	foreground:

5.	 The	SSH	information	can	be	shared	with	a	remote	user.	The	output	of	the	share
command	gives	instructions	on	how	to	connect	with	a	machine	shortname.	A	remote
user	who	also	has	an	account	(and	is	logged	in!)	to	Atlas	can	access	the	machine	with
the	command:

vagrant	connect	–ssh	happy-blizzard-5953

The	name	of	the	machine	(in	this	case,	happy-blizzard-5953)	will	be	unique	for
each	share	session.	Connecting	to	the	machine	remotely	requires	that	remote	users
have:

A	current	(later	than	1.6)	version	of	Vagrant	installed
SSH	installed	(particularly	for	Windows	machines)
A	valid	login	to	Atlas

When	connecting	to	the	machine,	remote	users	will	be	prompted	for	the	password
entered	when	the	initial	share	was	created.	After	connecting,	Vagrant	will	give	the
user	shell	access	to	the	remote	machine:

6.	 The	created	share	will	also	be	visible	in	the	Atlas	console.	The	SHARES	interface
displays	a	list	of	active	shares	that	your	account	has	created:

Note	that	shares	will	expire	after	eight	hours.	Although,	using	Atlas	to	share	is	useful	for
short	sessions	(or	a	day’s	work),	Atlas	is	not	designed	to	allow	permanent	access	to	a
Vagrant	machine.

The	sharing	session	can	be	terminated	from	our	Unix	terminal	with	the	Ctrl	+	C	key
command	to	exit	the	sharing	session.

How	it	works…
Atlas	provides	a	very	useful	service	for	Vagrant	users:	a	proxy	layer	that	allows	machines
created	by	Vagrant	with	desktop	software	to	be	shared	with	other	users.	Atlas	only	allows
two	modes	of	sharing:	by	SSH	(a	command-line	session)	or	a	normal	sharing	over	port	80
that	is	ideal	to	demonstrate	local	web	applications	to	a	remote	audience.

See	also
HashiCorp	Atlas:	http://atlas.hashicorp.com

http://atlas.hashicorp.com

Sharing	web	applications	with	HashiCorp
Atlas
Atlas	is	a	useful	tool	to	share	environments	with	other	developers	or	colleagues	when
solving	environment	issues.	Atlas	can	also	be	used	to	share	web	applications	with	a
remote	audience,	something	that	can	often	be	difficult	to	do	when	demoing	experimental
features	without	setting	up	new	infrastructure.

Getting	ready
Before	we	can	share	with	Atlas,	we’ll	need	a	valid	Atlas	account.	Signing	up	for	an	Atlas
(http://atlas.hashicorp.com)	account	is	fairly	straightforward.	The	details	of	signing	up	are
discussed	in	the	Getting	ready	section	of	the	previous	recipe.

http://atlas.hashicorp.com

How	to	do	it…
Web	development	with	Vagrant	is	a	fairly	common	task.	Atlas	allows	you	to	share	and
demonstrate	any	HTTP	application	(a	typical	web	application,	or	perhaps	even	an	API)	to
a	remote	audience.

1.	 First,	start	with	a	Vagrantfile	that	provisions	an	application	to	run	on	port	80.	In	this
case,	we’ll	install	the	Apache	web	server	and	demonstrate	a	simple	static	web	page.
(The	simple	page	will	also	keep	our	Vagrantfile	small	for	demonstration	purposes):

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

$script	=	<<SCRIPT

apt-get	update

apt-get	install	-y	apache2

echo	"Shared	With	Atlas"	>	/var/www/html/index.html

SCRIPT

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	"shell"	,	inline:	$script

end

2.	 Make	sure	that	we	are	logged	in	to	our	Atlas	account	through	Vagrant.	Log	in	using
the	vagrant	login	command.

This	will	prompt	for	the	account	username	and	password.	A	success	message	is
displayed	if	the	authentication	is	successful.

3.	 Start	the	Vagrant	machine	with	the	vagrant	up	command.
4.	 Once	the	machine	is	booted	and	provisioned,	run	the	vagrant	share	command.

Vagrant	will	output	information	about	authentication	and	will	end	with	a	random
URL	that	can	be	shared	with	remote	users.	During	the	sharing	session,	Vagrant	will
run	in	the	foreground	as	the	command	will	not	exit	back	to	the	terminal:

5.	 Open	the	provided	URL	in	a	web	browser.	This	will	be	random	for	every	share:

6.	 Share	the	URL	with	remote	users.	This	same	URL	should	be	accessible	to	remote
users.

7.	 It’s	also	possible	to	access	shared	machines	through	the	Atlas	console.	This	allows
you	(or	those	you	have	sharing	enabled	with)	to	access	the	machine	through	the	Atlas
navigation	menu.

8.	 Terminate	the	sharing	session	in	the	Unix	terminal	with	a	Ctrl	+	C	key	command	to
exit	back	to	the	shell.

How	it	works…
Atlas	creates	a	proxy	that	is	available	for	web	applications	to	be	shared	with	other	users,
even	with	users	that	are	not	using	Vagrant	or	have	an	Atlas	account.

In	this	example,	we	used	the	same	Vagrantfile	as	the	previous	recipe	to	share	a	web
application,	whereas	other	users	with	Vagrant	(and	an	Atlas	account)	can	share	SSH
sessions,	but	any	user	can	access	web	applications,	which	makes	Vagrant	a	useful	tool	to
demonstrate	or	use	web	applications	on	a	temporary	basis.

Atlas	does	terminate	share	sessions	after	eight	hours,	and	there	is	no	particular	expectation
of	application	performance.	Sharing	in	this	manner	is	effective	to	demonstrate	or	simple
development	(perhaps	testing	an	API	for	a	mobile	application),	but	setting	up	an
environment	that	can	be	shared	or	used	more	heavily	will	likely	require	using	a	different
cloud	deployment	method.

See	also
Atlas:	http://atlas.hashicorp.com
The	Sharing	local	machines	with	HashiCorp	Atlas	recipe

http://atlas.hashicorp.com

Chapter	7.	Packaging	Vagrant	Boxes
In	this	chapter,	we	will	cover	the	following	topics:

Packaging	Vagrant	boxes	from	ISO	files
Building	Vagrant	boxes	with	Packer
Sharing	Vagrant	boxes
Sharing	Vagrant	boxes	with	Atlas

Introduction
In	many	scenarios,	using	a	basic	Vagrant	environment	is	an	acceptable	method	to	create
and	destroy	development	environments.	Most	of	the	recipes	in	this	book	focus	on	this	type
of	development	environment:	downloading	a	base	box	from	the	Atlas	box	repository,
booting	the	box,	then	executing	provisioners	to	install	and	configure	software.	In	each
case,	the	entire	development	environment	is	recreated	every	time	a	new	environment	is
launched	from	the	Vagrantfile.	In	some	cases,	this	workflow	can	be	cumbersome	for	users.
There	are	a	few	reasons	that	you	might	want	to	re-evaluate	when	building	environments
on	every	launch:

Provisioning	an	entire	environment	can	be	time	consuming,	particularly	if	there	is	a
large	amount	of	software	to	install	and	configure.	Internet	bandwidth	might	also	be	a
concern	–	downloading	files	from	package	repositories	can	be
There	can	be	reasons	to	freeze	an	environment	at	specific	software	versions	rather
than	relying	on	versions	present	in	package	repositories.
There	might	be	software	required	(such	as	a	commercial	database	package)	that
cannot	easily	be	installed	in	an	automated	fashion.

In	each	of	these	cases,	it	might	be	desirable	to	distribute	our	environment	not	only	as	a
Vagrantfile,	but	also	as	a	Vagrantfile	with	a	packaged	box	file.	A	box	file	can	be
distributed	with	software	installed	and	configured,	allowing	users	to	start	quickly	and
easily	without	requiring	Vagrant	to	perform	a	complete	provisioning	cycle.	In	this	chapter,
we	will	look	at	the	creation	and	packaging	of	Vagrant	boxes,	from	creation	of	boxes	in	a
manual	fashion	(from	ISO	files)	to	more	automated	ways	of	creating	Vagrant	boxes.
Finally,	we	will	demonstrate	and	discuss	methods	to	share	Vagrant	boxes	with	others.

Packaging	Vagrant	boxes	from	ISO	files
Packaging	Vagrant	environments	for	others	is	a	very	common	problem.	Packaging	an
environment	can	start	from	creating	a	simple	base	box	with	an	operating	system	installed
to	repurposing	existing	virtual	machines	for	use	as	Vagrant	boxes.	In	either	case,	Vagrant
can	be	a	solution	to	the	problem	of	sharing	virtual	machines	with	other	team	members.

In	this	example,	we	will	create	a	Vagrant	box	from	a	machine	(CentOS)	created	with
VMware	Fusion.	The	same	method	will	apply	to	VMware	Workstation	(Windows	and
Linux)	with	similar	steps	required	for	VirtualBox.

Note
This	recipe	requires	the	use	of	the	commercial	VMware	Fusion	provider.	For	more
information	on	this	provider,	see	the	provider	homepage	at
https://www.vagrantup.com/vmware.	For	instructions	on	using	VirtualBox	to	create	virtual
machines,	see	the	Using	existing	virtual	machines	with	Vagrant	recipe	of	Chapter	1,
Setting	Up	Your	Environment.	In	the	first	chapter,	an	existing	virtual	machine	was
exported	for	use	with	VirtualBox	using	the	vagrant	package	command.

https://www.vagrantup.com/vmware

Getting	ready
Before	starting	this	exercise,	we	will	need	to	create	a	new	virtual	machine	using	our
hypervisor	software,	in	this	case,	VMware	Fusion.	For	this	chapter,	I	will	assume	that:

You	are	able	to	download	an	ISO	distribution	of	your	desired	operating	system	or	are
otherwise	able	to	create	a	virtual	machine	on	your	desktop	machine.
You	are	able	to	install	an	operating	system	on	your	virtual	machine.	Booting	and
installing	from	ISO	files	can	be	different	for	various	operating	systems.	Be	sure	to
consult	the	documentation	for	your	distribution	and	hypervisor	software.

Creating	virtual	machines	with	hypervisor	software	is	quite	different	for	various
combinations	of	hypervisors	and	OS	distributions.	VMware	has	created	several	easy
install	paths	for	some	of	the	popular	Linux	distributions:	easy	installation	for	Ubuntu	and
CentOS	can	configure	user	accounts	and	VMware	Tools	distributions	required	for
Vagrant.	Other	distributions	(such	as	Fedora	and	Oracle	Enterprise	Linux	with	the
unbreakable	kernel)	might	require	some	manual	configuration	and	compilation	of	tool
suites.

It	is	possible	to	create	Windows	Vagrant	boxes	using	these	methods	as	well,	although
there	are	two	things	that	can	make	sharing	Windows	Vagrant	boxes	somewhat	difficult:

Most	desktop	Windows	installations	can	be	rather	large	in	size.	Where	many	Vagrant
box	publishers	aim	to	keep	box	distributions	small	enough	to	download	over	public
Internet,	packaging	a	desktop	Windows	distribution	can	create	very	large	(in	excess
of	20	GB)	files	that	can	be	difficult	to	share	in	some	circumstances.
Desktop	Windows	distributions	can	also	have	licensing	requirements	that	make
sharing	box	files	difficult.

In	2014,	Microsoft	experimented	with	Vagrant	distributions	by	releasing	a	180-day
evaluation	of	Windows	Datacenter	2012	in	Vagrant	box	format	and	is	currently
distributing	Vagrant	boxes	through	the	modern	IE	program.	Using	those	boxes	might	be	a
good	starting	point	for	Windows	projects	rather	than	packing	your	own	files.

How	to	do	it…
Before	we	start	with	packing	a	virtual	machine	as	a	Vagrant	box,	we	will	need	to	configure
our	virtual	machine	for	use	by	Vagrant.

Preparing	a	virtual	machine
1.	 Create	a	virtual	machine	by	creating	a	new	machine	from	an	ISO	file.	Consult	your

hypervisor	documentation	on	creating	virtual	machines.

Note
You	might	also	want	to	consider	requirements	for	memory	and	disk	space	based	on
development	requirements.	The	Vagrant	documentation	specifies	some	basic
minimum	requirements	recommended	for	boxes	that	will	be	publically	distributed	at
https://docs.vagrantup.com/v2/boxes/base.html.

2.	 Ensure	that	your	virtual	machine	has	a	user	account	named	vagrant.	By	convention,
most	box	packagers	also	use	the	vagrant	string	as	passwords	for	any	required
accounts.	If	you	are	using	an	installation	that	allows	for	easy	install,	you	can	create
the	vagrant	user	on	initial	installation.

3.	 Make	sure	that	your	operating	system	(for	Linux	machines)	has	the	SSH	daemon
running	and	that	it	is	configured	to	run	on	system	startup.	(For	example,	with	CentOS
or	Red	Hat	derivatives,	make	sure	that	you	issue	the	chkconfig	sshd	on	command
as	root).

Note
The	following	steps	(4-9)	are	specific	to	Unix	boxes,	where	the	primary	means	of
accessing	the	box	is	the	Secure	Shell	(SSH).

4.	 In	the	vagrant	user	directory,	create	a	directory	called	.ssh	and	ensure	that	this
directory	has	700	permissions.	As	the	Vagrant	user,	this	can	be	done	with:

mkdir	~/.ssh&&chmod	700	~/.ssh

5.	 Install	the	insecure	key	pair	if	you	want	your	new	box	to	be	used	by	Vagrant	users
without	modification	of	the	Vagrantfile.	The	Vagrant	insecure	key	pair	is	available	on
GitHub	at	https://github.com/mitchellh/vagrant/tree/master/keys.	Install	the	keys	by
saving	them	to	the	.ssh	directory	created	in	the	previous	step:

cd	~/.ssh&&	curl	–O	

https://raw.githubusercontent.com/mitchellh/vagrant/master/keys/vagrant

cd	~/.ssh&&	curl	–O	

https://raw.githubusercontent.com/mitchellh/vagrant/master/keys/vagrant

.pub

6.	 Copy	the	public	key	to	the	authorized_keys	file	as	well:

cp	~/.ssh/vagrant.pub	~/.ssh/authorized_keys

7.	 Ensure	that	all	keys	are	read-only	by	only	the	Vagrant	user:

https://docs.vagrantup.com/v2/boxes/base.html
https://github.com/mitchellh/vagrant/tree/master/keys

chmod	400	~/.ssh/*

8.	 As	the	root	user,	modify	the	sudo	permissions	of	the	Vagrant	user.	Using	the	visudo
command,	add	a	line	defining	sudo	permissions	for	the	Vagrant	user	without
password.	On	CentOS	(and	most	Linux	operating	systems),	become	the	root	user	and
execute	visudo.	This	will	open	the	suoders	file	with	a	vi	text	editor	interface.	This	is
one	case	where	the	use	of	vi	is	largely	dictated,	nearly	all	Linux	distributions
recommend	modifying	permissions	files	with	only	the	visudo	editor.	In	the	editor,
add	a	line	(you	might	wish	to	do	this	after	the	typical	root	user	permission	entry)	for
the	Vagrant	user.	The	block	of	the	file	will	look	like	this:

##	Allow	root	to	run	any	commands	anywhere

root				ALL=(ALL)							ALL

vagrant	ALL=(ALL)							NOPASSWD:	ALL

9.	 While	in	the	visudo	editor,	look	for	a	line	that	might	require	tty	for	connection	and
disable	this	requirement	by	commenting	out	the	requiretty	line.	(This	might	be
different	depending	on	your	operating	system):

#Defaults				requiretty

10.	 A	recommended	tweak	when	using	Vagrant	is	to	also	add	an	additional	line	to	the
SSH	configuration	(typically	/etc/ssh/ssh_config)	in	order	to	disable	SSH	clients
from	attempting	a	reverse	DNS	lookup.	Add	a	single	line	to	the	ssh_config	file	to
disable	the	lookup:

UseDNS	no

11.	 After	these	configuration	items	have	been	completed,	save	all	the	files	you	have
edited	and	shut	down	the	virtual	machine.

Packaging	the	virtual	machine	as	a	Vagrant	box
Packaging	a	virtual	machine	will	have	steps	that	are	dependent	on	individual	providers.
For	example,	a	VMware	Fusion	box	will	have	different	packaging	steps	than	a	VirtualBox
box	file.	Consult	the	provider	documentation	at
http://docs.vagrantup.com/v2/providers/index.html	for	more	information	about	packaging
the	box	for	your	provider.	For	this	example,	we	will	be	creating	a	Vagrant	box	to	be	used
with	VMware	Fusion,	the	procedure	for	exporting	a	box	using	VirtualBox	was
demonstrated	in	the	Using	existing	virtual	machines	with	Vagrant	recipe	of	Chapter	1,
Setting	Up	Your	Environment.

1.	 On	the	host	system,	find	the	directory	that	contains	the	virtual	machine	files.	On	OS
X,	a	VMware	Fusion	virtual	machine	is	presented	as	a	file.	We’ll	need	to	view	the
package	contents	of	a	virtual	machine	file.

http://docs.vagrantup.com/v2/providers/index.html

Revealing	package	contents	of	the	folder	will	display	files	related	to	the	virtual	disk
(vmdk)	and	other	definitions.	If	you	intend	to	distribute	this	box	to	the	general	public,
it’s	recommended	that	you	compress	the	disk	files	and	remove	unnecessary	files	for
box	distribution.	In	practice,	you	will	likely	use	automated	tools	to	help	with	these
tasks,	for	this	example,	we’ll	leave	the	virtual	machine	files	as	it	is.

Note
It	will	also	be	simpler	to	execute	most	of	the	tasks	in	this	section	from	the	command
line,	as	we	will	be	packaging	the	box	file	with	the	Unix	tar	command	in	a	later	step.
For	example,	when	OS	X	displays	virtual	machines	as	a	single	file,	most	OS	X
applications	are	also	accessible	as	folders.	For	instance,	to	get	to	the	folder	that	is	the
virtual	machine	above	executing	the	cd	command	(cd
~/SSDVirtualMachine/CentOSVagrantBox.vmwarevm)	will	take	you	to	the	directory
with	the	virtual	machine	files.

2.	 Create	the	required	metadata.json	file	that	describes	the	box	contents	and	the
provider	required	to	execute	the	box	file.	At	minimum,	the	metadata.json	file	must
define	the	box	provider,	in	this	case,	vmware_fusion:

{

		"provider":	"vmware_fusion"

}

3.	 With	the	metadata	file	in	place,	we	can	package	the	box	from	the	terminal	with	the
tar	command:

tarczvf		vagrant-example.box	<<path_to_virtual_machine>>/*

The	box	file	is	a	Unix	tarball:	a	file	in	a	gzipped	TAR	(Tape	ARchive)	format	with
the	virtual	machine	files	at	the	root	level	of	the	box.	In	this	specific	example,	we	can
create	a	new	box	from	our	CentOS	virtual	machine	with	the	command:

tarczvfcentos7_vmware_fusion.box	

~/SSDVirtualMachines/CentOSVagrantBox.vmwarevm/*

With	the	box	file	created,	we	can	now	install	and	use	the	box	locally.

Installing	the	new	Vagrant	box
With	our	new	box	file	in	hand,	we	can	now	add	a	new	box	to	our	local	Vagrant	cache.

1.	 Add	the	new	box	with	the	vagrant	box	add	command.	In	our	example	(creating	a
CentOS	7)	box,	(and	from	the	same	directory	we	were	in	when	executing	step	3),	add
the	box	to	our	local	cache	by	specifying	the	file	location	and	a	name	for	the	box:

vagrant	box	add	centos7_vmware_fusion.box	–-name=centos7

2.	 Verify	the	addition	of	the	box	with	the	vagrant	box	list	command.	If	our	new	box
is	added	successfully,	it	will	be	listed	with	our	other	locally	installed	boxes:

▶	vagrant	box	list
centos64																												(virtualbox,	0)

centos7																													(vmware_fusion,	0)

3.	 In	a	new	working	directory,	we’ll	test	our	new	box	by	initializing	a	Vagrantfile	with
the	box.	The	vagrant	init	command	can	be	used	with	our	box	name	to	generate	a
new	Vagrantfile.	For	example,	we	can	initialize	a	new	Vagrantfile	with	our	centos7
box:

vagrantinitcentos7

4.	 Once	the	Vagrantfile	has	been	created,	test	our	new	box	by	executing	the	vagrant	up
command.	Vagrant	should	output	startup	information	and	exit	to	the	command	line,
allowing	us	to	access	our	new	environment	with	vagrant	ssh.

How	it	works…
In	this	example,	we	have	packaged	a	new	Vagrant	box	manually,	configured	the	vagrant
user	access,	set	up	SSH	keys,	and	configured	super	user	access.	The	steps	presented	will
create	a	Vagrant	box	that	can	be	shared	publicly.	Further,	users	should	be	able	to	start	the
machine	with	a	simple	Vagrantfile	using	default	settings.

Creating	boxes	is	also	a	provider-specific	task.	The	process	of	packaging	a	box	for
VMware	Desktop	software	will	be	different	than	packaging	boxes	for	VirtualBox	due	to
different	methods	of	creating	virtual	hard	drives	(VMware	uses	a	vmdk	file	format	and
VirtualBox	uses	ovf)	and	settings	to	operate	virtual	machines	in	a	hypervisor.	The	first
chapter	of	the	book	details	the	use	of	existing	machines	with	VirtualBox	using	the
vagrant	package	command.	This	example	detailed	the	more	complex	process	of
exporting	a	Vagrant	box	for	a	VMware	provider.

There’s	more…
When	creating	virtual	machines	to	be	used	by	others,	it	is	often	useful	to	create	these
machines	using	automation	tools	such	as	Packer	(http://packer.io),	which	can	be	used	to
execute	scripts	in	order	to	build	Vagrant	boxes.	Building	virtual	machines	automatically	is
the	topic	of	the	next	two	recipes.

http://packer.io

See	also
The	Vagrant	VMware	provider:	https://www.vagrantup.com/vmware
The	Using	existing	virtual	machines	with	Vagrant	recipe	of	Chapter	1,	Setting	Up
Your	Environment,	for	instructions	on	how	to	export	virtual	machines	created	with
VirtualBox
Vagrant	documentation	on	Creating	a	Base	Box:
https://docs.vagrantup.com/v2/virtualbox/boxes.html
Vagrant	documentation	on	the	package	command	for	VirtualBox	Vagrant	boxes:
https://docs.vagrantup.com/v2/cli/package.html

https://www.vagrantup.com/vmware
https://docs.vagrantup.com/v2/virtualbox/boxes.html
https://docs.vagrantup.com/v2/cli/package.html

Building	Vagrant	boxes	with	Packer
While	packaging	boxes	from	ISO	images	and	manual	provisioning	can	be	a	useful
solution	to	share	virtual	machines,	manual	maintenance	and	updating	of	virtual	machines
can	be	time	consuming	and	difficult	to	manage.

HashiCorp	(the	company	that	provides	Vagrant)	created	a	project	solely	for	the	purpose	of
creating	and	packaging	virtual	environments	for	a	variety	of	virtualization	platforms.	This
product	is	aptly	named	Packer	(http://packer.io).	Packer	uses	configuration	files	to	specify
the	end	result	of	a	packaged	virtual	machine.	In	particular,	Packer	groups	commands	into:

Builders:	These	are	commands	and	instructions	to	build	a	virtual	machine	using	ISO
files	and	bootstrapping	commands.	A	builder	can	specify	instructions	for	a	number	of
platforms,	such	as	using	preseed	files	to	create	Ubuntu	machines	or	API	information
to	create	Amazon	Web	Services	AMI	files.	A	Packer	file	might	specify	multiple
Builders	in	the	same	file,	allowing	several	virtual	machine	formats	to	be	created	in
the	same	build	process.
Provisioners:	This	is	a	Packer	provisioner	that	is	very	similar	to	a	Vagrant
provisioner,	allowing	a	number	of	provisioning	environments	to	operate	on	a	newly
created	Packer	image.	Packer	includes	a	number	of	provisioners	for	different
configuration	management	approaches	that	includes	many	of	the	same	configuration
management	languages	used	by	Vagrant.
Post-Processors:	There	are	a	number	of	post-processing	steps	that	can	be	used	in	a
Packer	build	to	package	environments.	In	this	example,	we’ll	look	at	using	the
Vagrant	post-processor	to	compress	and	package	a	machine.

Packer	contains	a	number	of	features	that	can	make	the	packaging	of	virtual	environments
simpler	to	maintain.	For	more	information	(and	documentation),	see	the	Packer	homepage
at	http://packer.io.

In	this	recipe,	we	will	create	an	Ubuntu	14.10	box	packaged	for	the	VMware	Fusion
provider,	using	a	combination	of	Packer	templates	and	an	Ubuntu	preseed	configuration.

http://packer.io
http://packer.io

Getting	ready
Before	we	can	create	Vagrant	boxes	with	Packer,	we’ll	first	need	to	install	Packer	to	our
workstation.	Packer	is	distributed	as	a	binary	distribution	for	Linux,	OS	X,	Windows,	and
BSD	operating	systems.

1.	 Download	the	binary	package	appropriate	for	your	operating	system	from
https://packer.io/downloads.html.	The	binary	file	will	be	a	file	in	ZIP	format	that
contains	compiled	binaries	for	your	operating	system.

2.	 Place	the	binaries	in	a	common	location.	I	prefer	to	install	Packer	binaries	(on	a	Unix
system)	in	/usr/local/packer,	but	you	might	wish	to	keep	them	in	your	user
directory.	Copy	the	contents	of	the	ZIP	file	(or	extract	the	contents	of	the	ZIP	file)	to
this	directory.

3.	 Add	the	directory	where	the	Packer	binaries	are	extracted	to	your	user	PATH	variable.
On	a	Unix-based	system	using	the	bash	shell	(which	is	the	default	for	many	modern
Unix	distributions),	add	the	following	line	to	the	.bash_profile	configuration	in
your	home	directory:

export	PATH=/usr/local/packer:$PATH

There	might	already	be	an	export	PATH	command	in	your	profile,	feel	free	to	add
your	Packer	directory	to	this	command.	On	a	Windows	machine,	path	settings	are
typically	kept	in	your	system	(or	user)	environment	variables.

4.	 Check	to	see	whether	Packer	is	configured	correctly	by	opening	a	new	terminal
window	and	running	the	packer	version	command.	If	the	paths	are	configured
correctly,	you	will	see	the	version	information	about	Packer:

The	hypervisor	for	which	a	box	is	being	packaged	(if	using	Packer	with	a	desktop
hypervisor)	must	also	be	installed.	Packer	can	also	be	used	to	build	cloud	images	and
other	types	of	cloud	machines,	but	this	recipe	will	focus	on	building	a	desktop	hypervisor
box,	specifically,	we’ll	use	Packer	to	build	the	Ubuntu	14.10	box	for	the	VMware	Fusion
provider.

https://packer.io/downloads.html

How	to	do	it…
To	build	an	image,	there	are	a	few	items	that	we	will	need	to	bootstrap	a	virtual	machine
from	an	ISO	file:

The	ISO	file	itself.	In	this	case,	we’ll	start	with	an	ISO	image	downloaded	from	the
Ubuntu	website	(http://ubuntu.com).
We’ll	need	to	know	how	to	automatically	install	an	operating	system	from	an	ISO	file
in	an	automated	fashion.	This	typically	involves	a	boot	command	that	is	a	script	that
the	installer	uses	to	begin	the	installation	process	and	a	preseed	file	that	specifies
information	that	the	installation	process	requires	to	install	the	operating	system.
While	these	files	can	be	written	from	scratch,	it’s	typically	best	to	find	examples	from
the	operating	system	provider	or,	perhaps,	from	other	open	source	projects	to	build
on.

Packer	will	build	the	Vagrant	box	by	booting	the	operating	system,	running	the	basic
installation,	and	then	executing	provisioning	steps	specified	in	the	file.

1.	 Download	an	ISO	file	for	the	distribution	you	wish	to	install.	In	this	case,	an	ISO	file
for	the	Ubuntu	14.10	server	distribution	(ubuntu-14.10-server-amd64.iso)	has
been	downloaded	from	the	Ubuntu	website	(http://ubuntu.com).

2.	 Before	we	can	use	the	ISO	file,	we’ll	also	need	to	obtain	the	MD5	checksum	of	the
file;	for	Ubuntu,	these	are	published	separately	at
https://help.ubuntu.com/community/UbuntuHashes.	The	md5	checksum	allows
Packer	to	validate	that	the	ISO	file	being	used	is	authentic.

3.	 Create	a	working	directory	for	all	our	Packer	files	to	be	kept	in.	We	will	create	a
Packer	template	and	two	directories,	one	for	HTTP	bootstrap	files	and	a	second	to
hold	a	provisioning	script.	The	directory	will	look	something	like	this	(once	our
unicorn64_vmware.json	Packer	template	is	created):

.

├──	http/

├──	shell/

├──	unicorn64_vmware.json

4.	 Create	a	template	file	(seen	in	the	previous	step)	called	unicorn64_vmware.json.
This	file	will	specify	how	we	will	create	our	Vagrant	box.	It	(in	it’s	entirety)	is	a
JSON	file	that	describes	how	to	build	our	Vagrant	box:

{

		"builders":[

				{		"type":	"vmware-iso",

						"iso_url":	"file:///<<PATH_TO_ISO_DIRECTORY>>/ubuntu-14.10-

server-amd64.iso",

								"iso_checksum":	"91bd1cfba65417bfa04567e4f64b5c55",

								"iso_checksum_type":	"md5",

								"ssh_username":	"vagrant",

								"ssh_password":	"vagrant",

								"ssh_wait_timeout":	"300s",

								"shutdown_command":	"echo	vagrant	|	sudo	-S	shutdown	-P	now",

http://ubuntu.com
http://ubuntu.com
https://help.ubuntu.com/community/UbuntuHashes

								"output_directory":	"ubuntu-1410",

								"http_directory":	"http",

								"tools_upload_flavor":	"linux",

								"boot_command":	[

										"<esc><wait>",

										"<esc><wait>",

										"<enter><wait>",

										"/install/vmlinuz<wait>",

										"	auto<wait>",

										"	console-setup/ask_detect=false<wait>",

										"	console-setup/layoutcode=us<wait>",

										"	console-setup/modelcode=pc105<wait>",

										"	debconf/frontend=noninteractive<wait>",

										"	debian-installer=en_US<wait>",

										"	fb=false<wait>",

										"	initrd=/install/initrd.gz<wait>",

										"	kbd-chooser/method=us<wait>",

										"	keyboard-configuration/layout=USA<wait>",

										"	keyboard-configuration/variant=USA<wait>",

										"	locale=en_US<wait>",

										"	netcfg/get_hostname=unicorn64<wait>",

										"	netcfg/get_domain=vagrantup.com<wait>",

										"	noapic<wait>",

										"	preseed/url=http://{{	.HTTPIP	}}:{{	.HTTPPort	

}}/preseed.cfg<wait>",

"	--<wait>",

										"<enter><wait>"

]

						}

],	

			

			"provisioners":	[

					{

								"type"		:	"shell",

								"script":	"shell/base.sh",

								"execute_command":	"echo	'vagrant'	|	sudo	-S	sh	'{{	.Path	}}'"

					}

],

			"post-processors":[

					{

								"type":	"vagrant",

								"output":	"unicorn_{{.Provider}}.box"

					}

]

}

5.	 Now,	we’ll	need	to	add	a	file	in	our	http	directory	named	preseed.cfg.	This	preseed
file	is	rather	lengthy	and	can	be	found	with	the	code	examples	for	this	chapter.	A
preseed	file	for	Ubuntu	specifies	system	settings	required	to	install	the	operating
system	and	is	not	specific	to	Packer.	In	fact,	each	operating	system	(and	operating
system	installer)	will	have	different	methods	to	define	files	required	for	automatic
installation.	For	example,	Red	Hat	Linux	derivatives	use	a	Kickstart	file	specific	to
the	Anaconda	installer	packaged	with	Red	Hat	and	related	Linux	distributions.	What

is	important	is	that	this	file	is	located	in	the	directory	specified	by	two	variables	in
the	Packer	template.	The	Packer	directive	is	"http_directory":	"http"	and	the	line
in	the	boot_command	directive	is	"preseed/url=http://{{	.HTTPIP	}}:{{
.HTTPPort	}}/preseed.cfg<wait>".

6.	 Create	a	simple	provisioning	script	that	will	install	the	Vagrant	public	keys	into	a
newly	booted	virtual	machine:

#!/bin/sh

apt-get	update

apt-get	install	-y	wget

if	![-d	/home/vagrant/.ssh];	then

		mkdir	-p	/home/vagrant/.ssh

chownvagrant:vagrant	/home/vagrant/.ssh

fi

if	![-f	/home/vagrant/.ssh/authorized_keys];	then

		wget	--no-check-certificate	

https://raw.github.com/mitchellh/vagrant/master/keys/vagrant.pub	-O	

/home/vagrant/.ssh/authorized_keys

chownvagrant:vagrant	/home/vagrant/.ssh/authorized_keys

fi

echo	"vagrant	ALL=(ALL)	NOPASSWD:	ALL\n"	>>	/etc/sudoers

Place	this	file	in	the	shell	directory	and	name	the	file	as	base.sh.	It’s	important	that
this	file	echoes	the	provisioner	block	in	the	Packer	template:

			"provisioners":	[

					{

								"type"		:	"shell",

								"script":	"shell/base.sh",

								"execute_command":	"echo	'vagrant'	|	sudo	-S	sh	'{{	.Path	}}'"

					}

],

7.	 With	these	files	in	place,	execute	the	Packer	build	using	the	command:

packer	build	unicorn64_vmware.json

8.	 The	output	of	this	command	should	detail	the	steps	taken	and	you	should	note	a
VMware	Fusion	(in	this	example)	window	start	and	several	automated	steps	happen
in	the	window.	When	the	install	window	appears,	this	Packer	build	should	proceed
automatically	with	no	intervention	required.	You	should	notice,	however,	that	the
installer	proceeds	through	all	the	steps	in	a	virtual	machine	installation:

9.	 After	the	Packer	command	exits	(and	this	should	take	several	minutes),	a	file	will	be
left	in	the	working	directory	called	unicorn_vmware.box.	Add	this	file	to	your	local
Vagrant	cache	with	the	command:

vagrant	box	add	unicorn_vmware.box	–name	unicorn_vmware.

10.	 Verify	that	the	box	works	correctly	by	initializing	a	Vagrantfile	(vagrant
initunicorn_vmware)	and	executing	the	vagrant	up	command.	The	newly	packaged
box	should	boot	and	provide	a	working	Ubuntu	14.10	Vagrant	box.

How	it	works…
We’ve	seen	how	to	create	and	package	a	Vagrant	box	using	Packer	(the	templates,
bootstrapping,	and	application	of	a	simple	shell	provisioner	to	our	new	machine).	Let’s
take	a	look	at	a	few	details.

The	building	blocks	of	Packer	templates
A	Packer	template	consists	of	a	few	major	sections.	In	this	example,	we	use	three	of	them:

Builders:	We	specified	a	single	builder	(of	type	vmware-iso)	for	this	template.	A
template	can	consist	of	multiple	builders	that	allows	for	a	single	template	to	define
(and	create)	many	different	virtual	environments	or	Vagrant	boxes.	The	builder
specifies	the	basic	steps	required	to	start	a	virtual	machine,	including	initial	users	and
the	boot_command	that	specifies	the	steps	required	to	start	the	installation.	The	builder
also	includes	an	HTTP	directory.	Packer	creates	a	local	http	server	that	is	available	to
the	virtual	machine	in	order	to	serve	configuration	files	(such	as	the	preseed	file).
Provisioners:	A	provisioner	is	similar	to	the	concept	in	Vagrant	(provisioners	define
steps	to	configure	and	install	software	into	an	image).	In	this	example,	a	simple	shell
provisioner	is	used	to	install	the	Vagrant	public	keys.	Other	provisioners	(including
Puppet,	Ansible,	and	so	on)	can	be	used	to	install	and	configure	software	in	the	newly
created	box.
Post-processors:	Post-processors	specify	Packer	to	take	actions	once	the	virtual
machine	is	created	and	provisioned.	In	this	example,	we’re	using	the	Vagrant	post-
processor	to	compress	the	virtual	machine	disk	files	and	create	a	file	in	the	box
format.	There	are	also	other	post-processors	available	for	certain	tasks,	such	as
publishing	our	new	box	to	the	Vagrant	Cloud.

Packer	is	a	very	powerful	tool	to	automate	virtual	(and	even	cloud)	image	creation.	This
example	created	Vagrant	box	files	to	use	Vagrant	with	local	hypervisors,	but	Packer	can
also	be	used	to	create	image	files	for	cloud	providers	such	as	custom	Amazon	Machine
Images	(AMIs)	to	launch	EC2	instances.

Building	Vagrant	boxes	with	VeeWee
Another	popular	method	of	building	Vagrant	boxes	is	a	tool	called	VeeWee
(https://github.com/jedi4ever/veewee)	that	predates	the	publication	of	Packer.	VeeWee	is	a
Ruby-based	tool	to	build	Vagrant	(and	other	types)	of	virtual	machine	formats.	This	tool
installs	with	the	gem	package	manager	if	your	system	meets	specific	requirements	for
Ruby	versions	and	development	environments.	See	the	documentation	at
https://github.com/jedi4ever/veewee	for	more	on	building	boxes	with	VeeWee.

https://github.com/jedi4ever/veewee
https://github.com/jedi4ever/veewee

See	also
Packer:	http://packer.io—the	official	website	has	documentation	related	to	using
Packer	in	different	situations	(and	with	different	cloud	providers)
VeeWee:	https://github.com/jedi4ever/veewee
Ubuntu	preseeding:	https://help.ubuntu.com/lts/installation-guide/i386/apb.html—
Packer	uses	operating	system	utilities	to	automate	the	installation	of	an	operating
system
Red	Hat	Kickstart	installations:	https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html
—Kickstart	is	the	automated	method	to	install	Red	Hat-derived	operating	systems
that	will	be	necessary	to	automate	the	installation	of	Red	Hat-derived	operating
systems

http://packer.io
https://github.com/jedi4ever/veewee
https://help.ubuntu.com/lts/installation-guide/i386/apb.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

Sharing	Vagrant	boxes
Once	a	Vagrant	box	has	been	built,	the	next	challenge	is	sharing	this	Vagrant	box	with
others.	When	sharing	Vagrant	boxes,	there	are	a	few	things	to	take	into	account:

Who	are	you	going	to	be	sharing	this	box	with?	Is	the	box	meant	for	public
distribution,	or	is	it	something	that	is	specific	to	the	needs	of	a	particular
development	team?
How	big	is	the	box?	Most	public	base	boxes	are	rather	small,	but	in	the	case	of	boxes
created	for	a	development	team,	the	box	size	can	be	rather	large	depending	on	the
amount	of	software	and	configuration	that	was	done	to	the	box.	Keep	in	mind	that
any	software	installed	on	the	box	will	also	add	to	the	size	of	the	box	file	itself.	For
example,	creating	a	development	box	with	an	enterprise	database	installed	and
configured	will	be	large	enough	to	make	public	hosting	options	difficult.
Is	there	any	sensitive	data,	material,	or	software	licenses	configured	on	the	box	itself?

While	an	easy	option	for	box	hosting	is	the	public	Vagrant	cloud	(there	are	also	paid
options	to	host	private	boxes),	large	file	storage	will	still	have	the	issues	encountered
when	serving	large	(multigigabyte)	files	over	HTTP.	A	general	thumb	rule	is	that	the
longer	the	process	of	downloading	a	box	takes,	the	less	likely	it	is	that	your	development
team	will	be	able	to	update	and	iterate	frequently	(a	box	that	downloads	to	development
workstations	more	quickly	will	be	updated	and	iterated	on	more	frequently).

This	recipe	will	demonstrate	storing	and	serving	a	box	with	a	local	HTTP	server	and
integrating	this	hosting	solution	into	a	Vagrantfile.

Getting	ready
Before	we	can	demonstrate	how	to	serve	a	Vagrantfile,	we’ll	need	to	install	an	HTTP
server	that	can	be	accessed	by	all	the	members	of	a	development	team.	Keep	in	mind	that
the	eventual	goal	is	to	make	possible	the	quick	download	of	large	files	(the	best	option	if
developers	are	all	co-located	would	be	to	set	up	an	HTTP	server	internally	that	can	be
accessed	over	a	local	LAN).	For	teams	that	consist	of	remote	workers	or	offices,	there	can
be	issues	with	a	LAN-based	web	server;	hosting	files	on	external	servers,	running	WAN
optimization,	or	even	running	mirrors	from	one	location	to	another	can	be	good	options.

For	this	example,	we’ll	assume	that	you	have	set	up	a	web	server	(it	doesn’t	matter	what
flavor	as	long	as	it	can	host	large	files)	at	an	Internet	address	that	can	be	reached	by	the
intended	audience.

How	to	do	it…
1.	 Have	a	web	server	available	that	can	hosts	files.	Also,	keep	the	Vagrant	box	handy

that	you	wish	to	publish.
2.	 Copy	the	Vagrant	box	to	the	web	server.	It	might	be	available	at	a	URL	such	as:

http://vagrantboxes.mydomain.com/project/ubuntu_1404.box

3.	 With	the	Vagrant	box	published	to	a	web	server,	create	a	new	Vagrantfile	to	use	the
HTTP-hosted	Vagrant	box:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"ubuntu_1404"

		config.vm.box_url	=	

"http://vagrantboxes.mydomain.com/project/ubuntu_1404.box"

end

The	main	addition	here	is	the	use	of	the	config.vm.box_url	parameter	to	point	the
Vagrantfile	at	the	hosted	box.	Additional	provisioners	can	be	used	like	any	other
Vagrantfile.

4.	 Start	the	box	with	the	vagrant	up	command.	If	the	box	is	not	present	on	the	user
system,	Vagrant	will	download	the	box	from	the	specified	URL	and	boot	the
machine.

How	it	works…
The	Vagrant	config.vm.box_url	directive	allows	Vagrantfiles	to	automatically	download
and	manage	boxes	specified	by	Vagrantfiles.	This	allows	for	ease	of	sharing	boxes	and
development	environments.	Rather	than	specifying	a	set	of	instructions	to	a	development
team,	a	single	Vagrantfile	can	be	used	to	specify	the	entirety	of	the	development
environment.

There	are	other	options	to	host	box	files	that	might	make	download	times	faster,	but	HTTP
is	a	protocol	that	Vagrant	understands	natively.

Sharing	Vagrant	boxes	with	Atlas
Following	the	release	of	Vagrant	1.5,	HashiCorp	introduced	a	new	service	to	support	the
publication	and	sharing	of	Vagrant	boxes	either	for	public	or	private	collaboration.	In	late
2014,	this	functionality	was	folded	into	HashiCorp’s	Atlas	project
(http://atlas.hashicorp.com).	In	earlier	recipes,	we	used	the	Atlas	repository	to	discover
boxes,	whereas	now	we	wish	to	publish	our	own	boxes	to	share	it	with	others.

Following	the	release	of	Vagrant	1.5,	HashiCorp	introduced	a	new	service	to	support	the
discovery	and	publication	of	Vagrant	boxes:	the	Vagrant	Cloud	(http://vagrantcloud.com).
The	Vagrant	Cloud	was	introduced	to	share	Vagrant	environments	in	Chapter	6,	Vagrant	in
the	Cloud.	In	this	recipe,	we	will	create	a	box	file	for	distribution	to	a	wider	audience.

http://atlas.hashicorp.com
http://vagrantcloud.com

Getting	ready
Before	we	can	share	boxes	using	Atlas,	there	are	a	few	things	to	keep	in	mind	about	how
to	use	your	the	Atlas	account:

Hosting	(uploading)	boxes	to	Atlas	itself	will	require	a	paid	account.	At	the	time	of
writing	this	book,	Atlas	has	opened	these	function	for	free	access	during	a	technical
preview	period.	However,	it	is	likely	that	Atlas	will	continue	to	require	payment	to
host	boxes	(along	with	deployed	box	environments).	An	Atlas	account	will	cover	any
fees	used	to	host	and	transfer	data	related	to	the	Vagrant	box.
Atlas	continues	to	support	the	listing	of	boxes	that	are	hosted	externally.	In	the
previous	Vagrant	Cloud	product,	these	listings	were	provided	as	a	free	service	to	the
community	and	most	likely	will	continue	to	remain	freely	available	for	box
publishers	and	users.	Using	the	listing	only	will	require	you	to	find	hosting	with	an
external	provider	with	either	an	existing	web	host	or	quite	often	with	storage	services
such	as	Amazon	Web	Services’	Simple	Storage	Service	(S3)	offering.	As	long	as	the
box	can	be	accessed	with	a	publically	available	HTTP	URL,	it	can	be	listed	(and
versioned)	using	Atlas.
Atlas	will	also	continue	to	provide	private	box	hosting	and	collaboration	for	a	fee,
likely	continuing	the	previous	Vagrant	Cloud	model	of	hosting	cost	being	based	on
the	number	of	collaborators	that	access	a	central	account.

Atlas	will	also	provide	a	number	of	services	for	not	only	hosting	Vagrant	environments,
but	also	for	deploying	and	monitoring	application	infrastructure.	Visit
http://atlas.hashicorp.com	for	more	details	on	Atlas,	the	technical	preview	period,	and	the
products	and	services	that	Atlas	will	support.

In	this	recipe,	we	will	list	a	box	with	the	Atlas	repository,	while	hosting	the	box	file	itself
with	the	relatively	inexpensive	Amazon	S3	service.	This	example	will	use	the	web	console
(advanced	users	might	wish	to	investigate	using	either	the	Atlas	API	to	publish	box	files
or	Packer	post-processors	in	order	to	simplify	the	workflow	to	publish	Vagrant	boxes	as
part	of	a	build	pipeline).

http://atlas.hashicorp.com

How	to	do	it…
1.	 Create	a	box	using	an	automated	tool	(such	as	Packer)	or	package	the	box	by	hand.

Copy	this	box	to	a	publically	accessible	web	server	or	S3	bucket.	For	this	example,	a
box	has	been	created	and	uploaded	to	Amazon	S3.	The	box	is	available	(on	S3)	at	the
public	URL:

https://s3.amazonaws.com/vagrantcookbook/boxes/ubuntu/1410/0_1_0/unicorn_vmware.box

2.	 Log	in	to	Atlas	(http://atlas.hashicorp.com)	with	your	user	credentials.	(See	Chapter
6,	Vagrant	in	the	Cloud	for	directions	on	registering	an	Atlas	account.)	Select	the
Create	a	new	box	option:

Note
The	transitional	period	of	the	Atlas	launch	will	likely	see	some	major	changes	to	the
interface	(make	sure	to	consult	the	Atlas	documentation	for	updated	information	on
publishing	boxes	and	using	the	Atlas	interface).

3.	 The	box	creation	screen	will	require	a	name	for	the	box	(the	first	part	of	the	name	is
the	name	of	your	Atlas	account).

https://s3.amazonaws.com/vagrantcookbook/boxes/ubuntu/1410/0_1_0/unicorn_vmware.box
http://atlas.hashicorp.com

4.	 Once	the	box	name	and	description	is	entered,	the	next	screen	will	prompt	you	to
choose	a	version	name	for	the	box	and	a	description	of	the	version.	Box	versions
allow	you	to	create	updated	versions	of	existing	boxes	(a	good	idea	if	you	are
publishing	this	box	to	support	software	development	and	deployment).

5.	 After	creating	a	version,	the	next	screen	allows	you	to	specify	a	required	provider	for
the	box,	which	is	useful	if	your	build	scripts	(such	as	Packer	scripts)	generate	boxes
with	more	than	one	provider	(such	as	publishing	a	VirtualBox	and	a	VMware
environment	with	the	same	set	of	provisioning	scripts):

6.	 Adding	a	provider	will	require	you	to	choose	the	appropriate	provider	(in	this
example,	vmware_desktop)	along	with	either	an	upload	or	a	URL	where	the	box	file
can	be	found.	In	our	example,	the	box	is	available	through	Amazon	S3.

7.	 Once	the	providers	and	URLs	have	been	entered,	the	next	step	is	to	release	the	box	to
the	public	and	add	it	to	the	Atlas	public	index	by	choosing	the	Release	version
option:

8.	 Once	the	box	has	been	released,	a	new	version	is	added	to	the	timeline	(a	history)	of
the	public	box.	This	history	of	versions	and	updates	is	available	to	the	public	and

users	can	specify	these	versions	in	Vagrantfiles.

Once	the	box	has	been	released,	it	can	be	discovered	in	the	Atlas	repository	by	users	and
other	developers.	Atlas	will	keep	track	of	statistics	as	well,	which	lets	popular	box	files
become	more	prominent	in	search	results	and	use.

In	addition,	the	publication	of	boxes	adds	an	entry	in	the	Atlas	overview	that	is	presented
on	login,	where	you	can	see	at	a	glance	the	boxes,	shares,	and	applications	that	the	account
has	active,	including	the	version	numbers	and	status	of	the	boxes	in	the	repository.

There’s	more…
If	you	are	building	boxes	on	a	regular	basis,	you	might	want	to	make	publication	to	the
Atlas	part	of	a	build	process.	For	boxes	hosted	in	private	accounts	on	Atlas,	Packer
(http://packer.io)	offers	a	post-processor	to	publish	Vagrant	boxes.

Note
At	the	time	of	writing	this	book,	the	post-processor	for	Atlas	still	uses	the	name	vagrant-
cloud.	This	might	be	changing	in	coming	months.

Adding	the	post-processor	to	a	Packer	build	will	automate	the	process	of	updating	box
files	and	allows	development	teams	to	update	development	environments	within	Vagrant
itself.

http://packer.io

See	also
Vagrant	Cloud:	http://vagrantcloud.com
Packer:	http://packer.io
The	Vagrant	Cloud	Packer	Post-Processor:	https://www.packer.io/docs/post-
processors/vagrant-cloud.html

http://vagrantcloud.com
http://packer.io
https://www.packer.io/docs/post-processors/vagrant-cloud.html

Appendix	A.	Vagrant	Plugins
Vagrant	itself	has	a	highly	extensible	architecture	that	can	be	utilized	to	provide	additional
functionality.	Vagrant	extensions	are	written	using	Vagrant’s	plugin	framework.	Vagrant
plugins	are	typically	written	to	extend	Vagrant	by:

Creating	new	providers	that	can	execute	commands	and	configure	resources	within
the	guest	operating	systems
Adding	or	modifying	resources	on	guest	operating	systems
Adding	or	modifying	resources	on	the	host	operating	system

Plugins	can	also	create	new	commands	that	can	be	executed	within	the	Vagrant
executable.

Vagrant	plugins	are	written	in	the	language	of	Vagrant	itself:	the	Ruby	programming
language.	Writing	Vagrant	plugins	utilizes	a	framework	to	get	started,	but	will	be	rather
difficult	unless	you	have	a	basic	grasp	of	the	Ruby	programming	language.	This	appendix
will	create	and	explain	a	simple	example	of	a	custom	provider,	one	that	allows	us	to	add	a
new	provisioner	block	to	say	hello	to	the	provisioner.	In	the	end,	this	block	of	code	can	be
added	to	our	Vagrantfile:

		config.vm.provision	:hello	do	|hello|

				hello.inline	=	'Chad!'

		end

This	will	produce	the	output	on	provisioning:

==>	default:	Running	provisioner:	hello…

[stdout]	Hello	Chad!!

Extending	Vagrant	in	this	way	can	be	useful	to	publish	extensions	to	Vagrant	itself.	Users
might	want	to	take	care	in	creating	new	plugins	rather	than	using	existing	provisioners	for
a	few	reasons:

Provisioning	operations	are	typically	best	done	using	existing	provisioners.	Ruby
code	written	to	support	provisioning	operations	will	not	be	typically	portable	in	the
way	that	provisioning	code	written	using	portable	provisioning	tools,	such	as	Chef,
Puppet,	shell	scripts,	and	so	on.
Vagrant	plugins	require	additional	complexity	for	end	users	to	manage.	A	written
Vagrantfile	that	requires	a	plugin	also	requires	users	to	install	plugins	before	the
Vagrantfile	itself	is	usable.
When	using	Vagrant	plugins,	one	must	also	take	care	to	use	Ruby	features	that	are
available	in	the	Ruby	runtime	provided	in	Vagrant	packages.	There	are	ways	of
specifying	these	versions	and	failing	the	plugin,	but	care	in	compatibility	is
something	that	must	be	kept	in	mind.	Developers	should	also	note	that	the	current
versions	of	Vagrant	are	no	longer	distributed	as	RubyGems,	so	dependencies	between
Vagrant	and	Vagrant	plugins	(which	are	distributed	as	RubyGems)	are	implicit	rather
than	explicitly	defined	in	Gemfiles.

Setting	up	a	Ruby	runtime	environment
Getting	started	to	write	Vagrant	plugins	is	identical	to	setting	up	a	Ruby	development
environment.

Getting	ready
It’s	typically	good	practice	to	develop	using	the	target	runtime.	Vagrant	embeds	a	Ruby
runtime	in	the	installed	operating	system	package	that	can	be	used	to	find	the	proper
version	of	Ruby	to	use	as	a	development	target.	You	can	set	up	a	Ruby	environment	by
performing	the	following	steps:

1.	 Find	the	location	of	the	Vagrant	installation.	On	OS	X	for	example,	Vagrant	is
typically	installed	in	/Applications/Vagrant/.	The	Vagrant	installation	contains	a
folder	named	embedded/	that	contains	the	Ruby	runtime	used	by	Vagrant.

2.	 In	a	terminal	window,	execute	a	version	command	on	the	embedded	Ruby.	To	do	this,
change	directories	to	/Applications/Vagrant/embedded/bin	and	execute:

./ruby	–version

This	will	return	a	value	of	the	Ruby	runtime.	In	this	case,	OS	X	package,	Vagrant
1.6.5)	of:

3.	 Set	up	a	development	version	of	Ruby.	The	simplest	method	can	be	to	download,
install,	and	configure	a	package	from	the	Ruby	website,	but	installing	a	tool	such	as
rbenv	(http://rbenv.org)	can	make	Ruby	development	and	installation	of	development
tools	much	simpler.	There	are	many	ways	to	install	rbenv;	on	OS	X,	it	can	be	as
simple	as	using	the	Homebrew	package	manager	(http://brew.sh)	to	install	using	the
brew	install	rbenv	command.

The	companion	ruby-build	project	(https://github.com/sstephenson/ruby-build)	can
also	be	installed	using	a	Homebrew	package:

brew	install	ruby-build

Note
There	are	also	other	methods	of	installing	rbenv	and	ruby-build	for	other	platforms.
In	many	recent	Linux	distributions,	rbenv	is	available	in	package	repositories.	For
example,	installing	on	a	recent	version	of	Ubuntu	is	as	simple	as	installing	with	the
apt-get	install	rbenv	command.

Installing	ruby-build	in	these	cases	is	often	recommended	as	a	plugin	to	rbenv.
Consult	the	documentation	on	GitHub	for	rbenv
(https://github.com/sstephenson/rbenv)	and	ruby-build

http://rbenv.org
http://brew.sh
https://github.com/sstephenson/ruby-build
https://github.com/sstephenson/rbenv

(https://github.com/sstephenson/ruby-build)	for	more	information.

4.	 With	rbenv/ruby-build	installed	and	configured,	we	can	install	the	desired	version	of
Ruby	with	the	installation	command.	In	this	case,	we’ll	install	the	version	we
determined	from	the	Vagrant	runtime	in	an	earlier	step:

rbenv	install	2.0.0p353

5.	 With	Ruby	installed,	we	can	then	install	the	bundler	gem	that	allows	us	to	begin
creating	our	own	gems:

gem	install	bundler

With	these	tools	installed	and	a	good	text	editor	or	Ruby	Integrated	Development
Environment	such	as	JetBrains’	RubyMine	(https://www.jetbrains.com/ruby/),	we	can
start	developing	our	own	Vagrant	plugin.

For	this	example,	we’ll	develop	a	very	simple	plugin	(a	provisioner)	with	a	single	input
variable	that	says	“Hello”	when	the	provisioner	runs.

https://github.com/sstephenson/ruby-build
https://www.jetbrains.com/ruby/

How	to	do	it…
Developing	a	Vagrant	plugin	is	identical	to	developing	a	Ruby	gem	and	extending	the
Vagrant	runtime	by	defining	classes	in	the	VagrantPlugins	module.	In	practice,	it	is	often
useful	to	start	by	consulting	other	plugins	to	determine	how	to	implement	the	plugin
interfaces.	This	example	relies	heavily	on	the	setup	done	in	the	vagrant-aws	plugin
(https://github.com/mitchellh/vagrant-aws)	and	the	vagrant-host-shell	plugin
(https://github.com/phinze/vagrant-host-shell).	You	might	find	these	two	examples	useful,
but	there	are	also	many	more	plugins	(nearly	all	of	them	open	source)	to	use	in	starting	a
project.

This	appendix	will	rely	on	code	examples	included	with	the	book;	we	will	highlight	the
steps	required	and	a	few	important	aspects	of	this	simple	plugin.

1.	 Create	a	new	project	in	a	working	directory	with	the	Ruby	bundler	tool,	which	might
be	the	simplest	way	to	start:

bundle	gem	vagrant_hello

There	is	a	naming	convention	that	Vagrant	plugins	typically	use	where	Vagrant
plugins	start	with	vagrant-	,	but	if	you	are	starting	with	the	bundle,	the	command
bundler	often	interprets	dashes	to	create	folders	within	projects.	When	starting	with
the	gem	command,	it	might	be	simpler	to	create	names	with	an	underscore	character,
then	rename	them	to	fit	the	dash	naming	convention	of	Vagrant	plugins.

Once	the	folder	structure	has	been	renamed,	we	should	have	a	file	structure	that	looks
like	this:

.

├──	Gemfile

├──	LICENSE.txt

├──	README.md

├──	Rakefile

├──	lib

│			├──	vagrant-hello

│			│			└──	version.rb

│			└──	vagrant-hello.rb

└──	vagrant-hello.gemspec

2.	 With	the	gem	dependencies	in	place,	declare	dependencies	in	our	Gemfile	and
gemspec	(vagrant-hello.gemspec).

The	Gemfile	is	fairly	simple;	we	simply	declare	that	we	wish	to	use	a	gemspec	file
and	we	will	declare	the	Vagrant	source	code	as	well.	This	gem	is	not	added	as	a
requirement	to	our	plugin	gem	because	we	assume	that	a	Vagrant	plugin	will	run
within	the	context	of	Vagrant	itself	at	runtime.	What	we	will	need	for	development	is
the	code	that	defines	the	VagrantPlugin	module:

source	'https://rubygems.org'

#	Specify	your	gem's	dependencies	in	vagrant-hello.gemspec

gemspec

https://github.com/mitchellh/vagrant-aws
https://github.com/phinze/vagrant-host-shell

gem	"vagrant",	:git	=>	"git://github.com/mitchellh/vagrant.git"

With	the	Gemfile	written,	we	can	edit	the	vagrant-hello.gemspec	to	define	some
information	and	development	dependencies:

#	coding:	utf-8

$:.unshift	File.expand_path("../lib",	__FILE__)

require	'vagrant-hello/version'

Gem::Specification.new	do	|spec|

		spec.name										=	"vagrant-hello"

		spec.version							=	VagrantPlugins::Hello::VERSION

		spec.authors							=	["Chad	Thompson"]

		spec.email									=	["chad_thompson@mac.com"]

		spec.summary							=	"Say	Hello"

		spec.description			=	"Say	Hello"

		spec.homepage						=	""

		spec.license							=	"Apache2"

		spec.add_development_dependency	"bundler",	"~>	1.7"

		spec.add_development_dependency	"rake",	"~>	10.0"

end

Most	of	this	is	gem	metadata	that	describes	the	gem	itself	and	some	information	that
could	be	published	to	a	gem	repository.	We’ve	also	declared	a	few	dependencies	for
development,	ensuring	that	we	have	the	rake	and	bundle	tasks	commands	available
to	our	project.

Two	items	to	take	note	of	are	as	follows:

We	require	the	version	file	in	our	lib	directory	named	vagrant-hello/version.
This	corresponds	to	the	version.rb	file	present	in	this	directory.
The	version	itself	will	be	part	of	the	VagrantPlugins	module.

bundle	install

With	these	dependency	files	in	place,	we	can	install	the	dependencies	(bundler,	rake)
as	well	as	the	Vagrant	source	code	with	the	simple	command:

This	will	download	several	Ruby	gems	as	well	as	download	the	Vagrant	source	code
from	Git	to	our	Ruby	runtime.

Note
We	might	want	to	take	care	that	our	Vagrant	runtime	that	we	normally	use	is	in	our
executable	PATH	user	variable.	Verify	the	version	of	Vagrant	that	your	system	will	use
with	the	which	vagrant	command.

If	the	command	returns	the	normal	Vagrant,	your	system	will	continue	to	use	the
installed	Vagrant	executables.	If	the	system	returns	a	path	that	includes
.rbenv/shims,	you	might	wish	to	modify	your	executable	PATH	or	simply	make	sure
to	delete	the	Vagrant	executable	in	the	rbenv	environment.

3.	 Modify	the	version	file	to	match	the	structure	we	declared	in	the	gemspec	file	in	the

previous	step:

module	VagrantPlugins

		module	Hello

				VERSION	=	"0.0.1"

		end

end

Note	that	our	version	file	defines	the	VERSION	variable	to	be	in	the	VagrantPlugins
parent	module	and	the	Hello	submodule.	This	will	ensure	that	our	plugin	defines	an
extension	within	the	larger	Vagrant	plugins	module	that	is	part	of	the	Vagrant
runtime.

4.	 Define	our	“Hello”	plugin	by	creating	the	plugin.rb	file	in	the	lib/	directory.	This
Ruby	file	contains	a	bit	of	error	handling	(to	ensure	that	Vagrant	is	present)	and
includes	our	plugin	definition:

begin

		require	'vagrant'

		rescue	LoadError

		raise	'The	vagrant-hello	plugin	must	be	run	within	Vagrant.'

end

module	VagrantPlugins::Hello

		class	Plugin	<	Vagrant.plugin('2')

				name	'vagrant-hello'

				description	<<-DESC.gsub(/^	+/,	'')

						A	simple	plugin	to	say	hello	in	the	host	OS.

				DESC

				config(:hello,	:provisioner)	do

						require_relative	'config'

						Config

				end

				provisioner(:hello)	do

						require_relative	'provisioner'

						Provisioner

				end

		end

end

Note	here	a	few	items	of	syntax:

The	definition	of	the	HelloPlugin	class	that	inherits	from	a	specific	version	of
Vagrant.	This	allows	future	versions	of	Vagrant	to	identify	and	perhaps	use	your
plugin	without	further	modification.	This	extension	guarantees	that	your	plugin
will	always	load	and	not	potentially	corrupt	the	operation	of	future	versions	of
Vagrant.
Note	here	the	syntax	used	to	call	the	config	and	provisioner	methods,	each
will	require	a	relative	file	(in	this	case,	config.rb	and	provisioner.rb)	and
call	the	appropriate	functions.

5.	 Define	the	configuration	in	config.rb.	The	config	file	typically	defines	how	our

Vagrantfiles	will	interact	with	the	plugin.	In	this	case,	the	accessor	:inline
attribute	allows	us	to	create	a	configuration	parameter	named	inline	in	the
provisioner	block	of	our	Vagrantfile:

module	VagrantPlugins::Hello

		class	Config	<	Vagrant.plugin('2',	:config)

				attr_accessor	:inline

				def	initialize

						@inline	=	UNSET_VALUE

				end

				def	finalize!

						@inline	=	nil	if	@inline	==	UNSET_VALUE

				end

				def	validate(machine)

						errors	=	_detected_errors

						unless	inline

								errors	<<	':hello	provisioner	requires	someone	to	say	hello	

to!'

						end

				end

		end

end

6.	 Implement	the	actions	of	the	provisioner	in	an	additional	file	named
provisioner.rb:

module	VagrantPlugins::Hello

		class	Provisioner	<	Vagrant.plugin('2',	:provisioner)

				def	provision

						result	=	Vagrant::Util::Subprocess.execute(

										'bash',

										'-c',

										"echo	'Hello	#{config.inline}!'",

										:notify	=>	[:stdout,	:stderr]

)	do	|io_name,	data|

								@machine.env.ui.info	"[#{io_name}]	#{data}"

						end

				end

		end

end

In	this	example,	the	provisioner	is	very	basic;	a	provision	method	will	simply	execute
a	Bash	process	within	the	guest	that	echoes	the	“Hello	string	”	with	the	value	of
config.inline	appended	to	the	output.

7.	 Create	a	simple	Vagrantfile	to	test	our	new	plugin.	In	this	case,	we’ll	also	need	to	tell
our	Vagrantfile	to	load	the	local	plugin	(gem)	file:	vagrant-hello.

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

$LOAD_PATH.unshift	File.expand_path('../../lib',	__FILE__)

require	'vagrant-hello'

Vagrant.configure("2")	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-32-nocm"

		config.vm.provision	:hello	do	|hello|

				hello.inline	=	'Chad!'

		end

end

8.	 With	everything	in	place,	our	file	structure	now	looks	like	this:

.

├──	Gemfile

├──	Gemfile.lock

├──	LICENSE.txt

├──	README.md

├──	Rakefile

├──	Vagrantfile

├──	lib

│			├──	vagrant-hello

│			│			├──	config.rb

│			│			├──	plugin.rb

│			│			├──	provisioner.rb

│			│			└──	version.rb

│			└──	vagrant-hello.rb

└──	vagrant-hello.gemspec

Start	this	local	environment	with	a	slightly	different	command:

bundle	exec	vagrant	up	–provisioner=virtualbox

The	bundle	exec	command	will	ensure	that	our	Ruby	runtime	is	defined	locally.	If	you
have	defined	a	different	default	provisioner	for	Vagrant,	you	might	also	wish	to	define	our
box	provisioner	to	be	the	virtualbox	provisioner	that	is	bundled	with	Vagrant.

The	vagrant	up	command	should	proceed	normally.	The	output	will	provision	and	boot	a
virtual	machine	as	normal	(using	a	base	box),	with	the	final	output	being	that	of	our
custom	provisioner:

==>	default:	Running	provisioner:	hello…

[stdout]	Hello	Chad!!

We	have	now	implemented	a	simple	provisioner	that	can	be	built	with	a	rake	task	and
distributed	as	a	RubyGem.	Publishing	the	gem	to	RubyForge	allows	the	following
command	to	install	the	plugin	to	your	local	Vagrant	installation:

vagrant	plugin	install	vagrant-hello	

How	it	works…
Developing	a	Vagrant	plugin	is	very	similar	to	developing	a	typical	Ruby	gem;	if	you	are
not	familiar	with	Gem	development,	there	are	a	variety	of	Ruby	programming	books	that
can	help	you	get	started.	The	structure	of	the	Vagrant	plugins	allows	you	to	define	a	few
different	types	of	functions:

Provisioners:	In	this	example,	we	defined	a	simple	provisioner	that	executed	a	Bash
script.
Guests	and	guest	capabilities:	These	functions	allow	plugin	developers	to	both	test
for	certain	guest	operating	systems	and	add	functions	to	guests	without	requiring
additional	provisioners.
Hosts	and	host	capabilities:	These	functions	allow	Vagrant	to	modify	functions	of
the	host	operating	system	within	the	confines	of	operating	system	permissions.
Primary	examples	are	plugins	that	modify	the	host	operating	system’s	/etc/host
files	or	DNS	entries	that	allow	other	system	services	to	refer	to	Vagrant	machines	by
a	defined	name	in	a	Vagrantfile.
Providers:	Defining	providers	allows	Vagrant	to	provision	and	manage	virtual
environments	other	than	VirtualBox.	For	example,	Vagrant’s	support	for	VMware,
Amazon	Web	Services,	and	DigitalOcean	are	all	custom	providers	that	use	the	APIs
of	each	of	these	services.

The	plugin	framework	allows	developers	to	extend	the	Vagrant	runtime	that	allows	for
additional	capability.	However,	there	is	a	downside	to	this	feature:	using	a	plugin	requires
end	users	to	install	it	prior	to	executing	Vagrantfiles	that	require	the	plugin,	and	code
written	in	plugins	can	be	nonportable	if	Vagrant	is	being	used	to	support	a	full
development	lifecycle	from	Vagrant	development	boxes	to	production	servers.	In	this
specific	case	(executing	a	bash	command),	a	simpler	and	more	portable	solution	would	be
to	use	the	existing	shell	provisioner.	While	there	are	some	cases	where	plugin	extensibility
is	desired,	developing	plugins	is	something	that	should	be	carefully	considered	in	the
majority	of	software	development	cases.

See	also
The	Ruby	programming	language:	http://ruby-lang.org
rbenv	(http://rbenv.org):	a	tool	to	set	up	Ruby	development	environments
ruby-build	(https://github.com/sstephenson/ruby-build):	A	companion	to	rbenv	to
install	Ruby	versions
A	list	of	currently	available	plugins	published	by	the	Vagrant	project:
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

http://ruby-lang.org
http://rbenv.org
https://github.com/sstephenson/ruby-build
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

Appendix	B.	A	Puppet	Development
Environment
While	we	covered	the	use	of	Puppet	as	a	provisioning	environment	in	Chapter	4,
Provisioning	with	Configuration	Management	Tools,	the	use	of	Vagrant	to	create	a
development	environment	for	configuration	management	is	something	that	is	worth
covering	in	a	little	more	depth.	While	this	appendix	will	cover	the	use	of	Vagrant	to	create
Vagrant	development	environment,	many	of	the	same	principles	apply	to	other
configuration	management	environments	(particularly	the	configuration	management	tools
that	rely	on	a	master/agent	architecture).

There	are	many	ways	to	set	up	a	Puppet	development	environment.	A	few	common
approaches	are	as	follows:

The	use	of	a	single	machine	environment	and	the	puppet	apply	provisioner	to
develop	single	Puppet	modules.	This	is	a	common	setup	to	create	and	test	a	single
module.
The	use	of	a	multimachine	environment	to	simulate	a	Puppetmaster	or	Puppet	agent
environment.	This	scenario	allows	for	not	only	a	full	test	of	the	interaction	of	agent
and	master,	but	also	makes	setting	up	a	cluster	of	machines	for	software	testing	a	bit
simpler.	(For	example,	a	scenario	that	allows	a	developer	to	set	up	a	multi-tier
application	or	a	load-balanced	web	cluster.)

Using	configuration	management	tools	can	allow	an	entire	development	stack	to	be
created	locally,	either	as	a	development	workstation	or	perhaps	within	a	continuous
integration	environment.	In	this	appendix,	we’ll	take	a	deeper	look	at	a	few	ways	to	use
Vagrant	as	a	Puppet	development	environment.

Before	we	can	set	up	a	development	environment,	we’ll	note	the	two	ways	that	we	can
apply	puppet	manifests	to	a	node:

With	the	puppet	apply	provisioner:	This	allows	us	to	apply	a	Puppet	manifest
With	the	puppet	agent	provisioner:	This	boots	a	virtual	machine	and	configures	a
Puppet	agent	to	retrieve	a	catalog	from	a	remote	Puppet	server

In	this	example,	we’ll	look	at	creating	environments	using	these	two	techniques.

Setting	up	a	Puppetmaster	with	the
puppet	apply	provisioner
In	the	first	scenario,	we’ll	take	a	deeper	look	at	how	to	set	up	a	Puppetmaster	with	the
apply	provisioner—using	Puppet	to	manage	the	Puppetmaster	itself.	We	can	start	this
project	in	a	couple	of	ways:

Bootstrap	an	entire	Puppet	environment	by	installing	and	configuring	the	Puppet
Labs	package	repositories	and	installing	Puppet
Using	the	Vagrant	images	provided	by	Puppet	Labs	and	available	on	the	Vagrant
Cloud

In	this	example,	we’ll	start	with	the	Puppet	Labs	images.	These	images	will	have	the
Puppet	agent	preinstalled	and	ready	to	use.	Bootstrapping	instances	to	install	Puppet
typically	involves	installation	and	startup	with	a	shell	script	that	can	make	a	development
environment	more	complicated.

Note
A	quick	note	on	using	Ubuntu	images	is	that	when	using	Debian-based	boxes,	it	is
typically	a	good	idea	(if	not	required)	to	execute	an	apt-get	update	command	prior	to
executing	package	installations.	As	this	often	needs	to	be	done	prior	to	bootstrapping	a
Puppet	install,	it’s	often	best	to	do	this	with	an	inline	shell	provisioner.

How	to	do	it…
In	this	section,	we’ll	discuss	how	we	can	set	up	a	source-controlled	Puppetmaster	and	also
discuss	how	it	can	be	bootstrapped.	You	will	also	learn	how	to	create	Puppet	nodes.	Let’s
begin.

Setting	up	a	source	controlled	Puppetmaster
There	are	a	few	ways	to	start	a	Puppetmaster	project	with	Vagrant,	but	I’ve	found	that	it	is
often	easiest	to	start	with	a	working	(if	empty)	Puppetmaster	configuration	and	source
control	from	a	new	Puppetmaster	installation.	To	start	a	project:

1.	 Create	a	new	Vagrant	machine.	Start	by	initializing	a	box	from	a	box	provided	by
Puppet	Labs	and	is	available	on	the	Vagrant	Cloud.	For	this	example,	we’ll	use:

vagrant	init	puppetlabs/ubuntu-14.04-64-puppet

2.	 To	start,	we	can	add	a	simple	shell	provisioner	to	execute	an	apt-get	update
command	(for	Debian-based	machines	only)	and	execute	the	installation	of	a
Puppetmaster:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

config.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

		

		config.vm.define	"puppetmaster"	do	|puppetmaster|

				puppetmaster.vm.hostname	=	"puppet"

				puppetmaster.vm.provision	"shell",	inline:	"apt-get	update	&&	apt-

get	install	-y	puppetmaster"

		end

end

This	will	start	a	Vagrant	box	and	install	the	puppetmaster	package.	We’ll	use	this
initial	package	installation	to	create	an	initial	configuration	directory.

3.	 Start	the	box	with	the	vagrant	up	command.
4.	 Once	the	box	has	finished	booting,	copy	the	/etc/puppet	directory	to	the	/vagrant

directory.	Access	the	machine	with	the	vagrant	ssh	command	and	copy	the
directory	with	the	cp	/etc/puppet	/vagrant	command.

This	will	copy	the	contents	of	the	configuration	directory	outside	the	virtual	machine
to	the	host	machine.	Verify	that	the	contents	of	the	working	directory	look	something
like	this:

├──	Vagrantfile

├──	puppet

│			├──	environments

│			│			└──	example_env

│			│							├──	README.environment

│			│							├──	manifests

│			│							└──	modules

│			├──	manifests

│			├──	modules

│			├──	puppet.conf

│			└──	templates

5.	 With	our	working	directory	set,	destroy	the	Vagrant	machine	with	the	vagrant
destroy	command.	This	will	leave	a	clean	working	directory	to	begin	working.

6.	 Before	starting	with	our	Puppetmaster,	let’s	also	allow	all	certificate	exchanges	to	be
signed	automatically.	Create	a	file	in	the	Puppet	root	directory	(the	directory	with
puppet.conf)	named	autosign.conf	with	a	single	line:

*

This	allows	all	certificate	requests	to	be	allowed	to	our	local	Puppetmaster.	This	isn’t
a	good	idea	in	a	production	environment,	but	it	will	make	our	development	processes
a	bit	simpler.

Bootstrapping	a	Puppetmaster
Now	that	we	have	a	working	directory,	we	can	start	bootstrapping	a	Puppetmaster.	In
some	cases,	a	Puppetmaster	can	be	bootstrapped	with	a	shell	script,	but	it’s	far	more	fun
(and	useful!)	to	manage	a	Puppetmaster	with	the	Puppet	itself.

1.	 Start	with	our	Vagrantfile	in	the	previous	step,	but	remove	the	step	of	installing	the
Puppetmaster	itself:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

		config.vm.define	"puppetmaster"	do	|puppetmaster|

				puppetmaster.vm.hostname	=	"puppet"

				puppetmaster.vm.provision	"shell",	inline:	"apt-get	update"

		end

end

This	will	start	our	Puppet	machine	and	update	the	package	repositories	for	use.

2.	 Let’s	start	simply	by	creating	a	single	manifest	file	to	bootstrap	our	Puppetmaster.	In
the	manifests/	folder,	add	a	new	file	named	site.pp.	This	file	is	the	manifest	file
for	our	Puppetmaster.	Define	the	content	of	this	file	to	simply	output	a	notification.
This	will	be	the	start	of	our	iterative	approach	to	develop	puppet	manifests:

node	/^puppet/	{

		notify{"Install	a	Puppetmaster":	}

}

3.	 Define	a	puppet	apply	provisioner	in	the	Vagrantfile.	Immediately	after	the	shell
provisioner,	add	the	Puppet	provisioner	block:

				puppetmaster.vm.provision	"puppet"		do	|puppet|

						puppet.manifests_path	=	"puppet/manifests"

						puppet.manifest_file		=	"site.pp"

						puppet.module_path				=	"puppet/modules"

				end

This	is	a	basic	puppet	apply	provisioner	block.	It	will	look	to	begin	catalog
compilation	with	the	site.pp	file	and	use	the	modules/	directory	to	hold	reusable
Puppet	modules.

4.	 Start	the	virtual	machine	with	the	vagrant	up	command.	The	final	step	in	booting
the	machine	should	be	output	from	the	Puppet	provisioner:

==>	puppetmaster:	Notice:	Compiled	catalog	for	puppet.localdomain	in	

environment	production	in	0.09	seconds

==>	puppetmaster:	Notice:	Install	a	Puppetmaster

==>	puppetmaster:	Notice:	/Stage[main]/Main/Node[puppet]/Notify[Install	

a	Puppetmaster]/message:	defined	'message'	as	'Install	a	Puppetmaster'

==>	puppetmaster:	Notice:	Finished	catalog	run	in	0.01	seconds

Our	output	notification	here	notes	that	the	notify	resource	was	successfully	called
by	the	Puppet	provisioner.	The	Puppet	provisioner	can	be	called	subsequently	with
the	vagrant	provision	command	rather	than	doing	a	full	restart.

5.	 With	our	initial	Puppetmaster	machine	ready	to	provision,	let’s	create	an	environment
that	allows	us	to	modify	the	configuration	of	the	Puppetmaster	(and	any	Puppet
modules)	using	a	local	text	editor.	To	do	this,	we’ll	link	our	puppet/	directory	in	our
host	working	directory	to	the	/etc/puppet	configuration	directory	on	the	guest.	(This
was	our	reason	to	copy	files	in	our	first	step.)	To	write	this	puppet	module,	we	will
have	to:

1.	 Install	the	Puppetmaster	package.
2.	 Connect	to	the	Vagrant	machine	with	the	vagrant	ssh	command.
3.	 Remove	the	existing	/etc/puppet	directory	installed	as	part	of	the

Puppetmaster	package.	We	will	replace	the	installed	directory	with	the	one	we
created	earlier	in	our	Vagrant	working	directory.

4.	 Create	a	symbolic	link	in	the	guest	from	/vagrant/puppet	to	/etc/puppet.
5.	 Restart	the	Puppetmaster	daemon	with	a	service	puppetmaster	restart

command.	This	will	read	any	differences	that	are	present	in	the	symlinked
working	directory.

If	you	have	done	puppet	development	previously,	you	might	recognize	this	as	a
potential	use	of	the	package-file-service	pattern.	We	can	replace	the	notify
command	in	the	site.pp	file	created	previously	with	some	Puppet	code	that	reflects
the	installation	of	the	Puppetmaster.	The	full	site.pp	manifest	looks	like	this:

node	/^puppet/	{

		package{"puppetmaster":

				ensure	=>	'3.7.3-1puppetlabs1',

		}

		file{"/etc/puppet":

				ensure		=>	'link',

				force			=>	'true',

				target		=>	'/vagrant/puppet',

				require	=>	Package["puppetmaster"],

				notify		=>	Service["puppetmaster"],

		}

		service{"puppetmaster":

				ensure	=>	running,

				require	=>	Package['puppetmaster'],

		}

}

This	will	install	the	Puppetmaster,	link	our	Puppetmaster	code,	and	start	the
Puppetmaster.

6.	 Execute	the	manifest	by	running	vagrant	provision	puppetmaster.	This	will
provision	and	start	a	Puppetmaster	instance	in	the	virtual	machine.

7.	 Verify	that	the	Puppetmaster	is	running	successfully	by	logging	in	to	the	machine
(vagrant	ssh	puppetmaster)	and	running	the	Puppet	agent	process.	After	logging	in
to	the	machine,	become	a	super	user	by	executing	the	following	command:

sudo	puppet	agent	–t

This	will	start	the	Puppet	agent.	The	Puppet	agent	will	attempt	to	communicate	with
a	Puppetmaster	at	the	default	address	(Puppet)	and	retrieve	a	catalog.	The	Puppet
agent	should	return	quickly,	as	no	changes	are	registered	between	the	run	of	the
Vagrant	provisioner	and	the	agent	run:

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Caching	catalog	for	puppet.localdomain

Info:	Applying	configuration	version	'1416969518'

Notice:	Finished	catalog	run	in	0.09	seconds

This	Puppetmaster	setup	can	be	used	to	continue	developing	Puppet	code	in	order	to
deploy	using	the	masterless	or	agent	approach	(both	should	be	usable	interchangeably).
When	developing	modules,	it	is	often	enough	to	develop	using	the	masterless	approach,
but	it	can	also	be	useful	to	see	how	nodes	interact	in	a	full	master/agent	environment.

Provisioning	nodes	with	a	Puppetmaster
Vagrant	is	a	powerful	tool	to	create	multiple	virtual	machines.	Puppet	is	an	equally
powerful	tool	to	manage	multiple	nodes.	Let’s	create	a	second	node	to	be	provisioned
entirely	from	the	Puppetmaster	started	in	the	previous	section.

1.	 Define	a	second	node	in	the	Vagrantfile.	We’ll	make	sure	that	this	second	node	can
access	the	Puppetmaster	as	Puppet	by	adding	a	fixed	IP	for	the	Puppetmaster	and
creating	an	/etc/hosts/	entry	that	allows	our	new	node	to	access	the	Puppetmaster
at	the	default	address	of	Puppet.	A	complete	Vagrantfile	with	both	nodes	looks	like
this:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

$puppetmaster_ip	=	"192.168.30.134"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

config.vm.box	=	"puppetlabs/ubuntu-14.04-64-puppet"

		config.vm.define	"puppetmaster"	do	|puppetmaster|

				puppetmaster.vm.hostname	=	"puppet"

				puppetmaster.vm.network	"private_network",	ip:	$puppetmaster_ip

				puppetmaster.vm.provision	"shell"	,	inline:	"apt-get	update"

				puppetmaster.vm.provision	"puppet"		do	|puppet|

						puppet.manifests_path	=	"puppet/manifests"

						puppet.manifest_file		=	"site.pp"

						puppet.module_path				=	"puppet/modules"

				end

		end

		config.vm.define	"web01"	do	|web|

				web.vm.hostname	=	"web01"

				web.vm.provision	"shell",	inline:	"apt-get	update"

				web.vm.provision	"shell",	inline:	"echo	'#{$puppetmaster_ip}	puppet	

puppet.localdomain'	>>	/etc/hosts"

		end

end

This	defines	our	second	node	as	web01.

2.	 Start	the	node	with	the	vagrant	up	web01	command.
3.	 SSH	into	the	web01	node	with	the	vagrant	ssh	web01	command.
4.	 In	the	web01	node,	start	the	Puppet	agent	with	the	sudo	puppet	agent	–t	command.

This	will	start	the	Puppet	agent	and	quickly	return	an	error	as	our	Puppetmaster	has
not	yet	been	configured	to	compile	a	catalog	for	web	nodes.

5.	 Define	a	web	node	by	editing	the	puppet/manifests/site.pp	file	(the	Puppetmaster
manifest	file)	in	our	working	directory.	We’ll	make	this	simple	for	now:	simply
install	the	Apache	web	server	package.	In	this	case,	being	Ubuntu	only	for	now.	The
additional	node	looks	like	this:

node	/^web/	{

		package{"apache2":	ensure	=>	installed,}

}

6.	 Configure	the	Vagrant	Puppet	agent	provisioner	in	the	Vagrantfile.	Add	a
provisioning	block	to	the	web01	machine	definition:

				web.vm.provision	"puppet_server"	do	|puppet|

						puppet.puppet_server	=	"puppet"

				end

This	will	start	the	Puppet	agent	using	the	machine	name	puppet	to	retrieve	a	catalog.
It	would	also	be	possible	to	use	the	IP	address	of	the	Puppetmaster	itself,	but	having
the	definition	of	the	IP	address	in	the	/etc/hosts	file	allows	the	Puppet	agent	to	run
independently	of	Vagrant	provisioners	if	desired.

7.	 Run	the	Puppet	server	provisioner	with	the	vagrant	provision	web01	command.
This	will	produce	provisioner	output	that	ends	in	a	notification	that	the	Puppet	agent
is	running:

==>	web01:	Running	provisioner:	puppet_server…

==>	web01:	Running	Puppet	agent…

Note
If	you	encounter	issues	related	to	waitforcert	errors,	be	sure	to	verify	that	the
Puppetmaster	is	configured	to	autosign	certificates.	While	this	might	not	be	desirable
in	a	real	production	environment,	autosigning	certificates	can	make	development
simpler.	See	https://docs.puppetlabs.com/puppet/latest/reference/ssl_autosign.html
for	more	information	on	SSL	and	certificate	verification	options	with	Puppetmasters.

8.	 Log	in	to	the	web	server	(vagrant	ssh	web01)	and	verify	that	the	apache2	package
has	been	installed:

vagrant@web01:~$	which	apache2

/usr/sbin/apache2

The	results	of	the	Puppet	run	can	also	be	verified	through	report	creation	on	the	node
at	/var/lib/puppet/state/last_run_report.yaml	or	any	configured	reporting	on
the	Puppetmaster.

Now,	we	have	a	working	node	connecting	to	the	Puppetmaster	and	retrieving	catalogs.	We
can	continue	developing	our	manifests	by	adding	more	resources	to	our	manifest,	or	by
adding	modules	to	the	puppet/modules	directory,	and	calling	the	appropriate	classes	in
our	manifest.

Using	Vagrant	as	a	development	environment	for	either	individual	modules	or	entire
infrastructures	can	take	any	one	of	a	number	of	methods.	This	example	is	simply	one
configuration	that	can	be	used	to	develop	and	test	a	puppet	infrastructure.

https://docs.puppetlabs.com/puppet/latest/reference/ssl_autosign.html

There’s	more…
There	is	another	important	use	case	to	use	Vagrant	in	conjunction	with	Puppet
development:	the	use	of	Vagrant	as	part	of	an	acceptance	testing	framework.	Puppet	Labs
recently	released	an	open	source	framework	called	Beaker
(https://github.com/puppetlabs/beaker/wiki)	to	test	puppet	modules	against	a	variety	of
operating	systems.	Beaker	uses	a	number	of	hosts	files	to	define	virtual	machines	(or
virtual	environments)	in	order	to	test	Puppet	modules.

A	quick	way	to	get	started	with	writing	modules	with	Beaker	tests	is	to	install	Gareth
Rushgrove’s	puppet-module-skeleton	project	available	at
https://github.com/garethr/puppet-module-skeleton.	The	skeleton	will	extend	the
functionality	of	the	puppet	module	command,	generating	stub	files	for	configuration	as
well	as	a	number	of	test	files	using	puppet-rspec	and	beaker	as	test	frameworks.	Once
the	framework	is	installed,	generating	a	module	will	also	generate	a	few	stub	hosts	files
for	Beaker.	For	example,	the	hosts	file	generated	to	test	against	a	CentOS	Vagrant	box:

HOSTS:

		centos-64-x64:

				roles:

						-	master

				platform:	el-6-x86_64

				box	:	centos-64-x64-vbox4210-nocm

				box_url	:	http://puppet-vagrant-boxes.puppetlabs.com/centos-64-x64-

vbox4210-nocm.box

				hypervisor	:	vagrant

CONFIG:

		log_level:	verbose

		type:	foss

With	these	files	in	place	(and	proper	role	definition,	and	so	on),	the	test	framework	will
start	Vagrant	machines	(or	multiple	Vagrant	machines,	depending	on	the	number	of	test
cases)	by	using	the	rake	acceptance	build	command.

Beaker	is	an	example	of	using	Vagrant	not	only	as	a	development	tool	within	a	single
virtual	environment,	but	also	as	a	tool	to	test	a	Puppet	module	across	several	virtual
environments	and	operating	systems.

https://github.com/puppetlabs/beaker/wiki
https://github.com/garethr/puppet-module-skeleton

See	also
Puppet:	http://puppetlabs.com	(the	homepage	of	Puppet	Labs	and	the	Puppet
configuration	tool)
Puppet	Labs	Documentation:	http://docs.puppetlabs.com
Beaker:	https://github.com/puppetlabs/beaker
The	puppet-module-skeleton	project:	https://github.com/garethr/puppet-module-
skeleton

http://puppetlabs.com
http://docs.puppetlabs.com
https://github.com/puppetlabs/beaker
https://github.com/garethr/puppet-module-skeleton

Appendix	C.	Using	Docker	with	Vagrant
In	this	chapter,	we	will	cover	the	following	topics:

Running	Docker	containers	with	Vagrant
Mixed	environments	–	the	Docker	provisioner

Introduction
The	recipes	in	this	book	are	focused	mainly	on	the	management	and	configuration	of
virtual	machines	(runtime	environments	that	mimic	the	operation	of	entire	operating
systems).	In	actual	use	and	operation	of	a	virtual	machine,	however,	there	are	typically
only	a	few	processes	running	in	the	machine	that	are	of	importance	to	development	and
deployment.	For	example,	the	deployment	of	web	applications	often	requires	the
deployment	of	a	web	server	(and	perhaps	some	middleware	applications),	but	a	virtual
machine	with	a	full	operating	system	will	also	run	several	processes	required	to	manage
the	entire	operating	system	of	the	virtual	machine	itself.	As	such,	large	deployments	of
virtual	machines	to	service	software	applications	can	become	more	inefficient	as
computational	resources	are	used	for	virtual	environment	operating	systems	rather	than	the
computational	needs	of	web	applications.

While	these	problems	are	an	issue	for	hypervisor	applications,	there	have	been	other
attempts	to	virtualize	environments	that	do	not	require	hypervisors.	In	fact,	the	isolation	of
processes	into	separate	runtime	environments	and	operating	systems	have	been	how	most
multiuser	environments	have	operated	since	the	beginning	of	the	shared	environment
(from	mainframe	process	isolation	to	technologies,	such	as	Solaris	Zones	and	BSD
chroot	jails).	The	Linux	project	(as	of	version	2.6.24	of	the	Linux	kernel)	introduced	a
similar	technology	called	Linux	Containers	(LXC)	to	run	separate	processes	in	isolation
from	others	without	requiring	hypervisor	applications	and	separate	operating	systems.

An	open	source	project	was	started	by	dotCloud	(a	cloud	hosting	company)	to	help
manage	the	complexity	of	dealing	with	containers	into	simple	build	and	deployment
processes.	This	project	was	named	Docker	and	has	now	grown	to	become	the	focus	and
the	name	of	the	company	itself.	Docker	is	focused	on	the	use	of	containers	on	the	Linux
operating	system.	A	single	host	operating	system	can	host	containers	running	software
from	databases	to	web	servers,	and	even	entirely	different	Linux	distributions.

While	there	are	other	methods	to	manage	Linux	Containers,	Docker	has	been	integrated
into	a	large	number	of	vendor	offerings	that	allows	developers	many	choices	to	deploy
applications	packaged	as	Docker	containers.	In	this	appendix,	we’ll	take	a	look	at	how
Vagrant	can	integrate	with	Docker	development	workflows.

Running	Docker	containers	with	Vagrant
The	first	thing	we’ll	investigate	is	how	to	run	and	develop	simple	Docker	containers	using
Vagrant.	In	recent	versions,	Vagrant	ships	with	a	Docker	provider	that	allows	Vagrant
users	a	simple	environment	to	start	and	run	containers.

Before	we	can	start,	however,	we	need	to	note	that	Docker	builds	on	top	of	Linux
containers.	As	such,	a	Docker	container	only	runs	on	Linux	operating	systems.	There	are
two	main	approaches	to	run	Docker	containers	on	development	workstations:

Developing	Docker	containers	natively	on	a	Linux	platform:	This	is	the	approach
used	in	a	number	of	development	books	and	guides,	including	The	Docker	Book	by
James	Turnbull.	Developing	with	Linux	requires	either	a	native	Linux	installation	or
perhaps	a	Linux	desktop	virtual	machine,	such	as	a	Linux	distribution	running	on	a
VMware	virtual	machine.
Developing	Docker	containers	using	the	boot2docker	environment
(http://boot2docker.io).	boot2docker	is	a	Linux	VM	designed	to	host	Docker
containers	on	OS	X	or	Windows	operating	systems.	boot2docker	has	a	package
installer	that	will	guide	users	in	the	use	of	the	environment.

Note
We’ll	take	some	care	to	note	that	there	are	two	projects	that	we	refer	to	in	this
appendix.	One	is	the	official	boot2docker	project	(http://boot2docker.io),	and	the
other	is	Mitchell	Hashimoto’s	boot2docker-vagrant-box
(https://github.com/mitchellh/boot2docker-vagrant-box).	These	environments	are
only	necessary	to	use	Docker	on	a	Windows	or	OS	X	machine.	As	Docker	is	built	on
top	of	Linux	Containers,	Docker	will	run	natively	on	Linux	desktop	or	server
machines.

The	Vagrant	Docker	provider	can	support	either	one	of	these	approaches:	managing
containers	natively	on	Linux	or	managing	containers	through	the	boot2docker
environment.	Vagrant	can	even	manage	the	installation	and	operation	of	the	boot2docker
environment	on	Windows	and	OS	X,	which	can	make	it	simpler	for	users	to	get	started.

This	appendix	will	focus	on	using	Vagrant	on	OS	X	(with	the	aid	of	the	Docker	provider)
to	create	a	simple	Docker	development	environment.	In	particular,	we’ll	launch	a	MySQL
database	that	uses	a	container	provided	by	the	MySQL	project,	and	use	a	simple
Dockerfile	to	package	a	simple	web	application.

http://boot2docker.io
http://boot2docker.io
https://github.com/mitchellh/boot2docker-vagrant-box

How	to	do	it…
In	this	section,	we’ll	learn	how	to	install	a	Docker	image	from	a	repository	and	build	a
Docker	image	with	Vagrant.

Installing	a	Docker	image	from	a	repository
We’ll	start	with	a	simple	case:	installing	a	Docker	container	from	a	repository	(a	MySQL
container)	and	connecting	it	to	an	external	tool	for	development	(the	MySQL	Workbench
or	a	client	tool	of	your	choice).	We’ll	need	to	initialize	the	boot2docker	environment	and
use	some	Vagrant	tools	to	interact	with	the	environment	and	the	deployed	containers.

Before	we	can	start,	we’ll	need	to	find	a	suitable	Docker	image	to	launch.	One	of	the
unique	advantages	to	use	Docker	as	a	development	environment	is	its	ability	to	select	a
base	Docker	image,	then	add	successive	build	steps	on	top	of	the	base	image.	In	this
simple	example,	we	can	find	a	base	MySQL	image	on	the	Docker	Hub	registry
(https://registry.hub.docker.com).	The	MySQL	project	provides	an	official	Docker	image
that	we	can	build	from.

We’ll	note	from	the	repository	the	command	to	use	the	image:	docker	pull	mysqlmysql
and	note	that	the	image	name	is	mysql.

1.	 Start	with	a	Vagrantfile	that	defines	the	Docker:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

https://registry.hub.docker.com

		ENV['VAGRANT_DEFAULT_PROVIDER']	=	'vmware_fusion'

		Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define"database"	do	|db|

				db.vm.provider"docker"do	|d|

						d.image="mysql"

				end

		end

end

An	important	thing	to	note	immediately	is	that	when	we	define	the	database	machine
and	the	provider	with	the	Docker	provider,	we	do	not	specify	a	box	file.	The	Docker
provider	will	start	and	launch	containers	into	a	boot2docker	environment,	negating
the	need	for	a	Vagrant	box	or	virtual	machine	definition.	This	will	introduce	a	bit	of	a
complication	in	interacting	with	the	Vagrant	environment	in	later	steps.

Also	note	the	mysql	image	name	taken	from	the	Docker	Hub	registry.

2.	 We’ll	need	to	launch	the	image	with	a	few	basic	parameters.	Add	the	following	code
to	the	Docker	provider	block:

				db.vm.provider	"docker"	do	|d|

						d.image="mysql"

						d.env	=	{

								:MYSQL_ROOT_PASSWORD	=>	""root",

								:MYSQL_DATABASE						=>	""dockertest",

								:MYSQL_USER										=>	""dockertest",

								:MYSQL_PASSWORD						=>	""d0cker"

						}

						d.ports	=["3306:3306"]

						d.remains_running	=	"true"

				end

The	environment	variables	(d.env)	are	taken	from	the	documentation	on	the	MySQL
Docker	image	page	(https://registry.hub.docker.com/_/mysql/).	This	is	how	the	image
expects	to	set	certain	parameters.	In	this	case,	our	parameters	will	set	the	database
root	password	(for	the	root	user)	and	create	a	database	with	a	new	user	that	has	full
permissions	to	this	database.

The	d.ports	parameter	is	an	array	of	port	listings	that	will	be	forwarded	from	the
container	(the	default	MySQL	port	of	3306)	to	the	host	operating	system,	in	this	case
also	3306.	The	contained	application	will,	thus,	behave	like	a	natively	installed
MySQL	installation.

Note
The	port	forwarding	here	is	from	the	container	to	the	operating	system	that	hosts	the
container	(in	this	case,	the	container	host	is	our	boot2docker	image).	If	we	are
developing	and	hosting	containers	natively	with	Vagrant	on	a	Linux	distribution,	the
port	forwarding	will	be	to	localhost,	but	boot2docker	introduces	something	of	a
wrinkle	in	doing	Docker	development	on	Windows	or	OS	X.	We’ll	either	need	to
refer	to	our	software	installation	by	the	IP	of	the	boot2docker	container	or	configure	a
second	port	forwarding	configuration	that	allows	a	Docker	contained	application	to

https://registry.hub.docker.com/_/mysql/

be	available	to	the	host	operating	system	as	localhost.

The	final	parameter	(d.remains_running	=	true)	is	a	flag	for	Vagrant	to	note	that
the	Vagrant	run	should	mark	as	failed	if	the	Docker	container	exits	on	start.	In	the
case	of	software	that	runs	as	a	daemon	process	(such	as	the	MySQL	database),	a
Docker	container	that	exits	immediately	is	an	error	condition.

3.	 Start	the	container	using	the	vagrant	up	–provider=docker	command.	A	few	things
will	happen	here:

If	this	is	the	first	time	you	have	started	the	project,	you’ll	see	some	messages
about	booting	a	box	named	mitchellh/boot2docker.	This	is	a	Vagrant-
packaged	version	of	the	boot2docker	project.	Once	the	machine	boots,	it
becomes	a	host	for	all	Docker	containers	managed	with	Vagrant.

Note
Keep	in	mind	that	boot2doocker	is	necessary	only	for	nonLinux	operating
systems	that	are	running	Docker	through	a	virtual	machine.	On	a	Linux	system
running	Docker	natively,	you	will	not	see	information	about	boot2docker.

After	the	container	is	booted	(or	if	it	is	already	running),	Vagrant	will	display
notifications	about	rsyncing	a	folder	(if	we	are	using	boot2docker)	and
launching	the	image:

Docker	generates	unique	identifiers	for	containers	and	notes	any	port	mapping

information.

4.	 Let’s	take	a	look	at	some	details	on	the	containers	that	are	running	in	the	Docker	host.
We’ll	need	to	find	a	way	to	gain	access	to	the	Vagrant	boot2docker	image	(and	only	if
we	are	using	boot2docker	and	not	a	native	Linux	environment),	which	is	not	quite	as
straightforward	as	a	vagrant	ssh;	we’ll	need	to	identify	the	Vagrant	container	to
access.

First,	identify	the	Docker	Vagrant	machine	from	the	global	Vagrant	status.	Vagrant
keeps	track	of	running	instances	that	can	be	accessed	from	Vagrant	itself.	In	this	case,
we	are	only	interested	in	the	Vagrant	instance	named	docker-host.	The	instance
we’re	interested	in	can	be	found	with	the	vagrant	global-status	command:

In	this	case,	Vagrant	identifies	the	instance	as	d381331	(a	unique	value	for	every
Vagrant	machine	launched).	We	can	access	this	instance	with	a	vagrant	ssh
command:

vagrant	ssh	d381331

This	will	display	an	ASCII-art	boot2docker	logo	and	a	command	prompt	for	the
boot2docker	instance.	Let’s	take	a	look	at	the	Docker	containers	running	on	the
system	with	the	docker	psps	command:

The	docker	psps	command	will	provide	information	about	the	running	Docker
containers	on	the	system;	in	this	case,	the	unique	ID	of	the	container	(output	during
the	Vagrant	startup)	and	other	information	about	the	container.

5.	 Find	the	IP	address	of	boot2docker	(only	if	we’re	using	boot2docker)	to	connect	to
the	MySQL	instance.	In	this	case,	execute	the	ifconfig	command:

docker@boot2docker:~$	ifconfig

This	will	output	information	about	the	network	interfaces	on	the	machine;	we	are
interested	in	the	eth0	entry.	In	particular,	we	can	note	the	IP	address	of	the	machine
on	the	eth0	interface:

Make	a	note	of	the	IP	address	noted	as	the	inet	addraddr;	in	this	case,
192.168.30.129.

6.	 Connect	a	MySQL	client	to	the	running	Docker	container.	In	this	case,	we’ll	need	to
note	some	information	to	the	connection:

The	IP	address	of	the	boot2docker	virtual	machine	(if	using	boot2docker).	In
this	case,	we’ll	note	192.168.30.129.
The	port	that	the	MySQL	instance	will	respond	to	on	the	Docker	host.	In	this
case,	the	Docker	container	is	forwarding	port	3306	in	the	container	to	port	3306
on	the	host.
Information	noted	in	the	Vagrantfile	for	the	username	or	password	on	the
MySQL	instance.

With	this	information	in	hand,	we	can	configure	a	MySQL	client.	The	MySQL
project	provides	a	supported	GUI	client	named	MySQL	Workbench
(http://www.mysql.com/products/workbench/).	With	the	client	installed	on	our
host	operating	system,	we	can	create	a	new	connection	in	the	Workbench	client
(consult	the	documentation	for	your	version	of	Workbench,	or	use	a	MySQL
client	of	your	choice).

http://www.mysql.com/products/workbench/

In	this	case,	we’re	connecting	to	the	boot2docker	instance.	If	you	are	running
Docker	natively	on	a	Linux	instance,	the	connection	should	simply	forward	to
localhost.	If	the	connection	is	successful,	the	Workbench	client	once	connected
will	display	an	empty	database:

Once	we’ve	connected,	we	can	use	the	MySQL	database	as	we	would	for	any	other
MySQL	instance	that	is	hosted	this	time	in	a	Docker	container	without	having	to	install
and	configure	the	MySQL	package	itself.

Building	a	Docker	image	with	Vagrant
While	launching	packaged	Docker,	applications	can	be	useful	(particularly	in	the	case
where	launching	a	Docker	container	is	simpler	than	native	installation	steps),	Vagrant

becomes	even	more	useful	when	used	to	launch	containers	that	are	being	developed.	On
OS	X	and	Windows	machines,	the	use	of	Vagrant	can	make	managing	the	container
deployment	somewhat	simpler	through	the	boot2docker	containers,	while	on	Linux,	using
the	native	Docker	tools	could	be	somewhat	simpler.	In	this	example,	we’ll	use	a	simple
Dockerfile	to	modify	a	base	image.

1.	 First,	start	with	a	simple	Vagrantfile.	In	this	case,	we’ll	specify	a	build	directory
rather	than	a	image	file:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

#	Vagrantfile	API/syntax	version.	Don't	touch	unless	you	know	what	

you're	doing!

VAGRANTFILE_API_VERSION	=	"2"

ENV['VAGRANT_DEFAULT_PROVIDER']	=	'vmware_fusion'

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	"nginx"	do	|nginx|

				nginx.vm.provider	"docker"	do	|d|

						d.build_dir	=	"build"

						d.ports	=	["49153:80"]

				end

		end

end

This	Vagrantfile	specifies	a	build	directory	as	well	as	the	ports	forwarded	to	the	host
from	the	container.	In	this	case,	the	standard	HTTP	port	(80)	forwards	to	port	49153
on	the	host	machine,	which	in	this	case	is	the	boot2docker	instance.

2.	 Create	our	build	directory	in	the	same	directory	as	the	Vagrantfile.
3.	 In	the	build	directory,	create	a	Dockerfile.	A	Dockerfile	is	a	set	of	instructions	on

how	to	build	a	Docker	container.	See	https://docs.docker.com/reference/builder/	or
James	Turnbull’s	The	Docker	Book	for	more	information	on	how	to	construct	a
Dockerfile.	In	this	example,	we’ll	use	a	simple	Dockerfile	to	copy	a	working	HTML
directory	to	a	base	NGINX	image:

FROM	nginx

COPY	content	/usr/share/nginx/html

4.	 Create	a	directory	in	our	build	directory	named	content.	In	the	directory,	place	a
simple	index.html	file	that	will	be	served	from	the	new	container:

<html>

		<body>

				<div	style="text-align:center;padding-top:40px;border:dashed	2px;">

						This	is	an	NGINX	build.

				</div>

		</body>

</html>

Once	all	the	pieces	are	in	place,	our	working	directory	will	have	the	following
structure:

https://docs.docker.com/reference/builder/

.

├──	Vagrantfile

└──	build

├──	Dockerfile

				└──	content

								└──	index.html

5.	 Start	the	container	in	the	working	directory	with	the	command:

vagrant	up	nginx	--provider=docker

This	will	start	the	container	build	and	deploy	process.

6.	 Once	the	container	is	launched,	the	web	server	can	be	accessed	using	the	IP	address
of	the	boot2docker	instance	(see	the	previous	section	for	more	information	on
obtaining	this	address)	and	the	forwarded	port.

One	other	item	to	note,	especially,	if	you	have	completed	both	steps	in	this	section	without
halting	or	destroying	the	Vagrant	project	is	that	when	using	the	Docker	provider,
containers	are	deployed	to	a	single	shared	virtual	machine.	If	the	boot2docker	instance	is
accessed	and	the	docker	ps	command	is	executed,	it	can	be	noted	that	two	separate
Vagrant	projects	deploy	containers	to	a	single	host.

When	using	the	Docker	provider,	the	single	instance	has	a	few	effects:

The	single	virtual	machine	can	use	fewer	resources	on	your	development	workstation
Deploying	and	rebuilding	containers	is	a	process	that	is	much	faster	than	booting	and
shutting	down	entire	operating	systems

Docker	development	with	the	Docker	provider	can	be	a	useful	technique	to	create	and	test
Docker	containers,	although	Vagrant	might	not	be	of	particular	help	in	packaging	and
distributing	Docker	containers.	If	you	wish	to	publish	containers,	consult	the
documentation	or	The	Docker	Book	on	getting	started	with	packaging	and	distributing
Docker	containers.

See	also
Docker:	http://docker.io
boot2docker:	http://boot2docker.io
The	Docker	Book:	http://www.dockerbook.com
The	Docker	repository:	https://registry.hub.docker.com

http://docker.io
http://boot2docker.io
http://www.dockerbook.com
https://registry.hub.docker.com

Mixed	environments	–	the	Docker
provisioner
In	addition	to	the	Docker	provider,	Vagrant	can	help	manage	Docker	containers	and	mixed
environments	using	the	Docker	provisioner.	The	Docker	provisioner	can	be	used	to	build	a
virtual	machine	that	hosts	Docker	containers,	or	perhaps	a	host	that	is	provisioned	with
software	with	maybe	one	or	two	services	managed	by	Docker	containers.	(For	example,	a
virtual	machine	can	be	configured	with	a	database	or	middleware	installation	managed	in
Docker	containers,	while	the	machine	itself	is	configured	to	run	a	web	application
natively.)

The	Docker	provisioner	will	also	manage	the	Docker	runtime,	which	installs	Docker	on
the	virtual	machine	if	necessary.	In	this	example,	we’ll	take	a	look	at	installing	a	MySQL
database	(using	the	Docker	provisioner)	and	the	MySQL	image	published	on	Docker	Hub.

How	to	do	it…
1.	 Start	with	a	simple	Vagrantfile.	This	Vagrantfile	defines	a	box	(in	this	case,	an

Ubuntu	image)	and	a	Docker	provisioner	block:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"puppetlabs/ubuntu-14.04-64-nocm"

											config.vm.provision	"shell",	inline:"apt-get	install	-y	

mysql-client"

		config.vm.provision	"docker"	do	|d|

				d.pull_images	"library/mysql"

				d.run	'library/mysql',

										args:	'-e	MYSQL_ROOT_PASSWORD=password	-p	3306:3306'

		end

end

This	Vagrantfile	also	defines	the	Docker	provisioner	block.	In	this	case,	the	block
specifies	the	image	to	be	pulled	as	well	as	a	run	command	that	will	be	executed	on
system	startup.

The	image	being	pulled	is	the	mysql	image	from	the	Docker	Hub	repository,	the	run
command	is	similar	to	using	Docker’s	command-line	tools.	In	this	case,	the	run
command	specifies	an	environment	variable	(MYSQL_ROOT_PASSWORD)	and	defines	a
port	mapping	from	the	container	to	the	host.

2.	 Start	the	Vagrant	machine	with	a	vagrant	up	command.	When	the	Docker
provisioner	starts,	the	provisioner	will	install	the	latest	version	of	the	Docker	runtime
and	start	containers	listed	with	the	Docker	run	command.

3.	 Verify	that	the	Docker	command	works	by	accessing	the	virtual	machine	with	the
vagrant	ssh	command	and	executing	docker	ps.	The	process	listing	will	show	a
running	MySQL	container:

While	we	have	an	open	terminal,	obtain	the	IP	address	of	the	virtual	machine	(if	this

is	not	a	fixed	IP	machine)	with	the	ipconfig	command.

4.	 From	the	host	operating	system,	access	the	MySQL	database	with	the	mysql	client
command	line,	making	sure	that	you	have	a	mysql	client	installed	on	your	host
operating	system:

This	is	a	simple	example	of	using	the	Docker	provisioner	to	install	and	start	software
services.	The	provisioner	is	designed	in	a	way	that	allows	Vagrant	users	to	bootstrap	an
entire	Vagrant	environment	that	can	support	Docker	and	other	services	effectively,
mimicking	how	a	Docker	host	machine	will	operate.	The	provisioner	also	isolates	Docker
containers	in	the	virtual	machine	itself	as	the	provider	does	not	rely	on	shared	services	or
boot2docker	to	operate.	As	such,	the	use	of	the	Docker	provisioner	is	useful	when
simulating	an	entire	software	stack,	where	the	Docker	provider	is	focused	on	the	container
development	and	interaction.

See	also
The	Vagrant	Docker	Provisioner:
https://docs.vagrantup.com/v2/provisioning/docker.html
The	MySQL	Docker	container	distribution:	https://registry.hub.docker.com/_/mysql/

https://docs.vagrantup.com/v2/provisioning/docker.html
https://registry.hub.docker.com/_/mysql/

Index
A

Amazon	Machine	Images	(AMIs)	/	The	building	blocks	of	Packer	templates
Amazon	Web	Services	(AWS)

Vagrant,	using	with	/	Using	Vagrant	with	Amazon	Web	Services,	Getting	ready
Ansible

URL	/	Provisioning	Vagrant	environments	with	Ansible
about	/	Provisioning	Vagrant	environments	with	Ansible
used,	for	provisioning	Vagrant	environments	/	Provisioning	Vagrant
environments	with	Ansible,	Getting	ready
URL,	for	documentation	/	Getting	ready

Apache	Mesos
about	/	Clustering	with	Apache	Mesos
clustering	with	/	Clustering	with	Apache	Mesos

Atlas
about	/	Introducing	Atlas,	Sharing	Vagrant	boxes	with	Atlas
URL	/	Introducing	Atlas,	Introduction,	Sharing	Vagrant	boxes	with	Atlas
local	machines,	sharing	with	/	Sharing	local	machines	with	HashiCorp	Atlas,
Getting	ready,	How	to	do	it…
web	applications,	sharing	with	/	Sharing	web	applications	with	HashiCorp	Atlas,
How	to	do	it…
used,	for	sharing	Vagrant	boxes	/	Getting	ready,	How	to	do	it…

Atlas	repository
URL	/	Introducing	Atlas

B
basic	shell	commands

running	/	Running	basic	shell	commands,	How	to	do	it…,	How	it	works…
Beaker

URL	/	There’s	more…
Berkshelf

environments,	managing	with	/	Managing	environments	with	Berkshelf
about	/	Managing	environments	with	Berkshelf
URL	/	Managing	environments	with	Berkshelf

boot2docker
about	/	Running	Docker	containers	with	Vagrant
URL	/	Running	Docker	containers	with	Vagrant

boot2docker-vagrant-box
URL	/	Running	Docker	containers	with	Vagrant

bootstrapping
Puppetmaster	/	Bootstrapping	a	Puppetmaster

Bourne	Again	Shell	(bash)	/	Shell	scripting	in	vagrant	machines
Bourne	Shell	(sh)	/	Shell	scripting	in	vagrant	machines
bridged	network

about	/	Getting	ready
BSD	chroot	jails	/	Introduction

C
Chef

URL	/	Configuring	Vagrant	environments	with	Chef
about	/	Configuring	Vagrant	environments	with	Chef
used,	for	Vagrant	environment	configuration	/	Configuring	Vagrant
environments	with	Chef,	Getting	ready

chef-solo	provisioner
about	/	Getting	ready
using	/	How	it	works…

Chef	Omnibus
about	/	Getting	ready

cluster,	of	Vagrant	machines
creating	/	Creating	clusters	of	Vagrant	machines,	How	to	do	it…
DNS,	configuring	with	plugins	/	Configuring	DNS	with	plugins
configuring,	with	etcd	/	Configuring	a	cluster	with	etcd
clustering	with	Apache	Mesos	/	Clustering	with	Apache	Mesos

configuration	management
and	Vagrant	boxes	/	Configuration	management	and	Vagrant	boxes

configuration	management	tools
cross-platform	/	Introduction
reusable	/	Introduction

Consul
URL	/	Introduction,	Creating	clusters	of	Vagrant	machines
about	/	Creating	clusters	of	Vagrant	machines

CoreOS
URL	/	Introduction

cross-platform
about	/	Introduction

Cygwin	/	Getting	ready

D
d.ports	parameter	/	Installing	a	Docker	image	from	a	repository
different	shell	languages

provisioning	with	/	Provisioning	with	different	shell	languages
DigitalOcean

URL	/	Using	Vagrant	with	DigitalOcean
about	/	Using	Vagrant	with	DigitalOcean
Vagrant,	using	with	/	Using	Vagrant	with	DigitalOcean,	Getting	ready

DigitalOcean	API	token
creating	/	Creating	a	DigitalOcean	API	token

Dnsmasq
URL	/	Creating	clusters	of	Vagrant	machines
about	/	Creating	clusters	of	Vagrant	machines

Docker
URL	/	Introduction
about	/	Introduction

Docker	containers
running,	with	Vagrant	/	Running	Docker	containers	with	Vagrant
developing,	on	Linux	platform	/	Running	Docker	containers	with	Vagrant
developing,	boot2docker	environment	used	/	Running	Docker	containers	with
Vagrant

Docker	Hub	registry
URL	/	Installing	a	Docker	image	from	a	repository

Docker	image
installing,	from	respository	/	Installing	a	Docker	image	from	a	repository
building,	with	Vagrant	/	Building	a	Docker	image	with	Vagrant

Docker	provider
about	/	Running	Docker	containers	with	Vagrant,	Mixed	environments	–	the
Docker	provisioner

Docker	provisioner
used,	for	managing	mixed	environments	/	Mixed	environments	–	the	Docker
provisioner,	How	to	do	it…
about	/	Mixed	environments	–	the	Docker	provisioner

docker	psps	command	/	Installing	a	Docker	image	from	a	repository
Domain	Name	System	(DNS)

about	/	Using	a	static	IP	address	with	a	hosts	file
dotCloud	/	Introduction

E
/etc/hosts	files

using	/	There’s	more…
/etc/resolver	for	local	DNS

using	/	There’s	more…
etcd	/	Configuring	a	cluster	with	etcd
external	shell	scripts

provisioning	with	/	Provisioning	with	external	shell	scripts,	How	to	do	it…

F
folders

sharing,	Network	File	Systems	used	/	Sharing	folders	using	Network	File
Systems,	How	to	do	it…,	How	it	works…,	There’s	more…
sharing,	with	rsync	/	Sharing	folders	with	rsync,	How	to	do	it…,	How	it
works…

G
GitHub

URL	/	See	also
Google	Compute	Engine

URL	/	Introduction
guest	machine

about	/	Introduction
GUI

starting,	with	Vagrant	/	Starting	a	GUI	with	Vagrant,	Introducing	Atlas,	How	to
do	it…,	How	it	works…

H
Homebrew	repositories

URL	/	Getting	ready
host	machine

about	/	Introduction
Type	1	hypervisor	/	Introduction
Type	2	hypervisor	/	Introduction

hypervisor
about	/	Introduction

I
idempotent	/	How	it	works…
Infrastructure	as	a	Service	(Iaas)

about	/	Using	Vagrant	with	Amazon	Web	Services
Intel	Virtualization	Technology	(Intel	VT)

about	/	Getting	ready
ISO	files

Vagrant	boxes,	packaging	from	/	Packaging	Vagrant	boxes	from	ISO	files

L
Linux	Containers	(LXC)	/	Introduction
local	machines

sharing,	with	HashiCorp	Atlas	/	Sharing	local	machines	with	HashiCorp	Atlas,
Getting	ready,	How	to	do	it…

local	network
creating	/	Creating	a	local	network,	How	to	do	it…,	How	it	works…
about	/	Getting	ready
static	IP	address,	using	with	hostfile	/	Using	a	static	IP	address	with	a	hosts	file

M
machine	provisioners

order,	specifying	/	Specifying	the	order	of	machine	provisioners,	How	to	do
it…,	How	it	works…

manifests	directory
about	/	How	it	works…

Microsoft	Azure
URL	/	Introduction

mixed	environments
managing,	Docker	provisioner	used	/	Mixed	environments	–	the	Docker
provisioner,	How	to	do	it…

multimachine	environment
defining	/	Defining	a	multimachine	environment,	How	to	do	it…,	How	it
works…

MySQL	Docker	image	page
URL	/	Installing	a	Docker	image	from	a	repository

MySQL	Workbench
URL	/	Installing	a	Docker	image	from	a	repository

N
Network	File	Share	Daemon	(nfsd)	/	Getting	ready
Network	File	Systems

UNIX	Networked	File	System	(NFS)	/	Sharing	folders	using	Network	File
Systems
Windows	Server	Message	Block	(SMB)	protocol	/	Sharing	folders	using
Network	File	Systems

nodes
provisioning,	with	Puppetmaster	/	Provisioning	nodes	with	a	Puppetmaster

P
Packer

Vagrant	boxes,	building	with	/	Building	Vagrant	boxes	with	Packer,	Getting
ready,	How	to	do	it…
URL	/	Building	Vagrant	boxes	with	Packer
builders	/	Building	Vagrant	boxes	with	Packer,	The	building	blocks	of	Packer
templates
provisioners	/	Building	Vagrant	boxes	with	Packer,	The	building	blocks	of
Packer	templates
post-processors	/	Building	Vagrant	boxes	with	Packer,	The	building	blocks	of
Packer	templates

Packer	template
about	/	The	building	blocks	of	Packer	templates

port	forwarding
from	Vagrant	machine	/	Forwarding	ports	from	a	Vagrant	machine,	How	to	do
it…,	How	it	works…
about	/	Forwarding	ports	from	a	Vagrant	machine

primary	configuration	management	tools
Puppet	/	Introduction
Chef	/	Introduction
Ansible	/	Introduction
Salt	/	Introduction

production-like	environment	/	Sharing	folders	with	rsync
provisioner

about	/	Introduction
Puppet

used,	for	Vagrant	environment	configuration	/	Configuring	Vagrant
environments	with	Puppet,	How	to	do	it…
URL,	for	documentation	/	Configuring	Puppet

puppet-module-skeleton	project
URL	/	There’s	more…

Puppet	Forge
URL	/	Configuring	Puppet

Puppet	Labs
URL	/	Configuring	Vagrant	environments	with	Puppet

Puppet	master
about	/	How	it	works…

Puppetmaster	/	Configuring	Vagrant	environments	with	Puppet
setting	up,	with	puppet	apply	provisioner	/	Setting	up	a	Puppetmaster	with	the
puppet	apply	provisioner
source	controlled	Puppetmaster,	setting	up	/	Setting	up	a	source	controlled
Puppetmaster
bootstrapping	/	Bootstrapping	a	Puppetmaster

nodes,	provisioning	with	/	Provisioning	nodes	with	a	Puppetmaster
Puppet	modules	directory

about	/	How	it	works…

R
Rackspace

URL	/	Introduction
rbenv

URL	/	Getting	ready
URL,	for	documentation	/	Getting	ready

ruby-build
URL,	for	documentation	/	Getting	ready

ruby-build	project
URL	/	Getting	ready

RubyMine
URL	/	Getting	ready

Ruby	programming	language
URL	/	How	it	works…

Ruby	runtime	environment
setting	up	/	Getting	ready,	How	to	do	it…,	How	it	works…

S
Salt

used,	for	provisioning	Vagrant	environments	/	Provisioning	Vagrant
environments	with	Salt
URL	/	Provisioning	Vagrant	environments	with	Salt
about	/	Provisioning	Vagrant	environments	with	Salt

Salt	provisioner
about	/	How	it	works…
URL,	for	documentation	/	How	it	works…

script	idempotency	/	Script	idempotency
security	key

creating,	for	Vagrant	instances	/	Creating	a	security	key	for	Vagrant	instances
shell	provisioning	/	Shell	provisioning
shell	scripting,	in	vagrant	machines	/	Shell	scripting	in	vagrant	machines
shell	scripts

executing,	in	Vagrantfile	/	Executing	shell	scripts	in	a	Vagrantfile,	How	to	do
it…

Simple	Storage	Service	(S3)	/	Getting	ready
simple	Vagrant	environment

about	/	Simple	Vagrant	environment
single	machine	environment

defining	/	Defining	a	single	machine	Vagrant	environment
simple	environment	/	Simple	Vagrant	environment
about	/	A	defined	single	machine	environment,	How	it	works…
port	forwarding,	from	Vagrant	machine	/	Forwarding	ports	from	a	Vagrant
machine,	How	to	do	it…,	How	it	works…
ports	forwarding,	from	Vagrant	machine	/	How	it	works…
GUI,	starting	with	Vagrant	/	Starting	a	GUI	with	Vagrant
Vagrant	guest	folders,	sharing	with	host	/	Sharing	Vagrant	guest	folders	with	the
host,	Getting	ready,	How	to	do	it…,	How	it	works…
folders,	sharing	with	Network	File	Systems	/	Sharing	folders	using	Network	File
Systems,	Getting	ready,	How	to	do	it…,	How	it	works…
folders,	sharing	with	rsync	/	Sharing	folders	with	rsync,	How	to	do	it…,	How	it
works…
virtual	machine	settings	(VirtualBox),	customizing	/	Customizing	virtual
machine	settings	(VirtualBox),	How	to	do	it…,	How	it	works…
virtual	machine	settings	(VMWare	Desktop),	customizing	/	Customizing	virtual
machine	settings	(VMware	Desktop),	How	to	do	it…,	How	it	works…
virtual	environments,	sharing	with	source	control	/	Sharing	environments	with
source	control,	How	to	do	it…

Solaris	Zones	/	Introduction
SSH	keypair

creating	/	Creating	a	new	SSH	key	pair

static	IP	address
using	/	Getting	ready
using,	with	hostfile	/	Using	a	static	IP	address	with	a	hosts	file

T
TryGit

URL	/	See	also
Type	1	hypervisor

about	/	Introduction
Type	2	hypervisor

about	/	Introduction

U
Ubuntu

URL	/	How	to	do	it…
UNIX	Tape	ARchive	(TAR)	format

about	/	How	it	works…

V
Vagrant

URL	/	Getting	ready
installing	/	Installing	Vagrant
existing	virtual	machines,	using	/	Using	existing	virtual	machines	with	Vagrant
single	machine	environment	/	Defining	a	single	machine	Vagrant	environment
Docker	image,	building	with	/	Building	a	Docker	image	with	Vagrant

Vagrant,	using	with	AWS
about	/	Using	Vagrant	with	Amazon	Web	Services,	Getting	ready
Vagrant	IAM	account,	creating	/	Creating	a	Vagrant	IAM	account
VPC,	setting	up	/	Setting	up	a	VPC
security	key,	creating	for	Vagrant	instances	/	Creating	a	security	key	for	Vagrant
instances
Vagrant-AWS	plugin,	installing	/	Installing	the	Vagrant-AWS	plugin
required	information,	gathering	for	provider	/	Gathering	required	information
for	the	provider
Vagrant	AWS	environment,	setting	up	/	Setting	up	the	Vagrant	AWS
environment
configuration	data,	saving	outside	Vagrantfile	/	Saving	configuration	data
outside	the	Vagrantfile
Vagrantfile	defaults,	overriding	/	Overriding	Vagrantfile	defaults
AWS	details,	specifying	/	Specifying	AWS	details

Vagrant,	using	with	DigitalOcean
about	/	Using	Vagrant	with	DigitalOcean,	Getting	ready,	How	it	works…
DigitalOcean	API	token,	creating	/	Creating	a	DigitalOcean	API	token
new	SSH	keypair,	creating	/	Creating	a	new	SSH	key	pair,	How	to	do	it…

vagrant-aws	plugin
URL	/	How	to	do	it…

Vagrant-AWS	plugin
installing	/	Installing	the	Vagrant-AWS	plugin

vagrant-host-shell	plugin
URL	/	How	to	do	it…

vagrant-omnibus	plugin
about	/	Getting	ready

Vagrant	AWS	environment
setting	up	/	Setting	up	the	Vagrant	AWS	environment

Vagrant	boxes
finding	/	Finding	additional	Vagrant	boxes,	Getting	ready,	Finding	boxes
environment,	initializing	with	new	box	/	Initializing	an	environment	with	a	new
box:
new	box,	adding	without	environment	initialization	/	Adding	a	new	box	without
initializing	an	environment:
building,	with	Packer	/	Building	Vagrant	boxes	with	Packer,	Getting	ready,	How

to	do	it…
building,	with	VeeWee	/	Building	Vagrant	boxes	with	VeeWee
sharing	/	Sharing	Vagrant	boxes,	How	to	do	it…
sharing,	with	Atlas	/	Sharing	Vagrant	boxes	with	Atlas,	Getting	ready,	How	to
do	it…

Vagrant	boxes,	packaging
from	ISO	files	/	Packaging	Vagrant	boxes	from	ISO	files,	Getting	ready
virtual	machine,	preparing	/	Preparing	a	virtual	machine
virtual	machine,	packaging	as	Vagrant	box	/	Packaging	the	virtual	machine	as	a
Vagrant	box
new	Vagrant	box,	installing	/	Installing	the	new	Vagrant	box,	How	it	works…

Vagrant	box	repository
URL	/	Introducing	Atlas

Vagrant	Cloud
URL	/	Finding	additional	Vagrant	boxes,	Sharing	Vagrant	boxes	with	Atlas
about	/	Getting	ready,	Sharing	Vagrant	boxes	with	Atlas

Vagrant	environment
initializing	/	Initializing	your	first	environment,	Getting	ready,	How	to	do	it…,
How	it	works…
configuring	/	Configuring	a	Vagrant	environment,	How	it	works…
sharing,	with	source	control	/	Sharing	environments	with	source	control,	How	to
do	it…

Vagrant	environment,	provisioning
about	/	Introduction
basic	shell	commands,	running	/	Running	basic	shell	commands,	How	to	do
it…,	How	it	works…
shell	scripts,	executing	in	Vagrantfile	/	Executing	shell	scripts	in	a	Vagrantfile,
How	to	do	it…
external	shell	scripts,	provisioning	with	/	Provisioning	with	external	shell
scripts,	How	to	do	it…
shell	provisioning	/	Shell	provisioning
different	shell	languages,	provisioning	with	/	Provisioning	with	different	shell
languages

Vagrant	environment	configuration,	with	Chef
about	/	Configuring	Vagrant	environments	with	Chef
performing	/	Configuring	Vagrant	environments	with	Chef,	Getting	ready
Vagrant	environment,	setting	up	/	Setting	up	the	Vagrant	environment
Chef	provisioning,	setting	up	/	Setting	up	Chef	provisioning,	How	it	works…
environments,	managing	with	Berkshelf	/	Managing	environments	with
Berkshelf
Chef	Server,	provisioning	with	/	Provisioning	with	Chef	Server

Vagrant	environment	configuration,	with	Puppet
performing	/	Configuring	Vagrant	environments	with	Puppet,	How	to	do	it…
Vagrant	environment,	setting	up	/	Setting	up	the	Vagrant	environment

Puppet,	configuring	/	Configuring	Puppet,	How	it	works…
Vagrant	environments

about	/	Introduction
primary	configuration	management	tools	/	Introduction

Vagrant	environments,	provisioning	with	Ansible
performing	/	Provisioning	Vagrant	environments	with	Ansible,	Getting	ready
Vagrant	environment,	setting	up	/	Setting	up	the	Vagrant	environment
Ansible	playbooks,	setting	up	/	Setting	up	Ansible	playbooks,	How	it	works…

Vagrant	environments,	provisioning	with	Salt
performing	/	Provisioning	Vagrant	environments	with	Salt
Vagrant	environment,	configuring	/	Configuring	the	Vagrant	environment
Salt	provisioning,	configuring	/	Configuring	Salt	provisioning

Vagrantfile
about	/	Introduction

Vagrant	guest	folders
sharing,	with	host	/	Sharing	Vagrant	guest	folders	with	the	host,	Getting	ready,
How	to	do	it…,	How	it	works…

Vagrant	IAM	account
creating	/	Creating	a	Vagrant	IAM	account

Vagrant	plugins
reference	link	/	See	also
developing	/	Setting	up	a	Ruby	runtime	environment,	Getting	ready,	How	to	do
it…,	How	it	works…
provisioners	/	How	it	works…
guests	/	How	it	works…
guest	capabilities	/	How	it	works…
hosts	/	How	it	works…
host	capabilities	/	How	it	works…
providers	/	How	it	works…

Vagrant	providers
installing	/	Getting	ready,	How	to	do	it…,	How	it	works…

vagrant	provision	command
executing	/	How	it	works…

VeeWee
used,	for	building	Vagrant	boxes	/	Building	Vagrant	boxes	with	VeeWee
about	/	Building	Vagrant	boxes	with	VeeWee
URL	/	Building	Vagrant	boxes	with	VeeWee

VirtualBox
about	/	Installing	Vagrant	and	VirtualBox
URL	/	Getting	ready
limitations	/	Getting	ready
installing	/	Installing	VirtualBox

VirtualBox	machine
packaging	/	Packaging	the	VirtualBox	machine

virtualization
about	/	Introduction

virtual	machine
about	/	Introduction
using,	with	Vagrant	/	Using	existing	virtual	machines	with	Vagrant

Virtual	Machines	(VMs)	/	Getting	ready
virtual	machine	settings	(VirtualBox)

customizing	/	Customizing	virtual	machine	settings	(VirtualBox),	How	to	do
it…,	How	it	works…

virtual	machine	settings	(VMWare	Desktop)
customizing	/	Customizing	virtual	machine	settings	(VMware	Desktop),	How	to
do	it…,	How	it	works…

Virtual	Private	Cloud	(VPC)	/	How	to	do	it…
setting	up	/	Setting	up	a	VPC

VMWare
URL	/	Getting	ready,	See	also
about	/	See	also

VMWare	plugin
URL	/	Getting	ready

W
web	applications

sharing,	with	HashiCorp	Atlas	/	Sharing	web	applications	with	HashiCorp	Atlas,
How	to	do	it…,	How	it	works…

	Vagrant Virtual Development Environment Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up Your Environment
	Introduction
	Installing Vagrant and VirtualBox
	Getting ready
	How to do it...
	Installing VirtualBox
	Installing Vagrant
	How it works...
	See also
	Initializing your first environment
	Getting ready
	How to do it...
	How it works...
	Installing Vagrant providers
	Getting ready
	How to do it...
	How it works...
	See also
	Finding additional Vagrant boxes
	Getting ready
	How to do it...
	Finding boxes
	Initializing an environment with a new box:
	Adding a new box without initializing an environment:
	There's more...
	Using existing virtual machines with Vagrant
	Getting ready
	How to do it...
	Packaging the VirtualBox machine
	Configuring a Vagrant environment
	How it works...
	2. Single Machine Environments
	Introduction
	Defining a single machine Vagrant environment
	How to do it...
	Simple Vagrant environment
	A defined single machine environment
	How it works...
	Forwarding ports from a Vagrant machine
	How to do it...
	How it works...
	Starting a GUI with Vagrant
	Getting ready
	Introducing Atlas
	How to do it...
	How it works...
	There's more...
	Sharing Vagrant guest folders with the host
	Getting ready
	How to do it...
	How it works...
	See also
	Sharing folders using Network File Systems
	Getting ready
	How to do it...
	How it works...
	There's more...
	Sharing folders with rsync
	Getting ready
	How to do it...
	How it works...
	See also
	Customizing virtual machine settings (VirtualBox)
	Getting ready
	How to do it...
	How it works...
	Customizing virtual machine settings (VMware Desktop)
	Getting ready
	How to do it...
	How it works...
	Sharing environments with source control
	Getting ready
	How to do it...
	How it works...
	See also
	3. Provisioning a Vagrant Environment
	Introduction
	Running basic shell commands
	How to do it...
	How it works...
	Executing shell scripts in a Vagrantfile
	Getting ready
	How to do it...
	How it works...
	Shell scripting in vagrant machines
	Script idempotency
	See also
	Provisioning with external shell scripts
	Getting ready
	How to do it...
	How it works...
	Shell provisioning
	Provisioning with different shell languages
	See also
	4. Provisioning with Configuration Management Tools
	Introduction
	Configuration management and Vagrant boxes
	Configuring Vagrant environments with Puppet
	Getting ready
	How to do it...
	Setting up the Vagrant environment
	Configuring Puppet
	How it works...
	There's more...
	See also
	Configuring Vagrant environments with Chef
	Getting ready
	How to do it...
	Setting up the Vagrant environment
	Setting up Chef provisioning
	How it works...
	There's more...
	Managing environments with Berkshelf
	Provisioning with Chef Server
	See also
	Provisioning Vagrant environments with Salt
	Getting ready
	How to do it…
	Configuring the Vagrant environment
	Configuring Salt provisioning
	How it works...
	See also
	Provisioning Vagrant environments with Ansible
	Getting ready
	How to do it...
	Setting up the Vagrant environment
	Setting up Ansible playbooks
	How it works...
	See also
	5. Networked Vagrant Environments
	Introduction
	Creating a local network
	Getting ready
	How to do it...
	Using a static IP address with a hosts file
	How it works...
	There's more...
	See also
	Defining a multimachine environment
	Getting ready
	How to do it...
	How it works...
	Specifying the order of machine provisioners
	Getting ready
	How to do it...
	How it works...
	Creating clusters of Vagrant machines
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring DNS with plugins
	Configuring a cluster with etcd
	Clustering with Apache Mesos
	See also
	6. Vagrant in the Cloud
	Introduction
	Using Vagrant with Amazon Web Services
	Getting ready
	How to do it...
	Creating a Vagrant IAM account
	Setting up a VPC
	Creating a security key for Vagrant instances
	Installing the Vagrant-AWS plugin
	Gathering required information for the provider
	Setting up the Vagrant AWS environment
	How it works…
	Saving configuration data outside the Vagrantfile
	Overriding Vagrantfile defaults
	Specifying AWS details
	There's more...
	See also
	Using Vagrant with DigitalOcean
	Getting ready
	Creating a DigitalOcean API token
	Creating a new SSH key pair
	How to do it...
	How it works...
	See also
	Sharing local machines with HashiCorp Atlas
	Getting ready
	How to do it...
	How it works...
	See also
	Sharing web applications with HashiCorp Atlas
	Getting ready
	How to do it...
	How it works...
	See also
	7. Packaging Vagrant Boxes
	Introduction
	Packaging Vagrant boxes from ISO files
	Getting ready
	How to do it...
	Preparing a virtual machine
	Packaging the virtual machine as a Vagrant box
	Installing the new Vagrant box
	How it works...
	There's more...
	See also
	Building Vagrant boxes with Packer
	Getting ready
	How to do it...
	How it works...
	The building blocks of Packer templates
	Building Vagrant boxes with VeeWee
	See also
	Sharing Vagrant boxes
	Getting ready
	How to do it...
	How it works...
	Sharing Vagrant boxes with Atlas
	Getting ready
	How to do it...
	There's more...
	See also
	A. Vagrant Plugins
	Setting up a Ruby runtime environment
	Getting ready
	How to do it...
	How it works...
	See also
	B. A Puppet Development Environment
	Setting up a Puppetmaster with the puppet apply provisioner
	How to do it...
	Setting up a source controlled Puppetmaster
	Bootstrapping a Puppetmaster
	Provisioning nodes with a Puppetmaster
	There's more...
	See also
	C. Using Docker with Vagrant
	Introduction
	Running Docker containers with Vagrant
	How to do it...
	Installing a Docker image from a repository
	Building a Docker image with Vagrant
	See also
	Mixed environments – the Docker provisioner
	How to do it...
	See also
	Index

