

01_977279-ffirs.indd i01_977279-ffirs.indd i 10/28/10 9:54 PM10/28/10 9:54 PM

SMASHING

HTML5

01_977279-ffirs.indd i01_977279-ffirs.indd i 10/28/10 9:54 PM10/28/10 9:54 PM

PUBLISHER’S ACKNOWLEDGMENTS

Some of the people who helped bring this book to market include the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director–Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Publishing Assistant: Ellie Scott
Development Editor: Elizabeth Kuball
Copy Editor: Elizabeth Kuball
Technical Editor: Harvey Chute
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Leslie Saxman

Marketing
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Parrett

Composition Services
Compositor: Wiley Composition Services
Proofreader: Susan Hobbs
Indexer: Potomac Indexing, LLC

01_977279-ffirs.indd ii01_977279-ffirs.indd ii 10/28/10 9:54 PM10/28/10 9:54 PM

A John Wiley and Sons, Ltd, Publication

SMASHING

HTML5

Bill Sanders

01_977279-ffirs.indd iii01_977279-ffirs.indd iii 10/28/10 9:54 PM10/28/10 9:54 PM

Th is edition fi rst published 2011
© 2011 William B. Sanders.

Registered offi ce
John Wiley & Sons Ltd, Th e Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offi ces, for customer services and for information about
how to apply for permission to reuse the copyright material in this book please see our
website at www.wiley.com.

Th e right of the author to be identifi ed as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, except as permitted by the UK Copyright, Designs and
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are oft en claimed as
trademarks. All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective owners. Th e
publisher is not associated with any product or vendor mentioned in this book. Th is
publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trade-
marks of John Wiley and Sons, Inc. and/ or its affi liates in the United States and/or other
countries, and may not be used without written permission. iPhone, iPad and iPod are
trademarks of Apple Computer, Inc. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc. is not associated with any product or vendor
mentioned in the book. Th is book is not endorsed by Apple Computer, Inc.

A catalogue record for this book is available from the British Library.

978-0-470-97727-9

Set in 10/12 Minion Pro by Wiley Composition Services
Printed in the United States by Krehbiel

01_977279-ffirs.indd iv01_977279-ffirs.indd iv 10/28/10 9:54 PM10/28/10 9:54 PM

Th is book is dedicated to Jacob Sanders.

01_977279-ffirs.indd v01_977279-ffirs.indd v 10/28/10 9:54 PM10/28/10 9:54 PM

Author’s Acknowledgments

I became aware of the immediate importance of HTML5 thanks to Michael Wilson, Zach
Dunn, and Nick Greenfi eld, who brought it to my attention. Th ey also introduced me to
Smashing Magazine and a number of other emerging new trends. Chris Webb of Wiley guided
the direction of the book and, in concert with Margot Hutchinson of Waterside Productions,
was able to clear a path for the book to move ahead. Ellie Scott of Wiley helped take care of
the many details necessary in forging the book’s inception. Elizabeth Kuball worked as an able
editor to clarify and smoothen everything I wrote, and Harvey Chute, the technical editor,
worked to make sure that all the code was done correctly and off ered suggestions for improve-
ment. Finally, my colleagues at the University of Hartford’s Multimedia Web Design and
Development program, John Gray and Brian Dorn, helped when asked, including one terrible
moment when a missing semicolon wrecked havoc on a program.

About the Author

Bill Sanders is one of the founding faulty members of the University of Hartford’s Multimedia
Web Design and Development program where he teaches courses covering HTML5, informa-
tion and interface design, CSS3, Flash, ActionScript 3.0, ASP.NET, C#, PHP, and streaming
video. He has written numerous books on Internet computing, on topics ranging from
JavaScript to ActionScript 3.0 Design Patterns. He lives in rural Connecticut with his wife,
Delia, and one and a half dogs.

01_977279-ffirs.indd vi01_977279-ffirs.indd vi 10/28/10 9:54 PM10/28/10 9:54 PM

Contents

Introduction 1

PART I: THE LANGUAGE OF THE WEB 5

Chapter 1: Introducing HTML5 1
Creating with Tags: An Overview 8

Incorporating the new HTML5 elements 9
Using continued tags from HTML4 11
Forgetting or replacing discontinued tags 15

Choosing a Browser to Interpret HTML5 17
Mozilla Firefox 18
Google Chrome 19
Opera 21
Apple Safari 22
Microsoft Internet Explorer 9 24
Previewing diff erent displays 24

Take the Wheel 25
Chapter 2: Understanding HTML5 Tags 27

Parsing Code 28
Understanding HTML5 and related fi les 28
Learning which fi les work with the Web 31

Knowing How Tags Work 31
Starting off with the basic HTML tag 32
Describing your page with tags 32
Identifying the parts of a tag 33
Understanding the role of the comment tag 35

Nesting Tags 38
Take the Wheel 40

Chapter 3: Text Tags and a Little CSS3 43
Th e Fundamentals 44

A little more organization 45
Th inking about structure 47

Adding More HTML5 Structure 49
Adding Style to Text with CSS3 52

Styling HTML5 elements with CSS3 properties 52
Creating CSS3 classes and IDs 59

Take the Wheel 63

02_977279-ftoc.indd vii02_977279-ftoc.indd vii 10/28/10 9:54 PM10/28/10 9:54 PM

VIII

CONTENTS

Chapter 4: Working with Color Values 65
Understanding RGB Color 66

Using names 66
RGB and HSL percentages 67
RGB decimal integer settings 70
Hexadecimal settings: Th inking like your computer 71

Adding Transparency to Color 74
Creating a Color Scheme 76

From a base color 76
From an image 76

Integrating Your Color Palette with Your Web Page 78
Take the Wheel 81

PART II: PAGES, SITES, AND DESIGNS 83

Chapter 5: Organizing a Page 85
Th e Top of the HTML5 Document 86

Setting your home base 86
Adding character to your site with metadata 87
Knowing when you need a script 89

A Design in Sections 91
Getting Your Stuff Organized 94

Paragraphs, divisions, and lists 94
Grouping without fracturing 99
Figures and captions 100

Organizing Files 103
Image organization and reference 103
Absolute reference 104
Relative reference 104

Take the Wheel 106
Chapter 6: Displaying Data with Tables 109

CSS3 Table Properties for HTML5 110
Tables and Tabular Data 112

Table basics 113
Styling a Table 114

Adding borders with CSS3 114
Data clarifi cation with background colors 117

Complex Tables 120
Using the rowspan and colspan attributes 120
Practical spans in tables 122

Take the Wheel 125
Chapter 7: All About Links 127

Th e Link Element and Its Key Attributes 128
Alternate style sheets 128
Link icons 131

02_977279-ftoc.indd viii02_977279-ftoc.indd viii 10/28/10 9:54 PM10/28/10 9:54 PM

CONTENTS

IX

Prefetching 133
Other link attributes 133

Page Links 134
More of the rel attribute 134
Page anchors and IDs 137
Targets 140

Using Iframes 143
Nesting Web pages 144

Take the Wheel 146
Chapter 8: Navigation Strategies 147

Web Navigation Concepts 148
Designer navigation and user navigation 148
Global navigation 149

Using JavaScript to Call a Linked Page 156
Creating Consistency 159

Vertical and horizontal navigation 160
Applying CSS3 pseudo-classes 160
Understanding the HTML5 mechanics of vertical navigation 162
Using graphic icons in navigation 165

Single-Page Web Sites with Iframes 166
Linking to a graphic 166
Making and using thumbnail icons 167
Using iframes on mobile devices 169

Take the Wheel 170

PART III: MEDIA IN HTML5 173

Chapter 9: Images 175
Th e Basics of HTML5 Image Files 176

Formats and pixels matter 176
Preserving layers in Web graphics 178

Working with Graphic File Sizes 179
Using graphic applications to modify image fi le size 182

Placing Images and Creating Flexible Web Pages 189
Image placement with the align attribute 189
Flexible image size with a little JavaScript 191
Application for Dynamic SVG fi les from
 Adobe Illustrator CS5 fi les 194

Take the Wheel 196
Chapter 10: Sound 199

Th e Basics of Audio in HTML5 200
Autoplay 200
Controls 200
Preload 202
Loop 203

Browser Support for Audio 203

02_977279-ftoc.indd ix02_977279-ftoc.indd ix 10/28/10 9:54 PM10/28/10 9:54 PM

X

CONTENTS

Saved by Source: Plan B 204
Type attribute 204
Source type codec parameter 205

Creating Audio Files 206
Windows 7 Sound Recorder 206
Macintosh OS X Sound Studio 208

Sound Eff ects: FX on Your Desktop 209
Transition sounds 209
Integrating sound eff ects into a Web page 211

Take the Wheel 214
Chapter 11: Video 215

Making an HTML5 Page with Video 216
Video and Browser Compatibility 218

Make mine WebM: Th e Miro Video Converter 219
Converting to 3GP: Adobe Media Encoder CS5 221

Making Videos for the Web 222
Webcams 223
Small camcorders 223
Standard camcorders 224
Screen video capture 225

Video and Source Attributes 225
Src 226
Poster 226
Preload 227
Loop 227
Autoplay 228
Controls 228
Width and Height 229

Take the Wheel 229

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE
 JAVASCRIPT AND PHP 231

Chapter 12: Adding Just Enough JavaScript 233
Inserting JavaScript into HTML5 Pages 234

JavaScript in external fi les 234
Functions 235
Event handlers 236

Using the Document Object Model 239
How the DOM works with your page and JavaScript 240
HTML5 elements and the DOM 242

Storing Temporary Values 244
Variables 244
Arrays 248
Objects 249

Take the Wheel 252

02_977279-ftoc.indd x02_977279-ftoc.indd x 10/28/10 9:54 PM10/28/10 9:54 PM

CONTENTS

XI

Chapter 13: Th undering Your Site with Canvas 253
Canvas Basics 254

A simple canvas implementation 256
Images in canvas and shadows 264

Creating Complex Drawings with Canvas 269
Lines and movement 270
Curves 275

Take the Wheel 281
Chapter 14: Adding Forms 283

Adding a Form 284
General form attributes 286
Th e form as part of the DOM 290

Th e Many Kinds of Input 293
Th e list attribute, the URL type, and datalists 294
Radio buttons and check boxes: Easy-to-select input elements 297
Date picker 301

Take the Wheel 303
Chapter 15: Embedding Objects and Storing Information 305

Geolocation 306
Finding latitude and longitude 306
Getting the map 307
Working with the geolocation properties and the
Google Earth plug-in 310

Storage in HTML5 311
Session storage 312
Local storage 316

Adding and Adjusting Objects in HTML5 Web Pages 320
Adding an object 320
Adjusting an object 322

Take the Wheel 322
Chapter 16: Catching Interactive Data 325

Server-Side Languages and HTML5 326
Setting up PHP on your computer (which thinks it’s a server) 326
Testing PHP 327

PHP Basics 328
Th e post catcher 330
Data validation 330

Basic PHP Program Structures 332
Temporary data storage 332
Key PHP operators 336

Making an E-Mail Application 337
A simple e-mail application 338
PHP catch and send 340
Adding a header and auto-reply in PHP 342

Take the Wheel 344
Index 345

02_977279-ftoc.indd xi02_977279-ftoc.indd xi 10/28/10 9:54 PM10/28/10 9:54 PM

02_977279-ftoc.indd xii02_977279-ftoc.indd xii 10/28/10 9:54 PM10/28/10 9:54 PM

Introduction

In 1992, I was stumbling the Internet (we used to stumble prior to surfi ng) with a program
using the Gopher protocol. From El Paso, Texas, I was able to look up the train schedule
between London and Cambridge in England. At the time, it was like a miracle. Here I was in
West Texas with a London-Cambridge train schedule. Unbelievable!

Shortly aft er that time when I didn’t think it could get any better than Gopher on the Internet,
up popped the Mosaic browser and the World Wide Web. Netscape Navigator soon sup-
planted Mosaic, and I discovered HTML. Now I was able to see graphics and text plus I could
link to other Web pages. In short order, I worked out how to create my own Web pages using
a text editor and the new markup language, HTML. Some of the guys in computer services set
up a host for me, and I was in business.

For a while, it seemed that a new version of HTML was coming out every year or so. CSS and
JavaScript were introduced and more and more browsers became available. It just kept getting
better and better, but aft er HTML4 (in its many forms, including XHTML), things seemed to
stagnate. Th is HTML Dark Ages lasted from about 2000 to 2008. Th en the World Wide Web
Consortium (W3C) published the HTML5 Working Draft in 2008. However, aft er publication
of the HTML5 standards in a draft format, everything was back to a crawl as far as getting my
hands on an HTML5 browser. Th e team developing the standards has been methodical in the
development process and was planning on implementing the fi nal draft of the standards in
browsers in 2012!

Th en one day in 2009 or 2010, I read about a beta version of a browser that supported
HTML5, or at least some of its features. By 2010, several browsers were supporting HTML5,
including browsers made for mobile devices. Online blogs like www.smashingmagazine.
com were publishing posts about HTML5 and so, ready or not, HTML5 was here! Somehow
HTML5 has escaped from the zoo, and the race was on to produce HTML5 browsers. We
have offi cially entered the HTML Renaissance Period. Th e excitement is back!

HTML5 is so big that I had to select a focus that would encompass the essence of the markup
language without devolving into a mere reference or encyclopedia attempting to touch on
everything and explain nothing. Naturally, the new features were going to be a major focal
point, but they exist in the context of a host of other tags, and readers learning HTML for the
fi rst time need foundational elements. Also, I had to drop the discontinued elements like a
bad habit and show how the continued and new elements work in concert. Further, CSS3 and
JavaScript play an important role, but they’re only introduced insofar as they relate to
HTML5. (Smashing JavaScript and Smashing CSS cover these important features in detail.) So
I’ve divided Smashing HTML5 into four parts that bring together the heart and soul of
HTML5.

03_977279-intro.indd 103_977279-intro.indd 1 10/28/10 9:54 PM10/28/10 9:54 PM

2

INTRODUCTION

PART I: THE LANGUAGE OF THE WEB

Th e fi rst part of the book starts off looking at the diff erent browsers available for HTML5—
including mobile browsers—and gives you a handle on where to start working with this
newest version of HTML. It also deals with the details of working with diff erent fi le types and
getting organized so that creating Web pages and sites is an orderly process. It explains how to
use HTML5 tags (elements) and the diff erent attributes and values that can be assigned to
tags. Also, you learn how to get going with CSS3. At the end of the fi rst part, you learn about
using color and diff erent color codes with HTML5 and how to put together color schemes to
enhance any site.

PART II: PAGES, SITES, AND DESIGNS

Th e second part looks at the bigger picture of creating Web page and Web sites. At one time,
designers and developers just needed to concern themselves with how a page appeared on a
computer screen—as screen real estate expanded to monitors reminiscent of drive-in theater
screens. Suddenly, users with mobile devices were looking at Web pages, and design strategies
had to be reformulated to include mobile users. Th roughout the book, you’ll see Web pages
presented in mobile confi gurations for devices like the iPhone and Droid. So, expect to see
screenshots of Windows 7 and Macintosh OS X browsers interspersed with screenshots taken
on mobile devices displayed in Mini Opera and mobile Safari browsers—as well as other new
mobile browsers you didn’t even know existed. It’s not your father’s Web! (It’s not even your
older sister’s Web anymore.)

PART III: MEDIA IN HTML5

Only one of the three chapters in this part deals with media that was available in earlier
versions of HTML—Chapter 9, on images. Th e other two chapters deal with audio and video,
both new to HTML5. In addition to the general types of media, HTML5 brings with it
diff erent decisions about media formats. Several of the video formats are relatively new and
were developed for use on the Web in a number of versions. Not all HTML5 browsers use the
same video formats, but, fortunately, HTML5 has structures whereby it can check the video
formats until it fi nds one that will run on a given browser. In addition to the new elements for
audio and video come several new attributes and values available to optimize media on the
Web, and I cover these attributes and values in this part.

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE
JAVASCRIPT AND PHP

One of the most anticipated features of HTML5 has been the canvas element. However, in
order to get the most out of canvas, you need both JavaScript and CSS3. So, in this part, you
learn enough JavaScript with the HTML5 Document Object Model (DOM) to work eff ec-
tively with canvas and CSS3. Likewise, HTML5 brought with it several new form attributes,
but as with most forms, they need help for processing the information. Using JavaScript,

03_977279-intro.indd 203_977279-intro.indd 2 10/28/10 9:54 PM10/28/10 9:54 PM

INTRODUCTION

3

you’ll learn how form data can be saved with the new storage objects in HTML5. Also,
you’ll learn how to use PHP to process information entered in HTML5 forms so that you
can automatically send and receive e-mails via the Web. Also, I take a look at the new
geolocation objects and their properties and show you how you can have your Web
page automatically load a map based on your current latitude and longitude coordinates.
You’ll fi nd Part IV full of new materials that will add many new features to your site.

03_977279-intro.indd 303_977279-intro.indd 3 10/28/10 9:54 PM10/28/10 9:54 PM

03_977279-intro.indd 403_977279-intro.indd 4 10/28/10 9:54 PM10/28/10 9:54 PM

PA
R

T

I

I THE LANGUAGE
OF THE WEB

Chapter 1: Introducing HTML5

Chapter 2: Understanding HTML5 Tags

Chapter 3: Text Tags and a Little CSS3

Chapter 4: Working with Color Values

04_977279-pp01.indd 504_977279-pp01.indd 5 10/28/10 9:53 PM10/28/10 9:53 PM

04_977279-pp01.indd 604_977279-pp01.indd 6 10/28/10 9:53 PM10/28/10 9:53 PM

SMASHING HTML5

C
H

A
P

T
E

R

1

INTRODUCING
HTML5

1
THIS CHAPTER IS a general overview of what’s
new, what’s the same and what’s been removed
from HTML that makes HTML5. At this time,
one of the most important tasks is to fi nd out
which browsers work with HTML5, which ones
are in development that promise HTML5
compatibility and how each has started to
implement HTML5. Also, you’ll want to learn

about some of the new browsers that are specifi -
cally developed for mobile devices, so you can
test HTML5 pages on your mobile device, too. To
get started, download all the HTML5 browsers
(covered in this chapter) so that you can learn
what users will see when they encounter an
HTML5 Web page that you’ve created.

05_977279-ch01.indd 705_977279-ch01.indd 7 10/28/10 9:53 PM10/28/10 9:53 PM

8

PART I: THE LANGUAGE OF THE WEB

CREATING WITH TAGS: AN OVERVIEW

Most of the content on the Internet is created with HyperText Markup Language (HTML).
You may be surprised to learn that several applications you use every day — for example, your
word processor — also were created with markup languages. However, like all computer
languages, with HTML, all you see is the content, not the underlying language. Th e language
works like the frame of a building — you know it’s there underneath all that paint and
drywall, but you can’t see it. In this book, I make the language of HTML very visible and show
you how to use it to build your own structures.

If you’re familiar with previous versions of HTML and XHTML, you’ll be able to transfer the
bulk of your knowledge to HTML5. And if you’re brand-new to working with HTML, you’ll
fi nd HTML5 quite simple. Essentially, all you have to do is place your content between an
opening tag and a closing tag, called a container, and the container will style your text or
display your graphics and media on the Web page. Figure 1-1 illustrates containers:

Element name

Opening tag

Closing tag

Container = between

opening and closing tags.

The <p> tag is inside the

<body> container and

‘Hello’ is inside the <p>

container.

Figure 1-1: Containers in HTML5.

For example, the following line,

<h1>This is big text.</h1>

tells the interpreter in your browser to create big text that looks like this:

Th is is big text.

Th e text inside the arrow brackets < > is the code. In this case, h1 is the code for big text.
Th e arrow brackets tell where to begin the container (<h1>) and where to end the container
(</h1>). Everything inside the container is confi gured to the size and style of the tag, which
is either built into the tag or created using CSS3.

While we’re getting started here, you can have a little fun creating and viewing some HTML5
with little examples. All you have to do is type any of the code provided in this chapter in a
text editor such as Notepad if you’re running Windows or TextEdit if you’re on a Mac. Save
the fi le with the extension .html, and then open it in an HTML5 browser. To open a Web

05_977279-ch01.indd 805_977279-ch01.indd 8 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

9

page, just start your browser and then, from the menu bar, select File → Open File (or Open),
and locate the fi lename. (You can just double-click the fi le icon on the desktop to open most
HTML fi les.)

INCORPORATING THE NEW HTML5 ELEMENTS

A tag is made up of an element and attributes. Th e tag is identifi ed by its element, such as
<h1> — h1 is the element. When we speak of a tag, we’re usually referring to its element, but
actually a tag is its element and attributes. Attributes are the diff erent characteristics or
properties of an element that you can code to change features of the content in the tag’s
container. For now, I’m just going to deal with the element, so I’ll use the terms tag and
element interchangeably.

To give you a sense of the new elements in HTML5, Table 1.1 shows all the new elements,
along with a brief description of each. Later in this book, I give lots of examples and explain
how to use these elements.

Table 1.1 New Elements in HTML5
New Element Description

<article> Self-contained composition in document

<aside> Content tangentially related to content of the article

<audio> Sound content container

<canvas> Graphic development container

<command> A command that the user can invoke

<datalist> List generator when used with the <input> element and its new list attribute

<details> Discloses details of an element

<embed> External interactive plug-in or content

<figcaption> Caption tag for the fi gure element

<figure> Contains a group of media content and their caption

<footer> Container for a footer for a section or page

<header> Container for header for a section or page

<hgroup> A heading of a section with multiple h1 to h6 elements in a document

<keygen> The key pair generator control representation.

<mark> A string of text in one document, marked or highlighted for reference in another
document

continued

05_977279-ch01.indd 905_977279-ch01.indd 9 10/28/10 9:53 PM10/28/10 9:53 PM

10

PART I: THE LANGUAGE OF THE WEB

Table 1.1 (continued)

New Element Description

<meter> Container for a known range of values (for example, disk use)

<nav> Representation of a section of a document intended for navigation

<output> Defi nes the progress of a task of any kind

<progress> Representation of the progress made in a task (such as percentage complete in a
download operation)

<rp> Indicator in Ruby (a programming language) annotations to defi ne what to show brows-
ers that don’t support the <ruby> element

<rt> Marks the ruby text component of a ruby annotation

<ruby> Element for spans with ruby annotations

<section> Theme identifi er for content grouping

<source> Container for multiple specifi cation of media resources

<summary> Information on a <details> element

<time> Container for a date/time

<video> Element for linking to a video fi le

<wbr> Representation of a line break opportunity to guide the hyphenation of long words or
text strings

Some of the new elements, like <video> and <audio> add multimedia to HTML and
represent a major new capacity to HTML. Others, like <ruby>, are quite specialized, and
unless you need certain East Asian characters, you’re unlikely to use that element.

One characteristic of many of the new tags is that they work in conjunction with CSS3 or
JavaScript. However, most of the new elements still work on their own, without any added
help. When adding a style or some of the cooler features, you may fi nd yourself using a bit of
CSS3 or JavaScript, but you don’t have to learn the entire JavaScript language or even CSS3 to
have some fun with it.

For example, the following script uses the new <datalist> element that has not been
available in earlier versions of HTML. Enter the following code in a text editor, save it as
Datalist.html, open it in your Web browser, and you’ll see how it assists users in entering
data. (You can fi nd Datalist.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5.)

<!DOCTYPE HTML>

<html>

<head>

05_977279-ch01.indd 1005_977279-ch01.indd 10 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

11

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Datalist</title>

</head>

<body>

<p>

 <label> Which of the following would you like to learn?

 <input type=”text” name=”web” list=”lang”>

 <datalist id=”lang”>

 <option value=”HTML5”>

 <option value=”JavaScript”>

 <option value=”jQuery”>

 <option value=”ActionScript 3.0”>

 <option value=”Java”>

 </datalist>

 </label>

</p>

</body>

</html>

When you open the fi le in an Opera browser, you’ll be given a list of input options, as shown
in Figure 1-2.

Figure 1-2: Using the <datalist> tag in an Opera browser.

Unlike earlier versions of HTML, in which text input didn’t show the user an options list, this
one does.

USING CONTINUED TAGS FROM HTML4

Even if you’re familiar with HTML4 (or earlier versions of HTML), you’ll be surprised by the
number of HTML elements you may not know how to use or may not have even heard of
before. For example, what’s the <q> tag? When is it used? If you’re new to HTML, don’t try to
remember all of the elements in Table 1.2, but go over them to get a general sense of the
available tags and a little about their description.

05_977279-ch01.indd 1105_977279-ch01.indd 11 10/28/10 9:53 PM10/28/10 9:53 PM

12

PART I: THE LANGUAGE OF THE WEB

Table 1.2 Continued Tags from Previous HTML Versions
Continued Tags Description

<!--...--> A comment

<!DOCTYPE> The document type (only one in HTML5)

<a> Hyperlink to a page or page area

<abbr> An abbreviation

<address> Container for an address

<area> An area inside an image map

 Bold text

<base> A base URL for all the links in a page

<bdo> Direction of text display

<blockquote> A block of text

<body> Beginning a body element

 A single line break

<button> A clickable button

<caption> A table caption

<cite> Container for a citation

<code> Format for computer code text

<col> Defi nes attributes for table columns

<colgroup> Container for groups of table columns

<dd> Container for a value for the <dt> element

 Container for deleted text

<dfn> Representation of the defi ning instance of term

<div> Demarcation of division in a document

<dl> Head for an association list

<dt> Specifi cation for a name in name-value group (description list)

 Emphasized text

<fieldset> Container for a set of form controls

<form> Container for a form typically with input elements

<h1> to <h6> Text header 1 to header 6

<head> Container for the fi rst code to be interpreted by browser

<hr> Horizontal rule (line)

05_977279-ch01.indd 1205_977279-ch01.indd 12 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

13

Continued Tags Description

<html> Container for an HTML document

<i> Italic text

<iframe> Frame an inline sub window

 Image container

<input> User-input fi eld within a form container

<ins> Container for inserted text within implied paragraph boundaries

<kbd> Container for user keyboard input

<label> Representation of a caption in a user interface

<legend> Title in a fi eldset border

 List item indicator

<link> A resource reference (for example, CSS)

<map> Image map container

<mark> Text in one context marked for text in different context

<menu> Container for a list of commands

<meta> Container for meta information

<object> Container for embedded object (for example, a SWF fi le)

 A numbered (ordered) list

<optgroup> An option grouping header in an options list

<option> Container for individual options in a drop-down list

<p> A paragraph block

<param> Plug-in parameters

<pre> Preformatted text format

<q> Enclosed text with quotation marks

<samp> Computer code output or snippet

<script> Container for script for CSS, JavaScript, or another recognized script

<select> A selectable list

<small> Small text

 Inline section in a document

 Strong text that looks like bold

<style> Container for a style defi nition

continued

05_977279-ch01.indd 1305_977279-ch01.indd 13 10/28/10 9:53 PM10/28/10 9:53 PM

14

PART I: THE LANGUAGE OF THE WEB

Table 1.2 (continued)

Continued Tags Description

<sub> Subscripted text

<sup> Superscripted text

<table> A table defi nition

<tbody> Demarcation for a block of rows for a table’s body

<td> A table cell

<textarea> A text area container

<tfoot> Representation for a block of rows of column summaries for a table

<th> Table header format

<thead> Representation of a block of rows of column summaries for a table header

<title> The document title

<tr> Demarcation of a table row

 An unordered list (a bullet list)

<var> Variable style in formula

Most of the elements with the same names from HTML4 are the same in every way in
HTML5, but some have slightly modifi ed meanings. Also, rules for some tags have changed.
For example, in creating tables, the tag for specifying a row <tr> no longer requires a closing
</tr> tag. Some attributes for elements have changed as well. As you continue to learn about
the new features of HTML5, you’ll fi nd that many of the “old” elements have lots of new
characteristics. Th e following HTML table script provides a new example with old elements.
Enter this text into your text editor, save it as NewOldTable.html, and open it in an Opera
browser.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Table</title>

</head>

<body>

<table>

 <caption>

 =Element Types=

 </caption>

 <thead>

05_977279-ch01.indd 1405_977279-ch01.indd 14 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

15

 <tr>

 <th> Type

 <th> Text

 <th> Graphics

 <tbody>

 <tr>

 <th> UI

 <td> text input

 <td> button

 <tr>

 <th> Links

 <td> underlined

 <td> icon

</table>

</body>

</html>

Figure 1-3 shows what your table looks like.

Figure 1-3: A table created with HTML5.

Generally, you don’t use tables for formatting text. Instead, tables are used for formatting
data — such as data that’s loaded from a database or created dynamically by another program
like JavaScript. In HTML5, though, tables used in conjunction with CSS3 do a bit more
formatting than in previous versions of HTML and CSS.

FORGETTING OR REPLACING DISCONTINUED TAGS

Th is fi nal set of tags (see Table 1.3) is for anyone familiar with HTML4 and earlier versions of
HTML. Th e following tags have been discontinued, either because they posed certain
problems or were replaced by other structures that better handled what they used to do.

If you’re new to HTML, you can look at these to get an idea of what to avoid. In working with
HTML, you fi nd many samples on the Web, and you’re likely to incorporate them into your
own code. However, because HTML5 is so new, you’ll fi nd that most of the HTML was
created with earlier versions that may have obsolete tags, and you’ll want to replace them with
the newer structures.

05_977279-ch01.indd 1505_977279-ch01.indd 15 10/28/10 9:53 PM10/28/10 9:53 PM

16

PART I: THE LANGUAGE OF THE WEB

Table 1.3 Discontinued Tags
Deleted Tags Removed or Replaced

<acronym> Replaced by <abbr>

<applet> Replaced by <object>

<basefont> Better handled by CSS

<bgsound> Replaced by <audio>

<big> Better handled by CSS

<blink> Removed in HTML5

<center> Better handled by CSS

<dir> Replaced by

 Removed in HTML5

<frame> Removed in HTML5

<frameset> Removed in HTML5

<isindex> Replaced by explicit <form>

<marquee> Removed in HTML5

<multicol> Removed in HTML5

<nobr> Removed in HTML5

<noframes> Removed in HTML5

<noscript> Only conforming to HTML syntax

<s> Better handled by CSS

<spacer> Removed in HTML5

<strike> Better handled by CSS

<tt> Better handled by CSS

<u> Better handled by CSS

One of the most common discontinued tags is <center>, but you can easily center text
using a little CSS, as shown in the following example. Type this text into your text editor, save
it as CenterMe.html, and open it in your Web browser.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

h1 {

 text-align:center;

 }

05_977279-ch01.indd 1605_977279-ch01.indd 16 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

17

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Center with CSS</title>

</head>

<body>

<h1>Headers Can Be Centered</h1>

</body>

</html>

All you’re going to see when you test the code in your browser is:

Headers Can Be Centered

It may look like a lot of work to get a simple centered header, but pages are generally short,
and you can center any header with an <h1> tag because you’ve changed the behavior of the
tag. You can change any tag you want with CSS. (You’ll learn about CSS3 in Chapter 3, but
you’ve already used it if you see the header in the middle of your page.)

CHOOSING A BROWSER TO INTERPRET HTML5

If you want to start a lively discussion with other HTML5 developers, just ask, “What’s the
best browser?” You should be most concerned with what browser those who will be viewing
your Web site use — not which browser other developers use. In general, developers use the
best browser until another best browser comes along, so they may actually use more advanced
and better browsers than the average Web user. If you want the people who visit your site to
have the best experience possible, try to fi nd out what browser they’re most likely to use. An
even better idea when developing soft ware for yourself or a client is to test your Web pages on
all major browsers and on at least the two major platforms — Macintosh and Windows. Th e
major browser developers also make browsers for the Linux OS, but very few people use their
Linux box for browsing the Web.

In looking at the major browsers that support HTML5, most can be used either by Windows
or by Macintosh operating systems, but sometimes a browser will require a newer OS. So if
you have an older system, be sure that the requirements for the browser you use work with
your OS.

Several years ago, Microsoft quit making Internet Explorer (IE) for the Macintosh.
However, Apple does make a version of its browser, Safari, for Windows. Th ree browser
developers — Google, Mozilla, and Opera — do not make operating systems for computers
but make browsers. In this section, I review Firefox, Chrome, Opera, Safari, and IE9.

Keep in mind that browsers’ features change all the time. What’s here is current as of this
writing, but it may have changed by the time you read it.

05_977279-ch01.indd 1705_977279-ch01.indd 17 10/28/10 9:53 PM10/28/10 9:53 PM

18

PART I: THE LANGUAGE OF THE WEB

MOZILLA FIREFOX

Mozilla has its roots in the original browser by Netscape called Netscape Navigator, which
was introduced in the early 1990s. It featured a mascot resembling the movie creature
Godzilla. Mosaic was a browser developed at the University of Illinois; it later became
Netscape Navigator. Th e combination of Mosaic and Godzilla resulted in Mozilla, which is
currently a nonprofi t company, the Mozilla Foundation. Firefox is Mozilla’s primary browser
that supports HTML5.

Besides supporting both Windows and Macintosh operating systems, Firefox also supports
the Linux operating system. Linux is not considered a primary OS for home computers, but it
is for servers. Firefox is available free for all the supported operating systems. Figure 1-4
shows a screenshot of an HTML5 application in Firefox.

Figure 1-4: The Mozilla Firefox browser.

05_977279-ch01.indd 1805_977279-ch01.indd 18 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

19

Notice that in the URL window (the window where you put the HTML address) the reference
is to file:///Volumes/Macintosh HD/ instead of an http:// address. Th at’s because
the page is sitting on the computer’s desktop. Also, you’ll fi nd that things looks diff erently if
displayed in a Windows environment than they do in a Macintosh one — even for the same
browser. (Th e example page is just for illustration and does not select browsers for you.)

GOOGLE CHROME

Google, famous for its search engine and maps, created its browser, Chrome, from the ground up
with HTML5 in mind. It has browsers for Apple, Windows, and Linux operating systems — all
available for free. Figure 1-5 shows the same exact Web page on the same computer as Figure
1-4 — see if you can detect the diff erences.

Figure 1-5: Google Chrome displaying the same HTML5 page as shown in Figure 1-4.

Other than the diff erent styles of the two browsers, it can be diffi cult to see the diff erences in
the page. With a simple page, subtle diff erences won’t aff ect how your Web page looks.
However, as your pages get bigger and more complex, small diff erences can grow.

05_977279-ch01.indd 1905_977279-ch01.indd 19 10/28/10 9:53 PM10/28/10 9:53 PM

20

PART I: THE LANGUAGE OF THE WEB

One Web page development tool, Adobe Browserlab (https://browserlab.adobe.
com) lets you see how a Web page looks in diff erent browsers at the same time. Browserlab
can be run directly from Adobe Dreamweaver CS5, or you can visit the Adobe Browserlab
Web page. To get a little more dramatic diff erence, let’s compare the sample Web page in
Firefox on a Macintosh with one in Windows 7 running Google Chrome. Figure 1-6 shows
what the side-by-side comparison looks like. (Graphics are not displayed.)

Figure 1-6: Comparing browsers in Adobe Browserlab.

Part of the diff erence is due to the ways in which Windows and the Macintosh operating
systems display text and user interfaces (UIs). Another view that Browserlab provides is called
an onionskin; it superimposes one over the other and you can see more precisely where text
and UIs appear. Figure 1-7 shows this diff erence.

Th e blurrier an onionskin appears, the greater the diff erences in the way the Web page
materials are rendered. In Figure 1-6, you can see that the view is very blurry, indicating that
some key diff erences exist between the browsers and operating systems.

05_977279-ch01.indd 2005_977279-ch01.indd 20 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

21

Figure 1-7: An onionskin view of superimposed browsers.

OPERA

When I was examining the Opera browser at the time of initially testing the diff erent brows-
ers, it seemed to have the best HTML5 features actually working. Plus, Opera has a special
browser, Opera Mini 5, that you can download free for your mobile devices. HTML5 works
fi ne on mobile devices, as you can see in Figure 1-8, which displays the sample Web page on
an iPhone using Opera’s mobile browser.

05_977279-ch01.indd 2105_977279-ch01.indd 21 10/28/10 9:53 PM10/28/10 9:53 PM

22

PART I: THE LANGUAGE OF THE WEB

Figure 1-8: Opera Mini 5 browser.

Full-size Opera browsers are available for Windows, Macintosh, and Linux operating systems
as well. When creating Web pages, you should plan for diff erent size devices. As you can see,
the sample application we’ve been using can fully fi t in a mobile device as well as on large
screens.

APPLE SAFARI

Apple makes Safari browsers for Macintosh and Windows as well as for mobile devices. For
comparative purposes, Figure 1-9 shows how the sample application looks on Apple’s Mobile
Safari, developed for the iPhone. Compare this with Opera Mini 5 in Figure 1-8.

05_977279-ch01.indd 2205_977279-ch01.indd 22 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

23

Figure 1-9: The Mobile Safari browser.

Just as there are few diff erences between the appearances of the Web pages as viewed on a
desktop or laptop computer, you shouldn’t see many diff erences between what diff erent
browsers show on mobile devices. Th at’s a good thing! Web developers waste a good deal of
time trying to make sure that all their pages look the same on diff erent browsers and plat-
forms. With a common implementation of HTML5, that shouldn’t be a problem. Other
unique features on browsers, such as having tabs, or other characteristics that make Web
browsing easier, are fi ne as long as the browser’s implementation of HTML5 is implemented
according to the specifi cations defi ned by the World Wide Web Consortium (W3C).

05_977279-ch01.indd 2305_977279-ch01.indd 23 10/28/10 9:53 PM10/28/10 9:53 PM

24

PART I: THE LANGUAGE OF THE WEB

MICROSOFT INTERNET EXPLORER 9

At the time of this writing, Internet Explorer 9 (IE9) was still in beta stage. According to
Microsoft , its IE9 browser will be fully compliant with HTML5 standards. Where possible,
throughout this book, I’ve included examples showing the IE9 at work with HTML5 Web
pages using the IE9 beta browser. Figure 1-10 shows the test page in the IE9 beta browser.

Figure 1-10: Internet Explorer 9.

PREVIEWING DIFFERENT DISPLAYS

As you’ve seen, Web pages can be viewed on a number of diff erent browsers and operating
systems. Web developers need to consider the characteristics of the devices that their pages
are to be viewed on, such as a desktop computer or a mobile phone. Suppose you develop for
an iPhone and iPad (or some other mobile device and tablet); if you can preview your work
side by side, you’re better able to make comparisons. Adobe Dreamweaver, a Web page
development tool, allows the developer to view multiple dimensions simultaneously, as shown
in Figure 1-11.

05_977279-ch01.indd 2405_977279-ch01.indd 24 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 1: INTRODUCING HTML5

25
Phone set for iPhone: 480 x 320 Table set for iPad: 1024 x 768

Figure 1-11: Multiscreen preview in Adobe Dreamweaver.

You can change the device dimensions. For example, a Motorola Droid displays an 854 x 480
screen and a Sony VAIO UX displays a 1024 x 600 screen. Th e multiscreen preview helps you
decide how to set up your page to optimize it for your viewers. Finding the best compromise
is an art and one that can be made less onerous by knowing as much as possible about your
audience and the devices they’re likely to use to view your materials.

TAKE THE WHEEL

To get started, this fi rst example lets you add some information about yourself. Don’t worry
about understanding everything (or anything!) unless you have some background in HTML.
Just substitute things about yourself in the areas marked with double equal signs. Save the
page to your computer using the name wheel1.html. (You can fi nd wheel1.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5.)

<!DOCTYPE HTML>

<html>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

05_977279-ch01.indd 2505_977279-ch01.indd 25 10/28/10 9:53 PM10/28/10 9:53 PM

26

PART I: THE LANGUAGE OF THE WEB

<head>

<style type=”text/css”>

body {

 background-color:blanchedAlmond;

 color:saddleBrown;

 font-family:Verdana, Geneva, sans-serif;

 font-size:12px;

 margin-left:20px;

}

h1, h2 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:midnightBlue;

}

h1 {

 text-align:center;

}

h3 {

 background-color:goldenrod;

 color:ghostwhite;

 font-size:11px;

 font-family:”Arial”;

}

</style>

<title>The Wheel</title>

</head>

<body>

<h1> ==Your Name== : The Mighty HTML5 Web Developer</h1>

<h2> ==Your Company Name== provides full Web services</h2>

 ==Service 1==

 ==Service 2==

 ==Service 3==

 ==Service 4==

 ==Service 5==

<h3> All services guaranteed. Our complaint department is located at: ==URL

where complains can be sent== . </h3>

</body>

</html>

When you test it in a browser, see if it looks like what you expected. Also, you might want to
see what it looks like in diff erent browsers and on your mobile device. (Remember: Web
browsers are free.) If you want to make some more changes, go to www.w3.org/TR/
css3-color/#svg-color. Th ere you’ll fi nd a list of all the color names you can use with
HTML5. See if you can change the color names in the code to ones you like.

05_977279-ch01.indd 2605_977279-ch01.indd 26 10/28/10 9:53 PM10/28/10 9:53 PM

SMASHING HTML5

C
H

A
P

T
E

R

2

UNDERSTANDING
HTML5 TAGS

2
PROGRAMMERS CHARACTERIZE

COMPUTER languages as ranging from
low-level languages that virtually mimic the
native language of the computer to high-level
languages that are close to how people talk.
HyperText Markup Language Version 5
(HTML5) is a very high-level language. However,
the original HTML had very few “words” with
which to describe what the developer and
designer wanted. As the Web grew, the demands
on HTML grew. With help from Cascading Style
Sheets (CSS) and JavaScript, designers could do
more with Web pages, but still, a lot was lacking.

More help was available for creating Web pages
in the form of plug-ins that were able to run

languages like Java and applications made with
Flash. In fact, most browsers were bundled with
the latest plug-ins for Flash so that users could
view pages created with Flash and Flash Builder
(Flex).

However, Web developers still wanted more from
HTML and CSS to run natively with browsers.
Browser makers quietly were adding functional-
ity to JavaScript required to work with the new
elements in HTML5. With new versions of each
browser, not only was HTML5 being fully
implemented, so too was JavaScript and CSS3.
Th is chapter explains how the diff erent HTML5
elements work and how they work in conjunction
with CSS3 and JavaScript.

06_977279-ch02.indd 2706_977279-ch02.indd 27 10/28/10 9:53 PM10/28/10 9:53 PM

28

PART I: THE LANGUAGE OF THE WEB

PARSING CODE

Sooner or later, you’ll hear the phrase parsing code in reference to browsers and HTML5,
CSS3, and JavaScript. All that means is that the browser is reading the code and interpreting it
to do what it’s told to do. It’s just like an international interpreter who speaks English and
Russian — the interpreter parses Russian so that the English speaker understands it and
English so that Russian speaker understands it. Strictly speaking, the parser is part of the
interpreter in the browser, but for all practical purposes, just think of parsing as involved in
getting the Web page to do what you told it to do in the tags you used in your Web fi le.

In order to correctly parse HTML5, two things have to happen: You have to write the code
correctly, and your browser has to interpret it correctly. Th at’s why standards are important.
Basically, standards insure that when you write HTML5 code according to the rules set down,
your code does what you expect it to do in all browsers and on all computers. Using HTML5,
CSS3, and JavaScript with the browsers discussed in Chapter 1, you shouldn’t have any
surprises when they’re all fully HTML5 compliant.

Ironically, the standards allow for the most designer and developer creativity. If you want to
have the page look or act in a certain way, following the standards used by the browsers that
interpret your creations, they’ll look the way you want them to look and behave as expected. If
either you or the browser fails to follow the standards, your creativity is ruined. (We don’t
want that now, do we?)

UNDERSTANDING HTML5 AND RELATED FILES

As you saw in Chapter 1, to create an HTML5 fi le, all you have to do is save the code using a
text editor like Notepad (Windows) or TextEdit (Mac) and use the extension .html at the
end of the fi le name. (MyCoolPage.html is an example.) Th e .html extension is important
because it is recognized as a Web page and not something else that your browser can’t parse.
You’ll also fi nd that only certain kinds of other fi les are recognized by the browser’s interpreter
and need certain extensions. Here are the most common fi le types you’ll encounter:

 .jpg (JPEG graphic fi le)
 .gif (GIF graphic fi le)
 .png (PNG graphic fi le)
 .svg (SVG graphic fi le)
 .css (Cascading Style Sheet)
 .js (JavaScript fi le)

Th e most important of these are the graphic fi les because the tools you use for your graphics
may automatically save them with diff erent fi lenames than those that can be used for the Web.
For example, Adobe Photoshop automatically saves fi les as .psd fi les, and Adobe Illustrator
saves its fi les in .ai format. Neither graphic fi le format can be used with Web pages. How-
ever, most graphic creation tools will save the fi les as .jpg, .gif, or .png if you use Save As
instead of just plain Save. When you use Save As, you can select from an available list of fi le
types on most tools, including text editors, word processors, and graphic drawing tools.

06_977279-ch02.indd 2806_977279-ch02.indd 28 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

29

Fixing Windows default fi le extension settings
The default settings for Windows 7 (and earlier versions) is to hide fi le extensions. That will give your
fi les a cleaner appearance, but if you have to decide between selecting a graphic fi le with a .psd
extension or a .png extension, you need to see what the extension is. Here’s what to do:

 1. Open the Control Panel.

 2. Choose Appearance and Personalization → Folder Options → Show Hidden Files and
Folders.

 3. Uncheck Hide Extensions for Known File Types (see the fi gure).

Uncheck this box

Unchecking the Hide Extensions for Known File Types check box in Windows.

Now you’ll be able to see all your fi le extensions. So, when you want to load a graphic fi le, you’ll
know whether it’s a .png, .jpg, or .gif fi le just by looking at the fi lename displayed on your
computer screen.

06_977279-ch02.indd 2906_977279-ch02.indd 29 10/28/10 9:53 PM10/28/10 9:53 PM

30

PART I: THE LANGUAGE OF THE WEB

Fixing TextEdit on your Mac
If TextEdit on your Mac has its default settings, you may have had problems saving plain HTML fi les.
That’s because the default fi le type that TextEdit saves fi les as is Rich Text Format (.rtf) and not plain
text (.txt). With .rtf, your text is saved with other code that you don’t want in your Web pages.
Here’s what you need to do to fi x it for writing Web pages:

 1. Open TextEdit.

 2. In the TextEdit menu at the top of the screen, choose Preferences.

 The Preferences dialog box appears.

 3. Select the Plain Text radio button (see the fi gure).

Changing TextEdit from Rich Text to Plain Text.

Now when you create an HTML5 page in TextEdit, when you save the fi le, it defaults to .txt and
you can just change that to .html using Save As.

06_977279-ch02.indd 3006_977279-ch02.indd 30 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

31

LEARNING WHICH FILES WORK WITH THE WEB

If you’re new to writing Web pages, the fi rst thing to learn is what fi les work with Web pages.
Directly, HTML5 recognizes, the .html extension and the three graphic fi le extensions
discussed earlier (.jpg, .png, and .gif). However, you’ll see a reference to .css fi les.
Th ese are external CSS fi les, whether CSS3 or older versions. Likewise, JavaScript fi les are
saved with a .js extension, and they, too, may have a link reference.

Th e browsers that parse HTML also parse CSS and JavaScript. In fact, you can have HTML
fi les with CSS and JavaScript code written right in with the HTML tags. Whenever you see the
<script> tag, you’ll fi nd either a JavaScript or CSS script in the script container (between
the opening <script> and closing </script> tags). At other times, the developer chooses
to put all the CSS and JavaScript code in external fi les and load them using the <link> tag
for CSS and the <script> tag for JavaScript.

For example, the following code loads the external .css fi le lookingGood.css:

<link rel=”stylesheet” type=”text/css” href=”lookingGood.css” />

With JavaScript, the external .js fi le is called from within the <script> container rather
than inside of a <link> tag. Th e following loads a JavaScript fi le named doMagic.js:

<script language=”JavaScript” src=”doMagic.js” />

Th is book concentrates on HTML5, but you defi nitely need CSS3 for formatting, so you’ll see
it here a good deal, too. For the most part, you’ll see CSS embedded in the HTML code. In
Chapter 3, you learn more about using CSS3 with HTML5. Chapter 12 provides you with a
little JavaScript to use with HTML5 tags, and there you’ll see exactly how to create and use
JavaScript with HTML5.

KNOWING HOW TAGS WORK

When you write code in HTML5, you’re going to need to know which elements to use to get
what you want. As we saw in Chapter 1, you can change the size and appearance of a font
using the <h1> tag. To get started, you won’t be modifying the tags with CSS. When you use
<h1>, you can expect to get the same big black bold text every time. (You can modify it to be
a small green font with CSS if you want, but you’ll have to wait for Chapter 3 to see how to use
CSS to do that.)

In a nutshell, your tags work by dividing up your page into sections that begin with an
opening tag <element> and end with a closing </element> tag. You can write all the
HTML5 pages you want using that method and not much else, and your page will work just
fi ne. Naturally, you’re going to want to create pages with a bit of fl air and help the browser
know right off the bat what you’re up to, but for the most part, you just write tags. So, let’s start
with the basic HTML5 container.

06_977279-ch02.indd 3106_977279-ch02.indd 31 10/28/10 9:53 PM10/28/10 9:53 PM

32

PART I: THE LANGUAGE OF THE WEB

STARTING OFF WITH THE BASIC HTML TAG

If you’re familiar with HTML4 and describing the document type, you know that you can add
a great deal of detail to tell the browser what’s up with your page. So, the fi rst tag that you
need to consider is not really an HTML tag but instead a tag that communicates with the
browser to tell it that you’re writing HTML5 and not one of the many versions of HTML4 or
XHTML. Here it is:

<!DOCTYPE HTML>

Th at’s it! Nothing fancy, it just announces to the browser, “You can expect an HTML5
document type.” Every Web page you make should begin with that tag, and you do not need a
closing tag. Th e exclamation mark (!) tells you it’s not an HTML tag, but something a little
diff erent.

DESCRIBING YOUR PAGE WITH TAGS

Right aft er the fi rst tag that tells the browser what it can expect, you begin your HTML
container (everything between the opening and closing tags). Th is tag announces the begin-
ning of HTML code and ends when the browser encounters the closing tag. Th e closing
HTML tag is at the end of every HTML page.

Following the HTML element is the <head> container. Th ink of the head area as the house-
keeping portion of a page. Whatever is in the head will be loaded fi rst, no matter where it’s
used in the rest of the HTML page. To get started, all that’s going into the head is the page’s
title. Th e title appears at the top of the Web page when you run it. For example, consider the
following title:

<title>Seriously Sweet Page</title>

Th at title appears on the page’s Windows and tabs. If you don’t put it in, you’ll end up with a
blank or default title. Figure 2-1 shows how the title appears in diff erent browsers.

As you can see, the title Seriously Sweet Page appears in diff erent places on the four main
browsers. On some, it appears at the top of the window and the tab, only at the top of the
page, and only on the tab. Th is helps the user fi nd your page when multiple pages are open
simultaneously — or simply reminds the user which page he’s viewing. Lots of other content
goes in the <head> container, such as CSS and JavaScript, but for now, just remember to
include a title.

Moving right along, the <body> tag demarcates the beginning of the page’s content. As the
name implies, the body is the main part of any Web page, and only content inside the
<body> container is visible on the page. Between the opening and closing body elements,
you put everything you want on your page. Th e following set of tags should go on every page
you create — in fact, you might as well use it as a template and save it somewhere so you don’t
have to start off with an empty page to code.

06_977279-ch02.indd 3206_977279-ch02.indd 32 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

33Figure 2-1: The title appearing on Web pages and tabs.

<!DOCTYPE HTML>

<html>

<head>

<title>Title goes here</title>

</head>

<body>

Content goes here: A Really Swell Page

</body>

</html>

As you proceed in this book, you’ll fi nd more and more structural elements to include.
However, the preceding few lines will get you off and running with your Web pages.

IDENTIFYING THE PARTS OF A TAG

Up to this point, I’ve used the terms tag and element more or less interchangeably. However,
the element is just one part of a tag. Each tag has attributes and the attributes have values. So,
tags are better conceived of in the following terms:

 Element: Th e name
 Attribute: Some characteristic of the element
 Values: A state or condition of the attribute

06_977279-ch02.indd 3306_977279-ch02.indd 33 10/28/10 9:53 PM10/28/10 9:53 PM

34

PART I: THE LANGUAGE OF THE WEB

Figure 2-2 shows all three parts of a tag.

Attribute (language)

Element name Value (English)

Figure 2-2: The parts of a tag.

Th e number of attributes is diff erent for diff erent elements.

Depending on the element, diff erent kinds of attributes will be available, and depending on
the attribute, diff erent types of values can be applied. As a general rule of thumb, use quota-
tion marks around values, including around numbers. Here are some diff erent examples:

<form action=”http://localhost/php/phpversion.php” method=”post”>

<input type=”text” width=”120” hidden=”false”>

<input type=”submit” value=”Sick ‘em”>

You have to be careful about what you put in between the double quotes. For example,
value=”Sick ‘em” is permissible because ‘em has a single quote mark. However, the
value “”Sick ‘em,” he said” would not work because two pairs of double quotes are
included.

The language attribute
The language (lang) attribute in the HTML tag is not used unless you’re creating a page for
something other than English. For example, the following are a list of other languages in which you
may develop Web pages and their corresponding language attribute values:

 Arabic: “ar“

 Chinese (Mandarin): “cmn“

 German (Deutsch): “de“

 Hebrew: “he”

 Hindi: “hi”

 Japanese: “ja”

 Portuguese: “pt”

 Russian: “ru”

 Spanish: “es”

Unlike some attributes, the lang attribute has a wide range of values. Go to www.iana.org/
assignments/language-subtag-registry for the full list.

06_977279-ch02.indd 3406_977279-ch02.indd 34 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

35

A typical situation that may arise is one in which your page has a quoted reference in two
diff erent parts of the page. Within a paragraph, you can put in as many quotation marks as
you want and they’ll show up on the page. However, only a single set of double quotes can be
assigned as a value to an attribute’s value. Consider the following script (quotes.html in
this chapter’s folder at www.wiley.com/go/smashinghtml5):

<!DOCTYPE HTML>

<html>

<head>

<title>Be careful with quotation marks</title>

</head>

<body>

<p>We read Emily Dickinson’s “Wild nights! Wild nights!”<p/>

<input type=”text” size=”50” value=”Emily Dickinson’s ‘Wild nights! Wild nights!’”>

</body>

</html>

In the <p> container, the double quotes identify the name of a poem. If the same text is to be
set off as a poem in a value for an attribute, you can use only single quotes for the name of the
poem, as shown in the value assigned to the value attribute. Figure 2-3 shows what the page
looks like in a browser.

Figure 2-3: Using quotation marks in HTML5 pages and attributes.

When assigning values to attributes, remember to stick with double quotes for the entire value
and use single quotes for highlighting sections within the value. By and large, life will be easier
if you avoid using single quote marks when assigning values to attributes.

UNDERSTANDING THE ROLE OF THE COMMENT TAG

Th e role of the comment tag is to help the developer communicate with other developers, as well
as to serve as a self-reminder of what the page is doing. A well-organized page contains informa-
tion about what the page is doing, what may be added or changed, and any other information that
aids developers in looking at a Web page script and quickly seeing what’s taking place.

Th e comment tag is really two tags — a beginning tag and an ending tag. Unlike other tags,
the comment tag has no text in it to help identify it. Th e following script (comments.html
in this chapter’s folder at www.wiley.com/go/smashinghtml5) shows where the
comment tag goes and explains what it’s doing.

06_977279-ch02.indd 3506_977279-ch02.indd 35 10/28/10 9:53 PM10/28/10 9:53 PM

36

PART I: THE LANGUAGE OF THE WEB

<!DOCTYPE HTML>

<html>

<head>

<title>Use Comments in Your Code</title>

</head>

<body>

<h2>Comments Are Important</h2>

<!--Notice that the header uses an h2 element instead of an h1 element.-->

Comments help you remember and show others your page design plan.

Here are some different uses:

<h5>1. Explain to others what you are doing.</h5>

<!--This page is explaining comments.-->

<h5>2. Provide specific directions for tags to use.</h5>

<!--Don’t use bullet points (). We haven’t learned how to do that yet.-->

<h5>3. List the hexadecimal values for your color scheme.</h5>

<!-- Only use the following color values on this page: 69675C, 69623D, ECE8CF,

E8D986, B5AA69.-->

<h5>4. Remember to recharge your portable computer.</h5>

<!--After working for two hours on coding, don’t forget to recharge your battery!

Otherwise, you may lose everything.-->

<h5>5. Remind yourself that you have a life away from computers.</h5>

<!--Don’t forget your date with Lola on Friday night!-->

</body>

</html>

As you can see when you load the page none of the comments is visible in the browser, but as
soon as you go back to work coding the Web page, they’ll be there. You can put any kind of
text in a comment container and it won’t get in the way of what you see.

One of the many uses of comment tags is what’s called commenting out (using your comment
tags to temporarily remove tags that you may want to keep around for later use). So, instead of
deleting the tags, all you do is to put comment tags around them, and test your page to see if
you like it better without the tags in question. If you think that it looked better in the original,
you just remove the comment tags. If the page looks better without the commented-out tags,
just remove the tags permanently.

For example, suppose, you’re wondering whether a page you’re preparing for a client looks
better or worse with a subheading and footnote. Here’s the original code with the subheading:

<!DOCTYPE HTML>

<html>

<head>

<title>Commenting Out</title>

</head>

<body>

<header>

 <h1>Eat at Joe’s Restaurant</h1>

 <h2>*Has passed most health inspections since 2005</h2>

</header>

06_977279-ch02.indd 3606_977279-ch02.indd 36 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

37

<section>

Joe’s has the best food on the block! The food is good, cheap, and tastes great!

</section>

<footer>

<h6>*Little boo-boo in 2010</h6>

</footer>

</body>

</html>

Figure 2-4 shows what the page looks like.

Figure 2-4: The original design.

Aft er thinking about the design, you suggest to the restaurant owner, who is quite proud of his
restaurant’s record, that maybe the message might be better received if the subheading and
footnote were removed. However, instead of removing the tags completely, you just comment
them out, as the following code (CommentOutCode.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5) shows:

<!DOCTYPE HTML>

<html>

<head>

<title>Commenting Out</title>

</head>

<body>

<header>

 <h1>Eat at Joe’s Restaurant</h1>

 <!-- <h2>*Has passed most health inspections since 2005</h2> -->

</header>

<section>

Joe’s has the best food on the block! The food is good, cheap, and tastes great!

</section>

<footer>

<!-- <h6>*Little boo-boo in 2010</h6> -->

</footer>

</body>

</html>

06_977279-ch02.indd 3706_977279-ch02.indd 37 10/28/10 9:53 PM10/28/10 9:53 PM

38

PART I: THE LANGUAGE OF THE WEB

Once you’ve made the changes by commenting out the unwanted tags, you display it to your
client again, as shown in Figure 2-5.

Figure 2-5: The page with the commented-out code.

If the client likes the original better, all you have to do is remove the comment tags, and
the page will look like it did before. You may want to experiment with several diff erent
appearances; by using the comment tag, you can quickly change it while keeping the
original tags — they’re just commented out.

NESTING TAGS

When you create an HTML page, you may nest tags —you can place one HTML5 container
within another container. In fact, I’ve been doing that all along. Th e rule is: Add an end tag
inside of a container before the container’s end tag. So, if you’re writing a tag within another
tag’s container, be sure to close the inside container before closing the outside container. Look
at the following examples to see what I mean.

When to use (and not use) comment tags
A general problem with comment tags is that they’re not used suffi ciently in a Web page. Sometimes
a few comments suffi ce — and if a page only needs a few, you shouldn’t add more. Other times, a
page needs a good deal more comments than it has. The number of comments required depends
completely on the size and scope of the Web project and whether you’re working by yourself or with
other developers.

However, sometimes developers get carried away and have so many comment tags that you can’t see
the fl ow of the HTML code. A page with a long comment after every tag can act like barbed wire in a
fi eld — you keep tripping over it and can’t reach your destination. If a large number of comments are
required for a complex page, put them together in a single container, and then the other developers
can see the HTML code and understand how it’s used.

06_977279-ch02.indd 3806_977279-ch02.indd 38 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

39

In the following example, the <h1> tag closes outside the <section> container:

<section>

<h1>Smash this!

</section>

</h1>

Instead, it should look like this:

<section>

<h1>Smash this!</h1>

</section>

Here, the <body> tag closes outside the <html> container. Th e <h3> container is correct.

<html>

<body>Really interesting stuff

<h3>Don’t forget to vote!</h3>

</html>

</body>

Instead, it should look like this:

<html>

 <body>Really interesting stuff

 <h3>Don’t forget to vote!</h3>

 </body>

</html>

Here, the <header> tag closes before the <nav> tag does:

<header>

<nav>

HTML5 |

CSS3> |

PHP

</header>

<footer>

HTML5 |

CSS3> |

PHP

</nav>

</footer>

Instead, use two <nav> container sets — one for the header and one for the footer:

<header>

<nav>

HTML5 |

06_977279-ch02.indd 3906_977279-ch02.indd 39 10/28/10 9:53 PM10/28/10 9:53 PM

40

PART I: THE LANGUAGE OF THE WEB

CSS3 |

PHP

</nav>

</header>

<footer>

<nav>

HTML5 |

CSS3 |

PHP

</nav>

</footer>

Sometimes, when you test your HTML5 page, you won’t see what you expect — or even
anything at all. Th e fi rst thing you need to check is your tag nesting.

In case you’re wondering about the code, it’s a non-breaking space. (Th e semicolon is
part of the tag.) Simply think of it as a space around the vertical bar character (|) used to
separate the links. In your browser, you’ll see:

HTML5 | CSS3 | PHP

When you place your navigation code inside of <nav> tags, you can easily spot it as naviga-
tion. However, like all other tags, you have to pay attention to the nesting conventions used in
HTML5.

TAKE THE WHEEL

Th e HTML for the following Web page (TakeTheWheel.html in this chapter’s folder at
www.wiley.com/go/smashinghtml5) has errors that need correcting. It starts off with
several tags that are empty or partially completed. You’ll be responsible for making sure that
the correct tags and text are added where they need to be. Sometimes, you’ll need to close a
container that has been opened (<tag>) or open one that has been closed (</tag>). And be
sure that your tags are correctly nested. (Hint: Th e very fi rst tag is not an HTML tag but that
special one that begins with an exclamation point!)

<! >

<html lang= >

<head>

<!-- Color Combination

0B0B0D,29272A,A99A93,E27107,F8AC00 -->

<style type=”text/css”>

body

{

background-color:#F8AC00;

color:#29272a;

font-family:Verdana, Geneva, sans-serif;

font-size:12px;

margin-left:20px;

06_977279-ch02.indd 4006_977279-ch02.indd 40 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 2: UNDERSTANDING HTML5 TAGS

41

}

h1

{

color:#29272A;

font-family:”Arial Black”, Gadget, sans-serif;

}

h2

{

text-indent:10px;

color:#0B0B0D;

background-color:#E27107;

font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

}

header

{

text-align:center;

}

</style>

<title>==???===</title>

< >

<body>

<header>

< >My Favorite Things</h1>

</header>

<section>

<h2>My Favorite Music</h2>

 ==????==

 ==????==

 ==????==

< >My Favorite Movies</h2>

 ==????==

 ==????==

 ==????==

 <h2>My Favorite Computers</h2>

 ==????==

 ==????==

 ==????==

 <h2>My Favorite TV</h2>

 ==????==

 ==????==

 ==????==

< >

< >

<h5>Not responsible for my tastes.

Take it or leave it.< >

</footer>

</body>

</html>

Th is exercise should help you pay attention to the little details. Of all of the gotchas, it’s the
little things that slip under the radar.

06_977279-ch02.indd 4106_977279-ch02.indd 41 10/28/10 9:53 PM10/28/10 9:53 PM

06_977279-ch02.indd 4206_977279-ch02.indd 42 10/28/10 9:53 PM10/28/10 9:53 PM

SMASHING HTML5

C
H

A
P

T
E

R

3

TEXT TAGS AND
A LITTLE CSS3

3
A WEB PAGE is unlike the kind of page you put
in your word processor and start typing. Web
pages are designed for computer screens of some
sort — whether it’s a big desktop, a laptop, or
even a mobile device. You’re not dealing with an

81⁄2-by-11-inch sheet of paper — you’re dealing
with a far more dynamic viewing platform. So,
the fi rst thing you want to think about is how
your page is going to look on a digital screen.

07_977279-ch03.indd 4307_977279-ch03.indd 43 10/28/10 9:53 PM10/28/10 9:53 PM

44

PART I: THE LANGUAGE OF THE WEB

THE FUNDAMENTALS

Before we get going on dealing with text on a Web page, we need to consider the fundamental
elements of a Web page. Th ey include three types of actions:

 Displaying text
 Loading and displaying graphics
 Linking to other pages

To display text, all you need to do is type it on the page in the <body> container. You can
style it with the <h> tag as you know from previous chapters, but basic text requires only that
it be in the body of a page.

Loading and displaying graphics uses the tag with the following format:

You can use only .jpg, .png, or .gif fi les with the img element. Th e src attribute refers to
the source of the graphic. Th e img element has other attributes, but all you need to get an
image on the page is the src attribute so that the fi le can be located.

Th roughout the book, the term URL is oft en used to refer to a fi le’s location — no matter what
type of fi le is involved. URL stands for Uniform Resource Locator and refers to a standard
protocol for fi nding and using diff erent types of fi les.

Finally, a link to another page uses the following format:

Link abel

Th e href refers to the linked page’s hypertext reference, or more simply put, its address. Like
an image’s source locations, you’ll see the term url used for a linked page’s address as well.

One more thing you need to know before continuing. Th e document type declaration
(<!DOCTYPE HTML>) in the very fi rst line is important — don’t ever leave it out. However,
an equally important line is declaring the character encoding. Th is is used to tell the Web
browser which character set of letters to use, such as the A to Z alphabet, Hebrew characters,
Japanese, Cryllic, or some other set. You can do it in several ways, but this book uses the
following code:

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

You always should specify character encoding. Although using the <meta> tag is a bit long,
you can just cut and paste it in all your Web pages. If you don’t, you can run into security
vulnerabilities, and nobody wants that.

07_977279-ch03.indd 4407_977279-ch03.indd 44 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

45

Th rowing a Web page together works fi ne but may leave much to be desired in terms of what
the user sees and whether she wants to visit the site again. Let’s look at a Web page with no
structure but with the fundamental elements of a Web page:

<!DOCTYPE HTML>

<html>

 <head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <title>Fundamentals</title>

 </head>

 <body>

 This is text. You don’t need a tag for Plain Old Text (POT).

 Click here for another page

 </body>

</html>

As you can see in Figure 3-1, everything is jumbled. Th e image appears right in the middle of
the link (blue underlined text), the image appears right in the middle of the page, and
generally it doesn’t make much sense.

Figure 3-1: The most basic Web elements.

When you’re organizing a Web page, the links should be organized into a navigation system that’s
easy for those looking at your Web page to use. In the page shown in Figure 3-1, the link is
broken up by the graphic and seems to be part of the text rather than part of a navigation system.

A LITTLE MORE ORGANIZATION

One of the basic conventions in Web design is placing the logo in the upper-left corner of the
page. Likewise, Web pages place links organized into a coherent system of navigation. By
adding two more tags, you can go a long way toward organizing your page:

: Generates a single-space line break
 <wbr>: Generates a line break opportunity

07_977279-ch03.indd 4507_977279-ch03.indd 45 10/28/10 9:53 PM10/28/10 9:53 PM

46

PART I: THE LANGUAGE OF THE WEB

A line break (
) forces a break in the lines of text. You can think of it as a single space
between lines, or if you’re old school, a carriage return. HTML5 has added something new
called a line break opportunity. Sometimes you’ll have a very long word, especially in URLs
and e-mail addresses. Th e wbr element doesn’t force a line break, but you can place the <wbr>
tag where you would like a word to break in case the page is compressed. Th is consideration is
especially important for mobile devices because they have small screens. For example, suppose
you have a very long URL that is being shown as a non-linking description like,

www.eatatjoesfinerestaurant.com

If the link name is not broken up, and if the page is compressed, you’ll see a big gap in the text
or the word broken where you don’t want it to be. Th e <wbr> tag helps you keep your text
broken where you want it. Consider the following script (BasicBreaks.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5), which uses both of the
line-breaking tags:

<!DOCTYPE HTML>

<html>

 <head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <title>Adding ine Breaks and ine Break Opportunities</title>

 </head>

 <body>

 This is text. You don’t need a tag for Plain Old Text (POT).

He said, “Sometimes you have extremely long words, and you want to make sure that

they break at appropriate places. For example, you have a long name for a URL like

www.eat<wbr>at<wbr>joes<wbr>fine<wbr>restaurant<wbr>.com, and if it has to break,

you want the break to appear in a particular place.”

He said, “Sometimes you have extremely long words, and you want to make sure that

they break at appropriate places. For example, you have a long name for a URL like

www.eatatjoesfinerestaurant.com, and if it has to break, you want the break to

appear in a particular place.”

 Click here for another page

 </body>

</html>

By adding the two line-break tags, the page looks much better. Th e paragraph that does not
use the <wbr> tag has a big gap in it where the long URL was not divided up into sensible
break points. Figure 3-2 shows how the page now appears.

Although it’s still not perfect, it’s a lot better than the original, even though two more para-
graphs were added. Th e graphic is in the upper-left corner (as most logos are), the paragraphs
are separated by line breaks, and in the fi rst paragraph using the long URL, the breaks are
where the <wbr> tag specifi ed.

07_977279-ch03.indd 4607_977279-ch03.indd 46 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

47
Figure 3-2: Adding line breaks.

THINKING ABOUT STRUCTURE

At this point, more thought should go into structure. With the ability to add text, graphics,
and links, the page can have far more features and much more content. So, you should begin
thinking about things like headings, navigation, and positioning beyond the logo in the
upper-left -hand corner. Start with a simple sketch. Use a scrap of paper to jot down an idea of
a Web page. (Use paper, not your graphic tools just yet.) Figure 3-3 shows an example:

Logo

Graphic
Heading

Navigation

Navigation

Text

xxx xxx

xxx

xxx

xxx xxx xxx

Figure 3-3: Sketch a structure for your site.

07_977279-ch03.indd 4707_977279-ch03.indd 47 10/28/10 9:53 PM10/28/10 9:53 PM

48

PART I: THE LANGUAGE OF THE WEB

Given the tags discussed so far, will you be able to create a page based on the sketch? Th e only
attribute lacking is one to wrap the text around the image. Th e align attribute of the img
element will do that. In this case, the image will be to the left and the text to the right, so the
following line will do the trick:

You may have noticed that the alt attribute was also included. Th at attribute lets users know
what to expect if the image takes a while to load.

So, now, with just a few tags and an added attribute, this next script does a fair job of creating
the page with the structure in the sketch in Figure 3-3.

As you’ll see in the following code (Sketch2Web.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5), I’ve used a pound sign (#) instead of an actual URL in
the navigation links. Th e pound sign acts as a placeholder while we’re working on the struc-
ture; it works just like a real URL except that it doesn’t go anywhere or cause an error message.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sketch to Web</title>

</head>

<body>

Toys | Clothes | Sports

A Good Place for Kids

 Kids are serious business. They need toys

that are both safe and educational. Toys need to be fun and allow children’s minds

to create beyond any functionality the toy has. There is no reason that they cannot

be both safe and fun. Children need lots of clothes because they grow so fast. And

they need sports to offset childhood obesity and the illnesses associated with

obesity.

Toys | Clothes | Sports

</body>

</html>

Notice that we didn’t use any of the H elements introduced in the previous two chapters. Th at’s
because I cover them in the next section and give you a better sense of their value. Figure 3-4
shows how close the page came to the sketch in Figure 3-3.

07_977279-ch03.indd 4807_977279-ch03.indd 48 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

49

Figure 3-4: A page with a basic structure.
© David Sanders

Now the Web page shown in Figure 3-4 has more structure than any of the previous examples.
Th e navigation bars at the top and bottom are helpful to the user, but perhaps they’d look
better centered on the page. Maybe the top navigation bar should be at the very top of the
page in the center, right next to the logo. Also, the text is jammed right next to the image and
could use some space. Of course, the heading should be in a diff erent style, weight, size, and
font. Also, it’s pretty boring — especially since it’s for kids. However, because the structure is
coming along, you can address those other details when you learn to use more styling tools.

ADDING MORE HTML5 STRUCTURE

In the previous section you learned about the wbr element that is new to HTML5, and this
section takes a closer look at using the familiar <h..> tag and some related tags for structur-
ing text. Also, you saw how to start with a hand-drawn sketch of what you want and imple-
ment it in a HTML5 script. Moving from a fairly concrete sketch to a more general block
outline helps understand how HTML5 is organized into blocks. Th e fi rst kind of block
examined is the text block — in fact we’ve already begun, in Chapters 1 and 2, discussing
<h1>, <h2>, and other h elements. Figure 3-5 illustrates the block organization.

07_977279-ch03.indd 4907_977279-ch03.indd 49 10/28/10 9:53 PM10/28/10 9:53 PM

50

PART I: THE LANGUAGE OF THE WEB

Figure 3-5: Text block organization.

In terms of organizing your page, the layout for diff erent levels of h elements is the HTML5
<hgroup> tag. For example, take a look at the following Web page (HelementOrg.html in
this chapter’s folder from www.wiley.com/go/smashinghtml5) from Wittgenstein
(who seemed to write using h tags in 1918 when he completed writing Tractatus
Logico-Philosophicus):

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Tractatus logico-Philosophicus</title>

</head>

<body>

<h1>Tractatus logico-Philosophicus</h1>

<h1>by Ludwig Wittgenstein</h1>

<hgroup>

<h2>1 The world is all that is the case.</h2>

<h3>1.1 The world is the totality of facts, not of things.</h3>

<h4>1.11 The world is determined by the facts, and by their being all the facts.</

h4>

<h4>1.12 For the totality of facts determines what is the case, and also whatever is

not the case.</h4>

<h4>1.13 The facts in logical space are the world.</h4>

<h3>1.2 The world divides into facts.</h3>

<h4>1.21 Each item can be the case or not the case while everything else remains the

same.</h4>

</hgroup>

</body>

</html>

07_977279-ch03.indd 5007_977279-ch03.indd 50 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

51

If we look at the Web page, we can see where the diff erent h elements give the parts diff erent
sizes, but we don’t see the indentations Wittgenstein used in his original writings. Figure 3-6
shows the Web page on a mobile phone — whatever else you think of Wittenstein, his style
sure works well for mobile screens.

Figure 3-6: Outline format using <h> tags on the iPhone.

If you look at the original Wittgenstein, you’ll fi nd that his style of writing used an indented
outline that appeared as the following:

1 Th e world is all that is the case.
 1.1 Th e world is the totality of facts, not of things.
 1.11 Th e world is determined by the facts, and by their being all the facts.
 1.12 For the totality of facts determines what is the case, and also whatever

is not the case.

We can fi x that if we want by adding indents to the <h..> tags. We could do this by adding
margins using CSS3 as you’ll see in the next section. However, the purpose of the h element
and the <hgroup> is not to set indents but to help with more general outlines. Th e
<hgroup> tag sets the highest level <h..> tag in the hgroup container as the outline
element. For example, since Wittenstein wrote Tractatus Logico-Philosophicus wholly in
outline, his entire work using the hgroup element would look exactly like the outline in his
actual Abstract to the work.

07_977279-ch03.indd 5107_977279-ch03.indd 51 10/28/10 9:53 PM10/28/10 9:53 PM

52

PART I: THE LANGUAGE OF THE WEB

1 Th e world is all that is the case.
2 What is the case — a fact — is the existence of states of aff airs.
3 A logical picture of facts is a thought.
4 A thought is a proposition with a sense.
5 A proposition is a truth-function of elementary propositions. (An elementary proposi-

tion is a truth-function of itself.)
6 Th e general form of a truth-function is [p, E, N(E)]. Th is is the general form of a

proposition.
7 What we cannot speak about we must pass over in silence.

Th e hgroup element is tied into the outline algorithm in HTML5, and although it’s unlikely
that you’ll be using it for writers like Wittenstein, it is useful for helping you think about your
page in terms of the structure within an HTML5 page. One way to think about the
<hgroup> tag is as a mask (or even a Romulan cloaking device) over other h elements below
the highest-level element in the hgroup container. In our example, the h3 and h4 are
masked and only the h2 element is recognized as part of the outline.

ADDING STYLE TO TEXT WITH CSS3

Th roughout the book, the reference to Cascading Style Sheets will be to CSS3. Th at’s because
HTML5 and CSS3 are paired in many aspects, but like other elements I discuss in this book,
those continued from earlier versions have been incorporated in the newest version of HTML
and CSS. We really have a mix of new and old in CSS3, just as in HTML5. So, if you’re familiar
with older versions of CSS and you see the same properties in CSS3 references, just treat it as
a continued feature.

STYLING HTML5 ELEMENTS WITH CSS3 PROPERTIES

In Chapters 1 and 2, you saw examples of CSS3 but were given no explanation of what was
going on to add a new style to an existing element. Here, the focus is on adding style to h
elements. In the next three chapters, you’ll see far more aspects of using CSS3. Here, I focus
on the basics of incorporating CSS3 into your HTML5.

All style sheets can be added in three ways:

 You can use the <style> tag to defi ne the properties of elements in the HTML5 page.
 You can use external style sheets, which are text fi les where you store a style you may
want to reuse.

Most professional developers and designers prefer the CSS3 external style sheets because
perfecting the desired style takes a lot of work. When you want to make a change to the
design of a Web site, you can make changes to many pages that use an external style sheet, just
by changing the one style sheet. It’s just more effi cient than having to change the <style>
attributes in each individual Web page.

07_977279-ch03.indd 5207_977279-ch03.indd 52 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

53

You also can add styles without style sheets by using inline styles. An inline style is like a
“Break Glass in Case of Emergency!” technique. A good-looking page has a plan developed in
a style sheet. However, sometimes, you run into a case where you need some feature added,
and instead of changing the style sheet, you just pop it in with a tag.

Embedded style sheets
An embedded style sheet is simply adding the style sheet directly into the HTML5 script. In
the <head> of the program, add the style sheet using the <style> container. Place the
element you want to style in the style container, and then add values to the property to be
styled. Figure 3-7 shows the general format.

Note curly braces

Name of element (tag)

Note semicolons

Close style tag

Property depends on element type

Value depends on property type

Open style tag

Type to define as style sheet

Figure 3-7: An embedded style sheet.

Each element has a unique set of properties, and each property has values that can be assigned
to it. When you change the value of the property, that value appears in the text inside the
element’s container. So, if you change the text color to red, all the text inside the element’s
container will be red. Th e following script (CSS3fonts.html in this chapter’s folder at
www.wiley.com/go/smashinghtml5) provides an example.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<style type=”text/css”>

body {

 background-color:#fbf7e4;

 font-family:Verdana, Geneva, sans-serif;

 margin-left:20px;

 color:#8e001c;

}

h1 {

 background-color:#8E001C;

 color:#e7e8d1;

07_977279-ch03.indd 5307_977279-ch03.indd 53 10/28/10 9:53 PM10/28/10 9:53 PM

54

PART I: THE LANGUAGE OF THE WEB

 font-family:”Arial Black”, Gadget, sans-serif;

 text-align:center;

}

h2 {

 background-color:#424242;

 color:#d3ceaa;

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 margin-left:5px;

}

</style>

<title>CSS3-Embedded Stylesheet</title>

</head>

<body>

<h1>This Is the Big Head</h1>

<h2> Here Is the Second Head</h2>

The body text is styled for a bit of a eft margin and picks up the color of the body

along with its font. Notice that the background of the heads extends all the way

across the page. Also notice that a space (& nbsp;) gives the h2 text a ittle

indent so that it stays “within” the background. That’s not a problem with the h1

head because it’s centered.

</body>

</html>

Figure 3-8 shows how the styled page looks.

Figure 3-8: Text styled with CSS3.

You should be aware that when you use style sheets, you have to pay attention to the little
details — like adding both curly braces, separating the property from the values by colons,
and ending each property value with a semicolon. If your CSS3 style sheet doesn’t work as you
think it should, check those little gotchas!

When using background colors, the background oft en extends across the entire page. Certain
inline elements such as can be used to contain the background to the aff ected text.
With background colors in headers that are left - or right-justifi ed, you’ll want to add a space
() so that it doesn’t bleed into the background color of the page.

07_977279-ch03.indd 5407_977279-ch03.indd 54 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

55

External style sheets
With all the diff erent kinds of style combinations you may have to consider — including
diff erent formats for desktops, laptops, and small mobile screens — the work involved in
creating a good style sheet or set of style sheets can be considerable. By saving your CSS3
work to a text fi le, you can reuse your style sheet as oft en as you want. Plus, you can copy your
embedded CSS and easily paste it into a text fi le and save it as a .css fi le.

For example, let’s take a color scheme with a set of colors that a corporate client, Mighty Smite
Web Development, has described as the corporate palette. (Th at means you can use only the
set of colors provided.) You start with the following company colors:

#3C371E, #8C5F26, #BCA55F, #F2CC6E, #F26205

Th e background color must be #F2CC6E. You don’t have to know what the color is — you just
have to know that the company has decided that it’s going to be the background color. You’re
told that the designers can fi gure out the rest.

Further, you’re told that they’d like a version that looks good on a phone and a diff erent one
that looks good on a desktop. So, that means you’re going to need two diff erent CSS3 style
sheets. Later on, you’ll worry about how the browser is going to know whether the user is
viewing from a desktop with a screen the size of a drive-in theater or viewing from a Droid
phone.

All that’s required is the following tag:

<link rel=”stylesheet” type=”text/css” href=”mightySmiteSmall.css” />

Th is tag goes in the <head> container where the <style> tag had gone along with the
CSS3 code. Now the CSS3 code goes into a separate fi le. Notice that the <link> tag
contains an href attribute assigned the value mightySmiteSmall.css. Th at’s the name
of the CSS3 fi le in this chapter’s folder at www.wiley.com/go/smashinghtml5. Th e
Small indicates that it’s designed for mobile devices. Another CSS3 fi le will be created called
mightySmiteLarge.css for non-mobile devices.

To create a CSS3 fi le, all you have to do is enter the CSS3 code in a text editor or Web develop-
ment application minus the <style> tags. Th e following shows the example to be used here:

@charset “UTF-8”;

/* CSS Document */

/*3C371E,8C5F26,BCA55F,F2CC6E,F26205 */

body

 {

 background-color:#F2CC6E;

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif;

 color:#8C5F26;

 font-size:11px;

 max-width:480px;

07_977279-ch03.indd 5507_977279-ch03.indd 55 10/28/10 9:53 PM10/28/10 9:53 PM

56

PART I: THE LANGUAGE OF THE WEB

 }

h1

 {

 color:#BCA55F;

 background-color:#3C371E;

 font-family:”Arial Black”, Gadget, sans-serif;

 text-align:center;

 }

h2

 {

 color:#F26205;

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif

 }

h3

 {

 color:#3C371E;

 font-family:Tahoma, Geneva, sans-serif;

 }

Th e top line lets the browser know that it’s a UTF-8 character set, and the second two lines are
comment lines. Th ey’re diff erent from the comment lines in HTML5, but they work the same.
Th e second comment line is a handy way to keep track of the color palette and can save time
in setting up the style sheet.

To test this mobile version of the CSS3 code, the following HTML5 fi le (ExternalSmall.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) is used:

<!DOCTYPE HTML>

<html>

<head>

<link rel=”stylesheet” type=”text/css” href=”mightySmiteSmall.css” />

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Mighty Smite Sofware Test Sheet</title>

</head>

<body>

<h1>Mighty Smite Software Conglomorate</h1>

<h2>This is an h2 head</h2>

<h3>Here’s an h3 head</h3>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

incididunt ut abore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco aboris nisi ut aliquip ex ea commodo consequat. Duis aute

irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia

deserunt mollit anim id est aborum.

</body>

</html>

All the styles in the CSS3 fi le are used to test their appearance, and the body text beginning
with Lorem ipsum is fi ller text, used to get an idea of what a text block looks like. (It’s been
used since the 16th century, so it must be good.)

07_977279-ch03.indd 5607_977279-ch03.indd 56 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

57

In setting up the CSS3 fi le, the only setting that specifi cally targeted mobile devices is the
width setting in the body element. It’s set to 480px because that’s the width of the iPhone
used in testing. However, depending on how users hold their mobile devices, they’ll get
diff erent results. Figures 3-9 and 3-10 show what the page looks like when the phone is held at
diff erent angles.

Figure 3-9: Style set for mobile device vertical.

Figure 3-10: Style set for mobile device horizontal.

07_977279-ch03.indd 5707_977279-ch03.indd 57 10/28/10 9:53 PM10/28/10 9:53 PM

58

PART I: THE LANGUAGE OF THE WEB

A unique feature of many mobile devices is that they allow Web pages to be viewed from
diff erent aspects — vertical or horizontal. So, when I’m preparing a CSS3 fi le for a mobile
device, I tend to set the width to the horizontal. However, you’ll quickly fi nd that diff erent
mobile browsers work diff erently. At the time of this writing, the Apple Safari browser on the
iPhone displayed the page in a tiny, unreadable page that had to be expanded, but the Opera
Mini browser (as shown in Figures 3-9 and 3-10) on the same iPhone using the same size
screen displayed the page immediately in an optimum viewing size, whether viewed horizon-
tally or vertically.

Inline style
A third way to add CSS3 to your document is to simply add a style attribute to an element
that redefi nes the content in the element’s container. For example, the following code
(InlineCSS3.html in this chapter’s folder at www.wiley.com/go/smashinghtml5)
has style changes in the <div> container and the second <p> container:

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

Different pixel density
When you’re creating Web pages for output ranging from large desktops to mobile devices, you
have to consider more than just the number of pixels on the vertical and horizontal planes. In the
example CSS3 external style sheet, the width is set to 480 with the code max-width:480px; for
an iPhone with 480-pixel horizontal resolution. However, when you run the application on your
mobile device, the text may be way too big or way too small. What’s going on?

We tend to think of screen resolution in terms of the number of pixels — the more pixels, the higher
the resolution. So, if you set your screen to 1680 x 1050, it has a higher resolution than if I set it to
1024 x 768. However, the resolution actually depends on the number of pixels relative to the size of
the display area. More important than the number of pixels is the number of pixels stuffed into your
viewing area or pixels per inch (PPI) — pixel density. If you develop your Web page on a typical
computer screen, the pixel density is around 100. However, your mobile device is likely to have a
much higher pixel density. For example, my iPhone 3GS has a pixel density of 132 and a resolution
of 480 x 320. If I upgrade to an iPhone 4, my pixel density will be 326 and the resolution will be
960 x 640. However, the phones both have a 31⁄2-inch viewing area. The iPhone 4’s resolution is
double that of the iPhone 3GS, and its ppi is about 21⁄2 times greater. For my Web page, that means
a width setting of 480 will show up as coming only about halfway on an iPhone 4 even though it fi lls
the width of iPhone 3GS models.

However, because I do my development on a computer with a ppi of 99 on a 20-inch screen, the best
I can get is an estimation of what it will look like on any mobile device. I can estimate what a Web
page will look like on different mobile devices by changing the size of the browser window, but
ultimately, you need to actually see what your HTML5 Web page looks like on the target mobile
device.

07_977279-ch03.indd 5807_977279-ch03.indd 58 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

59

<title>Inline CSS3</title>

</head>

<body>

<div style=”font-family:Verdana, Geneva, sans-serif;font-size:24px;background-

color:yellow;color:navy;”>This is important!</div>

<p>But this...not so much</p>

<p style=”font-size:10px;font-family:sans-serif;”>And this you can ignore

altogether....

</body>

</html>

Figure 3-11 shows what you see when you test the Web page in a browser. Keep in mind that
the second line has no styling at all added.

Figure 3-11: Inline CSS3.

Th e use of inline CSS3 can be invaluable when some feature of your CSS3 external fi le doesn’t
have a style for something on your Web page that needs to be there. Generally, inline is one of
those tools you want to use both sparingly and judiciously. Th is is especially true when
dealing with other developers and designers who are working from a common style sheet.

CREATING CSS3 CLASSES AND IDS

CSS3 classes and IDs are ways to extend a style to any element. For example, suppose you
have a feature that you want to add to just some items such as a yellow highlight. If you defi ne
a div or a p element’s background color as yellow, all the text in either of those containers
will be bright yellow — not what you want. On the other hand, if you have a class that defi nes
a yellow background, all you have to do is to assign that class to an element to lighten it up.

CSS3 classes
You create style classes in an almost identical way as you do element styles. Th e “dot” (.)
defi nitions used to create a class in CSS3 are labels you make up instead of using element
names. Figure 3-12 shows how to create a CSS3 class defi nition.

07_977279-ch03.indd 5907_977279-ch03.indd 59 10/28/10 9:53 PM10/28/10 9:53 PM

60

PART I: THE LANGUAGE OF THE WEB

dot

Class name

Figure 3-12: Creating class defi nition.

As you can see, the dot defi nition goes where the element name goes. Th e rest is identical to
CSS3 defi nitions for elements. However, implementing a class style is a bit diff erent because it
can be used in almost any element tag.

In order to see how we might want to use a bit of highlighted text, a very handy inline element
is span. Th e tag can be added in the middle of a block element and only change that
part of the content in the span container without changing the rest of the block. To add a
class to an element, you use the following format:

<element class=”myClass”>

Notice that the name of the class does not include the “dot” from the dot defi nition. Th e dot is
used only in the style defi nition to let the parser know that the word is a class and not an
element. Th e following program (SpanClass.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) gives you an example of how you might use the class with the
 tag.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-color:#F93;

}

.highlight {

 background-color:yellow;

}

div {

 font-family:”Comic Sans MS”, cursive;

 font-size:18px;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#930;

 text-align:center;

 font-size:20px;

}

</style>

07_977279-ch03.indd 6007_977279-ch03.indd 60 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

61

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Halloween Highlight</title>

</head>

<body>

<h1>Halloween Party!</h1>

<div>You are invited to a Halloween Party on Saturday,

October 29. Costumes are <i>de rigueur</i>.</

div>

</body>

</html>

When you test the program, you’ll see that the two portions of the text within the
containers are aff ected. Figure 3-13 shows how they’re displayed in a Chrome browser on a
Mac (top) and an Opera Mini browser on an iPhone (bottom).

Mobile phone

Desktop computer

Figure 3-13: Class defi ned style in container on desktop computer (top) and mobile device (bottom).

Both displays clearly show that the CSS3 class named highlight is working fi ne. However,
the Opera Mini browser displays neither the defi ned fonts nor the italicized words. (Th e Safari
browser does display the italicized words, but not the defi ned fonts.)

07_977279-ch03.indd 6107_977279-ch03.indd 61 10/28/10 9:53 PM10/28/10 9:53 PM

62

PART I: THE LANGUAGE OF THE WEB

CSS3 IDs
A CSS3 ID is set up almost exactly like a class except that it uses a pound sign (#) instead of a
dot (.) in the defi nition. Further, in assigning an ID, you use ID instead of class to specify
which ID to use with an element. You even can use IDs and classes with the same element.
Th e following tag is perfectly correct:

<p ID=”this” class=”that”>

Both can select styles, and the ID provides a unique ID for the paragraph.

Th e ID has some major diff erences from a class. Both a class and an ID can be used as style
sheet selectors. However, an ID has some other limitations and features:

 An ID can be used only once in a document.
 An ID can serve as an anchor (see Chapter 7).
 An ID can act as a script reference. Th at’s important for JavaScript.
 An ID can be used as a name in a declared object element — more stuff from JavaScript.
 An ID can be used by agents for processing information in translating an HTML
document.

Of these features, you’ll be using only the fi rst two until you decide to incorporate JavaScript
and other languages into your résumé. Nevertheless, if you pay attention to these diff erences,
your Web pages won’t run into problems later on (and others will think you’re a pro). Th e
following example (IDwork.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows a use of the ID with CSS3:

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

#littleHead {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#9FC;

 font-size:16px;

}

#javascript {

 /* red */

 color:#cc0000;

}

#php {

 /* blue */

 color:#009;

}

#actionscript {

 /* green */

 color:#063;

}

07_977279-ch03.indd 6207_977279-ch03.indd 62 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 3: TEXT TAGS AND A LITTLE CSS3

63

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Using IDs</title>

</head>

<body>

<div id=”littleHead”>Everything you always wanted

 to know about variables:</div>

<p id=”javascript”> JavaScript variables do not have to be given a data type.</p>

<p id=”php”> PHP variables can be nudged toward a data type with type hinting.</p>

<p id=”actionscript”> ActionScript variables must be assigned a data type.</p>

</body>

</html>

In looking at that code, you may have wondered what the slash-asterisk (/* ... */) marks are.
Quite simply, they’re comment code for CSS3. Within a <style> container and in external
style sheets, they work just like the <!-- --> comment marks in HTML5. Figure 3-14
shows what you’ll see when you test it.

Figure 3-14: IDs in a Web page.

If you have a long Web page with discussions about JavaScript, PHP, and ActionScript, the
user may have to scroll down to fi nd the topic he wants. Using IDs, you can write the URL to
include the exact paragraph the user is trying to fi nd. For example, the following URL will go
directly to the paragraph covering PHP: www.smashingHTML5.com/myIDs#php. Th e
added #php calls the specifi c paragraph with the php ID.

TAKE THE WHEEL

Th is chapter has covered a lot of material, and you’ll want to see what you can do with it. Here
are two challenges:

 You can design better than that! Aft er starting a Web page using diff erent h elements,
the page that resulted in what you see in Figure 3-4 still needs help. For a kid’s page, it’s
not too colorful and the font is boring. Besides, the text is right next to the image. Using
CSS3, see if you can make it better.

07_977279-ch03.indd 6307_977279-ch03.indd 63 10/28/10 9:53 PM10/28/10 9:53 PM

64

PART I: THE LANGUAGE OF THE WEB

 Help poor Wittenstein! Aft er ducking bullets in World War I while preparing Tractatus
Logico-Philosophicus, our Web page in Figure 3-6 shows Wittenstein’s work without the
indents! However, using CSS3 and the margin-left property, see if you can fi x those h
elements so that all the elements are there. By the way, if you want all 29 pages of Tracta-
tus Logico-Philosophicus, you can download it for free at http://filepedia.org/
tractatus-logico-philosophicus.

Have some fun with this and see the fl exibility that CSS3 gives you.

07_977279-ch03.indd 6407_977279-ch03.indd 64 10/28/10 9:53 PM10/28/10 9:53 PM

SMASHING HTML5

C
H

A
P

T
E

R

4

WORKING WITH
COLOR VALUES

4
UP TO THIS point, you’ve seen several examples
of using color codes, but unless you understand
what you’re looking at, you may as well be
looking at the enigma code. In some examples,

color names are used, but other than the basic
colors, you need to understand how colors are
constructed in CSS3. By doing so, you have
access to millions of colors rather than a handful.

08_977279-ch04.indd 6508_977279-ch04.indd 65 10/28/10 9:52 PM10/28/10 9:52 PM

66

PART I: THE LANGUAGE OF THE WEB

UNDERSTANDING RGB COLOR

If you’ve ever mixed colors in anything from fi nger paints to a watercolor set, you have a sense
of what happens when you mix colors. For computer screens, red, green and blue lights are
mixed to generate diff erent colors. For example, if you mix equal amounts of red and green,
you get yellow.

To mix colors for Web pages, diff erent values are mixed using integers, percentages, and
hexadecimal numbers. CSS3 also has a limited number of named colors available that can
help while fi guring out the other color-mixing methods. HTML5 and CSS3 have some very
sophisticated elements such as canvas that can do more with color and drawings than has
been possible in previous versions of HTML. Th ese advanced elements require a bit of
JavaScript, and you’ll fi nd them discussed in detail in Chapter 13. For now, we’ll get started
with the basics.

USING NAMES

One of the stranger experiences in working with HTML5 and CSS3 is the name set used with
colors. At the root are the 16 standard colors shown in Table 4.1.

Table 4.1 Standard Color Names
Aqua Black Blue Fuchsia

Gray Green Lime Maroon

Navy Olive Purple Red

Silver Teal White Yellow

Using the HTML5 that you’ve learned so far, you can easily create a chart showing all the
colors. (In the “Take the Wheel” section at the end of this chapter, you’ll work out how to
re-create the table.) Figure 4-1 shows what they look like on a Web page on a mobile device.

Figure 4-1: The standard CSS3 colors in a Web page.

From this root base, you can include another 131 names that seem to have no rhyme or
reason in terms of why they were selected. Th ey’re all part of a set created back in the 1980s
called X11. Th ey were adopted in the early browsers and have been with us ever since. In the
offi cial W3C documentation, they’re listed under Scalable Vector Graphics (SVG), and all the

08_977279-ch04.indd 6608_977279-ch04.indd 66 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

67

names were adopted from the original X11. (See www.w3.org/TR/SVG/types.
html#ColorKeywords.)

Th e reason that all the names haven’t been listed here is because designers and developers
generally don’t use them. For designers, not only do the 131 names severely limit their palette,
but the ones selected are nuts! Colors like papayawhip and mistyrose are hardly standard
names for artists. Likewise, for developers, the values used don’t conform to any mathematical
set such as the old Web-safe colors that follow a logical numeric standard. (Of course, if you
want to have some fun, go ahead and include darkkhaki and ghostwhite in your Web page’s
color palette.) In the next sections, you’ll see how to create the exact color you want from over
a million possible combinations.

RGB AND HSL PERCENTAGES

In mixing paint colors, the amount of paint is sometimes listed in percentages. A certain
percent of red, green, and blue will give diff erent colors. In setting colors in CSS3, you can use
percentages in two diff erent ways. First, you can assign a color value using the following
format:

rgb(r%,g%,b%);

Th e fi rst value is the percent red; the second, green; and the third, blue. For example, the
setting, rgb(43.9%,50.2%,56.5%) generates the color that the Los Angeles Dodgers use.
Th e three percentage values add up to more than 100 percent, so you know that the percent-
age is a percent of the color itself and not the total. As you can see, you can be very precise for
values, including fractions of percentages. Th e following script (RGBpercent.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) shows how to use this color
assignment in an HTML5 page:

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-color:rgb(43.9%,50.2%,56.5%);

}

h1 {

 background-color:rgb(11.8%,56.5%,100%);

 color:rgb(100%,100%,100%);

 font-family:”Arial Black”, Gadget, sans-serif;

 font-style:italic;

 text-align:center;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Dodger Blue</title>

</head>

<body>

08_977279-ch04.indd 6708_977279-ch04.indd 67 10/28/10 9:52 PM10/28/10 9:52 PM

68

PART I: THE LANGUAGE OF THE WEB

<h1>Los Angeles Dodgers

(Formerly of Brooklyn)</h1>

</body>

</html>

When you launch the page, the colors come out precisely as you instructed, as shown in
Figure 4-2.

Figure 4-2: Setting colors with RGB percentages.

A second way to assign colors using percentages is to use a hue-saturation-light (HSL) model.
Th e big advantage of HSL is that lightness is symmetrical. Th at makes it easier to tweak a
color to what you’d like it to be.

By thinking of a color circle arranged around 360 degrees like a compass, you select a hue. At
the top, or 0 percent, you fi nd the reds. Moving clockwise, at 30 percent the hues turn
red-yellow. At 60 percent, they’re yellow. And so on around the color spectrum until you’re at
360 percent (0 percent) where you’re back to the red hues. For designers who understand the
color spectrum, this makes choosing colors much easier. To create a lighter color, increase the
light value; decrease the light value to make the color darker. For example, suppose you’re
trying to get just the right shade of red. You start with the following color assignment:

hsl(0,100%,50%);

Notice that the fi rst value is not a percentage. Th at’s because it has values between 0 and
359 — the 360 degrees of a circle. (Remember: 0 and 360 are the same point on the circle.)
By raising and lowering the light (the third parameter), you can make your color lighter or
darker — which is far more intuitive than changing RGB percentages. Th e following
HTML5/CSS3 script (HSLColor.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how easy it is to lower and raise the light value to get just the right
shade of red.

<!DOCTYPE HTML>

<html>

<head>

08_977279-ch04.indd 6808_977279-ch04.indd 68 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

69

<style type=”text/css”>

.redBase {

 color:hsl(0, 100%, 50%);

}

.redDarker {

 color:hsl(0, 100%, 25%);

}

.redLighter {

 color:hsl(0, 100%, 75%);

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>HSL Color Assignment</title>

</head>

<body>

<h1 class=”redBase”>Red Base</h1>

<h1 class=”redDarker”>Red Darker</h1>

<h1 class=”redLighter”>Red Lighter</h1>

</body>

</html>

When fi rst using HSL, it helps to think of adding light by going higher to the sun or making it
darker by going lower into a well. Th e tweaking process is easier for designers to get just what
they want. Figure 4-3 shows what the diff erent red tints look like.

Figure 4-3: HSL makes tweaking tints easy.

Hue and light are fairly intuitive to understand, but saturation can be a little murky. Essen-
tially, saturation is the amount of colorfulness in a given color. A 100 percent saturation is the
full colorfulness of a hue in a given light, while a lower percent subtracts from a hue — some-
thing like a color fading. For all colors, a midpoint light is going to be gray when saturation is
0 percent. Sometimes a faded or muted color is preferred, like blue jeans that have been
washed many times.

08_977279-ch04.indd 6908_977279-ch04.indd 69 10/28/10 9:52 PM10/28/10 9:52 PM

70

PART I: THE LANGUAGE OF THE WEB

RGB DECIMAL INTEGER SETTINGS

A second way of mixing your colors using the rgb() value assignment is to insert values from
0 to 255 (a total of 256 values because you count the 0), instead of the percentages used in the
earlier example. Th e value 256 represents the number of possible combinations on two 8-bit
bytes. In other words, it’s based on how a computer stores and processes information. With a
set of three values from 0 to 255, you can generate 16,777,216 combinations. However, color
technology is far more complex than we can possibly discuss here, and modern color process-
ing keeps generating better color processors. Suffi ce it to say, you can generate lots of colors
with those combinations of red, green, and blue. Here’s the format to assign a color value:

rgb(integerR, integerG, integerB);

For example, yellow, which mixes red and green would be

rgb(255,255,0);

It’s not as intuitive as HSL, but aft er a while, you start getting a sense of mixes based on 256
values rather than percentages. Th e following example (DecColor.html in this chapter’s
folder at www.wiley.com/go/smashinghtml5) shows a simple implementation.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 /* Red background */

 background-color:rgb(255,0,0);

}

h1 {

 /* Big Yellow Text */

 color:rgb(255,255,0);

 font-family:”Arial Black”, Gadget, sans-serif;

}

h2 {

 /*Blue Text + Gray Background */

 color:rgb(0,0,255);

 background-color:rgb(150,150,150);

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Decimal Colors</title>

</head>

<body>

<h1> Big Yellow Header</h1>

<h2> Blue header with a gray background</h2>

</body>

</html>

08_977279-ch04.indd 7008_977279-ch04.indd 70 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

71

Th e only diff erence between using RGB with values from 0 to 255 and 0 percent to 100
percent is in perception. You may be thinking that you can be more precise with your colors
using the 256 values instead of the 0-to-100 range of percentages, but that isn’t the case
because you can use fractions in percentage assignments. Whether you use the percentage
notation or the 0-to-255 notation really comes down to a matter of personal preference.
Figure 4-4 shows the outcome using the Opera Mini browser on an iPhone.

Figure 4-4: Colors mixed using integer values, shown on a mobile device.

As you can see in Figure 4-4, the mobile device is not picking up the Arial Black font, but it
has no problems with the colors. Be sure to check your mobile device for fonts and other
eff ects if they’re essential to how your page looks. Remember: Most computers have a far
more complete set of fonts and styles than mobile devices do. In time, though, they should be
very similar.

HEXADECIMAL SETTINGS: THINKING LIKE YOUR COMPUTER

In previous chapters, you’ve seen color assignment made using values made up of alphanu-
meric values. (An alphanumeric value is any value that contains both numbers and letters.)
For example, the value 6F001C generates a rich mocha red. If we break it down, we can see
that it, too, is simply a mixture of red, green, and blue. But to understand what’s going on, we
need to understand a little about computer numbering systems.

We’re used to counting using a decimal system. We use the values 0 through 9 (ten digits), and
once those ten digits are used up we start over with two digits — 1 and 0 — which we call
“ten.” As you may know, computers are based on switches being in an On state or an Off state.
By substituting a “1” for On and a “0” for Off , we can write a code based on a binary system
using 1s and 0s; so instead of having ten digits to work with, we have only two. Table 4.2
shows what it takes to count up to 16 using the binary system. It also includes a third column
that shows a base-16 numbering system called hexadecimal.

08_977279-ch04.indd 7108_977279-ch04.indd 71 10/28/10 9:52 PM10/28/10 9:52 PM

72

PART I: THE LANGUAGE OF THE WEB

Table 4.2 Numbering Systems
Binary Decimal Hexadecimal

0 0 0

1 1 1

10 2 2

11 3 3

100 4 4

101 5 5

110 6 6

111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Each of the binary values is called a bit. A group of bits is called a byte. In Table 4.2, the largest
binary value is a 4-bit byte. Computers are arranged in diff erent types of bytes, and the 8-bit
byte is commonly used as a general reference to a byte. However, modern computers are
actually organized into 8-, 16-, 32-, 64-, and even 128-bit bytes. (Th ey just keep getting bigger,
so don’t expect 128-bit bytes to be the top limit.)

Th e highest value for a binary counting system in an 8-bit byte is 11111111. When you look at
that compared with decimal and hexadecimal numbers, you see a very interesting pattern, as
shown in Table 4.3.

Table 4.3 Byte Values
Binary Decimal Hexidecimal

11111111 255 FF

As you can see in Table 4-3, the hexadecimal value FF is the highest possible value for two
digits; similarly, the binary value 11111111 is the highest possible value for eight digits (a
byte). However, the decimal number is three digits and does not represent a limit for those
digits. In other words, the decimal system isn’t very symmetrical with the binary counting
system, but the hexadecimal system is.

08_977279-ch04.indd 7208_977279-ch04.indd 72 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

73

As you know, the RGB system of assigning integers to color values uses values from 0 to 255.
Using hexadecimal values, you need only two digits (actually, hexadecimal integers) to
represent all 256 values in an 8-bit byte. It’s neater.

Th is leads to using hexadecimal integers in assigning color values. Using six values — two
each for red, green, and blue — all the color values can be assigned using six hex integers. So
returning to the value 6F001C, we can see the following:

Red: 6F
Blue: 00
Green: 1C

Getting used to hexadecimal can take some time, but once you do, it’s easy to add color values
with them. Also, you can understand them in the same way as RGB decimal integers, but
instead of values of 0 to 255, you use 00 to FF. Th e following example (HexPalette.html
in this chapter’s folder at www.wiley.com/go/smashinghtml5) shows some color using
hexadecimals.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* Palette -- only use these colors!

69675C, 69623D, ECE8CF, E8D986, B5AA69

gray, olive, cream, dark cream, khaki */

body {

 font-family:”Comic Sans MS”, cursive;

 background-color:#ECE8CF;

 color:#69675C;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#B5aa60;

 background-color:#E8D986;

 text-align:center;

}

h2 {

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif;

 color:#b5aa69;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Hexadecimal with Palette</title>

</head>

<body>

<h1> Style with a Color Palette</h1>

<h2> Desert in the Fall</h2>

In the fall, when the air cools a bit, the desert begins to settle down and cloak

08_977279-ch04.indd 7308_977279-ch04.indd 73 10/28/10 9:52 PM10/28/10 9:52 PM

74

PART I: THE LANGUAGE OF THE WEB

itself in a warmer set of hues.

</body>

</html>

Th is example uses a color palette and simply places the color values in a comment within the
<style> container so that it can be viewed while putting the Web page together. Figure 4-5
shows what you can expect to see.

Figure 4-5: A hexadecimal color palette.

Th e colors belong to a set of colors that create a certain mood or feeling. Th is one, “Desert in
the Fall” was based on what the designer believed to be a palette representing that time of year
in the desert.

ADDING TRANSPARENCY TO COLOR

One of the new features you can see on an HTML5-compliant browser is transparency, or
variable opacity. A fully opaque object on the screen blocks whatever is beneath it, while a
fully transparent object allows anything beneath it to be fully seen — like glass. Th e value
used to describe the level of opacity is expressed in an alpha property set between 0 and 1.
Using either the RGB or HSL color formatting, the alpha is the fourth parameter. (Unfortu-
nately, there is no hexadecimal alpha parameter in CSS3.) For example, rgba(255,0,0,
0.5) generates red with 50 percent opacity. Likewise, hsla(120, 100%, 50%, 0.3)
creates green with 30 percent opacity (or 70 percent transparency).

In Part IV of this book, I discuss ways to add depth to your page with the <canvas> tag so
that when you stack objects on top of one another, you can better see why having some
transparency in your creations is important. For now, though, you need something that you
can place beneath text blocks that can be viewed through a transparent text block. Th e easiest
method is to place a background object using the background-image property. Th e
following code snippet shows how:

body { background-image:url(imageFile.png); }

08_977279-ch04.indd 7408_977279-ch04.indd 74 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

75

You can use any .jpg, .gif, or .png fi le for a background image. For this example, three
circles in the colors red, green, and blue are used as a background and on top are <h1> text
with 50 percent opacity to show the eff ect that diff erent colors have when viewed through a
transparent object. Th e following code (Transparent.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5) uses both rgba() and hsla() formats.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-image:url(rgbBalls.png);

}

.transRed {

 color:rgba(255, 0, 0, .5);

}

.transGreen {

 color:rgba(0, 255, 0, .5);

}

.transBlue {

 color:hsla(240, 100%, 50%, .5);

}

.transBackground

{

 background-color:hsla(120, 100%, 50%, .5);

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Transparency/Opacity</title>

</head>

<body>

<h1 class=”transRed”>Testing 123, Testing 123, Testing 123</h1>

<h1 class=”transGreen”>Testing 123, Testing 123, Testing 123</h1>

<h1 class=”transBlue”>Testing 123, Testing 123, Testing 123</h1>

<h1 class=”transBackground”>Testing 123, Testing 123, Testing 123</h1>

</body>

</html>

Th e results shown in Figure 4-6 are shown on an iPhone and they look no diff erent than what
you’ll see on your a computer screen.

As you can see, the transparent text and background allow the background object to show
through. When a color is transparent, it picks up some of the underlying color; so, when you
use it, bear in mind what the combination of the underlying and overlying colors look like
together. (By the way, Figure 4-6 shows why you rarely want to use background images — they
have a way of cluttering the screen and destroying any sensibility in the text.)

08_977279-ch04.indd 7508_977279-ch04.indd 75 10/28/10 9:52 PM10/28/10 9:52 PM

76

PART I: THE LANGUAGE OF THE WEB

Figure 4-6: Transparent text over solid graphics.

CREATING A COLOR SCHEME

If you’re a designer, you may be thinking, “How on earth am I ever going to get the colors I
want with all these numbers?” If you’re a developer, you may wonder, “How can I know if the
colors I use go together?” Both of these questions have the same answer: Kuler. Kuler is a site
where you can enter a key color (base color) and, using diff erent algorithms, Kuler works out
which colors are compatible and presents the information for decimal and hexadecimal color
values. Designers can put in any colors they want to use in creating their own color schemes
and Kuler generates all the math; developers can put in the math, and Kuler generates color
schemes.

You can fi nd Kuler at http://kuler.adobe.com. It requires a Flash plug-in (which is
already built into most browsers), but if your browser doesn’t have one you can get it for free
at www.adobe.com/products/flashplayer. You can also download a Kuler widget
that works on your desktop.

FROM A BASE COLOR

To create a color scheme with Kuler, you begin with a base color and try it out with diff erent
algorithms to generate color schemes. Th en you select an algorithm to show diff erent ways
that colors look good together. Based on color theory, you choose from analogous, mono-
chromatic, triad, complementary, compound, shades, or custom. Th e custom category is for
designers who use their artistic skills to generate a palette. (Developers are well served by one
of the automatic algorithms.) Figure 4-7 shows a typical example of a color scheme centered
on a base color using the triad algorithm.

FROM AN IMAGE

In addition to creating a color palette from a base color, you also can load an image, and Kuler
automatically generates a color scheme based on the image’s color. For example, Figure 4-8
shows two diff erent images — a logo and a painting — with their respective color palettes.

08_977279-ch04.indd 7608_977279-ch04.indd 76 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

77
Figure 4-7: A color scheme with base color.

Figure 4-8: Color schemes based on imported images.

08_977279-ch04.indd 7708_977279-ch04.indd 77 10/28/10 9:52 PM10/28/10 9:52 PM

78

PART I: THE LANGUAGE OF THE WEB

When using an image, you can further modify the color scheme by selecting from several
moods — colorful, bright, muted, deep, and dark. All color schemes can be saved and when
loaded, they maintain all the information you need for entering color data into an HTML5
Web page.

INTEGRATING YOUR COLOR PALETTE WITH
YOUR WEB PAGE

Having a color palette doesn’t mean that your page will look good — even color-wise. Within
the same palette, some colors go together better than others. For example, a midtone

Bad color combinations
In order to see the difference between using a good color scheme and a bad one, we’ll look at an
example. Leslie Cabarga’s book The Designer’s Guide to Color Combinations contains a chapter on
bad color. The following fi gure shows what two identical Web pages shown in a mobile device look
like with a color scheme based on a photo and one using an example of bad color from Cabarga’s
book.

Good and bad color.

The fi gure on the left uses colors picked up from the photo, and the one on the right does not — plus,
it’s just a bad combination.

08_977279-ch04.indd 7808_977279-ch04.indd 78 10/28/10 9:52 PM10/28/10 9:52 PM

CHAPTER 4: WORKING WITH COLOR VALUES

79

background may not provide the contrast you need for other midtone colors, so a dark or
light color in the palette may be a better choice. Figure 4-9 shows the color palette developed
around a logo that will be used as the page’s palette.

Figure 4-9: A logo-based color palette.

Th e hexadecimal integer values for the four colors are pasted right in with the CSS3 at the top
of the HTML5 page for reference. Th e following script (ColorsPhoto.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) employs the colors so that they
work with the logo and rest of the page.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* 027333,7FA646,D9B448,F2DFA7 */

body {

 margin-left:1em;

 background-color:#F2DFA7;

 color:#027333;

 font-family:Verdana, Geneva, sans-serif;

 font-size:11px;

}

h1 {

 font-family:Tahoma, Geneva, sans-serif;

 color:#7FA646;

}

h2 {

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif;

 color:#7FA646;

 background-color:#D9B448;

}

div

 {

 text-align:center;

 }

a {

 font-family:Arial, Helvetica, sans-serif;

 text-align:center;

 font-size:10px;

 text-decoration:none;

 background-color:#027333;

 color:#F2DFA7;

}

a:hover {

 color:#D9B448;

08_977279-ch04.indd 7908_977279-ch04.indd 79 10/28/10 9:52 PM10/28/10 9:52 PM

80

PART I: THE LANGUAGE OF THE WEB

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Arranging Colors</title>

</head>

<body>

<div><nav>

 Link 1 |

 Link 2 |

 Link 3

</nav> </div>

<header><h1> Welcome</h1></header>

<article>

<h2> We are all about...</h2>

Sandlight Productions is an international development company that specializes in

HTML5/CSS3, streaming video, mobile device development, online education, Action-

Script 3.0 architecture, Flash, and PHP.

</article>

<footer><div>

<nav>

 Link 1 |

 Link 2 |

 Link 3

</nav>

</div></footer>

</body>

</html>

Th e CSS3 script uses the property a:hover to change the property when the mouse is over
the link. In the <a> tag CSS3 defi nition, the text-decoration is set to none, which
means that the text link will not be underlined. Without the underline, you want to do
something to alert the user to the presence of a link; you do that using the hover property.
Changing the color of the link text subtly yet eff ectively shows the user that the mouse is over
the link. Both the initial color and the hover color are part of the palette. So, in setting up the
page, remember that more than just the <body> and <h> tags use the color palette.

Th is particular design is focused on mobile devices (see the right side of Figure 4-10), but it
should work with computer and table screen as well (see the left side of Figure 4-10).

Of course, your page is always going to look better if you have a Web designer do the page
design. However, even developers can make it look better by paying attention to the color
combinations.

08_977279-ch04.indd 8008_977279-ch04.indd 80 10/28/10 9:53 PM10/28/10 9:53 PM

CHAPTER 4: WORKING WITH COLOR VALUES

81
Figure 4-10: A color scheme applied to a page.

TAKE THE WHEEL

Th e following two challenges should be fun, and you’ll learn a lot from doing them both:

 Reproducing the standard color chart: In Figure 4-1 is an image with the standard
colors. Your fi rst challenge is to see if you can reproduce the Web page that displays those
colors. Here are a couple hints to get started:
• Defi ne each named color as a class in your <style> container with the same color

for the text and background colors.
 .aqua { color:aqua; background-color:aqua; }

• One way to do this is to use the tag to assign classes to the content of the
 container.

 <h3> COLORNAMECOLORNAME

COLORNAMECOLORNAME

 <h3>

 Your picture belongs on a Web page! Th is is a three-part task:
1. Make a digital image of yourself using the built-in camera on your computer or

upload one from a digital camera.
2. Load the image into Kuler and create a color palette.
3. Create a Web page with your picture using the color palette you created in Kuler.

08_977279-ch04.indd 8108_977279-ch04.indd 81 10/28/10 9:53 PM10/28/10 9:53 PM

08_977279-ch04.indd 8208_977279-ch04.indd 82 10/28/10 9:53 PM10/28/10 9:53 PM

PA
R

T

II

II PAGES, SITES,
AND DESIGNS

Chapter 5: Organizing a Page

Chapter 6: Displaying Data with Tables

Chapter 7: All about Links

Chapter 8: Navigation Strategies

09_977279-pp02.indd 8309_977279-pp02.indd 83 10/28/10 10:16 PM10/28/10 10:16 PM

09_977279-pp02.indd 8409_977279-pp02.indd 84 10/28/10 10:16 PM10/28/10 10:16 PM

SMASHING HTML5

C
H

A
P

T
E

R

5

ORGANIZING
A PAGE

5
MANY OF THE new tags in HTML5 are
organizational tags. In previous chapters some
have been used but not really explained. Th is
chapter looks closely at organizing HTML5 pages
with the help of CSS3 and a way of understand-
ing this organizational process. Some of the

organizational elements become clear only once
you start using JavaScript, but if you set up your
page according to HTML5 guidelines, your page
will be good to go when you start adding a little
JavaScript.

10_977279-ch05.indd 8510_977279-ch05.indd 85 10/28/10 10:16 PM10/28/10 10:16 PM

86

PART II: PAGES, SITES, AND DESIGNS

THE TOP OF THE HTML5 DOCUMENT

Th e fi rst four chapters of this book explain much of how the information above the <body>
tag is put to use. Th e code above the <body> tag adds no content to the Web page, but it
infl uences how the page appears and informs the browser that it’s a Web page and what kind
of Web page it is. Figure 5-1 shows the general organization of the fi rst part of the Web page.

Figure 5-1: Organizing the top of a Web page.

Th e <html> tag is the root element, and within that element, you can include a language
attribute. Th en within the <head> container are metadata elements. Also in the <head>
container are the scripting elements; they, too, are briefl y covered in this section and
expanded upon in Part IV of this book.

Other than the CSS3 scripts, the examples so far have not put a lot of tags into the head of
the HTML5 document. Th e <meta> tag has many uses, but so far, we’ve used it only to
specify the character set. Th is chapter shows more uses for the <meta> tag.

SETTING YOUR HOME BASE

Within the typical Web site, you’re likely to have several diff erent pages to which your page
will link. In fact, the typical Web site is arranged as a navigation system that links diff erent
pages. If you set a <base> tag in the head of your page with a link to a URL, you can
reference other pages relative to the base page. For example, the following two scripts
(Base.html and FirstBase.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) have links to one another, but they’re relative to the base that is set in
the head container.

<!DOCTYPE HTML>

<html><head>

<base href=”http://www.sandlight.com/html5/smashing/ “>

<style type=”text/css”>

body {

10_977279-ch05.indd 8610_977279-ch05.indd 86 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

87

 background-color:#FCC;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Home Base</title></head>

<body>

<h1>This Is the Home Base</h1>

First Base

</body></html>

<!DOCTYPE HTML>

<html><head>

<base href=”http://www.sandlight.com/html5/smashing/ “>

<style type=”text/css”>

body {

 background-color:#FC0;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>First Base</title>

</head>

<body>

<h1>This Is First Base</h1>

Home Base

</body>

</html>

What is happening here? Th e <base> tag is telling your browser how to resolve any refer-
ences to other documents in your HTML — such as the anchor
tag. Your browser will know to look for the Base.html document in the location specifi ed
in the <base> tag; namely, http://www.sandlight.com/html5/smashing/.

ADDING CHARACTER TO YOUR SITE WITH METADATA

To this point, we’ve used the <meta> tag to establish that your site uses the UTF-8 character
set, but the meta element can do much more. Th ink of the meta element as the one that
performs multitasks. One of the most important attributes of the meta element is the name
and contents pair. With the name attribute set to keywords, you can specify the
contents on your site. In this way, the search engines can fi nd your site when people are
trying to fi nd your products or services — or just the topics you’d like to include on your Web
pages. For example, suppose your site has links to blogs and other sites on topics about dog
kennels. Your meta tag would look something like this:

<meta name=”keywords” content=”kennels, dog fences, pet containment”>

Each of the content values must be separated by a comma. Th ese tokens can be directly
related to your content or what someone might look for. Content meta tags are easy to set and
you can help users fi nd their way to your site.

10_977279-ch05.indd 8710_977279-ch05.indd 87 10/28/10 10:16 PM10/28/10 10:16 PM

88

PART II: PAGES, SITES, AND DESIGNS

One other <meta> tag attribute that’s very cool is http-equiv set in the Refresh state.
Using this attribute, you can automatically refresh a page or even change HTML pages. For
example, you could have part of your site have an automatic slide show to display photos of a
party or friends in a club. Th e tag format for using the Refresh state is:

<meta http-equiv=”Refresh” content=”[secs]”>

For example, the following tag refreshes (reloads) the page every 30 seconds:

<meta http-equiv=”Refresh” content=”30”>

Not only can you reload the same page, but you can reload diff erent pages. If you want to load
a sequence of pages, you can set the initial meta tag set as follows, to set the page assigned as a
URL value aft er 1⁄2 second:

<meta http-equiv=”Refresh” content=”.5; URL=pg2.html”>

Notice how the content value of both the number of seconds and the URL are in the same set
of quotation marks. Th e following HTML5 code launches a series of pages that keep refresh-
ing until a home page is loaded:

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<meta http-equiv=”Refresh” content=”.5; URL=pg2.html”>

<title>Image 1</title>

</head>

<body>

</body>

</html>

Aft er the initial page, you would have the following sequence — only one per page:

 Page 2: <meta http-equiv=”Refresh” content=”.5; URL=pg3.html”>
 Page 3: <meta http-equiv=”Refresh” content=”.5; URL=pg4.html”>
 Page 4: <meta http-equiv=”Refresh” content=”.5; URL=pg5.html”>
 Page 5: <meta http-equiv=”Refresh” content=”.5; URL=homeNow.
html”>

Th e home page, homeNow.html, would have no Refresh state in the <meta> tag. In fact,
other than the meta element with the Content-Type, it would have no other meta tag. (Th is
thing would go on forever if you looped the home page back to the fi rst page!)

10_977279-ch05.indd 8810_977279-ch05.indd 88 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

89

KNOWING WHEN YOU NEED A SCRIPT

Th e more you use HTML5, the more you need a script to get the most out of your Web pages.
Th e most common scripting language used with HTML5 is JavaScript. Your browser has an
interpreter for JavaScript just as it does for HTML5. Fortunately, JavaScript is easy to learn
and can work in small snippets — even non-developers can do it.

To include JavaScript, all you need to do is to add a little script to the head of your page. Here’s
the tag format:

<script type=”text/javascript”>

Th e JavaScript program goes into the remainder of the <script> container. Th e following
HTML5 code (ScriptTag.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how easy JavaScript is to learn.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

 alert(“I can do JavaScript!”);

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>A Taste of JavaScript</title>

</head>

<body>

A regular Web page....

</body>

</html>

When you test that little program, you’ll see an alert box pop up (shown in Figure 5-2).

Figure 5-2: A JavaScript alert window.

As a side note, you’ll see that the JavaScript alert window is loaded before your Web page
loads. Th at’s because everything in the head container loads fi rst. If you have a more elaborate
JavaScript program that will be used in your HTML5 page, you’ll want to test it on diff erent
browsers and also put it in an external JavaScript fi le. Figure 5-3 shows the same alert window
in Safari on an iPhone; you can clearly see that the Web page associated with the HTML5
code has not loaded.

10_977279-ch05.indd 8910_977279-ch05.indd 89 10/28/10 10:16 PM10/28/10 10:16 PM

90

PART II: PAGES, SITES, AND DESIGNS

As soon as the user clicks OK, the Web page loads. In the meantime, you can see the fi les
from the directory in the background on your mobile device. Additionally, notice that the
alert window shows the domain where the JavaScript resides. Some browsers, such as Google’s
Chrome, fi rst check to see if the user wants to accept the JavaScript from the named site
before it shows the actual alert (a double alert!).

Figure 5-3: Alert window loading before Web page.

As with style sheets, JavaScript programs can be loaded from external fi les. However, instead
of using the link element, the JavaScript fi les are loaded using the script element, as the
following example shows:

<script type=”text/javascript” src=”smashingJS.js”></script>

Th e JavaScript fi le is saved using the .js extension, just as CSS3 fi les are saved using the .css
extension.

You’ll see JavaScript is employed a good deal when using the <canvas> tag and several other
HTML5 tags in Part IV of this book. Further, <script> tags and the JavaScript code in them
can be added right in the middle of an HTML5 script. Th e advantage of placing your JavaScript
in the head container, though, is that it’s loaded fi rst, before the Web page.

10_977279-ch05.indd 9010_977279-ch05.indd 90 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

91

A DESIGN IN SECTIONS

One of the major changes in HTML5 compared with older HTML versions is in the sections.
Prior to HTML5, you could pretty well think of sections in terms of the body element and
some <h> tags. In HTML5, a page can be envisioned in terms of a number of sections with
subsections. A larger context in a Web page is an article, and just like an article in a
magazine, you can fi nd diff erent sections that constitute the building blocks of the article.
Figure 5-4 provides an overview of the sections in an HTML5 page.

Figure 5-4: Some sections that make up a page.

In looking at Figure 5-4, you can see diff erent blocks of information, but the tags used
generally don’t have any inherent capacity to structure the information visually. Th e <h> tags,
which are section elements, certainly confi gure text to diff erent sizes. However, the other
section tags are as much for helping to organize a page as they are for specifying the visual
display of the page.

Th e section elements include the following:

 Body

 Section

 Nav

 Article

 Aside

 H1 . . . H6

 Hgroup

10_977279-ch05.indd 9110_977279-ch05.indd 91 10/28/10 10:16 PM10/28/10 10:16 PM

92

PART II: PAGES, SITES, AND DESIGNS

 Header

 Footer

 Address

Th e body element is the sectioning root just as the html element is the page root. Th rough-
out the previous chapters, you’ve seen several of the section elements, so you’re familiar with
them. However, a script helps to see how they’re used in conjunction and consider their uses
(ArticleStructure.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5).

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sections</title>

</head>

<body>

<article>

 <header>

 <h1>Pilots and Planes</h1>

 <p><q>I never left one up there. </q><i>Ace Davis</i></p>

 </header>

 <nav> Safety | Check Lists | Landings</nav>

 <section>

 <h2>Flying Stories by Real Pilots</h2>

 <h3>...and other cures for insomnia.</h3>

 <section>

 <h4>Short Final</h4>

 <p>As we were on short final, control cleared the Maule for immediate takeoff,

which it did in about 15 feet of runway at an airspeed of 20 mph. It filled my

windshield as I approached stall speed. After realizing its mistake, the tower

instructed the Maule to loop, and we were able to land without incident.</p>

 </section>

 <section>

 <h4>Thermal on Takeoff</h4>

 <p>Taking off from Gila Bend, Arizona, with the ambient temperature of 130 F,

we encountered a strong thermal at the end of the runway, which took our Cessna

177b to 15,000 feet in 12 seconds flat, at which time we leveled off and proceeded

to New Mexico via the jet stream, setting a new speed record.</p>

 </section>

 </section>

 <aside>

 <h2>Truthful Pilot Found!</h2>

 <p>Emily Rudders, a pilot in Moose Bite, Vermont, was recently found to be the

only truthful pilot in existence. When asked to relate her most exciting flying

adventure, Emily replied, <q>I ain’t never flew no airplane. I jus’ shoot at ‘em

when they fly over and bother the moose.</q></p>

 </aside>

 <footer>

 <address>

10_977279-ch05.indd 9210_977279-ch05.indd 92 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

93

 Contact us at:AOPA

 </address>

 </footer>

</article>

</body>

</html>

Th e purpose of sections is to divide the page into coherent parts. Th ey’re an organizational set
of elements, and while they can be used for formatting, that isn’t their main purpose. For
adding formatting to a paragraph or group of paragraphs, the W3C Standards encourage the
use of the <div> tag.

Figure 5-5 shows what the page looks like. Although it isn’t an attractive design, it is a
functional one. Th e article is about pilots and fl ying. Th e article’s header announces the topic
(pilots and planes) and provides a quote from a pilot using a <q> tag. Aft er the header, the
fi rst section is about fl ying stories. Nested within the fi rst section are two other <section>
tags that separate out the two stories.

A somewhat related section about the veracity of pilot stories is placed in a separate aside
element container. In Figure 5-4, you may have noticed that the aside was placed in a separate
column, but in and of itself, an aside element is a reference to the sense of the page. It is not
a formatting element as such.

Figure 5-5: A page organized with section elements.

10_977279-ch05.indd 9310_977279-ch05.indd 93 10/28/10 10:16 PM10/28/10 10:16 PM

94

PART II: PAGES, SITES, AND DESIGNS

Finally, at the bottom of the article is a footer. Footer elements can go anywhere, including
inside individual section and aside element containers. Footers act as a closing organiza-
tional element for the section elements. Within the footer is an address element with a link
to a URL related to the article.

In looking at the page in Figure 5-5 and the code, you can see the sense of the page described
in the section tags. As noted, they’re really not for formatting but for organizing the sense of
the page.

GETTING YOUR STUFF ORGANIZED

Once you have a general organizational plan, you want to arrange your content within the
diff erent sections. In Figure 5-4, you saw that several of the section elements contained
grouping elements, such as the <p> tags. Grouping elements are a preferred place for adding
your CSS3 styles; section elements are not. In this section, you’ll fi nd the major elements to
help you organize your materials.

PARAGRAPHS, DIVISIONS, AND LISTS

Th e <p> and <div> tags used to be the workhorses of HTML pages for both grouping and
styling. Both are still important, but you must remember that their job is no longer one of
sectioning material on your page. Instead, think of both of these tags as grouping parts of a
section. For example, the following code snippet shows the old way of using these two tags:

<div>

 <h1>All About Important Stuff</h1>

 <p>

 <h2>Finding True Love</h2>

 </p>

 <p>

 <h2>Choosing the Right Career</h2>

 </p>

 <p>

Why you really should pay attention to the section
organization
You may be thinking that you can get a page up and running without the hassle of the section tags.
That’s true. However, under the hood of your mild-mannered Web page is a rumbling engine that can
reference different parts of your page. Known as the Document Object Model (DOM), the different
groupings you have set up using the section elements can be addressed as different objects and
children of objects in a well-ordered stream of data coursing over the Internet. By paying attention to
the organizational model used in HTML5, your Web page will be happy, the Internet will be happy,
and the galaxy will be happy.

10_977279-ch05.indd 9410_977279-ch05.indd 94 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

95

 <h2>Getting a Parking Place</h2>

 </p>

</div>

Th at code works perfectly well in HTML5, but it’s better organized using the most specifi c
element for the job. A better code would look like the following:

<header>

 <h1>All About Important Stuff</h1>

</header>

<section>

 <h2>Finding True Love</h2>

 <h2>Choosing the Right Career</h2>

 <h2>Getting a Parking Place</h2>

</section>

On your Web page, they look the same, but with HTML5 you’ll fi nd your pages more sensible
using the new section elements.

So the question is, “Where can the p and div elements be used?” Actually, you don’t want to
rely on either very much. However, when you want to add a style element or some other
attribute in the middle of an <article> or <section>, they can be handy. Consider
the following (UseDiv.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5).

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 font-family:”Comic Sans MS”, cursive;

 color:#0C6;

 background-color:#FFC;

}

.girls {

 background-color:pink;

}

.boys {

 background-color:powderblue;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Baby Names</title>

</head>

<body>

<article>

<header>

 <h1>Baby Names</h1>

</header>

<section>

10_977279-ch05.indd 9510_977279-ch05.indd 95 10/28/10 10:16 PM10/28/10 10:16 PM

96

PART II: PAGES, SITES, AND DESIGNS

 <div class=”girls”>

 <h2> Girls</h2>

 Olivia

 Tess

 Emily

 </div>

</section>

<section>

 <div class=”boys”>

 <h2> Boys</h2>

 Jacob

 Ricky

 John

 </div>

</section>

</body>

</html>

Figure 5-6 shows the output, but the important point is that the <div> tag was employed
only to provide the background colors for two diff erent <section> elements.

Figure 5-6: Using the <div> tag for styling.

10_977279-ch05.indd 9610_977279-ch05.indd 96 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

97

As you can see in the listing, the div element allowed two diff erent background styles in the
section containers without having to add classes to the <section> tag. Overall, though,
keep in mind that both <p> and <div> are more generalized elements, and at all times, you
should use elements that are the most descriptive of your object on the Web page.

Besides grouping and styling using the <div> tag, lists also serve to outline data. HTML5 still
uses the tags to group baby names for boys and girls. However, a subtle yet important
diff erence is built into ordered () and unordered lists ().

Th e use of unordered or ordered lists depends on the context. For example, in the 2010
Fédération Internationale de Football Association (FIFA) World Cup in South Africa, four of
the teams competing for the championship were Germany, Netherlands, Spain, and Uruguay.
If you were listing them at the beginning of the competition, you might use an unordered list.
At the end of the competition, you may want to use an ordered list to show the fi nal results.
Th e following Web page (ol_ul.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) refl ects the diff erent groupings depending on the context and the mean-
ing that accompanies the context.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*20268C,0C080C,2F8C2B,F27507,F20505 */

body {

 background-color:#2F8C2B;

 color:#0C080C;

 font-family:Verdana, Geneva, sans-serif;

}

h2 {

 background-color:#F27507;

 color:#20268C;

 font-family:”Comic Sans MS”, cursive;

}

h3 {

 font-family:”Comic Sans MS”, cursive;

}

ol {

 background-color:#F27507;

}

ul {

 background-color:#F20505;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Ordered and Unordered</title>

</head>

<body>

<h2> World Cup 2010</h2>

<h3>Beginning</h3>

10_977279-ch05.indd 9710_977279-ch05.indd 97 10/28/10 10:16 PM10/28/10 10:16 PM

98

PART II: PAGES, SITES, AND DESIGNS

 Spain

 Netherlands

 Germany

 Uruguay

<h3>End</h3>

 Spain

 Netherlands

 Germany

 Uruguay

</body>

</html>

As you can see in Figure 5-7, the meaning of the group at the beginning of the World Cup has
no hierarchy — the list is just four teams at the World Cup. However, at the end, the order
means everything, so the ordered list element is more appropriate.

Figure 5-7: Ordered and unordered lists convey different meanings.

You may also note that the two diff erent kinds of lists have diff erent background colors added
with CSS3. So when using grouping elements, you might also want to further group the
content using color, as shown in both Figures 5-6 and 5-7.

10_977279-ch05.indd 9810_977279-ch05.indd 98 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

99

GROUPING WITHOUT FRACTURING

One of the grouping elements that you probably shouldn’t use for more than grouping the
head from the rest of the page (if even that) is the <hr> tag. Th e hr element (horizontal rule)
is simply a line, but it should be used judiciously and sparsely. Take for example, the following
excerpt from the poem “Kubla Khan” by Samuel Taylor Coleridge:

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Th rough caverns measureless to man
Down to a sunless sea.

So twice fi ve miles of fertile ground
With walls and towers were girdled round;
And there were gardens bright with sinuous rills,
Where blossomed many an incense-bearing tree;
And here were forests ancient as the hills,
Enfolding sunny spots of greenery.

But oh! that deep romantic chasm which slanted
Down the green hill athwart a cedarn cover!
A savage place! as holy and enchanted
As e’er beneath a waning moon was haunted
By woman wailing for her demon-lover!

Th e three stanzas are divided by a simple double space, as is the title. However, if <hr> tags
are inserted, as in the following listing (HR.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5), you’ll see a quite diff erent result in terms of an integrated sense
of the poem.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*A1A680,D9D7BA,D90404,8C0303,590202 */

body {

 background-color:#A1A680;

 color:#590202;

 font-family:”Palatino Linotype”, “Book Antiqua”, Palatino, serif;

 font-size:8px;

}

h4 {

10_977279-ch05.indd 9910_977279-ch05.indd 99 10/28/10 10:16 PM10/28/10 10:16 PM

100

PART II: PAGES, SITES, AND DESIGNS

 background-color:#D9D7BA;

 color:#8C0303;

 font-family:Tahoma, Geneva, sans-serif;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Too many HRs</title>

</head>

<body>

<header>

 <h4> Kubla Khan</h4>

</header>

<article>

 <hr>

 In Xanadu did Kubla Khan

 A stately pleasure-dome decree:

 Where Alph, the sacred river, ran

 Through caverns measureless to man

 Down to a sunless sea.

 <hr>

 So twice five miles of fertile ground

 With walls and towers were girdled round;

 And there were gardens bright with sinuous rills,

 Where blossomed many an incense-bearing tree;

 And here were forests ancient as the hills,

 Enfolding sunny spots of greenery.

 <hr>

 But oh! that deep romantic chasm which slanted

 Down the green hill athwart a cedarn cover!

 A savage place! as holy and enchanted

 As e’er beneath a waning moon was haunted

 By woman wailing for her demon-lover! </article>

</body>

</html>

As you can see, the <hr> tags are all within the article element, while the title is part of
the header element. However, in Figure 5-8, the page is shown in a mobile device, and the
horizontal rules do nothing to clarify and everything to fragment.

Where your page has a major division, a horizontal rule may be appropriate. However, even
then you should add CSS3 to lighten the hr element so that it’s subtle — even adding trans-
parency will help. Good designers know how to use horizontal rules sparingly and subtly, but
non-designers can easily make a mess of their Web pages with overuse of <hr> tags.

FIGURES AND CAPTIONS

One of the more frustrating elements in HTML5 is the use of <figure> and <figcaption>
together. By placing a figcaption element inside of a figure element container, you might
assume that they form a single object for layout and design. Th e figcaption element is

10_977279-ch05.indd 10010_977279-ch05.indd 100 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

101

considered a child of the figure when the figcaption is nested inside of a figure
element. However, that doesn’t mean that they’ll appear on the page together. In fact, aligning
a fi gure with its caption can be tricky.

Figure 5-8: Horizontal rules can fragment meaning.

In more sophisticated CSS3 formatting, the fi gure and its caption can be treated as an object
with a parent-child relationship. Just because figure and figcaption are part of HTML5’s
grouping elements that doesn’t mean they’re formatted on the page together; instead, it means
that they can be referenced as a single fl ow in the main content of the page. In the meantime,
you’ll have to carefully work with the two elements together, as shown in the following
HTML5 program (Figure_n_caption.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) where the caption references a stylized image.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* 732D3F,A66879,D9C3B0,260101,F2F2F2 */

body {

 background-color:#D9C3B0;

 color:#732D3F;

10_977279-ch05.indd 10110_977279-ch05.indd 101 10/28/10 10:16 PM10/28/10 10:16 PM

102

PART II: PAGES, SITES, AND DESIGNS

 font-family:Verdana, Geneva, sans-serif;

 font-size:11px;

}

aside {

 margin-left:260px;

}

h1 {

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 background-color:#F2F2F2;

 color:#A66879;

 text-align:center;

}

figcaption {

 color:#A66879;

 background-color:#F2F2F2;

}

img {

 margin:5px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Figure and Caption Grouping</title>

</head>

<body>

<header>

 <h1>Memories of Baja</h1>

</header>

<article>

 <figure>

 <figcaption> Landing Strip on the Beach in Punta Bufeo </figcaption>

 </figure>

 <section>

 <p>Trips to the best places in Baja are accessible either by reinforced off-road

vehicles or small airplanes. The beaches are pristine, uncrowded, and uncluttered.

Fishing is most rewarding when the fish are cooked up in fish tacos—a delicacy not

to be missed. The <i>Sea of Cortez</i> (known also as the <i>Gulf of Baja</i> and

<i>Vermillion Sea</i>) is a bright and clear blue. Of course the beaches are

uncrowded and free of debris left by others.</p>

 </section>

</article>

</body>

</html>

You can begin to think about elements and their descendants. In this case, the figcaption
element is a descendant of the figure element. Figure 5-9 shows the caption under the
picture, both within the <figure> container.

As you can see clearly in Figure 5-9, the <figcaption> is diff erently styled, even though it’s
a descendant of the <figure> container. However, you can’t assume that a figcaption
element will be correctly positioned as in Figure 5-9 just because it’s a child of the figure
element that it captions.

10_977279-ch05.indd 10210_977279-ch05.indd 102 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

103

Figure 5-9: Figure and figcaption used with a graphic.

ORGANIZING FILES

With a simple Web site, the organization of the fi les is simple. As the complexity of a site
grows, especially if multiple designers and developers are involved, you need to get your site
organized in separate directories and even servers sometimes. In this section, you’ll learn
about several organizational issues and how to deal with fi le organization and access.

IMAGE ORGANIZATION AND REFERENCE

A typical Web site will have one or more folders (directories) dedicated to image fi les or types of
image fi les. In most of the examples so far in this book, the examples haven’t used separate
folders for images and the HTML5 pages that load them; instead all the image fi les are placed in
the same directory as the HTML5 fi les. With a large number of Web pages and images to load
into the pages, a more effi cient ways to organize a site is to use separate folders for diff erent
groupings of media. How you actually organize your images depends on several diff erent
factors. Th e following are some possible directories and subdirectories that might be used:

10_977279-ch05.indd 10310_977279-ch05.indd 103 10/28/10 10:16 PM10/28/10 10:16 PM

104

PART II: PAGES, SITES, AND DESIGNS

 Formal Classifi cations (Animals > Mammals > Rodentia > Myomorpha >
Mus musculus > Mickey)
 Topic (Vacations > Where to Go > Where to Stay > What to Pack)
 Processes (Baking > Making Dough > Preparing Dough > Setting Oven > Timing)

Whatever organizational plan is implemented, you need to understand how to access the images
no matter how they’re organized. All references are either to absolute or relative addresses.

ABSOLUTE REFERENCE

Any reference to an image is through a URL, whether it’s a full listing of the address or one that
references just the name of the fi le. An absolute address begins with http:// and includes the
full path to the HTML5 fi le. For example, the following is an absolute address to a fi le:

http://www.smashinghtml5.com/organization/graphics/faces.html

No matter where that URL is called from, it recognizes it as the named fi le at the end of the
URL. Th e same is true with a source (src) reference to an image. If your code has the
following link, no matter where the calling Web page is located, it will load nose.png.

Th e calling Web page could be on an entirely diff erent server, and it would go to the absolute
address.

Th e advantage of using absolute addresses is that you don’t have to worry about where a page
is in your Web site. You don’t even have to worry if it’s on the same server. However, it leaves a
good deal to be desired in terms of site organization, and then there are those long URL
names you have to get just right.

RELATIVE REFERENCE

A relative reference is relative to the calling page’s position on a Web site or its defi ned base.
On your computer, your Web page has a file position rather than an http position. For
example, the following is the absolute position on the fi le somePage.html:

“file:///Macintosh HD/Users/billsanders/Desktop/HTML5/somePage.html”

If I have a graphic in the folder HTML5/, I can use its relative address to call it from
somePage.html. For example, if I have anyGraphic.png in the HTML5 folder I just use
the following relative reference:

10_977279-ch05.indd 10410_977279-ch05.indd 104 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

105

However, if I want to organize my images into a separate folder called images, inside the
HTML5 folder, I would use the relative address:

You can drill down as many relative levels as you want with each level separated by a forward
slash (/). For example, a more complex graphic set would look like the following:

Besides “drilling down” you may also want to “drill up.” By drilling up, you access resources in
folders your calling page is in. For example, suppose you have the following path and your
HTML5 page is in the baseFolder.

topFolder/middleFolder/baseFolder

To access a graphic fi le in the middleFolder, you would use the following format:

If the graphic were in the topFolder, you would use the following format:

In drilling up, you don’t name the target folder your calling Web page is in; instead, you use
successive ../ characters until your call is at the level you want. Th is means, you can drill up
to the level you want, and then drill down another branch. For example, the following drills
up to the topFolder, and then inside the topFolder drills down through the image folder
to the target graphic:

Figure 5-10 provides a general graphic illustration of accessing resources in higher- and
lower-level folders.

.../images

images/ images

anyFile.html

images

Figure 5-10: Relative paths.

10_977279-ch05.indd 10510_977279-ch05.indd 105 10/28/10 10:16 PM10/28/10 10:16 PM

106

PART II: PAGES, SITES, AND DESIGNS

As noted in the “Setting Your Home Base” section, earlier in this chapter, your relative position
could be set to some location other than the one where the fi le itself is located. For example,
consider the following two Web pages (Earth.html and Alien.html in this chapter’s folder
at www.wiley.com/go/smashinghtml5). Th e fi rst calls the second on a diff erent server;
however, because the fi rst page’s base is set to the second server, the call is a relative one. Th e fi rst
fi le is named Earth.html and is located in the domain smashingHTML5.com in the
smashing folder. However, its base is set to smashingHTML5.net in the smashing folder.
So, it can use a relative URL to access the fi le Alien.html on a wholly diff erent server.

Base Set to a Different Server
<!DOCTYPE HTML>

<html>

<head>

<base href=”http://www.smashingHTML5.net/html5/smashing/”>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Earth</title>

</head>

<body>

<h1>This is Earth</h1>

Blast off!

</body>

</html>

Web Page on a Different Server
<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>The Planet Smashing</title>

</head>

<body>

<h1>Page from an Alien Server</h1>

</body>

</html>

Even though the domain for the fi rst page (Earth.html) is smashingHTML5.com, the
base is set to smashingHTML5.net. As a result, a relative link to Alien.html, which
resides on smashingHTML5.net, is made without having to use an absolute address.

TAKE THE WHEEL

In the fi rst section of this chapter, you saw how to use the Refresh state to automatically
change pages. To have a little fun with animation and the Refresh state, take a look at this
link to the works of Eadweard Muybridge:

10_977279-ch05.indd 10610_977279-ch05.indd 106 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 5: ORGANIZING A PAGE

107

http://138.23.124.165/collections/permanent/object_genres/photographers/muybridge/

contents.html#

What’s interesting about Muybridge is that, in 1878, he was able to create movies using a
series of photographs. So, well before Th omas Edison invented the motion picture, Muybridge
was making short movies (about 12 frames) giving us an animated view to the past. Th e
University of California, Riverside, has preserved and animated Muybridge’s work using
animated GIF fi les online. To see how you can make animations using refresh pages, down-
load one of the animated GIF’s from Muybridge’s collection from the link above — locomo-
tion studies — and extract the 12 individual photographs from the GIF fi le. You can extract
animated GIF images with Adobe Photoshop, Adobe Fireworks, and several other programs.
(Search on “extract images from animated GIF” in a search engine to fi nd plenty of ways to
get the individual images. If you have a Mac, you can use the Preview application, and just
drag the individual images from Preview to a separate folder.)

Once you have extracted the individual GIF fi les, set up your animation using the Refresh
state with the meta element in the <head> section of your program. To get started, use the
following HTML5 script (an1.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5).

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<meta http-equiv=”Refresh” content=”0.1; URL=an2.html”>

<title>Image 1</title>

</head>

<body>

</body>

</html>

Th e individual GIF fi les were saved as .png fi les and renamed an1.png through an12.png
(the an is for animation). Likewise, the 12 HTML fi les were named using the an preface from
an1.html through an12.html. Once you’re fi nished, you’ll have a walking horse. If you
link the 12th page back to the fi rst, the horse just keeps on truckin’.

10_977279-ch05.indd 10710_977279-ch05.indd 107 10/28/10 10:16 PM10/28/10 10:16 PM

10_977279-ch05.indd 10810_977279-ch05.indd 108 10/28/10 10:16 PM10/28/10 10:16 PM

SMASHING HTML5

C
H

A
P

T
E

R

6

DISPLAYING DATA
WITH TABLES

6
WHEN HTML WAS in its infancy, the table
element was used for the bulk of page formatting.
Th e advent of CSS introduced a whole new set of
rules for formatting and the table was abandoned
as a formatting tool — and for good reason.
However, certain table features in CSS3 have
been reintroduced for specifi c types of format-
ting. So, although tables still are not general
formatting tools, they have key functions for

displaying data sets and for CSS3 general
formatting.

Th is chapter explores the new CSS3 properties
that you can use for accomplishing general
formatting layouts, but the chapter’s main focus is
on tabular data display. Tabular data is nothing
more than data laid out in a table for ease of
reading and not primary layout structures.

11_977279-ch06.indd 10911_977279-ch06.indd 109 10/28/10 10:16 PM10/28/10 10:16 PM

110

PART II: PAGES, SITES, AND DESIGNS

CSS3 TABLE PROPERTIES FOR HTML5

In a classic statement of double messages, the World Wide Web Consortium (W3C), the
offi cial body that sets the standards for HTML5, states emphatically, “Tables must not be used
as layout aids.” Th en in a note following that admonition, the same document states, “Th ere
are a variety of alternatives to using HTML tables for layout, primarily using CSS positioning
and the CSS table model.”

What this means is that, in general, table elements should not be used for layouts other than
tabular data. However, if you need tables in layouts, use CSS3 table properties.

Th e reason for this admonition is that when CSS became available, all layout was to be done
with CSS. In order not to dissuade designers and developers from using the CSS3 table
properties (only), W3C added the note that it was okay to use CSS3 table properties and
attributes in layout. So, if you’re familiar with all the old warnings about not using table
elements in layout, rest assured that CSS3 table properties are fi ne for design — up to a point.

In order to see what this CSS3 feature can do for a design, the fi rst step is to look at the CSS3
display property value of table and table-cell. Th e display property can be envi-
sioned as a layout statement. Th e values within the display map out how the display is to be
arranged. One of the easiest ways to make a display is to use the table and table-cell values. It
might be helpful to think of the table property as a big container and the table-cells as the
individual cells in the container. As far as more sophisticated designs are concerned, table-
cells are pretty close to a table as a design tool and all the associated problems inherent in it.
So, use it for simple applications where you just need a few columns to achieve a simple task.

Th e CSS3 format for setting up displays uses predefi ned classes, a user class, or an ID. Th e
display property is assigned a simple table or table-cell as a value. Th e following is an example
(within a style defi nition):

.story {

 display: table;

}

.col1 {

 display: table-cell;

 width: 250px;

 padding-right: 20px;

 color:#cc0000;

}

Th e story class simply defi nes the display property as a table. Th e col1 class, which you can
place inside the table, is displayed as a table-cell, and it’s helpful to think of it as such. Th e
following code (DisplayTable.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how to set up a design that can be used to display text and graphics
in two columns.

<!DOCTYPE HTML>

<html>

<head>

11_977279-ch06.indd 11011_977279-ch06.indd 110 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

111

<style type=”text/css”>

body {

 font-family:Verdana, Geneva, sans-serif;

 font-size:12px;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 width:520px;

 text-align:center;

 color:#005500;

}

.story {

 display: table;

}

.col1 {

 display: table-cell;

 width: 250px;

 padding-right: 20px;

 color:#cc0000;

}

.col2 {

 display: table-cell;

 width: 250px;

 color:blue;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Table with Display Property</title>

</head>

<body>

<header>

 <h1>2010 World Cup</h1>

 <div class=”col1”></div>

 <div class=”col2”></div>

</header>

<article class=”story”>

 <section class=”col1”>During the 2010 FIFA World Cup in South Africa, each country

was represented by one team. The United States was made up of players from all over

the U.S., where soccer has been played by youth teams for the last 40 years.

However, soccer has not caught on with the same enthusiasm in the United States as

it has in the rest of the world—where it is known as “football.” Nevertheless, the

U.S. team did well, winning its class in the first round of play.</section>

 <section class=”col2”> One of the few nations that has more than a single country

represented in World Cup play is the United Kingdom. In the first round of play,

the United States and England, represented by the St. George flag (rather than the

Union Jack), played to a tie. The tie delighted the Americans and dismayed the

English. Like the U.S., England made it to the second round, and, like the U.S.,

they, too, failed to move on to the next level.</section>

</article>

</body>

</html>

11_977279-ch06.indd 11111_977279-ch06.indd 111 10/28/10 10:16 PM10/28/10 10:16 PM

112

PART II: PAGES, SITES, AND DESIGNS

Th e story class is a container for ordering diff erent sections that are assigned col1 or col2
classes. However, the col1 and col2 classes do not have to be placed in a table. Notice that
the two graphics — one each in the two diff erent table-cell classes — are defi ned using <div>
tags within the <header> container. Th ey’re then used again inside the <article>
container that has been assigned a story class (table). Th e two sections have been defi ned as
col1 and col2 displays, and although they’re not seen in the containers for the two graph-
ics, you can see that diff erent colored text helps to show their separate status. Figure 6-1 shows
what you can expect to see in your browser.

Figure 6-1: Using the CSS3 display property with table values.

As you can see in Figure 6-1, using table-cells is an easy way to set up multiple columns.
When you develop more sophisticated Web sites, you’ll want to use more advanced CSS3
display defi nitions beyond tables and table-cells, but the table property in CSS3 is available
when you need it.

TABLES AND TABULAR DATA

Keeping in mind that we’ll get an electrical shock if we use standard table markups for site
design, this next section takes a close look at how to use tables for displaying tabular data.

11_977279-ch06.indd 11211_977279-ch06.indd 112 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

113

Tabular data can be anything from a set of numbers to graphics to descriptive text. If you’ve
ever ordered parts for your car (or just about anything else), chances are, the parts are listed in
a tabular format. Usually, you’ll fi nd a description of the part, the part number, the year model
the part is for, the car model, and the price.

Th e key to understanding tabular data is that it’s laid out in rows and columns for displaying
information in common categories. Further, the purpose of a table is to clarify information so
that the user can fi nd what she needs.

TABLE BASICS

Th e basic elements of a table are

 Th e table itself, <table>
 Th e table rows, <tr>
 Th e table cells, <td>
 Th e table headers, <th>

Generally, a table caption <caption> is used at the top of the table. A clear table generally
has clearly marked column and row headings. Th e cell in the upper-left corner is oft en left
blank so that the fi rst column doesn’t label the row heads; however, the standards state that no
cell be left empty. So, the corner cell in BasicTable.html contains “r/c” to fi ll the space — for
now, at least. Th e following example shows the basic table elements in a simple table. Th e row
and columns both have headings, and the data cells represent data placed in the labeled rows
and columns.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Basic Table</title>

</head>

<body>

<table>

 <caption>

 Rows and Columns in a Table

 </caption>

 <tr>

 <td>r/c

 <th>Column 1

 <th>Column 2

 <th>Column 3

 <tr>

 <th>Row 1

 <td>data a

 <td>data b

 <td>data c

 <tr>

11_977279-ch06.indd 11311_977279-ch06.indd 113 10/28/10 10:16 PM10/28/10 10:16 PM

114

PART II: PAGES, SITES, AND DESIGNS

 <th>Row 2

 <td>data x

 <td>data y

 <td>data z

</table>

</body>

</html>

One of the more interesting aspects of the table tags is that the closing tags are optional. No
best practice suggests that closing tags be used or not. Formatting the code so that the rows
are clearly delineated is important for making sense out of what you see. By not including the
table cell closing tags, the code seems to be a lot clearer and less cluttered, and that’s a good
thing. So, the closing cell tags are going to be left out unless putting one in will help clarify
what’s going on in the listing. Figure 6-2 shows what you’ll see when you launch the fi le in a
browser.

Figure 6-2: A basic table.

Notice that while the <th> tags cause the text to be shown in boldface that the table
<caption> does not. Th at can be fi xed with CSS3, and so can the rest of the table to make
it more useful. However, to get started with tables, all you need to understand are the basics.

STYLING A TABLE

You don’t use tables for general styling work, but that doesn’t mean that you can ignore the
style of the table itself. Th e good news in HTML5 is that borders on tables are not a default
state as they had been in previous versions of HTML. In fact, the table border attribute is no
longer supported in HTML5. If you want lines around the cells, you have to take that respon-
sibility yourself and add them using CSS3. Borders around cells or anything else must be done
judiciously or (in the opinion of many designers) not at all.

ADDING BORDERS WITH CSS3

Th e renowned information-design thinker Edward Tuft e cautions that borders can clutter up
the background so much that the data are diffi cult to read and understand. Although borders
clearly separate tabular data, visible borders muddy the waters between the data, making each

11_977279-ch06.indd 11411_977279-ch06.indd 114 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

115

data point diffi cult to easily discern. To see what Tuft e means, enter the following script
(BadBorders.html in this chapter’s folder at www.wiley.com/go/smashinghtml5)
and look at the page.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

table {

 width:400px;

 border-style:groove;

 border-width:thick;

 border-color:#FF5C19;

 color:#C00;

 font-family:Verdana, Geneva, sans-serif;

 font-size:10px;

}

caption {

 font-family:Tahoma, Geneva, sans-serif;

 font-size:24px;

 color:hsl(17, 60%, 40%);

 padding:12px;

}

td, th {

 border-style:solid;

 border-width:thin;

 border-color:#000;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Borders Are Blinding</title>

</head>

<body>

<table>

 <caption>

 Pet Care

 </caption>

 <tr>

 <td>§

 <th>Cats

 <th>Dogs

 <th>Fish

 <tr>

 <th>Feeding

 <td>Cat food is good

 <td>Doggy treats

 <td>Yucky fish food

 <tr>

 <th>Care

 <td>Scratching post

11_977279-ch06.indd 11511_977279-ch06.indd 115 10/28/10 10:16 PM10/28/10 10:16 PM

116

PART II: PAGES, SITES, AND DESIGNS

 <td>A rubber ball

 <td>Clean tank and air bubbles

</table>

</body>

</html>

Figure 6-3 shows the results, but before looking at it, examine the CSS3 code carefully. Also,
the value § is a character code for a symbol entered using code instead of the keyboard.
All UTF-8 characters can be entered this way. Certain symbols such as the greater-than
(>) and less-than (<) characters must be entered using this method; otherwise, the
parser reads them as part of a tag. Now, take a look at Figure 6-3 to see the page with the
borders.

Figure 6-3: Borders can interfere with data clarity.

When trying to read the diff erent data elements, the borders get in the way. To fi x that, all you
have to do is add padding to the borders and height to the cells. In the style, change the td
and th element defi nitions to the following:

td, th {

 height:50px;

 border-style:solid;

 border-width:thin;

 border-color:#000;

 padding:20px;

}

All that you changed is the height of the cell and the space between the border and the text
(padding). However, the diff erence is signifi cant, as you can see in Figure 6-4.

With the added space around the data, the cell value is far clearer. Th e cells aren’t too pretty,
but that’s easy to take care of — just remove them.

11_977279-ch06.indd 11611_977279-ch06.indd 116 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

117

Figure 6-4: Adding space within table cells.

DATA CLARIFICATION WITH BACKGROUND COLORS

Back in the old days, computer printouts were done on paper with alternating background
colors to make it easier to separate individual records. (Records and rows are used inter-
changeably in this context.) As you saw, heavy borders intruding on each data cell detract
from clarity. Th at’s why the older computer printouts used diff erent background colors. So,
instead of separating records by borders, you need to see how to do so using colors (see
ColorRows.html in this chapter’s folder at www.wiley.com/go/smashinghtml5).

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

td {

 width:70px;

}

body {

 font-family:Verdana, Geneva, sans-serif;

 font-size:10px;

}

caption {

 font-family:”Arial Black”, Gadget, sans-serif;

 font-size:12px;

 font-weight:500;

 color:#360;

11_977279-ch06.indd 11711_977279-ch06.indd 117 10/28/10 10:16 PM10/28/10 10:16 PM

118

PART II: PAGES, SITES, AND DESIGNS

 background-color:hsla(113, 46%, 91%, 1);

}

.money {

 text-align:right;

}

table {

 background-color:#FFC;

}

.alt1 {

 background-color:hsla(113, 46%, 91%, .8);

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Color Separation</title>

</head>

<body>

<table>

 <caption>

 Sick Thinking Games, Inc.

 </caption>

 <tr>

 <th>Name

 <th>Acct No.

 <th>Amount

 <tr class=”alt1”>

 <td>Joe Doaks

 <td>ID065212

 <td class=”money”>$92.83

 <tr>

 <td>Jane Franco

 <td>ID034986

 <td class=”money”>$17.78

 <tr class=”alt1”>

 <td>Fernando Rodriguez

 <td>ID019921

 <td class=”money”>$221.83

 <tr>

 <td>Benny Jet

 <td>ID073456

 <td class=”money”>$320.45

</table>

</body>

</html>

By default, the td element left -justifi es text, which is desirable in most cases. However,
with fl oating point numbers (numbers with decimal points), numbers are clearer using
right-justifi cation. So, one of the style sheet classes included a money class to right-justify
fi nancial data.

Th e entire table is given a light yellow background. However, the background color of the
table doesn’t aff ect the materials in the <caption> container; so the caption element gets

11_977279-ch06.indd 11811_977279-ch06.indd 118 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

119

a color background compatible with the table’s. Further, the table, while relatively small, wants
to optimize it for small portable devices, so the text is set to 10px (10px is pretty close to
10-point text). Figure 6-5 shows the results (with a few more records added to fi ll up the
vertical screen) on a mobile device.

Figure 6-5: Alternate row viewing in a table on a mobile device.

By using a color with less than 100 percent opacity (some transparency), the alternating green
is slightly mixed with the light yellow background color. Th e caption background color is the
same as the alternating row green, but it has 100 percent opacity (solid) and you can see it has
a slightly diff erent tint. Th e th elements inherited the table’s background color but serve well
as column labels without any other adjustments.

Th e cell widths are set to a non-relative value (70px) because the width refl ects the fact that
the table is optimized for mobile viewing. As a result, the names can take up double rows and
not detract from either the design or the table’s functionality.

11_977279-ch06.indd 11911_977279-ch06.indd 119 10/28/10 10:16 PM10/28/10 10:16 PM

120

PART II: PAGES, SITES, AND DESIGNS

COMPLEX TABLES

Th e term complex implies tables that are diffi cult to understand. Actually, complex tables are
solutions to tricky problems. If you’re using tables to organize data coming out of a database,
chances are good that you can use a pretty standard table with a measured set of rows and
columns all the same size.

When you begin to use a table to display data for just about anything, including data coming
from a database, you may encounter situations in which something happens to change the
neat set of rows and columns, and you have to make adjustments to fi t more into a single row
or column than originally planned.

In order to understand complex tables, you need to understand the idea of a cell. A table is
nothing more than a collection of cells ordered into rows and columns. Th e intersection of a
column and row is the cell. In HTML5, you create cells using the <td> and <th> tags. Figure
6-2, earlier in this chapter, shows basic cells organized into rows and columns.

USING THE ROWSPAN AND COLSPAN ATTRIBUTES

To change a cell’s default characteristic of an intersection between a single row and column,
you need to use a td element’s attributes, rowspan and/or colspan. Each attribute is
assigned a positive integer value that expands a cell to cover multiple rows or columns. Figure
6-6 shows a standard table made up of equal-size cells and a comparative table with expanded
rows and columns.

Figure 6-6: A table with equal-size cells and a table with rowspan and colspan.

Figure 6-6 shows that the fi rst cell in Row 2 in the bottom table took up the space of three
cells in Row 2 in the top table. In Col 5 of the bottom table, both Row 1 and Row 2 were

11_977279-ch06.indd 12011_977279-ch06.indd 120 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

121

collapsed into a single cell taking up both rows. Importantly, the top table has ten cells and the
bottom table has only seven cells. When you code tables with rowspan and colspan, you’ll
use fewer <td> tags compared to a table that does not (see RowColSpan.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5).

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

caption {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#C60;

}

table {

 font-family:Verdana, Geneva, sans-serif;

}

td, tr {

 border-style:solid;

 border-width:thin;

 border-color:#ccc;

 width:120px;

 padding:5px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Colspan and Rowspan</title>

</head>

<body>

<table>

 <caption>

 Rowspan and Colspan

 </caption>

 <tr>

 <td rowspan=”2”>Row A and Row B

 <td>Column 2a

 <td>Column 3a

 <td>Column 4a

 <tr>

 <td>Column 2b

 <td>Column 3b

 <td>Column 4b

 <tr>

 <td>Row C

 <td>Column 2c

 <td colspan=”2”>Column 3c and Column 4c

</table>

</body>

</html>

Th is example uses a very light gray border so that you can better see the spans — vertically
and horizontally. However, you don’t need the borders to use spans. In fact, without borders,

11_977279-ch06.indd 12111_977279-ch06.indd 121 10/28/10 10:16 PM10/28/10 10:16 PM

122

PART II: PAGES, SITES, AND DESIGNS

it can be diffi cult to distinguish where the spans actually exist, which can be a good thing.
Figure 6-7 shows the actual table with the two spans.

Figure 6-7: Adding vertical and horizontal spans.

You can see that the table in Figure 6-7 has 10 cells where a full 4-by-3 table would have 12.
Likewise, in the listing, you can see ten <td> tags. Both colspan and rowspan can be a
little tricky, but if you think of them in terms of cell mergers, they’re a little easier to under-
stand and work with.

PRACTICAL SPANS IN TABLES

When creating complex tables using colspan and rowspan, the exercise may seem to be
one in futility because a practical application doesn’t seem that obvious. Alternatively, you
may look to do the whole thing in CSS3 without any use of table elements or attributes. So,
the following walks through a simple but typical scenario where spanning cells is a practical
solution.

Consider a Web development/design fi rm that has set up project management using tables as
a simple way to keep track of a project’s progress. Th e production team is divided into the
following groups, each with a separate record:

 Team coordinator (1)
 Design team (4)
 Rich interactive application (RIA) design (2)
 Front-end development (3)
 Back-end development (2)

Th e columns for the project include the following:

 Task
 Project
 Team members
 Due date

11_977279-ch06.indd 12211_977279-ch06.indd 122 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

123

Th at should be simple enough to understand and complex enough to be useful. Th e irony of
making this table is in adding the spans where only one item is in the cell. It’s almost counter-
intuitive because the column for the team members will have several rows within the other
cells that have a rowspan the size of the team size. Th e following program (SpanProject.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) illustrates how
this is done.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* F2F0E6,595443,A6A08D,3A3F59,8D91A6 */

caption {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#3A3F59;

}

table {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#F2F0E6;

 padding:5px;

 border-collapse:collapse;

}

td, tr {

 padding-right:8px;

 font-size:11px;

 border-collapse:collapse;

}

.bluish {

 background-color:#8D91A6;

}

.brownish {

 background-color:#A6A08D;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Project Tracker</title>

</head>

<body>

<table>

 <caption>

 Project Plan

 </caption>

 <tr>

 <th>Task

 <th>Project

 <th>Team

 <th>Due Date

 <tr class=”bluish”>

 <td>Coordinator

 <td>Cold Fire

11_977279-ch06.indd 12311_977279-ch06.indd 123 10/28/10 10:16 PM10/28/10 10:16 PM

124

PART II: PAGES, SITES, AND DESIGNS

 <td>Emma Peel

 <td>01-21-2012

 <tr class=”brownish”>

 <td rowspan=”4”>Design Team

 <td rowspan=”4”>Cold Fire

 <td>Sancho Panza

 <td rowspan=”4”>10-01-2011

 <tr class=”brownish”>

 <td>John Watson

 <tr class=”brownish”>

 <td>Edward McMahon

 <tr class=”brownish”>

 <td>Vanna White

 <tr class=”bluish”>

 <td rowspan=”2”>Rich Interaction

 Design

 <td rowspan=”2”>Cold Fire

 <td rowspan>Garth Algar

 <td rowspan=”2”>11-12-2011

 <tr class=”bluish”>

 <td> John McIntyre

 <tr class=”brownish”>

 <td rowspan=”3”>Front End

 Development

 <td rowspan=”3”>Cold Fire

 <td>Barney Rubble

 <td rowspan=”3”>12-15-2011

 <tr class=”brownish”>

 <td>Ethel Mertz

 <tr class=”brownish”>

 <td>Paul Schaffer

 <tr class=”bluish”>

 <td rowspan=”2”>Back End

 Development

 <td rowspan=”2”>Cold Fire

 <td rowspan>Louise Sawyer

 <td rowspan=”2”>01-15-2012

 <tr class=”bluish”>

 <td>Andy Richer

</table>

</body>

</html>

Basically, the <td> tags that include a rowspan attribute are those that have to be large
enough to match the number of team members that will be in the same row. Figure 6-8 shows
how the page appears in a browser.

Th e most important thing to remember about tables is that they should be used judiciously.
Th ey aren’t general design tools, but you can use CSS3 to design the look of tabular data set in
table elements. So think, “Tabular data, tables; non-tabular content, CSS3 only.”

11_977279-ch06.indd 12411_977279-ch06.indd 124 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 6: DISPLAYING DATA WITH TABLES

125

Figure 6-8: Multiple and differential rowspans.

TAKE THE WHEEL

Figure 6-9 shows the end result of the challenge table. It has headers at the top and bottom,
and the background colors for the rows are at 20 percent and 40 percent opacity. See if you
can replicate it with HTML5 and CSS3.

Figure 6-9: Challenge table.

11_977279-ch06.indd 12511_977279-ch06.indd 125 10/28/10 10:16 PM10/28/10 10:16 PM

126

PART II: PAGES, SITES, AND DESIGNS

Feel free to change the regions, cities, teams, and comments — especially if you’re a New York
Yankees fan. You can substitute cities from all over the world and include hockey, rugby, soccer
(football), cricket, and women’s teams. Just get the table to look like the one in Figure 6-9.

11_977279-ch06.indd 12611_977279-ch06.indd 126 10/28/10 10:16 PM10/28/10 10:16 PM

SMASHING HTML5

C
H

A
P

T
E

R

7

ALL ABOUT LINKS7
THE MAJOR CAPABILITY of Web pages
besides displaying text, graphics, and media is
loading other pages. Using Web pages, people —
including designers and developers — tend to
think of going somewhere or getting something.
We even think of helping users with site maps
and navigation tools that imply that they’re on
some kind of trip. Th e navigational issues are
important and are discussed in Chapter 8.

However, this chapter looks at how links load
other Web pages, as well as how they’re used to
access alternate style sheets. Included in this
examination are the diff erent attributes that are
related to loading pages, the details of accessing
a page, and CSS3 properties used to both style
links and to launch interactive features in those
properties.

12_977279-ch07.indd 12712_977279-ch07.indd 127 10/28/10 10:16 PM10/28/10 10:16 PM

128

PART II: PAGES, SITES, AND DESIGNS

THE LINK ELEMENT AND ITS KEY ATTRIBUTES

Th e major link element is the a element. So, most of this chapter will focus on the <a> tag.
However, before doing that, the <link> tag is important to consider. It, too, loads pages, and
while the fi les loaded using the link element cannot be seen, they’re an important kind of
data-loading feature that needs to be understood for optimum use.

Th e attributes used with both <a> and <link> tags share attribute characteristics with all
HTML5 elements, so they can be treated just like an attribute for <h1>, <body>, or any other
HTML5 tag. However, the attributes used with link elements tend to focus on loading fi les
(.html, .css, and .js) rather than on appearance.

Th e link element itself is part of the metadata content and is found within the head con-
tainer at the top of a Web page. In Chapter 3, you saw how to use link to load external CSS
fi les. In the fi rst section, I show you how to set up your Web page to load mutually independ-
ent style sheets.

ALTERNATE STYLE SHEETS

In an attempt to make Web pages as accessible to as many users as possible, the new HTML5
browsers have pop-up menus that allow you to select from more than one style sheet. Using
the <link> tag with the rel attribute set to alternate stylesheet, you can include as
many style sheets as you want, and the user can select which she likes best. Here’s the general
format:

<link rel=”stylesheet” type=”text/css” href=”default.css” title=”default”>

<link rel=”alternate stylesheet” type=”text/css” href=”other.css” title=”alternate”>

Th e ref value alternate stylesheet is an entity that is diff erent from the alternate
value that I cover in the next section. You can load as many style sheets as you want; however,
the user can only change to an alternate style sheet — not to a regular style sheet.

To see how the alternate style sheets work, this next example begins with two diff erent
external style sheets saved in fi les named warm.css and cool.css. Th en, the Web page
code creates the code that loads the warm style sheet as the default, and users may choose to
switch between the two styles.

Warm Color Theme
@charset “UTF-8”;

/* CSS Document */

body {

 /*FFE0A3,7F7D78,FFFAF0,7F7052,CCC8C0 */

 font-family:Verdana, Geneva, sans-serif;

 font-size:11;

 background-color:#FFFAF0;

 color:#7F7052;

}

12_977279-ch07.indd 12812_977279-ch07.indd 128 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

129

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#7F7D78;

 text-align:center;

}

h2 {

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif;

 background-color:#CCC8C0;

 color:#FFE0A3;

}

Cool Color Theme
@charset “UTF-8”;

/* CSS Document */

body {

 /*056CF2,0F88F2,52B5F2,85D3F2,F2F2F2 */

 font-family:Verdana, Geneva, sans-serif;

 font-size:11;

 background-color:#F2F2F2;

 color:#056CF2;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#52B5F2;

 text-align:center;

}

h2 {

 font-family:”Lucida Sans Unicode”, “Lucida Grande”, sans-serif;

 background-color:#85D3F2;

 color:#0F88F2;

}

Th e warm and cool color schemes use identical CSS3 code, save for the color values. In that
way when we compare them, everything except the color palette will be the same. Th e
following Web page (AlternateStylesheets.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5) uses both CSS external fi les with one being the default
(stylesheet) and the other the alternate (alternate stylesheet):

<!DOCTYPE HTML>

<html>

<head>

<link rel=”stylesheet” type=”text/css” href=”warm.css” title=”Warm View (Default)”>

<link rel=”alternate stylesheet” type=”text/css” href=”cool.css” title=”Cool scene”>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Alternative External Style Sheets</title>

</head>

<body>

12_977279-ch07.indd 12912_977279-ch07.indd 129 10/28/10 10:16 PM10/28/10 10:16 PM

130

PART II: PAGES, SITES, AND DESIGNS

<h1>Warm and Cool</h1>

<h2> Switch between Warm and Cool </h2>

To switch, select View > Page Style [or Style] from your browser menu and choose the

one you want. Use either the Opera or Firefox browser to start, and then test the

other HTML5 browsers.

</body>

</html>

Th e rest of the usage is up to the browser. In testing the diff erent HTML5 browsers, at the
time of testing only the Opera and Firefox browsers actually had menu items for selecting
diff erent style sheets. If you plan to use alternate style sheets with a general set of browsers, be
sure to test them with this program fi rst. Figure 7-1 shows the default setting in the Opera
browser with the style sheet selection open.

Figure 7-1: Displaying the warm style on the Opera browser.

12_977279-ch07.indd 13012_977279-ch07.indd 130 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

131

As you can see in Figure 7-1, the Opera browser path View > Style menu shows the title of the
default CSS3 style — Warm View (Default). If users want to switch to the alternate style sheet,
they simply select the Cool scene. Figure 7-2 shows the Firefox browser selecting the alternate
style sheet.

Figure 7-2: Switching style sheets in Firefox.

In Firefox, the menu to select style sheets is slightly diff erent, but like the Opera browser, it
provides users with the opportunity to change styles dynamically if they want.

LINK ICONS

Next to using the rel attribute for assigning style sheets, the most used value is for setting up
a small icon to represent the page. Graphic icons can be assigned to the rel attribute using
the following format:

<link rel=”icon” href=”graphic.png” sizes=”32x32”/>

In earlier versions of HTML, the relation value was shortcut icon but just icon works
as well.

12_977279-ch07.indd 13112_977279-ch07.indd 131 10/28/10 10:16 PM10/28/10 10:16 PM

132

PART II: PAGES, SITES, AND DESIGNS

In setting up the following example (LinkIcon.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5), several <meta> tags are used as well. Th ey contain
information about the page used by search engines, and although they’re always helpful, they
aren’t required for setting up the link relation to an icon.

<!DOCTYPE HTML>

<html>

<head>

<meta name=”application-name” content=”HTML5, CSS3”/>

<meta name=”description” content=”HTML5 Linking icon”/>

<meta name=”application-url” content=”LinkIcon.html”/>

<link rel=”icon” href=”LinkAnchor.png” sizes=”32x32”/>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Page Icon</title>

</head>

<body>

Link icon

</body>

</html>

In testing the icons with four diff erent browsers (Safari, Chrome, Opera, Firefox), the icons
only showed up on the Opera and Firefox browsers. Internet Explorer (IE) was not tested
because at the time of this writing, Microsoft was still developing IE9. Also, none of the
mobile browsers displayed the page icon. Figure 7-3 shows where the icons (a small green
anchor) appear on the Opera and Firefox browsers.

Icons in Firefox

Icons in Opera

Figure 7-3: Displaying icons on Firefox and Opera.

In creating an icon, I used a .png fi le set to the default 32 x 32 pixels. You can use diff erent
sizes, but the limits are not clear; however, they are set to where the height and width are
the same.

12_977279-ch07.indd 13212_977279-ch07.indd 132 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

133

PREFETCHING

A new HTML5 value for the rel attribute in the link element is prefetch. Suppose you
have a page that is a little “heft y” — it’s got some big content like large graphics, video, or
audio. Before users go to the page, wouldn’t it be nice to preload the page (graphics and all)
so that when they click on the link, everything is ready for them? Th at’s what prefetching is.
While the browser is idle, prefetching gives it something to do. For example, the following
uses prefetch to load a video:

<link rel=”prefetch” href=”Test.mov”>

So when the user goes to the page with the video, it has already started loading — or it may be
completely loaded and ready to go. Here are some other examples:

<link rel=”prefetch” href=”monkeys.html”>

<link rel=”prefetch” href=”monsterTrucksFull.png”>

<link rel=”prefetch” href=”http://www.sandlight.com”>

<link rel=”prefetch alternate stylesheet” =”http://wherever.org/fall.css”> href

<link rel=”prefetch” href=”sumVa.mp4” title=”Summer vacation”>

Before you start planning to use the prefetch value with every page that links to a “heavy”
page, remember that its value is dependent on whether users are likely to go to that page. For
example, suppose you’re creating a Web site for a big department store, and users select from
several diff erent graphic displays of products. If the Web page prefetches all the graphics in
the selection matrix, it’s going to add a heavy load to the user’s computer. So, instead of
getting a crisp response, loading the selected page could be sluggish because it has all the
other graphics in memory that have been prefetched.

One way to optimize prefetch is to organize your pages so that links to a heavy page have a
path that limits pre-loading. Pages that include media that require a good deal of load time
should have a path to them that has only a few choices with heavy loads.

OTHER LINK ATTRIBUTES

Other than the rel attribute, the other link attributes include:

 href: Points to external style sheets and icons.
 media: Specifi es the kind of media for the link — screen, PDF, print; if no value is
assigned to media, the default is “all.”
 hreflang: Provides the language of a resource and is purely advisory.
 type: Identifi es the type of fi le content, such as “text/css” — the MIME types.
 sizes: Specifi es the dimensions of an icon, such as 32x32, 48x48, and other sizes used
for graphic fi gures used as icons.
 title: Has a real value when using alternative style sheets, but otherwise it’s advisory.

As you’ve seen in the examples using the rel attribute, these other attributes are oft en used in
conjunction with rel.

12_977279-ch07.indd 13312_977279-ch07.indd 133 10/28/10 10:16 PM10/28/10 10:16 PM

134

PART II: PAGES, SITES, AND DESIGNS

PAGE LINKS

Th e a element in HTML5, as well as in previous versions of HTML, is one of the key elements
in the language. Its primary use is to serve as a means to load a page using the href attribute.
Without the href attribute, the <a> tag can serve as a placeholder, but for all intents and
purposes, the a element is really a combination of the element and the attribute. Th at’s why
we tend to think in terms of a href or an <a href> tag rather than just the a element by
itself. Th is section examines the nuances of the a element with the focus on the href
attribute, but the fi rst topic is using the rel attribute with the a element.

MORE OF THE REL ATTRIBUTE

Th e rel attribute is related to more than just the link element, and while most of the rel
values assigned to link also apply to the a and area elements, only a subset is examined
here. Th e full list of applicable values for the rel attribute in the a element include the
following:

 alternate

 archives

 author

 bookmark

 external

 first

 help

 index

 last

 license

 next

 nofollow

 noreferrer

 prev

 search

 sidebar

 tag

 up

Of these, several are for organizing navigation, and these will be discussed more in Chapter 8.
For example, index, first, last, prev, and next (among others) all refer to navigation
order. I’m introducing them here so that when navigation in a larger context is discussed in
Chapter 8, you’ll be familiar with the concepts. Other values assigned to the rel attribute in
the a element context have more to do with identifying certain characteristics, such as the
link’s author or a help link, and I discuss them fi rst.

12_977279-ch07.indd 13412_977279-ch07.indd 134 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

135

Author relations
Sometimes, a Web page includes the page’s author, and you may want to contact her. To help
identify the relation, an author value can be assigned to the link. A common link for such
situations is the mailto: keyword used in an href assignment. For example, the following
listing (AuthorLink.html in this chapter’s folder at www.wiley.com/go/smashing
html5) uses the author value along with the mailto: link.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* FFF8E3,CCCC9F,33332D,9FB4CC,DB4105 */

body {

 font-family:Verdana, Geneva, sans-serif;

 font-size:11px;

 background-color:#CCCC9F;

 color:#33332D;

}

h1 {

 background-color:#33332D;

 color:#9FB4CC;

 font-family:”Arial Black”, Gadget, sans-serif;

 text-align:center;

}

h2 {

 background-color:#DB4105;

 color:#FFF8E3;

}

a {

 text-decoration:none;

 font-size:9px;

 color:#DB4105;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Author</title>

</head>

<body>

<header>

 <h1>All about HTML5</h1>

</header>

<article>

 <header>

 <h2> Herein lies the Wisdom of the Ages </h2>

 </header>

 <section> Whoaaa!―Wisdom of the Ages?―That’s a lot of respon-

sibility! Why not―The best I can do since 2010?

 <p> Who wrote this thing anyway?</p>

 <h3>He did!↓</h3>

12_977279-ch07.indd 13512_977279-ch07.indd 135 10/28/10 10:16 PM10/28/10 10:16 PM

136

PART II: PAGES, SITES, AND DESIGNS

 <footer>

 <nav>Bill Sanders</nav>

 </footer>

 </section>

</article>

</body>

</html>

In creating the author e-mail link, the a element is styled to get rid of the underline — the
default style for links — and replaces it with a small but noticeable color. To some extent, the
entire page draws focus to the link, as you can see in Figure 7-4.

When cursor is placed over link to author’s e-mail...

... a message appears in the lower-right corner.

Figure 7-4: Using the author e-mail link.

Th e cite element can be confused with the author value assigned to the rel attribute in
an a element. First, cite is an independent element, and second, it italicizes the content in a
cite container. For example, the following snippet shows how both keywords are used in the
same paragraph:

<p>Most of the quotes can be found in the works of <a href=”http://www.willieS.com”

rel=”author”>William Shakespeare, especially the famous reference book,

<cite>Camford’s Complete Works of the Bard</cite>.</p>

Th e text in that code generates:

Most of the quotes can be found in the works of William Shakespeare, especially the
famous reference book, Camford’s Complete Works of the Bard.

12_977279-ch07.indd 13612_977279-ch07.indd 136 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

137

As you can see when you place that code in a Web page, the author value is advisory and the
cite element changes the appearance of the text. In some respects, both are advisory in that
each calls attention to the content — one in the code, and the other in the screen display.

Hierarchical and sequential link types
You can organize your links using both hierarchical and sequential link types. Th e hierarchi-
cal rel values include index and up. Th e up value refers to a level up in the hierarchy, and
index refers to the very top. For example, the following code references a directory that is
the top of the hierarchy, three levels up from the calling page.

Home

Th e clearest path in the example is made by referencing both the index and the number of
up levels.

Th e sequential link types include first, last, next, and prev with each keyword relative
to a page within a sequence. For example, the following code goes to the next page relative to
a page in the sequence:

Page 4

Th e implementation of these link types is diff erent for diff erent browsers, and they’re better
used with the link element to map out a site’s organization relative to a given page than to
direct a page using the a element.

PAGE ANCHORS AND IDS

In addition to linking directly to a page, you can link to a specifi c location on a page. One way
to link directly to a location on a page is to assign an anchor to a tag on the page using the
name attribute. For example, the following code will jump to the position on the current page
where the “developer” name is found:

Developers

To set up the target using an anchor, just assign a tag the name of the anchor like the following:

<div name=”developer”>

In testing the anchor technique on HTML5 browsers, it failed to work on several. Th e HTML5
browsers seemed to have adopted using CSS3 to create IDs and use them exclusively. Th e
following example (AnchorID.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how to use IDs as anchors:

<!DOCTYPE HTML>

<html>

<style type=”text/css”>

/*D4CBA0,BD4A14,804130,4F3C33,6D7F59*/

12_977279-ch07.indd 13712_977279-ch07.indd 137 10/28/10 10:16 PM10/28/10 10:16 PM

138

PART II: PAGES, SITES, AND DESIGNS

body {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#D4CBA0;

 color:#804130;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#4F3C33;

 background-color:#BD4A14;

 text-align:center;

}

h2 {

 color:#6D7F59;

}

h3 {

 margin-left:15px;

 color:#4F3C33;

}

a {

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 font-size:11px;

 color:#BD4A14;

 text-decoration:none;

}

nav {

 text-align:center;

}

#fsquirell { };

#cats { };

#dogs { };

</style>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Anchors</title>

</head>

<body>

<article>

<header>

 <nav>Flying Squirrels | Cats</

a> | Dogs</nav>

 <h1>Caring for Pets</h1>

 Just in case you’re not interested in Flying Squirrels, you can select the “Cat”

or “Dog” anchors and go right to your topic of interest. </header>

<section ID=”fsquirrel”>

 <header>

 <h2>Care and Handling of Flying Squirrels</h2>

 </header>

 <h3>Hangars</h3>

 <h3>Runways</h3>

12_977279-ch07.indd 13812_977279-ch07.indd 138 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

139

 <h3>Flight Training</h3>

 <h3>Airline Food</h3>

 <h3>Baggage (these squirrels have lots of it...)</h3>

</section>

<section ID=”cats”>

 <header>

 <h2>Care and Handling of Cats</h2>

 </header>

 <h3>Kitty Basket</h3>

 <h3>Scratching Post</h3>

 <h3>Litter Box</h3>

 <h3>Cat Food</h3>

 <h3>Toy Mouse and Catnip</h3>

</section>

<section ID=”dogs”>

 <header>

 <h2>Care and Handling of Dogs</h2>

 </header>

 <h3>Dog House</h3>

 <h3>Walks</h3>

 <h3>House Breaking</h3>

 <h3>Dog Food</h3>

 <h3>Chew Toys and Balls</h3>

</section>

<footer>

 <nav>Flying Squirrels | Cats</

a> | Dogs</nav>

</footer>

</body>

</html>

When using CSS3 IDs for anchors on mobile devices, you’ll fi nd that your design is not quite
as constrained for the small screen sizes. As you can see in Figure 7-5, anchors make it easy to
navigate a page on a mobile device.

In Figure 7-5, the screen on the left is the initial page on an Opera Mini browser. When the
Dogs link is tapped (or clicked on a non-mobile device), the page jumps down to the dog
information. Notice that the menu is both at the top and bottom of the page. Generally
speaking, if your page is long enough to require IDs for moving around the page, you should
have a top and bottom menu. If the page is very long, you can give the nav element an ID and
then have each section link to the menu.

If you want to set up a link directly to an ID or anchor, you simply add #name to the URL.
For example, if somewhere else on your site (or even another site), you want a direct link to
the material about cats. You’d simply create the following link:

12_977279-ch07.indd 13912_977279-ch07.indd 139 10/28/10 10:16 PM10/28/10 10:16 PM

140

PART II: PAGES, SITES, AND DESIGNS

Figure 7-5: Using IDs for anchors.

From within the same directory, you would write:

In Chapter 8, you’ll see how to use IDs and anchors in planning a navigation design strategy.

TARGETS

Up to this point, all the links have been ones that replace the calling page with a new page to
be loaded in your browser window. However, you can use the target attribute with the <a>
tag to assign diff erent ways for a page to appear — known as the browsing context. You may
select from the following browsing contexts using target:

 _self replaces the current page; default if no context is assigned.
 _blank opens the new page in a new browser window — a new browsing context.
 _parent opens the new page in the “parent” document of the current page. Th e parent
document is typically the browser windows that caused the current page to open.
 _top opens the new page in the full body of the current browser window.

12_977279-ch07.indd 14012_977279-ch07.indd 140 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

141

Th ese browsing contexts are assigned as shown in the following snippet:

Th e underscore in naming all the browsing contexts is required. So, something like
target =”blank” would not work — it has to be target=”_blank”.

In older versions of HTML, the frame and frameset elements were widely used and both
could be named as target values. Likewise, the _parent and _top browsing contexts would
be used to open a page in a diff erent frame. In HTML5, the major use of the target attribute
is to select the _blank browsing context over _self (default).

New browsing contexts in computer browsers
When you use the target attribute in the a element to create a _blank browsing context in
your computer, the current page remains on the screen and the requested page appears in a
new browser window or tab. Th e following program (Link2Target.html in this chapter’s
folder at www.wiley.com/go/smashinghtml5) is a simple illustration of how this works.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#060;

}

a {

 color:#900;

}

h3 {

 font-family:Verdana, Geneva, sans-serif;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Open New Page</title>

</head>

<body>

<header>

 <h1>Original Page</h1>

</header>

<nav>

 <h3>World Wide Web</h3>

</nav>

</body>

</html>

12_977279-ch07.indd 14112_977279-ch07.indd 141 10/28/10 10:16 PM10/28/10 10:16 PM

142

PART II: PAGES, SITES, AND DESIGNS

Figure 7-6 shows your screen when you test the program on your computer and click the link.

Depending on your browser’s setting, your new page may appear in a new tab instead of a
separate window. You can drag the tab to create a separate window so that both pages can be
viewed simultaneously.

Figure 7-6: Opening a new window on a computer screen.

New browsing contexts in mobile browsers
When a Web page uses a _blank browser context in a mobile device, you do not have the
ability to see multiple pages in a single viewing window. Instead, the calling page is treated as
a previous page (Opera Mini) that can be accessed by pressing a back arrow or some other
method. Th e Safari browser for the iPhone has a pages icon in the lower-right corner that
shows the number of currently loaded pages. When the user taps the pages icon, up to eight
pages can be viewed in a window where the user can slide them to view them sequentially.
Figure 7-7 shows the pages context in a Safari browser on an iPhone.

If the page is opened using a _blank browsing context in the mobile Safari browser, it does
not have a back link as in the Opera Mini browser; however, it’s opened in a new browser
window alongside the calling page.

12_977279-ch07.indd 14212_977279-ch07.indd 142 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

143

Page opened in

new window.

Calling page with a

_blank value assigned

to target attribute.

Figure 7-7: Viewing multiple pages in Safari on the iPhone.

USING IFRAMES

Th e iframe element declares an inline frame. Using inline frames, you can load other Web
pages or other media within a single Web page. Th e element represents what is called a nested
browsing context. Th e “Targets” section in this chapter discusses diff erent browsing contexts
in terms of diff erent windows and tabs. A nested browsing context occurs when one page is
nested inside another page. Essentially, an <iframe> tag places one Web page inside another.

12_977279-ch07.indd 14312_977279-ch07.indd 143 10/28/10 10:16 PM10/28/10 10:16 PM

144

PART II: PAGES, SITES, AND DESIGNS

You may wonder why you would want one Web page inside another one. Why not just open a
new window or tab? One reason is to allow users to get an idea of what may be in the pages
and then link to whichever the user fi nds most interesting, relevant, or appropriate.

Other uses of iframes include placing thumbnail images on a page, and then allowing the user
to select diff erent thumbnails to bring up the full-size image. Th is allows you to build a single
Web page where the user can view several diff erent images by selecting image links that bring
up the image in the same page — all without having to use JavaScript or Ajax.

NESTING WEB PAGES

Th e HTML5 iframe element has several attributes; some of which are new to HTML5.
However, to get started, all you need to know is the basic tag and how it’s implemented. Th e
following is the bare bones <iframe> tag with a Web page embedded:

<iframe src=”http://www.w3.org”></iframe>

Th at tag simply places the source Web page in the upper-left corner of the calling page. To
better see the options and control over the iframe, the following program (iframeWeb.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) embeds two
diff erent Web pages inside itself and add several attributes that you can see.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*657BA6,F2EDA2,F2EFBD,F2DCC2,D99379*/

body {

 background-color:#F2EDA2;

}

h1 {

 font-family:Verdana, Geneva, sans-serif;

 color:#657BA6;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Iframe Web</title>

</head>

<body>

<!DOCTYPE HTML>

<html>

<body>

<article>

 <header>

 <h1>Before iframes</h1>

 </header>

 <section>

 <iframe name=”info” width=”480”, height=”320” sandbox=”allow-same-origin”

seamless src=”http://www.smashingmagazine.com”></iframe>

12_977279-ch07.indd 14412_977279-ch07.indd 144 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 7: ALL ABOUT LINKS

145

 <iframe name=”info2” width=”480”, height=”320” sandbox seamless src=”http://www.

w3.org”></iframe>

 </section>

 <footer>

 <h1>After iframes</h1>

 </footer>

</article>

</body>

</html>

</body>

</html>

In the two <iframe> tags, you can see several attributes, some of which you’ve seen in other
elements. Th e iframe element itself has seven attributes plus HTML5 global attributes. Th e
element attributes are

 src

 srcdoc

 name

 sandbox

 seamless

 width

 height

Of these seven, srcdoc, sandbox, and seamless are new. At the time of this writing the
srcdoc has not been implemented in any of the tested browsers, but when it is, it navigates
to a text/HTML fi le with information specifi c for the iframe. Th e sandbox attribute, available
in the Google Chrome browser, is used for restricting the types of content and functionality
that can be provided in an iframe, for security reasons. Th e seamless attribute has not been
implemented either, but when it is, all links will be opened in the parent browsing context
instead of the nested browsing context — inside the iframe. Older browsers and HTML5
browsers that have not yet implemented them ignore all these new iframe attributes.
Th erefore, you can add the attributes to <iframe> tags to set up good habits so that when
they’re available, they can help add security to your Web pages. Figure 7-8 shows how the
embedded pages appear on a computer screen.

Th e h1 headings before and aft er the embedded pages show that the embedded pages are not
subject to the CSS3 style of the parent page. Also, you can see that each page is inside another
page — before and aft er the insertion of the two other Web pages.

If you look at the code, you’ll see that their dimensions (320 x 480) suggest the viewing
resolution for a mobile device. However, when tested on a mobile device, the iframe opened
up to display the entire embedded pages. No scroll bars appear in the mobile browsers, so the
only alternative to show the entire contents of the embedded pages is to allow them to be
thumb-scrolled horizontally and vertically within the iframe. Initially, this may seem to be a

12_977279-ch07.indd 14512_977279-ch07.indd 145 10/28/10 10:16 PM10/28/10 10:16 PM

146

PART II: PAGES, SITES, AND DESIGNS

deal breaker for iframes in mobile devices; however, in Chapter 8, you’ll see how iframes can
be used as single-page Web sites optimized for mobile browsers.

Figure 7-8: Embedding Web pages inside a Web page.

TAKE THE WHEEL

Setting up a Web site of your own can be a lot of fun, and one of the tasks is to get all the links
working in concert. In the next chapter, you’ll learn about navigation strategies, but for now
you need some practice in getting a set of links and icons ready. Here’s your challenge:

 1. Create three Web pages. Include several sections with headings and subheadings so that
each will go beyond a vertical screen viewing area. (In other words, the viewer would
have to scroll down in order to see the bottom sections.)

 2. On each of the Web pages, set up a link to an icon (see “Link icons” in this chapter). It’s
up to you whether you want each page to have a page icon (all diff erent) or a site icon (all
the same).

 3. Create two diff erent CSS3 style sheets (external) and provide alternate styles and access to
them on all the pages (see “Alternate style sheets” in this chapter).

 4. Create a third style sheet that has nothing but IDs that will be used as anchors. Place an
ID in each section of your pages.

 5. Finally, create links on each of the three pages that will link to the other two pages and all
the IDs on each page.

Make this exercise fun for yourself. You can create pages to do anything you want. Th ere’s no
reason to be serious (unless you have a client in mind!). So, don’t worry about the content, but
make it exactly what you’d like.

12_977279-ch07.indd 14612_977279-ch07.indd 146 10/28/10 10:16 PM10/28/10 10:16 PM

SMASHING HTML5

C
H

A
P

T
E

R

8

NAVIGATION
STRATEGIES

8
GETTING AROUND A Web site is generally
known as navigation, and HTML5 recognizes
that fact by introducing a <nav> tag. With
simple sites, navigation is simple. However, bad
or inadequate navigation can invade virtually any
Web site. By the same token, good navigation can
make even the most complex site easy for the
user to fi nd what he wants.

Because this book focuses on HTML5, this
chapter shows how to set up diff erent navigation
systems using specifi c HTML5 elements. How-
ever, before starting on the more specifi c tags that
are to be used, you need to understand some
general Web navigation concepts.

13_977279-ch08.indd 14713_977279-ch08.indd 147 10/28/10 10:16 PM10/28/10 10:16 PM

148

PART II: PAGES, SITES, AND DESIGNS

WEB NAVIGATION CONCEPTS

When thinking about navigation, Web designers consider

 Interface design: Jennifer Tidwell best describes interface design for the Web in her
book Designing Interfaces. Many of the processes and patterns that Tidwell discusses are
covered in this chapter as well, but with nowhere near the depth and scope as Tidwell
does, so if you want more information on this subject, be sure to check out her book.
 Information design: In a far broader topic, information design, Edward Tuft e has shown
how diff erent kinds of information can be presented so that it’s best understood. Of
special interest to Web navigation design is the notion that information is the interface.
In other words, navigation is information arranged so that users can fi nd what they want.

Neither Tidwell’s nor Tuft e’s concepts can be summarized in a tidy defi nition. Th e idea of
interaction is one of responding to another action, such as two people having a discussion.
Th at’s social interaction and it’s something we do all the time — including interaction
mediated by the computer, such as text chats. Th e same concept applies to treating a Web page
as a stand-in for another person. Th e user does something, and the Web page responds from a
fi nite set of choices created by the designer. Th e better the job that the designer does, the more
natural it feels to the user. Trying to create an environment of comfortable interaction is the
goal of good interaction design.

DESIGNER NAVIGATION AND USER NAVIGATION

Navigation design contains an almost limitless number of possibilities, and you want to set up
your navigation so that users easily can get around. Th e fi rst thing to ask yourself is, “Who is
the typical user?” Th en, say to yourself, “It ain’t me, babe.” If you remember the title to that old
Bob Dylan song, you’ll be on the right track. Jennifer Tidwell points out that a maxim in
interface design is, “Know thy users, for they are not you!” Two corollaries can be added to
that maxim:

 Th e better the designer, the more likely the interface will be bad.
 Excellent developers almost always make bad interfaces.

So, if you aspire to be either a great designer or a developer, you’re likely to make a bad
interface unless you pay attention. Here’s why: Great designers focus on how the page looks,
not on the users’ ability to navigate a site. Designers want to display their creativity, and that’s
a good thing. However, when that creativity is such that users can’t navigate from one page to
another, there’s a problem.

One of the worst user interfaces ever devised was on New York’s Museum of Modern Art
(MoMA) site. Th e navigation was based around a stack of cubes with no labels. Users were
supposed to place their mouse over each cube and a label would appear with the name of the

13_977279-ch08.indd 14813_977279-ch08.indd 148 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

149

linked item. In order for the MoMA site to work, some fancy coding was required under
the hood. Th e code would warm the cockles of any developer’s heart, but it led to a disaster
because, like the designer, the developer was thinking about what a talented coder he was and
not about the user experience. Getting the link name to pop up when the mouse moves over it
takes some coding talent that the designer did not posses. So, if you want to make a really
terrible navigation system combine the best designer and the best developer!

Can you be a good designer and/or developer and still create good interfaces? Sure, but you
have to think about it. You must take the view of your typical user into consideration. Who
are your users? Are they children or adults? Is your audience men, women, or both? What
age group? What is the user’s style? Are they businesspeople? If so, what kind of business and
where are they in the organization? Are they managers or are they the people who do the
actual work? Find out who your users are. (You already know who you are.)

If you’re a designer and you’re making a Web site for other Web designers, do you want to
show them what a good designer you are or how they can become better designers? Likewise,
if you’re a developer and you’re making a site for other developers, you defi nitely want to
show them code that will allow them to do some seriously sick programming. Developers
want to see some code. However, designers do not want to see code — they’re more interested
in design tools and techniques, not code. (Of course designers, love CSS3 code!) Work what
your user base wants into your navigation plan.

Th e very best way to fi nd out if your interface is good is to test it with typical users. If you’re
making an educational site for third-graders, you want third-graders to test it. Likewise, if
you’re selling haute couture to wealthy women, you don’t want teenage girls to test your
navigation. It may take a little extra time, but you’ll have a far better site if you test your site
with the type of audience who will use it.

Knowing your users does not mean that you have to have dowdy design or use low-end
technology in your site. What it means is that you need to get to know your users and fi nd out
what they think your site will do for them. You’re not going to change your users. Make your
site for them, not for you. If the site is not for your users, they won’t return.

GLOBAL NAVIGATION

Global navigation in Web pages refers to broad navigation categories that can be placed on
every page in a Web site. Global navigation helps users keep track of where they are in a site,
so no matter where they go, they’ll see a familiar road map.

In mapping out a trip from Santa Barbara, California, to Ocean City, New Jersey, you’ll fi nd
major interstate highways. Th e links go from I-210 > I-15 > I-40 > I-44 > I-70 and fi nally to
I-76. Th ese might be considered the global elements in the 3,000-mile trip from coast to coast.
However, between the major interstate highways, you’ll fi nd smaller connector roads such as
CA-134E that connects US-101 with I-210.

13_977279-ch08.indd 14913_977279-ch08.indd 149 10/28/10 10:16 PM10/28/10 10:16 PM

150

PART II: PAGES, SITES, AND DESIGNS

Similarly in global navigation, you must consider navigation between the major links. For
example, suppose you have a big site with the global navigation broken down into three
categories:

 Animal
 Vegetable
 Mineral

Th at’s certainly global and links would fi t nicely on every page like the following:

Animal | Vegetable | Mineral

However, within each of those general categories, you’re going to need something more
specifi c. For example, suppose a user wants to fi nd a breed of dog — a Greater Swiss Moun-
tain Dog. Th e following path would be a possible one depending on the designer:

 Animal
 Mammal
 Dog
 Breeds
 Greater Swiss Mountain Dog

Each submenu will have lots of choices, so let’s consider what elements are available in
HTML5 to handle these navigation paths from global navigation.

Using lists in global navigation
One way to approach global navigation is to use lists. For example, consider the following
script (ListNavigation.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) that uses global navigation and local navigation.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/* 3C514C,98AB98,D3DFD3,A6A47D,8C1616 */

body {

 color:#3C514C;

 background-color:#D3DFD3;

 font-family:Verdana, Geneva, sans-serif;

13_977279-ch08.indd 15013_977279-ch08.indd 150 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

151

}

h3 {

 color:#8C1616;

 background-color:#A6A47D

}

a {

 color:#8C1616;

 font-size:11px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Global Navigation</title>

</head>

<body>

<nav> Animal | Vegetable | Mineral |

 <h3> Animals</h3>

 Mammals

 Fish

 Birds

 <h3> Mammals</h3>

 Dogs

 Cats

 Other

 <h3> Dogs</h3>

 Golden Retriever

 Red Setter

 German Shepherd

 Greater Swiss Mountain Dog

</nav>

</body>

</html>

Just from looking at the code, you may suspect that this kind of navigation system will quickly
overwhelm the page. Figure 8-1 shows what appears even though the possible choices have
been drastically cut.

13_977279-ch08.indd 15113_977279-ch08.indd 151 10/28/10 10:16 PM10/28/10 10:16 PM

152

PART II: PAGES, SITES, AND DESIGNS

Figure 8-1: List navigation.

With a large enough screen and abbreviated choices such as those used in the example, it may
be possible to have a navigation system using the tags. However, with the list system of
navigation on mobile devices, the best advice is, “Don’t even think about it!” Figure 8-2 shows
how the navigation takes up the entire window in a mobile device.

Clearly, as you can see in Figure 8-2, some other system of navigation is required so that the
topic can be viewed. Th e navigation system takes up the entire page. In fact, it looks more like
a site map, which I discuss later in this chapter, but it can’t be used in global navigation.

13_977279-ch08.indd 15213_977279-ch08.indd 152 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

153

Figure 8-2: List navigation crowds the display area on a mobile device.

Drop-down menus and global navigation
An alternative approach to global navigation using text links is to use elements that can
provide more information in a smaller place. One such element is the <select> tag. Th e
select element displays the fi rst item in a list of options that can be seen only when the user
clicks on the select window that appears. Th e format is made up of a <select> tag along
with an <option> tag nested within the select container. Each option container
contains an object that is visible when the drop-down menu opens. Th e following snippet
shows the basic format:

<select id=”animals” name=”global1”>

 <option value=”horses”>Horses</option>

 <option value=”dogs”>Dogs</option>

 ...

</select>

13_977279-ch08.indd 15313_977279-ch08.indd 153 10/28/10 10:16 PM10/28/10 10:16 PM

154

PART II: PAGES, SITES, AND DESIGNS

Th is can be a handy way to place all of a site’s links into a small area for use as a global menu.
You can nest as many <option> tags inside the <select> container as you want. In order
to see how this can be set up as a global navigation system, the following HTML5 script
(SelectNav.html in this chapter’s folder at www.wiley.com/go/smashinghtml5)
illustrates a simple example.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Drop-Down Menu</title>

</head>

<nav>

 <label for=”animals”>Animals </label>

 <select id=”animals” name=”global1”>

 <option value=”horses”>Horses</option>

 <option value=”dogs”>Dogs</option>

 <option value=”cats”>Cats</option>

 <option value=”rabbits”>Rabbits</option>

 <option value=”raccons”>Raccoons</option>

 </select>

 <label for=”vegetables”>Vegetables </label>

 <select id=”vegetables” name=”global2”>

 <option value=”carrots”>Carrots</option>

 <option value=”squash”>Squash</option>

 <option value=”peas”>Peas</option>

 <option value=”rice”>Rice</option>

 <option value=”potatoes”>Potatoes</option>

 </select>

 <label for=”minerals”>Minerals </label>

 <select id=”minerals” name=”global3”>

 <option value=”tin”>Tin</option>

 <option value=”gold”>Gold</option>

 <option value=”copper”>Copper</option>

 <option value=”iron”>Iron</option>

 <option value=”mercury”>Mercury</option>

 </select>

</nav>

<body>

</body>

</html>

With that many HTML5 tags, you might expect a much larger Web page. However, as Figure
8-3 shows, very little space is taken up.

Th e HTML5 code has no CSS3 to format the text, and as you can see, the default body font is
a serif font and the default menu font is sans-serif. When you use CSS3 for styling, work with
the <select> tag for style instead of the <option> tag. If you style the option element,

13_977279-ch08.indd 15413_977279-ch08.indd 154 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

155

you can style the font family with good results, but other styling is unpredictable between
diff erent browsers.

Figure 8-3: Displaying menu choices with the <select> tag.

If the categories appear a bit shallow, you can add greater detail in an outline format using the
<optgroup> tag. With each tag, a new subgroup is added. You can nest them in several
levels if you wish. Th e following listing (Optgroup.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5) shows how the optgroup element is used in conjunc-
tion with the <select> and <option> tags.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

select {

 background-color:#F2EFBD;

 color:#657BA6;

 font-family: Verdana, Geneva, sans-serif;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Stratified Drop-Down Menu</title>

</head>

<nav>

 <label for=”animals”>Animals</label>

 <select id=”animals” name=”global1”>

 <optgroup label=”Dogs”>

 <option value=”hounds”>Hounds</option>

 <option value=”work”>Work</option>

 <option value=”terrier”>Terriers</option>

 </optgroup>

 <optgroup label=”Horses”>

 <option value=”race”>Race</option>

 <option value=”work”>Work</option>

 <option value=”show”>Show</option>

 </optgroup>

 <optgroup label=”Rabbits”>

 <option value=”pets”>Pets</option>

13_977279-ch08.indd 15513_977279-ch08.indd 155 10/28/10 10:16 PM10/28/10 10:16 PM

156

PART II: PAGES, SITES, AND DESIGNS

 <option value=”pests”>Pests</option>

 <option value=”easter”>Easter</option>

 </optgroup>

 </select>

</nav>

<body>

</body>

</html>

For some reason, diff erent browsers have diff erent displays of the category headings generated
by the optgroup element. Figure 8-4 shows how the same menu looks on diff erent browsers.

Safari Firefox Chrome Opera Internet Explorer 9

Figure 8-4: Using the <optgroup> tag.

Of the four browsers tested, Firefox stands out as unique. Th e optgroup headings are
italicized and the color combinations are preserved when the menu opens. Th e other browsers
display the correct color scheme only when the menu is closed. (Will this give designers
another challenge? Yes!)

USING JAVASCRIPT TO CALL A LINKED PAGE

Any global navigation system needs a way to call diff erent Web pages and the drop-down
menus need a way to call a selected item. Up to this point, the <a> tag has done a good job
of taking care of links, but you probably noticed the drop-down menus have no links. Th e
<select> tag needs to work with the form element (which is covered in detail in Chapter 14)
and a JavaScript function. (Chapter 12 has more details on getting started with and using
JavaScript.) On the HTML5 side, the following snippet shows the essentials:

<form name=”menuNow”>

 <label for=”animals”>Animals</label>

 <select id=”animals” name=”global1” onChange=”optionMenu()”>

 <option value=”animals/horses.html”>Horses</option>

 <option value=”animals/dogs.html”>Dogs</option>

13_977279-ch08.indd 15613_977279-ch08.indd 156 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

157

Th e names of the form and select elements are important because JavaScript uses the
names as a path to the selected option. (If you’re familiar with arrays, the options are all
treated as array elements.)

Th e JavaScript is placed in a separate fi le because if you’re going to be using it with a global
navigation system, you don’t want to have to rewrite it with every page. Th e following
JavaScript should be saved in a text fi le named globMenu.js.

function optionMenu()

 {

 var choice = document.menuNow.global1.selectedIndex;

 var urlNow = document.menuNow.global1.options[choice].value;

 window.location.href = urlNow;

 }

What that refl ects is the HTML5 Document Object Model (DOM). Th e document is the
Web page, menuNow is the name of the form element, global1 is the name of the select
element, and selectedIndex is the selected option. Because the selectedIndex is a
number between 0 and the number of options in the <select> tag container, it can be used
to choose the array element (option), which is selected. Whatever value is stored in the option
is passed to the variable named urlNow. For example, the following line has a relative URL of
animals/dogs.html:

<option value=”animals/dogs.html”>Dogs</option>

Th e fi nal line in the JavaScript, window.location.href = urlNow, has the same
function as the following HTML5 line:

In this context, a diff erent JavaScript function would have to be written for each <select>
tag because the function uses a specifi c reference to that tag (global1). More sophisticated
JavaScript could be developed to use variables for the diff erent element names, but the
function employed here is relatively short and easier to implement.

To test this out yourself, create simple Web pages with the following names:

 horses.html

 dogs.html

 cats.html

 rabbits.html

 raccoons.html

Th e Web pages can just have names on them — nothing fancy. Th en, in the same directory,
enter the following HTML5 code (SelectNavJS.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5).

13_977279-ch08.indd 15713_977279-ch08.indd 157 10/28/10 10:16 PM10/28/10 10:16 PM

158

PART II: PAGES, SITES, AND DESIGNS

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript” src=”globMenu.js” />

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Drop-Down Menu</title>

</head>

<body>

<article>

 <header>

 <nav>

 <form name=”menuNow”>

 <label for=”animals”>Animals</label>

 <select id=”animals” name=”global1” onChange=”optionMenu()”>

 <option value=”animals/horses.html”>Horses</option>

 <option value=”animals/dogs.html”>Dogs</option>

 <option value=”animals/cats.html”>Cats</option>

 <option value=”animals/rabbits.html”>Rabbits</option>

 <option value=”animals/raccoons.html”>Raccoons</option>

 </select>

 <label for=”vegetables”>Vegetables</label>

 <select id=”vegetables” name=”global2”>

 <option value=”carrots”>Carrots</option>

 <option value=”squash”>Squash</option>

 <option value=”peas”>Peas</option>

 <option value=”rice”>Rice</option>

 <option value=”potatoes”>Potatoes</option>

 </select>

 <label for=”minerals”>Minerals</label>

 <select id=”minerals” name=”global3”>

 <option value=”tin”>Tin</option>

 <option value=”gold”>Gold</option>

 <option value=”copper”>Copper</option>

 <option value=”iron”>Iron</option>

 <option value=”mercury”>Mercury</option>

 </select>

 </form>

 </nav>

 </header>

</article>

</body>

</html>

Test the page using with Google Chrome or Opera — at the time of this writing, those were
the only two browsers that had implemented this aspect of HTML5.

For the time being, you won’t be doing anything with the second two drop-down menus, but
at the end of the chapter you’ll be given an opportunity to complete them with a few additions
to the JavaScript fi le.

13_977279-ch08.indd 15813_977279-ch08.indd 158 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

159

CREATING CONSISTENCY

One of the most important features of a good navigation system is consistency. Th e user has
to be able to know where to fi nd the navigation system no matter where she is in the site. If
one page has the navigation at the top and the next page does not, in the same site, users may
not know where they are relative to where they started or where they’re going. One of the
most misquoted pieces of wisdom about consistency can be found in Ralph Waldo Emerson’s
essay, “Self-Reliance.” By quoting only a part of Emerson’s thought, many people are misled to
believe that consistency is wicked. Th at famous misquote is “. . . consistency is the hobgoblin
of little minds. . . .” What Emerson fully wrote is, “A foolish consistency is the hobgoblin of
little minds, adored by little statesmen and philosophers and divines. With consistency a great
soul has simply nothing to do.” Th e reason that the quote is important is that Emerson never
said that consistency is a bad thing. Foolish consistency is the problem — not consistency.
When it comes to navigation consistency is essential, and by all means avoid foolish consist-
ency. In other words, don’t put a bad navigation system together and then repeat it because
it’s consistent. As far as a great soul having nothing to do, that may be a good thing. With
consistency, you don’t have to reinvent the navigation system with every new page. A great
soul would have diff erent consistencies for diff erent audiences and types of sites; but within
the site, the consistency is constant.

In her work on grouping elements, Jennifer Tidwell talks about using color-coded sections to
assist users in keeping track of where they are. Using colors, you can add clarity to global
navigation. Th e three global categories that have been selected for navigation — animal,
vegetable, and mineral — can be a good example of multiple-consistency (each menu is
consistent with the other menus). For the animal category, you might use brown tones; for the
vegetable category, green tones; and for the mineral category, nickel tones. Figure 8-5 shows
an example where the global navigation is in place and the diff erent pages have a color scheme
that diff erentiates them from one another and at the same time places each in the appropriate
grouping.

Figure 8-5: Global navigation and color grouping.

13_977279-ch08.indd 15913_977279-ch08.indd 159 10/28/10 10:16 PM10/28/10 10:16 PM

160

PART II: PAGES, SITES, AND DESIGNS

In Figure 8-5 note that the global navigation incorporates the color palette of the respective
categories. It would be foolish consistency to insist that the color schemes be the same.
However, the global navigation is consistent and each page is consistent with the other pages
in the same category.

VERTICAL AND HORIZONTAL NAVIGATION

Besides using the horizontal plane along the top and bottom of a page for navigation, inter-
face designers oft en reserve part of the side of a Web page for navigation. Figure 8-6 shows
the general design for this approach.

Global links

Topic links
Content area

Figure 8-6: Vertical and horizontal navigation.

When using horizontal and vertical link planes, the user can see all the global links and the
links for the current topic simultaneously. More of the viewing area is taken up by the
navigation system, but with the larger monitors becoming standard on computers, this isn’t
that much of a problem. With electronic tablets like the iPad that have smaller screens, it cuts
into the usable viewing area, but not a great deal. However, on mobile phones, especially
when viewed vertically, the content space is severely reduced.

To create an area for a vertical link area with HTML5, you just need to set up a two-column
page below the area generally reserved for the logo and global navigation bar.

APPLYING CSS3 PSEUDO-CLASSES

When dealing with more complex navigation systems, you may want to consider CSS3
pseudo-classes. Th ese are class defi nitions added to an element. For navigation, the following
four pseudo-classes are important because they’re associated with the <a> tag:

 link

 visited

 hover

 active

13_977279-ch08.indd 16013_977279-ch08.indd 160 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

161

Each has the same formatting as other elements, but they’re declared with the element name
separated by a colon. For example, the following code snippet shows how the hover pseudo-
class is styled:

a:hover

{

 color:#A69055;

}

When that code is added to a style sheet, whenever the mouse hovers over the link (<a> tag),
it will change the color to the hover defi nition. Of course the colors defi ned for the <a> tag
have to be diff erent from the hover, but you can add subtle or blatant signals to the user that
the text is a link. Likewise, you can change other features using the pseudo-classes. Th e
following examples will give you an idea:

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

a {

 font-family:Verdana, Geneva, sans-serif;

 font-size:11px;

}

a:link {

 color:#cc0000;

 text-decoration:none;

}

a:hover {

 font-size:14px;

}

a:visited {

 color:#00cc00;

 text-decoration:none;

}

a:active {

 background-color:#ffff00;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Pseudo Classes in Links</title>

</head>

<body>

Click here

</body>

</html>

When using pseudo-classes for navigation, you want to keep the user in mind. Adding strange
eff ects with pseudo-classes can be fun, but you need to ask whether the eff ects will assist or
confuse users. If you can add an eff ect that users associate with making choices, then that

13_977279-ch08.indd 16113_977279-ch08.indd 161 10/28/10 10:16 PM10/28/10 10:16 PM

162

PART II: PAGES, SITES, AND DESIGNS

eff ect is likely to be helpful. For example, making the font larger when the mouse is over it was
an idea taken from the Macintosh dock where icons enlarge when the mouse passes over
them. However, you might want to ask whether turning the link another color and changing
the text decoration is a good idea for a visited class. Does it really help the user? Also, try it on
diff erent browsers and see if the results are consistent. Remember that just because you can
change a link’s appearance doesn’t mean you have to.

UNDERSTANDING THE HTML5 MECHANICS OF VERTICAL NAVIGATION

Th e most important part of creating a vertical section to use for navigation in your site is
sectioning a portion of the page where you can place the links. Th is example uses the
<aside> tag to set off the vertical navigation. However, because it’s navigation, the <nav>
tag is used as well so that any JavaScript references to the Document Object Model (DOM)
can recognize the section as one used for navigation. Th e following listing (VertHor.html
in this chapter’s folder at www.wiley.com/go/smashinghtml5) shows how.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*141919,2D2B21,A69055,C9B086,FFB88C --Japanese Art*/

body {

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 color:#2D2B21;

 background-color:#C9B086;

 font-size:12px;

}

.content {

 display:table-cell;

 width:600px;

 padding:15px;

}

aside {

 display:table-cell;

 width:100px;

 background-color:#FFB88C;

 padding-right:5px;

}

h1 {

 font-family:Papyrus;

 color:#2D2B21;

 text-align:center;

}

h2 {

 color:#A69055;

}

a {

 font-family:Verdana, Geneva, sans-serif;

 font-size:10px;

 text-decoration:none;

13_977279-ch08.indd 16213_977279-ch08.indd 162 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

163

 color:#141919;

}

a:hover {

 color:#A69055;

}

.centerNav {

 text-align:center;

}

.indentNav {

 margin-left:15px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Web Services Galore</title>

</head>

<body>

<nav class=”centerNav”> Graphic Design | Development | Interface Design |

Site Architecture</nav>

<header>

 <h1> Honorable Web Services</h1>

</header>

<aside>

 <nav class=”indentNav”> Overview

 Navigation

 RSS Subscription

 Iframes

 CSS3 Navigation Styles

 Audience Identification

 Focus Group Testing

 Adding Mobile Options

 </nav>

</aside>

<section class=”content”>

 <header>

 <h2>Interface Design</h2>

 </header>

 Honorable Web Services has full interface design services. You may choose from the

following list, selecting just the services you want.

 Simple text link interfaces

13_977279-ch08.indd 16313_977279-ch08.indd 163 10/28/10 10:16 PM10/28/10 10:16 PM

164

PART II: PAGES, SITES, AND DESIGNS

 Drop-down menus

 Button links

 Datalist links

 Iframe navigation

 Navigation styling

 Select one of the links on the left to see more information. Also be sure to check

out our services in graphic design, development, and architecture in the menu along

the top of the page.</section>

</body>

</html>

When you run this program, you can see that although it provides a wide variety of user
choices, it’s clear. Th e global navigation along the top provides all the main choices. Th en on
each page within a global collection, users are able to select choices specifi c to the selected
topic. Figure 8-7 shows what you can expect to see when you test the program in an HTML5
browser on a computer screen.

Figure 8-7: Providing horizontal and vertical navigation choices.

13_977279-ch08.indd 16413_977279-ch08.indd 164 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

165

When you look at the same page on a mobile device, the space taken up on the left where the
vertical menu has been placed pushes the content downward. Users have to scroll more. Also
notice that the horizontal menu along the top is pushed in so that it now takes up two roles.
Figure 8-8 shows the results on a mobile browser.

For mobile devices, two-tier horizontal navigation bars — that do not push content below the
viewing area — may better serve you. As you can see in comparing Figures 8-7 and 8-8, the
horizontal navigation bar breaks into two tiers in the mobile device without taking up much
room. However, the vertical navigation bar pushes into the content area and forces more
content (including the navigation bar itself) below the viewing area.

Figure 8-8: Vertical and horizontal menus on a mobile device.

USING GRAPHIC ICONS IN NAVIGATION

In addition to using text to link to other pages, you also can use graphic fi les — JPEG, PNG,
or GIF. Using graphic images for linking can help users quickly fi nd what they’re looking for.
For example, a right or left arrow quickly can be identifi ed as linking to the next or last page.

13_977279-ch08.indd 16513_977279-ch08.indd 165 10/28/10 10:16 PM10/28/10 10:16 PM

166

PART II: PAGES, SITES, AND DESIGNS

Such images transcend language diff erences and help a wider audience base. Likewise,
younger children are more likely to understand certain symbols than they are certain words.

Th e format for using images for identifying links is the same as it is for text. However, instead
of placing text in an <a> container, you use an image reference. Th e following code snippet
shows the basic format:

Users see an arrow icon and click it instead of a text message. Oft en, designers will use both
text and an image to send users to another page, as shown in the next snippet:

Next Page

Also, some designers create icons with text embedded in the symbol, as shown in Figure 8-9.

Figure 8-9: Link image with text.

One advantage designers fi nd in using graphic text is that they can use any font they want
without fear that the user won’t have that particular font in his system. It also helps to keep
users from getting lost because graphic symbols with text are easy for the user to spot and
understand.

SINGLE-PAGE WEB SITES WITH IFRAMES

Th ink of a Web site as a loading zone. Whenever, you click a link, you load another page —
graphics and all. Sometimes, all you want to do is load just one thing. Th at saves the user from
having to wait for all the other stuff to load or reload. If you know a bit of JavaScript and Ajax,
you can do that, but what about with just HTML5? Th e answer is yes!

Th is section examines how to link to graphics and change the graphic in an iframe. When
creating applications designed specifi cally for mobile devices, you want to use as little
bandwidth as possible. By changing just one thing on a Web page, the mobile device just has
to load or reload a single item, so the response time is less.

LINKING TO A GRAPHIC

Generally, when we think of adding graphics to a page, we think of the tag. Aft er
all, that tag is what we use to place graphics on a Web page. However, you also can use the
<a href> tag to load a graphic. Instead of assigning a Web page path to the href assignment,
assign a graphic. For example, the following line of code loads a blank page with a graphic:

My Graphic

13_977279-ch08.indd 16613_977279-ch08.indd 166 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

167

When users click on the link text, the current page disappears, and the graphic appears in the
upper-left corner of a new page.

Placing a graphic in an iframe element works just like placing a Web page in an iframe (see
Chapter 7). Th e link is to the target within the iframe and instead another Web page. Th at
means that the current Web page stays in place, and the graphic opens in the iframe.

Th e following script uses graphic icons for the navigation. However, instead of navigating to
another page, the navigation places a diff erent graphic in the main viewing area — an iframe.
By making miniature versions of the graphic to be displayed (called thumbnails), users see
their selection fi rst in the navigation design. Th at is, the thumbnails guide users to the
full-size view.

MAKING AND USING THUMBNAIL ICONS

To prepare for the application, fi rst create full-size versions and thumbnails of all the graphics.
Th e full-size graphics and the thumbnails should all be the same size. In the following
example, the full-size graphics are set to 250 x 312 pixels, and the thumbnails are set to 63 x 79
pixels. Th umbnails need to be small enough to serve as navigation buttons but large enough
for users to get an idea of what the larger graphics will look like. Notice that the iframe
dimensions are the same as the full-size graphics. Once the graphics are prepared, they’re
placed in separate directories for the thumbnails and full-size graphics. (Th e names, thumbs
and portraits are used in the following example [IFrameNavigation.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5].)

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*F2CF8D,401E01,F2AA6B,8C3503,F28D52*/

body {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#F2CF8D;

 color:#401E01;

 font-size:11px;

}

h1 {

 font-family:”Harrington”, Arial, sans-serif;

 font-size:36px;

 color:#8C3503;

 margin-left:10px;

}

h4 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#8C3503;

 margin-left:86px;

}

aside {

13_977279-ch08.indd 16713_977279-ch08.indd 167 10/28/10 10:16 PM10/28/10 10:16 PM

168

PART II: PAGES, SITES, AND DESIGNS

 margin-left:10px;

}

h5 {

 margin-right:40px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Iframe Navigation</title>

</head>

<body>

<!DOCTYPE HTML>

<html>

<body>

<article>

 <header>

 <h1>Portrait Studio</h1>

 </header>

 <aside>

 <iframe name=”fullSize” width=”250”, height=”312” seamless src=”portraits/man.

jpg”></iframe>

 </aside>

 <section>

 <nav> <img src=”thumbs/thumbMan.

jpg”> <img src=”thumbs/thumb-

Woman.png”> <img src=”thumbs/

thumbBoy.jpg”> <img src=”thumbs/

thumbGirl.png”>

 <h4>Select portrait</h4>

 </nav>

 </section>

 <section>

 <h5> All of the creations are by a little-known artist, Mo Digli Anni,

from Spunky Puddle, Ohio. By clicking on the thumbnail buttons, you can send the

image to the larger viewing window. </h5>

 </section>

</article>

</body>

</html>

When you test the example, you’ll see the man’s portrait and then the four thumbnails of the
man, woman, boy, and girl beneath the image inside the iframe. Figure 8-10 shows the page
on a computer monitor screen.

As you can see in Figure 8-10, users are instructed to click on the thumbnail buttons to view
the diff erent “portraits.” Th e interface is fairly intuitive and users know what to expect when
they click on one of the graphic buttons. Th e best part is that only the graphic for the selected
portrait is loaded into the iframe instead of loading a new page with all the graphic buttons
and other page materials.

13_977279-ch08.indd 16813_977279-ch08.indd 168 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

169

Figure 8-10: Images used for navigation.

USING IFRAMES ON MOBILE DEVICES

In testing the application on a mobile device, the results depended on the HTML5 mobile
browser in use. Figure 8-11 shows the Opera Mini browser on the left ; as you can see, the text
beneath the images is formatted to be readable. However, at the time of testing, the Opera
Mini seemed to reload the entire page as each button was selected.

Th e image on the right in Figure 8-11 is from the Safari mobile browser. Th e text at the
bottom didn’t follow the CSS3 formatting and ran off to the right side of the screen. However,
the images in the iframe worked perfectly, and as each thumbnail button was clicked, the
full-size image loaded without reloading the entire page.

13_977279-ch08.indd 16913_977279-ch08.indd 169 10/28/10 10:16 PM10/28/10 10:16 PM

170

PART II: PAGES, SITES, AND DESIGNS

Figure 8-11: Different mobile browsers handle text differently.

Several diff erent kinds of businesses and social networking sites use similar applications. For
example, professional photographers use thumbnails of their photographs that users click to
view the full-size images. Likewise, social networking sites can use similar pages to display
and load pictures of each users’ friends without having to leave the page.

Because mobile devices have such small display areas, using iframes in navigation designs is
quite helpful. Trying to click small text links can be diffi cult, but as you can see in both mobile
browsers in Figure 8-11, the graphic buttons are easy to see and tap for loading the full-size
image or other materials into the iframe space.

TAKE THE WHEEL

Th is chapter has two diff erent challenges:

 JavaScript challenge: Th e fi rst challenge is to complete the JavaScript linkage in the
section “Using JavaScript to Call a Linked Page.” Th e HTML5 page named Select
NavJS.html has three diff erent <select> tags — one each for animals, vegetables,
and minerals. Only the animal <select> tag contains a JavaScript event function. By
adding two more functions to the JavaScript fi le (globMenu.js) that are similar to the
fi rst function but with a diff erent name, you should be able to create functions for the
<select> tags for the vegetable and mineral menus. (It’s basically a matter of copying

13_977279-ch08.indd 17013_977279-ch08.indd 170 10/28/10 10:16 PM10/28/10 10:16 PM

CHAPTER 8: NAVIGATION STRATEGIES

171

and pasting the original function and pasting it twice and then just changing the function
name.) Th en, just add the OnChange attribute to the two other <select> tags. Th e
second two <select> tags have names of global2 and global3 that you can add to
the JavaScript functions — notice where global1 is located in the original JavaScript.
(Don’t worry if you can’t do this exercise! Without knowing JavaScript, it can be tricky.)
 Iframe challenge: You can put as many iframe elements in a page as you want. Suppose
you want to compare diff erent sets of objects — cars, clothes, or mobile devices. For
example, let’s say that you were building a site to compare diff erent models of Fords and
Toyotas. Th e Fords appear in the left iframe and the Toyotas in the right. Below each
iframe, are links that bring up diff erent types of cars — economy, sedans, hybrid, vans,
trucks, and SUVs. Each brand of automobile has links beneath it so that you can bring up
comparable ones — such as two hybrids. See if you can create such a site — using content
of your choice. (By the way, Edward Tuft e, the information design authority, strongly
urges comparative information to be presented so that users can view it in the same
eyespan — what you can see in a single view.)

Both of these challenges use the materials in this chapter, and they can be applied to many
diff erent applications.

13_977279-ch08.indd 17113_977279-ch08.indd 171 10/28/10 10:16 PM10/28/10 10:16 PM

13_977279-ch08.indd 17213_977279-ch08.indd 172 10/28/10 10:16 PM10/28/10 10:16 PM

PA
R

T

III

III MEDIA IN
HTML5

Chapter 9: Images

Chapter 10: Sound

Chapter 11: Video

14_977279-pp03.indd 17314_977279-pp03.indd 173 10/28/10 10:15 PM10/28/10 10:15 PM

14_977279-pp03.indd 17414_977279-pp03.indd 174 10/28/10 10:15 PM10/28/10 10:15 PM

SMASHING HTML5

C
H

A
P

T
E

R

9

IMAGES9
ONE OF THE most exciting features of HTML5
is the ability to use Scalable Vector Graphics
(.svg) fi les. Artists who use programs like
Adobe Illustrator that create vector graphics can
save their fi les as .svg fi les and put them right
into their Web pages. Because .svg fi les contain
vector graphics, images can be made larger or
smaller without losing their resolution as
bitmapped graphics do. However, you still can
use your favorite bitmapped graphics in .jpg,
.gif, or .png format for static display.

Th is chapter seeks to clarify using graphics on the
Web in terms of the main types of images that are

likely to be used, how to place them where you
want on your Web page, and how to optimize
them for Web use. Much of this chapter, out of
necessity, must use graphic applications that
you may not have. Th ese applications include
Adobe Illustrator, Adobe Photoshop, and Adobe
Fireworks. However, you can substitute other
applications you may own, such as Microsoft
Paint or Corel Draw. Finally, for drawn graphics
and photographs, you’re going to have to rely on
your own skills, both in terms of artistic abilities
and ability to use graphic drawing programs. (In
a pinch, you can download public-domain image
fi les from the Web in the fi le type you need.)

15_977279-ch09.indd 17515_977279-ch09.indd 175 10/28/10 10:15 PM10/28/10 10:15 PM

176

PART III: MEDIA IN HTML5

THE BASICS OF HTML5 IMAGE FILES

A fundamental truth about graphic fi les on the Web is that they have weight. Weight, in the
context of an HTML5 page, refers to fi le size measured in terms of the number of pixels stored
in an image. Generally speaking, larger and higher-quality images have more pixels. Th e
consequence of size for the Web is that heavier graphics take longer to move over the Internet
and load into an HTML page. If you’ve ever stared at a Web page waiting for a big graphic to
load, you know that it can be frustrating and cause your mouse button fi nger to start twitch-
ing, wanting to hit the Back button on the browser.

By understanding something about the diff erent fi le types and how to optimize their size, you
can better adjust the fi les and get the most out of images on your page — both in terms of how
they look and how long they take to load.

FORMATS AND PIXELS MATTER

What matters most on a screen is how an image looks. Th e appearance of an image depends
to a great extent on the monitor’s resolution. Th e higher the resolution of a monitor or mobile
device’s display, the better the image is going to look. At the same time, a graphic with more
information is going to look better than a graphic with less information. Th at also means that
a graphic that takes up more screen space is going to require more information than a smaller
image and take longer to load.

To better see what needs to be understood to create good-looking graphics that don’t take up
much bandwidth and load quickly requires a closer look at the diff erent types of Web graphic
formats. Th e next four subsections provide a brief overview of each format.

Scalable Vector Graphics (SVG)
Vector graphics are drawings created using mathematical formulas that specify points and
then draw lines between the points. Bitmapped graphics place color “bits” at diff erent points.
For example, if you draw a straight line in vector graphics, the computer takes Point A and
Point B and draws a line between them. Th e same line drawn with bitmapped graphics
specifi es all the points to place bits to make up the line. (Th at explanation oversimplifi es the
process but provides a rough idea of the diff erence between vector and bitmapped graphics.)

Because vector graphics use formulas, when a graphic is changed, it doesn’t become pixilated
as bitmapped graphics do. Imagine a line 100 pixels long that you want to change to 400 pixels
long. With vector graphics, all that has to be changed is the distance between two points. With
bitmapped graphics, you have to add an additional 300 pixels. If you try to change a bit-
mapped graphic line in a Web page by changing its width from 100 pixels long to 400 pixels
long, it stretches out the original 100 pixels to cover a width of 400 pixels, and that’s why it
looks pixilated.

Another important new feature of SVG graphics is the ability to change diff erent aspects of
the image dynamically. Using JavaScript, you can take an .svg fi le displayed on a Web page
and dynamically change it — not by switching fi gures but by actually changing a parameter.

15_977279-ch09.indd 17615_977279-ch09.indd 176 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

177

Fortunately, some recently provided tools help create separate regions to be changed and
generate the code needed to make the changes (see the section, “Application for Dynamic
SVG fi les from Adobe Illustrator CS5 fi les” later in this chapter.)

Graphic Information Format (GIF)
Th e good thing about GIF fi les is that they can produce some of the smallest fi les and they
support background transparency. In large part, that’s because they can handle only 256 colors
and obtain transparency by turning off one of the colors. Th e set of colors known as “Web safe”
are based on the fact that GIF fi les can handle only 256 colors. Th is format is extremely
limiting for designers who want a larger color palette, and the format is not recommended for
digital photographs other than black-and-white ones with limited gray tones.

One format for GIF fi les is an animated one. If an animated GIF is loaded, it begins playing —
sequentially fl ipping through the images — displaying animated actions. Because the ani-
mated GIF is contained in a single fi le, it can be loaded directly into an HTML5 page using
the tag. Typical animated GIF fi les are relatively short. Otherwise, the pack of fi les
within the animated GIF fi le is too large for quick loading.

Besides the limited number of colors available for GIF creations, CompuServe and Unisys
held a copyright on the format and set up a licensing requirement. Rather than worry about
getting sued, most developers simply opted for other graphic formats.

Joint Photographic Experts Group (JPEG)
Most digital photographs on the Web use the JPEG format. Likewise, any more complex
graphics with several colors and shades prefer JPEG for preserving the look intended by the
photographer or artist. As a result, most of the images on Web sites that display services or
products are in the JPEG format. JPEG fi les tend to be larger than GIFs, but with the
increased bandwidth on the Internet, the size is not as problematic as it once was.

Th e JPEG format doesn’t support transparency like GIF fi les, and it doesn’t have an animated
format. Further, JPEG fi les use what is called lossy compression, which can reduce the image
fi delity. Compared to lossless compression that supports an exact replication of the original
data, lossy compression is considered more of an approximation of the original data that
makes up the image.

Th e standard JPEG format is open source and requires no licensing permission. Interestingly,
some patented features for JPEG can require licensing, but these features have not been
included in most JPEG fi les so developers and designers can use JPEG format freely.

Portable Network Graphics (PNG)
In part, the PNG format was developed as an alternative to the patent license requirements in
the GIF format. However, the development was also motivated by the desire to have more
than 256 colors and a lossless display. Th e PNG format also supports transparency and an
alpha channel.

15_977279-ch09.indd 17715_977279-ch09.indd 177 10/28/10 10:15 PM10/28/10 10:15 PM

178

PART III: MEDIA IN HTML5

At one time, not all browsers supported the PNG format and some developers didn’t use it,
despite its many advantages. However those days are long gone, and any browser that sup-
ports HTML5 will support PNG. As a result, any HTML5 developer or designer can use PNG
fi les without fear of the browser not being able to load them.

PRESERVING LAYERS IN WEB GRAPHICS

One of the big advantages of PNG fi les is that they preserve layers. Designers who use tools
like Adobe Illustrator, Adobe Fireworks, and Adobe Photoshop organize their graphics in
layers. A simple application of a layer is labeling a photograph. For example, suppose you
have a photograph that you label and save as a JPEG fi le, as shown in Figure 9-1.

Figure 9-1: A JPEG image with embedded label.

Aft er you fi nish the graphic and save it as a JPEG fi le, you realize that it’s mislabeled. It’s a
morning glory, not a daisy. Because the fi le is saved in JPG format, the layer with the Daisy
label is not preserved. When you edit the fi le, you’ll fi nd that the label is fused with the rest of
the graphic.

With a PNG fi le, not only are the layers preserved, but if you use a transparent background, it
picks up the background of your Web page, and the transparency is preserved. Figure 9-2
shows that the simple swapping of layers fi xes the label problem and provides a transparent
background.

15_977279-ch09.indd 17815_977279-ch09.indd 178 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

179

With multilayered graphics, preserving the fi nal Web image in PNG format will save editing
time. In this particular example, in a JPEG fi le, erasing the wrong label and replacing it with
the correct one in a space below the main image is not too diffi cult. However, with more
complex graphics that include several layers, rather than having to redo the entire graphic,
designers can just edit the layer.

Figure 9-2: PNG fi le with preserved layer and transparent background (shown in a graphic editor).

Th e only unfortunate problem in preserving layers in a PNG fi le is that it increases the size of
the fi le. Th e JPEG fi le is only 33 kilobytes (KB) and the PNG is 225 KB. However, in the next
section, you’ll see how to reduce the size of a fi le so that you may be able to maintain layers
and still have a fi le that loads quickly.

WORKING WITH GRAPHIC FILE SIZES

Given the diff erent kinds of Web graphic fi les that can be loaded, the temptation is to use the
type that has the smallest fi le size. Indeed, in some cases, that is the way to go. However, when
your site needs the highest quality, the trick is to see how to get the highest quality with the
lowest bandwidth use — the format with the smallest settings. Unless you’re using SVG
format, remember the key Web bitmapped graphic dictum:

Do not ever change a bitmapped graphic’s dimensions with HTML5 attributes within an
element.

15_977279-ch09.indd 17915_977279-ch09.indd 179 10/28/10 10:15 PM10/28/10 10:15 PM

180

PART III: MEDIA IN HTML5

You can change a graphic’s dimensions all you want with a graphics application like Adobe
Photoshop or Microsoft Paint. But when you change the size of a bitmapped graphic using
HTML5 attributes like width and height, your results, especially when you attempt to enlarge
an object, tend to either pixilate or crush the object. Figure 9-3 shows three GIF images, and
you can see that the enlarged graphic has jaggy edges and the pixels are beginning to appear
as little boxes.

Figure 9-3: An enlarged GIF using HTML5 attributes.

Th e middle fi gure is the original one with original dimensions. Had a graphic tool been used
to enlarge the image, it would appear un-aliased (without jagged edges). You can see the same
thing happen with digital photographs, as shown in Figure 9-4.

Th e original image is on the far left . Th e enlarged image shows jagged edges and the image is
beginning to blur. Th e image on the far right is so small, it’s diffi cult to see much detail and
determine the extent to which it appears crushed (pixels pushed together to distort). Use the
following program (ImageDistortion.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) to test some of your own graphics.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Web graphic distortion</title>

</head>

<body>

<!-- Original -->

<!-- Enlarged 400% -->

<!-- Reduced 50% -->

</body>

</html>

15_977279-ch09.indd 18015_977279-ch09.indd 180 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

181

Figure 9-4: Enlarged JPG digital photo using HTML5 attributes to enlarge and shrink.

To fi nd the width and height of a graphic, use the mouse pointer to select the image fi le and
then

 In Windows, right-click it and select Properties → Details and read the Width and
Height values. You can fi nd the dimensions of a graphic fi le by moving the mouse over
the fi le.

In Mac OS X, Ctrl+click the image fi le and select Get Info. In the More Info section view
the Dimensions showing Width x Height.

Most Web tools, such as Dreamweaver, provide code hinting at the image dimensions.
Likewise, virtually all graphic-editing programs show the image’s dimensions when the fi le
is loaded.

15_977279-ch09.indd 18115_977279-ch09.indd 181 10/28/10 10:15 PM10/28/10 10:15 PM

182

PART III: MEDIA IN HTML5

USING GRAPHIC APPLICATIONS TO MODIFY IMAGE FILE SIZE

When discussing an image’s size, two diff erent meanings are used:

Th e size of the fi le in terms of its dimensions
Th e number of bytes it takes up

Usually, in this discussion the context should make it clear which sense of size is being used,
but for the most part, the term size refers to the number of bytes in a fi le, and dimensions
refers to the size of the image on the screen.

Adobe Photoshop is a commonly used application for making adjustments to graphic size and
quality. Further, Photoshop provides visual information that designers and developers can use
to decide how much byte reduction the graphic can take before its appearance suff ers. Figures
9-5 and 9-9 show this process. (Figures 9-6 through 9-8 show information about the fi les and
how they appear on a Web page.)

Figure 9-5: Image and size information display in four-way view.

15_977279-ch09.indd 18215_977279-ch09.indd 182 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

183

Changing JPEG fi le sizes
Beginning with a very large TIFF fi le that must be converted to either a PNG, JPEG, or GIF
fi le, the fi le-editing process begins with three levels of quality — maximum, medium, and low.
Figure 9-5 shows the original TIFF fi le and three JPEG renderings.

Th e original TIFF image in the top-left corner is over a half a megabyte, and it needs to be
slimmed down signifi cantly and converted into a format that HTML5 browsers can read. Th e
top-right fi gure in JPEG format is set to the maximum quality — 100. On the bottom row, the
bottom-left fi gure is low quality set to 2, and the bottom-right fi gure is considered medium
quality, set at 60. Th e smallest Web fi le is only 8.6K and the largest is 127.1K. A quick glance
shows very little diff erence with this particular image.

To get a more defi nitive idea, the two extremes of Web quality settings are saved to disk. Th en
(on a Macintosh) each is viewed for the size settings as shown in Figure 9-6.

Figure 9-6: Checking image fi le properties.

In looking at Figure 9-6, you can see that both have identical dimensions (432 x 343), but one
has 12 KB of information and the other has 139 KB. Th e reason for beginning adjustments by
comparing the best and the worst quality as implied in the fi le size is that visual diff erences
are more apparent. Perception studies have found that examining minute diff erences tends to
gloss over those diff erences, whereas extreme diff erences are clear, so when you begin making
adjustments, it’s better to start with the big diff erences. Figure 9-7 shows the two fi les on a
Web page.

15_977279-ch09.indd 18315_977279-ch09.indd 183 10/28/10 10:15 PM10/28/10 10:15 PM

184

PART III: MEDIA IN HTML5

Figure 9-7: High-quality and low-quality JPEG fi les on a Web page.

As you can see, the lowest-quality image (left) and highest-quality image (right) are very
similar. In the context of other materials on a Web page, some quality diff erences may appear.
However, images that have the characteristics of those two shown in Figure 9-7 don’t suff er
much in appearance on the Web when fi le size is reduced.

A bigger diff erence with JPEG fi les sizes can be seen with digital photos. In Figure 9-8, the
photo on the left is the lowest quality (8K) and the one on the right (115K) is the highest, with
corresponding fi le sizes.

Figure 9-8: Low- and high-quality digital photos in JPEG format.

15_977279-ch09.indd 18415_977279-ch09.indd 184 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

185

Th e diff erences between the two photos with the diff erent settings is minimal, but the
diff erence in the kilobytes is quite large — 8K versus 115K. On a video monitor, the image in
Figure 9-8 on the left has poorer defi nition around the edges, but if the primary audience has
very low bandwidth available, cutting down the size of JPEG fi les won’t signifi cantly cut down
on the quality of the image.

Th e image in Figure 9-8 was photographed with a Webcam, and digital photographs taken
with higher-quality cameras show far more detail that may be lost with the loss of information
taken out when a fi le size is reduced. However, very high-quality digital photos have to be
reduced signifi cantly in size to be practical for the Web.

Good lighting saves bandwidth
Regardless of the kind of camera you’re using, a well-lighted image is going to look better than
a poorly lighted one. Everything we see (and your camera sees) is the refl ection of light off
objects. If you pay just a little attention to the lighting of your subject, your digital images will
look better.

You don’t need a lighting studio to take good photographs, but by adding light correctly, your
digital photo is going to look better, and you’ll be able to remove more information from the
fi le and still have it look good enough to put on the Web. Here are some tips:

Use diff used light. If you take a picture on a cloudy day, the pictures generally turn out
better. Th at’s because the clouds diff use the light. (If you’ve ever seen those photos where
the unfortunate subjects have to line up and squint into the sun, they not only look
squinty, the photos are overexposed.) For indoors, aim a light at white paper and let it
bounce the light onto the subject. A crumpled up piece of aluminum foil fl attened out
does a good job of diff using light.

Use natural light where possible. If you’re taking indoor photos, open the curtains and
blinds and let in the natural light.

Changing PNG and GIF fi le sizes
Turning now to changing fi le sizes with PNG and GIF fi les, the diff erences tend to be more
signifi cant with the reduction of fi le size and the accompanying information that is removed.
Take a look at Figure 9-9, and you can immediately see that the diff erent settings have
diff erent quality levels.

In Figure 9-9, the top two images are GIF fi les and the bottom two are PNG. When GIF fi les
are reduced, they lose colors. Th e top-left image has only 32 colors and the one on the right
has 256 (which isn’t a whole lot either). In comparing the sizes of the two GIF fi les, the one on
the top-left is only half the one on the right. Compare that with the diff erent quality levels
using JPEG fi les in Figure 9-5.

Th e two PNG fi les are labeled PNG-24 (left) and PNG-8 (right). Th e PNG-8 format has only
128 colors, while PNG-24 can handle millions of colors. Th e 8 and 24 refer to 8-bit and 24-bit
color processing. In a nutshell, PNG-24 is of a higher quality.

15_977279-ch09.indd 18515_977279-ch09.indd 185 10/28/10 10:15 PM10/28/10 10:15 PM

186

PART III: MEDIA IN HTML5

Figure 9-9: Changing PNG and GIF fi le sizes.

Changing SVG fi le sizes
Unlike the bitmapped graphics, changing SVG graphic sizes is simple and doesn’t hurt the
look of the image. Th e following Web page code shows a 500 x 400 .svg fi le displayed in
diff erent sizes determined by the width and height attributes: Th e following script (SVG.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) uses a single
.svg fi le to display many diff erent sizes without distortion.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>SVG Test</title>

</head>

15_977279-ch09.indd 18615_977279-ch09.indd 186 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

187

<body style=”background-color:#BAD9CB” >

<!-- Safari, Chrome and Opera -->

<!-- Firefox and Opera

<object width=100 height=80 type=”image/svg+xml” data=”logo500x400.svg”></object>

<object width=200 height=160 type=”image/svg+xml” data=”logo500x400.svg”></object>

<object width=300 height=240 type=”image/svg+xml” data=”logo500x400.svg”></

object>

<object width=500 height=400 type=”image/svg+xml” data=”logo500x400.svg”></object>

-->

</body>

</html>

At the time of this writing, Firefox did not use the tag with .svg fi les but required the
<object> tag instead. Th e Opera browser worked with both formats. Figure 9-10 shows the
results. As you can see, the logo in Figure 9-10 looks the same no matter what size it’s dis-
played in.

Figure 9-10: An SVG image changed by changing attributes with no distortion.

15_977279-ch09.indd 18715_977279-ch09.indd 187 10/28/10 10:15 PM10/28/10 10:15 PM

188

PART III: MEDIA IN HTML5

Grayscale on Internet Explorer
One interesting note in working through fi le sizes is the use of a special CSS property recog-
nized only by Internet Explorer. Some designers use grayscale settings to reduce the size of
their graphics or for the eff ect of grayscale. If you want an interesting option using Microsoft
Internet Explorer, you can write a little CSS code to convert color fi les to grayscale. Use the
following snippet in a style defi nition:

<style type=”text/css”>

img {

 filter:gray;

}

</style>

Figure 9-11 shows a color fi gure (Figure 9-8) that is turned into a grayscale using CSS only.

Figure 9-11: Using Internet Explorer CSS grayscale fi lter.

Using this technique is a quick way to see how the fi gure looks in a grayscale before rendering
it in a grayscale mode. If you’re updating a site, and you want to view the images on the page
in grayscale, you can add the CSS and test it on Internet Explorer fi rst. If you want to keep the
fi le size down and the quality up, a JPEG image in grayscale instead of color will cut the fi le
size in half.

15_977279-ch09.indd 18815_977279-ch09.indd 188 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

189

PLACING IMAGES AND CREATING FLEXIBLE
WEB PAGES

Th e tag is the primary one used to call up graphics, and although CSS3 is the primary
tool for getting things to go where you want on a Web page, you can use certain
attributes to help out. Th is section examines options you have for placing text where you want
it to go on your Web page and how to use certain key attributes with the tag.

IMAGE PLACEMENT WITH THE ALIGN ATTRIBUTE

To start looking at placement, consider the align attribute of the tag. Th e one
advantage is that there is no easier way to quickly position the image relative to the text. Th e
following script (ImagePlacement.html in this chapter’s folder at www.wiley.com/
go/smashinghtml5) illustrates this.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*048ABF,049DBF,F2F2F2,595959,0D0D0D*/

body {

 background-color:#F2F2F2;

 color:#0D0D0D;

 font-family:Verdana, Geneva, sans-serif;

}

h1 {

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 color:#595959;

 background-color:#049DBF;

 text-align:center;

}

h2 {

 color:#048ABF;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple Placement</title>

</head>

<body>

<article>

 <header>

 <h1>Web Developer’s Gym</h1>

 </header>

 <section>

 <header>

 <h2>Developer’s Workout</h2>

 </header>

 <figure> <img src=”webDeveloper.gif” width=”250” height=”263” align=”left”

align=”workout”> </figure>

15_977279-ch09.indd 18915_977279-ch09.indd 189 10/28/10 10:15 PM10/28/10 10:15 PM

190

PART III: MEDIA IN HTML5

 You know you’ve been thinking about it. Isn’t it about time you started working

on your <alt> and tags? Build up your elements and attributes in HTML5 at the

Web Developer’s Gym. Once you get going, you can add a little <canvas> tag

work and get into some serious CSS3. The gym is open 24/7 for your convenience—and

you can access it anywhere worldwide! All your friends have joined, and just look

at them—they’re even adding video to their Web pages! You can do it, too! Don’t let

another day go by with you wishing that you could be a Web developer. Start today!

</section>

</article>

</body>

</html>

Th e right and left placement of the image is simple. All that’s required is the assignment of
“left” and “right” values to the align attribute. Figure 9-12 shows the placement of the
image in both the left and right positions.

Figure 9-12: Image placement with the align attribute.

In Figure 9-12, the page on the right looks okay, but the page on the left jams the text right up
against the image. Also, the page is wholly dependent on the user’s page settings and size. In
other words, using the align attribute for placing images can make your page look awful.
Figure 9-13 shows two other views of the same page that transform its look.

In Figure 9-13, the fi gure on the left shows the text scattered all over the page, while the fi gure
on the right, a mobile device, shows the image just fi ne, but the text is just one word wide,
snaking along the side of the picture. Th e rest is below the view area.

15_977279-ch09.indd 19015_977279-ch09.indd 190 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

191

Figure 9-13: Different views of a page.

FLEXIBLE IMAGE SIZE WITH A LITTLE JAVASCRIPT

In Chapter 12, you’ll understand this information better, but I need JavaScript in this section
to show how your pages can be more fl exible by having diff erent-size images. JavaScript has a
little property called navigator.appVersion. When that property is placed into a script,
you can fi nd out information about the hardware being used to load the Web page. If you fi nd
out that the page is being loaded into a mobile device, instead of loading the full-size image
into the Web page, it loads the smaller one.

To make this work, take the same GIF fi le used for the original Web page created in the
previous section, and make a second one about one-third the size of the original. Create a
folder, and name it flexImages, and place both the large and small GIF fi les. Name the
large fi le, WebDeveloper.gif and the smaller one lilWebDeveloper.gif, and place
them both in the flexImages folder. Th en enter the following program (ImageFlex
Size.html in this chapter’s folder at www.wiley.com/go/smashinghtml5) and save
it in the same directory as the flexImages folder.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

var envir=navigator.appVersion;

envir=envir.substring(5,11);

var imageNow=new Image();

var showNow;

function showImage()

{

 if(envir==”iPhone” || envir==”(iPhon”)

 {

 showNow=”flexImages/lilWebDeveloper.gif”;

 }

 else

 {

 showNow=”flexImages/WebDeveloper.gif”;

 }

15_977279-ch09.indd 19115_977279-ch09.indd 191 10/28/10 10:15 PM10/28/10 10:15 PM

192

PART III: MEDIA IN HTML5

 imageNow.src=showNow;

 document.pix.src=imageNow.src;

}

</script>

<style type=”text/css”>

/*048ABF,049DBF,F2F2F2,595959,0D0D0D*/

body {

 background-color:#F2F2F2;

 color:#0D0D0D;

 font-family:Verdana, Geneva, sans-serif;

}

h1 {

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 color:#595959;

 background-color:#049DBF;

 text-align:center;

}

h2 {

 color:#048ABF;

}

img {

 padding:5px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Flexible Image Size</title>

</head>

<body onload=”showImage()”>

<article>

 <header>

 <h1>Web Developer’s Gym</h1>

 </header>

 <section>

 <header>

 <h2>Developer’s Workout</h2>

 </header>

 <figure> </

figure>

 You know you’ve been thinking about it. Isn’t it about time you started working

on your <alt> and tags? Build up your elements and attributes in HTML5 at the

Web Developer’s Gym. Once you get going, you can add a little <canvas> tag

work and get into some serious CSS3. The gym is open 24/7 for your convenience—and

you can access it anywhere worldwide! All your friends have joined, and just look

at them—they’re even adding video to their Web pages! You can do it, too! Don’t let

another day go by with you wishing that you could be a Web developer. Start today!

</section>

</article>

</body>

</html>

15_977279-ch09.indd 19215_977279-ch09.indd 192 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

193

First, try out the program on your computer. You should see exactly what you saw when you
originally tested it (refer to Figure 9-12). Now, try it out in a mobile browser. Instead of a large
image pushing all the text to one side, you see a smaller image surrounded by text, just like
the one on your computer. Th at’s because the Web page was able to use the JavaScript to
determine whether the page was loaded by an iPhone or some other platform or device.

Place the Web page fi le and both of the images in their folder into the same directory on a
server. When you test it, it looks like it was made for the iPhone, but it was really made for the
iPhone or any other device. Using this and other JavaScript code, you can do a lot more with
HTML5 than you can with just HTML5 by itself.

Figure 9-14: Displaying a small graphic for a mobile device.

Th e JavaScript used in the example is as minimalist as possible. However, the logic of it can be
outlined as follows:

Place the contents of navigator.appVersion into a variable named envir (short for
environment).

15_977279-ch09.indd 19315_977279-ch09.indd 193 10/28/10 10:15 PM10/28/10 10:15 PM

194

PART III: MEDIA IN HTML5

Because navigator.appVersion generates a long description, get only the part of the
results that either shows iPhone or not.

Create a new image object named imageNow.
Initialize a variable named showNow (that you’ll use in the function).
Create a function that asks, “Is this an iPhone environment or not?” If it is an iPhone

environment, then use the small graphic; otherwise, use the big graphic. (In an Opera
Mini quirk, JavaScript returns “ (iPhon” as the fi rst six characters of navigator.
appVersion; so, the code has to query whether it found “ (iPhon” or “iPhone” —
this goes to show just how accommodating JavaScript can be.)

Of course, there are a lot more types of mobile devices available, and you’d have to change the
JavaScript code to add more to the list of mobile devices besides iPhone, but the logic is the
same — just a bit more JavaScript.

By the way, if you’ve never done anything with JavaScript, don’t expect to understand the code
in the Web page markup. Th is demonstration just shows what can be done with JavaScript.
Th e future of the Web needs to include many diff erent kinds of Web-browsing platforms, and
this little demonstration is just a taste of what you can do. (If you’re an experienced JavaScript
developer, you can create something a bit more elegant!)

APPLICATION FOR DYNAMIC SVG FILES FROM ADOBE ILLUSTRATOR CS5 FILES

Adobe Illustrator CS5 (AI) has an added feature, Adobe Illustrator CS5 HTML5 Pack,
available at http://labs.adobe.com. It’s designed to allow graphic designers using AI to
easily convert their .ai fi les to .svg fi les containing parts that can be dynamically changed
using HTML5.To give you an idea how it works, the following example begins with a simple
graphic image in AI. It has two layers, and on one of the layers, the designer wants variable
color that can be coded in HTML5. Th e layer to be given a variable feature is selected and
viewed in the Appearance panel (as shown in Figure 9-15).

Figure 9-15: Fill is set as a variable in Adobe Illustrator CS5.

15_977279-ch09.indd 19415_977279-ch09.indd 194 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

195

Th e (X) in Figure 9-15 indicates that the Fill is a variable that can be changed with HTML5. In
order to access the feature to be changed (the fi ll color in this case), AI generates code for the
SVG fi le format that can be viewed and/or saved during the conversion from an .ai fi le to
an .svg fi le. During the conversion process, the designer clicks the Show SVG code button,
and fi nds the layer name of the variable feature. In this example, the specifi c SVG code was
the following:

<g id=”Button”>

 <ellipse fill=”param(SVGID_2__FillColor) #A35563” cx=”50” cy=”50” rx=”40”

ry=”40.5”/>

</g>

Th e id with the value Button is from the name of the layer in AI. Th e param name value is
SVGID_2__FillColor, which is automatically generated by AI.

In order to work the SVG information into an HTML5 program, the .svg fi le must be
referenced in an <object> element and the parameter in a <param> tag. Th e JavaScript fi le
Param.js is also automatically generated by AI and must be loaded in the <head> con-
tainer in order for Firefox to correctly parse the code. Th e following code (AI2svg.html in
this chapter’s folder at www.wiley.com/go/smashinghtml5) works with Firefox, Safari,
Chrome and Opera browsers but with some diff erences in display.

<!DOCTYPE HTML>

<html>

<head>

<script src=”Param.js”></script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>AI -> SVG</title>

</head>

<body>

<article>

 <section>

 <figure>

 <object type=”image/svg+xml” data=”butnBkground.svg”>

 <!--No param tags -->

 </object>

 </figure>

 <figure>

 <object type=”image/svg+xml” data=”butnBkground.svg”>

 <param name=”SVGID_2__FillColor” value=”#cc0000” />

 </object>

 </figure>

 </section>

</article>

</body>

</html>

In order to illustrate the sequence of processes, Figure 9-16 shows the original AI fi le and the
results of the output in Opera when the page AI2svg.html loads.

15_977279-ch09.indd 19515_977279-ch09.indd 195 10/28/10 10:15 PM10/28/10 10:15 PM

196

PART III: MEDIA IN HTML5

Adobe

Illustrator file

Converted to

SVG for Web

Fill color of layer

converted to variable

Figure 9-16: The original AI fi le is transformed into an SVG format with variable fi ll color.

Th e Param.js and .svg fi les must be in the same folder as the HTML5 page, just as
external CSS3 and graphic fi les are expected to be either in the same folder as the HTML5
that calls them or in the path specifi ed by the HTML5 code. Th e best part, though, is that
designers and developers can focus on the HTML5 tags while Adobe Illustrator CS5 takes
care of generating the JavaScript and the parameter names. Of course, this means that
designers can use vector graphics and have dynamic features in their AI creations.

TAKE THE WHEEL

Th is fi rst exercise is a Web treasure hunt. You can fi nd a lot of free tools on the Web that can
be used to alter the size of a graphic fi le — both in terms of dimensions and number of bytes
in the image. Even if you have a tool like Adobe Photoshop or Microsoft Paint, go fi nd an
application on the Web that works on your computer. (You can fi nd several if you want.)

Take an existing graphic fi le that is not in JPEG, PNG, or GIF format. For example, fi nd
a graphic with a .tif or .tiff extension. (It can be a digital photograph or a drawn
graphic — or some combination of both.) Th en do the following:

 1. Convert the fi le to JPEG, PNG, and GIF format.
 Now you have four fi les — the original and three Web formats.
 2. Make a second copy of all Web graphics, naming the second one so that it indicates it

will be low quality.
 For example, if you have a fi le named car.jpg, copy it and name the second copy

carLow.jpg.
 3. Using the image application you found on the Web, create the highest- and lowest-

quality fi le for each of the three fi le types.

15_977279-ch09.indd 19615_977279-ch09.indd 196 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 9: IMAGES

197

 4. Using HTML5 and CSS3, create a Web page with three rows. On the left side place the
highest-quality images, and on the right place the lowest quality.

 5. Between all the images, place fi ll text of your choice.
 Th is is a good time to look up lorem ipsum on the Web. Figure 9-17 shows the general

format.

Figure 9-17: Displaying the different types and qualities of graphics in text.

Th is exercise has two purposes:

To provide you with an exercise in placing text — work with CSS3 from this chapter and
previous chapters. Using the align attribute in the tag has serious limitations.

To drive home the idea that all changes to images must be done using soft ware that changes
the characteristics of an image before you put your Web page together.

For those who want to do more with vector graphics, try out the Adobe Illustrator CS5
HTML5 Pack. If you do not have Adobe Illustrator CS5, you can download a 30-day trial free.
Try creating variables out of diff erent parts of an AI design using multiple layers with names
that become the ID name of the parameter you’ll change.

15_977279-ch09.indd 19715_977279-ch09.indd 197 10/28/10 10:15 PM10/28/10 10:15 PM

15_977279-ch09.indd 19815_977279-ch09.indd 198 10/28/10 10:15 PM10/28/10 10:15 PM

SMASHING HTML5

C
H

A
P

T
E

R

10

SOUND10
ADDING SOUND TO Web pages allows
developers to create a wide range of Web sites.
Sites that play music, provide instruction, or add
sound eff ects certainly widen the range of
possibilities of what you can do with HTML5.
Th is chapter examines how to prepare sound for
the Web and how you can use sound to help your
Web pages make some noise.

You’ll learn how to work with the diff erent
<audio> tag attributes and settings. Also, you’ll
see how diff erent browsers handle sound and
diff erent sound fi les. As with graphics, special-
ized programs are available to create audio and
edit it. So, aft er examining the basic HTML5
elements and attributes, this chapter goes on to
show you how to create sounds for your Web site.

16_977279-ch10.indd 19916_977279-ch10.indd 199 10/28/10 10:15 PM10/28/10 10:15 PM

200

PART III: MEDIA IN HTML5

THE BASICS OF AUDIO IN HTML5

One of the most exciting new tags in the HTML5 collection is <audio>. With it you can play
audio fi les using the speakers on your computer or headset on a mobile device. Th e basic
format to select a sound fi le to play is:

<audio src=”jazz.mp3”></audio>

Th e src attribute works just like it does in an tag — it’s a reference to the source of
the fi le. However, to get the audio to play, you need to look at the attributes.

AUTOPLAY

Th e autoplay attribute is fairly self-explanatory. As soon as the page loads, the sounds begin
to play. Before adding the autoplay attribute, you want to be sure that all your users are
going to be okay with listening to whatever you’re playing. One way to guarantee that users
will not return to a page is to have a continuous sound that automatically turns on. Th at
concern aside, the following script (BasicAudio.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5) shows how to create a simple page that begins playing
as soon as it’s launched:

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Basic Audio</title>

</head>

<body>

Audio is between the lines

--

<audio src=”jazz.wav” autoplay></audio>

--

</body>

</html>

You can test that script with any browser except Google Chrome because it’s the only one that
doesn’t recognize sound fi les in the .wav format. Use an .mp3 or .ogg sound fi le instead for
Chrome testing.

CONTROLS

As noted, if your sound (music, sound eff ects, or even just talking) annoys your users, they’re
not going to return. So, how do you control sound? Th e easiest way is to add the controls
attribute. As with autoplay, you don’t have to give it a value. Just include it within the
<audio> tag, and it automatically appears. Try the following program (Controls.html
in this chapter’s folder at www.wiley.com/go/smashinghtml5):

16_977279-ch10.indd 20016_977279-ch10.indd 200 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

201

<!DOCTYPE HTML>

<html>

<style type=”text/css”>

/* 694703,A83110,E89F06,F5D895,B3CF83 */

body {

 background-color:#B3CF83;

 font-family:Verdana, Geneva, sans-serif;

 color:#694703;

}

h1 {

 font-family:Braggadocio, “Arial Black”;

 color:#A83110;

}

</style>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Controls</title>

</head>

<body>

<article>

 <header>

 <h1>Jazz Tonight</h1>

 </header>

 <section>

 <p>Click the triangle to start the show: </p>

 <audio src=”mists.ogg” controls></audio>

 <p>The || two pipes symbol stops all of this. </p>

 </section>

</article>

</body>

</html>

When you run this program, be sure to use a browser compatible with the audio fi le. (Use
a .wav fi le if the .ogg fi le type doesn’t work with your browser.) Depending on the kind of
browser you use, you’ll see diff erent player controls. Figure 10-1 shows how the diff erent
browsers look. (Th e Google Chrome browser is shown with the sound actually playing.)

About the only common feature of the audio control bar is the triangle start button on the far
left , and the sound on/off toggle on the far right. Th e stop/pause button is similar as well, but
the graphics of each is unique. (Th e diff erent control bar images may give designers fi ts as
they try to design a page with audio to be fully compatible with all browsers.)

Providing some kind of control for users is essential. Th e Chrome browser provides a nice big
bar so that the user can clearly see where she is relative to the beginning and end of the audio.
For instructional audios, the scrubber bar (the vertical bar you can see in the Chrome browser
in Figure 10-1) is important so that the student can drag the scrubber bar to review those
portions of a lesson that are diffi cult to understand.

16_977279-ch10.indd 20116_977279-ch10.indd 201 10/28/10 10:15 PM10/28/10 10:15 PM

202

PART III: MEDIA IN HTML5

Opera

Chrome

Safari

Firefox

Figure 10-1: Using audio player controls.

PRELOAD

Th e preload attribute of the <audio> tag can be an important one because it starts
preloading the audio before it’s played. In that way, users don’t have to sit and twiddle their
thumbs while the audio loads aft er they press play. Th e simplest format for the preload
attribute is just like the controls and autoplay — it just needs to be added without a value, as
the following shows:

<audio src=”Shadows.wav” preload controls></audio>

When preload is employed, you can use autoplay, but I’m not sure that it makes much sense to
do so. Autoplay starts the audio playing as soon as the page loads, while preload is used to
load an audio fi le before the play command is issued by the controller.

You can assign values to the preload attribute:

 none: Having none as a value may seem strange, but some browsers may be set to
automatically preload audio fi les. However, if the chance of using a particular audio is
remote, the developer may decide not to use Internet resources and so assigns the none
value to the preload attribute.

16_977279-ch10.indd 20216_977279-ch10.indd 202 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

203

 metadata: All audio (and video) fi les have metadata like duration or some other sound
data that the sound author placed in the audio’s fi le. When the chance of using an audio
fi le is low, but (just in case) loading the metadata is reasonable and doesn’t take up much
in the way of Internet resources.
 auto: If the preload attribute is present, it automatically preloads the audio fi le
information. Th e auto assignment simply acts as a reminder that the fi le is going to
preload. (It’s the same as not have any value assignment to a preload attribute.)

Th e more varied your audience and the more audio in your Web page, the more you want to
provide the preload attribute with options.

LOOP

When you want a sound to endlessly repeat itself, you use a loop. Th e advantage of using a
loop is that you can take a relatively short piece of music and have it repeat itself so that it
sounds like a full composition. In this way, you can use a minimum amount of Internet
resources and have continuous music. Th e format is like the other attributes that act like
Booleans — they’re either off or on. Th e following is an example:

<audio src=”Shadows.wav” autoplay loop></audio>

In that line lies the seeds of its own destruction. For many good reasons, users may want to
turn off sound. You can use JavaScript to put together a simple routine that will do that, but
it’s easier simply to add the controls attribute and let the user turn it off . However, some
designers, with good reason, would rather not have the audio control anywhere in the design;
they believe that some nice music would be an integral part of the design. In that case, start
looking up the JavaScript to turn the thing off . No matter how nice a piece of sound is,
repeated endlessly it becomes brainwashing, and that’s not allowed by the Geneva
Convention.

BROWSER SUPPORT FOR AUDIO

At the time of this writing, while testing audio formats, I could fi nd no format that all
browsers supported. Worse still, no single format is supported by all HTML5 browsers. Table
10.1 shows the breakdown.

Table 10.1 Browsers and Audio Format Support
Browser MP3 WAV OGG

Chrome Yes No Yes

Firefox No Yes Yes

Internet Explorer 9* Yes No No*

Opera No Yes No

Safari Yes Yes No

* Microsoft announced that IE9 would be supporting the OGG format, but in the beta version of IE9, it did not.

16_977279-ch10.indd 20316_977279-ch10.indd 203 10/28/10 10:15 PM10/28/10 10:15 PM

204

PART III: MEDIA IN HTML5

As you can see, the only audio format that comes close to support by all browsers is .wav.
Th e good news is that .wav fi les are widely available, and you can fi nd just about any sound
you in .wav format. However, if a signifi cant number of your user audience prefers the
Google Chrome browser to the others, you’re going to need a Plan B.

SAVED BY SOURCE: PLAN B

Usually, if you have to determine which browser is going to work with diff erent resources,
you’re going to have to break out the JavaScript. Fortunately, HTML5 has an element that can
off er up several diff erent audio formats and let the browser select the one that’s compatible.

Th e <source> tag can be placed within the <audio> container with the source and URL of
the audio inside the <source> tag. Suppose that you’re running a Web site with audio
instructional materials — you talk learners through HTML5, for example. Instead of telling
everyone that they have to use a certain type of browser, all you need to do is have fi les for all
possible browsers and let the browser pick the one it likes. For example, let’s say that you’re
setting up Lesson #3 on a Web page. Th e following would provide a selection of fi les that no
browser would pass up:

<audio controls>

 <source src=”instruction3.ogg”>

 <source src=”instruction3.mp3”>

 <source src=”instruction3.wav”>

</audio>

Th e chore of making multiple versions of audio fi les may be annoying, but even if you
programmed it in JavaScript, you’d need multiple copies of the media. (In Chapter 9, multiple
copies of a graphic fi le were required for mobile and non-mobile platforms that used JavaScript
to sort out whether the page was being viewed on an iPhone or something else.)

TYPE ATTRIBUTE

When setting up several diff erent types of audio sources to be sure that all HTML5-
compatible browsers will play it, you can enhance the process by adding the type attribute
to the <source> tag. Th e information in the type attribute tells the browser whether it
should even attempt to load the fi le. For example, the following snippet shows the format:

<source src=’mists.ogg’ type=’audio/ogg’>

Th e reason for including a type attribute is to save time. Th e interpreter in the browser looks
at the line and realizes that the type indicates that it can either play it or not. If not, it doesn’t
even bother trying. For example, suppose you were given a choice of taking two tests — one
in HTML5 and the other in quantum physics. Unless you have a background in quantum
physics, you’re not going to waste your time trying. However, knowing that a test will be in
HTML5, you feel like you can give it a shot. It’s the same with the type attribute. If it sees the
type and determines, “I can’t play that,” it doesn’t try.

16_977279-ch10.indd 20416_977279-ch10.indd 204 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

205

If the type attribute is not in place the browser will try to load it, and if it fails, it then goes
on to the next <source> tag and gives it a try.

Th e following snippet shows all the types:

<audio controls>

 <source src=”instruction3.ogg” type=”audio/ogg”>

 <source src=”instruction3.mp3” type=”audio/mpeg”>

 <source src=”instruction3.wav” type=”audio/wav”>

</audio>

All values must be valid MIME types. Th e valid ones follow the media-type rule defi ned in
W3C specifi cations for HTML5. Th e type attribute is optional, but if your site has a lot of
traffi c, you want to cut out every unnecessary call. Th e type attribute helps you do that. For
more help, you need to consider the codec parameter in the next section.

SOURCE TYPE CODEC PARAMETER

Generally, if you enter a value for the type attribute, all you have to include is the general
type. However, when more than a single codec is available, you should add the codecs that the
browser can read. Again, specifying the codec is not going to allow the browser to access a
certain codec that it would not otherwise be able to do. Rather, it provides a heads-up to the
browser so that if it can’t read it, the browser doesn’t even try. It’s like a newspaper vendor
asking, “What do you want? We’ve got papers in English, Spanish, and Mongolian.” If you
read English and Spanish, you can choose them, but if you know you don’t read Mongolian,
you don’t even try.

Before moving on to a closer look at the codec parameter, be sure to understand what a codec
is. Th e word codec is a combination of the terms compression and decompression. So, when I
speak of a codec, I’m talking about how a fi le is encoded (usually shrunk) and decoded
(expanded so it can be played).

Th e type of codec, even though the fi le types are the same, can be diff erent. In order to speed
up the process of determining whether the fi le can be read, adding the codec parameter fi lters
out those codec types that the browser can’t read. For example, the following are all .ogg fi les
with diff erent codecs:

<source src=”songFest.ogg” type=”audio/ogg; codecs=vorbis”>

<source src=” songFest.spx” type=”audio/ogg; codecs=speex”>

<source src=”audio.oga” type=”audio/ogg; codecs=flac”>

So remember, codecs and fi le types are horses of diff erent colors. If your Web pages can use
full codec information on a fi le, you may as well use it. Otherwise, some browsers may
attempt to launch the sound only to fi nd that the codec is incompatible.

16_977279-ch10.indd 20516_977279-ch10.indd 205 10/28/10 10:15 PM10/28/10 10:15 PM

206

PART III: MEDIA IN HTML5

Some types of audio fi les are more likely than others to have a wide range of codecs. Th e
following snippet shows typical codecs for all the HTML5 sound fi les that can be read by
HTML5 browsers:

<audio controls>

 <source src=”sound.ogg” type=”audio/ogg; codecs=vorbis”>

 <source src=”jazz.mp3” type=”audio/mpeg; codecs=mp3”>

 <source src=”Shadows.wav” type=”audio/wav; codecs=wav”>

</audio>

Th e above snippet does not show all possible codecs of all audio types. However, it represents
the typical kinds of codes used in Internet audio.

CREATING AUDIO FILES

Both Windows 7 and Macintosh OS X include programs that you can use to create your own
audio fi les. Th ey come loaded on your computer, and unless you removed them, you should
be all set to get started making sound recordings.

Earlier versions of Windows also have a Sound Recorder application, but it looks diff erent
from the one used in the example. Also, the Sound Recorder that is part of Windows XP saves
fi les to .wav format, so they’re all ready for a Web page. However, the newer version of Sound
Recorder that ships with Windows 7 only saves fi les in .wma format and must be converted to
a fi le type recognized by HTML5 browsers.

WINDOWS 7 SOUND RECORDER

Th e fi rst thing you want to do when you make a recording is to set up some kind of micro-
phone for the recording. Most computers that run Windows 7 have built-in microphones, and
you can use those. Otherwise, you’ll need to plug in the microphone you plan to use and
make sure it’s properly confi gured. Usually, your computer can fi nd the audio drivers you
need, but some microphones come with soft ware drivers that you need to install. Directions
for such installations will come with the microphone.

To select a microphone, use the following path: Control Panel > Hardware and Sound >
Manage Audio Devices. When the Sound window opens, select the Recording tab. You’ll see
the selections shown in Figure 10-2.

Your recording selections may be diff erent, but in general you’ll either have a line-in or a
built-in microphone. When you make a selection, click OK, and you’re now ready to open the
Sound Recorder application.

From the Start menu, select All Programs > Accessories > Sound Recorder. (If you’re running
Windows XP, choose All Programs > Accessories > Entertainment > Sound Recorder.) Figure
10-3 shows what the Sound Recorder looks like when it’s ready to record (top) and while it’s
recording (bottom).

16_977279-ch10.indd 20616_977279-ch10.indd 206 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

207

Figure 10-2: Windows 7 recording selections.

Figure 10-3: The Sound Recorder application in Windows 7.

Once you’re ready to start recording, click on the red circle, and begin talking. As you talk,
you’ll see a green bar appear next to the timer in the middle of the recorder bar. If that bar is
not moving as you talk, that means your microphone is not working correctly. Otherwise,
you’ll see the green sound bar bounce in and out as you speak. When you’re fi nished, click on
the Stop Recording button — a blue square. (In Sound Recorder in Windows XP, the Stop
Recording button is a black rectangle right next to the red circle that starts the recording.)

When you click the Stop Recording button, a new Save As window opens and you can select
the directory where you want to save your audio recording. As noted, in Windows 7, the only
option is in .wma format (Windows Media Audio). If you’re using the Windows XP version,
select Save or Save As to open a dialog box to use to choose the directory, fi lename, and
format — which is .wav (but not .wma!).

If you’re using the older version of Sound Recorder, you’re all set with a .wav fi le that you can
play using the HTML5 <audio> tag. Otherwise, you’ll have to convert the .wma fi le to an
acceptable format for HTML5 browsers.

16_977279-ch10.indd 20716_977279-ch10.indd 207 10/28/10 10:15 PM10/28/10 10:15 PM

208

PART III: MEDIA IN HTML5

MACINTOSH OS X SOUND STUDIO

Macs come bundled with a program called Sound Studio. Macs also have built-in microphones
as well, or you can use an external microphone if you have the correct drivers installed. You
can select an external microphone (including ones built into any attached cameras) either
from System Preferences > Sound > Input or from Sound Studio. While you’re choosing the
Input device, any noise will appear in an Input level graphic, so be sure to speak while making
the settings so that you can get an idea of the sound level.

To open Sound Studio, select Go > Applications > Sound Studio (folder) > Sound Studio.app
from the Finder. When Sound Studio opens, you’ll see a timeline and an Input Levels window,
as shown in Figure 10-4.

Figure 10-4: Sound Studio timelines and the Input Levels window.

Converting fi les
If you’ll be using audio for general audiences, you’re going to need either

 A sound editor that saves audio fi les as .wav fi les and either .mp3 or .ogg.

 A conversion program. A simple search on the Web will reveal several. For example, if you’re
using the Windows 7 Sound Recorder, you’ll need a program to convert from .wma format
to.mp3, .wav, or .ogg. Generally, the process is quite simple for either Mac or Windows
platforms.

A variety of conversion products are available, but several for Windows 7 can be found at http://
software-download.name/audio-converter-windows-7/. On the Mac, I tested Switch
Sound File Converter (http://download.cnet.com/Switch-Audio-Converter/3000-
2140_4-10703967.html) and found it to be easy to use; it converted typical Mac sound fi le types
(like .aiff fi les) to sound fi les recognized by the HTML5 browsers. Do a Web search and you’ll fi nd
far more converters for both Windows and Macs.

16_977279-ch10.indd 20816_977279-ch10.indd 208 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

209

To make a recording, click the red Record button. If you want to pause to gather your thoughts,
click the Pause button. Once you’re fi nished, click the Stop button and select File from the
menu bar. If you choose Save or Save As, you can save the fi le for HTML5 browsers in .wav
format. However, if you select Export with QuickTime, the fi le will be in .mp3 audio format.
So, using Sound Studio on the Mac, you can generate two of the three HTML5 formats
available to store your audio recordings.

SOUND EFFECTS: FX ON YOUR DESKTOP

Th e range of sound eff ects available on the Web either free or for a price should get you started
on just about any sound eff ect you could want. Th e best place to start is at FlashKit (www.
flashkit.com/soundfx). Even though the site is dedicated to Flash, it has over 7,000 (and
growing) free, public-domain sound eff ects from which to choose. What’s more, you can
download them in either .wav or .mp3 format, so they’re already set to be used in an HTML5
Web page. If you search the Web, you can fi nd virtually any sound eff ect you want.

If you want to record your own sound eff ects, you can use simple household noises and the
sound recording applications on your computer. For example, a dog barking, an airplane fl ying
overhead, or just about any other sound you can hear, you can record. (Be careful with
copyrighted music, though!)

TRANSITION SOUNDS

A subtle yet eff ective interactive sound can be used to add an audio component to page
transitions. In a tactile world of buttons, switches and doorknobs, our actions oft en evoke
sounds. You can make your Web links do the same thing. Use the following steps to create a
simple transition:

 1. Navigate to www.flashkit.com/soundfx.
 2. Select Sound FX from the home page menu.
 3. Select Interfaces > Clicks from the Interfaces Categories.
 4. Select a click sound that you like.
 If you’d rather, choose a Zoop, Zang or Zing — just be sure it’s short in duration.
 5. Download both .wav and .mp3 versions.
 6. Rename one fi le click.wav and the other click.mp3.
 7. Place the .mp3 and .wav fi les in a folder.
 Now, in the same folder where you placed the sound fi les, place the following two pages

(TransitionSound.html and SoundOpen.html in this chapter’s folder at www.
wiley.com/go/smashinghtml5).

16_977279-ch10.indd 20916_977279-ch10.indd 209 10/28/10 10:15 PM10/28/10 10:15 PM

210

PART III: MEDIA IN HTML5

Start Page with No Sound
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

a {

 font-family:Verdana, Geneva, sans-serif;

 color:#cc0000;

 font-size:24px;

 text-decoration:none;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Transition Sound</title>

</head>

<body>

Click to Next Page

</body>

</html>

Play Sound When Opened
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#cc0000;

 font-size:24px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sound on Open</title>

</head>

<body>

<audio autoplay>

 <source src=”click.wav” >

 <source src=”click.mp3” >

</audio>

This page clicks.

</body>

</html>

Save both HTML5 pages in the same folder along with the two sound fi les. Test the HTML5
pages with several browsers. When you click the link, it opens a Web page and an <audio>
tag with the autoplay attribute should play the click sound right aft er the page loads. If you
have a site where the links go back and forth, the sound plays almost simultaneously with the

16_977279-ch10.indd 21016_977279-ch10.indd 210 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

211

click action so that it sound as though clicking the link made the sound. Of course, that’s the
idea. Otherwise, if the page takes even a little while to load, the click sounds when the page
comes up — sort of like clicking itself into place.

At the time of this writing, the Opera and Firefox browsers on the Macintosh did not work
when the type attribute was added to the <source> tag, but with Safari and Chrome it did.
However, when the type attribute was omitted, the Web pages worked fi ne with all the
Macintosh HTML5 browsers. In testing on Windows 7, the latest versions of Firefox and
Safari did not generate sound, but both Opera and Chrome did with the same fi les. (Th is is
why Web developers age quickly.) However, HTML5 is still young, and many of the features of
HTML5 are still in development. So, by the time you’re reading this, these diff erences may
have been resolved.

INTEGRATING SOUND EFFECTS INTO A WEB PAGE

One feature of sound eff ects that can make them diffi cult to work with if you’re not using the
controls attribute is getting them to fi re when you want. With plain HTML5, about the
only way to fi re off a sound is to place a page into an iframe and play the audio automati-
cally. With JavaScript, far more elegant and sophisticated solutions are available, but function-
ally, using iframe works.

Th e following four HTML5 pages are made up of one page that loads three other pages into
an iframe. As each page loads, it plays a sound eff ect: a dog bark, a scream, and an explo-
sion. Th e user sees the iframe turn the color of the speaker button that was clicked and
hears the sound eff ect, and no JavaScript was used at all. Figure 10-5 shows what the users see
when she clicks on the green speaker icon.

Figure 10-5: Triggering sounds using links to an iframe.

You’ll need to download (or create) three sounds, each in both .wav and .mp3 formats. Use
short sound eff ects and when each of the icon buttons is clicked, the sound plays by the page
loading in the iframe. Th e page being loaded has nothing but the sound, and for this
demonstration, it has a background color matching the speaker icon color. Place all the pages
and the six sound fi les in the same folder. (Th e following fi les are in this chapter’s folder at
www.wiley.com/go/smashinghtml5: SoundFrame.html, sound1.html, sound2.
html, sound3.html.)

16_977279-ch10.indd 21116_977279-ch10.indd 211 10/28/10 10:15 PM10/28/10 10:15 PM

212

PART III: MEDIA IN HTML5

A Page with iframe Calls Other pages with Sound Effects
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

h3 {

 color:#cc0000;

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sound Frames</title>

</head>

<body>

<article>

 <header>

 <h3>Sound Tester</h3>

 <iframe name=”ifSound” width=”125” height=”10”></iframe>

 </header>

 <section> <img src=”Redspeaker.gif”

width=”40” height=”40”> <img

src=”Greenspeaker.gif” width=”40” height=”40”> <a href=”sound3.html”

target=”ifSound”> </section>

</article>

</body>

</html>

A Page with a Barking Dog and a Red Background
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-color:#cc0000;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sound 1: Red</title>

</head>

<body>

<audio autoplay>

 <source src=”dog.wav” >

 <source src=”dog.mp3” >

</audio>

</body>

</html>

16_977279-ch10.indd 21216_977279-ch10.indd 212 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 10: SOUND

213

A Page with a Scream and a Green Background
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-color:#060;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sound 2: Green</title>

</head>

<body>

<audio autoplay>

 <source src=”scream.wav” >

 <source src=”scream.mp3” >

</audio>

</body>

</html>

A Page with an Explosion and a Blue Background
<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 background-color:#0000cc;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sound 3: Blue</title>

</head>

<body>

<audio autoplay>

 <source src=”boom.wav” >

 <source src=”boom.mp3” >

</audio>

</body>

</html>

You can have a lot of fun testing diff erent sounds. Be sure to test it on diff erent HTML5
browsers. Also, try to make your own sound eff ects — you can recruit your dog, cat, and
parrot (who was once owned by a sailor).

16_977279-ch10.indd 21316_977279-ch10.indd 213 10/28/10 10:15 PM10/28/10 10:15 PM

214

PART III: MEDIA IN HTML5

TAKE THE WHEEL

Th is challenge is to make a talking comic book. Th ink of a simple story that can be told in
four panels. Each panel will have a drawing (or digital photo) but no text. As the user clicks
each panel, an audio recording “says” what text would say in a typical comic. You’ll have to
use an iframe to trigger each of the four audio recordings, and each of the comic panels will
really be a button to link to the page with the panel’s audio. You can use clip art for the panels
if you want, and you can enhance the story with sound eff ects to accompany the audio.

16_977279-ch10.indd 21416_977279-ch10.indd 214 10/28/10 10:15 PM10/28/10 10:15 PM

SMASHING HTML5

C
H

A
P

T
E

R

11

VIDEO11
ONE OF THE most important features added to
HTML5 is video. If you’ve used YouTube, you’re
aware of the power of video on the Web. Like-
wise, Adobe Flash users have embedded video in
their programs for years. So, video on the Web
isn’t exactly new. However, the new features of
HTML5 make it possible to access video directly
from an HTML5 Web page, and that’s something
that HTML has never been able to do in previous
builds without a link to a Flash .swf fi le or some
other binary fi le that streams video independent
of the tags placed in an HTML fi le.

An important caveat to add here is that the video
that is displayed by your Web page is not true

streaming video; instead, it’s a type of progressive
download. As the video is downloaded from the
Web server, it’s displayed by the Web page, so it
can be slow. In fact, most videos created by Flash
hobbyists are very likely to be this kind of video.
Streaming video, at this point, requires a stream-
ing video server like Adobe Flash Media Server.
However, you can expect to see developments in
true streaming as HTML5 video becomes more
popular.

If you’ve read Chapter 10, you’ll fi nd many of the
video tags familiar. Th is chapter looks at many of
the same tags, like <source>, but with an eye to
loading and playing video.

17_977279-ch11.indd 21517_977279-ch11.indd 215 10/28/10 10:15 PM10/28/10 10:15 PM

216

PART III: MEDIA IN HTML5

MAKING AN HTML5 PAGE WITH VIDEO

To get started with video, you need a video fi le. You can create one on your computer, or you
can download one from the Web. So the question is: What kind of video fi le? Th e Tower of
Babel made more sense than all the video codecs do, so this section begins with the most
ubiquitous of all current video formats, H.264. As a video format, H.264 is usually referred as
MPEG-4 or its fi le extension, .mp4. Th is video format gained popularity as the fi rst high-
defi nition video format for the Web. Most people fi rst saw it playing on the Web as a Flash
.f4v fi le, and the results were much better than previous Web video.

Th e key tag used in video is, to no one’s amazement, <video>. Just as with an image or
audio, the fi rst attribute that you need is a source, and the src attribute is used to identify
the source. So, creating Web pages with video is quite simple. Th e following listing
(SimpleVideo.html in this chapter’s folder at www.wiley.com/go/smashinghtml5)
displays video basics in an HTML5 Web page.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple Video</title>

</head>

<body>

<video src=”mbAux1small.mp4” controls preload=”auto”></video>

</body>

</html>

In order to test and run this fi le, you need a Safari browser because, at the time of this writing,
that’s the only browser that it works with. (Th e browser is free, so go ahead and try it.)

When you run the program, you’ll see your video play on the Safari browser. Th e way the
controls are set up, you’ll have to wait until you see an image, which means the video is ready.
Click the start arrow on the controller and you should see your video play. Figure 11-1 shows
what you can expect to see if you play and pause the video.

Obviously, you’re going to want your video to play on more than one browser. If your video
can be viewed using only a single browser, you’re going to miss a lot of users. Fortunately,
HTML5 has a simple way of solving the problem. Within a <video> container, you can add
as many <source> tags as you want. Th e source attribute (src) is moved to the <source>
tag. If you place several <source> tags in the <video> container, the browser will look at
the video fi les and select the one it knows how to play and automatically play it. If it can play
more than a single type of video format, it starts playing the fi rst one it recognizes and ignores
all the rest. All this can be done using HTML5 without having to break out JavaScript. Th e
following snippet shows the basic format of accessing video fi les in this manner:

<video>

 <source src=”someVid.3gp”>

17_977279-ch11.indd 21617_977279-ch11.indd 216 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

217

 <source src=”someVid.mp4”>

 <source src=”someVid.ogv”>

 <source src=”someVid.webm”>

</video>

Figure 11-1: Viewing a simple video on the Safari browser.

Although many diff erent formats are around for digital video, the ones that will be used for
illustration and discussed in this chapter are the following:

 H.264: .mp4 and .mov
 OGG: .ogv
 WebM: .webm
 3GP: .3gp

At the time of this writing (and quite possibly for the future) diff erent formats are going to
run on diff erent browsers. However, using the <source> tag, you can easily reference several
diff erent browsers. For example, the following code (SimpleVideoSource.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) plays the same video on any of
the browsers tested, including two mobile browsers.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Selective Video</title>

</head>

<body>

<video controls preload=”auto”>

 <source src=”multiformats/mbAux1.3gp”>

 <source src=”multiformats/mbAux1small.mp4”>

17_977279-ch11.indd 21717_977279-ch11.indd 217 10/28/10 10:15 PM10/28/10 10:15 PM

218

PART III: MEDIA IN HTML5

 <source src=”multiformats/mbAux1small.ogv”>

 <source src=”multiformats/mbAux1small.webm”>

</video>

</body>

</html>

When I tested the program with diff erent browsers and platforms, all of them were able to
fi nd the fi le format they preferred and play both the video and sound. Figure 11-2 shows the
video playing in a Safari mobile browser on an iPhone.

Figure 11-2: Video playing on an iPhone.

Th e quality of the play was fairly consistent on all browsers. On both the Safari mobile
browser and Perfect Browser for the iPhone, other than the screen size, the video quality was
quite good. Most important, it loaded quickly.

VIDEO AND BROWSER COMPATIBILITY

Two very diff erent issues must be addressed when discussing HTML5 Web video and
compatibility. One is simply which browsers work with which video formats. I’ll be using the
term video format to refer to a combination of video containers (wrappers in which actual
videos are enclosed) and codecs (code-decode technology) — primarily by referring to the
extension associated with the fi les. Technically, there’s a lot more about video fi les than I have
room to discuss here, but to get rolling with video, you need to recognize diff erent fi les by
their video extensions and what browsers they’ll play on.

17_977279-ch11.indd 21817_977279-ch11.indd 218 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

219

At this point in time, going beyond what can be tested and proven is a bit risky. However, I
think that we can look at four diff erent kinds of fi le containers and codecs and use the four
listed at the beginning of the chapter. Th e 3GP container format is related to MPEG-4, but it’s
actually an H.263 format, and its primary adoption has been for mobile devices like the
iPhone. Table 11.1 shows the compatibility matrix of the major browsers on which video tests
have been made or decisions have been made.

Table 11.1 Browsers and Video Format Support
Browser H.264 OGG WebM 3GP

Chrome No Yes Yes No

Firefox No Yes Unknown No

Internet Explorer 9 *No No No Yes

Opera No Yes Yes No

Safari Yes No No Yes

Safari Mobile No No No Yes

* Microsoft announced that it would support H.264, but IE9 was unable to play MP4 format at the time of testing the beta version

of the browser.

Given the array of compatibility between browsers and fi le formats, you need to know how
to convert between the diff erent formats. Th is next section examines how to do that. Th e
conversion needs to happen fi rst between the fi le type used by the recording instrument (a
camera or screen-sharing application) or video-editing soft ware. Th e second type of conver-
sion is between the video fully prepared for the Web and the possible types of fi les required
for HTML5 pages. Once all the types of fi les needed are ready, all you have to do is place them
in <source> tags within a <video> container.

MAKE MINE WEBM: THE MIRO VIDEO CONVERTER

Of all the fi le formats tested, only Opera worked with the WebM format. However, several
other companies who make browsers are also involved in the WebM project, and so in the

Letting the pundits do their job
Technology pundits seem to dwell on the complex and interesting issues surrounding why different
companies have chosen particular formats. Apple, Microsoft, Google, Opera, Adobe, and Mozilla
selected the fi le formats they did for reasons that have to do with patents, use rights, licenses, and
fi nancial considerations, as well as integrating the technology into other plans they may have. All you
need to be concerned with is what works for your Web sites — wondering why one technology is
preferred over another by the browser providers is best left to the pundits. You just need to know what
will work and how to implement it.

17_977279-ch11.indd 21917_977279-ch11.indd 219 10/28/10 10:15 PM10/28/10 10:15 PM

220

PART III: MEDIA IN HTML5

future, it may prove to be a more important format than it currently is. More information
about WebM can be found at the WebM Project site at www.webmproject.org.

One conversion program that was tested and for WebM was the Miro Video Converter. It’s
simple to use and provides many conversion options — not just to and from WebM. Figure
11-3 shows the Miro Video Converter converting an MP4 into a WebM fi le.

Figure 11-3: Converting fi les using Miro Video Converter.

Th e Miro Video Converter is available free of charge at www.mirovideoconverter.com.
Th e conversion process involves dragging or loading the fi le to be converted to a central
window and then clicking a Convert button. It’s very simple and adaptive.

For .ogv fi les, select Th eora from the menu and then click the Convert button. Th e resulting
fi le has the extension .theora.ogv, but by removing the .theora, you can run it fi ne with
just the .ogv extension. In converting from an .mp4 fi le to the .ogv fi le, the fi le size was
reduced from 54MB to 11MB — a fi vefold reduction.

17_977279-ch11.indd 22017_977279-ch11.indd 220 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

221

CONVERTING TO 3GP: ADOBE MEDIA ENCODER CS5

In converting to 3GP format for displaying on mobile devices, Adobe Media Encoder CS5
(AME) was found to provide many advantages. Th e encoder ships with several diff erent
Adobe products, and for this book I tested it with Adobe Premier while editing MP4 fi les
generated by a high-defi nition (HD) video camera.

Besides having the ability to convert fi les into 3GP format, AME was able to do some basic
editing itself. Th e most important function was to reduce the dimensions of the video and,
therefore, the fi le size and the amount of time it took to stream the video over the Internet.
Th is is especially crucial for mobile devices.

Figure 11-4 shows a fi le that natively was saved in a 720 x 480 format. Th en it was reduced to
320 x 212. Typically, videos are formatted in a 4:3 ratio. However, HD format of the video
camera used is 16:9, so the dimensions are wider than what you could expect in a video
created using a built-in webcam on your computer. When preparing video for the Web, that
can be a major consideration. Likewise, when setting the width and height attributes in a
<video> tag, don’t forget the changed dimensions.

Figure 11-4: Converting fi les using Adobe Media Encoder.

As you can see in Figure 11-4, AME provides a good deal of fi le information. In the left panel,
it visually displays the fi le you’re currently working with.

17_977279-ch11.indd 22117_977279-ch11.indd 221 10/28/10 10:15 PM10/28/10 10:15 PM

222

PART III: MEDIA IN HTML5

When the conversion is complete, AME provides a number of diff erent generic display
formats. For example, Figure 11-5 shows what you can expect to see in a mobile device with a
horizontal display.

Figure 11-5: Displaying video in Adobe Device Central.

In looking at Figure 11-5, you have an excellent idea of what your video is going to look like
in the target device. Adobe Device Central provides several diff erent views so that you can
optimize the video prior to placing it on the Web.

MAKING VIDEOS FOR THE WEB

Before turning to the many attributes of the video element, this section considers the whole
issue of creating videos and saving them on your computer. Th e range of types of video
available for showing on the Web is wide, and making and storing them is equally varied.
Here only four are considered:

 Webcams
 Small camcorders
 Standard camcorders
 Screen video capture

Th e focus is on getting the materials from the camera into a fi le format that can be used
immediately or converted for use with HTML5.

17_977279-ch11.indd 22217_977279-ch11.indd 222 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

223

WEBCAMS

At the time of this writing, most laptop computers come bundled with built-in webcams.
Likewise, many desktops do as well. For computers that do not come with built-in webcams,
several are available that can be connected to the USB port.

For Windows 7 users, the best soft ware for making videos with the webcam is usually that of
the webcam manufacturer. For example, both Logitech and Creative, two companies that
manufacture webcams, have excellent soft ware that both records and stores video fi les that can
be converted for Web use. You also can add special eff ects with the soft ware to your videos.

Also, with Windows 7 and Vista, you can download the newest Microsoft Movie Maker
soft ware free from: http://explore.live.com/windows-live-movie-maker.
Unlike Windows XP, which comes packaged with Windows Live Movie Maker, you have to
download the movie-making soft ware from Microsoft if you have the Windows 7 or Vista
versions of the OS.

Apple Macintosh computers generally come with built-in iSight webcams. Both iMacs and
MacBook laptops have webcams embedded in the top-center of the monitors. Th e models
that don’t come with webcams have iSight webcams available that plug into the USB or the
Firewire ports.

For creating videos, the Photo Booth application that comes with Mac soft ware can be used to
create videos. All fi les taken with Photo Booth are saved as QuickTime fi les with the .mov
extension. Th ese are in MP4 format, and if you change the extension from .mov to .mp4,
they’re recognized as the same fi le.

Webcams are useful for certain kinds of video projects. For making instructional videos for
the Web, the instructor can sit in front of the webcam and talk and display materials to the
audience. Making Web pages in HTML5 to provide slides supporting the video presentation
makes creating an instructional package as simple as making virtually any similar presenta-
tion not intended for Web use.

SMALL CAMCORDERS

Th e primary drawback of webcams for making videos that can be embedded in HTML5 is
that they’re tied to a computer — either built in or tethered to a USB or IEEE 1394 Firewire
port. Th is makes mobile use of webcams problematic, even for highly portable laptops.

Wireless webcams are available, but they tend to have a limited range and are more expensive.
However, several highly portable alternatives are available. Th e most common are video
cameras built into mobile phones. Mobile phones used during the protests following the 2009
Iranian elections provided worldwide exposure of the government retaliation against those
who protested election fraud. Because Western journalists were banned from covering the
election aft ermath, the news coverage was provided by video from mobile phones broadcast
on YouTube and announced through Twitter.

17_977279-ch11.indd 22317_977279-ch11.indd 223 10/28/10 10:15 PM10/28/10 10:15 PM

224

PART III: MEDIA IN HTML5

A new generation of small HD camcorders have been introduced that are fully portable
and save video in a solid state format. For example, the Flip Mino HD with dimensions of
3.94" x 1.97' x 0.63" (H x W x D) is smaller than many mobile phones. Figure 11-6 shows a
typical Flip with a company logo embedded in the camera.

Figure 11-6: Small high-defi nition camcorders are adapted for the Web.

Besides Flip, HD video cameras also are available from Kodak, in the form of the Kodak
Pocket Video camcorder. Both the Flip and Kodak camcorders are solid state recorders, so no
digital video tapes or removable fl ash memory cards are required — just as none is required
for mobile phones. Th e small camcorders come packaged with limited video-editing soft ware
and save video in H.264 format on both Windows and Macintosh computers.

Th e quality of the video is as high as much larger and more expensive camcorders, and they’re
far more portable. Th ey were designed from the ground up for use in creating videos for
social-networking sites like Facebook and YouTube; as a result, their native output fi les are
custom-ordered for displaying with HTML5 video elements.

STANDARD CAMCORDERS

Th e term standard here refers to handheld camcorders with such features as zoom lenses,
mini DV tape cassette storage, fl ash memory cards, and other features that can be placed on
larger platforms. Th e gamut of camcorders has widened to the point where the range is from
inexpensive ones used for personal family recordings all the way to those used by independ-
ent fi lmmakers.

Like the (really) small camcorders the standard ones come with USB or IEEE 1394 Firewire
connectors. Th e connectors can them be fed directly into video-editing soft ware like Adobe
Premier, Apple Final Cut, or Vegas. Th e edited video can then be saved to a format that can be
used by HTML5 browsers.

17_977279-ch11.indd 22417_977279-ch11.indd 224 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

225

SCREEN VIDEO CAPTURE

Screen video capture treats your desktop as a video recording, and a microphone connected
to or built into your computer as a video-recording microphone. For example, one of the most
established screen-video-capture soft ware packages is Camtasia. It’s easy to use and has
several features for zooming, panning, and generally simulating a camcorder aimed at your
screen. Figure 11-7 shows the basic controls.

Figure 11-7: Screen-video-capture software makes a live recording of your desktop.

Basically, all that Camtasia requires is for the user to select the screen and the microphone
and click the Rec button (as shown in Figure 11-7). Available for Windows 7 and Macintosh
OS X, it’s a widely used soft ware package for trainers and educators who work on a project on
the screen so that viewers can follow along.

Another screen video capture application can be found as part of the Apple Quick-Time
Player. It automatically saves fi les in .mov (.mp4) format that are ready to be used with an
HTML5 Web site. Th e recording process is extremely easy, and other than selecting the
microphone, it’s a one-step start-and-stop recording operation.

VIDEO AND SOURCE ATTRIBUTES

Several diff erent attributes for the <video> and <source> tags are essential for successful
video deployment in HTML5. Once you’ve created, edited, and converted video for the Web,
the next step is to place them in the Web page. Th is section covers the following video
element attributes:

 src

 poster

 preload

 loop

 autoplay

 controls

 width and height

Th ese attributes of the <video> tag are discussed in concert with the <source> tag because
not all browsers read the same fi le types, so several diff erent sources must be listed. Th e
<source> tag allows the browsers to choose which video fi le is compatible with their own
video display functions (as was shown at the beginning of the chapter).

17_977279-ch11.indd 22517_977279-ch11.indd 225 10/28/10 10:15 PM10/28/10 10:15 PM

226

PART III: MEDIA IN HTML5

SRC

Th e type attribute is part of the <source> tag. As shown at the beginning of the chapter,
the src attribute is used to select a video fi le to play. If the browser can’t play the assigned
fi le type, it drops down to the next fi le in the source list. To speed up that process, the type
attribute lets the browser know what kind of fi le is waiting to be played and contains a MIME
parameter that tells it which codec is in use. Th is saves the browser from attempting to load
the fi le and failing. Instead, it determines from the type information whether the video fi le
is compatible.

<source src=”fileName.ext” type=”video/type; codecs=’c1, c2’”>

Th e type assignment can be made with or without the codec. If you don’t know the codec, you
can leave it blank and rely on the type to let the browser know whether it can play the fi le. If
you know the codec or multiple codecs, you can place more than one codec in the codecs
assignment list. Where you’re not sure you’re better off leaving the codecs assignment blank.
Th e following (TypeVideoSource.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows the type assignments for the four major types of video fi les you can
use on the Web.

<!DOCTYPE HTML>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Selective Video</title>

</head>

<body>

<video controls preload=”auto”>

 <source src=”mbAux1.3gp” type=”video/3gpp; codecs=’mp4v.20.8’”>

 <source src=”mbAux1small.mp4” type=”video/mp4; codecs=’mp4v.20.8’”>

 <source src=”mbAux1small.ogv” type=”video/ogg; codecs=’theora, vorbis’” >

 <source src=”mbAux1small.webm” type=”video/webm; codecs=’vorbis,vp8’” >

</video>

</body>

</html>

To determine the type and codec of a fi le, you can fi nd several diff erent programs on the Web.
One available at no cost with versions for Windows, Macintosh, and several diff erent Linux
operating systems is MediaInfo available at http://mediainfo.sourceforge.net/en.

POSTER

Th e poster attribute is used with large videos and slow Internet connections. It’s simple to
use, and if you know that it’ll take a while for your video to come to the screen and begin
playing, the poster gives the user something to look at while waiting. Th e format is simple as
shown in the following snippet:

17_977279-ch11.indd 22617_977279-ch11.indd 226 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

227

<video poster=”message.png”>

 <source src=”multiformats/mbAux1.mp4” type=”video/mp4”>

</video>

Notice that the poster attribute is in the <video> tag even though all the fi le information
is in the <source> tag. Th ere is no confl ict between the video attributes and those in source.

PRELOAD

Th e preload attribute of the <video> tag would seem like a natural to include in all Web
pages that use video. As soon as the page loads, the video starts loading. Th at may be impor-
tant for a page with a single video as the main feature of the page. However, if it’s a minor part
of the page or if several videos are on a single page, preloading can gobble up resources. So,
while useful, the attribute needs to be employed judiciously. It uses the following format:

<video preload=”auto”>

 <source src=”mbAux1small.webm” type=”video/webm; codecs=’vorbis,vp8’” >

</video>

Th e preload attribute has several values it can be assigned. Th ey’re identical to audio
preload values.

 none: Having none as a value may seem strange, but some browsers may be set to
automatically preload video fi les. However, if the chance of using a particular video is
remote, the developer may decide not to use Internet resources and so assigns the none
value to the preload attribute.
 metadata: All video fi les have metadata like duration, width, height, or some other data
placed in the source fi le. When the chance of using a video fi le is low, loading the
metadata is reasonable and doesn’t take up much Internet resources.
 auto: If the preload attribute is present, it automatically preloads the audio fi le
information. Th e auto assignment simply acts as a reminder that the fi le is going to
preload (same as not having any value assignment to a preload attribute).

Th e more varied your audience and the more video in your Web site, the more you want to
provide the preload attribute with options.

LOOP

A video loop is something that you must plan carefully lest you run off all your viewers. A
loop means that the same video is going to start from the beginning again as soon as it ends.
Th e following is an example:

<video loop controls>

 <source src=”phantom.3gp”>

</video>

17_977279-ch11.indd 22717_977279-ch11.indd 227 10/28/10 10:15 PM10/28/10 10:15 PM

228

PART III: MEDIA IN HTML5

Notice that in the above snippet, a controls attribute is included. Th at’s so users can stop it
if they want. If you set up a loop with autoplay and embed it in your page, you may lose a lot
of viewers. If you create a loop advertisement, don’t expect people to be attracted to the
advertised service or product — they’ll notice it, but not in a good way.

Th ere is a certain type of loop, more noted in music than in video, that can be useful. If it’s
short enough and doesn’t have big movements, a loop can take up very few resources and
reuse the same video stored in a cache. A demonstration of a process or even an ad that is not
annoying can be used in this fashion.

AUTOPLAY

Like the loop attribute, the autoplay attribute needs to be used with some forethought
when employed with video. Th e autoplay is a combination of preload and automatically
starting the video playing. Th e format is a Boolean one and setting the autoplay in the
<video> tag is all it takes to start it.

<video poster=”wait.jpg” autoplay>

 <source src=”phantom.3gp”>

</video>

In the above snippet, the user has no control to stop the video from playing, but without a
loop attribute, it will just play once and stop. If the page is meant to be nothing but the video,
it’s fairly safe to use autoplay without a controller. Also, the snippet has a poster to let the
view know what’s coming, just in case there’s a long load. In the context of a Web site when
using autoplay, be sure to include a link for the next page just in case the user doesn’t want
to view the video more than once.

CONTROLS

Th e controls attribute generates a graphic control panel beneath the video. It allows the
user to perform the following functions:

 Start the video
 Stop the video
 Mute the video
 Control the sound volume
 Time position
 Scrubber control

Th e controls attribute is a Boolean and is implemented as shown in the following snippet:

<video controls>

 <source src=”multiformats/mbAux1small.webm”>

</video>

17_977279-ch11.indd 22817_977279-ch11.indd 228 10/28/10 10:15 PM10/28/10 10:15 PM

CHAPTER 11: VIDEO

229

Th e implementation of the controller is slightly diff erent on the diff erent browsers (as they are
on the audio controller). Figure 11-8 shows the Opera and Chrome browsers displaying the
same video.

Figure 11-8: The Opera (left) and Chrome browsers displaying video controller.

Th e diff erences in the controls are mostly style, but as you can see in comparing the Opera
and Chrome browsers, the Opera browser displays the time in the current video relative to the
total time, while the Chrome browser shows only the current time position of the video.

WIDTH AND HEIGHT

Unlike audio, the width and height attributes in video are very important. Th e browsers
use the width and height values as hints in rendering the video. Th e closer the values to
the actual size, the better the video looks. Th e following shows the format:

<video width=”352” height=”288”>

 <source src=”multiformats/mbAux1small.ogv”>

</video>

Most videos maintain a 4:3 ratio such as 320 x 240; however, with HD, the ratio is diff erent,
and sometimes editing has changed a video’s dimensions. You can select a video fi le and look
at its properties, but sometimes you won’t be given the dimensions. For example, on a
Macintosh OS X, dimension information for .ogv and .webm fi les was not provided in a
properties query (Ô + I) Th e same video in an MPEG4 format, though, showed the
dimensions.

TAKE THE WHEEL

Th is exercise requires a video camera, and it doesn’t matter whether it’s a webcam or a
high-end video camcorder. If you’ve ever seen a presentation given with Microsoft Power-
Point, you know that as a person speaks, the speaker points to diff erent slides with graphics
and text. For this exercise, think of something you’d like someone else to understand. Using a

17_977279-ch11.indd 22917_977279-ch11.indd 229 10/28/10 10:15 PM10/28/10 10:15 PM

230

PART III: MEDIA IN HTML5

combination of images, video and text to create a three-page Web presentation. As users go
from one page to another, the video on each page starts automatically, but they have a
controller to stop it or make other viewing changes. Include an image to illustrate the topic
and text to explain what the presentation is all about. You can sit in front of a webcam to
make the video.

17_977279-ch11.indd 23017_977279-ch11.indd 230 10/28/10 10:15 PM10/28/10 10:15 PM

PA
R

T

IV

IV DYNAMIC HTML5
TAGS PLUS A
LITTLE JAVASCRIPT
AND PHP

Chapter 12: Adding Just Enough JavaScript

Chapter 13: Thundering Your Site with Canvas

Chapter 14: Adding Forms

Chapter 15: Embedding Objects and Storing Information

Chapter 16: Catching Interactive Data

18_977279-pp04.indd 23118_977279-pp04.indd 231 10/28/10 10:14 PM10/28/10 10:14 PM

18_977279-pp04.indd 23218_977279-pp04.indd 232 10/28/10 10:14 PM10/28/10 10:14 PM

SMASHING HTML5

C
H

A
P

T
E

R

12

ADDING JUST
ENOUGH
JAVASCRIPT

12
JAVASCRIPT IS A Web programming language
that you can use with HTML5. It can be used to
access certain parts of your Web pages written in
HTML5 and do other things that simply cannot
be done without JavaScript. Th is chapter intro-
duces some basic features that are going to be
used specifi cally with HTML5 elements.

JavaScript is considered a scripting language
because it’s interpreted by the browser at runtime
(when you actually open a Web page) rather than
compiled and stored on your computer as a binary
fi le. Slightly diff erent versions of JavaScript can
creep in with diff erent implementations of the

language on diff erent browsers. Because JavaScript
meets an ECMAScript standard (ECMA-262),
these diff erences are slight, and what I’ll be
discussing in this chapter are only those aspects
of JavaScript that you can use with HTML5.

Finally, JavaScript and Java have nothing in
common — JavaScript is not based on an
interpreted version of Java. Th ey could be named
dogs and cats or apples and oranges for all they
have in common. Th e name with java in it
sounded better. So, if you want to look up
something on the Web about JavaScript, you
won’t be helped if you just look for Java.

19_977279-ch12.indd 23319_977279-ch12.indd 233 10/28/10 10:14 PM10/28/10 10:14 PM

234

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

INSERTING JAVASCRIPT INTO HTML5 PAGES

JavaScript programs are placed in the head of a Web page because that part of the Web page
loads fi rst, so it’s ready when the rest of the page loads. Th ey act very much like CSS3 scripts,
and like CSS3 scripts, they can be placed in other places than the page’s head. However,
for this chapter, I’ll keep it simple and all JavaScript will be in the head. For example, try
the following program (js1.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5).

<!DOCTYPE HTML>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <script type=”text/javascript”>

 document.write(“A chat with HTML5 is taking place shortly....”);

 </script>

 <title>First JavaScript</title>

 </head>

 <body>

</body>

</html>

When you test the program, you’ll see text on your page and nothing else. Th e key to under-
standing the relationship between HTML5 and JavaScript is in the function: document.
write(). Th e document refers to the Web page, and write() is a method that tells the
Web page what to do. In this case, write() instructs the program to write the text in
quotation marks to the Web page.

JAVASCRIPT IN EXTERNAL FILES

Just like CSS3 fi les, you can create JavaScript programs in text fi les and save them externally.
Th e .js extension is used to identify JavaScript fi les. For example, the following JavaScript
program is just one line:

document.write(“This is from an external file...”);

Save it as externalJS.js in a text-fi le format. Next, enter the following HTML5 program
and save it in the same folder as the externalJS.js program. Th e key part of the page is
the <script> tag that’s used to specify the JavaScript program to use.

<!DOCTYPE HTML>

<html>

<head>

<script src=”externalJS.js”></script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>External JavaScript</title>

</head>

<body>

</body>

19_977279-ch12.indd 23419_977279-ch12.indd 234 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

235

When the Web page opens, you see the contents of the document.write() statement. Th e
write() method is just a built-in function that expects a line of text to display on the screen.
In this case, the text is from an external fi le; otherwise, it’s the same as embedding it in a Web
page script.

FUNCTIONS

JavaScript functions are packages of code that are launched when called by the Web page. Th e
advantage of functions is that you can use them to package code and make changes to add
new content. Th e built-in write() function only requires that you enter some text for it
print to the document (Web page). You don’t have to rely on built-in functions but can create
your own. For example, the following is an external JavaScript program with a simple
function that opens an alert() function. (A user function using a built-in function.) Save
the following JavaScript program as nameMe.js:

// JavaScript Document

var name=”Little Willie Hacker”;

function getName(someName)

{

 alert(someName);

}

getName(name)

All functions are followed by parentheses. If required, the developer can put a parameter in
the parentheses. In this case, the parameter is called someName. When the function is
called, the developer places a name, a number, or anything else desired in the space where
someName is. In this case, a variable labeled name is assigned the value Little Willie
Hacker. At the bottom of the program, the line, getName(name) calls the function, placing
the variable into the parameter. Th e function passes the value of the variable to the alert()
function within the getName() function, so you can expect to see an alert box on the screen
when the program launches. Th e following HTML5 (JSfunction.html in this chapter’s
folder at www.wiley.com/go/smashinghtml5) calls the JavaScript that calls the
function.

<!DOCTYPE HTML>

<html>

<head>

<script src=”nameMe.js”></script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>External Function</title>

</head>

<body>

</body>

</html>

Th at JavaScript program launched as soon as the page loads. A more important use of
JavaScript functions lies in its ability to wait for the JavaScript until it needs it. Th e next
section shows how.

19_977279-ch12.indd 23519_977279-ch12.indd 235 10/28/10 10:14 PM10/28/10 10:14 PM

236

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

EVENT HANDLERS

Th e real power of JavaScript with HTML5 can be better seen when the program waits until
the user does something to launch a script. For example, if the user clicks something, you can
launch any JavaScript program you want. You use an HTML5 event handler. Th e page detects
some kind of action (an event) and has a built-in function that recognizes the event.

HTML5 recognizes a lot of events. Some of the events occur automatically — such as when
the page loads. Other events occur when users do something with the mouse or keyboard.
Th e elements in Table 12.1 shows a sample of some of the diff erent events handlers.

Table 12.1 A Sample of HTML5 Event Handlers

onchange onclick ondbleclick ondrag ondragend

ondragenter ondragleave ondragover ondragstart ondrop

onkeydown onkeypress onkeyup onmousedown onmousemove

onmouseout onmouseover onmouseup onmousewheel onpause

onplay onplaying onprogress onloadstart onload

Th e general format of all events linked to elements is:

<element onEvent = “javascriptFunction()”>

For example,

<body onLoad = “announceSomething()”>

uses the body element with the onLoad event handler to fi re a JavaScript function named
announceSomething().

Detecting a variety of events
To see how event handlers work with JavaScript, the following program (ClickDetect.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) has three diff erent
event handlers and three diff erent JavaScript functions that are launched by the events. Th e
fi rst one sends out an alert when the page loads, the second fi res when the top link is clicked,
and the third launches an alert when the second link is double-clicked.

<!DOCTYPE HTML>

<html>

 <head>

<style type=”text/css”>

h1, h2 {

 font-family:Tahoma, Geneva, sans-serif;

}

19_977279-ch12.indd 23619_977279-ch12.indd 236 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

237

a {

 text-decoration:none;

 color:#060;

}

</style>

<script type=”text/javascript”>

function detectLoaded()

{

 alert(“Page is loaded.”);

}

function detectClick()

{

 alert(“You clicked a link.”);

}

function detectDoubleClick()

{

 alert(“You double-clicked another link.”);

}

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Event Handler</title>

 </head>

 <body onLoad=”detectLoaded()”>

 <hgroup>

 <h1> Click This</h1>

 <h2> Double-Click This

 </h2>

 </hgroup>

</body>

</html>

Th e JavaScript functions can be whatever you want them to be, which enables you to interact
far more with the users. You can provide instructions, options, cautions, or whatever you want.

Handling with any element
In the “click” area in the previous program, a link tag, <a>, is used to set up the event handler,
using the following format:

Th at kind of code is nothing new to HTML5. It’s used here for one simple reason: When the
mouse moves over the text within the <a> tag, the cursor changes so that users know that
they’re over linked text.

However, you can set up an event handler in any element. For example, consider the following
Web page (ClickP.html in this chapter’s folder at www.wiley.com/go/smashing
html5).

19_977279-ch12.indd 23719_977279-ch12.indd 237 10/28/10 10:14 PM10/28/10 10:14 PM

238

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

p {

 font-family:Verdana, Geneva, sans-serif;

 color:#FF0;

 background-color:#00F;

 font-size:24px;

 text-align:center;

 font-weight:bold;

}

</style>

<script type=”text/javascript”>

function showArticle()

{

 alert(“You just clicked within a <article> container”);

}

function showHeader()

{

 alert(“You just clicked within a <header> container”);

}

function showP()

{

 alert(“You just clicked within a <P> container”);

}

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>OnClick in any Element</title>

</head>

<body>

<article onClick=”showArticle()”>

 <header onClick=”showHeader()”>

 <h1>This is an H1 Element in the Header</h1>

 </header>

 <section>

 <p onClick=”showP()”>Click This Paragraph</p>

 This is just plain old text in the article container. Click here just to see

what happens. </section>

</article>

</body>

</html>

In looking at the above program, you may have noticed that some events are embedded inside
other elements that also have event handlers. For instance, all the elements are inside the
<article> tag. What will happen when you click on the paragraph that has an event

19_977279-ch12.indd 23819_977279-ch12.indd 238 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

239

handler? Or the <header>? Are they just going to react to the innermost or outermost
event? Look closely at both panels in Figure 12-1.

Figure 12-1: Nested event handlers.

In the top panel, as soon as a user clicks the line “Click Th is Paragraph,” the event is reported
in the alert box (top panel). Th en, when the user clicks the OK button in the JavaScript
pop-up, the second alert appears letting him know that he’s clicked in the <article>
container as well. One way of looking at the events is bubbling up, beginning in the lowest
level in the hierarch of elements and then bubbling up to the topmost level.

USING THE DOCUMENT OBJECT MODEL

Th e Document Object Model (DOM) for HTML5 represents a hierarchy tree. At the base
(root) of every Web page or document is the <html> tag, and the rest of the elements in the
page are a branch somewhere along the tree. JavaScript uses the DOM for addressing and
manipulating a Web page beyond what you can do with HTML5 alone. Th e entire DOM tree
is a representation of the document that resides in your computer’s memory.

When any part of the DOM tree is addressed, it does so by referencing an element within the
tree, beginning with document. Each element in the tree is addressed in order of the
hierarchy beginning with document. Th e diff erent elements in a Web page are the diff erent

19_977279-ch12.indd 23919_977279-ch12.indd 239 10/28/10 10:14 PM10/28/10 10:14 PM

240

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

properties or methods (built-in functions) of the document separated by a dot (.). For
example,

document.forms.fred;

addresses a form named fred within a document. Th e HTML5 markup looks like the
following:

<form name= “fred”>

Other times, you’ll see a built-in function that does something with the document such as,

document.write(“This is straight from the Document”);

which prints text on the screen. Also, the window root along with the document has several
built-in functions that are useful for manipulating viewing areas of a Web page.

HOW THE DOM WORKS WITH YOUR PAGE AND JAVASCRIPT

To get a better sense of how the DOM works with your page and JavaScript, it helps to
see what can be done with a Web page’s windows — the viewing part of your Web page.
Th e following (PageOpener.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how to load a new Window from a current document, leaving
the current page in place.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

a {

 text-decoration:none;

 color:#cc0000;

 font-size:24px;

}

header {

 text-align:center;

}

</style>

<script type=”text/javascript”>

function someOtherWindow()

{

 window.open(“OtherWindow.html”,”ow”,”width=400,height=200”);

}

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Open Other Page</title>

</head>

19_977279-ch12.indd 24019_977279-ch12.indd 240 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

241

<body>

<header> Click to Open New Window </

header>

</body>

</html>

Th is page requires a second page to open as a separate window. Th e following (OtherWindow.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) provides a page to
open and, at the same time, the DOM-based script to close the open window.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

h1,h4 {

 font-family:Verdana, Geneva, sans-serif;

 color:#930;

}

a {

 text-decoration:none;

 color:#cc0000;

 text-align:center;

}

</style>

<script type=”text/javascript”>

function shutItDown()

{

 window.close();

}

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Other Window</title>

</head>

<body>

<h1>This window has an important message. . . .</h1>

<h4>Stand by while I figure out what it is. . . .</h4>

Shut the window!

</body>

</html>

Figure 12-2 shows what you can expect to see when the Web page opens as second window.

Up to this point in the book, when one page has linked to another page, the current page has
disappeared as soon as the user clicks a link. However, with this little JavaScript, you can
“talk” directly to the page and tell it you want a new window of a specifi ed size to open while
your current window stays open.

19_977279-ch12.indd 24119_977279-ch12.indd 241 10/28/10 10:14 PM10/28/10 10:14 PM

242

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 12-2: Opening a second window.

HTML5 ELEMENTS AND THE DOM

In order to give you a better idea of how to work with the DOM in HTML5, certain new
elements require DOM references within the tags themselves. One such new element is the
<output> tag. At the time of this writing, Opera was the only browser that had fully
implemented this new element, so you might want to test it initially with Opera. Before you
incorporate it fully with your site, test it with all the other browsers because you may fi nd it
very useful as a key HTML5 element.

When you use the <output> tag, you can place the results of a calculation directly on the
Web page. You don’t have to build a JavaScript function or even a script. However, the
materials within an <output> tag must follow the same DOM rules as with JavaScript
proper. Th e output container doesn’t require content between the opening and closing tags.
However, all the calculations must be within the <output> tag itself.

Th e output element works in conjunction with the <form> tag that is covered in detail in
Chapter 14, but for now the focus is on the DOM structure in the <output> tag’s use. Th e
following script (shoppingOutput.html in this chapter’s folder at www.wiley.com/
go/smashinghtml5) shows how to incorporate the element in a functional HTML5 page.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*042B45,FFC54F,FFE6BF,E8A5B5,FF0A03*/

body {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#FFE6BF;

 color:#042B45;

}

19_977279-ch12.indd 24219_977279-ch12.indd 242 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

243

input {

 background-color:#FFE6BF;

}

h1 {

 color:#E8A5B5;

 background-color:#042B45;

 text-align:center;

}

h3 {

 color:#FFC54F;

 background-color:#FF0A03;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple Shopping Cart</title>

</head>

<body>

<header>

 <h1>Shopping Calculator</h1>

</header>

<form>

 <input name=cost type=number>

 Cost

 <input name=tax type=number>

 Tax--Enter as decimal percent (e.g., .06)

 <h3> Total = $

 <output onforminput=”value = cost.valueAsNumber * tax.valueAsNumber + cost.

valueAsNumber”></output>

 </h3>

</form>

</body>

</html>

Th e <form> tag has no information beyond the tag itself. For this application, it needs none.
Within the <form> container, two input forms are named cost and tax. In the context of
the DOM, each is an object with certain properties, one of which is valueAsNumber.
Whatever number character is in the input form is treated as an actual number instead of a
text character. Th e valueAsNumber is a property of the <input> tag and not the number
type that was used in this example. (We could’ve used a text value for the input type and had
the same results using the <output> tag.) Th e number input form has a “spinner” type of
input window, but values in the input window are not automatically converted into numeric
data. Figure 12-3 shows the results of the Web page in an Opera browser (the only HTML5
browser that had implemented the onFormInput event handler at the time of this writing).

Notice how the onFormInput event handler works. As information is entered into the
form, the results are calculated and displayed. Initially, the result is NaN (Not a Number)
because the tax entry is null, resulting in a non-number result. However, as soon as the
tax is entered, the output changes to a number.

19_977279-ch12.indd 24319_977279-ch12.indd 243 10/28/10 10:14 PM10/28/10 10:14 PM

244

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 12-3: Using the <output> tag for calculations in Opera browser.

STORING TEMPORARY VALUES

In this brief snapshot of JavaScript, we’ve looked at a great deal, so if some of it escapes you,
don’t worry. Most of what you need to know about JavaScript in the context of HTML5 is
working with the DOM. In this section, I show you how data are temporarily stored in your
computer’s memory when looking at a Web page. Users can enter data by clicking a button, a
check box, a radio button, or a link, or by using the keyboard. (All of this will be related to
what happens with the DOM — trust me.)

In order to use the information that users enter, JavaScript has ways to both store it in
memory and make it available later in the session. By examining the diff erent structures in
JavaScript, you can get a sense of how this happens.

VARIABLES

A variable is something that changes — it varies. You can think of a variable as a box with a
label on it. For example, you might have a box with the label “MobilePhone.” In the box, you
can place only one thing. You can change what’s in the box — what we call the box’s value. So,
if you have iPhone in your MobilePhone box, you can take it out and put in either a diff erent
iPhone (a newer model) or a diff erent phone such as an Android. Now, the box has a diff erent
value. Th e label-value pair (or name-value pair) is the combination of the variable’s label and
its current value.

You don’t have to put in the name of a mobile phone in the MobilePhone box. You can put in
anything you want — a tin-can walkie-talkie or a pink elephant. Assign whatever value you
want and any type of value, including another variable. If I wanted, I could put in a number — a
real number, not just one that identifi es something such as a street address. However, a good
and practical practice is to use variable names that can be associated with what you expect to

19_977279-ch12.indd 24419_977279-ch12.indd 244 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

245

put in (or assign to) the variable. For example, if you’re making a Web site that expects to be
used to enter prices and tax (as was done in the previous section, “HTML5 elements and the
DOM”), it makes sense to use meaningful variable names such as “cost” and “tax.”

To create a variable, you simply provide a name and assign it a value. For example,

billVar=”Brought to you by Bill’s variable.”;

alert(billVar);

creates a variable named billVar. It then assigns it the value Brought to you by
Bill’s variable. When the variable is placed in the alert function, notice that no
quotation marks surround the variable.

Types of data
When you assign values to a JavaScript variable, you can assign any kind you want and then
change it to a diff erent type. First, though, you need to have an idea of the diff erent types of
data that are available. Th e following list provides a brief description of each:

 String: Treated as text, typically in quotation marks
 Number: An actual number (integer or real) that responds to math operations
 Boolean: A two-state (true or false, 0 or 1) data type
 Function: A set of JavaScript operations contained in a module
 Object: An encapsulated collection of properties (variables/arrays) and methods
(functions)

You’ve seen how string variables work. When you put numbers into a string, they’re treated as
text instead of numbers. For example, the following string treats the “123” exactly like “Elm
Street” — as text.

funHouse=”123 Elm Street”;

Likewise, if you used the following assignment, you’d still have text and the results would
show it:

firstNumber=”123”;

secondNumber=”7”;

total=firstNumber + secondNumber;

document.write(total);

Instead of showing “130” the results show “1237.” Next try the following:

firstNumber=123;

secondNumber=7;

total=firstNumber + secondNumber;

document.write(total);

19_977279-ch12.indd 24519_977279-ch12.indd 245 10/28/10 10:14 PM10/28/10 10:14 PM

246

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Now, the results show “130” as expected when you add numbers. Whenever the plus (+)
operator is used with text, it’s called concatenation and simply strings everything together. If
you put any kind of text in a list of numbers to be added, and only one of the numbers is text,
all the rest will be treated as text and concatenated.

Different types of variables together
Th e following program (SimpleVariable.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) uses all the diff erent kinds of data. You’ll have to look closely at
the diff erent data types to determine the expected results. Th e comments in the code should
help you see all the JavaScript data types.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

/*BAD9CB,048C3F,7BA651,F2BE5C,F2A950 */

body {

 background-color:#BAD9CB;

 font-family:Verdana, Geneva, sans-serif;

 color:#048C3F;

}

</style>

<script type=”text/javascript”>

function advertisement()

{

 billVar=”Brought to you by Bill’s variable.”;

 return billVar;

}

//Variable with function

popUpAd=advertisement();

document.write(popUpAd);

//Variable with HTML5 code

cr=”
”;

document.write(cr);

// Variable with string

funHouse=” Elm Street”;

// Boolean variable

var fate=true;

// Variable with string

query=”Will I find true happiness in HTML5? The answer is: “;

// Variables with numbers

fun=100;

house=23;

// Math with variables

funPlusHouse=fun + house;

// Adding numeric and string variable (concatenation)

showAddress=funPlusHouse + funHouse;

19_977279-ch12.indd 24619_977279-ch12.indd 246 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

247

browser=navigator.platform;

document.write(showAddress);

document.write(cr);

document.write(query);

document.write(fate);

document.write(cr);

document.write(browser);

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple Variable</title>

</head>

<body>

</body>

</html>

Depending on the type of computer you use, the browser variable’s value will be diff erent. (It
certainly varies.) Th e page was run on both a Windows 7 and Macintosh computer to see how
one variable varied. Figure 12-4 shows the diff erent output from the same program.

Figure 12-4: Displaying variable computer types on the screen.

Th e variable value, navigator.platform is an object. Th e navigator object has a
property, platform, that tells what type of computer the browser is running on. In testing the
program in Windows 7 (refer to the top panel in Figure 12-4) with a 64-bit operating system,
the results show Win32. Th at’s because the browsers tested were 32-bit, including an early
version of Internet Explorer 9. Th e MacIntel results (refer to the bottom panel in Figure
12-4) were on a Macintosh computer with an Intel processor displayed on an Opera browser.

19_977279-ch12.indd 24719_977279-ch12.indd 247 10/28/10 10:14 PM10/28/10 10:14 PM

248

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

ARRAYS

A variable can have only a single value at one time. Th e value can be a computed based on a
combination of diff erent values, but once it’s stored inside a variable, it becomes one. For
instance, as shown in the previous section on variables,

firstNumber=123;

secondNumber=7;

total=firstNumber + secondNumber;

Th e variable named total is the sum of the fi rst two variables. It is a single entity. Th is would
be true were they concatenated as well. So, just remember: Variables can have only one value
at a time. Figure 12-5 provides a graphic illustration of the diff erence between variables and
arrays.

Variable Array

TrueLove stuff[0] stuff[1] stuff[2] stuff[3]

Variable name:

TrueLove

Array name:

stuff

Figure 12-5: Storing data in variables and arrays.

As you can see in Figure 12-5, only a single item is stored in the variable named TrueLove,
but the array, stuff, has lots of, well, stuff . You call each one of the stored datum with the
array name with a number in braces. So, stuff[1] is an anchor and stuff[2] is a
calculator.

Some applications require multiple values in a single object, making it easier to recall and
store data. Each value in an array is called an element. You reference each by a number,
beginning with zero (0) and numbered sequentially (refer to Figure 12-5). Suppose you have
an array named fruit. You might assign values as shown here:

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

fruit=new Array();

fruit[0]=”rasberries”;

fruit[1]=”peaches”;

fruit[2]=”apples”;

19_977279-ch12.indd 24819_977279-ch12.indd 248 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

249

fruit[3]=”plums”;

document.write(fruit[1]);

var myFruit=fruit.pop();

document.write(“
” +myFruit + “
”);

document.write(fruit.length);

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Array 1</title>

</head>

</html>

Th e result of the preceding program are the words peaches, plums, and 3 on the screen.
Peaches was pulled out of the array by number reference and placed into a screen output
function. Th en using the pop() method, the element on the top of the array was placed into
a variable named myFruit and displayed to the screen. Finally, the pop() method removed
one element from the array and placed it into the myFruit variable, so now the array has a
length of 3 — and that’s what’s shown on the screen. Each element in an array works just like a
variable. Th e diff erence is that it’s part of a larger object — the array.

OBJECTS

Th e fi nal data type used to store values is an object. (Wasn’t the Array an object? Yep. You’re
already ahead of the game!) All objects are similar to arrays in that they can hold more than a
single value. However, objects have several built-in properties. Th e properties have either
fi xed values (called constants) or values that change depending on the circumstances. Even
the Array object has a built-in property — length. It returns the number of elements in the
array. So, if you add the following two lines to the array program in the previous section,
you’ll see how big the array is:

...

document.write(fruit[1]);

//Add the following two lines

document.write(“
”);

document.write(fruit.length);

Th e value of fruit.length is 4 — it’s always one greater than the highest-numbered array
element because the length is the actual number of elements in the array beginning with the
value 1. (It’s one-based instead of zero-based.)

Some properties of objects are called methods. A method is a function that does something in
relation to the object. For example, an Array object method is pop(). Th e pop() method
returns the last element in the array. It’s a way that you can assign a variable an object’s
method — just as you can assign a variable a function. Let’s fi x up that program from the last
section again. Th is time, the variable myFruit is assigned fruit.pop(). Th at means
whatever is on the top of the array stack is removed. However, if used in a variable assign-
ment, it assigns the removed element to the variable as the following fi x-up of the previous
snippet shows:

19_977279-ch12.indd 24919_977279-ch12.indd 249 10/28/10 10:14 PM10/28/10 10:14 PM

250

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

...

document.write(fruit[1]);

//Add the following three lines

var myFruit=fruit.pop();

document.write(“
” + myFruit + “
”);

document.write(fruit.length);

When you test the program from the previous section with the above changes, you’ll see that
the last added element has a value of plum, and that’s what is printed to the screen. However,
the length is no longer 4, but now 3. Th at’s because the pop() method removes the element
from the array. (By the way, the var in front of the myFruit variable is optional to declare a
variable, but it helps to distinguish it from the array elements in this listing.)

Creating your own objects
If you create a few of your own objects, you can get an idea of how objects work in the DOM.
Also, to help clarify things, from now on, a reference to an object’s properties in general refers
to both properties and methods. However, when I get specifi c in talking about an object’s
individual parts, the reference will be either to a property (some characteristic of the object)
or a method (a function associated with the object).

Making objects is similar to declaring variables and assigning them values. Th e object itself is
sort of a base of operations for doing a lot of diff erent things and having diff erent characteris-
tics. Th e fi rst step is simply to use a name and the keyword new. For example, the following
declares an object named AddingMachine:

AddingMachine=new Object();

Next, to add a property, you invent a new name for the property and assign it a value. Th e
object name and its property are separated by a dot (.). For example, the following adds a
property named firstNumber and assigns it a value of 4:

AddingMachine.firstNumber=4;

Just like a variable, you can change the firstNumber value to something else.

To add a method (a function) is just as easy. However, instead of using a named function, you
use an anonymous one. For example, the following adds the value of two properties for the
AddingMachine object and sends them to the screen:

AddingMachine.total=function()

{

 document.write(this.firstNumber + this.secondNumber);

}

Th e keyword this is a reference to AddingMachine. It’s the same as writing Adding
Machine.firstNumber. Notice also that function() has no name — it’s anonymous.

19_977279-ch12.indd 25019_977279-ch12.indd 250 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 12: ADDING JUST ENOUGH JAVASCRIPT

251

Now it’s time to put it all together and see what happens (see UserObject.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5):

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

AddingMachine=new Object();

//Object properties

AddingMachine.firstNumber=4;

AddingMachine.secondNumber=66;

//Object method

AddingMachine.total=function()

{

 document.write(this.firstNumber + this.secondNumber);

}

//Fire off the method!

AddingMachine.total();

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple Object</title>

</head>

</html>

Note that the method AddingMachine.total() uses the method document.write().
(You can spot methods in JavaScript by looking for the parentheses.) Also, note that to fi re off
the method, the name of the object and function are listed and off it goes. When you test it,
you’ll see that the results are the total of the two properties.

Back to the Document Object Model and browser objects
Th is chapter has covered a lot of territory very quickly. In fact, the last section is the fi rst step
in Object-Oriented Programming (OOP). So, if you didn’t pick up everything, don’t worry.
Th e purpose is to make you more comfortable with the DOM in HTML5. If you understand
terms like properties and methods, they won’t seem as foreign.

As we get into many of the newer features in HTML5, you’ll be better able to navigate through
all the terms and understand what’s going on. In other words, it’ll be easier to learn. Th at
doesn’t mean you have to become an OOP programmer to understand this stuff . It just means
that a little OOP goes a long way toward helping you understand the DOM and browser
objects that come in handy when using elements like canvas.

Th roughout the book, you’ve seen objects that belong to the browser. I didn’t discuss them as
such, but that’s what they are. Th e browser has the following objects that are important to
using HTML5. Included are the following:

 History

 Location

19_977279-ch12.indd 25119_977279-ch12.indd 251 10/28/10 10:14 PM10/28/10 10:14 PM

252

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 Navigator

 Screen

 Window

For example, in the “Types of data” section earlier in this chapter, you saw how the naviga-
tor.platform property was used to fi nd the type of computer in use.

Th e HTML5 DOM itself has far more objects, and the most used is the Document property.
Th e list of objects is the same as the list of elements. So, a list of all the DOM objects is a list of
all elements, plus some others that are used in conjunction with the DOM. For example, the
following are included in the HTML5 DOM but aren’t exactly elements:

 Document

 Event

 Image

 Link

 Meta

Some of these objects we see in tags. For example, the image object is seen in the tags.
Its properties are similar to the img element’s attributes. Others, like document are implied
in that a Web page is the document. Th e event object is employed in event handling with
methods such as onClick. Th e rest are elements, so they should be familiar. But instead
of attributes in a tag, expect to fi nd properties with the same names and functions as equiva-
lent attributes.

TAKE THE WHEEL

Data sources are important to understand, and one way to understand them is to practice
using diff erent types. Th e challenge is to do the following:

 1. Select a string — one of your favorite sayings or pieces of information. For example,
“All objects are made up of properties and methods.”

 2. Assign the string to a variable and use document.write() to send it to the screen.
 3. Break down the string into several separate words and place each word into a

diff erent array element and then using the array.pop() method and document.
write() to display them on the screen in a single message.

 4. Finally, create an object with a property that is assigned the string that you’ve
selected. Create a method for the property that displays the string to the screen.

19_977279-ch12.indd 25219_977279-ch12.indd 252 10/28/10 10:14 PM10/28/10 10:14 PM

SMASHING HTML5

C
H

A
P

T
E

R

13

THUNDERING
YOUR SITE WITH
CANVAS

13
ONE OF THE most important additions to
HTML5 is the <canvas> tag. With it, you can
draw just about anything on an HTML5 page.
With just two attributes, width and height,
there’s not a lot to remember about attributes.
However, the canvas element is implemented in
what might be called a Document Object Model
(DOM) style. Chapter 12 describes the DOM in
detail. Essentially, DOM style means writing the
required JavaScript with references to objects and
their methods and properties.

If that kind of talk has you quaking in your
fl ip-fl ops, relax. Th roughout the book, the
HTML5 tags (elements) have used attributes, and
attributes are just properties of the elements. For

the most part, writing JavaScript code is just
assigning values to properties, and since you
know how to do that from assigning values to
attributes — height=”200”, for instance —
there’s less that’s new about writing this kind of
code than you may think.

To help you along, the JavaScript in use employs
what you might call “OOP Lite.” Th e DOM
represents object oriented programming (OOP)
in that all references are to diff erent objects and
their properties. By setting up the JavaScript
using a similar style — creating objects and then
assigning them properties and methods — your
code will look a lot like expressions taken from
the DOM.

20_977279-ch13.indd 25320_977279-ch13.indd 253 10/28/10 10:14 PM10/28/10 10:14 PM

254

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

CANVAS BASICS

Because the canvas element is a crucial part of HTML5 and works only with HTML5-
compatible browsers, the fi rst thing you want to do is to let users know that they need an
HTML5 browser. Several methods are available to fi nd out whether canvas works with their
browser, but the easiest and most informative (to the user) is to place a message in the
<canvas> container. Only users without HTML5-compatible browsers see the text in the
container. For example, the following line, easily mistaken for the outcry of a drama queen,
gets the message across. At the same time it remains invisible to users who have HTML5
browsers:

<canvas id=”colorScheme” width=”600” height=”100” >Come on, Jack & Jill! You

<i>really</i> need to get an HTML5 Compatible browser. You’re missing canvas!</

b></canvas>

I dug up an old (really old!) Internet Explorer browser for the Mac. Figure 13-1 shows what
appeared when I opened the page with the <canvas> tag.

Figure 13-1: Message viewed with a non-HTML5 browser.

Just to be fair, I ran the same program in an early (really early!) version of Internet Explorer 9.
As you can see in Figure 13-2, the canvas drawing appears, but the message does not.

Figure 13-2: Canvas on an HTML5 browser.

20_977279-ch13.indd 25420_977279-ch13.indd 254 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

255

We could write something more sophisticated, but the message is the message, so let’s leave
well enough alone. If you’ve got an HTML5 browser, everything is Jake. If not, the user fi nds
out why not in a message. (You may want to fi ne-tune the message for your audience — from
Jane Austen to Ivan the Terrible.)

Before we get rolling on creating your own drawings, let’s look at one more way that you can
keep out of hot water with non-HTML5 users. In addition to adding text, you can add photos
or anything else in the <canvas> container. For example, the following script (Canvas-
Photo.html in this chapter’s folder at www.wiley.com/go/smashinghtml5) provides
an alternative to a more sophisticated presentation of a photo image using canvas.

<!DOCTYPE HTML>

<html>

<head>

<style type=”text/css”>

body {

 font-family:Verdana, Geneva, sans-serif;

 background-color:#060;

 color:#0FC;

}

img {

 padding-top:10px;

 padding-bottom:10px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Fisherkid</title>

</head>

<body>

<body onLoad=”CanvasMaster.showCanvas()”>

<canvas id=”photo” width=”300” height=”272” >Gentle viewer, if you see this message,

that means (alas) you don’t have an HTML5 browser. (But you can see the photo and

caption.)

 <figure>

 <figcaption>Kid Fishing</figcaption>

 </figure>

</canvas>

</body>

</html>

Not only will the non-HTML5 viewer get the message about updating his browser, but he’ll
get it in the style described in CSS3. He’ll also be able to view both the picture and the
caption, as shown in Figure 13-3.

If you do use an HTML5 browser, the preceding program presents a big blank green screen
with nothing on it. So, be sure that if you’re using an alternative for non-HTML5 browsers,
you have something actually in canvas.

20_977279-ch13.indd 25520_977279-ch13.indd 255 10/28/10 10:14 PM10/28/10 10:14 PM

256

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 13-3: Providing alternative materials for non-HTML5 browsers.
© David Sanders

A SIMPLE CANVAS IMPLEMENTATION

When you’re working with Adobe Dreamweaver to create an HTML5 page, you can view the
page in the Design mode to preview what will show up on the screen. However, with material
inside a <canvas> container, all you see is the outline. Th at outline provides an excellent
visual picture of how canvas allocates a certain part of the page for rendering images even
thought it appears as a blank rectangle.

Basically, you’re starting off with an empty canvas defi ned by the width and height
attributes of the <canvas> tag. If you think about the fi rst step in creating a canvas on your
Web page in terms of stretching a canvas on a frame, it helps you visualize the process.

Understanding the grid
To work successfully with canvas, you have to understand the grid and the Cartesian
coordinates. Basically, the upper-left corner is the 0,0 position on your page. As you move to

20_977279-ch13.indd 25620_977279-ch13.indd 256 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

257

the right, the fi rst value increases. If you move 15 pixels to the right, the value becomes
15,0 — this is the x-axis. As you move down, the second value (y-axis) increases. If you
moved down 20, the position would be expressed as 15,20. Suppose, that you wanted to use
that position as your starting point and create a 100-pixel square. It helps to visualize the
position and size relative to the Web page with the grids, but you get a clearer idea of the
image you’re creating without the grid marks. Using both will help.

Setting up for canvas drawings
Now we’re set to fi ll the blank box. To do so requires JavaScript. Th e only thing you do with
the <canvas> tag is describe the area where you can place your graphics in a rendering
context and a reference ID. So, starting small, this fi rst little drawing will begin with the
following tag:

<canvas id=”redHot” width=”100” height=”100” >

Th is should be pretty familiar. Th e width and height were simplifi ed to equal 100 pixels,
and the new name of the canvas object is redHot. I’ve already covered the closing
</canvas> tag and message in the container. And the rest of the work is all JavaScript
programming working with the DOM.

As noted earlier, I’m going to try to simplify things by using a little OOP in the JavaScript to
refl ect the programming structure of the DOM. So, the fi rst task is to create an object and a
method for it.

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()...

As you saw in Chapter 12, all that does is set up an object and a method for the object — a
function that will call the JavaScript operations when we need it.

Next, the program needs a way to access the canvas DOM node. Th at’s the part of the DOM
that has canvas and canvas-related methods and properties. Th e fi rst step is to create an
object that holds the DOM node. Instead of thinking of assigning a node to a variable, think
of it as creating an instance of an object that has the properties and methods of the canvas
object.

canvasNow = document.getElementById(“redHot”);

Th at line creates an object that contains the canvas object named redHot.

Once we have an instance of a canvas object, the program needs a rendering context. About
the only context available is one called 2d, suggesting a two-dimensional drawing context.
Th e canvas object (canvasNow) has a method called getContext() to do what it says: get
the rendering context.

contextNow = canvasNow.getContext(‘2d’);

20_977279-ch13.indd 25720_977279-ch13.indd 257 10/28/10 10:14 PM10/28/10 10:14 PM

258

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Th e instance of the rendering context is named contextNow. It has the methods and
properties of the 2d rendering context.

Making the drawing
Before going on to the actual drawing, you may be wondering about the canvasNow and
contextNow objects. Aren’t those really variables? Aft er all, variables can be assigned
objects. Well, that’s one way to think about them, but the variables are assigned objects with
their own methods and properties. So, aren’t they actually instances of objects? When a
variable is assigned a real number, it is, for all intents and purposes, a number. You can do
math operations just as you can with a literal number. Instead of quibbling about whether the
program structures are really variables or objects, just treat them as objects (just as variables
with text or numbers can be treated as strings or numbers).

First, assign the drawing a color. You can use any of the techniques available to create a color
as described in Chapter 4. Th is example uses the hexadecimal format:

contextNow.fillStyle = ‘#cc0000’;

Th e fillStyle property is only for the fi ll color and not the stroke (outline) of the object.

Next, the fi ll color needs a shape to fi ll. To fi ll a rectangle, use the following:

contextNow.fillRect(5,20,100,100);

To explain everything in that last piece of code, Figure 13-4 breaks it down.

X position

Y position

Width

Height

Figure 13-4: Details of the fillRect() method.

Th e fi rst two values place it within the canvas area — not the whole Web page — and the
second two values specify the width and height of the rectangle.

Th e last requirement is actually to carry out fi lling the rectangle with the specifi ed color. Th e
next line performs that task:

contextNow.fill();

No matter how many operations are defi ned, a single fill() method takes care of all the
fi lls defi ned in the larger method.

20_977279-ch13.indd 25820_977279-ch13.indd 258 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

259

Now that all the pieces are in place, it needs to be put together in an HTML5 program. Th e
following listing (SimpleSquare.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) contains all the script:

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“redHot”);

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.fillStyle = ‘#cc0000’; // hex value color

 contextNow.fillRect(5,20,100,100); // x, y, width, height

 contextNow.fill();

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#cc0000;

}

</style>

<title>Red Square</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<figure>

 <canvas id=”redHot” width=”100” height=”100” > You’re missing the Red Square! Get

HTML5, comrad! </canvas>

 <figcaption>

 Red Square </figcaption>

</figure>

</body>

</html>

As you can see, the program includes CSS3 and a simple caption along with the appropriate
<figure> and <figcaption> tags surrounding the <canvas> tag. Th e results of this
script are shown in Figure 13-5.

Notice that the script also contains a message for non-HTML5 browsers, but because Figure
13-5 shows the canvas image, the browser will not display any content in the <canvas>
container.

20_977279-ch13.indd 25920_977279-ch13.indd 259 10/28/10 10:14 PM10/28/10 10:14 PM

260

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 13-5: Simple canvas drawing
displayed in the Opera browser.

Working with multiple drawings
Now that you see how to create a single drawing, I’ll give you a look at creating multiple
drawings. While we’re at it, this should also be tested on a mobile device to see how well the
<canvas> tag and JavaScript work in a mobile environment.

Th e following script (Tortilla.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) is very similar to the script used to create the red square shown in Figure
13-5. However, when drawing multiple objects, their position becomes more important, as the
following script shows:

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//Color Scheme Values pasted here: 8C6E37,BFA380,593723,736055,261F1E

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“totillaHues”)

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.fillStyle = ‘#8C6E37’; // hex value color

 contextNow.fillRect(5,20,100,100); // x, y, width, height

 // first color

 contextNow.fillStyle = ‘#BFA380’; // hex value color

 contextNow.fillRect(105,20,100,100); // second color

 contextNow.fillStyle = ‘#593723’; // hex value color

 contextNow.fillRect(205,20,100,100); // third color

 contextNow.fillStyle = ‘#736055’; // hex value color

 contextNow.fillRect(305,20,100,100); // fourth color

20_977279-ch13.indd 26020_977279-ch13.indd 260 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

261

 contextNow.fillStyle = ‘#261F1E ‘; // hex value color

 contextNow.fillRect(405,20,100,100); // fifth color

 contextNow.fill(); // fill all!

 }

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#570026;

}

</style>

<title>Feel Like a Tortilla!</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<figure>

 <canvas id=”totillaHues” width=”500” height=”120” > No tortillas for you! Get your

HTML5 browser...pronto! </canvas>

 <figcaption>

 Tortilla Flat

 </figcaption>

</figure>

</body>

</html>

Th e important parameters in this script are the fi rst two in the fillRect() method. Th ey’re
the x and y positions, and no two squares can be in the same space. Th e squares are lined up
in a horizontal row, so all you need to pay attention to is the x-value because the vertical
position is going to be the same.

Once all the fillStyle() and fillRect() methods are laid out, the drawings require
only a single fill() method to display them all. Figure 13-6 shows how the fi gure looks on
a mobile Safari browser on an iPhone.

Figure 13-6: Multiple drawings displayed on a mobile browser.

20_977279-ch13.indd 26120_977279-ch13.indd 261 10/28/10 10:14 PM10/28/10 10:14 PM

262

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Th e image in Figure 13-6 may appear vaguely familiar. In Chapter 4, the color scheme
program Adobe Kuler had a similar layout, and the colors were developed in Adobe Kuler.

Adding strokes and removing drawings
Two more methods associated with drawing rectangles are strokeRect() and clear-
Rect(). Both of these methods have parameters similar to the fillRect() method — x,
y, width, height. Th ey function the same insofar as specifying which areas to add a stroke
or remove a drawing.

Th e following program (StrokeAndRemove.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) shows how you can add three methods to the CanvasMaster
object, which I’ll call addStroke(), punchOut(), and chomp(). Th e fi rst method draws
an outline within the canvas area, the second makes a hole in the middle of the rectangle, and
the third method removes everything in the defi ned area.

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//colors: 595241,B8AE9C,FFFFFF,ACCFCC,8A0917

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“strokeAndChomp”);

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.fillStyle = ‘#ACCFCC’;

 contextNow.fillRect(5,20,100,100);

 contextNow.fill();

}

CanvasMaster.addStroke=function()

{

 contextNow.strokeStyle=’#595241’;

 contextNow.strokeRect(7,22,91,76);

}

CanvasMaster.chomp=function()

{

 contextNow.clearRect(5,20,100,100);

}

CanvasMaster.punchOut=function()

{

 contextNow.clearRect(40,45,30,30);

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

20_977279-ch13.indd 26220_977279-ch13.indd 262 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

263

 color:#8A0917;

 background-color:#B8AE9C;

}

a {

 text-decoration:none;

 color:#595241;

 margin-left:16px;

}

</style>

<title>Stroke and Cut</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<article>

 <figure>

 <canvas id=”strokeAndChomp” width=”100” height=”100” >You ought to see what

HTML5 browsers see! Get one now!</canvas>

 <figcaption>

 Square Work </figcaption>

 </figure>

 <section>

 <p>Add Stroke</p>

 </section>

 <section>

 <p>Gobble Up Square</p>

 </section>

 <section>

 <p>Punch Hole</p>

 </section>

 <section>

 <p>Replace Square</p>

 </section>

</article>

</body>

</html>

Th is page is formatted for a mobile device. It was tested in Opera Mini on an iPhone, as
shown in Figure 13-7.

A blue square appears on the initial load. When you add a stroke line, a frame appears just
inside the original image. If you add more strokes, you’ll fi nd that the stroke darkens. When
you click the Punch Hole selection, a small square appears in the middle of the blue square.
Th e Gobble Up Square selection removes both the image and the stroke. If you click the Add
Stroke text aft er having removed the blue square, you’ll see the stroke line only with no blue
rectangle.

20_977279-ch13.indd 26320_977279-ch13.indd 263 10/28/10 10:14 PM10/28/10 10:14 PM

264

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 13-7: Adding a stroke and removing part or all of a rectangle.

IMAGES IN CANVAS AND SHADOWS

One of the fun and simple features of canvas is using it with loaded images. Figure 13-3
shows a typical example of what you can load into a Web page using the tag. Using the
 tag is okay, but you can make it far more interesting with the <canvas> tag.

Loading an image into canvas
To load an image, whether it’s a GIF, a PNG, or a JPEG, requires an Image object that can be
created with JavaScript. Within the method used to create a rendering context, you risk
having your user see a blank where the loaded image goes unless you have an event that lets
you know that the fi le has loaded. Fortunately, that’s pretty simple to do using the onLoad
event handler, as the following snippet shows:

...

pic = new Image();

pic.onload = function()

{

 contextNow.drawImage(pic,10,10);

}

 pic.src = ‘imageName.jpg’;

...

20_977279-ch13.indd 26420_977279-ch13.indd 264 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

265

Th e rendering context method drawImage() expects three parameters:

 Th e reference to the fi le that you’re loading: In this case, the label pic is the reference
name to the fi le being used.
 Th e x and y position: It’s a little more involved than using the tag, but not much,
and this method lets you place the image where you want it within the canvas
parameters.
 Th e source of the image: You add the source of the image within the method that creates
the rendering context — not unlike the identifi cation using the img element.

Adding a drop shadow
Adding a drop shadow to an image gives it a three-dimensional look — it’s elevated off the
page. Th e rendering context has four shadow properties:

 shadowColor=”color”;

 shadowOffsetX=horizontal value;

 shadowOffsetY=horizontal value;

 shadowBlur=blur value;

Th e color can be assigned using any of the methods discussed in Chapter 4. Th e shadow
off sets depend on how big you want your shadow. Experiment with diff erent values, begin-
ning with about 5. In the following example, each is set to 10 to provide enough shadow to
make the image rise off the screen but not so much to overwhelm the image. Finally, the blur
value can be greater or smaller depending on both the off set values and the amount of blur
you want. With greater off set values, you need greater blur values.

To make the shadow have an eff ect on the image, all shadow properties must be entered
before writing the drawImage() method. Th at’s all there is to it. Th e other JavaScript to set
up the canvas context rendering is very similar to the drawings in the previous section. Th e
following code (PhotoShadows.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) loads the image and places the drop shadow on it:

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//colors: F4F1BC,736F36,BFB95A

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“picFrame”);

 contextNow = canvasNow.getContext(‘2d’);

 pic = new Image();

 pic.onload = function()

20_977279-ch13.indd 26520_977279-ch13.indd 265 10/28/10 10:14 PM10/28/10 10:14 PM

266

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 {

 contextNow.shadowColor =’#BFB95A’;

 contextNow.shadowOffsetX=10;

 contextNow.shadowOffsetY=10;

 contextNow.shadowBlur=4;

 contextNow.drawImage(pic,10,10);

 }

 pic.src = ‘fisherkid.jpg’;

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#736F36;

 background-color:#F4F1BC;

}

</style>

<title>Frame the Photo</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<article>

 <figure>

 <canvas id=”picFrame” width=”340” height=”300” > This is one picture you missed

because you don’t have HTML5. </canvas>

 <figcaption>

 Photo with Drop Shadow</figcaption>

 </figure>

</article>

</body>

</html>

Before putting in your own images, check their size and the size that the <canvas> tag has
reserved. In this case, there was enough room for both the image (a photograph) and the
graphic drop shadow. Figure 13-8 shows the results in a Google Chrome browser.

Th e color combinations used with the image are important. You’ll fi nd that some colors work
better than others. Th e ones used in Figure 13-8 are a monochromatic set based on the colors
in the image. As you can see, the shadow nicely lift s the photo off the screen.

Compare the image in Figure 13-3 with the one in Figure 13-8. In Figure 13-3, you see what
happens with non-HTML5 browsers; in Figure 13-8, what HTML5 browsers can display. Also,
in this latest use of the same digital photo, the non-HTML5 browsers see only the message
that they’re not seeing the image. If you want, you can add the same image and color scheme
without the drop shadow for non-HTML5 browsers.

20_977279-ch13.indd 26620_977279-ch13.indd 266 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

267
Figure 13-8: Image and drop shadow with <canvas>.
© David Sanders

Working with fi lters
Before moving on to complex shapes, let’s take a look at using fi lters to add tints to images.
Th e Internet is a huge library of copyright-free photos and drawings; use your favorite search
engine to do an image search. (But remember that not every photo you fi nd online is copy-
right-free — be sure you have permission to use any image you fi nd.) Many of the drawings
are in black-and-white and can be a stark contrast to other elements of a page. One way to
integrate them is to add a fi lter, which you can easily do by creating a partially transparent
colored shape and place on top of the image. Using canvas, this process is quite easy. Th e
key to the process is the following line:

context.fillStyle = ‘rgba(rn, gn, bn, alpha)’;

Instead of using a hexadecimal value, it uses RGB with an “alpha” channel — rgba() — that
controls for transparency. Th e last parameter is a value between 0 and 1. Th e higher the value,
the more opaque the image will be. By using a value less than 1, you can control the degree of
opacity. Th e rest of the shape matches the dimensions of the image and is positioned in the
same space.

To integrate an image with the rest of the page — the plan is to add a color tint using the
background color. Th e following program (FilterImage.html in this chapter’s folder at

20_977279-ch13.indd 26720_977279-ch13.indd 267 10/28/10 10:14 PM10/28/10 10:14 PM

268

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

www.wiley.com/go/smashinghtml5) adds the image fi rst and then draws the rectangle
object on top of it with a transparent fi ll color.

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//colors: F26A4B,F2D091=rgb(242,208,145)

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“filterFrame”);

 contextNow = canvasNow.getContext(‘2d’);

 pic = new Image();

 pic.onload = function()

 {

 contextNow.drawImage(pic,0,0);

 contextNow.fillStyle = ‘rgba(242, 208, 145, .6)’;

 contextNow.fillRect(0,0,472,306);

 contextNow.fill();

 }

 pic.src = ‘dance.gif’;

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#F26A4B;

 background-color:#F2D091;

}

</style>

<title>Filtering Images</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<article>

 <figure>

 <canvas id=”filterFrame” width=”472” height=”306” > Not only do you miss the

filtered image, but you miss the dance! Get an HTML5 browser! </canvas>

 <figcaption>

 Filtered Image</figcaption>

 </figure>

</article>

</body>

</html>

Notice that the sequence fi rst loaded the image and then placed the drawing on top using the
following snippet:

20_977279-ch13.indd 26820_977279-ch13.indd 268 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

269

contextNow.drawImage(pic,0,0);

contextNow.fillStyle = ‘rgba(242, 208, 145, .6)’;

contextNow.fillRect(0,0,472,306);

contextNow.fill();

If the drawing is added fi rst, the image simply sits on top of it as though no fi lter at all is used.
Now, with the added fi lter, the image better fi ts in with the page, as Figure 13-9 shows.

Figure 13-9: A fi ltered image blending in with the background.

Using Adobe Photoshop or some similar image-editing soft ware, you could’ve added the fi lter
to the image and loaded the fi ltered image with a standard tag. However, using
canvas and HTML5, you can make the changes without any additional soft ware.

CREATING COMPLEX DRAWINGS WITH CANVAS

Th e simpler shapes are rectangles, and they’re terrifi c for squares and rectangles, but you can
only do so much with boxes before you need some lines and curves. Th is section looks at the
following complex drawing elements that are part of canvas. (Th e context term refers to the
name of the rendering context object.)

20_977279-ch13.indd 26920_977279-ch13.indd 269 10/28/10 10:14 PM10/28/10 10:14 PM

270

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 context.beginPath()

 context.moveTo(x, y)

 context.closePath()

 context.lineTo(x, y)

 context.quadraticCurveTo(cpx, cpy, x, y)

 context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

 context.arcTo(x1, y1, x2, y2, radius)

 context.arc(x, y, radius, startAngle, endAngle, anticlockwise)

 context.rect(x, y, w, h)

 context.fill()

 context.stroke()

 context.clip()

 context.isPointInPath(x, y)

Knowing how to use these methods with a <canvas> tag doesn’t ensure that they’ll look
good. Th e remainder of this chapter examines most of these methods. You should be well on
your way to creating many diff erent shapes by the chapter’s end.

LINES AND MOVEMENT

Th e best way to start thinking about using the canvas tools for drawing is to visualize all
drawings on a grid, just as you did with rectangles. However, given the relative complexity of
freeform drawing, even with straight lines, the beginning point is with images on a grid.
Figure 13-10 shows two drawings that can be created with straight lines.

0,0 Each grid box is 20 x 20 pixels.

Figure 13-10: Images on a grid.

Th e grid boxes are 20 pixels wide and 20 pixels high. If you take a pencil and a piece of grid
paper (or turn on the grid on a drawing program), you can replicate the images in Figure
13-10. Starting with the left image in Figure 13-10, a typical drawing would consist of the
following steps:

20_977279-ch13.indd 27020_977279-ch13.indd 270 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

271

 1. Place the pencil at position 40,20 on the grid.
 To do this with the canvas DOM, use context.beginPath() and context.

moveTo(40,20). Th is is the starting point.
 2. Draw a line from the starting point to about 72, 20 for the top of the briefcase handle.
 Use context.lineTo(72,20) for the canvas equivalent.
 3. Move the pencil down to about 72, 38.
 Use context.lineTo(72,38) for a canvas drawing.
 4. Continue in this manner until the outline of the briefcase is complete.
 5. When you want to draw the inside of the handle, pick up your pencil, move to where

you want to start drawing the inside of the handle.
 With canvas you use context.moveTo(x,y) to begin in a new position and then

use context.lineTo(x,y) to fi nish up. However, you do not have to reuse con-
text.beginPath().

 6. In a pencil and pen drawing, as soon as your drawing is complete, you have the
outline of the briefcase. With canvas, you have to include context.stroke() to add the
lines.

When you come to the next-to-last point in your drawing, you can use the context.
closePath() method to go the point you started, and that is used in the program. Th e
following script (SimpleLineDrawing.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) provides all the steps.

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//colors: 8C6E37,BFA380

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“simpleDraw”);

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.beginPath();

 contextNow.moveTo(40,20);

 contextNow.lineTo(72,20);

 contextNow.lineTo(72,38);

 contextNow.lineTo(88,38);

 contextNow.lineTo(88,78);

 contextNow.lineTo(28,78);

 contextNow.lineTo(28,38);

 contextNow.lineTo(40,38);

 contextNow.lineTo(40,20);

 contextNow.closePath();

 contextNow.moveTo(46,26);

 contextNow.lineTo(66,26);

 contextNow.lineTo(66,38);

20_977279-ch13.indd 27120_977279-ch13.indd 271 10/28/10 10:14 PM10/28/10 10:14 PM

272

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 contextNow.lineTo(46,38);

 contextNow.closePath();

 contextNow.stroke();

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#000000;

}

</style>

<title>Filtering Images</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<article>

 <figure>

 <canvas id=”simpleDraw” width=”90” height=”80” > If you can identify the draw-

ing, you win a jillion dollars! Oh, I’m sorry . . . looks like you don’t have an

HTML5 browser.</canvas>

 <figcaption>

 Picasso Was Here</figcaption>

 </figure>

</article>

</body>

</html>

Figure 13-11 shows what you can expect to see. (If you worked out the coordinates on your
own, yours probably looks better!)

Figure 13-11: Image drawn in canvas.

20_977279-ch13.indd 27220_977279-ch13.indd 272 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

273

So far so good, but the original briefcase is brown, so it’s going to need some color. Th e way to
color is the same as it is for rectangles: Use context.fillStyle =”color”. Th e
complex drawing methods include context.fill() to fi ll in an outline. So, taking out the
context.stroke(), replacing it with context.fill(), and adding a fillStyle
method should do the trick. Figure 13-12 shows the results.

Figure 13-12: The fi lled image covering the handle.

In looking at Figure 13-12, you can see that the outline and color are correct, but instead of a
handle there’s a block. Whenever a series of drawing methods are used without beginning a
new path, and then when the context.fill() method is called, it fi lls it to the beginning
of the path. As a result, everything is fi lled and not just the parts you want.

To fi x this, two context.fill() methods are employed. One is at the end of the fi rst
outline of the briefcase, and the second is at the end of the outline for the handle. Th e fi rst is
fi lled with brown, and the second is fi lled with white. Additionally, a second context.
beginPath() is added at the beginning of the drawing of the handle. Th e following
program (SimpleLineDrawingFilled.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5) has all the code revised to generate the fi lled image.

<!DOCTYPE html>

<html>

<head>

<script language=”javascript”>

//colors: 960, fff, 000

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“briefCase”);

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.beginPath();

 contextNow.moveTo(40,20);

 contextNow.lineTo(72,20);

 contextNow.lineTo(72,38);

20_977279-ch13.indd 27320_977279-ch13.indd 273 10/28/10 10:14 PM10/28/10 10:14 PM

274

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 contextNow.lineTo(88,38);

 contextNow.lineTo(88,78);

 contextNow.lineTo(28,78);

 contextNow.lineTo(28,38);

 contextNow.lineTo(40,38);

 contextNow.lineTo(40,20);

 contextNow.closePath();

 contextNow.fillStyle =”#960”;

 contextNow.fill();

 contextNow.beginPath();

 contextNow.moveTo(46,26);

 contextNow.lineTo(66,26);

 contextNow.lineTo(66,38);

 contextNow.lineTo(46,38);

 contextNow.closePath();

 contextNow.fillStyle =”#fff”;

 contextNow.fill();

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana;

 color:#000;

}

</style>

<title>Filled Line Drawing</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<article>

 <figure>

 <canvas id=”briefCase” width=”90” height=”80” > If you can identify the drawing,

you win a jillion dollars! Oh, I’m sorry . . . looks like you don’t have an HTML5

browser.</canvas>

 <figcaption>

 Picasso Was Here</figcaption>

 </figure>

</article>

</body>

</html>

When you test this revision, the results are pretty close the original drawing. Compare Figure
13-10 and Figure 13-13 to see how close the program-generated image is to the original.

You can use the lines to draw anything that has no curves. In the next section, you’ll see how
to add curves to your artistic canvas tools.

20_977279-ch13.indd 27420_977279-ch13.indd 274 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

275

Figure 13-13: The fi nal drawing of the briefcase.

CURVES

Making curves, even with drawing tools, is trickier than drawing straight lines. To understand
how to make curves, I’ll start this section with a discussion of arcs and the canvas DOM
methods for creating them. We’ll look at some of the geometry, but not a lot. (You do need a
little understanding of geometry, but don’t worry — it’s basic.)

Th e fi rst thing that you need to understand is the diff erence between degrees and radians.
Most people know that a circle has 360 degrees. On a compass rose, 360 or 0 degrees (12
o’clock) is due north. As you move clockwise to 90 degrees (3 o’clock), the compass points
east; at 180 degrees (6 o’clock), south; and at 270 degrees (9 o’clock), west.

However, you have to use radians instead of degrees, so all degrees must be converted to
radians. Use the following formula:

Radians = (PI ÷ 180) × degrees

So, let’s say that you want to know the radians for due west (9 o’clock), 270 degrees:

Radians = (3.14159265 ÷ 180) = 0.01745329251994
Radians = 0.01745329251994 × 270
Radians = 4.71238898

A simple way to do the same thing is to just multiply degrees by 0.01745329251994 or in
JavaScript write:

radians = (Math.PI/180)* degrees;

20_977279-ch13.indd 27520_977279-ch13.indd 275 10/28/10 10:14 PM10/28/10 10:14 PM

276

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

You can fi nd plenty of calculators online to do the conversion for you.

Arcs
Th e canvas DOM method for drawing arcs is context.arc(). Th e method has several
parameters that need to be understood in concert and individually:

 x,y: Circle’s center
 radius: Radius of circle
 startAngle: Start point of arc expressed in radians
 endAngle: End point of arc expressed in radians
 anticlockwise: Boolean (true is counterclockwise and false is clockwise)

I fi nd it helpful to envision either a compass rose or a clock with the four cardinal directions
and time/degrees — north (12 o’clock or 0 degrees), east (3 o’clock or 90 degrees), south (6
o’clock or 180 degrees), and west (9 o’clock or 270 degrees). A full arc statement looks like the
following:

contextNow.arc(150,100,50,six,0,true);

Th is arc has its center at x = 150 and y = 100, and it has a radius of 50. Th e start angle is set to
6, which is a variable that we’ve created to represent the 6 o’clock position of 180 degrees. Th e
variable’s value has been converted to radians. Both degrees and radians have the same value
at the 12 o’clock position (0), and it is used as the ending angle. Finally, the arc is set to true —
anticlockwise.

Th is next program is one used to experiment with diff erent arcs. Four variables — 12, 3, 6,
and 9 — are set in radians corresponding to the positions on a clock. Certain statements are
commented out but will be used later.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“beHappy”);

 contextNow = canvasNow.getContext(‘2d’);

 contextNow.beginPath();

 contextNow.moveTo(0,0);

 contextNow.lineTo(300,0);

 contextNow.lineTo(300,200);

 contextNow.lineTo(0,200);

 contextNow.closePath();

 contextNow.stroke();

20_977279-ch13.indd 27620_977279-ch13.indd 276 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

277

 // RADCON = (Math.PI/180) ;

 RADCON=0.01745329251994;

 twelve=0;

 three = RADCON * 90;

 six = RADCON * 180;

 nine = RADCON * 270;

 contextNow.beginPath();

 contextNow.arc(125,100,50,six,twelve,true);

 //contextNow.closePath();

 //contextNow.fill()

 contextNow.stroke();

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#cc0000;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Smile</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<figure>

 <canvas id=”beHappy” width=”300” height=”200” > You don’t see a smile because you

don’t have an HTML5 browser. No smile for you!</canvas>

 <figcaption>

 <p>Rectangle represents canvas boundaries</p>

 </figcaption>

</figure>

</body>

</html>

Th e RADCON variable is a constant (π ÷ 180), so all degrees were set to radians by multiplying
their values by RADCON. As noted, the variable names represent the positions on a clock. In
addition, a rectangle around the area where the arc is drawn represents the boundaries of the
<canvas> tag’s width and height. Figure 13-14 shows the result.

Th e starting point of the arc is on the left , and it moved anticlockwise to the ending point on
the right. Change the following line:

contextNow.arc(125,100,50,six,twelve,true);

to:

contextNow.arc(125,100,50,six,twelve,false);

20_977279-ch13.indd 27720_977279-ch13.indd 277 10/28/10 10:14 PM10/28/10 10:14 PM

278

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 13-14: An arc in canvas.

Th at changed the drawing from anticlockwise to clockwise, but it made a major diff erence, as
you’ll see when you test it.

Next, using the same program, change the line back to:

contextNow.arc(125,100,50,six,twelve,true);

Th en remove the comment lines (//) from the following line:

//contextNow.closePath();

And test it again. Th e fi nal change to the program will fi ll the arc. Uncomment the line from
the following:

//contextNow.fill()

to this:

contextNow.fill()

And add comment lines so that the stroke statement reads:

//contextNow.stroke()

When the changes are made, your arc now looks like a kettle, as shown in Figure 13-15.

20_977279-ch13.indd 27820_977279-ch13.indd 278 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

279

Figure 13-15: An arc with a closed path and fi ll.

Th e only way to really learn to work with arcs is to practice with them. Use the script in this
section to try diff erent things.

Circles and gradients
Th us far, only a single type of fi ll has been used — a solid one. In this section, you’ll see how
to make a circle using an arc and fi ll it with a gradient.

First, making circles is easy using the context.arc() method. Th e radian parameters are 0
and Math.PI*2. And the anticlockwise parameter is false. (Th at’s the trick.) For instance,
this next example uses the following line to create a big circle that will be fi lled with a gradi-
ent, to make it look like a sunset:

contextNow.arc(200,200,150,0,Math.PI*2,false);

To create a gradient fi ll, both linear and radial, is fairly straightforward. Th e fi rst step is using
the canvas DOM context.createLinearGradient() method. Th e method expects four
parameters: x0, y0, x1, y1. Th e gradient fi ll moves from x0 to x1 and from y0 to y1. A
straight linear gradient from left to right would have a single value in x1, and the rest would be
0. A gradient from top to bottom would have value in either y0 or y1, with the rest set to 0.

To set the gradient colors, use the gradient.addColorStop() method. It expects two
parameters. Th e fi rst is a zero-based number from 0 to 1 and the second is the color. Once
that’s completed, assign the context.fillStyle the gradient. Th e following snippet
shows the steps in adding a gradient fi ll:

sunsetGradient=contextNow.createLinearGradient(0, 0, 0,379);

20_977279-ch13.indd 27920_977279-ch13.indd 279 10/28/10 10:14 PM10/28/10 10:14 PM

280

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

sunsetGradient.addColorStop(0, “yellow”);

sunsetGradient.addColorStop(1, “#cc0000”)

contextNow.fillStyle = sunsetGradient;

In this particular example, the gradient is a vertical one. Th e fi rst color, yellow, is at the top,
and the second color, red, is at the bottom. Putting it all together, the following script (Sun-
set.html in this chapter’s folder at www.wiley.com/go/smashinghtml5) creates a
sunset for you.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

CanvasMaster=new Object();

CanvasMaster.showCanvas=function()

{

 canvasNow = document.getElementById(“sunset”);

 contextNow = canvasNow.getContext(‘2d’);

 sunsetGradient=contextNow.createLinearGradient(0, 0, 0,379);

 sunsetGradient.addColorStop(0, “yellow”);

 sunsetGradient.addColorStop(1, “#cc0000”)

 contextNow.fillStyle = sunsetGradient;

 contextNow.beginPath();

 contextNow.arc(200,200,150,0,Math.PI*2,false);

 contextNow.closePath();

 contextNow.fill()

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#cc0000;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Sunset</title>

</head>

<body onLoad=”CanvasMaster.showCanvas()”>

<figure>

 <canvas id=”sunset” width=”400” height=”400” > A shame you can’t see the beautiful

sunset because you don’t have an HTML5 browser. Aloha... </canvas>

 <figcaption>

 <p>Sunset</p>

 </figcaption>

</figure>

</body>

</html>

When you test the page, you’ll see a big circle with a yellow-to-red gradient. You can use the
same gradient technique with other shapes as well. Figure 13-16 is displayed in the mobile
version of Safari on an iPhone.

20_977279-ch13.indd 28020_977279-ch13.indd 280 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 13: THUNDERING YOUR SITE WITH CANVAS

281
Figure 13-16: A circle with gradient fi ll.

Th ere’s far more that you can do with canvas, and one of the best features of images created
using canvas DOM objects is that they aren’t as expensive (they don’t take as much band-
width) to load as bitmapped graphic fi les. We’ve only skimmed the surface of this new
powerful element in HTML5.

TAKE THE WHEEL

Working with canvas is so much fun and varied that it’s hard to know where to begin. So,
try the following little projects to test-drive this great new element in HTML5:

 In Figure 13-13, you see two line objects — a briefcase and a house. See if you can draw
the house using the methods employed for creating the briefcase.
 Take an image of a picture frame, and superimpose another image that appears to be in
the frame. (Th is project requires you to fi x the frame and image sizes so that one will fi t
in the other.)
 Find or create a digital photo and superimpose a sunset on top of it. (Alternatively, create
an image with another kind of gradient and superimpose it on a digital photo or other
image. What about a gradient fi lter?)

20_977279-ch13.indd 28120_977279-ch13.indd 281 10/28/10 10:14 PM10/28/10 10:14 PM

20_977279-ch13.indd 28220_977279-ch13.indd 282 10/28/10 10:14 PM10/28/10 10:14 PM

SMASHING HTML5

C
H

A
P

T
E

R

14

ADDING FORMS14
ONE OF THE most important features of any
Web page is its ability to interact with a person.
In computer science lingo, there’s a subfi eld called
human computer interface, which treats humans
as another type of interface like a printer, USB
drive, or Webcam. Th is doesn’t dehumanize

people using computers. Instead, it treats people
like something they’re not, and that’s bound to
get you in trouble sooner or later. Th is chapter
shows both how to add interactive forms and
treat people like people.

21_977279-ch14.indd 28321_977279-ch14.indd 283 10/28/10 10:14 PM10/28/10 10:14 PM

284

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

ADDING A FORM

Forms are really in two parts (even more in some cases). Th e fi rst part is the <form> tag that
sets up a container for diff erent kinds of input. Th e typical form can be envisioned as the
following:

Begin Form
 Input 1
 Input 2
 Input 3
 Input 4
End Form

So in discussing forms, we’re really talking about the form and its attributes and input
elements and their attributes. With HTML5 forms, you’ll fi nd plenty of new attributes and
elements.

Just so that you don’t get bored, the following (degree2radians.html in this chapter’s
folder at www.wiley.com/go/smashinghtml5) is an example of a simple calculator for
converting degrees into radians (see Chapter 13 for a practical use for the converter). Just
enter the degrees you want converted, and you’ll be presented with the equivalent radians.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 const RADCON=Math.PI/180;

 degreesNow=document.converter.degrees.value;

 radiansNow=degreesNow * RADCON;

 document.converter.radians.value=radiansNow;

}

</script>

<style type=”text/css”>

/*048ABF,049DBF,F2F2F2,595959,0D0D0D */

h3 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#595959;

}

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#049DBF;

 background-color:#0D0D0D;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

21_977279-ch14.indd 28421_977279-ch14.indd 284 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

285

<title>Convert Degrees to Radians</title>

</head>

<body >

<article>

 <header>

 <h3>Degree to Radian Converter</h3>

 </header>

 <section>

 <form name=converter>

 Enter degrees:

 <input type=number name=degrees required >

 Radians:

 <input type=number name=radians>

 <input type=submit name=submit value=”Convert to Radians” onClick=”FormMaster.

resolveForm()”>

 </form>

 </section>

</article>

</body>

</html>

If you’re at all familiar with forms in HTML, you know that this form is diff erent — it has a
number input that treats the entries as real numbers instead of text that has to be converted to
numbers by JavaScript. Th at wasn’t available in older versions of HTML. Figure 14-1 shows
the number “spinners” that appear in Opera when Web pages use the number input.

Figure 14-1: Entering numbers for calculations and conversion.

As you’ll see in this chapter, much is new, and using JavaScript and (later) PHP, you can do a
great deal with HTML5 forms. So, prepare to fi nd a good deal of new features and reasons to
update your browsers to HTML5.

21_977279-ch14.indd 28521_977279-ch14.indd 285 10/28/10 10:14 PM10/28/10 10:14 PM

286

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

GENERAL FORM ATTRIBUTES

Th e form (think the mother ship) has several attributes that impact every input element in the
form container. However, the fi rst focus is on the form itself. It has the following attributes:

 accept-charset

 action

 autocomplete

 enctype

 method

 name

 novalidate

 target

Many of these attributes are rarely used and some only make sense when you start using
programs like PHP and ASP.NET where you pass data to and from a database. However, we’ll
examine them all.

Accept-charset, enctype, and novalidate
Th e accept-charset attribute, if specifi ed at all, usually assigns utf-8 as the character
encoding to be used with the form data. Th at is, it treats all input as utf-8 encoding. A
simple statement like the following is suffi cient:

<form name=motherShip accept-charset=utf-8>

If no character encoding is assigned, it is assumed to be unknown and uses the default
character encoding. When using multiple encodings, each is separated by a space in HTML5
instead of by commas and semicolons as in earlier versions of HTML.

Most of the time, the enctype attribute is left blank and uses the default state. Th e enctype
attribute has three keywords and states (keyword/state):

 application/x-www-form-urlencoded (default)
 multipart/form-data

 text/plain

A form may be set up to accept plain text and would be assigned the following:

<form enctype=”text/plain”>

For the most part, though, this is another attribute that is not included in the <form> tag.
Th at’s because the default (urlencoded) is what you want.

21_977279-ch14.indd 28621_977279-ch14.indd 286 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

287

Th e novalidate attribute is a Boolean used in form submission; it blocks validation of the
user-inputted data during submission. Th is can save time, but it can also lead to foul-ups.
Sometimes a simple form or a wide-open (unknown submission data) form does not validate
because setting up traps for validation is unknown as well. If present in the form tag, the
submitted elements will not be validated:

<form nonvalidate>

Th at eff ectively blocks submission validation.

A better solution lies in the Boolean formnovalidate and required attributes that can
be placed in individual input elements. For example, the following form has no validation for
a cancel button and the middle name is not required, although the fi rst and last names are.

<form name=motherShip accept-charset=utf-8>

 First name:

 <input type=text name=fn required>

 Middle name:

 <input type=text name=mn >

 Last name:

 <input type=text name=ln required>

 <input type=submit name=submit value=”Send the info!”>

 <input type=submit formnovalidate name=cancel value=”Cancel”>

</form>

Th e accept-charset, enctype, and novalidate attributes aren’t ones you’re likely to
use too much. However, the input element attributes for requiring data entry and nonvalida-
tion can be quite handy.

Action and method
You’re not going to need these two important attributes until Chapter 16, so this section is
going to be brief and to the point. Th e action attribute is assigned a URL that’s launched as
soon as the Submit button is clicked. It sends the form data to the URL (a server-side program
like Perl, PHP, or ASP). Th e method attribute is either POST or GET. When you send data
from your Web page or send and retrieve data, use POST. If all you want to do is retrieve data,
use GET. Th e following shows typical values assigned to the two attributes:

<form action=”http://www.sandlight.com/treasures.php” method=”post”>

In Chapter 16, you’ll fi nd that both of these attributes are always used when dealing with PHP.

21_977279-ch14.indd 28721_977279-ch14.indd 287 10/28/10 10:14 PM10/28/10 10:14 PM

288

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Autocomplete
A fairly simple but important form attribute is autocomplete. It has two states, on and
off, and it defaults to on. Basically, if you do not want autocomplete, just set it to off.
Otherwise, it’s the default state of forms. Sometimes autocomplete can be a bother; if so, just
add the following line:

<form autocomplete=”off”>

With the state set to off , a reused word will not pop up. For example, if you change your
e-mail address, your old address may show up automatically in e-mail address boxes if the
autocomplete is not set to off.

Name and target
Th e name attribute is one of the most important attributes of a form because it’s used in the
DOM to identify it. As a property of the document object, it can be referenced either as an
array element, such as forms[0], or by name. Organizationally, it’s far easier to reference a
form and its children by a name.

In addition to a name attribute, forms have a global attribute, id. Both attributes have names.
In the DOM, the reference is to the name attribute. However, within a single Web document
(page), other elements can identify the form with a reference to the form id. What’s more, a
new feature of HTML5 is that the form child can exist outside the <form> container and
have a form attribute linking it to any form in the page. For example, the following text input
element is part of the form with the id of ralph.

<input type=text form=ralph name=hometown>

Th e text input element can be anywhere on the page, and that means designers don’t have to
put all the input in one place. Try the following script (FormID.html in this chapter’s folder
at www.wiley.com/go/smashinghtml5) and test it with Opera (which has implemented
this new feature).

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 favorite = document.formName.favURL.value;

 personName=document.formName.person.value;

 message=personName + “’s favorite Web site is “ +favorite;

 document.formName.output.value=message;

}

</script>

<style type=”text/css”>

21_977279-ch14.indd 28821_977279-ch14.indd 288 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

289

h3 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#97CCA6;

}

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#EFF09E;

 background-color:#AB1F33;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Remote Form Inputs</title>

</head>

<body >

<article>

 <header>

 <h3>IDs to Connect</h3>

 </header>

 <section> What is your very favorite Web site?

 <label>Favorite Site:

 <input type=url form=formID name=favURL>

 </label>

 </section>

 <section>

 <blockquote> This section represents a break between the first input (requesting

a URL) and the rest of the form to which the URL form belongs. This gives designers

far more leeway in putting together an interactive site. </blockquote>

 </section>

 <section>

 <form name=formName id=formID>

 <label>What’s your name?

 <input type=text name=person>

 </label>

 Output:

 <textarea name=output cols=50 rows=5></textarea>

 <input type=submit name=submit value=”Gather in the Chickens”

onClick=”FormMaster.resolveForm()”>

 </form>

 </section>

</article>

</body>

</html>

Notice that inside the <form> container with the name=formName and id=formID is a
single input element, a <textarea> tag and a Submit button. More important, though,
notice that the input element with the name=favURL is outside of the form container.
However, it assigns itself the id of the form on the page — formID. In HTML5, it’s treated as
though it were inside the <form> container. Figure 14-2 shows that the data entered in the

21_977279-ch14.indd 28921_977279-ch14.indd 289 10/28/10 10:14 PM10/28/10 10:14 PM

290

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

url type input element (name=favURL) is picked up by the DOM in the JavaScript as part
of the same form as the rest of the form input elements belonging to the form named
formName.

Figure 14-2: Input can be placed outside of the form container.

Now, you don’t have to worry about where you put your input forms. As long as input
elements are assigned the form ID of the form, they’re treated as though they’re inside the
form container.

Th e target attribute refers to the browsing context of the form upon form submission. If no
target value is assigned, the browsing context is the same as if _self were assigned to a target
attribute. Th e other browsing contexts are _blank, _parent, or _top. Th e _blank
browsing context is quite helpful where you have information from a server-side script that
replaces the content on the calling page with its own content. Using _blank enables users to
see both the calling page and the information from the called page.

THE FORM AS PART OF THE DOM

Although the DOM is generally discussed as an arrangement of nodes, it can also be
described in terms of objects — aft er all object is DOM’s middle name! In order to see how
forms and inputs are arranged in the DOM, you can use JavaScript references to diff erent
parts of a form. Th e DOM references the form elements as a form array within a document.
Th e input elements related to a form are array elements of the form with the fi rst node being

21_977279-ch14.indd 29021_977279-ch14.indd 290 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

291

elements[0], using a zero-based counting system. Likewise, forms make up a zero-based
array with the fi rst form being forms[0]. (Note: Both elements and forms are plural, even
though <element> and <form> are singular.)

To help see the parts in a DOM arrangement, the following simple script (NameID.html in
this chapter’s folder at www.wiley.com/go/smashinghtml5) demonstrates diff erent
ways of referencing the same objects in a document with forms. Th e preferred manner is by
object and property name. Th e diff erent combinations are for demonstration only. It also uses
several types of input as well.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 alpha = document.motherShip.elements[0].value;

 beta = document.forms[0].secondInput.value;

 gamma = document.motherShip.thirdInput.value;

 delta = document.forms[0].elements[3].value;

 epsilon = document.motherShip.fifthInput.value;

 const cr=”\n”;

 message=alpha+cr+beta+cr+gamma+cr+delta+cr+epsilon;

 document.motherShip.output.value=message;

}

</script>

<style type=”text/css”>

h3 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#677E52;

}

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#89725B;

 background-color:#B0CC99;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>DOM and Forms</title>

</head>

<body >

<article>

 <header>

 <h3>DOM, the Form, and the Nodes</h3>

 </header>

 <form name=motherShip>

 <input type=number name=firstInput>

 Number

 <input type=email name=secondInput>

21_977279-ch14.indd 29121_977279-ch14.indd 291 10/28/10 10:14 PM10/28/10 10:14 PM

292

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 E-mail

 <input type=text name=thirdInput>

 Text

 <input type=text name=fourthInput>

 Text

 <input type=url name=fifthInput>

 URL

 <textarea cols=”15” rows=”6” name=output></textarea>

 <input type=button value=”Send to DOM” onClick=”FormMaster.resolveForm()”>

 </form>

 </section>

</article>

</body>

</html>

When you test the program, enter the appropriate text and numbers and them click the button,
Send to DOM. In the JavaScript program, notice that as long as either the element names or
their proper element name (or node name) is used, the entered materials are sent to the text
area that is used for an output display. Figure 14-3 shows the results you can expect to see.

Figure 14-3: User entries displayed on the page.

Th e contents are retrieved through the DOM paths and placed into variables and then sent to
the <textarea> element for display. Between the fi ve elements a constant (const cr=”\n”)
places a control character to force a line feed.

21_977279-ch14.indd 29221_977279-ch14.indd 292 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

293

THE MANY KINDS OF INPUT

One of the major new features of HTML5 is the addition of several diff erent types of input
attributes. Not only that, but the diff erent input attributes work with mobile devices. For
example, if you use an email or url input type, a special keyboard with dot (.) and dot-com
(.com) appears when you begin to enter data into the form on some mobile devices.

Along with new types of input are additional attributes that aff ect how your page interacts
with users. Of the 29 input attributes, 11 are new to HTML5. Like the new types of input, we
want to see how to use these attributes. Because of so many types of input and other
attributes, they’ve been gathered in two tables. Table 14.1 shows all the diff erent type values
you can use with the type attribute and Table 14.2 shows all the attributes, each with a short
description.

Table 14.1 Type Values for the HTML5 Input Element
Type Value Features Type Value Features

button Action button checkbox Selection

color* Color well date* Date picker

datetime* Date picker datetime-local* Date picker

email E-mail address file File upload

hidden Not displayed image Image coordinates

month* Date picker number* Numeric value

password Hides password radio Selection

range* Number range reset Clears entries

search* Search word submit Send form data

tel Telephone number text String value

time* Date picker url* Web address

week* Date picker

*New to HTML5

At the time of this writing, not all these types have been implemented in the major browsers.
However, because browsers keep working to fully implement the new HTML5 standards,
don’t be afraid to experiment on your own with diff erent types. Now for the general input
attributes (including type!) in Table 14.2.

21_977279-ch14.indd 29321_977279-ch14.indd 293 10/28/10 10:14 PM10/28/10 10:14 PM

294

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Table 14.2 Input Element Attributes
Input Attribute Features Input Attribute Features

accept File type accepted alt Hint of fi le loading

autocomplete* Complete typing autofocus* Sets focus to fi eld

checked Selected state disabled Unusable

form* Set form id formaction* Form override

formenctype* Form override formmethod* Form override

formnovalidate* Form override formtarget* Form override

height* Height in pixels list* Datalist suggest

max* Maximum value maxlength Maximum length

min* Minimum value multiple Multiple values

name DOM name pattern* Regular expression

placeholder* Disappears on entry readonly Cannot input

required* Must fi ll size Num char visible

src Source step* Number of steps

type Input kind value Assigned value

width* Width in pixels

*New to HTML5

With all the diff erent combinations of attributes and their values, the next several sections
take a look at diff erent groupings of form-related elements, attributes, and values in combina-
tions. Th e fi rst section covers using the datalist element with the list and form
attributes. As with all the following sections, this one packs in as many features as possible
while still focusing on the key features under discussion.

THE LIST ATTRIBUTE, THE URL TYPE, AND DATALISTS

One of the new attributes that can be used with forms is list. At the beginning of this
chapter, I noted that Web pages should be smooth, interactive experiences for users. Th e less
work that users have to put into an interactive form the better. Th e list attribute provides a
list of suggested items in an input element, and users may select from the list or type in a
response. However, the list attribute is actually a reference to a <datalist> tag elsewhere
in the Web page. Further, if you place the <datalist> container within a <form> con-
tainer, the <input> elements aft er the data list don’t show up on the page. So, what you have
to do is to provide an id attribute in the <datalist> tag and assign it to the list attribute
in the <input> tag. Th e data list is kept outside of the <form> container but is connected
through the data list’s id.

21_977279-ch14.indd 29421_977279-ch14.indd 294 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

295

Displaying a choice in the alert window
A simple example sets up an input for users to type in or select a URL. Aft er the URL is
entered, the user presses a Submit button and an alert window pops up with the address. Th e
following script (DataList.html in this chapter’s folder at www.wiley.com/go/
smashinghtml5) shows how to put all the parts together.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 place=document.traveler.getURL.value;

 alert(place);

}

</script>

<style type=”text/css”>

h3 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#B9121B;

}

body {

 font-family:Verdana, Geneva, sans-serif;

 color:#4C1B1B;

 background-color:#FCFAE1;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>List and Datalist</title>

</head>

<body >

<article>

 <header>

 <h3>The List and Datalist</h3>

 </header>

 <section>

 <datalist id=favoriteSites>

 <option value=”http://www.smashingmagazine.com/” label=”Smashing”>

 <option value=”http://www.sandlight.com/” label=”Sandlight”>

 </datalist>

 </section>

 <section>

 <form name=traveler>

 <label>Enter one of your favorite sites:</label>

 <input type=url list=favoriteSites name=getURL>

 <input type=submit value=”Show your URL” onClick=”FormMaster.resolveForm()”>

21_977279-ch14.indd 29521_977279-ch14.indd 295 10/28/10 10:14 PM10/28/10 10:14 PM

296

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 </form>

 </section>

</article>

</body>

</html>

In looking at the script, you may be wondering what the label attribute is doing in the
<option> tag in the <datalist> container. Th ere’s no label attribute in either the form
or input element (see Table 14.1 and Table 14.2). Th at’s because the label attribute is not
in the form or input elements, but in the <option> tag. Although that may seem obvious,
when you open the page, you see not only the URLs but also the label in the URL input
window. What’s happening is that the <input type=url> tag holds a reference to the data
list’s options through the list attribute in the input element’s markup.

At the time of testing, the data list shows up in Opera using either Windows 7 or Mac OS X.

In the top-left panel, you can see the selections available in the data list (along with a label for
each). Once the user makes a selection, it appears in the input window as shown in the
top-right panel. Finally, in the bottom panel, you can see that it’s passed to the JavaScript
function that displays it in an alert window. (Note that the Opera alert window also displays
the domain.)

Th e important point about this process is that users don’t have to type in URLs. Everyone who
has ever typed in a URL has made a typo at some point. By using the data list to help out, not
only is the suggested URL more likely to be selected, but it’s easier for the user.

Datalist elements on mobile devices and URL keyboards
Tests of the application on the Mini Opera browser on an iPhone revealed that the data list
did not appear. Further testing with the mobile version of the Safari browser showed that it
did not work with Safari yet either.

However, during these tests, a unique keyboard for the new url and email type of input
elements was revealed. Th e mobile Safari browser recognizes an input form typed as url and
email and when used it displays a keyboard that includes both a dot (.) and dot-com
(.com) key, plus some other keys commonly used with URLs and e-mail addresses. Figure
14-4 shows the Safari mobile (left) and Mini Opera (right) browsers side-by-side displaying
the data list program on the same iPhone. If you look carefully, you can see the diff erence.

Th e importance of a mobile browser recognizing that the input expects a URL or e-mail
address is that it considers the user. With the special keyboard, users don’t have to switch
between the numeric/symbol keyboard and the alphabetic one as much.

21_977279-ch14.indd 29621_977279-ch14.indd 296 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

297Figure 14-4: Special mobile device keyboard for URL form (left) and standard mobile keyboard (right).

RADIO BUTTONS AND CHECK BOXES: EASY-TO-SELECT INPUT ELEMENTS

If you’re using radio buttons and check boxes with external programs accessing databases or
doing some other kind of server-side operation, it’s very easy on the HTML5 side. Just use a
Submit button and everything gets sent to the server side for those programs to handle. (I
show you how to do that using a version of this example in Chapter 16.)

Because this next Web script bounces the input back to a <textarea> object on the page,
the entered data had to be checked using JavaScript with a little loop to fi rst see whether the
checked attribute was true or false. If the item has been checked, it then adds the value
to a FormMaster property named this.countVal. (It’s like a variable, but in keeping with
DOM-like programming, it’s assigned to an object.) Once that’s fi nished, it sends only those
checked to the output. Th e following (rather long) Web script (RadioCheck.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) does that.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 this.countVal=””;

21_977279-ch14.indd 29721_977279-ch14.indd 297 10/28/10 10:14 PM10/28/10 10:14 PM

298

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 this.topCount=document.checkRadio.length-2;

 for(var count=0;count < this.topCount;count++)

 if(document.checkRadio.elements[count].checked)

 {

 this.countVal+=document.checkRadio.elements[count].value+”\n”;

 }

 document.checkRadio.outNow.value=this.countVal;

}

</script>

<style type=”text/css”>

/* 735840,733119,BF5D39,352D1B,C0B787 */

body {

 background-color:#C0B787;

 color:#733119;

 font-family:Verdana, Geneva, sans-serif;

 font-size:12px;

 margin-left:20px;

}

h1 {

 font-family:”Arial Black”, Gadget, sans-serif;

 color:#733119;

}

h2 {

 color:#BF5D39;

}

h3 {

 color:#BF5D39;

}

#dataEntry {

 display:table;

}

#lang {

 display:table-cell;

 width:200px;

}

#out {

 display:table-cell;

 width:300px;

}

aside {

 display:table-cell;

 width:250px;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Click-2-Choose</title>

</head>

<body>

<article>

 <header>

 <h1>E-Z Selections</h1>

21_977279-ch14.indd 29821_977279-ch14.indd 298 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

299

 </header>

 <div id=”dataEntry”>

 <div id=”lang”>

 <section>

 <h2>Web Languages</h2>

 <form name=checkRadio>

 <label>

 <input type=checkbox name=html value=”HTML5” checked>

 HTML5</label>

 <label>

 <input type=checkbox name=css value=”CSS3”>

 CSS3</label>

 <label>

 <input type=checkbox name=js value=”JavaScript”>

 JavaScript</label>

 <label>

 <input type=checkbox name=php value=”PHP”>

 PHP5</label>

 <label>

 <input type=checkbox name=asp value=”ASP.NET”>

 ASP.NET</label>

 <label>

 <input type=checkbox name=action value=”ActionScript 3.0”>

 ActionScript 3.0</label>

 </section>

 </div>

 <section>

 <aside>

 <h2>Specialization</h2>

 <fieldset>

 <legend> Web Focus </legend>

 <label>

 <input type=radio name=work value=”Graphic Design”>

 Design </label>

 <label>

 <input type=radio name=work value=”Interface Design”>

 Iterface Design </label>

 <label>

 <input type=radio name=work value=”Front End”>

 Front End Development </label>

 <label>

 <input type=radio name=work value=”Back End”>

 Back End Development </label>

 </fieldset>

 </aside>

 </section>

 </div>

 <section>

 <div id=”out”>

 <fieldset>

 <legend>Output Window</legend>

21_977279-ch14.indd 29921_977279-ch14.indd 299 10/28/10 10:14 PM10/28/10 10:14 PM

300

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 <textarea name=outNow rows=10 cols=40 ></textarea>

 </fieldset>

 </div>

 </section>

 <section>

 <div>

 <p>

 <input type=button name=getEm value=”Relay your selections”

onClick=”FormMaster.resolveForm()”>

 </p>

 </div>

 </section>

 </form>

 </div>

</article>

</body>

</html>

Although that’s a bit long, most of it was formatting so that it looks halfway decent and it’s
easy for users. Th e <fieldset> tag was used to highlight a group of buttons and to encap-
sulate the output window. It’s a great tag to use when you want to group elements. Th e
<legend> tag allows you to place a label in the enclosing rectangle around the fi eld set.
Figure 14-5 shows what you can expect to see when you load the page.

Figure 14-5: Check boxes and radio buttons.

21_977279-ch14.indd 30021_977279-ch14.indd 300 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

301

When you fi rst run it, you see that the HTML5 has already been selected. Th at’s because the
checked attribute is added to the tag. It’s a Boolean, but you don’t have to assign it a true or
false. Aft er the page loads, see what happens when you click it.

What you see in the output window is that all the values that were assigned to the selected
radio buttons and check boxes. In more practical implementations, that same data would be
passed to and stored in a database.

DATE PICKER

Th e last input attribute we have space to cover in this chapter is simple to implement but has
impressive results. Th e new date attribute for the input element is powerful and easy to
include in a form. Several new date and time attributes have been added to the input element,
but only the date attribute itself is shown. Th e following program (Pickers.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) shows you how to set it up and
use it to send information.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

FormMaster=new Object();

FormMaster.resolveForm=function()

{

 alert(document.calendar.dateNow.value);

}

</script>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Date</title>

</head>

<body >

<form name=calendar>

 <input name=dateNow type=”date” onChange=”FormMaster.resolveForm()”>

</form>

</body>

</html>

With just that little markup in the form container, you’re able to build a complete calendar.
You can use the onChange event handler to capture the date selected from the calendar.
Figure 14-6 shows the application in an Opera browser (the only one found to work so far
with this new input attribute) in a Windows 7 environment.

In this particular implementation, as soon as the user makes a selection, the alert window
opens and shows the selected date, as shown in Figure 14-7.

Th e purpose is to show how easy it is to pass the selected date value. Such data could be stored
in a database to make online reservations.

21_977279-ch14.indd 30121_977279-ch14.indd 301 10/28/10 10:14 PM10/28/10 10:14 PM

302

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 14-6: A simple markup provides a calendar online.

Figure 14-7: Passing the date value to JavaScript.

Th e little window behind the alert window shows the selected date in a small window. (Th e
little window shows the selected date with no other required programming.) Th e importance
of this new HTML5 feature lies in the ease with which users can select a date. If you’ve ever
worked with a similar tool in making airline or hotel reservations online, you know how
valuable it is. Th e only problem at the time of this writing is that no other HTML5 browser
other than Opera includes it.

21_977279-ch14.indd 30221_977279-ch14.indd 302 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 14: ADDING FORMS

303

TAKE THE WHEEL

Th e major takeaway from this chapter is how to use the DOM to access form information.
Th e basic format is:

document.form.element.value

You need to use JavaScript (at this stage) to access data that would generally be passed on to a
server-side program like PHP, ColdFusion, or ASP.NET. However, to simulate that, the
examples in this chapter have used a button input type to fi re a JavaScript program that sends
the results to a <textarea> where you can see what would normally be sent to the back end
for processing. Here’s the challenge:

 Devise an online store that sells a line of products (at least fi ve) or delivers services
(again, at least fi ve). Examples would be a computer store or a Web design service.
 Design an interface where users enter their name, e-mail, URL, address, city, state, zip
code, and a username and password, with as little eff ort on their part as possible. To make
it bulletproof, test it with someone who’s never seen it before.
 Users then select several products or services (again with as little eff ort on their part as
possible).
 Th e selected off erings are then displayed in a <textarea> with their corresponding
individual prices along with appropriate tax.
 Th e program also generates a shipping label. It will just be displayed in the
<textarea> — not printed out.

Th e more form elements and attributes that you can use that were not discussed in the
chapter, the better.

21_977279-ch14.indd 30321_977279-ch14.indd 303 10/28/10 10:14 PM10/28/10 10:14 PM

21_977279-ch14.indd 30421_977279-ch14.indd 304 10/28/10 10:14 PM10/28/10 10:14 PM

SMASHING HTML5

C
H

A
P

T
E

R

15

EMBEDDING OBJECTS
AND STORING
INFORMATION

15
FOR YEARS, USERS have been able to do
some pretty remarkable things on the Web
thanks to diff erent kinds of plug-ins loaded
inside the browser. Generally speaking, two key
plug-ins are installed with most browsers: Adobe
Flash Player and Java.

Some of the new HTML5 features work best in
concert with either special plug-ins directly

related to the new feature or through a URL that
serves the new feature. HTML5 has a number of
such objects, and one of the most interesting is
the geolocation object. So, it’ll be the fi rst to
examine before looking at how Java and Flash
work with HTML5.

22_977279-ch15.indd 30522_977279-ch15.indd 305 10/28/10 10:14 PM10/28/10 10:14 PM

306

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

GEOLOCATION

Th e geolocation object is part of the navigation object in the HTML5 DOM. It’s a
means of fi nding your location, more or less. In several tests, it successfully located the
ballpark of my location. Th e most important attributes of the geolocation object are the
latitude and longitude attributes. Th at’s because, with those values, you can load a map
of your general location.

Creating an HTML page that shows users their latitude and longitude is fi ne, but HTML5
browsers are also able to load a map into their Web sites using Google Maps. Th e URL for this
capability is:

“ http://maps.google.com/maps?hl=en&ie=UTF8&ll= “ + latitude + “, “ + longitude +

“&spn=0.054166,0.110378&z=13&output=embed”

Th e latitude and longitude variables contain coordinate values. So, the trick is to locate
the latitude and longitude values to insert where they’re needed.

FINDING LATITUDE AND LONGITUDE

Getting these values requires pretty straight JavaScript from your browser — on your mobile
device or computer. Here’s the basic code:

navigator.geolocation.getCurrentPosition(someFunction);

To fi lter out browsers that do not recognize the geolocation object, use a simple trap:

if (navigator.geolocation)

{

navigator.geolocation.getCurrentPosition(someFunction);

}

else

{

 alert(“Geolocation not recognized”)

}

Th is tells users whether their browsers even recognize geolocation.

Th e function called to get the position information makes the call but is expected to include a
parameter that will store the actual information about location. Following the practice of
using objects and methods the call is made:

...

navigator.geolocation.getCurrentPosition(LocationMaster.lookUpPosition);

...

Th is, in turn, gets the method that returns the requested values:

22_977279-ch15.indd 30622_977279-ch15.indd 306 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

307

LocationMaster=new Object();

LocationMaster.lookUpPosition=function(position)

{

 this.latNow=position.coords.latitude;

 this.longNow=position.coords.longitude;

...

Note that the position parameter is like a variable that will store the latitude and longitude
values. It is not a property of the geolocation object — cords.latitude and cords.
longitude are the properties. (Th e name position could be any name we wanted —
Rumpelstiltskin would’ve worked, but position is more descriptive.)

Once the values are assigned to the parameter object, they become part of the Location-
Master object using the this keyword. Th e property names — latNow and longNow — store
the values like a variable. Th e only diff erence is that they’re part of an object.

GETTING THE MAP

Th e only thing that the HTML5 page working with JavaScript does is to get the coordinates.
Getting the map, then, is simply a matter of inserting those values into the map request. So, to
fi nish up the method, the program uses the following line:

document.getElementById(“mapHolder”).src = “http://maps.google.com/

maps?hl=en&ie=UTF8&ll=“ + this.latNow + “,” + this.longNow + “&spn=0.054166,0.11037

8&z=13&output=embed”;

You fi nd a new method in the HTML5 DOM core: getElementById. In this case, the ID is
that of an iFrame element. Th en the map is the source object — just like an image is loaded
through the source identifi cation:

Th e only diff erence is that the place where the map is loaded is specifi ed by the iFrame ID
instead of by the page by default.

Placing the map on the Web page
Any other loading aft er the page has loaded can’t be slipped in just anywhere in the page. Th e
<iframe> can be a target apart from the main document. Using the <iframe> without any
of its attributes specifi ed produces a relatively small viewing window. However, the idea is to
see how few tags and how little JavaScript code I can use to get the map displayed on the page.

Putting it all together in a simple page
I’ve tested all the major browsers on both Windows 7 and Macintosh OS X, and the following
(MiniGeoLoc.html in this chapter’s folder at www.wiley.com/go/smashinghtml5)
represents a simple starting point for a page that displays a map near the originating user.

22_977279-ch15.indd 30722_977279-ch15.indd 307 10/28/10 10:14 PM10/28/10 10:14 PM

308

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

<!DOCTYPE html >

<html>

 <head>

<style type=“text/css”>

/* BF7F6C,FFDDAE,B59D7B,40372B,E6C79C */

 body {

 font-family:Verdana, Geneva, sans-serif;

 color:#40372B;

 background-color:#FFDDAE;

}

h3 {

 font-family:Tahoma, Geneva, sans-serif;

 color:#BF7F6C;

}

</style>

<script>

 LocationMaster=new Object();

 LocationMaster.lookUpPosition=function(position)

 {

 this.latNow=position.coords.latitude;

 this.longNow=position.coords.longitude;

 document.getElementById(“mapHolder”).src = “http://maps.google.com/

maps?hl=en&ie=UTF8&ll=“ + this.latNow + “,” + this.longNow + “&spn=0.054166,0.11037

8&z=13&output=embed”;

 }

 if (navigator.geolocation)

 {

 navigator.geolocation.getCurrentPosition(LocationMaster.lookUpPosition);

 }

 else

 {

 alert(“Try a different HTML5 browser. This one is not working with

geolocation.”);

 }

 </script>

<title>Minimum Map</title>

 </head>

 <body>

 <article>

 <header>

 <h3>Your Location</h3>

 </header>

 <section>

 <iframe id=“mapHolder”> </iframe>

 </section>

 <section>

 <p> This example of using geolocation and Google Maps is very simple. It has

been tested in the major browsers and mobile browsers. </p>

 </section>

22_977279-ch15.indd 30822_977279-ch15.indd 308 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

309

 </article>

</body>

</html>

When you test this Web page, try it fi rst using the latest Firefox browser. Th en try it out with
Google Chrome and Opera. With Safari, which recognizes the geolocation object, I was
unable to load the map into the iframe. Ironically, when tested on the mobile Safari browser
on an iPhone, it worked fi ne. (More about that in a second.) Figure 15-1 shows the program
on all browsers except Safari and Internet Explorer running on Windows 7.

Figure 15-1: Geolocation used to fi nd longitude and latitude for Google Maps.

Figure 15-1 shows the Web page loaded with the map in Firefox, Chrome, and Opera. You can
drag the map around the iframe with the mouse and on Safari and Perfect browsers on an
iPhone, with your fi ngers. However, on the mobile browsers, the iframe and image were
extended by dragging downward.

22_977279-ch15.indd 30922_977279-ch15.indd 309 10/28/10 10:14 PM10/28/10 10:14 PM

310

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Adapting the page for mobile viewing
To make it more practical for mobile users, I made some program adjustments to change the
orientation of the map by changing the <iframe> to the following:

<section>

<iframe id=“mapHolder” width=“240” height=“320”> </iframe>

</section>

Now on a vertical orientation, the map was easier to read. Figure 15-2 shows the program on
an iPhone in the Perfect (left) and Safari (right) browsers. Near the bottom of the page,
directions provide mobile users with instructions for enlarging the image without dragging
the map out of the iframe.

Figure 15-2: The map in a mobile environment.

Figure 15-2 illustrates that by pulling the page outward and away from the map (left panel),
mobile users can adjust the map so that they can easily read it (right panel).

WORKING WITH THE GEOLOCATION PROPERTIES AND THE GOOGLE EARTH PLUG-IN

Experimenting with the geolocation object can be a lot of fun and very informative. Th e
following is a full list of its properties:

22_977279-ch15.indd 31022_977279-ch15.indd 310 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

311

 latitude: Geographic coordinates in decimal degrees
 longitude: Geographic coordinates in decimal degrees
 altitude: Height in meters
 accuracy: Accuracy levels of latitude and longitude coordinates in meters
 altitudeaccuracy: Accuracy levels of altitude in meters
 heading: Direction of travel of hosting device in degrees (most relevant to a mobile
device)
 speed: Current ground speed of hosting device in meters/second (most relevant to a
mobile device)

If you have a mobile device, you can experiment with diff erent headings and speed — with
someone else driving! All the geolocation properties can be sent to a form for display if
you want. If used with a mobile device, you’ll need either an open-socket server or frequent
browser/page refreshing.

A fi nal aspect of geolocation is the use of the Google Earth plug-in. Figure 15-3 shows a
revised version of the basic Web page with the plug-in that can generate a 3-D view of the
mapped area.

You can update the sample Web page to the same dimensions by giving the <iframe> tag
the following attributes: width=500 height=400. Th en click the Earth option at the top
of the map area. If your browser has the plug-in, it will show the 3-D view. Otherwise, it’ll
off er you a chance to download the plug-in and install it on your browser.

STORAGE IN HTML5

Other than cookies that store data on the user’s browser, when you think about storage,
typically a database and other programs like PHP and ASP.NET come to mind. However, the
HTML5 DOM now has a storage object that can be used in four contexts:

 Session storage
 Global storage
 Local storage
 Database storage

Not all browsers support all these storage contexts, but as browsers are continuously updated
to include HTML5, they include more contexts. At the time of this writing, Safari, Chrome,
and Opera supported all the contexts except global storage; Firefox supported them all except
database storage.

22_977279-ch15.indd 31122_977279-ch15.indd 311 10/28/10 10:14 PM10/28/10 10:14 PM

312

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 15-3: A 3-D view of the map area with the Google Earth browser plug-in.

All storage is done in key/value pairs. Th e key is an identifi er for a given value. (Th e key is
something like a variable with a label and an assigned value.) Th e next two sections explain
how to work with session and local storage. Global and database storage are less universally
implemented at this time, so I’m setting them aside.

SESSION STORAGE

Session storage allows users to store data for a single Web page as long as that Web page is
being viewed. As soon as the user leaves the page, all stored data is lost. For interactive games,
calculators, and any other kind of page that needs temporary storage while the page is viewed,
you can use session storage.

To get started, you’ll need to take look at the setters and getters of session storage. Here’s the
basic format for setting (storing) a value:

22_977279-ch15.indd 31222_977279-ch15.indd 312 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

313

sessionStorage.setItem(“keyName”, value);

Th e key must be a string, while the value can be any acceptable data type — number, text,
Boolean, object, function. Th e following represent some valid data assignments:

this.myKey=“secondKey”; //Key name assigned to property

function eek() //A function with a return value

{

 return “eeeek!”;

}

jill=“My name is Jill”; //A variable

//Assign values to keys

sessionStorage.setItem(“firstKey”,88); //A number (numeric literal)

sessionStorage.setItem(this.myKey,true); //Boolean

sessionStorage.setItem(“thirdKey”,eek()); //Function

sessionStorage.setItem(“fourthKey”,”My name is Jack”); //String literal

sessionStorage.setItem(“fifthKey”,jill); //Variable

As you can see, you can use variables for both keys and their values. As long as the variable
(or property) is a string, it can be used as a key — you could even use a function that returns
a string as a key. A value can be a string or nonstring.

Once you have stored data, you need a way to retrieve it with a getter method. Th e following
shows the general format for getting the stored data — you have to know the key name for
every value you want to retrieve.

sessionStorage.getItem(“keyName”);

You can think of the key name in the same way as you do a variable name. If you know the
variable name, you can fi nd its value. Key names work the same way.

Th is next program (SessionStore.html in this chapter’s folder at www.wiley.com/
go/smashinghtml5) provides a simple illustration of how to work with session storage.
You’ll probably be reminded of working with variables because the values are extant only as
long as you don’t change the page.

<!DOCTYPE HTML>

<html>

<head>

<script type=“text/javascript”>

StorageMaster=new Object();

//Set values

StorageMaster.setPositions=function()

{

 sessionStorage.setItem(“firstBase”,document.players.firstBase.value);

 sessionStorage.setItem(“secondBase”,document.players.secondBase.value);

 sessionStorage.setItem(“thirdBase”,document.players.thirdBase.value);

}

//Get values

22_977279-ch15.indd 31322_977279-ch15.indd 313 10/28/10 10:14 PM10/28/10 10:14 PM

314

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

StorageMaster.getFirst=function()

{

 playerName=sessionStorage.getItem(“firstBase”);

 alert(playerName + “ is on first”);

}

StorageMaster.getSecond=function()

{

 playerName=sessionStorage.getItem(“secondBase”);

 alert(playerName +” is playing second”);

}

StorageMaster.getThird=function()

{

 playerName=sessionStorage.getItem(“thirdBase”);

 alert(playerName+ “ is assigned to third”);

}

</script>

<style type=“text/css”>

body {

 background-color:#EBD4B2;

 color:#273A4B;

 font-family:Verdana, Geneva, sans-serif;

}

h2 {

 background-color:#273A4B;

 color:#D49756;

 text-align:center;

}

h3 {

 color:#323F14;

}

fieldset {

 color:#790007

}

#playerTable {

 display:table;

}

#getPlayer {

 display:table-cell;

 width:250px;

}

</style>

<meta http-equiv=“Content-Type” content=“text/html; charset=UTF-8”>

<title>Storage</title>

</head>

<body>

<article>

<header>

 <hgroup>

 <h2>Baseball Manager</h2>

 <h3>Assign Players:</h3>

22_977279-ch15.indd 31422_977279-ch15.indd 314 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

315

 </hgroup>

</header>

<section>

<form name=players>

 <input type=text name=firstBase placeholder=“First base”>

 First Base

 <input type=text name=secondBase placeholder=“Second base”>

 Second Base

 <input type=text name=thirdBase placeholder=“Third base”>

 Third Base

 <input type=button onClick=“StorageMaster.setPositions()” value=“Assign

Positions”>

 </section>

 <div ID=“playerTable”>

 <section ID=“getPlayer”>

 <fieldset>

 <legend>Who’s Playing What?</legend>

 <input type=button onClick=“StorageMaster.getFirst()” value=“Who’s on First?”>

 <input type=button onClick=“StorageMaster.getSecond()” value=“Who’s on Second?”>

 <input type=button onClick=“StorageMaster.getThird()” value=“Who’s on Third?”>

 </fieldset>

</form>

</section>

</div>

</body>

</html>

When you fi rst load the page, you’ll see a new HTML5 attribute in all the text input
windows — these are place holders. In the code, they look like this:

<input type=text name=thirdBase placeholder=“Third base”>

As soon as the user begins to type in a value, they immediately disappear. So, go ahead and
test it, fi lling in the three text windows, and then click the Assign Positions button. Th at sets
the values in the session storage.

To retrieve the stored data, just click any of the three buttons in the Who’s Playing What? box.
Figure 15-4 shows what you can expect to see.

If you try to get the stored data back before clicking the Assign Positions button, you’ll get a
null value in the alert window. If you leave the page and return, you’ll also get null values until
you’re reassigned the positions.

22_977279-ch15.indd 31522_977279-ch15.indd 315 10/28/10 10:14 PM10/28/10 10:14 PM

316

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 15-4: Stored data returned in an alert window.

LOCAL STORAGE

Th e main diff erence between session storage and local storage is that local storage is persistent.
Users can leave the site, turn off their computers, come back the next day, and the data are still
there. Local storage works very much like cookies, but there are certain diff erences that are
important:

 Cookies allow very little storage space; local storage allows far more.
 Cookies are retransmitted automatically with every request to the server, and local
storage is not — which means local storage is far less work for the server and browser.
Local storage is transmitted on a request only.

You’ll fi nd that localStorage and sessionStorage use the same getter/setter methods, so
once you know one, you know the other. However, you can set a value using localStorage,
turn off your computer, go play a game of football, come home, turn on the computer, and your
data is still stored on your computer. Th e following example (LocalStorage.html in this
chapter’s folder at www.wiley.com/go/smashinghtml5) shows how to store, retrieve, and
clear localStorage data.

<!DOCTYPE HTML>

<html>

<head>

<script type=“text/javascript”>

22_977279-ch15.indd 31622_977279-ch15.indd 316 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

317

StorageMaster=new Object();

//Set values

StorageMaster.setRegistration=function()

{

 this.hobbyNow=““;

 this.topCount=document.interest.elements.length;

 for(var count=0;count < this.topCount;count++)

 {

 if(document.interest.elements[count].checked)

 {

 this.hobbyNow=document.interest.hobby[count-1].value;

 }

 }

 localStorage.setItem(“uName”,document.interest.userName.value);

 localStorage.setItem(“uHobby”,this.hobbyNow);

 localStorage.setItem(“uState”,document.interest.resState.value);

}

//Get values

StorageMaster.getReg=function()

{

 userProfile=“User Profile:\n”;

 nameNow=localStorage.getItem(“uName”)+”\n”;

 hobbyNow=localStorage.getItem(“uHobby”)+”\n”;

 stateNow=localStorage.getItem(“uState”)+”\n”;

 fileLength=localStorage.length + “ profile items”;

 this.profile=userProfile+nameNow+hobbyNow+stateNow+fileLength;

 document.getElementById(“profile”).innerHTML = this.profile;

}

StorageMaster.clearReg=function()

{

 localStorage.clear();

 alert(“Local storage cleared”);

}

</script>

<style type=“text/css”>

/*962D3E,343642,979C9C,F2EBC7,348899 */

body {

 background-color:#F2EBC7;

 color:#962D3E;

 font-family:Verdana, Geneva, sans-serif;

}

h2 {

 color:#979C9C;

}

fieldset {

 color:#348899;

}

#hobbyTable {

 display:table;

}

#getHobby {

22_977279-ch15.indd 31722_977279-ch15.indd 317 10/28/10 10:14 PM10/28/10 10:14 PM

318

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

 display:table-cell;

 width:275px;

}

#profile {

 display:table-cell;

 background-color: #979C9C;

 padding: 3px;

 width:150px;

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 font-size:14px;

}

</style>

<meta http-equiv=“Content-Type” content=“text/html; charset=UTF-8”>

<title>Storage</title>

</head>

<body>

<article>

<header>

 <h2>Hobby Registration</h2>

</header>

<section>

 <form name=“interest”>

 <input name=userName placeholder=“Name please”>

 Name

 <div id=“hobbyTable”>

 <section id=“getHobby”>

 <fieldset>

 <legend>What’s Your Favorite Hobby?</legend>

 <label>

 <input type=radio name=hobby value=“travel”>

 Travel</label>

 <label>

 <input type=radio name=hobby value=“reading”>

 Reading</label>

 <label>

 <input type=radio name=hobby value=“theater”>

 Theater</label>

 <label>

 <input type=radio name=hobby value=“ballet”>

 Ballet</label>

 <label>

 <input type=radio name=hobby value=“monster trucks”>

 Monster Truck Rallies</label>

 </fieldset>

 </section>

 </div>

 <input type=text name=resState placeholder=“Your state of residence”>

22_977279-ch15.indd 31822_977279-ch15.indd 318 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

319

 State

 <input type=button onClick=“StorageMaster.setRegistration()” value=“Register”>

 <input type=button onClick=“StorageMaster.getReg()” value=“Find Info”>

 <input type=button onClick=“StorageMaster.clearReg()” value=“Clear Data”>

 </form>

</section>

<pre id=“profile”></pre>

</body>

</html>

One of the features added to this example is the use of radio buttons to pass data to be stored.
Radio buttons are important because they make it easy for users to make a choice. It does take
a bit more work to get the correct data from radio buttons and check boxes, but it refl ects the
Web truism that the more work the developer does, the less work users have to do.

Another feature of local storage is that it’s related to the browser. Each browser has its own
storage. So, if you store the data using a Safari browser, a Chrome browser cannot access that
data. Figure 15-5 shows the page loaded in a Chrome browser that has stored data using local
storage. However, if the same program in a diff erent browser (Opera, for example) attempts to
retrieve the data, it shows it to be null.

Figure 15-5: Accessing local storage data.

You may also notice that when you fi rst load the program, you don’t see the output window.
Instead, you see a gray line beneath the buttons. As soon as you click the Find Info button, the
information appears where the gray line was. A little CSS3 and HTML5 DOM work does the
trick. First, in the CSS3, set up the ID:

22_977279-ch15.indd 31922_977279-ch15.indd 319 10/28/10 10:14 PM10/28/10 10:14 PM

320

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

#profile {

 display:table-cell;

 background-color: #979C9C;

 padding: 3px;

 width:150px;

 font-family:”Trebuchet MS”, Arial, Helvetica, sans-serif;

 font-size:14px;

}

Using the JavaScript line,

document.getElementById(“profile”).innerHTML = this.profile;

the information stored in this.profile was sent to the Web page where the following tag
was placed:

<pre id=“profile”></pre>

Prior to HTML5, dynamically sending data to a Web page without reloading the page was far
more complex. However, for certain programs like Adobe Flash CS5, it’s quite easy, as the next
section explains.

ADDING AND ADJUSTING OBJECTS
IN HTML5 WEB PAGES

When HTML was fi rst released, it couldn’t do much, so developers began using programs like
Java and Flash, which provided the functionality that HTML could not. Much of that is no
longer true with HTML5, but even though HTML5 can do far more than earlier versions of
HTML, later versions of Flash and Java can still do far more.

Much can be said about the relative merits of Adobe Flash CS5 (the latest version of Flash as
of this writing) and HTML5, but for the foreseeable future, they’ll most likely be working
together, despite the fact that the Apple iPhone and iPad do not support the Flash Player.
Besides the fact that Flash can do a great deal, it has also provided consistency between
diff erent platforms and browsers. So, even if diff erent browser makers had diff erent versions
of the HTML DOM and diff erent ideas about what was the best CSS and JavaScript imple-
mentation, the Flash plug-in was consistent across all browsers and platforms. So, when
designers and developers used Flash, they were assured of a consistent presentation.

ADDING AN OBJECT

To give you an idea of how to embed an object in HTML5, I created a simple animation of a
shooting star in Flash CS5. Figure 15-6 shows the little animation in the design window.

22_977279-ch15.indd 32022_977279-ch15.indd 320 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

321

Figure 15-6: A Flash animation.

You can place the animation into a Web page in a number of diff erent ways, but the easiest is
to publish it in Flash, which automatically generates a Web page with a reference to the binary
fi le in a .swf format. In browsers with Flash plug-ins, which is virtually all browsers — they
ship (or download) with the Flash plug-in included — the following code (ShootingStar.
html in this chapter’s folder at www.wiley.com/go/smashinghtml5) shows the object
in an HTML5 wrapper.

<!DOCTYPE HTML>

<html>

 <head>

 <title>ShootingStar</title>

 <meta http-equiv=“Content-Type” content=“text/html; charset=UTF-8”>

 <style type=“text/css” media=“screen”>

 html, body { height:100%; background-color: #ffffff;}

 body { margin:0; padding:0; overflow:hidden; }

 #flashContent { width:100%; height:100%; }

 </style>

 </head>

 <body>

 <div id=“flashContent”>

 <object classid=“clsid:d27cdb6e-ae6d-11cf-96b8-444553540000”

width=“300” height=“200” id=“ShootingStar” align=“middle”>

 <param name=“movie” value=“ShootingStar.swf” />

 <param name=“quality” value=“high” />

 <param name=“bgcolor” value=“#ffffff” />

 <param name=“play” value=“true” />

 <param name=“loop” value=“true” />

 <param name=“wmode” value=“window” />

 <param name=“scale” value=“showall” />

 <param name=“menu” value=“true” />

 <param name=“devicefont” value=“false” />

 <param name=“salign” value=““ />

 <param name=“allowScriptAccess” value=“sameDomain” />

 <!--[if !IE]>-->

 <object type=“application/x-shockwave-flash” data=“ShootingStar.

22_977279-ch15.indd 32122_977279-ch15.indd 321 10/28/10 10:14 PM10/28/10 10:14 PM

322

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

swf” width=“300” height=“200”>

 <param name=“movie” value=“ShootingStar.swf” />

 <param name=“quality” value=“high” />

 <param name=“bgcolor” value=“#ffffff” />

 <param name=“play” value=“true” />

 <param name=“loop” value=“true” />

 <param name=“wmode” value=“window” />

 <param name=“scale” value=“showall” />

 <param name=“menu” value=“true” />

 <param name=“devicefont” value=“false” />

 <param name=“salign” value=““ />

 <param name=“allowScriptAccess” value=“sameDomain” />

 <!--<![endif]-->

 <img src=“http://www.adobe.com/images/shared/download_

buttons/get_flash_player.gif” alt=“Get Adobe Flash player” />

 <!--[if !IE]>-->

 </object>

 <!--<![endif]-->

 </object>

 </div>

 </body>

</html>

ADJUSTING AN OBJECT

Th e key HTML5 element is the <object> tag. Several parameters have been included, but all
of them can be changed to better suit your site. For example, the background color is set to
white (#ffffff), and by typing in a diff erent background color, you can match it to your
site. Likewise, you can change the CSS and anything else you want.

Another program variously called Flex and Flash Builder also generates .swf fi les. Using a
very powerful language called ActionScript 3.0, developers are able to create programs with
the same depth and power as established programs like Java and C++. However, all the
HTML5 developer has to do is add the .swf fi le with his own code or code generated
automatically by Flash and Flash Builder.

TAKE THE WHEEL

I think you’re going to like this challenge. It involves both the new geolocation and
localStorage objects in HTML5. As you saw in this chapter, all you need to place a
Google Map on your Web page is the value of the location’s latitude and longitude. Th e
geolocation object generates those values for you in HTML5 in your current position. If
you have a mobile device, you can generate that information in several diff erent locations.
Alternatively, you can go to an online mapping program, enter an address, and the mapping
program will do it for you. So here’s the challenge:

22_977279-ch15.indd 32222_977279-ch15.indd 322 10/28/10 10:14 PM10/28/10 10:14 PM

CHAPTER 15: EMBEDDING OBJECTS AND STORING INFORMATION

323

 Get the longitude and latitude for fi ve diff erent locations.
 Enter the longitude and latitude values into a localStorage object.
 Set up fi ve buttons that will call a JavaScript program that will load fi ve maps when
requested.

Basically, you’ll be making a Web page that loads maps of anyplace you choose. You shouldn’t
need any more JavaScript than the little that has been covered in this chapter.

22_977279-ch15.indd 32322_977279-ch15.indd 323 10/28/10 10:14 PM10/28/10 10:14 PM

22_977279-ch15.indd 32422_977279-ch15.indd 324 10/28/10 10:14 PM10/28/10 10:14 PM

SMASHING HTML5

C
H

A
P

T
E

R

16

CATCHING
INTERACTIVE DATA

16
ONE OF THE most powerful and practical
aspects of working with Web programming is the
ability to store and retrieve data. HTML5 has some
capacity for such data storage and retrieval;
however, as Chapter 15 showed, any data that is
stored is going to be related to an individual’s
browser. As you saw in Chapter 15, for the
time-being, all the browsers aren’t exactly playing
nicely together in the sandbox when it comes to
data storage. Plus, the data are stored on the user’s
computer, and while that’s useful for some things,
such as recognizing a user’s interests when
returning to a Web site, every user has some kind
of local storage. How do you store data (like a blog
comment) so that anyone with a browser can
access it?

To give you a sense of what this chapter introduces,
consider something simple you can do on the Web:
maintain and comment on a blog. Suppose you
have a blog that discusses HTML5. Once or twice a
week, you sit down and write a blog entry about
HTML5. Now suppose you attract a big audience of
blog readers, and these readers comment on your
entries. How do you store and retrieve your

comments and those made by others? One way you
could do it would be to rewrite your Web site for
every entry and comment. But that would be so
awkward that not much blogging would take place.

Blogs are set up using diff erent server-side lan-
guages, like PHP. Th ord Daniel Hedengren’s
Smashing WordPress: Beyond the Blog (Wiley)
explains how to optimize using WordPress’s blog
soft ware. Much of the discussion is how to use PHP
to tweak your blog. However, besides working with
blogs, PHP can store and retrieve database data
from servers for anything from an online store to
members of a football team. Unlike local storage,
when data are stored using PHP, they can be
retrieved using PHP by anyone anywhere. (Th ose
people don’t have to come by your house and use
your browser on your computer to retrieve data
you’ve stored using HTML5 — and thank your
lucky stars for that.) Best of all, if you want to make
a change, all you have to do is to type in the
information, and it’s sent to a database where the
changes are refl ected in the Web page. In this
chapter, I introduce you to one server-side language,
PHP. Th e focus is on getting started and doing some
things with HTML5 that you can’t do without PHP.

23_977279-ch16.indd 32523_977279-ch16.indd 325 10/28/10 10:13 PM10/28/10 10:13 PM

326

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

SERVER-SIDE LANGUAGES AND HTML5

Using HTML5, all of the processing is done on the client — your browser on your computer.
In a larger context, that’s called client-side processing. Your browser parses the HTML5 tags
and displays the Web page that it retrieves from a Web server. All the Web server does is serve
you the HTML, and your browser does the rest.

Server-side processing is diff erent. Th e server — a PHP server, in this case — processes the
information it gets from diff erent sources and sends HTML to your browser to show on your
computer. Th e big diff erence is that the server can interact with other kinds of data that your
browser cannot. For example, it can interact with a database that stores data that anyone can
send in via the Web.

Going back to our example of rewriting your Web page every time you want to make a blog entry
or comment, that’s pretty much what PHP does. Imagine that PHP is a little (overcaff einated)
mouse that lives in the server and is really good at writing HTML5. Whenever you make a blog
entry or someone posts a comment, the mouse quickly rewrites the HTML5 so that your Web
page refl ects the changes. Th at’s how PHP works. Figure 16-1 shows an illustration of the process.

Client-side processing

Client Server

Requests HTML5 Page

Returns HTML5

Server-side processing

Client Server
Storage

Requests PHP Page

Returns HTML5

Figure 16-1: Client- and server-side processing.

In Figure 16-1, the real work is between storage and the server. Th e information in storage has
to be confi gured in a way that it can be read by your browser. And that’s what PHP does — it
takes the stored information (sent in as a blog entry, for example) and sends it back as HTML5.

SETTING UP PHP ON YOUR COMPUTER (WHICH THINKS IT’S A SERVER)

You can access PHP in three ways:

 Sign up for a hosting service.
 Download and install a server and PHP on your computer.
 If you have Mac OS X, it’s already on your computer — just confi gure it.

23_977279-ch16.indd 32623_977279-ch16.indd 326 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

327

Two of these methods involve setting up a server on your computer, and the third depends on
having a hosting service. Th e easiest thing to do is to sign up with a hosting service with PHP.
Th en you just load your PHP fi les as you would a Web page. A hosting service that has been
tested extensively and is reasonably priced is at www.jtl.net. (Th e Linux minimum service
is all you need.)

If you want to install PHP on your computer do the following:

 Windows only: Go to http://windows.php.net/download and download the
latest stable version of PHP5. (You’ll fi nd “What version do I choose?” in the left column
to help you choose what you need for your system.) You’ll also need to install an Apache
server; you can get one free from www.apache.org.
 Macintosh only: Go to http://foundationphp.com/tutorials/php_
leopard.php and follow the instructions for accessing the PHP on your system.
(Be very careful because you’re going to be using the built-in Terminal in your Mac
and you’ll be changing some key fi les.) Th is Web site shows you how to set up both
PHP and your built-in Apache server.
 Th e easiest method for all users: If you want to download and install everything at once
(PHP, Apache server, and a MySQL database) for your Mac go to www.mamp.info/en/
index.html and for Windows go to www.wampserver.com/en. Th is is the easiest
way to set up an actual database on your computer.

Setting up PHP and Apache can be awkward, but once it’s set up, you don’t have to do it again.
If you use the all-in-one method (the last one listed above), you can get the MySQL server
with which you can set up a database on your computer.

TESTING PHP

Once you have your system set up, whether it’s on your computer or a hosting service, enter
the following program and test it:

<!DOCTYPE HTML>

<html>

<head>

<?php

 print phpinfo();

?>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Test PHP</title>

</head>

<body>

</body

</html>

Save the program as First.php and place the fi le in your Apache root folder. For example,
the following path is a typical one for Windows: c:/Program File/apache Groub/
apache/htdocs/php. Th e added folder, php, is where to put your First.php. On a Mac,

23_977279-ch16.indd 32723_977279-ch16.indd 327 10/28/10 10:13 PM10/28/10 10:13 PM

328

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

using the built-in PHP, the path is Macintosh HD/Library/WebServer/Documents/
php/First.php.

Next, open a browser and type in http://localhost/php/First.php and press Enter
or Return. Unlike a regular Web page, you have to call the fi le from a browser. You can’t just
double-click it on the desktop — localhost is the server’s name that it runs on. Figure 16-2
shows what you’ll see if everything is installed correctly.

Figure 16-2: PHP test page.

Your installed version may be diff erent, but that information tells you that PHP is installed on
your system and ready to go.

PHP BASICS

Before getting to something practical, the fi rst few steps describe some basic syntaxes and
operations of PHP. PHP has many unique features, but it’s very much like JavaScript with a
slightly diff erent set of symbols. Th e most important fundamentals begin with PHP “catching”
data sent from the client. In order to emphasize the diff erence between client-side and
server-side operations, the PHP code will be divorced from an HTML5 wrapper.

23_977279-ch16.indd 32823_977279-ch16.indd 328 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

329

When you enter data into an HTML5 form and click the Submit button, the form data are
sent to the server. In this fi rst example, the name and e-mail will be sent from the client-side
HTML5 program to the server-side PHP program, and it’ll return HTML to the client. If you
have a remote sever — a hosting service — be sure to include the full URL of the PHP fi le.
Th is example assumes a localhost with both the HTML5 and PHP fi le in the same
directory, but that’s just to make it simpler. Th e following HTML5 page (SendData.html in
this chapter’s folder at www.wiley.com/go/smashinghtml5) will send the data.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

SendMaster=new Object();

SendMaster.eLert=function()

{

 alert(“Oops! Seems to be a little boo-boo in the e-mail format.”);

}

</script>

<style type=”text/css”>

body {

 font-family:Verdana, Arial, Helvetica, sans-serif;

 color:#336600;

 font-size:14px;

 background-color:#FFCC33;

}

</style>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<title>Data Sender</title>

</head>

<body>

<form action=”formCatcher.php” method=”post”>

 <fieldset>

 <legend>Send Name and Email to PHP</legend>

 <input size=20 name=”formName” placeholder=”Enter Name”>

 <p/>

 <input type=email size=32 NAME=”formEmail” placeholder=”Enter Name”

onInvalid=”SendMaster.eLert()” >

 <p />

 </fieldset>

 <input type=”submit” name=”sender” value=”Send” >

</form>

</body>

</html>

Th e script includes both a text type and email type input form. (If no type of form is
assigned, it defaults to a text type.) An important detail to note is that the Submit button is
given a name (sender) that is used by the PHP script to determined whether the data from
this form has been sent.

23_977279-ch16.indd 32923_977279-ch16.indd 329 10/28/10 10:13 PM10/28/10 10:13 PM

330

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

THE POST CATCHER

On the PHP side that catches the data, the $_POST array expects the name of the form. Two
variables are fi rst declared — $name and $email. Variables in PHP have a dollar-sign ($)
prefi x. However, before the PHP program attempts to assign the variable with data from the
$_POST array, a good practice is to check the isset() function that checks to see if the
Submit button (named sender) has sent the data. (Th e following code is in formCatcher.
php in this chapter’s folder at www.wiley.com/go/smashinghtml5.)

<?php

//Catch HTML5 Data

$name;

$email;

if(isset($_POST[‘sender’]))

{

 $name=$_POST[“formName”];

 $email=$_POST[“formEmail”];

}

print “$name’s email address is $email”;

?>

Formatting the output using the print statement combines the variables and text in a single
set of double quotes. Within quotation marks, PHP still recognizes variables because the
dollar sign ($) prefi x tells the interpreter that, even within quotes, the word is a variable. Most
other languages require concatenation when joining variables and literals. Figure 16-3 shows
both the form as fi lled and the output generated by PHP. (Note the localhost address in
the URL window for both the top and bottom panels.)

Th at’s a simple program, but it does show how PHP passes data from HTML5 to PHP. You’ll
also fi nd a very interesting result in the e-mail window when you type in something that’s not
in e-mail format. You’ll fi nd that it isn’t passed to the PHP module. Instead, it uses the new
HTML5 structure — the e-mail input format — and it acts like a data input validator that
doesn’t tell the user that she’s messed up.

DATA VALIDATION

In order to help users, the HTML5 portion of the application uses an error catcher routine
and informs users that they’ve made an error in the two parts of the Web page. First, the
e-mail form includes an error handler:

<input type=email size=32 NAME=”formEmail” placeholder=”Enter Name”

onInvalid=”SendMaster.eLert()”>

23_977279-ch16.indd 33023_977279-ch16.indd 330 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

331

Figure 16-3: Data entry and data output.

Second, the JavaScript routine in the <head> of the page triggers an alert message:

SendMaster=new Object();

SendMaster.eLert=function()

{

 alert(“Oops! Seems to be a little boo-boo in the e-mail format.”);

}

You might want to note two important features about the coding:

 It uses onInvalid instead of onError. Th e onError event handler is so commonly
used for any kind of error that you might assume it would work here as well, but only
onInvalid works in this case.
 Th e error-catching routine is in the <input> e-mail instead of the <input> submit
tag. Because the error occurs on clicking the Submit button, it would seem that the error
handling would be in the Submit button tag, but it’s not. Figure 16-4 shows the error
message and the error that caused it — note the hand cursor on the sent (Submit) button.

23_977279-ch16.indd 33123_977279-ch16.indd 331 10/28/10 10:13 PM10/28/10 10:13 PM

332

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 16-4: Invalid entry caught in the e-mail format.

Th e value attribute of the Submit button should be named anything but “Submit” as a good
interactive design practice. Th at’s why its value is set to Send. (No wants to submit.) Also, the
message isn’t one of those hysterical gasps like “FATAL ERROR! E-mail format illegal!” Some
users fi nd such messages disconcerting. Also, they’re inaccurate — no one died or was
arrested. It was just a boo-boo.

BASIC PHP PROGRAM STRUCTURES

In this short introduction to PHP, you still can learn enough to make a practical application.
However, fi rst, you’ll want to learn some of the basic structures of PHP. If you know JavaScript
or some other scripting or programming languages, the structures will be familiar. PHP does
have its idiosyncrasies, though, and many readers are unfamiliar with programming, so this
discussion is basic and focused.

TEMPORARY DATA STORAGE

All languages include a certain way of storing data temporarily in containers called variables,
constants, or some kind of object such as an array. Some languages are strongly typed and
others are weakly typed. Java, C#, and ActionScript 3.0 are all strongly typed. Th at means that
you have to decide on a certain data type and assign that data type to your storage. For
example, an ActionScript 3.0 variable is declared as:

var userName:String=”SoSueMe”;

Th at means you only can assign string data types to the variable, username. If you assign it a
number, Boolean, or nonstring function, it throws an error.

PHP is like JavaScript. If you assign the PHP variable,

$userName =”SoSueMe”;

23_977279-ch16.indd 33223_977279-ch16.indd 332 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

333

you can change it to any other data type or expressions such as,

$userName =55;

$userName =true;

$userName =(15 * 3);

Weakly typed languages have certain advantages and disadvantages, but they tend to be easier
to learn initially.

Variables
As mentioned earlier in this chapter, all variable labels begin with a dollar sign ($). Th ey can
be placed in other strings and recognized regardless of data type. Try out the following
(variableInString.php in this chapter’s folder at www.wiley.com/go/
smashinghtml5):

<?php

$ram = “dynamic random access memory”;

$speed =”much GHz in”;

$money= 2;

$truism =”You can’t have too much $ram or too $speed a processor. (That will be

$money cents for the advice.)”;

print $truism;

?>

When you test that code, you’ll see the following output:

You can’t have too much dynamic random access memory or too much GHz in a processor.

(That will be 2 cents for the advice.)

In most other languages, you would have to use concatenation.

Constants
Constants are like variables in PHP except they do not change in value. Th ey’re assigned
values in a much diff erent way than variables are, and they’re case-sensitive. By convention
(and good practice), they’re in all caps (LIKE_THIS). Th e basic assignment format is:

define(“CONSTANT_NAME”, “value”);

Try the following little script (constants.php in this chapter’s folder at www.wiley.
com/go/smashinghtml5), to get an idea of how they work:

<?php

define(“FRED”, “Fred J. Jones “);

define(“MONEY”, 200);

define(“BUCKS”, “$”);

echo FRED , “ donated “ , BUCKS , MONEY , “ to charity.”;

?>

23_977279-ch16.indd 33323_977279-ch16.indd 333 10/28/10 10:13 PM10/28/10 10:13 PM

334

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Th e output for that little script is:

Fred J. Jones donated $200 to charity.

As you can see by putting the dollar sign character ($) into a constant, you can use it with
fi nancial expressions and it won’t be mistaken for a variable. By the way, you can use either
echo or print (as well as other statements) in PHP to send output to the screen.

Arrays
An array is an object that holds several values. It’s like a container on a container ship where
diff erent objects are stored — dolls from China, car parts from Detroit, computers from
Japan, and corn from Iowa. Th ey work just as arrays do in JavaScript, but they’re confi gured a
bit diff erently. (See Chapter 12 for more on arrays.)

Arrays are named like variables except they’re assigned array objects. For setting up an array,
you can use one of two basic formats. Th e preferred format works like an associative array.
Instead of identifying an array element with a number, it’s given a key with a value — a
key-value pair. Here’s the general format for setting up an associative array:

$associate = array(“key1” => “value1”,”key2” => “value2”);

Th e other kind of array has a numeric key. Most typically, it’s set up by listing the array
elements in the following format:

$numeric=array(“el0”,”el1”,”el2”,3, true);

However, it can be set up using the key=>value method as well:

$assoNum = array(0 => “value1”,1 => “value2”,1 => “value2”);

Th e following little script (array.php in this chapter’s folder at www.wiley.com/go/
smashinghtml5), shows several diff erent combinations you can see:

<?php

$associate = array(“key1” => “value1”,”key2” => “value2”,”keyEtc” => “valueEtc”);

$boxCar=array(“tools”,”oil drum”,”cow”,7, false, “computer parts”);

$mixedBag=array(1=>”first”,2=>”second”,”third”=>3,4=>4);

echo $associate[“key2”] . “
”;

echo $associate[“keyEtc”] . “
”;

echo $boxCar[5] . “
”;

echo $boxCar[0] . “
”;

echo $mixedBag[2],$mixedBag[“third”];

?>

23_977279-ch16.indd 33423_977279-ch16.indd 334 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

335

You’ll see the following output:

value2

valueEtc

computer parts

tools

second3

Arrays are important in PHP because database data are oft en loaded into an array for output.

Objects and properties
Objects in PHP are based on user classes — there’s no Object() object like there is in
JavaScript. Making a class is like creating an object with all the variables, arrays, constants,
and functions you like in one place. Here are the basics of creating a class, adding properties,
and adding methods in this example (PropMethod.php in this chapter’s folder at www.
wiley.com/go/smashinghtml5):

<?php

 class PropMethod

 {

 private $propString=”I work well with HTML5”;

 private $propNum=2044;

 private $propBool=true;

 public function showString()

 {

 echo $this->propString, “
”;

 }

 public function showNum()

 {

 echo $this->propNum, “
”;

 }

 public function showBool()

 {

 echo $this->propBool;

 }

 }

$testPM=new PropMethod();

echo $testPM->showString();

echo $testPM->showNum();

echo $testPM->showBool();

?>

Th e output for that little class is:

I work well with HTML5

2044

1

23_977279-ch16.indd 33523_977279-ch16.indd 335 10/28/10 10:13 PM10/28/10 10:13 PM

336

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Everything but the 1 was probably expected. Some languages will treat Booleans as either a
true/false or 1/0 pairs. So true + true = 2, and true * false = 0.

Th e $testPM object is the object, and it works just like every other object in other lan-
guages. In JavaScript, though, the object and property are separated by dots (.) while in PHP,
they’re separated by arrows (->). Th e following are equivalent:

myObject.myProp=20; //JavaScript

myObject->myProp=20; //PHP

You’ll fi nd other diff erences, but the similarities are far more numerous between PHP and
JavaScript.

KEY PHP OPERATORS

Like all Web languages, PHP has operators, and a full listing of them can be found in the
offi cial PHP manual at http://us.php.net/manual/en/language.operators.
php. Here, just a few that will be used in the program to make an email application, and some
others are unique in other ways. So while you’ll have to depend on the manual for all PHP
operators, the one examined in the next few sections will have you up and running.

Assignment
To assign a value to a variable or object, the equal sign (=) serves as the assignment operator.
Compound PHP operators assign the value of the current variable plus, minus, multiplied by,
or divided by the assigned value. Th e following example (assignment.php in this chapter’s
folder at www.wiley.com/go/smashinghtml5), shows the key uses of assignment
operators:

<?php

$sampleNum=20;

$sampleString=”Hurricane”;

$sampleNum += 50;

$sampleString .= “ is coming.”;

echo $sampleNum,”
”;

$sampleNum *= 2;

echo $sampleNum,”
”;

$sampleNum /= 4;

echo $sampleNum,”
”;

echo $sampleString;

?>

Before you look at the outcome, see if you can predict what they’ll be:

70

140

35

Hurricane is coming.

23_977279-ch16.indd 33623_977279-ch16.indd 336 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

337

One of the unique operators in PHP is the use of the dot (.) for concatenation. A compound
operator joins two operators into one for easier coding, and the .= compound operator takes
the left value and joins it with the right value. Another way of looking at it is that it assigns its
current value and the value assigned to it to make a third value, which becomes the variable’s
new value.

Arithmetic
Th e arithmetic operators are fairly standard compared to other programming languages. Th e
main ones include

 + (addition)
 – (subtraction and negation)
 / (division)
 * (multiplication)
 % (modulo)

About the only one that anyone has problems with is modulo (%). It refers to any remainders
of whole numbers aft er division. However, they can be handy. For example, the following little
program (modulo.php in this chapter’s folder at www.wiley.com/go/smashinghtml5),
demonstrates how it can be used with a Boolean:

<?php

for ($count = 1; $count <= 12; $count++) {

 $valid = $count % 2;

 if($valid)

 {

 echo $count, “ is odd
”;

 }

 else

 {

 echo $count, “ is even
”;

 }

}

?>

Th e program iterates through a series of numbers divided by 2. Even numbers divided by 2
return 0 and odd numbers return 1 — the values Booleans recognize as false and true,
respectively. Th e if() statement is looking for a true or false and will accept ones and
zeros as Booleans. When sending out alternating backgrounds in table data coming from a
database, the modulo operator is used to switch colors back and forth using the trick of
dividing record numbers by 2 and using the remainder (modulo) as a Boolean.

MAKING AN E-MAIL APPLICATION

Aft er all the work done with forms and diff erent types of input in HTML5, you’ll fi nd that
with a little PHP you can make e-mail forms with which users can send queries. Th e fi rst form

23_977279-ch16.indd 33723_977279-ch16.indd 337 10/28/10 10:13 PM10/28/10 10:13 PM

338

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

will be very simple and provide users with a comment section they can use for your Web
page.

Th e basics of making an e-mail application center around the mail() function in PHP. Th e
mail() function expects three or four parameters. In the fi rst e-mail application, only the
fi rst three are used.

A SIMPLE E-MAIL APPLICATION

Th e fi rst thing you want to do in an e-mail application is set up the HTML5 portion of your
HTML5-PHP pair to provide a clear entry for users. Using the validation checking built into
some of the input forms (onInvalid), you can prevent users from inadvertently sending an
e-mail, phone number, or URL or other form data that are incorrectly formatted. So, this fi rst
HTML5 e-mailer will (again) use the e-mail input form and use the onInvalid event
handler. Th e following program (EZmailer.html in this chapter’s folder at www.wiley.
com/go/smashinghtml5), should be fairly familiar.

<!DOCTYPE HTML>

<html>

<head>

<script type=”text/javascript”>

MailMaster=new Object();

MailMaster.eMess=function()

{

 alert(“Hmmmm... It seems that the e-mail entry has something out of sort. . . .

Please take a look at it and see if you can fix it up.”)

}

</script>

<style type=”text/css”>

/*DDDCC5,958976,611427,1D2326,6A6A61 */

body {

 background-color:#DDDCC5;

 color:#1D2326;

 font-family:Verdana, Geneva, sans-serif;

}

h2 {

 background-color:#958976;

 color:#DDDCC5;

 text-align:center;

 font-family:”Arial Black”, Verdana, Arial;

}

h3 {

 color:#611427;

}

fieldset {

 color:#6A6A61;

}

</style>

23_977279-ch16.indd 33823_977279-ch16.indd 338 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

339

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

<title>Simple E-Mail</title>

</head>

<body>

<article>

 <header>

 <h2>Mailer</h2>

 </header>

 <section>

 <header>

 <h3>Fill in the form and send us your questions, ideas, and rants.</h3>

 </header>

 <form action=”mailer1.php” method=”post”>

 <input name=userName>

 Please enter your name.

 <input name=mailNow type=email onInvalid=”MailMaster.eMess()”>

 Enter e-mail address to send reply.

 <input name=subject> What subject would you like to address?

 <fieldset>

 <legend>Comments</legend>

 <textarea name=talk cols=70 rows=15 ></textarea>

 </fieldset>

 <input type=submit name=sender value=”Send email”>

 </form>

 </section>

</article>

</body>

</html>

One of the key lines in the HTML5 script is the action in the form that sends the information
to PHP for processing:

<form action=”mailer1.php” method=”post”>

Th e form was not given a name because, for this application, we didn’t need one. However,
adding a name to the form is generally a good practice, and if it’s needed, it should be
available.

All the name attributes in the input elements are crucial. Each name in the input element tags
is passed to PHP as an array element in the $_POST array. Th e element is then passed to a
variable that is used in the e-mail that is sent to a recipient — typically, the Web site owner. In
this case, that’s you. Figure 16-5 shows the input page and the form data that will be sent to
the PHP program for server-side processing.

As soon as the user clicks the Send E-Mail button, he receives a notice:

Your e-mail has been sent to waz@wazooHome.net. Thank you for your interest in Wazoo

Web Site Design and Development.

To see how that happened, we’ll have to look at the PHP portion of the application.

23_977279-ch16.indd 33923_977279-ch16.indd 339 10/28/10 10:13 PM10/28/10 10:13 PM

340

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

Figure 16-5: Data entry form to be sent as an e-mail.

PHP CATCH AND SEND

Next, a PHP program catches the data sent from the HTML5 and sends it to the intended
recipient, the business owner. First, take a look at the PHP code in mailer1.php (available
in this chapter’s folder at www.wiley.com/go/smashinghtml5). Th en, you can see how
the e-mail is sent.

<?php

$name;

$email;

$comments;

$subject;

$eBiz=”waz@wazooHome.net”;

if(isset($_POST[‘sender’]))

{

 $name=$_POST[“userName”];

 $email=$_POST[“mailNow”];

 $comments=$_POST[“talk”];

 $subject=$_POST[“subject”];

23_977279-ch16.indd 34023_977279-ch16.indd 340 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

341

}

$comments .= “\r\r\r\nFrom-> $name : Send reply to: $email”;

mail($eBiz,$subject,$comments);

echo “Your e-mail has been sent to $eBiz. Thank you for your interest in Wazoo Web

Site Design and Development.”;

?>

In looking at the PHP code, you can see it doesn’t take much. First, the four chunks of data
from the HTML5 page are passed to four PHP variables:

 $name

 $email

 $comments

 $subject

Next, the $comments variable is concatenated with information about the sender’s name and
e-mail address. Th en, using the mail() function, the program uses the following line to send
everything to the Web site owner:

mail($eBiz,$subject,$comments);

Finally, a simple message is sent to the user who sent the e-mail. Figure 16-6 shows the e-mail
received by Wazoo Web Site Design and Development.

Figure 16-6: E-mail generated by PHP code and HTML5.

By having an automatic e-mail page on your site, you (or your clients) can generate far more
business. Th e key to using some kind of Web-generated e-mail is to make it easy for the user
to send an e-mail and generate more business for the site.

23_977279-ch16.indd 34123_977279-ch16.indd 341 10/28/10 10:13 PM10/28/10 10:13 PM

342

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

ADDING A HEADER AND AUTO-REPLY IN PHP

As was hinted in the fi ctitious e-mail used in the example, it would be nice to have an
automatic e-mail reply to users when they send an e-mail. Again, using the mail() function
in PHP, all you have to do is add a second mailer. Using the $name variable and $email, you
can personalize a reply. Additionally, you can add a header to the e-mail that is sent to the
user and to the Web site owner.

First, the mail() function requires a fourth parameter. Breaking down the four parameters,
you can lay out the following:

 Recipient (e-mail address)
 Subject (what is placed in the subject line)
 Content (the body of the message)
 Header (the From and Reply To addresses)

In the initial example, the From and Reply To address was concatenated to the content.
However, using the header parameter, you can let the header take care of it.

Th is next listing (mailer2.php in this chapter’s folder at www.wiley.com/go/
smashinghtml5), shows the same program with the added header and the auto-reply.
Very little has been added, and much has been enhanced.

<?php

$name;

$email;

$comments;

$subject;

$eBiz=”waz@wazoo.net”;

if(isset($_POST[‘sender’]))

{

 $name=$_POST[“userName”];

 $email=$_POST[“mailNow”];

 $comments=$_POST[“talk”];

 $subject=$_POST[“subject”];

}

$headers = “From-> $name :\r\n Send reply to: $email”;

$reply=”Dear $name , \r\n Thank you for sending us your comments. We at Wazoo Web

Site Design and Development believe that customer care is an essential of doing

business—not an optional service.\r\n”;

$reply .= “As soon as we can review your comments, one of our associates will get

back to you.”;

$reply .=”\r\n Sincerely, Phillip Pickle,\r\n President, WWDD”;

mail($email,”Thank you for your thoughts”,$reply);

mail($eBiz,$subject,$comments,$headers);

echo “Your e-mail has been sent to $eBiz. Thank you for your interest in Wazoo Web

Site Design and Development.”;

?>

23_977279-ch16.indd 34223_977279-ch16.indd 342 10/28/10 10:13 PM10/28/10 10:13 PM

CHAPTER 16: CATCHING INTERACTIVE DATA

343

Th e $headers variable adds the header material that had been concatenated to the content. A
new variable, $reply, provides the text for automatically replying to the sender. In this way,
users get immediate feedback. Figure 16-7 shows what the auto-reply looks like to the recipient.

Figure 16-7: Auto-reply e-mail.

Th e user sees that his name is in the header, and the subject line is based on what the user just
sent. Even though the user probably realizes that it’s an auto-generated reply, he likes the fact
that a Web development company can do that for his business.

Th e addition of the header makes it easier to add a header where you want it. In the fi rst
example, the header was really a footer at the end of the message. Th is time, it’s where it
belongs at the top of the e-mail, as shown in Figure 16-8.

Figure 16-8: A header added to an e-mail.

23_977279-ch16.indd 34323_977279-ch16.indd 343 10/28/10 10:13 PM10/28/10 10:13 PM

344

PART IV: DYNAMIC HTML5 TAGS PLUS A LITTLE JAVASCRIPT AND PHP

As you can see in Figure 16-8, the header is at the top of the e-mail. Also, in all the examples,
PHP did an excellent job of keeping the format that was originally entered in the comment
box in the HTML5 input form.

TAKE THE WHEEL

One of the points made repeatedly throughout the book is to make your page easy to use. Th e
e-mail form used in this chapter was very simple, but what about some information that the
Web site owner wanted to know? A comment form is open-ended and is a valuable tool to
communicate with your users. However, sometimes you or your client needs very specifi c
information. Th is challenge calls for a few changes in the e-mail program to include the
following:

 Four radio buttons requesting information about user’s type of business
 Four check boxes requesting information about the services the user was interested in
using

Th at may not look like much of a challenge, but if you can make data entry easy for users and
access that information in PHP, then you have some very powerful tools at your beck and call.

23_977279-ch16.indd 34423_977279-ch16.indd 344 10/28/10 10:13 PM10/28/10 10:13 PM

Index

SYMBOLS AND
NUMERICS
+ (addition operator), 337
<> (arrow brackets), 8–9
/ (division operator), 337
. (dot), 60
“” (double quotes), 34, 35
% (modulo operator), 337
* (multiplication operator), 337
(pound sign), 62
; (semicolon), 40
– (subtraction and negation op-

erator), 337
| (vertical bar), 40
3GP video format, 217, 221–222

A
<a> tag links. see links
absolute reference, 104
accept-charset attribute,

286–287
action attribute, 287
adding

auto-replies in PHP, 342–344
borders to tables with CSS3,

114–117
drop shadows, 265–267
forms
accept-charset attribute,

286–287
action attribute, 287
autocomplete, 288
DOM, 290–292
name attribute, 288–290
overview, 284–285

headers in PHP, 342–344
HTML5 structure, 49–52
metadata to Web pages, 87–88

objects in Web pages, 320
style to text with CSS3

embedded style sheets, 53–54
external style sheets, 55–58
inline style, 58–59
styling HTML5 elements

with CSS3 properties,
52–53

styles to drawings, 262–264
transparency to color, 74–76

addition (+) operator, 337
adjusting

GIF fi le size, 185–186
image fi le size with graphic

applications, 182
JPEG fi le size, 183–185
objects in Web pages, 321
PNG fi le size, 185–186
SVG fi le size, 186–187
Web pages for mobile viewing,

310
Adobe Browserlab, 20
Adobe Dreamweaver CS5, 20
Adobe Illustrator, 194–196
Adobe Media Encoder CS5,

221–222
alert() function, 235
alert windows, displaying choices

in, 295–296
align attribute, 189–191
alternate style sheets, 128–131
anchors (page), 137–140
Apple

iSight webcams, 223
QuickTime Player, 225

Apple Safari. see also video
support for audio, 203
using to interpret HTML5, 22–23

applying CSS3 pseudo-classes,
160–162

Arabic language attribute value, 34
arcs, drawing, 276–279
arithmetic operators, 337
arrays

overview, 248–249
PHP, 334–335
$_POST, 330

arrow brackets (<>), 8–9
assigning

colors using percentages, 67–69
icons to rel attribute, 131–132
values to preload attribute,

202–203
assignment operators, 336–337
attributes
accept-charset, 286–287
action, 287
align, 189–191
autocomplete, 288
autoplay, 200, 228
colspan, 120–122
controls, 228–229
defi ned, 33
enctype, 286–287
height, 229
href, 133
hreflang, 133
lang, 34–35
link, 133
list, 294
loop, 227–228
media, 133
name, 288–290
novalidate, 286–287
poster, 226–227
preload, 202–203, 227

24_977279-bindex.indd 34524_977279-bindex.indd 345 10/28/10 10:13 PM10/28/10 10:13 PM

346

INDEX

attributes (continued)
rel

assigning icons to, 131–132
prefetching, 133
values for, 134

rowspan, 120–122
sizes, 133
src, 44, 226
target, 140–141, 290
title, 133
type, 133, 204–205
width, 229

audio. see also video
Apple Safari support, 203
autoplay attribute, 200
browser support for, 203–204
controls, 200–202
converting fi les, 208
creating fi les

Macintosh OS X Sound
Studio, 208–209

overview, 206
Windows 7 Sound Recorder,

206–207
loop, 203
overview, 199–200
practice examples, 214
preload attribute, 202–203
sound eff ects

integrating into Web pages,
211–213

overview, 209
transitions sounds, 209–211

<source> tag, 204
<audio> tag. see audio
author relations, 135–137
autocomplete attribute, 288
autoplay attribute, 200, 228
auto-replies, adding in PHP,

342–344

B
background colors, data clarifi ca-

tion with, 117–119
bandwidth, saving, 185
base color, creating color schemes

from, 76
<base> tag, 86–87

bit, 72
<body> tag, 32–33, 86
book, organization of, 2–3
Boolean, 245
borders, adding to tables with

CSS3, 114–117

 tag, 45–46
Browserlab (Adobe), 20
browsers

Apple Safari
support for audio, 203
using to interpret HTML5,

22–23
audio support, 203–204
compatibility with video

Adobe Media Encoder CS5,
221–222

overview, 218–219
WebM Miro Video Convert-

er, 219–220
displaying icons with, 132
Google Chrome

browser audio controls,
201–202

support for audio, 203
using to interpret HTML5,

19–21
Microsoft Internet Explorer

grayscale on, 188
support for audio, 203
using to interpret HTML5, 24

Mozilla Firefox
support for audio, 203
using to interpret HTML5,

18–19
Opera

support for audio, 203
using to interpret HTML5,

21–22
overview, 17
practice examples, 25–26
previewing diff erent displays,

24–25
using style sheets with

diff erent, 130
browsing contexts

in computer browsers, 141–142
in mobile browsers, 142–143

byte, 72

C
Cabarga, Leslie (author)

Designer’s Guide to Color
Combinations, Th e, 78

camcorders, 223–224
Camtasia soft ware, 225
<canvas> tag

adding styles, 262–264
creating drawings

arcs, 276–279
circles, 279–281
curves, 275–276
gradients, 279–281
lines, 270–275
movement, 270–275
overview, 258–260, 269–270

grid, 256–257
images

adding drop shadows,
265–267

fi lters, 267–269
loading, 264–265

implementation, 256
overview, 253–256
practice examples, 281
removing drawings, 262–264
scripts, 89–90
setting up drawings, 257–258
transparency, 74
working with multiple draw-

ings, 260–262
<caption> tag, 113–114
captions, organizing, 100–103
Cartesian coordinates, 256–257
cells (table), 120
<center> tag, 16–17
changing

GIF fi le size, 185–186
image fi le size with graphic

applications, 182
JPEG fi le size, 183–185
objects in Web pages, 321
PNG fi le size, 185–186
SVG fi le size, 186–187
Web pages for mobile viewing,

310
check boxes, 297–301
Chinese language attribute

value, 34

24_977279-bindex.indd 34624_977279-bindex.indd 346 10/28/10 10:13 PM10/28/10 10:13 PM

INDEX

347

choosing
Apple Safari, 22–23
Google Chrome, 19–21
microphones in Windows 7

Sound Recorder, 206
Microsoft Internet Explorer, 24
Mozilla Firefox, 18–19
Opera, 21–22
overview, 17

Chrome (Google)
browser audio controls,

201–202
support for audio, 203
using to interpret HTML5,

19–21
circles, drawing, 279–281
classes (CSS3), 59–61
code, parsing, 28
codec parameter, of type

attribute, 205–206
color

background, data clarifi cation
with, 117–119

“Web safe,” 177
color values

adding transparency to color,
74–76

creating color schemes, 74–78
integrating color palettes with

Web pages, 78–81
practice examples, 81
RGB color

hexadecimal settings, 71–74
names, 66–67
overview, 66
RGB and HSL percentages,

67–69
RGB decimal integer settings,

70–71
colspan attribute, 120–122
<comment> tag

role of, 35–37
when to use, 38

compatibility (browser)
Adobe Media Encoder CS5,

221–222
overview, 218–219
WebM Miro Video Converter,

219–220

consistency (navigation)
applying CSS3 pseudo-classes,

160–162
HTML5 mechanics of vertical

navigation, 162–165
overview, 159–160
using graphic icons in naviga-

tion, 165–166
vertical and horizontal naviga-

tion, 160
constants (PHP), 333–334
controls (audio), 200–202
controls attribute, 228–229
converting fi les, 208–209
creating

audio fi les
Macintosh OS X Sound

Studio, 208–209
overview, 206
Windows 7 Sound Recorder,

206–207
canvas drawings, 258–260
color schemes, 74–78
complex drawings with canvas

arcs, 276–279
circles, 279–281
curves, 275–276
gradients, 279–281
lines, 270–275
movement, 270–275
overview, 269–270

consistency in navigation
applying CSS3 pseudo-

classes, 160–162
HTML5 mechanics of verti-

cal navigation, 162–165
overview, 159–160
using graphic icons in

navigation, 165–166
vertical and horizontal

navigation, 160
CSS3 classes, 59–61
CSS3 IDs, 62–63
HTML5 with tags, 8–9
objects, 250–251
transition sounds, 209–211
Web pages, 216–218, 307–309

CSS3
adding borders to tables with,

114–117
adding style to text with

embedded style sheets, 53–54
external style sheets, 55–58
inline style, 58–59
styling HTML5 elements

with CSS3 properties,
52–53

applying pseudo-classes,
160–162

creating
classes, 59–61
IDs, 62–63

relationship with HTML5, 31
table properties for HTML5,

110–112
curves, drawing, 275–276

D
data

clarifi cation with background
colors, 117–119

types of, 245–246
validation in PHP, 330–332

data (interactive)
e-mail applications

adding headers and auto-
reply, 342–344

creating, 337–340
PHP catch and send, 340–341

overview, 325
PHP

data validation, 330–332
overview, 328–330
$_POST array, 330

PHP program structures
arrays, 334–335
constants, 333–334
objects, 335–336
operators, 336–337
properties, 335–336
temporary data storage,

332–333
variables, 333

practice examples, 344

24_977279-bindex.indd 34724_977279-bindex.indd 347 10/28/10 10:13 PM10/28/10 10:13 PM

348

INDEX

data (interactive) (continued)
server-side languages

overview, 326
setting up PHP, 326–327
testing PHP, 327–328

<datalist> element
on mobile devices and URL

keyboards, 296–297
overview, 9

datalists, 294
date picker, 301–302
decimal integer settings (RGB),

70–71
density (pixel), 58
designer navigation, 148–149
Designer’s Guide to Color Combi-

nations, Th e (Cabarga), 78
designing in sections, 91–94
Designing Interfaces (Tidwell), 148
detecting events, 236–237
discontinued tags, 15–17
displaying

choices in alert windows,
295–296

icons with browsers, 132
displays, previewing, 24–25
<div> tag, 94–98
division (/) operator, 337
divisions, organizing, 94–98
document type declaration, 44
DOM (Document Object Model)

browser eff ects, 251–252
form as part of, 290–292
how it works with JavaScript,

240–242
HTML5 elements with, 242–244
overview, 239–240
relationship with sections, 94

dot (.), 60
double quotes (“”), 34, 35
downloading sound eff ects, 211
drawings (canvas)

adding styles to, 262–264
creating

arcs, 276–279
circles, 279–281
curves, 275–276
gradients, 279–281
lines, 270–275
movement, 270–275
overview, 258–260, 269–270

removing, 262–264
setting up for, 257–258
working with multiple, 260–262

Dreamweaver CS5 (Adobe), 20
drop shadows, 265–267
drop-down menus, in global navi-

gation, 153–156
dynamic SVG fi les, 194–196

E
elements
span, 54
datalist, 9, 296–297
defi ned, 33
DOM references, 242–244
footer, 94
handling, 237–239
iframe, 143–146
link, 128
new HTML5, 9–11
styling with CSS3 properties,

52–53
tables, 113

e-mail applications
adding headers and auto-

replies, 342–344
overview, 337–340
PHP catch and send, 340–341

embedded style sheets, 53–54
Emerson, Ralph Waldo (author)

“Self-Reliance,” 159
enctype attribute, 286–287
event handlers, 236
events, detecting, 236–237
external fi les, JavaScript in,

234–235
external style sheets, 55–57

F
<figcaption> tag, 100–103
<figure> tag, 100–103
fi gures, organizing, 100–103
fi le size

changing
with graphic applications,

182
JPEG, 183–185
SVG size, 186–187

fi nding, 181
grayscale on Internet Explorer,

188
overview, 179–181

fi les
audio, creating

Macintosh OS X Sound
Studio, 208–209

overview, 206
Windows 7 Sound Recorder,

206–207
converting, 208–209
external, 234–235
fi xing Windows default exten-

sion settings, 29
HTML5 and related, 28
organizing

absolute reference, 104
image reorganization and

reference, 103–104
relative reference, 104–106

for Web, 31
fi lters, 267–269
fi nding

fi le size, 181
latitude, 306–307
longitude, 306–307

Firefox (Mozilla)
support for audio, 203
using to interpret HTML5,

18–19
fi xing

TextEdit on Macintosh, 30
Windows default fi le extension

settings, 29
FlashKit, 209
Flip Mino HD camcorder, 224
footer elements, 94
<form> tag, 242–244
formats (image), 176
formatting grouping, 99–100
forms

adding
accept-charset attribute,

286–287
action attribute, 287
autocomplete, 288
DOM, 290–292
enctype attribute, 286–287
name attribute, 288–290

24_977279-bindex.indd 34824_977279-bindex.indd 348 10/28/10 10:13 PM10/28/10 10:13 PM

INDEX

349

novalidate attribute,
286–287

overview, 284–285
attributes, 286–292
input types

check boxes, 297–301
datalists, 294, 296–297
date picker, 301–302
displaying choices in alert

windows, 295–296
list attribute, 294
overview, 293–294
radio buttons, 297–301
URL type, 294

overview, 283
practice examples, 303

functions, 235, 245

G
geolocation

adapting pages for mobile view-
ing, 310

fi nding latitude and longitude,
306–307

getting maps, 307
Google Earth plug-in, 310–311
overview, 306
placing maps on Web pages, 307
practice examples, 321–322
properties, 310–311
putting pages together, 307–309

geolocation object.
see geolocation

German language attribute value, 34
GIF (Graphics Information For-

mat), 177, 185–186
global navigation

drop-down menus, 153–156
overview, 149–150
using lists in, 150–153

Google Chrome
browser audio controls, 201–202
support for audio, 203
using to interpret HTML5, 19–21

Google Earth plug-in, 310–311
gradients, drawing, 279–281
graphic applications, modifying

image fi le size with, 182
graphic icons, using in navigation,

165–166

graphics, linking to, 166–167
Graphics Information Format

(GIF), 177, 185–186
grayscale on Internet Explorer, 188
grid, 256–257
grouping without formatting,

99–100

H
H.264 video format, 217
handling elements, 237–239
<head> tag, 32, 86
headers, adding in PHP, 342–344
Hebrew language attribute value,

34
Hedengren, Th ord Daniel (author)

Smashing WordPress: Beyond
the Blog, 325

height attribute, 229
hexadecimal settings, 71–74
<hgroup> tag, 50–52
hierarchical link types, 137
Hindi language attribute value, 34
horizontal navigation, 160
<hr> tag, 99–100
href attribute, 133
hreflang attribute, 133
HSL and RGB percentages, 67–69
HTML (HyperText Markup Lan-

guage), history of, 1
<html> tag, 86
HTML4, using continued tags

from, 11–15
HTML5

adding structure, 49–52
choosing browsers to interpret

Apple Safari, 22–23
Google Chrome, 19–21
Microsoft Internet Explorer, 24
Mozilla Firefox, 18–19
Opera, 21–22
overview, 17
previewing displays, 24–25

creating with tags, 8–9
discontinued tags, 15–17
elements, 9–11
nesting tags, 38–40
overview, 7, 27

parsing code
fi xing TextEdit on Macintosh,

30
fi xing Windows default fi le

extension settings, 29
how fi les work with Web, 31
HTML5 and related fi les, 28
overview, 28

practice examples, 40–41
styling elements with CSS3

properties, 52–53
using tags from HTML4, 11–15

hue-saturation-light (HSL) model,
67–69

HyperText Markup Language. see
HTML (HyperText Markup
Language); HTML5

I
icons

displaying with browsers, 132
graphic, 165–166
link, 131–132
thumbnail, 167–169

identifying parts of tags, 33–34
IDs

CSS3, 62–63
page, 137–140

iframe element, 143–146
iframes

practice examples, 171
single-page Web sites with

linking to graphics, 166–167
on mobile devices, 169–170
overview, 166
thumbnail icons, 167–169

Illustrator (Adobe), 194–196
images

application for dynamic SVG
fi les from Adobe Illustrator
CS5 fi les, 194–196

in canvas and shadows
adding drop shadows,

265–267
fi lters, 267–269
loading images, 264–265

creating color schemes from,
76–77

24_977279-bindex.indd 34924_977279-bindex.indd 349 10/28/10 10:13 PM10/28/10 10:13 PM

350

INDEX

images (continued)
fi le size

bandwidth, 185
changing GIF size, 185–186
changing JPEG size, 183–185
changing PNG size, 185–186
changing SVG sizes, 186–187
grayscale on Internet

Explorer, 188
modifying, 182

fi le sizes, 179–181
fl exible size with JavaScript,

191–194
formats, 176
GIF (Graphic Information

Format), 177
JPEG (Joint Photographic

Experts Group), 177
overview, 175, 176
pixels, 176
placing with the align

attribute, 189–191
PNG (Portable Network

Graphics), 177–178
practice examples, 196–197
preserving layers in Web

graphics, 178–179
reorganizing and referencing,

103–04
SVG (Scalable Vector

Graphics), 176–177
 tag, 44
information design, 148
inline frames

nesting Web pages, 144–146
overview, 143–144

inline style, 58–59
input types (forms)

check boxes, 297–301
datalists, 294, 296–297
date picker, 301–302
displaying choices in alert

windows, 295–296
list attribute, 294
overview, 293–294
radio buttons, 297–301
URL type, 294

inserting JavaScript into Web pages
detecting events, 236–237
event handlers, 236
external fi les, 234–235

functions, 235
handling with elements, 237–239
overview, 234

integrating sound eff ects into Web
pages, 211–213

interactive data
e-mail applications

adding headers and auto-
reply, 342–344

creating, 337–340
PHP catch and send, 340–341

overview, 325
PHP

data validation, 330–332
overview, 328–330
$_POST array, 330

PHP program structures
arrays, 334–335
constants, 333–334
objects, 335–336
operators, 336–337
properties, 335–336
temporary data storage,

332–333
variables, 333

practice examples, 344
server-side languages

overview, 326
setting up PHP, 326–327
testing PHP, 327–328

interface design, 148
Internet Explorer (Microsoft)

grayscale on, 188
support for audio, 203
using to interpret HTML5, 24

iSight webcams, 223

J
Japanese language attribute value, 34
JavaScript

calling linked pages with,
156–158

DOM (Document Object
Model)

how it works, 240–242
HTML5 elements, 242–244
overview, 239–240

fl exibility of image size with,
191–194

inserting in Web pages
detecting events, 236–237
event handlers, 236
external fi les, 234–235
functions, 235
handling with elements,

237–239
overview, 234

overview, 233
practice examples, 170–171, 252
storing temporary values

arrays, 248–249
creating objects, 250–251
DOM and browser objects,

251–252
objects, 249–250
overview, 244
types of data, 245–246
variables, 244–245, 246–247

JPEG (Joint Photographic Experts
Group), 177, 183–185

K
Kodak Pocket Video camcorder,

224
Kuler, 76

L
lang attribute, 34–35
languages (server-side)

overview, 326
setting up PHP, 326–327
testing PHP, 327–328

latitude, fi nding, 306–307
layers, preserving in Web graphics,

178–179
lines, drawing, 270–275
link element, 128
linking to graphics, 166–167
links

inline frames
nesting Web pages, 144–146
overview, 143–144

link element and attributes
alternate style sheets,

128–131
link attributes, 133
link icons, 131–132

24_977279-bindex.indd 35024_977279-bindex.indd 350 10/28/10 10:13 PM10/28/10 10:13 PM

INDEX

351

overview, 128
prefetching, 133

overview, 127
page links

author relations, 135–137
browsing contexts in brows-

ers, 141–142
browsing contexts in mobile

browsers, 142–143
hierarchical and sequential

links types, 137
overview, 134
page anchors and IDs,

137–140
page IDs, 137–140
rel attribute, 134
sequential links types, 137
targets, 140–141

practice examples, 146
Linux, supported by Mozilla

Firefox, 18
list attribute, 294
lists

organizing, 94–98
using in global navigation,

150–153
loading images into canvas,

264–265
local storage, 316–320
longitude, fi nding, 306–307
loop attribute, 227–228
looping audio, 203

M
Mac OS X, fi nding fi le size in, 181
Macintosh

fi xing TextEdit on, 30
installing PHP, 327

Macintosh OS X Sound Studio,
208–209

maps
getting, 307
placing on Web pages, 307

media attribute, 133
Media Encoder CS5 (Adobe),

221–222
menus (drop-down), in global

navigation, 153–156
<meta> tag, 44, 86, 87–88

metadata, adding to Web pages,
87–88

Microsoft Internet Explorer
grayscale on, 188
support for audio, 203
using to interpret HTML5, 24

Microsoft Movie Maker, 223
Miro Video Converter, 219–220
mobile browser, browsing contexts

in, 142–143
mobile devices

adapting Web pages for, 310
datalist elements on, 296–297
using iframes on, 169–170

modifying
GIF fi le size, 185–186
image fi le size with graphic ap-

plications, 182
JPEG fi le size, 183–185
objects in Web pages, 321
PNG fi le size, 185–186
SVG fi le size, 186–187
Web pages for mobile viewing,

310
modulo (%) operator, 337
MoMA (Museum of Modern Art),

148–149
Mosaic. see Mozilla Firefox
Movie Maker (Microsoft), 223
Mozilla Firefox

support for audio, 203
using to interpret HTML5,

18–19
multiplication (*) operator, 337
Museum of Modern Art (MoMA),

148–149
Muybridge, Eadweard (fi lm

maker), 106–107

N
name attribute, 288–290
names for colors, 66–67
navigation strategies

creating consistency
applying CSS3 pseudo-

classes, 160–162
HTML5 mechanics of verti-

cal navigation, 162–165

overview, 159–160
using graphic icons, 165–166
vertical and horizontal navi-

gation, 160
overview, 147
practice examples, 170–171
single-page Web sites with

iframes
iframes on mobile devices,

169–170
linking to graphics, 166–167
overview, 166
thumbnail icons, 167–169

using JavaScript to call linked
pages, 156–158

Web navigation concepts
designer navigation, 148–149
global navigation, 149–156
overview, 148
user navigation, 148–149

 code, 40
negation (–) operator, 337
nesting tags, 38–40
nesting Web pages, 144–146
Netscape Navigator. see Mozilla

Firefox
novalidate attribute, 286–287
number, 245

O
Object-Oriented Programming

(OOP), 251
objects

adding in Web pages, 320
adjusting in Web pages, 321
creating, 250–251
defi ned, 245
geolocation

adapting pages for mobile
viewing, 310

fi nding latitude and longi-
tude, 306–307

getting maps, 307
Google Earth plug-in,

310–311
overview, 306
placing maps on Web pages,

307
practice examples, 321–322

24_977279-bindex.indd 35124_977279-bindex.indd 351 10/28/10 10:13 PM10/28/10 10:13 PM

352

INDEX

objects, geolocation
(continued)
properties, 310–311
putting pages together,

307–309
overview, 249–250
PHP, 335–336

OGG video format, 217
OOP (Object-Oriented Program-

ming), 251
opacity, adding to color, 74–76
Opera

support for audio, 203
using to interpret HTML5,

21–22
operators (PHP)
arithmetic, 337
assignment, 336–337

organizing
captions, 100–103
Web pages

captions, 100–103
designing in sections, 91–94
divisions, 94–98
fi gures, 100–103
fi les, 103–106
grouping without fracturing,

99–100
lists, 94–98
overview, 45–47
paragraphs, 94–98
practice examples, 106–107
top of HTML5 document,

86–90
<output> tag, 242–244

P
<p> tag, 35, 94–98
page anchors, 137–140
page IDs, 137–140
page links

author relations, 135–137
browsing contexts in computer

browsers, 141–142
browsing contexts in mobile

browsers, 142–143
hierarchical link types, 137
overview, 134

page anchors, 137–140
rel attribute, 134
sequential link types, 137
targets, 140–141

pages (Web)
adapting for mobile viewing, 310
adding

metadata to, 87–88
objects, 320

adding style to text with CSS3
embedded style sheets, 53–54
external style sheets, 55–58
inline style, 58–59
styling HTML5 elements

with CSS3 properties,
52–53

adjusting objects, 321
anchors, 137–140
calling with JavaScript, 156–158
creating

CSS3 classes, 59–61
CSS3 IDs, 62–63
overview, 216–218, 307–309

describing with tags, 32–33
fundamentals of, 44–45
HTML5 structure, 49–52
inserting JavaScript into

detecting events, 236–237
event handlers, 236
external fi les, 234–235
functions, 235
handling with elements,

237–239
overview, 234

integrating color palette with,
78–81

integrating sound into, 211–213
links

author relations, 135–137
browsing contexts in compu-

ter browsers, 141–142
browsing contexts in mobile

browsers, 142–143
hierarchical sequential link

types, 137
overview, 134
page anchors, 137–140
rel attribute, 134
targets, 140–141

nesting, 144–146
organizing

designing in sections, 91–94
fi gures and captions, 100–103
fi les, 103–106
grouping without fracturing,

99–100
overview, 45–47
paragraphs, divisions, and

lists, 94–98
practice examples, 106–107
top of HTML5 document,

86–90
overview, 43
pixel density, 58
placing maps on, 307
structure of, 47–49

palette (color), integrating with
Web pages, 78–81

paragraphs, organizing, 94–98
parsing code, 28
Photo Booth application, 223
PHP

adding
auto-replies in, 342–344
headers in, 342–344

arrays, 334–335
catch and send, 340–341
constants, 333–334
data validation, 330–332
operators
arithmetic, 337
assignment, 336–337

overview, 328–329
$_POST array, 330
program structures

arrays, 334–335
constants, 333–334
objects, 335–336
properties, 335–336
temporary data storage,

332–333
variables, 333

setting up, 326–327
testing, 327–328

pixels
density of, 58
overview, 176

24_977279-bindex.indd 35224_977279-bindex.indd 352 10/28/10 10:13 PM10/28/10 10:13 PM

INDEX

353

pixels per inch (PPI), 58
placing

images with align attribute,
189–191

maps on Web pages, 307
plug-ins, 310–311
PNG (Portable Network Graph-

ics), 177–178, 185–186
Portuguese language attribute

value, 34
$_POST array, 330
poster attribute, 226–227
pound sign (#), 62
PPI (pixels per inch), 58
practice examples

audio, 214
browsers, 25–26
<canvas> tag, 281
color values, 81
forms, 303
geolocation, 321–322
HTML tags, 40–41
iframes, 170
images, 196–197
interactive data, 344
JavaScript, 170–171, 252
links, 146
navigation strategies, 170–171
organizing Web pages, 106–107
storage, 321–322
tables, 125–126
tags, 25–26
video, 229–230
Web design, 63–64

prefetching, 133
preload attribute, 202–203, 227
previewing diff erent displays,

24–25
properties

geolocation, 310–311
styling HTML5 elements with

CSS3, 52–53

Q
QuickTime Player (Apple), 225

R
radio buttons, 297–301
reference

absolute, 104
relative, 104–106

refreshing tags, 88
rel attribute

assigning icons to, 131–132
prefetching, 133
values for, 134

relative reference, 104–106
removing canvas drawings,

262–264
RGB color

hexadecimal settings, 71–74
names, 66–67
overview, 66
RGB and HSL percentages, 67–69
RGB decimal integer settings,

70–71
rowspan attribute, 120–122
Russian language attribute value, 34

S
Safari (Apple). see also video

support for audio, 203
using to interpret HTML5,

22–23
saving bandwidth, 185
Scalable Vector Graphics (SVG),

175–177, 186–187, 194–196
screen video capture, 225
<script> tag, 89–90
scripts, reasons for using, 89–90
sections, designing in, 91–94
<select> tag, 153–156
selecting

Apple Safari, 22–23
Google Chrome, 19–21
microphones in Windows 7

Sound Recorder, 206
Microsoft Internet Explorer, 24
Mozilla Firefox, 18–19
Opera, 21–22
overview, 17

“Self-Reliance” (Emerson), 159
semicolon (;), 40

sequential link types, 137
server-side languages

overview, 326
setting up PHP, 326–327
testing PHP, 327–328

session storage, 312–316
setting up

for canvas drawings, 257–258
PHP, 326–327

setting(s)
fi le extension, 29
hexadecimal, 71–74
home base on Web pages, 86–87
RGB decimal integer, 70–71

single-page Web sites with iframes
linking to graphics, 166–167
on mobile devices, 169–170
overview, 166
thumbnail icons, 167–169

size
fi le

changing JPEG, 183–185
changing SVG size, 186–187
fi nding, 181
grayscale on Internet

Explorer, 188
modifying with graphic

applications, 182
overview, 179–181

image, 191–194
sizes attribute, 133
Smashing WordPress: Beyond the

Blog (Hedengren), 325
sound. see also video

Apple Safari support, 203
autoplay attribute, 200
browser support for, 203–204
controls, 200–202
converting fi les, 208
creating fi les

Macintosh OS X Sound
Studio, 208–209

overview, 206
Windows 7 Sound Recorder,

206–207
loop, 203
overview, 199–200
practice examples, 214
preload attribute, 202–203

24_977279-bindex.indd 35324_977279-bindex.indd 353 10/28/10 10:13 PM10/28/10 10:13 PM

354

INDEX

sound (continued)
sound eff ects

integrating into Web pages,
211–213

overview, 209
transitions sounds, 209–211

<source> tag, 204
<source> tag

codex parameter, 205–206
overview, 204
type attribute, 204–205

span element, 54
Spanish language attribute value, 34
spans (table), 122–125
src attribute, 44, 226
storage

local, 316–320
overview, 311–312
practice examples, 321–322
session, 312–316
temporary data, 332–333

storing temporary values
arrays, 248–249
creating objects, 250–251
DOM and browser eff ects,

251–252
objects, 249–250
overview, 244
types of data, 245–246
variables, 244–245, 246–247

story class, 110–112
streaming video, 215
string, 245
structure

HTML5, 49–52
PHP program

arrays, 334–335
constants, 333–334
objects, 335–336
properties, 335–336
temporary data storage,

332–333
variables, 333

Web page, 47–49
style

adding to canvas drawings,
262–264

adding to text with CSS3
embedded style sheets, 53–54
external style sheets, 55–58

inline style, 58–59
styling HTML5 elements

with CSS3 properties,
52–53

style sheets
alternate, 128–131
embedded, 53–54
external, 55–57
using with diff erent browsers,

130
<style> tag, 52–53
styling tables

adding borders with CSS3,
114–117

data clarifi cation with back-
ground colors, 117–119

subtraction (–) operator, 337
SVG (Scalable Vector Graphics),

175–177, 186–187, 194–196
Switch Sound File Converter, 208

T
tables

complex
colspan attribute, 120–122
overview, 120
rowspan attribute, 120–122

CSS3 table properties for
HTML5, 110–112

elements, 113
overview, 109
practical spans, 122–125
practice examples, 125–126
styling

adding borders with CSS3,
114–117

data clarifi cation with back-
ground colors, 117–119

tabular data, 109, 112–114
tabular data

defi ned, 109
overview, 112–114

tags
<a>. see links
<audio>

Apple Safari support, 203
autoplay attribute, 200
browser support for, 203–204

controls, 200–202
converting fi les, 208
creating fi les, 206–209
loop, 203
overview, 199–200
practice examples, 214
preload attribute, 202–203
sound eff ects, 209–213
<source> tag, 204

<base>, 86–87
<body>, 32–33, 86

, 45–46
<canvas>

adding styles, 262–264
creating drawings, 258–260,

269–281
grid, 256–257
images, 264–269
implementation, 256
overview, 253–256
practice examples, 281
removing drawings, 262–264
scripts, 89–90
setting up drawings, 257–258
transparency, 74
working with multiple draw-

ings, 260–262
<caption>, 113–114
<center>, 16–17
<comment>, 35–38
creating, 8–9
discontinued, 15–17
<div>, 94–98
<figcaption>, 100–103
<figure>, 100–103
<form>, 242–244
<head>, 32, 86
<hgroup>, 50–52
how they work

basic HTML tag, 32
comment tag, 35–38
describing pages with tags,

32–33
identifying parts of tags,

33–34
language attribute, 34–35
overview, 31

<hr>, 99–100
<html>, 86
HTML4, 11–15

24_977279-bindex.indd 35424_977279-bindex.indd 354 10/28/10 10:13 PM10/28/10 10:13 PM

INDEX

355

, 44
<meta>, 44, 86, 87–88
nesting, 38–40
<output>, 242–244
overview, 27
<p>, 35, 94–98
parsing code

fi xing TextEdit on Macintosh,
30

fi xing Windows default fi le
extension settings, 29

how fi les work with Web, 31
HTML5 and related fi les, 28
overview, 28

practice examples, 25–26, 40–41
refreshing, 88
<script>, 89–90
<select>, 153–156
<source>

codex parameter, 205–206
overview, 204
type attribute, 204–205

<style>, 52–53
<tr>, 14
<video>
autoplay attribute, 228
browser compatibility,

218–222
controls attribute,

228–229
creating for Web, 223–225
creating Web pages with,

216–218
height attribute, 229
loop attribute, 227–228
overview, 215, 225
poster attribute, 226–227
practice examples, 229–230
preload attribute, 227
src attribute, 226
width attribute, 229

<wbr>, 45–46
target attribute, 140–141, 290
temporary data storage, 332–333
testing PHP, 327–328
text, adding style to

embedded style sheets, 53–54
external style sheets, 55–58
inline style, 58–59
styling HTML5 elements with

CSS3 properties, 52–53

TextEdit, fi xing on Macintosh, 30
3GP video format, 217, 221–222
thumbnail icons, 167–169
Tidwell, Jennifer (author)

Designing Interfaces, 148
work on grouping elements,

159–160
title attribute, 133
<tr> tag, 14
transition sounds, 209–211
transparency, adding to color,

74–76
Tuft e, Edward (information-

design thinker), 114–115, 148
type attribute, 133, 204–205

U
URL keyboards, datalist elements

on, 296–297
URL type, 294
user navigation, 148–149

V
values

assigning to preload attribute,
202–203

defi ned, 33
values (color)

adding transparency to color,
74–76

creating color schemes, 74–78
integrating color palettes with

Web pages, 78–81
practice examples, 81
RGB color

hexadecimal settings, 71–74
names, 66–67
overview, 66
RGB and HSL percentages,

67–69
RGB decimal integer settings,

70–71
values (temporary), storing

arrays, 248–249
creating objects, 250–251
DOM and browser eff ects,

251–252

objects, 249–250
overview, 244
types of data, 245–246
variables, 244–245, 246–247

variables
overview, 244–245
PHP, 333
types of, 246–247

vertical bar (|), 40
vertical navigation

HTML5 mechanics of, 162–165
overview, 160

video. see also audio
autoplay attribute, 228
browser compatibility

Adobe Media Encoder CS5,
221–222

overview, 218–219
WebM Miro Video Convert-

er, 219–220
controls attribute, 228–229
creating for Web

camcorders, 223–224
overview, 222
screen video capture, 225
webcams, 223

creating Web pages with,
216–218

height attribute, 229
loop attribute, 227–228
overview, 215, 225
poster attribute, 226–227
practice examples, 229–230
preload attribute, 227
src attribute, 226
width attribute, 229

<video> tag. see video

W
W3C (World Wide Web Consor-

tium), on tables, 110
<wbr> tag, 45–46
Web

camcorders, 223–224
creating video for

overview, 222
webcams, 223

design, 63–64
fi les for, 31

24_977279-bindex.indd 35524_977279-bindex.indd 355 10/28/10 10:13 PM10/28/10 10:13 PM

356

INDEX

Web (continued)
navigation concepts

designer navigation, 148–149
global navigation, 149–156
overview, 148
user navigation, 148–149

preserving layers in graphics,
178–179

screen video capture, 225
Web pages

adapting for mobile viewing,
310

adding
metadata to, 87–88
objects, 320

adding style to text with CSS3
embedded style sheets, 53–54
external style sheets, 55–58
inline style, 58–59
styling HTML5 elements

with CSS3 properties,
52–53

adjusting objects, 321
anchors, 137–140
calling with JavaScript, 156–158
creating

CSS3 classes, 59–61
CSS3 IDs, 62–63
overview, 216–218, 307–309

describing with tags, 32–33
fundamentals of, 44–45

HTML5 structure, 49–52
inserting JavaScript into

detecting events, 236–237
event handlers, 236
external fi les, 234–235
functions, 235
handling with elements,

237–239
overview, 234

integrating color palette with,
78–81

integrating sound into, 211–213
links

author relations, 135–137
browsing contexts in compu-

ter browsers, 141–142
browsing contexts in mobile

browsers, 142–143
hierarchical sequential link

types, 137
overview, 134
page anchors, 137–140
rel attribute, 134
targets, 140–141

nesting, 144–146
organizing

designing in sections, 91–94
fi gures and captions, 100–103
fi les, 103–106
grouping without fracturing,

99–100

overview, 45–47
paragraphs, divisions, and

lists, 94–98
practice examples, 106–107
top of HTML5 document,

86–90
overview, 43
pixel density, 58
placing maps on, 307
structure of, 47–49

“Web safe” colors, 177
Web sites, single-page with

iframes
linking to graphics, 166–167
on mobile devices, 169–170
overview, 166
thumbnail icons, 167–169

webcams, 223
WebM video format, 217, 219–220
width attribute, 229
Windows

fi nding fi le size in, 181
fi xing default fi le settings, 29
installing PHP, 327
Microsoft Movie Maker, 223

Windows 7 Sound Recorder,
206–207

World Wide Web Consortium
(W3C), on tables, 110

write() function, 235

24_977279-bindex.indd 35624_977279-bindex.indd 356 10/28/10 10:13 PM10/28/10 10:13 PM

