
 1

For all the people which doesn't have enough money to buy good books.
For all the rippers.

 pro2002 ☺

 2

Apache Jakarta-Tomcat
by James Goodwill

ISBN: 1893115364
Apress © 2002 (237 pages)

Learn about Tomcat Server configuration, its features, and more, complete with examples and
source code.

Apache Jakarta Tomcat .. 8
Dedication... 9
Preface... 10
Introduction.. 11

About the Author... 11
About the Technical Reviewer... 11

Chapter 1: Jakarta Tomcat ... 12
The Jakarta Tomcat Server .. 12

The Tomcat Manager Web Application .. 12
Specialized Realm Implementations ... 12
Tomcat Valves .. 12
Further Information .. 12

The Architecture of Tomcat .. 13
The Server... 14
The Service ... 14
The Connector .. 14
The Engine .. 15
The Host .. 15
The Context... 15

Java Web Applications ... 15
The Directory Structure ... 15
The Deployment Descriptor .. 16
Packaging .. 17

Requirements for Installing and Configuring Tomcat................................ 17
Installing and Configuring Tomcat ... 18

Manually Installing to Windows NT/2000 ... 18
Installing to Linux.. 20

Testing Your Tomcat Installation .. 21
Summary ... 24

Chapter 2: Deploying Web Applications to Tomcat...... 25
The Tomcat Directory Structure.. 25
Manually Deploying Web Applications to Tomcat 25

Creating the Web Application Directory Structure .. 26
Creating a Web Application ServletContext... 26
Adding JSPs.. 27
Adding Servlets .. 30
Adding Tag Libraries.. 33

 3

Creating and Deploying a WAR File ... 37
Summary ... 37

Chapter 3: Servlets, JSPs, and the ServletContext 38
What Are Java Servlets? ... 38

The GenericServlet and HttpServlet Classes .. 39
The Lifecycle of a Servlet.. 40
A Simple Servlet ... 41

What Are JavaServer Pages? ... 44
The Components of a JavaServer Page .. 45

The ServletContext and its Relationship to a Web Application 61
The Relationship Between a Web Application and the ServletContext......... 61
Examples of How the Web Application Affects Web Application Components
... 62

Summary ... 67

Chapter 4: Using Tomcat's Manager Application 69
What is the Manager Web Application?... 69
Gaining Access to the Manager Web Application 69
Using the Manager Web Application... 71

install .. 71
list.. 73
reload ... 73
sessions ... 74
stop ... 75
start... 76
remove ... 76

Summary ... 77

Chapter 5: Configuring Security Realms 78
Security Realms.. 78
Memory Realms.. 78

Protecting a Resource with a MemoryRealm .. 79
JDBC Realms .. 81

Creating the Users Database ... 81
Configuring Tomcat to Use a JDBC Realm ... 87
The Benefits of Using a JDBCRealm .. 89

Accessing an Authenticated User .. 89
Summary ... 91

Chapter 6: Embedding Tomcat ... 92
Embedding Tomcat into a Java Application ... 92
Summary ... 100

Chapter 7: Persistent Sessions .. 101
HTTP Sessions ... 101

The Servlet Implementation of HTTP Sessions .. 101

 4

Configuring Tomcat's Persistent Session Stores 106
The FileStore .. 106
The JDBCStore... 108
Creating the Sessions Database ... 108
Configuring Tomcat to Use a JDBCStore .. 109

Summary ... 111

Chapter 8: Valves and Servlet Filters 112
What is a Tomcat Valve? .. 112

The Access Log Valve... 112
The Remote Address Filter... 114
The Remote Host Filter ... 115
The Request Dumper Valve ... 116

What is a Servlet Filter?... 116
Deploying a Servlet Filter .. 119
Chaining Servlet Filters ... 123

Summary ... 127

Chapter 9: Integrating the Apache HTTP Server.......... 128
What is the Apache Web Server? .. 128
Integrating Tomcat and the Apache Web Server 128
Summary ... 132

Chapter 10: Integrating the Jakarta-Struts Project...... 134
The Jakarta-Struts Project .. 134

Understanding the MVC Design Pattern .. 134
The Struts Implementation of the MVC .. 134

Creating and Installing a Struts Web Application 135
The Views .. 137
The Model.. 140
The Controller ... 142

Walking Through the apress-struts Web Application 145
Summary ... 148

Chapter 11: Integrating the Jakarta-Log4J Project 149
The Jakarta-Log4J Project.. 149

Layouts... 149
Appenders ... 149
Categories ... 150

Using Log4J in an Application ... 153
Integrating Log4J into the apress Web Application 155
Summary ... 159

Chapter 12: Integrating the Apache SOAP Project 160
Introducing the Apache SOAP Project ... 160
Integrating Apache SOAP into Tomcat .. 160

Deploying Apache-SOAP Using Tomcat .. 161

 5

Creating a Sample SOAP Application .. 162
SOAP Services ... 163
SOAP Clients .. 167

Summary ... 170

Appendix A: The server.xml File ... 171
Containers... 173

The <Server> Element.. 173
The <Service> Element ... 174
The <Engine> Element.. 175
The <Host> Element .. 176
The <Context> Element ... 177

Connectors.. 178
The HTTP Connector .. 179
The Warp Connector ... 180

Appendix B: The web.xml File ... 182
Overview.. 182
Adding a Servlet Filter .. 184
Adding a Servlet Definition ... 185
Adding a Servlet Mapping ... 186
Configuring the Session... 187
Adding a Welcome File List .. 187
Adding a Tag Library... 187
Adding a Security Constraint ... 188
Adding a Login Config .. 189

List of Figures... 191
Chapter 1: Jakarta Tomcat ... 191
Chapter 2: Deploying Web Applications to Tomcat 191
Chapter 3: Servlets, JSPs, and the ServletContext................................. 191
Chapter 4: Using Tomcat's Manager Application 191
Chapter 5: Configuring Security Realms ... 192
Chapter 7: Persistent Sessions... 192
Chapter 8: Valves and Servlet Filters ... 192
Chapter 9: Integrating the Apache HTTP Server 192
Chapter 10: Integrating the Jakarta-Struts Project 193
Chapter 12: Integrating the Apache SOAP Project 193

List of Tables... 194
Chapter 1: Jakarta Tomcat ... 194
Chapter 2: Deploying Web Applications to Tomcat 194
Chapter 3: Servlets, JSPs, and the ServletContext................................. 194
Chapter 4: Using Tomcat's Manager Application 194
Chapter 5: Configuring Security Realms ... 194

 6

Chapter 7: Persistent Sessions... 195
Chapter 8: Valves and Servlet Filters ... 195
Chapter 9: Integrating the Apache HTTP Server 195
Chapter 10: Integrating the Jakarta-Struts Project 195
Chapter 12: Integrating the Apache SOAP Project 195
Appendix A: The server.xml File... 196
Appendix B: The web.xml File ... 196

List of Examples .. 197
Chapter 2: Deploying Web Applications to Tomcat 197
Chapter 3: Servlets, JSPs, and the ServletContext................................. 197
Chapter 4: Using Tomcat's Manager Application 197
Chapter 5: Configuring Security Realms ... 197
Chapter 6: Embedding Tomcat ... 198
Chapter 7: Persistent Sessions... 198
Chapter 8: Valves and Servlet Filters ... 198
Chapter 10: Integrating the Jakarta-Struts Project 198
Chapter 11: Integrating the Jakarta-Log4J Project 198
Chapter 12: Integrating the Apache SOAP Project 198
Appendix A: The server.xml File... 198
Appendix B: The web.xml File ... 199

 7

 8

Apache Jakarta Tomcat
JAMES GOODWILL
Apress

Apache Jakarta Tomcat
Copyright © 2002 James Goodwill

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.
(pbk): 1-893115-36-4

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen Watterson

Technical Reviewer: Aaron Bandell

Project Managers: Alexa Stuart, Erin Mulligan

Developmental and Copy Editor: Tom Gillen, Gillen Editorial, Inc.

Production Editor: Sofia Marchant

Compositor: Impressions Book and Journal Services, Inc.

Indexer: Ron Strauss

Cover Designer: Tom Debolski

Managing Editor: Grace Wong

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175
Fifth Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112
Heidelberg, Germany

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at
901 Grayson Street, Suite 204BerkeleyCA94710510-549-5930510-549-
5939<info@apress.com>, or visit http://www.apress.com

The information in this book is distributed on an "as is" basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author nor

 9

Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this
work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section. You will need to answer questions pertaining to this book to successfully
download the code.

Dedication

To my girls Christy, Abby, and Emma.

 10

Preface
Acknowledgments

I would like to begin this text by thanking the people who made this book what it is today.
They are the people who took my words and shaped them into something that I hope will
help you use the Tomcat container to its fullest. Of these people, I would like to explicitly
thank Jason Gilmore, Alexa Stuart, Erin Mulligan, Aaron Bandell, Tom Gillen, Sofia
Marchant, Ron Strauss, and Grace Wong. Each and every person made this book what it is
today.

On a closer note, I would like to thank everyone at my company, Virtuas Solutions, LLC, for
their support while I was completing this text. The entire, "UNREAL", staff contributed by
picking up my assignments when my plate was too full.

Finally, the most important contributors to this book are my wife Christy, and our daughters
Abby and Emma. They are the ones who really sacrificed during the development of this
text, especially when I walked in the room discussing another Tomcat beta release. They are
the ones who deserve the credit for this book. With their support, I can do anything.

 11

Introduction
When I began this text, Tomcat was at version 4.0 beta 1. It has come a long way between
beta 1 and the final release, and each release included additional functionality and improved
performance. The Tomcat team has really done a great job. They have successfully created
a product that is on par with, or above, all other Java Web application containers on the
market, whether commercial or open source.

As with any open source project, new changes were being added all of the time. In this text, I
have tried to cover the components of the Tomcat container that I thought would be most
relevant, but, as I mentioned earlier, new releases will have additional functionality. As you
progress through this text, feel free to send comments about areas that you would like to see
in future releases. My goal is to make this text the only Tomcat reference you need in your
library. That is enough from me. I hope you enjoy this book.

About the Author
James Goodwill is the co-founder and Chief Technology Officer at Virtuas Solutions, L.L.C.,
located in Denver, Colorado. He has extensive experience in designing and architecting e-
business applications. James authored the best-selling Java titles Developing Java Servlets
and Pure JavaServer Pages and is also a regular columnist on the Java community Web
site, http://OnJava.com.

About the Technical Reviewer
Technical writer Aaron Bandell has been a professional in the software industry for six years.
Most recently, Aaron has spent his time architecting J2EE applications. He aspires to one
day develop a process that will allow him to work while on the ski slopes.

 12

Chapter 1: Jakarta Tomcat
The Jakarta Tomcat Server
The Jakarta Tomcat server is an open source, Java-based Web application container that
was created to run servlet and JavaServer Page Web applications. It exists under the
Apache-Jakarta subproject, where it is supported and enhanced by a group of volunteers
from the open source Java community.

The Tomcat server has become the reference implementation for both the servlet and JSP
specifications. It is very stable and has all of the features of a commercial Web application
container. Tomcat also provides additional functionality that makes it a great choice for
developing a complete Web application solution. Some of the additional features provided by
Tomcat—other than being open source and free—include the Tomcat Manager application,
specialized realm implementations, and Tomcat valves.

The Tomcat Manager Web Application

The Tomcat Manager Web application is packaged with the Tomcat server. It is installed in
the context path of /manager and provides the basic functionality to manage Web
applications running in the Tomcat server. Some of the provided functionality includes the
ability to install, start, stop, remove, and report on Web applications.

Specialized Realm Implementations

Tomcat provides two methods for protecting resources. The first authentication
implementation provided with Tomcat is a memory realm. The class that implements the
memory realm is org.apache.catalina.realm.MemoryRealm. The MemoryRealm
class uses a simple XML file as a container of users.

The second authentication implementation included with Tomcat is a JDBC realm. A
JDBCRealm class is much like the MemoryRealm, with the exception of where it stores its
collection of users. A JDBCRealm stores all of its users in a userdefined, JDBC-compliant
database.

Tomcat Valves

Tomcat valves are a new technology introduced with Tomcat 4. They allow you to associate
an instance of a Java class with a particular Catalina container. Valves are proprietary to
Tomcat and cannot, at this time, be used in a different servlet/JSP container.

Further Information

Throughout this text, we discuss all of these Tomcat-specific features and some other
features that are common to all Web application containers. More information about Tomcat
can be found on its homepage:

http://jakarta.apache.org/tomcat/index.html

Figure 1-1 shows the Tomcat homepage.

 13

Figure 1-1: The Tomcat homepage

You can also subscribe to the Tomcat mailing lists, which can be found at the following URL:

http://jakarta.apache.org/site/mail2.html

This page contains all of the mailing lists controlled by the Apache Jakarta project. Once you
are on the mailing lists page, scroll down until you find the Tomcat lists and select the list
that you would like to subscribe to. Figure 1-2 shows the mailing list options for Tomcat.

Figure 1-2: The Tomcat mailing lists

The Architecture of Tomcat

 14

Tomcat 4 is a complete rewrite of its ancestors. At the core of this rewrite is the Catalina
servlet engine, which acts as the top-level container for all Tomcat instances.

With this rewrite of Tomcat comes an entirely new architecture composed of a grouping of
application containers, each with a specific role. The sum of all of these containers makes up
an instance of a Catalina engine. The following code snippet provides an XML
representation of the relationships between the different Tomcat containers:
<Server>

 <Service>

 <Connector />

 <Engine>

 <Host>

 <Context>

 </Context>

 </Host>

 </Engine>

 </Service>

</Server>

This instance can be broken down into a set of containers including a server, a service, a
connector, an engine, a host, and a context. By default, each of these containers is
configured using the server.xml file, which we describe later in more detail.

The Server

The first container element referenced in this snippet is the <Server> element. It represents
the entire Catalina servlet engine and is used as a top-level element for a single Tomcat
instance. The <Server> element may contain one or more <Service> containers.

The Service

The next container element is the <Service> element, which holds a collection of one or
more <Connector> elements that share a single <Engine> element. N-number of
<Service> elements may be nested inside a single <Server> element.

The Connector

 15

The next type of element is the <Connector> element, which defines the class that does
the actual handling requests and responses to and from a calling client application.

The Engine

The third container element is the <Engine> element. Each defined <Service> can have
only one <Engine> element, and this single <Engine> component handles all requests
received by all of the defined <Connector> components defined by a parent service.

The Host

The <Host> element defines the virtual hosts that are contained in each instance of a
Catalina <Engine>. Each <Host> can be a parent to one or more Web applications, with
each being represented by a <Context> component.

The Context

The <Context> element is the most commonly used container in a Tomcat instance. Each
<Context> element represents an individual Web application that is running within a
defined <Host>. There is no limit to the number of contexts that can be defined within a
<Host>.

Java Web Applications
The main function of the Tomcat server is to act as a container for Java Web applications.
Therefore, before we can begin our Tomcat-specific discussions, a brief introduction as to
exactly what Web applications are is in order. The concept of a Web application was
introduced with the release of the Java servlet specification 2.2. According to this
specification, "a Web Application is a collection of servlets, html pages, classes, and other
resources that can be bundled and run on multiple containers from multiple vendors." What
this really means is that a Web application is a container that can hold any combination of
the following list of objects:

� servlets
� JavaServer pages (JSPs)
� utility classes
� static documents including HTML, images, and so on
� client-side classes
� meta-information describing the Web application

One of the main characteristics of a Web application is its relationship to the
ServletContext. Each Web application has one and only one ServletContext. This
relationship is controlled by the servlet container and guarantees that no two Web
applications will clash when accessing objects in the ServletContext. We discuss this
relationship in much more detail in Chapter 3 ("Servlets, JSPs, and the ServletContext").

The Directory Structure

The container that holds the components of a Web application is the directory structure in
which it exists. The first step in creating a Web application is creating this directory structure.
Table 1-1 contains a sample Web application, named /apress, and a description of what

 16

each of its directories should contain. Each one of these directories should be created from
the <SERVER_ROOT> of the Web application container. An example of a <SERVER_ROOT>
using Tomcat would be /jakarta-tomcat/webapps.

Table 1-1: The Directories of a Web Application

DIRECTORY DESCRIPTION

/apress The root directory of the Web application. All JSP and HTML files
should be stored here.

/apress/WEB-
INF

Contains all resources related to the application that are not in the
document root of the application. This is where your Web
application deployment descriptor is located (defined in the next
section). Note that the WEB-INF directory is not part of the public
document. No files contained in this directory can be requested
directly by a client.

/apress/WEB-
INF/classes

Where servlet and utility classes are located

/apress/WEB-
INF/lib

Contains Java Archive files that the Web application is dependent
upon. For example, this is where you would place a JAR file that
contained a JDBC driver or JSP tag library.

As you look over the contents of the Web application's directory structure, notice that Web
applications allow for compiled objects to be stored in both the /WEB-INF/classes and
/WEB-INF/lib directories. Of these two, the class loader loads classes from the
/classes directory first, followed by the JARs that are stored in the /lib directory. If
duplicate objects in both the /classes and /lib directories exist, the objects in the
/classes directory take precedence.

The Deployment Descriptor

At the heart of all Web applications is a deployment descriptor that is an XML file named
web.xml. The deployment descriptor is located in the
/<SERVER_ROOT>/applicationname/WEB-INF/ directory. It describes configuration
information for the entire Web application. For our application, the web.xml file is in the
/<SERVER_ROOT>/apress /WEB-INF/ directory. The information that is contained in the
deployment descriptor includes the following elements:

� servlet definitions
� servlet initialization parameters
� session configuration parameters
� servlet/JSP Mappings
� MIME type mappings
� security configuration parameters
� a welcome file list
� a list of error pages
� resource and environment variable definitions

 17

The following code snippet contains a limited example of a Web application deployment
descriptor. As we move through this book, we will be looking at the web.xml file and its
elements in much more detail.
<web-app>

 <display-name>The APress App</display-name>

 <session-timeout>30</session-timeout>

 <servlet>

 <servlet-name>TestServlet</servlet-name>

 <servlet-class>com.apress.TestServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 <init-param>

 <param-name>name</param-name>

 <param-value>value</param-value>

 </init-param>

 </servlet>

</web-app>

In this example, we are setting three application-level elements, the first of which is the
<display-name>. This element simply describes the name of the Web application. It is
functionally ineffective.

The second Web application-level element is the <session-timeout> element, which
controls the lifetime of the application's HttpSession object. The <session-timeout>
value that we have used above tells the JSP/servlet container that the HttpSession object
will become invalid after 30 minutes of inactivity.

The last application-level element that we have defined is the <servlet> element, which
defines a servlet and its properties. We will further define the <servlet> elements when we
discuss deploying servlets and JSPs to Tomcat in Chapter 2 ("Deploying Web Applications
to Tomcat").

Packaging

Now that you know what a Web application is, you need to package it for deployment. The
standard method for packaging Web applications is to use a Web archive (WAR) file, which
you can create by using Java's archiving tool jar. An example of this would be to change to
the root directory of your Web application and type the following command:
jar cvf apress.war .

This command produces an archive file named apress.war that contains your entire Web
application. Now you can deploy your Web application by simply distributing this file, which
we will cover in Chapter 2.

Requirements for Installing and Configuring Tomcat
Before we get started performing the tasks outlined by this chapter, you need to download
the items listed in Table 1-2.

 18

Table 1-2: Tomcat Requirements

NAME LOCATION

Tomcat 4 http://jakarta.apache.org/site/binindex.html

JDK 1.3 Standard Edition http://java.sun.com/j2se/1.3/

Installing and Configuring Tomcat
In this section, we install Tomcat as a standalone server, which means that Tomcat will
service all requests, including static content, JSPs, and servlets.

To install and configure Tomcat, first download the packages from the previously listed
locations. You should choose the appropriate downloads based on your operating system.
(We cover the steps involved in installing to both NT/2000 and Linux.)

Note

With the release of Tomcat 4, there is a Window installation application. If
you choose to install Tomcat from this executable, you can skip the
following section and pick up your reading at the section, "Testing Your
Tomcat Installation."

Manually Installing to Windows NT/2000

The first installation we will be performing is for Windows NT/2000. The first thing you need
to do is install the JDK. For this example, I am installing the JDK to drive D:, so therefore my
JAVA_HOME directory is D:\jdk1.3.

Note

Make sure you follow the instructions included with your OS-appropriate
JDK.

Now you need to extract the Tomcat server to the directory where you want it to run. Again, I
am installing to drive D:, which makes my TOMCAT_HOME directory D:\jakarta-tomcat.

Note

Tomcat does not come packaged with any install scripts. Therefore,
extraction equals installation.

After you have extracted Tomcat, you need to add two environment variables to the NT/2000
system: JAVA_HOME, which is the root directory of your JDK installation, and TOMCAT_HOME,
which is the root directory of your Tomcat installation. To do this under NT/2000, perform the
following steps:

1. Open the NT/2000 control panel. You should see an image similar to that shown in
Figure 1-3.

 19

Figure 1-3: NT/2000 control panel

2. Now start the NT/2000 system application and click on the Advanced tab. You should
see a screen similar to that shown in Figure 1-4.

Figure 1-4: NT/2000 system application

3. Next, click on the Environment Variables button. You will see a screen similar to that
shown in Figure 1-5.

 20

Figure 1-5: Environment variables dialog box

4. Now, click on the New button on the System Variables section of the Environment
Variables dialog box. Add a variable named JAVA_HOME and set its value to the
location of your JDK installation. Figure 1-6 shows the settings associated with my
installation.

Figure 1-6: JAVA_HOME environment settings

5. Your final step should be to repeat Step 4, but this time using TOMCAT_HOME for the
variable name and the location of your Tomcat installation as the value. For my
installation, I am setting the value to D:\jakarta-tomcat.

That is all there is to it. If you are not going to perform a Linux installation, you should skip
the following section "Installing to Linux" and move on to the section "Testing Your Tomcat
Installation."

Installing to Linux

 21

A Linux installation is a much simpler process compared to a Windows installation. The first
thing you need to do is install the downloaded JDK. It is assumed that the JDK is installed to
/user/java/jdk1.3.0_02.

After the JDK has been installed, you need to set the JAVA_HOME environment variable. To
do this under Linux, find the shell that you are using in Table 1-3 and type the matching
command. You need to replace /user/java/jdk1.3.0_02 with the root location of your
JDK installation.

Table 1-3: JAVA_HOME Environment Commands

SHELL JAVA_HOME

bash JAVA_HOME=/user/java/jdk1.3.0_02;export JAVA_HOME

tsh setenv JAVA_HOME /user/java/jdk1.3.0_02

Note

You should also add the location of the Java interpreter to your PATH
environment variable.

You now need to extract the Tomcat server to a directory of your choosing. This directory will
become the TOMCAT_HOME directory. For this installation, we assume that Tomcat is
installed to /var/tomcat.

The last step is to set the TOMCAT_HOME environment variable. Find the shell that you are
using in Table 1-4 and type the matching command. You need to replace /var/tomcat
with the directory of your Tomcat installation.

Table 1-4: TOMCAT_HOME Environment Commands

SHELL TOMCAT_HOME

bash TOMCAT_HOME=/var/tomcat;export TOMCAT_HOME

tsh setenv TOMCAT _HOME /var/tomcat

And that is all there is to the Linux installation. You should now be able to move on to the
section, "Testing Your Tomcat Installation."

Testing Your Tomcat Installation
To test the Tomcat installation, you need to first start the Tomcat server. Table 1-5 contains
the startup and shutdown commands for both operating systems.

Table 1-5: Tomcat Startup/Shutdown Commands

OS STARTUP SHUTDOWN

Windows
NT/2000 TOMCAT_HOME\bin\startup.bat TOMCAT_HOME\bin\shutdown.bat

 22

Table 1-5: Tomcat Startup/Shutdown Commands

OS STARTUP SHUTDOWN

Linux TOMCAT_HOME /bin/startup.sh TOMCAT_HOME /bin/shutdown.sh

Note

If you have installed Tomcat on Windows, a folder was placed in your
Windows "Start" menu with shortcuts that allow you to start and stop your
Tomcat server from there.

Once Tomcat has started, open your browser to the following URL:

http://localhost:8080/

You should see a page similar to that shown in Figure 1-7.

Figure 1-7: The Tomcat default page

If you would like to have all requests serviced on the default HTTP port of 80 instead of port
8080, you need to make the following change to the TOMCAT_HOME/conf/server.xml file
and restart Tomcat:

From:
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

 <Connector
className="org.apache.catalina.connector.http.HttpConnector"

 port="8080" minProcessors="5" maxProcessors="75"

 acceptCount="10" debug="0"/>

To:
 <!-- Define a non-SSL HTTP/1.1 Connector on port 80 -->

 <Connector
className="org.apache.catalina.connector.http.HttpConnector"

 port="80" minProcessors="5" maxProcessors="75"

 23

 acceptCount="10" debug="0"/>

Now you should be able to open your browser to the following URL and see results similar to
those shown in Figure 1-8:

http://localhost

Figure 1-8: The JSP examples page

The next step is to verify the installation of your JDK. You do this by executing one of the
JSP examples provided with the Tomcat server. To execute an example JSP, start from the
page shown in Figure 1-7 and choose JSP Examples. You should see a page similar to that
shown in Figure 1-8.

Now choose the JSP example Date and select the Execute link. If everything was installed
properly, you should see a page similar to Figure 1-9 (with a different date, of course).

Figure 1-9: The JSP date page

 24

If you do not see the previous page, make sure that the location of your JAVA_HOME
environment variable matches the location of your JDK installation.

Summary
In this chapter, we introduced the Jakarta Tomcat server and discussed its main uses. We
briefly discussed Java Web applications, which are at the core of the Tomcat server. We
went on to install and configure Tomcat on both Windows NT/2000 and Linux. We also
discussed some simple steps to test your new installation. In the next chapter, "Deploying
Web Applications to Tomcat," we begin our discussions on how to create and deploy real
Web applications using the Tomcat server.

 25

Chapter 2: Deploying Web Applications to
Tomcat
The Tomcat Directory Structure
Before you can start creating your own Web applications, you need to be familiar with the
Tomcat directory structure. Table 2-1 describes the directories that compose a Tomcat
installation. It is assumed that each of these directories is prepended with TOMCAT_HOME.

Table 2-1: The Tomcat Directory Structure

DIRECTORY CONTAINS

/bin Contains the startup and shutdown scripts for both Windows and Linux

/conf Contains main configuration files for Tomcat. The two most important
are server.xml and the global web.xml.

/server Contains the Tomcat Java Archive files

/lib Contains JAR files that the servlet engine is dependant upon

/common/lib Contains the JAR files that are shared between Tomcat components

/jasper Contains the JAR files that the JSP compiler, Jasper, depends upon

/logs Contains Tomcat's log files

/src Contains the source code used by the Tomcat server. Once Tomcat is
released, it will probably contain only interfaces and abstract classes.

/webapps The directory where all Web applications are deployed, and where you
place your WAR file, when it is ready for deployment

/work The directory where Tomcat places all servlets that are generated from
JSPs. If you want to see exactly how a particular JSP is interpreted,
look in this directory.

Note

As of this writing, Tomcat 4.0 is in beta. Therefore, these directories could
change without notice.

Just look over these directories for now because we examine most of these in detail in
subsequent chapters. The directory that we are most interested in is /webapps, where all
Web applications are deployed.

Manually Deploying Web Applications to Tomcat
In this section we cover the manual deployment of Web applications using Tomcat, and we
are performing a manual deployment to fully explain the steps involved when deploying a
Web application. In Chapter 5, we cover the deployment process using some of Tomcat's
built-in functionality.

The best way to describe the deployment process is to create a Web application of our own
that includes the major components that are found in most Java Web applications and then

 26

package it for deployment. The following sections walk you through all of the steps involved
in manually deploying a Web application. The name of our Web application is /apress.

Creating the Web Application Directory Structure

The first thing you need to create when building a new Web application is the directory
structure that will contain the application. The following list contains the directories that you
must create to contain the /apress web application. Each one of these directories must be
appended to the <TOMCAT_HOME>/webapps/ directory.

� /apress
� /apress/WEB-INF
� /apress/WEB-INF/classes
� /apress/WEB-INF/lib

Note

The name of our Web application, /apress, is the root of our directory
structure.

While the Web application is in development, I suggest creating the directory directly in the
Tomcat /webapps directory. When the application is ready for deployment, you should
package it into a WAR file and go through the production deployment process. We cover the
production deployment process in the final section of this chapter ("Creating and Deploying a
WAR File").

The last step in creating the Web application directory structure is adding a deployment
descriptor. At this point, you will be creating a default web.xml file that contains only the
DTD, describing the web.xml file, and an empty <webapp/> element. Listing 2-1 contains
the source code for a default web.xml file.

Listing 2-1: The Source Code for a Default web.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

</web-app>

Now copy this file to the /apress/WEB-INF/ directory, and we will begin adding Web
application components to it in the following sections.

Creating a Web Application ServletContext

After you have created the Web application directory structure, you must add a new
ServletContext. The ServletContext defines a set of methods that components of a
Web application use to communicate with the servlet container. The ServletContext acts

 27

as a container for the Web application, and there is only one ServletContext per Web
application. We discuss the relationship between a ServletContext and its Web
application in much more detail in Chapter 4.

To add a new ServletContext to Tomcat, you need to add the following entry to the
TOMCAT_HOME/conf/server.xml file, setting the values for the path and docBase equal
to the name of your Web application. This entry should be added inside the <Host>
element, with the name localhost. Notice again that we are using apress as the name.
<Context path="/apress" docBase="apress" debug="0"

reloadable="true" />

We need to focus upon two elements in this entry. This first, path=“/apress”, tells the
servlet container that all requests with /apress appended to the server's URL belong to the
apress Web application. The second element, docBase=“apress”, tells the servlet
container that the Web application exists in the Web application directory apress.

Adding JSPs

Now that you have added the Web application directory and ServletContext, you can
start adding some server-side Java components. The first components we are going to add
are a couple of JSPs.

The first of these JSPs displays a simple login screen containing a form with a username
and password, which are passed on the HTTP request to the named action. Listing 2-1
contains the source code for the login.jsp page.

Listing 2-2: The Source Code for login.jsp

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

<body bgcolor="#FFFFFF"
onLoad="document.loginForm.username.focus()">

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 </tr>

 28

 <tr>

 <td> </td>

 </tr>

 </table>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <form name="loginForm" method="post"
action="servlet/chapter2.login">

 <tr>

 <td width="401"><div align="right">User Name: </div></td>

 <td width="399"><input type="text" name="username"></td>

 </tr>

 <tr>

 <td width="401"><div align="right">Password: </div></td>

 <td width="399"><input type="password" name="password"></td>

 </tr>

 <tr>

 <td width="401"> </td>

 <td width="399">
<input type="Submit" name="Submit"></td>

 </tr>

 </form>

 </table>

 </td>

 </tr>

 </table>

</body>

</html>

As you look over this JSP, you can see that there is nothing special about it. The only thing
that you should really pay attention to is the action of the form. It references a servlet in
the package chapter2 named login. This servlet, discussed in the next section ("Adding
Servlets"), retrieves the username/password parameters from the request and performs
its own processing.

There really is no process to Deploying a JSP: you simply need to copy it to the public
directory of your Web application, which is TOMCAT_HOME/webapps/apress/, and the
images that are referenced should be placed in an images directory that you have created
in the /apress directory.

Note

The source code and images for all the examples in this text can be found at

 29

http://www.virtuas.com/publications.html.

To see the results of this JSP, direct your browser to

http://localhost:8080/apress/login.jsp

If you changed your default HTTP port, as mentioned in Chapter 1, you need to reference
the new port value. If everything was configured correctly, you should see an image similar
to that shown in Figure 2-1.

Figure 2-1: The ouput of the login.jsp

If you do not see a page similar to Figure 2-1, make sure you have the correct entry in the
server.xml file, as described in the section, "Creating a Web Application
ServletContext".

The second JSP you are adding is the target JSP referenced by the servlet defined in the
following section "Adding Servlets". This JSP retrieves the request attribute USER that was
added to the request by the servlet shown in Listing 2-4 of the following section. It then
outputs the String value of the attribute. Listing 2-3 contains the source code for the target
JSP.

Listing 2-3: The Source Code for welcome.jsp

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 30

 </tr>

 <tr>

 <td>

 </td>

 <td>

 Welcome : <%= request.getAttribute("USER") %>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

</body>

</html>

As we stated earlier, all you need to do to deploy this JSP is simply copy it to the public
directory of your Web application, which in this case is TOMCAT_HOME/webapps/apress/.

Adding Servlets

The next component you are adding is a servlet, and this servlet will be the action of the
login.jsp's form. It retrieves the username and password values from the
HttpServletRequest, looks up the real name of the associated user and then forwards
the request to a target JSP. The source code for this servlet is shown in Listing 2-4.

Note

The value of the USER is static. Normally, you would perform a real lookup
of some sort, but, for simplicity's sake, I am just returning the String Bob.

Listing 2-4: The Source Code for chapter2.login.java

package chapter2

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class login extends HttpServlet {

 private String target = "/welcome.jsp";

 private String getUser(String username, String password) {

 31

 // Just return a statice name

 // If this was reality, we would perform a SQL lookup

 return "Bob";

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // If it is a get request forward to doPost()

 doPost(request, response);

 }

public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Get the username from the request

 String username = request.getParameter("username");

 // Get the password from the request

 String password = request.getParameter("password");

 String user = getUser(username, password);

 // Add the fake user to the request

 request.setAttribute("USER", user);

 // Forward the request to the target named

 ServletContext context = getServletContext();

 RequestDispatcher dispatcher =

 context.getRequestDispatcher(target);

 dispatcher.forward(request, response);

 }

}

 32

To deploy a servlet to a Web application, you need to first compile the servlet and move it
into the Web application's /WEB-INF/classes directory. For this example, you should
compile this servlet and move it to the /apress/WEB-INF/classes/chapter2/
directory.

Note

This class file is in the subdirectory chapter2 because of its package
name.

The next step in deploying the login servlet is to add a servlet entry into the Web
application's web.xml file.

Note

It is not necessary to add all servlets to the web.xml file. It is necessary
only when the servlet requires additional information, such as initialization
parameters.

An example <servlet> element can be found in the following code snippet:
Example <servlet> Element

<servlet>

 <servlet-name>ExampleServlet</servlet-name>

 <servlet-class>packagename.ExampleServlet</servlet-class>

 <init-param>

 <param-name>parameter</param-name>

 <param-value>value</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

This servlet entry contains a simple servlet definition. A description of each of its sub-
elements can be found in Table 2-3.

Table 2-3: The Sub-Elements of a <servlet>

SUB-
ELEMENT DESCRIPTION

<servlet-
name> The canonical name for the deployed servlet

<servlet-
class> References the fully qualified class name of the servlet

<init-
param>

An optional parameter containing a name/value pair that is passed to
the servlet on initialization. It contains two subelements, <param-
name> and <param-value>, which contain the name and value,
respectively, to be passed to the servlet.

<load-on-
startup>

Indicates the order in which each servlet should be loaded. Lower
positive values are loaded first. If the value is negative or unspecified,
the container can load the servlet at any time during startup.

 33

To add our login servlet, we need to make the following entry into the
TOMCAT_ROOT/apress/WEB-INF/web.xml file inside the <web-app></web-app> tag:
<servlet>

 <servlet-name>login</servlet-name>

 <servlet-class>chapter2.login</servlet-class>

 </servlet>

That is all there is to it. To see your Web application in action, restart the Tomcat server and
point your browser to:

http://localhost:8080/apress/login.jsp

You should see an image similar to that shown in the earlier Figure 2-1. Now enter a
username and password and click on the "Submit Query" button. If everything went
according to plan, you should see an image similar to that shown in Figure 2-2.

Figure 2-2: The welcome.jsp page containing the HTML login form

If you did not see an image similar to Figure 2-2, make sure that you have the servlet class
in the appropriate directory and that your entry in the web.xml file matches the code snippet
shown previously.

Adding Tag Libraries

The final component that we are adding to our Web application is a tag library. This library
contains a single tag (HelloTag) that replaces every occurrence of the text
<apress:hello/> with the literal string Hello. Although this is a silly example of a tag
library, it does serve as a practical example of deploying a tag library. I am including a
packaged JAR file containing this library, but, if you would like to create this yourself, the
source code can be found in Listing 2-5 and 2-6.

Listing 2-5: The Source Code for HelloTag.java Containing the Hello Tag Handler

package chapter2

 34

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspTagException;

import javax.servlet.jsp.tagext.TagSupport;

public class HelloTag extends TagSupport

{

 public void HelloTag() {

 }

 // Method called when the closing hello tag is encountered

 public int doEndTag() throws JspException {

 try {

 // We use the pageContext to get a Writer

 // We then print the text string Hello

 pageContext.getOut().print("Hello");

 }

 catch (Exception e) {

 throw new JspTagException(e.getMessage());

 }

 // We want to return SKIP_BODY because this Tag does not
support

 // a Tag Body

 return SKIP_BODY;

 }

 public void release() {

 // Call the parent's release to release any resources

 // used by the parent tag.

 // This is just good practice for when you start creating

 // hierarchies of tags.

 super.release();

 }

}

 35

Listing 2-6: The Source Code for taglib.tld, Including the Definition of the hello
Tag.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library
1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>apress</shortname>

 <uri>/apress</uri>

 <tag>

 <name>hello</name>

 <tagclass>chapter2.HelloTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Just Says Hello</info>

 </tag>

</taglib>

To deploy this tag library, we need to make an entry to the web.xml file. The modified
web.xml file can be found in Listing 2-7.

Listing 2-7: The Modified web.xml Containing the Addition of our Tag Library

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'

 'http://java.sun.com/j2ee/dtds/web-app_2_3.dtd'>

<web-app>

 <servlet>

 <servlet-name>login</servlet-name>

 <servlet-class>chapter2.login</servlet-class>

 </servlet>

 36

 <taglib>

 <taglib-uri>/apress</taglib-uri>

 <taglib-location>/WEB-INF/lib/apress.jar</taglib-location>

 </taglib>

</web-app>

This <taglib> entry contains two sub-elements: <taglib-uri> and <taglib-
location>. The <taglib-uri> sub-element tells the container how the tag library is to be
referenced. For this example, we use the value /apress, which is how we will reference the
tag library in our JSPs.

The second <taglib> sub-element, <taglib-location>, defines the location of the tag
library descriptor (TLD). The TLD defines the tags contained in the library and the handlers
that process the defined tags. In this instance, we are leaving the TLD in the apress.jar
file; therefore, the <taglib-location> subelement references the JAR as opposed to the
actual TLD.

To complete the deployment of your Web application, copy the apress.jar file, which
contains the tag library, and the taglib.tld from Listing 2-6 into the
TOMCAT_ROOT/apress/WEB-INF/lib directory.

To test your tag library, you need to modify the welcome.jsp page: replace the Welcome
message with a reference to the <apress:hello /> tag. You need to also add a taglib
directive referencing the taglib.tld to the welcome.jsp file. The modified JSP is shown
in Listing 2-8.

Listing 2-8: The Modified welcome.jsp Page Containing the Reference to the hello
Tag

<%@ taglib uri="/apress" prefix="apress" %>

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 37

 <td>

 <apress:hello /> : <%= request.getAttribute("USER") %>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

</body>

</html>

Now open the login.jsp page as described previously and run through the demo again.
This time, instead of Welcome : Bob, you should see the message Hello : Bob.

Creating and Deploying a WAR File

When your Web application is ready for deployment, you need to package it for distribution.
As we discussed in Chapter 1, Web applications are packaged in WAR files. To complete
the chapter, we are going to "WAR up" your /apress Web application and deploy it. The
steps are listed below:

1. Change to the root directory of your Web application. (In this case, the root directory is
TOMCAT_HOME/webapps/apress/.)

2. Archive the Web application using the following command:
3. jar cvf apress.war .
4. Copy the resulting WAR file, apress.war, to the TOMCAT_HOME/webapps directory.

Note If you are deploying this WAR file to the Tomcat installation that you

were developing in, then you need to back-up your /apress
development directory and remove it from the
TOMCAT_HOME/webapps directory.

5. If you haven't already, add a new Context entry to the
/TOMCAT_HOME/conf/server.xml file, referencing the apress Web application.

6. Restart Tomcat.

Your application should now be running. If it isn't, check your entry into the
TOMCAT_HOME/conf/server.xml file.

Summary
We covered a lot of information in this chapter. We described the Tomcat directory structure
and then went on to describe the process of deploying JSPs, servlets, and tag libraries. We
closed by archiving our /apress Web application and deploying it to Tomcat.

The next chapter continues our coverage of Web applications with a discussion of how Web
applications are related to the ServletContext. These discussions include sample
servlets and JSPs that demonstrate how the Web application affects ServletContext.

 38

Chapter 3: Servlets, JSPs, and the
ServletContext
The purpose of this chapter is to provide an introduction to the Web components hosted by
the Tomcat container, namely servlets and JSPs. However, this chapter does not discuss all
areas surrounding these topics. If you would like to read more about these technologies, you
can find it on the JavaSoft Web site (http://java.sun.com/). You can also purchase two of my
other texts Pure JSP and Developing Java Servlets, both of which are published by Sams
Computer Publishing.

What Are Java Servlets?
A Java servlet is a platform-independent Web application component that is hosted in a
JSP/servlet container. Servlets communicate with Web clients using a request/response
model managed by a JSP/servlet container. Figure 3-1 graphically depicts the execution of a
Java servlet.

Figure 3-1: The Execution of a Java Servlet

The servlet architecture comprises two Java packages: javax.servlet and
javax.servlet.http. The javax.servlet package contains the generic interfaces and
classes that are implemented and extended by all servlets. The second package is the
java.servlet.http package, which contains all the servlet classes that are specific to
HTTP, such as a simple servlet that responds using HTML.

At the heart of this architecture is the interface javax.servlet.Servlet. The base class
for all servlets, the Servlet interface defines five methods. The three most important of
these methods and their functions are the init() method, which initializes a servlet; the
service() method, which services client requests; and the destroy() method, which
performs cleanup. These methods make up the servlet lifecycle methods. (We describe
these lifecycle methods in a later section.)

All servlets must implement this interface, either directly or through inheritance. Figure 3-2
shows a simple object model that represents the servlet framework.

 39

Figure 3-2: A simple object diagram of the servlet framework

The GenericServlet and HttpServlet Classes

The two main classes that extend the servlet architecture are the GenericServlet and
HttpServlet classes. The HttpServlet class is extended from GenericServlet,
which in turn implements the Servlet interface. When developing your own servlets, you'll
most likely extend one of these two classes.

When extending the GenericServlet class, you must implement the service() method.
The GenericServlet.service() method has been defined as an abstract method to
force you to follow this framework. The service() method prototype is defined as follows:
public abstract void service(ServletRequest request,

 ServletResponse ressponse) throws ServletException, IOException;

 40

The two parameters that are passed to the service() method are ServletRequest and
ServletResponse objects. The ServletRequest object holds the information that is
being sent to the servlet, and the ServletResponse object is where you place the data
you want to send back to the client.

In contrast to the GenericServlet, when you extend HttpServlet, you don't usually
implement the service() method. The HttpServlet class has already implemented the
service() method for you. The following prototype contains the
HttpServlet.service() method signature:
protected void service(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException;

When the HttpServlet.service() method is invoked, it reads the method type stored in
the request and uses this value to determine which HTTP-specific methods to invoke. These
are the methods that you want to override. If the method type is GET, it calls doGet(). If the
method type is POST, it calls doPost(). Although the service() method has five other
method types associated with it, we are focusing on the doGet() and doPost() methods.

You may have noticed the different request/response types in the service() method
signature of the HttpServlet as opposed to the GenericServlet class. The
HttpServletRequest and HttpServletResponse classes are just extensions of
ServletRequest and ServletResponse with HTTP-specific information stored in them.

The Lifecycle of a Servlet

The lifecycle of a Java servlet follows a very logical sequence. The interface that declares
the lifecycle methods is the javax.servlet.Servlet interface. These methods are the
init(), the service(), and the destroy() methods. This sequence can be described in
a simple three-step process:

1. A servlet is loaded and initialized using the init() method. This method is called
when a servlet is preloaded or upon the first request to this servlet.

2. The servlet then services zero or more requests. The servlet services the request
using the service() method.

3. The servlet is then destroyed and garbage-collected when the Web application
containing the servlet shuts down. The method that is called upon shutdown is the
destroy() method.

init()

The init() method is where the servlet begins its life. This method is called immediately
after the servlet is instantiated, and it is called only once. The init() method should be
used to create and initialize the resources that it will be using while handling requests. The
init() method's signature is defined as follows:
public void init(ServletConfig config) throws ServletException;

The init() method takes a ServletConfig object as a parameter. This reference should
be stored in a member variable so that it can be used later. A common way of doing this is to
have the init() method call super.init() passing it the ServletConfig object.

 41

The init() method also declares that it can throw a ServletException. If, for some
reason, the servlet cannot initialize the resources necessary to handle requests, it should
throw a ServletException with an error message that signifies the problem.

service()

The service() method services all requests received from a client using a simple
request/response pattern. The service() method's signature is:
public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException;

The service() method take two parameters, the first of which is a ServletRequest
object that contains information about the service request, encapsulating information
provided by the client. The ServletResponse object contains the information returned to
the client.

You will not usually implement this method directly, unless you extend the
GenericServlet abstract class. The most common implementation of the service()
method is in the HttpServlet class. The HttpServlet class implements the servlet
interface by extending GenericServlet. Its service() method supports standard
HTTP/1.1 requests by determining the request type and calling the appropriate method.

destroy()

This method signifies the end of a servlet's life. When a web application is shut down, the
servlet's destroy() method is called. This is where all resources that were created in the
init() method should be cleaned up. The signature of the destroy() can be found in the
following code snippet:
public void destroy();

A Simple Servlet

Now that we have a basic understanding of what a servlet is and how it works, we are going
to build a very simple servlet of our own. Its purpose is to service a request and respond by
outputting the address of the client. After we have examined the source for this servlet, we'll
take a look at the steps involved in compiling and installing it. Listing 3-1 contains the source
code for this example.

Listing 3-1: The Source Code for our Simple Servlet SimpleServlet.java

package chapter3;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class SimpleServlet extends HttpServlet {

 42

 //Process the HTTP Get request

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doPost(request, response);

}

 //Process the HTTP Post request

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>Simple Servlet</title></head>");

 out.println("<body>");

 // Outputs the address of the calling client

 out.println("Your address is " + request.getRemoteAddr()

 + "\n");

 out.println("</body></html>");

 out.close();

 }

}

Note

You will notice that the SimpleServlet does not implement the init() or
destroy() methods. This is because it does not allocate or release
resources in its processing. These methods can be ignored because the
GenericServlet provides default implementations of these two methods.
Now that you have had a chance to look over the SimpleServlet source
code, let's take a closer look at each of its integral parts.We will be
examining where the servlet fits into the JSDK framework, the methods that
the servlet implements, and the objects being used by the servlet. The
following two methods are overridden in the SimpleServlet:

� doGet()
� doPost()

 43

Let's take a look at these two in more detail.

doGet() and doPost()

The SimpleServlet's doGet() and doPost() methods are where all of the business
logic is truly performed, and, in this case, the doGet() method simply calls the doPost()
method. The only time that the doGet() method is executed is when a get request is sent to
the container. If a post request is received, the doPost() method services the request.

Both the doGet() and the doPost() receive HttpServletRequest and
HttpServletResponse objects as parameters. The HttpServletRequest contains
information sent from the client, and the HttpServletResponse contains the information
that will be sent back to the client.

The first executed line of the doPost() method sets the content type of the response that is
sent back to the client. This is done with the following code snippet:
response.setContentType("text/html");

This method sets the content type for the response. You can set this response property only
once, and it must be set prior to writing to a Writer or an OutputStream. In our example,
we are setting the response type to text/html.

The next thing we do is get a PrintWriter. This is accomplished by calling the
ServletResponses's getWriter() method. The PrintWriter lets us write to the
stream that is sent in the client response. Everything written to the PrintWriter is
displayed in the client browser. This step is completed in the following line of code:
PrintWriter out = response.getWriter();

Once we have a reference to an object that allows you to write text back to the client, we use
this object to write a message to the client. This message will include the HTML that formats
this response for presentation in the client's browser. The next few lines of code show how
this is done:
out.println("<html>");

out.println("<head><title>Simple Servlet</title></head>");

out.println("<body>");

// Outputs the address of the calling client

out.println("Your address is " + request.getRemoteAddr()

 + "\n");

The SimpleServlet uses a very clear-cut method of sending HTML to a client: it simply
passes to the PrintWriter's println() method the HTML text that we want included
in the response and closes the stream. The only thing that you may have a question about is
the following few lines:
// Outputs the address of the calling client

out.println("Your address is " + request.getRemoteAddr()

 + "\n");

This section of code takes advantage of information sent by the client. It calls the
HttpServletRequest's getRemoteAddr() method, which returns the address of the

 44

calling client. The HttpServletRequest object holds a great deal of HTTP-specific
information about the client. If you would like to learn more about the
HttpServletRequest or HttpServletResponse objects, you can find additional
information at the following Sun Web site:

http://java.sun.com/products/servlet/

Building and Deploying the SimpleServlet

To see the SimpleServlet in action, we need to first create a web application to host this
servlet and then compile and deploy this servlet to the created Web application. These steps
are described below:

1. Add the servlet.jar file to your CLASSPATH. This file should be in the
<TOMCAT_HOME>/common/lib/ directory.

2. Compile the source for the SimpleServlet.
3. Copy the resulting class file to the <TOMCAT_HOME>webapps/apress/WEB-

INF/classes/chapter3/ directory. The /chapter3 reference is appended
because of the package name.

Once you have completed these steps, we can execute the SimpleServlet and see the
results. Start Tomcat and open your browser to the following URL:

http://localhost:8080/apress/servlet/chapter3.SimpleServlet

You should see an image similar to that shown in Figure 3-3.

Figure 3-3: The output of SimpleServlet

Note

Notice that the URL to access SimpleServlet includes the string
/servlet immediately preceding the reference to the actual servlet name.
This text tells the container that you are referencing a servlet.

What Are JavaServer Pages?

 45

JavaServer pages, or JSPs, are a simple but powerful technology used most often to
generate dynamic HTML on the server side. They are a direct extension of Java servlets
with the purpose of allowing the developer to embed Java logic directly into a requested
document. A JSP document must end with a .jsp extension. The following code snippet
contains a simple example of a JSP file:
<HTML>

<BODY>

<% out.println("HELLO JSP READER"); %>

</BODY>

</HTML>

You can see that this document looks like any other HTML document with some added tags
containing Java code. The source code is stored in a file called hello.jsp and copied to
the document directory of the Web application that this JSP will be deployed to. When a
request is made for this document, the server recognizes the .jsp extension and realizes
that special handling is required. The JSP is then passed off to the JSP engine, which is just
another servlet that is mapped to the extension .jsp, for processing.

The first time the file is requested, it is translated into a servlet and then compiled into an
object that is loaded into resident memory. The JSP then services the request, and the
output is sent back to the requesting client. On all subsequent requests, the server checks to
see whether the original .jsp source file has changed. If it has not changed, the server
invokes the previously compiled servlet object. If the source has changed, however, the JSP
engine reparses the JSP source. Figure 3-4 illustrates these steps.

Figure 3-4: The steps of a JSP request

Note

An essential point to remember about JSPs is that they are just servlets that
are created from a combination of HTML and Java source. Therefore, they
have the same resources and functionality of a servlet.

The Components of a JavaServer Page

 46

In this section, we are going to talk about the components of a JSP including directives, JSP
scripting, implicit objects, and JSP standard actions. We describe each of these topics in the
following sections.

JSP Directives

JSP directives are JSP elements that provide global information about a JSP page. An
example would be a directive that included a list of Java classes to be imported into a JSP.
The syntax of a JSP directive is as follows:
<%@ directive {attribute="value"} %>

Three possible directives are currently defined by the JSP specification: page, include,
and taglib. Each of these directives is defined in the following sections.

The page Directive

The page directive defines information that globally affects the JavaServer page containing
the directive. The syntax of a JSP directive is:
<%@ page {attribute="value"} %>

Table 3-1 defines the attributes for the page directive.

Table 3-1: The Attributes for the page Directive

ATTRIBUTE DEFINITION

language=“scriptingLanguage” Tells the server which language will be used to
compile the JSP file. (Java is currently the only
available JSP language.)

extends=“className” Defines the parent class that the JSP will
extend from

import=“importList” Defines the list of Java packages that will be
imported into this JSP. It will be a comma-
separated list of package names.

session=“true|false” Determines whether the session data will be
available to this page. The default is true.

buffer=“none|size in kb” Determines whether the output stream is
buffered. The default value is 8KB.

autoFlush=“true|false” Determines whether the output buffer will be
flushed automatically, or whether it will throw an
exception when the buffer is full. The default is
true.

isThreadSafe=“true|false” Tells the JSP engine that this page can service
multiple requests at one time. By default, this
value is true. If this attribute is set to false, the
SingleThreadModel is used.

info=“text” Represents information about the JSP page that
can be accessed by invoking the page's
Servlet.getServletInfo() method

 47

Table 3-1: The Attributes for the page Directive

ATTRIBUTE DEFINITION

errorPage=“error_url” Represents the relative URL to a JSP that will
handle JSP exceptions

isErrorPage=“true|false” States whether or not the JSP is an errorPage.
The default is false.

contentType=“ctinfo” Represents the MIME type and character set of
the response sent to the client

Note

Because all mandatory attributes are defaulted, the JSP developer is not
required to specify any page directives.

An example page directive that imports the java.util package is included in the following
code snippet:
<%@ page import="java.util.*" %>

The include Directive

The include directive is used to insert text and/or code at JSP translation time. The syntax
of the include directive is shown in the following code snippet:
<%@ include file="relativeURLspec" %>

The file that the file attribute points to can reference a normal text HTML file or it can
reference a JSP file, which is evaluated at translation time. This resource referenced by the
file attribute must be local to the Web application that contains the include directive. An
example include directive is:
<%@ include file="header.jsp" %>

Note

Because the include directive is evaluated at translation time, this
included text is evaluated only once. This implies that, if the include
resource changes, these changes are not reflected until the JSP/servlet
container is restarted.

The taglib Directive

The taglib directive states that the including page uses a custom tag library, uniquely
identified by a URI and associated with a prefix that distinguishes each set of custom tags.
The syntax of the taglib directive is as follows:
<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>

The taglib attributes are described in Table 3-2.

Table 3-2: The Attributes for the taglib Directive

ATTRIBUTE DEFINITION

uri References a URI that uniquely names a custom tag library

 48

Table 3-2: The Attributes for the taglib Directive

ATTRIBUTE DEFINITION

prefix Defines the prefix string used to distinguish a custom tag instance

JSP Scripting

Scripting is a JSP mechanism for directly embedding Java code fragments into an HTML
page. Three scripting language components are involved in JSP scripting. Each of these
components has its appropriate location in the generated servlet. In this section, we look at
each of these components.

Declarations

JSP declarations are used to define Java variables and methods in a JSP. A JSP declaration
must be a complete declarative statement.

JSP declarations are initialized when the JSP page is first loaded. After the declarations
have been initialized, they are available to other declarations, expressions, and scriptlets
within the same JSP. The syntax for a JSP declaration is:
<%! declaration %>

A sample variable declaration using this syntax is declared here:
<%! String name = new String("BOB"); %>

A sample method declaration using the same syntax is declared here:
<%! public String getName() { return name; } %>

To get a better understanding of declarations, let's take the previous string declaration and
actually embed it into a JSP document. The sample document would look similar to the
following code snippet:
<HTML>

<BODY>

<%! String name = new String("BOB"); %>

</BODY>

</HTML>

When this document is initially loaded, the JSP code is converted to servlet code, and the
name declaration is placed in the declaration section of the generated servlet. It is now
available to all other components in the JSP.

Expressions

JSP expressions are JSP components whose text, upon evaluation by the container, is
replaced with the resulting value of the container evaluation.

JSP expressions are evaluated at request time, with the result being inserted at the
expression's referenced position in the .jsp file. If the resulting expression cannot be

 49

converted to a string, a translation time error occurs. If the conversion to a string cannot be
detected during translation, a ClassCastException is thrown at request-time. The syntax
of a JSP expression is:
<%= expression %>

A code snippet containing a JSP expression is shown here:
Hello <%= getName() %>

A sample JSP document containing a JSP expression is listed in the following code snippet:
<HTML>

<BODY>

<%! public String getName() { return "Bob"; } %>

Hello <%= getName() %>

</BODY>

</HTML>

Scriptlets

Scriptlets are the JSP components that bring all the JSP elements together. They can
contain almost any coding statements that are valid for the language referenced in the
language directive. They are executed at request time, and they can make use of all of the
JSP components. The syntax for a scriptlet follows:
<% scriptlet source %>

With the first request of a JSP containing scripting code, the JSP is converted to servlet code
and then compiled and loaded into resident memory. The actual source code, which is found
between scriptlet tags <%… %>, is placed into the generated service() method that was
created by the JSP compiler. The following code snippet contains a simple JSP that uses a
scripting element to print the text "Hello Bob" to the requesting client:
<HTML>

<BODY>

<% out.println("Hello Bob"); %>

</BODY>

</HTML>

JSP Error Handling

All development methods need a robust mechanism for error handling, and the JSP
architecture provides an error-handling solution through the use of JSPs that are written
exclusively to handle JSP errors.

The errors that occur most are runtime errors that arise in either the body of the JSP page or
in some other object that is called from the body of the JSP page. The request time errors

 50

that result in an exception being thrown can be caught and handled in the body of the calling
JSP, which would signal the end of the error. The exceptions that are not handled in the
calling JSP result in the forwarding of the client request, including the uncaught exception, to
an error page specified by the offending JSP.

Creating a JSP Error Page

Creating a JSP error page is a very simple process. You simply need to create a basic JSP
and then tell the JSP engine that the page is an error page. This is accomplished by setting
the JSP's page directive attribute, isErrorPage, to true. Listing 3-2 contains the source
code for a sample error page.

Listing 3-2: The Source Code of errorpage.jsp

<html>

<%@ page isErrorPage="true" %>

Bob there has been an error: <%= exception.getMessage() %> has been
reported.

</body>

</html>

The first JSP-related line in this page tells the JSP compiler that this JSP is an error page.
This code snippet is:
<%@ page isErrorPage="true" %>

The second JSP-related section uses the implicit exception object that is part of all JSP error
pages to output the error message contained in the unhandled exception that was thrown in
the offending JSP.

Using a JSP Error Page

To see how an error page works, let's create a simple JSP that throws an uncaught
exception. The JSP found in Listing 3-3 uses the error page we previously created.

Listing 3-3: The Source Code of testerror.jsp

<%@ page errorPage="errorpage.jsp" %>

<%

 if (true) {

 // Just throw an exception

 throw new Exception("An uncaught Exception");

 51

 }

%>

Notice in this listing that the first line of code sets the errorPage equal to errorpage.jsp
(the name of our error page). To make your JSP aware of an error page, you simply need to
add the errorPage attribute to the page directive and set its value equal to the location of
your JSP error page. The rest of our example simply throws an exception that will not be
caught. To see this example in action, copy both of these JSPs to the
<TOMCAT_HOME>/webapps/apress/ directory and open the testerror.jsp page in
your browser. You will see a page similar to that shown in Figure 3-5.

Figure 3-5: The output of the testerror.jsp example

Implicit Objects

As a JSP author, you have implicit access to certain objects that are available for use in all
JSP documents. These objects are parsed by the JSP engine and inserted into the
generated servlet as if you defined them yourself.

out

The implicit out object represents a JspWriter, which is derived from a
java.io.Writer, that provides a stream back to the requesting client. The most common
method of this object is the out.println() method, which prints text to be displayed in
the client's browser. Listing 3-4 provides an example using the implicit out object.

Listing 3-4: The Source Code of out.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 52

 <head>

 <title>Use Out</title>

 </head>

 <body>

 <%

 // Print a simple message using the implicit out object.

 out.println("<center>Hello Bob!</center>");

 %>

 </body>

</html>

To execute this example, copy this file to the <TOMCAT_HOME>/webapps/apress/
directory and then open your browser to the following URL:

http://localhost:8080/apress/out.jsp

You should see a page similar to that shown in Figure 3-6.

Figure 3-6: The output of out.jsp

request

The first of the implicit objects is the request object. This object represents the
javax.servlet.http.HttpServletRequest interface, which we discussed earlier.
The request object is associated with every HTTP request.

 53

One of the more common uses for the request object is to access request parameters. You
can do this by calling the request object's getParameter() method with the parameter
name you are seeking. It returns a string with the value matching the named parameter. An
example using the implicit request object can be found in Listing 3-5.

Listing 3-5: The Source Code of request.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>UseRequest</title>

 </head>

 <body>

 <%

 out.println("Welcome: " +

 request.getParameter("user") + "");

 %>

 </body>

</html>

You can see that this JSP calls the request.getParameter() method passing in the
parameter user. This looks for the key user in the parameter list and returns the value, if it is
found. Enter the following URL into your browser to see the results from this page:

http://localhost:8080/apress/request.jsp?user=Bob

After loading this URL, you should see a page similar to that shown in Figure 3-7.

 54

Figure 3-7: The output of request.jsp

response

The implicit response object represents the
javax.servlet.http.HttpServletResponse object. The response object is used to
pass data back to the requesting client. This implicit object provides you with all of the
functionality of the HttpServletRequest, just as if you were executing in a servlet. One of
the more common uses for the response object is writing HTML output back to the client
browser; however, the JSP API already provides access to a stream back to the client using
the implicit out object.

pageContext

The pageContext object provides access to the namespaces associated with a JSP. It also
provides accessors to several other JSP implicit objects.

session

The implicit session object represents the javax.servlet.http.HttpSession object,
which is used to store objects in between client requests providing an almost state-full HTTP
interactivity. An example of using the session object is shown in Listing 3-6.

Listing 3-6: The Source Code of session.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>Session Example</title>

 55

 </head>

 <body>

 <%

 // get a reference to the current count from the session

 Integer count = (Integer)session.getAttribute("COUNT");

 if (count == null) {

 // If the count was not found create one

 count = new Integer(1);

 // and add it to the HttpSession

 session.setAttribute("COUNT", count);

 }

 else {

 // Otherwise increment the value

 count = new Integer(count.intValue() + 1);

 session.setAttribute("COUNT", count);

 }

 out.println("This page has been accessed: "

 + count + " times.");

 %>

 </body>

</html>

To use this example, copy the JSP to the <TOMCAT_HOME>webapps/apress/ directory
and open your browser to the following URL:

http://localhost:8080/apress/session.jsp

If everything went well, you should see a page similar to Figure 3-8.

 56

Figure 3-8: The output of session.jsp

Click on your reload button a few times to see the count increment.

application

The application object represents the javax.servlet.ServletContext, and it is
most often used to access objects that are stored in the ServletContext to be shared
between Web components. It is a great place to share objects between JSPs and servlets.
In the following example, we use the application object to store and access our application's
specific information. An example using the application object can be found later in this
chapter.

config

The implicit config object holds a reference to the ServletConfig, which contains
configuration information about the JSP/servlet engine containing the Web application in
which this JSP resides.

page

The page object contains a reference to the current instance of the JSP being accessed.
You use the page object just as you would a this object: to reference the current instance
of the generated servlet representing this JSP.

exception

The implicit exception object provides access to an uncaught exception thrown by a JSP.
It is only available in JSPs that have a page with the attribute isErrorPage set to true.

Standard Actions

 57

JSP standard actions are predefined custom tags that can be used to easily encapsulate
common actions. Six standard actions are available to JSP developers. Each group is
defined and used in the following sections.

<jsp:useBean>

The first JavaBean standard action is <jsp:useBean>. This standard action creates or
looks up an instance of a JavaBean with a given scope and ID. The <jsp:useBean> action
is very flexible. When a <useBean> action is encountered, it tries to find an existing object
using the same ID and scope. If it cannot find an existing instance, it attempts to create the
object and store it in the named scope associated with the given ID. The syntax of the
<jsp:useBean> action is defined as follows:
<jsp:useBean id="name"

 scope="page|request|session|application"

 typeSpec>

 body

</jsp:useBean>

typeSpec ::=class="className" |

 class="className" type="typeName" |

 type="typeName" class="className" |

 beanName="beanName" type="typeName" |

 type="typeName" beanName="beanName" |

 type="typeName"

Table 3-3 contains the attributes of the <jsp:useBean> action.

Table 3-3: The Attributes for the <jsp:useBean> Action

ATTRIBUTE DEFINITION

id Represents the key associated with the instance of the object in the
specified scope. This key is case sensitive.

scope Represents the life of the referenced object. The scope options are page,
request, session, and application.

class Represents the fully qualified class name that defines the implementation
of the object. The class name is also case sensitive.

beanName References the name of the JavaBean

type Specifies the type of scripting variable defined. If this attribute is
unspecified, the value is the same as the value of the class attribute.

<jsp:setProperty>

The second standard action related to using JavaBeans in JSPs is <jsp:setProperty>.
This action sets the value of a bean's property. Its name attribute represents an object that
must already be defined and in scope. The syntax for the <jsp:setProperty> action is:

 58

<jsp:setProperty name="beanName" propexpr />

In the preceding syntax, the name attribute represents the name of the bean whose property
you are setting, and propexpr can be represented in the following syntax:
property="*" |

property="propertyName" |

property="propertyName" param="parameterName" |

property="propertyName" value="propertyValue"

Table 3-4 contains the attributes and their descriptions for the <jsp:setProperty> action.

Table 3-4: The Attributes for the <jsp:setProperty> Action

ATTRIBUTE DEFINITION

name Represents the name of the bean instance defined by a
<jsp:useBean> action or some other action

property Represents the bean property for which you want to set a value. If you
set propertyName to an asterisk (*), the action iterates over the current
ServletRequest parameters, matching parameter names and value
types to property names and setter method types, and setting each
matched property to the value of the matching parameter. If a parameter
has an empty string for a value, the corresponding property is left
unmodified.

param Represents the name of the request parameter whose value you want to
set the named property to. A <jsp:setProperty> action cannot have
both param and value attributes referenced in the same action.

value Represents the value assigned to the named bean's property.

<jsp:getProperty>

The last standard action that relates to integrating JavaBeans into JSPs is
<jsp:getProperty>. It takes the value of the referenced bean's instance property,
converts it to a java.lang.String, and places it on the output stream. The referenced
bean instance must be defined and in scope before this action is used. The syntax for the
<jsp:getProperty> action is:
<jsp:getProperty name="name" property="propertyName" />

Table 3-5 contains the attributes and their descriptions for the <jsp:getProperty> action.

Table 3-5: The Attributes for the <jsp:getProperty> Standard Action

ATTRIBUTE DEFINITION

name Represents the name of the bean instance from which the property is
obtained, defined by a <jsp:useBean> action or some other action

property Represents the bean property for which you want to get a value

 59

<jsp:param>

The <jsp:param> action is used to provide parameters and values to the JSP standard
actions <jsp:include>, <jsp:forward>, and <jsp:plugin>. The syntax of the
<jsp:param> action follows:
<jsp:param name="name" value="value"/>

Table 3-6 contains the attributes and their descriptions for the <jsp:param> action.

Table 3-6: The Attributes for the <jsp:param> Action

ATTRIBUTE DEFINITION

name Represents the name of the parameter being referenced

value Represents the value of the named parameter

<jsp:include>

The <jsp:include> standard action provides a method for including additional static and
dynamic Web components in a JSP. The syntax for this action is as follows:
<jsp:include page="urlSpec" flush="true">

 <jsp:param . . . />

</jsp:include>

Table 3-7 contains the attributes and their descriptions for the <jsp:include> action.

Table 3-7: The Attributes for the <jsp:include> Action

ATTRIBUTE DEFINITION

page Represents the relative URL of the resource to be included

flush
Represents a mandatory boolean value stating whether the buffer should
be flushed

Note

It is important to note the difference between the include directive and the
include standard action. The directive is evaluated only once, at
translation time, whereas the standard action is evaluated with every
request.

This syntax description does a request-time inclusion of a URL that is passed an optional list
of param sub-elements that are used to argument the request.

<jsp:forward>

The <jsp:forward> standard action enables the JSP engine to execute a runtime
dispatch of the current request to another resource existing in the current Web application,

 60

including static resources, servlets, or JSPs. The appearance of <jsp:forward> effectively
terminates the execution of the current JSP.

Note

A <jsp:forward> action can contain <jsp:param> subattributes. These
subattributes act as parameters that are forwarded to the targeted resource.

The syntax of the <jsp:forward> action is:
<jsp:forward page="relativeURL">

 <jsp:param . . ./>

</jsp:forward>

This action contains a single attribute, page, which represents the relative URL of the target
of the forward.

<jsp:plugin>

The last standard action that we will discuss is the <jsp:plugin> action. This action
enables a JSP author to generate the required HTML, using the appropriate client-browser
independent constructs that result in the download and subsequent execution of the
specified applet or JavaBeans component.

The <jsp:plugin> tag, once evaluated, is replaced by either an <object> or <embed>
tag, as appropriate for the requesting user agent. The attributes of the <jsp:plugin>
action provide configuration data for the presentation of the embedded element. The syntax
of the <jsp:plugin> action is as follows:
<jsp:plugin type="pluginType"

 code="classFile"

 codebase="relativeURLpath">

 <jsp:params>

 </jsp:params>

</jsp:plugin>

Table 3-8 contains the attributes and their descriptions for the <jsp:plugin> action.

Table 3-8: The Attributes for the <jsp:plugin> Action

ATTRIBUTE DEFINITION

type
Represents the type of plugin to include. An example of this would be an
applet.

code Represents the name of the class that the plugin will execute.

codebase
References the base or relative path of where the code attribute can be
found

 61

The <jsp:plugin> action also supports the use of the <jsp:params> tag to supply the
plugin with parameters, if necessary.

The ServletContext and its Relationship to a Web Application
Before we can get started discussing the relationship between a web application and its
ServletContext, you need to know what a ServletContext is. A ServletContext is
an object belonging to the javax.servlet package. It defines a set of methods that are
used by server-side components of a web application to communicate with the servlet
container.

One of the more common uses of the ServletContext is as a storage area for objects
that need to be available to all of the server-side components of a Web application. It is like
a "shared memory" segment for Web applications. The objects stored in the
ServletContext exist for the life of a web application. Four ServletContext methods
are used to provide this shared-memory functionality. Table 3-9 describes each of these
methods.

Table 3-9: The ServletContext "Shared Memory" Methods

METHOD DESCRIPTION

setAttribute(java.lang.String
name, java.lang.Object object)

Binds an Object to a given attribute
name and stores the Object in the
current ServletContext. If the
specified name is already in use, this
method removes the old attribute
binding and binds the name to the new
Object.

getAttribute(java.lang.String
name)

Returns the Object referenced by the
given name, or null if there is no
attribute bind to the given name

removeAttribute(java.lang.String
name)

Removes the attribute with the given
name from the ServletContext

getAttributeNames() Returns an enumeration of strings
containing the attribute names stored
in the current ServletContext

For now, let's just take a quick look at these methods. We'll examine them in much more
detail in the following sections.

The Relationship Between a Web Application and the
ServletContext

In Chapter 2, "Deploying Web Applications to Tomcat," you added a new Context entry in
the TOMCAT_HOME/conf/server.xml file. When you did this, you created a new Web
application. With the addition of this Web application, you also created a new
ServletContext. This is due to the relationship between a ServletContext and a web
application.

 62

For every Web application there is a ServletContext, but only one instance of a
ServletContext can be associated with each Web application. This relationship is
required by the servlet specification and is enforced by all servlet containers.

In the rest of this chapter, we'll focus on this relationship of exclusivity because it is what
ensures that there are no process or resource collisions between Web applications.

Examples of How the Web Application Affects Web Application
Components

To see the relationship between the ServletContext and Web application in action, we'll
use the /apress Web application from Chapter 2 and create another Web application
named /apress2.

To add the second Web application, follow the steps described in the "Manually Deploying
Web Applications to Tomcat" section in Chapter 2, substituting /apress with /apress2.
Once this is complete, you will have two distinct Web applications deployed to Tomcat.
Figure 3-9 depicts the relationship between your two Web applications.

Figure 3-9: The relationship of /apress and /apress2

In each of these Web applications, we are going to deploy two Web components: a servlet
and a JSP. The first, a simple servlet, doesn't perform any special kind of magic, but it does
leverage the ServletContext. The source code for the servlet can be found in Listing 3-7.

Listing 3-7: The Souce Code of chapter3.ContextTest.java

package chapter3;

import javax.servlet.*;

 63

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class ContextTest extends HttpServlet {

 private static final String CONTENT_TYPE = "text/html";

 public void init() throws ServletException {

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doPost(request, response);

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Get a reference to the ServletContext

 ServletContext context = getServletContext();

 // Try to get the count attribute from the ServletContext

 Integer count = (Integer)context.getAttribute("count");

 // If there was no attribute count, then create

 // one and add it to the ServletContext

 if (count == null) {

 count = new Integer(0);

 context.setAttribute("count", new Integer(0));

 }

 response.setContentType(CONTENT_TYPE);

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>ContextTest</title></head>");

 64

 out.println("<body>");

 // Output the current value of the attribute count

 out.println("<p>The current COUNT is : " + count + ".</p>");

 out.println("</body></html>");

 // Increment the value of the count attribute

 count = new Integer(count.intValue() + 1);

 // Add the new value of count to the ServletContext

 context.setAttribute("count", count);

 }

 public void destroy() {

 }

}

As you look over this servlet, you notice that it performs the following steps:
1. It gets a reference to the ServletContext using the getServletContext()

method.
2. ServletContext context = getServletContext();
3. Once it has a reference to the ServletContext, it tries to get the count attribute

from the ServletContext using the getAttribute() method.
4. Integer count = (Integer)context.getAttribute("count");
5. It then checks to see if the attribute count existed in the ServletContext. If the

attribute was not found, it is created and added to the ServletContext using the
setAttribute() method.

6. if (count == null) {

7.

8. count = new Integer(0);

9. context.setAttribute("count", new Integer(0));

10. }
11. If the attribute count was found, its value is printed to the output stream.
12. out.println("<p>The current COUNT is : " + count + ".</p>");
13. The attribute is then incremented and added back to the ServletContext.
14. count = new Integer(count.intValue() + 1);

15. context.setAttribute("count", count);

After you have looked over this servlet, you should compile it and move the class file into the
TOMCAT_HOME/webapps/apress/WEB-INF/classes/chapter3 and
TOMCAT_HOME/webapps/apress2/WEB-INF/classes/chapter3 directories. We won't
execute this servlet until we have also deployed the following JSP.

 65

Because the JSP that you will be using is much like the preceding servlet, we won't go
through the steps again. Essentially the same actions are performed, but in a JSP. The
source code for the JSP can be found in Listing 3-8.

Listing 3-8: The Source Code of ContextTest.jsp

<HTML>

<HEAD>

<TITLE>

ContextTest

</TITLE>

</HEAD>

<BODY>

<H1>

<%

 // Get the count attribute

 Integer count = (Integer)application.getAttribute("count");

 // If count is null, create a new Integer

 // and add it to the application/ServletContext

 if (count == null) {

 count = new Integer(0);

 application.setAttribute("count", count);

 }

%>

The current COUNT is : <%= count %>

<%

 // Increment the current count value

 // and add it to the ServletContext

 count = new Integer(count.intValue() + 1);

 application.setAttribute("count", count);

%>

</H1>

</BODY>

</HTML>

 66

After you look over this JSP, copy it to both the TOMCAT_HOME/webapps/apress/ and
TOMCAT_HOME/webapps/apress2/ directories.

Now that both Web components have been deployed to both of the Web applications, let's
take a look at how being in separate Web applications actually affects these components. To
begin our experiment, you need to open a web browser to the following URL:

http://localhost:8080/apress/ContextTest.jsp

You should see a page similar to Figure 3-10, with a count value of 0.

Figure 3-10: ContextTest.jsp after initial load

Go ahead and click on the Refresh button a few times. You should see the value of count
increment with each click. Now open another browser to your deployed servlet using the
following URL:

http://localhost:8080/apress/servlet/chapter3.ContextTest

You should see output similar to that shown in Figure 3-11.

 67

Figure 3-11: chapter3.ContextTest after ContextTest.jsp

The output is much the same as ContextTest.jsp, aside from the bold lettering, but you
should notice the value of count. It is one greater than the last value of count displayed by
ContextTest.jsp. This is because they share the same ServletContext. This is the
"shared memory" functionality that we spoke of earlier in the chapter. You can go back and
forth between the JSP and servlet, clicking on the Refresh button, and you'll see how they
share the count object.

Now open the JSP from the /apress2 Web application using the following URL:

http://localhost:8080/apress2/ContextTest.jsp

You'll see that the value of count has been reset to 0. This is because it is a different count,
and this is the relationship between ServletContexts and Web applications: the
ServletContext associated with /apress2 is unique to this Web application and cannot
be affected by Web components in any other Web application, including /apress.

To conclude our example, go ahead and open the chapter3.ContextTest servlet that
was deployed to the /apress2 Web application using the following URL:

http://localhost:8080/apress2/servlet/chapter3.ContextTest

You'll see that it uses the same reference to the count attribute as the JSP deployed to
/apress2.

Note

Objects stored in the ServletContext remain available for the life of the
Web application.

Summary
In this chapter, we covered the main Web application components that can be hosted in a
Tomcat container. We described the Java servlet architecture and how it can be used. We
then went on to describe JavaServer pages and their components. We concluded by
defining the ServletContext and its more common uses. We described the relationship
that exists between the ServletContext and a web application. We also covered
examples that showed how each of these topics actually perform.

 68

In the next chapter, we begin our discussions on Tomcat's /manager Web application.

 69

Chapter 4: Using Tomcat's Manager Application
What is the Manager Web Application?
The Tomcat Manager Web application is packaged with the Tomcat server. It is installed in
the context path of /manager and provides the basic functionality to manage Web
applications running in the Tomcat server. Some of the provided functionality includes the
ability to install, start, stop, remove, and report on Web applications.

Note

The Tomcat /manager application services only HTTP GET requests. This
makes it possible to easily attach a scripting or graphical type interface as a
front end to all of its functionality.

Gaining Access to the Manager Web Application
Before you can use the Manager, you must set up a new user with the appropriate privileges
to access the /manager application. If you look at the
TOMCAT_HOME/webapps/manager/web.xml file in the /manager application, you'll
notice a security constraint similar to the following code snippet:
<!-- Define a Security Constraint on this Application -->

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Entire Application</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!-- NOTE: This role is not present in the default users file
-->

 <role-name>manager</role-name>

 </auth-constraint>

</security-constraint>

The <security-constraint/> element defined in this code snippet secures the entire
/manager Web application, providing access to only those users who have a defined role of
manager. It does this with essentially two sub-elements in the security constraint.

The first sub-element, <web-resource-collection>, defines the resource that is
protected by this constraint. The definition is made with the <url-pattern> sub-element.
When you look at the previous snippet, you'll also notice that this sub-element is defined as
follows:
<url-pattern>/*</url-pattern>

The value of the <url-pattern> sub-element uses a wildcard *, which protects all URLs
within the /manager application with this security constraint.

The second sub-element defines the role that has access to the protected resource. It does
this by using the <role-name> sub-element, which is listed in the following code snippet:
<role-name>manager</role-name>

 70

The value of this sub-element states that only users with a role of manager can access the
resource protected by this security constraint.

What this all boils down to is that, if you want access to the manager application, you need
to add a new user with a role of manager. You add such a user by inserting an entry in the
TOMCAT_HOME/conf/tomcat-users.xml file, which contains all of the defined users in
Tomcat. If you haven't changed this file before, it should look similar to the following code
snippet:
<!--

 NOTE: By default, no user is included in the "manager" role
required

 to operate the "/manager" web application. If you wish to use this
app,

 you must define such a user - the username and password are
arbitrary.

-->

<tomcat-users>

 <user name="tomcat" password="tomcat" roles="tomcat" />

 <user name="role1" password="tomcat" roles="role1" />

 <user name="both" password="tomcat" roles="tomcat,role1" />

</tomcat-users>

As you can see, there is nothing special about this file: it has a root-level element of
<tomcat-users>, which contains a collection of <user> sub-elements. To add a new user
with access to the manager application, you simply need to add a new <user> sub-element
with a roles attribute equal to manager. Listing 4-1 contains the modified tomcat-
users.xml file, with a new user that has access to the manager application.

Listing 4-1: The tomcat-users.xml File

<!--

 NOTE: By default, no user is included in the "manager" role
required

 to operate the "/manager" web application. If you wish to use this
app,

 you must define such a user - the username and password are
arbitrary.

-->

<tomcat-users>

 <user name="tomcat" password="tomcat" roles="tomcat" />

 <user name="role1" password="tomcat" roles="role1" />

 <user name="both" password="tomcat" roles="tomcat,role1" />

 <user name="bob" password="password" roles="manager" />

</tomcat-users>

 71

Make the previously listed changes and save the tomcat-users.xml file. You now have a
new user named bob, with a password of password and the role of manager. After making
this change, restart Tomcat.

Using the Manager Web Application
After you have a privileged user, you can begin looking at the functionality that's associated
with the /manager application, which currently has seven available commands:

� install
� list
� reload
� sessions
� start
� stop
� remove

We will discuss each of these commands in relation to our apress.war file from Chapter 2.

Note

Before you begin using these commands, make sure you have backed up
and removed the /apress Web application from your current Tomcat
installation.You should also remove the apress context entry from the
TOMCAT_HOME/conf/server.xml file. This will preserve any changes
that you made in Chapter 3.

install

The first command you are going to use is install, which is used to deploy new Web
applications. The command accepts two parameters: war and path. The first parameter,
war, is a URL that references a WAR file or directory that contains a Web application. The
second parameter, path, is a context path that the Web application will be attached to. We
are going to use the install command to install and deploy our /apress Web application.
So, you need to find the apress.war file from Chapter 2 and enter the following URL into
your Web browser, replacing D:\Chapter2\ with the location of your apress.war file.

Note

The install command takes the referenced WAR file and extracts it into
the /webapps directory during this process. However, it does not add a new
<Context> entry into the server.xml.

http://localhost:8080/manager/install?path=/apress&war=jar:file:D:/C
hapter2/apress.war!/

The first time you enter a manager command, you are asked for a username and password.
Enter the values bob and password, respectively, and click on OK. If everything was
entered correctly, you should see a screen similar to that shown in Figure 4-1.

 72

Figure 4-1: A successful manager deployment

The install command can be subdivided into the following pieces:

� http://localhost:8080/manager/install: This is the URL to the Web
application install command.

� path=/apress: The path parameter tells the manager that it should install the Web
application to the /apress context path.

� war=jar:file:D:/Chapter2/apress.war!/: The war parameter references the
location of the WAR file that contains the /apress application. The war parameter is a
URL that must match one of the syntax patterns described in Table 4-1, depending
upon which deployment target you are using.

Table 4-1: The war Parameter Syntax

DIRECTORY DESCRIPTION

file:/absolutepath Use this syntax when deploying the
Web application from a local
directory. The value must be the
absolute path to the root directory
of the Web application.

jar:/file:/absolutepath/warfile.war!/ Use this syntax when deploying a
WAR file from a local directory. The
value must be the absolute path to
the WAR file containing the Web
application that is being deployed.

jar:http://hostname:port/relativepath/warfile.war!/ Use this syntax when deploying a
WAR file that exists on a remote
server. The value must be the
server and port plus the relative
path to the WAR file containing the
Web application that is being
deployed.

 73

Note

You should notice that all WAR file deployments end with a !/.

To test this deployment, open your browser to the following URL (which you may recognize
from Chapter 2):

http://localhost:8080/apress/login.jsp

You should see the login page from Chapter 3.

list

The list command is used to display a list of currently deployed Web applications. The
list command displays the name of the Web application along with two additional pieces of
information: it describes the current status of the application (either running or stopped),
and it displays the current number of active sessions for each application. To see the
command in action, open your browser to the following URL:

http://localhost:8080/manager/list

You should see a page similar to that shown in Figure 4-2.

Figure 4-2: Results from the list command

reload

The reload command is used to reload all of the Web components—including servlet,
JSPs, and dependent classes—associated with the named Web application. The only
parameter used by the reload command is path, which names the Web application to
reload. To reload all of the components associated with the /apress Web application, open
your browser to the following URL:

http://localhost:8080/manager/reload?path=/apress

Once all of the components have been reloaded, the manager application responds with a
page similar to that shown in Figure 4-3.

 74

Figure 4-3: Results from the reload command

sessions

The sessions command is used to display session information associated with a named
Web application. The only parameter used by the sessions command is path, which
names the Web application to report upon. To display session information about the /apress
Web application, open your browser to the following URL:

http://localhost:8080/manager/sessions?path=/apress

Once the manager application has gathered the session information associated with the
/apress Web application, it responds with a page similar to that shown in Figure 4-4.

 75

Figure 4-4: Results from the sessions command

stop

The stop command does just what you think it does: it stops the named Web application.
The only parameter used by the stop command is path, which names the Web application
to stop. To stop the /apress Web application, open your browser to the following URL:

http://localhost:8080/manager/stop?path=/apress

The stop command responds with a page similar to that shown in Figure 4-5.

Figure 4-5: Results from the stop command

Note

Once you have executed the stop command on a Web application, it won't
be available until the start command has been executed with the same
path value. The current status can be viewed by using the list command.

 76

start

The start command also does just what it sounds like: it starts a named Web application
that has been previously stopped. Again, the only parameter used by the stop command is
path, which names the Web application to start. To start the previously stopped /apress
Web application, open your browser to the following URL:

http://localhost:8080/manager/start?path=/apress

Once all of the components have been reloaded, the manager application responds with a
page similar to that shown in Figure 4-6.

Figure 4-6: Results from the start command

remove

The last command that you will use, appropriately enough, is the remove command. It is
used to stop and remove the named Web application from the Tomcat server. It does not
remove the directories and files associated with the Web application, however; it simply
removes the application from the internally maintained list of deployed applications. The
path parameter—the only one used by this command as well—names the Web application
to remove. To remove all of the components associated with the /apress Web application,
open your browser to the following URL:

http://localhost:8080/manager/remove?path=/apress

Once all of the components have been removed, the manager application responds with a
page similar to that shown in Figure 4-7.

 77

Figure 4-7: Results from the remove command

Note

If you are testing all of these commands on the /apress Web application,
you may want to test the remove command last. This is to prevent you from
removing the Web application while there are still other commands to be
executed.

Summary
In this chapter, we covered using the Tomcat /manager Web application to install and
manage our own Web application. We defined the /manager Web application and
discussed each of the available commands. In the next chapter, we cover securing Tomcat
with realms.

 78

Chapter 5: Configuring Security Realms
Security Realms
A security realm is a mechanism for protecting Web application resources. It gives you the
ability to protect a resource with a defined security constraint and then define the user roles
that can access the protected resource.

Tomcat contains this type of realm functionality as a built-in feature, and the
org.apache.catalina.Realm interface is the component that provides this functionality.
The interface provides a mechanism by which a collection of usernames, passwords, and
their associated roles can be integrated into Tomcat. If you downloaded the Tomcat source,
you can find this interface in the following location:
<TOMCAT_HOME>/src/catalina/src/share/org/apache/catalina/Realm.java

Tomcat 4 provides two classes of Realm implementations: MemoryRealm and JDBCRealm.
We discuss each implementation in the following sections.

Memory Realms
The first Realm implementation provided with Tomcat is a memory realm, which is
implemented by the org.apache.catalina.realm.MemoryRealm class. The
MemoryRealm class uses a simple XML file as a container of users. The following code
snippet contains an example memory realm XML file:
<!--

 NOTE: By default, no user is included in the "manager" role
required

 to operate the "/manager" web application. If you wish to use this
app,

 you must define such a user - the username and password are
arbitrary.

-->

<tomcat-users>

 <user name="tomcat" password="tomcat" roles="tomcat" />

 <user name="role1" password="tomcat" roles="role1" />

 <user name="both" password="tomcat" roles="tomcat,role1" />

 <user name="bob" password="password" roles="manager" />

</tomcat-users>

Note

The default location of the MemoryRealms XML file is the
<TOMCAT_HOME>/conf/tomcat-users.xml. You can change the
location of this file by substituting a new relative or absolute path in the
pathname attribute of the <Realm> element described in the following
section.

As you can see, this file contains nothing terribly complicated. It has a root element of
<tomcat-users>, which contains n-number of the sub-element <user>. The <user>
element contains all of the necessary information to validate a user. This information is

 79

contained in the attributes of the <user> sub-element. Table 5-1 contains a description of
each of the attributes required in the <user> sub-element.

Table 5-1: The Required Attributes of the <user> Sub-Element

ATTRIBUTE DESCRIPTION

name Contains a string representing the username that will be used in the login
form

password Contains a string representing the password that will be used in the login
form

roles Contains the role(s) assigned to the named user. This is the value that
must match the <role-name> sub-element of the security constraint
defined in the Web application's web.xml file. If more than one role is
assigned to the user, the value of the roles attribute must contain a
comma-separated list of roles.

Protecting a Resource with a MemoryRealm

To actually see how a MemoryRealm works, let's create a realm that protects our /apress
application. The steps involved in setting up a new MemoryRealm are as follows:

1. Open the <TOMCAT_HOME>/conf/server.xml and make sure that the following line
is not commented out.

2. <Realm className="org.apache.catalina.realm.MemoryRealm" />
By ensuring that this <Realm> entry is not commented out, you are making the
MemoryRealm the default realm implementation for the entire default container.

Note If you cannot find this entry, add it directly under the Engine sub-

element.
3. Open the <TOMCAT_HOME>/webapps/apress/WEB-INF/web.xml file and add the

following security constraint as the last sub-element of <web-app>:
4. <!-- Define a Security Constraint on this Application -->

5. <security-constraint>

6. <web-resource-collection>

7.

8. <web-resource-name>Apress Application</web-resource-name>

9. <url-pattern>/*</url-pattern>

10. </web-resource-collection>

11. <auth-constraint>

12. <role-name>apressuser</role-name>

13. </auth-constraint>

14. </security-constraint>

Note Tomcat throws an org.xml.sax.SAXParseException if this entry

is not added to the end of the web.xml file.

 80

15. You need to focus on only two sub-elements: <url-pattern> and <role-name>.
The <url-pattern> sub-element defines the URL pattern that is to be protected by
the resource. The entry that you include protects the entire /apress Web application.
The second sub-element, <role-name>, defines the user role that can access the
resource protected by the previously defined <url-pattern>. In summary, this entire
entry states that the /apress Web application can be accessed only by users with a
defined role of apressuser.

16. Add the following <login-config> sub-element directly after the <security-
constraint>.

17. <!-- Define the Login Configuration for this Application -->

18. <login-config>

19. <auth-method>BASIC</auth-method>

20. <realm-name>Apress Application</realm-name>

21. </login-config>
The <login-config> sub-element simply defines the authentication method for the
defined realm. The possible values are BASIC, DIGEST, and FORM.

22. Open the <TOMCAT_ROOT>/conf/tomcat-users.xml file and add the following
<user> sub-element:

23. <user name="robert" password="password" roles="apressuser" />
The <user> sub-element you are adding creates a new user in the MemoryRealm
database with a name of robert, a password of password, and a role of
apressuser. You should notice that the value of the roles attribute matches the
value of the <role-name> sub-element of the previously defined <sercurity-
contstraint>.

24. To complete this configuration, stop and restart the Tomcat server.

Now let's actually look at how your newly defined realm affects the /apress Web
application. Point your browser to the following URL:

http://localhost:8080/apress/login.jsp

If everything went according to plan, you should see a dialog box similar to Figure 5-1.

 81

Figure 5-1: The BASIC authentication dialog will prompt you for a user ID and
password.

Go ahead and enter robert for the username and password for the password, and click
on OK. Again, if everything goes according to plan, you should see the login page of the
/apress Web application. You now have a Web application that is protected by a security
realm that uses the basic authentication method to authenticate its users.

JDBC Realms
The second Realm implementation provided with Tomcat is a JDBC realm, which is
implemented by the org.apache.catalina.realm.JDBCRealm class. This class is
much like the MemoryRealm discussed in the previous section, with the exception of where
it stores its collection of users. A JDBCRealm stores all of its users in a user-defined and
JDBC-compliant database. Setting up a JDBC realm involves several steps, but it is really
simple to manage once it is configured.

Creating the Users Database

Before you begin configuring Tomcat to use a JDBCRealm, you must first create a database
to hold your collection of users. For this example, we are configuring both a MySQL
database and a Microsoft Access database.

Note

If you already have a database of users, you can substitute the values we
are using here with the appropriate values relating to your database. If you
do not have an existing database, you can find the Access database or SQL
Scripts to create the MySQL database with the rest of the source code at
http://www.virtuas.com/publications.html.

Our user database is going to contain three tables. The first table is the users table, which
contains the username and password for each of our users. Table 5-2 contains the
description of the users table.

Table 5-2: The users Table Definition

COLUMN DESCRIPTION

user_name Contains a string representing the username that will be used in the login

 82

Table 5-2: The users Table Definition

COLUMN DESCRIPTION
form. It has a type of varchar(12).

user_pass Contains a string representing the user's password. It also has a type of
varchar(12).

The second table in the users database is the roles table, which contains all of the
possible roles for the users defined in this database. The roles table contains a single
column, role_name, that is a varchar(12) representing each role name.

The last table in the users database is the user_roles table. The user_roles table is a
mapping table between the roles and users defined in this database. Table 5-3 contains
the table definition for the user_roles table.

Table 5-3: The user_roles Table Definition

COLUMN DESCRIPTION

user_name Contains a string referring to a user in the users table. It has a type of
varchar(12).

role_name Contains a string referring to a role in the roles table. It also has a type of
varchar(12).

This is our complete database. The relationships between each of these tables are
represented in Figure 5-2.

Figure 5-2: This figure shows the relationships of the tables in the user database.

The contents of each of the users database's tables are listed in Table 5-4, 5-5, and 5-6.

 83

Table 5-4: The Contents of the users Table

USER_NAME USER_PASS

bob password

joe joe

robert password

tomcat password

Table 5-5: The Contents of the roles Table

ROLE_NAME

apressuser

manager

tomcat

Table 5-6: The Contents of the user_roles Table

USER_NAME ROLE_NAME

bob manager

joe apressuser

joe manager

robert apressuser

tomcat tomcat

Creating and Configuring a MySQL Users Database

Before you can create the Users database in MySQL, you need to have downloaded and
installed the MySQL server, which can be found at http://www.mysql.com. You should also
download the latest JDBC driver for MySQL, which can also be found at the same Web site.

After you have MySQL installed, you need to complete the following steps to create and
configure a MySQL Users database:

1. Start the mysql client found in the <MYSQL_HOME>/bin/ directory.
2. Create the Users database, which will be explicitly named tomcatusers, by

executing the following command:
3. create database tomcatusers;
4. Make sure that you are modifying the correct database using the following command:
5. use tomcatusers;

 84

6. Create the users table using the following command:
7. create table users

8. (

9. user_name varchar(15) not null primary key,

10. user_pass varchar(15) not null

11.);
12. Create the roles table using the following command:
13. create table roles

14. (

15. role_name varchar(15) not null primary key

16.);
17. Create the user_roles table using the following command:
18. create table users_roles

19. (

20. user_name varchar(15) not null,

21. role_name varchar(15) not null,

22. primary key(user_name, role_name)

23.);
24. Insert the user data into the users table by executing the following commands:
25. insert into users values("bob", "password");

26. insert into users values("joe", "joe");

27. insert into users values("robert", "password");

28. insert into users values("tomcat", "password");
29. Insert the roles data into the roles table with the following commands:
30. insert into roles values("apressuser");

31. insert into roles values("manager");

32. insert into roles values("tomcat");
33. Insert the user_roles data into the user_roles table with the following commands:
34. insert into user_roles values("bob", "manager");

35. insert into user_roles values("joe", "apressuser");

36. insert into user_roles values("joe", "manager");

37. insert into user_roles values("robert", "apressuser");

38. insert into user_roles values("tomcat", "tomcat");

You now have a MySQL database of users. If you are not interested in the Microsoft
configuration, skip the following section and continue with the "Configuring Tomcat to Use a
JDBC Realm" section.

Creating and Configuring a Microsoft Access Users Database

Microsoft Access uses a single file to represent a database; therefore, you can simply use
the users.mdb file included with this text's source code, instead of going through the steps
that are normally required to create a users database.

 85

Although you do not have to create the users database, you need to set up an ODBC data
source that can be referenced by the JDBC-ODBC bridge. The following steps describe the
process of setting up a new data source:

Note

The JDBC-ODBC bridge is a JDBC driver that is packaged with the
standard JDK. It provides JDBC access to most Microsoft ODBC data
sources.

1. Open the Windows NT/2000 control panel. You should see an image similar to that
shown in Figure 5-3.

Figure 5-3: The Windows NT/2000 control panel is used to access the
Administative Tools folder.

2. Double-click on the Administrative Tools icon. You should see an image similar to
Figure 5-4.

Figure 5-4: The Windows NT/2000 Administrative Tools folder contains the link to
the ODBC data sources.

 86

3. Double-click on the Data Sources (ODBC) icon and select the System DSN tab. You
should see an image similar to Figure 5-5.

Figure 5-5: The Windows NT/2000 ODBC Data Source Administrator provides
access to all of your ODBC data sources.

4. Select the Add button. You should see an image similar to Figure 5-6.

Figure 5-6: The Windows NT/2000 Create New Data Source wizard walks you
through the steps of creating a new ODBC data source.

 87

5. Select Microsoft Access and click on the Finish button. You should see an image
similar to Figure 5-7.

Figure 5-7: The Windows NT/2000 ODBC Microsoft Access setup dialog box
shows your newly created ODBC data source.

6. Enter jdbcRealm in the Data Source Name edit box.
7. Click on the Select button and navigate to the location of the users.mdb file. Click on

OK for all remaining actions.

You now have an ODBC data source that contains your database of users.

Configuring Tomcat to Use a JDBC Realm

Now that we have a container of users, let's configure Tomcat to use the JDBC container
instead of the previously configured MemoryRealm. The steps involved in configuring a
JDBCRealm are described in the following list:

1. Open the <TOMCAT_HOME>/conf/server.xml and place a comment around the
previously uncommented <Realm> element.

2. <!-- <Realm className="org.apache.catalina.realm.MemoryRealm"
/> -->

3. Place one of the following code snippets, based upon the database you are using,
directly below the previously referenced <Realm> element:
Microsoft Configuration

 <Realm className="org.apache.catalina.realm.JDBCRealm"

driverName="sun.jdbc.odbc.JdbcOdbcDriver"

connectionURL="jdbc:odbc:jdbcRealm"

userTable="users" userNameCol="user_name"
userCredCol="user_pass"

userRoleTable="user_roles" roleNameCol="role_name" />

MySQL Configuration

 88

 <Realm className="org.apache.catalina.realm.JDBCRealm"
debug="99"

driverName="org.gjt.mm.mysql.Driver"

connectionURL="jdbc:mysql://localhost/tomcatusers?user=test;pas
sword=test"

userTable="users" userNameCol="user_name"
userCredCol="user_pass"

 userRoleTable="user_roles" roleNameCol="role_name" />

Note Make sure that the JAR file containing the JDBC driver referenced by

the driverName attribute is placed in Tomcat's CLASSPATH. If you
are using the JDBC-ODBC bridge, the driver is already in Tomcat's
CLASSPATH.

This new <Realm> entry defines a JDBCRealm that leverages one of our databases
as its container of users. The attributes used in the <Realm> element, with additional
optional attributes, are described in Table 5-7.

Table 5-7: The <Realm> Element Attributes

ATTRIBUTE DESCRIPTION

classname The fully qualified class name of the Realm implementation

driverName The name of the driver used to connect to the database
containing the users

connectionURL The URL referencing the database containing the users

connectionName (Optional) The username to use when connecting to the
database. Microsoft Access does not require a username. If
you are using MySQL, you can encode the username directly
on the connectionURL.

connectionPassword (Optional) The password to use when connecting to the
database. Access does not require a password. If you are
using MySQL, you can encode the password directly on the
connectionURL.

userTable The database table containing the user's information

userNameCol The column in the userTable that references the user's
username

userCredCol The column in the userTable that references the user's
password

userRoleTable The database table containing the mapping between the
userTable and the table containing the possible user roles

roleNameCol The column in the userRoleTable that contains a role
given to a user

 89

4. To complete this configuration change, stop and restart the Tomcat server.

Your Web applications are now protected by a JDBCRealm. At this point, you should be able
to log in to the /apress Web application by selecting from the users table a user who has
a role of apressuser.

The Benefits of Using a JDBCRealm

JDBC realms are one of Tomcat's more exciting bits of functionality. They solve many of the
authentication problems that have existed for many years. Two of the more common benefits
of using a JDBC realm are as follows:

� Using a JDBC Realm makes it possible for you to leverage your application's database
as a container of users, whereas, in most previously existing Web applications, the
container of users exists in some proprietary Web server database.

� You can make changes to the live user database and have the changes take effect
without restarting the Tomcat server. When using a MemoryRealm, you must restart the
Tomcat server after adding new users.

Accessing an Authenticated User
Once a user has been authenticated, it is very easy to access the user's information using
the HttpServletRequest interface. Because the user's information is stored in the
HttpServletRequest object, it is available to all JSPs and servlets existing in the same
request. To see how this information is accessed, we are going to change the
welcome.jsp page from Chapter 2. The modified welcome.jsp can be found in Listing 5-
1.

Listing 5-1: The Modified welcome.jsp Page

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 <td>

 <apress:hello /> : <%= request.getRemoteUser() %>

 90

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

</body>

</html>

The only code you need to examine, from the modified JSP, is the following code snippet:
<apress:hello /> : <%= request.getRemoteUser() %>

Note

The request object is a reference to the current HttpServletRequest
object. It is implicitly available to all JSPs.

This code uses the request.getRemoteUser() method to retrieve the authenticated
user's username. It then outputs the returned username. After you have made the changes
to this JSP, copy it to the <TOMCAT_HOME>/webapps/apress/ directory and point your
browser to the following URL:

http://localhost:8080/apress/welcome.jsp.

If you have already been authenticated, you should see the screen shown in Figure 5-8 with
the username with which you were authenticated following the Hello text. If you have not
been authenticated in the /apress Web application, enter robert and password in the
BASIC authentication dialog box. You should then see the screen shown in Figure 5-8 with
robert following the Hello text.

Figure 5-8: The Modified welcome.jsp page shows the effect of retrieving the
username from a security realm.

 91

Summary
We discussed security realms and how they are used, and we also covered the two types of
security realms that are packaged with Tomcat (memory realms and JDBC realms),
including their configuration and use. In the next chapter, we cover securing a Web
application using the Secure Sockets Layer (SSL).

 92

Chapter 6: Embedding Tomcat
Embedding Tomcat into a Java Application
To create a Java application that contains an embedded version of the Tomcat server, we
will leverage some existing Tomcat classes that have been developed to ease this type of
integration.

The main class we want to use is org.apache.catalina.startup.Embedded, which
can be found in the
<CATALINA_HOME>/src/catalina/src/share/org/apache/catalina/startup
directory. You can open this file and skim over it. (You don't need to examine it in too much
detail.) We will look at certain parts of the Embedded object as we leverage it to build our
own application.

Recall from Chapter 1 that Tomcat can be subdivided into a set of containers with each
having their own purpose. These containers are by default configured using the
server.xml file. When embedding a version of Tomcat, you won't have this file available,
and so you need to assemble instances of these containers programmatically. The following
XML code snippet, from the server.xml file, contains the hierarchy of the Tomcat
containers:
<Server port="8005" shutdown="SHUTDOWN" debug="0">

 <Service name="Tomcat-Standalone">

 <Connector
className="org.apache.catalina.connector.http.HttpConnector"

 port="8080" minProcessors="5" maxProcessors="75"

 enableLookups="true" redirectPort="8443"

 acceptCount="10" debug="0" connectionTimeout="60000"/>

 <Engine name="Standalone" defaultHost="localhost" debug="0">

 <Host name="localhost" debug="0" appBase="webapps"
unpackWARs="true">

 <Context path="/examples" docBase="examples" debug="0"

 reloadable="true">

 </Context>

 </Host>

 </Engine>

 </Service>

 93

</Server>

This is the structure that we need to create with our embedded application. Because the
<Server> and <Service> elements of this structure are implicitly created, we don't need
to create these objects ourselves. The steps to create this container structure are as follows:

1. Create an instance of org.apache.catalina.Engine. This object represents the
previous <Engine> element and acts as a container to the <Host> element.

2. Create an org.apache.catalina.Host object, which represents a virtual host, and
add this instance to the Engine object.

3. Now you need to create N-number of org.apache.catalina.Context objects that
will represent each Web application in this Host. Add each of the created Contexts
to the previously created Host.

4. Create an org.apache.catalina.Connector object and associate it with the
previously created Engine.

These are the steps that we must perform to create our own application containing an
embedded version of the Tomcat server. Listing 6-1 reveals our sample application that
builds these containers using the provided Embedded class.

Listing 6-1: EmbeddedTomcat.java

package chapter6;

import java.net.URL;

import org.apache.catalina.Connector;

import org.apache.catalina.Context;

import org.apache.catalina.Deployer;

import org.apache.catalina.Engine;

import org.apache.catalina.Host;

import org.apache.catalina.logger.SystemOutLogger;

import org.apache.catalina.startup.Embedded;

import org.apache.catalina.Container;

public class EmbeddedTomcat {

 private String path = null;

 private Embedded embedded = null;

 private Host host = null;

 /**

 * Default Constructor

 *

 94

 */

 public EmbeddedTomcat() {

 }

 /**

 * Basic Accessor setting the value of the context path

 *

 * @param path - the path

 */

 public void setPath(String path) {

 this.path = path;

 }

 /**

 * Basic Accessor returning the value of the context path

 *

 * @return - the context path

 */

 public String getPath() {

 return path;

}

 /**

 * This method Starts the Tomcat server.

 */

 public void startTomcat() throws Exception {

 Engine engine = null;

 // Set the home directory

 System.setProperty("catalina.home", getPath());

 // Create an embedded server

 embedded = new Embedded();

 embedded.setDebug(5);

 embedded.setLogger(new SystemOutLogger());

 95

 // Create an engine

 engine = embedded.createEngine();

 engine.setDefaultHost("localhost");

 // Create a default virtual host

 host = embedded.createHost("localhost", getPath() + "/webapps");

 engine.addChild(host);

 // Create the ROOT context

 Context context = embedded.createContext("", getPath() +
"/webapps/ROOT");

 host.addChild(context);

 // Create the examples context

 Context examplesContext = embedded.createContext("/examples",
getPath() +

 "/webapps/examples");

 host.addChild(examplesContext);

 // Install the assembled container hierarchy

 embedded.addEngine(engine);

 // Assemble and install a default HTTP connector

 Connector connector = embedded.createConnector(null, 8080,
false);

 embedded.addConnector(connector);

 // Start the embedded server

 embedded.start();

 }

 /**

 * This method Stops the Tomcat server.

 */

 public void stopTomcat() throws Exception {

 // Stop the embedded server

 embedded.stop();

 }

 96

 /**

 * Registers a WAR

 *

 * @param contextPath - the context path under which the

 * application will be registered

 * @param url - the URL of the WAR file to be registered.

 */

 public void registerWAR(String contextPath, URL url) throws
Exception {

 if (contextPath == null) {

 throw new Exception("Invalid Path : " + contextPath);

 }

 String displayPath = contextPath;

 if(contextPath.equals("/")) {

 contextPath = "";

 }

 if (url == null) {

 throw new Exception("Invalid WAR : " + url);

 }

 Deployer deployer = (Deployer)host;

 Context context = deployer.findDeployedApp(contextPath);

 if (context != null) {

 throw new Exception("Context " + contextPath + " already
Exists!");

 }

 deployer.install(contextPath, url);

 }

 /**

 * removes a WAR

 *

 * @param contextPath - the context path to be removed

 */

 97

 public void unregisterWAR(String contextPath) throws Exception {

 Context context = host.map(contextPath);

 if (context != null) {

 embedded.removeContext(context);

 }

 else {

 throw new Exception("Context does not exist for named path : "

 + contextPath);

 }

 }

 public static void main(String args[]) {

 try {

 EmbeddedTomcat tomcat = new EmbeddedTomcat();

 tomcat.setPath("d:/EmbeddedTomcat");

 tomcat.startTomcat();

 Thread.sleep(100000);

 tomcat.stopTomcat();

 System.exit(0);

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

You should begin your examination of the EmbeddedTomcat application source with the
main() method. In this method, we first create an instance of the EmbeddedTomcat class.
We then set the path of the Tomcat installation that we will be using. This path is equivalent
to the <TOMCAT_HOME> environment variable. Next, this method invokes the

 98

startTomcat() method, which is the method that implements the steps we described
earlier. The steps performed by this method are listed below:

Note

Make sure you use your <TOMCAT_HOME> as the value passed to the
setPath() method.

1. First, the system property is set to the value of the path attribute:
2. // Set the home directory

3. System.setProperty("catalina.home", getPath());
4. The method then creates an instance of the Embedded object and sets the debug level

and current logger:
5. // Create an embedded server

6. embedded = new Embedded();

7. embedded.setDebug(5);

8. embedded.setLogger(new SystemOutLogger());

Note When deploying a production Web application, the debug level

should be 0. This improves performance considerably.
9. Next, the method creates an instance of an org.apache.catalina.Engine and

sets the name of the default host:
10. // Create an engine

11. engine = embedded.createEngine();

12. engine.setDefaultHost("localhost");
13. After an Engine has been instantiated, we create an

org.apache.catalina.Host object, named localhost with a path pointing to
the <TOMCAT_HOME>/webapps/ directoy, and add it the Engine object.

14. // Create a default virtual host

15. host = embedded.createHost("localhost", getPath() +
"/webapps");

16. engine.addChild(host);

Note The path value used to create this host is the root path of the created

host.
17. The next step performed by this method is to create the

org.apache.catalina.Context objects, adding each of the created Contexts
to the previously created Host. In this method, we are creating two Contexts:
ROOT and /examples. These are the Web applications that are installed by default.

18. // Create the ROOT context

19. Context context = embedded.createContext("",

20. getPath() + "/webapps/ROOT");

21. host.addChild(context);

22.

23. // Create the examples context

24. Context examplesContext = embedded.createContext("/examples",

25. getPath() + "/webapps/examples");

26. host.addChild(examplesContext);
27. The Engine containing the created Host and Contexts is added to the Embedded

object:
28. // Install the assembled container hierarchy

 99

29. embedded.addEngine(engine);
30. An org.apache.catalina.Connector object is created and associated with the

previously created Engine:
31. // Assemble and install a default HTTP connector

32. Connector connector = embedded.createConnector(null, 8080,
false);

33. embedded.addConnector(connector);
34. The final step is to start the Tomcat server using the Embedded.start() method.

When startTomcat() returns, the main application is put to sleep to allow the embedded
server time to service requests. When the application awakens, the embedded server is
stopped and the application exits.

Let's compile this application to see how it works. First, make sure all other instances of
Tomcat are shut down. Now add the following JAR files, all of which can be found in the
Tomcat installation, to your CLASSPATH:

� bootstrap.jar
� catalina.jar
� crimson.jar
� jakarta-regexp-1.2.jar
� jasper-compiler.jar
� jasper-runtime.jar
� jaxp.jar
� jndi.jar
� naming.jar
� namingfactory.jar
� resources.jar
� servlet.jar
� tools.jar

Make sure that your CLASSPATH includes the directory containing the compiled
EmbeddedTomcat, and execute the following command:
java chapter6.EmbeddedTomcat

Note

I have included a stripped-down version of Tomcat as part of the source
code for this text. Look in the source code for Chapter 6; the directory name
is Embedded Tomcat.

If everything went according to plan, you should see some log statements in the console
window. When you see the following text:
HttpProcessor[8080][0] Starting background thread

HttpProcessor[8080][0] Background thread has been started

HttpProcessor[8080][1] Starting background thread

HttpProcessor[8080][1] Background thread has been started

HttpProcessor[8080][2] Starting background thread

HttpProcessor[8080][2] Background thread has been started

HttpProcessor[8080][3] Starting background thread

HttpProcessor[8080][3] Background thread has been started

HttpProcessor[8080][4] Starting background thread

 100

HttpProcessor[8080][4] Background thread has been started
you can access the ROOT and /examples Web applications at the following URLs,
respectively:

http://localhost:8080/
http://localhost:8080/examples/

This application provides a simple example of embedding Tomcat into a Java application. If
you choose to take this example further, you need to stop Tomcat upon the firing of an event
instead of a simple timer.

Before we close this chapter, we need to discuss two methods in the EmbeddedTomcat
class that we did not reference earlier: registerWar() and unregisterWar().

The registerWar() method is used to deploy a new Web application. It takes two
parameters: the context path of the Web application and the URL of the Web application.
The values should follow the same format as the deploy command, described in Chapter 4
("Using Tomcat's Manager Application"). An example that registers our /apress Web
application is:
registerWar("/apress", "jar:file:D:/chapter2/apress.war!/");

The unregisterWar() method simply removes a web application with a given
contextPath. If we wanted to remove the previously registered /apress context, we
would invoke this method as follows:
unregisterWar("/apress");

Summary
In this chapter, we discussed the steps of embedding Tomcat into a Java application, and
then created our own example application. In the next chapter, we discuss using Tomcat's
JDBC-persistent sessions.

 101

Chapter 7: Persistent Sessions
HTTP Sessions
Before we can start examining HTTP sessions, we must first understand their purpose.
When the HTTP protocol—the transport mechanism of all World Wide Web transactions—
was first introduced, it was intended to be only a simple request/response protocol, and no
state was required to be maintained between autonomous requests. This was fine until the
Web's popularity exploded.

One of the biggest demands as the Web's popularity grew was the ability to maintain—
between requests—a state that is specific to each client. Several solutions to this problem
are currently available: cookies, hidden form fields, and HTTP sessions. In this chapter, we
focus on HTTP sessions, specifically as they relate to Java servlets.

The Servlet Implementation of HTTP Sessions

The Java Servlet SDK implements HTTP sessions using an interface named, appropriately
enough, javax.servlet.http.HttpSession. This interface must be implemented by
the servlet container. The class that implements this interface will use a unique identifier, the
session ID, to look up a user's session information. This identifier is stored in the client's
browser and is part of every HTTP request.

The HttpSession interface defines several methods for accessing a user's session
information. Table 7-1 describes the four most popular of these methods.

Table 7-1: The Four Most Commonly Used Methods of the HttpSession Object

COLUMN DESCRIPTION

getId() The getId() method returns a java.lang.String
representing the unique identifier assigned to this user's
session.

invalidate() The invalidate() method is used to invalidate this user's
session, which will in turn remove all session attributes from
the invalidated session.

setAttribute() The setAttribute() method takes a name/value pair
and binds the object referenced by the value parameter to
this session. The name parameter is used as the key to
access object. If an object is already bound to the name
parameter, the object is replaced with the most recent value.

getAttribute() The getAttribute() method takes a
java.lang.String parameter, name, and returns the
object bound with the specified name in this session, or null
if no object is bound under the name.

getAttributeNames() The getAttributeNames() method returns a
java.util.Enumeration of java.lang.String
objects containing the names of all the objects bound to this
session.

 102

Note

You can find more information regarding the HttpSession interface at
http://www.javasoft.com.

The methods described in Table 7-1 provide the basic functionality to maintain state
information for a particular user. Each of these methods is used in the example found in
Listing 7-1, which is a modified version of the Tomcat example servlet SessionExample. I
removed some functionality to provide a more straightforward example of session
management.

Listing 7-1: SessionServlet.java

package chapter7;

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<body bgcolor=\"white\">");

 out.println("<head>");

 out.println("<title>Session Servlet</title>");

 out.println("</head>");

 out.println("<body>");

 // Get a reference to the HttpSession Object

 HttpSession session = request.getSession();

 // Print the current Session's ID

 out.println("Session ID:" + " " + session.getId());

 103

 out.println("
");

 // Print the current Session's Creation Time

 out.println("Session Created:" + " " +

 new Date(session.getCreationTime()) + "
");

 // Print the current Session's Last Access Time

 out.println("Session Last Accessed" + " " +

 new Date(session.getLastAccessedTime()));

 // Get the name/value pair to be placed in the HttpSession

 String dataName = request.getParameter("name");

 String dataValue = request.getParameter("value");

 if (dataName != null && dataValue != null) {

 // If the Parameter Values are not null

 // then add the name/value pair to the HttpSession

 session.setAttribute(dataName, dataValue);

 }

 out.println("<P>");

 out.println("Sessions Attributes" + "
");

 // Get all of the Attribute Names from the HttpSession

 Enumeration names = session.getAttributeNames();

 while (names.hasMoreElements()) {

 String name = (String) names.nextElement();

 // Get the Attribute Value with the matching name

 String value = session.getAttribute(name).toString();

 // Print the name/value pair

 out.println(name + " = " + value + "
");

 }

 // Create a Form to Add name/value pairs to the HttpSession

 out.println("<P>GET based form:
");

 out.print("<form action=\"");

 104

 out.print(response.encodeURL("chapter7.SessionServlet"));

 out.print("\" ");

 out.println("method=GET>");

 out.println("Session Attribute:");

 out.println("<input type=text size=20 name=name>");

 out.println("
");

 out.println("Session Value:");

 out.println("<input type=text size=20 name=value>");

 out.println("
");

 out.println("<input type=submit>");

 out.println("</form>");

 out.println("</body>");

 out.println("</html>");

 }

 }

This SessionServlet performs some basic, but very useful, session management. Its first
step is to get a reference to the HttpSession object using the following line code:
HttpSession session = request.getSession();

Once the servlet has a reference to the user's session, it prints some basic information about
the session, including the unique ID representing this user's session, the creation time, and
the last access time. It does this in the following code snippet:
// Print the current Session's ID

out.println("Session ID:" + " " + session.getId());

out.println("
");

// Print the current Session's Creation Time

out.println("Session Created:" + " " +

new Date(session.getCreationTime()) + "
");

// Print the current Session's Last Access Time

out.println("Session Last Accessed" + " " +

 new Date(session.getLastAccessedTime()));

The next step is where the meat of the servlet exists. It begins by retrieving the request
parameters name and value. If these parameters exist, it adds them to the user's
HttpSession object using the setAttribute() method as follows:
if (dataName != null && dataValue != null) {

 // If the Parameter Values are not null

 105

 // then add the name/value pair to the HttpSession

 session.setAttribute(dataName, dataValue);

}

After the SessionServlet adds the new object to the session, if the parameters exist, it
then gets a reference to a java.util.Enumeration that contains all of the names bound
to objects in the HttpSession and prints them. This code is contained in this final snippet:
// Get all of the Attribute Names from the HttpSession

while (names.hasMoreElements()) {

 String name = (String) names.nextElement();

 // Get the Attribute Value with the matching name

 String value = session.getAttribute(name).toString();

 // Print the name/value pair

 out.println(name + " = " + value + "
");

}

The final bit of functionality in the SessionServlet creates the form that submits new
name/value pairs. You can just briefly look this code over, as it is relatively simple and does
not warrant a detailed explanation.

To see this servlet in action, build the class file and move it into the
<TOMCAT_HOME>/webapps/apress/WEB-INF/classes/chapter7/ directory. Next,
open your browser to the following URL:

http://localhost:8080/apress/servlet/chapter7.SessionServlet

You should see a page similar to that shown in Figure 7-1. At this point, no session attributes
should be listed.

Figure 7-1: The SessionServlet's output with an empty HTTP session

 106

Now go ahead and enter some attribute/value pairs and click on the Submit button for each.
You will notice with each submission that a new session attribute appears in the list. See
Figure 7-2.

Figure 7-2: The SessionServlet's output after adding objects to the HTTP session

This servlet provides a very simple example of HTTP state management using servlets. If
you would like to learn more about servlet session management, you can find more
information at http://www.javasoft.com.

Configuring Tomcat's Persistent Session Stores
Now that you have a grasp of what HTTP sessions are and how they are used, let's take a
look at session persistence, the action of storing and retrieving HTTP session objects in a
persistent data store such as a database or file system. Session persistence became an
issue when session objects needed to be swapped in and out of memory based upon
activity, load, and during container restarts. There needed to be a way to save and retrieve
the session information when these events occurred.

Tomcat implements session persistence using the org.apache.catalina.Store
interface. Tomcat currently comes bundled with two implementations of the Store interface:
the org.apache.catalina.session.FileStore and
org.apache.catalina.session.JDBCStore. We discuss both of these
implementations in the next two sections.

The FileStore

The FileStore uses a file as the storage mechanism for session data. In this store,
Tomcat reads and writes session information—upon startup and shutdown, respectively—
from the file <TOMCAT_HOME>/work/localhost/applicationname/Sessions.ser.

To enable the FileStore, you must add a persistence manager to the Web application that
is to use the session store. (A persistence manager manages Tomcat's stores.) To add a
FileStore to our apress Web application, we need to add the following entry to the
apress Context element in the <TOMCAT_HOME%/conf/server.xml file.

 107

<Manager className="org.apache.catalina.session.PersistentManager"

 debug="0"

 saveOnRestart="true"

 maxActiveSessions="-1"

 minIdleSwap="-1"

 maxIdleSwap="-1"

 maxIdleBackup="-1">

 <Store className="org.apache.catalina.session.FileStore"/>

</Manager>

Note

If the /apress application was most recently added using the Tomcat
/manager, you need to explicitly add the <Context> element to the
server.xml file.You can find this entry in Chapter 2 ("Deploying Web
Applications to Tomcat").

As you examine this entry, you see several attributes associated with Manager (which are
described in Table 7-2) and a Store sub-element that defines the class that actually
implements the store. These Manager attributes define the behavior of the store that it
contained.

Table 7-2: The Attributes of the <Manager> Element

ATTRIBUTE DESCRIPTION

className The className attribute represents the fully qualified class
name of the persistent Manager.

debug The debug attribute is the debug level to be used by the
Manager.

saveOnRestart The saveOnRestart attribute, if true, signifies that all active
sessions will be saved to the persistent store when Tomcat is
shut down. All sessions found in the store are reloaded upon
startup. All expired sessions are ignored during shutdown and
startup.

maxActiveSessions The maxActiveSessions attribute represents the maximum
number of allowed active sessions. If the number of active
sessions exceeds this value, some of the sessions are
swapped out to the store. We use−1, indicating that unlimited
sessions are allowed.

minIdleSwap The minIdleSwap attribute represents the minimum length of
time, in seconds, that a session can remain idle before it is
swapped out to the persistent store. If minIdleSwap
equals−1, then there is no minimum time limit before a swap
can occur.

maxIdleBackup The maxIdleBackup attribute represents the length in time, in
seconds, that a session can remain idle before it is backed up
to the persistent store. When a session is backed up, it

 108

Table 7-2: The Attributes of the <Manager> Element

ATTRIBUTE DESCRIPTION
remains active as opposed to being swapped out, in which it is
removed from the collection of active sessions. If the
maxIdleBackup attribute is set to−1, no sessions are backed
up.

To see the effects of this change, you need to restart Tomcat and then use the
SessionServlet as described in the previous section. After you have added a few
attributes to the HttpSession, shut Tomcat down and look in the
<TOMCAT_HOME>/work/localhost/applicationname/ directory. You should see a file
named Sessions.ser.

The JDBCStore

The JDBCStore acts much the same as the FileStore does, with the only difference
being the storage location of the session information. In this store, Tomcat reads and writes
session information from the database defined in the Store sub-element.

Creating the Sessions Database

Before you begin configuring Tomcat to use a JDBC persistent session, you must first create
a database to hold your collection of session objects. For this example, we'll create a
MySQL database.

Note

Tomcat stores HTTP session objects as binary large objects (BLOBs),
which Microsoft Access does not support. For this reason, we cannot use a
Microsoft Access database in this example.

Our database, named tomcatsessions, is going to contain a single table named
sessions. Tomcat will use this table to persist HTTP session objects. Table 7-3 contains
the description of the sessions table.

Table 7-3: The sessions Table Definition

COLUMN DESCRIPTION

id The id column contains a string representation of the unique session
ID. The id has a type of varchar(100).

valid The valid column contains a single character that represents whether
the session is valid or invalid. The valid column has a type of
char(1).

maxinactive The maxinactive column contains an integer representing the length
of time that a session can remain inactive before becoming invalid. The
maxinactive column has a type of int.

lastaccess The lastaccess column contains an integer that represents the
length of time since the session was last accessed. The lastaccess

 109

Table 7-3: The sessions Table Definition

COLUMN DESCRIPTION
column has a type of bigint.

data The data column contains the serialized representation of the HTTP
session. The data column has a type of mediumblob.

Before you can create the Sessions database in MySQL, you will need to have downloaded
and installed the MySQL server, which can be found at http://www.mysql.com. You should
also download the latest JDBC driver for MySQL, which can be found at the previously
mentioned web site.

After you have MySQL installed, you need to complete the following steps to create and
configure a MySQL Sessions database:

1. Start the mysql client found in the <MYSQL_HOME>/bin/ directory.
2. Create the sessions database, which will be explicitly named tomcatsessions, by

executing the following command:
3. create database tomcatsessions;
4. Make sure that you are modifying the correct database using the following command:
5. use tomcatsessions;
6. Create the sessions table using the following command:
7. create table sessions

8. (

9. id varchar(100) not null primary key,

10. valid char(1) not null,

11. maxinactive int not null,

12. lastaccess bigint,

13. data mediumblob

14.);

Note

You can execute steps 2 through 4 in a single statement, using the
createtomcatsessions.sql script that is packaged with this text's
source code.

You now have a MySQL database that can be used as a container for HTTP sessions
objects.

Configuring Tomcat to Use a JDBCStore

To enable the JDBCStore for use in our apress Web application, you need to add the
following entry to the apress Context element in the
<TOMCAT_HOME%/conf/server.xml file.

Note

If you made the previous changes using the FileStore, you need to
replace the Manager element with the one described in this section.

<Manager className="org.apache.catalina.session.PersistentManager"

 debug="99"

 110

 saveOnRestart="true"

 maxActiveSessions="-1"

 minIdleSwap="-1"

 maxIdleBackup="-1">

 <Store className="org.apache.catalina.session.JDBCStore"

 driverName="org.gjt.mm.mysql.Driver"

connectionURL="jdbc:mysql://localhost/tomcatsessions?user=username;

password=password"

 sessionTable="sessions"

 sessionIdCol="id"

 sessionDataCol="data"

 sessionValidCol="valid"

 sessionMaxInactiveCol="maxinactive"

 sessionLastAccessedCol="lastaccess"

 checkInterval="60"

 debug="99"/>

</Manager>

Note

Make sure that the JAR file containing the JDBC driver referenced by the
driverName attribute is placed in Tomcat's CLASSPATH. If you are using
the JDBC-ODBC bridge, the driver will already be in Tomcat's CLASSPATH.

This new <Store> entry defines a JDBC persistent store that leverages a database as its
container of sessions. Table 7-4 describes the attributes that are used in the <Store>
element and some additional optional attributes as well.

Table 7-4: The <Store> Element Attributes

ATTRIBUTE DESCRIPTION

className The className attribute represents the fully qualified
class name of the Store implementation.

driverName The driverName attribute represents the name of the
driver used to connect to the database containing the
sessions.

connectionURL The connectionURL attribute represents the URL that
references the database containing the sessions.

sessionTable The sessionTable attribute represents the database
table containing the HTTP session information.

sessionIdCol The sessionIdCol attribute represents the column in
the sessions table that references the unique HTTP
session ID.

sessionDataCol The sessionDataCol attribute represents the column in

 111

Table 7-4: The <Store> Element Attributes

ATTRIBUTE DESCRIPTION
the sessions table that references the serialized HTTP
session object.

sessionValidCol The sessionValidCol attribute represents the column
in the sessions table that signifies whether the session
is valid or not.

sessionMaxInactiveCol The sessionMaxInactiveCol attribute represents the
column in the sessions table that contains an integer
representing the length of time that a session can remain
inactive before becoming invalid.

sessionLastAccessCol The sessionLastAccessCol attribute represents the
column in the sessions table that contains the last time
the session was accessed.

checkInterval The checkInterval attribute represents the time in
seconds in which Tomcat will check for and remove
invalid sessions. If this interval is too short, Tomcat's
performance can decrease significantly.

debug The debug attribute represents the debug level for this
JDBC store. The possible range is 0 to 99. The lowest
value (0) means that no debug information is logged. You
will probably want to set this value to 0 in a production
environment.

Again, to see the effects of this change, you need to restart Tomcat and use the
SessionServlet. After you have added a few attributes to the HttpSession, start the
MySQL client as described in the "Creating the Sessions Database" section and enter the
following two commands:
use tomcatsessions;

select id from sessions;

You should see a list of all the session identifiers currently in the store. That is all there is to
it. Your session object will now be stored and retrieved, based upon the <Manager>
settings, from the tomcatsessions database.

Summary
In this chapter, we discussed HTTP sessions and how they are used. After we had an
understanding of HTTP sessions, we discussed how Tomcat could be configured to persist
HTTP session objects to a database. In the next chapter, we cover Tomcat valves and
servlet filters.

 112

Chapter 8: Valves and Servlet Filters
What is a Tomcat Valve?
A Tomcat valve—a new technology introduced with Tomcat 4—allows you to associate an
instance of a Java class with a particular Catalina container. This configuration allows the
named class to act as a preprocessor of each request. These classes are called valves, and
they must implement the org.apache.catalina.Valve interface or extend the
org.apache.catalina.valves.ValveBase class. Valves are proprietary to Tomcat
and cannot, at this time, be used in a different servlet/JSP container.

Table 8-1 lists the Catalina containers that can host a Tomcat valve and the associated
effect of this hosting.

Table 8-1: The Containers That Can Host a Tomcat Valve

DIRECTORY DESCRIPTION

Engine A valve contained by a Catalina engine preprocesses all requests
received by any Connector associated with the engine it is nested in.

Host A valve contained by a Catalina host preprocesses all requests targeted
to a particular virtual host.

Context A valve contained by a particular Catalina context preprocesses all
requests referencing the named context.

Note

The available Catalina containers are described in Chapter 1.

At this writing, Tomcat comes configured with four valves:

� Access Log
� Remote Address Filter
� Remote Host Filter
� Request Dumper

Each of these valves (and their available attributes) are described in the following sections.

Note

All Tomcat valves use the className attribute to denote the fully qualified
class name of the object that implements the
org.apache.catalina.Valve interface.

The Access Log Valve

The first of the Tomcat prepackaged valves is the Access Log valve:
org.apache.catalina.valves.AccessLogValve. It creates log files to track client
access information. Some of the content that it tracks includes page hit counts, user session
activity, user authentication information, and much more. The Access Log valve can be
associated with an engine, host, or context container. The Access Log valve leverages the
attributes described in Table 8-2.

 113

Table 8-2: The Access Log Valve Attributes

ATTRIBUTE DESCRIPTION

directory The directory attribute references the relative or absolute
pathname of the directory into which log files will be created. If an
absolute path is not specified, the path is interpreted as relative to
<CATALINA_HOME>. If no directory is specified, the default value is
logs, which creates the log files in the logs directory relative to
<CATALINA_HOME>.

pattern The pattern attribute defines a formatting layout that identifies the
various information fields that will be logged from the request and
response. (Table 8-3 contains the possible pattern values.)

prefix The prefix attribute names the text that will be prepended to the
front of each log file name. If not specified, the default value is
"access_log."

resolveHosts The resolveHosts attribute determines if the IP address of the
remote client should be resolved to its corresponding host name. If
not specified, the default value is false, indicating that remote host
resolution will not take place. You should consider setting this value to
false in a production environment to improve Tomcat performance.

suffix The suffix attribute names the text that will be appended to the end
of each log file name. If a value is not specified, no suffix is appended
to the file name.

timestamp The timestamp attribute, if set to true, states that log messages
will be date/time stamped. The default value is false (log messages
will not be date/time stamped). You should consider setting this value
to false in a production environment to improve Tomcat
performance.

The following code snippet is an example entry using the
org.apache.catalina.valves.AccessLogValve:
<Valve className="org.apache.catalina.valves.AccessLogValve"

 directory="logs" prefix="localhost_access_log." suffix=".txt"

 pattern="common"/>

This code snippet states that the log files will be placed in the <CATALINA_HOME>/logs
directory, prepended with the value localhost_access_log., and appended with the
.txt suffix.

Table 8-3: The Available pattern Attribute Values

PATTERN
ATTRIBUTE DESCRIPTION

%a The remote IP address

 114

Table 8-3: The Available pattern Attribute Values

PATTERN
ATTRIBUTE DESCRIPTION

%A The local IP address

%b The number of bytes sent, excluding HTTP headers, or ‘-’ if zero

%B The number of bytes sent, excluding HTTP headers

%h The remote host name, or the IP address if resolveHosts is
false

%H The request protocol

%l The remote logical username from identd, which seems to
always return -

%m The request method (that is, GET, POST, and so on)

%p The local port on which this request was received

%q The query string prepended with a ?

%r The first line of the request method and request URI

%s The HTTP status code of the response sent to the client

%t The date and time of the request and response

%u The authenticated remote user, if any; otherwise - is logged

%U The requested URL path

&v The name of the local server

If you specify a pattern of common or do not specify a pattern at all, the common pattern %h
%l %u %t "%r" %s %b is used.

The Remote Address Filter

The Remote Address filter, org.apache.catalina.valves.RemoteAddrValve, allows
you to compare the IP address of the requesting client against one or more regular
expressions to either allow or prevent the request from continuing based on the results of
this comparison. A Remote Address filter can be associated with a Tomcat Engine, Host, or
Context container. The Remote Address filter supports additional attributes, as listed in
Table 8-4.

Table 8-4: The Remote Address Filter Valve Attributes

ATTRIBUTE DESCRIPTION

allow The allow attribute takes a comma-delimited list of regular expressions
used to compare the remote IP address of the client. If this attribute is
included, the remote address of the client must match at least one of the
patterns to be allowed access. If this attribute is not specified, all requests

 115

Table 8-4: The Remote Address Filter Valve Attributes

ATTRIBUTE DESCRIPTION
are allowed, unless the remote address matches a deny pattern.

deny The deny attribute acts as the inverse of the allow attribute: it denies
access based upon a matched pattern of remote IP addresses.

The following code snippet is an example entry using the
org.apache.catalina.valves.RemoteAddrValve.
<Valve className="org.apache.catalina.valves.RemoteAddrValve"

 deny="127.*"/>

This valve entry denies access to the assigned container for all client IP addresses that
begin with 127. If I assign this valve entry to the host container localhost, then all clients
with an IP address beginning with 127 will see a screen similar to that shown in Figure 8-1
when trying to access the localhost.

Figure 8-1: The Deny response from the RemoteAddrValve

The Remote Host Filter

The Remote Host filter—org.apache.catalina.valves.RemoteHostValve—is much
like the RemoteAddrValve, except it allows you to compare the remote host address of the
client that submitted this request instead of the fixed IP address. A Remote Host filter can be
associated with a Tomcat Engine, Host, or Context container. The Remote Address Host
supports the following additional attributes described in Table 8-5.

Table 8-5: The Remote Host Filter Valve Attributes

ATTRIBUTE DESCRIPTION

allow The allow attribute takes a comma-delimited list of regular expressions

 116

Table 8-5: The Remote Host Filter Valve Attributes

ATTRIBUTE DESCRIPTION
used to compare the remote hostname of the client. If this attribute is
included, the remote address of the client must match at least one of the
patterns to be allowed access. If this attribute is not specified, all requests
are allowed unless the remote address matches a deny pattern.

deny The deny attribute acts as the inverse of the allow attribute: it denies
access based upon a matched pattern of remote hostnames.

An example entry using the org.apache.catalina.valves.RemoteHostValve can be
found in the following code snippet.
<Valve className="org.apache.catalina.valves.RemoteHostValve"

 deny="virtuas*"/>

This valve entry denies access to the assigned container for all client hostnames including
virtuas. If I assign this valve entry to the host container localhost, then all clients
beginning with virtuas will see a screen similar to that shown Figure 8-1 when trying to
access the localhost.

The Request Dumper Valve

The Request Dumper valve—
org.apache.catalina.valves.RequestDumperValve—is a debugging tool that
allows you to dump the HTTP headers associated with the specified request and response
to the logger that is associated with our corresponding container. This valve is especially
useful when you are trying to resolve any problems associated with headers or cookies sent
by an HTTP client. A Request Dumper filter can be associated with an Engine, Host, or
Context container. The Request Dumper filter supports no additional attributes. An example
entry using the org.apache.catalina.valve.RequestDumperValve can be found in
the following code snippet:
<Valve className="org.apache.catalina.valves.RequestDumperValve"/>

To use the RequestDumperValve, you simply need to add this entry to the Tomcat
container that you would like to monitor. To see this valve in action, open the current
<TOMCAT_HOME>/conf/server.xml, uncomment the previously listed line found in the
Standalone engine, and restart Tomcat. Now make a request to any of the applications
found at http://localhost:8080. After the request has been processed, open the latest
<TOMCAT_HOME>/logs/catalina_log file. You should see several entries made by the
RequestDumperValve. These entries describe the contents of the most recent request.

Note

Do not leave this Valve enabled when in a production system. The amount
of file IO produced by this Valve will slow Tomcat's response time
considerably.

What is a Servlet Filter?
Filters are a new feature introduced by the Java servlet specification version 2.3. They
provide the necessary functionality to examine and transform the header information of both
the request and response objects of a servlet container. Filters do not actually create the

 117

request and response object; they just modify them. Some characteristics of servlet filters
are:

� Servlet filters can examine and modify both the ServletRequest and
ServletResponse objects.

� Servlet filters are mapped to particular URL patterns of a web application and won't be
executed unless the URL mapping they are deployed to is requested.

� Servlet filters are part of the Java servlet specification version 2.3. Therefore, they are
portable to all 2.3-compliant servlet containers.

� Autonomous servlet filters can be chained together to create a pipeline-type effect for
modifying request and response objects.

To create your own servlet filter, you must create a class that implements the
javax.servlet.Filter interface. Your filter class must also include a "no argument"
public constructor. An example filter is shown in Listing 8-1.

Listing 8-1: ExampleFilter.java

package chapter8;

import java.io.IOException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

public final class ExampleFilter implements Filter {

 public void init(FilterConfig config)

 throws javax.servlet.ServletException {

 System.err.println("---->ExampleFilter: INSIDE INIT<----");

 }

 public void destroy() {

 System.err.println("---->ExampleFilter: INSIDE DESTROY<----");

 }

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws java.io.IOException, javax.servlet.ServletException {

 118

 System.err.println("---->ExampleFilter: Before doFilter()<----
");

 request.setAttribute("logo",

 new String("/apress/images/monitor2.gif"));

 chain.doFilter(request, response);

 System.err.println("---->ExampleFilter: After doFilter()<----");

 }

}

As you examine ExampleFilter, you'll notice three distinct methods: in it(),
destroy(), and doFilter(). Each of these methods is defined by the
javax.servlet.Filter interface and must be implemented by all servlet filter classes.
These three methods form the lifecycle of methods of all servlet filters.

Note

The filter lifecycle methods have been named with the intention of having a
similar nomenclature as the servlet lifecycle methods.

The first of these methods, init(), is executed once for every instance of the servlet filter.
It is much like the init() method defined by a servlet in that it should allocate all of the
resources that will be used over the life of the filter. It takes a single parameter with a type of
javax.servlet.FilterConfig, which provides access to initialization parameters and
the javax.servlet.ServletConfig object.

Note

Filter initialization parameters are configured in the deployment descriptor,
web.xml file, of the Web application hosting the servlet filter.

Our init() method simply writes a simple text message to the error stream, allowing us to
watch the life of the filter in the console from which Tomcat was executed.

The next method implemented by ExampleFilter is the destroy() method. This is
where the life of the filter ends and all of its allocated resources must be reclaimed. In
ExampleFilter, we are again simply printing some text to the error stream, allowing us to
monitor the end of the filter's life.

The final method implemented by ExampleFilter is the doFilter() method. This
method is executed with every request matching the URL pattern that it is deployed to. It is
synonymous with the service() method of a Java servlet. The doFilter() method
accepts three parameters: a javax.servlet.ServletRequest, a
javax.servlet.ServletResponse, and a javax.servlet.FilterChain. The
ServletRequest and ServletResponse objects are the objects that are actually being
manipulated by the servlet filter, and the FilterChain object allows the filter to pass
control of the request and response on to the next filter (if one exists).

 119

In our doFilter() method, we are again printing some text to the error stream allowing us
to monitor the processing of requests mapped to this filter. We then modify the request by
adding an attribute named logo to the ServletRequest object. This attribute is the key of
a string that represents the image to include on our login.jsp screen. We then pass
control of the current request to the next filter in the chain (if there is one) by calling the
FilterChain.doFilter() method. (We discuss chaining filters in a later section.) After
all processing is complete, the processing is returned to this filter and then sent back to the
client. This functionality it shown by the final action of the Example.doFilter() method,
which is to print a message to the standard error stream showing that control has returned to
this filter.

Deploying a Servlet Filter

To deploy ExampleFilter, we need to add two entries to the apress web.xml file. Our
modified web.xml file can be found in Listing 8-2.

Listing 8-2: The Modified web.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

 <filter>

 <filter-name>Filter 1</filter-name>

 <filter-class>chapter8.ExampleFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Filter 1</filter-name>

 <url-pattern>*.jsp</url-pattern>

 </filter-mapping>

 <servlet>

 <servlet-name>login</servlet-name>

 <servlet-class>chapter2.login</servlet-class>

 </servlet>

 <taglib>

 <taglib-uri>/apress</taglib-uri>

 <taglib-location>/WEB-INF/lib/taglib.tld</taglib-location>

 120

 </taglib>

 <!-- Define a Security Constraint on this Application -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Apress Application</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>apressuser</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Define the Login Configuration for this Application -->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Apress Application</realm-name>

 </login-config>

</web-app>

The first of these entries, the <filter> element, defines the servlet filter itself using the
sub-elements described in Table 8-6.

Table 8-6: The <filter> Sub-Elements

SUB-
ELEMENT DESCRIPTION

<filter-
name>

This is the string that is used to uniquely identify the servlet filter. It is
used in the <filter-mapping> sub-element to identify the filter to be
executed, when a defined URL pattern is requested.

<filter-
class>

This sub-element names the fully qualified filter class to be executed
when the string defined in the <filter-name> sub-element is
referenced in the <filter-mapping> element.

Note

Filter definitions must be defined prior to any servlet definitions in the
web.xml file.

The second of these two entries, the <filter-mapping> element, describes the servlet
filter to execute and the URL pattern that must be requested to execute the filter. The sub-
elements of this element are described in Table 8-7.

 121

Table 8-7: The <filter-mapping> Sub-Elements

SUB-
ELEMENT

DESCRIPTION

<filter-
name>

This string names the servlet filter to execute when the defined URL
pattern is requested.

<url-
pattern>

This sub-element defines the URL pattern that must be requested to
execute the named servlet filter. In this example, we are using the value
*.jsp; therefore, all JSP requests will be processed by this filter.

Note

Make sure that the <filter-name> sub-element matches in both the
<filter> and <filter-mapping> elements. This is the link between
these two elements.

To see ExampleFilter in action, you need to complete the following steps:
1. Build the chapter8.ExampleFilter class.
2. Copy the compiled class file into the <TOMCAT_HOME>/webapps/apress/WEB-

INF/classes/chapter8/ directory.
3. Modify the apress web.xml file according to the changes found in Listing 8-2,

making sure that the elements are added in the order of their appearance.
4. Change the login.jsp file to get the image location from the request attribute

logo, as shown in Listing 8-3.
5. Restart the Tomcat Server.

Listing 8-3: The Modifed login.jsp

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

<body bgcolor="#FFFFFF"
onLoad="document.loginForm.username.focus()">

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 <img src="<%=request.getAttribute("logo") %>"></td>

 </tr>

 <tr>

 122

 <td> </td>

 </tr>

 </table>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <form name="loginForm" method="post"
action="servlet/chapter2.login">

 <tr>

 <td width="401"><div align="right">User Name: </div></td>

 <td width="399"><input type="text" name="username"></td>

 </tr>

 <tr>

 <td width="401"><div align="right">Password: </div></td>

 <td width="399"><input type="password"
name="password"></td>

 </tr>

 <tr>

 <td width="401"> </td>

 <td width="399">
<input type="Submit"
name="Submit"></td>

 </tr>

 </form>

 </table>

 </td>

 </tr>

 </table>

</body>

</html>

As the Tomcat server starts, watch the output of the console. You should see the standard
error statements from the init() method. Now open you browser to the following URL:

http://localhost:8080/apress/login.jsp

If everything was changed correctly, you should see an image similar to that shown in Figure
8-2.

 123

Figure 8-2: The apress login.jsp with image from chapter8.ExampleFilter

Now go back and examine the console window again. You should see an image similar to
Figure 8-3 with the standard error statements from the doFilter() method.

Figure 8-3: The standard error output from doFilter()

Although this filter was very simple, you could use a similar filter to look up a user profile and
assign the logo value based on the profile values. This would give an application some
simple personalization functionality.

Chaining Servlet Filters

Now that you have seen a filter change the incoming request, let's take a look at chaining a
filter that will change the response object sent back to the client. The source code for the
filter that we will chain is shown in Listing 8-4.

Listing 8-4: ExampleFilter2.java

package chapter8;

import javax.servlet.Filter;

import javax.servlet.ServletRequest;

 124

import javax.servlet.ServletResponse;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import java.io.PrintWriter;

public class ExampleFilter2 implements Filter {

 public ExampleFilter2() {

 }

 public void init(FilterConfig config)

 throws javax.servlet.ServletException {

 System.err.println("---->ExampleFilter2: INSIDE INIT<----");

 }

 public void destroy() {

 System.err.println("---->ExampleFilter2: INSIDE DESTROY<----");

 }

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws java.io.IOException, javax.servlet.ServletException {

 System.err.println("---->ExampleFilter2: Before doFilter()<----
");

 chain.doFilter(request, response);

 System.err.println("---->ExampleFilter2: After doFilter()<----");

 PrintWriter out = response.getWriter();

 out.write("\n<!--Created by the Apress Application -->\n");

 }

}

As you examine the source code for ExampleFilter2, you'll notice that it contains very
few changes. The first changes exist in the messages written to standard error. These

 125

changes simply add the number 2 to the standard messages, signifying the source of the
statements.

The major change exists in the doFilter() method. In this method, we have added two
lines, the first of which gets a reference to the PrintWriter contained in the
ServletRequest. This PrintWriter contains the stream that will be written to the client's
browser. Once we have this reference, we simply write an HTML comment string using the
following line of code:
out.write("\n<!-- Created by the Apress Application -->\n");

The most important thing to note about this additional code is where the new statements
exist: they are executed after the chain.doFilter() method is returned. This means that
the login.jsp will have completed its execution, but the response will not go to the client
browser until this filter has processed it. This makes it possible to add the comment to the
bottom of the JSP output.

Deploying a Filter Chain

The steps involved in deploying a filter chain are much like deploying a single filter, with the
exception of the following two rules:

� The <url-pattern> must match for all filters in the chain.
� The order in which the <filter-mapping> elements are defined determines the

order in which they exist in the chain.

Listing 8-5 contains the modified web.xml with the appropriate changes to configure our
filter chain.

Listing 8-5: The Modified web.xml Including a Filter Chain

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'

 'http://java.sun.com/j2ee/dtds/web-app_2_3.dtd'>

<web-app>

 <filter>

 <filter-name>Filter 1</filter-name>

 <filter-class>chapter8.ExampleFilter</filter-class>

 </filter>

 <filter>

 <filter-name>Filter 2</filter-name>

 <filter-class>chapter8.ExampleFilter2</filter-class>

</filter>

 126

<filter-mapping>

 <filter-name>Filter 1</filter-name>

 <url-pattern>*.jsp</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>Filter 2</filter-name>

 <url-pattern>*.jsp</url-pattern>

</filter-mapping>

<servlet>

 <servlet-name>login</servlet-name>

 <servlet-class>chapter2.login</servlet-class>

</servlet>

<taglib>

 <taglib-uri>/apress</taglib-uri>

 <taglib-location>/WEB-INF/lib/taglib.tld</taglib-location>

</taglib>

<!-- Define a Security Constraint on this Application -->

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Apress Application</web-resource-name>

 <url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

 <role-name>apressuser</role-name>

</auth-constraint>

 </security-constraint>

<!-- Define the Login Configuration for this Application -->

 <login-config>

<auth-method>BASIC</auth-method>

<realm-name>Apress Application</realm-name>

 </login-config>

</web-app>

 127

As you can see by examining Listing 8-5, we have added a second filter definition that
satisfies the previous two rules. It does this by defining the same <url-pattern> as the
first filter and by defining a <filter-mapping> definition that follows the first filter's
<filter-mapping> definition, which makes it second in the chain.

To complete the deployment of this filter chain, follow the deployment steps defined in the
previous section ("Deploying a Servlet Filter"), substituting ExampleFilter2 where
appropriate. As the Tomcat server restarts, watch the output of the console. You should see
the standard error statements from the init() methods of both the ExampleFilter and
the ExampleFilter2. Now open your browser to the following URL:

http://localhost:8080/apress/login.jsp

If everything was changed correctly, your browser should display an image similar to the one
shown in Figure 8-1. To see the change to the HTML source sent to the client, select the
view source option for your particular browser and scroll to the bottom of the page. The
following HTML comment should be listed on the very last line:
<!-- Created by the Apress Application -->

You should also examine the console output to confirm the order in which each filter is
processed. That is all there is to it. Now this text will be added to every JSP request that
exists in the /apress web application.

Summary
In this chapter, we discussed using both Tomcat valves and servlet filters. We described the
valves included with Tomcat. We briefly introduced servlet filters and how they are deployed,
and we also discussed how filters can be chained together. If you would like to learn more
about servlet filters, you should take a look at the Java servlet specification version 2.3,
which can be found at http://www.javasoft.com. In the next chapter, we cover integrating
Tomcat and the Apache Web server.

 128

Chapter 9: Integrating the Apache HTTP Server
What is the Apache Web Server?
The Apache Web Server Project is a collaborative open source development effort with the
explicit goal of creating a commercial-quality HTTP server. The original code was based
upon the httpd 1.3 product developed by Rob McCool at the National Center for
Supercomputing Applications (NCSA). The project began in February 1995 and was made
publicly available in April 1995, with a 0.6.2 release.

The Apache server is a jointly supervised product, managed by a group of volunteers known
as the Apache Group. This group is located around the world, using the Internet to
correspond, plan, design, and develop the application. The Apache Group is also
augmented by the open source community, which has contributed invaluable time and effort
to the server's development. To complete the steps in this chapter, you need to download
the Apache Web server, version 1.3x, from the following URL:

http://httpd.apache.org/dist/httpd/

Make sure you have the appropriate version for your operating system and then proceed
with the installation, following the packaged instruction set. After you have completed the
installation, make sure the Apache server is started and open your browser to the following
URL:

http://localhost/

You should see the Apache Web server's test page, as shown in Figure 9-1.

Figure 9-1: The test page for the Apache installation

Integrating Tomcat and the Apache Web Server
Tomcat uses an interface, called org.apache.catalina.Connector, to receive
requests and return responses to a client application. This interface is extended to provide
specialized connector classes that can receive requests and return responses to particular
clients. Two connectors are packaged with Tomcat. The first, the HTTP connector, services

 129

basic HTTP requests. The second, the Warp connector, handles requests from other
alternate clients. We'll use the Warp Connector to integrate to the Apache Web server. The
implementation of this specialized class can be found in
org.apache.catalina.connector.warp.WarpConnector.

Before we can begin to use the Warp connector, we need the Apache Web server
component that talks to it. This component is implemented in an Apache module called the
Web Application Module, and you can find it at:

http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/

Find the latest release of Tomcat and choose the /bin directory. You should see a list of
Web application modules. Select the module that matches your release of Tomcat and
download the archive. Once you have the appropriate release, extract the archive to your
local disk. You should have a directory containing a file named mod_webapp.so and, if you
are installing on any Windows OS, a file named libapr.dll.

Note

As of this writing, the Windows binary is still at beta 7. You can find this
binary at http://www.apache.org/dist/jakarta/jakarta-tomcat-4.0/release/v4.0-
b7/bin/.

Now that we have all of the necessary components, we can begin our integration of Tomcat
and the Apache Web server. The first step is to copy the mod_webapp.so file, found in the
Web Application Module archive, into the Apache /libexec if installing to Linux, or the
Apache /modules directory if you are performing a Windows installation. These directories
are listed in Table 9-1.

Table 9-1: The Apache Modules Directories

OPERATING SYSTEM DIRECTORY

Linux <APACHE_HOME>/libexec

Windows NT/2000 <APACHE_HOME>/modules

If you are using Apache 1.3 for Windows, copy the libapr.dll file (which is also found in
the Web Application Module archive) to the <APACHE_HOME>/modules/ directory. If you
do not perform this step, the Apache server will not start, reporting that the Web application
module cannot be loaded.

Once you have copied the appropriate files to the appropriate locations, edit the Apache
httpd.conf file, found in the <APACHE_HOME>/conf/ directory, by adding the following
lines for a Linux installation:
LoadModule webapp_module libexec/mod_webapp.so

AddModule mod_webapp.c

or the following lines if you are installing to Windows:
LoadModule webapp_module modules/mod_webapp.so

AddModule mod_webapp.c

Note

A logical place for these two entries is at the end of all of the commented-
out LoadModule directives and at the end of all of the commented-out

 130

AddModule directives, respectively.

Now it's time to add the proper entries to publish your Web application connections and
context paths to Apache. To do this, for the /examples Web application, add the following
lines to the end of the <APACHE_HOME>/conf/httpd.conf file:
WebAppConnection conn warp localhost:8008

WebAppDeploy examples conn /examples

The first line of this entry adds a Warp connection to a Tomcat server running on the
localhost and listening to port 8008, for all incoming requests. The format of this entry
is:
WebAppConnection connectionname provider host:port

The attributes of this entry are described in Table 9-2.

Table 9-2: The Attributes of the WebAppConnection Entry

COMPONENT DESCRIPTION

connectionname Represents the unique name for the connection to be created
between Apache and Tomcat

provider Represents the name of the provider used to connect to the servlet
container. The Warp connector is currently the only provider
available.

host:port Identifies the host name and port number to which the Warp
connection will try to connect. The host part of this entry must
match the name of the server where Tomcat is running, and the
port must match the port attribute of the Warp connector defined
in the server.xml file. We define the Warp connector later in this
chapter.

The second line of this entry defines a Web application that is associated with the previously
defined connection. In this entry, we are defining the Web application named examples that
is associated with the connection conn and has a context path of /examples. The format of
this entry is as follows:
WebAppDeploy applicationname connectionname path

The attributes of this entry are described in Table 9-3.

Table 9-3: The Attributes of the WebAppDeploy Entry

COMPONENT DESCRIPTION

applicationname The name of a Web application that is present in the Tomcat
webapps directory

connectionname Names the connection of a previously declared
WebAppConnection

 131

Table 9-3: The Attributes of the WebAppDeploy Entry

COMPONENT DESCRIPTION

path Names the path element of the URL where this application will be
deployed

The next step in this process is to define a new Tomcat service to handle Apache Web
server requests. To do this, we need to add the following code snippet to the top-level
<Server> element of the <TOMCAT_HOME>conf/server.xml file. If this element already
exists, you can skip this step.
<!-- Define an Apache-Connector Service -->

<Service name="Tomcat-Apache">

 <Connector
className="org.apache.catalina.connector.warp.WarpConnector"

 port="8008" minProcessors="5" maxProcessors="75"

 enableLookups="true"

 acceptCount="10" debug="0"/>

 <!-- Replace "localhost" with what your Apache "ServerName" is set
to -->

 <Engine className="org.apache.catalina.connector.warp.WarpEngine"

 name="Apache" debug="0" appBase="webapps">

 <!-- Global logger unless overridden at lower levels -->

 <Logger className="org.apache.catalina.logger.FileLogger"

 prefix="apache_log." suffix=".txt"

 timestamp="true"/>

 <!-- Because this Realm is here, an instance will be shared
globally -->

 <Realm className="org.apache.catalina.realm.MemoryRealm" />

 </Engine>

</Service>

This entry defines a new service that will handle all requests from the Apache Web server.
This service contains some default elements, but the significant items to note are the
className and port attributes of the <Connector> element. These elements state that
this service uses a Warp connector and that this connector listens to port 8008.

Note

If you want the Apache Web server to handle all HTTP requests for your
Web applications, you may consider removing the default <Service> entry

 132

in the server.xml file. The default entry contains an HTTP connector that
continues to service HTTP requests on port 8080 or 80 depending upon
your initial installation.

At this point, you have installed all of the appropriate Warp components, defined a Warp
connection, and associated a Web application to the defined Warp connection. The next
step is to test this integration. Start Tomcat, and then start the Apache Web server. Now
open your browser to the following URL:

http://localhost/examples/

Note

If Apache does not start, try commenting out the AddModule directive that
was added to the <APACHE_HOME>/conf/httpd.conf file. This is
probably an issue only with the beta being used at the time of this writing
and will most likely be resolved with the 4.0 release of Tomcat.

You should see a page similar to that shown in Figure 9-2.

Figure 9-2: The directory listing for the examples Web application

Note

Make sure that your URL does not reference port 8080 and that it does
include the trailing slash /. The Apache Web server uses the default HTTP
port of 80, and the trailing slash must be included, because there are no
files in the root directory of the examples Web application.

That's about it. You should now be able to browse around in the examples Web application,
without any trouble. If you want to add the apress Web application, add the following line
after the examples WebAppDeploy entry in the <APACHE_HOME>/conf/httpd.conf
file:
WebAppDeploy apress conn /apress

Summary
In this chapter, we discussed the Apache Web server. We described each of the steps
involved when integrating the Apache server with the Tomcat container. We then completed

 133

the chapter by describing the steps required when adding Web applications to the
Apache/Tomcat integration. In the next chapter, we discuss how the Apache Jakarta Struts
project can be integrated into Tomcat.

 134

Chapter 10: Integrating the Jakarta-Struts
Project
The Jakarta-Struts Project
The Jakarta-Struts Project (Struts) is an open source project sponsored by the Apache
Software Foundation. It is a server-side, Java model-view-controller (MVC) framework that
Craig McClanahan created sometime in May of 2000. The Struts project was fashioned with
the intent of providing an open source framework for creating Web applications that would
leverage both the Java servlets and JavaServer pages technologies. Since its inception,
Struts has received quite a bit of developer support and is quickly becoming a dominant
player in the open source community.

Understanding the MVC Design Pattern

As stated earlier, the Struts framework is based on the MVC (Model 2) design pattern, which
originated from Smalltalk and was used to design graphical user interfaces. MVC
applications comprise three classes: model, view, and controller. Each is defined in Table
10-1.

Table 10-1: The Three Components of the MVC Model

COMPONENT DESCRIPTION

Model The model component represents the data objects. The model is what is
being manipulated and presented to the user.

View The view component is the screen representation of the model. It is the
object that presents the current state of the data objects.

Controller The controller component defines the way that the user interface reacts
to the user's input. The controller component is the object that
manipulates the model or data object.

The major advantage of using the MVC design pattern is that it separates the view and the
model, making it possible to separate presentation from business logic, which in turn allows
you to create or change the view without having to change model or controller functionality.

The Struts Implementation of the MVC

The Struts framework implements a server-side implementation of the MVC pattern via a
combination of JSPs, custom JSP tags, and Java servlets. In this section, we briefly discuss
how the Struts framework maps to each component of the MVC. When we have completed
this discussion, we will have drawn a picture similar to Figure 10-1.

 135

Figure 10-1: The Struts framework maps well to the MVC model.

The Model

The Struts framework is not packaged with model components. The model components are
defined as custom application business logic and are created by the implementer of a Struts
solution.

The View

The view components of the Struts framework include a JSP for each view and any
combination of Struts custom tags. An example Struts view can be found in the following
code snippet:
<%@page language="java">

<%@taglib uri="/WEB-INF/struts-html.tld" prefix="html">

<html:form action="loginAction.do"

 name="loginForm"

 type="chapter10.loginForm" >

 User Id: <html:text property="username">

 Password: <html:password property="password">

 <html:submit />

</html:form>

We will build a working Struts view in the example application discussed at the end of this
chapter.

The Controller

The controller component of the Struts framework is the backbone of all Struts Web
applications. It is implemented as a servlet, ActionServlet, that receives requests from a
client and delegates control of the request to a user-defined Action class. The
ActionServlet delegates control based upon the URI of the incoming request. The
ActionServlet is similar to a factory that creates Action objects.

Creating and Installing a Struts Web Application
Now that you have a high-level understanding of the Struts framework, let's create and
install our own Struts application. To do this, we need to download the following list of items:

 136

� The latest Jakarta-Struts binary for your operating system. For these examples, I am
using Struts 1.0, which can be found at http://jakarta.apache.org.

� The latest Xerces Java Parser. I am using Xerces 1.3, which can be found at
http://xml.apache.org.

After you have gathered these two items, we can begin the development of a simple Struts
example. To do this, you first must complete the following steps:

1. Uncompress the Struts archive to your local disk.
2. Copy the struts-blank.war file, found in the webapps directory of the Struts

directory, to the webapps directory of your Tomcat installation.

Note The struts-blank.war file is a Struts Web archive that contains

the basic components of all Struts Web applications. It provides you
with a baseline for developing your own Struts applications.

3. Rename the struts-blank.war file to apress-struts.war.
4. Restart Tomcat. Once Tomcat starts, you should see a new directory named apress-

struts.
5. Uncompress the Xerces archive to your local disk.
6. Copy the xerces.jar file from the Xerces root directory to the

<TOMCAT_HOME>/webapps/apress-struts/WEB-INF/lib/ directory.

Note If you plan to deploy several Struts applications to a single instance of

Tomcat, you can replace the target directory (in step 6) with the
<TOMCAT_HOME>/lib/ directory. This makes the xerces.jar file
available to all of your Struts applications.

7. Restart Tomcat and open your browser to the following URL:

http://localhost:8080/apress-struts/

Note

If you are starting Tomcat from a console, you'll see additional information
being logged by the Struts application. This is normal and should not be
considered erroneous.

If everything went according to plan, you should see a page similar to that shown in Figure
10-2.

Figure 10-2: The Struts starter page

 137

Now we can begin developing our Struts example. For this example, we convert the apress
Web application from Chapter 2 to a Struts application called apress-struts.

The Views

Several steps are necessary to convert our apress application. First, though, we'll describe
the two views in our application and the changes that are required to convert both the
login.jsp and welcome.jsp.

The Login View

The first of our views is login.jsp, which also is our starting view. Listing 10-1 reveals the
changes we need to make to this JSP.

Listing 10-1: The Struts Version of login.jsp

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html>

<head>

 <title><bean:message key="app.title"/></title>

</head>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

 <html:form action="Login.do"

 name="loginForm"

 scope="request"

 type="chapter10.LoginForm" >

 <table width="45%" border="0">

 <tr>

 138

 <td><bean:message key="app.username"/>:</td>

 <td><html:text property="username" /></td>

 </tr>

 <tr>

 <td><bean:message key="app.password"/>:</td>

 <td><html:password property="password" /></td>

 </tr>

 <tr>

 <td colspan="2" align="center"><html:submit /></td>

 </tr>

 </table>

 </html:form>

</body>

</html>

As you look over this file, notice the changes (in bold type) that have been made from the
original login.jsp. The first change is the inclusion of two tag library directives, the first of
which is the Struts Bean tags. The tags in this library will be used later for loading predefined
text messages from a text file called a ResourceBundle. Loading text using this method
allows you to swap languages by only changing files. The second included tag library
contains HTML tags that are used to populate ActionForm objects that correspond to the
form in this view.

The first real change is in the HTML <title> element. The original title text was static,
while now it is being loaded from a ResourceBundle used by the message tag of the Bean
library. This tag has a single attribute key that is used to look up the text that will be
substituted for the tag text. The message tag is replaced by whatever value is referenced by
the key. Three of these tags are used in this JSP, and their format is defined in the following
code snippet:
<bean:message key="unique key"/>

The file that contains the text used by these tags is the /<TOMCAT_HOME/apress-
struts/WEB-INF/classes/ApplicationResources.properties file. The contents
of this file for our application can be found in Listing 10-2.

Listing 10-2: The Contents of the ApplicationResource.properties File

app.title=Apress Struts Application

app.username=User Name

app.password=Password

 139

To make these messages available to this application, you need to delete the file's current
values and replace them with the values in Listing 10-2.

The next section to look at is the Struts HTML form tag. This tag encapsulates Struts form
processing and is the parent of all form tags. The form tag represents a standard HTML
form. The form tag attributes used in this example are described in Table 10-2.

Table 10-2: The Attributes of the form Tag Used in This Example

COMPONENT DESCRIPTION

action The action attribute represents the URL to which this form is submitted.
This attribute is also used to find the appropriate ActionMapping in the
Struts configuration file, which we describe later in this section. The value
used in our example is Login.do, which maps to an ActionMapping
with a path attribute equal to Login.

Note The .do appended to the action is used as part of
a URL pattern that tells the Tomcat that all requests
ending with .do should be serviced by the
ActionServlet.

scope The scope attribute represents the scope within which the form bean
associated with this input form will be accessed or created. The available
options are either request or session. Our ActionForm is created
and stored in the request.

name The name attribute identifies the key that the ActionForm is referenced
by. We use the value loginForm.

type The type attribute names the fully qualified class name of the form bean
to use in this request. For this example, we use the value
chapter10.LoginForm, an ActionForm that contains attributes
matching the inputs of this form.

The cumulative effect of these attributes states the following:

� Upon submission, we will execute the Action object with an ActionMapping
containing a path equal to Login.

� The ActionForm object for this form will be stored in the request.
� The name by which the ActionForm will be referenced is loginForm.
� The fully qualified class path of the ActionForm is chapter10.LoginForm.

This instance of the form is also the parent to five tags, two Bean message tags (which we
discussed earlier), and three tags from the HTML library. There is really nothing more to
discuss about the message tags, but we do need to cover the three HTML tags:
<html:text>, <html:password>, and <html:submit>.

The first two HTML tags—<html:text> and <html:password> tags—are synonymous
with their HTML input counterparts. The difference, however, is in the property attribute,
which names a unique attribute found in the ActionForm bean of this form. The named
attribute is set to the text value of the input tag.

 140

The last html tag we used is the <html:submit> tag, which simply emulates an HTML
Submit button.

The Welcome View

The second of our views is the welcome.jsp. This view is the success target of the
previous form. The changes we made to this JSP can be found in Listing 10-3.

Listing 10-3: The Struts Version of welcome.jsp

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html>

<head>

 <title><bean:message key="app.title"/></title>

</head>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 <td>

 Welcome : <%= request.getAttribute("USER") %>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

</body>

</html>

As you look this JSP over, you may notice that it contains only minor changes from its
original version. The two changes include the taglib directive identifying the bean tags
and a single use of the <bean:message> tag used to dynamically load the <title> text.

The Model

 141

In this example, we have only a single model object. This object is an implementation of
ActionForm, which contains attributes that map directly to the input parameters of the form
defined in the Login view. The source code for our ActionForm is shown in Listing 10-4.

Listing 10-4: Our ActionForm Implementation LoginForm.java

package chapter10;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

public class LoginForm extends ActionForm {

 private String password = null;

 private String username = null;

 // Password Accessors

 public String getPassword() {

 return (this.password);

 }

 public void setPassword(String password) {

 this.password = password;

 }

 // Username Accessors

 public String getUsername() {

 return (this.username);

 }

 public void setUsername(String username) {

 this.username = username;

 }

 // This method is called with every request. It resets the Form

 142

 // attribute prior to setting the values in the new request.

 public void reset(ActionMapping mapping, HttpServletRequest
request) {

 this.password = null;

 this.username = null;

 }

}

There is nothing special about this class: it is a simple bean that extends
org.apache.struts.action.ActionForm with get and set accessors for each of its
attributes. However, it does have one method that is specific to an ActionForm bean—the
reset() method—which is called with each request using the LoginForm resetting all of
its attributes.

To deploy the LoginForm to our Struts application, you need to compile this class, move it
to the <TOMCAT_HOME>webapps/apress-struts/WEB-INF/classes/chapter10
directory, and add the following line to the <form-beans> section of the
<TOMCAT_HOME>webapps/apress-struts/WEB-INF/struts-config.xml file:
<form-bean name="loginForm" type="chapter10.LoginForm"/>

This entry makes the Struts application aware of the LoginForm and how it should be
referenced.

Note

The struts-config.xml file is the deployment descriptor for Struts
applications. Think of this file as the glue that binds all of the MVC
components together.

The Controller

The final piece of our Struts application is the controller. For this component, we are going to
create a Struts Action bean named LoginAction that contains the same basic
functionality as the login.java servlet found in the apress Web application. The source
for our Action bean can be found in Listing 10-5.

Listing 10-5: The LoginAction Bean

package chapter10;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;

 143

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

public class LoginAction extends Action {

 protected String getUser(String username, String password) {

 String user = null;

 // You would normally do some real User lookup here, but

 // for this example we will have only one valid username "bob"

 System.err.println(username + ":" + password);

 if (username.equals("bob") && password.equals("password")) {

 user = new String("Bob");

 }

 return user;

 }

 public ActionForward perform(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 String user = null;

 // Default target to success

 String target = new String("success");

 // Use the LoginForm to get the request parameters

 String username = ((LoginForm)form).getUsername();

 String password = ((LoginForm)form).getPassword();

 user = getUser(username, password);

 // Set the target to failure

 if (user == null) {

 144

 target = new String("failure");

 }

 else {

 request.setAttribute("USER", user);

 }

 // Forward to the appropriate View

 return (mapping.findForward(target));

 }

}

The main functionality of the LoginAction is found in the perform() method. This is the
method that must be defined by all Action classes that are invoked by the controller. To
understand how the perform() method works, we first examine the four parameters
passed to the perform() method and then discuss the actual method body. These
parameters are described in Table 10-3.

Table 10-3: The Parameters of the Action.perform() Method

COMPONENT DESCRIPTION

ActionMapping The ActionMapping class contains all of the deployment
information for a particular Action bean. This class will be
used to determine the physical target of this LoginAction
later in the method.

ActionForm The ActionForm represents the model object containing
the request parameters from the view referencing this
Action bean.

HttpServletRequest The HttpServletRequest attribute is simply a reference
to the current HTTP request object.

HttpServletResponse The HttpServletResponse is simply a reference to the
current HTTP response object.

Now that we have described the parameters passed to the perform() method, we can
move on to describing the actual method body. The first notable action taken by this method
is to create a String object named target with a value of success. This object will be
used to determine the view that will present the results of this Action. For this example, we
have set the default to be a successful transaction.

Note

The value of the target object is used to look up the view JSP that this
request will be forwarded to, once the perform() method has completed
its processing. The target values are described in an <action> element in
the struts-config.xml, which is described later in this section.

 145

The next step performed by this method is to get the request parameters contained in the
LoginForm. When the form was submitted, the ActionServlet used Java's reflection
mechanism to set the values stored in this object. The following code snippet displays the
source code used to access the request parameters:
// Use the LoginForm to get the request parameters

String username = ((LoginForm)form).getUsername();

String password = ((LoginForm)form).getPassword();

Once we have references to the username and password parameters, we pass these values
to the getUser() method. This method is a simple user-defined method that returns the
String Bob if the username and password equal bob and password, respectively. If the
username and password contain any other values, null is returned and we change the
value of our target to failure. This has the effect of changing the targeted view. If Bob
was returned from getUser(), then we add Bob to the request with a key of USER.

At this point, the value of target equals either success or failure. This value is then
passed to the ActionMapping.findForward() method, which returns an
ActionForward object containing the physical view that will actually present the results of
this Action. The final step of the perform() method is to return the ActionForward
object to the invoking ActionServlet, which then forwards the request to the contained
view for presentation. This step is completed using the following line of code:
return (mapping.findForward(target));

To deploy the LoginAction to our Struts application, you need to compile this class, move
it to the <TOMCAT_HOME>webapps/apress-struts/WEB-INF/classes/chapter10
directory, and add the following entry to the <action-mappings> section of the
<TOMCAT_HOME>webapps/apress-struts/WEB-INF/struts-config.xml file:
<action path="/Login" type="chapter10.LoginAction" name="loginForm"
>

 <forward name="success" path="/welcome.jsp"/>

 <forward name="failure" path="/index.jsp"/>

</action>

This entry contains the data that will be stored in the ActionMapping object that is passed
to the perform() method of the LoginAction. It contains all of the attributes required to
use this instance of the LoginAction, including a collection of keyed <forward> sub-
elements that represent the possible views that can present the results of the
LoginAction.

Walking Through the apress-struts Web Application
By this point, you should have completed all of the steps described in the previous section
and have a deployed apress-struts Web application. We are now going to go through
this example application and discuss each of the steps performed by Struts along the way.

To begin using this application, you need to restart Tomcat and open your Web browser to
the following URL:

http://localhost:8080/apress-struts/login.jsp

 146

If everything went according to plan, you should see a page similar to that shown in Figure
10-3.

Figure 10-3: The apress-struts Login view

When this page was loaded the following actions occurred:
1. The <bean:message> custom tags loaded the text resources from the

/<TOMCAT_HOME/apress-struts/WEB-
INF/classes/ApplicationResources.properties file and replaced the tag
text with the appropriate values.

2. The <html:form> bean checked for an instance of the chapter10.LoginForm that
exists in request scope. If there were an instance, the values will be mapped to the
input elements values on the form.

3. The Login view is then presented to the user.

You should now go ahead and enter the values bob and password into the appropriate text
boxes and click on the Submit button. This invokes the following functionality:

1. The servlet/JSP container looks in the web.xml file for a <servlet-mapping> with a
<url-pattern> that ends with do. It will find the following entry, which tells the
container to send the request to a servlet that has been deployed with a <servlet-
name> of action.

2. <!-- Standard Action Servlet Mapping -->

3. <servlet-mapping>

4. <servlet-name>action</servlet-name>

5. <url-pattern>*.do</url-pattern>

6. </servlet-mapping>
7. The container will find the following <servlet> entry with a <servlet-name> of

action that points to the ActionServlet, which acts as the controller for all Struts
applications.

8. <servlet>

9. <servlet-name>action</servlet-name>

 147

10. <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>

11. </servlet>

Note I have removed some of the <servlet> sub-elements for simplicity.

12. The ActionServlet then takes over the servicing of this request by creating an
instance of the LoginForm and populating its attributes with the values passed on
the request and adding the LoginForm to the request with a key of loginForm.

13. At this point, the ActionServlet looks for an <ActionMapping> entry in the
struts-config.xml file with a <path> element equal to Login. It finds the
following entry:

14. <action path="/Login"

15. type="chapter10.LoginAction"

16. name="loginForm" >

17. <forward name="success" path="/welcome.jsp"/>

18. <forward name="failure" path="/index.jsp"/>

19. </action>
20. It then creates an instance of the LoginAction class (if one does not already exist)

named by the type attribute and an ActionMapping class containing all of the
values in the <ActionMapping> element. It then invokes the
LoginAction.perform() with the appropriate parameters.

21. The LoginAction.perform() method performs its logic and calls the
ActionMapping.findForward() method with a String value of success.

22. The ActionMapping.findForward() method looks for a <forward> subelement
with a name attribute that matches success. It then returns an ActionForward
object containing the results of the lookup, which is the value of the path attribute
/welcome.jsp.

23. The LoginAction then returns the ActionForward object to the
ActionServlet, which in turn forwards the request object to the targeted view,
/welcome.jsp, for presentation.

24. The Welcome view then uses a <bean:message> custom tags lookup and displays
the HTML <Title> and presents the results of the LoginAction, which should
look similar to that shown in Figure 10-4.

 148

Figure 10-4: The apress-struts Welcome view

Summary
In this chapter, we discussed the Apache-Jakarta Project's Struts. We defined the framework
and its uses, and we described the Struts components. We also went through a working
example of developing and deploying a Struts Web application, using Tomcat. However, we
only scratched the surface of this project. If you are interested in further information about
the Struts framework, you can find it at the Struts Web site:
http://jakarta.apache.org/struts/index.html. In the next chapter, we discuss how the Jakarta
Log4J Project can be integrated into Tomcat.

 149

Chapter 11: Integrating the Jakarta-Log4J
Project
The Jakarta-Log4J Project
The Jakarta-Log4j project (Log4J) is another open source project sponsored by the Apache
Software Foundation. It was founded by Ceki Gulcu with the intention of providing
application developers with a sophisticated—yet simple—logging mechanism that could be
integrated into Java applications. The Log4J project comprises three main components:
Layouts, Appenders, and Categories. We describe each of these components in the
following sections. To follow the examples in this chapter, you need the latest archive of
log4j, which can be found at http://jakarta.apache.org/log4j/.

Layouts

Layouts allow you to customize the output format of a Log4J message. They must be
assigned to Appenders, which are discussed in the following section. The simplest of the
Log4J Layouts is the SimpleLayout, which logs only the Priority and the message.
To assign the SimpleLayout to an Appender, we could use something similar to the
following code snippet:
log4j.appender.console.layout=org.apache.log4j.SimpleLayout

This line assigns a SimpleLayout to a previously defined Appender named console. We
discuss the appropriate location of Layout assignments in a subsequent section on
configurators. Output using the SimpleLayout would look similar to the following:
DEBUG - This is the log message!

You can find further documentation on the other Layouts packaged with Log4J.

Appenders

Appenders allow logging requests to be printed to multiple output destinations such as
consoles, files, NT event loggers, and many others.

The most common way to leverage an Appender is to assign it a Layout and then assign it
to a Category. This is done using a code snippet similar to the following:
log4j.category.chapter11.Log4JApp= DEBUG, console

log4j.appender.console=org.apache.log4j.ConsoleAppender

log4j.appender.console.layout=org.apache.log4j.SimpleLayout

As you examine the previous snippet, you should ignore the first line. (It is discussed in the
following section.) We need to focus on the second and third lines of this snippet. The
second line defines an Appender named console that uses the
org.apache.log4j.ConsoleAppender, which does just as it sounds and logs all
messages to the application console.

The third line of this snippet assigns the Layout class
org.apache.log4j.SimpleLayout to the console Appender. These lines together
define an Appender named console that outputs all of its messages in the format defined

 150

by the SimpleLayout object to the application console. In the next section, we close the
loop by assigning the Appender to a Category.

Categories

Categories are the heart of Log4J. They allow developers to define how and when a log
statement should be executed and then assign this definition a case-sensitive name that it
can be referenced by. This name is the Category name that can be loaded and used to log
messages. An example of this would be a Category that logged all "debug" statements to
the Appender defined in the previous section. An example definition of a Category doing
just this is contained in the following code snippet:
log4j.category.chapter11.Log4JApp= DEBUG, console

This statement defines a Category named chapter11.Log4JApp that logs all messages
with a priority of DEBUG or higher to the console of the running application. The DEBUG and
console values associated with this Category define the priority level of this Category
and the name of the Appender to use when logging a message, respectively. Categories
are referenced by name, and so to access the previous Category definition you would call
the static Category.getInstance() method with the name of the Category:
static Category cat = Category.getInstance("chapter11.Log4JApp");

This statement creates an instance of a Category that can be used to log messages based
on the previous Category definition. You can now log messages using any of the logging
methods described in the next section.

Note

All Category definitions must be prepended with the string
log4j.category.

Priorities

Priorities are assigned to Categories to determine which log messages to actually
log. The set of possible priorities are DEBUG, INFO, WARN, ERROR, and FATAL.

If a category is not assigned a priority, it inherits its category from its closest ancestor with an
assigned priority. A Category must contain a Priority level, either explicitly, by naming
the Priority in the Category definition, or implicitly, through inheritance.

Messages are logged based upon their priority. This is done using the Category's logging
methods: debug(), info(), warn(), error(), and fatal(), which map one-to-one with
the defined Priorities described previously. So, if you wanted to log a message with a
priority of DEBUG, you would execute something similar to the following:
cat.debug("This is the DEBUG log message!");

This statement logs a message to the Category referenced by cat with Priority level of
DEBUG. To determine whether the message is actually logged, the Category must examine
its defined Priority. In this instance, the message is logged because the assigned
Category Priority, DEBUG, is less than or equal to the Priority used in the debug()
method. The Priority order is defined as follows:
DEBUG < INFO < WARN < ERROR < FATAL

Configurators

 151

Now that we know how the three main components of Log4J are used, we can take a look at
how these components are configured for actual use. Log4J can be configured
programmatically or by using configuration files. For our examples, we use configuration
files.

Note

The previous examples of configuring Log4J Layouts, Appenders, and
Categories used a properties format, which is also used in Log4J's
configuration files.

Log4J currently supports two types of configuration files: a regular Java properties file and
an XML properties file. We will use a Java properties file for our examples.

A Log4J properties file can be divided into three sections. Each section maps to a
Category, an Appender, or a Layout. The following code snippet contains a sample
properties file.
CATEGORIES ##

#define a category named chapter11.Log4JApp

log4j.category.chapter11.Log4JApp=WARN, console, file

APPENDERS ##

define an appender named console, which is set to be a
ConsoleAppender

log4j.appender.console=org.apache.log4j.ConsoleAppender

define an appender named file, which is set to be a
RollingFileAppender

log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=log.txt

LAYOUTS ##

assign a layout to both appenders

log4j.appender.console.layout=org.apache.log4j.SimpleLayout

log4j.appender.file.layout=org.apache.log4j.SimpleLayout

The best way to examine this file is to start from the top with the CATEGORIES section. In
this section, we define a new Category named chapter11.Log4JApp. In its definition,
we are setting the log Priority to WARN. We are also assigning two Appenders to this
Category, console and file, which are both defined in the APPENDERS section.

The next section is the APPENDERS section, which defines the available Appenders for this
configuration. Here, we define two Appenders: console and file. The console
Appender uses the ConsoleAppender class that we spoke of earlier, which simply logs all
messages to the application console. The file Appender uses the
RollingFileAppender, which appends all of the log messages to a log file named by the
log4j.appender.file.File property.

 152

The final section of this file is the LAYOUTS section. In this section, we are directing both the
console and file Appenders to use the SimpleLayout, which is represented by
org.apache.log4j.SimpleLayout.

In summary, this configuration file defines a Category named chapter11.Log4JApp that
logs all messages with a Priority that is greater than or equal to WARN to both the console
and a file named log.txt in a format similar to the following:
DEBUG - This is the log message!

To load this configuration, you would use the static
PropertyConfigurator.configure() method with the path to the Log4J properties
file. The following line of code gives an example of this.
PropertyConfigurator.configure(propfile);

Category Hierarchies

If a category's Priority and Appender are not explicitly defined, the hierarchy of the
categories determines its Priority and Appender. Category hierarchies are very similar
to Java packaging, whereas a category named chapter11.Log4JApp would be a parent
of a category named chapter11.Log4JApp.child. An example configuration file with a
parent/child relationship can be found in Listing 11-1.

Listing 11-1: A Simple Log4J Properties File properties.lcf

CATEGORIES ##

#define a category named chapter11.Log4JApp

log4j.category.chapter11.Log4JApp=WARN, file

#define a second category that is a child to chapter11.Log4JApp

log4j.category.chapter11.Log4JApp.child

APPENDERS ##

define an appender named console, which is set to be a
ConsoleAppender

log4j.appender.console=org.apache.log4j.ConsoleAppender

define an appender named file, which is set to be a
RollingFileAppender

log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=log.txt

LAYOUTS ##

assign a layout to both appenders

log4j.appender.console.layout=org.apache.log4j.SimpleLayout

log4j.appender.file.layout=org.apache.log4j.SimpleLayout

 153

As you can see, the second Category chapter11.Log4JApp.child does not have an
assigned Priority or Appender, but, because the second category is a child of the first, it
inherits its parent's definition. We will see an example of this in the following section.

Using Log4J in an Application
Now that we have a basic understanding of Log4J and its components, let's actually look at
how it can be used. We are going to do this by creating a standard Java application that
loads a Log4J properties file and uses the defined categories to log its messages. The
properties file that we are using can be found in Listing 11-1 in the previous section.

The source Java application that will use the properties file can be found in Listing 11-2.

Listing 11-2: A Simple Log4J Application Log4JApp.java

package chapter11;

import org.apache.log4j.Category;

import org.apache.log4j.Priority;

import org.apache.log4j.BasicConfigurator;

import org.apache.log4j.PropertyConfigurator;

public class Log4JApp {

 // Get an instance of the chapter11.Log4JApp Category

 static Category cat =

 Category.getInstance("chapter11.Log4JApp");

 // Get an instance of the chapter11.Log4JApp.child Category

 // which is a child of chapter11.Log4JApp

 static Category childcat =

 Category.getInstance("chapter11.Log4JApp.child");

 public static void main(String[] args) {

 // Load the properties using the PropertyConfigurator

 PropertyConfigurator.configure("properties.lcf");

 // Log Messages using the Parent Category

 cat.debug("This is a log message from the " +

 cat.getName());

 cat.info("This is a log message from the " +

 154

 cat.getName());

 cat.warn("This is a log message from the " +

 cat.getName());

 cat.error("This is a log message from the " +

 cat.getName());

 cat.fatal("This is a log message from the " +

 cat.getName());

 // Log Messages using the Child Category

 childcat.debug("This is a log message from the " +

 childcat.getName());

 childcat.info("This is a log message from the " +

 childcat.getName());

 childcat.warn("This is a log message from the " +

 childcat.getName());

 childcat.error("This is a log message from the " +

 childcat.getName());

 childcat.fatal("This is a log message from the " +

 childcat.getName());

 }

}

There is really nothing special about this file: it starts by loading two categories cat and
childcat, with the first being the parent, referencing the chapter11.Log4JApp
Category definition, and the second referencing chapter11.Log4JApp.child
Category definition, which is the child of the first.

After these two categories are loaded, we begin making log requests to them. For each
Category, we are calling all of the priority-driven logging methods, passing them a simple
message with the category name appended to the end. The result is a log file named
log.txt that contains all of the log messages with a priority of WARN or greater. An
example of this file after a single execution can be found in the following snippet:
WARN - This is a log message from the chapter11.Log4JApp

ERROR - This is a log message from the chapter11.Log4JApp

FATAL - This is a log message from the chapter11.Log4JApp

WARN - This is a log message from the chapter11.Log4JApp.child

ERROR - This is a log message from the chapter11.Log4JApp.child

FATAL - This is a log message from the chapter11.Log4JApp.child

As you look over this file, you should note that the childcat did in fact inherit the cat's
Priority and Appender. To see this example run, make sure the log4j.jar from the
Log4J distribution is in your CLASSPATH, compile the source from Listing 11-2, create a
properties file with settings similar to Listing 11-1, and execute the following command:

 155

java chapter11.Log4JApp

Integrating Log4J into the apress Web Application
In this, our final section of the chapter, we go though the process of integrating Log4J into a
Web application running in Tomcat. Although the Tomcat portion of this integration is
minimal, it is very important to know how you can integrate a logging mechanism like Log4J
into your Web applications.

We can perform this integration in several ways, and the method we are going to use
requires that we add a new servlet to our existing apress Web application that will load and
initialize the Log4J properties upon startup. This provides all of the components existing in
this apress Web application access to Category definitions, which in turn allows them to
log messages to these categories. The source code for the servlet that performs this
initialization can be found in Listing 11-3.

Listing 11-3: The Source Code of the Log4J Initializing Servlet Log4JServlet.java

package chapter11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import org.apache.log4j.PropertyConfigurator;

public class Log4JServlet extends HttpServlet {

 public void init()

 throws ServletException {

 // Get Fully Qualified Path to Properties File

 String path = getServletContext().getRealPath("/");

 String propfile = path + getInitParameter("propfile");

 // Initialize Properties for All Servlets

 PropertyConfigurator.configure(propfile);

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 156

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>Log4JServlet</title></head>");

 out.println("<body>");

 out.println("<p>The servlet has received a GET. This is the
reply.</p>");

 out.println("</body></html>");

 }

 public void destroy() {

 }

}

The code that performs the initialization can be found in the servlet's init() method. In this
method, we are first getting a reference to a string that contains the real path of the Web
application, which in this case is <TOMCAT_HOME>/webapps/apress/. We are then
getting a reference to the servlet initialization parameter, propfile, which contains the
location of the Log4J properties file. To deploy this servlet, we must complete the following
steps:

1. Copy the log4j.jar file into the <TOMCAT_HOME>/common/lib directory. This
makes Log4J available to all applications running under this instance of Tomcat.

2. Add the following <servlet> definition to the apress web.xml file. This entry
defines a single <init-parameter> that references the location of the properties file.
It also states that this servlet should be loaded on starting the application.

3. <servlet>

4. <servlet-name>log4J</servlet-name>

5. <servlet-class>chapter11.Log4JServlet</servlet-class>

6. <init-param>

7. <param-name>propfile</param-name>

8. <param-value>WEB-INF/log4j.properties</param-value>

9. </init-param>

10. <load-on-startup>1</load-on-startup>

11. </servlet>
12. Create a properties file named log4j.properties containing the following

definitions and copy it to the <TOMCAT_HOME>/webapps/apress/WEB-INF/
directory:

13. log4j.category.com.apress=DEBUG, file

14.

15. # console is set to be a RollingFileAppender which outputs to
named file

 157

16. log4j.appender.file=org.apache.log4j.RollingFileAppender

17. log4j.appender.file.File=<TOMCAT_HOME>/webapps/apress/WEB-
INF/log.txt

18.

19. # file uses SimpleLayout

20. log4j.appender.file.layout=org.apache.log4j.SimpleLayout

Note You need to change the <TOMCAT_HOME> reference in the properties

file to match your installation.
21. Compile the Log4JServlet.java servlet and move it into the

<TOMCAT_HOME>/webapps/apress/WEB-INF/classes/chapter11 directory.
22. Restart Tomcat.

That is all there is to it; your application now has access to the Log4J Category named
com.apress. To access this Category, you simply need to add a call to
Category.getInstance(), similar to the following, to any of your apress components.
You also need to import the org.apache.log4j.Category package, which contains the
Category classes.
Category cat = Category.getInstance("com.apress");

An example of this can be found in Listing 11-4, which contains the JSP login.jsp that
has been modified to log the address of the remote user upon every request.

Listing 11-4: A Modified Version of login.jsp Using Log4J

<%@ page import="org.apache.log4j.Category" %>

<html>

<head>

 <title>Apress Demo</title>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

<%

 Category cat = Category.getInstance("com.apress");

 cat.info("Receiving request from " + request.getRemoteAddr());

%>

<body bgcolor="#FFFFFF"
onLoad="document.loginForm.username.focus()">

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 158

 <td> </td>

 </tr>

 <tr>

 <td>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

 <table width="500" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td>

 <table width="500" border="0" cellspacing="0"
cellpadding="0">

 <form name="loginForm" method="post"
action="servlet/chapter2.login">

 <tr>

 <td width="401"><div align="right">User
Name: </div></td>

 <td width="399"><input type="text" name="username"></td>

 </tr>

 <tr>

 <td width="401"><div
align="right">Password: </div></td>

 <td width="399"><input type="password"
name="password"></td>

 </tr>

 <tr>

 <td width="401"> </td>

 <td width="399">
<input type="Submit"
name="Submit"></td>

 </tr>

 </form>

 </table>

 </td>

 </tr>

 </table>

</body>

</html>

 159

To see Log4J working in the apress application, point your browser to
http://localhost:8080/apress/login.jsp. After you have made this request, you
can open the <TOMCAT_HOME>/webapps/apress/WEB-INF/log.txt and see the
results of these changes.

Summary
In this chapter, we discussed the Apache-Log4J project and each Log4J major component.
We then integrated Log4J into a Java application, and we also went through the steps
involved when integrating Log4J into a Web application, using Tomcat. You can find more
about the Log4J Project on the Log4J homepage
(http://jakarta.apache.org/log4j/docs/index.html). In the next chapter, we discuss how the
XML Apache Soap project can be integrated into Tomcat.

 160

Chapter 12: Integrating the Apache SOAP
Project
Introducing the Apache SOAP Project
The Apache SOAP project is an open source Java implementation of the Simple Object
Access Protocol v1.1 (SOAP). SOAP is a wire protocol that leverages HTTP or SMTP as its
transport layer and XML as its data layer to execute remote methods, known as SOAP
services.

The Apache implementation of SOAP provides two methods for invoking SOAP services.
The first, which is our topic of discussion in this chapter, is the Remote Procedure Call
(RPC) method. The RPC method is a synchronous technique using a client-server model to
execute remote SOAP services. This model can be defined using the following steps:

1. A client application builds an XML document containing the URI of the server that will
service the request, the name of the method to execute on the server, and the
parameters associated with the method.

2. The targeted server receives and unwinds the XML document. It then executes the
named method.

3. After the named method has returned its results, the results are packed into a
response XML document and then sent back to the calling client.

4. The client application receives the response and unwinds the results, which contains
the response of the invocated method.

The second method of invoking SOAP services is a message-based model using SMTP to
transport the SOAP documents to and from the appropriate SOAP server. Although this
method is interesting, it is outside the scope of a book describing the Tomcat container. If
you would like more information about SOAP, you can begin with the following list of SOAP
resources:

� http://www.webservices.org
� http://www.develop.com/soap
� http://www.ibm.com/developerworks/webservices

Integrating Apache SOAP into Tomcat
Before we begin using the Apache SOAP project, we must acquire the necessary
components to execute SOAP services. Table 12-1 provides a list of the necessary items
and their locations.

Table 12-1: Components Required to Execute SOAP Clients and Services

COMPONENT LOCATION

SOAP v2.2 http://xml.apache.org/soap/index.html

crimson.jar This JAR file is packaged with Tomcat in the
<TOMCAT_HOME>/server/lib/ directory.

jaxp.jar This JAR file is packaged with Tomcat in the
<TOMCAT_HOME>/server/lib/ directory.

mail.jar v1.2 http://java.sun.com/products/javamail/

 161

Table 12-1: Components Required to Execute SOAP Clients and Services

COMPONENT LOCATION

activation.jar
v1.0.1

http://java.sun.com/products/javabeans/glasgow/jaf.html

xerces.jar
v1.4.2

http://xml.apache.org/xerces-j/index.html

Once we have all of these items, we need to extract the SOAP archive to a local directory.
Then we need to add each of the previously mentioned JAR files to your CLASSPATH,
including the soap.jar, which comes packaged with the SOAP archive. This step is very
important and must not be ignored.

Deploying Apache-SOAP Using Tomcat

The easiest way to deploy a SOAP project to Tomcat is to use the sample SOAP application
included in the archive that you downloaded in the previous section. To do this, copy the
soap.war file, found in the SOAP /webapps directory, to the <TOMCAT_HOME>/webapps/
directory. Then, copy each of the JAR files (from Table 12-1) except the soap.jar file into
the <TOMCAT_HOME>/common/lib/ directory.

After you have copied these files to the named locations, restart Tomcat. You should now be
able to access the SOAP Web application, by opening your Web browser to the following
URL:

http://localhost:8080/soap/

You should see a page similar to that shown in Figure 12-1.

 162

Figure 12-1: The SOAP application Welcome page

At this point, you should also be able to use the SOAP admin tool, which can be accessed
by selecting the Run link. Figure 12-2 shows the homepage for the SOAP admin tool. From
this page, you can list the current services, deploy new services and remove previously
deployed services.

Figure 12-2: The SOAP Admin Tool homepage

Creating a Sample SOAP Application

 163

In this section, we develop a simple SOAP application that acts as a limited calculator, with
only addition and subtraction operations. We first develop a SOAP service for handling both
our addition and subtraction methods, and then we create a client to access the services.

SOAP Services

Writing an RPC-based SOAP service is a very simple process that can be broken down into
two steps: the first step is to create the Java class that contains the SOAP service that you
wish to publish, and the second step is to create a deployment descriptor that describes this
service. Each step is described in its own section.

Creating a SOAP Service

Creating a SOAP service is the simplest step of the entire "SOAPifying" process. A SOAP
service can be just about any Java class that exposes public methods for invocation. The
class does not need to know anything about SOAP or even that it is being executed as a
SOAP service. The only restriction is that the method parameters be serializable. The
available types that can, by default, be used by SOAP services are included in the SOAP
registry. The following list contains the Java types included in the registry:

� all Java primitive types and their corresponding wrapper classes
� Java arrays
� java.lang.String
� java.util.Date
� java.util.GregorianCalendar
� java.util.Vector
� java.util.Hashtable
� java.util.Map
� java.math.BigDecimal
� javax.mail.internet.MimeBodyPart
� java.io.InputStream
� javax.activation.DataSource
� javax.activation.DataHandler
� org.apache.soap.util.xml.QName
� org.apache.soap.rpc.Parameter
� java.lang.Object

As mentioned earlier, our service is a simple calculator that is limited to addition and
subtraction. This service can be found in Listing 12-1 in its entirety.

Listing 12-1: The Source Code for Our Limited Calculator CalcService.java

package chapter12;

public class CalcService {

 public int add(int p1, int p2) {

 return p1 + p2;

 }

 164

 public int subtract(int p1, int p2) {

 return p1 - p2;

 }

}

As you can see, there is nothing special about this entire class: it simply defines two public
methods—add() and subtract()—each with a parameter list containing two native ints.
To make this class available to the rpcrouter, copy it into the
<TOMCAT_HOME>/webapps/soap/WEB-INF/classes/chapter12/ directory.

Creating the Deployment Descriptor

The second step to creating a new SOAP service is to create a deployment descriptor. The
deployment descriptor describes the SOAP service, and this description is required for the
service to be published to the Apache rpcrouter. The deployment descriptor for our
service is contained in Listing 12-2.

Listing 12-2: The Calculator Deployment Descriptor DeploymentDescriptor.xml

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

 id="urn:apressserver"

 <isd:provider type="java"

 scope="application"

 methods="add subtract">

 <isd:java class="chapter12.CalcService"/>

 </isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faul
tListener>

</isd:service>

The deployment descriptor for our calculator service contains only three elements that we
need to look at: service, provider, and java. The first element, service, defines two
attributes (the XML namespace and the unique id of the service to be deployed), and it is
the parent of the entire deployed service.

Note

The id defined in the service element must be unique. This attribute is
used, by the SOAP client, to look up a published SOAP service.

The next element we need to examine is the provider element, which defines the actual
implementation of the SOAP service. It does this with three attributes, each of which is
defined in Table 12-2.

 165

Table 12-2: The Three Attributes of the provider Element

COMPONENT DESCRIPTION

type The type attribute defines the implementation type of the SOAP service.

scope The scope attribute defines the lifetime of the SOAP service. The
possible values are page, scope, session, and application. These
scope values map one-to-one with the scope values defined by the JSP
specification that we discussed in Chapter 3.

methods The methods attribute defines the names of the method that can be
invoked on this service object. This list should be a space-separated list
of method names.

The final element of the deployment descriptor is the java element. This element contains a
single attribute, class, which names the fully qualified class that implements the named
service.

Running the Server-Side Admin Tool to Manage Services

After you have compiled your service and moved it into the Web application CLASSPATH,
you need to deploy it as a SOAP service. The Apache SOAP project is packaged with two
administration tools, one graphical and one command-line. Both allow you to easily deploy
and undeploy services to the SOAP server. The three functions provided by each of these
tools are listed below:

� The deploy function allows you to deploy a new service to a SOAP server.
� The undeploy function removes an existing SOAP service from a SOAP server.
� The list function lists all deployed SOAP services.

For our example, we are going to use the command-line tools for deploying our service,
which is implemented with the org.apache.soap.server.ServiceManagerClient
class. Using the ServiceManagerClient is very easy, and we will walk through each of
its functions in this section.

Note

As we cover the following commands, you should note that each command
references a servlet named rpcrouter. This servlet is at the core of all
SOAP actions. It performs all service management and execution.

list

The first function of the ServiceManagerClient that we are going to use is the list
command, which lists all of the currently deployed services. To execute the list command,
type the following:
java org.apache.soap.server.ServiceManagerClient

 http://localhost:8080/soap/servlet/rpcrouter list

If you execute this command, you should get a response that shows no deployed services.
Examining this command reveals that it executes the Java application
ServiceManagerClient with two parameters. The first parameter points to the SOAP
server, and the second is the actual command to perform, which in this case is the list
command.

 166

deploy

The next command that we are going to perform will deploy our service to the SOAP server.
This command also uses the ServiceManagerClient with the deployment descriptor
describing the SOAP service. To deploy our service, execute the following command:
java org.apache.soap.server.ServiceManagerClient

 http://localhost:8080/soap/servlet/rpcrouter

 deploy DeploymentDescriptor.xml

This command takes three parameters: the URL to the SOAP server, the command deploy,
and the file containing our deployment descriptor. After you have executed this command,
execute the list command. You should now see output listing the <urn:apressserver,
which is the ID of our service. You can also view this service from the Web admin tool by
opening your browser to the following URL and clicking on the List button:

http://localhost:8080/soap/admin/index.html

You should now see a page similar to that shown in Figure 12-3, which lists the name of our
published service.

Figure 12-3: The Web presentation of the list command

If you select the service name, you'll see the details of the service, which should look similar
to those in Figure 12-4.

 167

Figure 12-4: The detailed view of the urn:apressserver service

undeploy

The final function of the ServiceManagerClient that we are going to examine is the
undeploy command. As its name implies, this command removes a previously deployed
service. To execute the undeploy command, type the following line:
java org.apache.soap.server.ServiceManagerClient

 http://localhost:8080/soap/servlet/rpcrouter undeploy
urn:apressserver

The undeploy command takes three parameters. The first parameter points to the SOAP
server and the second is the actual command to perform, which in this case is the
undeploy command. The final parameter is the name of the service to remove.

SOAP Clients

Now that we have a service defined and deployed, let's write a client that executes one of
the service's methods. The Apache SOAP project provides a client-side API that makes it
relatively simple to create SOAP clients. An example client, which we will use to execute one
of our methods, can be found in Listing 12-3.

Listing 12-3: An Example SOAP Client CalcClient.java

package chapter12;

import java.io.*;

import java.net.*;

import java.util.*;

 168

import org.apache.soap.*;

import org.apache.soap.rpc.*;

public class CalcClient {

 public static void main(String[] args) throws Exception {

 URL url = new URL
("http://localhost:8080/soap/servlet/rpcrouter");

 Integer p1 = new Integer(args[0]);

 Integer p2 = new Integer(args[1]);

 // Build the call.

 Call call = new Call();

 call.setTargetObjectURI("urn:apressserver");

 call.setMethodName("subtract");

 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 Vector params = new Vector();

 params.addElement(new Parameter("p1", Integer.class, p1, null));

 params.addElement(new Parameter("p2", Integer.class, p2, null));

 call.setParams (params);

 // make the call: note that the action URI is empty because the

 // XML-SOAP rpc router does not need this. This may change in
the

 // future.

 Response resp = call.invoke(url, "");

 // Check the response.

 if (resp.generatedFault()) {

 Fault fault = resp.getFault ();

 System.out.println("Ouch, the call failed: ");

 System.out.println(" Fault Code = " + fault.getFaultCode());

 System.out.println(" Fault String = " +
fault.getFaultString());

 }

 else {

 169

 Parameter result = resp.getReturnValue();

 System.out.println(result.getValue());

 }

 }

}

This client follows a simple process that is common to most SOAP RPC clients: it first
creates a URL that points to the rpcrouter, which we noted earlier, on our localhost.
This is done in the following code snippet:
URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

The next step, performed by the client application, is to parse the arguments from the
command line. These values are passed to the SOAP service in a subsequent method. The
values created are Integers.

After the client has parsed to command-line arguments, it creates an instance of an
org.apache.soap.rpc.RPCMessage.Call. The Call object is the main interface used
when executing a SOAP RPC invocation.

To use the Call object, we need to first tell it which service we want to use. We do this by
calling the setTargetObjectURI, passing it the name of the service that we want to
execute. We then set the name of the service method we want to execute using the
setMethodName() method, with the name of the method we want to execute. The next
step is to set the encoding style used in the RPC call. We are using the value
NS_URI_SOAP_ENC, which is the default URI encoding style used by a SOAP client.

The final step is to add the parameters that are expected when executing the named
method. This is done by creating a Vector of Parameter objects and adding them to the
Call object using the setParams() method. All of these steps are completed using the
following code snippet:
Call call = new Call();

call.setTargetObjectURI("urn:apressserver");

call.setMethodName("subtract");

call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

Vector params = new Vector();

params.addElement(new Parameter("p1", Integer.class, p1, null));

params.addElement(new Parameter("p2", Integer.class, p2, null));

call.setParams (params);

The next step performed by the client application is to actually call the service method that
we are interested in. This is done using the invoke() method with the URL that we created
earlier. The snippet of code calling the invoke() method is:
Response resp = call.invoke(url, "");

Notice that the return value of the invoke() method is a Response object. The Response
object returns two very important items: error code and the value returned from the executed
service method. You check for an error by calling the generatedFault() method, which

 170

returns true if there were an error returned and then you can check the getFault()
method. If generatedFault() returns false, you can then get the value returned in the
Response object by using the Response.getReturnValue() method. The following
code snippet shows how you should process the response of an invoke():
if (resp.generatedFault()) {

 Fault fault = resp.getFault();

 System.out.println("The call failed: ");

 System.out.println(" Fault Code = " + fault.getFaultCode());

 System.out.println(" Fault String = " + fault.getFaultString());

}

else {

 Parameter result = resp.getReturnValue();

 System.out.println(result.getValue());

}

That is all there is to it. To test your client and service, compile the client and execute it using
the command line:
java chapter12.CalcClient 98 90

Note

At this point, you should have the CalcService deployed and Tomcat
should be running.

Summary
In this chapter, we discussed the Apache-SOAP project. We described each of the steps
involved in integrating SOAP into the Tomcat container, and we concluded by creating a
sample SOAP application that was hosted by Tomcat. In the next chapter, we discuss how
the XML Apache Soap project can be integrated into Tomcat.

 171

Appendix A: The server.xml File
In this Appendix, we discuss the server.xml file. This file can be considered the heart of
Tomcat, and it allows you to completely configure Tomcat using an XML descriptor. We then
describe the file's two major configurable Tomcat components: containers and connectors.
Listing A-1 contains the source code of the default server.xml file, with all comments
stripped out for clarity.

Listing A-1: The Source Code of the Default server.xml File

<Server port="8005" shutdown="SHUTDOWN" debug="0">

 <Service name="Tomcat-Standalone">

 <Connector
className="org.apache.catalina.connector.http.HttpConnector"

 port="8080" minProcessors="5" maxProcessors="75"

 enableLookups="true" redirectPort="8443"

 acceptCount="10" debug="0" connectionTimeout="60000"/>

 <Engine name="Standalone" defaultHost="localhost" debug="0">

 <Logger className="org.apache.catalina.logger.FileLogger"

 prefix="catalina_log." suffix=".txt"

 timestamp="true"/>

 <Realm className="org.apache.catalina.realm.MemoryRealm" />

 <Host name="localhost" debug="0" appBase="webapps"
unpackWARs="true">

 <Valve
className="org.apache.catalina.valves.AccessLogValve"

 directory="logs" prefix="localhost_access_log."
suffix=".txt"

 pattern="common"/>

 <Logger className="org.apache.catalina.logger.FileLogger"

 directory="logs" prefix="localhost_log." suffix=".txt"

 timestamp="true"/>

 <Context path="/examples" docBase="examples" debug="0"

 172

 reloadable="true">

 <Logger className="org.apache.catalina.logger.FileLogger"

 prefix="localhost_examples_log." suffix=".txt"

 timestamp="true"/>

 <Ejb name="ejb/EmplRecord" type="Entity"

 home="com.wombat.empl.EmployeeRecordHome"

 remote="com.wombat.empl.EmployeeRecord"/>

 <Environment name="maxExemptions" type="java.lang.Integer"

 value="15"/>

 <Parameter name="context.param.name"
value="context.param.value"

 override="false"/>

 <Resource name="jdbc/EmployeeAppDb" auth="SERVLET"

 type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/TestDB">

<parameter><name>user</name><value>sa</value></parameter>

<parameter><name>password</name><value></value></parameter>

 <parameter><name>driverClassName</name>

 <value>org.hsql.jdbcDriver</value></parameter>

 <parameter><name>driverName</name>

 <value>jdbc:HypersonicSQL:database</value></parameter>

 </ResourceParams>

 <Resource name="mail/session" auth="CONTAINER"

 type="javax.mail.Session"/>

 <ResourceParams name="mail/session">

 <parameter>

 <name>mail.smtp.host</name>

 <value>localhost</value>

 </parameter>

 </ResourceParams>

 </Context>

 173

 </Host>

 </Engine>

 </Service>

 <Service name="Tomcat-Apache">

 <Connector
className="org.apache.catalina.connector.warp.WarpConnector"

 port="8008" minProcessors="5" maxProcessors="75"

 enableLookups="true"

 acceptCount="10" debug="0"/>

 <Engine className="org.apache.catalina.connector.warp.WarpEngine"

 name="Apache" defaultHost="localhost" debug="0"
appBase="webapps">

 <Logger className="org.apache.catalina.logger.FileLogger"

 prefix="apache_log." suffix=".txt"

 timestamp="true"/>

 <Realm className="org.apache.catalina.realm.MemoryRealm" />

 </Engine>

 </Service>

</Server>

Containers
Tomcat containers are objects that can execute requests received from a client and return
responses to that client based on the original requests. Tomcat containers are of several
types, each of which is configured within the server.xml based upon its type. In this
section, we discuss the containers that are configured in the default server.xml file.

The <Server> Element

The first container element found in the server.xml file is the <Server> element, which
represents the entire Catalina servlet container. It is used as a top-level element for a single
Tomcat instance; it is a simple singleton element that represents the entire Tomcat JVM. It

 174

may contain one or more Service instances. The <Server> element is defined by the
org.apache.catalina.Server interface. Table A-1 defines the possible attributes that
can be set for the <Server> element.

Table A-1: The Attributes of the <Server> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements the
org.apache.catalina.Server interface. If no class name is
specified, the implementation is used, which is the
org.apache.catalina.core.StandardServer.

port Names the TCP/IP port number on which the server listens for a
shutdown command. The TCP/IP client that issues the shutdown
command must be running on the same computer that is running Tomcat.
This attribute is required.

shutdown Defines the command string that must be received by the server on the
named port to shut down Tomcat. This attribute is also required.

The <Server> defined in the server.xml file is contained in the following code snippet:
<Server className="org.apache.catalina.core.StandardServer"

 port="8005"

 shutdown="SHUTDOWN"

 debug="0">

Note

The debug attribute is available to all Tomcat elements. It states the debug
level to use when logging messages to a defined Logger. We look at a
Logger definition later in this appendix.

The <Server> element cannot be configured as the child of any element. However, it can
be configured as a parent to the <Service> element.

The <Service> Element

The next container element in the server.xml file is the <Service> element, which holds
a collection of one or more <Connector> elements that share a single <Engine> element.
N-number of <Service> elements may be nested inside a single <Server> element. The
<Service> element is defined by the org.apache.catalina.Service interface. Table
A-2 describes the <Service> element's attributes.

Table A-2: The Attributes of the <Service> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements the
org.apache.catalina.Service interface. If no class name is
specified, the implementation will be used, which is the

 175

Table A-2: The Attributes of the <Service> Element

ATTRIBUTE DESCRIPTION
org.apache.catalina.core.StandardService.

name Defines the display name of the defined service. This value is used in all
Tomcat Logger messages.

Two <Service> definitions are found in the default server.xml file: a standalone Tomcat
service that handles all direct requests received by Tomcat:
<Service name="Tomcat-Standalone">

and a service defined to handle all requests that have been forwarded by the Apache Web
server:
<Service name="Tomcat-Apache">

The <Service> element can be configured as a child of the <Server> element, and it can
be configured as a parent to the <Connector> and <Engine> elements.

The <Engine> Element

The third container element in the server.xml file is the <Engine> element, which
represents the request-processing mechanism for a given <Service>. Each defined
<Service> can have only one <Engine> element, and this single <Engine> component
receives all requests received by all of the defined <Connector> components. The
<Engine> element must be nested immediately after the <Connector> elements, inside its
owning <Service> element.

The <Engine> element is defined by the org.apache.catalina.Engine interface.
Table A-3 describes the possible <Engine> element attributes.

Table A-3: The Attributes of the <Engine> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements the
org.apache.catalina.Engine interface. If no class name is
specified, the implementation is used, which is the
org.apache.catalina.core.StandardEngine.

defaultHost Names the host name to which all requests are defaulted if not
otherwise named. The named host must be defined by a child <Host>
element.

name Defines the logical name of this engine. The name selected is arbitrary,
but required.

The following code snippet contains the <Engine> element defined in the server.xml file.
The element defines an engine named Standalone with a default host of localhost:
<Engine name="Standalone" defaultHost="localhost" debug="0">

 176

The <Engine> element can be configured as a child of the <Service> element, and as a
parent to the following elements:

� <Logger>
� <Realm>
� <Valve>
� <Host>

Note

All Valves that perform request processing and are nested in an
<Engine> are executed for every request received from every
<Connector> configured within this service.

The <Host> Element

The <Host> element defines the virtual hosts that are contained in each instance of a
Catalina <Engine>. Each <Host> can be a parent to one or more Web applications, each
being represented by a <Context> component (which is described in the following section).

You must define at least one <Host> for each Engine element. This <Host> is usually
named localhost. The possible attributes for the <Host> element are described in Table
A-4.

Table A-4: The Attributes of the <Host> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements the
org.apache.catalina.Host interface. If no class name is specified,
the implementation is used, which is the
org.apache.catalina.core.StandardHost.

appBase Defines the directory for this virtual host. This directory is the pathname
of the Web applications to be executed in this virtual host. This value
can be either an absolute path or a path that is relative to the
<CATALINA_HOME> directory. If this value is not specified, the relative
value webapps is used.

unpackWARs Determines if WAR files should be unpacked or run directly from the
WAR file. If not specified, the default value is true.

name Defines the hostname of this virtual host. This attribute is required and
must be unique among the virtual hosts running in this servlet container.

The <Host> element defined for the Standalone <Engine> is listed in the following code
snippet:
<Host name="localhost" debug="0" appBase="webapps"
unpackWARs="true">

The host definition defines a host named localhost that can be accessed by opening the
URL:

http://localhost:8080/

 177

The <Host> element is configured as a child of the <Engine> element, and as a parent to
the following elements:

� <Logger>
� <Realm>
� <Valve>
� <Context>

The <Context> Element

The <Context> element is the most commonly used container in the server.xml file. It
represents an individual Web application that is running within a defined <Host>. Any
number of contexts can be defined within a <Host>, but each <Context> definition must
have a unique context path, which is defined by the path attribute. The possible attributes for
the <Context> element are described in Table A-5.

Table A-5: The Attributes of the <Context> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements the
org.apache.catalina.Context interface. If no class name is
specified, the implementation is used, which is the
org.apache.catalina.core.StandardContext.

cookies Determines if you want cookies to be used for a session identifier.
The default value is true.

crossContext If set to true, allows the ServletContext.getContext()
method to successfully return the ServletContext for other Web
applications running in the same host. The default value is false,
which prevents the access of cross context access.

docBase Defines the directory for the Web application associated with this
<Context>. This is the pathname of a directory that contains the
resources for the Web application.

path Defines the context path for this Web application. This value must be
unique for each <Context> defined in a given <Host>.

reloadable If set to true, causes Tomcat to check for class changes in the WEB-
INF/classes/ and WEB-INF/lib directories. If these classes have
changed, the application owning these classes is automatically
reloaded. This feature should be used only during development.
Setting this attribute to true causes severe performance degradation
and therefore should be set to false in a production environment.

wrapperClass Defines the Java name of the org.apache.catalina.Wrapper
implementation class that is used to wrap servlets managed by this
Context. If not specified, the standard value
org.apache.catalina.core.StandardWrapper is used.

useNaming Should be set to true (the default) if you wish to have Catalina
enable JNDI.

 178

Table A-5: The Attributes of the <Context> Element

ATTRIBUTE DESCRIPTION

override Should be set to true, if you wish to override the DefaultContext
configuration. The default value is false.

workDir Defines the pathname to a scratch directory that this Context uses
for temporary read and write access. The directory is made visible as
a servlet context attribute of type java.io.File, with the standard
key of java.servlet.context.tempdir. If this value is not
specified, Tomcat uses the work directory.

The <Context> element that defines the /examples application is included in the following
code snippet:
<Context path="/examples" docBase="examples" debug="0"

 reloadable="true">

The context definition defines a web application named /examples that has all of its
resources stored in the relative directory examples. This context also states that this
application is reloaded when class file are changed.

The <Context> element is configured as a child of the <Host> element, and as a parent to
the following elements:

� <Logger>
� <Loader>
� <Realm>
� <Manager>
� <Ejb>
� <Environment>
� <Parameter>
� <Resource>
� <ResourceParams>

Note

If you do not have special configuration needs, you can use the default
context configuration that is described in the default web.xml file, which
can be found in the <CATALINA_HOME>/conf/ directory.

Connectors
The next type of element found in the server.xml file is the <Connector> element. The
<Connector> element defines the class that does the actual handling requests and
responses to and from a calling client application. The <Connector> element is defined by
the org.apache.catalina.Connector interface. Table A-6 describes the
<Connector> element's attributes.

Table A-6: The Attributes of the <Connector> Element

ATTRIBUTE DESCRIPTION

 179

Table A-6: The Attributes of the <Connector> Element

ATTRIBUTE DESCRIPTION

className Names the fully qualified Java name of the class that implements
the org.apache.catalina.Connector interface. The
className attribute is a required attribute.

enableLookups Determines whether DNS lookups are enabled. The default value for
this attribute is true. When DNS lookups are enabled, an
application calling request.getRemoteHost() is returned the
domain name of the calling client. Enabling DNS lookups can
adversely affect performance. Therefore, this value should most
often be set to false.

redirectPort Names the TCP/IP port number to which a request should be
redirected, if it comes in on a non-SSL port and is subject to a
security constraint with a transport guarantee that requires SSL

The <Connector> element is configured as a child of the <Service> element, and cannot
be configured as a parent to any element.

The HTTP Connector

Two <Connector> definitions can be found in the default server.xml file. The first is an
HTTP connector that handles all direct HTTP request received by Tomcat. These attributes
are specific to the HttpConnector. Table A-7 describes the possible attributes of the
HttpConnector.

Table A-7: The <Connector> Attributes Defined by the HttpConnector

ATTRIBUTE DESCRIPTION

port Names the TCP/IP port number on which the connector listens
for requests. The default value is 8080.

address Used for servers with more than one IP address. It specifies
which address is used for listening on the specified port. If this
attribute is not specified, this named port number is used on all
IP addresses associated with this server.

bufferSize Specifies the size, in bytes, of the buffer to be provided for use
by input streams created by this connector. Increasing the buffer
size can improve performance, but at the expense of higher
memory usage. The default value is 2048 bytes.

className Names the fully qualified Java name of the HTTP connector
class. This value must equal
org.apache.catalina.connector.http.HttpConnecto
r.

enableLookups Same for all connectors.

proxyName Specifies the server name to use if this instance of Tomcat is

 180

Table A-7: The <Connector> Attributes Defined by the HttpConnector

ATTRIBUTE DESCRIPTION
behind a firewall. This attribute is optional.

proxyPort Specifies the HTTP port to use if this instance of Tomcat is
behind a firewall. Also an optional attribute.

minProcessors Defines the minimum number of processors, or instances, to
start at initialization time. The default value is 5.

maxProcessors Defines the maximum number of allowed processors, or
instances, that can be started. The default value is 20. An
unlimited number of processors can be started if the value of the
maxProcessors attribute is set to a number that is less than
zero.

acceptCount Specifies the number of requests that can be queued on the
listening port. The default value is 10.

connectionTimeout Defines the time, in milliseconds, before a request terminates.
The default value is 60000 milliseconds. To disable connection
timeouts, the connectionTimeout value should be set to −1.

The following code snippet is an example <Connector> defining an HTTP connector:
<Connector
className="org.apache.catalina.connector.http.HttpConnector"

 port="8080"

 minProcessors="5"

 maxProcessors="75"

 enableLookups="true"

 redirectPort="8443"

 acceptCount="10"

 debug="0"

 connectionTimeout="60000"/>

The Warp Connector

The second defined <Connector> is a Warp connector. The Warp connector handles
requests that have been forwarded by a server, like the Apache Web server, that sits in front
of Tomcat. An example <Connector> defining a Warp connector is contained in the
following code snippet:
<Connector
className="org.apache.catalina.connector.warp.WarpConnector"

 port="8008"

 enableLookups="true"

 acceptCount="10"

 debug="0"/>

 181

The Warp connector can be configured using the set of attributes described in Table A-8.

Table A-8: The <Connector> Attributes Defined by the HttpConnector

ATTRIBUTE DESCRIPTION

port Names the TCP/IP port number on which the connector listens for
requests. The default value is 8008.

address Used for servers with more than one IP address. It specifies which
address is used for listening on the specified port. If this attribute is
not specified, this named port number is used on all IP addresses
associated with this server.

className Names the fully qualified Java name of the Warp connector class.
This value must equal
org.apache.catalina.connector.warp.WarpConnector.

enableLookups Same for all connectors.

acceptCount Specifies the number of requests that can be queued on the
listening port. The default value is 10.

Note

The default server.xml <Connector> definition, describing a Warp
connector, includes the attributes minProcessors and maxProcessors,
whereas the class definition for WarpConnector does not define these
attributes. This seems to be a simple oversight by the developers and does
not appear to have any effect on the actual Warp connector.

 182

Appendix B: The web.xml File
Overview
In this Appendix, we discuss the Web application deployment descriptor, or web.xml file.
The web.xml file is an XML file, defined by the servlet specification, with the purpose of
acting as a configuration file for a Web application. This file and its elements are completely
independent of the Tomcat container. Listing B-1 contains a sample web.xml that we will be
using, as an example, throughout this appendix.

Listing B-1: A Sample web.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'

 'http://java.sun.com/j2ee/dtds/web-app_2_3.dtd'>

<web-app>

 <!-- Define a Filter -->

 <filter>

 <filter-name>SampleFilter</filter-name>

 <filter-class>com.apress.SampleFilter</filter-class>

 </filter>

 <!-- Define a Mapping for the previous Filter -->

 <filter-mapping>

 <filter-name>SampleFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

 </filter-mapping>

 <!-- The define the login servlet -->

 <servlet>

 <servlet-name>login</servlet-name>

 <servlet-class>chapter2.login</servlet-class>

 <init-param>

 <param-name>paramName</param-name>

 <param-value>paramValue</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 183

 </servlet>

 <!-- The mapping for the Controller servlet -->

 <servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>*.ap</url-pattern>

 </servlet-mapping>

 <!-- Set the default session timeout (in minutes) -->

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

 <!-- Establish the default list of welcome files -->

 <welcome-file-list>

 <welcome-file>login.jsp</welcome-file>

 </welcome-file-list>

 <!-- Define a Tag Library for this Application -->

 <taglib>

 <taglib-uri>/apress</taglib-uri>

 <taglib-location>/WEB-INF/lib/taglib.tld</taglib-location>

 </taglib>

 <!-- Define a Security Constraint on this Application -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Apress Application</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>apressuser</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Define the Login Configuration for this Application -->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Apress Application</realm-name>

 </login-config>

 184

</web-app>

The first several lines of the web.xml file will not often change. These elements define the
XML version and the DTD for the web.xml file. The first line that is important to us is the
<web-app> element because this element is the container for all Web application
components. We will be examining the components that are the children of this element, but
we won't examine every element of the deployment descriptor, which would be beyond the
scope of this text. We'll examine only those elements that are most commonly used.

Note

All of the definitions that we add to the web.xml file must be added in the
order of their appearance. If the order is changed, the Tomcat server will
likely throw a SAXParseException.

Adding a Servlet Filter
Servlet filters provide the necessary functionality to examine and transform the header
information of both the request and response objects of a servlet container. To add a new
servlet filter to a Web application, you must add a <filter> element and a <filter-
mapping> element to the web.xml file. The following code snippet contains a sample filter
entry:
<!-- Define a Filter -->

<filter>

 <filter-name>SampleFilter</filter-name>

 <filter-class>com.apress.SampleFilter</filter-class>

</filter>

This filter definition defines a filter named SampleFilter that is implemented in a class
named com.apress.SampleFilter. The <filter> element's sub-elements can be
found in Table B-1.

Table B-1: The <filter> Sub-Elements

SUB-
ELEMENT DESCRIPTION

<filter-
name>

The string that is used to uniquely identify the servlet filter. It is used in
the <filter-mapping> sub-element to identify the filter to be
executed, when a defined URL pattern is requested.

<filter-
class>

Names the fully qualified filter class to be executed when the string
defined in the <filter-name> sub-element is referenced in the
<filter-mapping> element

To deploy a filter, you must add a <filter-mapping> element. The <filter-mapping>
describes the servlet filter to execute and the URL pattern that must be requested to execute
the filter. The following code snippet contains a <filter-mapping> for the previous filter:
<!-- Define a Mapping for the previous Filter -->

<filter-mapping>

 185

 <filter-name>SampleFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

</filter-mapping>

The sub-elements of the <filter-mapping> are described in Table B-2.

Table B-2: The <filter-mapping> Sub-Elements

SUB-ELEMENT DESCRIPTION

<filter-
name>

The string that names the servlet filter to execute when the defined
URL pattern is requested

<url-
pattern>

Defines the URL pattern that must be requested to execute the named
servlet filter

Note

Make sure that the <filter-name> sub-element in both the <filter>
and <filter-mapping> elements match. This is the link between these
two elements.

The result of these combined elements is a filter named SampleFilter that is executed
whenever a JSP resource is requested in the application that owns this deployment
descriptor.

Adding a Servlet Definition
The next Web component definition that we are going to add is a servlet. To do this, we use
the <servlet> element and its sub-elements. The following code snippet contains a
sample servlet definition:
<!-- Define a servlet -->

<servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>com.apress.Controller</servlet-class>

 <init-param>

 <param-name>paramName</param-name>

 <param-value>paramValue</param-value>

 </init-param>

 <load-on-startup>0</load-on-startup>

</servlet>

The <servlet> sub-elements can be found in Table B-3.

Table B-3: The <servlet> Sub-Elements

 186

SUB-
ELEMENT DESCRIPTION

<servlet-
name>

The string that is used to uniquely identify the servlet. It is used in the
<servlet-mapping> sub-element to identify the servlet to be
executed, when a defined URL pattern is requested, if there is a
<servlet-mapping> sub-element.

<servlet-
class>

Names the fully qualified servlet class to be executed

<init-
param>

Defines a name/value pair as an initialization parameter of the servlet.
There can be any number of this optional subelement. It also has two
sub-elements of its own that define the name and value of the
initialization parameter.

<load-on-
startup>

Indicates that this servlet should be loaded when the Web application
starts. If the value of this element is a negative integer, or if the element
is not present, the container is open to load the servlet whenever it
chooses. If the value is a positive integer or 0, the container guarantees
that servlets with lower integer values are loaded before servlets with
higher integer values.

After examining the sub-element definitions, you can see that this servlet element defines a
servlet named Controller that is implemented in a class named
com.apress.Controller. It has a single initialization parameter named paramName, with
a value paramValue. It also is one of the first preloaded servlets when the Web application
starts.

Adding a Servlet Mapping
The next Web component that we are going to add is a servlet mapping. A servlet mapping
defines a mapping between a servlet and a URL pattern. To do this, we use the <servlet-
mapping> element and its sub-elements. The following code snippet contains a sample
servlet mapping definition:
<!-- The mapping for the Controller servlet -->

<servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>*.ap</url-pattern>

</servlet-mapping>

The <servlet-mapping> sub-elements can be found in Table B-4.

Table B-4: The <servlet-mapping> Sub-Elements

SUB-ELEMENT DESCRIPTION

<servlet-
name>

The string that is used to uniquely identify the servlet that is executed
when the following defined <url-pattern> is requested

<url- Defines the URL pattern that must be matched to execute the servlet

 187

Table B-4: The <servlet-mapping> Sub-Elements

SUB-ELEMENT DESCRIPTION
pattern> named in the <servlet-name> element

This previous servlet mapping states that the servlet named Controller is executed
whenever a resource in this Web application, ending with ap, is requested.

Configuring the Session
The next Web component that we are going to add determines the life of each
HttpSession in the current Web application. The following code snippet contains a sample
session configuration:
<!-- Set the default session timeout (in minutes) -->

<session-config>

 <session-timeout>30</session-timeout>

</session-config>

The <session-config> element contains only one sub-element, <session-timeout>,
which defines the length of time that an HttpSession object can remain inactive before the
container marks it as invalid. The value must be an integer measured in minutes.

Adding a Welcome File List
We are now going to add a default list of files that will be loaded automatically when a Web
application is referenced without a filename. An example <welcome-file-list> is
contained in the following code snippet:
<!-- Establish the default list of welcome files -->

<welcome-file-list>

 <welcome-file>login.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

</welcome-file-list>

The <welcome-file-list> contains an ordered list of <welcome-files> sub-elements
that contain the filenames to present to the user. The files are served in order of appearance
and existence. In this example, the Web application first tries to serve up the login.jsp
file. If this file does not exist in the Web application, the application tries to serve up the file
index.html. If none of the files in the welcome list exists, an HTTP 404 Not Found error
is returned.

Adding a Tag Library
Now we are going to add a tag library to our Web application using the <taglib> element.
The following code snippet contains a sample <taglib> element:
<!-- Define a Tag Library for this Application -->

<taglib>

 <taglib-uri>/apress</taglib-uri>

 188

 <taglib-location>/WEB-INF/lib/taglib.tld</taglib-location>

</taglib>

The <taglib> sub-elements can be found in Table B-5.

Table B-5: The <taglib> Sub-Elements

SUB-ELEMENT DESCRIPTION

<taglib-uri> Defines a URI that represents a unique key that the Web application
can use to look up the defined tag library

<taglib-
location>

Defines the location of the TLD representing this tag library

This entry in the web.xml file tells the Web application two things. First, it defines a unique
key representing a tag library that can be used by a JSP in a container to identify this tag
library, /apress. Second, it states the location of the tag library's TLD, which describes the
complete tag library, as being in the file /WEB-INF/lib/taglib.tld.

Adding a Security Constraint
Next, we are going to add a security constraint to protect a resource in our Web application.
The following code snippet contains a sample <security-constraint> element:
<!-- Define a Security Constraint on this Application -->

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Apress Application</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>apressuser</role-name>

 </auth-constraint>

</security-constraint>

The <security-constraint> sub-elements can be found in Table B-6.

Table B-6: The <security-constraint> Sub-Elements

SUB-ELEMENT DESCRIPTION

<web-
resource-
collection>

Used to identify a subset of the resources and HTTP methods on
those resources within a Web application to which a security
constraint applies. The <web-resource-collection> sub-
element contains two sub-elements of its own that are defined in
Table B-7.

<auth- Defines the user roles that should be permitted access to this

 189

Table B-6: The <security-constraint> Sub-Elements

SUB-ELEMENT DESCRIPTION
constraint> resource collection. It contains a single sub-element, <role-

name>, which defines the actual role name that has access to the
defined constraint. If this value is set to an *, all roles have access
to the constraint.

Table B-7: The <web-resource-collection> Sub-Elements

SUB-ELEMENT DESCRIPTION

<web-resource-
name>

Defines the name of this Web resource collection

<url-pattern> Defines the URL pattern that will be protected by the
resource

This security constraint protects the entire Apress Application Web application,
allowing only users with a defined <role-name> of apressuser.

Adding a Login Config
To make a security constraint effective, you must define a method in which a user can log in
to the defined constraint. To do this, you must add a login configuration component to the
Web application. An example of this is contained in the following code snippet:
<!-- Define the Login Configuration for this Application -->

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Apress Application</realm-name>

</login-config>

The <login-config> sub-elements can be found in Table B-8.

Table B-8: The <login-config> Sub-Elements

SUB-
ELEMENT DESCRIPTION

<auth-
method>

Used to configure the method by which the user is authenticated for this
Web application. The possible values are BASIC, DIGEST, FORM, and
CLIENT-CERT. If this value is set to FORM, the <form-login-
config> sub-element must be defined.

<form-
login-
config>

Specifies the login and error page that should be used in FORM-based
authentication. The sub-elements of the <form-login-config> are
defined in Table B-9.

 190

Table B-8: The <login-config> Sub-Elements

SUB-
ELEMENT DESCRIPTION

<realm-
name>

Defines the name of the resource that this login configuration applies.
This value must match a <web-resource-name> that was defined in a
security constraint.

Table B-9: The <form-login-config> Sub-Elements

SUB-ELEMENT DESCRIPTION

<form-login-
page>

Defines the location and name of the page that will serve as the login
page when using FORM-based authentication.

<form-error-
page>

Defines the location and name of the page that will serve as the error
page when a FORM-based login fails.

The results of this <login-config> sub-element definition states that the <web-
resource-collection>, with a Web resource named Apress Application, uses a
login method of BASIC authentication.

 191

List of Figures
Chapter 1: Jakarta Tomcat

Figure 1-1: The Tomcat homepage

Figure 1-2: The Tomcat mailing lists

Figure 1-3: NT/2000 control panel

Figure 1-4: NT/2000 system application

Figure 1-5: Environment variables dialog box

Figure 1-6: JAVA_HOME environment settings

Figure 1-7: The Tomcat default page

Figure 1-8: The JSP examples page

Figure 1-9: The JSP date page

Chapter 2: Deploying Web Applications to Tomcat
Figure 2-1: The ouput of the login.jsp

Figure 2-2: The welcome.jsp page containing the HTML login form

Chapter 3: Servlets, JSPs, and the ServletContext
Figure 3-1: The Execution of a Java Servlet

Figure 3-2: A simple object diagram of the servlet framework

Figure 3-3: The output of SimpleServlet

Figure 3-4: The steps of a JSP request

Figure 3-5: The output of the testerror.jsp example

Figure 3-6: The output of out.jsp

Figure 3-7: The output of request.jsp

Figure 3-8: The output of session.jsp

Figure 3-9: The relationship of /apress and /apress2

Figure 3-10: ContextTest.jsp after initial load

Figure 3-11: chapter3.ContextTest after ContextTest.jsp

Chapter 4: Using Tomcat's Manager Application

 192

Figure 4-1: A successful manager deployment

Figure 4-2: Results from the list command

Figure 4-3: Results from the reload command

Figure 4-4: Results from the sessions command

Figure 4-5: Results from the stop command

Figure 4-6: Results from the start command

Figure 4-7: Results from the remove command

Chapter 5: Configuring Security Realms
Figure 5-1: The BASIC authentication dialog will prompt you for a user ID and password.

Figure 5-2: This figure shows the relationships of the tables in the user database.

Figure 5-3: The Windows NT/2000 control panel is used to access the Administative
Tools folder.

Figure 5-4: The Windows NT/2000 Administrative Tools folder contains the link to the
ODBC data sources.

Figure 5-5: The Windows NT/2000 ODBC Data Source Administrator provides access to
all of your ODBC data sources.

Figure 5-6: The Windows NT/2000 Create New Data Source wizard walks you through
the steps of creating a new ODBC data source.

Figure 5-7: The Windows NT/2000 ODBC Microsoft Access setup dialog box shows your
newly created ODBC data source.

Figure 5-8: The Modified welcome.jsp page shows the effect of retrieving the
username from a security realm.

Chapter 7: Persistent Sessions
Figure 7-1: The SessionServlet's output with an empty HTTP session

Figure 7-2: The SessionServlet's output after adding objects to the HTTP session

Chapter 8: Valves and Servlet Filters
Figure 8-1: The Deny response from the RemoteAddrValve

Figure 8-2: The apress login.jsp with image from chapter8.ExampleFilter

Figure 8-3: The standard error output from doFilter()

Chapter 9: Integrating the Apache HTTP Server

 193

Figure 9-1: The test page for the Apache installation

Figure 9-2: The directory listing for the examples Web application

Chapter 10: Integrating the Jakarta-Struts Project
Figure 10-1: The Struts framework maps well to the MVC model.

Figure 10-2: The Struts starter page

Figure 10-3: The apress-struts Login view

Figure 10-4: The apress-struts Welcome view

Chapter 12: Integrating the Apache SOAP Project
Figure 12-1: The SOAP application Welcome page

Figure 12-2: The SOAP Admin Tool homepage

Figure 12-3: The Web presentation of the list command

Figure 12-4: The detailed view of the urn:apressserver service

 194

List of Tables
Chapter 1: Jakarta Tomcat

Table 1-1: The Directories of a Web Application

Table 1-2: Tomcat Requirements

Table 1-3: JAVA_HOME Environment Commands

Table 1-4: TOMCAT_HOME Environment Commands

Table 1-5: Tomcat Startup/Shutdown Commands

Chapter 2: Deploying Web Applications to Tomcat
Table 2-1: The Tomcat Directory Structure

Table 2-3: The Sub-Elements of a <servlet>

Chapter 3: Servlets, JSPs, and the ServletContext
Table 3-1: The Attributes for the page Directive

Table 3-2: The Attributes for the taglib Directive

Table 3-3: The Attributes for the <jsp:useBean> Action

Table 3-4: The Attributes for the <jsp:setProperty> Action

Table 3-5: The Attributes for the <jsp:getProperty> Standard Action

Table 3-6: The Attributes for the <jsp:param> Action

Table 3-7: The Attributes for the <jsp:include> Action

Table 3-8: The Attributes for the <jsp:plugin> Action

Table 3-9: The ServletContext "Shared Memory" Methods

Chapter 4: Using Tomcat's Manager Application
Table 4-1: The war Parameter Syntax

Chapter 5: Configuring Security Realms
Table 5-1: The Required Attributes of the <user> Sub-Element

Table 5-2: The users Table Definition

Table 5-3: The user_roles Table Definition

 195

Table 5-4: The Contents of the users Table

Table 5-5: The Contents of the roles Table

Table 5-6: The Contents of the user_roles Table

Table 5-7: The <Realm> Element Attributes

Chapter 7: Persistent Sessions
Table 7-1: The Four Most Commonly Used Methods of the HttpSession Object

Table 7-2: The Attributes of the <Manager> Element

Table 7-3: The sessions Table Definition

Table 7-4: The <Store> Element Attributes

Chapter 8: Valves and Servlet Filters
Table 8-1: The Containers That Can Host a Tomcat Valve

Table 8-2: The Access Log Valve Attributes

Table 8-3: The Available pattern Attribute Values

Table 8-4: The Remote Address Filter Valve Attributes

Table 8-5: The Remote Host Filter Valve Attributes

Table 8-6: The <filter> Sub-Elements

Table 8-7: The <filter-mapping> Sub-Elements

Chapter 9: Integrating the Apache HTTP Server
Table 9-1: The Apache Modules Directories

Table 9-2: The Attributes of the WebAppConnection Entry

Table 9-3: The Attributes of the WebAppDeploy Entry

Chapter 10: Integrating the Jakarta-Struts Project
Table 10-1: The Three Components of the MVC Model

Table 10-2: The Attributes of the form Tag Used in This Example

Table 10-3: The Parameters of the Action.perform() Method

Chapter 12: Integrating the Apache SOAP Project
Table 12-1: Components Required to Execute SOAP Clients and Services

 196

Table 12-2: The Three Attributes of the provider Element

Appendix A: The server.xml File
Table A-1: The Attributes of the <Server> Element

Table A-2: The Attributes of the <Service> Element

Table A-3: The Attributes of the <Engine> Element

Table A-4: The Attributes of the <Host> Element

Table A-5: The Attributes of the <Context> Element

Table A-6: The Attributes of the <Connector> Element

Table A-7: The <Connector> Attributes Defined by the HttpConnector

Table A-8: The <Connector> Attributes Defined by the HttpConnector

Appendix B: The web.xml File
Table B-1: The <filter> Sub-Elements

Table B-2: The <filter-mapping> Sub-Elements

Table B-3: The <servlet> Sub-Elements

Table B-4: The <servlet-mapping> Sub-Elements

Table B-5: The <taglib> Sub-Elements

Table B-6: The <security-constraint> Sub-Elements

Table B-7: The <web-resource-collection> Sub-Elements

Table B-8: The <login-config> Sub-Elements

Table B-9: The <form-login-config> Sub-Elements

 197

List of Examples
Chapter 2: Deploying Web Applications to Tomcat

Example 2-1: The Source Code for a Default web.xml File

Example 2-2: The Source Code for login.jsp

Example 2-3: The Source Code for welcome.jsp

Example 2-4: The Source Code for chapter2.login.java

Example 2-5: The Source Code for HelloTag.java Containing the Hello Tag Handler

Example 2-6: The Source Code for taglib.tld, Including the Definition of the hello
Tag.

Example 2-7: The Modified web.xml Containing the Addition of our Tag Library

Example 2-8: The Modified welcome.jsp Page Containing the Reference to the hello
Tag

Chapter 3: Servlets, JSPs, and the ServletContext
Example 3-1: The Source Code for our Simple Servlet SimpleServlet.java

Example 3-2: The Source Code of errorpage.jsp

Example 3-3: The Source Code of testerror.jsp

Example 3-4: The Source Code of out.jsp

Example 3-5: The Source Code of request.jsp

Example 3-6: The Source Code of session.jsp

Example 3-7: The Souce Code of chapter3.ContextTest.java

Example 3-8: The Source Code of ContextTest.jsp

Chapter 4: Using Tomcat's Manager Application
Example 4-1: The tomcat-users.xml File

Chapter 5: Configuring Security Realms
Microsoft Configuration

MySQL Configuration

Example 5-1: The Modified welcome.jsp Page

 198

Chapter 6: Embedding Tomcat
Example 6-1: EmbeddedTomcat.java

Chapter 7: Persistent Sessions
Example 7-1: SessionServlet.java

Chapter 8: Valves and Servlet Filters
Example 8-1: ExampleFilter.java

Example 8-2: The Modified web.xml File

Example 8-3: The Modifed login.jsp

Example 8-4: ExampleFilter2.java

Example 8-5: The Modified web.xml Including a Filter Chain

Chapter 10: Integrating the Jakarta-Struts Project
Example 10-1: The Struts Version of login.jsp

Example 10-2: The Contents of the ApplicationResource.properties File

Example 10-3: The Struts Version of welcome.jsp

Example 10-4: Our ActionForm Implementation LoginForm.java

Example 10-5: The LoginAction Bean

Chapter 11: Integrating the Jakarta-Log4J Project
Example 11-1: A Simple Log4J Properties File properties.lcf

Example 11-2: A Simple Log4J Application Log4JApp.java

Example 11-3: The Source Code of the Log4J Initializing Servlet Log4JServlet.java

Example 11-4: A Modified Version of login.jsp Using Log4J

Chapter 12: Integrating the Apache SOAP Project
Example 12-1: The Source Code for Our Limited Calculator CalcService.java

Example 12-2: The Calculator Deployment Descriptor DeploymentDescriptor.xml

Example 12-3: An Example SOAP Client CalcClient.java

Appendix A: The server.xml File

 199

Example A-1: The Source Code of the Default server.xml File

Appendix B: The web.xml File
Example B-1: A Sample web.xml file

