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Notes about the Second
Edition

When | wrote Code Complete, First Edition, | knew that programmers needed a
comprehensive book on software construction. | thought a well-written book
could sell twenty to thirty thousand copies. In my wildest fantasies (and my
fantasies were pretty wild), | thought sales might approach one hundred thousand
copies.

Ten years later, | find that CC1 has sold more than a quarter million copies in
English and has been translated into more than a dozen languages. The success
of the book has been a pleasant surprise.

Comparing and contrasting the two editions seems like it might produce some
insights into the broader world of software development, so here are some
thoughts about the second edition in a Q&A format.

Why did you write a second edition? Weren’t the principles in the first
edition supposed to be timeless?

I’ve been telling people for years that the principles in the first edition were still
95 percent relevant, even though the cosmetics, such as the specific
programming languages used to illustrate the points, had gotten out of date. |
knew that the old-fashioned languages used in the examples made the book
inaccessible to many readers.

Of course my understanding of software construction had improved and evolved
significantly since I published the first edition manuscript in early 1993. After |
published CC1 in 1993, I didn’t read it again until early 2003. During that 10
year period, subconsciously I had been thinking that CC1 was evolving as my
thinking was evolving, but of course it wasn’t. As | got into detailed work on the
second edition, | found that the “cosmetic” problems ran deeper than | had
thought. CC1 was essentially a time capsule of programming practices circa
1993. Industry terminology had evolved, programming languages had evolved,
my thinking had evolved, but for some reason the words on the page had not.

After working through the second edition, 1 still think the principles in the first
edition were about 95 percent on target. But the book also needed to address new
content above and beyond the 95 percent, so the cosmetic work turned out to be
more like reconstructive surgery than a simple makeover.
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Does the second edition discuss object-oriented programming?
Object-oriented programming was really just creeping into production coding
practice when | was writing CC1 in 1989-1993. Since then, OO has been
absorbed into mainstream programming practice to such an extent that talking
about “O0” these days really amounts just to talking about programming. That
change is reflected throughout CC2. The languages used in CC2 are all OO
(C++, Java, and Visual Basic). One of the major ways that programming has
changed since the early 1990s is that a programmer’s basic thought unit is now
the classes, whereas 10 years ago the basic thought unit was individual routines.
That change has rippled throughout the book as well.

What about extreme programming and agile development? Do you talk
about those approaches?

It’s easiest to answer that question by first saying a bit more about OO. In the
early 1990s, OO represented a truly new way of looking at software. As such, |
think some time was needed to see how that new approach was going to pan out.

Extreme programming and agile development are unlike OO in that they don’t
introduce new practices as much as they shift the emphasis that traditional
software engineering used to place on some specific practices. They emphasize
practices like frequent releases, refactoring, test-first development, and frequent
replanning, and de-emphasize other practices like up-front planning, up-front
design, and paper documentation.

CC1 addressed many topics that would be called “agile” today. For example,
here’s what | said about planning in the first edition:

“The purpose of planning is to make sure that nobody
starves or freezes during the trip; it isn’t to map out each step
in advance. The plan is to embrace the unexpected and
capitalize on unforeseen opportunities. It’s a good approach
to a market characterized by rapidly changing tools,
personnel, and standards of excellence.”

Much of the agile movement originates from where CC1 left off. For example,
here’s what | said about agile approaches in 1993:

“Evolution during development is an issue that hasn’t
received much attention in its own right. With the rise of code-
centered approaches such as prototyping and evolutionary
delivery, it’s likely to receive an increasing amount of
attention.”
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“The word ““incremental’ has never achieved the
designer status of “structured” or “object-oriented,” so no
one has ever written a book on ““incremental software
engineering.” That’s too bad because the collection of
techniques in such a book would be exceptionally potent.”

Of course evolutionary and incremental development approaches have become
the backbone of agile development.

What size project will benefit from Code Complete, Second Edition?

Both large and small projects will benefit from Code Complete, as will business-
systems projects, safety-critical projects, games, scientific and engineering
applications—but these different kinds of projects will emphasize different
practices. The idea that different practices apply to different kinds of software is
one of the least understood ideas in software development. Indeed, it appears not
to be understood by many of the people writing software development books.
Fortunately, good construction practices have more in common across types of
software than do good requirements, architecture, testing, and quality assurance
practices. So Code Complete can be more applicable to multiple project types
than books on other software development topics could be.

Have there been any improvements in programming in the past 10 years?
Programming tools have advanced by leaps and bounds. The tool that | described
as a panacea in 1993 is commonplace today.

Computing power has advanced extraordinarily. In the performance tuning
chapters, CC2’s disk access times are comparable to CC1’s in-memory access
times, which is a staggering improvement. As computers become more powerful,
it makes sense to have the computer do more of the construction work.

CC1’s discussion of non-waterfall lifecycle models was mostly theoretical—the
best organizations were using them, but most were using either code and fix or
the waterfall model. Now incremental, evolutionary development approaches are
in the mainstream. | still see most organizations using code and fix, but at least
the organizations that aren’t using code and fix are using something better than
the waterfall model.

There has also been an amazing explosion of good software development books.
When | wrote the first edition in 1989-1993, | think it was still possible for a
motivated software developer to read every significant book in the field. Today |
think it would be a challenge even to read every good book on one significant
topic like design, requirements, or management. There still aren’t a lot of other
good books on construction, though.
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Has anything moved backwards?

There are still far more people who talk about good practices than who actually
use good practices. | see far too many people using current buzzwords as a cloak
for sloppy practices. When the first edition was published, people were claiming,
“I don’t have to do requirements or design because I’m using object-oriented
programming.” That was just an excuse. Most of those people weren’t really
doing object-oriented programming—they were hacking, and the results were
predictable, and poor. Right now, people are saying “I don’t have to do
requirements or design because I’m doing agile development.” Again, the results
are easy to predict, and poor.

Testing guru Boris Beizer said that his clients ask him, “How can | revolutionize
and transform my software development without changing anything except the
names and putting some slogans up on the walls?” (Johnson 1994b). Good
programmers invest the effort to learn how to use current practices. Not-so-good
programmers just learn the buzzwords, and that’s been a software industry
constant for a half century.

Which of the first edition’s ideas are you most protective of?

I’m protective of the construction metaphor and the toolbox metaphor. Some
writers have criticized the construction metaphor as not being well-suited to
software, but most of those writers seem to have simplistic understandings of
construction (You can see how I’ve responded to those criticisms in Chapter 2.)

The toolbox metaphor is becoming more critical as software continues to weave
itself into every fiber of our lives. Understanding that different tools will work
best for different kinds of jobs is critical to not using an axe to cut a stick of
butter and not using a butter knife to chop down a tree. It’s silly to hear people
criticize software axes for being too bureaucratic when they should have chosen
butter knives instead. Axes are good, and so are butter knives, but you need to
know what each is used for. In software, we still see people using practices that
are good practices in the right context but that are not well suited for every single
task.

Will there be a third edition 10 years from now?
I’m tired of answering questions. Let’s get on with the book!
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Preface

The gap between the best software engineering practice
and the average practice is very wide—perhaps wider than in
any other engineering discipline. A tool that disseminates
good practice would be important.

—Fred Brooks

MY PRIMARY CONCERN IN WRITING this book has been to narrow the gap
between the knowledge of industry gurus and professors on the one hand and
common commercial practice on the other. Many powerful programming
techniques hide in journals and academic papers for years before trickling down
to the programming public.

Although leading-edge software-development practice has advanced rapidly in
recent years, common practice hasn’t. Many programs are still buggy, late, and
over budget, and many fail to satisfy the needs of their users. Researchers in both
the software industry and academic settings have discovered effective practices
that eliminate most of the programming problems that were prevalent in the
nineties. Because these practices aren’t often reported outside the pages of highly
specialized technical journals, however, most programming organizations aren’t
yet using them in the nineties. Studies have found that it typically takes 5 to 15
years or more for a research development to make its way into commercial
practice (Raghavan and Chand 1989, Rogers 1995, Parnas 1999). This handbook
shortcuts the process, making key discoveries available to the average
programmer now.

Who Should Read This Book?

The research and programming experience collected in this handbook will help
you to create higher-quality software and to do your work more quickly and with
fewer problems. This book will give you insight into why you’ve had problems
in the past and will show you how to avoid problems in the future. The
programming practices described here will help you keep big projects under
control and help you maintain and modify software successfully as the demands
of your projects change.
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Experienced Programmers

This handbook serves experienced programmers who want a comprehensive,
easy-to-use guide to software development. Because this book focuses on
construction, the most familiar part of the software lifecycle, it makes powerful
software development techniques understandable to self-taught programmers as
well as to programmers with formal training.

Self-Taught Programmers

If you haven’t had much formal training, you’re in good company. About 50,000
new programmers enter the profession each year (BLS 2002), but only about
35,000 software-related degrees are awarded each year (NCES 2002). From
these figures it’s a short hop to the conclusion that most programmers don’t
receive a formal education in software development. Many self-taught
programmers are found in the emerging group of professionals—engineers,
accountants, teachers, scientists, and small-business owners—who program as
part of their jobs but who do not necessarily view themselves as programmers.
Regardless of the extent of your programming education, this handbook can give
you insight into effective programming practices.

Students

The counterpoint to the programmer with experience but little formal training is
the fresh college graduate. The recent graduate is often rich in theoretical
knowledge but poor in the practical know-how that goes into building production
programs. The practical lore of good coding is often passed down slowly in the
ritualistic tribal dances of software architects, project leads, analysts, and more-
experienced programmers. Even more often, it’s the product of the individual
programmer’s trials and errors. This book is an alternative to the slow workings
of the traditional intellectual potlatch. It pulls together the helpful tips and
effective development strategies previously available mainly by hunting and
gathering from other people’s experience. It’s a hand up for the student making
the transition from an academic environment to a professional one.

Where Else Can You Find This Information?

This book synthesizes construction techniques from a variety of sources. In
addition to being widely scattered, much of the accumulated wisdom about
construction has reside outside written sources for years (Hildebrand 1989,
McConnell 1997a). There is nothing mysterious about the effective, high-
powered programming techniques used by expert programmers. In the day-to-
day rush of grinding out the latest project, however, few experts take the time to
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share what they have learned. Consequently, programmers may have difficulty
finding a good source of programming information.

The techniques described in this book fill the void after introductory and
advanced programming texts. After you have read Introduction to Java,
Advanced Java, and Advanced Advanced Java, what book do you read to learn
more about programming? You could read books about the details of Intel or
Motorola hardware, Windows or Linux operating-system functions, or about the
details of another programming language—you can’t use a language or program
in an environment without a good reference to such details. But this is one of the
few books that discusses programming per se. Some of the most beneficial
programming aids are practices that you can use regardless of the environment or
language you’re working in. Other books generally neglect such practices, which
is why this book concentrates on them.

: Other
Profe_ss1onal software
experience books

. Cornstruction Magazine
Programming articles
language books Technology

references
FOOxx01
Figure 1

The information in this book is distilled from many sources.

The only other way to obtain the information you’ll find in this handbook would
be to plow through a mountain of books and a few hundred technical journals
and then add a significant amount of real-world experience. If you’ve already
done all that, you can still benefit from this book’s collecting the information in
one place for easy reference.

Key Benefits of This Handbook

Whatever your background, this handbook can help you write better programs in
less time and with fewer headaches.
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Complete software-construction reference

This handbook discusses general aspects of construction such as software quality
and ways to think about programming. It gets into nitty-gritty construction
details such as steps in building classes, ins and outs of using data and control
structures, debugging, refactoring, and code-tuning techniques and strategies.
You don’t need to read it cover to cover to learn about these topics. The book is
designed to make it easy to find the specific information that interests you.

Ready-to-use checklists

This book includes checklists you can use to assess your software architecture,
design approach, class and routine quality, variable names, control structures,
layout, test cases, and much more.

State-of-the-art information

This handbook describes some of the most up-to-date techniques available, many
of which have not yet made it into common use. Because this book draws from
both practice and research, the techniques it describes will remain useful for
years.

Larger perspective on software development

This book will give you a chance to rise above the fray of day-to-day fire
fighting and figure out what works and what doesn’t. Few practicing
programmers have the time to read through the dozens of software-engineering
books and the hundreds of journal articles that have been distilled into this
handbook. The research and real-world experience gathered into this handbook
will inform and stimulate your thinking about your projects, enabling you to take
strategic action so that you don’t have to fight the same battles again and again.

Absence of hype

Some software books contain 1 gram of insight swathed in 10 grams of hype.
This book presents balanced discussions of each technique’s strengths and
weaknesses. You know the demands of your particular project better than anyone
else. This book provides the objective information you need to make good
decisions about your specific circumstances.

Concepts applicable to most common languages

This book describes techniques you can use to get the most out of whatever
language you’re using, whether it’s C++, C#, Java, Visual Basic, or other similar
languages.

Numerous code examples

The book contains almost 500 examples of good and bad code. I’ve included so
many examples because, personally, | learn best from examples. I think other
programmers learn best that way too.
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The examples are in multiple languages because mastering more than one
language is often a watershed in the career of a professional programmer. Once a
programmer realizes that programming principles transcend the syntax of any
specific language, the doors swing open to knowledge that truly makes a
difference in quality and productivity.

In order to make the multiple-language burden as light as possible, I’ve avoided
esoteric language features except where they’re specifically discussed. You don’t
need to understand every nuance of the code fragments to understand the points
they’re making. If you focus on the point being illustrated, you’ll find that you
can read the code regardless of the language. I’ve tried to make your job even
easier by annotating the significant parts of the examples.

Access to other sources of information

This book collects much of the available information on software construction,
but it’s hardly the last word. Throughout the chapters, “Additional Resources”
sections describe other books and articles you can read as you pursue the topics
you find most interesting.

Why This Handbook Was Written

The need for development handbooks that capture knowledge about effective
development practices is well recognized in the software-engineering
community. A report of the Computer Science and Technology Board stated that
the biggest gains in software-development quality and productivity will come
from codifying, unifying, and distributing existing knowledge about effective
software-development practices (CSTB 1990, McConnell 1997a). The board
concluded that the strategy for spreading that knowledge should be built on the
concept of software-engineering handbooks.

The history of computer programming provides more insight into the particular
need for a handbook on software construction.

The Topic of Construction Has Been Neglected

At one time, software development and coding were thought to be one and the
same. But as distinct activities in the software-development life cycle have been
identified, some of the best minds in the field have spent their time analyzing
and debating methods of project management, requirements, design, and testing.
The rush to study these newly identified areas has left code construction as the
ignorant cousin of software development.



le Complete . Preface Page vi

Discussions about construction have also been hobbled by the suggestion that
treating construction as a distinct software development activity implies that
construction must also be treated as a distinct phase. In reality, software
activities and phases don’t have to be set up in any particular relationship to each
other, and it’s useful to discuss the activity of construction regardless of whether
other software activities are performed in phases, in iterations, or in some other
way.

Construction Is Important

Another reason construction has been neglected by researchers and writers is the
mistaken idea that, compared to other software-development activities,
construction is a relatively mechanical process that presents little opportunity for
improvement. Nothing could be further from the truth.

Construction typically makes up about 80 percent of the effort on small projects
and 50 percent on medium projects. Construction accounts for about 75 percent
of the errors on small projects and 50 to 75 percent on medium and large
projects. Any activity that accounts for 50 to 75 percent of the errors presents a
clear opportunity for improvement. (Chapter 27 contains more details on this
topic.)

Some commentators have pointed out that although construction errors account
for a high percentage of total errors, construction errors tend to be less expensive
to fix than those caused by requirements and architecture, the suggestion being
that they are therefore less important. The claim that construction errors cost less
to fix is true but misleading because the cost of not fixing them can be incredibly
high. Researchers have found that small-scale coding errors account for some of
the most expensive software errors of all time with costs running into hundreds
of millions of dollars (Weinberg 1983, SEN 1990).

Small-scale coding errors might be less expensive to fix than errors in
requirements or architecture, but an inexpensive cost to fix obviously does not
imply that fixing them should be a low priority.

The irony of the shift in focus away from construction is that construction is the
only activity that’s guaranteed to be done. Requirements can be assumed rather
than developed; architecture can be shortchanged rather than designed; and
testing can be abbreviated or skipped rather than fully planned and executed. But
if there’s going to be a program, there has to be construction, and that makes
construction a uniquely fruitful area in which to improve development practices.
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No Comparable Book Is Available

When art critics get In light of construction’s obvious importance, | was sure when | conceived this
“together they talk about book that someone else would already have written a book on effective
Form and Structure and construction practices. The need for a book about how to program effectively
“Meaning. When artists seemed obvious. But | found that only a few books had been written about
get together they talk construction and then only on parts of the topic. Some had been written 15 years
“about where you can buy ago or more and employed relatively esoteric languages such as ALGOL, PL/I,
cheap turpentine. Ratfor, and Smalltalk. Some were written by professors who were not working
' __Pablo Picasso on production code. The professors wrote about techniques that worked for

student projects, but they often had little idea of how the techniques would play
out in full-scale development environments. Still other books trumpeted the
authors’ newest favorite methodologies but ignored the huge repository of
mature practices that have proven their effectiveness over time.

In short, | couldn’t find any book that had even attempted to capture the body of
practical techniques available from professional experience, industry research,
and academic work. The discussion needed to be brought up to date for current
programming languages, object-oriented programming, and leading-edge
development practices. It seemed clear that a book about programming needed to
be written by someone who was knowledgeable about the theoretical state of the
art but who was also building enough production code to appreciate the state of
the practice. | conceived this book as a full discussion of code construction—
from one programmer to another.

Book Website

CC2E.COM/1234 Updated checklists, recommended reading, web links, and other content are
provided on a companion website at www.cc2e.com. To access information
related to Code Complete, 2d Ed., enter cc2e.com/ followed by the four-digit
code, as shown in the left margin and throughout the book.

Author Note

If you have any comments, please feel free to contact me care of Microsoft
Press, on the Internet as stevemcc@construx.com, or at my Web site at
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Welcome to Software
Construction

Contents
1.1 What Is Software Construction?

1.2 Why Is Software Construction Important?
1.3 How to Read This Book

Related Topics
Who should read the book: Preface

Benefits of reading the book: Preface
Why the book was written: Preface

You know what “construction” means when it’s used outside software
development. “Construction” is the work “construction workers” do when they
build a house, a school, or a skyscraper. When you were younger, you built
things out of “construction paper.” In common usage, “construction” refers to
the process of building. The construction process might include some aspects of
planning, designing, and checking your work, but mostly “construction” refers to
the hands-on part of creating something.

1.1 What Is Software Construction?

Developing computer software can be a complicated process, and in the last 25
years, researchers have identified numerous distinct activities that go into
software development. They include

e Problem definition

e Requirements development

e Construction planning

e Software architecture, or high-level design
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e Detailed design

e Coding and debugging
e Unit testing

e Integration testing

e Integration

e System testing

e Corrective maintenance

If you’ve worked on informal projects, you might think that this list represents a
lot of red tape. If you’ve worked on projects that are too formal, you know that
this list represents a lot of red tape! It’s hard to strike a balance between too little
and too much formality, and that’s discussed in a later chapter.

If you’ve taught yourself to program or worked mainly on informal projects, you
might not have made distinctions among the many activities that go into creating
a software product. Mentally, you might have grouped all of these activities
together as “programming.” If you work on informal projects, the main activity
you think of when you think about creating software is probably the activity the
researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a
lack of perspective. Putting construction in its context with other activities helps
keep the focus on the right tasks during construction and appropriately
emphasizes important nonconstruction activities. Figure 1-1 illustrates
construction’s place related to other software development activities.
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Figure 1-1

Construction activities are shown inside the gray circle. Construction focuses on
coding and debugging but also includes some detailed design, unit testing,
integration testing and other activities.

As the figure indicates, construction is mostly coding and debugging but also
involves elements of detailed design, unit testing, integration, integration testing,
and other activities. If this were a book about all aspects of software
development, it would feature nicely balanced discussions of all activities in the
development process. Because this is a handbook of construction techniques,
however, it places a lopsided emphasis on construction and only touches on
related topics. If this book were a dog, it would nuzzle up to construction, wag
its tail at design and testing, and bark at the other development activities.

Construction is also sometimes known as “coding” or “programming.” “Coding
isn’t really the best word because it implies the mechanical translation of a
preexisting design into a computer language; construction is not at all
mechanical and involves substantial creativity and judgment. Throughout the
book, I use “programming” interchangeably with “construction.”

In contrast to Figure I-1’s flat-earth view of software development, Figure 1-2
shows the round-earth perspective of this book.
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Figure 1-2

This book focuses on detailed design, coding, debugging, and unit testing in roughly
these proportions.

Figure 1-1 and Figure 1-2 are high-level views of construction activities, but
what about the details? Here are some of the specific tasks involved in
construction:

e Verifying that the groundwork has been laid so that construction can proceed
successfully

e Determining how your code will be tested

e Designing and writing classes and routines

e Creating and naming variables and named constants

e Selecting control structures and organizing blocks of statements

e Unit testing, integration testing, and debugging your own code

e Reviewing other team members’ low-level designs and code and having
them review yours

e Polishing code by carefully formatting and commenting it
e Integrating software components that were created separately

e Tuning code to make it smaller and faster
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For an even fuller list of construction activities, look through the chapter titles in
the table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what
activities are not parts of construction?” That’s a fair question. Important
nonconstruction activities include management, requirements development,
software architecture, user-interface design, system testing, and maintenance.
Each of these activities affects the ultimate success of a project as much as
construction—at least the success of any project that calls for more than one or
two people and lasts longer than a few weeks. You can find good books on each
activity; many are listed in the “Additional Resources” sections throughout the
book and in the “Where to Find More Information” chapter at the end of the
book.

1.2 Why Is Software Construction
Important?

Since you’re reading this book, you probably agree that improving software
quality and developer productivity is important. Many of today’s most exciting
projects use software extensively. The Internet, movie special effects, medical
life-support systems, the space program, aeronautics, high-speed financial
analysis, and scientific research are a few examples. These projects and more
conventional projects can all benefit from improved practices because many of
the fundamentals are the same.

If you agree that improving software development is important in general, the
question for you as a reader of this book becomes, Why is construction an
important focus?

Here’s why:

Construction is a large part of software development

Depending on the size of the project, construction typically takes 30 to 80
percent of the total time spent on a project. Anything that takes up that much
project time is bound to affect the success of the project.

Construction is the central activity in software development

Requirements and architecture are done before construction so that you can do
construction effectively. System testing is done after construction to verify that
construction has been done correctly. Construction is at the center of the
software development process.



le Complete 1. Welcome to Software Construction Page 6

CROSS-REFERENCE  For With a focus on construction, the individual programmer’s productivity

- data on variations among can improve enormously

~programmers, see “Individual A classic study by Sackman, Erikson, and Grant showed that the productivity of

Variation™ in Section 28.5. individual programmers varied by a factor of 10 to 20 during construction
(1968). Since their study, their results have been confirmed by numerous other
studies (Curtis 1981, Mills 1983, Curtis et al 1986, Card 1987, Valett and
McGarry 1989, DeMarco and Lister 1999, Boehm et al 2000). This books helps
all programmers learn techniques that are already used by the best programmers.

Construction’s product, the source code, is often the only accurate
description of the software

In many projects, the only documentation available to programmers is the code
itself. Requirements specifications and design documents can go out of date, but
the source code is always up to date. Consequently, it’s imperative that the
source code be of the highest possible quality. Consistent application of
techniques for source-code improvement makes the difference between a Rube
Goldberg contraption and a detailed, correct, and therefore informative program.
Such techniques are most effectively applied during construction.

KEY POINT Construction is the only activity that’s guaranteed to be done
The ideal software project goes through careful requirements development and
architectural design before construction begins. The ideal project undergoes
comprehensive, statistically controlled system testing after construction.
Imperfect, real-world projects, however, often skip requirements and design to
jump into construction. They drop testing because they have too many errors to
fix and they’ve run out of time. But no matter how rushed or poorly planned a
project is, you can’t drop construction; it’s where the rubber meets the road.
Improving construction is thus a way of improving any software-development
effort, no matter how abbreviated.

1.3 How to Read This Book

This book is designed to be read either cover to cover or by topic. If you like to
read books cover to cover, then you might simply dive into Chapter 2,
“Metaphors for a Richer Understanding of Software Development.” If you want
to get to specific programming tips, you might begin with Chapter 6, “Working
Classes” and then follow the cross references to other topics you find interesting.
If you’re not sure whether any of this applies to you, begin with Section 3.2,
“Determine the Kind of Software You’re Working On.”
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Key Points

e Software construction the central activity in software development;
construction is the only activity that’s guaranteed to happen on every
project.

e The main activities in construction are detailed design, coding, debugging,
and developer testing.

e  Other common terms for construction are “coding and debugging” and
“programming.”

e The quality of the construction substantially affects the quality of the
software.

e In the final analysis, your understanding of how to do construction
determines how good a programmer you are, and that’s the subject of the
rest of the book.
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Metaphors for a Richer
Understanding of Software
Development

CC2E.COM/0278 Contents
2.1 The Importance of Metaphors

2.2 How to Use Software Metaphors

2.3 Common Software Metaphors

Related Topic
Heuristics in design: “Design is a Heuristic Process” in Section 5.1.

Computer science has some of the most colorful language of any field. In what
other field can you walk into a sterile room, carefully controlled at 68°F, and
find viruses, Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex
changers, and fatal errors?

These graphic metaphors describe specific software phenomena. Equally vivid
metaphors describe broader phenomena, and you can use them to improve your
understanding of the software-development process.

The rest of the book doesn’t directly depend on the discussion of metaphors in
this chapter. Skip it if you want to get to the practical suggestions. Read it if you
want to think about software development more clearly.

2.1 The Importance of Metaphors

Important developments often arise out of analogies. By comparing a topic you
understand poorly to something similar you understand better, you can come up
with insights that result in a better understanding of the less-familiar topic. This
use of metaphor is called “modeling.”
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The history of science is full of discoveries based on exploiting the power of
metaphors. The chemist Kekulé had a dream in which he saw a snake grasp its
tail in its mouth. When he awoke, he realized that a molecular structure based on
a similar ring shape would account for the properties of benzene. Further
experimentation confirmed the hypothesis (Barbour 1966).

The Kinetic theory of gases was based on a “billiard-ball” model. Gas molecules
were thought to have mass and to collide elastically, as billiard balls do, and
many useful theorems were developed from this model.

The wave theory of light was developed largely by exploring similarities
between light and sound. Light and sound have amplitude (brightness, loudness),
frequency (color, pitch), and other properties in common. The comparison
between the wave theories of sound and light was so productive that scientists
spent a great deal of effort looking for a medium that would propagate light the
way air propagates sound. They even gave it a name —ether”—»but they never
found the medium. The analogy that had been so fruitful in some ways proved to
be misleading in this case.

In general, the power of models is that they’re vivid and can be grasped as
conceptual wholes. They suggest properties, relationships, and additional areas
of inquiry. Sometimes a model suggests areas of inquiry that are misleading, in
which case the metaphor has been overextended. When the scientists looked for
ether, they overextended their model.

As you might expect, some metaphors are better than others. A good metaphor is
simple, relates well to other relevant metaphors, and explains much of the
experimental evidence and other observed phenomena.

Consider the example of a heavy stone swinging back and forth on a string.
Before Galileo, an Aristotelian looking at the swinging stone thought that a
heavy object moved naturally from a higher position to a state of rest at a lower
one. The Aristotelian would think that what the stone was really doing was
falling with difficulty. When Galileo saw the swinging stone, he saw a
pendulum. He thought that what the stone was really doing was repeating the
same motion again and again, almost perfectly.

The suggestive powers of the two models are quite different. The Aristotelian
who saw the swinging stone as an object falling would observe the stone’s
weight, the height to which it had been raised, and the time it took to come to
rest. For Galileo’s pendulum model, the prominent factors were different.
Galileo observed the stone’s weight, the radius of the pendulum’s swing, the
angular displacement, and the time per swing. Galileo discovered laws the
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The value of metaphors
should not be
underestimated.
Metaphors have the
virtue of an expected
behavior that is
understood by all.
Unnecessary
communication and
misunderstandings are
reduced. Learning and
education are quicker. In
effect, metaphors are a
way of internalizing and
abstracting concepts
allowing one’s thinking
to be on a higher plane
and low-level mistakes to
be avoided.

— Fernando J. Corbaté

2. Metaphors for a Richer Understanding of Software Development

Avristotelians could not discover because their model led them to look at different
phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues
in the same way that they contribute to a greater understanding of scientific
questions. In his 1973 Turing Award lecture, Charles Bachman described the
change from the prevailing earth-centered view of the universe to a sun-centered
view. Ptolemy’s earth-centered model had lasted without serious challenge for
1400 years. Then in 1543, Copernicus introduced a heliocentric theory, the idea
that the sun rather than the earth was the center of the universe. This change in
mental models led ultimately to the discovery of new planets, the reclassification
of the moon as a satellite rather than a planet, and a different understanding of
humankind’s place in the universe.

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the
change in computer programming in the early 1970s. When Bachman made the
comparison in 1973, data processing was changing from a computer-centered
view of information systems to a database-centered view. Bachman pointed out
that the ancients of data processing wanted to view all data as a sequential stream
of cards flowing through a computer (the computer-centered view). The change
was to focus on a pool of data on which the computer happened to act (a
database-oriented view).

Today it’s difficult to imagine anyone’s thinking that the sun moves around the
earth. Similarly, it’s difficult to imagine anyone’s thinking that all data could be
viewed as a sequential stream of cards. In both cases, once the old theory has
been discarded, it seems incredible that anyone ever believed it at all. More
fantastically, people who believed the old theory thought the new theory was just
as ridiculous then as you think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it
after a better theory was available. Similarly, the computer-centered view of the
computing universe hobbled computer scientists who held on to it after the
database-centered theory was available.

It’s tempting to trivialize the power of metaphors. To each of the earlier
examples, the natural response is to say, “Well, of course the right metaphor is
more useful. The other metaphor was wrong!” Though that’s a natural reaction,
it’s simplistic. The history of science isn’t a series of switches from the “wrong”
metaphor to the “right” one. It’s a series of changes from “worse” metaphors to
“better” ones, from less inclusive to more inclusive, from suggestive in one area
to suggestive in another.

Page 3
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In fact, many models that have been replaced by better models are still useful.
Engineers still solve most engineering problems by using Newtonian dynamics
even though, theoretically, Newtonian dynamics have been supplanted by
Einsteinian theory.

Software development is a younger field than most other sciences. It’s not yet
mature enough to have a set of standard metaphors. Consequently, it has a
profusion of complementary and conflicting metaphors. Some are better than
others. Some are worse. How well you understand the metaphors determines
how well you understand software development.

2.2 How to Use Software Metaphors

A software metaphor is more like a searchlight than a roadmap. It doesn’t tell
you where to find the answer; it tells you how to look for it. A metaphor serves
more as a heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular

task. An algorithm is predictable, deterministic, and not subject to chance. An
algorithm tells you how to go from point A to point B with no detours, no side
trips to points D, E, and F, and no stopping to smell the roses or have a cup of
joe.

A heuristic is a technique that helps you look for an answer. Its results are
subject to chance because a heuristic tells you only how to look, not what to find.
It doesn’t tell you how to get directly from point A to point B; it might not even
know where point A and point B are. In effect, a heuristic is an algorithm in a
clown suit. It’s less predictable, it’s more fun, and it comes without a 30-day
money-back guarantee.

Here is an algorithm for driving to someone’s house: Take highway 167 south to
Puyallup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn
right at the light by the grocery store, and then take the first left. Turn into the
driveway of the large tan house on the left, at 714 North Cedar.

Here is a heuristic for getting to someone’s house: Find the last letter we mailed
you. Drive to the town in the return address. When you get to town, ask someone
where our house is. Everyone knows us—someone will be glad to help you. If
you can’t find anyone, call us from a public phone, and we’ll come get you.

The difference between an algorithm and a heuristic is subtle, and the two terms
overlap somewhat. For the purposes of this book, the main difference between
the two is the level of indirection from the solution. An algorithm gives you the
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instructions directly. A heuristic tells you how to discover the instructions for
yourself, or at least where to look for them.

Having directions that told you exactly how to solve your programming
problems would certainly make programming easier and the results more
predictable. But programming science isn’t yet that advanced and may never be.
The most challenging part of programming is conceptualizing the problem, and
many errors in programming are conceptual errors. Because each program is
conceptually unique, it’s difficult or impossible to create a general set of
directions that lead to a solution in every case. Thus, knowing how to approach
problems in general is at least as valuable as knowing specific solutions for
specific problems.

How do you use software metaphors? Use them to give you insight into your
programming problems and processes. Use them to help you think about your
programming activities and to help you imagine better ways of doing things.
You won’t be able to look at a line of code and say that it violates one of the
metaphors described in this chapter. Over time, though, the person who uses
metaphors to illuminate the software-development process will be perceived as
someone who has a better understanding of programming and produces better
code faster than people who don’t use them.

2.3 Common Software Metaphors

A confusing abundance of metaphors has grown up around software
development. Fred Brooks says that writing software is like farming, hunting
werewolves, or drowning with dinosaurs in a tar pit (1995). David Gries says it’s
a science (1981). Donald Knuth says it’s an art (1998). Watts Humphrey says it’s
a process (1989). P.J. Plauger and Kent Beck say it’s like driving a car (Plauger
1993, Beck 2000). Alistair Cockburn says it’s a game (2001). Eric Raymond
says it’s like a bazaar (2000). Paul Heckel says it’s like filming Snow White and
the Seven Dwarfs (1994). Which are the best metaphors?

Software Penmanship: Writing Code

The most primitive metaphor for software development grows out of the
expression “writing code.” The writing metaphor suggests that developing a
program is like writing a casual letter—you sit down with pen, ink, and paper
and write it from start to finish. It doesn’t require any formal planning, and you
figure out what you want to say as you go.

Many ideas derive from the writing metaphor. Jon Bentley says you should be
able to sit down by the fire with a glass of brandy, a good cigar, and your
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favorite hunting dog to enjoy a “literate program” the way you would a good
novel. Brian Kernighan and P. J. Plauger named their programming-style book
The Elements of Programming Style (1978) after the writing-style book The
Elements of Style (Strunk and White 2000). Programmers often talk about
“program readability.”

KEY POINT For an individual’s work or for small-scale projects, the letter-writing metaphor
works adequately, but for other purposes it leaves the party early—it doesn’t
describe software development fully or adequately. Writing is usually a one-
person activity, whereas a software project will most likely involve many people
with many different responsibilities. When you finish writing a letter, you stuff it
into an envelope and mail it. You can’t change it anymore, and for all intents and
purposes it’s complete. Software isn’t as difficult to change and is hardly ever
fully complete. As much as 90 percent of the development effort on a typical
software system comes after its initial release, with two-thirds being typical
(Pigoski 1997). In writing, a high premium is placed on originality. In software
construction, trying to create truly original work is often less effective than
focusing on the reuse of design ideas, code, and test cases from previous
projects. In short, the writing metaphor implies a software-development process
that’s too simple and rigid to be healthy.

Plan to throw one away: Unfortunately, the letter-writing metaphor has been perpetuated by one of the
you will, anyhow. most popular software books on the planet, Fred Brooks’s The Mythical Man-
Month (Brooks 1995). Brooks says, “Plan to throw one away; you will,
anyhow.” This conjures up an image of a pile of half-written drafts thrown into a
wastebasket. Planning to throw one away might be practical when you’re writing
a polite how-do-you-do to your aunt, and it might have been state-of-the-art
software engineering practice in 1975, when Brooks wrote his book.

— Fred Brooks

If you plan to throw one
away, you will throw
away two.

— Craig Zerouni

FO2xx01

Figure 2-1

The letter-writing metaphor suggests that the software process relies on expensive
trial and error rather than careful planning and design.
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But extending the metaphor of “writing” software to a plan to throw one away is
poor advice for software development in the twenty-first century, when a major
system already costs as much as a 10-story office building or an ocean liner. It’s
easy to grab the brass ring if you can afford to sit on your favorite wooden pony
for an unlimited number of spins around the carousel. The trick is to get it the
first time around—or to take several chances when they’re cheapest. Other
metaphors better illuminate ways of attaining such goals.

Software Farming: Growing a System

In contrast to the rigid writing metaphor, some software developers say you
should envision creating software as something like planting seeds and growing
crops. You design a piece, code a piece, test a piece, and add it to the system a
little bit at a time. By taking small steps, you minimize the trouble you can get
into at any one time.

Sometimes a good technique is described with a bad metaphor. In such cases, try
to keep the technique and come up with a better metaphor. In this case, the
incremental technique is valuable, but the farming metaphor is terrible.

The idea of doing a little bit at a time might bear some resemblance to the way
crops grow, but the farming analogy is weak and uninformative, and it’s easy to
replace with the better metaphors described in the following sections. It’s hard to
extend the farming metaphor beyond the simple idea of doing things a little bit at
a time. If you buy into the farming metaphor, you might find yourself talking
about fertilizing the system plan, thinning the detailed design, increasing code
yields through effective land management, and harvesting the code itself. You’ll
talk about rotating in a crop of C++ instead of barley, of letting the land rest for a
year to increase the supply of nitrogen in the hard disk.

The weakness in the software-farming metaphor is its suggestion that you don’t
have any direct control over how the software develops. You plant the code
seeds in the spring. Farmer’s Almanac and the Great Pumpkin willing, you’ll
have a bumper crop of code in the fall.
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Figure 2-2
It’s hard to extend the farming metaphor to software development appropriately.

Software Oyster Farming: System Accretion

Sometimes people talk about growing software when they really mean software
accretion. The two metaphors are closely related, but software accretion is the
more insightful image. “Accretion,” in case you don’t have a dictionary handy,
means any growth or increase in size by a gradual external addition or inclusion.
Accretion describes the way an oyster makes a pearl, by gradually adding small
amounts of calcium carbonate. In geology, “accretion” means a slow addition to
land by the deposit of waterborne sediment. In legal terms, “accretion” means an
increase of land along the shores of a body of water by the deposit of waterborne
sediment.

This doesn’t mean that you have to learn how to make code out of waterborne
sediment; it means that you have to learn how to add to your software systems a
small amount at a time. Other words closely related to accretion are
“incremental,” “iterative,” “adaptive,” and “evolutionary.” Incremental
designing, building, and testing are some of the most powerful software-
development concepts available.

In incremental development, you first make the simplest possible version of the
system that will run. It doesn’t have to accept realistic input, it doesn’t have to
perform realistic manipulations on data, it doesn’t have to produce realistic
output—it just has to be a skeleton strong enough to hold the real system as it’s
developed. It might call dummy classes for each of the basic functions you have
identified. This basic beginning is like the oyster’s beginning a pearl with a small
grain of sand.

After you’ve formed the skeleton, little by little you lay on the muscle and skin.
You change each of the dummy classes to real classes. Instead of having your
program pretend to accept input, you drop in code that accepts real input. Instead
of having your program pretend to produce output, you drop in code that
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produces real output. You add a little bit of code at a time until you have a fully
working system.

The anecdotal evidence in favor of this approach is impressive. Fred Brooks,
who in 1975 advised building one to throw away, said that nothing in the decade
after he wrote his landmark book The Mythical Man-Month so radically changed
his own practice or its effectiveness as incremental development (1995). Tom
Gilb made the same point in his breakthrough book Principles of Software
Engineering Management (1988), which introduced Evolutionary Delivery and
laid the groundwork for much of today’s Agile programming approach.
Numerous current methodologies are based on this idea (Beck 2000, Cockburn
2001, Highsmith 2002, Reifer 2002, Martin 2003, Larman 2004).

As a metaphor, the strength of the incremental metaphor is that it doesn’t over
promise. It’s harder than the farming metaphor to extend inappropriately. The
image of an oyster forming a pearl is a good way to visualize incremental
development, or accretion.

Software Construction: Building Software

The image of “building” software is more useful than that of “writing” or
“growing” software. It’s compatible with the idea of software accretion and
provides more detailed guidance. Building software implies various stages of
planning, preparation, and execution that vary in kind and degree depending on
what’s being built. When you explore the metaphor, you find many other
parallels.

Building a 4-foot tower requires a steady hand, a level surface, and 10
undamaged beer cans. Building a tower 100 times that size doesn’t merely
require 100 times as many beer cans. It requires a different kind of planning and
construction altogether.

If you’re building a simple structure—a doghouse, say—you can drive to the
lumber store and buy some wood and nails. By the end of the afternoon, you’ll
have a new house for Fido. If you forget to provide for a door or make some
other mistake, it’s not a big problem; you can fix it or even start over from the
beginning. All you’ve wasted is part of an afternoon. This loose approach is
appropriate for small software projects too, If you use the wrong design for 1000
lines of code, you can refactor or start over completely without losing much.
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Figure 2-3
The penalty for a mistake on a simple structure is only a little time and maybe some
embarrassment.

If you’re building a house, the building process is a more complicated, and so are
the consequences of poor design. First you have to decide what kind of house
you want to build—analogous in software development to problem definition.
Then you and an architect have to come up with a general design and get it
approved. This is similar to software architectural design. You draw detailed
blueprints and hire a contractor. This is similar to detailed software design. You
prepare the building site, lay a foundation, frame the house, put siding and a roof
on it, and plumb and wire it. This is similar to software construction. When most
of the house is done, the landscapers and painters come in to make the best of
your property and the home you’ve built. This is similar to software
optimization. Throughout the process, various inspectors come to check the site,
foundation, frame, wiring, and other inspectables. This is similar to software
reviews, pair programming, and inspections.

Greater complexity and size imply greater consequences in both activities. In
building a house, materials are somewhat expensive, but the main expense is
labor. Ripping out a wall and moving it six inches is expensive not because you
waste a lot of nails but because you have to pay the people for the extra time it
takes to move the wall. You have to make the design as good as possible so that
you don’t waste time fixing mistakes that could have been avoided. In building a
software product, materials are even less expensive, but labor costs just as much.
Changing a report format is just as expensive as moving a wall in a house
because the main cost component in both cases is people’s time.
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Figure 2-4
More complicated structures require more careful planning.

What other parallels do the two activities share? In building a house, you won’t
try to build things you can buy already built. You’ll buy a washer and dryer,
dishwasher, refrigerator, and freezer. Unless you’re a mechanical wizard, you
won’t consider building them yourself. You’ll also buy prefabricated cabinets,
counters, windows, doors, and bathroom fixtures. If you’re building a software
system, you’ll do the same thing. You’ll make extensive use of high-level
language features rather than writing your own operating-system-level code. You
might also use prebuilt libraries of container classes, scientific functions, user
interface classes, and database-manipulation classes. It generally doesn’t make
sense to code things you can buy ready made.

If you’re building a fancy house with first-class furnishings, however, you might
have your cabinets custom made. You might have a dishwasher, refrigerator, and
freezer built in to look like the rest of your cabinets. You might have windows
custom made in unusual shapes and sizes. This customization has parallels in
software development. If you’re building a first-class software product, you
might build your own scientific functions for better speed or accuracy. You
might build your own container classes, user interface classes and database
classes to give your system a seamless, perfectly consistent look and feel.

Both building construction and software construction both benefit from
appropriate levels of planning. If you build software in the wrong order, it’s hard
to code, hard to test, and hard to debug. It can take longer to complete, or the
project can fall apart because everyone’s work is too complex and therefore too
confusing when it’s all combined.
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Careful planning doesn’t necessarily mean exhaustive planning or over-planning.
You can plan out the structural supports and decide later whether to put in
hardwood floors or carpeting, what color to paint the walls, what roofing
material to use, and so on. A well-planned project improves your ability to
change your mind about details later. The more experienced you have with the
kind of software you’re building, the more details you can take for granted. You
just want to be sure that you plan enough so that lack of planning doesn’t create
major problems later.

The construction analogy also helps explain why different software projects
benefit from different development approaches. In building, you’d use different
levels of planning, design, and quality assurance if you’re building a warehouse
or a shopping mall than if you’re building a medical center or a nuclear reactor.
You’d use still different approaches for building a school, a skyscraper, or a
three bedroom home. Likewise, in software you might generally use flexible,
lightweight development approaches, but sometimes rigid, heavyweight
approaches are required to achieve safety goals and other goals.

Making changes in the software brings up another parallel with building
construction. To move a wall six inches costs more if the wall is load-bearing
than if it’s merely a partition between rooms. Similarly, making structural
changes in a program costs more than adding or deleting peripheral features.

Finally, the construction analogy provides insight into extremely large software
projects. Because the penalty for failure in an extremely large structure is severe,
the structure has to be over-engineered. Builders make and inspect their plans
carefully. They build in margins of safety; it’s better to pay 10 percent more for
stronger material than to have a skyscraper fall over. A great deal of attention is
paid to timing. When the Empire State Building was built, each delivery truck
had a 15-minute margin in which to make its delivery. If a truck wasn’t in place
at the right time, the whole project was delayed.

Likewise, for extremely large software projects, planning of a higher order is
needed than for projects that are merely large. Capers Jones reports that a one-
million line of code software system requires an average of 69 kinds of
documentation (1998). The requirements specification for a 1,000,000 line of
code system would typically be about 4,000-5,000 pages long, and the design
documentation can easily be two or three times as extensive as the requirements.
It’s unlikely that an individual would be able to understand the complete design
for a project of this size—or even read it. A greater degree of preparation is
appropriate.

We build software projects comparable in economic size to the Empire State
Building, and technical and managerial controls of similar stature are needed.



le Complete

FURTHER READING For
some good comments about
extending the construction
metaphor, see “What
Supports the Roof?” (Starr
2003).

KEY POINT

CROSS-REFERENCE  For
details on selecting and
combining methods in
design, see Section 5.3,
“Design Building Blocks:
Heuristics.”

CC2E.COM/0285

2. Metaphors for a Richer Understanding of Software Development Page 13

The analogy could be extended in a variety of other directions, which is why the
building-construction metaphor is so powerful. Many terms common in software
development derive from the building metaphor: software architecture,
scaffolding, construction, tearing code apart, plugging in a class. You’ll probably
hear many more.

Applying Software Techniques: The Intellectual
Toolbox

People who are effective at developing high-quality software have spent years
accumulating dozens of techniques, tricks, and magic incantations. The
techniques are not rules; they are analytical tools. A good craftsman knows the
right tool for the job and knows how to use it correctly. Programmers do too.
The more you learn about programming, the more you fill your mental toolbox
with analytical tools and the knowledge of when to use them and how to use
them correctly.

In software, consultants sometimes tell you to buy into certain software-
development methods to the exclusion of other methods. That’s unfortunate
because if you buy into any single methodology 100 percent, you’ll see the
whole world in terms of that methodology. In some instances, you’ll miss
opportunities to use other methods better suited to your current problem. The
toolbox metaphor helps to keep all the methods, techniques, and tips in
perspective—ready for use when appropriate.

Combining Metaphors

Because metaphors are heuristic rather than algorithmic, they are not mutually
exclusive. You can use both the accretion and the construction metaphors. You
can use “writing” if you want to, and you can combine writing with driving,
hunting for werewolves, or drowning in a tar pit with dinosaurs. Use whatever
metaphor or combination of metaphors stimulates your own thinking.

Using metaphors is a fuzzy business. You have to extend them to benefit from
the heuristic insights they provide. But if you extend them too far or in the wrong
direction, they’Il mislead you. Just as you can misuse any powerful tool, you can
misuse metaphors, but their power makes them a valuable part of your
intellectual toolbox.

Additional Resources

Among general books on metaphors, models, and paradigms, the touchstone
book is by Thomas Kuhn.
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Kuhn, Thomas S. The Structure of Scientific Revolutions, 3d Ed., Chicago: The
University of Chicago Press, 1996. Kuhn’s book on how scientific theories
emerge, evolve, and succumb to other theories in a Darwinian cycle set the
philosophy of science on its ear when it was first published in 1962. It’s clear
and short, and it’s loaded with interesting examples of the rise and fall of
metaphors, models, and paradigms in science.

Floyd, Robert W. “The Paradigms of Programming.” 1978 Turing Award
Lecture. Communications of the ACM, August 1979, pp. 455-60. This is a
fascinating discussion of models in software development and applies Kuhn’s
ideas to the topic.

Key Points

e Metaphors are heuristics, not algorithms. As such, they tend to be a little
sloppy.

e Metaphors help you understand the software-development process by
relating it to other activities you already know about.

e Some metaphors are better than others.

e Treating software construction as similar to building construction suggests
that careful preparation is needed and illuminates the difference between
large and small projects.

e Thinking of software-development practices as tools in an intellectual
toolbox suggests further that every programmer has many tools and that no
single tool is right for every job. Choosing the right tool for each problem is
one key to being an effective programmer.
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Before beginning construction of a house, a builder reviews blueprints, checks
that all permits have been obtained, and surveys the house’s foundation. A
builder prepares for building a skyscraper one way, a housing development a
different way, and a doghouse a third way. No matter what the project, the prepa-
ration is tailored to the project’s specific needs and done conscientiously before
construction begins.

This chapter describes the work that must be done to prepare for software con-
struction. As with building construction, much of the success or failure of the
project has already been determined before construction begins. If the foundation
hasn’t been laid well or the planning is inadequate, the best you can do during
construction is to keep damage to a minimum. If you want to create a polished
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jewel, you have to start with a diamond in the rough. If you start with plans for a
brick, the best you can create is a fancy brick.

“Measure twice, cut once” is highly relevant to the construction part of software
development, which can account for as much as 65 percent of the total project
costs. The worst software projects end up doing construction two or three times
or more. Doing the most expensive part of the project twice is as bad an idea in
software as it is in any other line of work.

Although this chapter lays the groundwork for successful software construction,
it doesn’t discuss construction directly. If you’re feeling carnivorous or you’re
already well versed in the software-engineering life cycle, look for the construc-
tion meat beginning in Chapter 5. If you don’t like the idea of prerequisites to
construction, review Section 3.2, “Determine the Kind of Software You’re
Working On,” to see how prerequisites apply to your situation, and then take a
look at the data in Section 3.1 which describes the cost of not doing prerequi-
sites.

3.1 Importance of Prerequisites

A common denominator of programmers who build high-quality software is their
use of high-quality practices. Such practices emphasize quality at the beginning,
middle, and end of a project.

If you emphasize quality at the end of a project, you emphasize system testing.
Testing is what many people think of when they think of software quality assur-
ance. Testing, however, is only one part of a complete quality-assurance strat-
egy, and it’s not the most influential part. Testing can’t detect a flaw such as
building the wrong product or building the right product in the wrong way. Such
flaws must be worked out earlier than in testing—before construction begins.

If you emphasize quality in the middle of the project, you emphasize construc-
tion practices. Such practices are the focus of most of this book.

If you emphasize quality at the beginning of the project, you plan for, require,
and design a high-quality product. If you start the process with designs for a
Pontiac Aztek, you can test it all you want to, and it will never turn into a Rolls-
Royce. You might build the best possible Aztek, but if you want a Rolls-Royce,
you have to plan from the beginning to build one. In software development, you
do such planning when you define the problem, when you specify the solution,
and when you design the solution.
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Since construction is in the middle of a software project, by the time you get to
construction, the earlier parts of the project have already laid some of the
groundwork for success or failure. During construction, however, you should at
least be able to determine how good your situation is and to back up if you see
the black clouds of failure looming on the horizon. The rest of this chapter de-
scribes in detail why proper preparation is important and tells you how to deter-
mine whether you’re really ready to begin construction.

Do Prerequisites Apply to Modern Software Pro-
jects?

Some people in have asserted that upstream activities such as architecture, de-
sign, and project planning aren’t useful on modern software projects. In the
main, such assertions are not well supported by research, past or present, or by
current data. (See the rest of this chapter for details.) Opponents of prerequisites
typically show examples of prerequisites that have been done poorly then point
out that such work isn’t effective. Upstream activities can be done well, how-
ever, and industry data from the 1970s to the present day clearly indicates that
projects will run best if appropriate preparation activities are done before con-
struction begins in earnest.

The overarching goal of preparation is risk reduction: a good project planner
clears major risks out of the way as early as possible so that the bulk of the pro-
ject can proceed as smoothly as possible. By far the most common projects risks
in software development are poor requirements and poor project planning, thus
preparation tends to focus improving requirements and project plans.

Preparation for construction is not an exact science, and the specific approach to
risk reduction must be decided project by project. Details can vary greatly
among projects. For more on this, see Section 3.2, “Determine the Kind of Soft-
ware You’re Working On.”

Causes of Incomplete Preparation

You might think that all professional programmers know about the importance
of preparation and check that the prerequisites have been satisfied before jump-
ing into construction. Unfortunately, that isn’t so.

A common cause of incomplete preparation is that the developers who are as-
signed to work on the upstream activities do not have the expertise to carry out
their assignments. The skills needed to plan a project, create a compelling busi-
ness case, develop comprehensive and accurate requirements, and create high-
quality architectures are far from trivial, but most developers have not received
training in how to perform these activities. When developers don’t know how to

Page 3
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do upstream work, the recommendation to “do more upstream work” sounds like
nonsense: If the work isn’t being done well in the first place, doing more of it
will not be useful! Explaining how to perform these activities is beyond the
scope of this book, but the “Additional Resources” sections at the end of this
chapter provide numerous options for gaining that expertise.

Some programmers do know how to perform upstream activities, but they don’t
prepare because they can’t resist the urge to begin coding as soon as possible. If
you feed your horse at this trough, I have two suggestions. Suggestion 1: Read
the argument in the next section. It may tell you a few things you haven’t
thought of. Suggestion 2: Pay attention to the problems you experience. It takes
only a few large programs to learn that you can avoid a lot of stress by planning
ahead. Let your own experience be your guide.

A final reason that programmers don’t prepare is that managers are notoriously
unsympathetic to programmers who spend time on construction prerequisites.
People like Barry Boehm, Grady Booch, and Karl Wiegers have been banging
the requirements and design drums for 25 years, and you’d expect that managers
would have started to understand that software development is more than coding.

A few years ago, however, | was working on a Department of Defense project
that was focusing on requirements development when the Army general in
charge of the project came for a visit. We told him that we were developing re-
quirements and that we were mainly talking to our customer and writing docu-
ments. He insisted on seeing code anyway. We told him there was no code, but
he walked around a work bay of 100 people, determined to catch someone pro-
gramming. Frustrated by seeing so many people away from their desks or work-
ing on documents, the large, round man with the loud voice finally pointed to the
engineer sitting next to me and bellowed, “What’s he doing? He must be writing
code!” In fact, the engineer was working on a document-formatting utility, but
the general wanted to find code, thought it looked like code, and wanted the en-
gineer to be working on code, so we told him it was code.

This phenomenon is known as the WISCA or WIMP syndrome: Why Isn’t Sam
Coding Anything? or Why Isn’t Mary Programming?

If the manager of your project pretends to be a brigadier general and orders you
to start coding right away, it’s easy to say, “Yes, Sir!” (What’s the harm? The
old guy must know what he’s talking about.) This is a bad response, and you
have several better alternatives. First, you can flatly refuse to do work in the
wrong order. If your relationship with your boss and your bank account are
healthy enough for you to be able to do this, good luck.
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Second, you can pretend to be coding when you’re not. Put an old program list-
ing on the corner of your desk. Then go right ahead and develop your require-
ments and architecture, with or without your boss’s approval. You’ll do the pro-
ject faster and with higher-quality results. From your boss’s perspective, igno-
rance is bliss.

Third, you can educate your boss in the nuances of technical projects. This is a
good approach because it increases the number of enlightened bosses in the
world. The next section presents an extended rationale for taking the time to do
prerequisites before construction.

Finally, you can find another job. Despite economic ups and downs, good pro-
grammers are in perennially short supply (BLS 2002), and life is too short to
work in an unenlightened programming shop when plenty of better alternatives
are available.

Utterly Compelling and Foolproof Argument for
Doing Prerequisites Before Construction

Suppose you’ve already been to the mountain of problem definition, walked a
mile with the man of requirements, shed your soiled garments at the fountain of
architecture, and bathed in the pure waters of preparedness. Then you know that
before you implement a system, you need to understand what the system is sup-
posed to do and how it’s supposed to do it.

Part of your job as a technical employee is to educate the nontechnical people
around you about the development process. This section will help you deal with
managers and bosses who have not yet seen the light. It’s an extended argument
for doing requirements and architecture—getting the critical aspects right—
before you begin coding, testing, and debugging. Learn the argument, and then
sit down with your boss and have a heart-to-heart talk about the programming
process.

Appeal to Logic

One of the key ideas in effective programming is that preparation is important. It
makes sense that before you start working on a big project, you should plan the
project. Big projects require more planning; small projects require less. From a
management point of view, planning means determining the amount of time,
number of people, and number of computers the project will need. From a tech-
nical point of view, planning means understanding what you want to build so
that you don’t waste money building the wrong thing. Sometimes users aren’t
entirely sure what they want at first, so it might take more effort than seems ideal
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to find out what they really want. But that’s cheaper than building the wrong
thing, throwing it away, and starting over.

It’s also important to think about how to build the system before you begin to
build it. You don’t want to spend a lot of time and money going down blind al-
leys when there’s no need to, especially when that increases costs.

Appeal to Analogy

Building a software system is like any other project that takes people and money.
If you’re building a house, you make architectural drawings and blueprints be-
fore you begin pounding nails. You’ll have the blueprints reviewed and approved
before you pour any concrete. Having a technical plan counts just as much in
software.

You don’t start decorating the Christmas tree until you’ve put it in the stand.
You don’t start a fire until you’ve opened the flue. You don’t go on a long trip
with an empty tank of gas. You don’t get dressed before you take a shower, and
you don’t put your shoes on before your socks. You have to do things in the right
order in software too.

Programmers are at the end of the software food chain. The architect consumes
the requirements; the designer consumes the architecture; and the coder con-
sumes the design.

Compare the software food chain to a real food chain. In an ecologically sound
environment, seagulls eat fresh salmon. That’s nourishing to them because the
salmon ate fresh herring, and they in turn ate fresh water bugs. The result is a
healthy food chain. In programming, if you have healthy food at each stage in
the food chain, the result is healthy code written by happy programmers.

In a polluted environment, the water bugs have been swimming in nuclear waste.
The herring are contaminated by PCBs, and the salmon that eat the herring swam
through oil spills. The seagulls are, unfortunately, at the end of the food chain, so
they don’t eat just the oil in the bad salmon. They also eat the PCBs and the nu-
clear waste from the herring and the water bugs. In programming, if your re-
quirements are contaminated, they contaminate the architecture, and the architec-
ture in turn contaminates construction. This leads to grumpy, malnourished pro-
grammers and radioactive, polluted software that’s riddled with defects.

If you are planning a highly iterative project, you will need to identify the critical
requirements and architectural elements that apply to each piece you’re con-
structing before you begin construction. A builder who is building a housing de-
velopment doesn’t need to know every detail of every house in the development
before beginning construction on the first house. But the builder will survey the
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site, map out sewer and electrical lines, and so on. If the builder doesn’t prepare
well, construction may be delayed when a sewer line needs to be dug under a
house that’s already been constructed.

Appeal to Data

Studies over the last 25 years have proven conclusively that it pays to do things
right the first time. Unnecessary changes are expensive.

Researchers at Hewlett-Packard, IBM, Hughes Aircraft, TRW, and other organi-
zations have found that purging an error by the beginning of construction allows
rework to be done 10 to 100 times less expensively than when it’s done in the
last part of the process, during system test or after release (Fagan 1976; Hum-
phrey, Snyder, and Willis 1991; Leffingwell 1997; Willis et al 1998; Grady
1999; Shull, et al, 2002; Boehm and Turner 2004).

In general, the principle is to find an error as close as possible to the time at
which it was introduced. The longer the defect stays in the software food chain,
the more damage it causes further down the chain. Since requirements are done
first, requirements defects have the potential to be in the system longer and to be
more expensive. Defects inserted into the software upstream also tend to have
broader effects than those inserted further downstream. That also makes early
defects more expensive.

Table 3-1 shows the relative expense of fixing defects depending on when
they’re introduced and when they’re found.

Table 3-1. Average Cost of Fixing Defects Based on When They're In-
troduced and When They’re Detected

Time Detected
Time Introduced Re- Archi- | Con- System | Post-
quire- tecture | struc- Test Re-
ments tion lease
Requirements 1 3 5-10 10 10-100
Acrchitecture — 1 10 15 25-100
Construction — — 1 10 10-25

Source: Adapted from “Design and Code Inspections to Reduce Errors in Program
Development™ (Fagan 1976), Software Defect Removal (Dunn 1984), “Software
Process Improvement at Hughes Aircraft’” (Humphrey, Snyder, and Willis 1991),
“Calculating the Return on Investment from More Effective Requirements Manage-
ment” (Leffingwell 1997), ““Hughes Aircraft’s Widespread Deployment of a Con-
tinuously Improving Software Process™ (Willis et al 1998), *“An Economic Release
Decision Model: Insights into Software Project Management” (Grady 1999), “What
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We Have Learned About Fighting Defects” (Shull et al 2002), and Balancing Agility
and Discipline: A Guide for the Perplexed (Boehm and Turner 2004).

The data in Table 3-1 shows that, for example, an architecture defect that costs
$1000 to fix when the architecture is being created can cost $15,000 to fix during
system test. Figure 3-1 illustrates the same phenomenon.

Phase in Which a

Defect Is

Introduced Cost
/ :

Requirements\ )\/_LT /

Architecture

\ N\ )
S B N N =

Requirements . Construction Post-Release
Architecture System test

Phase in Which a Defect Is Detected

FO3xx01

Figure 3-1

The cost to fix a defect rises dramatically as the time from when it’s introduced to
when it’s detected increases. This remains true whether the project is highly sequen-
tial (doing 100 percent of requirements and design up front) or highly iterative (do-
ing 5 percent of requirements and design up front).

The average project still exerts most of its defect-correction effort on the right
side of Figure 3-1, which means that debugging and associated rework takes
about 50 percent of the time spent in a typical software development cycle (Mills
1983; Boehm 1987a; Cooper and Mullen 1993; Fishman 1996; Haley 1996;
Wheeler, Brykczynski, and Meeson 1996; Jones 1998, Shull et al 2002, Wiegers
2002). Dozens of companies have found that simply focusing on correcting de-
fects earlier rather than later in a project can cut development costs and sched-
ules by factors of two or more (McConnell 2004). This is a healthy incentive to
fix your problems as early as you can.

Boss-Readiness Test

When you think your boss understands the importance of completing prerequi-
sites before moving into construction, try the test below to be sure.
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Which of these statements are self-fulfilling prophecies?

e We’d better start coding right away because we’re going to have a lot of
debugging to do.

e We haven’t planned much time for testing because we’re not going to find
many defects.

e We’ve investigated requirements and design so much that | can’t think of
any major problems we’ll run into during coding or debugging.

All of these statements are self-fulfilling prophecies. Aim for the last one.

If you’re still not convinced that prerequisites apply to your project, the next sec-
tion will help you decide.

3.2 Determine the Kind of Software You're
Working On

Capers Jones, Chief Scientist at Software Productivity Research, summarized 20
years of software research by pointing out that he and his colleagues have seen
40 different methods for gathering requirements, 50 variations in working on
software designs, and 30 kinds of testing applied to projects in more than 700
different programming languages (Jones 2003).

Different kinds of software projects call for different balances between prepara-
tion and construction. Every project is unique, but projects do tend to fall into
general development styles. Table 3-2shows three of the most common kinds of
projects and lists the practices that are typically best suited to each kind of pro-
ject.

Table 3-2. Typical good practices for three common kinds of software
projects

Typical Good Practices

Kind of Business Mission-Critical Embedded Life-
Software Systems Systems Critical Systems
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Kind of Business Mission-Critical Embedded Life-
Software Systems Systems Critical Systems
Typical ap- Internet site Embedded software  Avionics software
plications Intranet site Games Embedded software
Inventory manage- Internet site Medical devices
ment Packaged software Operating systems
Games Software tools Packaged software
Management infor- Web services
mation systems
Payroll system
Lifecycle Agile development Staged delivery Staged delivery
models (extreme program- Evolutionary deliv-  Spiral development
ming, scrum, time-  ery Evolutionary deliv-
box development, Spiral development  ery
and so on)
Evolutionary proto-
typing
Planning and  Incremental project Basic up-front plan-  Extensive up-front
management  planning ning planning
As-needed test and Basic test planning Extensive test plan-
QA planning As-needed QA plan-  hing
Informal change con-  ning Extensive QA plan-
trol Formal change con- ~ hing
trol Rigorous change
control
Require- Informal require- Semi-formal re- Formal requirements
ments ments specification quirements specifica-  specification
tion Formal requirements
As-needed require- inspections
ments reviews
Design Design and coding Architectural design  Architectural design

Construction

are combined

Pair programming or
individual coding
Informal check-in
procedure or no
check-in procedure

Informal detailed
design

As-needed design
reviews

Pair programming or
individual coding
Informal check-in
procedure
As-needed code re-
views

Formal architecture
inspections

Formal detailed de-
sign

Formal detailed de-
sign inspections

Pair programming or
individual coding
Formal check-in pro-
cedure

Formal code inspec-
tions
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Kind of Business Mission-Critical Embedded Life-
Software Systems Systems Critical Systems
Testingand  Developers test their ~ Developers test their  Developers test their
QA own code own code own code

Test-first develop- Test-first develop- Test-first develop-

ment ment ment

Little or no testing by  Separate testing Separate testing

a separate test group  group group

Separate QA group

Deployment  Informal deployment  Formal deployment Formal deployment

procedure procedure procedure

On real projects, you’ll find infinite variations on the three themes presented in
this table, however the generalities in the table are illuminating. Business sys-
tems projects tend to benefit from highly iterative approaches, in which plan-
ning, requirements, and architecture are interleaved with construction, system
testing and quality assurance activities. Life-critical systems tend to require more
sequential approaches—requirements stability is part of what’s needed to ensure
ultra-high levels of reliability.

Some writers have asserted that projects that use iterative techniques don’t need
to focus on prerequisites much at all, but that point of view is misinformed. Itera-
tive approaches tend to reduce the impact of inadequate upstream work, but they
don’t eliminate it. Consider the example shown in Table 3-3 of a project that’s
conducted sequentially and that relies solely on testing to discover defects. In
this approach, the defect correction (rework) costs will be clustered at the end of

the project.

Table 3-3. Effect of short-changing prerequisites on sequential and it-
erative projects. This data is for purposes of illustration only

Approach #1 Approach #2

Iterative Approach
without Prerequisites

Sequential Approach
without Prerequisites

Project comple- Cost of Cost of Cost of Cost of
tion status Work Rework Work Rework

10% $100,000 $0 $100,000 $75,000

20% $100,000 $0 $100,000 $75,000

30% $100,000 $0 $100,000 $75,000

40% $100,000 $0 $100,000 $75,000
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50% $100,000 $0 $100,000 $75,000

60% $100,000 $0 $100,000 $75,000

70% $100,000 $0 $100,000 $75,000

80% $100,000 $0 $100,000 $75,000

90% $100,000 $0 $100,000 $75,000

100% $100,000 $0 $100,000 $75,000

End-of-Project $0 $1,000,000 $0 $0
Rework

TOTAL $1,000,000 $1,000,000 | $1,000,000 $750,000

GRAND TOTAL $2,000,000 $1,750,000

The iterative project that abbreviates or eliminates prerequisites will differ in two
ways from a sequential project that does the same thing prerequisites. First, aver-
age defect correction costs will be lower because defects will tend to be detected
closer to the time they were inserted into the software. However, the defects will
still be detected late in each iteration, and correcting them will require parts of
the software to be redesigned, recoded, and retested—which makes the defect-
correction cost higher than it needs to be.

Second, with iterative approaches costs will be absorbed piecemeal, throughout
the project, rather than being clustered at the end. When all the dust settles, the
total cost will be similar but it won’t seem as high because the price will have
been paid in small installments over the course of the project rather than paid all
at once at the end.

As Table 3-4 illustrates, a focus on prerequisites can reduce costs regardless of
whether you use an iterative or a sequential approach. Iterative approaches are
usually a better option for many reasons, but an iterative approach that ignores
prerequisites can end up costing significantly more than a sequential project that
pays close attention to prerequisites.

Table 3-4. Effect of focusing on prerequisites on sequential and itera-
tive projects. This data is for purposes of illustration only

Approach #3 Approach #4
Sequential Approach Iterative Approach with
with Prerequisites Prerequisites
Project comple- Cost of Cost of Cost of Cost of
tion status Work Rework Work Rework
10% $100,000 $20,000 $100,000 $10,000
20% $100,000 $20,000 $100,000 $10,000
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30% $100,000 $20,000 $100,000 $10,000

40% $100,000 $20,000 $100,000 $10,000

50% $100,000 $20,000 $100,000 $10,000

60% $100,000 $20,000 $100,000 $10,000

70% $100,000 $20,000 $100,000 $10,000

80% $100,000 $20,000 $100,000 $10,000

90% $100,000 $20,000 $100,000 $10,000

100% $100,000 $20,000 $100,000 $10,000

End-of-Project $0 $0 $0 $0

Rework

TOTAL $1,000,000 $200,000 | $1,000,000 $100,000

GRAND TOTAL $1,200,000 $1,100,000
KEY POINT As Table 3-4 suggested, most projects are neither completely sequential nor

completely iterative. It isn’t practical to specify 100 percent of the requirements
or design up front, but most projects find value in identifying at least the most
critical requirements and architectural elements up front.

One realistic approach is to plan to specify about 80 percent of the requirements
up front, allocate time for additional requirements to be specified later, and then
practice systematic change control to accept only the most valuable new re-
quirements as the project progresses.

Error! Objects cannot be created from editing field codes.
FO3xx02

Figure 3-2

Activities will overlap to some degree on most projects, even those that are highly
sequential.

Another alternative is to specify only the most important 20 percent of the re-
quirements up front and plan to develop the rest of the software in small incre-
ments, specifying additional requirements and designs as you go.

Error! Objects cannot be created from editing field codes.

FO3xx03

Figure 3-3

On other projects, activities will overlap for the duration of the project. One key to
successful construction is understanding the degree to which prerequisites have been
completed and adjusting your approach accordingly.
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The extent to which prerequisites need to be satisfied up front will vary with the
project type indicated in Table 3-2, project formality, technical environment,
staff capabilities, and project business goals. You might choose a more sequen-
tial (up-front) approach when:

e The requirements are fairly stable

e The design is straightforward and fairly well understood

e The development team is familiar with the applications area
e The project contains little risk

e Long-term predictability is important

e The cost of changing requirements, design, and code downstream is likely to
be high

You might choose a more iterative (as-you-go) approach when:

e The requirements are not well understood or you expect them to be unstable
for other reasons

e The design is complex, challenging, or both

e The development team is unfamiliar with the applications area
e The project contains a lot of risk

e Long-term predictability is not important

e The cost of changing requirements, design, and code downstream is likely to
be low

You can adapt the prerequisites to your specific project by making them more or
less formal and more or less complete, as you see fit. For a detailed discussion of
different approaches to large and small projects (also known as the different ap-
proaches to formal and informal projects), see Chapter 27, “How Program Size
Affects Construction.”

The net impact on construction prerequisites is that you should first determine
what construction prerequisites are well-suited to your project. Some projects
spend too little time on prerequisites, which exposes construction to an unneces-
sarily high rate of destabilizing changes and prevents the project from making
consistent progress. Some project do too much up front; they doggedly adhere to
requirements and plans that have been invalidated by downstream discoveries,
and that can also impede progress during construction.

Now that you’ve studied Table 3-2 and determined what prerequisites are appro-
priate for your project, the rest of this chapter describes how to determine
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whether each specific construction prerequisite has been “prereq’d” or “pre-
wrecked.”

3.3 Problem-Definition Prerequisite

The first prerequisite you need to fulfill before beginning construction is a clear
statement of the problem that the system is supposed to solve. This is sometimes
called “product vision,” “mission statement,” and “product definition.” Here it’s
called “problem definition.” Since this book is about construction, this section
doesn’t tell you how to write a problem definition; it tells you how to recognize
whether one has been written at all and whether the one that’s written will form a
good foundation for construction.

A problem definition defines what the problem is without any reference to possi-
ble solutions. It’s a simple statement, maybe one or two pages, and it should
sound like a problem. The statement “We can’t keep up with orders for the Giga-
tron” sounds like a problem and is a good problem definition. The statement
“We need to optimize our automated data-entry system to keep up with orders
for the Gigatron” is a poor problem definition. It doesn’t sound like a problem; it
sounds like a solution.

Problem definition comes before detailed requirements work, which is a more in-
depth investigation of the problem.

Future
Improvements

/ System testing \
/ Construction \
/ Architecture \

/ Requirements \
/ Problem Definition \
FO3xx02
Figure 3-2

The problem definition lays the foundation for the rest of the programming process.
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The problem definition should be in user language, and the problem should be
described from a user’s point of view. It usually should not be stated in technical
computer terms. The best solution might not be a computer program. Suppose
you need a report that shows your annual profit. You already have computerized
reports that show quarterly profits. If you’re locked into the programmer mind-
set, you’ll reason that adding an annual report to a system that already does quar-
terly reports should be easy. Then you’ll pay a programmer to write and debug a
time-consuming program that calculates annual profits. If you’re not locked into
the computer mind-set, you’ll pay your secretary to create the annual figures by
taking one minute to add up the quarterly figures on a pocket calculator.

The exception to this rule applies when the problem is with the computer: com-
pile times are too slow or the programming tools are buggy. Then it’s appropri-
ate to state the problem in computer or programmer terms.

FO3xx03
Figure 3-3

Without a good problem definition, you might put effort into solving the wrong prob-
lem. Be sure you know what you’re aiming at before you shoot.

KEY POINT The penalty for failing to define the problem is that you can waste a lot of time
solving the wrong problem. This is a double-barreled penalty because you also
don’t solve the right problem.

3.4 Requirements Prerequisite

Requirements describe in detail what a software system is supposed to do, and
they are the first step toward a solution. The requirements activity is also known
as “requirements development,” “requirements analysis,” “analysis,” “‘require-
ments definition,” “software requirements,” “specification,” “functional spec,”
and “spec.”

Why Have Official Requirements?

An explicit set of requirements is important for several reasons.
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Explicit requirements help to ensure that the user rather than the programmer
drives the system’s functionality. If the requirements are explicit, the user can
review them and agree to them. If they’re not, the programmer usually ends up
making requirements decisions during programming. Explicit requirements keep
you from guessing what the user wants.

Explicit requirements also help to avoid arguments. You decide on the scope of
the system before you begin programming. If you have a disagreement with an-
other programmer about what the program is supposed to do, you can resolve it
by looking at the written requirements.

KEY POINT Paying attention to requirements helps to minimize changes to a system after
development begins. If you find a coding error during coding, you change a few
lines of code and work goes on. If you find a requirements error during coding,
you have to alter the design to meet the changed requirement. You might have to
throw away part of the old design, and because it has to accommodate code
that’s already written, the new design will take longer than it would have in the
first place. You also have to discard code and test cases affected by the require-
ment change and write new code and test cases. Even code that’s otherwise unaf-
fected must be retested so that you can be sure the changes in other areas haven’t
introduced any new errors.

HARD DATA As Table 3-1 reported, data from numerous organizations indicates that on large
projects an error in requirements detected during the architecture stage is typi-
cally 3 times as expensive to correct as it would be if it were detected during the
requirements stage. If detected during coding, it’s 5-10 times as expensive; dur-
ing system test, 10 times; and post-release, a whopping 10-100 times as expen-
sive as it would be if it were detected during requirements development. On
smaller projects with lower administrative costs, the multiplier post-release is
closer to 5-10 than 100 (Boehm and Turner 2004). In either case, it isn’t money
you’d want to have taken out of your salary.




le Complete

Requirements are like
“water. They’re easier to
build on when they’re

frozen.

“—Anon.

HARD DATA

3. Measure Twice, Cut Once: Upstream Prerequisites Page 18
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FO3xx04

Figure 3-4

Without good requirements, you can have the right general problem but miss the
mark on specific aspects of the problem.

Specifying requirements adequately is a key to project success, perhaps even
more important than effective construction techniques. Many good books have
been written about how to specify requirements well. Consequently, the next few
sections don’t tell you how to do a good job of specifying requirements, they tell
you how to determine whether the requirements have been done well and how to
make the best of the requirements you have.

The Myth of Stable Requirements

Stable requirements are the holy grail of software development. With stable re-
quirements, a project can proceed from architecture to design to coding to testing
in a way that’s orderly, predictable, and calm. This is software heaven! You have
predictable expenses, and you never have to worry about a feature costing 100
times as much to implement as it would otherwise because your user didn’t think
of it until you were finished debugging.

It’s fine to hope that once your customer has accepted a requirements document,
no changes will be needed. On a typical project, however, the customer can’t
reliably describe what is needed before the code is written. The problem isn’t
that the customers are a lower life-form. Just as the more you work with the pro-
ject, the better you understand it, the more they work with it, the better they un-
derstand it. The development process helps customers better understand their
own needs, and this is a major source of requirements changes (Curtis, Krasner,
and Iscoe 1988, Jones 1998, Wiegers 2003). A plan to follow the requirements
rigidly is actually a plan not to respond to your customer.

How much change is typical? Studies at IBM and other companies have found
that the average project experiences about a 25 percent change in requirements
during development (Boehm 1981, Jones 1994, Jones 2000), which typically
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accounts for 70 to 85 percent of the rework on a typical project (Leffingwell
1997, Wiegers 2003).

Maybe you think the Pontiac Aztek was the greatest car ever made, belong to the
Flat Earth Society, and vote for Ross Perot every four years. If you do, go ahead
and believe that requirements won’t change on your projects. If, on the other
hand, you’ve stopped believing in Santa Claus and the Tooth Fairy, or at least
have stopped admitting it, you can take several steps to minimize the impact of
requirements changes.

Handling Requirements Changes During Construc-
tion

| KEY POINT Here are several things you can do to make the best of changing requirements
during construction.

Use the requirements checklist at the end of the section to assess the quality
of your requirements

If your requirements aren’t good enough, stop work, back up, and make them
right before you proceed. Sure, it feels like you’re getting behind if you stop cod-
ing at this stage. But if you’re driving from Chicago to Los Angeles, is it a waste
of time to stop and look at a road map when you see signs for New York? No. If
you’re not heading in the right direction, stop and check your course.

Make sure everyone knows the cost of requirements changes

Clients get excited when they think of a new feature. In their excitement, their
blood thins and runs to their medulla oblongata and they become giddy, forget-
ting all the meetings you had to discuss requirements, the signing ceremony, and
the completed requirements document. The easiest way to handle such feature-
intoxicated people is to say, “Gee, that sounds like a great idea. Since it’s not in
the requirements document, I’ll work up a revised schedule and cost estimate so
that you can decide whether you want to do it now or later.” The words “sched-
ule” and “cost” are more sobering than coffee and a cold shower, and many
“must haves” will quickly turn into “nice to haves.”

If your organization isn’t sensitive to the importance of doing requirements first,
point out that changes at requirements time are much cheaper than changes later.
Use this chapter’s “Utterly Compelling and Foolproof Argument for Doing Pre-
requisites Before Construction.”

' CROSS-REFERENCE  For Set up a change-control procedure
- details on handling changes If your client’s excitement persists, consider establishing a formal change-
o design and code, see Sec- control board to review such proposed changes. It’s all right for customers to

tion 28.2, Co,f]f'guratlon change their minds and to realize that they need more capabilities. The problem
Management.
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is their suggesting changes so frequently that you can’t keep up. Having a built-
in procedure for controlling changes makes everyone happy. You’re happy be-
cause you know that you’ll have to work with changes only at specific times.
Your customers are happy because they know that you have a plan for handling
their input.

Use development approaches that accommodate changes

Some development approaches maximize your ability to respond to changing
requirements. An evolutionary prototyping approach helps you explore a sys-
tem’s requirements before you send your forces in to build it. Evolutionary de-
livery is an approach that delivers the system in stages. You can build a little, get
a little feedback from your users, adjust your design a little, make a few changes,
and build a little more. The key is using short development cycles so that you
can respond to your users quickly.

Dump the project

If the requirements are especially bad or volatile and none of the suggestions
above are workable, cancel the project. Even if you can’t really cancel the pro-
ject, think about what it would be like to cancel it. Think about how much worse
it would have to get before you would cancel it. If there’s a case in which you
would dump it, at least ask yourself how much difference there is between your
case and that case.

Checklist: Requirements

The requirements checklist contains a list of questions to ask yourself about your
project’s requirements. This book doesn’t tell you how to do good requirements
development, and the list won’t tell you how to do one either. Use the list as a
sanity check at construction time to determine how solid the ground that you’re
standing on is—where you are on the requirements Richter scale.

Not all of the checklist questions will apply to your project. If you’re working on
an informal project, you’ll find some that you don’t even need to think about.
You’ll find others that you need to think about but don’t need to answer for-
mally. If you’re working on a large, formal project, however, you may need to
consider every one.

Specific Functional Requirements

O Are all the inputs to the system specified, including their source, accuracy,
range of values, and frequency?

Q Are all the outputs from the system specified, including their destination,
accuracy, range of values, frequency, and format?

O Are all output formats specified for web pages, reports, and so on?
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Q Are all the external hardware and software interfaces specified?
Q Are all the external communication interfaces specified, including handshak-
ing, error-checking, and communication protocols?
O Are all the tasks the user wants to perform specified?
O s the data used in each task and the data resulting from each task specified?

Specific Non-Functional (Quality) Requirements

a

a

O

a

Is the expected response time, from the user’s point of view, specified for all
necessary operations?

Avre other timing considerations specified, such as processing time, data-
transfer rate, and system throughput?

Is the level of security specified?

Is the reliability specified, including the consequences of software failure,
the vital information that needs to be protected from failure, and the strategy
for error detection and recovery?

Is maximum memory specified?
Is the maximum storage specified?

Is the maintainability of the system specified, including its ability to adapt to
changes in specific functionality, changes in the operating environment, and
changes in its interfaces with other software?

Is the definition of success included? Of failure?

Requirements Quality

a
a
a

(W]

Are the requirements written in the user’s language? Do the users think so?
Does each requirement avoid conflicts with other requirements?

Are acceptable trade-offs between competing attributes specified—for ex-
ample, between robustness and correctness?

Do the requirements avoid specifying the design?

Are the requirements at a fairly consistent level of detail? Should any re-
quirement be specified in more detail? Should any requirement be specified
in less detail?

Are the requirements clear enough to be turned over to an independent group
for construction and still be understood?

Is each item relevant to the problem and its solution? Can each item be
traced to its origin in the problem environment?

Is each requirement testable? Will it be possible for independent testing to
determine whether each requirement has been satisfied?

Avre all possible changes to the requirements specified, including the likeli-
hood of each change?



le Complete

CROSS-REFERENCE  For

more information on design

at all levels, see Chapters 5
“through 9.

| KEY POINT

3. Measure Twice, Cut Once: Upstream Prerequisites Page 22

Requirements Completeness

O Where information isn’t available before development begins, are the areas
of incompleteness specified?

O Are the requirements complete in the sense that if the product satisfies every
requirement, it will be acceptable?

O Are you comfortable with all the requirements? Have you eliminated re-
quirements that are impossible to implement and included just to appease
your customer or your boss?

3.5 Architecture Prerequisite

Software architecture is the high-level part of software design, the frame that
holds the more detailed parts of the design (Buschman, et al, 1996; Fowler 2002;
Bass Clements, Kazman 2003; Clements et al, 2003). Architecture is also known
as “system architecture,” “high-level design,” and “top-level design.” Typically,
the architecture is described in a single document referred to as the “architecture
specification” or “top-level design.” Some people make a distinction between
architecture and high-level design—architecture refers to design constraints that
apply system-wide, whereas high-level design refers to design constraints that
apply at the subsystem or multiple-class level, but not necessarily system wide.

Because this book is about construction, this section doesn’t tell you how to de-
velop a software architecture; it focuses on how to determine the quality of an
existing architecture. Because architecture is one step closer to construction than
requirements, however, the discussion of architecture is more detailed than the
discussion of requirements.

Why have architecture as a prerequisite? Because the quality of the architecture
determines the conceptual integrity of the system. That in turn determines the
ultimate quality of the system. A well thought-out architecture provides the
structure needed to maintain a system’s conceptual integrity from the top levels
down the bottom. It provides guidance to programmers—at a level of detail ap-
propriate to the skills of the programmers and to the job at hand. It partitions the
work so that multiple developers or multiple development teams can work inde-
pendently.

Good architecture makes construction easy. Bad architecture makes construction
almost impossible.
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Figure 3-5
Without good software architecture, you may have the right problem but the wrong
solution. It may be impossible to have successful construction.

Architectural changes are expensive to make during construction or later. The
time needed to fix an error in a software architecture is on the same order as that
needed to fix a requirements error—that is, more than that needed to fix a coding
error (Basili and Perricone 1984, Willis 1998). Architecture changes are like re-
quirements changes in that seemingly small changes can be far-reaching.
Whether the architectural changes arise from the need to fix errors or the need to
make improvements, the earlier you can identify the changes, the better.

Typical Architectural Components

Many components are common to good system architectures. If you’re building
the whole system yourself, your work on the architecture, will overlap your work
on the more detailed design. In such a case, you should at least think about each
architectural component. If you’re working on a system that was architected by
someone else, you should be able to find the important components without a
bloodhound, a deerstalker cap, and a magnifying glass. In either case, here are
the architectural components to consider.

Program Organization

A system architecture first needs an overview that describes the system in broad
terms. Without such an overview, you’ll have a hard time building a coherent
picture from a thousand details or even a dozen individual classes. If the system
were a little 12-piece jigsaw puzzle, your two-year-old could solve it between
spoonfuls of strained asparagus. A puzzle of 12 software classes or 12 subsys-
tems is harder to put together, and if you can’t put it together, you won’t under-
stand how a class you’re developing contributes to the system.

In the architecture, you should find evidence that alternatives to the final organi-
zation were considered and find the reasons the organization used was chosen
over the alternatives. It’s frustrating to work on a class when it seems as if the
class’s role in the system has not been clearly conceived. By describing the or-
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ganizational alternatives, the architecture provides the rationale for the system
organization and shows that each class has been carefully considered. One re-
view of design practices found that the design rationale is at least as important
for maintenance as the design itself (Rombach 1990).

The architecture should define the major building blocks in a program. Depend-
ing on the size of the program, each building block might be a single class, or it
might be a subsystem consisting of many classes. Each building block is a class,
or a collection of classes or routines that work together on high-level functions
such as interacting with the user, displaying web pages, interpreting commands,
encapsulating business rules, or accessing data. Every feature listed in the re-
quirements should be covered by at least one building block. If a function is
claimed by two or more building blocks, their claims should cooperate, not con-
flict.

What each building block is responsible for should be well defined. A building
block should have one area of responsibility, and it should know as little as pos-
sible about other building blocks’ areas of responsibility. By minimizing what
each building block knows about each other building block, you localize infor-
mation about the design into single building blocks.

The communication rules for each building block should be well defined. The
architecture should describe which other building blocks the building block can
use directly, which it can use indirectly, and which it shouldn’t use at all.

Major Classes

The architecture should specify the major classes to be used. It should identify
the responsibilities of each major class and how the class will interact with other
classes. It should include descriptions of the class hierarchies, of state transitions,
and of object persistence. If the system is large enough, it should describe how
classes are organized into subsystems.

The architecture should describe other class designs that were considered and
give reasons for preferring the organization that was chosen. The architecture
doesn’t need to specify every class in the system; aim for the 80/20 rule: specify
the 20 percent of the classes that make up 80 percent of the systems’ behavior
(Jacobsen, Booch, and Rumbaugh 1999; Kruchten 2000).

Data Design

The architecture should describe the major files and table designs to be used. It
should describe alternatives that were considered and justify the choices that
were made. If the application maintains a list of customer IDs and the architects
have chosen to represent the list of IDs using a sequential-access list, the docu-
ment should explain why a sequential-access list is better than a random-access

Page 24
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list, stack, or hash table. During construction, such information gives you insight
into the minds of the architects. During maintenance, the same insight is an in-
valuable aid. Without it, you’re watching a foreign movie with no subtitles.

Data should normally be accessed directly by only one subsystem or class, ex-
cept through access classes or routines that allow access to the data in controlled
and abstract ways. This is explained in more detail in “Hide Secrets (Information
Hiding)” in Section 5.3.

The architecture should specify the high-level organization and contents of any
databases used. The architecture should explain why a single database is prefer-
able to multiple databases (or vice versa), identify possible interactions with
other programs that access the same data, explain what views have been created
on the data, and so on.

Business Rules

If the architecture depends on specific business rules, it should identify them and
describe the impact the rules have on the system’s design. For example, suppose
the system is required to follow a business rule that customer information should
be no more than 30 seconds out of date. In that case, the impact that has on the
architecture’s approach to keeping customer information up to date and synchro-
nized should be described.

User Interface Design

Sometimes the user interface is specified at requirements time. If it isn’t, it
should be specified in the software architecture. The architecture should specify
major elements of web page formats, GUIs, command line interfaces, and so on.
Careful architecture of the user interface makes the difference between a well-
liked program and one that’s never used.

The architecture should be modularized so that a new user interface can be sub-
stituted without affecting the business rules and output parts of the program. For
example, the architecture should make it fairly easy to lop off a group of interac-
tive interface classes and plug in a group of command line classes. This ability is
often useful, especially since command line interfaces are convenient for soft-
ware testing at the unit or subsystem level.

The design of user interfaces deserves its own book-length discussion but is out-
side the scope of this book.

Input/Output

Input/output is another area that deserves attention in the architecture. The archi-
tecture should specify a look-ahead, look-behind, or just-in-time reading scheme.
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And it should describe the level at which 1/O errors are detected: at the field,
record, stream, or file level.

Resource Management

The architecture should describe a plan for managing scarce resources such as
database connections, threads, and handles. Memory management is another im-
portant area for the architecture to treat in memory-constrained applications ar-
eas like driver development and embedded systems. The architecture should es-
timate the resources used for nominal and extreme cases. In a simple case, the
estimates should show that the resources needed are well within the capabilities
of the intended implementation environment. In a more complex case, the appli-
cation might be required to more actively manage its own resources. If it is, the
resource manager should be architected as carefully as any other part of the sys-
tem.

Security

The architecture should describe the approach to design-level and code-level
security. If a threat model has not previously been built, it should be built at ar-
chitecture time. Coding guidelines should be developed with security implica-
tions in mind, including approaches to handling buffers; rules for handling un-
trusted data (data input from users, cookies, configuration data, other external
interfaces); encryption; level of detail contained in error messages; protecting
secret data that’s in memory; and other issues.

Performance

If performance is a concern, performance goals should be specified in the re-
quirements. Performance goals can include both speed and memory use.

The architecture should provide estimates and explain why the architects believe
the goals are achievable. If certain areas are at risk of failing to meet their goals,
the architecture should say so. If certain areas require the use of specific algo-
rithms or data types to meet their performance goals, the architecture should say
s0. The architecture can also include space and time budgets for each class or
object.

Scalability

Scalability is the ability of a system to grow to meet future demands. The archi-
tecture should describe how the system will address growth in number of users,
number of servers, number of network nodes, database size, transaction volume,
and so on. If the system is not expected to grow and scalability is not an issue,
the architecture should make that assumption explicit.

Page 26
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Interoperability

If the system is expected to share data or resources with other software or hard-
ware, the architecture should describe how that will be accomplished.

Internationalization/Localization

“Internationalization” is the technical activity of preparing a program to support
multiple locales. Internationalization is often known as “I118N” because the first
and last characters in “internationalization” are “I” and “N” and because there
are 18 letters in the middle of the word. “Localization” (known as “L10n” for the
same reason) is the activity of translating a program to support a specific local
language.

Internationalization issues deserve attention in the architecture for an interactive
system. Most interactive systems contain dozens or hundreds of prompts, status
displays, help messages, error messages, and so on. Resources used by the
strings should be estimated. If the program is to be used commercially, the archi-
tecture should show that the typical string and character-set issues have been
considered, including character set used (ASCII, DBCS, EBCDIC, MBCS, Uni-
code, 1SO 8859, and so on), kinds of strings used (C strings, Visual Basic
Strings, and so on) maintaining the strings without changing code, and translat-
ing the strings into foreign languages with minimal impact on the code and the
user interface. The architecture can decide to use strings in line in the code where
they’re needed, keep the strings in a class and reference them through the class
interface, or store the strings in a resource file. The architecture should explain
which option was chosen and why.

Error Processing

Error processing is turning out to be one of the thorniest problems of modern
computer science, and you can’t afford to deal with it haphazardly. Some people
have estimated that as much as 90 percent of a program’s code is written for ex-
ceptional, error-processing cases or housekeeping, implying that only 10 percent
is written for nominal cases (Shaw in Bentley 1982). With so much code dedi-
cated to handling errors, a strategy for handling them consistently should be
spelled out in the architecture.

Error handling is often treated as a coding-convention—level issue, if it’s treated
at all. But because it has system-wide implications, it is best treated at the archi-
tectural level. Here are some questions to consider:

e |s error processing corrective or merely detective? If corrective, the program
can attempt to recover from errors. If it’s merely detective, the program can
continue processing as if nothing had happened, or it can quit. In either case,
it should notify the user that it detected an error.
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e |s error detection active or passive? The system can actively anticipate er-
rors—for example, by checking user input for validity—or it can passively
respond to them only when it can’t avoid them—for example, when a com-
bination of user input produces a numeric overflow. It can clear the way or
clean up the mess. Again, in either case, the choice has user-interface impli-
cations.

e How does the program propagate errors? Once it detects an error, it can im-
mediately discard the data that caused the error, it can treat the error as an
error and enter an error-processing state, or it can wait until all processing is
complete and notify the user that errors were detected (somewhere).

e What are the conventions for handling error messages? If the architecture
doesn’t specify a single, consistent strategy, the user interface will appear to
be a confusing macaroni-and-dried-bean collage of different interfaces in
different parts of the program. To avoid such an appearance, the architecture
should establish conventions for error messages.

e Inside the program, at what level are errors handled? You can handle them at
the point of detection, pass them off to an error-handling class, or pass them
up the call chain.

e What is the level of responsibility of each class for validating its input data?
Is each class responsible for validating its own data, or is there a group of
classes responsible for validating the system’s data? Can classes at any level
assume that the data they’re receiving is clean?

e Do you want to use your environment’s built-in exception handling mecha-
nism, or build your own? The fact that an environment has a particular error-
handling approach doesn’t mean that it’s the best approach for your re-
quirements.

Fault Tolerance

The architecture should also indicate the kind of fault tolerance expected. Fault

tolerance is a collection of techniques that increase a system’s reliability by de-

tecting errors, recovering from them if possible, and containing their bad effects
if not.

For example, a system could make the computation of the square root of a num-
ber fault tolerant in any of several ways:

e The system might back up and try again when it detects a fault. If the first
answer is wrong, it would back up to a point at which it knew everything
was all right and continue from there.

Page 28
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e The system might have auxiliary code to use if it detects a fault in the pri-
mary code. In the example, if the first answer appears to be wrong, the sys-
tem switches over to an alternative square-root routine and uses it instead.

e The system might use a voting algorithm. It might have three square-root
classes that each use a different method. Each class computes the square
root, and then the system compares the results. Depending on the kind of
fault tolerance built into the system, it then uses the mean, the median, or the
mode of the three results.

e The system might replace the erroneous value with a phony value that it
knows to have a benign effect on the rest of the system.

Other fault-tolerance approaches include having the system change to a state of
partial operation or a state of degraded functionality when it detects an error. It
can shut itself down or automatically restart itself. These examples are necessar-
ily simplistic. Fault tolerance is a fascinating and complex subject—
unfortunately, one that’s outside the scope of this book.

Architectural Feasibility

The designers might have concerns about a system’s ability to meet its perform-
ance targets, work within resource limitations, or be adequately supported by the
implementation environments. The architecture should demonstrate that the sys-
tem is technically feasible. If infeasibility in any area could render the project
unworkable, the architecture should indicate how those issues have been investi-
gated—through proof-of-concept prototypes, research, or other means. These
risks should be resolved before full-scale construction begins.

Overengineering

Robustness is the ability of a system to continue to run after it detects an error.
Often an architecture specifies a more robust system than that specified by the
requirements. One reason is that a system composed of many parts that are
minimally robust might be less robust than is required overall. In software, the
chain isn’t as strong as its weakest link; it’s as weak as all the weak links multi-
plied together. The architecture should clearly indicate whether programmers
should err on the side of overengineering or on the side of doing the simplest
thing that works.

Specifying an approach to over-engineering is particularly important because
many programmers over-engineer their classes automatically, out of a sense of
professional pride. By setting expectations explicitly in the architecture, you can
avoid the phenomenon in which some classes are exceptionally robust and others
are barely adequate.
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Buy-vs.-Build Decisions

The most radical solution to building software is not to build it at all—to buy it
instead. You can buy GUI controls, database managers, image processors, graph-
ics and charting components, Internet communications components, security and
encryption components, spreadsheet tools, text processing tools—the list is
nearly endless. One of the greatest advantages of programming in modern GUI
environments is the amount of functionality you get automatically: graphics
classes, dialog box managers, keyboard and mouse handlers, code that works
automatically with any printer or monitor, and so on.

If the architecture isn’t using off-the-shelf components, it should explain the
ways in which it expects custom-built components to surpass ready-made librar-
ies and components.

Reuse Decisions

If the plan calls for using pre-existing software, the architecture should explain
how the reused software will be made to conform to the other architectural
goals—if it will be made to conform.

Change Strategy

Because building a software product is a learning process for both the program-
mers and the users, the product is likely to change throughout its development.
Changes arise from volatile data types and file formats, changed functionality,
new features, and so on. The changes can be new capabilities likely to result
from planned enhancements, or they can be capabilities that didn’t make it into
the first version of the system. Consequently, one of the major challenges facing
a software architect is making the architecture flexible enough to accommodate
likely changes.

The architecture should clearly describe a strategy for handling changes. The
architecture should show that possible enhancements have been considered and
that the enhancements most likely are also the easiest to implement. If changes
are likely in input or output formats, style of user interaction, or processing re-
quirements, the architecture should show that the changes have all been antici-
pated and that the effects of any single change will be limited to a small number
of classes. The architecture’s plan for changes can be as simple as one to put
version numbers in data files, reserve fields for future use, or design files so that
you can add new tables. If a code generator is being used, the architecture should
show that the anticipated changes are within the capabilities of the code genera-
tor.
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tions. The central thesis of the most popular software-engineering book ever, The
Mythical Man-Month, is that the essential problem with large systems is main-
taining their conceptual integrity (Brooks 1995). A good architecture should fit
the problem. When you look at the architecture, you should be pleased by how
natural and easy the solution seems. It shouldn’t look as if the problem and the
architecture have been forced together with duct tape.

You might know of ways in which the architecture was changed during its de-
velopment. Each change should fit in cleanly with the overall concept. The archi-
tecture shouldn’t look like a House appropriations bill complete with pork-
barrel, boondoggle riders for each representative’s home district.

The architecture’s objectives should be clearly stated. A design for a system with
a primary goal of modifiability will be different from one with a goal of uncom-
promised performance, even if both systems have the same function.

The architecture should describe the motivations for all major decisions. Be wary
of “we’ve always done it that way” justifications. One story goes that Beth
wanted to cook a pot roast according to an award-winning pot roast recipe
handed down in her husband’s family. Her husband, Abdul, said that his mother
had taught him to sprinkle it with salt and pepper, cut both ends off, put it in the
pan, cover it, and cook it. Beth asked, “Why do you cut both ends off?”” Abdul
said, “l don’t know. I’ve always done it that way. Let me ask my mother.” He
called her, and she said, “I don’t know. I’ve always done it that way. Let me ask
your grandmother.” She called his grandmother, who said, “I don’t know why
you do it that way. | did it that way because it was too big to fit in my pan.”

Good software architecture is largely machine and language independent. Admit-
tedly, you can’t ignore the construction environment. By being as independent of
the environment as possible, however, you avoid the temptation to over-architect
the system or to do a job that you can do better during construction. If the pur-
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pose of a program is to exercise a specific machine or language, this guideline
doesn’t apply.

The architecture should tread the line between under-specifying and over-
specifying the system. No part of the architecture should receive more attention
than it deserves, or be over-designed. Designers shouldn’t pay attention to one
part at the expense of another. The architecture should address all requirements
without gold-plating (without containing elements that are not required).

The architecture should explicitly identify risky areas. It should explain why
they’re risky and what steps have been taken to minimize the risk.

Finally, you shouldn’t be uneasy about any parts of the architecture. It shouldn’t
contain anything just to please the boss. It shouldn’t contain anything that’s hard
for you to understand. You’re the one who’ll implement it; if it doesn’t make
sense to you, how can you implement it?

CC2E.COM/0337
Checklist: Architecture

Here’s a list of issues that a good architecture should address. The list isn’t in-
tended to be a comprehensive guide to architecture but to be a pragmatic way of
evaluating the nutritional content of what you get at the programmer’s end of the
software food chain. Use this checklist as a starting point for your own checklist.
As with the requirements checklist, if you’re working on an informal project,
you’ll find some items that you don’t even need to think about. If you’re work-
ing on a larger project, most of the items will be useful.

Specific Architectural Topics

Q Is the overall organization of the program clear, including a good architec-
tural overview and justification?

O Are major building blocks well defined, including their areas of responsibil-
ity and their interfaces to other building blocks?

(W]

Avre all the functions listed in the requirements covered sensibly, by neither
too many nor too few building blocks?

Are the most critical classes described and justified?
Is the data design described and justified?
Is the database organization and content specified?

O 0000

Avre all key business rules identified and their impact on the system de-
scribed?

(W]

Is a strategy for the user interface design described?

Is the user interface modularized so that changes in it won’t affect the rest of
the program?
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Is a strategy for handling 1/O described and justified?

Are resource-use estimates and a strategy for resource management de-
scribed and justified?

Avre the architecture’s security requirements described?

Does the architecture set space and speed budgets for each class, subsystem,
or functionality area?

Does the architecture describe how scalability will be achieved?
Does the architecture address interoperability?

Is a strategy for internationalization/localization described?

Is a coherent error-handling strategy provided?

Is the approach to fault tolerance defined (if any is needed)?

Has technical feasibility of all parts of the system been established?
Is an approach to overengineering specified?

Are necessary buy-vs.-build decisions included?

Does the architecture describe how reused code will be made to conform to
other architectural objectives?

Is the architecture designed to accommodate likely changes?

Does the architecture describe how reused code will be made to conform to
other architectural objectives?

General Architectural Quality

a
a

O

Does the architecture account for all the requirements?

Is any part over- or under-architected? Are expectations in this area set out
explicitly?

Does the whole architecture hang together conceptually?

Is the top-level design independent of the machine and language that will be
used to implement it?

Are the motivations for all major decisions provided?

Are you, as a programmer who will implement the system, comfortable with
the architecture?
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3.6 Amount of Time to Spend on Upstream
Prerequisites

The amount of time to spend on problem definition, requirements, and software
architecture varies according to the needs of your project. Generally, a well-run
project devotes about 10 to 20 percent of its effort and about 20 to 30 percent of
its schedule to requirements, architecture, and up-front planning (McConnell
1998, Kruchten 2000). These figures don’t include time for detailed design—
that’s part of construction.

If requirements are unstable and you’re working on a large, formal project,
you’ll probably have to work with a requirements analyst to resolve require-
ments problems that are identified early in construction. Allow time to consult
with the requirements analyst and for the requirements analyst to revise the re-
quirements before you’ll have a workable version of the requirements.

If requirements are unstable and you’re working on a small, informal project,
allow time for defining the requirements well enough that their volatility will
have a minimal impact on construction.

If the requirements are unstable on any project—formal or informal—treat re-
quirements work as its own project. Estimate the time for the rest of the project
after you’ve finished the requirements. This is a sensible approach since no one
can reasonably expect you to estimate your schedule before you know what
you’re building. It’s as if you were a contractor called to work on a house. Your
customer says, “What will it cost to do the work?” You reasonably ask, “What
do you want me to do?” Your customer says, “I can’t tell you, but how much
will it cost?” You reasonably thank the customer for wasting your time and go
home.

With a building, it’s clear that it’s unreasonable for clients to ask for a bid before
telling you what you’re going to build. Your clients wouldn’t want you to show
up with wood, hammer, and nails and start spending their money before the ar-
chitect had finished the blueprints. People tend to understand software develop-
ment less than they understand two-by-fours and sheetrock, however, so the cli-
ents you work with might not immediately understand why you want to plan re-
quirements development as a separate project. You might need to explain your
reasoning to them.

When allocating time for software architecture, use an approach similar to the
one for requirements development. If the software is a kind that you haven’t
worked with before, allow more time for the uncertainty of designing in a new
area. Ensure that the time you need to create a good architecture won’t take away
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from the time you need for good work in other areas. If necessary, plan the archi-
tecture work as a separate project too.

Additional Resources

Requirements
Here are a few books that give much more detail on requirements development.

Wiegers, Karl. Software Requirements, 2d Ed. Redmond, WA: Microsoft Press,
2003. This is a practical, practitioner-focused book that describes the nuts and
bolts of requirements activities including requirements elicitation, requirements
analysis, requirements specification, requirements validation, and requirements
management.

Robertson, Suzanne and James Robertson. Mastering the Requirements Process,
Reading, MA: Addison Wesley, 1999. This is a good alternative to Wiegers’
book for the more advanced requirements practitioner.

Gilb, Tom. Competitive Engineering, Reading, Mass.: Addison Wesley, 2004.
This book describes Gilb’s requirements language known as “Planguage.” The
book covers Gilb’s specific approach to requirements engineering, design and
design evaluation, and evolutionary project management. This book can be
downloaded from Gilb’s website at www.gilb.com.

IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements
Specifications, Los Alamitos, CA: IEEE Computer Society Press. This document
is the IEEE-ANSI guide for writing software requirements specifications. It de-
scribes what should be included in the specification document and shows several
alternative outlines for one.

Abran, Alain, et al. Swebok: Guide to the Software Engineering Body of Knowl-
edge, Los Alamitos, CA: IEEE Computer Society Press, 2001. This contains a
detailed description of the body of software-requirements knowledge. It may
also be downloaded from www.swebok.org.

Other good alternatives include:

Lauesen, Soren. Software Requirements: Styles and Techniques, Boston, Mass.:
Addison Wesley, 2002.

Kovitz, Benjamin, L. Practical Software Requirements: A Manual of Content
and Style, Manning Publications Company, 1998.
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Cockburn, Alistair. Writing Effective Use Cases, Boston, Mass.: Addison
Wesley, 2000.

Software Architecture

Numerous books on software architecture have been published in the past few
years. Here are some of the best:

- CC2E.COM/0372

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition, Boston, Mass.: Addison Wesley, 2003.

Buschman, Frank, et al. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns, New York: John Wiley & Sons, 1996.

Clements, Paul, ed.. Documenting Software Architectures: Views and Beyond,
Boston, Mass.: Addison Wesley, 2003.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architec-
tures: Methods and Case Studies, Boston, Mass.: Addison Wesley, 2002.

Fowler, Martin. Patterns of Enterprise Application Architecture, Boston, Mass.:
Addison Wesley, 2002.

Jacobson, Ivar, Grady Booch, James Rumbaugh, 1999. The Unified Software
Development Process, Reading, Mass.: Addison Wesley, 1999.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of
Software Intensive Systems, Los Alamitos, CA: IEEE Computer Society Press.
This document is the IEEE-ANSI guide for creating software architecture speci-
fications.

General Software Development Approaches

Many books are available that map out different approaches to conducting a
software project. Some are more sequential, and some are more iterative.

- CC2E.COM/0379

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft
Press, 1998. This book presents one particular way to conduct a project. The ap-
proach presented emphasizes deliberate up-front planning, requirements devel-
opment, and architecture work followed by careful project execution. It provides
long-range predictability of costs and schedules, high quality, and a moderate
amount of flexibility.

Kruchten, Philippe. The Rational Unified Process: An Introduction, 2d Ed.,
Reading, Mass.: Addison Wesley, 2000. This book presents a project approach
that is “architecture centric and use-case driven.” Like Software Project Survival
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Guide, it focuses on up-front work that provides good long-range predictability
of costs and schedules, high quality, and moderate flexibility. This book’s ap-
proach requires somewhat more sophisticated use than the approaches described
in Software Project Survival Guide and Extreme Programming Explained: Em-
brace Change.

Jacobson, Ivar, Grady Booch, James Rumbaugh. The Unified Software Devel-
opment Process, Reading, Mass.: Addison Wesley, 1999. This book is a more in-
depth treatment of the topics covered in The Rational Unified Process: An Intro-
duction, 2d Ed.

Beck, Kent. Extreme Programming Explained: Embrace Change, Reading,
Mass.: Addison Wesley, 2000. Beck describes a highly iterative approach that
focuses on developing requirements and designs iteratively, in conjunction with
construction. The extreme programming approach offers little long-range pre-
dictability but provides a high degree of flexibility.

Gilb, Tom. Principles of Software Engineering Management. Wokingham, Eng-
land: Addison-Wesley. Gilb’s approach explores critical planning, requirements,
and architecture issues early in a project, then continuously adapts the project
plans as the project progresses. This approach provides a combination of long-
range predictability, high quality, and a high degree of flexibility. It requires
more sophistication than the approaches described in Software Project Survival
Guide and Extreme Programming: Embrace Change.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.
This book presents a toolbox approach to project planning. An experienced pro-
ject planner can use the tools presented in this book to create a project plan that
is highly adapted to a project’s unique needs.

Boehm, Barry and Richard Turner. Balancing Agility and Discipline: A Guide
for the Perplexed, Boston, Mass.: Addison Wesley, 2003. This book explores the
contrast between agile development and plan-driven development styles. Chapter
3 has 4 especially revealing sections: A Typical Day using PSP/TSP, A Typical
Day using Extreme Programming, A Crisis Day using PSP/TSP, and A Crisis
Day using Extreme Programming. Chapter 5 is on using risk to balance agility,
which provides incisive guidance for selecting between agile and plan-driven
methods. Chapter 6, Conclusions, is also well balanced and gives great perspec-
tive. Appendix E is a gold mine of empirical data on agile practices.

Larman, Craig. Agile and Iterative Development: A Manager’s Guide, Boston,
Mass.: Addison Wesley, 2004. This is a well-researched introduction to flexible,
evolutionary development styles. It overviews Scrum, Extreme Programming,
the Unified Process, and Evo.
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Checklist: Upstream Prerequisites

a

a

Have you identified the kind of software project you’re working on and tai-
lored your approach appropriately?

Are the requirements sufficiently well-defined and stable enough to begin
construction (see the requirements checklist for details)?

Is the architecture sufficiently well defined to begin construction (see the
architecture checklist for details)?

Have other risks unique to your particular project been addressed, such that
construction is not exposed to more risk than necessary?

Key Points

The overarching goal of preparing for construction is risk reduction. Be sure
your preparation activities are reducing risks, not increasing them.

If you want to develop high-quality software, attention to quality must be
part of the software-development process from the beginning to the end. At-
tention to quality at the beginning has a greater influence on product quality
than attention at the end.

Part of a programmer’s job is to educate bosses and coworkers about the
software-development process, including the importance of adequate prepa-
ration before programming begins.

The kind of project you’re working significantly affects construction prereg-
uisites—many projects should be highly iterative, and some should be more
sequential.

If a good problem definition hasn’t been specified, you might be solving the
wrong problem during construction.

If a good requirements work hasn’t been done, you might have missed im-
portant details of the problem. Requirements changes cost 20 to 100 times as
much in the stages following construction as they do earlier, so be sure the
requirements are right before you start programming.

If a good architectural design hasn’t been done, you might be solving the
right problem the wrong way during construction. The cost of architectural
changes increases as more code is written for the wrong architecture, so be
sure the architecture is right too.

Understand what approach has been taken to the construction prerequisites
on your project and choose your construction approach accordingly.
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Contents
4.1 Choice of Programming Language

4.2 Programming Conventions
4.3 Your Location on the Technology Wave

4.4 Selection of Major Construction Practices

Related Topics
Upstream prerequisites: Chapter 3

Determine the kind of software you’re working on: Section 3.1
Formality needed with programs of different sizes: Chapter 27
Managing construction: Chapter 28

Software design: Chapter 5, and Chapters 6 through 9

Once you’re sure an appropriate groundwork has been laid for construction,
preparation turns toward more construction-specific decisions. Chapter 3
discussed the software equivalent of blueprints and construction permits. You
might not have had much control over those preparations, and so the focus of
that chapter was on assessing what you’ve got to work with at the time
construction begins. This chapter focuses on preparations that individual
programmers and technical leads are responsible for, directly or indirectly. It
discusses the software equivalent of how to select specific tools for your tool belt
and how to load your truck before you head out to the jobsite.

If you feel you’ve read enough about construction preparations already, you
might skip ahead to Chapter 5.

4.1 Choice of Programming Language

By relieving the brain of all unnecessary work, a good
notation sets it free to concentrate on more advanced
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problems, and in effect increases the mental power of the race.
Before the introduction of the Arabic notation, multiplication
was difficult, and the division even of integers called into play
the highest mathematical faculties. Probably nothing in the
modern world would have more astonished a Greek
mathematician than to learn that ... a huge proportion of the
population of Western Europe could perform the operation of
division for the largest numbers. This fact would have seemed
to him a sheer impossibility.... Our modern power of easy
reckoning with decimal fractions is the almost miraculous
result of the gradual discovery of a perfect notation.

—Alfred North Whitehead

The programming language in which the system will be implemented should be
of great interest to you since you will be immersed in it from the beginning of
construction to the end.

Studies have shown that the programming-language choice affects productivity
and code quality in several ways.

Programmers are more productive using a familiar language than an unfamiliar
one. Data from the Cocomo Il estimation model shows that programmers
working in a language they’ve used for three years or more are about 30 percent
more productive than programmers with equivalent experience who are new to a
language (Boehm, et al 2000). An earlier study at IBM found that programmers
who had extensive experience with a programming language were more than
three times as productive as those with minimal experience (Walston and Felix
1977).

Programmers working with high-level languages achieve better productivity and
quality than those working with lower-level languages. Languages such as C++,
Java, Smalltalk, and Visual Basic have been credited with improving
productivity, reliability, simplicity, and comprehensibility by factors of 5 to 15
over low-level languages such as assembly and C (Brooks 1987, Jones 1998,
Boehm 2000). You save time when you don’t need to have an awards ceremony
every time a C statement does what it’s supposed to. Moreover, higher-level
languages are more expressive than lower-level languages. Each line of code
says more. Table 4-1 shows typical ratios of source statements in several high-
level languages to the equivalent code in C. A higher ratio means that each line
of code in the language listed accomplishes more than does each line of code in
C.
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Table 4-1. Ratio of High-Level-Language Statements to Equivalent C
Code

Language Level relative to C
Cc ltol

C++ 1t025

Fortran 95 lto?2

Java 1to25

Perl 1to6

Smalltalk 1to6

SQL 1t0 10

Visual Basic 1to 4.5

Source: Adapted from Estimating Software Costs (Jones 1998) and Software Cost
Estimation with Cocomo Il (Boehm 2000).

Data from IBM points to another language characteristic that influences
productivity: Developers working in interpreted languages tend to be more
productive than those working in compiled languages (Jones 1986a). In
languages that are available in both interpreted and compiled forms (such as
Visual Basic), you can productively develop programs in the interpreted form
and then release them in the better-performing compiled form.

Some languages are better at expressing programming concepts than others. You
can draw a parallel between natural languages such as English and programming
languages such as Java and C++. In the case of natural languages, the linguists
Sapir and Whorf hypothesize a relationship between the expressive power of a
language and the ability to think certain thoughts. The Sapir-Whorf hypothesis
says that your ability to think a thought depends on knowing words capable of
expressing the thought. If you don’t know the words, you can’t express the
thought, and you might not even be able to formulate it (Whorf 1956).

Programmers may be similarly influenced by their languages. The words
available in a programming language for expressing your programming thoughts
certainly determine how you express your thoughts and might even determine
what thoughts you can express.

Evidence of the effect of programming languages on programmers’ thinking is
common. A typical story goes like this: “We were writing a new system in C++,
but most of our programmers didn’t have much experience in C++. They came
from Fortran backgrounds. They wrote code that compiled in C++, but they were
really writing disguised Fortran. They stretched C++ to emulate Fortran’s bad
features (such as gotos and global data) and ignored C++’s rich set of object-
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oriented capabilities.” This phenomenon has been reported throughout the
industry for many years (Hanson 1984, Yourdon 1986a).

Language Descriptions

The development histories of some languages are interesting, as are their general
capabilities. Here are descriptions of the most common languages in use today.

Ada

Ada is a general-purpose, high-level programming language based on Pascal. It
was developed under the aegis of the Department of Defense and is especially
well suited to real-time and embedded systems. Ada emphasizes data abstraction
and information hiding and forces you to differentiate between the public and
private parts of each class and package. “Ada” was chosen as the name of the
language in honor of Ada Lovelace, a mathematician who is considered to have
been the world’s first programmer. Today Ada is used primarily in military,
space, and avionics systems.

Assembly Language

Assembly language, or “assembler,” is a kind of low-level language in which
each statement corresponds to a single machine instruction. Because the
statements use specific machine instructions, an assembly language is specific to
a particular processor—for example, specific Intel or Motorola CPUs. Assembler
is regarded as the second-generation language. Most programmers avoid it
unless they’re pushing the limits in execution speed or code size.

C

C is a general-purpose, mid-level language that is originally associated with the
UNIX operating system. C has some high-level language features, such as
structured data, structured control flow, machine independence, and a rich set of
operators. It has also been called a “portable assembly language” because it
makes extensive use of pointers and addresses, has some low-level constructs
such as bit manipulation, and is weakly typed.

C was developed in the 1970s at Bell Labs. It was originally designed for and
used on the DEC PDP-11—whose operating system, C compiler, and UNIX
application programs were all written in C. In 1988, an ANSI standard was
issued to codify C, which was revised in 1999. C was the de facto standard for
microcomputer and workstation programming in the 1980s and 1990s.

C++

C++, an object-oriented language founded on C, was developed at Bell
Laboratories in the 1980s. In addition to being compatible with C, C++ provides
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classes, polymorphism, exception handling, templates, and it provides more
robust type checking than C does.

C#

C# is a general-purpose, object-oriented language and programming
environment developed by Microsoft with syntax similar to C, C++, and Java
and provides extensive tools that aid development on Microsoft platforms.

Cobol

Cobol is an English-like programming language that was originally developed in
1959-1961 for use by the Department of Defense. Cobol is used primarily for
business applications and is still one of the most widely used languages today,
second only to Visual Basic in popularity (Feiman and Driver 2002). Cobol has
been updated over the years to include mathematical functions and object-
oriented capabilities. The acronym “Cobol” stands for Common Business-
Oriented Language.

Fortran

Fortran was the first high-level computer language, introducing the ideas of
variables and high-level loops. “Fortran” stands for FORmula TRANSslation.
Fortran was originally developed in the 1950s and has seen several significant
revisions, including Fortran 77 in 1977, which added block structured if-then-
else statements and character-string manipulations. Fortran 90 added user-
defined data types, pointers, classes, and a rich set of operations on arrays.
Fortran is used mainly in scientific and engineering applications.

Java

Java is an object-oriented language with syntax similar to C and C++ that was
developed by Sun Microsystems, Inc. Java was designed to run on any platform
by converting Java source code to byte code, which is then run in each platform
within an environment known as a virtual machine. Java is in widespread use for
programming Web applications.

JavaScript

JavasScript is an interpreted scripting language that is loosely related to Java. It is
used primarily for adding simple functions and online applications to web pages.

Perl

Perl is a string-handling language that is based on C and several Unix utilities,
created at Jet Propulsion Laboratories. Perl is often used for system
administration tasks such as creating build scripts as well as for report generation
and processing. The acronym “Perl” stands for Practical Extraction and Report
Language.
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PHP

PHP is an open-source scripting language with a simple syntax similar to Perl,
Bourne Shell, JavaScript, and C. PHP runs on all major operating systems to
execute server-side interactive functions. It can be embedded in web pages to
access and present database information. The acronym “PHP” originally stood
for Personal Home Page, but now stands for PHP: Hypertext Processor.

Python

Python is an interpreted, interactive, object-oriented language that focuses on
working with strings. It is used most commonly for writing scripts and small
Web applications and also contains some support for creating larger programs. It
runs in numerous environments.

SQL

SQL is the de facto standard language for querying, updating, and managing
relational databases. SQL stands for Structured Query Language. Unlike other
languages listed in this section, SQL is a “declarative language”—meaning that
it does not define a sequence of operations, but rather the result of some
operations.

Visual Basic

The original version of Basic was a high-level language developed at Dartmouth
College in the 1960s. The acronym BASIC stands for Beginner’s All-purpose
Symbolic Instruction Code. Visual Basic is a high-level, object-oriented, visual
programming version of Basic developed by Microsoft that was originally
designed for creating Windows applications. It has since been extended to
support customization of desktop applications such as Microsoft Office, creation
of web programs, and other applications. Experts report that by the early 2000s
more professional developers are working in Visual Basic than in any other
language (Feiman and Driver 2002).

Language-Selection Quick Reference

Table 4-2 provides a thumbnail sketch of languages suitable for various
purposes. It can point you to languages you might be interested in learning more
about. But don’t use it as a substitute for a careful evaluation of a specific
language for your particular project. The classifications are broad, so take them
with a grain of salt, particularly if you know of specific exceptions.

Table 4-2. The Best and Worst Languages for Particular Kinds of
Programs

Kind of Program Best Languages Worst Languages

Command-line Cobol, Fortran, SQL -
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processing

Cross-platform
development

Java, Perl, Python

Assembler, C#, Visual Basic

Database manipulation

SQL, Visual Basic

Assembler, C

Direct memory

Assembler, C, C++

C#, Java, Visual Basic

manipulation
Distributed system C#, Java -
Dynamic memory use C, C++, Java -

Easy-to-maintain

C++, Java, Visual Basic

Assembler, Perl

program

Fast execution Assembler, C, C++, JavaScript, Perl, Python
Visual Basic

For environments with Assembler, C C#, Java, Visual Basic

limited memory

Mathematical Fortran Assembler

calculation

Quick-and-dirty project | Perl, PHP, Python, Assembler

Visual Basic

Real-time program

C, C++, Assembler

C#, Java, Python, Perl, Visual
Basic

Report writing

Cobol, Perl, Visual
Basic

Assembler, Java

Secure program C#, Java C, C++
String manipulation Perl, Python C
Web development C#, Java, JavaScript, Assembler, C

PHP, Visual Basic

Some languages simply don’t support certain kinds of programs, and those have not
been listed as “worst” languages. For example, Perl is not listed as a “worst
language” for mathematical calculations.

4.2 Programming Conventions

In high-quality software, you can see a relationship between the conceptual
integrity of the architecture and its low-level implementation. The
implementation must be consistent with the architecture that guides it and
consistent internally. That’s the point of construction guidelines for variable
names, class names, routine names, formatting conventions, and commenting

conventions.

In a complex program, architectural guidelines give the program structural
balance and construction guidelines provide low-level harmony, articulating
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each class as a faithful part of a comprehensive design. Any large program
requires a controlling structure that unifies its programming-language details.
Part of the beauty of a large structure is the way in which its detailed parts bear
out the implications of its architecture. Without a unifying discipline, your
creation will be a jumble of poorly coordinated classes and sloppy variations in
style.

What if you had a great design for a painting, but one part was classical, one
impressionist, and one cubist? It wouldn’t have conceptual integrity no matter
how closely you followed its grand design. It would look like a collage. A
program needs low-level integrity too.

| KEY POINT Before construction begins, spell out the programming conventions you’ll use.
They’re at such a low level of detail that they’re nearly impossible to retrofit into
software after it’s written. Details of such conventions are provided throughout
the book.

4.3 Your Location on the Technology Wave

During my career I’ve seen the PC’s star rise while the mainframes’ star dipped
toward the horizon. I’ve seen GUI programs replace character-based programs.
And I’ve seen the Web ascend while Windows declines. | can only assume that
by the time you read this some new technology will be in ascendance, and web
programming as | know it today (2004) will be on its way out. These technology
cycles, or waves, imply different programming practices depending on where
you find yourself on the wave.

In mature technology environments—the end of the wave, such as web
programming in the mid 2000s—we benefit from a rich software development
infrastructure. Late-wave environments provide numerous programming
language choices, comprehensive error checking for code written in those
languages, powerful debugging tools, and automatic, reliable performance
optimization. The compilers are nearly bug free. The tools are well documented
in vendor literature, in third party books and articles, and in extensive web
resources. Tools are integrated, so you can do Ul, database, reports, and business
logic from within a single environment. If you do run into problems, you can
readily find quirks of the tools described in FAQs. Many consultants and training
classes are also available.

In early-wave environments—web programming in the mid 1990s, for
example—the situation is the opposite. Few programming language choices are
available, and those languages tend to be buggy and poorly documented.
Programmers spend significant amounts of time simply trying to figure out how
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the language works instead of writing new code. Programmers also spend
countless hours working around bugs in the language products, underlying
operating system, and other tools. Programming tools in early-wave
environments tend to be primitive. Debuggers might not exist at all, and
compiler optimizers are still only a gleam in some programmer’s eye. Vendors
revise their compiler version often, and it seems that each new version breaks
significant parts of your code. Tools aren’t integrated, and so you tend to work
with different tools for Ul, database, reports, and business logic. The tools tend
not to be very compatible, and you can expend a significant amount of effort just
to keep existing functionality working against the onslaught of compiler and
library releases. Test automation is especially valuable because it helps you more
quickly detect defects arising from changes in the development environment. If
you run into trouble, reference literature exists on the web in some form, but it
isn’t always reliable, and, if the available literature is any guide, every time you
encounter a problem it seems as though you’re the first one to do so.

These comments might seem like a recommendation to avoid early-wave
programming, but that isn’t their intent. Some of the most innovative
applications arise from early-wave programs, like Turbo Pascal, Lotus 123,
Microsoft Word, and the Mosaic browser. The point is that how you spend your
programming days will depend on where you are on the technology wave. If
you’re in the late part of the wave, you can plan to spend most of your day
steadily writing new functionality. If you’re in the early part of the wave, you
can assume that you’ll spend a sizeable portion of your time trying to figure out
undocumented features of your programming language, debugging errors that
turn out to be defects in the library code, revising code so that it will work with a
new release of some vendor’s library, and so on.

When you find yourself working in a primitive environment, realize that the
programming practices described in this book can help you even more than they
can in mature environments. As David Gries pointed out, your programming
tools don’t have to determine how you think about programming (1981). Gries
makes a distinction between programming in a language vs. programming into a
language. Programmers who program “in”" a language limit their thoughts to
constructs that the language directly support. If the language tools are primitive,
the programmer’s thoughts will also be primitive.

Programmers who program “into” a language first decide what thoughts they
want to express, and then they determine how to express those thoughts using the
tools provided by their specific language.

In the early days of Visual Basic | was frustrated because | wanted to keep the
business logic, the Ul, and the database separate in the product | was developing,
but there wasn’t any built-in way to do that in VB. | knew that if | wasn’t
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careful, over time some of my VB “forms” would end up containing business
logic, some forms would contain database code, and some would contain
neither—I would end up never being able to remember which code was located
in which place. | had just completed a C++ project that had done a poor job of
separating those issues, and | didn’t want to experience déja vu of those
headaches in a different language.

Consequently, | adopted a design convention that the .frm file (the form file) was
allowed only to retrieve data from the database and store data back into the
database. It wasn’t allowed to communicate that data directly to other parts of
the program. Each form supported an IsFormCompleted() routine, which was
used by the calling routine to determine whether the form that had been activated
had saved its data or not. IsFormCompleted() was the only public routine that
forms were allowed to have. Forms also weren’t allowed to contain any business
logic. All other code had to be contained in an associated .bas file, including
validity checks for entries in the form.

VB did not encourage this kind of approach. It encouraged programmers to put
as much code into the .frm file as possible, and it didn’t make it easy for the .frm
file to call back into an associated .bas file.

This convention was pretty simple, but as | got deeper into my project, | found
that it helped me avoid numerous cases in which | would have been writing
convoluted code without the convention. | would have been loading forms but
keeping them hidden so that | could call the data-validity checking routines
inside them, or I would have been copying code from the forms into other
locations, and then maintaining parallel code in multiple places. The
IsFormCompleted() convention also kept things simple. Because every form
worked exactly the same way, | never had to second-guess the semantics of
IsFormCompleted()—it meant the same thing every time it was used.

VB didn’t support this convention directly, but the use of a simple programming
convention—programming into the language—made up for VB’s lack of
structure at that time and helped keep the project intellectually manageable.

Understanding the distinction between programming in a language and
programming into one is critical to understanding this book. Most of the
important programming principles depend not on specific languages but on the
way you use them. If your language lacks constructs that you want to use or is
prone to other kinds of problems, try to compensate for them. Invent your own
coding conventions, standards, class libraries, and other augmentations.
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4.4 Selection of Major Construction
Practices

Part of preparing for construction is deciding which of the many available good
practices you’ll emphasize. Some projects use pair programming and test-first
development, while others use solo development and formal inspections. Either
technigque can work well depending on specific circumstances of the project.

The following checklist summarizes the specific practices you should
consciously decide to include or exclude during construction. Details of the
practices are contained throughout the book.

Checklist: Major Construction Practices

Coding
O Have you defined coding conventions for names, comments, and formatting?

O Have you defined specific coding practices that are implied by the
architecture, such as how error conditions will be handled, how security will
be addressed, and so on?

O Have you identified your location on the technology wave and adjusted your
approach to match? If necessary, have you identified how you will program
into the language rather than being limited by programming in it?

Teamwork

O Have you defined an integration procedure, that is, have you defined the
specific steps a programmer must go through before checking code into the
master sources?

Q Will programmers program in pairs, or individually, or some combination of
the two?

Quality Assurance

O Will programmers write test cases for their code before writing the code
itself?

O Will programmers write unit tests for the their code regardless of whether
they write them first or last?

Q Will programmers step through their code in the debugger before they check
itin?

Q Will programmers integration-test their code before they check it in?

O

Will programmers review or inspect each others’ code?
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Tools

O Have you selected a revision control tool?

O Have you selected a language and language version or compiler version?

O Have you decided whether to allow use of non-standard language features?

O Have you identified and acquired other tools you’ll be using—editor,
refactoring tool, debugger, test framework, syntax checker, and so on?

Key Points

e Every programming language has strengths and weaknesses. Be aware of the
specific strengths and weaknesses of the language you’re using.

e Establish programming conventions before you begin programming. It’s
nearly impossible to change code to match them later.

e More construction practices exist than you can use on any single project.
Consciously choose the practices that are best suited to your project.

e Your position on the technology wave determines what approaches will be

effective—or even possible. Identify where you are on the technology wave,
and adjust your plans and expectations accordingly.



le Complete

- CC2E.COM/0578

' CROSS-REFERENCE  For

details on the different levels
of formality required on large

“and small projects, see
Chapter 27, “How Program

- Size Affects Construction.”

5. Design in Construction Page 1

5

Design in Construction
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5.1 Design Challenges
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Characteristics of high-quality classes: Chapter 6
Characteristics of high-quality routines: Chapter 7
Defensive programming: Chapter 8

Refactoring: Chapter 24

How program size affects construction: Chapter 27

SOME PEOPLE MIGHT ARGUE THAT design isn’t really a construction
activity, but on small projects, many activities are thought of as construction,
often including design. On some larger projects, a formal architecture might
address only the system-level issues and much design work might intentionally
be left for construction. On other large projects, the design might be intended to
be detailed enough for coding to be fairly mechanical, but design is rarely that
complete—the programmer usually designs part of the program, officially or
otherwise.

On small, informal projects, a lot of design is done while the programmer sits at
the keyboard. “Design” might be just writing a class interface in pseudocode
before writing the details. It might be drawing diagrams of a few class
relationships before coding them. It might be asking another programmer which
design pattern seems like a better choice. Regardless of how it’s done, small
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projects benefit from careful design just as larger projects do, and recognizing
design as an explicit activity maximizes the benefit you will receive from it.

Design is a huge topic, so only a few aspects of it are considered in this chapter.
A large part of good class or routine design is determined by the system
architecture, so be sure that the architecture prerequisite discussed in Section 3.5
has been satisfied. Even more design work is done at the level of individual
classes and routines, described in Chapters 6 and 7.

If you’re already familiar with software design topics, you might want to read
the introduction in the next section, and hit the highlights in the sections about
design challenges in Section 5.1 and key heuristics in Section 5.3.

5.1 Design Challenges

The phrase “software design” means the conception, invention, or contrivance of
a scheme for turning a specification for a computer program into an operational
program. Design is the activity that links requirements to coding and debugging.
A good top-level design provides a structure that can safely contain multiple
lower level designs. Good design is useful on small projects and indispensable
on large projects.

Design is also marked by numerous challenges, which are outlined in this
section.

Design is a Wicked Problem

Horst Rittel and Melvin Webber defined a “wicked” problem as one that could
be clearly defined only by solving it, or by solving part of it (1973). This
paradox implies, essentially, that you have to *“solve” the problem once in order
to clearly define it and then solve it again to create a solution that works. This
process is practically motherhood and apple pie in software development (Peters
and Tripp 1976).
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FO5xx01
Figure 5-1
The Tacoma Narrows bridge—an example of a wicked problem.

In my part of the world, a dramatic example of such a wicked problem was the
design of the original Tacoma Narrows bridge. At the time the bridge was built,
the main consideration in designing a bridge was that it be strong enough to
support its planned load. In the case of the Tacoma Narrows bridge, wind created
an unexpected, side-to-side harmonic ripple. One blustery day in 1940, the ripple
grew uncontrollably until the bridge collapsed.

This is a good example of a wicked problem because, until the bridge collapsed,
its engineers didn’t know that aerodynamics needed to be considered to such an
extent. Only by building the bridge (solving the problem) could they learn about
the additional consideration in the problem that allowed them to build another
bridge that still stands.

One of the main differences between programs you develop in school and those
you develop as a professional is that the design problems solved by school
programs are rarely, if ever, wicked. Programming assignments in school are
devised to move you in a beeline from beginning to end. You’d probably want to
hog tie a teacher who gave you a programming assignment, then changed the
assignment as soon as you finished the design, and then changed it again just as
you were about to turn in the completed program. But that very process is an
everyday reality in professional programming.

Page 3
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Design is a Sloppy Process

The finished software design should look well organized and clean, but the
process used to develop the design isn’t nearly as tidy as the end result.

Design is sloppy because you take many false steps and go down many blind
alleys—you make a lot of mistakes. Indeed, making mistakes is the point of
design—it’s cheaper to make mistakes and correct designs that it would be to
make the same mistakes, recognize them later, and have to correct full-blown
code. Design is sloppy because a good solution is often only subtly different
from a poor one.

Design is also sloppy because it’s hard to know when your design is “good
enough.” How much detail is enough? How much design should be done with a
formal design notation, and how much should be left to be done at the keyboard?
When are you done? Since design is open-ended, the most common answer to
that question is “When you’re out of time.”

Design is About Trade-Offs and Priorities

In an ideal world, every system could run instantly, consume zero storage space,
use zero network bandwidth, never contain any errors, and cost nothing to build.
In the real world, a key part of the designer’s job is to weigh competing design
characteristics and strike a balance among those characteristics. If a fast response
rate is more important than minimizing development time, a designer will choose
one design. If minimizing development time is more important, a good designer
will craft a different design.

Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict
possibilities. If people had infinite time, resources and space to build physical
structures, you would see incredible sprawling buildings with one room for each
shoe and hundreds of rooms. This is how software is developed. The constraints
of limited resources for constructing buildings force simplifications of the
solution that ultimately improve the solution. The goal in software design is the
same.

Design is Non-Deterministic

If you send three people away to design the same program, they can easily return
with three vastly different designs, each of which could be perfectly acceptable.
There might be more than one way to skin a cat, but there are usually dozens of
ways to design a computer program.

Page 4
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Design is a Heuristic Process

Because design is non-deterministic, design techniques tend to be “heuristics™—
”rules of thumb” or “things to try that sometimes work,” rather than repeatable
processes that are guaranteed to produce predictable results. Design involves
trial and error. A design tool or technique that worked well on one job or on one
aspect of a job might not work as well on the next project. No tool is right for
everything.

Design is Emergent

A tidy way of summarizing these attributes of design is to say that design is
“emergent” (Bain and Shalloway 2004). Designs don’t spring fully formed
directly from someone’s brain. They evolve and improve through design
reviews, informal discussions, experience writing the code itself, and experience
revising the code itself.

Virtually all systems undergo some degree of design changes during their initial
development, and then they typically change to a greater extent as they’re
extended into later versions. The degree to which change is beneficial or
acceptable depends on the nature of the software being built.

5.2 Key Design Concepts

Good design depends on understanding a handful of key concepts. This section
discusses the role of complexity, desirable characteristics of designs, and levels
of design.

Software’s Primary Technical Imperative:

Managing Complexity

To understand the importance of managing complexity, it’s useful to refer to
Fred Brook’s landmark paper, “No Silver Bullets” (1987).
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Accidental and Essential Difficulties

Brooks argues that software development is made difficult because of two
different classes of problems—the essential and the accidental. In referring to
these two terms, Brooks draws on a philosophical tradition going back to
Avistotle. In philosophy, the essential properties are the properties that a thing
must have in order to be that thing. A car must have an engine, wheels, and
doors to be a car. If it doesn’t have any of those essential properties, then it isn’t
really a car.

Accidental properties are the properties a thing just happens to have, that don’t
really bear on whether the thing is really that kind of thing. A car could have a
V8, a turbocharged 4-cylinder, or some other kind of engine and be a car
regardless of that detail. A car could have two doors or four, it could have skinny
wheels or mag wheels. All those details are accidental properties. You could also
think of accidental properties as coincidental, discretionary, optional, and
happenstance.

Brooks observes that the major accidental difficulties in software were addressed
long ago. Accidental difficulties related to clumsy language syntaxes were
largely eliminated in the evolution from assembly language to third generation
languages and have declined in significance incrementally since then. Accidental
difficulties related to non-interactive computers were resolved when time-share
operating systems replaced batch-mode systems. Integrated programming
environments further eliminated inefficiencies in programming work arising
from tools that worked poorly together.

Brooks argues that progress on software’s remaining essential difficulties is
bound to be slower. The reason is that, at its essence, software development
consists of working out all the details of a highly intricate, interlocking set of
concepts. The essential difficulties arise from the necessity of interfacing with
the complex, disorderly real-world; accurately and completely identifying the
dependencies and exception cases; designing solutions that can’t be just
approximately correct but that must be exactly correct; and so on. Even if we
could invent a programming language that used the same terminology as the
real-world problem we’re trying to solve, programming would still be difficult
because it is so challenging to determine precisely how the real world works. As
software addresses ever-larger real-world problems, the interactions among the
real-world entities become increasingly intricate, and that in turn increases the
essential difficulty of the software solutions.

The root of all these essential difficulties is complexity—both accidental and
essential.
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Importance of Managing Complexity

When software-project surveys report causes of project failure, they rarely
identify technical reasons as the primary causes of project failure. Projects fail
most often because of poor requirements, poor planning, or poor management.
But when projects do fail for reasons that are primarily technical, the reason is
often uncontrolled complexity. The software is allowed to grow so complex that
no one really knows what it does. When a project reaches the point at which no
one really understands the impact that code changes in one area will have on
other areas, progress grinds to a halt.

Managing complexity is the most important technical topic in software
development. In my view, it’s so important, that Software’s Primary Technical
Imperative has to be managing complexity.

Complexity is not a new feature of software development. Computing pioneer
Edsger Dijkstra gave pointed out that computing is the only profession in which
a single mind is obliged to span the distance from a bit to a few hundred
megabytes, a ratio of 1 to 10°, or nine orders of magnitude (Dijkstra 1989). This
gigantic ratio is staggering. Dijkstra put it this way: “Compared to that number
of semantic levels, the average mathematical theory is almost flat. By evoking
the need for deep conceptual hierarchies, the automatic computer confronts us
with a radically new intellectual challenge that has no precedent in our history.”
Of course software has become even more complex since 1989, and Dijkstra’s
ratio of 1 to 10° could easily be more like 1 to 10" today.

Dijkstra pointed out that no one’s skull is really big enough to contain a modern
computer program (Dijkstra 1972), which means that we as software developers
shouldn’t try to cram whole programs into our skulls at once; we should try to
organize our programs in such a way that we can safely focus on one part of it at
a time. The goal is to minimize the amount of a program you have to think about
at any one time. You might think of this as mental juggling—the more mental
balls the program requires you to keep in the air at once, the more likely you’ll
drop one of the balls, leading to a design or coding error.

At the software-architecture level, the complexity of a problem is reduced by
dividing the system into subsystems. Humans have an easier time
comprehending several simple pieces of information than one complicated piece.
The goal of all software-design techniques is to break a complicated problem
into simple pieces. The more independent the subsystems are, the more you
make it safe to focus on one bit of complexity at a time. Carefully defined
objects separate concerns so that you can focus on one thing at a time. Packages
provide the same benefit at a higher level of aggregation.



le Complete

| KEY POINT

5. Design in Construction Page 8

Keeping routines short helps reduce your mental workload. Writing programs in
terms of the problem domain rather than in low-level implementation details and
working at the highest level of abstraction reduce the load on your brain.

The bottom line is that programmers who compensate for inherent human
limitations write code that’s easier for themselves and others to understand and
that has fewer errors.

How to Attack Complexity
There are three sources of overly costly, ineffective designs:

e A complex solution to a simple problem
e A simple, incorrect solution to a complex problem
e An inappropriate, complex solution to a complex problem

As Dijkstra pointed out, modern software is inherently complex, and no matter
how hard you try, you’ll eventually bump into some level of complexity that’s
inherent in the real-world problem itself. This suggests a two-prong approach to
managing complexity:

e Minimize the amount of essential complexity that anyone’s brain has to deal
with at any one time.

e Keep accidental complexity from needlessly proliferating.

Once you understand that all other technical goals in software are secondary to
managing complexity, many design considerations become straightforward.

Desirable Characteristics of a Design

A high-quality design has several general characteristics. If you could achieve all
these goals, your design would be considered very good indeed. Some goals
contradict other goals, but that’s the challenge of design—creating a good set of
trade-offs from competing objectives. Some characteristics of design quality are
also characteristics of the program: reliability, performance, and so on. Others
are internal characteristics of the design.

Here’s a list of internal design characteristics:
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Ease of maintenance

Ease of maintenance means designing for the maintenance programmer.
Continually imagine the questions a maintenance programmer would ask about
the code you’re writing. Think of the maintenance programmer as your audience,
and then design the system to be self-explanatory.

Minimal connectedness

Minimal connectedness means designing so that you hold connections among
different parts of a program to a minimum. Use the principles of strong cohesion,
loose coupling, and information hiding to design classes with as few
interconnections as possible. Minimal connectedness minimizes work during
integration, testing, and maintenance.

Extensibility

Extensibility means that you can enhance a system without causing violence to
the underlying structure. You can change a piece of a system without affecting
other pieces. The most likely changes cause the system the least trauma.

Reusability
Reusability means designing the system so that you can reuse pieces of it in
other systems.

High fan-in

High fan-in refers to having a high number of classes that use a given class. High
fan-in implies that a system has been designed to make good use of utility
classes at the lower levels in the system.

HARD DATA Low-to-medium fan-out
Low-to-medium fan-out means having a given class use a low-to-medium
number of other classes. High fan-out (more than about seven) indicates that a
class uses a large number of other classes and may therefore be overly complex.
Researchers have found that the principle of low fan out is beneficial whether
you’re considering the number of routines called from within a routine or from
within a class (Card and Glass 1990; Basili, Briand, and Melo 1996).
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Portability
Portability means designing the system so that you can easily move it to another
environment.

Leanness

Leanness means designing the system so that it has no extra parts (Wirth 1995,
McConnell 1997). Voltaire said that a book is finished not when nothing more
can be added but when nothing more can be taken away. In software, this is
especially true because extra code has to be developed, reviewed, tested, and
considered when the other code is modified. Future versions of the software
must remain backward-compatible with the extra code. The fatal question is “It’s
easy, so what will we hurt by putting it in?”

Stratification

Stratified design means trying to keep the levels of decomposition stratified so
that you can view the system at any single level and get a consistent view.
Design the system so that you can view it at one level without dipping into other

levels.
- CROSS-REFERENCE  For If you’re writing a modern system that has to use a lot of older, poorly designed
~more on working with old code, write a layer of the new system that’s responsible for interfacing with the

systems, see Section 24.6,

“Refactoring Strategies.” old code. Design the layer so that it hides the poor quality of the old code,

presenting a consistent set of services to the newer layers. Then have the rest of
the system use those classes rather than the old code. The beneficial effects of
stratified design in such a case are (1) it compartmentalizes the messiness of the
bad code and (2) if you’re ever allowed to jettison the old code, you won’t need
to modify any new code except the interface layer.

Standard techniques
- CROSS-REFERENCE  An The more a system relies on exotic pieces, the more intimidating it will be for
especially valuable kind of someone trying to understand it the first time. Try to give the whole system a

‘ Star!dard'zat'on 'S tr_'e use of familiar feeling by using standardized, common approaches.
design patterns, which are

discussed in “Look for )
- Common Design Patterns” in Levels of DeS|gn

Section 5.3.
Design is needed at several different levels of detail in a software system. Some

design techniques apply at all levels, and some apply at only one or two. Figure
5-2 illustrates the levels.
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Figure 5-2

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided
into routines and data (4). The inside of each routine is also designed (5).

Level 1: Software System

The first level is the entire system. Some programmers jump right from the
system level into designing classes, but it’s usually beneficial to think through
higher level combinations of classes, such as subsystems or packages.

Level 2: Division into Subsystems or Packages

The main product of design at this level is the identification of all major
subsystems. The subsystems can be big—database, user interface, business logic,
command interpreter, report engine, and so on. The major design activity at this
level is deciding how to partition the program into major subsystems and
defining how each subsystem is allowed to use each other subsystems. Division
at this level is typically needed on any project that takes longer than a few
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weeks. Within each subsystem, different methods of design might be used—
choosing the approach that best fits each part of the system. In Figure 5-2, design
at this level is shown in (2).

Of particular importance at this level are the rules about how the various
subsystems can communicate. If all subsystems can communicate with all other
subsystems, you lose the benefit of separating them at all. Make the subsystem
meaningful by restricting communications.

Suppose for example that you define a system with six subsystems, like this:

Error! Objects cannot be created from editing field codes.
FO5xx03

Figure 5-3
An example of a system with six subsystems.

When there are no rules, the second law of thermodynamics will come into play
and the entropy of the system will increase. One way in which entropy increases
is that, without any restrictions on communications among subsystems,
communication will occur in an unrestricted way, like this:

Error! Objects cannot be created from editing field codes.
FO5xx04

Figure 5-4

An example of what happens with no restrictions on inter-subsystem
communications.

As you can see, every subsystem ends up communicating directly with every
other subsystem, which raises some important questions:

e How many different parts of the system does a developer need to understand
at least a little bit to change something in the graphics subsystem?

e What happens when you try to use the financial analytics in another system?

e What happens when you want to put a new user interface on the system,
perhaps a command-line Ul for test purposes?

e What happens when you want to put data storage on a remote machine?

You might think of the lines between subsystems as being hoses with water
running through them. If you want to reach in and pull out a subsystem, that
subsystem is going to have some hoses attached to it. The more hoses you have
to disconnect and reconnect, the more wet you’re going to get. You want to
architect your system so that if you pull out a subsystem to use elsewhere you
won’t have very many hoses to reconnect and those hoses will reconnect easily.
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With forethought, all of these issues can be addressed with little extra work.
Allow communication between subsystems only on a “need to know” basis—and
it had better be a good reason. If in doubt, it’s easier to restrict communication
early and relax it later than it is to relax it early and then try to tighten it up later
after you’ve coded several hundred inter-subsystem calls.

Figure 5-5 shows how a few communication guidelines could change the system
depicted in Figure 5-4:

Error! Objects cannot be created from editing field codes.
FO5xx05

Figure 5-5

With a few communication rules, you can simplify subsystem interactions
significantly.

To keep the connections easy to understand and maintain, err on the side of
simple inter-subsystem relations. The simplest relationship is to have one
subsystem call routines in another. A more involved relationship is to have one
subsystem contain classes from another. The most involved relationship is to
have classes in one subsystem inherit from classes in another.

A good general rule is that a system-level diagram like Figure 5-5 should be an
acyclic graph. In other words, a program shouldn’t contain any circular
relationships in which Class A uses Class B, Class B uses Class C, and Class C
uses Class A.

On large programs and families of programs, design at the subsystem level
makes a difference. If you believe that your program is small enough to skip
subsystem-level design, at least make the decision to skip that level of design a
conscious one.

Common Subsystems
Some kinds of subsystems appear time and again in different systems. Here are
some of the usual suspects.

Business logic

Business logic is the laws, regulations, policies, and procedures that you encode
into a computer system. If you’re writing a payroll system, you might encode
rules from the IRS about the number of allowable withholdings and the
estimated tax rate. Additional rules for a payroll system might come from a
union contract specifying overtime rates, vacation and holiday pay, and so on. If
you’re writing a program to quote auto insurance rates, rules might come from
state regulations on required liability coverages, actuarial rate tables, or
underwriting restrictions.
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User interface

Create a subsystem to isolate user-interface components so that the user interface
can evolve without damaging the rest of the program. In most cases, a user-
interface subsystem uses several subordinate subsystems or classes for GUI
interface, command line interface, menu operations, window management, help
system, and so forth.

Database access

You can hide the implementation details of accessing a database so that most of
the program doesn’t need to worry about the messy details of manipulating low-
level structures and can deal with the data in terms of how it’s used at the
business-problem level. Subsystems that hide implementation details provide a
valuable level of abstraction that reduces a program’s complexity. They
centralize database operations in one place and reduce the chance of errors in
working with the data. They make it easy to change the database design structure
without changing most of the program.

System dependencies

Package operating-system dependencies into a subsystem for the same reason
you package hardware dependencies. If you’re developing a program for
Microsoft Windows, for example, why limit yourself to the Windows
environment? Isolate the Windows calls in a Windows-interface subsystem. If
you later want to move your program to a Macintosh or Linux, all you’ll have to
change is the interface subsystem. This functionality can be too extensive to
implement the details on your own, but it’s readily available in any of several
commercial code libraries.

Level 3: Division into Classes

Design at this level includes identifying all classes in the system. For example, a
database-interface subsystem might be further partitioned into data access classes
and persistence framework classes as well as database meta data. Figure 5-2,
Level 3, shows how one of Level 2’s subsystems might be divided into classes,
and it implies that the other three subsystems shown at Level 2 are also
decomposed into classes.

Details of the ways in which each class interacts with the rest of the system are
also specified as the classes are specified. In particular, the class’s interface is
defined. Overall, the major design activity at this level is making sure that all the
subsystems have been decomposed to a level of detail fine enough that you can
implement their parts as individual classes.

The division of subsystems into classes is typically needed on any project that
takes longer than a few days. If the project is large, the division is clearly distinct
from the program partitioning of Level 2. If the project is very small, you might
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move directly from the whole-system view of Level 1 to the classes view of
Level 3.

Classes vs. Objects

A key concept in object-oriented design is the differentiation between objects
and classes. An object is any specific entity that exists in your program at run
time. A class is any abstract entity represented by the program. A class is the
static thing you look at in the program listing. An object is the dynamic thing
with specific values and attributes you see when you run the program. For
example, you could declare a class Person that had attributes of name, age,
gender, and so on. At run time you would have the objects nancy, hank, diane,
tony, and so on—that is, specific instances of the class. If you’re familiar with
database terms, it’s the same as the distinction between “schema” and “instance.”
This book uses the terms informally and generally refers to classes and objects
more or less interchangeably.

Level 4: Division into Routines

Design at this level includes dividing each class into routines. The class interface
defined at Level 3 will define some of the routines. Design at Level 4 will detail
the class’s private routines. When you examine the details of the routines inside
a class, you can see that many routines are simple boxes, but a few are composed
of hierarchically organized routines, which require still more design.

The act of fully defining the class’s routines often results in a better
understanding of the class’s interface, and that causes corresponding changes to
the interface, that is, changes back at Level 3.

This level of decomposition and design is often left up to the individual
programmer, and it is needed on any project that takes more than a few hours. It
doesn’t need to be done formally, but it at least needs to be done mentally.

Level 5: Internal Routine Design

Design at the routine level consists of laying out the detailed functionality of the
individual routines. Internal routine design is typically left to the individual
programmer working on an individual routine. The design consists of activities
such as writing pseudocode, looking up algorithms in reference books, deciding
how to organize the paragraphs of code in a routine, and writing programming-
language code. This level of design is always done, though sometimes it’s done
unconsciously and poorly rather than consciously and well. The diagram in
Figure 5-2 indicates the level at which this occurs in the routine marked with a 5.

Page 15
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5.3 Design Building Blocks: Heuristics

Software developers tend to like our answers cut and dried: “Do A, B, and C,
and X, Y, Z will follow every time.” We take pride in learning arcane sets of
steps that produce desired effects, and we become annoyed when instructions
don’t work as advertised. This desire for deterministic behavior is highly
appropriate to detailed computer programming—where that kind of strict
attention to detail makes or breaks a program. But software design is a much
different story.

Because design is non-deterministic, skillful application of an effective set of
heuristics is the core activity in good software design. The following sections
describe a number of heuristics—ways to think about a design that sometime
produce good design insights. You might think of heuristics as the guides for the
trials in “trial and error.” You undoubtedly have run across some of these before.
Consequently, the following sections describe each of the heuristics in terms of
Software’s Primary Technical Imperative: Managing Complexity.

Find Real-World Objects

The first and most popular approach to identifying design alternatives is the “by
the book™ object-oriented approach, which focuses on identifying real-world and
synthetic objects.

The steps in designing with objects are

o Identify the objects and their attributes (methods and data).
e Determine what can be done to each object.
o Determine what each object can do to other objects.

o Determine the parts of each object that will be visible to other objects—
which parts will be public and which will be private.

o Define each object’s public interface.

These steps aren’t necessarily performed in order, and they’re often repeated.
Iteration is important. Each of these steps is summarized below.

Identify the objects and their attributes

Computer programs are usually based on real-world entities. For example, you
could base a time-billing system on real-world employees, clients, time cards,
and bills. Figure 5-6 shows an object-oriented view of such a billing system.
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FO5xx06
Figure 5-6

This billing system is composed of four major objects. The objects have been
simplified for this example.

Identifying the objects’ attributes is no more complicated than identifying the
objects themselves. Each object has characteristics that are relevant to the
computer program. For example, in the time-billing system, an employee object
has a name, a title, and a billing rate. A client object has a name, a billing
address, and an account balance. A bill object has a billing amount, a client
name, a billing date, and so on.

Obijects in a graphical user interface system would include windows, dialog
boxes, buttons, fonts, and drawing tools. Further examination of the problem
domain might produce better choices for software objects than a one-to-one
mapping to real-world objects, but the real-world objects are a good place to
start.

Determine what can be done to each object

A variety of operations can be performed on each object. In the billing system
shown in Figure 5-6, an employee object could have a change in title or billing
rate. A client object can have its name or billing address changed, and so on.

Determine what each object can do to other objects

This step is just what it sounds like. The two generic things objects can do to
each other are containment and inheritance. Which objects can contain which
other objects? Which objects can inherit from which other objects? In Figure 5-
6, a time card can contain an employee and a client. A bill can contain one or
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more time cards. In addition, a bill can indicate that a client has been billed. A
client can enter payments against a bill. A more complicated system would
include additional interactions.

Determine the parts of each object that will be visible to other objects
One of the key design decisions is identifying the parts of an object that should
be made public and those that should be kept private. This decision has to be
made for both data and services.

Define each object’s interface

Define the formal, syntactic, programming-language-level interfaces to each
object. This includes services offered by the class as well as inheritance
relationships among classes.

When you finish going through the steps to achieve a top-level object-oriented
system organization, you’ll iterate in two ways. You’ll iterate on the top-level
system organization to get a better organization of classes. You’ll also iterate on
each of the classes you’ve defined, driving the design of each class to a more
detailed level.

Form Consistent Abstractions

Abstraction is the ability to engage with a concept while safely ignoring some of
its details— handling different details at different levels. Any time you work
with an aggregate, you’re working with an abstraction. If you refer to an object
as a “house” rather than a combination of glass, wood, and nails, you’re making
an abstraction. If you refer to a collection of houses as a “town,” you’re making
another abstraction.

Base classes are abstractions that allow you to focus on common attributes of a
set of derived classes and ignore the details of the specific classes while you’re
working on the base class. A good class interface is an abstraction that allows
you to focus on the interface without needing to worry about the internal
workings of the class. The interface to a well-designed routine provides the same
benefit at a lower level of detail, and the interface to a well-designed package or
subsystem provides that benefit at a higher level of detail.

From a complexity point of view, the principal benefit of abstraction is that it
allows you to ignore irrelevant details. Most real-world objects are already
abstractions of some kind. A house is an abstraction of windows, doors, siding,
wiring, plumbing, insulation, and a particular way of organizing them. A door is
in turn an abstraction of a particular arrangement of a rectangular piece of
material with hinges and a doorknob. And the doorknob is an abstraction of a
particular formation of brass, nickel, iron, or steel.
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People use abstraction continuously. If you had to deal with individual wood
fibers, varnish molecules, steel molecules every time you approached your front
door, you’d hardly make it out of your house in the morning. As Figure 5-7
suggests, abstraction is a big part of how we deal with complexity in the real
world.
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FO5xx07
Figure 5-7
Abstraction allows you to take a simpler view of a complex concept.

- CROSS-REFERENCE  For Software developers sometimes build systems at the wood-fiber, varnish-
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| programming abstractions, the system itself sometimes fails to make it out the
front door. Good programmers create abstractions at the routine-interface level,
class-interface level, package-interface level—in other words, the doorknob
level, door level, and house level—and that supports faster and safer

programming.

Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. Abstraction says, “You’re
allowed to look at an object at a high level of detail.” Encapsulation says,
“Furthermore, you aren’t allowed to look at an object at any other level of
detail.”

To continue the housing-materials analogy: Encapsulation is a way of saying that
you can look at the outside of the house, but you can’t get close enough to make
out the door’s details. You are allowed to know that there’s a door, and you’re
allowed to know whether the door is open or closed, but you’re not allowed to
know whether the door is made of wood, fiberglass, steel, or some other
material, and you’re certainly not allowed to look at each individual wood fiber.
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As Figure 5-8 suggests, encapsulation helps to manage complexity by forbidding
you to look at the complexity The section titled “Good Encapsulation” in Section
6.2 provides more background on encapsulation as it applies to class design.

FO5xx08

Figure 5-8

Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the complex
concept. What you see is what you get—it’s all you get!

Inherit When Inheritance Simplifies the Design

In designing a software system, you’ll often find objects that are much like other
objects, except for a few differences. In an accounting system, for instance, you
might have both full-time and part-time employees. Most of the data associated
with both kinds of employees is the same, but some is different. In object-
oriented programming, you can define a general type of employee and then
define full-time employees as general employees, except for a few differences,
and part-time employees also as general employees, except for a few differences.
When an operation on an employee doesn’t depend on the type of employee, the
operation is handled as if the employee were just a general employee. When the
operation depends on whether the employee is full-time or part-time, the
operation is handled differently.

Defining similarities and differences among such objects is called “inheritance”
because the specific part-time and full-time employees inherit characteristics
from the general-employee type.

The benefit of inheritance is that it works synergistically with the notion of
abstraction. Abstraction deals with objects at different levels of detail. Recall the
door that was a collection of certain kinds of molecules at one level; a collection
of wood fibers at the next; and something that keeps burglars out of your house
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at the next level. Wood has certain properties (for example, you can cut it with a
saw or glue it with wood glue), and two-by-fours or cedar shingles have the
general properties of wood as well as some specific properties of their own.

Inheritance simplifies programming because you write a general routine to
handle anything that depends on a door’s general properties and then write
specific routines to handle specific operations on specific kinds of doors. Some
operations, such as Open() or Close(), might apply regardless of whether the
door is a solid door, interior door, exterior door, screen door, French door, or
sliding glass door. The ability of a language to support operations like Open() or
Close() without knowing until run time what kind of door you’re dealing with is
called “polymorphism.” Object-oriented languages such as C++, Java, and
Visual Basic support inheritance and polymorphism.

Inheritance is one of object-oriented programming’s most powerful tools. It can
provide great benefits when used well and it can do great damage when used
naively. For details, see “Inheritance (“is a” relationships)” in Section 6.3.

Hide Secrets (Information Hiding)

Information hiding is part of the foundation of both structured design and
object-oriented design. In structured design, the notion of “black boxes”
comes from information hiding. In object-oriented design, it gives rise to the
concepts of encapsulation and modularity, and it is associated with the
concept of abstraction.

Information hiding first came to public attention in a paper published by
David Parnas in 1972 called “On the Criteria to Be Used in Decomposing
Systems Into Modules.” Information hiding is characterized by the idea of
“secrets,” design and implementation decisions that a software developer
hides in one place from the rest of a program.

In the 20th Anniversary edition of The Mythical Man-Month, Fred Brooks
concluded that his criticism of information hiding was one of the few ways in
which the first edition of his book was wrong. “Parnas was right, and | was
wrong about information hiding,” he proclaimed (Brooks 1995). Barry
Boehm reported that information hiding was a powerful technique for
eliminating rework, and he pointed out that it was particularly effective in
incremental, high-change environments (Boehm 1987).

Information hiding is a particularly powerful heuristic for Software’s Primary
Technical Imperative because, from its name on, it emphasizes hiding
complexity.
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Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the
design or construction decisions that it hides from all other classes. The secret
might be an area that’s likely to change, the format of a file, the way a data type
is implemented, or an area that needs to be walled off from the rest of the
program so that errors in that area cause as little damage as possible. The class’s
job is to keep this information hidden and to protect its own right to privacy.
Minor changes to a system might affect several routines within a class, but they
should not ripple beyond the class interface.

One key task in designing a class is deciding which features should be known
outside the class and which should remain secret. A class might use 25 routines
and expose only 5 of them, using the other 20 internally. A class might use
several data types and expose no information about them. This aspect of class
design is also known as “visibility” since it has to do with which features of the
class are “visible” or “exposed” outside the class.

The interface to a class should reveal as little as possible about its inner
workings. A class is a lot like an iceberg: Seven-eighths is under water, and you
can see only the one-eighth that’s above the surface.

FO5xx09
Figure 5-9
A good class interface is like the tip of an iceberg, leaving most of the class
unexposed.

Designing the class interface is an iterative process just like any other aspect of
design. If you don’t get the interface right the first time, try a few more times
until it stabilizes. If it doesn’t stabilize, you need to try a different approach.
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An Example of Information Hiding

Suppose you have a program in which each object is supposed to have a
unique ID stored in a member variable called id. One design approach would
be to use integers for the IDs and to store the highest ID assigned so far in a
global variable called g_maxId. As each new object is allocated, perhaps in
each object’s constructor, you could simply use the statement

id = ++g_maxId;
That would guarantee a unique id, and it would add the absolute minimum of
code in each place an object is created. What could go wrong with that?

A lot of things could go wrong. What if you want to reserve ranges of IDs for
special purposes? What if you want to be able to reuse the 1Ds of objects that
have been destroyed? What if you want to add an assertion that fires when
you allocate more IDs than the maximum number you’ve anticipated? If you
allocated 1Ds by spreading id = ++g_maxld statements throughout your
program, you would have to change code associated with every one of those
statements.

The way that new IDs are created is a design decision that you should hide. If
you use the phrase ++g_maxId throughout your program, you expose the way
a new ID is created, which is simply by incrementing g_maxId. If instead you
put the statement

id = NewId(Q);
throughout your program, you hide the information about how new IDs are
created. Inside the Newld() routine you might still have just one line of code,
return (++g_maxld ) or its equivalent, but if you later decide to reserve
certain ranges of 1Ds for special purposes or to reuse old 1Ds, you could
make those changes within the Newld() routine itself—without touching
dozens or hundreds of id = Newld() statements. No matter how complicated
the revisions inside Newld() might become, they wouldn’t affect any other
part of the program.

Now suppose you discover you need to change the type of the ID from an
integer to a string. If you’ve spread variable declarations like int id
throughout your program, your use of the Newld() routine won’t help. You’ll
still have to go through your program and make dozens or hundreds of
changes.

An additional secret to hide is the ID’s type. In C++ you could use a simple
typedef to declare your IDs to be of IdType—a user-defined type that resolves
to int—rather than directly declaring them to be of type int. Alternatively, in
C++ and other languages you could create a simple 1dType class. Once again,
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hiding a design decision makes a huge difference in the amount of code
affected by a change.

Information hiding is useful at all levels of design, from the use of named
constants instead of literals, to creation of data types, to class design, routine
design, and subsystem design.

Two Categories of Secrets
Secrets in information hiding fall into two general camps

e Hiding complexity so that your brain doesn’t have to deal with it unless
you’re specifically concerned with it

e Hiding sources of change so that when change occurs the effects are
localized

Sources of complexity include complicated data types, file structures, boolean
tests, involved algorithms, and so on. A comprehensive list of sources of change
is described later in this chapter.

Barriers to Information Hiding

In a few instances, information hiding is truly impossible, but most of the
barriers to information hiding are mental blocks built up from the habitual use of
other techniques.

Excessive Distribution Of Information

One common barrier to information hiding is an excessive distribution of
information throughout a system. You might have hard-coded the literal 100
throughout a system. Using 100 as a literal decentralizes references to it. It’s
better to hide the information in one place, in a constant MAX_EMPLOYEES
perhaps, whose value is changed in only one place.

Another example of excessive information distribution is interleaving interaction
with human users throughout a system. If the mode of interaction changes—say,
from a GUI interface to a command-line interface—uvirtually all the code will
have to be modified. It’s better to concentrate user interaction in a single class,
package, or subsystem you can change without affecting the whole system.

Yet another example would be a global data element—perhaps an array of
employee data with 1000 elements maximum that’s accessed throughout a
program. If the program uses the global data directly, information about the data
item’s implementation—such as the fact that it’s an array and has a maximum of
1000 elements—will be spread throughout the program. If the program uses the
data only through access routines, only the access routines will know the
implementation details.
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Circular Dependencies

A more subtle barrier to information hiding is circular dependencies, as when a
routine in class A calls a routine in class B, and a routine in class B calls a routine
in class A.

Avoid such dependency loops. They make it hard to test a system because you
can’t test either class A or class B until at least part of the other is ready.

Class Data Mistaken For Global Data

If you’re a conscientious programmer, one of the barriers to effective
information hiding might be thinking of class data as global data and avoiding it
because you want to avoid the problems associated with global data. While the
road to programming hell is paved with global variables, class data presents far
fewer risks.

Global data is generally subject to two problems: (1) Routines operate on global
data without knowing that other routines are operating on it; and (2) routines are
aware that other routines are operating on the global data, but they don’t know
exactly what they’re doing to it. Class data isn’t subject to either of these
problems. Direct access to the data is restricted to a few routines organized into a
single class. The routines are aware that other routines operate on the data, and
they know exactly which other routines they are.

Of course this whole discussion assumes that your system makes use of well-
designed, small classes. If your program is designed to use huge classes that
contain dozens of routines each, the distinction between class data and global
data will begin to blur, and class data will be subject to many of the same
problems as global data.

Perceived Performance Penalties

A final barrier to information hiding can be an attempt to avoid performance
penalties at both the architectural and the coding levels. You don’t need to worry
at either level. At the architectural level, the worry is unnecessary because
architecting a system for information hiding doesn’t conflict with architecting it
for performance. If you keep both information hiding and performance in mind,
you can achieve both objectives.

The more common worry is at the coding level. The concern is that accessing
data items indirectly incurs run-time performance penalties for additional levels
of object instantiations, routine calls and so on. This concern is premature. Until
you can measure the system’s performance and pinpoint the bottlenecks, the best
way to prepare for code-level performance work is to create a highly modular
design. When you detect hot spots later, you can optimize individual classes and
routines without affecting the rest of the system.
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Value of Information Hiding

Information hiding is one of the few theoretical techniques that has indisputably
proven its value in practice, which has been true for a long time (Boehm 1987a).
Large programs that use information hiding were found years ago to be easier to
modify—Dby a factor of 4—than programs that don’t (Korson and Vaishnavi
1986). Moreover, information hiding is part of the foundation of both structured
design and object-oriented design.

Information hiding has unique heuristic power, a unique ability to inspire
effective design solutions. Traditional object-oriented design provides the
heuristic power of modeling the world in objects, but object thinking wouldn’t
help you avoid declaring the ID as an int instead of an IdType. The object-
oriented designer would ask, “Should an 1D be treated as an object?” Depending
on the project’s coding standards, a “Yes” answer might mean that the
programmer has to create an interface for an Id class; write a constructor,
destructor, copy operator, and assignment operator; comment it all; and place it
under configuration control. Most programmers would decide, “No, it isn’t
worth creating a whole class just for an ID. I’ll just use ints.”

Note what just happened. A useful design alternative, that of simply hiding the
ID’s data type, was not even considered. If, instead, the designer had asked,
“What about the ID should be hidden?”” he might well have decided to hide its
type behind a simple type declaration that substitutes IdType for int. The
difference between object-oriented design and information hiding in this
example is more subtle than a clash of explicit rules and regulations. Object-
oriented design would approve of this design decision as much as information
hiding would. Rather, the difference is one of heuristics—thinking about
information hiding inspires and promotes design decisions that thinking about
objects does not.

Information hiding can also be useful in designing a class’s public interface. The
gap between theory and practice in class design is wide, and among many class
designers the decision about what to put into a class’s public interface amounts
to deciding what interface would be the most convenient to use, which usually
results in exposing as much of the class as possible. From what I’ve seen, some
programmers would rather expose all of a class’s private data than write 10 extra
lines of code to keep the class’s secrets intact.

Asking, “What does this class need to hide?” cuts to the heart of the interface-
design issue. If you can put a function or data into the class’s public interface
without compromising its secrets, do. Otherwise, don’t.

Asking about what needs to be hidden supports good design decisions at all
levels. It promotes the use of named constants instead of literals at the
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construction level. It helps in creating good routine and parameter names inside
classes. It guides decisions about class and subsystem decompositions and
interconnections at the system level.

Get into the habit of asking, “What should I hide?” You’ll be surprised at how
many difficult design issues dissolve before your eyes.

Identify Areas Likely to Change

A study of great designers found that one attribute they had in common was their
ability to anticipate change (Glass 1995). Accommodating changes is one of the
most challenging aspects of good program design. The goal is to isolate unstable
areas so that the effect of a change will be limited to one class. Here are the steps
you should follow in preparing for such perturbations.

1. Identify items that seem likely to change. If the requirements have been done
well, they include a list of potential changes and the likelihood of each
change. In such a case, identifying the likely changes is easy. If the
requirements don’t cover potential changes, see the discussion that follows
of areas that are likely to change on any project.

2. Separate items that are likely to change. Compartmentalize each volatile
component identified in step 1 into its own class, or into a class with other
volatile components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the interclass interfaces to
be insensitive to the potential changes. Design the interfaces so that changes
are limited to the inside of the class and the outside remains unaffected. Any
other class using the changed class should be unaware that the change has
occurred. The class’s interface should protect its secrets.

Here are a few areas that are likely to change:

Business logic

Business rules tend to be the source of frequent software changes. Congress
changes the tax structure, a union renegotiates its contract, or an insurance
company changes its rate tables. If you follow the principle of information
hiding, logic based on these rules won’t be strewn throughout your program. The
logic will stay hidden in a single dark corner of the system until it needs to be
changed.

Hardware dependencies

Examples of hardware dependencies include interfaces to screens, printers,
keyboards, mice, disk drives, sound facilities, and communications devices.
Isolate hardware dependencies in their own subsystem or class. Isolating such

Page 27
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dependencies helps when you move the program to a new hardware
environment. It also helps initially when you’re developing a program for
volatile hardware. You can write software that simulates interaction with specific
hardware, have the hardware-interface subsystem use the simulator as long as the
hardware is unstable or unavailable, and then unplug the hardware-interface
subsystem from the simulator and plug the subsystem into the hardware when
it’s ready to use.

Input and output

At a slightly higher level of design than raw hardware interfaces, input/output is
a volatile area. If your application creates its own data files, the file format will
probably change as your application becomes more sophisticated. User-level
input and output formats will also change—the positioning of fields on the page,
the number of fields on each page, the sequence of fields, and so on. In general,
it’s a good idea to examine all external interfaces for possible changes.

Nonstandard language features

Most language implementations contain handy, nonstandard extensions. Using
the extensions is a double-edged sword because they might not be available in a
different environment, whether the different environment is different hardware, a
different vendor’s implementation of the language, or a new version of the
language from the same vendor.

If you use nonstandard extensions to your programming language, hide those
extensions in a class of their own so that you can replace them with your own
code when you move to a different environment. Likewise, if you use library
routines that aren’t available in all environments, hide the actual library routines
behind an interface that works just as well in another environment.

Difficult design and construction areas

It’s a good idea to hide difficult design and construction areas because they
might be done poorly and you might need to do them again. Compartmentalize
them and minimize the impact their bad design or construction might have on the
rest of the system.

Status variables

Status variables indicate the state of a program and tend to be changed more
frequently than most other data. In a typical scenario, you might originally define
an error-status variable as a boolean variable and decide later that it would be
better implemented as an enumerated type with the values ErrorType_None,
ErrorType_Warning, and ErrorType_Fatal.

You can add at least two levels of flexibility and readability to your use of status
variables:
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e Don’t use a boolean variable as a status variable. Use an enumerated type
instead. It’s common to add a new state to a status variable, and adding a
new type to an enumerated type requires a mere recompilation rather than a
major revision of every line of code that checks the variable.

e  Use access routines rather than checking the variable directly. By checking
the access routine rather than the variable, you allow for the possibility of
more sophisticated state detection. For example, if you wanted to check
combinations of an error-state variable and a current-function-state variable,
it would be easy to do if the test were hidden in a routine and hard to do if it
were a complicated test hard-coded throughout the program.

Data-size constraints

When you declare an array of size 15, you’re exposing information to the world
that the world doesn’t need to see. Defend your right to privacy! Information
hiding isn’t always as complicated as a whole class. Sometimes it’s as simple as
using a named constant such as MAX_EMPLOYEES to hide a 15.

Anticipating Different Degrees of Change

When thinking about potential changes to a system, design the system so that the
effect or scope of the change is proportional to the chance that the change will
occur. If a change is likely, make sure that the system can accommodate it easily.
Only extremely unlikely changes should be allowed to have drastic
consequences for more than one class in a system. Good designers also factor in
the cost of anticipating change. If a change is not terribly likely, but easy to plan
for, you should think harder about anticipating it than if it isn’t very likely and is
difficult to plan for.

A good technique for identifying areas likely to change is first to identify the
minimal subset of the program that might be of use to the user. The subset makes
up the core of the system and is unlikely to change. Next, define minimal
increments to the system. They can be so small that they seem trivial. These
areas of potential improvement constitute potential changes to the system; design
these areas using the principles of information hiding. By identifying the core
first, you can see which components are really add-ons and then extrapolate and
hide improvements from there.

Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or
routines. The goal is to create classes and routines with small, direct, visible, and
flexible relations to other classes and routines (loose coupling). The concept of
coupling applies equally to classes and routines, so for the rest of this discussion
I’ll use the word “module” to refer to both classes and routines.

Page 29
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Good coupling between modules is loose enough that one module can easily be
used by other modules. Model railroad cars are coupled by opposing hooks that
latch when pushed together. Connecting two cars is easy—you just push the cars
together. Imagine how much more difficult it would be if you had to screw
things together, or connect a set of wires, or if you could connect only certain
kinds of cars to certain other kinds of cars. The coupling of model railroad cars
works because it’s as simple as possible. In software, make the connections
among modules as simple as possible.

Try to create modules that depend little on other modules. Make them detached,
as business associates are, rather than attached, as Siamese twins are. A routine
like sin() is loosely coupled because everything it needs to know is passed in to it
with one value representing an angle in degrees. A routine such as InitVars( var
1, var2, var3, ..., varN ) is more tightly coupled because, with all the variables it
must pass, the calling module practically knows what is happening inside
InitVars(). Two classes that depend on each other’s use of the same global data
are even more tightly coupled.

Coupling Criteria
Here are several criteria to use in evaluating coupling between modules:

Size

Size refers to the number of connections between modules. With coupling, small
is beautiful because it’s less work to connect other modules to a module that has
a smaller interface. A routine that takes one parameter is more loosely coupled to
modules that call it than a routine that takes six parameters. A class with four
well-defined public methods is more loosely coupled to modules that use it than
a class that exposes 37 public methods.

Visibility

Visibility refers to the prominence of the connection between two modules.
Programming is not like being in the CIA; you don’t get credit for being sneaky.
It’s more like advertising; you get lots of credit for making your connections as
blatant as possible. Passing data in a parameter list is making an obvious
connection and is therefore good. Modifying global data so that another module
can use that data is a sneaky connection and is therefore bad. Documenting the
global-data connection makes it more obvious and is slightly better.

Flexibility

Flexibility refers to how easily you can change the connections between
modules. Ideally, you want something more like the USB connector on your
computer than like bare wire and a soldering gun. Flexibility is partly a product
of the other coupling characteristics, but it’s a little different too. Suppose you
have a routine that looks up an employee’s vacation benefit, given a hiring date
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and a job classification. Name the routine LookupVacationBenefit(). Suppose in
another module you have an employee object that contains the hiring date and
the job classification, among other things, and that module passes the object to
LookupVacationBenefit().

From the point of view of the other criteria, the two modules would look pretty
loosely coupled. The employee connection between the two modules is visible,
and there’s only one connection. Now suppose that you need to use the
LookupVacationBenefit() module from a third module that doesn’t have an
employee object but that does have a hiring date and a job classification.
Suddenly LookupVacationBenefit() looks less friendly, unwilling to associate
with the new module.

For the third module to use LookupVacationBenefit(), it has to know about the
Employee class. It could dummy up an employee object with only two fields, but
that would require internal knowledge of LookupVacationBenefit(), namely that
those are the only fields it uses. Such a solution would be a kludge, and an ugly
one. The second option would be to modify LookupVacationBenefit() so that it
would take hiring date and job classification instead of employee. In either case,
the original module turns out to be a lot less flexible than it seemed to be at first.

The happy ending to the story is that an unfriendly module can make friends if
it’s willing to be flexible—in this case, by changing to take hiring date and job
classification specifically instead of employee.

In short, the more easily other modules can call a module, the more loosely
coupled it is, and that’s good because it’s more flexible and maintainable. In
creating a system structure, break up the program along the lines of minimal
interconnectedness. If a program were a piece of wood, you would try to split it
with the grain.

Kinds of Coupling
Here are the most common kinds of coupling you’ll encounter.

Simple-data-parameter coupling

Two modules are simple-data-parameter coupled if all the data passed between
them are of primitive data types and all the data is passed through parameter
lists. This kind of coupling is normal and acceptable.

Simple-object coupling
A module is simple-object coupled to an object if it instantiates that object. This
kind of coupling is fine.
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Object-parameter coupling

Two modules are object-parameter coupled to each other if Objectl requires
Obiject2 to pass it an Object3. This kind of coupling is tighter than Objectl
requiring Object2 to pass it only primitive data types.

Semantic coupling

The most insidious kind of coupling occurs when one module makes use, not of
some syntactic element of another module, but of some semantic knowledge of
another module’s inner workings. Here are some examples:

e Modulel passes a control flag to Module2 that tells Module2 what to do.
This approach requires Modulel to make assumptions about the internal
workings of Module2, namely, what Module2 is going to with the control
flag. If Module2 defines a specific data type for the control flag (enumerated
type or object), this usage is probably OK.

e Module2 uses global data after the global data has been modified by
Modulel. This approach requires Module2 to assume that Modulel has
modified the data in the ways Module2 needs it to be modified, and that
Modulel has been called at the right time.

e Modulel’s interface states that its Modulel.Initialize() routine should be
called before its Modulel.Routinel() is called. Module2 knows that
Modulel.Routinel() calls Modulel.lInitialize() anyway, so it just instantiates
Modulel and calls Modulel.Routinel() without calling Modulel.Initialize()
first.

e Modulel passes Object to Module2. Because Modulel knows that Module2
uses only three of Object’s seven methods, it only initializes Object only
partially—with the specific data those three methods need.

e Modulel passes BaseObject to Module2. Because Module2 knows that
Module2 is really passing it DerivedObject, it casts BaseObject to
DerivedObject and calls methods that are specific to DerivedObject.

e DerivedClass modifies BaseClass’s protected member data directly.

Semantic coupling is dangerous because changing code in the used module can
break code in the using module in ways that are completely undetectable by the
compiler. When code like this breaks, it breaks in subtle ways that seem
unrelated to the change made in the used module, which turns debugging into a
Sisyphean task.

The point of loose coupling is that an effective module provides an additional
level of abstraction—once you write it, you can take it for granted. It reduces
overall program complexity and allows you to focus on one thing at a time. If
using a module requires you to focus on more than one thing at once—
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knowledge of its internal workings, modification to global data, uncertain
functionality—the abstractive power is lost and the module’s ability to help
manage complexity is reduced or eliminated.

Classes and routines are first and foremost intellectual tools for reducing
complexity. If they’re not making your job simpler, they’re not doing their jobs.

Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to
solve many of software’s most common problems. Some software problems
require solutions that are derived from first principles. But most problems are
similar to past problems, and those can be solved using similar solutions, or
patterns. Common patterns include Adapter, Bridge, Decorator, Facade, Factory
Method, Observor, Singleton, Strategy, and Template Method.

Patterns provide several benefits that fully-custom design doesn’t:

Patterns reduce complexity by providing ready-made abstractions

If you say, “Let’s use a Factory Method to create instances of derived classes,”
other programmers on your project will understand that you are suggesting a
fairly rich set of interrelationships and programming protocols, all of which are
invoked when you refer to the design pattern of Factory Method.” You don’t
have to spell out every line of code for other programmers to understand your
proposal.

Patterns reduce errors by institutionalizing details of common solutions
Software design problems contain nuances that emerge fully only after the
problem has been solved once or twice (or three times, or four times, or ...).
Because patterns represent standardized ways of solving common problems, they
embody the wisdom accumulated from years of attempting to solve those
problems, and they also embody the corrections to the false attempts that people
have made in solving those problems.

Using a design pattern is thus conceptually similar to using library code instead
of writing your own. Sure, everybody has written a custom Quicksort a few
times, but what are the odds that your custom version will be fully correct on the

“ The Factory Method is a pattern that allows you to instantiate any class derived
from a specific base class without needing to keep track of the individual derived
classes anywhere but the Factory Method. For a good discussion of the Factory
Method pattern, see “Replace Constructor with Factory Method” in Refactoring
(Fowler 1999).
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first try? Similarly, numerous design problems are similar enough to past
problems that you’re better off using a prebuilt design solution than creating a
novel solution.

Patterns provide heuristic value by suggesting design alternatives

A designer who’s familiar with common patterns can easily run through a list of
patterns and ask, “Which of these patterns fits my design problem?” Cycling
through a set of familiar alternatives is immeasurably easier than creating a
custom design solution out of whole cloth. And the code arising from a familiar
pattern will also be easier for readers of the code to understand than fully custom
code would be.

Patterns streamline communication by moving the design dialog to a
higher level

In addition to their complexity-management benefit, design patterns can
accelerate design discussions by allowing designers to think and discuss at a
larger level of granularity. If you say, “I can’t decide whether | should use a
Creator or a Factory Method in this situation,” you’ve communicated a great
deal with just a few words—as long as you and your listener are both familiar
with those patterns. Imagine how much longer it would take you to dive into the
details of the code for a Creator pattern and the code for a Factory Method
pattern, and then compare and contrast the two approaches.

If you’re not already familiar with design patterns, Table 5-1 summarizes some
of the most common patterns to stimulate your interest.

Table 5-1. Popular Design Patterns

Pattern Description

Abstract Supports creation of sets of related objects by specifying the kind of
Factory set but not the kinds of each specific object.

Adapter Converts the interface of a class to a different interface

Bridge Builds an interface and an implementation in such a way that either

can vary without the other varying.

Composite  Consists of an object that contains additional objects of its own type
so that client code can interact with the top-level object and not
concern itself with all the detailed objects.

Decorator Attaches responsibilities to an object dynamically, without creating
specific subclasses for each possible configuration of responsibilities.

Facade Provides a consistent interface to code that wouldn’t otherwise offer a
consistent interface.

Factory Instantiates classes derived from a specific base class without

Method needing to keep track of the individual derived classes anywhere but

the Factory Method.
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Iterator A server object that provides access to each element in a set
sequentially.

Observor Keeps multiple objects in synch with each other by making a third
object responsible for notifying the set of objects about changes to
members of the set.

Singleton Provides global access to a class that has one and only one instance.

Strategy Defines a set of algorithms or behaviors that are dynamically
interchangeable with each other.

Template Defines the structure of an algorithm but leaves some of the detailed
Method implementation to subclasses.

If you haven’t seen design patterns before, your reaction to the descriptions in
Table 5-1 might be “Sure, | already know most of these ideas.” That reaction is a
big part of why design patterns are valuable. Patterns are familiar to most
experienced programmers, and assigning recognizable names to them supports
efficient and effective communication about them.

The only real potential trap with patterns is feature-itis: using a pattern because
of a desire to try out a pattern rather than because the pattern is an appropriate
design solution.

Overall, design patterns are a powerful tool for managing complexity. You can
read more detailed descriptions in any of the good books that are listed at the end
of this chapter.

Other Heuristics

The preceding sections describe the major software design heuristics. There are a
few other heuristics that might not be useful quite as often but are still worth
mentioning.

Aim for Strong Cohesion

Cohesion arose from structured design and is usually discussed in the same
context as coupling. Cohesion refers to how closely all the routines in a class or
all the code in a routine support a central purpose. Classes that contain strongly
related functionality are described as having strong cohesion, and the heuristic
goal is to make cohesion as strong as possible. Cohesion is a useful tool for
managing complexity because the more code in a class supports a central
purpose, the more easily your brain can remember everything the code does.

Thinking about cohesion at the routine level has been a useful heuristic for
decades and is still useful today. At the class level, the heuristic of cohesion has
largely been subsumed by the broader heuristic of well-defined abstractions,
which was discussed earlier in this chapter and in Chapter 6, “Working Classes.”
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(Abstractions are useful at the routine level, too, but on a more even footing with
cohesion at that level of detail.

Build Hierarchies

A hierarchy is a tiered information structure in which the most general or
abstract representation of concepts are contained at the top of the hierarchy, with
increasingly detailed, specialized representations at the hierarchy’s lower levels.
In software, hierarchies are found most commonly in class hierarchies, but as
Level 4 in Figure 5-2 illustrated, programmers work with routine calling
hierarchies as well.

Hierarchies have been an important tool for managing complex sets of
information for at least 2000 years. Aristotle used a hierarchy to organize the
animal kingdom. Humans frequently use outlines to organize complex
information (like this book). Researchers have found that people generally find
hierarchies to be a natural way to organize complex information. When they
draw a complex object such as a house, they draw it hierarchically. First they
draw the outline of the house, then the windows and doors, and then more details
They don’t draw the house brick by brick, shingle by shingle, or nail by nail
(Simon 1996).

Hierarchies are a useful tool for achieving Software’s Primary Technical
Imperative because they allow you to focus on only the level of detail you’re
currently concerned with. The details don’t go away completely; they’re simply
pushed to another level so that you can think about them when you want to
rather than thinking about all the details all of the time.

Formalize Class Contracts

At a more detailed level, thinking of each class’s interface as a contract with the
rest of the program can yield good insights. Typically, the contract is something
like “If you promise to provide data X, y, and z and you promise they’ll have
characteristics a, b, and c, | promise to perform operations 1, 2, and 3 within
constraints 8, 9, and 10.” The promises the clients of the class make to the class
are typically called “preconditions,” and the promises the object makes to its
clients are called the “postconditions.”

Contracts are useful for managing complexity because, at least in theory, the
object can safely ignore any non-contractual behavior. In practice, this issue is
much more difficult. For more on contracts, see “Use assertions to document
preconditions and postconditions” in Section 8.2.
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Assign Responsibilities

Another heuristic is to think through how responsibilities should be assigned to
objects. Asking what each object should be responsible for is similar to asking
what information it should hide, but I think it can produce broader answers,
which gives the heuristic unique value.

Design for Test

A thought process that can yield interesting design insights is to ask what the
system will look like if you design it to facilitate testing. Do you need to separate
the user interface from the rest of the code so that you can exercise it
independently? Do you need to organize each subsystem so it minimizes
dependencies on other subsystems? Designing for test tends to result in more
formalized class interfaces, which is generally beneficial.

Avoid Failure

Civil engineering professor Henry Petroski wrote an interesting book called
Design Paradigms: Case Histories of Error and Judgment in Engineering
(Petroski 1994) that chronicles the history of failures in bridge design. Petroski
argues that many spectacular bridge failures have occurred because of focusing
on previous successes and not adequately considering possible failure modes. He
concludes that failures like the Tacoma Narrows bridge could have been avoided
if the designers had carefully considered the ways the bridge might fail and not
just copied the attributes of other successful designs.

The high-profile security lapses of various well-known systems the past few
years make it hard to disagree that we should find ways to apply Petroski’s
design-failure insights to software.

Choose Binding Time Consciously

Binding time refers to the time a specific value is bound to a variable. Code that
binds early tends to be simpler, but it also tends to be less flexible. Sometimes
you can get a good design insight from asking, What if | bound these values
earlier? or What if 1 bound these values later? What if | initialized this table right
here in the code, or what if | read the value of this variable from the user at run
time?

Make Central Points of Control

P.J. Plauger says his major concern is “The Principle of One Right Place—there
should be One Right Place to look for any nontrivial piece of code, and One
Right Place to make a likely maintenance change” (Plauger 1993). Control can
be centralized in classes, routines, preprocessor macros, #include files—even a
named constant is an example of a central point of control.
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The reduced-complexity benefit is that the fewer places you have to look for
something, the easier and safer it will be to change.

Consider Using Brute Force

One powerful heuristic tool is brute force. Don’t underestimate it. A brute-force
solution that works is better than an elegant solution that doesn’t work. It can
take a long time to get an elegant solution to work. In describing the history of
searching algorithms, for example, Donald Knuth pointed out that even though
the first description of a binary search algorithm was published in 1946, it took
another 16 years for someone to publish an algorithm that correctly searched lists
of all sizes (Knuth 1998).

Draw a Diagram

Diagrams are another powerful heuristic tool. A picture is worth 1000 words—
kind of. You actually want to leave out most of the 1000 words because one
point of using a picture is that a picture can represent the problem at a higher
level of abstraction. Sometimes you want to deal with the problem in detail, but
other times you want to be able to work with more generally.

Keep Your Design Modular

Modularity’s goal is to make each routine or class like a “black box”: You know
what goes in, and you know what comes out, but you don’t know what happens
inside. A black box has such a simple interface and such well-defined
functionality that for any specific input you can accurately predict the
corresponding output. If your routines are like black boxes, they’re perfectly
modular, perform well-defined functions, and have simple interfaces.

The concept of modularity is related to information hiding, encapsulation, and
other design heuristics. But sometimes thinking about how to assemble a system
from a set of black boxes provides insights that information hiding and
encapsulation don’t, so it’s worth having in your back pocket.

Summary of Design Heuristics

Here’s a summary of major design heuristics:

e Find Real-World Objects

e Form Consistent Abstractions

e Encapsulate Implementation Details
e Inherit When Possible

e Hide Secrets (Information Hiding)
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e ldentify Areas Likely to Change
e Keep Coupling Loose
e Look for Common Design Patterns

The following heuristics are sometimes useful too:

e Aim for Strong Cohesion

e Build Hierarchies

e Formalize Class Contracts

e Assign Responsibilities

e Design for Test

e Avoid Failure

e Choose Binding Time Consciously
e Make Central Points of Control

e Consider Using Brute Force

e Draw a Diagram

e Keep Your Design Modular

Guidelines for Using Heuristics

“More alarming, the same Approaches to design in software can learn from approaches to design in other

programmer is quite fields. One of the original books on heuristics in problem solving was G. Polya’s
“capable of doing the same ~ How to Solve It (1957). Polya’s generalized problem-solving approach focuses
task himself in two or on problem solving in mathematics. Figure 5-10 is a summary of his approach,
“three ways, sometimes adapted from a similar summary in his book (emphases his).

i but quit
‘ 885%%8"3%%82 L gutte 1. Understanding the Problem. You have to understand the problem.

often simply for a change, . . . . .
ort F_de | ¢ g What is the unknown? What are the data? What is the condition? Is it possible to
or to provide elegan satisfy the condition? Is the condition sufficient to determine the unknown? Or is it

variation ... insufficient? Or redundant? Or contradictory?
—A. R. Brownand W. A. Draw a figure. Introduce suitable notation. Separate the various parts of the
- Sampson condition. Can you write them down?

2. Devising a Plan. Find the connection between the data and the unknown. You
might be obliged to consider auxiliary problems if you can’t find an intermediate
connection. You should eventually come up with a plan of the solution.

Have you seen the problem before? Or have you seen the same problem in a slightly
different form? Do you know a related problem? Do you know a theorem that could
be useful?

Look at the unknown! And try to think of a familiar problem having the same or a
similar unknown. Here is a problem related to yours and solved before. Can you use
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it? Can you use its result? Can you use its method? Should you introduce some
auxiliary element in order to make its use possible?

Can you restate the problem? Can you restate it still differently? Go back to
definitions.

If you cannot solve the proposed problem, try to solve some related problem first.
Can you imagine a more accessible related problem? A more general problem? A
more special problem? An analogous problem? Can you solve a part of the problem?
Keep only a part of the condition, drop the other part; how far is the unknown then
determined, how can it vary? Can you derive something useful from the data? Can
you think of other data appropriate for determining the unknown? Can you change
the unknown or the data, or both if necessary, so that the new unknown and the new
data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you taken into
account all essential notions involved in the problem?

3. Carrying out the Plan. Carry out your plan.

Carrying out your plan of the solution, check each step. Can you see clearly that the
step is correct? Can you prove that it’s correct?

4. Looking Back. Examine the solution.

Can you check the result? Can you check the argument? Can you derive the result
differently? Can you see it at a glance?

Can you use the result, or the method, for some other problem?

Figure 5-10. How to Solve It.

G. Polya developed an approach to problem-solving in mathematics that’s also
useful in solving problems in software design (Polya 1957).

One of the most effective guidelines is not to get stuck on a single approach. If
diagramming the design in UML isn’t working, write it in English. Write a short
test program. Try a completely different approach. Think of a brute-force
solution. Keep outlining and sketching with your pencil, and your brain will
follow. If all else fails, walk away from the problem. Literally go for a walk, or
think about something else before returning to the problem. If you’ve given it
your best and are getting nowhere, putting it out of your mind for a time often
produces results more quickly than sheer persistence can.

You don’t have to solve the whole design problem at once. If you get stuck,
remember that a point needs to be decided but recognize that you don’t yet have
enough information to resolve that specific issue. Why fight your way through
the last 20 percent of the design when it will drop into place easily the next time
through? Why make bad decisions based on limited experience with the design
when you can make good decisions based on more experience with it later?
Some people are uncomfortable if they don’t come to closure after a design
cycle, but after you have created a few designs without resolving issues
prematurely, it will seem natural to leave issues unresolved until you have more
information (Zahniser 1992, Beck 2000).
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5.4 Design Practices

The preceding section focused on heuristics related to design attributes—what
you want the completed design to look like. This section describes design
practice heuristics, steps you can take that often produce good results.

Iterate

You might have had an experience in which you learned so much from writing a
program that you wished you could write it again, armed with the insights you
gained from writing it the first time. The same phenomenon applies to design,
but the design cycles are shorter and the effects downstream are bigger, so you
can afford to whirl through the design loop a few times.

Design is an iterative process: You don’t usually go from point A only to point
B; you go from point A to point B and back to point A.

As you cycle through candidate designs and try different approaches, you’ll look
at both high-level and low-level views. The big picture you get from working
with high-level issues will help you to put the low-level details in perspective.
The details you get from working with low-level issues will provide a foundation
in solid reality for the high-level decisions. The tug and pull between top-level
and bottom-level considerations is a healthy dynamic; it creates a stressed
structure that’s more stable than one built wholly from the top down or the
bottom up.

Many programmers—many people, for that matter—have trouble ranging
between high-level and low-level considerations. Switching from one view of a
system to another is mentally strenuous, but it’s essential to effective design. For
entertaining exercises to enhance your mental flexibility, read Conceptual
Blockbusting (Adams 2001), described in the “Additional Resources” section at
the end of the chapter.

When you come up with a first design attempt that seems good enough, don’t
stop! The second attempt is nearly always better than the first, and you learn
things on each attempt that can improve your overall design. After trying a
thousand different materials for a light bulb filament with no success, Thomas
Edison was reportedly asked if he felt his time had been wasted since he had
discovered nothing. “Nonsense,” Edison is supposed to have replied. “I have
discovered a thousand things that don’t work.” In many cases, solving the
problem with one approach will produce insights that will enable you to solve
the problem using another approach that’s even better.
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Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the
details of a complex program, and that applies just as well to design. Divide the
program into different areas of concern, and then tackle each of those areas
individually. If you run into a dead end in one of the areas, iterate!

Incremental refinement is a powerful tool for managing complexity. As Polya
recommended in mathematical problem solving, understand the problem, then
devise a plan, then carry out the plan, then look back to see how you did (Polya
1957).

Top-Down and Bottom-Up Design Approaches

“Top down” and “bottom up” might have an old fashioned sound, but they
provide valuable insight into the creation of object-oriented designs. Top-down
design begins at a high level of abstraction. You define base classes or other
non-specific design elements. As you develop the design, you increase the level
of detail, identifying derived classes, collaborating classes, and other detailed
design elements.

Bottom-up design starts with specifics and works toward generalities It typically
begins by identifying concrete objects and then generalizes aggregations of
objects and base classes from those specifics.

Some people argue vehemently that starting with generalities and working
toward specifics is best, and some argue that you can’t really identify general
design principles until you’ve worked out the significant details. Here are the
arguments on both sides.

Argument for Top Down

The guiding principle behind the top-down approach is the idea that the human
brain can concentrate on only a certain amount of detail at a time. If you start
with general classes and decompose them into more specialized classes step by
step, your brain isn’t forced to deal with too many details at once.

The divide-and-conquer process is iterative in a couple of senses. First, it’s
iterative because you usually don’t stop after one level of decomposition. You
keep going for several levels. Second, it’s iterative because you don’t usually
settle for your first attempt. You decompose a program one way. At various
points in the decomposition, you’ll have choices about which way to partition
the subsystems, lay out the inheritance tree, and form compositions of objects.
You make a choice and see what happens. Then you start over and decompose it
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another way and see whether that works better. After several attempts, you’ll
have a good idea of what will work and why.

How far do you decompose a program? Continue decomposing until it seems as
if it would be easier to code the next level than to decompose it. Work until you
become somewhat impatient at how obvious and easy the design seems. At that
point, you’re done. If it’s not clear, work some more. If the solution is even
slightly tricky for you now, it’ll be a bear for anyone who works on it later.

Argument for Bottom Up

Sometimes the top-down approach is so abstract that it’s hard to get started. If
you need to work with something more tangible, try the bottom-up design
approach. Ask yourself, “What do | know this system needs to do?”
Undoubtedly, you can answer that question. You might identify a few low-level
responsibilities that you can assign to concrete classes. For example, you might
know that a system needs to format a particular report, compute data for that
report, center its headings, display the report on the screen, print the report on a
printer, and so on. After you identify several low-level responsibilities, you’ll
usually start to feel comfortable enough to look at the top again.

Here are some things to keep in mind as you do bottom-up composition:

e  Ask yourself what you know the system needs to do.
o Identify concrete objects and responsibilities from that question.

o Identify common objects and group them using subsystem organization,
packages, composition within objects, or inheritance, whichever is
appropriate

o Continue with the next level up, or go back to the top and try again to work
down.

No Argument, Really

The key difference between top-down and bottom-up strategies is that one is a
decomposition strategy and the other is a composition strategy. One starts from
the general problem and breaks it into manageable pieces; the other starts with
manageable pieces and builds up a general solution. Both approaches have
strengths and weaknesses that you’ll want to consider as you apply them to your
design problems.

The strength of top-down design is that it’s easy. People are good at breaking
something big into smaller components, and programmers are especially good at
it.
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Another strength of top-down design is that you can defer construction details.
Since systems are often perturbed by changes in construction details (for
example, changes in a file structure or a report format), it’s useful to know early
on that those details should be hidden in classes at the bottom of the hierarchy.

One strength of the bottom-up approach is that it typically results in early
identification of needed utility functionality, which results in a compact, well-
factored design. If similar systems have already been built, the bottom-up
approach allows you to start the design of the new system by looking at pieces of
the old system and asking, “What can | reuse?”

A weakness of the bottom-up composition approach is that it’s hard to use
exclusively. Most people are better at taking one big concept and breaking it into
smaller concepts than they are at taking small concepts and making one big one.
It’s like the old assemble-it-yourself problem: | thought | was done, so why does
the box still have parts in it? Fortunately, you don’t have to use the bottom-up
composition approach exclusively.

Another weakness of the bottom-up design strategy is that sometimes you find
that you can’t build a program from the pieces you’ve started with. You can’t
build an airplane from bricks, and you might have to work at the top before you
know what kinds of pieces you need at the bottom.

To summarize, top down tends to start simple, but sometimes low-level
complexity ripples back to the top, and those ripples can make things more
complex than they really needed to be. Bottom up tends to start complex, but
identifying that complexity early on leads to better design of the higher-level
classes—if the complexity doesn’t torpedo the whole system first!

In the final analysis, top-down and bottom-up design aren’t competing
strategies—they’re mutually beneficial. Design is a heuristic process, which
means that no solution is guaranteed to work every time; design contains
elements of trial and error. Try a variety of approaches until you find one that
works well.

Experimental Prototyping

Sometimes you can’t really know whether a design will work until you better
understand some implementation detail. You might not know if a particular
database organization will work until you know whether it will meet your
performance goals. You might not know whether a particular subsystem design
will work until you select the specific GUI libraries you’ll be working with.
These are examples of the essential “wickedness” of software design—you can’t
fully define the design problem until you’ve at least partially solved it.
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A general technique for addressing these questions at low cost is experimental
prototyping. The word “prototyping” means lots of different things to different
people (McConnell 1996). In this context, prototyping means writing the
absolute minimum amount of throwaway code that’s needed to answer a specific
design question.

Prototyping works poorly when developers aren’t disciplined about writing the
absolute minimum of code needed to answer a question. Suppose the design
question is, “Can the database framework we’ve selected support the transaction
volume we need?” You don’t need to write any production code to answer that
question. You don’t even need to know the database specifics. You just need to
know enough to approximate the problem space—number of tables, number of
entries in the tables, and so on. You can then write very simple prototyping code
that uses tables with names like Tablel, Table2, and Columnl, and Column2,
populate the tables with junk data, and do your performance testing.

Prototyping also works poorly when the design question is not specific enough.
A design question like, “Will this database framework work?” does not provide
enough direction for prototyping. A design question like, “Will this database
framework support 1,000 transactions per second under assumptions X, Y, and
Z” provides a more solid basis for prototyping.

A final risk of prototyping arises when developers do not treat the code as
throwaway code. | have found that it is not possible for people to write the
absolute minimum amount of code to answer a question if they believe that the
code will eventually end up in the production system. They end up implementing
the system instead of prototyping. By adopting the attitude that once the question
is answered the code will be thrown away, you can minimize this risk. A
practical standard that can help is requiring that class names or package names
for prototype code be prefixed with prototype. That at least makes a programmer
think twice before trying to extend prototype code (Stephens 2003).

Used with discipline, prototyping is the workhorse tool a designer has to combat
design wickedness. Used without discipline, prototyping adds some wickedness
of its own.

Collaborative Design

In design, two heads are often better than one, whether those two heads are
organized formally or informally. Collaboration can take any of several forms:

e You informally walk over to a co-worker’s desk and ask to bounce some
ideas around.
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e You and your co-worker sit together in a conference room and draw design
alternatives on a whiteboard.

e You and your co-worker sit together at the keyboard and do detailed design
in the programming language you’re using.

e You schedule a meeting to walk through your design ideas with one or more
co-workers.

e You schedule a formal inspection with all the structured described in
Chapter TBD.

e You don’t work with anyone who can review your work, so you do some
initial work, put it into a drawer, and come back to it a week later. You will
have forgotten enough that you should be able to give yourself a fairly good
review.

If the goal is quality assurance, | tend to recommend the most structured review
practice, formal inspections, for the reasons described in Chapter 21,
“Collaborative Construction.” But if the goal is to foster creativity and to
increase the number of design alternatives generated, not just to find errors, less
structured approaches work better. After you’ve settled on a specific design,
switching to a more formal inspection might be appropriate, depending on the
nature of your project.

How Much Design is Enough?

Sometimes only the barest sketch of an architecture is mapped out before coding
begins. Other times, teams create designs at such a level of detail that coding
becomes a mostly mechanical exercise. How much design should you do before
you begin coding?

A related question is how formal to make the design. Do you need formal,
polished design diagrams, or would digital snapshots of a few drawings on a
whiteboard be enough?

Deciding how much design to do before beginning full-scale coding and how
much formality to use in documenting that design is hardly an exact science. The
experience of the team, expected lifetime of the system, desired level of
reliability, and size of project should all be considered. Table 5-2 summarizes
how each of these factors influence the design approach.

Page 46
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Table 5-2. Design Formality and Level of Detail Needed

Factor Level of Detail in Documentation
Design before Formality
Beginning

Construction

Design/construction team has deep Low Detail Low Formality
experience in applications area

Design/construction team has deep Medium Detail Medium Formality
experience, but is inexperienced in the
applications area

Design/construction team is Medium to High Low-Medium
inexperienced Detail Formality

Design/construction team has moderate-  Medium Detail -
to-high turnover

Application is safety-critical High Detail High Formality

Application is mission-critical Medium Detail Medium-High
Formality

Project is small Low Detail Low Formality

Project is large Medium Detail Medium Formality

Software is expected to have a short Low Detail Low Formality

lifetime (weeks or months)

Software is expected to have a long Medium Detail Medium Formality
lifetime (months or years)

Two or more of these factors may come into play on any specific project, and in
some cases the factors might provide contradictory advice. For example, you
might have a highly experienced team working on safety critical software. In that
case, you’d probably want to err on the side of the higher level of design detail
and formality. In such cases, you’ll need to weigh the significance of each factor
and make a judgment about what matters most.

If the level of design is left to each individual, then, when the design descends to
the level of a task which you’ve done before or to a simple modification or
extension of a task that you’ve done before, you’re probably ready to stop
designing and begin coding.

If I can’t decide how deeply to investigate a design before | begin coding, | tend
to err on the side of going into more detail. The biggest design errors are those in
which | thought | went far enough, but it later turns out that I didn’t go far
enough to realize there were additional design challenges. In other words, the
biggest design problems tend to arise not from areas | knew were difficult and
created bad designs for, but from areas | thought were easy and didn’t create any
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designs for at all. | rarely encounter projects that are suffering from having done
too much design work.

On the other hand, occasionally | have seen projects that are suffering from too
much design documentation. Gresham’s Law states that “programmed activity
tends to drive out nonprogrammed activity” (Simon 1965). A premature rush to
polish a design description is a good example of that law. | would rather see 80
percent of the design effort go into creating and exploring numerous design
alternatives and 20 percent go into creating less polished documentation than to
have 20 percent go into creating mediocre design alternatives and 80 percent go
into polishing documentation of designs that are not very good.

Capturing Your Design Work

The traditional approach to capturing design work is to write up the designs in a
formal design document. However, there are numerous alternative ways to
capture designs that can work well on small projects, informal projects, or
projects that are otherwise looking for a lightweight way to capture a design:

Insert design documentation into the code itself

Document key design decisions in code comments, typically in the file or class
header. When you couple this approach with a documentation extractor like
JavaDoc, this assures that design documentation will readily available to a
programmer working on a section of code, and it maximizes the chance that
programmers will keep the design documentation reasonably up to date.

Capture design discussions and decisions on a Wiki

Have your design discussions in writing, on a project wiki. This will capture
your design discussions and decision automatically, albeit with the extra
overhead of typing rather than talking. You can also use the Wiki to capture
digital pictures to supplement the text discussion. This technique is especially
useful if your development team is geographically distributed.

Write email summaries

After a design discussion, adopt the practice of designating someone to write a
summary of the discussion—especially what was decided—and send it to the
project team. Archive a copy of the email in the project’s public email folder.

Use a digital camera

One common barrier to documenting designs is the tedium of creating design
drawings in some popular drawing tools. But the documentation choices are not
limited to the two options of “capturing the design in a nicely formatted, formal
notation” vs. “no design documentation at all.”
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Taking pictures of whiteboard drawings with a digital camera and then
embedding those pictures into traditional documents can be a low-effort way to
get 80 percent of the benefit of saving design drawings by doing about 0.20
percent of the work required if you use a drawing tool.

Save design flipcharts

There’s no law that says your design documentation has to fit on standard letter-
size paper. If you make your design drawings on large flipchart paper, you can
simply archive the flipcharts in a convenient location—or better yet, post them
on the walls around the project area so that people can easily refer to them and
update them when needed.

Use CRC cards

Another low-tech alternative for documenting designs is to use index cards. On
each card, designers write a class name, responsibilities of the class, and
collaborators (other classes that cooperate with the class). A design group then
works with the cards until they’re satisfied that they’ve created a good design. At
that point, you can simply save the cards for future reference. Index cards are
cheap, unintimidating, and portable, and they encourage group interaction (Beck
1991).

Create UML diagrams at appropriate levels of detail

One popular technique for diagramming designs is called UML (Unified
Modeling Language), which is defined by the Object Management Group
(Fowler 2004). Figure 5-6 earlier in this chapter was one example of a UML
class diagram. UML provides a rich set of formalized representations for design
entities and relationships. You can use informal versions of UML to explore and
discuss design approaches. Start with minimal sketches and add detail only after
you’ve zeroed in on a final design solution. Because UML is standardized, it
supports common understanding in communicating design ideas, and it can
accelerate the process of considering design alternatives when working in a

group.

These techniques can work in various combinations, so feel free to mix and
match these approaches on a project-by-project basis or even within different
areas of a single project.
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“disciplined activity spend
considerable energy
“making us all feel guilty.
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sin from having learned
Basic at an
impressionable age. But
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~are better designers than
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~acknowledge.
—P.J. Plauger
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5.5 Comments on Popular Methodologies

The history of design in software has been marked by fanatic advocates of wildly
conflicting design approaches. When | published the first edition of Code
Complete in the early 1990s, design zealots were advocating dotting every
design i and crossing every design t before beginning coding. That
recommendation didn’t make any sense.

As | write this edition in the mid-2000s, some software swamis are arguing for
not doing any design at all. “Big Design Up Front is BDUF,” they say. “BDUF is
bad. You’re better off not doing any design before you begin coding!”

In 10 years the pendulum has swung from “design everything” to “design
nothing.” But the alternative to BDUF isn’t no design up front, it’s a Little
Design Up Front (LDUF) or Enough Design Up Front—ENUF.

How do you tell how much is enough? That’s a judgment call, and no one can
make that call perfectly. But while you can’t know the exact right amount of
design with any confidence, there are two amounts of design that are guaranteed
to be wrong every time: designing every last detail and not designing anything at
all. The two positions advocated by extremists on both ends of the scale turn out
to be the only two positions that are always wrong!

As P.J. Plauger says, “The more dogmatic you are about applying a design
method, the fewer real-life problems you are going to solve” (Plauger 1993).
Treat design as a wicked, sloppy, heuristic process. Don’t settle for the first
design that occurs to you. Collaborate. Strive for simplicity. Prototype when you
need to. Iterate, iterate, and iterate again. You’ll be happy with your designs.

Additional Resources

Software design is a rich field with abundant resources. The challenge is
identifying which resources will be most useful. Here are some suggestions.

Software Design, General

Weisfeld, Matt. The Object-Oriented Thought Process, 2d Ed., SAMS, 2004.
This is an accessible book that introduces object-oriented programming. If
you’re already familiar with object-oriented programming, you’ll probably want
a more advanced book, but if you’re just getting your feet wet in OO, this book
introduces fundamental object-oriented concepts including objects, classes,
interfaces, inheritance, polymorphism, overloading, abstract classes, aggregation
and association, constructors/destructors, exceptions, and other topics.

Page 50
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Riel, Arthur J. Object-Oriented Design Heuristics, Reading, Mass.: Addison
Wesley, 1996. This book is easy to read and focuses on design at the class level.

Plauger, P.J. Programming on Purpose: Essays on Software Design. Englewood
Cliffs, N.J.: PTR Prentice Hall, 1993. | picked up as many tips about good
software design from reading this book as from any other book I’ve read.
Plauger is well-versed in a wide-variety of design approaches, he’s pragmatic,
and he’s a great writer.

Meyer, Bertrand. Object-Oriented Software Construction, 2d Ed. New York:
Prentice Hall PTR, 1997. Meyer presents a forceful advocacy of hard-core
object-oriented programming.

Raymond, Eric S. The Art of Unix Programming, Boston, Mass.: Addison
Wesley, 2004. This is a well-researched look at software design through Unix-
colored glasses. Section 1.6 is an especially concise 12-page explanation of 17
key Unix design principles.

Larman, Craig, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 2d Ed., Englewood Cliffs, N.J.:
Prentice Hall, 2001. This book is a popular introduction to object-oriented design
in the context of the Unified Process. It also discusses object-oriented analysis.

Software Design Theory

Parnas, David L., and Paul C. Clements. “A Rational Design Process: How and
Why to Fake It.” IEEE Transactions on Software Engineering SE-12, no. 2
(February 1986): 251-57. This classic article describes the gap between how
programs are really designed and how you sometimes wish they were designed.
The main point is that no one ever really goes through a rational, orderly design
process but that aiming for it makes for better designs in the end.

I’m not aware of any comprehensive treatment of information hiding. Most
software-engineering textbooks discuss it briefly, frequently in the context of
object-oriented techniques. The three Parnas papers listed below are the seminal
presentations of the idea and are probably still the best resources on information
hiding.

Parnas, David L. “On the Criteria to Be Used in Decomposing Systems into
Modules.” Communications of the ACM 5, no. 12 (December 1972): 1053-58.

Parnas, David L. “Designing Software for Ease of Extension and Contraction.”
IEEE Transactions on Software Engineering SE-5, no. 2 (March 1979): 128-38.
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Parnas, David L., Paul C. Clements. and D. M. Weiss. “The Modular Structure
of Complex Systems.” IEEE Transactions on Software Engineering SE-11, no. 3
(March 1985): 259-66.

Design Patterns

Gamma, Erich, et al. Design Patterns, Reading, Mass.: Addison Wesley, 1995.
This book by the “Gang of Four” is the seminal book on design patterns.

Shalloway, Alan and James R. Trott. Design Patterns Explained, Boston, Mass.:
Addison Wesley, 2002. This books contains an easy-to-read introduction to
design patterns.

Design in General

Adams, James L. Conceptual Blockbusting: A Guide to Better Ideas, 4th ed.
Cambridge, Mass.: Perseus Publishing, 2001. Although not specifically about
software design, this book was written to teach design to engineering students at
Stanford. Even if you never design anything, the book is a fascinating discussion
of creative thought processes. It includes many exercises in the kinds of thinking
required for effective design. It also contains a well-annotated bibliography on
design and creative thinking. If you like problem solving, you’ll like this book.

Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2d ed.
Princeton, N.J.: Princeton University Press, 1957. This discussion of heuristics
and problem solving focuses on mathematics but is applicable to software
development. Polya’s book was the first written about the use of heuristics in
mathematical problem solving. It draws a clear distinction between the messy
heuristics used to discover solutions and the tidier techniques used to present
them once they’ve been discovered. It’s not easy reading, but if you’re interested
in heuristics, you’ll eventually read it whether you want to or not. Polya’s book
makes it clear that problem solving isn’t a deterministic activity and that
adherence to any single methodology is like walking with your feet in chains. At
one time Microsoft gave this book to all its new programmers.

Michalewicz, Zbigniew, and David B. Fogel, How to Solve It: Modern
Heuristics, Berlin: Springer-Verlag, 2000. This is an updated treatment of
Polya’s book that’s quite a bit easier to read and that also contains some non-
mathematical examples.

Simon, Herbert. The Sciences of the Artificial, 3d Ed. Cambridge, Mass.: MIT
Press, 1996. This fascinating book draws a distinction between sciences that deal
with the natural world (biology, geology, and so on) and sciences that deal with
the artificial world created by humans (business, architecture, and computer
science). It then discusses the characteristics of the sciences of the artificial,
emphasizing the science of design. It has an academic tone and is well worth
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reading for anyone intent on a career in software development or any other
“artificial” field.

Glass, Robert L. Software Creativity. Englewood Cliffs, N.J.: Prentice Hall PTR,
1995. Is software development controlled more by theory or by practice? Is it
primarily creative or is it primarily deterministic? What intellectual qualities
does a software developer need? This book contains an interesting discussion of
the nature of software development with a special emphasis on design.

Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge: Cambridge University Press, 1994. This book draws
heavily from the field of civil engineering (especially bridge design) to explain
its main argument that successful design depends at least as much upon learning
from past failures as from past successes.

Standards

IEEE Std 1016-1998, Recommended Practice for Software Design Descriptions.
This document contains the IEEE-ANSI standard for software-design
descriptions. It describes what should be included in a software-design
document.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of
Software Intensive Systems, Los Alamitos, CA: IEEE Computer Society Press.
This document is the IEEE-ANSI guide for creating software architecture
specifications.

CC2E.COM/0527
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Design Practices

O Have you iterated, selecting the best of several attempts rather than the first
attempt?

O Have you tried decomposing the system in several different ways to see
which way will work best?

O Have you approached the design problem both from the top down and from
the bottom up?

O Have you prototyped risky or unfamiliar parts of the system, creating the
absolute minimum amount of throwaway code needed to answer specific
questions?

O

Has you design been reviewed, formally or informally, by others?

O Have you driven the design to the point that its implementation seems
obvious?
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a

Have you captured your design work using an appropriate technique such as
a Wiki, email, flipcharts, digital camera, UML, CRC cards, or comments in
the code itself?

Design Goals

O Does the design adequately address issues that were identified and deferred
at the architectural level?

O Isthe design stratified into layers?

O Are you satisfied with the way the program has been decomposed into
subsystems, packages, and classes?

O Are you satisfied with the way the classes have been decomposed into
routines?

O Are classes designed for minimal interaction with each other?

O Are classes and subsystems designed so that you can use them in other
systems?

O Will the program be easy to maintain?

O Isthe design lean? Are all of its parts strictly necessary?

O Does the design use standard techniques and avoid exotic, hard-to-
understand elements?

O Overall, does the design help minimize both accidental and essential
complexity?

Key Points

Software’s Primary Technical Imperative is managing complexity. This is
accomplished primarily through a design focus on simplicity.

Simplicity is achieved in two general ways: minimizing the amount of
essential complexity that anyone’s brain has to deal with at any one time and
keeping accidental complexity from proliferating needlessly.

Design is heuristic. Dogmatic adherence to any single methodology hurts
creativity and hurts your programs.

Good design is iterative; the more design possibilities you try, the better
your final design will be.

Information hiding is a particularly valuable concept. Asking, “What should
I hide?” settles many difficult design issues.

Lots of useful, interesting information on design is available outside this
book. The perspectives presented here are just the tip of the iceberg.



le Complete

- CC2E.COM/0665

| KEY POINT

6. Working Classes Page 1

6

Working Classes

Contents
6.1 Class Foundations: Abstract Data Types (ADTS)

6.2 Good Class Interfaces

6.3 Design and Implementation Issues
6.4 Reasons to Create a Class

6.5 Language-Specific Issues

6.6 Beyond Classes: Packages

Related Topics
Design in construction: Chapter 5

Software architecture: Section 3.5

Characteristics of high-quality routines: Chapter 7
The Pseudocode Programming Process: Chapter 9
Refactoring: Chapter 24

In the dawn of computing, programmers thought about programming in terms of
statements. Throughout the 1970s and 1980s, programmers began thinking about
programs in terms of routines. In the twenty-first century, programmers think
about programming in terms of classes.

A class is a collection of data and routines that share a cohesive, well-defined
responsibility. A class might also be a collection of routines that provides a
cohesive set of services even if no common data is involved. A key to being an
effective programmer is maximizing the portion of a program that you can safely
ignore while working on any one section of code. Classes are the primary tool
for accomplishing that objective.

This chapter contains a distillation of advice in creating high quality classes. If
you’re still warming up to object-oriented concepts, this chapter might be too
advanced. Make sure you’ve read Chapter 5. Then start with Section 6.1,
“Abstract Data Types (ADTSs),” and ease your way into the remaining sections.



le Complete

CROSS-REFERENCE  Thin
“king about ADTSs first and

classes second is an example
“of programming into a
~language vs. programming in
- one. Section 4.3, “Your
~Location on the Technology

Wave” and Section 34.4,
“Program Into Your
- Language, Not In It.”

6. Working Classes Page 2

If you’re already familiar with class basics, you might skim Section 6.1 and then
dive into the discussion of good class interfaces in Section 6.2. The “Additional
Resources” section at the end of the chapter contains pointers to introductory
reading, advanced reading, and programming-language—specific resources.

6.1 Class Foundations: Abstract Data Types
(ADTSs)

An abstract data type is a collection of data and operations that work on that
data. The operations both describe the data to the rest of the program and allow
the rest of the program to change the data. The word “data” in “abstract data
type” is used loosely. An ADT might be a graphics window with all the
operations that affect it; a file and file operations; an insurance-rates table and
the operations on it; or something else.

Understanding ADTSs is essential to understanding object-oriented programming.
Without understanding ADTSs, programmers create classes that are “classes” in
name only—in reality, they are little more than convenient carrying cases for
loosely related collections of data and routines. With an understanding of ADTs,
programmers can create classes that are easier to implement initially and easier
to modify over time.

Traditionally, programming books wax mathematical when they arrive at the
topic of abstract data types. They tend to make statements like “One can think of
an abstract data type as a mathematical model with a collection of operations
defined on it.” Such books make it seem as if you’d never actually use an
abstract data type except as a sleep aid.

Such dry explanations of abstract data types completely miss the point. Abstract
data types are exciting because you can use them to manipulate real-world
entities rather than low-level, implementation entities. Instead of inserting a node
into a linked list, you can add a cell to a spreadsheet, a new type of window to a
list of window types, or another passenger car to a train simulation. Tap into the
power of being able to work in the problem domain rather than at the low-level
implementation domain!

Example of the Need for an ADT

To get things started, here’s an example of a case in which an ADT would be
useful. We’ll get to the theoretical details after we have an example to talk about.

Suppose you’re writing a program to control text output to the screen using a
variety of typefaces, point sizes, and font attributes (such as bold and italic). Part
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of the program manipulates the text’s fonts. If you use an ADT, you’ll have a
group of font routines bundled with the data—the typeface names, point sizes,
and font attributes—they operate on. The collection of font routines and data is
an ADT.

If you’re not using ADTSs, you’ll take an ad hoc approach to manipulating fonts.
For example, if you need to change to a 12-point font size, which happens to be
16 pixels high, you’ll have code like this:

currentFont.size = 16
If you’ve built up a collection of library routines, the code might be slightly
more readable:

currentFont.size = PointsToPixels( 12 )
Or you could provide a more specific name for the attribute, something like

currentFont.sizeInPixels = PointsToPixels( 12 )
But what you can’t do is have both currentFont.sizelnPixels and
currentFont.sizelnPoints, because, if both the data members are in play,
currentFont won’t have any way to know which of the two it should use.

If you change sizes in several places in the program, you’ll have similar lines
spread throughout your program.

If you need to set a font to bold, you might have code like this:

currentFont.attribute = currentFont.attribute or 0x02
If you’re lucky, you’ll have something cleaner than that, but the best you’ll get
with an ad hoc approach is something like this:

currentFont.attribute = currentFont.attribute or BOLD
Or maybe something like this:

currentFont.bold = True
As with the font size, the limitation is that the client code is required to control
the data members directly, which limits how currentFont can be used.

If you program this way, you’re likely to have similar lines in many places in
your program.

Benefits of Using ADTs

The problem isn’t that the ad hoc approach is bad programming practice. It’s that
you can replace the approach with a better programming practice that produces
these benefits:
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You can hide implementation details

Hiding information about the font data type means that if the data type changes,
you can change it in one place without affecting the whole program. For
example, unless you hid the implementation details in an ADT, changing the
data type from the first representation of bold to the second would entail
changing your program in every place in which bold was set rather than in just
one place. Hiding the information also protects the rest of the program if you
decide to store data in external storage rather than in memory or to rewrite all the
font-manipulation routines in another language.

Changes don’t affect the whole program

If fonts need to become richer and support more operations (such as switching to
small caps, superscripts, strikethrough, and so on), you can change the program
in one place. The change won’t affect the rest of the program.

You can make the interface more informative

Code like currentFont.size = 16 is ambiguous because 16 could be a size in
either pixels or points. The context doesn’t tell you which is which. Collecting
all similar operations into an ADT allows you to define the entire interface in
terms of points, or in terms of pixels, or to clearly differentiate between the two,
which helps avoid confusing them.

It’s easier to improve performance
If you need to improve font performance, you can recode a few well-defined
routines rather than wading through an entire program.

The program is more obviously correct

You can replace the more tedious task of verifying that statements like
currentFont.attribute = currentFont.attribute or 0x02 are correct with the easier
task of verifying that calls to currentFont.BoldOn() are correct. With the first
statement, you can have the wrong structure name, the wrong field name, the
wrong logical operation (a logical and instead of or), or the wrong value for the
attribute (0x20 instead of 0x02). In the second case, the only thing that could
possibly be wrong with the call to currentFont.BoldOn() is that it’s a call to the
wrong routine name, so it’s easier to see whether it’s correct.

The program becomes more self-documenting

You can improve statements like currentFont.attribute or 0x02 by replacing
0x02 with BOLD or whatever 0x02 represents, but that doesn’t compare to the
readability of a routine call such as currentFont.BoldOn().

| HARD DATA Woodfield, Dunsmore, and Shen conducted a study in which graduate and senior
undergraduate computer-science students answered questions about two
programs—one that was divided into eight routines along functional lines and
one that was divided into eight abstract-data-type routines (1981). Students using
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the abstract-data-type program scored over 30 percent higher than students using
the functional version.

You don’t have to pass data all over your program

In the examples just presented, you have to change currentFont directly or pass
it to every routine that works with fonts. If you use an abstract data type, you
don’t have to pass currentFont all over the program and you don’t have to turn it
into global data either. The ADT has a structure that contains currentFont’s data.
The data is directly accessed only by routines that are part of the ADT. Routines
that aren’t part of the ADT don’t have to worry about the data.

You’re able to work with real-world entities rather than with low-level
implementation structures

You can define operations dealing with fonts so that most of the program
operates solely in terms of fonts rather than in terms of array accesses, structure
definitions, and True and False booleans.

In this case, to define an abstract data type, you’d define a few routines to
control fonts—perhaps these:

currentFont.SetSizeInPoints( sizeInPoints )
currentFont.SetSizeInPixels( sizeInPixels )
currentFont.Bo1dOn()

currentFont.Bo1dOff()
currentFont.ItalicOn()
currentFont.ItalicOff(Q)
currentFont.SetTypeFace( faceName )

The code inside these routines would probably be short—it would probably be
similar to the code you saw in the ad hoc approach to the font problem earlier.
The difference is that you’ve isolated font operations in a set of routines. That
provides a better level of abstraction for the rest of your program to work with
fonts, and it gives you a layer of protection against changes in font operations.

More Examples of ADTs

Here are a few more examples of ADTSs:

Suppose you’re writing software that controls the cooling system for a nuclear
reactor. You can treat the cooling system as an abstract data type by defining the
following operations for it:

coolingSystem.Temperature()
coolingSystem.SetCirculationRate( rate )
coolingSystem.OpenValve( valveNumber )
coolingSystem.CloseValve( valveNumber )
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The specific environment would determine the code written to implement each
of these operations. The rest of the program could deal with the cooling system

through these functions and wouldn’t have to worry about internal details of
data-structure implementations, data-structure limitations, changes, and so on.

Here are more examples of abstract data types and likely operations on them:

Cruise Control

Set speed

Get current settings
Resume former speed

Deactivate

Set of Help Screens
Add help topic
Remove help topic
Set current help topic
Display help screen
Remove help display
Display help index

Back up to previous
screen

List

Initialize list

Insert item in list
Remove item from list

Read next item from list

Light

Turnon

Blender

Turn on

Turn off

Set speed

Start “Insta-Pulverize”

Stop “Insta-Pulverize”

Menu

Start new menu
Delete menu

Add menu item
Remove menu item
Activate menu item

Deactivate menu item

Display menu
Hide menu

Get menu choice

Pointer

Get pointer to new
memory

Dispose of memory from
existing pointer

Change amount of
memory allocated

Fuel Tank

Fill tank

Drain tank

Get tank capacity

Get tank status

Stack

Initialize stack

Push item onto stack
Pop item from stack

Read top of stack

File

Open file

Read file
Write file
Set current file location

Close file

Elevator

Move up one floor

Move down one floor

Move to specific floor
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Turn off Report current floor

Return to home floor
Yon can derive several guidelines from a study of these examples:

Build or use typical low-level data types as ADTSs, not as low-level data
types

Most discussions of ADTs focus on representing typical low-level data types as
ADTs. As you can see from the examples, you can represent a stack, a list, and a
queue, as well as virtually any other typical data type, as an ADTs.

The question you need to ask is, What does this stack, list, or queue represent? If
a stack represents a set of employees, treat the ADT as employees rather than as
a stack. If a list represents a set of billing records, treat it as billing records rather
than a list. If a queue represents cells in a spreadsheet, treat it as a collection of
cells rather than a generic item in a queue. Treat yourself to the highest possible
level of abstraction.

Treat common objects such as files as ADTs

Most languages include a few abstract data types that you’re probably familiar
with but might not think of as ADTSs. File operations are a good example. While
writing to disk, the operating system spares you the grief of positioning the
read/write head at a specific physical address, allocating a new disk sector when
you exhaust an old one, and checking for binary error codes. The operating
system provides a first level of abstraction and the ADTs for that level. High-
level languages provide a second level of abstraction and ADTs for that higher
level. A high-level language protects you from the messy details of generating
operating-system calls and manipulating data buffers. It allows you to treat a
chunk of disk space as a “file.”

You can layer ADTs similarly. If you want to use an ADT at one level that offers
data-structure level operations (like pushing and popping a stack), that’s fine.
You can create another level on top of that one that works at the level of the real-
world problem.

Treat even simple items as ADTs

You don’t have to have a formidable data type to justify using an abstract data
type. One of the ADTs in the example list is a light that supports only two
operations—turning it on and turning it off. You might think that it would be a
waste to isolate simple “on” and “off” operations in routines of their own, but
even simple operations can benefit from the use of ADTSs. Putting the light and
its operations into an ADT makes the code more self-documenting and easier to
change, confines the potential consequences of changes to the TurnLightOn()
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and TurnLightOff() routines, and reduces the amount of data you have to pass
around.

Refer to an ADT independently of the medium it’s stored on

Suppose you have an insurance-rates table that’s so big that it’s always stored on
disk. You might be tempted to refer to it as a “rate file” and create access
routines such as rateFile.Read(). When you refer to it as a file, however, you’re
exposing more information about the data than you need to. If you ever change
the program so that the table is in memory instead of on disk, the code that refers
to it as a file will be incorrect, misleading, and confusing. Try to make the names
of classes and access routines independent of how the data is stored, and refer to
the abstract data type, like the insurance-rates table, instead. That would give
your class and access routine names like rateTable.Read() or simply
rates.Read().

Handling Multiple Instances of Data with ADTs in
Non-OO Environments

Object-oriented languages provide automatic support for handling multiple
instances of an ADT. If you’ve worked exclusively in object-oriented
environments and have never had to handle the implementation details of
multiple instances yourself, count your blessings! (You can also move on to the
next section, “ADTs and Classes”)

If you’re working in a non-object oriented environment such as C, you will have
to build support for multiple instances manually. In general, that means
including services for the ADT to create and delete instances and designing the
ADT’s other services so that they can work with multiple instances.

The font ADT originally offered these services:

currentFont.SetSize( sizeInPoints )
currentFont.BoldOn()
currentFont.Bo1doff()
currentFont.ItalicOn()
currentFont.ItalicOff(Q)
currentFont.SetTypeFace( faceName )
In a non-O0 environment, these functions would not be attached to a class, and

would look more like this:

SetCurrentFontSize( sizeInPoints )
SetCurrentFontBo1dOn()
SetCurrentFontBo1dOff()
SetCurrentFontItalicOn()
SetCurrentFontItalicOff()
SetCurrentFontTypeFace( faceName )
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If you want in work with more than one font at a time, you’ll need to add
services to create and delete font instances—maybe these:

CreateFont( fontId )
DeleteFont( fontId )
SetCurrentFont( fontId )

The notion of a fontld has been added as a way to keep track of multiple fonts as
they’re created and used. For other operations, you can choose from among three
ways to handle the ADT interface:

Option 1: Use implicit instances (with great care)

Design a new service to call to make a specific font instance the current one—
something like SetCurrentFont( fontld ). Setting the current font makes all other
services use the current font when they’re called. If you use this approach, you
don’t need fontld as a parameter to the other services. For simple applications
this can streamline use of multiple instances. For complex applications, this
system-wide dependence on state means that you must keep track of the current
font instance throughout code that uses the Font functions. Complexity tends to
proliferate, and for applications of any size, there are better alternatives.

Option 2: Explicitly identify instances each time you use ADT services

In this case, you don’t have the notion of a “current font.” You pass fontld to
each routine that manipulates fonts. The Font functions keep track of any
underlying data, and the client code needs to keep track only of the fontld. This
requires adding fontld as a parameter to each font routine.

Option 3: Explicitly provide the data used by the ADT services

In this approach, you declare the data that the ADT uses within each routine that
uses an ADT service. In other words, you create a Font data type that you pass to
each of the ADT service routines. You must design the ADT service routines so
that they use the Font data that’s passed to them each time they’re called. The
client code doesn’t need a font ID if you use this approach because it keeps track
of the font data itself. (Even though the data is available directly from the Font
data type, you should access it only with the ADT service routines. This is called
keeping the structure “closed.”

The advantage of this approach is that the ADT service routines don’t have to
look up font information based on a font ID. The disadvantage is that it exposes
font data to the rest of the program, which increases the likelihood that client
code will make use of the ADT’s implementation details that should have
remained hidden within the ADT.

Inside the abstract data type, you’ll have a wealth of options for handling
multiple instances, but outside, this sums up the choices if you’re working in a
non-object oriented language.
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ADTs and Classes

Abstract data types form the foundation for the concept of classes. In languages
that support classes, you can implement each abstract data type in its own class.
Classes usually involve the additional concepts of inheritance and
polymorphism. One way of thinking of a class is as an abstract data type plus
inheritance and polymorphism.

6.2 Good Class Interfaces

The first and probably most important step in creating a high quality class is
creating a good interface. This consists of creating a good abstraction for the
interface to represent and ensuring the details remain hidden behind the
abstraction.

Good Abstraction

As “Form Consistent Abstractions” in Section 5.3 discussed, abstraction is the
ability to view a complex operation in a simplified form. A class interface
provides an abstraction of the implementation that’s hidden behind the interface.
The class’s interface should offer a group of routines that clearly belong
together.

You might have a class that implements an employee. It would contain data
describing the employee’s name, address, phone number, and so on. It would
offer services to initialize and use an employee. Here’s how that might look.

C++ Example of a Class Interface that Presents a Good Abstraction

class Employee {
pubTic:
// public constructors and destructors
EmpTloyee();
Employee (
FullName name,
String address,
String workPhone,
String homePhone,
TaxId taxIdNumber,
JobClassification jobClass
)3
virtual ~Employee(Q);

// public routines
FulTName Name(Q);
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String Address();

String WorkPhone();

String HomePhone();

TaxId TaxIdNumber();

JobClassification GetJobClassification();

private:

}

Internally, this class might have additional routines and data to support these
services, but users of the class don’t need to know anything about them. The
class interface abstraction is great because every routine in the interface is
working toward a consistent end.

A class that presents a poor abstraction would be one that contained a collection
of miscellaneous functions. Here’s an example:

CODING HORROR C++ Example of a Class Interface that Presents a Poor Abstraction

class Program {

pubTic:

// public routines

void InitializeCommandStack();

void PushCommand( Command &command ) ;
Command PopCommand() ;

void ShutdownCommandStack();

void InitializeReportFormatting();
void FormatReport( Report &report );
void PrintReport( Report &report );
void InitializeGlobalData();

void ShutdownGlobalData();

private:

}

Suppose that a class contains routines to work with a command stack, format
reports, print reports, and initialize global data. It’s hard to see any connection
among the command stack and report routines or the global data. The class
interface doesn’t present a consistent abstraction, so the class has poor cohesion.
The routines should be reorganized into more-focused classes, each of which
provides a better abstraction in its interface.

If these routines were part of a “Program” class, they could be revised to present
a consistent abstraction.
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C++ Example of a Class Interface that Presents a Better Abstraction

class Program {
pubTic:

// public routines
void InitializeProgram(Q);

void ShutDownProgram();
private:

}

The cleanup of this interface assumes that some of these routines were moved to
other, more appropriate classes and some were converted to private routines used
by InitializeProgram() and ShutDownProgram().

This evaluation of class abstraction is based on the class’s collection of public
routines, that is, its class interface. The routines inside the class don’t necessarily
present good individual abstractions just because the overall class does, but they
need to be designed to present good abstractions, too. For guidelines on that, see
Section 7.2, “Design at the Routine Level.”

The pursuit of good, abstract interfaces gives rise to several guidelines for
creating class interfaces.

Present a consistent level of abstraction in the class interface

A good way to think about a class is as the mechanism for implementing the
abstract data types (ADTs) described in Section 6.1. Each class should
implement one and only one ADT. If you find a class implementing more than
one ADT, or if you can’t determine what ADT the class implements, it’s time to
reorganize the class into one or more well-defined ADTSs.

Here’s an example of a class the presents an interface that’s inconsistent because
its level of abstraction is not uniform:

C++ Example of a Class Interface with Mixed Levels of Abstraction

class EmployeelList: public ListContainer {
pubTic:

// public routines
void AddEmployee( Employee &employee );
void RemoveEmployee( Employee &employee );

Employee NextItemInList( Employee &employee );
Employee FirstItem( Employee &employee );
Employee LastItem( Employee &employee );
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private:

}

This class is presenting two ADTs: an Employee and a ListContainer. This sort
of mixed abstraction commonly arises when a programmer uses a container class
or other library classes for implementation and doesn’t hide the fact that a library
class is used. Ask yourself whether the fact that a container class is used should
be part of the abstraction. Usually that’s an implementation detail that should be
hidden from the rest of the program, like this:

C++ Example of a Class Interface with Consistent Levels of Abstraction

class EmployeelList {
pubTic:

// public routines

The abstraction of all these void AddEmployee( Employee &employee );
routines is now at the void RemoveEmployee( Employee &employee );
“employee” level. Employee NextEmployee( Employee &employee );

Employee FirstEmployee( Employee &employee );
Employee LastEmployee( Employee &employee );

private:
That the class uses the I ListContainer m_EmployeelList;

ListContainer library is now
hidden }

Programmers might argue that inheriting from ListContainer is convenient
because it supports polymorphism, allowing an external search or sort function
that takes a ListContainer object.

That argument fails the main test for inheritance, which is, Is inheritance used
only for “is a” relationships? To inherit from ListContainer would mean that
EmployeeList “is a” ListContainer, which obviously isn’t true. If the abstraction
of the EmployeeL.ist object is that it can be searched or sorted, that should be
incorporated as an explicit, consistent part of the class interface.

If you think of the class’s public routines as an air lock that keeps water from
getting into a submarine, inconsistent public routines are leaky panels in the
class. The leaky panels might not let water in as quickly as an open air lock, but
if you give them enough time, they’ll still sink the boat. In practice, this is what
happens when you mix levels of abstraction. As the program is modified, the
mixed levels of abstraction make the program harder and harder to understand,
and it gradually degrades until it becomes unmaintainable.

KEY POINT
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Be sure you understand what abstraction the class is implementing

Some classes are similar enough that you must be careful to understand which
abstraction the class interface should capture. | once worked on a program that
needed to allow information to be edited in a table format. We wanted to use a
simple grid control, but the grid controls that were available didn’t allow us to
color the data-entry cells, so we decided to use a spreadsheet control that did
provide that capability.

The spreadsheet control was far more complicated than the grid control,
providing about 150 routines to the grid control’s 15. Since our goal was to use a
grid control, not a spreadsheet control, we assigned a programmer to write a
wrapper class to hide the fact that we were using a spreadsheet control as a grid
control. The programmer grumbled quite a bit about unnecessary overhead and
bureaucracy, went away, and came back a couple days later with a wrapper class
that faithfully exposed all 150 routines of the spreadsheet control.

This was not what was needed. We wanted a grid-control interface that
encapsulate the fact that, behind the scenes, we were using a much more
complicated spreadsheet control. The programmer should have exposed just the
15 grid control routines plus a 16th routine that supported cell coloring. By
exposing all 150 routines, the programmer created the possibility that, if we ever
wanted to change the underlying implementation, we could find ourselves
supporting 150 public routines. The programmer failed to achieve the
encapsulation we were looking for, as well as creating a lot more work for
himself than necessary.

Depending on specific circumstances, the right abstraction might be either a
spreadsheet control or a grid control. When you have to choose between two
similar abstractions, make sure you choose the right one.

Provide services in pairs with their opposites

Most operations have corresponding, equal, and opposite operations. If you have
an operation that turns a light on, you’ll probably need one to turn it off. If you
have an operation to add an item to a list, you’ll probably need one to delete an
item from the list. If you have an operation to activate a menu item, you’ll
probably need one to deactivate an item. When you design a class, check each
public routine to determine whether you need its complement. Don’t create an
opposite gratuitously, but do check to see whether you need one.

Move unrelated information to another class

In some cases, you’ll find that half a class’s routines work with half the class’s
data, and half the routines work with the other half of the data. In such a case,
you really have two classes masquerading as one. Break them up!
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Beware of erosion of the interface’s abstraction under modification

As a class is modified and extended, you often discover additional functionality
that’s needed, that doesn’t quite fit with the original class interface, but that
seems too hard to implement any other way. For example, in the Employee class,
you might find that the class evolves to look like this:

C++ Example of a Class Interface that's Eroding Under Maintenance

class Employee {
pubTic:

// public routines

FullName GetName();

Address GetAddress();
PhoneNumber GetWorkPhone();

Boolean IsJobClassificationValid( JobClassification jobClass );
Boolean IsZipCodeValid( Address address );

Boolean IsPhoneNumberValid( PhoneNumber phoneNumber );

SqlQuery GetQueryToCreateNewEmployee();
Sq1Query GetQueryToModifyEmployee();
Sg1Query GetQueryToRetrieveEmployee();

private:

}

What started out as a clean abstraction in an earlier code sample has evolved into
a hodgepodge of functions that are only loosely related. There’s no logical
connection between employees and routines that check zip codes, phone
numbers, or job classifications. The routines that expose SQL query details are at
a much lower level of abstraction than the Employee class, and they break the
Employee abstraction.

Don’t add public members that are inconsistent with the interface
abstraction

Each time you add a routine to a class interface, ask, “Is this routine consistent
with the abstraction provided by the existing interface?” If not, find a different
way to make the modification, and preserve the integrity of the abstraction.

Consider abstraction and cohesion together

The ideas of abstraction and cohesion are closely related—a class interface that
presents a good abstraction usually has strong cohesion. Classes with strong
cohesion tend to present good abstractions, although that relationship is not as
strong.
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I have found that focusing on the abstraction presented by the class interface
tends to provide more insight into class design than focusing on class cohesion.
If you see that a class has weak cohesion and aren’t sure how to correct it, ask
yourself whether the class presents a consistent abstraction instead.

Good Encapsulation

As Section 5.3 discussed, encapsulation is a stronger concept than abstraction.
Abstraction helps to manage complexity by providing models that allow you to
ignore implementation details. Encapsulation is the enforcer that prevents you
from looking at the details even if you want to.

The two concepts are related because, without encapsulation, abstraction tends to
break down. In my experience either you have both abstraction and
encapsulation, or you have neither. There is no middle ground.

Minimize accessibility of classes and members

Minimizing accessibility is one of several rules that are designed to encourage
encapsulation. If you’re wondering whether a specific routine should be public,
private, or protected, one school of thought is that you should favor the strictest
level of privacy that’s workable (Meyers 1998, Bloch 2001). I think that’s a fine
guideline, but | think the more important guideline is, “What best preserves the
integrity of the interface abstraction?” If exposing the routine is consistent with
the abstraction, it’s probably fine to expose it. If you’re not sure, hiding more is
generally better than hiding less.

Don’t expose member data in public
Exposing member data is a violation of encapsulation and limits your control
over the abstraction. As Arthur Riel points out, a Point class that exposes

float x;

float y;

float z;
is violating encapsulation because client code is free to monkey around with
Point’s data, and Point won’t necessarily even know when its values have been
changed (Riel 1996). However, a Point class that exposes

float XQ);
float YQ;
float Z2Q);
void SetX( float x );
void SetY( float y );
void SetZ( float z );
is maintaining perfect encapsulation. You have no idea whether the underlying

implementation is in terms of floats x, y, and z, whether Point is storing those

Page 16
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items as doubles and converting them to floats, or whether Point is storing them
on the moon and retrieving them from a satellite in outer space.

Don’t put private implementation details in a class’s interface
With true encapsulation, programmers would not be able to see implementation
details at all. They would be hidden both figuratively and literally.

In popular languages like C++, however, the structure of the language requires
programmers to disclose implementation details in the class interface. Here’s an
example:

C++ Example of Inadvertently Exposing a Class’s Implementation
Details

class Employee {
pubTic:
EmpTloyee(

Ful1Name name,
String address,
String workPhone,
String homePhone,
TaxId taxIdNumber,

JobClassification jobClass

)

FulTName Name(Q);
String Address();

private:
Here are the exposed String m_Name;
implementation details. String m_Address;

int m_jobClass;

}
Including private declarations in the class header file might seem like a small

transgression, but it encourages programmers to examine the implementation
details. In this case, the client code is intended to use the Address type for
addresses, but the header file exposes the implementation detail that addresses
are stored as Strings.

As the writer of a class in C++, there isn’t much you can do about this without
going to great lengths that usually add more complexity than they’re worth. As
the reader of a class, however, you can resist the urge to comb through the
private section of the class interface looking for implementation clues.
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Don’t make assumptions about the class’s users

A class should be designed and implemented to adhere to the contract implied by
the class interface. It shouldn’t make any assumptions about how that interface
will or won’t be used, other than what’s documented in the interface. Comments
like this are an indication that a class is more aware of its users than it should be:

-- dinitialize x, y, and z to 1.0 because DerivedClass blows
-- up if they're initialized to 0.0

Avoid friend classes

In a few circumstances such as the State pattern, friend classes can be used in a
disciplined way that contributes to managing complexity (Gamma et al 1995).
But, in general, friend classes violate encapsulation. They expand the amount of
code you have to think about at any one time, increasing complexity.

Don’t put a routine into the public interface just because it uses only public
routines

The fact that a routine uses only public routines is not a very significant
consideration. Instead, ask whether exposing the routine would be consistent
with the abstraction presented by the interface.

Favor read-time convenience to write-time convenience

Code is read far more times than it’s written, even during initial development.
Favoring a technique that speeds write-time convenience at the expense of read-
time convenience is a false economy. This is especially applicable to creation of
class interfaces. Even if a routine doesn’t quite fit the interface’s abstraction,
sometimes it’s tempting to add a routine to an interface that would be convenient
for the particular client of a class that you’re working on at the time. But adding
that routine is the first step down a slippery slope, and it’s better not to take even
the first step.

Be very, very wary of semantic violations of encapsulation

At one time | thought that when | learned how to avoid syntax errors | would be
home free. | soon discovered that learning how to avoid syntax errors had merely
bought me a ticket to a whole new theater of coding errors—most of which were
more difficult to diagnose and correct than the syntax errors.

It ain’t abstract if you
“have to look at the
“underlying
“implementation to
“understand what’s going

on. - . . . .
The difficulty of semantic encapsulation compared to syntactic encapsulation is

similar. Syntactically, it’s relatively easy to avoid poking your nose into the
internal workings of another class just by declaring the class’s internal routines
and data private. Achieving semantic encapsulation is another matter entirely.
Here are some examples of the ways that a user of a class can break
encapsulation semantically:

1 —P.J. Plauger
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e Not calling Class A’s Initialize() routine because you know that Class A’s
PerformFirstOperation() routine calls it automatically.

e Not calling the database.Connect() routine before you call
employee.Retrieve( database ) because you know that the
employee.Retrieve() function will connect to the database if there isn’t
already a connection.

e Not calling Class A’s Terminate() routine because you know that Class A’s
PerformFinalOperation() routine has already called it.

e Using a pointer or reference to ObjectB created by ObjectA even after
ObjectA has gone out of scope, because you know that ObjectA keeps
ObjectB in static storage, and ObjectB will still be valid.

e Using ClassB’s MAXIMUM_ELEMENTS constant instead of using
ClassA.MAXIMUM_ELEMENTS, because you know that they’re both equal
to the same value.

The problem with each of these examples is that they make the client code
dependent not on the class’s public interface, but on its private implementation.
Anytime you find yourself looking at a class’s implementation to figure out how
to use the class, you’re not programming to the interface; you’re programming
through the interface to the implementation. If you’re programming through the
interface, encapsulation is broken, and once encapsulation starts to break down,
abstraction won’t be far behind.

If you can’t figure out how to use a class based solely on its interface
documentation, the right response is not to pull up the source code and look at
the implementation. That’s good initiative but bad judgment. The right response
is to contact the author of the class and say, “I can’t figure out how to use this
class.” The right response on the class-author’s part is not to answer your
question face to face. The right response for the class author is to check out the
class-interface file, modify the class-interface documentation, check the file back
in, and then say, “See if you can understand how it works now.” You want this
dialog to occur in the interface code itself so that it will be preserved for future
programmers. You don’t want the dialog to occur solely in your own mind,
which will bake subtle semantic dependencies into the client code that uses the
class. And you don’t want the dialog to occur interpersonally so that it benefits
only your code but no one else’s.

Watch for coupling that’s too tight

“Coupling” refers to how tight the connection is between two classes. In general,
the looser the connection, the better. Several general guidelines flow from this
concept:

e Minimize accessibility of classes and members
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e Avoid friend classes, because they’re tightly coupled

e Avoid making data protected in a base class because it allows derived
classes to be more tightly coupled to the base class

e Avoid exposing member data in a class’s public interface
e Be wary of semantic violations of encapsulation
e Observe the Law of Demeter (discussed later in this chapter)

Coupling goes hand in glove with abstraction and encapsulation. Tight coupling
occurs when an abstraction is leaky, or when encapsulation is broken. If a class
offers an incomplete set of services, other routines might find they need to read
or write its internal data directly. That opens up the class, making it a glass box
instead of a black box, and virtually eliminates the class’s encapsulation.

6.3 Design and Implementation Issues

Defining good class interfaces goes a long way toward creating a high-quality
program. The internal class design and implementation are also important. This
section discusses issues related to containment, inheritance, member functions
and data, class coupling, constructors, and value-vs.-reference objects.

Containment (“has a” relationships)

| KEY POINT Containment is the simple idea that a class contains a primitive data element or
object. A lot more is written about inheritance than about containment, but that’s
because inheritance is more tricky and error prone, not because it’s better.
Containment is the work-horse technique in object-oriented programming.

Implement “has a” through containment

One way of thinking of containment is as a “has a” relationship. For example, an
employee “has a” name, “has a” phone number, “has a” tax ID, and so on. You
can usually accomplish this by making the name, phone number, or tax ID
member data of the Employee class.

Implement “has a” through private inheritance as a last resort

In some instances you might find that you can’t achieve containment through
making one object a member of another. In that case, some experts suggest
privately inheriting from the contained object (Meyers 1998). The main reason
you would do that is to set up the containing class to access protected member
functions or data of the class that’s contained. In practice, this approach creates
an overly cozy relationship with the ancestor class and violates encapsulation. It
tends to point to design errors that should be resolved some way other than
through private inheritance.
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Be critical of classes that contain more than about seven members

The number “7+2” has been found to be a number of discrete items a person can
remember while performing other tasks (Miller 1956). If a class contains more
than about seven data members, consider whether the class should be
decomposed into multiple smaller classes (Riel 1996). You might err more
toward the high end of 742 if the data members are primitive data types like
integers and strings; more toward the lower end of 7+2 if the data members are
complex objects.

Inheritance (“is a” relationships)

Inheritance is the complex idea that one class is a specialization of another class.
Inheritance is perhaps the most distinctive attribute of object-oriented
programming, and it should be used sparingly and with great caution. A great
many of the problems in modern programming arise from overly enthusiastic use
of inheritance.

The purpose of inheritance is to create simpler code by defining a base class that
specifies common elements of two or more derived classes. The common
elements can be routine interfaces, implementations, data members, or data

types.

When you decide to use inheritance, you have to make several decisions:

e For each member routine, will the routine be visible to derived classes? Will
it have a default implementation? Will the default implementation be
overridable?

e For each data member (including variables, named constants, enumerations,
and so on), will the data member be visible to derived classes?

The following subsections explain the ins and outs of making these decisions.

Implement “is a” through public inheritance

The single most When a programmer decides to create a new class by inheriting from an existing
“important rule in object- class, that programmer is saying that the new class “is a” more specialized
oriented programming version of the older class. The base class sets expectations about how the derived
“with C++ is this: public class will operate (Meyers 1998).

inheritance means “isa.
- Commit this rule to
“memory.
—Scott Meyers

If the derived class isn’t going to adhere completely to the same interface
contract defined by the base class, inheritance is not the right implementation
technique. Consider containment or making a change further up the inheritance
hierarchy.
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Design and document for inheritance or prohibit it

Inheritance adds complexity to a program, and, as such, it is a dangerous
technique. As Java guru Joshua Bloch says, “design and document for
inheritance, or prohibit it.” If a class isn’t designed to be inherited from, make its
members non-virtual in C++, final in Java, or non overridable in Visual Basic so
that you can’t inherit from it.

Adhere to the Liskov Substitution Principle

In one of object-oriented programming’s seminal papers, Barbara Liskov argued
that you shouldn’t inherit from a base class unless the derived class truly “is a”
more specific version of the base class (Liskov 1988). Andy Hunt and Dave
Thomas suggest a good litmus test for this: “Subclasses must be usable through
the base class interface without the need for the user to know the difference”
(Hunt and Thomas 2000).

In other words, all the routines defined in the base class should mean the same
thing when they’re used in each of the derived classes.

If you have a base class of Account, and derived classes of CheckingAccount,
SavingsAccount, and AutoLoanAccount, a programmer should be able to invoke
any of the routines derived from Account on any of Account’s subtypes without
caring about which subtype a specific account object is.

If a program has been written so that the Liskov Substitution Principle is true,
inheritance is a powerful tool for reducing complexity because a programmer can
focus on the generic attributes of an object without worrying about the details. If,
a programmer must be constantly thinking about semantic differences in subclass
implementations, then inheritance is increasing complexity rather than reducing
it. Suppose a programmer has to think, “If I call the InterestRate() routine on
CheckingAccount or SavingsAccount, it returns the interest the bank pays, but if |
call InterestRate() on AutoLoanAccount | have to change the sign because it
returns the interest the consumer pays to the bank.” According to Liskov, the
InterestRate() routine should not be inherited because its semantics aren’t the
same for all derived classes.

Be sure to inherit only what you want to inherit

A derived class can inherit member routine interfaces, implementations, or both.
Table 6-1 shows the variations of how routines can be implemented and
overridden.
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Table 6-1. Variations on inherited routines

Overridable Not Overridable
Implementation: Overridable Routine Non-Overridable Routine
Default Provided
Implementation: No Abstract Overridable Not used (doesn’t make
default provided Routine sense to leave a routine
undefined and not allow
it to be overridden)

As the table suggests, inherited routines come in three basic flavors:

e An abstract overridable routine means that the derived class inherits the
routine’s interface but not its implementation.

e Anoverridable routine means that the derived class inherits the routine’s
interface and a default implementation, and it is allowed to override the
default implementation.

e A non-overridable routine means that the derived class inherits the routine’s
interface and its default implementation, and it is not allowed to override the
routine’s implementation.

When you choose to implement a new class through inheritance, think through
the kind of inheritance you want for each member routine. Beware of inheriting
implementation just because you’re inheriting an interface, and beware of
inheriting an interface just because you want to inherit an implementation.

Don’t “override” a non-overridable member function

Both C++ and Java allow a programmer to override a non-overridable member
routine—Xkind of. If a function is private in the base class, a derived class can
create a function with the same name. To the programmer reading the code in the
derived class, such a function can create confusion because it looks like it should
by polymorphic, but it isn’t; it just has the same name. Another way to state this
guideline is, Don’t reuse names of non-overridable base-class routines in derived
classes.

Move common interfaces, data, and behavior as high as possible in the
inheritance tree

The higher you move interfaces, data, and behavior, the more easily derived
classes can use them. How high is too high? Let abstraction be your guide. If
you find that moving a routine higher would break the higher object’s
abstraction, don’t do it.

Be suspicious of classes of which there is only one instance
A single instance might indicate that the design confuses objects with classes.
Consider whether you could just create an object instead of a new class. Can the
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variation of the derived class be represented in data rather than as a distinct
class?

Be suspicious of base classes of which there is only one derived class
When | see a base class that has only one derived class, I suspect that some
programmer has been “designing ahead”—trying to anticipate future needs,
usually without fully understanding what those future needs are. The best way to
prepare for future work is not to design extra layers of base classes that “might
be needed someday,” it’s to make current work as clear, straightforward, and
simple as possible. That means not creating any more inheritance structure than
is absolutely necessary.

Be suspicious of classes that override a routine and do nothing inside the
derived routine

This typically indicates an error in the design of the base class. For instance,
suppose you have a class Cat and a routine Scratch() and suppose that you
eventually find out that some cats are declawed and can’t scratch. You might be
tempted to create a class derived from Cat named ScratchlessCat and override
the Scratch() routine to do nothing. There are several problems with this
approach:

e It violates the abstraction (interface contract) presented in the Cat class by
changing the semantics of its interface.

e This approach quickly gets out of control when you extend it to other
derived classes. What happens when you find a cat without a tail? Or a cat
that doesn’t catch mice? Or a cat that doesn’t drink milk? Eventually you’ll
end up with derived classes like ScratchlessTaillessMicelessMilklessCat.

e Over time, this approach gives rise to code that’s confusing to maintain
because the interfaces and behavior of the ancestor classes imply little or
nothing about the behavior of their descendents.

The place to fix this problem is not in the base class, but in the original Cat class.
Create a Claws class and contain that within the Cats class, or build a constructor
for the class that includes whether the cat scratches. The root problem was the
assumption that all cats scratch, so fix that problem at the source, rather than just
bandaging it at the destination.

Avoid deep inheritance trees

Obiject oriented programming provides a large number of techniques for
managing complexity. But every powerful tool has its hazards, and some object-
oriented techniques have a tendency to increase complexity rather than reduce it.

In his excellent book Object-Oriented Design Heuristics, Arthur Riel suggests
limiting inheritance hierarchies to a maximum of six levels (1996). Riel bases his
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recommendation on the “magic number 7+2,” but | think that’s grossly
optimistic. In my experience most people have trouble juggling more than two or
three levels of inheritance in their brains at once. The “magic number 7+2” is
probably better applied as a limit to the total number of subclasses of a base
class rather than the number of levels in an inheritance tree.

Deep inheritance trees have been found to be significantly associated with
increased fault rates (Basili, Briand, and Melo 1996). Anyone who has ever tried
to debug a complex inheritance hierarchy knows why.

Deep inheritance trees increase complexity, which is exactly the opposite of
what inheritance should be used to accomplish. Keep the primary technical
mission in mind. Make sure you’re using inheritance to minimize complexity.

Prefer inheritance to extensive type checking

Frequently repeated case statements sometimes suggest that inheritance might be
a better design choice, although this is not always true. Here is a classic example
of code that cries out for a more object-oriented approach:

C++ Example of a Case Statement That Probably Should be Replaced
by Inheritance
switch ( shape.type ) {
case Shape_Circle:
shape.DrawCircle();
break;
case Shape_Square:
shape.DrawSquare();

break;

}
In this example, the calls to shape.DrawCircle() and shape.DrawSquare() should

be replaced by a single routine named shape.Draw(), which can be called
regardless of whether the shape is a circle or a square.

On the other hand, sometimes case statements are used to separate truly different
kinds of objects or behavior. Here is an example of a case statement that is
appropriate in an object-oriented program:

C++ Example of a Case Statement That Probably Should not be
Replaced by Inheritance
switch ( ui.Command() ) {
case Command_OpenFile:
OpenFile(Q);

break;
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case Command_Print:
Print(Q;
break;

case Command_Save:
Save(Q);
break;

case Command_Exit:
ShutDown() ;

break;

}
In this case, it would be possible to create a base class with derived classes and a

polymorphic DoCommand() routine for each command. But the meaning of
DoCommand() would be so diluted as to be meaningless, and the case statement
is the more understandable solution.

Avoid using a base class’s protected data in a derived class (or make that
data private instead of protected in the first place)

As Joshua Bloch says, “Inheritance breaks encapsulation” (2001). When you
inherit from an object, you obtain privileged access to that object’s protected
routines and data. If the derived class really needs access to the base class’s
attributes, provide protected accessor functions instead.

Multiple Inheritance

“The one indisputable fact Inheritance is a power tool. It’s like using a chainsaw to cut down a tree instead
“about multiple of a manual cross-cut saw. It can be incredibly useful when used with care, but
inheritance in C++ isthat  it’s dangerous in the hands of someone who doesn’t observe proper precautions.

it opens up a Pandora’s
box of complexities that
“simply do not exist under
single inheritance.
—Scott Meyers

If inheritance is a chain saw, multiple inheritance is a 1950s-era chain saw with
no blade guard, not automatic shut off, and a finicky engine. There are times
when such a tool is indispensable, mostly, you’re better off leaving the tool in
the garage where it can’t do any damage.

Although some experts recommend broad use of multiple inheritance (Meyer
1997), in my experience multiple inheritance is useful primarily for defining
“mixins,” simple classes that are used to add a set of properties to an object.
Mixins are called mixins because they allow properties to be “mixed in” to
derived classes. Mixins might be classes like Displayable, Persistant,
Serializable, or Sortable. Mixins are nearly always abstract and aren’t meant to
be instantiated independently of other objects.

Mixins require the use of multiple inheritance, but they aren’t subject to the
classic diamond-inheritance problem associated with multiple inheritance as long
as all mixins are truly independent of each other. They also make the design
more comprehensible by “chunking” attributes together. A programmer will
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have an easier time understanding that an object uses the mixins Displayable and
Persistant than understanding that an object uses the 11 more specific routines
that would otherwise be needed to implement those two properties.

Java and Visual Basic recognize the value of mixins by allowing multiple
inheritance of interfaces but only single class inheritance. C++ supports multiple
inheritance of both interface and implementation. Programmers should use
multiple inheritance only after carefully considering the alternatives and
weighing the impact on system complexity and comprehensibility.

Why Are There So Many Rules for Inheritance?

| CROSS-REFERENCE  For This section has presented numerous rules for staying out of trouble with
-moreon C?mp'_exny’ see inheritance. The underlying message of all these rules is that, inheritance tends
Tig:::?;f Ismppr;rr!?ir\i/e: to work against the primary technical imperative you have as a programmer,
Managing Complexity” in which is to manage complexity. For the sake of controlling complexity you
' Section 5.2 should maintain a heavy bias against inheritance. Here’s a summary of when to
use inheritance and when to use containment:

e |f multiple classes share common data but not behavior, then create a
common object that those classes can contain.

e |f multiple classes share common behavior but not data, then derive them
from a common base class that defines the common routines.

e |f multiple classes share common data and behavior, then inherit from a
common base class that defines the common data and routines.

e Inherit when you want the base class to control your interface; contain when
you want to control your interface.

Member Functions and Data

 CROSS-REFERENCE  For Here are a few guidelines for implementing member functions and member data
- more discussion of routines effectively.

in general, see Chapter 7,
“High-Quality Routines.” Keep the number of routines in a class as small as possible
A study of C++ programs found that higher numbers of routines per class were
associated with higher fault rates (Basili, Briand, and Melo 1996). However,
other competing factors were found to be more significant, including deep
inheritance trees, large number of routines called by a routine, and strong
coupling between classes. Evaluate the tradeoff between minimizing the number

of routines and these other factors.
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Disallow implicitly generated member functions and operators you don’t
want

Sometimes you’ll find that you want to disallow certain functions—yperhaps you
want to disallow assignment, or you don’t want to allow an object to be
constructed. You might think that, since the compiler generates operators
automatically, you’re stuck allowing access. But in such cases you can disallow
those uses by declaring the constructor, assignment operator, or other function or
operator private, which will prevent clients from accessing it. (Making the
constructor private is a standard technique for defining a singleton class, which
is discussed later in this chapter.)

Minimize direct routine calls to other classes

One study found that the number of faults in a class was statistically correlated
with the total number of routines that were called from within a class (Basili,
Briand, and Melo 1996). The same study found that the more classes a class
used, the higher its fault rate tended to be.

Minimize indirect routine calls to other classes
FURTHER READING Good Direct connections are hazardous enough. Indirect connections—such as
accounts of the Law of account.ContactPerson().DaytimeContactinfo().PhoneNumber()—tend to be
‘ Efan;i::;if:a;rzzzann?elp even more hazardous. Researchers have formulated a rule called the “Law of
Demeter” (Lieberherr and Holland 1989) which essentially states that Object A

" (Hunt and Thomas 2000),

' Applying UML and Patterns can call any of its own routines. If Object A instantiates an Object B, it can call
~(Larman 2001), and any of Object B’s routines. But it should avoid calling routines on objects

- Fundamentals of Object- provided by Object B. In the account example above, that means

Oriented Design in UML account.ContactPerson() is OK, but

- (Page-Jones 2000). account.ContactPerson().DaytimeContactInfo() is not.

This is a simplified explanation, and, depending on how classes are arranged, it
might be acceptable to see an expression like
account.ContactPerson().DaytimeContactinfo(). See the additional resources at
the end of this chapter for more details.

In general, minimize the extent to which a class collaborates with other
classes

Try to minimize all of the following:
e Number of kinds of objects instantiated
e Number of different direct routine calls on instantiated objects

e Number of routine calls on objects returned by other instantiated objects
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" More Effective C++, Item 26

~ (Meyers 1998).

Here is the private
constructor.

Here is the public routine that
provides access to the single
instance.

Here is the single instance.
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Constructors

Here are some guidelines that apply specifically to constructors. Guidelines for
constructors are pretty similar across languages (C++, Java, and Visual Basic,
anyway). Destructors vary more, and so you should check out the materials listed
in the “Additional Resources” section at the end of the chapter for more
information on destructors.

Initialize all member data in all constructors, if possible
Initializing all data members in all constructors is an inexpensive defensive
programming practice.

Initialize data members in the order in which they’re declared

Depending on your compiler, you can experience some squirrelly errors by
trying to initialize data members in a different order than the order in which
they’re declared. Using the same order in both places also provides consistency
that makes the code easier to read.

Enforce the singleton property by using a private constructor

If you want to define a class that allows only one object to be instantiated, you
can enforce this by hiding all the constructors of the class, then providing a static
getlnstance() routine to access the class’s single instance. Here’s an example of
how that would work:

Java Example of Enforcing a Singleton With a Private Constructor
public class MaxId {

// constructors and destructors
private MaxId() {

// public routines
public static MaxId GetInstance() {

return m_instance;

// private members

private static final MaxId m_instance = new MaxId(Q);

}

The private constructor is called only when the static object m_instance is
initialized. In this approach, if you want to reference the Maxld singleton, you
would simply refer to Maxld.GetInstance().
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Enforce the singleton property by using all static member data and
reference counting

An alternative means of enforcing the singleton property is to declare all the
class’s data static. You can determine whether the class is being used by
incrementing a reference counter in the object’s constructor and decrementing it
in the destructor (C++) or Terminate routine (Java and Visual Basic).

The reference-counting approach comes with some systemic pitfalls. If the
reference is copied, then the class data member won’t necessarily be
incremented, which can lead to an error in the reference count. If this approach is
used, the project team should standardize on conventions to use reference-
counted objects consistently.

Prefer deep copies to shallow copies until proven otherwise

One of the major decisions you’ll make about complex objects is whether to
implement deep copies or shallow copies of the object. A deep copy of an object
is a member-wise copy of the object’s member data. A shallow copy typically
just points to or refers to a single reference copy.

Deep copies are simpler to code and maintain than shallow copies. In addition to
the code either kind of object would contain, shallow copies add code to count
references, ensure safe object copies, safe comparisons, safe deletes, and so on.
This code tends to be error prone, and it should be avoided unless there’s a
compelling reason to create it.

The motivation for creating shallow copies is typically to improve performance.
Although creating multiple copies of large objects might be aesthetically
offensive, it rarely causes any measurable performance impact. A small number
of objects might cause performance issues, but programmers are notoriously
poor at guessing which code really causes problems. (For details, see Chapter
25.) Because it’s a poor tradeoff to add complexity for dubious performance
gains, a good approach to deep vs. shallow copies is to prefer deep copies until
proven otherwise.

If you find that you do need to use a shallow-copy approach, Scott Meyers’
More Effective C++, Item 29 (1996) contains an excellent discussion of the
issues in C++. Martin Fowler’s Refactoring (1999) describes the specific steps
needed to convert from shallow copies to deep copies and from deep copies to
shallow copies. (Fowler calls them reference objects and value objects.)
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reasons to create a class
overlap with the reasons to
" create routines. For details,
~see Section 7.1, “Valid
- Reasons to Create a
Routine.”

' CROSS-REFERENCE  For
more on identifying real-
world objects, see “Find
Real-World Objects” in

~Section 5.3.

| KEY POINT

6. Working Classes

6.4 Reasons to Create a Class

If you believe everything you read, you might get the idea that the only reason to
create a class is to model real-world objects. In practice, classes get created for
many more reasons than that. Here’s a list of good reasons to create a class.

Model real-world objects

Modeling real-world objects might not be the only reason to create a class, but
it’s still a good reason! Create a class for each real-world object that your
program models. Put the data needed for the object into the class, and then build
service routines that model the behavior of the object. See the discussion of
ADTs in Section 6.1 for examples.

Model abstract objects

Another good reason to create a class is to model an abstract object—an object
that isn’t a concrete, real-world object, but that provides an abstraction of other
concrete objects. A good example is the classic Shape object. Circle and Square
really exist, but Shape is an abstraction of other specific shapes.

On programming projects, the abstractions are not ready made the way Shape is,
so we have to work harder to come up with clean abstractions. The process of
distilling abstract concepts from real-world entities is non-deterministic, and
different designers will abstract out different generalities. If we didn’t know
about geometric shapes like circles, squares and triangles, for example, we might
come up with more unusual shapes like squash shape, rutabaga shape, and
Pontiac Aztek shape. Coming up with appropriate abstract objects is one of the
major challenges in object-oriented design.

Reduce complexity

The single most important reason to create a class is to reduce a program’s
complexity. Create a class to hide information so that you won’t need to think
about it. Sure, you’ll need to think about it when you write the class. But after
it’s written, you should be able to forget the details and use the class without any
knowledge of its internal workings. Other reasons to create classes—minimizing
code size, improving maintainability, and improving correctness—are also good
reasons, but without the abstractive power of classes, complex programs would
be impossible to manage intellectually.

Isolate complexity

Complexity in all forms—complicated algorithms, large data sets, intricate
communications protocols, and so on—is prone to errors. If an error does occur,
it will be easier to find if it isn’t spread through the code but is localized within a
class. Changes arising from fixing the error won’t affect other code because only
one class will have to be fixed—other code won’t be touched. If you find a

Page 31
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- CROSS-REFERENCE  For
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see “Hide Secrets
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better, simpler, or more reliable algorithm, it will be easier to replace the old
algorithm if it has been isolated into a class. During development, it will be
easier to try several designs and keep the one that works best.

Hide implementation details

The desire to hide implementation details is a wonderful reason to create a class
whether the details are as complicated as a convoluted database access or as
mundane as whether a specific data member is stored as a number or a string.

Limit effects of changes

Isolate areas that are likely to change so that the effects of changes are limited to
the scope of a single class or, at most, a few classes. Design so that areas that are
most likely to change are the easiest to change. Areas likely to change include
hardware dependencies, input/output, complex data types, and business rules.
The subsection titled “Hide Secrets (Information Hiding)” in Section 5.3
described several common sources of change. Several of the most common are
summarized in this section.

Hide global data

If you need to use global data, you can hide its implementation details behind a
class interface. Working with global data through access routines provides
several benefits compared to working with global data directly. You can change
the structure of the data without changing your program. You can monitor
accesses to the data. The discipline of using access routines also encourages you
to think about whether the data is really global; it often becomes apparent that
the “global data” is really just class data.

Streamline parameter passing

If you’re passing a parameter among several routines, that might indicate a need
to factor those routines into a class that share the parameter as class data.
Streamlining parameter passing isn’t a goal, per se, but passing lots of data
around suggests that a different class organization might work better.

Make central points of control

It’s a good idea to control each task in one place. Control assumes many forms.
Knowledge of the number of entries in a table is one form. Control of devices—
files, database connections, printers, and so on—is another. Using one class to
read from and write to a database is a form of centralized control. If the database
needs to be converted to a flat file or to in-memory data, the changes will affect
only the one class.

The idea of centralized control is similar to information hiding, but it has unique
heuristic power that makes it worth adding to your programming toolbox.
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Facilitate reusable code

Code put into well-factored classes can be reused in other programs more easily
than the same code embedded in one larger class. Even if a section of code is
called from only one place in the program and is understandable as part of a
larger class, it makes sense to put it into its own class if that piece of code might
be used in another program.

NASA'’s Software Engineering Laboratory studied ten projects that pursued
reuse aggressively (McGarry, Waligora, and McDermott 1989). In both the
object-oriented and the functionally oriented approaches, the initial projects
weren’t able to take much of their code from previous projects because previous
projects hadn’t established a sufficient code base. Subsequently, the projects that
used functional design were able to take about 35 percent of their code from
previous projects. Projects that used an object-oriented approach were able to
take more than 70 percent of their code from previous projects. If you can avoid
writing 70 percent of your code by planning ahead, do it!

Notably, the core of NASA’s approach to creating reusable classes does not
involve “designing for reuse.” NASA identifies reuse candidates at the ends of
their projects. They then perform the work needed to make the classes reusable
as a special project at the end of the main project or as the first step in a new
project. This approach helps prevent “gold-plating”—creation of functionality
that isn’t required and that adds complexity unnecessarily.

Plan for a family of programs

If you expect a program to be modified, it’s a good idea to isolate the parts that
you expect to change by putting them into their own classes. You can then
modify the classes without affecting the rest of the program, or you can put in
completely new classes instead. Thinking through not just what one program will
look like, but what the whole family of programs might look like is a powerful
heuristic for anticipating entire categories of changes (Parnas 1976).

Several years ago | managed a team that wrote a series of programs used by our
clients to sell insurance. We had to tailor each program to the specific client’s
insurance rates, quote-report format, and so on. But many parts of the programs
were similar: the classes that input information about potential customers, that
stored information in a customer database, that looked up rates, that computed
total rates for a group, and so on. The team factored the program so that each
part that varied from client to client was in its own class. The initial
programming might have taken three months or so, but when we got a new
client, we merely wrote a handful of new classes for the new client and dropped
them into the rest of the code. A few days’ work, and voila! Custom software!
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Package related operations

In cases in which you can’t hide information, share data, or plan for flexibility,
you can still package sets of operations into sensible groups such as trig
functions, statistical functions, string-manipulation routines, bit-manipulation
routines, graphics routines, and so on.

To accomplish a specific refactoring

Many of the specific refactorings described in Chapter 24 result in new classes—
including converting one class to two, hiding a delegate, removing a middle
man, and introducing an extension class. These new classes could be motivated
by a desire to better accomplish any of the objectives described throughout this
section.

Classes to Avoid

While classes in general are good, you can run into a few gotchas. Here are some
classes to avoid.

Avoid creating god classes

Avoid creating omniscient classes that are all-knowing and all-powerful. If a
class spends its time retrieving data from other classes using Get() and Set()
routines (that is, digging into their business and telling them what to do), ask
whether that functionality might better be organized into those other classes
rather than into the god class (Riel 1996).

Eliminate irrelevant classes
If a class consists only of data but no behavior, ask yourself whether it’s really a
class and consider demoting it to become an attribute of another class.

Avoid classes named after verbs

A class that has only behavior but no data is generally not really a class.
Consider turning a class like Databaselnitialization() or StringBuilder() into a
routine on some other class.

Summary of Reasons to Create a Class

Here’s a summary list of the valid reasons to create a class:

e Model real-world objects
e Model abstract objects

e Reduce complexity

e [solate complexity

e Hide implementation details
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e Limit effects of changes

e Hide global data

e Streamline parameter passing
e Make central points of control
e Facilitate reusable code

e Plan for a family of programs
e Package related operations

e To accomplish a specific refactoring

6.5 Language-Specific Issues

Approaches to classes in different programming languages vary in interesting
ways. Consider how you override a member routine to achieve polymorphism in
a derived class. In Java, all routines are overridable by default, and a routine
must be declared final to prevent a derived class from overriding it. In C++,
routines are not overridable by default. A routine must be declared virtual in the
base class to be overridable. In Visual Basic, a routine must be declared
overridable in the base class, and the derived class should use the overrides
keyword.

Here are some of the class-related areas that vary significantly depending on the
language:
e Behavior of overridden constructors and destructors in an inheritance tree

e Behavior of constructors and destructors under exception-handling
conditions

e Importance of default constructors (constructors with no arguments)
e Time at which a destructor or finalizer is called

e Wisdom of overriding the language’s built-in operators, including
assignment and equality

e How memory is handled as objects are created and destroyed, or as they are
declared and go out of scope

Detailed discussions of these issues are beyond the scope of this book, but the
“Additional Resources” section at the end of this chapter points to good
language-specific resources.
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6.6 Beyond Classes: Packages

CROSS-REFERENCE  For Classes are currently the best way for programmers to achieve modularity. But
~more on the distinction modularity is a big topic, and it extends beyond classes. Over the past several
‘ 2Ztcvl\<lszZsCI:;§%‘sLir\]/ils of decades, software development has advanced in large part by increasing the
Design” i’n Section 5.2. granularity of the aggregations that we have to work with. The first aggregation
we had was the statement, which at the time seemed like a big step up from
machine instructions. Then came subroutines, and later came classes.

It’s evident that we could better support the goals of abstraction and
encapsulation if we had good tools for aggregating groups of objects. Ada
supported the notion of packages more than a decade ago, and Java supports
packages today.

C++’s and C#’s namespaces are a good step in the right direction, though
creating packages with them is a little bit like writing web pages directly in html.

If you’re programming in a language that doesn’t support packages directly, you
can create your own poor-programmer’s version of a package and enforce it
through programming standards that include

e naming conventions that differentiate which classes are public and which are
for the package’s private use

e naming conventions, code-organization conventions (project structure), or
both that identify which package each class belongs to

e Rules that define which packages are allowed to use which other packages,
including whether the usage can be inheritance, containment, or both

These workaround are good examples of the distinction between programming in
a language vs. programming into a language. For more on this distinction, see
Section 34.4, “Program Into Your Language, Not In It.”

- CC2E.COM/0672 CROSS-REFERENCE  This is a checklist of considerations about the quality of the class. For
a list of the steps used to build a class, see the checklist “The Pseudocode Programming
Process” in Chapter 9, page 000.

CHECKLIST: Class Quality

Abstract Data Types

O Have you thought of the classes in your program as Abstract Data Types and
evaluated their interfaces from that point of view?
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Abstraction

O Does the class have a central purpose?

Is the class well named, and does its name describe its central purpose?
Does the class’s interface present a consistent abstraction?

Does the class’s interface make obvious how you should use the class?

O 00O

Is the class’s interface abstract enough that you don’t have to think about
how its services are implemented? Can you treat the class as a black box?

O

Are the class’s services complete enough that other classes don’t have to
meddle with its internal data?

O Has unrelated information been moved out of the class?

O

Have you thought about subdividing the class into component classes, and
have you subdivided it as much as you can?

O Are you preserving the integrity of the class’s interface as you modify the
class?

Encapsulation
O Does the class minimize accessibility to its members?
O Does the class avoid exposing member data?

O Does the class hide its implementation details from other classes as much as
the programming language permits?

O Does the class avoid making assumptions about its users, including its
derived classes?

Q s the class independent of other classes? Is it loosely coupled?

Inheritance

Q Is inheritance used only to model *is a” relationships?

Does the class documentation describe the inheritance strategy?
Do derived classes adhere to the Liskov Substitution Principle?

Do derived classes avoid “overriding” non overridable routines?

O 0000

Are common interfaces, data, and behavior as high as possible in the
inheritance tree?

O Are inheritance trees fairly shallow?
O Are all data members in the base class private rather than protected?

Other Implementation Issues
O Does the class contain about seven data members or fewer?
O Does the class minimize direct and indirect routine calls to other classes?
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O Does the class collaborate with other classes only to the extent absolutely
necessary?

O

Is all member data initialized in the constructor?

Q s the class designed to be used as deep copies rather than shallow copies
unless there’s a measured reason to create shallow copies?

Language-Specific Issues

O Have you investigated the language-specific issues for classes in your
specific programming language?

Additional Resources

Classes in General

Meyer, Bertrand. Object-Oriented Software Construction, 2d Ed. New York:
Prentice Hall PTR, 1997. This book contains an in-depth discussion of Abstract
Data Types and explains how they form the basis for classes. Chapters 14-16
discuss inheritance in depth. Meyer provides a strong argument in favor of
multiple inheritance in Chapter 15.

Riel, Arthur J. Object-Oriented Design Heuristics, Reading, Mass.: Addison
Wesley, 1996. This book contains numerous suggestions for improving program
design, mostly at the class level. | avoided the book for several years because it
appeared to be too big (talk about people in glass houses!). However, the body of
the book is only about 200 pages long. Riel’s writing is accessible and enjoyable.
The content is focused and practical.

C++

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs, 2d Ed, Reading, Mass.: Addison Wesley, 1998.

Meyers, Scott, 1996, More Effective C++: 35 New Ways to Improve Your
Programs and Designs, Reading, Mass.: Addison Wesley, 1996. Both of
Meyers’ books are canonical references for C++ programmers. The books are
entertaining and help to instill a language-lawyer’s appreciation for the nuances
of C++.

Java

Bloch, Joshua. Effective Java Programming Language Guide, Boston, Mass.:
Addison Wesley, 2001. Bloch’s book provides much good Java-specific advice
as well as introducing more general, good object-oriented practices.
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Visual Basic
The following books are good references on classes in Visual Basic:

Foxall, James. Practical Standards for Microsoft Visual Basic .NET, Redmond,
WA: Microsoft Press, 2003.

Cornell, Gary and Jonathan Morrison. Programming VB .NET: A Guide for
Experienced Programmers, Berkeley, Calif.: Apress, 2002.

Barwell, Fred, et al. Professional VB.NET, 2d Ed., Wrox, 2002.

Key Points

e Class interfaces should provide a consistent abstraction. Many problems
arise from violating this single principle.

e A class interface should hide something—a system interface, a design
decision, or an implementation detail.

e Containment is usually preferable to inheritance unless you’re modeling an
“is a” relationship.

e Inheritance is a useful tool, but it adds complexity, which is counter to the
Primary Technical Imperative of minimizing complexity.

e Classes are your primary tool for managing complexity. Give their design as
much attention as needed to accomplish that objective.
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CHAPTER 6 DESCRIBED DETAILS of creating classes. This chapter zooms in
on routines, on the characteristics that make the difference between a good
routine and a bad one. If you’d rather read about high-level design issues before
wading into the nitty-gritty details of individual routines, be sure to read Chapter
5, “High-Level Design in Construction” first and come back to this chapter later.
If you’re more interested in reading about steps to create routines (and classes),
Chapter 9, “The Pseudocode Programming Process” might be a better place to
start.

Before jumping into the details of high-quality routines, it will be useful to nail
down two basic terms. What is a “routine?” A routine is an individual method or
procedure invocable for a single purpose. Examples include a function in C++, a
method in Java, a function or sub procedure in Visual Basic. For some uses,
macros in C and C++ can also be thought of as routines. You can apply many of
the techniques for creating a high-quality routine to these variants.
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What is a high-quality routine? That’s a harder question. Perhaps the easiest
answer is to show what a high-quality routine is not. Here’s an example of a low-
quality routine:

C++ Example Of a Low-Quality Routine

void HandleStuff( CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec, double
& estimRevenue, double ytdRevenue, int screenX, int screenY, COLOR_TYPE &
newColor, COLOR_TYPE & prevColor, StatusType & status, int expenseType )
{
int 1i;
for (1 =0; i < 100; i++ ) {
inputRec.revenuel[i] = 0;
inputRec.expense[i] = corpExpense[ crntQtr ][ i ];
3
UpdateCorpDatabase( empRec );
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
status = SUCCESS;
if ( expenseType == 1 ) {
for (i =0; 1 < 12; i++ )
profit[i] = revenue[i] - expense.typell[i];
}
else if ( expenseType == 2 ) {
profit[i] = revenue[i] - expense.type2[i];
}
else if ( expenseType == 3 )
profit[i] = revenue[i] - expense.type3[i];
}
What’s wrong with this routine? Here’s a hint: You should be able to find at
least 10 different problems with it. Once you’ve come up with your own list,
look at the list below:

e The routine has a bad name. HandleStuff() tells you nothing about what the
routine does.

e The routine isn’t documented. (The subject of documentation extends
beyond the boundaries of individual routines and is discussed in Chapter 19,
“Self-Documenting Code.”)

e The routine has a bad layout. The physical organization of the code on the
page gives few hints about its logical organization. Layout strategies are
used haphazardly, with different styles in different parts of the routine.
Compare the styles where expenseType == 2 and expenseType == 3.
(Layout is discussed in Chapter 18, “Layout and Style.”)
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e The routine’s input variable, inputRec, is changed. If it’s an input variable,
its value should not be modified. If the value of the variable is supposed to
be modified, the variable should not be called inputRec.

e The routine reads and writes global variables. It reads from corpExpense and
writes to profit. It should communicate with other routines more directly
than by reading and writing global variables.

e The routine doesn’t have a single purpose. It initializes some variables,
writes to a database, does some calculations—none of which seem to be
related to each other in any way. A routine should have a single, clearly
defined purpose.

e The routine doesn’t defend itself against bad data. If crntQtr equals 0, then
the expression ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero
error.

e The routine uses several magic numbers: 100, 4.0, 12, 2, and 3. Magic
numbers are discussed in Section 11.1, “Numbers in General.”

e The routine uses only two fields of the CORP_DATA type of parameter. If
only two fields are used, the specific fields rather than the whole structured
variable should probably be passed in.

e Some of the routine’s parameters are unused. screenX and screenY are not
referenced within the routine.

e One of the routine’s parameters is mislabeled. prevColor is labeled as a
reference parameter (&) even though it isn’t assigned a value within the
routine.

e The routine has too many parameters. The upper limit for an understandable
number of parameters is about 7. This routine has 11. The parameters are
laid out in such an unreadable way that most people wouldn’t try to examine
them closely or even count them.

e The routine’s parameters are poorly ordered and are not documented.
(Parameter ordering is discussed in this chapter. Documentation is discussed
in Chapter 20.)

Aside from the computer itself, the routine is the single greatest invention in
computer science. The routine makes programs easier to read and easier to
understand than any other feature of any programming language. It’s a crime to
abuse this senior statesman of computer science with code like that shown in the
example above.

The routine is also the greatest technique ever invented for saving space and
improving performance. Imagine how much larger your code would be if you
had to repeat the code for every call to a routine instead of branching to the
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routine. Imagine how hard it would be to make performance improvements in
the same code used in a dozen places instead of making them all in one routine.
The routine makes modern programming possible.

“OK,” you say, “l already know that routines are great, and | program with them
all the time. This discussion seems kind of remedial, so what do you want me to
do about it?”

I want you to understand that there are many valid reasons to create a routine and
that there are right ways and wrong ways to go about it. As an undergraduate
computer-science student, | thought that the main reason to create a routine was
to avoid duplicate code. The introductory textbook | used said that routines were
good because the avoidance of duplication made a program easier to develop,
debug, document, and maintain. Period. Aside from syntactic details about how
to use parameters and local variables, that was the total extent of the textbook’s
description of the theory and practice of routines. It was not a good or complete
explanation. The following sections contain a much better explanation.

7.1 Valid Reasons to Create a Routine

Here’s a list of valid reasons to create a routine. The reasons overlap somewhat,
and they’re not intended to make an orthogonal set.

Reduce complexity

The single most important reason to create a routine is to reduce a program’s
complexity. Create a routine to hide information so that you won’t need to think
about it. Sure, you’ll need to think about it when you write the routine. But after
it’s written, you should be able to forget the details and use the routine without
any knowledge of its internal workings. Other reasons to create routines—
minimizing code size, improving maintainability, and improving correctness—
are also good reasons, but without the abstractive power of routines, complex
programs would be impossible to manage intellectually.

One indication that a routine needs to be broken out of another routine is deep
nesting of an inner loop or a conditional. Reduce the containing routine’s
complexity by pulling the nested part out and putting it into its own routine.

Make a section of code readable
Putting a section of code into a well-named routine is one of the best ways to
document its purpose. Instead of reading a series of statements like

if ( node <> NULL ) then
while ( node.next <> NULL ) do
node = node.next
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TeafName = node.name
end while
else
TeafName =
end if

you can read a statement like

TeafName = GetlLeafName( node )
The new routine is so short that nearly all it needs for documentation is a good
name. Using a routine call instead of six lines of code makes the routine that
originally contained the code less complex and documents it automatically.

Avoid duplicate code

Undoubtedly the most popular reason for creating a routine is to avoid duplicate
code. Indeed, creation of similar code in two routines implies an error in
decomposition. Pull the duplicate code from both routines, put a generic version
of the common code into its own routine, and then let both call the part that was
put into the new routine. With code in one place, you save the space that would
have been used by duplicated code. Modifications will be easier because you’ll
need to modify the code in only one location. The code will be more reliable
because you’ll have to check only one place to ensure that the code is right.
Modifications will be more reliable because you’ll avoid making successive and
slightly different modifications under the mistaken assumption that you’ve made
identical ones.

Hide sequences

It’s a good idea to hide the order in which events happen to be processed. For
example, if the program typically gets data from the user and then gets auxiliary
data from a file, neither the routine that gets the user data nor the routine that
gets the file data should depend on the other routine’s being performed first. If
you commonly have two lines of code that read the top of a stack and decrement
a stackTop variable, put them into a PopStack() routine. Design the system so
that either could be performed first, and then create a routine to hide the
information about which happens to be performed first.

Hide pointer operations

Pointer operations tend to be hard to read and error prone. By isolating them in
routines (or a class, if appropriate), you can concentrate on the intent of the
operation rather than the mechanics of pointer manipulation. Also, if the
operations are done in only one place, you can be more certain that the code is
correct. If you find a better data type than pointers, you can change the program
without traumatizing the routines that would have used the pointers.
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Improve portability

Use of routines isolates nonportable capabilities, explicitly identifying and
isolating future portability work. Nonportable capabilities include nonstandard
language features, hardware dependencies, operating-system dependencies, and
SO on.

Simplify complicated boolean tests

Understanding complicated boolean tests in detail is rarely necessary for
understanding program flow. Putting such a test into a function makes the code
more readable because (1) the details of the test are out of the way and (2) a
descriptive function name summarizes the purpose of the test.

Giving the test a function of its own emphasizes its significance. It encourages
extra effort to make the details of the test readable inside its function. The result
is that both the main flow of the code and the test itself become clearer.

Improve performance

You can optimize the code in one place instead of several places. Having code in
one place means that a single optimization benefits all the routines that use that
routine, whether they use it directly or indirectly. Having code in one place
makes it practical to recode the routine with a more efficient algorithm or in a
faster, more efficient language such as assembler.

CROSS-REFERENCE  For To ensure all routines are small?
details on information hiding,  No. With so many good reasons for putting code into a routine, this one is

| sleef“Hide_Se"':?;s_ - unnecessary. In fact, some jobs are performed better in a single large routine.

‘ (S:Cg::?'gn iding)” in (The best length for a routine is discussed in Section 7.4, “How Long Can a

| - Routine Be?”
Operations That Seem Too Simple to Put Into
Routines

| KEY POINT One of the strongest mental blocks to creating effective routines is a reluctance

to create a simple routine for a simple purpose. Constructing a whole routine to
contain two or three lines of code might seem like overkill. But experience
shows how helpful a good small routine can be.

Small routines offer several advantages. One is that they improve readability. |
once had the following single line of code in about a dozen places in a program:

Pseudocode Example of a Calculation

Points = deviceUnits * ( POINTS_PER_INCH / DeviceUnitsPerInch() )
This is not the most complicated line of code you’ll ever read. Most people
would eventually figure out that it converts a measurement in device units to a
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measurement in points. They would see that each of the dozen lines did the same
thing. It could have been clearer, however, so | created a well-named routine to
do the conversion in one place:

Pseudocode Example of a Calculation Converted to a Function

DeviceUnitsToPoints( deviceUnits Integer ): Integer;
begin
DeviceUnitsToPoints = deviceUnits *
( POINTS_PER_INCH / DeviceUnitsPerInch() )
end function
When the routine was substituted for the inline code, the dozen lines of code all

looked more or less like this one:

Pseudocode Example of a Function Call to a Calculation Function

points = DeviceUnitsToPoints( deviceUnits )
which was more readable—even approaching self-documenting.

This example hints at another reason to put small operations into functions:
Small operations tend to turn into larger operations. I didn’t know it when |
wrote the routine, but under certain conditions and when certain devices were
active, DeviceUnitsPerInch() returned 0. That meant | had to account for division
by zero, which took three more lines of code:

Pseudocode Example of a Calculation that Expands Under Maintenance

DeviceUnitsToPoints( deviceUnits: Integer ): Integer;
if ( DeviceUnitsPerInch() <> 0 )
DeviceUnitsToPoints = deviceUnits *
( POINTS_PER_INCH / DeviceUnitsPerInch() )
else
DeviceUnitsToPoints = 0
end if
end function
If that original line of code had still been in a dozen places, the test would have
been repeated a dozen times, for a total of 36 new lines of code. A simple routine
reduced the 36 new lines to 3.

Summary of Reasons to Create a Routine

Here’s a summary list of the valid reasons for creating a routine:

e Reduce complexity
e Make a section of code readable

e Avoid duplicate code
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e Hide sequences

e Hide pointer operations

e Improve portability

e Simplify complicated boolean tests
e Improve performance

In addition, many of the reasons to create a class are also good reasons to create
a routine:

e Isolate complexity

e Hide implementation details

e Limit effects of changes

e Hide global data

e Make central points of control

e Facilitate reusable code

e To accomplish a specific refactoring

7.2 Design at the Routine Level

The concept of cohesion has been largely superceded by the concept of
abstraction at the class level, but cohesion is still alive and well as the workhorse
design heuristic at the individual-routine level.

For routines, cohesion refers to how closely the operations in a routine are
related. Some programmers prefer the term “strength”: How strongly related are
the operations in a routine? A function like Cosine() is perfectly cohesive
because the whole routine is dedicated to performing one function. A function
like CosineAndTan() has lower cohesion because it tries to do more than one
thing. The goal is to have each routine do one thing well and not do anything
else.

The idea of cohesion was introduced in a paper by Wayne Stevens, Glenford
Myers, and Larry Constantine (1974). Other, more modern concepts including
abstraction and encapsulation tend to yield more insight at the class level, but
cohesion is still a workhorse concept for the design of routines.

The payoff is higher reliability. One study of 450 routines found that 50 percent
of the highly cohesive routines were fault free, whereas only 18 percent of
routines with low cohesion were fault free (Card, Church, and Agresti 1986).
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Another study of a different 450 routines (which is just an unusual coincidence)
found that routines with the highest coupling-to-cohesion ratios had 7 times as
many errors as those with the lowest coupling-to-cohesion ratios and were 20
times as costly to fix (Selby and Basili 1991).

Discussions about cohesion typically refer to several levels of cohesion.
Understanding the concepts is more important than remembering specific terms.
Use the concepts as aids in thinking about how to make routines as cohesive as
possible.

Functional cohesion is the strongest and best kind of cohesion, occurring when a
routine performs one and only one operation. Examples of highly cohesive
routines include sin(), GetCustomerName(), EraseFile(),
CalculateLoanPayment(), and AgeFromBirthday(). Of course, this evaluation of
their cohesion assumes that the routines do what their names say they do—if
they do anything else, they are less cohesive and poorly named.

Several other kinds of cohesion are normally considered to be less than ideal:

Sequential cohesion exists when a routine contains operations that must be
performed in a specific order, that share data from step to step, and that don’t
make up a complete function when done together.

An example of sequential cohesion is a routine that calculates an employee’s age
and time to retirement, given a birth date. If the routine calculates the age and
then uses that result to calculate the employee’s time to retirement, it has
sequential cohesion. If the routine calculates the age and then calculates the time
to retirement in a completely separate computation that happens to use the same
birth-date data, it has only communicational cohesion.

How would you make the routine functionally cohesive? You’d create separate
routines to compute an employee’s age given a birth date, and time to retirement
given a birth date. The time-to-retirement routine could call the age routine.
They’d both have functional cohesion. Other routines could call either routine or
both routines.

Communicational cohesion occurs when operations in a routine make use of the
same data and aren’t related in any other way. If a routine prints a summary
report and then reinitializes the summary data passed into it, the routine has
communicational cohesion; the two operations are related only by the fact that
they use the same data.

To give this routine better cohesion, the summary data should be reinitialized
close to where it’s created, which shouldn’t be in the report-printing routine.
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Split the operations into individual routines. The first prints the report. The
second reinitializes the data, close to the code that creates or modifies the data.
Call both routines from the higher-level routine that originally called the
communicationally cohesive routine.

Temporal cohesion occurs when operations are combined into a routine because
they are all done at the same time. Typical examples would be Startup(),
CompleteNewEmployee(), and Shutdown(). Some programmers consider
temporal cohesion to be unacceptable because it’s sometimes associated with
bad programming practices such as having a hodgepodge of code in a Startup()
routine.

To avoid this problem, think of temporal routines as organizers of other events.
The Startup() routine, for example, might read a configuration file, initialize a
scratch file, set up a memory manager, and show an initial screen. To make it
most effective, have the temporally cohesive routine call other routines to
perform specific activities rather than performing the operations directly itself.
That way, it will be clear that the point of the routine is to orchestrate activities
rather than to do them directly.

This example raises the issue of choosing a name that describes the routine at the
right level of abstraction. You could decide to name the routine
ReadConfigFilelnitScratchFileEtc(), which would imply that the routine had
only coincidental cohesion. If you name it Startup(), however, it would be clear
that it had a single purpose and clear that it had functional cohesion.

The remaining kinds of cohesion are generally unacceptable. They result in code
that’s poorly organized, hard to debug, and hard to modify. If a routine has bad
cohesion, it’s better to put effort into a rewrite to have better cohesion than
investing in a pinpoint diagnosis of the problem. Knowing what to avoid can be
useful, however, so here are the unacceptable kinds of cohesion:

Procedural cohesion occurs when operations in a routine are done in a specified
order. An example is a routine that gets an employee name, then an address, and
then a phone number. The order of these operations is important only because it
matches the order in which the user is asked for the data on the input screen.
Another routine gets the rest of the employee data. The routine has procedural
cohesion because it puts a set of operations in a specified order and the
operations don’t need to be combined for any other reason.

To achieve better cohesion, put the separate operations into their own routines.
Make sure that the calling routine has a single, complete job:
GetEmployeeData() rather than GetFirstPartOfEmployeeData(). You’ll probably
need to modify the routines that get the rest of the data too. I1t’s common to



le Complete

' CROSS-REFERENCE  Whil

" e the routine might have
better cohesion, a higher-
level design issue is whether
the system should be using a
case statement instead of

- polymorphism. For more on
this issue, see “Replace
conditionals with

- polymorphism (especially
repeated case statements)” in

Section 24.4.

7. High-Quality Routines Page 11

modify two or more original routines before you achieve functional cohesion in
any of them.

Logical cohesion occurs when several operations are stuffed into the same
routine and one of the operations is selected by a control flag that’s passed in.
It’s called logical cohesion because the control flow or “logic” of the routine is
the only thing that ties the operations together—they’re all in a big if statement
or case statement together. It isn’t because the operations are logically related in
any other sense. Considering that the defining attribute of logical cohesion is that
the operations are unrelated, a better name might illogical cohesion.

One example would be an InputAll() routine that input customer names,
employee time-card information, or inventory data depending on a flag passed to
the routine. Other examples would be ComputeAll(), EditAll(), PrintAll(), and
SaveAll(). The main problem with such routines is that you shouldn’t need to
pass in a flag to control another routine’s processing. Instead of having a routine
that does one of three distinct operations, depending on a flag passed to it, it’s
cleaner to have three routines, each of which does one distinct operation. If the
operations use some of the same code or share data, the code should be moved
into a lower-level routine and the routines should be packaged into a class.

It’s usually all right, however, to create a logically cohesive routine if its code
consists solely of a series of if or case statements and calls to other routines. In
such a case, if the routine’s only function is to dispatch commands and it doesn’t
do any of the processing itself, that’s usually a good design. The technical term
for this kind of routine is “event handler.” An event handler is often used in
interactive environments such as the Apple Macintosh and Microsoft Windows.

Coincidental cohesion occurs when the operations in a routine have no
discernible relationship to each other. Other good names are “no cohesion” or
“chaotic cohesion.” The low-quality C++ routine at the beginning of this chapter
had coincidental cohesion. It’s hard to convert coincidental cohesion to any
better kind of cohesion—you usually need to do a deeper redesign and
reimplementation.

None of these terms are magical or sacred. Learn the ideas rather than the
terminology. It’s nearly always possible to write routines with functional
cohesion, so focus your attention on functional cohesion for maximum benefit.
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7.3 Good Routine Names

A good name for a routine clearly describes everything the routine does. Here
are guidelines for creating effective routine names.

Describe everything the routine does

In the routine’s name, describe all the outputs and side effects. If a routine
computes report totals and opens an output file, ComputeReportTotals() is not an
adequate name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly. If you have routines with side effects,
you’ll have many long, silly names, The cure is not to use less-descriptive
routine names; the cure is to program so that you cause things to happen directly
rather than with side effects.

Avoid meaningless or wishy-washy verbs

Some verbs are elastic, stretched to cover just about any meaning. Routine
names like HandleCalculation(), PerformServices(), ProcessInput(), and
DealWithOutput() don’t tell you what the routines do. At the most, these names
tell you that the routines have something to do with calculations, services, input,
and output. The exception would be when the verb “handle” was used in the
specific technical sense of handling an event.

Sometimes the only problem with a routine is that its name is wishy-washy; the
routine itself might actually be well designed. If HandleOutput() is replaced with
FormatAndPrintOutput(), you have a pretty good idea of what the routine does.

In other cases, the verb is vague because the operations performed by the routine
are vague. The routine suffers from a weakness of purpose, and the weak name is
a symptom. If that’s the case, the best solution is to restructure the routine and
any related routines so that they all have stronger purposes and stronger names
that accurately describe them.

Make names of routines as long as necessary

Research shows that the optimum average length for a variable name is 9 to 15
characters. Routines tend to be more complicated than variables, and good
names for them tend to be longer. Michael Rees of the University of
Southampton thinks that an average of 20 to 35 characters is a good nominal
length (Rees 1982). An average length of 15 to 20 characters is probably more
realistic, but clear names that happened to be longer would be fine.
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To name a function, use a description of the return value

A function returns a value, and the function should be named for the value it
returns. For example, cos(), customerld.Next(), printer.IsReady(), and
pen.CurrentColor() are all good function names that indicate precisely what the
functions return.

To name a procedure, use a strong verb followed by an object

A procedure with functional cohesion usually performs an operation on an
object. The name should reflect what the procedure does, and an operation on an
object implies a verb-plus-object name. PrintDocument(),
CalcMonthlyRevenues(), CheckOrderlnfo(), and RepaginateDocument() are
samples of good procedure names.

In object-oriented languages, you don’t need to include the name of the object in
the procedure name because the object itself is included in the call. You invoke
routines with statements like document.Print(), orderInfo.Check(), and
monthlyRevenues.Calc(). Names like document.PrintDocument() are redundant
and can become inaccurate when they’re carried through to derived classes. If
Check is a class derived from Document, check.Print() seems clearly to be
printing a check, whereas check.PrintDocument() sounds like it might be
printing a checkbook register or monthly statement—nbut it doesn’t sound like
it’s printing a check.

Use opposites precisely

Using naming conventions for opposites helps consistency, which helps
readability. Opposite-pairs like first/last are commonly understood. Opposite-
pairs like FileOpen() and _Iclose() (from the Windows 3.1 software developer’s
kit) are not symmetrical and are confusing. Here are some common opposites:

e add/remove

e begin/end

e create/destroy
o first/last

e get/put

e get/set

e increment/decrement
e insert/delete

e lock/unlock

e min/max

e next/previous
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e old/new

e open/close

e show/hide

e source/target
e start/stop

e up/down

Establish conventions for common operations

In some systems, it’s important to distinguish among different kinds of
operations. A naming convention is often the easiest and most reliable way of
indicating these distinctions.

The code on one of my projects assigned each object a unique identifier. We
neglected to establish a convention for naming the routines that would return the
object identifier, so we had routine names like these:

employee.id.Get()
dependent.GetId()
supervisor()
candidate.idQ)

The Employee class exposed its id object, which in turn exposed its Get()
routine. The Dependent class exposed a Getld() routine. The Supervisor class
made the id its default return value. The Candidate class made use of the fact
that the id object’s default return value was the id, and exposed the id object. By
the middle of the project, no one could remember which of these routines was
supposed to be used on which object, but by that time too much code had been
written to go back and make everything consistent. Consequently, every person
on the team had to devote an unnecessary amount of gray matter to remembering
the inconsequential detail of which syntax was used on which class to retrieve
the id. A naming convention for retrieving ids would have eliminated this
annoyance.

7.4 How Long Can a Routine Be?

On their way to America, the Pilgrims argued about the best maximum length for
a routine. After arguing about it for the entire trip, they arrived at Plymouth Rock
and started to draft the Mayflower Compact. They still hadn’t settled the
maximum-length question, and since they couldn’t disembark until they’d signed
the compact, they gave up and didn’t include it. The result has been an
interminable debate ever since about how long a routine can be.
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The theoretical best maximum length is often described as one or two pages of
program listing, 66 to 132 lines. In this spirit, IBM once limited routines to 50
lines, and TRW limited them to two pages (McCabe 1976). Modern programs
tend to have volumes of extremely short routines mixed in with a few longer
routines. Long routines are far from extinct, however. In the Spring of 2003, |
visited two client sites within a month. Programmers at one site were wrestling
with a routine that was about 4,000 lines of code long, and programmers at the
other site were trying to tame a routine that was more than 12,000 lines long!

A mountain of research on routine length has accumulated over the years, some
of which is applicable to modern programs, and some of which isn’t:

HARD DATA e A study by Basili and Perricone found that routine size was inversely
correlated with errors; as the size of routines increased (up to 200 lines of
code), the number of errors per line of code decreased (Basili and Perricone
1984).

e Another study found that routine size was not correlated with errors, even
though structural complexity and amount of data were correlated with errors
(Shen et al. 1985).

e A 1986 study found that small routines (32 lines of code or fewer) were not
correlated with lower cost or fault rate (Card, Church, and Agresti 1986;
Card and Glass 1990). The evidence suggested that larger routines (65 lines
of code or more) were cheaper to develop per line of code.

e An empirical study of 450 routines found that small routines (those with
fewer than 143 source statements, including comments) had 23 percent more
errors per line of code than larger routines but were 2.4 times less expensive
to fix than larger routines (Selby and Basili 1991).

e Another study found that code needed to be changed least when routines
averaged 100 to 150 lines of code (Lind and Vairavan 1989).

e Astudy at IBM found that the most error-prone routines were those that
were larger than 500 lines of code. Beyond 500 lines, the error rate tended to
be proportional to the size of the routine (Jones 1986a).

Where does all this leave the question of routine length in object-oriented
programs? A large percentage of routines in object-oriented programs will be
accessor routines, which will be very short. From time to time, a complex
algorithm will lead to a longer routine, and in those circumstances, the routine
should be allowed to grow organically up to 100-200 lines. (A line is a
noncomment, nonblank line of source code.) Decades of evidence say that
routines of such length are no more error prone than shorter routines. Let issues
such as depth of nesting, number of variables, and other complexity-related
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considerations dictate the length of the routine rather than imposing a length
restriction per se.

If you want to write routines longer than about 200 lines, be careful. None of the
studies that reported decreased cost, decreased error rates, or both with larger
routines distinguished among sizes larger than 200 lines, and you’re bound to
run into an upper limit of understandability as you pass 200 lines of code.

7.5 How to Use Routine Parameters

Interfaces between routines are some of the most error-prone areas of a program.
One often-cited study by Basili and Perricone (1984) found that 39 percent of all
errors were internal interface errors—errors in communication between routines.
Here are a few guidelines for minimizing interface problems:

Put parameters in input-modify-output order

Instead of ordering parameters randomly or alphabetically, list the parameters
that are input-only first, input-and-output second, and output-only third. This
ordering implies the sequence of operations happening within the routine-
inputting data, changing it, and sending back a result. Here are examples of
parameter lists in Ada:

Ada Example of Parameters in Input-Modify-Output Order

procedure InvertMatrix(
originalMatrix: in Matrix;
resultMatrix: out Matrix
b

procedure ChangeSentenceCase(
desiredCase: in StringCase;
sentence: in out Sentence
H

procedure PrintPageNumber(

pageNumber: in Integer;

status: out StatusType
H
This ordering convention conflicts with the C-library convention of putting the
modified parameter first. The input-modify-output convention makes more sense
to me, but if you consistently order parameters in some way, you still do the
readers of your code a service.
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Create your own in and out keywords

Other modern languages don’t support the in and out keywords like Ada does. In
those languages, you might still be able to use the preprocessor to create your
own in and out keywords. Here’s how that could be done in C++:

C++ Example of Defining Your Own In and Out Keywords

#define IN
#define OUT

void InvertMatrix(
IN Matrix originalMatrix,
OUT Matrix *resultMatrix
J;

void ChangeSentenceCase(

IN StringCase desiredCase,

IN OUT Sentence *sentenceToEdit
s

void PrintPageNumber(

IN int pageNumber,

OUT StatusType &status
b
In this case, the IN and OUT macro-keywords are used for documentation
purposes. To make the value of a parameter changeable by the called routine, the
parameter still needs to be passed as a pointer or as a reference parameter.

If several routines use similar parameters, put the similar parameters in a
consistent order

The order of routine parameters can be a mnemonic, and inconsistent order can
make parameters hard to remember, For example, in C, the fprintf() routine is the
same as the printf() routine except that it adds a file as the first argument. A
similar routine, fputs(), is the same as puts() except that it adds a file as the last
argument. This is an aggravating, pointless difference that makes the parameters
of these routines harder to remember than they need to be.

On the other hand, the routine strncpy() in C takes the arguments target string,
source string, and maximum number of bytes, in that order, and the routine
memcpy() takes the same arguments in the same order. The similarity between
the two routines helps in remembering the parameters in either routine.
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In Microsoft Windows programming, most of the Windows routines take a
“handle” as their first parameter. The convention is easy to remember and makes
each routine’s argument list easier to remember.

Use all the parameters

If you pass a parameter to a routine, use it. If you aren’t using it, remove the
parameter from the routine interface. Unused parameters are correlated with an
increased error rate. In one study, 46 percent of routines with no unused
variables had no errors. Only 17 to 29 percent of routines with more than one
unreferenced variable had no errors (Card, Church, and Agresti 1986).

This rule to remove unused parameters has two exceptions. First, if you’re using
function pointers in C++, you’ll have several routines with identical parameter
lists. Some of the routines might not use all the parameters. That’s OK. Second,
if you’re compiling part of your program conditionally, you might compile out
parts of a routine that use a certain parameter. Be nervous about this practice, but
if you’re convinced it works, that’s OK too. In general, if you have a good
reason not to use a parameter, go ahead and leave it in place. If you don’t have a
good reason, make the effort to clean up the code.

Put status or error variables last

By convention, status variables and variables that indicate an error has occurred
go last in the parameter list. They are incidental to the main purpose of the
routine, and they are output-only parameters, so it’s a sensible convention.

Don’t use routine parameters as working variables

It’s dangerous to use the parameters passed to a routine as working variables.
Use local variables instead. For example, in the Java fragment below, the
variable InputVal is improperly used to store intermediate results of a
computation.

Java Example of Improper Use of Input Parameters
int Sample( int inputVal ) {
inputVal = inputVal * CurrentMultiplier( inputVal );
inputVal = inputVal + CurrentAdder( inputVal );

I return inputVal;
}
inputVal in this code fragment is misleading because by the time execution
reaches the last line, inputVal no longer contains the input value; it contains a
computed value based in part on the input value, and it is therefore misnamed. If
you later need to modify the routine to use the original input value in some other
place, you’ll probably use inputVal and assume that it contains the original input
value when it actually doesn’t.
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How do you solve the problem? Can you solve it by renaming inputVal?
Probably not. You could name it something like workingVal, but that’s an
incomplete solution because the name fails to indicate that the variable’s original
value comes from outside the routine. You could name it something ridiculous
like InputValThatBecomesWorkingVal or give up completely and name it X or
Val, but all these approaches are weak.

A better approach is to avoid current and future problems by using working
variables explicitly. The following code fragment demonstrates the technique:

Java Example of Good Use of Input Parameters

int Sample( int inputVal ) {
int workingVal = inputVal;
workingVal = workingVal * CurrentMultiplier( workingval );
workingVal = workingVal + CurrentAdder( workingVval );

~ If you need to use the original I
value of inputVal here or
somewhere else, it's still return workingVal;
available. }

Introducing the new variable workingVal clarifies the role of inputVal and
eliminates the chance of erroneously using inputVal at the wrong time. (Don’t
take this reasoning as a justification for literally naming a variable workingVal.
In general, workingVal is a terrible name for a variable, and the name is used in
this example only to make the variable’s role clear.)

Assigning the input value to a working variable emphasizes where the value
comes from. It eliminates the possibility that a variable from the parameter list
will be modified accidentally. In C++, this practice can be enforced by the
compiler using the keyword const. If you designate a parameter as const, you’re
not allowed to modify its value within a routine.

' CROSS-REFERENCE  For Document interface assumptions about parameters
- details on interface If you assume the data being passed to your routine has certain characteristics,
assumptions, see the document the assumptions as you make them. It’s not a waste of effort to

f‘mmduc.t'on o Chapte.r 8, . document your assumptions both in the routine itself and in the place where the
Defensive Programming.

' For details on documentation routine is called. Don’t wait until you’ve written the routine to go back and write
see Chapter 32, “Self- the comments—you won’t remember all your assumptions. Even better than
- Documenting Code.” commenting your assumptions, use assertions to put them into code.

What kinds of interface assumptions about parameters should you document?

e Whether parameters are input-only, modified, or output-only

e Units of numeric parameters (inches, feet, meters, and so on)
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Meanings of status codes and error values if enumerated types aren’t used

Ranges of expected values

Specific values that should never appear

HARD DATA

Limit the number of a routine’s parameters to about seven

Seven is a magic number for people’s comprehension. Psychological research
has found that people generally cannot keep track of more than about seven
chunks of information at once (Miller 1956). This discovery has been applied to
an enormous number of disciplines, and it seems safe to conjecture that most
people can’t keep track of more than about seven routine parameters at once.

In practice, how much you can limit the number of parameters depends on how
your language handles complex data types. If you program in a modern language
that supports structured data, you can pass a composite data type containing 13
fields and think of it as one mental “chunk” of data. If you program in a more
primitive language, you might need to pass all 13 fields individually.

- CROSS-REFERENCE  For If you find yourself consistently passing more than a few arguments, the
details on how to think about - ¢oypling among your routines is too tight. Design the routine or group of
‘ 'merface.s , S¢€ G°°‘_’ routines to reduce the coupling. If you are passing the same data to many
Abstraction” in Section 6.2. . . . .
‘ different routines, group the routines into a class and treat the frequently used
data as class data.

Consider an input, modify, and output naming convention for parameters
If you find that it’s important to distinguish among input, modify, and output
parameters, establish a naming convention that identifies them. You could prefix
them withi_, m_, and o_. If you’re feeling verbose, you could prefix them with
Input_, Modify_, and Output_.

Pass the variables or objects that the routine needs to maintain its interface
abstraction

There are two competing schools of thought about how to pass parameters from
an object to a routine. Suppose you have an object that exposes data through 10
access routines, and the called routine needs 3 of those data elements to do its
job.

Proponents of the first school of thought argue that only the 3 specific elements
needed by the routine should be passed. They argue that that will keep the
connections between routines to a minimum, reduce coupling, and make them
easier to understand, easier to reuse, and so on. They say that passing the whole
object to a routine violates the principle of encapsulation by potentially exposing
all 10 access routines to the routine that’s called.
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Proponents of the second school argue that the whole object should be passed.
They argue that the interface can remain more stable if the called routine has the
flexibility to use additional members of the object without changing the routine’s
interface. They argue that passing 3 specific elements violates encapsulation by
exposing which specific data elements the routine is using.

I think both these rules are simplistic and miss the most important consideration,
which is, what abstraction is presented by the routine’s interface?

e |f the abstraction is that the routine expects you to have 3 specific data
elements, and it is only a coincidence that those 3 elements happen to be
provided by the same object, then you should pass the 3 specific data
elements individually.

e |f the abstraction is that you will always have that particular object in hand
and the routine will do something or other with that object, then you truly do
break the abstraction when you expose the three specific data elements.

If you’re passing the whole object and you find yourself creating the object,
populating it with the 3 elements needed by the called routine, and then pulling
those elements out of the object after the routine is called, that’s an indication
that you should be passing the 3 specific elements rather than the whole object.
(Generally code that “sets up” for a call to a routine or “takes down” after a call
to a routine is an indication that the routine is not well designed.)

If you find yourself frequently changing the parameter list to the routine, with
the parameters coming from the same object each time, that’s an indication that
you should be passing the whole object rather than specific elements.

Used named parameters

In some languages, you can explicitly associate formal parameters with actual
parameters. This makes parameter usage more self-documenting and helps avoid
errors from mismatching parameters. Here’s an example in Visual Basic:

Visual Basic Example of Explicitly Identifying Parameters

Private Function Distance3d( _
ByVal xDistance As Coordinate, _
ByVal yDistance As Coordinate, _

ByVal zDistance As Coordinate _

End Function

Private Function Velocity( _
ByVal Tatitude as Coordinate, _
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ByVal Tongitude as Coordinate, _

ByVal elevation as Coordinate _

I Distance = Distance3d( xDistance := latitude, yDistance := longitude, _
zDistance := elevation )

End Function

This technique is especially useful when you have longer-than-average lists of
identically typed arguments, which increases the chances that you can insert a
parameter mismatch without the compiler detecting it. Explicitly associating
parameters may be overkill in many environments, but in safety-critical or other
high-reliability environments the extra assurance that parameters match up the
way you expect can be worthwhile.

Don’t assume anything about the parameter-passing mechanism

Some hard-core nanosecond scrapers worry about the overhead associated with
passing parameters and bypass the high-level language’s parameter-passing
mechanism. This is dangerous and makes code nonportable. Parameters are
commonly passed on a system stack, but that’s hardly the only parameter-
passing mechanism that languages use. Even with stack-based mechanisms, the
parameters themselves can be passed in different orders and each parameter’s
bytes can be ordered differently. If you fiddle with parameters directly, you
virtually guarantee that your program won’t run on a different machine.

Make sure actual parameters match formal parameters

Formal parameters, also known as dummy parameters, are the variables declared
in a routine definition. Actual parameters are the variables or constants used in
the actual routine calls.

A common mistake is to put the wrong type of variable in a routine call—for
example, using an integer when a floating point is needed. (This is a problem
only in weakly typed languages like C when you’re not using full compiler
warnings. Strongly typed languages such as C++ and Java don’t have this
problem.) When arguments are input only, this is seldom a problem; usually the
compiler converts the actual type to the formal type before passing it to the
routine. If it is a problem, usually your compiler gives you a warning. But in
some cases, particularly when the argument is used for both input and output,
you can get stung by passing the wrong type of argument.

Develop the habit of checking types of arguments in parameter lists and heeding
compiler warnings about mismatched parameter types.
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7.6 Special Considerations in the Use of
Functions

Modern languages such as C++, Java, and Visual Basic support both functions
and procedures. A function is a routine that returns a value; a procedure is a
routine that does not. This distinction is as much a semantic distinction as a
syntactic one. In C++, all routines are typically called “functions,” however, a
function with a void return type is semantically a procedure and should be
treated as such.

When to Use a Function and When to Use a
Procedure

Purists argue that a function should return only one value, just as a mathematical
function does. This means that a function would take only input parameters and
return its only value through the function itself. The function would always be
named for the value it returned, as sin(), CustomerID(), and ScreenHeight() are.
A procedure, on the other hand, could take input, modify, and output
parameters—as many of each as it wanted to.

A common programming practice is to have a function that operates as a
procedure and returns a status value. Logically, it works as a procedure, but
because it returns a value, it’s officially a function. For example, you might have
a routine called FormatOutput() used with a report object in statements like this
one:

if ( report.FormatOutput( formattedReport ) = Success ) then ...
In this example, report.FormatOutput() operates as a procedure in that it has an
output parameter, formattedReport, but it is technically a function because the
routine itself returns a value. Is this a valid way to use a function? In defense of
this approach, you could maintain that the function return value has nothing to
do with the main purpose of the routine, formatting output, or with the routine
name, report.FormatOutput(); in that sense it operates more as a procedure does
even if it is technically a function. The use of the return value to indicate the
success or failure of the procedure is not confusing if the technique is used
consistently.

The alternative is to create a procedure that has a status variable as an explicit
parameter, which promotes code like this fragment:

report.FormatOutput( formattedReport, outputStatus )
if ( outputStatus = Success ) then ...
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| prefer the second style of coding, not because I’m hard-nosed about the
difference between functions and procedures but because it makes a clear
separation between the routine call and the test of the status value. To combine
the call and the test into one line of code increases the density of the statement
and correspondingly its complexity. The following use of a function is fine too:

outputStatus = report.FormatOutput( formattedReport )
if ( outputStatus = Success ) then ...

In short, use a function if the primary purpose of the routine is to return the value
indicated by the function name. Otherwise, use a procedure.

Setting the Function’s Return Value

Using a function creates the risk that the function will return an incorrect return
value. This usually happens when the function has several possible paths and one
of the paths doesn’t set a return value.

Check all possible return paths

When creating a function, mentally execute each path to be sure that the function
returns a value under all possible circumstances. It’s good practice to initialize
the return value at the beginning of the function to a default value—which
provides a safety net in the event of that the correct return value is not set.

Don’t return references or pointers to local data

As soon as the routine ends and the local data goes out of scope, the reference or
pointer to the local data will be invalid. If an object needs to return information
about its internal data, it should save the information as class member data. It
should then provide accessor functions that return the values of the member data
items rather than references or pointers to local data.

7.7 Macro Routines and Inline Routines

Routines created with preprocessor macros call for a few unique considerations.
The following rules and examples pertain to using the preprocessor in C++, If
you’re using a different language or preprocessor, adapt the rules to your
situation.

Fully parenthesize macro expressions

Because macros and their arguments are expanded into code, be careful that they
expand the way you want them to. One common problem lies in creating a
macro like this one:
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C++ Example of a Macro That Doesn’t Expand Properly

#define Cube( a ) a*a*a

This macro has a problem. If you pass it nonatomic values for a, it won’t do the
multiplication properly. If you use the expression Cube( x+1 ), it expands to x+1
*x+ 1*x + 1, which, because of the precedence of the multiplication and
addition operators, is not what you want. A better but still not perfect version of
the macro looks like this:

C++ Example of a Macro That Still Doesn’t Expand Properly

#define Cube( a ) (a)*(a)*(a)

This is close, but still no cigar. If you use Cube() in an expression that has
operators with higher precedence than multiplication, the (a)*(a)*(a) will be torn
apart. To prevent that, enclose the whole expression in parentheses:

C++ Example of a Macro That Works
#define Cube( a ) ((a)*(a)*(a))

Surround multiple-statement macros with curly braces
A macro can have multiple statements, which is a problem if you treat it as if it
were a single statement. Here’s an example of a macro that’s headed for trouble:

C++ Example of a Macro with Multiple Statements That Doesn’t Work
#define LookupEntry( key, index ) \

index = (key - 10) / 5; \

index = min( index, MAX_INDEX ); \

index = max( index, MIN_INDEX );

for ( entryCount = 0; entryCount < numEntries; entryCount++ )

LookupEntry( entryCount, tableIndex[ entryCount ] );
This macro is headed for trouble because it doesn’t work as a regular function
would. As it’s shown, the only part of the macro that’s executed in the for loop is
the first line of the macro:

index = (key - 10) / 5;
To avoid this problem, surround the macro with curly braces, as shown here:

C++ Example of a Macro with Multiple Statements That Works

#define LookupEntry( key, index ) { \
index = (key - 10) / 5; \
index = min( index, MAX_INDEX ); \
index = max( index, MIN_INDEX ); \
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The practice of using macros as substitutes for function calls is generally
considered risky and hard to understand—bad programming practice—so use
this technique only if your specific circumstances require it.

Name macros that expand to code like routines so that they can be replaced
by routines if necessary

The C++-language convention for naming macros is to use all capital letters. If
the macro can be replaced by a routine, however, name it using the naming
convention for routines instead. That way you can replace macros with routines
and vice versa without changing anything but the routine involved.

Following this recommendation entails some risk. If you commonly use ++ and
-- as side effects (as part of other statements), you’ll get burned when you use
macros that you think are routines. Considering the other problems with side
effects, this is just one more reason to avoid using side effects.

Limitations on the Use of Macro Routines

Modern languages like C++ provide numerous alternatives to the use of macros:

const for declaring constant values
e inline for defining functions that will be compiled as inline code

e template for defining standard operations like min, max, and so on in a type-
safe way

e enum for defining enumerated types
e typedef for defining simple type substitutions

As Bjarne Stroustrup, designer of C++ points out, “Almost every macro
demonstrates a flaw in the programming language, in the program, or in the
programmer.... When you use macros, you should expect inferior service from
tools such as debuggers, cross-reference tools, and profilers” (Stroustrup 1997).
Macros are useful for supporting conditional compilation (see Section 8.6), but
careful programmers generally use a macro as an alternative to a routine only as
a last resort.

Inline Routines

C++ supports an inline keyword. An inline routine allows the programmer to
treat the code as a routine at code-writing time. But the compiler will convert
each instance of the routine into inline code at compile time. The theory is that
inline can help produce highly efficient code that avoids routine-call overhead.
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Use inline routines sparingly

Inline routines violate encapsulation because C++ requires the programmer to
put the code for the implementation of the inline routine in the header file, which
exposes it to every programmer who uses the header file.

Inline routines require a routine’s full code to be generated every time the routine
is invoked, which for an inline routine of any size will increase code size. That
can create problems of its own.

The bottom line on inlining for performance reasons is the same as the bottom
line on any other coding technique that’s motivated by performance—profile the
code and measure the improvement. If the anticipated performance gain doesn’t
justify the bother of profiling the code to verify the improvement, it doesn’t
justify the erosion in code quality either.

CHECKLIST: High-Quality Routines

Big-Picture Issues
O Is the reason for creating the routine sufficient?

O Have all parts of the routine that would benefit from being put into routines
of their own been put into routines of their own?

O s the routine’s name a strong, clear verb-plus-object name for a procedure
or a description of the return value for a function?

O Does the routine’s name describe everything the routine does?

O Have you established naming conventions for common operations?

O Does the routine have strong, functional cohesion—doing one and only one
thing and doing it well?

O Do the routines have loose coupling—are the routine’s connections to other
routines small, intimate, visible, and flexible?

Q Is the length of the routine determined naturally by its function and logic,
rather than by an artificial coding standard?

Parameter-Passing Issues

O Does the routine’s parameter list, taken as a whole, present a consistent
interface abstraction?

O Are the routine’s parameters in a sensible order, including matching the
order of parameters in similar routines?

O

Are interface assumptions documented?
O Does the routine have seven or fewer parameters?
Q s each input parameter used?
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(]

Is each output parameter used?

(W]

Does the routine avoid using input parameters as working variables?

Q If the routine is a function, does it return a valid value under all possible
circumstances?

Key Points

e The most important reason to create a routine is to improve the intellectual
manageability of a program, and you can create a routine for many other
good reasons. Saving space is a minor reason; improved readability,
reliability, and modifiability are better reasons.

e Sometimes the operation that most benefits from being put into a routine of
its own is a simple one.

e The name of a routine is an indication of its quality. If the name is bad and
it’s accurate, the routine might be poorly designed. If the name is bad and
it’s inaccurate, it’s not telling you what the program does. Either way, a bad
name means that the program needs to be changed.

e Functions should be used only when the primary purpose of the function is
to return the specific value described by the function’s name.

e Careful programmers use macro routines and inline routines with care, and
only as a last resort.



le Complete

- CC2E.COM/0861

[ KEY POINT

8. Defensive Programming Page 1

8

Defensive Programming

Contents
8.1 Protecting Your Program From Invalid Inputs

8.2 Assertions

8.3 Error Handling Techniques

8.4 Exceptions

8.5 Barricade Your Program to Contain the Damage Caused by Errors
8.6 Debugging Aids

8.7 Determining How Much Defensive Programming to Leave in Production
Code

8.8 Being Defensive About Defensive Programming
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Information hiding: "Hide Secrets (Information Hiding)" in Section 5.3.

Design for change: "Identify Areas Likely to Change" in Section 5.3.
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High-level design: Chapter 5

Debugging: Chapter 23

DEFENSIVE PROGRAMMING DOESN’T MEAN being defensive about your
programming—"1t does so work!” The idea is based on defensive driving. In
defensive driving, you adopt the mind-set that you’re never sure what the other
drivers are going to do. That way, you make sure that if they do something dan-
gerous you won’t be hurt. You take responsibility for protecting yourself even
when it might be the other driver’s fault. In defensive programming, the main
idea is that if a routine is passed bad data, it won’t be hurt, even if the bad data is
another routine’s fault. More generally, it’s the recognition that programs will
have problems and modifications, and that a smart programmer will develop
code accordingly.
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This chapter describes how to protect yourself from the cold, cruel world of in-

valid data, events that can “never” happen, and other programmers’ mistakes. If
you’re an experienced programmer, you might skip the next section on handling
input data and begin with Section 8.2, which reviews the use of assertions.

8.1 Protecting Your Program From Invalid
Inputs

In school you might have heard the expression, “Garbage in, garbage out.” That
expression is essentially software development’s version of caveat emptor: let
the user beware.

For production software, garbage in, garbage out isn’t good enough. A good
program never puts out garbage, regardless of what it takes in. A good program
uses “garbage in, nothing out”; “garbage in, error message out”; or “no garbage
allowed in” instead. By today’s standards, “garbage in, garbage out” is the mark
of a sloppy, nonsecure program.

There are three general ways to handle garbage in.

Check the values of all data from external sources

When getting data from a file, a user, the network, or some other external inter-
face, check to be sure that the data falls within the allowable range. Make sure
that numeric values are within tolerances and that strings are short enough to
handle. If a string is intended to represent a restricted range of values (such as a
financial transaction ID or something similar), be sure that the string is valid for
its intended purpose; otherwise reject it. If you’re working on a secure applica-
tion, be especially leery of data that might attack your system: attempted buffer
overflows, injected SQL commands, injected html or XML code, integer over-
flows, and so on.

Check the values of all routine input parameters

Checking the values of routine input parameters is essentially the same as check-
ing data that comes from an external source, except that the data comes from
another routine instead of from an external interface.

Decide how to handle bad inputs

Once you’ve detected an invalid parameter, what do you do with it? Depending
on the situation, you might choose any of a dozen different approaches, which
are described in detail later in this chapter.

Defensive programming is useful as an adjunct to the other techniques for qual-
ity improvement described in this book. The best form of defensive coding is not
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inserting errors in the first place. Using iterative design, writing pseudocode be-
fore code, and having low-level design inspections are all activities that help to
prevent inserting defects. They should thus be given a higher priority than defen-
sive programming. Fortunately, you can use defensive programming in combina-
tion with the other techniques.

As Figure 8-1 suggests, protecting yourself from seemingly small problems can
make more of a difference than you might think. The rest of this chapter de-
scribes specific options for checking data from external sources, checking input
parameters, and handling bad inputs.

Figure 8-1

Part of the Interstate-90 floating bridge in Seattle sank during a storm because the
flotation tanks were left uncovered, they filled with water, and the bridge became too
heavy to float. During construction, protecting yourself against the small stuff mat-
ters more than you might think.

8.2 Assertions

An assertion is code that’s used during development—usually a routine or
macro—that allows a program to check itself as it runs. When an assertion is
true, that means everything is operating as expected. When it’s false, that means
it has detected an unexpected error in the code. For example, if the system as-
sumes that a customer-information file will never have more than 50,000 re-
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cords, the program might contain an assertion that the number of records is less
than or equal to 50,000. As long as the number of records is less than or equal to
50,000, the assertion will be silent. If it encounters more than 50,000 records,
however, it will loudly “assert” that there is an error in the program.

Assertions are especially useful in large, complicated programs and in high-
reliability programs. They enable programmers to more quickly flush out mis-
matched interface assumptions, errors that creep in when code is modified, and
S0 on.

An assertion usually takes two arguments: a boolean expression that describes
the assumption that’s supposed to be true and a message to display if it isn’t.
Here’s what a Java assertion would look like if the variable denominator were
expected to be nonzero:

Java Example of an Assertion

assert denominator != 0 : "denominator is unexpectedly equal to 0.";

This assertion asserts that denominator is not equal to 0. The first argument,
denominator != 0, is a boolean expression that evaluates to True or False. The
second argument is a message to print if the first argument is False—that is, if
the assertion is false.

Use assertions to document assumptions made in the code and to flush out unex-
pected conditions. Assertions can be used to check assumptions like these:

e That an input parameter’s value falls within its expected range (or an output
parameter’s value does)

e That a file or stream is open (or closed) when a routine begins executing (or
when it ends executing)

e That a file or stream is at the beginning (or end) when a routine begins exe-
cuting (or when it ends executing)

e That a file or stream is open for read-only, write-only, or both read and write
e That the value of an input-only variable is not changed by a routine
e That a pointer is non-NULL

e That an array or other container passed into a routine can contain at least X
number of data elements

e That a table has been initialized to contain real values

e That a container is empty (or full) when a routine begins executing (or when
it finishes)



le Complete 8. Defensive Programming Page 5

e That the results from a highly optimized, complicated routine match the re-
sults from a slower but clearly written routine

e FEtc.

Of course, these are just the basics, and your own routines will contain many
more specific assumptions that you can document using assertions.

Normally, you don’t want users to see assertion messages in production code;
assertions are primarily for use during development and maintenance. Assertions
are normally compiled into the code at development time and compiled out of
the code for production. During development, assertions flush out contradictory
assumptions, unexpected conditions, bad values passed to routines, and so on.
During production, they are compiled out of the code so that the assertions don’t
degrade system performance.

Building Your Own Assertion Mechanism

' CROSS-REFERENCE  Buiil Many languages have built-in support for assertions, including C++, Java and
- ding your own assertion rou- Visual Basic. If your language doesn’t directly support assertion routines, they
tine is a good example of are easy to write. The standard C++ assert macro doesn’t provide for text mes-

programming “into” a lan- , . .
" guage rather than just pro- sages. Here’s an example of an improved ASSERT implemented as a C++ macro:

gramming “in” a language.
For more details on this dis- C++ Example of an Assertion Macro

| 'tllnctlon, see Section 34.4, #define ASSERT( condition, message ) {
Program Into Your Lan-

quage, Not In It." if C !(condition) ) {
| ’ ' fprintf( stderr, "Assertion %s failed: %s\n",

#condition, message );
exit( EXIT_FAILURE );

s s s s

}
Once you’ve written an assertion routine like this, you can call it with statements
like the first one above.

Guidelines for Using Assertions

Here are some guidelines for using assertions:

Use error handling code for conditions you expect to occur; use assertions
for conditions that should never occur

Assertions check for conditions that should never occur. Error handling code
checks for off-nominal circumstances that might not occur very often, but that
have been anticipated by the programmer who wrote the code and that need to be
handled by the production code. Error-handling typically checks for bad input
data; assertions check for bugs in the code.
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If error handling code is used to address an anomalous condition, the error han-
dling will enable the program to respond to the error gracefully. If an assertion is
fired for an anomalous condition, the corrective action is not merely to handle an
error gracefully—the corrective action is to change the program’s source code,
recompile, and release a new version of the software.

A good way to think of assertions is as executable documentation—you can’t
rely on them to make the code work, but they can document assumptions more
actively than program-language comments can.

Avoid putting executable code in assertions

Putting code into an assertion raises the possibility that the compiler will elimi-
nate the code when you turn off the assertions. Suppose you have an assertion
like this:

Visual Basic Example of a Dangerous Use of an Assertion

Debug.Assert( PerformAction() ) ' Couldn't perform action

The problem with this code is that, if you don’t compile the assertions, you don’t
compile the code that performs the action. Put executable statements on their
own lines, assign the results to status variables, and test the status variables in-
stead. Here’s an example of a safe use of an assertion:

Visual Basic Example of a Safe Use of an Assertion

actionPerformed = PerformAction()
Debug.Assert( actionPerformed ) ' Couldn't perform action

Use assertions to document preconditions and postconditions
Preconditions and postconditions are part of an approach to program design and
development known as “design by contract” (Meyer 1997). When preconditions
and postconditions are used, each routine or class forms a contract with the rest
of the program.

Preconditions are the properties that the client code of a routine or class prom-
ises will be true before it calls the routine or instantiates the object. Preconditions
are the client code’s obligations to the code it calls.

Postconditions are the properties that the routine or class promises will be true
when it concludes executing. Postconditions are the routine or class’s obligations
to the code that uses it.

Assertions are a useful tool for documenting preconditions and postconditions.
Comments could be used to document preconditions and postconditions, but,
unlike comments, assertions can check dynamically whether the preconditions
and postconditions are true.
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In the example below, assertions are used to document the preconditions and
postcondition of the Velocity routine.

Visual Basic Example of Using Assertions to Document Preconditions
and Postconditions
Private Function Velocity ( _

Byval Tlatitude As Single, _

Byval Tongitude As Single, _

ByVal elevation As Single _

) As Single

' Preconditions

Debug.Assert ( -90 <= latitude And latitude <= 90 )
Debug.Assert ( 0 <= longitude And Tongitude < 360 )
Debug.Assert ( -500 <= elevation And elevation <= 75000 )

' Postconditions
Debug.Assert ( 0 <= returnVelocity And returnVelocity <= 600 )

return value

Velocity = returnVelocity
End Function
If the variables latitude, longitude, and elevation were coming from an external
source, invalid values should be checked and handled by error handling code
rather than assertions. If the variables are coming from a trusted, internal source,
however, and the routine’s design is based on the assumption that these values
will be within their valid ranges, then assertions are appropriate.

For highly robust code, assert, and then handle the error anyway

For any given error condition a routine will generally use either an assertion or
error-handling code, but not both. Some experts argue that only one kind is
needed (Meyer 1997).

But real-world programs and projects tend to be too messy to rely solely on as-
sertions. On a large, long-lasting system, different parts might be designed by

different designers over a period of 5-10 years or more. The designers will be

separated in time, across numerous versions. Their designs will focus on differ-
ent technologies at different points in the system’s development. The designers
will be separated geographically, especially if parts of the system are acquired

from external sources. Programmers will have worked to different coding stan-
dards at different points in the system’s lifetime. On a large development team,
some programmers will inevitably be more conscientious than others and some
parts of the code will be reviewed more rigorously than other parts of the code.



le Complete

Here is the assertion code.

Here is the code that handles
bad input data at runtime.

8. Defensive Programming Page 8

With test teams working across different geographic regions and subject to busi-
ness pressures that result in test coverage that varies with each release, you can’t
count on comprehensive regression testing, either.

In such circumstances, both assertions and error handling code might be used to
address the same error. In the source code for Microsoft Word, for example,
conditions that should always be true are asserted, but such errors are also han-
dled by error-handling code in case the assertion fails. For extremely large, com-
plex, long-lived applications like Word, assertions are valuable because they
help to flush out as many development-time errors as possible. But the applica-
tion is so complex (million of lines of code) and has gone through so many gen-
erations of modification that it isn’t realistic to assume that every conceivable
error will be detected and corrected before the software ships, and so errors must
be handled in the production version of the system as well.

Here is an example of how that might work in the Velocity example.

Visual Basic Example of Using Assertions to Document Preconditions
and Postconditions

Private Function Velocity ( _
ByRef Tlatitude As Single, _
ByRef Tongitude As Single, _
ByRef elevation As Single _
) As Single

' Preconditions

Debug.Assert ( -90 <= latitude And latitude <= 90 )
Debug.Assert ( 0 <= longitude And Tongitude < 360 )
Debug.Assert ( -500 <= elevation And elevation <= 75000 )

' Sanitize input data. Values should be within the ranges asserted above,

' but If a value is not within its valid range, it will be changed to the

' closest legal value

If ( Tatitude < -90 ) Then
Tatitude = -90

ElseIf ( Tatitude > 90 ) Then
Tatitude = 90

End If

If ( longitude < 0 ) Then
Tongitude = 0

ElseIf ( longitude > 360 ) Then
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8.3 Error Handling Techniques

Assertions are used to handle errors that should never occur in the code. How do
you handle errors that you do expect to occur? Depending on the specific cir-
cumstances, you might want to return a neutral value, substitute the next piece of
valid data, return the same answer as the previous time, substitute the closest
legal value, log a warning message to a file, return an error code, call an error
processing routine or object, display an error message, or shutdown.

Here are some more details on these options.

Return a neutral value

Sometimes the best response to bad data is to continue operating and simply re-
turn a value that’s known to be harmless. A numeric computation might return 0.
A string operation might return an empty string, or a pointer operation might
return an empty pointer. A drawing routine that gets a bad input value for color
might use the default background or foreground color.

Substitute the next piece of valid data

When processing a stream of data, some circumstances call for simply returning
the next valid data. If you’re reading records from a database and encounter a
corrupted record, you might simply continue reading until you find a valid re-
cord. If you’re taking readings from a thermometer 100 times per second and
you don’t get a valid reading one time, you might simply wait another 1/100th of
a second and take the next reading.

Return the same answer as the previous time

If the thermometer-reading software doesn’t get a reading one time, it might
simply return the same value as last time. Depending on the application, tem-
peratures might not be very likely to change much in 1/100th of a second. In a
video game, if you detect a request to paint part of the screen an invalid color,
you might simply return the same color used previously.

Substitute the closest legal value

In some cases, you might choose to return the closest legal value, as in the
Velocity example earlier in this chapter. This is often a reasonable approach
when taking readings from a calibrated instrument. The thermometer might be
calibrated between 0 and 100 degrees Celsius, for example. If you detect a read-
ing less than 0, you can substitute 0 which is the closest legal value. If you detect
a value greater than 100, you can substitute 100. For a string operation, if a string
length is reported to be less than 0, you could substitute 0. My car uses this ap-
proach to error handling whenever | back up. Since my speedometer doesn’t
show negative speeds, when | back up it simply shows a speed of 0—the closest
legal value.



le Complete

8. Defensive Programming Page 10

Log a warning message to a file

When bad data is detected, you might choose to log a warning message to a file
and then continue on. This approach can be used in conjunction with other tech-
niques like substituting the closest legal value or substituting the next piece of
valid data.

Return an error code

You could decide that only certain parts of a system will handle errors; other
parts will not handle errors locally; they will simply report that an error has been
detected and trust that some other routine higher up in the calling hierarchy will
handle the error. The specific mechanism for notifying the rest of the system that
an error has occurred could be any of the following:

e Set the value of a status variable
e Return status as the function’s return value
e Throw an exception using the language’s built-in exception mechanism

In this case, the specific error-reporting mechanism is less important than the
decision about which parts of the system will handle errors directly and which
will just report that they’ve occurred. If security is an issue, be sure that calling
routines always check return codes.

Call an error processing routine/object

Another approach is to centralize error handling in a global error handling rou-
tine or error handling object. The advantage of this approach is that error proc-
essing responsibility can be centralized, which can make debugging easier. The
tradeoff is that the whole program will know about this central capability and
will be coupled to it. If you ever want to reuse any of the code from the system
in another system, you’ll have to drag the error handling machinery along with
the code you reuse.

This approach has an important security implication. If your code has encoun-
tered a buffer-overrun, it’s possible that an attacker has compromised the address
of the handler routine or object. Thus, once a buffer overrun has occurred while
an application is running, it is no longer safe to use this approach.

Display an error message wherever the error is encountered

This approach minimizes error-handling overhead, however it does have the po-
tential to spread user interface messages through the entire application, which
can create challenges when you need to create a consistent user interface, try to
clearly separate the Ul from the rest of the system, or try to localize the software
into a different language. Also, beware of telling a potential attacker of the sys-
tem too much. Attackers sometimes use error messages to discover how to attack
a system.
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Handle the error in whatever way works best locally

Some designs call for handling all errors locally—the decision of which specific
error-handling method to use is left up to the programmer designing and imple-
menting the part of the system that encounters the error.

This approach provides individual developers with great flexibility, but it creates
a significant risk that the overall performance of the system will not satisfy its
requirements for correctness or robustness (more on this later). Depending on
how developers end up handling specific errors, this approach also has the poten-
tial to spread user interface code throughout the system, which exposes the pro-
gram to all the problems associated with displaying error messages.

Shutdown

Some systems shut down whenever they detect an error. This approach is useful
in safety critical applications. For example, if the software that controls radiation
equipment for treating cancer patients receives bad input data for the radiation
dosage, what is its best error-handling response? Should it use the same value as
last time? Should it use the closest legal value? Should it use a neutral value? In
this case, shutting down is the best option. We’d much prefer to reboot the ma-
chine than to run the risk of delivering the wrong dosage.

A similar approach can be used to improve security of Microsoft Windows. By
default, Windows continues to operate even when its security log is full. But you
can configure Windows to halt the server if the security log becomes full, which
can be appropriate in a security-critical environment.

Robustness vs. Correctness

Here’s a brain teaser:

Suppose an application displays graphic information on
a screen. An error condition results in a few pixels in the
lower right quadrant displaying in the wrong color. On next
update, the screen will refresh, and the pixels will be the right
color again. What is the best error processing approach?

What do you think is the best approach? Is it to use the same value as last time?
Or perhaps to use the closest legal value? Suppose this error occurs inside a fast-
paced video game, and the next time the screen is refreshed the pixels will be
repainted to be the right color (which will occur within less than one second)? In
that case, choose an approach like using the same color as last time or using the
default background color.

Now suppose that the application is not a video game, but software that displays
X-rays. Would using the same color as last time be a good approach, or using the
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default background color? Developers of that application would not want to run
the risk of having bad data on an X-ray, and so displaying an error message or
shutting down would be better ways to handle that kind of error.

The style of error processing that is most appropriate depends on the kind of
software the error occurs in and generally favors more correctness or more ro-
bustness. Developers tend to use these terms informally, but, strictly speaking,
these terms are at opposite ends of the scale from each other. Correctness means
never returning an inaccurate result; no result is better than an inaccurate result.
Robustness means always trying to do something that will allow the software to
keep operating, even if that leads to results that are inaccurate sometimes.

Safety critical applications tend to favor correctness to robustness. It is better to
return no result than to return a wrong result. The radiation machine is a good
example of this principle.

Consumer applications tend to favor robustness to correctness. Any result what-
soever is usually better than the software shutting down. The word processor I’m
using occasionally displays a fraction of a line of text at the bottom of the screen.
If it detects that condition do | want the word processor to shut down? No. |
know that the next time | hit page up or page down, the screen will refresh, and
the display will be back to normal.

High-Level Design Implications of Error Process-
ing

With so many options, you need to be careful to handle invalid parameters in
consistent ways throughout the program. The way in which errors are handled
affects the software’s ability to meet requirements related to correctness, robust-
ness, and other non-functional attributes. Deciding on a general approach to bad

parameters is an architectural or high-level design decision and should be ad-
dressed at one of those levels.

Once you decide on the approach, make sure you follow it consistently. If you
decide to have high-level code handle errors and low-level code merely report
errors, make sure the high level code actually handles the errors! Some lan-
guages including C++ might give you the option of ignoring the fact that a func-
tion is returning an error code. (In C++, you’re not required to do anything with
a function’s return value.) Don’t ignore error information! Test the function re-
turn value. If you don’t expect the function ever to produce an error, check it
anyway. The whole point of defensive programming is guarding against errors
you don’t expect.
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This guideline holds true for system functions as well as your own functions.
Unless you’ve set an architectural guideline of not checking system calls for er-
rors, check for error codes after each call. If you detect an error, include the error
number and the description of the error.

8.4 Exceptions

Exceptions are a specific means by which code can pass along errors or excep-
tional events to the code that called it. If code in one routine encounters an unex-
pected condition that it doesn’t know how to handle, it throws an exception—
essentially throwing up its hands and yelling, “I don’t know what to do about
this; | sure hope somebody else knows how to handle it!” Code that has no sense
of the context of an error can return control to other parts of the system that
might have a better ability to interpret the error and do something useful about it.

Exceptions can also be used to straighten out tangled logic within a single stretch
of code, such as the “Rewrite with try-finally” example in Section 17.3.

The basic structure of an exception in C++, Java, and Visual Basic is that a rou-
tine uses throw to throw an exception object. Code in some other routine up the
calling hierarchy will catch the exception within a try-catch block.

Popular Languages vary in how they implement exceptions. Table 8-1 summa-
rizes the major differences:

Table 8-1. Popular Language Support for Exceptions

Exception At- C++ Java Visual Basic
tribute

Try-catch support  yes yes yes
Try-catch-finally no yes yes

support

What can be
thrown

Exception object
or object derived
from Exception
class; object
pointer; object
reference; data
type like string or
int

Exception object
or object derived
from Exception
class

Exception object
or object derived
from Exception
class
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Exception At- C++ Java Visual Basic
tribute
Effect of uncaught  Invokes Terminates thread ~ Terminates pro-
exception std::unexpected(),  of execution gram

which by default

invokes

std::terminate(),
which by default
invokes abort()

Exceptions thrown  No Yes No
must be defined in
class interface

Exceptions caught  No Yes No
must be defined in
class interface

Exceptions have an attribute in common with inheritance: used judiciously, they
can reduce complexity. Used imprudently, they can make code almost impossi-
ble to follow. This section contains suggestions for realizing the benefits of ex-
ceptions and avoiding the difficulties often associated with them.

Use exceptions to notify other parts of the program about errors that
should not be ignored

The overriding benefit of exceptions is their ability to signal error conditions in
such a way that they cannot be ignored (Meyers 1996). Other approaches to han-
dling errors create the possibility that an error condition can propagate through a
code base undetected. Exceptions eliminate that possibility.

Throw an exception only for conditions that are truly exceptional
Exceptions should be reserved for conditions that are truly exceptional, in other
words, conditions that cannot be addressed by other coding practices. Exceptions
are used in similar circumstances to assertions—for events that are not just infre-
quent, but that should never occur.

Exceptions represent a tradeoff between a powerful way to handle unexpected
conditions on the one hand and increased complexity on the other. Exceptions
weaken encapsulation by requiring the code that calls a routine to know which
exceptions might be thrown inside the code that’s called. That increases code
complexity, which works against what Chapter 5 refers to as Software’s Major
Technical Imperative: Managing Complexity.

Don’t use an exception to pass the buck
If an error condition can be handled locally, handle it locally. Don’t throw an
uncaught exception in a section of code if you can handle the error locally.
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Avoid throwing exceptions in constructors and destructors unless you catch
them in the same place

The rules for how exceptions are processed become very complicated very
quickly when exceptions are thrown in constructors and destructors. In C++, for
example, destructors aren’t called unless an object is fully constructed, which
means if code within a constructor throws an exception, the destructor won’t be
called, and that sets up a possible resource leak (Meyers 1996, Stroustrup 1997).
Similarly complicated rules apply to exceptions within destructors.

Language lawyers might say that remembering rule like these is “trivial,” but
programmers who are mere mortals will have trouble remembering them. It’s
better programming practice simply to avoid the extra complexity such code cre-
ates by not writing that kind of code in the first place.

Throw exceptions at the right level of abstraction

A routine should present a consistent abstraction in its interface, and so should a
class. The exceptions thrown are part of the routine interface, just like specific
data types are.

When you choose to pass an exception to the caller, make sure the exception’s
level of abstraction is consistent with the routine interface’s abstraction. Here is
an example of what not to do:

Bad Java Example of a Class That Throws an Exception at an Inconsis-
tent Level of Abstraction

class Employee {

public TaxId getTaxId() EOFException {

}

The getTaxld() code passes the lower-level io_disk_not_ready exception back to
its caller. It doesn’t take ownership of the exception itself; it exposes some de-
tails about how it is implemented by passing the lower-level exception to its
caller. This effectively couples the routine’s client’s code not the Employee
class’s code, but to the code below the Employee class that throws the
io_disk_not_ready exception. Encapsulation is broken, and intellectual manage-
ability starts to decline.

Instead, the getTaxld() code should pass back an exception that’s consistent with
the class interface of which it’s a part, like this:
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Good Java Example of a Class That Throws an Exception at a Consis-
tent Level of Abstraction

class Employee {

public TaxId getTaxId() throws EmployeeDataNotAvailable {

}

The exception-handling code inside getTaxld() will probably just map the
io_disk_not_ready exception onto the EmployeeDataNotAvailable exception,
which is fine because that’s sufficient to preserve the interface abstraction.

Include all information that led to the exception in the exception message
Every exception occurs in specific circumstances that are detected at the time the
code throws the exception. This information is invaluable to the person who
reads the exception message. Be sure the message contains the information
needed to understand why the exception was thrown. If the exception was
thrown because of an array index error, be sure the exception message includes
the upper and lower array limits and the value of the illegal index.

Avoid empty catch blocks
Sometimes it’s tempting to pass off an exception that you don’t know what to do
with, like this:

Bad Java Example of Ignoring an Exception

try {
// lots of code

} catch ( AnException exception ) {

}

Such an approach says that either the code within the try block is wrong because
it raises an exception for no reason, or the code within the catch block is wrong
because it doesn’t handle a valid exception. Determine which is the root cause of
the problem, and then fix either the try block or the catch block.

Occasionally you’ll find rare circumstances in which an exception at a lower
level really doesn’t represent an exception at the level of abstraction of the call-
ing routine. If that’s the case, at least document why an empty catch block is
appropriate.
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Know the exceptions your library code throws

If you’re working in a language that doesn’t require a routine or class to define
the exceptions it throws, be sure you know what exceptions are thrown by any
library code you use. Failing to catch an exception generated by library code will
crash your program just as fast as failing to catch an exception you generated
yourself. If the library code doesn’t document the exceptions it throws, create
prototyping code to exercise the libraries and flush out the exceptions.

Consider building a centralized exception reporter

One approach to ensuring consistency in exception handling is to use a central-
ized exception reporter. The centralized exception reporter provides a central
repository for knowledge about what kinds of exceptions there are, how each
exception should be handled, formatting of exception messages, and so on.

Here is an example of a simple exception handler that simply prints a diagnostic
message:

Visual Basic Example of a Centralized Exception Reporter, Part 1

- FURTHER READING For a Sub ReportException( _

more detailed explanation of Byval className, _
- this technique, see Practical ByVal thisException As Exception _
- Standards for Microsoft Vis- )
‘;ggsaac.NET(FoxaH Dim message As String

) Dim caption As String
message = "Exception: " & thisException.Message & ". " & ControlChars.CrLf & _
"Class: " & className & ControlChars.CrLf & _

"Routine: " & thisException.TargetSite.Name & ControlChars.CrLf
caption = "Exception"
MessageBox.Show( message, caption, MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation )

End Sub
You would use this generic exception handler with code like this:

Visual Basic Example of a Centralized Exception Reporter, Part 2

Try

Catch exceptionObject As Exception

ReportException( CLASS_NAME, exceptionObject )
End Try
The code in this version of ReportException() is simple. In a real application you
could make the code as simple or as elaborate as needed to meet your exception-
handling needs.
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If you do decide to build a centralized exception reporter, be sure to consider the
general issues involved in centralized error handling, which are discussed in
"Call an error processing routine/object™ in Section 8.2.

Standardize your project’s use of exceptions
To keep exception handling as intellectually manageable as possible, you can
standardize your use of exceptions in several ways.

e |If you’re working in a language like C++ that allows you to throw a variety
of kinds of objects, data, and pointers, standardize on what specifically you
will throw. For compatibility with other languages, consider throwing only
objects derived from the Exception base class.

e Define the specific circumstances under which code is allowed to use throw-
catch syntax to perform error processing locally.

e Define the specific circumstances under which code is allowed to throw an
exception that won’t be handled locally.

e Determine whether a centralized exception reporter will be used.

e Define whether exceptions are allowed in constructors and destructors.

Consider alternatives to exceptions
Several programming languages have supported exceptions for 5-10 years or
more, but little conventional wisdom has emerged about how to use them safely.

Some programmers use exceptions to handle errors just because their language
provides that particular error-handling mechanism. You should always consider
the full set of error-handling alternatives: handling the error locally, propagating
the error using an error code, logging debug information to a file, shutting down
the system, or using some other approach. Handling errors with exceptions just
because your language provides exception handling is a classic example of pro-
gramming in a language rather than programming into a language. (For details
on that distinction, see Section 4.3, “Your Location on the Technology Wave”
and Section 34.4, "Program Into Your Language, Not In It."

Finally, consider whether your program really needs to handle exceptions, pe-
riod. As Bjarne Stroustrup points out, sometimes the best response to a serious
run-time error is to release all acquired resources and abort. Let the user rerun
the program with proper input (Stroustrup 1997).
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8.5 Barricade Your Program to Contain the
Damage Caused by Errors

Barricades are a damage-containment strategy. The reason is similar to that for
having isolated compartments in the hull of a ship. If the ship runs into an ice-
berg and pops open the hull, that compartment is shut off and the rest of the ship
isn’t affected. They are also similar to firewalls in a building. A building’s fire-
walls prevent fire from spreading from one part of a building to another part.
(Barricades used to be called “firewalls,” but the term “firewall” now commonly
refers to port blocking.)

One way to barricade for defensive programming purposes is to designate certain
interfaces as boundaries to “safe” areas. Check data crossing the boundaries of a

safe area for validity and respond sensibly if the data isn’t valid. Figure 8-2 illus-
trates this concept.

Error! Objects cannot be created from editing field codes.
FO8xx02

Figure 8-2

Defining some parts of the software that work with dirty data and some that work
with clean can be an effective way to relieve the majority of the code of the responsi-
bility for checking for bad data.

This same approach can be used at the class level. The class’s public methods
assume the data is unsafe, and they are responsible for checking the data and
sanitizing it. Once the data has been accepted by the class’s public methods, the
class’s private methods can assume the data is safe.

Another way of thinking about this approach is as an operating-room technique.
Data is sterilized before it’s allowed to enter the operating room. Anything that’s
in the operating room is assumed to be safe. The key design decision is deciding
what to put in the operating room, what to keep out, and where to put the
doors—which routines are considered to be inside the safety zone, which are
outside, and which sanitize the data. The easiest way to do this is usually by
sanitizing external data as it arrives, but data often needs to be sanitized at more
than one level, so multiple levels of sterilization are sometimes required.

Convert input data to the proper type at input time

Input typically arrives in the form of a string or number. Sometimes the value
will map onto a boolean type like “yes” or “no.” Sometimes the value will map
onto an enumerated type like Color_Red, Color_Green, and Color_Blue. Carry-
ing data of questionable type for any length of time in a program increases com-
plexity and increases the chance that someone can crash your program by input-
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ting a color like “Yes.” Convert input data to the proper form as soon as possible
after it’s input.

Relationship between Barricades and Assertions

The use of barricades makes the distinction between assertions and error han-
dling clean cut. Routines that are outside the barricade should use error handling
because it isn’t safe to make any assumptions about the data. Routines inside the
barricade should use assertions, because the data passed to them is supposed to
be sanitized before it’s passed across the barricade. If one of the routines inside
the barricade detects bad data, that’s an error in the program rather than an error
in the data.

The use of barricades also illustrates the value of deciding at the architectural
level how to handle errors. Deciding which code is inside and which is outside
the barricade is an architecture-level decision.

8.6 Debugging Aids

Another key aspect of defensive programming is the use of debugging aids,
which can be a powerful ally in quickly detecting errors.

Don’t Automatically Apply Production Constraints
to the Development Version

A common programmer blind spot is the assumption that limitations of the pro-
duction software apply to the development version. The production version has
to run fast. The development version might be able to run slow. The production
version has to be stingy with resources. The development version might be al-
lowed to use resources extravagantly. The production version shouldn’t expose
dangerous operations to the user. The development version can have extra opera-
tions that you can use without a safety net.

One program | worked on made extensive use of a quadruply linked list. The
linked-list code was error prone, and the linked list tended to get corrupted. |
added a menu option to check the integrity of the linked list.

In debug mode, Microsoft Word contains code in the idle loop that checks the
integrity of the Document object every few seconds. This helps to detect data
corruption quickly, and makes for easier error diagnosis.

Be willing to trade speed and resource usage during development in exchange
for built-in tools that can make development go more smoothly.
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Introduce Debugging Aids Early

The earlier you introduce debugging aids, the more they’Il help. Typically, you
won’t go to the effort of writing a debugging aid until after you’ve been bitten by
a problem several times. If you write the aid after the first time, however, or use
one from a previous project, it will help throughout the project.

Use Offensive Programming

Exceptional cases should be handled in a way that makes them obvious during
development and recoverable when production code is running. Michael Howard
and David LeBlanc refer to this approach as “offensive programming” (Howard
and LeBlanc 2003).

Suppose you have a case statement that you expect to handle only five kinds of
events. During development, the default case should be used to generate a warn-
ing that says “Hey! There’s another case here! Fix the program!” During produc-
tion, however, the default case should do something more graceful, like writing a
message to an error-log file.

Here are some ways you can program offensively:

e Make sure asserts abort the program. Don’t allow programmers to get into
the habit of just hitting the ENTER key to bypass a known problem. Make the
problem painful enough that it will be fixed.

e Completely fill any memory allocated so that you can detect memory alloca-
tion errors.

e Completely fill any files or streams allocated to flush out any file-format
errors.

e Be sure the code in each case statement’s else clause fails hard (aborts the
program) or is otherwise impossible to overlook.

e Fill an object with junk data just before it’s deleted

Sometimes the best defense is a good offense. Fail hard during development so
that you can fail softer during production.

Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debug-
ging code in the program. If you’re writing code for commercial use, the per-
formance penalty in size and speed can be prohibitive. Plan to avoid shuffling
debugging code in and out of a program. Here are several ways to do that.
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Use version control and build tools like make

Version-control tools can build different versions of a program from the same
source files. In development mode, you can set the build tool to include all the
debug code. In production mode, you can set it to exclude any debug code you
don’t want in the commercial version.

Use a built-in preprocessor

If your programming environment has a preprocessor—as C++ does, for exam-
ple—you can include or exclude debug code at the flick of a compiler switch.
You can use the preprocessor directly or by writing a macro that works with pre-
processor definitions. Here’s an example of writing code using the preprocessor
directly:

C++ Example of Using the Preprocessor Directly to Control Debug
Code

I#define DEBUG

#if defined( DEBUG )
// debugging code

#endif

This theme has several variations. Rather than just defining DEBUG, you can
assign it a value and then test for the value rather than testing whether it’s de-
fined. That way you can differentiate between different levels of debug code.
You might have some debug code that you want in your program all the time, so
you surround that by a statement like #if DEBUG > 0. Other debug code might
be for specific purposes only, so you can surround it by a statement like #if
DEBUG == POINTER_ERROR. In other places, you might want to set debug
levels, so you could have statements like #if DEBUG > LEVEL_A.

If you don’t like having #if defined()s spread throughout your code, you can
write a preprocessor macro to accomplish the same task. Here’s an example:

C++ Example of Using a Preprocessor Macro to Control Debug Code

#define DEBUG

#if defined( DEBUG )

#define DebugCode( code_fragment ) { code_fragment }
#else

#define DebugCode( code_fragment )

#endif
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DebugCode (
statement 1;

statement 2;

statement n;
)5

As in the first example of using the preprocessor, this technique can be altered in
a variety of ways that make it more sophisticated than completely including all
debug code or completely excluding all of it.

Write your own preprocessor

If a language doesn’t include a preprocessor, it’s fairly easy to write one for in-
cluding and excluding debug code. Establish a convention for designating debug
code and write your precompiler to follow that convention. For example, in Java
you could write a precompiler to respond to the keywords //#BEGIN DEBUG
and //#END DEBUG. Write a script to call the preprocessor, and then compile
the processed code. You’ll save time in the long run, and you won’t mistakenly
compile the unpreprocessed code.

Use debugging stubs

In many instances, you can call a routine to do debugging checks. During devel-
opment, the routine might perform several operations before control returns to
the caller. For production code, you can replace the complicated routine with a
stub routine that merely returns control immediately to the caller or performs
only a couple of quick operations before returning control. This approach incurs
only a small performance penalty, and it’s a quicker solution than writing your
own preprocessor. Keep both the development and production versions of the
routines so that you can switch back and forth during future development and
production.

You might start with a routine designed to check pointers that are passed to it:

C++ Example of a Routine that Uses a Debugging Stub

void DoSomething(
SOME_TYPE *pointer;

) {
// check parameters passed in
CheckPointer( pointer );

Page 23
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During development, the CheckPointer() routine would perform full checking on
the pointer. It would be slow but effective. It could look like this:

C++ Example of a Routine for Checking Pointers During Development

This routine checks any Ivoid CheckPointer( void *pointer ) {

pointer that's passed to it. It // perform check 1--maybe check that it's not NULL
can be used during develop- // perform check 2--maybe check that its dogtag is legitimate
ment to perform as many // perform check 3--maybe check that what it points to isn't corrupted

checks as you can bear.
// perform check n--...
}
When the code is ready for production, you might not want all the overhead as-
sociated with this pointer checking. You could swap out the routine above and
swap in this routine:

C++ Example of a Routine for Checking Pointers During Production

This routine just returns im- |V01'd CheckPointer( void *pointer ) {
mediately to the caller. // no code; just return to caller
}
This is not an exhaustive survey of all the ways you can plan to remove debug-
ging aids, but it should be enough to give you an idea for some things that will
work in your environment.

8.7 Determining How Much Defensive Pro-
gramming to Leave in Production Code

One of the paradoxes of defensive programming is that during development,
you’d like an error to be noticeable—you’d rather have it be obnoxious than risk
overlooking it. But during production, you’d rather have the error be as unobtru-
sive as possible, to have the program recover or fail gracefully. Here are some
guidelines for deciding which defensive programming tools to leave in your pro-
duction code and which to leave out:

Leave in code that checks for important errors

Decide which areas of the program can afford to have undetected errors and
which areas cannot. For example, if you were writing a spreadsheet program,
you could afford to have undetected errors in the screen-update area of the pro-
gram because the main penalty for an error is only a messy screen. You could
not afford to have undetected errors in the calculation engine because the errors
might result in subtly incorrect results in someone’s spreadsheet. Most users
would rather suffer a messy screen than incorrect tax calculations and an audit by
the IRS.
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Remove code that checks for trivial errors

If an error has truly trivial consequences, remove code that checks for it. In the
previous example, you might remove the code that checks the spreadsheet screen
update. “Remove” doesn’t mean physically remove the code. It means use ver-
sion control, precompiler switches, or some other technique to compile the pro-
gram without that particular code. If space isn’t a problem, you could leave in
the error-checking code but have it log messages to an error-log file unobtru-
sively.

Remove code that results in hard crashes

During development, when your program detects an error, you’d like the error to
be as noticeable as possible so that you can fix it. Often, the best way to accom-
plish such a goal is to have the program print a debugging message and crash
when it detects an error. This is useful even for minor errors.

During production, your users need a chance to save their work before the pro-
gram crashes and are probably willing to tolerate a few anomalies in exchange
for keeping the program going long enough for them to do that. Users don’t ap-
preciate anything that results in the loss of their work, regardless of how much it
helps debugging and ultimately improves the quality of the program. If your
program contains debugging code that could cause a loss of data, take it out of
the production version.

Leave in code that helps the program crash gracefully

The opposite is also true. If your program contains debugging code that detects
potentially fatal errors, leave the code in that allows the program to crash grace-
fully. In the Mars Pathfinder, for example, engineers left some of the debug code
in by design. An error occurred after the Pathfinder had landed. By using the
debug aids that had been left in, engineers at JPL were able to diagnose the prob-
lem and upload revised code to the Pathfinder, and the Pathfinder completed its
mission perfectly (March 1999).

Log errors for your technical support personnel

Consider leaving debugging aids in the production code but changing their be-
havior so that it’s appropriate for the production version. If you’ve loaded your
code with assertions that halt the program during development, you might con-
sidering changing the assertion routine to log messages to a file during produc-
tion rather than eliminating them altogether.

See that the error messages you leave in are friendly

If you leave internal error messages in the program, verify that they’re in lan-
guage that’s friendly to the user. In one of my early programs, | got a call from a
user who reported that she’d gotten a message that read “You’ve got a bad
pointer allocation, Dog Breath!” Fortunately for me, she had a sense of humor. A
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common and effective approach is to notify the user of an “internal error” and
list an email address or phone number the user can use to report it.

8.8 Being Defensive About Defensive Pro-
gramming

Too much defensive programming creates problems of its own. If you check data
passed as parameters in every conceivable way in every conceivable place, your
program will be fat and slow. What’s worse, the additional code needed for de-
fensive programming adds complexity to the software. Code installed for defen-
sive programming is not immune to defects, and you’re just as likely to find a
defect in defensive-programming code as in any other code—more likely, if you
write the code casually. Think about where you need to be defensive, and set
your defensive-programming priorities accordingly.

CHECKLIST: Defensive Programming

General
O Does the routine protect itself from bad input data?

O Have you used assertions to document assumptions, including preconditions
and postconditions?

O Have assertions been used only to document conditions that should never
occur?

O Does the architecture or high-level design specify a specific set of error han-
dling techniques?

O Does the architecture or high-level design specify whether error handling
should favor robustness or correctness?

O Have barricades been created to contain the damaging effect of errors and
reduce the amount of code that has to be concerned about error processing?

O

Have debugging aids been used in the code?

O Has information hiding been used to contain the effects of changes so that
they won’t affect code outside the routine or class that’s changed?

O Have debugging aids been installed in such a way that they can be activated
or deactivated without a great deal of fuss?

Q Is the amount of defensive programming code appropriate—neither too
much nor too little?

O Have you used offensive programming techniques to make errors difficult to
overlook during development?
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Exceptions
O Has your project defined a standardized approach to exception handling?
O Have you considered alternatives to using an exception?

Q Is the error handled locally rather than throwing a non-local exception if
possible?

O Does the code avoid throwing exceptions in constructors and destructors?

O Are all exceptions at the appropriate levels of abstraction for the routines
that throw them?

Does each exception include all relevant exception background information?

(W]

O s the code free of empty catch blocks? (Or if an empty catch block truly is
appropriate, is it documented?)

Security Issues

O Does the code that checks for bad input data check for attempted buffer
overflows, SQL injection, html injection, integer overflows, and other mali-
cious inputs?

O

Are all error-return codes checked?
O Are all exceptions caught?

O Do error messages avoid providing information that would help an attacker
break into the system?

Additional Resources

Howard, Michael, and David LeBlanc. Writing Secure Code, 2d Ed., Redmond,
WA: Microsoft Press, 2003. Howard and LeBlanc cover the security implica-
tions of trusting input. The book is eye opening in that it illustrates just how
many ways a program can be breached—some of which have to do with con-
struction practices and many of which don’t. The book spans a full range of re-
quirements, design, code, and test issues.

Assertions

Maguire, Steve. Writing Solid Code. Redmond, WA: Microsoft Press, 1993.
Chapter 2 contains an excellent discussion on the use of assertions, including
several interesting examples of assertions in well-known Microsoft products

Stroustrup, Bjarne. The C++ Programming Language, 3d Ed., Reading, Mass.:
Addison Wesley, 1997. Section 24.3.7.2 describes several variations on the
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theme of implementing assertions in C++, including the relationship between
assertions and preconditions and postconditions.

Meyer, Bertrand. Object-Oriented Software Construction, 2d Ed. New York:
Prentice Hall PTR, 1997. This book contains the definitive discussion of precon-
ditions and postconditions.

Exceptions

Meyer, Bertrand. Object-Oriented Software Construction, 2d Ed. New York:
Prentice Hall PTR, 1997. Chapter 12 contains a detailed discussion of exception
handling.

Stroustrup, Bjarne. The C++ Programming Language, 3d Ed., Reading, Mass.:
Addison Wesley, 1997. Chapter 14 contains a detailed discussion of exception
handling in C++. Section 14.11 contains an excellent summary of 21 tips for
handling C++ exceptions.

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs
and Designs, Reading, Mass.: Addison Wesley, 1996. Items 9-15 describe nu-
merous nuances of exception handling in C++.

Arnold, Ken, James Gosling, and David Holmes. The Java Programming Lan-
guage, 3d Ed., Boston, Mass.: Addison Wesley, 2000. Chapter 8 contains a dis-
cussion of exception handling in Java.

Bloch, Joshua. Effective Java Programming Language Guide, Boston, Mass.:
Addison Wesley, 2001. Items 39-47 describe nuances of exception handling in
Java.

Foxall, James. Practical Standards for Microsoft Visual Basic .NET, Redmond,
WA: Microsoft Press, 2003. Chapter 10 describes exception handling in Visual
Basic.

Key Points
e Production code should handle errors in a more sophisticated way than “gar-
bage in, garbage out.”

e Defensive-programming techniques make errors easier to find, easier to fix,
and less damaging to production code.

e Assertions can help detect errors early, especially in large systems, high-
reliability systems, and fast-changing code bases.
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e The decision about how to handle bad inputs is a key error-handling deci-
sion, and a key high-level design decision.

e Exceptions provide a means of handling errors that operates in a different
dimension from the normal flow of the code. They are a valuable addition to
the programmer’s toolkit when used with care, and should be weighed
against other error-processing techniques.

e Constraints that apply to the production system do not necessarily apply to
the development version. You can use that to your advantage, adding code to
the development version that helps to flush out errors quickly.



le Complete

CC2E.COM/0936

9. The Pseudocode Programming Process Page 1

9

The Pseudocode
Programming Process

Contents
9.1 Summary of Steps in Building Classes and Routines

9.2 Pseudocode for Pros
9.3 Constructing Routines Using the PPP
9.4 Alternatives to the PPP

Related Topics
Creating high-quality classes: Chapter 6

Characteristics of high-quality routines: Chapter 7
High-level design: Chapter 5
Commenting style: Chapter 32

ALTHOUGH YOU COULD VIEW THIS WHOLE BOOK as an extended
description of the programming process for creating classes and routines, this
chapter puts the steps in context. This chapter focuses on programming in the
small—on the specific steps for building an individual class and its routines that
are critical on projects of all sizes. The chapter also describes the Pseudocode
Programming Process (PPP), which reduces the work required during design and
documentation and improves the quality of both.

If you’re an expert programmer, you might just skim this chapter. But look at the
summary of steps and review the tips for constructing routines using the
Pseudocode Programming Process in Section 9.3. Few programmers exploit the
full power of the process, and it offers many benefits.

The PPP is not the only procedure for creating classes and routines. Section 9.4
at the end of this chapter describes the most popular alternatives including test-
first development and design by contract.
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9.1 Summary of Steps in Building Classes
and Routines

Class construction can be approached from numerous directions, but usually it’s
an iterative process of creating a general design for the class, enumerating
specific routines within the class, constructing specific routines, and checking
class construction as a whole. As Figure 9-1 suggests, class creation can be a
messy process for all the reasons that design is a messy process (which are
described in 5.1).

Begin

v

Create a general
design for the

class

Construct the
routines within

Review and test the
class as a whole

the class

Done

FO9xx01
Figure 9-1
Details of class construction vary, but the activities generally occur in the order
shown here.

Steps in Creating a Class
The key steps in constructing a class are:

Create a general design for the class

Class design includes numerous specific issues. Define the class’s specific
responsibilities. Define what “secrets” the class will hide. Define exactly what
abstraction the class interface will capture. Determine whether the class will be
derived from another class, and whether other classes will be allowed to derive
from it. Identify the class’s key public methods. Identify and design any non-
trivial data members used by the class. Iterate through these topics as many times
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as needed to create a straightforward design for the routine. These considerations
and many others are discussed in more detail in Chapter 6, “Working Classes.”

Construct each routine within the class

Once you’ve identified the class’s major routines in the first step, you must
construct each specific routine. Construction of each routine typically unearths
the need for additional routines, both minor and major, and issues arising from
creating those additional routines often ripple back to the overall class design.

Review and test the class as a whole

Normally, each routine is tested as it’s created. After the class as a whole
becomes operational, the class as a whole should be reviewed and tested for any
issues that can’t be tested at the individual-routine level.

Steps in Building a Routine

Many of a class’s routines will be simple and straightforward to implement—
accessor routines, pass-throughs to other object’s routines, and the like.
Implementation of other routines will be more complicated, and creation of those
routines benefits from a systematic approach. The major activities involved in
creating a routine—designing the routine, checking the design, coding the
routine, and checking the code—are typically performed in the order shown in
Figure 9-2.

Begin

v

Check the
design

Design the

routine

Repeat if
necessary

Code the

routine

Review and
test the code

FO9xx02

Figure 9-2

These are the major activities that go into constructing a routine. They’re usually
performed in the order shown.
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Experts have developed numerous approaches to creating routines, and my
favorite approach is the Pseudocode Programming Process. That’s described in
the next section.

9.2 Pseudocode for Pros

The term “pseudocode” refers to an informal, English-like notation for
describing how an algorithm, a routine, a class, or a program will work. The
Pseudocode Programming Process (PPP) defines a specific approach to using
pseudocode to streamline the creation of code within routines.

Because pseudocode resembles English, it’s natural to assume that any English-
like description that collects your thoughts will have roughly the same effect as
any other. In practice, you’ll find that some styles of pseudocode are more useful
than others. Here are guidelines for using pseudocode effectively:

e Use English-like statements that precisely describe specific operations.

e Avoid syntactic elements from the target programming language.
Pseudocode allows you to design at a slightly higher level than the code
itself. When you use programming-language constructs, you sink to a lower
level, eliminating the main benefit of design at a higher level, and you saddle
yourself with unnecessary syntactic restrictions.

e Write pseudocode at the level of intent. Describe the meaning of the
approach rather than how the approach will be implemented in the target
language.

e Write pseudocode at a low enough level that generating code from it will be
nearly automatic. If the pseudocode is at too high a level, it can gloss over
problematic details in the code. Refine the pseudocode in more and more
detail until it seems as if it would be easier to simply write the code.

Once the pseudocode is written, you build the code around it and the pseudocode
turns into programming-language comments. This eliminates most commenting
effort. If the pseudocode follows the guidelines, the comments will be complete
and meaningful.

Here’s an example of a design in pseudocode that violates virtually all the
principles just described:

Example of Bad Pseudocode

increment resource number by 1
allocate a dlg struct using malloc
if malloc() returns NULL then return 1
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invoke OSrsrc_init to initialize a resource for the operating system
*hRsrcPtr = resource number

return 0

What is the intent of this block of pseudocode? Because it’s poorly written, it’s
hard to tell. This so-called pseudocode is bad because it includes coding details
such as *hRsrcPtr in specific C-language pointer notation, and malloc(), a
specific C-language function. This pseudocode block focuses on how the code
will be written rather than on the meaning of the design. It gets into coding
details—whether the routine returns a 1 or a 0. If you think about this
pseudocode from the standpoint of whether it will turn into good comments,
you’ll begin to understand that it isn’t much help.

Here’s a design for the same operation in a much-improved pseudocode:

Example of Good Pseudocode

Keep track of current number of resources in use
If another resource is available
Allocate a dialog box structure
If a dialog box structure could be allocated
Note that one more resource is in use
Initialize the resource
Store the resource number at the Tlocation provided by the caller
Endif
Endif
Return TRUE if a new resource was created; else return FALSE
This pseudocode is better than the first because it’s written entirely in English; it
doesn’t use any syntactic elements of the target language. In the first example,
the pseudocode could have been implemented only in C. In the second example,
the pseudocode doesn’t restrict the choice of languages. The second block of
pseudocode is also written at the level of intent. What does the second block of
pseudocode mean? It is probably easier for you to understand than the first
block.

Even though it’s written in clear English, the second block of pseudocode is
precise and detailed enough that it can easily be used as a basis for
programming-language code. When the pseudocode statements are converted to
comments, they’ll be a good explanation of the code’s intent.

Here are the benefits you can expect from using this style of pseudocode:

e Pseudocode makes reviews easier. You can review detailed designs without
examining source code. Pseudocode makes low-level design reviews easier
and reduces the need to review the code itself.
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e Pseudocode supports the idea of iterative refinement. You start with a high-
level design, refine the design to pseudocode, and then refine the
pseudocode to source code. This successive refinement in small steps allows
you to check your design as you drive it to lower levels of detail. The result
is that you catch high-level errors at the highest level, mid-level errors at the
middle level, and low-level errors at the lowest level—before any of them
becomes a problem or contaminates work at more detailed levels.

e Pseudocode makes changes easier. A few lines of pseudocode are easier to
change than a page of code. Would you rather change a line on a blueprint or
rip out a wall and nail in the two-by-fours somewhere else? The effects
aren’t as physically dramatic in software, but the principle of changing the
product when it’s most malleable is the same. One of the keys to the success
of a project is to catch errors at the “least-value stage,” the stage at which the
least has been invested. Much less has been invested at the pseudocode stage
than after full coding, testing, and debugging, so it makes economic sense to
catch the errors early.

e Pseudocode minimizes commenting effort. In the typical coding scenario,
you write the code and add comments afterward. In the PPP, the pseudocode
statements become the comments, so it actually takes more work to remove
the comments than to leave them in.

e Pseudocode is easier to maintain than other forms of design documentation.
With other approaches, design is separated from the code, and when one
changes, the two fall out of agreement. With the PPP, the pseudocode
statements become comments in the code. As long as the inline comments
are maintained, the pseudocode’s documentation of the design will be
accurate.

As a tool for detailed design, pseudocode is hard to beat. One survey found that
programmers prefer pseudocode for the way it eases construction in a
programming language, for its ability to help them detect insufficiently detailed
designs, and for the ease of documentation and ease of modification it provides
(Ramsey, Atwood, and Van Doren 1983). Pseudocode isn’t the only tool for
detailed design, but pseudocode and the PPP are useful tools to have in your
programmer’s toolbox. Try them. The next section shows you how.

9.3 Constructing Routines Using the PPP

This section describes the activities involved in constructing a routine, namely

e Design the routine

e Code the routine
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e Check the code
e Clean up leftovers
e Repeat as needed

Design the Routine

Once you’ve identified a class’s routines, the first step in constructing any of the
class’s more complicated routines is to design it. Suppose that you want to write
a routine to output an error message depending on an error code, and suppose
that you call the routine ReportErrorMessage(). Here’s an informal spec for
ReportErrorMessage():

ReportErrorMessage0 takes an error code as an input argument and
outputs an error message corresponding to the code. It’s responsible for
handling invalid codes. If the program is operating interactively,
ReportErrorMessage() displays the message to the user. If it’s operating
in command line mode, ReportErrorMessage() logs the message to a
message file. After outputting the message, ReportErrorMessage()
returns a status value indicating whether it succeeded or failed.

The rest of the chapter uses this routine as a running example. The rest of this
section describes how to design the routine.

Check the prerequisites

Before doing any work on the routine itself, check to see that the job of the
routine is well defined and fits cleanly into the overall design. Check to be sure
that the routine is actually called for, at the very least indirectly, by the project’s
requirements

Define the problem the routine will solve

State the problem the routine will solve in enough detail to allow creation of the
routine. If the high level design is sufficiently detailed, the job might already be
done. The high level design should at least indicate the following:

e The information the routine will hide

e Inputs to the routine

e Outputs from the routine

Page 7
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CROSS-REFERENCE  For e Preconditions that are guaranteed to be true before the routine is called
details on preconditions and (input values within certain ranges, streams initialized, files opened or

post conditions, see *Use closed, buffers filled or flushed, etc.)
assertions to document

preconditions and e Post conditions that the routine guarantees will be true before it passes
SOZStCO”d't'O”S" in Section control back to the caller (output values within specified ranges, streams

initialized, files opened or closed, buffers filled or flushed, etc.)

Here’s how these concerns are addressed in the ReportErrorMessage() example.

e The routine hides two facts: the error message text and the current
processing method (interactive or command line).

e There are no preconditions guaranteed to the routine.
e The input to the routine is an error code.

e Two kinds of output are called for: The first is the error message; the second
is the status that ReportErrorMessage() returns to the calling routine.

e The routine guarantees the status value will have a value of either Success or
Failure.

CROSS-REFERENCE  For .
. . . Name the routine
details on naming routines,

see Section 7.3, “Good Naming the routine might seem trivial, but good routine names are one sign of a

Routine Names.” superior program, and they’re not easy to come up with. In general, a routine
should have a clear, unambiguous name. If you have trouble creating a good
name, that usually indicates that the purpose of the routine isn’t clear. A vague,
wishy-washy name is like a politician on the campaign trail. It sounds as if it’s
saying something, but when you take a hard look, you can’t figure out what it
means. If you can make the name clearer, do so. If the wishy-washy name results
from a wishy-washy design, pay attention to the warning sign. Back up and
improve the design.

In the example, ReportErrorMessage() is unambiguous. It is a good name.

FURTHER READING For a Decide how to test the routine
different approach to As you’re writing the routine, think about how you can test it. This is useful for
construction that focuses on you when you do unit testing and for the tester who tests your routine
writing test cases first, see .
independently.

Test Driven Development

(Beck 2003). . L .
In the example, the input is simple, so you might plan to test

ReportErrorMessage() with all valid error codes and a variety of invalid codes.

Think about error handling
Think about all the things that could possibly go wrong in the routine. Think
about bad input values, invalid values returned from other routines, and so on.
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Routines can handle errors numerous ways, and you should choose consciously
how to handle errors. If the program’s architecture defines the program’s error
handling strategy, then you can simply plan to follow that strategy. In other
cases, you have to decide what approach will work best for the specific routine.

Think about efficiency

Depending on your situation, you can address efficiency in one of two ways. In
the first situation, in the vast majority of systems, efficiency isn’t critical. In such
a case, see that the routine’s interface is well abstracted and its code is readable
so that you can improve it later if you need to. If you have good encapsulation,
you can replace a slow, resource-hogging high-level language implementation
with a better algorithm or a fast, lean, low-level language implementation, and
you won’t affect any other routines.

In the second situation—in the minority of systems—performance is critical. The
performance issue might be related to scarce database connections, limited
memory, few available handles, ambitious timing constraints, or some other
scarce resource. The architecture should indicate how many resources each
routine (or class) is allowed to use and how fast it should perform its operations.

Design your routine so that it will meet its resource and speed goals. If either
resources or speed seems more critical, design so that you trade resources for
speed or vice versa. It’s acceptable during initial construction of the routine to
tune it enough to meet its resource and speed budgets.

Aside from taking the approaches suggested for these two general situations, it’s
usually a waste of effort to work on efficiency at the level of individual routines.
The big optimizations come from refining the high-level design, not the
individual routines. You generally use micro-optimizations only when the high-
level design turns out not to support the system’s performance goals, and you
won’t know that until the whole program is done. Don’t waste time scraping for
incremental improvements until you know they’re needed.

Research functionality available in the standard libraries

The single biggest way to improve both the quality of your code and your
productivity is to reuse good code. If you find yourself grappling to design a
routine that seems overly complicated, ask whether some or all of the routine’s
functionality might already be available in the library code of the environment or
tools you’re using. Many algorithms have already been invented, tested,
discussed in the trade literature, reviewed, and improved. Rather than spending
your time inventing something when someone has already written a Ph.D.
dissertation on it, take a few minutes to look through the code that’s already been
written, and make sure you’re not doing more work than necessary.
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Research the algorithms and data types

If functionality isn’t available in the available libraries, it might still be described
in an algorithms book. Before you launch into writing complicated code from
scratch, check an algorithms book to see what’s already available. If you use a
predefined algorithm, be sure to adapt it correctly to your programming
language.

Write the pseudocode

You might not have much in writing after you finish the preceding steps. The
main purpose of the steps is to establish a mental orientation that’s useful when
you actually write the routine.

With the preliminary steps completed, you can begin to write the routine as high-
level pseudocode. Go ahead and use your programming editor or your integrated
environment to write the pseudocode—the pseudocode will be used shortly as
the basis for programming-language code.

Start with the general and work toward something more specific. The most
general part of a routine is a header comment describing what the routine is
supposed to do, so first write a concise statement of the purpose of the routine.
Writing the statement will help you clarify your understanding of the routine.
Trouble in writing the general comment is a warning that you need to understand
the routine’s role in the program better. In general, if it’s hard to summarize the
routine’s role, you should probably assume that something is wrong. Here’s an
example of a concise header comment describing a routine:

Example of a Header Comment for a Routine

This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

After you’ve written the general comment, fill in high-level pseudocode for the
routine. Here’s the pseudocode for the example:

Example of Pseudocode for a Routine

This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

set the default status to "fail"

Took up the message based on the error code

if the error code is valid
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if doing interactive processing, display the error message

interactively and declare success

if doing command Tine processing, log the error message to the
command 1line and declare success

if the error code isn't valid, notify the user that an internal error

has been detected

return status information

Note that the pseudocode is written at a fairly high level. It certainly isn’t written
in a programming language. It expresses in precise English what the routine
needs to do.

Think about the data

You can design the routine’s data at several different points in the process. In the
example, the data is simple and data manipulation isn’t a prominent part of the
routine. If data manipulation is a prominent part of the routine, it’s worthwhile to
think about the major pieces of data before you think about the routine’s logic.
Definitions of key data types are useful to have when you design the logic of a
routine.

Check the pseudocode

Once you’ve written the pseudocode and designed the data, take a minute to
review the pseudocode you’ve written. Back away from it, and think about how
you would explain it to someone else.

Ask someone else to look at it or listen to you explain it. You might think that
it’s silly to have someone look at 11 lines of pseudocode, but you’ll be surprised.
Pseudocode can make your assumptions and high-level mistakes more obvious
than programming-language code does. People are also more willing to review a
few lines of pseudocode than they are to review 35 lines of C++ or Java.

Make sure you have an easy and comfortable understanding of what the routine
does and how it does it. If you don’t understand it conceptually, at the
pseudocode level, what chance do you have of understanding it at the
programming language level? And if you don’t understand it, who else will?

Try a few ideas in pseudocode, and keep the best (iterate)

Try as many ideas as you can in pseudocode before you start coding. Once you
start coding, you get emotionally involved with your code and it becomes harder
to throw away a bad design and start over.

The general idea is to iterate the routine in pseudocode until the pseudocode
statements become simple enough that you can fill in code below each statement

Page 11
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and leave the original pseudocode as documentation. Some of the pseudocode
from your first attempt might be high-level enough that you need to decomp