
A Conceptual Framework for Computer Architecture* 

S.S. REDDI 

W. W. Gaertner Research, Inc., 1492 High Ridge Road, Stamford, Connecticut 06908 

E.A. FEUSTEL 

Laboratory for Computer Science and Engineering, 
Department of Electrical Engineering, Rice University, Houston, Texas 77005 

The purpose of this paper is to describe the concepts, definitions, and ideas of 
computer architecture and to suggest that architecture can be viewed as composed 
of three components: physical organization; control and flow of information; and 
representation, interpretation and transformation of information. This framework 
can accommodate diverse architectural concepts such as array processing, 
mieroprogramming, stack processing and tagged architecture. Architectures of 
some existing machines are considered and methods of associating architectural 
concepts with the components are established. Architecture design problems and 
trade-offs are discussed in terms of the proposed framework. 

Keywords and Phrases: computer architecture, framework, composition of 
architecture, information flow, physical organization, unification of diverse 
architectural concepts. 

CR Categories: 6.0, 6.20, 6.22, 6.29. 

INTRODUCTION 

Computer architecture is receiving, and 
will continue to receive special attention 
as novel architectures differing from the 
classic von Neumann organization emerge 
as viable approaches to the problem of 
increasing the computational speeds and 
cost-effectiveness of computer systems. 
Computers such as the CDC 6600, CDC 
STAR-100, TI ASC, Burroughs B6700, 
Goodyear STARAN and CRAY-1 are con- 
vincing arguments that architecture plays 
a prominent role in deciding computer 
system performance and in achieving faster 
computational speeds than has been pre- 

* This work was supported by NSF" Grant GJ 
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was at Rice University. 

viously possible. In the literature there is 
a multitude of proposals as to how computer 
architecture can be defined and how an 
architect's job can be described. Unfortu- 
nately, most of these proposed concepts 
touch only different facets of computer 
architecture and do not encompass the 
complete spectrum of architectures. In this 
paper we present a conceptual viewpoint 
that allows a coherent and unified treatment 
of computer architecture. We believe that 
computer architecture can be viewed as 
composed of 1)physical organization; 2) 
control and flow of information; and 3) 
representation, interpretation and trans- 
formation of information, and we develop a 
framework for architecture based on this 
viewpoint. We consider some existing com- 
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puter architectures and show how to associ- 
ate architectural concepts and innovations 
with these three components. We then 
develop architectural concepts that a system 
architect can use and verify that these con- 
cepts can be accommodated within our 
framework. Finally, we indicate how our 
hypothesis can lead to the concept of dy- 
namic system architecture. 

EXISTING DEFINITIONS AND INTERPRETATIONS 
OF COMPUTER ARCHITECTURE 

We first consider the various definitions and 
interpretations of a computer architect's 
job and of computer architecture as pre- 
sented in the literature. According to Brooks 
[8]: "The computer architect designs the 
external specifications, gross data flow, and 
gross sequencing of a system. He is, like 
the building architect, the user's advocate. 
He must balance the conflicting demands 
of engineer (cost, speed), programmer (func- 
tion, ease of use) and marketing (function, 
speed, cost) to yield the machine of greatest 
true value to the user . . . .  " Foster in Com- 
puter architecture [17] introduces the archi- 
tect as follows: "The computer architect in 
turn is unconcerned with the insides of an 
adder or a shift register. His job is to as- 
semble the units turned out by the logical 
designer into a useful, flexible tool that is 
called a computer." Beizer [6] describes the 
architect's job as " . . .  the design of a hard- 
ware/software complex, subject to realistic 
technical, economic, operational and social 
constraints such that it 1) works, 2) is opti- 
mum and 3) survives." He summarizes the 
architect's role by stating that "it is syn- 
thetical, catalytic and translative. His de- 
sign is a synthesis of the substances of sub- 
ordinate disciplines." Abrams and Stein 
[1] explain the architect's duties: "The job 
of the computer system architect is to de- 
velop an overall concept of a machine--what 
it can do and how that solves the problem 
for which the machine is intended. Just as an 
architect who designs houses must consider 
utility, appearance, and compatibility with 
the neighborhood, so must the computer 
designer balance requirements, user inter- 
face, and costs to make a viable design." 

Several explicit definitions of architecture 
also can be found. The term "Architecture" 
is used by Amdahl, et el., [2] in introducing 
the IBM System/360 "to describe the at- 
tributes of a system as seen by the pro- 
grammer, i.e., the conceptual structure and 
functional behavior, as distinct from the 
organization of the data flow and controls, 
the logical design, and the physical imple- 
mentation." Foster [17] explains: "The field 
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of computer architecture, or 'the art of de- 
signing a machine that will be a pleasure to 
work with' is only gradually receiving the 
recognition it deserves. This art, one can- 
not call it a science, is one step more ab- 
stract than that of a logical designer, which 
in turn is abstracted from the study of elec- 
tronic circuits." Finally Foster [16] also 
suggests: "Computer Architecture is the 
profession of adopting present day tech- 
nology to the solution of current computing 
problems and of dreaming about the future 
of the field in such a way as to influence it 
for the better." 

A FRAMEWORK FOR COMPUTER 
ARCHITECTURE 

The disparities in existing definitions and 
interpretations of computer architecture are 
directly traceable to its multifaceted nature. 
Since computer architecture can be viewed 
from different perspectives, each individual 
forms his own notion and interpretation. 
A FORTRAN user may not perceive signifi- 
cant architectural differences between IBM 
and CDC computers other than word and 
core size. On the other hand a system pro- 
grammer can easily distinguish the archi- 
tectures of these computers in terms of their 
operation codes, address formation, and 
input/output. However, he will find it diffi- 
cult to distinguish an IBM 370/125 from an 
IBM 370/155, or a CDC 6600 from a CDC 
7600, and will be unable to perceive hard- 
ware parallelism that may exist in the central 
processing unit. Thus architectural details 
can be transparent or visible depending on 
the viewer and his level of perception. 

Our hypothesis is conditioned by the 
above observations, as we compare and con- 
trast architectures and architectural features 
in terms of the following three components. 
For a valid comparison we should choose 
commensurate levels, i.e., user level, system 
programmer level. 

1) Physical organization; 
2) control and flow of information; and 
3) representation, interpretation and 

transformation of information. 
Let us consider some examples. The 

ILLIAC IV and a conventional von Neumann 

organization have different architectures; 
they differ in their physical organization 
and the way they handle control and flow of 
information. Tagged architecture [12] dif- 
fers from yon Neumann architecture in 
representation and interpretation of informa- 
tion. The term "transformation" in the 
third component refers to the situation 
where representation and interpretation of 
information are changed dynamically by 
the system for user convenience, system 
efficiency, or for implementing a software 
system to support privacy and protection. 
This kind of transformation is to be dis- 
tinguished from the algorithmic transfor- 
mation on data undertaken in solving spe- 
cific problems. 

SOME EXISTING COMPUTER ARCHITECTURES 

In this section we consider some existing 
computer systems and explain their archi- 
tectural features using our three components. 
These explanations are sufficiently detailed 
so that the reader may become familiar 
with the process of associating architectural 
concepts with the components. In addition 
we consider microprogramming, an estab- 
lished architectural feature, to reinforce our 
arguments regarding the validity of our 
hypothesis. 

Physical Organization 

Technological advances achieved in the past 
decade enabled architects to propose many 
innovative physical organizations for com- 
puter systems, some of which have already 
been realized in practice. Three computer 
systems, the CDC 6600, ILLIAC IV and TI 
ASC, are studied to show the different 
organizations that can be conceived. The 
CDC 6600 is an example of distributed 
computing and employs an organization 
which exploits functional parallelism. The 
ILLI•C IV and TI ASC use array and pipe- 
line organizations respectively for enhanced 
performance. All three systems depart from 
the conventional yon Neumann machine 
in their physical system organization. 

CDC 6600 Central Processor Organization: 
The CDC 6600 [32] organization shown in 
Figure 1 has ten independent functional 
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Figure 1. Block diagram of the CDC 6600 computer system, an example of distributed 
computing architecture. 

units, twenty-four data and address registers, 
an instruction stack and a scoreboard in its 
central processor. The ten functional units, 
which are independent of each other, are 
capable of simultaneous operation. The 
functional units are specialized to perform 
operations such as floating add, floating 
multiply, floating divide, shift, fixed add, 
etc. The twenty-four registers are divided 
into data (X~), address (A,) and index (B~) 
groups; each group consists of eight registers. 
Except for data registers which are sixty 
bits long, all registers are eighteen bits 
long. Data registers XI through X5 are 
used as "read" registers and X6 and X7 as 
"store" registers. There is a "partner" re- 
lationship between X, and A~ registers. An 
operand is fetched into X~, i = 1 to 5, from 
memory by loading its addresses into A,; 
similarly an operand is stored from X~, 

i = 6, 7, into the memory location specified 
by A,. The index registers used are to modify 
the addresses in the address registers. (For 
instance, there is an instruction which adds 
As and Bk and transfers the result to A,). 
The index registers are also used to store 
fixed-point integers and manipulate float- 
ing-point exponents. Registers Ao and Xo 
are used to reference the extended core 
storage. The partner relationship permits 
concurrent calculation of arithmetic and 
address information. All arithmetic compu- 
tations are performed on operands from the 
twenty-four registers with results returned 
to these registers. 

Instructions are loaded into the processing 
unit under the control of P register (see 
Figure 1). The instruction stack contains 
eight 60-bit registers capable of holding 
up to 32 instructions. Instructions are ae- 
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cessed from memory and stored in a last in, 
first out (LIFO) manner in the instruction 
stack. When the program executes a branch 
to one of the instructions stored in the 
stack, that instruction is directly fetched 
from the stack rather than from memory. 
In this way it is possible to cut down the 
number of memory accesses in the case of 
loops that can be accommodated in the 
stack. Instructions pass from the instruc- 
tion stack to three instruction registers 
U0, U1 and U2 whose contents are interpreted 
and decoded by the scoreboard. The score- 
board examines the instruction to be exe- 
cuted and determines whether the func- 
tional unit and registers needed for the execu- 
tion of the instruction are available; if they 
are available the instruction is initiated. 
Otherwise, the instruction is held until 
they are available. The scoreboard main- 
tains the status of each central register and 
functional unit so that it can decide when 
an instruction can be issued. The score- 
board provides interlocks between instruc- 
tions so that though parallelism in instruc- 
tions is exploited, precedences among in- 
structions as specified by the programmer 
are still preserved. 

The ILLIAC IV  System: This system [5] 
employs an array structure for organizing 
its processors. It  consists of 256 processing 
elements arranged into four quadrants. 
Only one quadrant has been constructed 
because of economic considerations. 

A quadrant consists of a control unit and 
sixty four processing elements. Processing 
element i is connected to processing elements 
i W 1 (mod 64), i - 1 (mod 64), i -~ 8 (mod 
64) and i - 8 (mod 64). The control unit 
fetches instructions from a processing ele- 
ment memory, decodes them, and issues 
control pulses to the processing elements 
for execution. I t  broadcasts memory ad- 
dresses and data words when they are 
common to all processors. An instruction 
can be either a control or processing unit 
instruction. The former directs operations 
local to the control unit whereas the latter 
controls the execution of the processing 
units. The control unit is designed to over- 
lap the executions of the two different in- 
struction types. 

The processing element consists of the 
processing element memory (2048 64-bit 
words), arithmetic and logic circuitry, and 
registers. Each element executes the common 
instruction issued by the control unit on 
data stored in its memory. An element will 
not execute the common instruction if its 
enableflip-flop is not set. In other words all 
the enabled elements execute the same in- 
struction issued by the control unit. Digital 
Equipment PDP-10 computers perform the 
executive control of system operation, I /O 
processing and supervision, and compilation 
of the ILLIAC IV programs. 

The TI ASC System: A principal feature 
of the Texas Instruments Advanced Scien- 
tiiic Computer (ASC) [31] is the central 
processor's four pipelines (Figure 2). If 
computational requirements do not warrant 
the capacity of four pipelined arithmetic 
units, one or two pipeline CPs are available. 
The CP pipeline consists of the instruction 
processing unit (IPU), the memory buffer 
unit (MBU), and the arithmetic unit (AU). 
The IPU supplies a continuous stream of in- 
structions for execution by the other units 
of the pipeline. I t  fetches and decodes in- 
structions, accesses and stores operands, and 
handles branch conditions. The MBU pro- 
vides an interface between the central mem- 
ory and AU by supplying a continuous 
stream of operands to the AU and storing 
results in the memory. The AU performs 
arithmetic operations and is pipelined as 
shown in Figure 2. Depending on the mode 
of arithmetic operation, the pipeline is struc- 
t~ured to divert operand flow along the dot- 
ted or solid lines. The central processor is a 
vector as well as scalar processor and has 
vector instructions at machine level. 

CONTROL AND FLOW OF INFORMATION 

Information flow and its control in a com- 
puter play a prominent role in deciding the 
computer architecture. This component en- 
compasses the aspects of control mechanisms 
and schemes used for controling and direct- 
ing the system's information flow. Note the 
interdependence between the control and 
flow elements. Sometimes control initiates 
information flow (as in conventional syn- 
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Figure 2. Processing and arithmetic pipelines of the TI/ASC system. 
(Reprinted, by permission of Texas Instruments Inc., from A description of the advanced scientific computer system). 

chronous computers where control pulses are 
issued periodically to direct information 
flow) and sometimes information flow initi- 
ates control (as in interrupt and data driven 
schemes); thus the control element may be 
isolated from or incorporated in information 
flow. Control may be centralized (as in most 
computer systems) or decentralized (as in a 
network of microprocessors). 

Alteration of information flow in a tradi- 
tional computer leads to novel and interest- 
ing architectures. A familiar example is the 
Burroughs B6700, a stack processor. In the 
following we describe briefly the B6700 
processor and stack organization and indi- 
cate how information flow is affected by the 
stack. 

The Burroughs B6700: An integrated 
hardware-software approach is taken in 

designing the B6700. The system is pro- 
grammed using high level languages (e.g., 
ALGOL, COBOL and FORTRAN) and does not 
offer the user a traditional machine level 
language. The system hardware is designed 
to handle block structured languages and 
procedures efficiently by means of a stack 
mechanism and display registers. One learns 
to appreciate the system architecture more 
when one becomes familiar with the aspects 
of system implementation associated with 
block structured languages, such as access- 
ing global and local variables, address for- 
mation for accessing procedure segments, 
and nesting of blocks. 

Processor O r g a n i z a t i o n  

A block diagram of the processor [10] is 
shown in Figure 3 [11]. A program word is 
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transferred to the P register through the 
memory controler under the control of the 
program controler. The program controler 
examines the instruction to be executed and 
initiates the proper operator family. Re- 
lated operators are grouped into a single 
operator family; thus family A performs all 
arithmetic operations, family B performs 
all logic operations, and so on. The arith- 
metic and string controlers are enabled by 
their respective family operators; they con- 
trol and supervise the execution of arith- 
metic and string operations. 

The transfer controler contains registers 
A, X, B and Y necessary for setting up the 
stack. The interrupt controler provides a 
method of interrupting the program flow'by 
setting up necessary control words in the 
stack. The processor takes the appropriate 
action by examining the control words. 
The memory controler handles storage re- 
quests and contains an adder which is used 
to generate addresses. The stack controler 
is responsible for automatic stack adjust- 
ment; it manipulates data between main 
memory and the A and B registers during 
the pop-up and push-down operations of 
the stack. 

The machine language operators are 
composed of eight-bit syllables and each 
memory word consists of six syllables. The 
operator syllable pointed to by the program 
syllable register is decoded, and the operator 
family specified by the operator syllable is 
selected to receive the execute signal. The 
T register in each family specifies the opera- 
tion to be performed in that particular 
family. 

Stack Mechanism 

Registers A and B are used to set up the 
stack [13] (Figure 4); registers X and Y are 
used as extension to A and B when double 
precision operands are used. The stack is 
formed by linking an assigned area of the 
memory to A and B. When A and B are 
filled up with operands and a third operand 
is entered into the stack the operand in B 
is pushed into the stack's memory area. 
Register S contains the address of the last 
word placed into the memory area. The 
stack memory area of a job is bounded by 
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the bottom of stack (BOS) and stack limit 
(SL) registers. 

Word formats used in the system are 
shown in Figure 5 and are determined by 
the hardware using the leading three tag 
bits. Data is addressed by means of data 
descriptors (DD), indirect reference words 
(IRW) and stuffed indirect reference words 
(SIRW). Program code is accessed through 
segment descriptors. In descriptor words 
the address field contains the absolute ad- 
dress of an array in either main or disc 
memory depending on whether the presence 
bit P is one or zero. The length field defines 
the length of the array. IRW and SIt~W 
are used to address data located in the 
stack memory area of the job. 

The stack keeps track of the stack history 
list and the addressing environment list. 
The stack history list consists of blocks and 
procedures contained in the stack and hence 
is dynamic in nature. The addressing en- 
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vironment list enables the system to access 
local and global variables relative to the 
block or procedure presently under execu- 
tion. 

Marlc stack control words (MSCW) are 
used to maintain both the stack history and 
addressing environment lists. Figure 6 shows 
an example of how an MSCW is entered 
when a procedure is entered. The parame- 
ters and local variables of the procedure are 
entered following the MSCW and hence 
are referenced by addressing that is relative 
to the location of the MSCW. The DF 
fields of the MSCWs keep track of the 
stack history whereas the DISP fields main- 
tain the addressing environment list. 

The variables are accessed by means of 
address couples. An address couple consists 
of the lexicographic level (LL) of the variable 

and an index value ((7) (Figure 6). When a 
variable is specified by an address couple, 
one can deduce from the execution environ- 
ment and the lexicographie level which 
block or procedure specifies the variable. 
The display registers (DO to D31) contain 
the addresses of the MSCWs of the pro- 
cedures that are linked by the address en- 
vironment list to the procedure under exe- 
cution. By adding the index value to the 
contents of the appropriate display register 
the absolute address of the variable is 
generated. As an example let V1 be ref- 
erenced in Procedure B. Since V1 is repre- 
sented by the address couple (2,2) the 
system obtains the address of the appropri- 
ate MSCW from the display register D2 
and adds 2 to it to obtain the address of V1. 
Note that the display registers must always 
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Figure 7. Program representation in the B6700. 

point to the address environment list and 
have to be changed upon procedure exit or 
entry to the correct MSCWs. 

The stack mechanism also provides the 
capability of handling several active stacks 
by organizing them as a tree. It  is beyond 
the scope of the present paper to go into 
these details. Interested readers should 
refer to Organick [27]. 

Representation, Interpretation and Transforma- 
tion of Information 

The information processing capabilities of 
a computer system depend to a large extent 
on how the system interprets and represents 
the information. In this section we consider 
different types of representation, interpre- 

tation, and transformation of information 
that a computer may use. 

Program Representation in the Burroughs 
B6700: Consider the ALGOL program shown 
in Figure 7. The system keeps track of the 
program segments by means of the segment 
dictionary. The instruction pointer (IP) and 
Environment Pointer (EP) provide the 
physical location of the instruction in the 
program as well as the environment under 
which the instruction will be executed. (We 
discussed in the preceding section how the 
display registers which constitute the EP 
provide environmental information and 
pointers are set up in the stack area for the 
execution record of the program). The IP 
is a three-tuple of the form either (1, i, j) or 
(0, i, j). (1, i, 3) indicates that the instruction 
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resides in the j th  location of the ith seg- 
ment in the segment dictionary. (0, i, j) 
means that a "system intrinsic" (i.e., sys- 
tem routine) is addressed. The j th  location 
of the ith segment in the stack trunk which 
contains supervisory code segments and 
system tables is accessed. In the example 
print and sqrt are system intrinsics. The 
segment descriptors indicate whether the 
segments are in the main memory and how 
to locate the segments on the disc if they 
are not in the main memory. 

This kind of program representation leads 
to efficient memory utilization. Since the 
stack trunk, stack segment and stack dic- 
tionary compactly represent the program 
status and its code requirements, the work- 
ing sets tend to be small. Also the repre- 
sentation leads to sharing of programs and 
data. Though two programs may share a 
common procedure segment and hence 
have the same instruction pointers, their 
EPs are different. For further discussion of 
the B6700 and its system description see 
[27]. 

Representation and Interpretation of 
Tnstructions 

Instructions determine the information flow 
and reflect the structure and capabilities of 
the system. One of the principal duties of 
the computer architect is to develop a com- 
prehensive instruction set which is simple to 
use but exploits the system resources to 
their fullest extent. 

An instruction can be of zero-address, 
one-address or multi-address format. Zero 
address instructions are used in computers 
with stack processing where the use of 
operands on the top of the stack is implied 
by the instruction. Single- and multi-address 
formats are used in computer systems 
modeled after yon Neumann systems. 
Richards [29] gives an excellent discussion of 
the various address formats. 

Addressing of operands in an instruction 
can be indexed or indirect. When the ad- 
dressing is indexed, the addresses of the 
operands are formed by adding or subtract- 
ing the contents of "index" registers to the 
address parts of the instruction. When the 
addressing mode is indirect, then the address 

of the operand can be found in the location 
specified by the address part of the instruc- 
tion. The instruction repertory of a com- 
puter system includes instructions which 
allow jump operations and which handle sub- 
routine operations. 

The instruction set can be significantly 
affected by the system architecture. For 
instance, consider tagged architecture [12] 
which differentiates integer operands from 
floating point operands at machine level. 
In this case it is not necessary to have sepa- 
rate instructions for floating point add and 
integer add. When an add instruction is 
issued, the system, by examining the ope- 
rands involved, decides whether it is a 
floating point or integer add. Another ex- 
ample of the effect of architecture on the 
instruction set is the stack processor (e.g., 
the B6700). 

Representation and Interpretation of Data 

Knuth [25] explains data as: "representa- 
tion in a precise, formalized language of 
some facts or concepts, often numeric or al- 
phabetic values, in a manner which can be 
manipulated by a computational method." 
Inevitably, when data represents mathemat- 
ical concepts or real life situations, relation- 
ships between the data elements are bound 
to exist. Since data is a representation, the 
precision to which the representation should 
be expressed becomes a factor. A properly 
conceived computer system should cope with 
the problems of relational and precision re- 
presentations of data. 

Floating point numbers can be represented 
in the IBM 370 system series in short (32 
bits), long (64 bits) or extended precision 
(128 bits) form. The system uses the byte 
as its basic storage unit which consists of 
8 bits. When a floating point instruction 
like ADR (add long floating point) is to 
be executed, the system fetches 8 consecu- 
tire bytes into the central processing unit 
(CPU) where the left-most (or the first) 
byte is the one addressed in the instruction. 
The system recognizes the operands as float- 
ing point, integer, etc., by examining the in- 
struction rather than the operands. 

In the Burroughs B6500/7500 organiza- 
tion, data words are distinguished as single 
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precision (48 bits) or double precision (96 
bits) operands by attaching 3 tag bits to 
every word (51 bits). Data may be refer- 
enced as an operand (without any qualifi- 
cations), and the processor knows by exa- 
mining the tag bits whether the operand is 
single or double precision. For example, when 
a command is issued to store an operand on 
the top of the stack, the word specified by 
the operand's address is fetched and exa- 
mined. If the operand is double precision, 
then the next word is also fetched and 
stored in the stack. The system recognizes 
the type of operand, e.g., integer, or floating 
point integer, or extended precision by 
examining the instruction. Tag bits also 
distinguish data words from the program 
code. Hence, when a job attempts either to 
execute data as part of the program or to 
modify the program, an interrupt is issued. 

Transformation (or Dynamic Representation) 
of Information 

The representation of information can be 
static or dynamic. However, a computer 
may be used to determine dynamically the 
changes in the representation of informa- 
tion that are needed for user convenience, 
system efficiency, and privacy. Programs 
are usually represented at the user level in 
high level languages. The representation of 
programs is then changed to machine level 
languages for execution. Changes of repre- 
sentation are performed for the convenience 
of the user. (Note that this concept makes 
it possible to distinguish between systems 
which use compilers and interpreters for 
program execution.) Further examples of 
this type of representational changes in- 
clude automatic transformation of ASCII 
characters to EBCDIC by the system. 

System efficiency may dictate that differ- 
ent representations of information be used 
in different situations. Sparse matrices 
(matrices whose elements are mostly zero) 
can be economically stored by means of 
binary patterns and lists of nonzero values. 
The use of ones in binary patterns indicates 
that their corresponding matrix elements 
are nonzero. The values of these elements 
are obtained by choosing the appropriate 
values from the list. An economy in storage 

results because binary patterns can usually 
be compacted and stored as binary words. 
When the matrices are not sparse it may 
be efficient to store them in major order 
fashion in rows or columns. Another ex- 
ample of where representations may be 
changed is in the storing and accessing of 
data elements. The elements may be stored 
and accessed by a table look-up or by hash 
coding techniques depending on the appli- 
cation. 

Privacy considerations may also warrant 
making changes in the representations of 
information. Consider the system where a 
common data bank has to be shared by 
different users and each user is authorized 
to access only some portions of the data. 
The system may encode the data supplied 
by the user and store the encoded data in 
the bank. The conversions of encoding or 
privacy transformation are performed to 
ensure that only authorized users can gain 
access to a data set. When the user sup- 
plies the proper identification the system 
decodes and presents the requested data to 
him. Privacy transformations are discussed 
in [20]. 

Physical Organization and Control and 
Information Flow 

I t  is sometimes necessary to create new 
control paths among the physical resources 
of a computer system to exploit the paral- 
lelism that is present in hardware and pro- 
grams and to increase the system's per- 
formance. In such cases both the physical 
and control elements contribute to the 
desired objective. A typical application of 
this approach may be seen in the over- 
lapped operation of I/O and processor 
computation found in most contemporary 
computer systems. Sometimes information 
flow is controled to exhibit to the user a 
machine architecture that is not real. An 
example of this is the compatibility feature 
found in the IBM 370 series. We examine 
selected architectural features of the IBM 
370 series and the CDC 6600 computers 
and indicate how these features can be ex- 
plained as a combination of physical organi- 
zation and control of information flow. 

TBM System~370 Series. Let us now 
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Figure 8. Architecture of the IBM System/370. 
(Reprinted, by permission of IBM Corporation, from Harry Katzan, Jr., Computer organization and 

the System/370.) 

consider some salient architectural features 
of the IBM 370 series, [24] the main feature 
of which is the compatibility between the 
various models in the series. Though the 
models vary in their designs, performance 
indices, and prices, they exhibit the same 
architecture to the user. This is accomplished 
by providing the same instruction set and 
employing microprogramming in all btlt the 
largest models. An advantage of this feature 
is that the user is offered models of varying 
performance indices and storage capacities. 
If the user finds that a more (less) powerful 
system is needed than the one currently 
being used, he can switch to a higher (lower) 
numbered model without reprogramming. 
A disadvantage is that the models lose 

some of their performance in maintaining 
compatibility. Small models use much of 
their memory in providing compatible 
software and are burdened by sophisticated 
I/O features suitable for larger models. 
Large models can be operated more effi- 
ciently if the downward compatibility 
feature is not required [13]. 

Basic CP U Organization 

The user sees the architecture of the system 
as in Figure 8. The central processor con- 
sists of sixteen general registers and four 
floating point registers. The general registers 
can be used to hold operands or as index and 
base address registers. The floating point 

C o m p u t i n g  S u r v e y s ,  Vo l .  8, N o .  2,  J u n e  1976 



A Conceptual Framework for Computer Architecture • 291 

I Ir,t I I  dl  W~lrd I f Sct~nd Halt 'Word 2 Thi rd Hal f  Word 3 

Byt~ I I I Hyl~ 2 

Rt~ll~tt r RL~l~lJr 
Op~rmd I Op~rmd 2 

~ ]  RR Forn l . I  
o Op( 'od¢  T I I  ~ t l2  Is I 

I t 
i Rt~l~tt  c I Addrcs~ 

Ol%r ind  I I Oper,lnd 2 

i o 0 . .  i ~, ] x: I s~ I °, ~XF . . . .  
i o 7 !a I i  1~ ts le m ~o 311 

I Rtgl,l( r Rt gi~lttr Address I ' 

[ Ol~.raml [ Ol~-rand 3 OF~rand 2 
I ~ r  ~ -  I 

00~Cod. I R, [ R, i s2 I °' i~SF . . . . .  
7 i t  I T 12 16116 t l  20 31 l 

: I I I mmtd la t *  : Address : 
I I Operand I Operand I I 

OpCode S~ ] D, J Si Format 
Io 7iS Is~a l i f o  311 

~I Length I I Address I Address 
I Operand I Operand 2 Operand I a Operand 2 

I o,,c,,,,° i ,-, l ,-, i s, I o~ i s ~ l  o, 
• 7 I t I 12 Is IS lip ~0 3t SS Format 47 

Figure 9. Instruction formats of the IBM/370. 
(Reprinted, by permission of IBM Corporation, from 
Harry Katzan, Jr., Computer organization and the 

registers hold floating point quantities. 
The registers reduce the number of memory 
accesses for data by storing temporary 
operands; this reduction in memory ac- 
cesses in turn reduces conflicts for memory 
by the I/O and CPU units. The system has 
a program status word (PSW) register 
whose contents indicate the status of the 
program under execution; this enables the 
system to handle interrupts and multi- 
programming. 

Each model has a different engineering 
design. For instance, the simplest model 
125 does not provide any hardware adders 
whereas model 165 has an address adder, 
a parallel adder, and serial adder. The in- 
struction formats for the system are shown 
in Figure 9. They specify the contents of 
registers and/or memory locations as 
operands. The instruction execution ap- 
pears to the user as sequential; however 
high performance models employ over- 
lapping of instruction and operand fetching 
with instruction execution, and prefetching 
instructions along both paths of a branch. 
The system hardware cannot recognize 
structured operands (e.g., vectors and 
matrices) and it is up "to the programmer to 
make the system recognize such operands 
by programming. 

I /0  Handling 

The responsibility of I /O handling is shared 
by the control unit of the CPU and I/O 
channels. The channels have their own 
registers and are capable of performing 
data transfers between memory and I/O 
devices. The CPU specifies in its I /O com- 
mands where the channels can find their 
commands in the main storage. The I/O 
requests for memory are given top priority 
(i.e., the cycle stealing technique is used). 
A significant feature of the I/O organization 
is that the user can configure the system 
by attaching or removing I/O devices. 

Memory Organization 

There is no one fixed memory organization 
for all the models. Models 155 and 165 
provide 4K buffer storage systems in ad- 
dition to their main storage units. The 
buffer and main storage are organized into 
rows and columns. At the intersection of 
each column and row there is a block of 32 
bytes, i.e., the storages are partitioned into 
blocks of 32 bytes and each block can be 
specified by a row and column. (A byte 
consists of 8 bits.) An address array main- 
tains the addresses of the elements in the 
buffer. When the CPU makes a storage 
reference, the address array is consulted to 
determine whether the referenced element 
is in the buffer. If the element is present it 
is sent to the CPU; otherwise the element is 
fetched from the main storage and dis- 
patched to the CPU. Then the block con- 
taining the element is stored in the buffer 
in the following manner: Blocks are trans- 
ferred from the main storage to the buffer 
columnwise, i.e., a block in column i of the 
main memory is transferred to column i of 
the buffer. The block that is to be stored in 
the buffer replaces the least recently used 
block in its column. Model 165 also uses 
interleaving for its memory organization. 

The storage system provides a protection 
feature which can be used in multipro- 
gramming. The feature is implemented by 
dividing the main store into blocks (of 
2048 bytes) and assigning storage keys to 
the blocks. Each active program has a 
protection key associated with it. Usually 
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the operating system assigns the protection 
keys to the programs. A program can store 
in a block only when the protection key of 
the program matches the storage key of 
the block or the protection key is zero. 
The storage operation is inhibited and an 
alarm signal is given if the keys do not 
match and the protection key is not zero. 
The storage key has an extra bit which pro- 
tects fetch operation. If the bit is zero, only 
store operation is protected. Otherwise 
both store and fetch are protected. 

CDC 6600 Memory Organization. The 
CDC 6600 memory hierarchy consists of a 
fast central storage and slow extended core 
storage (ECS) [32]. The central storage of 
131,072 60-bit words is composed of 32 
independent banks. The banks are inter- 
leaved to provide high block transfer rates. 
The computer has two cycles, major (1000 
nanoseconds (nsec) and minor (100 nsec). 
The storage read and store cycle take one 
major cycle, whereas transferring a data 
word through the storage distribution 
system takes one minor cycle. There is a 
mechanism called the stunt box which exam- 
ines the requests and directs information flow 
in and out of the central storage. When the 
stunt box accepts a new access request it 
decides whether the bank requested is busy 
or free; if the bank is free the read and store 
cycle is initiated. If the bank is busy, the 
address requested is circulated within the 
stunt box. The stunt box can hold three 
circulating addresses and each circulation 
takes 300 nsec. Top priority is given to the 
addresses in circulation for access to the 
storage. Because of the circulation time 
(300 nsec) and the major cycle time (1000 
nsec) the mechanism prevents permanent 
recirculation of any request. In case of 
consecutive requests to the same bank the 
requests are satisfied after at most two major 
cycles. 

The stunt box is also responsible for at- 
taching priorities to requests coming from 
the central processor unit and peripheral 
processing units. I t  prevents the situation 
where in the recirculating addresses read and 
write requests are made to the same storage 
location. This is because of the stunt box's 
out-of-order recirculation properties. I t  

also checks whether the requested address 
violates bounds. The storage distribution 
system is responsible for transferring re- 
quests and data to and from the central 
storage. 

The secondary storage consists of 15,744 
488-bit word core memory. The 488-bit 
words (8 of which are parity bits) are dis- 
assembled to 60-bit words used in the central 
storage. The CPU can transfer any number 
of 60-bit words between the central store 
and ECS by simple commands. The major 
advantage of the ECS is that it can trans- 
fer blocks of information at a rate of 60 
million bits/second. It  may be directly ad- 
dressed but at a considerably slower rate. 
Thus, its principal use is as a high speed 
buffer. 

CDC 6600 I /O Handling. Ten peripheral 
processing units (PPU) handle I/O ac- 
tivities. Each PPU consists of four registers 
and a storage unit of 4096 12-bit words. 
The processors are arranged in the form of 
a "barrel". The barrel has ten positions 
and each position is occupied by a PPU. 
There is one position called "slot" which 
is capable of accessing and utilizing arith- 
metic and logic hardware; the ten PPU's 
share the slot by circulating the contents of 
their four registers. When a PPU is in the 
slot it stays there for 100 nsec and uses the 
arithmetic and logic hardware to execute 
the program stored in its storage unit. A 
PPU instruction requires one or more steps 
of execution with each step taking 1000 
nsec. I t  can be noted that the central storage 
read and store cycle takes 1000 nsec which 
is the time interval between consecutive 
sharing of the slot by any PPU. The PPU 
can transfer data between peripheral de- 
vices and main memory and supervise 
the operation of the devices. The PPU 
have the capability of establishing paths 
to I /O devices through twelve peripheral 
channels. A PPU can interrupt the opera- 
tion of the central processor by means of 
an exchange jump. When an exchange 
jump is issued, the CPU makes an exchange 
between the contents of its 24 registers and 
the contents of the "exchange package" 
which starts at a location in the central 
storage specified by the PPU. The exchange 
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package consists of 16 words and specifies 
the new contents of the 24 central registers. 
Once the exchange is made the CPU starts 
on the new program specified by the pro- 
gram address register (note this register is 
one of the central registers). A PPU is also 
capable of monitoring the CPU by trans- 
ferring the contents of the CPU program 
address register to one of its registers. 
The CPU can also initiate the exchange 
jump. 

Physical Organization, Control of Information 
Flow and Representation and Interpretation of 
Information 

Now we consider the architectural feature 
of microprogramming which can only be 
explained when all three components of 
architecture are used. In the literature this 
feature is usually associated with system 
architecture. The reason for this association 
is that microprogramming is able to present 
to the user an architecture that is not a 
real machine architecture. 

Microprogramming: Husson [21]  pro- 

poses the following definition: "Micro- 
programming is a technique for designing 
and implementing the control function of a 
data processing system as a sequence of 
control signals, to interpret fixed or dy- 
namically changeable data processing func- 
tions. These control signals, organized on a 
word basis and stored in a fixed or dy- 
namically changeable control memory, repre- 
sent the states of the signals which control 
the flow of information between the exe- 
cuting functions and the orderly transition 
between these signal states." 

A basic microprogramming scheme [33] 
is shown in Figure 10. Register I contains 
an address which is decoded by the decoder 
(D). The horizontal line in the read only 
memory (ROM) that corresponds to the 
address is activated and issues signals. The 
signals under Matrix A control the data 
paths of the arithmetic units, registers, etc., 
of the computer system. The signals of 
Matrix B specify the next address to be 
decoded and are forwarded to Register II. 
Conditional jumps can be handled as shown 
at X. A flip-flop whose state can be controled 
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REGISTER I 

m i 

MATRIX A MATRIX B 

\ 
Y 

CONTROL SIGNALS 
TO 
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Figure 10. A simple elementary microprogramming scheme. 
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by the previous orders issued by Matrix A 
decides which of the two lines in Matrix B 
is to be energized. 

The signals issued when any line of the 
ROM is activated form a microorder. The 
format used for microorders can be either 
horizontal or vertical depending on how 
the orders are interpreted. In a horizontal 
format, each signal under Matrix A directly 
controls a gated data path. In a vertical 
format, the signals are organized into fields 
and each field controls the operations of a 
particular section (like an adder) of the 
computer system. In this format, encoding 
of signals is performed and hence hori- 
zontally formatted microorders are usually 
longer than vertically formatted ones. Verti- 
cal format microorders sometimes resemble 
machine language instructions in that they. 
have operand and address fields. Maximal 
parallelism at hardware level can be ex- 
ploited by using horizontal format micro- 
orders, but  generating these orders can be 
cumbersome and time consuming. 

Microprogramming has been used in 
widely differing contexts. For its applica- 
tions the interested reader should refer to 
Flynn and Rosin [15]. Present day large 
systems like the CDC 6600/7600 and IBM 
360/195 do not use microprogramming 
for their control units. It  appears that 
microprogramming is used in practice, not 
for its systematic implementation of the 
control section, but  for its ability to offer 
emulation capabilities. It  is interesting how- 
ever, to note that microprogramming is 
used to implement the control of the stream- 
ing unit of the CDC STAR 100 [23]. 

ARCHITECTURAL CONCEPTS AND CONSIDERA- 
TIONS 

In this section we discuss the advantages 
and disadvantages of some architectural 
concepts. At first view they may appear to 
be totally unrelated to each other; however a 
little thought will reveal that each of these 
concepts can be categorized under one or a 
combination of the three components of 
architecture. Thus, a framework based on 
our proposal that architecture is composed 
of these three components can accommodate 

these seemingly unrelated and diverse con- 
cepts. We conclude by considering some of 
the problems and trade-offs an architect 
faces in implementing these concepts and in 
evolving an architecture. 

Array Organization 

In this organization identical processors are 
connected in an array fashion. The ILLIAC 
IV is a familiar example of this type of or- 
ganization. The ILLIAe IV operates in a 
single instruction stream--multiple data 
stream mode (SIMD) [14], i.e., at any time 
all the enabled processors execute a single 
instruction (issued by a single control unit) 
on different data; the processors that are 
not enabled do not execute the instruction. 
However with suitable operating systems, 
it should be possible for array processors to 
handle the multiple instruction stream-- 
multiple data stream mode of operation. 

The array organization is very effective in 
exploiting parallelism when the character- 
istics of the problem to be solved match the 
physical structure. Matrix operations pro- 
vide an example of this kind of problem. 
When all the processors are identical, man- 
ufacturing and maintenance are greatly 
simplified. A disadvantage of the array or- 
ganization is the poor utilization of resources 
that may result when the problem structure 
does not match the physical structure. The 
failure of a single processing element can 
hamper the operation of the entire system; 
a sophisticated system could, however, 
create new and alternate data paths for 
continued operation of the system. 

Pipeline Organization 

This organization consists of functional 
units arranged in a pipeline where each 
functional unit handles a particular task. 
I t  is often used in commercial computer 
systems to improve system performance. 
Examples of this organization include in- 
struction handling in the IBM 360/91 and 
the arithmetic pipeline units in the TI ASC 
[31] and CDC STAR [19] systems. It  is well 
suited to handling job streams where all 
the jobs go through the same processing 
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stages. Most vector operations can, for 
example, be operated in this manner. Pipe- 
line organization loses its efficiency when 
some jobs require a processing sequence 
different trom that of the pipeline. Job de- 
pendencies adversely affect the job flow 
and hence the efficiency of this organiza- 
tion. Since the processing of jobs becomes 
"diffused"--at any instant the pipeline 
contains jobs at different levels of comple- 
t ion-interrupts and machine malfunctions 
cannot be handled satisfactorily. For in- 
stance, the architecture of IBM 360/91 has 
to settle for what is referred to as an "im- 
precise interrupt" [3]. 

Modular Organization 

This organization consists of independent 
functional units (capable of performing 
specialized tasks) and/or processors (cap- 
able of performing any task). Tasks, when 
they are ready, are dispatched to the ap- 
propriate functional units or processors 
(usually by the supervisor of the organi- 
zation). The central processing unit of a 
CDC 6600 employs a modular organization 
in which there are ten independent modules. 
In the SYMBOL system, function modules are 
dedicated to perform portions of the com- 
puting process such as translation, memory 
control, garbage collection, central processor, 
or other processes. In contrast to array and 
pipeline organizations the modular organi- 
zation usually has a variable structure. The 
supervisor of the modular organization can, 
by establishing appropriate data flow paths, 
simulate any particular structure (e.g., a 
pipeline or an array). 

An advantage of this type of organiza- 
tion is the enhanced performance obtain- 
able by using overlap and distributed func- 
tion computation. The organization can 
ensure graceful degradation of performance 
in ease of system component failures. Grace- 
ful degradation is achieved by having 
multiple function modules of the same type; 
when a module fails, its task can be assigned 
to another module. On the other hand, the 
supervisory system for such an organization 
tends to be complex because it has the ad- 
ditional responsibility of properly dispatch- 

ing tasks and ensuring correct execution of 
the program (by preserving task prece- 
dences). The lack of structure in this organi- 
zation can increase the overhead of dis- 
patching tasks. The processing of jobs is 
"diffused" as in the pipeline organization. 

Stack Processing 

In this type of processing, information flow 
between central registers is controled in a 
such way that a pushdown store (or a stack) 
is realized [7]. New operands, which are 
entered into the top register of the stack, 
cause a "pushdown" action to occur, i.e., 
the contents of each register move down by 
one register level. Binary operations can be 
performed on the top two registers with the 
result being returned to the top register. 
The contents of the top register can be 
stored in main memory. The Burroughs 
B6500 and English Electric KDF-9 employ 
stack processing. 

The following discussion of advantages 
and disadvantages of stack processing is 
based on Brooks [7]. Stack processing mini- 
mizes main memory data references when 
evaluating algebraic expressions. With stack 
processing, shorter program representation 
is possible as most operand addresses can 
be eliminated. I t  simplifies subroutine 
management and compilation of source 
programs, especially those programs with 
recursive definitions. Stack processing makes 
it easier to handle block structured lan- 
guages like ALGOL. However, this type of 
processing is helpful only if the items that 
are to be processed can be made to "surface" 
to the top of the stack. A further disad- 
vantage is that many stacks, such as a stack 
for control and a stack for data, are often 
needed for satisfactory operation. When 
variable length fields are used, stack registers 
must be of ~rariable length to accommodate 
the values selected from these fields. This 
often proves to be difficult to implement. 

Virtual Memory 

By automatic control of information flow 
between the main and secondary memories, 
a system with virtual memory [11] gives the 
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programmer an illusion of operating with a 
main memory that is larger in capacity 
than the actual memory. This is accom- 
plished by dividing the address space into 
blocks of contiguous addresses and storing 
them in both the main and secondary 
memories. When the programmer makes a 
reference to an item not present in the 
main memory, the computer system auto- 
matically transfers the block containing 
the referred item from the secondary to the 
primary memory. The new incoming block 
will displace a resident block according to 
some fixed rule if the main memory cannot 
accommodate the new block. When the 
blocks are of variable size, one has "seg- 
mentation;" when they are of fixed size, 
the situation is referred to as "paging." 

The principal advantage of virtual mem- 
ory is that the user can be indifferent to 
main memory limitations in his program- 
ming. He need not concern himself with 
the problems of overlays and memory 
management. The large address space pro- 
vided by virtual memory also simplifies 
multiprogramming. On the other hand, 
efficient utilization of the main memory is 
not always possible. Paged systems round 
up storage requests to the nearest integral 
number of pages and this sometimes causes 
appreciable loss of the main memory ("frag- 
mentation"). Multiprogrammed systems 
sometimes exhibit performance degradation 
which is due to a phenomenon known as 
"thrashing" [11]. 

Virtual Machines 

By means of hardware and software con- 
trol of information flow a single computer 
system presents to the users multiple exact 
copies of the system. Each user is given the 
illusion that he has the complete computer 
system at his disposal. As an example the 
IBM's VM/370 offers the user a virtual 
IBM 370 system on which he can run any 
system/370 or system/360 operating system. 
The virtual machine, of course, runs several 
times slower than the real machine. The 
appearance of multiple copies of the basic 
machine is handled by the virtual machine 
monitor which interfaces the user's operat- 

ing system and the real machine. For details 
concerning the implementation of the moni- 
tor, refer to Madnick and Donovan [26]. 
An advantage of virtual machines is that 
the users can run different operating systems 
on the same real machine at the same time. 
On the negative side, the virtual machine is 
several times slower because there is over- 
head associated with the monitor. 

Parallel Processing 

In this type of processing, the performance 
of a computer system is increased by in- 
troducing control and data paths among 
its hardware resources. For our purposes 
we consider parallel processing at bit and 
task levels. We follow the model of Shore 
[30] for bit level processing. Figure 11 shows 
a system which consists of a data memory 
(DM), an instruction memory (IM) and a 
control unit (CU). In the DM, words are 
stored horizontally. A bit (word) slice is any 
set of bits exposed by a single vertical 
(horizontal) cut through the DM. The word 
slice processing unit (WSPU) can operate 
on word slices whereas the bit slice process- 
ing unit (BSPU) operates on the bit slices. 
In Shore's terminology, Machine I refers 
to the system with only word slice processing 
capabilities, Machine II  refers to the system 
with only bit slice processing capabilities 
and Machine III  has both of the processing 
capabilities. (There are also Machines IV, 
V and VI which are best considered at task 
level.) I t  is interesting to note that Machine 
I is a conventional sequential processor and 
Machine II  is a bit serial associative proces- 
sor. Shore's scheme does not fit Flynn's 
classification [14]. Shore states: "In  terms of 
a taxonomy introduced by Flynn, it is often 
stated that Machine II  is a single-instruc- 
tion-stream, multiple-data-stream processor 
whereas Machine I is not. In fact, they 
both are. Machine I processes multiple-bit- 
streams a word slice at a time, whereas 
Machine II  processes multiple-word-streams 
a bit slice at a time. The myopic association 
of multiple-data-streams with multiple-word 
streams is a conceptual error having nothing 
to do with computing power." 

Shore considers the ratio of processing 
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hardware to memory hardware for evalu- 
ating the effectiveness of his machines. As 
can be noted, the ratio also reflects the 
effect of creating information flow paths by 
means of physical organization. 

At task level there are many approaches 
to parallel processing. One approach consists 
of the functional decomposition of tasks and 
the dispatching to independent functional 
units which are specialized to execute them 
(e.g., the CPUs of the CDC 6600 and IBM 
360/91). In another approach, the func- 
tional or processing units have a fixed 
operand and control routing structure (like 
a pipeline or an array) imposed on them. 
When the system consists of equally cap- 
able processing systems, its mode of opera- 
tion can be characterized by single instruc- 
tion-multiple data streams (e.g., the ILLIAC 
IV and PEPE) or multiple instruction- 
multiple data streams [14]. 

Central to parallel processing is the 
problem of recognition of parallelism in 
programs and task scheduling to achieve 
maximal concurrency. Extensive work has 
been done and is continuing in these problem 
areas. Baer [4] gives a good survey of the 
work done. 

Tagging of Information 

Iliffe [22] in his proposal of a basic language 
machine (BLM) suggests tagging of data 
and address descriptions for identification 
at machine level. From the tags associated 
with data, it is possible to recognize their 
precision and type (floating or fixed point, 
etc.). Addresses can be specified by "code 
words". A code word can specify a block of 
contiguous words which starts at the loca- 
tion given by the address part of the code 
word. The length of the block is also specified 
by the code word. It  is possible that a code 
word can specify a set which consists of 
code words and data. It  can be noted that 
structural data representations can be 
easily handled by the code word scheme. 

In the BLM tags are also used to imple- 
ment "escape actions." Whenever the ma- 
chine encounters an operand whose tag 
specifies an escape action, the machine in- 
terrupts and follows the appropriate action. 
Numerical overflows, invalid addresses and 
unauthorized storage accesses can be handled 
by escape actions. 

Iliffe claims the following advantages for 
his BLM. The machine can recognize the 
information structure of a program at ma- 
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chine level; this increases the versatility 
of the machine. Because of the use of code- 
words, the linear store structure of a con- 
ventional computer system is avoided. This 
is helpful in multiprogramming storage al- 
location schemes. Since data are identified 
by tags, instructions need not specify the 
data types; a single add instruction is suffi- 
cient to specify every add type. This results 
in a smaller instruction set. Also one can 
detect "mixed arithmetic errors" (such as 
addition of a floating point number to an 
integer) simply by examining the tags. 
The BL1V[ also has certain disadvantages. 
In a linear store every item can be addressed 
directly, whereas extra store accesses may 
have to be made in data structures com- 
posed of code words. Overhead is associated 
with memory allocation because of the data 
structure involved. For further discussions 
of tagged architecture, see Feustel [12]. 

Emulation 

Emulation is a combined hardware-software 
approach to the process of modeling the 
physical behavior of one machine on an- 
other [21]. A host machine A can be made to 
emulate a target machine B with the aid of 
microprogramming. This means that A 
can interpret and execute the machine 
program written for B by means of micro- 
programming. As an example, an emulator 
is available which makes it possible to emu- 
late the IBM 7080 on the IBM 360/65. 
The emulator considers the machine in- 
struction of the IBM 7080 and performs 
necessary storage mapping conversions; it 
interprets and translates the instruction 
into a 360/65 machine instruction. Then the 
host machine executes the instruction. 

There are many advantages to emulation. 
When the user changes computer systems 
he does not have to reprogram if he can 
emulate his old system on the new one. 
Emulation leads to compatibility, a prin- 
cipal feature of the IBM 370. A disadvan- 
tage of emulation is that it is inherently 
slow and does not fully utilize the resources 
of the host machine. 

Developing an Architecture 

Now we briefly consider some of the prob- 
lems and trade-offs an architect faces in 
evolving an architecture. These considera- 
tions are discussed within the framework of 
the three components of architecture. As- 
sume that the architect decides to make the 
computer system provide the capacity of 
ten processing units. This decision can be 
implemented either by replicating process- 
ing units (physical organization) or by time 
multiplexing a single processing unit (con- 
trol and flow of information). The first 
approach, which is expensive, provides 
higher performance and graceful perform- 
ance degradation in case of processing unit 
failures. The second is more economical but 
might require a sophisticated control. 

Consider a system in a list processing 
environment. The architect wishes to pro- 
vide the capabilities of linked data struc- 
tures. He may design a conventional system 
without any list processing capabilities and 
leave the task of handling data structures 
to the system programmer (control and 
flow of information). Alternately, the archi- 
tect can provide data structure capabilities 
at machine level itself by making appropri- 
ate provisions at the hardware level (repre- 
sentation and interpretation of informa- 
tion). To improve the reliability of data 
transmission links the architect may either 
resort to replication and major voting or 
better technology (physical organization) 
or incorporate parity bits to the words 
transmitted (representation and interpreta- 
tion of information). Similarly, the reli- 
ability of adders can be improved by repli- 
cation or by coding the operands (e.g., AN 
coding [9]). Thus the architectural problems 
and decisions involved in implementing an 
architecture can be viewed in terms of the 
three components of architecture. 

Dynamic Architectures 

The computer user is becoming increasingly 
aware of the effect of architecture on system 
performance. He realizes that the array 
organization is ideal for solving relaxation 
problems, that the pipeline organization is 
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effective in handling matr ix  and vector  
operations, and tha t  stack processing makes 
it easier to compile and execute ALGOL pro- 
grams. Since no single architecture can 
satisfy the needs of all users, it has become 
desirable to have a computer  system whose 
architecture can be defined and varied dy- 
namically. 

)~t present, emulation is the main prin- 
ciple used to offer variable architectures to 
the user. But  emulation is inherently slow 
and inefficient and would defeat our pur- 
pose, which is to speed up computat ion 
with dynamic architecture. Using our three 
component  approach to architecture, it is 
possible to conceive a system with dynamic 
organization. The user can specify the 
architecture he needs in terms of the three 
components, and the system will exhibit 
this architecture by  introducing appropriate  
changes in its control and data paths and 
by  altering its representation and interpre- 
tat ion of information. The speed require- 
ments  dictate tha t  these changes be exe- 
cuted at  hardware level. The authors [28] 
propose a system where it is possible to 
s tructure system resources as a pipeline, 
an array, or in any configuration the user 
m a y  want.  Structuring is accomplished by  
dynamically establishing bus paths between 
the resources. Thus the physical element of 
architecture is 'al tered'  by  suitable con- 
trol of information flow. Similarly, the 
other components of architecture can be 
altered. For instance, information flow can 
be controled to exhibit a stack or nonstack 
structure depending on the program en- 
vironment.  By  at taching tags to operands 
and interpreting them dynamically, we 
can obtain an architecture in which the 
third component  is a variable. 

REFERENCES 

[1] ABRAMS, M. D.; AND STEIN, P.G. Computer 
hardware and software, an znterdisczplmary 
introduction, Addison-Wesley, Reading, 
Mass., 1973. 

[2] AMDAHL, G. M.; BLAAUW, G. A.; AND 
" " h BROOKS, F P ,  JR,  Architecture of t e 

IBM System/360," IBM J. R & D. (April 
1964), 87-101. 

[3] ANDERSON, D. W.; SPARACIO, F. J.; AND 
TOMASULO, R. M. "The IBM System~360 

Model 91: machine philosophy and instruc- 
tion handling," IBM J. R. & D. 11, 1, (Jan. 
1967), 8-24. 

[4] BAER, J .L .  "A survey of some theoretical 
aspects of multiprocessing," Computing 
Surveys 5, 1 (March 1973), 31-80. 

[5] BARNES, G. H. et al, "The ILLIAC IV com- 
puter," IEEE Trans. Computers (August 
1968), 746-757 

[6] BEIZEa, B. The architecture and engineer- 
ing of digital computer complexes, Vols. 
1 and 2, Plenum Press, New York, 1971. 

[7] BaooKs, F. P., JR., "Recent developments 
in computer organization," in Advances 
in electronic and electron physics, Vol. 18, 
Academic Press, New York, 1963, pp. 45-65. 

[8] BROOKS, F .P ,  JR., "The future of computer 
architecture," in Proc. IFIP Congress 65, 
Vol. 1, Spartan Book Co., Washington, D.C., 
1965, pp. 87-91. 

[9] BRow~, D. T. "Error detecting and cor- 
recting binary codes for arithmetic opera- 
tions," IEEE Trans. Electronzc Computers 
(Sept. 1960), 333-337. 

[10] BURROUGHS CORPORATION, Burroughs B 
6700 information processing systems reference 
manual, Burroughs Corp., Detroit, Michi- 
gan, 1972. 

[11] DENNING, P. J. "Virtual memory," Com- 
puting Surveys 2, 3 (Sept. 1970), 153-189. 

[12] FEUSTEL, E. A. "On the advantages of 
tagged architecture," IEEE Trans. Com- 
puters (July 1973), 644-656. 

[13] FLORES, I. Computer organ~zahon, Pren- 
tice-Hall, Englewood Cliffs, N.J., 1969. 

[14] FLYNN, M.J .  "Very high-speed computing 
systems," in Proe. of IEEE, 1966, IEEE, 
New York, 1966, pp. 1901-1909. 

[15] FLYNN, M. J.; AND ROSIN, R . F .  "Micro- 
programming: an introduction and a vmw- 
point," IEEE Trans. Computers (July 1971), 
727-731. 

[16] FOSTER, C. C. "Computer architecture," 
IEEE Trans. Computers, (March 1972), 19. 

[17] FOSTER, C. C Computer architecture, Van 
Nostrand Reinhold Company, New York, 
1970. 

[18] HAUCK, E. A.; AND DENT, B. A. "Bur- 
roughs' B6500/B7500 stack mechanism," 
in AFIPS Sprang Jr. Computer Conf., 1968, 
Thompson Book Co., Washington, D.C., 
pp. 245-251. 

[19] HINTZ, R. G.; .~ND TATE, D. P. "Control 
Data STAR-100 processor design," in 
COMPCON 72 Szxth Annual IEEE Comp. 
Soc. Internatl. Conf., IEEE, New York, 
1972, pp. 1-4. 

[20] HOFFMAN, L. (Ed) Securzty and privacy zn 
computer systems, Melville Publ. Co., Los 
Angeles, Cahf,  1973. 

[21] HcssoN, S. S. Mieroprogramm~ng: prin- 
ciples and practice, Prentice-Hall, Engle- 
wood Chffs, N.J ,  1970. 

[22] ILIFFE, J. K. Basic machine principles, 
(2d Ed.), American Elsevmr, New York, 
1972. 

[23] JONES, L H.; AND MERWIN, R.E.  "Trends 
in mmroprogramming: a second reading," 
IEEE Trans. Computers (August 1974), 754- 
759. 

Computing Surveys, VoL 8, No 2, June 1976 



300 * S. S. Reddi and E. A. Feustel 

[24] KATZAN, H., JR., Computer organization 
and the System~870, Von Nostrand Rein- 
hold Co., New York, 1971. 

[25] KNVTH, D E. The art of computer pro- 
gramming, Vol. 1, Addison-Wesley, Reading, 
Mass., 1968. 

[26] MADNICK, S. E.; AND DONOVAN, J . J .  Ope- 
ratzng systems, McGraw-Hill, New York, 
1974. 

[27] ORQANICK, E. I. Computer system organi- 
zation, the B5700/B6700 seines, Academic 
Press, New York, 1974. 

[28] REEDI, S. S.; AND FEUSTEL, E. A. "An 
approach to restructurable computer sys- 
tems," in Proc. Sagamore Computer Conf., 
1974, Lecture notes in Computer science, 
Vol. 24, Springer Verlag, New York, 1975, 
319-337. 

[29] RICHARDS, R . K .  Electronic digital systems, 
John Wiley & Sons, New York, 1966. 

[30] SHORE, J. E "Second thoughts on parallel 
processing," Computers and Electrical Engi- 
neemng (June 1973), 95-109. 

[31] TEXAS INSTRUMENTS INC. A description of 
the advanced scientific computer system, 
Equipment Group, Texas Instruments, Inc., 
Austin, Texas, 1973. 

[32] THORNTON, J E. Design of a computer: 
the CDC 6600, Scott, Foresman & Co., Glen- 
view, Ill., 1970. 

[33] WILKES, M. V.; AND STRINGER, J . B .  "Mi- 
croprogramming and the design of the con- 
trol circuits in an electronic digital com- 
puter," in Proc. Cambmdge Phil. Soc., Part  
2, 1953, Cambridge Univ. Press, New York, 
1953, pp. 230-238. 

Computing Surveys, Vol. 8, No 2, June 1976 


