
A Conceptual Framework for Computer Architecture*

S.S. REDDI

W. W. Gaertner Research, Inc., 1492 High Ridge Road, Stamford, Connecticut 06908

E.A. FEUSTEL

Laboratory for Computer Science and Engineering,
Department of Electrical Engineering, Rice University, Houston, Texas 77005

The purpose of this paper is to describe the concepts, definitions, and ideas of
computer architecture and to suggest that architecture can be viewed as composed
of three components: physical organization; control and flow of information; and
representation, interpretation and transformation of information. This framework
can accommodate diverse architectural concepts such as array processing,
mieroprogramming, stack processing and tagged architecture. Architectures of
some existing machines are considered and methods of associating architectural
concepts with the components are established. Architecture design problems and
trade-offs are discussed in terms of the proposed framework.

Keywords and Phrases: computer architecture, framework, composition of
architecture, information flow, physical organization, unification of diverse
architectural concepts.

CR Categories: 6.0, 6.20, 6.22, 6.29.

INTRODUCTION

Computer architecture is receiving, and
will continue to receive special attention
as novel architectures differing from the
classic von Neumann organization emerge
as viable approaches to the problem of
increasing the computational speeds and
cost-effectiveness of computer systems.
Computers such as the CDC 6600, CDC
STAR-100, TI ASC, Burroughs B6700,
Goodyear STARAN and CRAY-1 are con-
vincing arguments that architecture plays
a prominent role in deciding computer
system performance and in achieving faster
computational speeds than has been pre-

* This work was supported by NSF" Grant GJ
36471, and was performed while the first author
was at Rice University.

viously possible. In the literature there is
a multitude of proposals as to how computer
architecture can be defined and how an
architect's job can be described. Unfortu-
nately, most of these proposed concepts
touch only different facets of computer
architecture and do not encompass the
complete spectrum of architectures. In this
paper we present a conceptual viewpoint
that allows a coherent and unified treatment
of computer architecture. We believe that
computer architecture can be viewed as
composed of 1)physical organization; 2)
control and flow of information; and 3)
representation, interpretation and trans-
formation of information, and we develop a
framework for architecture based on this
viewpoint. We consider some existing com-

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, Vol. 8, No. 2, June 1976

278 • S. S. Reddi and E. A. Feus~l

CONTENTS

INTRODUCTION
EXISTING DEFINITIONS AND
INTERPRETATIONS OF COMPUTER
ARCHITECTURE
FRAMEWORK FOR COMPUTER ARCHITECTURE
SOME EXISTING COMPUTER ARCHITECTURES

Phye/cal Organization
CONTROL AND FLOW OF INFORMATION

Procemor Organization
Stack Mechanism

Repreeentation, Interpretation and Transformation
of Information

Representation and Interpretation of Instructions
Representation and Interpretation of Data
Transformation (or Dynamic Representation)
of Information

Physical Organization and Control of Information Flow
Basic CPU Organization
I/O Handling
Memory Organization

Physical Organization, Control of Information
Flow and Representation and Interpretation of
Information

ARCHITECTURAL CONCEPTS AND
CONSIDERATIONS

Array Orgamzation
Pipeline Orgamzation
Modular Organization
Stack Proce~ing
Virtual Memory
Virtual Machines
Parallel ProceMing
Tagging of Information
Emulation
Developing an Architecture
Dynamic Architectures

REFERENCES

puter architectures and show how to associ-
ate architectural concepts and innovations
with these three components. We then
develop architectural concepts that a system
architect can use and verify that these con-
cepts can be accommodated within our
framework. Finally, we indicate how our
hypothesis can lead to the concept of dy-
namic system architecture.

EXISTING DEFINITIONS AND INTERPRETATIONS
OF COMPUTER ARCHITECTURE

We first consider the various definitions and
interpretations of a computer architect's
job and of computer architecture as pre-
sented in the literature. According to Brooks
[8]: "The computer architect designs the
external specifications, gross data flow, and
gross sequencing of a system. He is, like
the building architect, the user's advocate.
He must balance the conflicting demands
of engineer (cost, speed), programmer (func-
tion, ease of use) and marketing (function,
speed, cost) to yield the machine of greatest
true value to the user " Foster in Com-
puter architecture [17] introduces the archi-
tect as follows: "The computer architect in
turn is unconcerned with the insides of an
adder or a shift register. His job is to as-
semble the units turned out by the logical
designer into a useful, flexible tool that is
called a computer." Beizer [6] describes the
architect's job as " . . . the design of a hard-
ware/software complex, subject to realistic
technical, economic, operational and social
constraints such that it 1) works, 2) is opti-
mum and 3) survives." He summarizes the
architect's role by stating that "it is syn-
thetical, catalytic and translative. His de-
sign is a synthesis of the substances of sub-
ordinate disciplines." Abrams and Stein
[1] explain the architect's duties: "The job
of the computer system architect is to de-
velop an overall concept of a machine--what
it can do and how that solves the problem
for which the machine is intended. Just as an
architect who designs houses must consider
utility, appearance, and compatibility with
the neighborhood, so must the computer
designer balance requirements, user inter-
face, and costs to make a viable design."

Several explicit definitions of architecture
also can be found. The term "Architecture"
is used by Amdahl, et el., [2] in introducing
the IBM System/360 "to describe the at-
tributes of a system as seen by the pro-
grammer, i.e., the conceptual structure and
functional behavior, as distinct from the
organization of the data flow and controls,
the logical design, and the physical imple-
mentation." Foster [17] explains: "The field

Computing Survey¢, VoL 8, No. 2, June 1976

A Conceptual Framework for Computer Architecture • 279

of computer architecture, or 'the art of de-
signing a machine that will be a pleasure to
work with' is only gradually receiving the
recognition it deserves. This art, one can-
not call it a science, is one step more ab-
stract than that of a logical designer, which
in turn is abstracted from the study of elec-
tronic circuits." Finally Foster [16] also
suggests: "Computer Architecture is the
profession of adopting present day tech-
nology to the solution of current computing
problems and of dreaming about the future
of the field in such a way as to influence it
for the better."

A FRAMEWORK FOR COMPUTER
ARCHITECTURE

The disparities in existing definitions and
interpretations of computer architecture are
directly traceable to its multifaceted nature.
Since computer architecture can be viewed
from different perspectives, each individual
forms his own notion and interpretation.
A FORTRAN user may not perceive signifi-
cant architectural differences between IBM
and CDC computers other than word and
core size. On the other hand a system pro-
grammer can easily distinguish the archi-
tectures of these computers in terms of their
operation codes, address formation, and
input/output. However, he will find it diffi-
cult to distinguish an IBM 370/125 from an
IBM 370/155, or a CDC 6600 from a CDC
7600, and will be unable to perceive hard-
ware parallelism that may exist in the central
processing unit. Thus architectural details
can be transparent or visible depending on
the viewer and his level of perception.

Our hypothesis is conditioned by the
above observations, as we compare and con-
trast architectures and architectural features
in terms of the following three components.
For a valid comparison we should choose
commensurate levels, i.e., user level, system
programmer level.

1) Physical organization;
2) control and flow of information; and
3) representation, interpretation and

transformation of information.
Let us consider some examples. The

ILLIAC IV and a conventional von Neumann

organization have different architectures;
they differ in their physical organization
and the way they handle control and flow of
information. Tagged architecture [12] dif-
fers from yon Neumann architecture in
representation and interpretation of informa-
tion. The term "transformation" in the
third component refers to the situation
where representation and interpretation of
information are changed dynamically by
the system for user convenience, system
efficiency, or for implementing a software
system to support privacy and protection.
This kind of transformation is to be dis-
tinguished from the algorithmic transfor-
mation on data undertaken in solving spe-
cific problems.

SOME EXISTING COMPUTER ARCHITECTURES

In this section we consider some existing
computer systems and explain their archi-
tectural features using our three components.
These explanations are sufficiently detailed
so that the reader may become familiar
with the process of associating architectural
concepts with the components. In addition
we consider microprogramming, an estab-
lished architectural feature, to reinforce our
arguments regarding the validity of our
hypothesis.

Physical Organization

Technological advances achieved in the past
decade enabled architects to propose many
innovative physical organizations for com-
puter systems, some of which have already
been realized in practice. Three computer
systems, the CDC 6600, ILLIAC IV and TI
ASC, are studied to show the different
organizations that can be conceived. The
CDC 6600 is an example of distributed
computing and employs an organization
which exploits functional parallelism. The
ILLI•C IV and TI ASC use array and pipe-
line organizations respectively for enhanced
performance. All three systems depart from
the conventional yon Neumann machine
in their physical system organization.

CDC 6600 Central Processor Organization:
The CDC 6600 [32] organization shown in
Figure 1 has ten independent functional

Computing Surveys, Vol. 8. No, 2, June 1976

280 • S. S. Reddi and E. A. Feustel

PPO I

EXTERNAL PP3 1
PERIPHERAL ,m.-m

EQUIPMENT
CHANNELS

,

ppcj J
|

PERIPHEI
PROCESSq

18-BIT
ADDRESS
REGISTERS

INPUT REGISTER

60-BIT
INSTRUCTION
STACK

I6
I5
I4

I2
I1

I 4 I

18-B IT
INDEX
REGISTERS

P REGISTER

I I

I0
FUNCTIONAL
UNITS

ADD
MULTIPLY
MULTIPLY
DIVIDE
FIXED ADD
INCREMENT
INCREMENT
BOOLEAN
SHIFT ---I,,
BRANCH

T
J SCOREBOARD

INSTRUCTION
REGISTERS

Figure 1. Block diagram of the CDC 6600 computer system, an example of distributed
computing architecture.

units, twenty-four data and address registers,
an instruction stack and a scoreboard in its
central processor. The ten functional units,
which are independent of each other, are
capable of simultaneous operation. The
functional units are specialized to perform
operations such as floating add, floating
multiply, floating divide, shift, fixed add,
etc. The twenty-four registers are divided
into data (X~), address (A,) and index (B~)
groups; each group consists of eight registers.
Except for data registers which are sixty
bits long, all registers are eighteen bits
long. Data registers XI through X5 are
used as "read" registers and X6 and X7 as
"store" registers. There is a "partner" re-
lationship between X, and A~ registers. An
operand is fetched into X~, i = 1 to 5, from
memory by loading its addresses into A,;
similarly an operand is stored from X~,

i = 6, 7, into the memory location specified
by A,. The index registers used are to modify
the addresses in the address registers. (For
instance, there is an instruction which adds
As and Bk and transfers the result to A,).
The index registers are also used to store
fixed-point integers and manipulate float-
ing-point exponents. Registers Ao and Xo
are used to reference the extended core
storage. The partner relationship permits
concurrent calculation of arithmetic and
address information. All arithmetic compu-
tations are performed on operands from the
twenty-four registers with results returned
to these registers.

Instructions are loaded into the processing
unit under the control of P register (see
Figure 1). The instruction stack contains
eight 60-bit registers capable of holding
up to 32 instructions. Instructions are ae-

Computing Surveys, Vol. 8. No. 2, June 1976

A Conceptual Framework for Computer Architecture • 281

cessed from memory and stored in a last in,
first out (LIFO) manner in the instruction
stack. When the program executes a branch
to one of the instructions stored in the
stack, that instruction is directly fetched
from the stack rather than from memory.
In this way it is possible to cut down the
number of memory accesses in the case of
loops that can be accommodated in the
stack. Instructions pass from the instruc-
tion stack to three instruction registers
U0, U1 and U2 whose contents are interpreted
and decoded by the scoreboard. The score-
board examines the instruction to be exe-
cuted and determines whether the func-
tional unit and registers needed for the execu-
tion of the instruction are available; if they
are available the instruction is initiated.
Otherwise, the instruction is held until
they are available. The scoreboard main-
tains the status of each central register and
functional unit so that it can decide when
an instruction can be issued. The score-
board provides interlocks between instruc-
tions so that though parallelism in instruc-
tions is exploited, precedences among in-
structions as specified by the programmer
are still preserved.

The ILLIAC IV System: This system [5]
employs an array structure for organizing
its processors. It consists of 256 processing
elements arranged into four quadrants.
Only one quadrant has been constructed
because of economic considerations.

A quadrant consists of a control unit and
sixty four processing elements. Processing
element i is connected to processing elements
i W 1 (mod 64), i - 1 (mod 64), i -~ 8 (mod
64) and i - 8 (mod 64). The control unit
fetches instructions from a processing ele-
ment memory, decodes them, and issues
control pulses to the processing elements
for execution. I t broadcasts memory ad-
dresses and data words when they are
common to all processors. An instruction
can be either a control or processing unit
instruction. The former directs operations
local to the control unit whereas the latter
controls the execution of the processing
units. The control unit is designed to over-
lap the executions of the two different in-
struction types.

The processing element consists of the
processing element memory (2048 64-bit
words), arithmetic and logic circuitry, and
registers. Each element executes the common
instruction issued by the control unit on
data stored in its memory. An element will
not execute the common instruction if its
enableflip-flop is not set. In other words all
the enabled elements execute the same in-
struction issued by the control unit. Digital
Equipment PDP-10 computers perform the
executive control of system operation, I /O
processing and supervision, and compilation
of the ILLIAC IV programs.

The TI ASC System: A principal feature
of the Texas Instruments Advanced Scien-
tiiic Computer (ASC) [31] is the central
processor's four pipelines (Figure 2). If
computational requirements do not warrant
the capacity of four pipelined arithmetic
units, one or two pipeline CPs are available.
The CP pipeline consists of the instruction
processing unit (IPU), the memory buffer
unit (MBU), and the arithmetic unit (AU).
The IPU supplies a continuous stream of in-
structions for execution by the other units
of the pipeline. I t fetches and decodes in-
structions, accesses and stores operands, and
handles branch conditions. The MBU pro-
vides an interface between the central mem-
ory and AU by supplying a continuous
stream of operands to the AU and storing
results in the memory. The AU performs
arithmetic operations and is pipelined as
shown in Figure 2. Depending on the mode
of arithmetic operation, the pipeline is struc-
t~ured to divert operand flow along the dot-
ted or solid lines. The central processor is a
vector as well as scalar processor and has
vector instructions at machine level.

CONTROL AND FLOW OF INFORMATION

Information flow and its control in a com-
puter play a prominent role in deciding the
computer architecture. This component en-
compasses the aspects of control mechanisms
and schemes used for controling and direct-
ing the system's information flow. Note the
interdependence between the control and
flow elements. Sometimes control initiates
information flow (as in conventional syn-

Computing Surveys, Vol. 8, No. 2, June 1976

PRIMARY f MEMORY PORTS

I

J J
I I

282 • S. S. Reddi and E. A. Feus~l

I--

PRIMARY f MEMORY PORTS

_I

FOUR--RIPFLINE CP
ASC 4X

L-
TWO--PIPELINE CP

ASCZX

FLOATING ADO FIXED MULT

RECEIVER REGISTER

L

EXPONENT SUBTRACT

ALIGN

t
t +

[j

J

I ACCUMULATE

RESULT RESULT

Figure 2. Processing and arithmetic pipelines of the TI/ASC system.
(Reprinted, by permission of Texas Instruments Inc., from A description of the advanced scientific computer system).

chronous computers where control pulses are
issued periodically to direct information
flow) and sometimes information flow initi-
ates control (as in interrupt and data driven
schemes); thus the control element may be
isolated from or incorporated in information
flow. Control may be centralized (as in most
computer systems) or decentralized (as in a
network of microprocessors).

Alteration of information flow in a tradi-
tional computer leads to novel and interest-
ing architectures. A familiar example is the
Burroughs B6700, a stack processor. In the
following we describe briefly the B6700
processor and stack organization and indi-
cate how information flow is affected by the
stack.

The Burroughs B6700: An integrated
hardware-software approach is taken in

designing the B6700. The system is pro-
grammed using high level languages (e.g.,
ALGOL, COBOL and FORTRAN) and does not
offer the user a traditional machine level
language. The system hardware is designed
to handle block structured languages and
procedures efficiently by means of a stack
mechanism and display registers. One learns
to appreciate the system architecture more
when one becomes familiar with the aspects
of system implementation associated with
block structured languages, such as access-
ing global and local variables, address for-
mation for accessing procedure segments,
and nesting of blocks.

Processor O r g a n i z a t i o n

A block diagram of the processor [10] is
shown in Figure 3 [11]. A program word is

Comput ing SurveyB, Vol. 8, No. 2, June 1976

A Conceptual Framework for Compub~r Architecture • 283

ARITNMETI¢
CONTROLLER

1 , | |

ARIThmETIC LOGICAL
OPS OPS

|
OPERATOR DEI~ENOENT INTERRUPTS

,,X/z
.U.

PROGRAM CONIROLLER
(SYLLAIL[DECOOE)

~L ~10 mJS
I I l

SU| ROUTINE JWORD ORIENTEDJ SCALING
O,S 1 OPS I OPS

I ! !
,~21I ll(JS

STACK
ADJUST

CONTROLLER

|

I I FAMILY J
VALUE CALL

OP

I

I STRING 1
OffERATOR

CONTROtLER

NAME CALl.
OP

I

INTERRU~S CONTROLLER INTERRUPTS

TRANSFER CONTROLLER
J INTERNAL [~ TRANSTER ~ /

INPUT ~ OUTPUf

Mf MORY INFO J •

FROM CONTROLLERS
AND FAMILY OPS

J r fOR , / o PRC~

I

-I
PROG~
SEGMENT

A

PROGRAM WORD . . . n

PROGRAM WORD 3

PROGRAM WORD 2

PROGRAM WORD !

PROGRAM WORD o "

Io I, 12 I~ I. I,
I I "P" REGISTER

L l l l L l

W

f
I
I

- - J

J PROGRAM tNOIEX REGISTER / I-

- - - - - - - ~ PROGRAM ~ ~GISTER J

I

ADDER

P S R]

W
OPERATOR F A M I L Y " T " REGISTERS

Figure 3. A functional diagram of the Burroughs B6700, a stack processor.
(Reprinted, by permission of Burroughs Corporation, from The B6700 iuformat,~t referenc~ manual I0586~).

Computing Surveys, Vol, 8, No. 2, June 1976

284 • S. S. Reddi and E. A. Feustel

transferred to the P register through the
memory controler under the control of the
program controler. The program controler
examines the instruction to be executed and
initiates the proper operator family. Re-
lated operators are grouped into a single
operator family; thus family A performs all
arithmetic operations, family B performs
all logic operations, and so on. The arith-
metic and string controlers are enabled by
their respective family operators; they con-
trol and supervise the execution of arith-
metic and string operations.

The transfer controler contains registers
A, X, B and Y necessary for setting up the
stack. The interrupt controler provides a
method of interrupting the program flow'by
setting up necessary control words in the
stack. The processor takes the appropriate
action by examining the control words.
The memory controler handles storage re-
quests and contains an adder which is used
to generate addresses. The stack controler
is responsible for automatic stack adjust-
ment; it manipulates data between main
memory and the A and B registers during
the pop-up and push-down operations of
the stack.

The machine language operators are
composed of eight-bit syllables and each
memory word consists of six syllables. The
operator syllable pointed to by the program
syllable register is decoded, and the operator
family specified by the operator syllable is
selected to receive the execute signal. The
T register in each family specifies the opera-
tion to be performed in that particular
family.

Stack Mechanism

Registers A and B are used to set up the
stack [13] (Figure 4); registers X and Y are
used as extension to A and B when double
precision operands are used. The stack is
formed by linking an assigned area of the
memory to A and B. When A and B are
filled up with operands and a third operand
is entered into the stack the operand in B
is pushed into the stack's memory area.
Register S contains the address of the last
word placed into the memory area. The
stack memory area of a job is bounded by

StiCk a(em

to progrm

I Tog) of stink rl~ters
I

u/o I

+5 W O R D nt

+:++y ,2 i=i

Figure 4.

m

!

I

---7-]

. . J . L j
Sll<:k

I ' I ' I I~
IM+lll

The stack mechanism of the B6700.
(R e p r i n t e d , b y p e r m i s s i o n o f J o h n W i l e y a n d S o n s ,

I n c . , f r o m Mult~processors and parallel processing,
P . H . E n s l o w (E d .) .)

the bottom of stack (BOS) and stack limit
(SL) registers.

Word formats used in the system are
shown in Figure 5 and are determined by
the hardware using the leading three tag
bits. Data is addressed by means of data
descriptors (DD), indirect reference words
(IRW) and stuffed indirect reference words
(SIRW). Program code is accessed through
segment descriptors. In descriptor words
the address field contains the absolute ad-
dress of an array in either main or disc
memory depending on whether the presence
bit P is one or zero. The length field defines
the length of the array. IRW and SIt~W
are used to address data located in the
stack memory area of the job.

The stack keeps track of the stack history
list and the addressing environment list.
The stack history list consists of blocks and
procedures contained in the stack and hence
is dynamic in nature. The addressing en-

C o m p u t i n g Surveys , Vol. 8, No. 2, June 1976

A Conceptual Framework for Computer Architecture • 285

DATA WORDS

IOOO I Exponent I J M

Jolo j zx~ I Mant,ssa (MS)
]]

Io,o E,p ,Ms,] M ,Ls,
L - 6 b I. 39 8,,

DESCRIPTOR WORDS

I °Pt I co°. I
I I

I °P I I!
20 b*ts ~r ,

SPT.CIAL CONTROL WORDS

1011 Stack no t D,spl LL I

I t rogram 111 Stack no syllable index

I
I 1 Program 011 syllable index

J0o,

J oo1 Stack no Displacement

[011 FF i DS states

I I ,~b,,, .~ 10 b~ts ~=~
- 4 bGts -~J i(20 bit= .v_,

Address

Address

20 bits

Smgle
I precision

operand

I Double
I precision

operant
I 1St word

Double
J Orecislon

operand
2nd word

.I
Data
descriptor (DD)

I
Segment
descriptor (SO)

d
Mark stack

I control
word (MSCW)

DF

Address] Program
couple control word (PCW)

Address J Return
control couple word (RCW)

Indirect
Address J reference
couple word (IRW)

Stuffed indirect
Delta I reference

wood (SIRW)

Top of stack
OF J control

word (TOSCW)

14 bits ---~

Figure 5 Control word and data formats of the B6700.
(Reprinted, by permission of John Wiley and Sons, Inc., from Multiprocessor8 and parallel processing,

P. H. Enslow ted.).)

vironment list enables the system to access
local and global variables relative to the
block or procedure presently under execu-
tion.

Marlc stack control words (MSCW) are
used to maintain both the stack history and
addressing environment lists. Figure 6 shows
an example of how an MSCW is entered
when a procedure is entered. The parame-
ters and local variables of the procedure are
entered following the MSCW and hence
are referenced by addressing that is relative
to the location of the MSCW. The DF
fields of the MSCWs keep track of the
stack history whereas the DISP fields main-
tain the addressing environment list.

The variables are accessed by means of
address couples. An address couple consists
of the lexicographic level (LL) of the variable

and an index value ((7) (Figure 6). When a
variable is specified by an address couple,
one can deduce from the execution environ-
ment and the lexicographie level which
block or procedure specifies the variable.
The display registers (DO to D31) contain
the addresses of the MSCWs of the pro-
cedures that are linked by the address en-
vironment list to the procedure under exe-
cution. By adding the index value to the
contents of the appropriate display register
the absolute address of the variable is
generated. As an example let V1 be ref-
erenced in Procedure B. Since V1 is repre-
sented by the address couple (2,2) the
system obtains the address of the appropri-
ate MSCW from the display register D2
and adds 2 to it to obtain the address of V1.
Note that the display registers must always

Computing Surveys, VoL 8, No. 2, June 1976

286 • S. S. Reddi and E. A. Feuslel

> > > > >

£ II II II £ II II £ II ~ 11 II ~ II

0 c~c~ c~ or~m o cu oeo~o o~
cJ ~J ~ ~J ~J

=..0 9 o=

i i II i i

X

N ~

g g ~

I I

Y: ' I ' ~

~>~ I I
< w J I I

<

l ' ~ ~ ' I ¢ I I D-~ l

.

i I m I

i I I II ii
I I I I I
I I I

I I
I I
i I
I I

I I

...... I~

o I
I i

I
i i

I I I I I , I

'~ ~- < 1 , , 11
L 1

~o
'4-

$-

O- - J

m

e~

C o m p u t i n g S u r v e y s , Vo l . 8, N o 2, J u n e 1976

A Conceptual Framework for Computer Architecture

I sqrt J-

SEGMENT
TRUNK

287

SEGMENT
DICTIONARY

begln L . ~
Integer a, b, c

Fprocedure neg(x:y) ; ip
n e g i ~nteger x, y,

L ~ X ~ x-y

Inpu t values fo r a and b,
neg(a,b),

f--beg i n
J i n tege r x,
I x ÷ a+b,
Jr-begl n

B J J Integer y,
I C / ~ ~ x * * z ,
/ / x ÷ x + y ; J~en~,
Len~ sqrt(x),

prlnt (a+b+c),
end

Fp

STACK
AREA

Figure 7. Program representation in the B6700.

point to the address environment list and
have to be changed upon procedure exit or
entry to the correct MSCWs.

The stack mechanism also provides the
capability of handling several active stacks
by organizing them as a tree. It is beyond
the scope of the present paper to go into
these details. Interested readers should
refer to Organick [27].

Representation, Interpretation and Transforma-
tion of Information

The information processing capabilities of
a computer system depend to a large extent
on how the system interprets and represents
the information. In this section we consider
different types of representation, interpre-

tation, and transformation of information
that a computer may use.

Program Representation in the Burroughs
B6700: Consider the ALGOL program shown
in Figure 7. The system keeps track of the
program segments by means of the segment
dictionary. The instruction pointer (IP) and
Environment Pointer (EP) provide the
physical location of the instruction in the
program as well as the environment under
which the instruction will be executed. (We
discussed in the preceding section how the
display registers which constitute the EP
provide environmental information and
pointers are set up in the stack area for the
execution record of the program). The IP
is a three-tuple of the form either (1, i, j) or
(0, i, j). (1, i, 3) indicates that the instruction

Computing Surveys, VoL 8, No. 2, June 1976

288 • S. S. Reddi and E. A. Feustel

resides in the j th location of the ith seg-
ment in the segment dictionary. (0, i, j)
means that a "system intrinsic" (i.e., sys-
tem routine) is addressed. The j th location
of the ith segment in the stack trunk which
contains supervisory code segments and
system tables is accessed. In the example
print and sqrt are system intrinsics. The
segment descriptors indicate whether the
segments are in the main memory and how
to locate the segments on the disc if they
are not in the main memory.

This kind of program representation leads
to efficient memory utilization. Since the
stack trunk, stack segment and stack dic-
tionary compactly represent the program
status and its code requirements, the work-
ing sets tend to be small. Also the repre-
sentation leads to sharing of programs and
data. Though two programs may share a
common procedure segment and hence
have the same instruction pointers, their
EPs are different. For further discussion of
the B6700 and its system description see
[27].

Representation and Interpretation of
Tnstructions

Instructions determine the information flow
and reflect the structure and capabilities of
the system. One of the principal duties of
the computer architect is to develop a com-
prehensive instruction set which is simple to
use but exploits the system resources to
their fullest extent.

An instruction can be of zero-address,
one-address or multi-address format. Zero
address instructions are used in computers
with stack processing where the use of
operands on the top of the stack is implied
by the instruction. Single- and multi-address
formats are used in computer systems
modeled after yon Neumann systems.
Richards [29] gives an excellent discussion of
the various address formats.

Addressing of operands in an instruction
can be indexed or indirect. When the ad-
dressing is indexed, the addresses of the
operands are formed by adding or subtract-
ing the contents of "index" registers to the
address parts of the instruction. When the
addressing mode is indirect, then the address

of the operand can be found in the location
specified by the address part of the instruc-
tion. The instruction repertory of a com-
puter system includes instructions which
allow jump operations and which handle sub-
routine operations.

The instruction set can be significantly
affected by the system architecture. For
instance, consider tagged architecture [12]
which differentiates integer operands from
floating point operands at machine level.
In this case it is not necessary to have sepa-
rate instructions for floating point add and
integer add. When an add instruction is
issued, the system, by examining the ope-
rands involved, decides whether it is a
floating point or integer add. Another ex-
ample of the effect of architecture on the
instruction set is the stack processor (e.g.,
the B6700).

Representation and Interpretation of Data

Knuth [25] explains data as: "representa-
tion in a precise, formalized language of
some facts or concepts, often numeric or al-
phabetic values, in a manner which can be
manipulated by a computational method."
Inevitably, when data represents mathemat-
ical concepts or real life situations, relation-
ships between the data elements are bound
to exist. Since data is a representation, the
precision to which the representation should
be expressed becomes a factor. A properly
conceived computer system should cope with
the problems of relational and precision re-
presentations of data.

Floating point numbers can be represented
in the IBM 370 system series in short (32
bits), long (64 bits) or extended precision
(128 bits) form. The system uses the byte
as its basic storage unit which consists of
8 bits. When a floating point instruction
like ADR (add long floating point) is to
be executed, the system fetches 8 consecu-
tire bytes into the central processing unit
(CPU) where the left-most (or the first)
byte is the one addressed in the instruction.
The system recognizes the operands as float-
ing point, integer, etc., by examining the in-
struction rather than the operands.

In the Burroughs B6500/7500 organiza-
tion, data words are distinguished as single

Computing Surveys, Vo! 8, No 2, June 1976

A Conceptual Framework for Computer Architecture • 289

precision (48 bits) or double precision (96
bits) operands by attaching 3 tag bits to
every word (51 bits). Data may be refer-
enced as an operand (without any qualifi-
cations), and the processor knows by exa-
mining the tag bits whether the operand is
single or double precision. For example, when
a command is issued to store an operand on
the top of the stack, the word specified by
the operand's address is fetched and exa-
mined. If the operand is double precision,
then the next word is also fetched and
stored in the stack. The system recognizes
the type of operand, e.g., integer, or floating
point integer, or extended precision by
examining the instruction. Tag bits also
distinguish data words from the program
code. Hence, when a job attempts either to
execute data as part of the program or to
modify the program, an interrupt is issued.

Transformation (or Dynamic Representation)
of Information

The representation of information can be
static or dynamic. However, a computer
may be used to determine dynamically the
changes in the representation of informa-
tion that are needed for user convenience,
system efficiency, and privacy. Programs
are usually represented at the user level in
high level languages. The representation of
programs is then changed to machine level
languages for execution. Changes of repre-
sentation are performed for the convenience
of the user. (Note that this concept makes
it possible to distinguish between systems
which use compilers and interpreters for
program execution.) Further examples of
this type of representational changes in-
clude automatic transformation of ASCII
characters to EBCDIC by the system.

System efficiency may dictate that differ-
ent representations of information be used
in different situations. Sparse matrices
(matrices whose elements are mostly zero)
can be economically stored by means of
binary patterns and lists of nonzero values.
The use of ones in binary patterns indicates
that their corresponding matrix elements
are nonzero. The values of these elements
are obtained by choosing the appropriate
values from the list. An economy in storage

results because binary patterns can usually
be compacted and stored as binary words.
When the matrices are not sparse it may
be efficient to store them in major order
fashion in rows or columns. Another ex-
ample of where representations may be
changed is in the storing and accessing of
data elements. The elements may be stored
and accessed by a table look-up or by hash
coding techniques depending on the appli-
cation.

Privacy considerations may also warrant
making changes in the representations of
information. Consider the system where a
common data bank has to be shared by
different users and each user is authorized
to access only some portions of the data.
The system may encode the data supplied
by the user and store the encoded data in
the bank. The conversions of encoding or
privacy transformation are performed to
ensure that only authorized users can gain
access to a data set. When the user sup-
plies the proper identification the system
decodes and presents the requested data to
him. Privacy transformations are discussed
in [20].

Physical Organization and Control and
Information Flow

I t is sometimes necessary to create new
control paths among the physical resources
of a computer system to exploit the paral-
lelism that is present in hardware and pro-
grams and to increase the system's per-
formance. In such cases both the physical
and control elements contribute to the
desired objective. A typical application of
this approach may be seen in the over-
lapped operation of I/O and processor
computation found in most contemporary
computer systems. Sometimes information
flow is controled to exhibit to the user a
machine architecture that is not real. An
example of this is the compatibility feature
found in the IBM 370 series. We examine
selected architectural features of the IBM
370 series and the CDC 6600 computers
and indicate how these features can be ex-
plained as a combination of physical organi-
zation and control of information flow.

TBM System~370 Series. Let us now

Computing Surveys~ Vol. 8, No. 2, June 1976

290 • S. S. Reddi and E. A. Feustel

Channels IO lnlerface Control Unlls Input/Output (IO)
Devices

Main SIorage - - Mul[iplexer

- - CPU-ChannelControl Lines ~[
Data Transfer Lines

I
Storage Addrtss •I MAIN STORAGE

m

I

x ij I 1 I FI-"n.-P°'ntR°, 1

Figure 8. Architecture of the IBM System/370.
(Reprinted, by permission of IBM Corporation, from Harry Katzan, Jr., Computer organization and

the System/370.)

consider some salient architectural features
of the IBM 370 series, [24] the main feature
of which is the compatibility between the
various models in the series. Though the
models vary in their designs, performance
indices, and prices, they exhibit the same
architecture to the user. This is accomplished
by providing the same instruction set and
employing microprogramming in all btlt the
largest models. An advantage of this feature
is that the user is offered models of varying
performance indices and storage capacities.
If the user finds that a more (less) powerful
system is needed than the one currently
being used, he can switch to a higher (lower)
numbered model without reprogramming.
A disadvantage is that the models lose

some of their performance in maintaining
compatibility. Small models use much of
their memory in providing compatible
software and are burdened by sophisticated
I/O features suitable for larger models.
Large models can be operated more effi-
ciently if the downward compatibility
feature is not required [13].

Basic CP U Organization

The user sees the architecture of the system
as in Figure 8. The central processor con-
sists of sixteen general registers and four
floating point registers. The general registers
can be used to hold operands or as index and
base address registers. The floating point

C o m p u t i n g S u r v e y s , Vo l . 8, N o . 2, J u n e 1976

A Conceptual Framework for Computer Architecture • 291

I Ir,t I I dl W~lrd I f Sct~nd Halt 'Word 2 Thi rd Hal f Word 3

Byt~ I I I Hyl~ 2

Rt~ll~tt r RL~l~lJr
Op~rmd I Op~rmd 2

~] RR Forn l . I
o Op('od¢ T I I ~ t l2 Is I

I t
i Rt~l~tt c I Addrcs~

Ol%r ind I I Oper,lnd 2

i o 0 . . i ~,] x: I s~ I °, ~XF
i o 7 !a I i 1~ ts le m ~o 311

I Rtgl,l(r Rt gi~lttr Address I '

[Ol~.raml [Ol~-rand 3 OF~rand 2
I ~ r ~ - I

00~Cod. I R, [R, i s2 I °' i~SF
7 i t I T 12 16116 t l 20 31 l

: I I I mmtd la t * : Address :
I I Operand I Operand I I

OpCode S~] D, J Si Format
Io 7iS Is~a l i f o 311

~I Length I I Address I Address
I Operand I Operand 2 Operand I a Operand 2

I o,,c,,,,° i ,-, l ,-, i s, I o~ i s ~ l o,
• 7 I t I 12 Is IS lip ~0 3t SS Format 47

Figure 9. Instruction formats of the IBM/370.
(Reprinted, by permission of IBM Corporation, from
Harry Katzan, Jr., Computer organization and the

registers hold floating point quantities.
The registers reduce the number of memory
accesses for data by storing temporary
operands; this reduction in memory ac-
cesses in turn reduces conflicts for memory
by the I/O and CPU units. The system has
a program status word (PSW) register
whose contents indicate the status of the
program under execution; this enables the
system to handle interrupts and multi-
programming.

Each model has a different engineering
design. For instance, the simplest model
125 does not provide any hardware adders
whereas model 165 has an address adder,
a parallel adder, and serial adder. The in-
struction formats for the system are shown
in Figure 9. They specify the contents of
registers and/or memory locations as
operands. The instruction execution ap-
pears to the user as sequential; however
high performance models employ over-
lapping of instruction and operand fetching
with instruction execution, and prefetching
instructions along both paths of a branch.
The system hardware cannot recognize
structured operands (e.g., vectors and
matrices) and it is up "to the programmer to
make the system recognize such operands
by programming.

I /0 Handling

The responsibility of I /O handling is shared
by the control unit of the CPU and I/O
channels. The channels have their own
registers and are capable of performing
data transfers between memory and I/O
devices. The CPU specifies in its I /O com-
mands where the channels can find their
commands in the main storage. The I/O
requests for memory are given top priority
(i.e., the cycle stealing technique is used).
A significant feature of the I/O organization
is that the user can configure the system
by attaching or removing I/O devices.

Memory Organization

There is no one fixed memory organization
for all the models. Models 155 and 165
provide 4K buffer storage systems in ad-
dition to their main storage units. The
buffer and main storage are organized into
rows and columns. At the intersection of
each column and row there is a block of 32
bytes, i.e., the storages are partitioned into
blocks of 32 bytes and each block can be
specified by a row and column. (A byte
consists of 8 bits.) An address array main-
tains the addresses of the elements in the
buffer. When the CPU makes a storage
reference, the address array is consulted to
determine whether the referenced element
is in the buffer. If the element is present it
is sent to the CPU; otherwise the element is
fetched from the main storage and dis-
patched to the CPU. Then the block con-
taining the element is stored in the buffer
in the following manner: Blocks are trans-
ferred from the main storage to the buffer
columnwise, i.e., a block in column i of the
main memory is transferred to column i of
the buffer. The block that is to be stored in
the buffer replaces the least recently used
block in its column. Model 165 also uses
interleaving for its memory organization.

The storage system provides a protection
feature which can be used in multipro-
gramming. The feature is implemented by
dividing the main store into blocks (of
2048 bytes) and assigning storage keys to
the blocks. Each active program has a
protection key associated with it. Usually

C o m p u t i n g S u r v e y s , ~rol 8 , N o . 2 , J u n e 1976

292 • S. S. Reddi and E. A. Feustel

the operating system assigns the protection
keys to the programs. A program can store
in a block only when the protection key of
the program matches the storage key of
the block or the protection key is zero.
The storage operation is inhibited and an
alarm signal is given if the keys do not
match and the protection key is not zero.
The storage key has an extra bit which pro-
tects fetch operation. If the bit is zero, only
store operation is protected. Otherwise
both store and fetch are protected.

CDC 6600 Memory Organization. The
CDC 6600 memory hierarchy consists of a
fast central storage and slow extended core
storage (ECS) [32]. The central storage of
131,072 60-bit words is composed of 32
independent banks. The banks are inter-
leaved to provide high block transfer rates.
The computer has two cycles, major (1000
nanoseconds (nsec) and minor (100 nsec).
The storage read and store cycle take one
major cycle, whereas transferring a data
word through the storage distribution
system takes one minor cycle. There is a
mechanism called the stunt box which exam-
ines the requests and directs information flow
in and out of the central storage. When the
stunt box accepts a new access request it
decides whether the bank requested is busy
or free; if the bank is free the read and store
cycle is initiated. If the bank is busy, the
address requested is circulated within the
stunt box. The stunt box can hold three
circulating addresses and each circulation
takes 300 nsec. Top priority is given to the
addresses in circulation for access to the
storage. Because of the circulation time
(300 nsec) and the major cycle time (1000
nsec) the mechanism prevents permanent
recirculation of any request. In case of
consecutive requests to the same bank the
requests are satisfied after at most two major
cycles.

The stunt box is also responsible for at-
taching priorities to requests coming from
the central processor unit and peripheral
processing units. I t prevents the situation
where in the recirculating addresses read and
write requests are made to the same storage
location. This is because of the stunt box's
out-of-order recirculation properties. I t

also checks whether the requested address
violates bounds. The storage distribution
system is responsible for transferring re-
quests and data to and from the central
storage.

The secondary storage consists of 15,744
488-bit word core memory. The 488-bit
words (8 of which are parity bits) are dis-
assembled to 60-bit words used in the central
storage. The CPU can transfer any number
of 60-bit words between the central store
and ECS by simple commands. The major
advantage of the ECS is that it can trans-
fer blocks of information at a rate of 60
million bits/second. It may be directly ad-
dressed but at a considerably slower rate.
Thus, its principal use is as a high speed
buffer.

CDC 6600 I /O Handling. Ten peripheral
processing units (PPU) handle I/O ac-
tivities. Each PPU consists of four registers
and a storage unit of 4096 12-bit words.
The processors are arranged in the form of
a "barrel". The barrel has ten positions
and each position is occupied by a PPU.
There is one position called "slot" which
is capable of accessing and utilizing arith-
metic and logic hardware; the ten PPU's
share the slot by circulating the contents of
their four registers. When a PPU is in the
slot it stays there for 100 nsec and uses the
arithmetic and logic hardware to execute
the program stored in its storage unit. A
PPU instruction requires one or more steps
of execution with each step taking 1000
nsec. I t can be noted that the central storage
read and store cycle takes 1000 nsec which
is the time interval between consecutive
sharing of the slot by any PPU. The PPU
can transfer data between peripheral de-
vices and main memory and supervise
the operation of the devices. The PPU
have the capability of establishing paths
to I /O devices through twelve peripheral
channels. A PPU can interrupt the opera-
tion of the central processor by means of
an exchange jump. When an exchange
jump is issued, the CPU makes an exchange
between the contents of its 24 registers and
the contents of the "exchange package"
which starts at a location in the central
storage specified by the PPU. The exchange

Computing Surveys, Vol 8, No 2, June 1976

A Conceptual Framework for Computer Architecture • 293

package consists of 16 words and specifies
the new contents of the 24 central registers.
Once the exchange is made the CPU starts
on the new program specified by the pro-
gram address register (note this register is
one of the central registers). A PPU is also
capable of monitoring the CPU by trans-
ferring the contents of the CPU program
address register to one of its registers.
The CPU can also initiate the exchange
jump.

Physical Organization, Control of Information
Flow and Representation and Interpretation of
Information

Now we consider the architectural feature
of microprogramming which can only be
explained when all three components of
architecture are used. In the literature this
feature is usually associated with system
architecture. The reason for this association
is that microprogramming is able to present
to the user an architecture that is not a
real machine architecture.

Microprogramming: Husson [21] pro-

poses the following definition: "Micro-
programming is a technique for designing
and implementing the control function of a
data processing system as a sequence of
control signals, to interpret fixed or dy-
namically changeable data processing func-
tions. These control signals, organized on a
word basis and stored in a fixed or dy-
namically changeable control memory, repre-
sent the states of the signals which control
the flow of information between the exe-
cuting functions and the orderly transition
between these signal states."

A basic microprogramming scheme [33]
is shown in Figure 10. Register I contains
an address which is decoded by the decoder
(D). The horizontal line in the read only
memory (ROM) that corresponds to the
address is activated and issues signals. The
signals under Matrix A control the data
paths of the arithmetic units, registers, etc.,
of the computer system. The signals of
Matrix B specify the next address to be
decoded and are forwarded to Register II.
Conditional jumps can be handled as shown
at X. A flip-flop whose state can be controled

REGISTER II
1

REGISTER I

m i

MATRIX A MATRIX B

\
Y

CONTROL SIGNALS
TO

ARITHMETIC U N I T ,
ETC.

X

\

FROM
CONDITION
F L I P - F L O P

Figure 10. A simple elementary microprogramming scheme.

Computing Surveys, Vol. 8, No. 2, June 1976

294 • S. S. Reddi and E. A. Feustel

by the previous orders issued by Matrix A
decides which of the two lines in Matrix B
is to be energized.

The signals issued when any line of the
ROM is activated form a microorder. The
format used for microorders can be either
horizontal or vertical depending on how
the orders are interpreted. In a horizontal
format, each signal under Matrix A directly
controls a gated data path. In a vertical
format, the signals are organized into fields
and each field controls the operations of a
particular section (like an adder) of the
computer system. In this format, encoding
of signals is performed and hence hori-
zontally formatted microorders are usually
longer than vertically formatted ones. Verti-
cal format microorders sometimes resemble
machine language instructions in that they.
have operand and address fields. Maximal
parallelism at hardware level can be ex-
ploited by using horizontal format micro-
orders, but generating these orders can be
cumbersome and time consuming.

Microprogramming has been used in
widely differing contexts. For its applica-
tions the interested reader should refer to
Flynn and Rosin [15]. Present day large
systems like the CDC 6600/7600 and IBM
360/195 do not use microprogramming
for their control units. It appears that
microprogramming is used in practice, not
for its systematic implementation of the
control section, but for its ability to offer
emulation capabilities. It is interesting how-
ever, to note that microprogramming is
used to implement the control of the stream-
ing unit of the CDC STAR 100 [23].

ARCHITECTURAL CONCEPTS AND CONSIDERA-
TIONS

In this section we discuss the advantages
and disadvantages of some architectural
concepts. At first view they may appear to
be totally unrelated to each other; however a
little thought will reveal that each of these
concepts can be categorized under one or a
combination of the three components of
architecture. Thus, a framework based on
our proposal that architecture is composed
of these three components can accommodate

these seemingly unrelated and diverse con-
cepts. We conclude by considering some of
the problems and trade-offs an architect
faces in implementing these concepts and in
evolving an architecture.

Array Organization

In this organization identical processors are
connected in an array fashion. The ILLIAC
IV is a familiar example of this type of or-
ganization. The ILLIAe IV operates in a
single instruction stream--multiple data
stream mode (SIMD) [14], i.e., at any time
all the enabled processors execute a single
instruction (issued by a single control unit)
on different data; the processors that are
not enabled do not execute the instruction.
However with suitable operating systems,
it should be possible for array processors to
handle the multiple instruction stream--
multiple data stream mode of operation.

The array organization is very effective in
exploiting parallelism when the character-
istics of the problem to be solved match the
physical structure. Matrix operations pro-
vide an example of this kind of problem.
When all the processors are identical, man-
ufacturing and maintenance are greatly
simplified. A disadvantage of the array or-
ganization is the poor utilization of resources
that may result when the problem structure
does not match the physical structure. The
failure of a single processing element can
hamper the operation of the entire system;
a sophisticated system could, however,
create new and alternate data paths for
continued operation of the system.

Pipeline Organization

This organization consists of functional
units arranged in a pipeline where each
functional unit handles a particular task.
I t is often used in commercial computer
systems to improve system performance.
Examples of this organization include in-
struction handling in the IBM 360/91 and
the arithmetic pipeline units in the TI ASC
[31] and CDC STAR [19] systems. It is well
suited to handling job streams where all
the jobs go through the same processing

Computing Surveys, Vo! 8, No 2, June 1976

A Conceptual Framework for Computer Architecture • 295

stages. Most vector operations can, for
example, be operated in this manner. Pipe-
line organization loses its efficiency when
some jobs require a processing sequence
different trom that of the pipeline. Job de-
pendencies adversely affect the job flow
and hence the efficiency of this organiza-
tion. Since the processing of jobs becomes
"diffused"--at any instant the pipeline
contains jobs at different levels of comple-
t ion-interrupts and machine malfunctions
cannot be handled satisfactorily. For in-
stance, the architecture of IBM 360/91 has
to settle for what is referred to as an "im-
precise interrupt" [3].

Modular Organization

This organization consists of independent
functional units (capable of performing
specialized tasks) and/or processors (cap-
able of performing any task). Tasks, when
they are ready, are dispatched to the ap-
propriate functional units or processors
(usually by the supervisor of the organi-
zation). The central processing unit of a
CDC 6600 employs a modular organization
in which there are ten independent modules.
In the SYMBOL system, function modules are
dedicated to perform portions of the com-
puting process such as translation, memory
control, garbage collection, central processor,
or other processes. In contrast to array and
pipeline organizations the modular organi-
zation usually has a variable structure. The
supervisor of the modular organization can,
by establishing appropriate data flow paths,
simulate any particular structure (e.g., a
pipeline or an array).

An advantage of this type of organiza-
tion is the enhanced performance obtain-
able by using overlap and distributed func-
tion computation. The organization can
ensure graceful degradation of performance
in ease of system component failures. Grace-
ful degradation is achieved by having
multiple function modules of the same type;
when a module fails, its task can be assigned
to another module. On the other hand, the
supervisory system for such an organization
tends to be complex because it has the ad-
ditional responsibility of properly dispatch-

ing tasks and ensuring correct execution of
the program (by preserving task prece-
dences). The lack of structure in this organi-
zation can increase the overhead of dis-
patching tasks. The processing of jobs is
"diffused" as in the pipeline organization.

Stack Processing

In this type of processing, information flow
between central registers is controled in a
such way that a pushdown store (or a stack)
is realized [7]. New operands, which are
entered into the top register of the stack,
cause a "pushdown" action to occur, i.e.,
the contents of each register move down by
one register level. Binary operations can be
performed on the top two registers with the
result being returned to the top register.
The contents of the top register can be
stored in main memory. The Burroughs
B6500 and English Electric KDF-9 employ
stack processing.

The following discussion of advantages
and disadvantages of stack processing is
based on Brooks [7]. Stack processing mini-
mizes main memory data references when
evaluating algebraic expressions. With stack
processing, shorter program representation
is possible as most operand addresses can
be eliminated. I t simplifies subroutine
management and compilation of source
programs, especially those programs with
recursive definitions. Stack processing makes
it easier to handle block structured lan-
guages like ALGOL. However, this type of
processing is helpful only if the items that
are to be processed can be made to "surface"
to the top of the stack. A further disad-
vantage is that many stacks, such as a stack
for control and a stack for data, are often
needed for satisfactory operation. When
variable length fields are used, stack registers
must be of ~rariable length to accommodate
the values selected from these fields. This
often proves to be difficult to implement.

Virtual Memory

By automatic control of information flow
between the main and secondary memories,
a system with virtual memory [11] gives the

Computing Surveys. VoL 8, No 2, June 1976

296 • S. S. Reddi and E. A. Feustel

programmer an illusion of operating with a
main memory that is larger in capacity
than the actual memory. This is accom-
plished by dividing the address space into
blocks of contiguous addresses and storing
them in both the main and secondary
memories. When the programmer makes a
reference to an item not present in the
main memory, the computer system auto-
matically transfers the block containing
the referred item from the secondary to the
primary memory. The new incoming block
will displace a resident block according to
some fixed rule if the main memory cannot
accommodate the new block. When the
blocks are of variable size, one has "seg-
mentation;" when they are of fixed size,
the situation is referred to as "paging."

The principal advantage of virtual mem-
ory is that the user can be indifferent to
main memory limitations in his program-
ming. He need not concern himself with
the problems of overlays and memory
management. The large address space pro-
vided by virtual memory also simplifies
multiprogramming. On the other hand,
efficient utilization of the main memory is
not always possible. Paged systems round
up storage requests to the nearest integral
number of pages and this sometimes causes
appreciable loss of the main memory ("frag-
mentation"). Multiprogrammed systems
sometimes exhibit performance degradation
which is due to a phenomenon known as
"thrashing" [11].

Virtual Machines

By means of hardware and software con-
trol of information flow a single computer
system presents to the users multiple exact
copies of the system. Each user is given the
illusion that he has the complete computer
system at his disposal. As an example the
IBM's VM/370 offers the user a virtual
IBM 370 system on which he can run any
system/370 or system/360 operating system.
The virtual machine, of course, runs several
times slower than the real machine. The
appearance of multiple copies of the basic
machine is handled by the virtual machine
monitor which interfaces the user's operat-

ing system and the real machine. For details
concerning the implementation of the moni-
tor, refer to Madnick and Donovan [26].
An advantage of virtual machines is that
the users can run different operating systems
on the same real machine at the same time.
On the negative side, the virtual machine is
several times slower because there is over-
head associated with the monitor.

Parallel Processing

In this type of processing, the performance
of a computer system is increased by in-
troducing control and data paths among
its hardware resources. For our purposes
we consider parallel processing at bit and
task levels. We follow the model of Shore
[30] for bit level processing. Figure 11 shows
a system which consists of a data memory
(DM), an instruction memory (IM) and a
control unit (CU). In the DM, words are
stored horizontally. A bit (word) slice is any
set of bits exposed by a single vertical
(horizontal) cut through the DM. The word
slice processing unit (WSPU) can operate
on word slices whereas the bit slice process-
ing unit (BSPU) operates on the bit slices.
In Shore's terminology, Machine I refers
to the system with only word slice processing
capabilities, Machine II refers to the system
with only bit slice processing capabilities
and Machine III has both of the processing
capabilities. (There are also Machines IV,
V and VI which are best considered at task
level.) I t is interesting to note that Machine
I is a conventional sequential processor and
Machine II is a bit serial associative proces-
sor. Shore's scheme does not fit Flynn's
classification [14]. Shore states: "In terms of
a taxonomy introduced by Flynn, it is often
stated that Machine II is a single-instruc-
tion-stream, multiple-data-stream processor
whereas Machine I is not. In fact, they
both are. Machine I processes multiple-bit-
streams a word slice at a time, whereas
Machine II processes multiple-word-streams
a bit slice at a time. The myopic association
of multiple-data-streams with multiple-word
streams is a conceptual error having nothing
to do with computing power."

Shore considers the ratio of processing

Computing Surveys, Vol. 8, No. 2, June 1976

WORD . ~
SLICE

A Conceptual Framework for Computer Architecture

BIT
f SLICE

, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ' E ~ ~
/
/
/
/

DATA / BIT
/ ~ SLICE MEMORY /
/ PROCESSING
/ UNIT

YA

II
I

WORD SLICE PROCESSING UNIT
1

I INSTRUCTION
MEMORY

Figure 11. A bit-level processing computer system.

297

hardware to memory hardware for evalu-
ating the effectiveness of his machines. As
can be noted, the ratio also reflects the
effect of creating information flow paths by
means of physical organization.

At task level there are many approaches
to parallel processing. One approach consists
of the functional decomposition of tasks and
the dispatching to independent functional
units which are specialized to execute them
(e.g., the CPUs of the CDC 6600 and IBM
360/91). In another approach, the func-
tional or processing units have a fixed
operand and control routing structure (like
a pipeline or an array) imposed on them.
When the system consists of equally cap-
able processing systems, its mode of opera-
tion can be characterized by single instruc-
tion-multiple data streams (e.g., the ILLIAC
IV and PEPE) or multiple instruction-
multiple data streams [14].

Central to parallel processing is the
problem of recognition of parallelism in
programs and task scheduling to achieve
maximal concurrency. Extensive work has
been done and is continuing in these problem
areas. Baer [4] gives a good survey of the
work done.

Tagging of Information

Iliffe [22] in his proposal of a basic language
machine (BLM) suggests tagging of data
and address descriptions for identification
at machine level. From the tags associated
with data, it is possible to recognize their
precision and type (floating or fixed point,
etc.). Addresses can be specified by "code
words". A code word can specify a block of
contiguous words which starts at the loca-
tion given by the address part of the code
word. The length of the block is also specified
by the code word. It is possible that a code
word can specify a set which consists of
code words and data. It can be noted that
structural data representations can be
easily handled by the code word scheme.

In the BLM tags are also used to imple-
ment "escape actions." Whenever the ma-
chine encounters an operand whose tag
specifies an escape action, the machine in-
terrupts and follows the appropriate action.
Numerical overflows, invalid addresses and
unauthorized storage accesses can be handled
by escape actions.

Iliffe claims the following advantages for
his BLM. The machine can recognize the
information structure of a program at ma-

Computing Surveys, Vol. 8, No. 2, June 1976

298 • S. S. Reddi and E. A. Feustel

chine level; this increases the versatility
of the machine. Because of the use of code-
words, the linear store structure of a con-
ventional computer system is avoided. This
is helpful in multiprogramming storage al-
location schemes. Since data are identified
by tags, instructions need not specify the
data types; a single add instruction is suffi-
cient to specify every add type. This results
in a smaller instruction set. Also one can
detect "mixed arithmetic errors" (such as
addition of a floating point number to an
integer) simply by examining the tags.
The BL1V[also has certain disadvantages.
In a linear store every item can be addressed
directly, whereas extra store accesses may
have to be made in data structures com-
posed of code words. Overhead is associated
with memory allocation because of the data
structure involved. For further discussions
of tagged architecture, see Feustel [12].

Emulation

Emulation is a combined hardware-software
approach to the process of modeling the
physical behavior of one machine on an-
other [21]. A host machine A can be made to
emulate a target machine B with the aid of
microprogramming. This means that A
can interpret and execute the machine
program written for B by means of micro-
programming. As an example, an emulator
is available which makes it possible to emu-
late the IBM 7080 on the IBM 360/65.
The emulator considers the machine in-
struction of the IBM 7080 and performs
necessary storage mapping conversions; it
interprets and translates the instruction
into a 360/65 machine instruction. Then the
host machine executes the instruction.

There are many advantages to emulation.
When the user changes computer systems
he does not have to reprogram if he can
emulate his old system on the new one.
Emulation leads to compatibility, a prin-
cipal feature of the IBM 370. A disadvan-
tage of emulation is that it is inherently
slow and does not fully utilize the resources
of the host machine.

Developing an Architecture

Now we briefly consider some of the prob-
lems and trade-offs an architect faces in
evolving an architecture. These considera-
tions are discussed within the framework of
the three components of architecture. As-
sume that the architect decides to make the
computer system provide the capacity of
ten processing units. This decision can be
implemented either by replicating process-
ing units (physical organization) or by time
multiplexing a single processing unit (con-
trol and flow of information). The first
approach, which is expensive, provides
higher performance and graceful perform-
ance degradation in case of processing unit
failures. The second is more economical but
might require a sophisticated control.

Consider a system in a list processing
environment. The architect wishes to pro-
vide the capabilities of linked data struc-
tures. He may design a conventional system
without any list processing capabilities and
leave the task of handling data structures
to the system programmer (control and
flow of information). Alternately, the archi-
tect can provide data structure capabilities
at machine level itself by making appropri-
ate provisions at the hardware level (repre-
sentation and interpretation of informa-
tion). To improve the reliability of data
transmission links the architect may either
resort to replication and major voting or
better technology (physical organization)
or incorporate parity bits to the words
transmitted (representation and interpreta-
tion of information). Similarly, the reli-
ability of adders can be improved by repli-
cation or by coding the operands (e.g., AN
coding [9]). Thus the architectural problems
and decisions involved in implementing an
architecture can be viewed in terms of the
three components of architecture.

Dynamic Architectures

The computer user is becoming increasingly
aware of the effect of architecture on system
performance. He realizes that the array
organization is ideal for solving relaxation
problems, that the pipeline organization is

Computing Surveys, Vol. 8, No. 2, June 1976

A Conceptual Framework for Computer Architecture • 299

effective in handling matr ix and vector
operations, and tha t stack processing makes
it easier to compile and execute ALGOL pro-
grams. Since no single architecture can
satisfy the needs of all users, it has become
desirable to have a computer system whose
architecture can be defined and varied dy-
namically.

)~t present, emulation is the main prin-
ciple used to offer variable architectures to
the user. But emulation is inherently slow
and inefficient and would defeat our pur-
pose, which is to speed up computat ion
with dynamic architecture. Using our three
component approach to architecture, it is
possible to conceive a system with dynamic
organization. The user can specify the
architecture he needs in terms of the three
components, and the system will exhibit
this architecture by introducing appropriate
changes in its control and data paths and
by altering its representation and interpre-
tat ion of information. The speed require-
ments dictate tha t these changes be exe-
cuted at hardware level. The authors [28]
propose a system where it is possible to
s tructure system resources as a pipeline,
an array, or in any configuration the user
m a y want. Structuring is accomplished by
dynamically establishing bus paths between
the resources. Thus the physical element of
architecture is 'al tered' by suitable con-
trol of information flow. Similarly, the
other components of architecture can be
altered. For instance, information flow can
be controled to exhibit a stack or nonstack
structure depending on the program en-
vironment. By at taching tags to operands
and interpreting them dynamically, we
can obtain an architecture in which the
third component is a variable.

REFERENCES

[1] ABRAMS, M. D.; AND STEIN, P.G. Computer
hardware and software, an znterdisczplmary
introduction, Addison-Wesley, Reading,
Mass., 1973.

[2] AMDAHL, G. M.; BLAAUW, G. A.; AND
" " h BROOKS, F P , JR, Architecture of t e

IBM System/360," IBM J. R & D. (April
1964), 87-101.

[3] ANDERSON, D. W.; SPARACIO, F. J.; AND
TOMASULO, R. M. "The IBM System~360

Model 91: machine philosophy and instruc-
tion handling," IBM J. R. & D. 11, 1, (Jan.
1967), 8-24.

[4] BAER, J .L . "A survey of some theoretical
aspects of multiprocessing," Computing
Surveys 5, 1 (March 1973), 31-80.

[5] BARNES, G. H. et al, "The ILLIAC IV com-
puter," IEEE Trans. Computers (August
1968), 746-757

[6] BEIZEa, B. The architecture and engineer-
ing of digital computer complexes, Vols.
1 and 2, Plenum Press, New York, 1971.

[7] BaooKs, F. P., JR., "Recent developments
in computer organization," in Advances
in electronic and electron physics, Vol. 18,
Academic Press, New York, 1963, pp. 45-65.

[8] BROOKS, F .P , JR., "The future of computer
architecture," in Proc. IFIP Congress 65,
Vol. 1, Spartan Book Co., Washington, D.C.,
1965, pp. 87-91.

[9] BRow~, D. T. "Error detecting and cor-
recting binary codes for arithmetic opera-
tions," IEEE Trans. Electronzc Computers
(Sept. 1960), 333-337.

[10] BURROUGHS CORPORATION, Burroughs B
6700 information processing systems reference
manual, Burroughs Corp., Detroit, Michi-
gan, 1972.

[11] DENNING, P. J. "Virtual memory," Com-
puting Surveys 2, 3 (Sept. 1970), 153-189.

[12] FEUSTEL, E. A. "On the advantages of
tagged architecture," IEEE Trans. Com-
puters (July 1973), 644-656.

[13] FLORES, I. Computer organ~zahon, Pren-
tice-Hall, Englewood Cliffs, N.J., 1969.

[14] FLYNN, M.J . "Very high-speed computing
systems," in Proe. of IEEE, 1966, IEEE,
New York, 1966, pp. 1901-1909.

[15] FLYNN, M. J.; AND ROSIN, R . F . "Micro-
programming: an introduction and a vmw-
point," IEEE Trans. Computers (July 1971),
727-731.

[16] FOSTER, C. C. "Computer architecture,"
IEEE Trans. Computers, (March 1972), 19.

[17] FOSTER, C. C Computer architecture, Van
Nostrand Reinhold Company, New York,
1970.

[18] HAUCK, E. A.; AND DENT, B. A. "Bur-
roughs' B6500/B7500 stack mechanism,"
in AFIPS Sprang Jr. Computer Conf., 1968,
Thompson Book Co., Washington, D.C.,
pp. 245-251.

[19] HINTZ, R. G.; .~ND TATE, D. P. "Control
Data STAR-100 processor design," in
COMPCON 72 Szxth Annual IEEE Comp.
Soc. Internatl. Conf., IEEE, New York,
1972, pp. 1-4.

[20] HOFFMAN, L. (Ed) Securzty and privacy zn
computer systems, Melville Publ. Co., Los
Angeles, Cahf, 1973.

[21] HcssoN, S. S. Mieroprogramm~ng: prin-
ciples and practice, Prentice-Hall, Engle-
wood Chffs, N.J , 1970.

[22] ILIFFE, J. K. Basic machine principles,
(2d Ed.), American Elsevmr, New York,
1972.

[23] JONES, L H.; AND MERWIN, R.E. "Trends
in mmroprogramming: a second reading,"
IEEE Trans. Computers (August 1974), 754-
759.

Computing Surveys, VoL 8, No 2, June 1976

300 * S. S. Reddi and E. A. Feustel

[24] KATZAN, H., JR., Computer organization
and the System~870, Von Nostrand Rein-
hold Co., New York, 1971.

[25] KNVTH, D E. The art of computer pro-
gramming, Vol. 1, Addison-Wesley, Reading,
Mass., 1968.

[26] MADNICK, S. E.; AND DONOVAN, J . J . Ope-
ratzng systems, McGraw-Hill, New York,
1974.

[27] ORQANICK, E. I. Computer system organi-
zation, the B5700/B6700 seines, Academic
Press, New York, 1974.

[28] REEDI, S. S.; AND FEUSTEL, E. A. "An
approach to restructurable computer sys-
tems," in Proc. Sagamore Computer Conf.,
1974, Lecture notes in Computer science,
Vol. 24, Springer Verlag, New York, 1975,
319-337.

[29] RICHARDS, R . K . Electronic digital systems,
John Wiley & Sons, New York, 1966.

[30] SHORE, J. E "Second thoughts on parallel
processing," Computers and Electrical Engi-
neemng (June 1973), 95-109.

[31] TEXAS INSTRUMENTS INC. A description of
the advanced scientific computer system,
Equipment Group, Texas Instruments, Inc.,
Austin, Texas, 1973.

[32] THORNTON, J E. Design of a computer:
the CDC 6600, Scott, Foresman & Co., Glen-
view, Ill., 1970.

[33] WILKES, M. V.; AND STRINGER, J . B . "Mi-
croprogramming and the design of the con-
trol circuits in an electronic digital com-
puter," in Proc. Cambmdge Phil. Soc., Part
2, 1953, Cambridge Univ. Press, New York,
1953, pp. 230-238.

Computing Surveys, Vol. 8, No 2, June 1976

