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Transmitting messages across noisy channels is an important practical
problem. Coding theory provides explicit ways of ensuring that messages
remain legible even in the presence of errors. Cryptography on the other
hand, makes sure that messages remain unreadable | except to the intended
recipient. These complementary techniques turn out to have much in common
mathematically.
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1 What is an error correcting code?

Originally codes were a device for making messages hard to read. The study
of such codes and their successors is called cryptography and will form the
subject of the last quarter of these notes. However in the 19th century the
optical1 and then the electrical telegraph made it possible to send messages
speedily but at a price. That price might be speci�ed as so much per word
or so much per letter. Obviously it made sense to have books of `telegraph
codes' in which one �ve letter combination QWADR, say, meant `please book
quiet room for two' and another QWNDR meant `please book cheapest room
for one'. Obviously, also, an error of one letter of a telegraph code could have
unpleasant consequences.

Today messages are usually sent in as binary sequences like 01110010 : : : ,
but the transmission of each digit still costs money. Because of this, messages

1See The Count of Monte Christo and various Napoleonic sea stories. A statue to the
inventor of the optical telegraph (semaphore) used to stand somewhere in Paris but seems
to have disappeared.
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are often `compressed', that is shortened by removing redundant structure2

In recognition of this fact we shall assume that we are asked to consider a
collection of m messages each of which is equally likely.

Our model is the following. When the `source' produces one of the m
possible messages �i say, it is fed into a `coder' which outputs a string ci of
n binary digits. The string is then transmitted one digit at a time along a
`communication channel'. Each digit has probability p of being mistransmit-
ted (so that 0 becomes 1 or 1 becomes 0) independently of what happens
to the other digits [0 � p < 1=2]. The transmitted message is then passed
through a `decoder' which either produces a message �j (where we hope that
j = i) or an error message and passes it on to the `receiver'.

Exercise 1.1. Why do we not consider the case 1 � p > 1=2? What if
p = 1=2?

An obvious example is the transmission of data from a distant space probe
where (at least in the early days) the coder had to be simple and robust but
the decoder could be as complex as the designer wished. On the other hand
the decoder in a home CD player must be cheap but the encoding system
which produces the disc can be very expensive.

For most of the time we shall concentrate our attention on a code C �
f0; 1gn consisting of the codewords ci. We say that C has size m = jCj.
If m is large then we can carry a large number of possible messages (that

2In practice the situation is more complicated. Engineers distinguish between irre-
versible 'lossy compression' and reversible 'lossless compression'. For compact discs where
bits are cheap the sound recorded can be reconstructed exactly. For digital sound broad-
casting where bits are expensive the engineers make use of knowledge of the human au-
ditory system (for example, the fact that we can not make out very soft noise in the
presence of loud noises) to produce a result that might sound perfect (or nearly so) to us
but which is in fact not. For mobile phones there can be greater loss of data because users
do not demand anywhere close to perfection. For digital TV the situation is still more
striking with reduction in data content from �lm to TV of anything up to a factor of 60.
However medical and satellite pictures must be transmitted with no loss of data. Notice
that lossless coding can be judged by absolute criteria but the merits of lossy coding can
only be judged subjectively.
In theory lossless compression should lead to a signal indistinguishable (from a statistical

point of view) from a random signal. In practice this is only possible in certain applications.
As an indication of the kind of problem involved consider TV pictures. If we know that
what is going to be transmitted is `head and shoulders' or `tennis matches' or `cartoons' it
is possible to obtain extraordinary compression ratios by `tuning' the compression method
to the expected pictures but then changes from what is expected can be disastrous. At
present digital TV encoders merely expect the picture to consist of blocks which move at
nearly constant velocity remaining more or less unchanged from frame to frame. In this
as in other applications we know that after compression the signal still has non-trivial
statistical properties but we do not know enough about them to exploit this.
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is we can carry more information) but as m increases it becomes harder to
distinguish between di�erent messages when errors occur. At one extreme,
if m = 1, errors cause us no problems (since there is only one message) but
no information is transmitted (since there is only one message). At the other
extreme, if m = 2n, we can transmit lots of messages but any error moves
us from one codeword to another. We are led to the following rather natural
de�nition.

De�nition 1.2. The information rate of C is
log2m

n
.

Note that, since m � 2n the information rate is never greater than 1.
Notice also that the values of the information rate when m = 1 and m = 2n

agree with what we might expect.
How should our decoder work? We have assumed that all messages are

equally likely and that errors are independent (this would not be true if, for
example, errors occured in bursts3. Under these assumptions, a reasonable
strategy for our decoder is to guess that the codeword sent is one which
di�ers in the fewest places from the string of n binary digits received. Here
and elsewhere the discussion can be illuminated by the simple notion of a
Hamming distance.

De�nition 1.3. If x; y 2 f0; 1gn we write

d(x;y) =
nX
j=1

jxj � yjj

and call d(x;y) the Hamming distance between x and y.

Lemma 1.4. The Hamming distance is a metric.

We now do some very simple 1A probability.

3For the purposes of this course we note that this problem could be tackled by permut-
ing the `bits' of the message so that `burst are spread out'. In theory we could do better
than this by using the statistical properties of such bursts. In practice this may not be
possible. In the paradigm case of mobile phones, the properties of the transmission chan-
nel are constantly changing and are not well understood. (Here the main restriction on
interleaving is that it introduces time delays. One way round this is `frequency hopping' in
which several users constantly swap transmission channels `dividing bursts among users.)
One desirable property of codes for mobile phone users is that they should `fail gracefully',
that is that as the error rate for the channel rises the error rate for the receiver should not
suddenly explode.
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Lemma 1.5. We work with coding and transmission scheme described above.
Let c 2 C and x 2 f0; 1gn.

(i) If d(c;x) = r then

Pr(x received given c sent) = pr(1� p)n�r:

(ii) If d(c;x) = r then

Pr(c sent given x received) = A(x)pr(1� p)n�r;

where A(x) does not depend on r or c.
(iii) If c0 2 C and d(c0;x) � d(c;x) then

Pr(c sent given x received) � Pr(c0 sent given x received)

with equality if and only if d(c0;x) = d(c;x).

The lemma just proved justi�es our use, both explicit and implicit, through-
out what follows of the so called maximum likelihood decoding rule.

De�nition 1.6. The maximum likelihood decoding rule states that a string
x 2 f0; 1gn received by a decoder should be decoded as (one of) the codewords
at the smallest Hamming distance from x.

Notice that, although this decoding rule is mathematically attractive, it
may be impractical if C is large and there is no way of �nding the codeword
at the smallest distance from a particular x without making complete search
through all the members of C.

2 Hamming's breakthrough

Although we have used simple probabilistic arguments to justify it, the max-
imum likelihood decoding rule will enable us to avoid probabilistic consider-
ations for the rest of the course and to concentrate on algebraic and combi-
natorial considerations. The spirit of the course is exempli�ed in the next
two de�nitions.

De�nition 2.1. We say that C is d error detecting if changing up to d digits
in a codeword never produces another codeword.

De�nition 2.2. We say that C is e error correcting if knowing that a string
of n binary digits di�ers from some codeword of C in at most e places we
can deduce the codeword.
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Here are two simple schemes.
Repetition coding of length n. We take codewords of the form

c = (c; c; c; : : : ; c)

with c = 0 or c = 1. The code C is n � 1 error detecting, and b(n � 1)=2c
error correcting. The maximum likelihood decoder chooses the symbol that
occurs most often. (Here and elsewhere b�c is the largest integer N � � and
d�e is the smallest integer M � �.) Unfortunately the information rate is
1=n which is rather low4.
The paper tape code. Here and elsewhere it is convenient to give f0; 1g the
structure of the �eld F2 = Z2 by using arithmetic modulo 2. The codewords
have the form

c = (c1; c2; c3; : : : ; cn)

with c1, c2, : : : , cn�1 freely chosen elements of F2 and cn (the check digit)
the element of F2 which gives

c1 + c2 + � � �+ cn�1 + cn = 0:

The resulting code C is 1 error detecting since, if x 2 F
n
2 is obtained from

c 2 C by making a single error, we have

x1 + x2 + � � �+ xn�1 + xn = 1:

However it is not error correcting since, if

x1 + x2 + � � �+ xn�1 + xn = 1;

there are n codewords y with Hamming distance d(x;y) = 1. The informa-
tion rate is (n � 1)=n. Traditional paper tape had 8 places per line each of
which could have a punched hole or not so n = 8.

Exercise 2.3. Machines tend to communicate in binary strings so this course
concentrates on binary alphabets with two symbols. There is no particu-
lar di�culty in extending our ideas to alphabets with n symbols though, of
course, some tricks will only work for particular values of n. If you look at
the inner title page of almost any recent book you will �nd its International
Standard Book Number (ISBN). The ISBN uses single digits selected from 0,
1, : : : , 8, 9 and X representing 10. Each ISBN consists of nine such digits
a1, a2, : : : , a9 followed by a single check digit a10 chosen so that

10a1 + 9a2 + � � �+ 2a9 + a10 � 0 mod 11: (*)

4Compare the chorus `Oh no John, no John, no John no'.
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(In more sophisticated language our code C consists of those elements a 2 F
10
11

such that
P10

j=1(11� j)aj = 0.)

(i) Find a couple of books5 and check that (�) holds for their ISBNs6.
(ii) Show that (�) will not work if you make a mistake in writing down

one digit of an ISBN.
(iii) Show that (�) may fail to detect two errors.
(iv) Show that (�) will not work if you interchange two adjacent digits.

Errors of type (ii) and (iv) are the most common in typing7. In communi-
cation between publishers and booksellers both sides are anxious that errors
should be detected but would prefer the other side to query errors rather than
to guess what the error might have been.

Hamming had access to an early electronic computer but was low down
in the priority list of users. He would submit his programs encoded on paper
tape to run over the weekend but often he would have his tape returned
on Monday because the machine had detected an error in the tape. `If the
machine can detect an error' he asked himself `why can the machine not
correct it?' and he came up with the following scheme.
Hamming's original code. We work in F72 . The codewords c are chosen to
satisfy the three conditions.

c1 + c3 + c5 + c7 = 0

c2 + c3 + c6 + c7 = 0

c4 + c5 + c6 + c7 = 0:

By inspection we may choose c3, c5, c6 and c7 freely and then c1, c2 and c4
are completely determined. The information rate is thus 4=7.

Suppose that we receive the string x 2 F72 . We form the syndrome
(z1; z2; z4) 2 F32 given by

z1 = x1 + x3 + x5 + x7

z2 = x2 + x3 + x6 + x7

z4 = x4 + x5 + x6 + x7:

If x is a codeword then (z1; z2; z4) = (0; 0; 0). If c is a codeword and the
Hamming distance d(x; c) = 1 then the place in which x di�ers from c is
given by z1 + 2z2 + 4z3 (using ordinary addition, not addition modulo 2) as

5In case of di�culty your college library may be of assistance.
6In fact, X is only used in the check digit place.
7Thus the 1997{8 syllabus for this course contains the rather charming misprint of

`snydrome' for `syndrome'.
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may be easily checked using linearity and a case by case study of the seven
binary sequences x containing one 1 and six 0s. The Hamming code is thus
1 error correcting.

Exercise 2.4. Suppose we use eight hole tape with the standard paper tape
code and the probability that an error occurs at a particular place on the tape
(i.e. a hole occurs where it should not or fails to occur where it should) is
10�4. A program requires about 10 000 lines of tape (each line containing
eight places) using the paper tape code. Using the Poisson approximation,
direct calculation (possible with a hand calculator but really no advance on
the Poisson method) or otherwise show that the probability that the tape will
be accepted as error free by the decoder is less than .04%.

Suppose now that we use the Hamming scheme (making no use of the last
place in each line). Explain why the program requires about 17 500 lines of
tape but that any particular line will be correctly decoded with probability about
1 � (21 � 10�8) and the probability that the entire program will be correctly
decoded is better than 99.6%.

Hamming's scheme is easy to implement. It took a little time for his com-
pany to realise what he had done8 but they were soon trying to patent it.
In retrospect the idea of an error correcting code seems obvious (Hamming's
scheme had actually been used as the basis of a Victorian party trick) and
indeed two or three other people discovered it independently, but Hamming
and his Co-discoverers had done more than �nd a clever answer to a ques-
tion. They had asked an entirely new question and opened a new �eld for
mathematics and engineering.

The times were propitious for the development of the new �eld. Be-
fore 1940 error correcting codes would have been luxuries, solutions looking
for problems, after 1950 with the rise of the computer and new communi-
cation technologies they became necessities. Mathematicians and engineers
returning from wartime duties in code breaking, code making and general
communications problems were primed to grasp and extend the ideas. The
mathematical engineer Claude Shannon may be considered the presiding ge-
nius of the new �eld.

3 General considerations

How good can error correcting and error detecting codes be? The following
discussion is a natural development of the ideas we have already discussed.

8Experienced engineers came away from working demonstrations muttering `I still don't
believe it'.

8



De�nition 3.1. The minimum distance d of a code is the smallest Hamming
distance between distinct code words.

We call a code of length n, size m and distance d a [n;m; d] code. Less
briey, a set C � Fn2 , with jCj = m and

minfd(x;y) : x;y 2 C; x 6= yg = d

is called a [n;m; d] code. By an [n;m] code we shall simply mean a code of
length n and size m.

Lemma 3.2. A code of minimum distance d can detect d � 1 errors and
correct bd�1

2
c errors. It cannot detect all sets of d errors and cannot correct

all sets of bd�1
2
c+ 1 errors.

It is natural here and elsewhere to make use of the geometrical insight
provided by the (closed) Hamming ball

B(x; r) = fy : d(x;y) � rg:

Observe that

jB(x; r)j = jB(0; r)j

for all x and so writing

V (n; r) = jB(0; r)j

we know that V (n; r) is the number of points in any Hamming ball of radius
r. A simple counting argument shows that

V (n; r) =
rX

j=0

�
n

j

�
:

Theorem 3.3 (Hamming's bound). If a code C is e error correcting then

jCj �
2n

V (n; e)
:

There is an obvious fascination (if not utility) in the search for codes
which attain the exact Hamming bound.

De�nition 3.4. A code C of length n and size m which can correct e errors
is called perfect if

m =
2n

V (n; e)
:
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Lemma 3.5. Hamming's original code is a [7; 16; 2] code. It is perfect.

It may be worth remarking in this context that if a code which can correct
e errors is perfect (i.e. has a perfect packing of Hamming balls of radius e
then the decoder must invariably give the wrong answer when presented with
e + 1 errors. We note also that if (as will usually be the case) 2n=V (n; e) is
not an integer no perfect e error correcting code can exist.

Exercise 3.6. Even if 2n=V (n; e) is an integer, no perfect code may exist.
(i) Verify that

290

V (90; 2)
= 278:

(ii) Suppose that C is a perfect 2 error correcting code of length 90 and
size 278. Explain why we may suppose without loss of generality that 0 2 C.

(iii) Let C be as in (ii) with 0 2 C. Consider the set

X = fx 2 F
90
2 : x1 = 1; x2 = 1; d(0;x) = 3g:

Show that corresponding to each x 2 X we can �nd a unique c(x) 2 C such
that d(c(x);x) = 2.

(iv) Continuing with the argument of (iii) show that

d(c(x); 0) = 5

and that ci(x) = 1 whenever xi = 1. By looking at d(c(x); c(x0)) for x;x0 2
X and invoking the Dirichlet pigeon-hole principle, or otherwise, obtain a
contradiction.

(v) Conclude that there is no perfect [90; 278] code.

We obtained the Hamming bound which places an upper bound on how
good a code can be by a packing argument. A covering argument gives us
the GSV (Gilbert, Shannon, Varshamov) bound in the opposite direction.
Let us write A(n; d) for the size of the largest code with minimum distance
d.

Theorem 3.7 (Gilbert, Shannon, Varshamov). We have

A(n; d) �
2n

V (n; d� 1)
:
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Until recently there were no general explicit constructions for codes which
achieved the GVS bound (i.e. codes whose minimum distance d satis�ed the
inequality A(n; d)V (n; d � 1) � 2n). Such a construction was �nally found
by Garcia and Stricheuth by using `Goppa' codes.

Engineers are, of course, interested in `best codes' of length n for reason-
ably small values of n but mathematicians are particularly interested in what
happens as n!1. To see what we should look at recall the so called weak
law of large numbers (a simple consequence of Chebychev's inequality). In
our case it yields the following result.

Lemma 3.8. Consider the model of a noisy transmission channel used in
this course in which each digit had probability p of being wrongly transmitted
independently of what happens to the other digits. If � > 0 then

Pr(number of errors in transmission for message of n digits � (1 + �)pn)! 0

as n!1.

By Lemma 3.2 a code of minimum distance d can correct bd�1
2
c errors.

Thus if we have an error rate p and � > 0 we know that the probability that
a code of length n with error correcting capacity d(1 + �)pne code will fail
to correct a transmitted message falls to zero as n ! 1. By de�nition the
biggest code with minimum distance d2(1+ �)pne has size A(n; d2(1+ �)pne)
and so has information rate log2A(n; d2(1+�)pne)=n. Study of the behaviour
of log2A(n; n�)=n will thus tell us how large an information rate is possible
in the presence of a given error rate.

De�nition 3.9. If 0 < � < 1=2 we write

�(�) = lim sup
n!1

log2A(n; n�)

n
:

De�nition 3.10. We de�ne the entropy function H : [0; 1=2) ! R by
H(0) = 0 and

H(�) = �� log2(�)� (1� �) log2(1� �);

for all 0 < � < 1=2

(Our function H is a very special case of a general measure of disorder.)

Theorem 3.11. With the de�nitions just given,

1�H(�) � �(�) � 1�H(�=2)

for all 0 � � < 1=2.
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Using the Hamming bound (Theorem 3.3) and the GSV bound (Theo-
rem 3.7) we see that Theorem 3.11 follows at once from the following result.

Theorem 3.12. We have

log2 V (n; n�)

n
! H(�)

as n!1.

Our proof of Theorem 3.12 depends, as one might expect on a version of
Stirling's formula. We only need the very simplest version proved in 1A.

Lemma 3.13 (Stirling). We have

loge n! = n loge n� n+O(log2 n):

We combine this with the remark that

V (n; n�) =
X

0�j�n�

�
n

j

�
;

and that very simple estimates give�
n

m

�
�
X

0�j�n�

�
n

j

�
� (m+ 1)

�
n

m

�

where m = bn�c.
Although the GSV bound is very important a stronger result can be

obtained for the error correcting power of the best long codes.

Theorem 3.14 (Shannon's coding theorem). Suppose 0 < p < 1=2 and
� > 0. Then there exists an n0(p; �) such that for any n > n0 we can �nd
codes of length n which have the property that (under our standard model) the
probability that a codeword is mistaken is less than � and have information
rate 1�H(p)� �.

[WARNING: Do not use this result until you have studied its proof. It is
indeed a beautiful and powerful result but my statement conceals some traps
for the unwary.]

Thus in our standard setup, by using su�ciently long code words, we can
simultaneously obtain an information rate as close to 1�H(p) as we please
and and an error rate as close to 0 as we please. Shannon's proof uses the
kind of ideas developed in this section with an extra pinch of probability (he
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chooses codewords at random) but I shall not give it in the course. There is
a nice simple treatment in Chapter 3 of [9].

In view of Hamming's bound it is not surprising that it can also be shown
that we cannot drive the error rate down to close to zero and maintain an
information rate 1 � H0 > 1 � H(p). To sum up, our standard set up, has
capacity 1�H(p). We can communicate reliably at any �xed information rate
below this capacity but not at any rate above. However, Shannon's theorem
which tells us that rates less than H(p) are possible is non-constructive and
does not tell us how explicitly hoe to achieve these rates.

4 Linear codes

Just as Rn is vector space over R and C
n is vector space over C so F

n
2 is

vector space over the F2 . (If you know about vector spaces over �elds, so
much the better, if not just follow the obvious paths.) A linear code is a
subspace of Fn2 . More formally we have the following de�nition.

De�nition 4.1. A linear code is a subset of Fn2 such that
(i) 0 2 C,
(ii) if x;y 2 C then x+ y 2 C.

Note that if � 2 F then � = 0 or � = 1 so that condition (i) of the
de�nition just given guarantees that �x 2 C whenever x 2 C. We shall see
that linear codes have many useful properties.

Example 4.2. (i) The repetition code with

fC = fx : x = (x; x; : : : x)g

is a linear code.
(ii) The paper tape code

C =

(
x :

nX
j=0

xj = 0

)

is a linear code.
(iii) Hamming's original code is a linear code.

The veri�cation is easy. In fact, examples (ii) and (iii) are `parity check
codes' and so automatically linear as we shall see from the next lemma.
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De�nition 4.3. Consider a set P in F
n
2 . We say that C is the code de�ned

by the set of parity checks P if the elements of C are precisely those x 2 Fn2

with

nX
j=1

pjxj = 0

for all p 2 P .

Lemma 4.4. If C is code de�ned by parity checks then C is linear.

We now prove the converse result.

De�nition 4.5. If C is a linear code we write C? for the set of p 2 F
n such

that

nX
j=1

pjxj = 0

for all x 2 C.

Thus C? is the set of parity checks satis�ed by C.

Lemma 4.6. If C is a linear code then
(i) C? is a linear code,
(ii) (C?)? � C.

We call C? the dual code to C.
In the language of the last part of the course on linear mathematics (P1),

C? is the annihilator of C. The following is a standard theorem of that
course.

Lemma 4.7. If C is a linear code in Fn2 then

dimC + dimC? = n:

Since the last part of P1 is not the most popular piece of mathematics in
1B we shall give an independent proof later (see the note after Lemma 4.13).
Combining Lemma 4.6 (ii) with Lemma 4.7 we get the following corollaries.

Lemma 4.8. If C is a linear code then (C?)? = C.

Lemma 4.9. Every linear code is de�ned by parity checks.

Our treatment of linear codes has been rather abstract. In order to put
computational esh on the dry theoretical bones we introduce the notion of
a generator matrix.
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De�nition 4.10. If C is a linear code of length n any r � n matrix whose
rows form a basis for C is called a generator matrix for C. We say that C
has dimension or rank r.

Example 4.11. As examples we can �nd generator matrices for the repeti-
tion code, the paper tape code and the original Hamming code.

Remember that the Hamming code is the code of length 7 given by the
parity conditions

x1 + x3 + x5 + x7 = 0

x2 + x3 + x6 + x7 = 0

x4 + x5 + x6 + x7 = 0:

By using row operations and column permutations we can use Gaussian
elimination we can give a constructive proof of the following lemma.

Lemma 4.12. Any linear code of length n has (possibly after permuting the
order of coordinates) a generator matrix of the form

(IrjB):

Notice that this means that any codeword x can be written as

(yjz) = (yjyB)

where y = (y1; y2; : : : ; yr) may be considered as the message and the vector
z = yB of length n� r may be considered the check digits. Any code whose
codewords can be split up in this manner is called systematic.

We now give a more computational treatment of parity checks.

Lemma 4.13. If C is a linear code of length n with generator matrix G then
a 2 C? if and only if

GaT = 0T :

Thus

C? = (kerG)T :

Thus using the rank, nullity theorem we get a second proof of Lemma 4.7.
Lemma 4.13 also enables us to characterise C?.
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Lemma 4.14. If C is a linear code of length n and dimension r with gen-
erator the r � n matrix G then if H is any n � n � r matrix with columns
forming a basis of kerG we know that H is a parity check matrix for C and
its transpose HT is a generator for C?.

Example 4.15. (i) The dual of the paper tape code is the repetition code.
(ii) Hamming's original code has dual with generator0

@1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
A

We saw above that the codewords of a linear code can be written

(yjz) = (yjyB)

where y may be considered as the vector of message digits and z = yB as the
vector of check digits. Thus encoders for linear codes are easy to construct.

What about decoders? Recall that every linear code of length n has a
(non-unique) associated parity check matrix H with the property that x 2 C
if and only if xH = 0. If z 2 Fn2 we de�ne the syndrome of z to be zH. The
following lemma is mathematically trivial but forms the basis of the method
of syndrome decoding.

Lemma 4.16. Let C be a linear code with parity check matrix H. If we are
given z = x + e where x is a code word and the `error vector' e 2 Fn2 , then

zH = eH:

Suppose we have tabulated the syndrome uH for all u with `few' non-zero
entries (say, all u with d(u; 0) � K). If our decoder receives z it computes
the syndrome zH. If the syndrome is zero then z 2 C and the decoder
assumes the transmitted message was z. If the syndrome of the received
message is a non-zero vector w the decoder searches its list until it �nds an
e with eH = w. The decoder then assumes that the transmitted message
was x = z � e (note that z � e will always be a codeword, even if not the
right one). This procedure will fail if w does not appear in the list but for
this to be case at least K + 1 errors must have occured.

If we take K = 1, that is we only want a 1 error correcting code then
writing e(i) for the vector in F

n
2 with 1 in the ith place and 0 elsewhere we

see that the syndrome e(i)H is the ith row of H. If the transmitted message
z has syndrome zH equal to the ith row of H then the decoder assumes that
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there has been an error in the ith place and nowhere else. (Recall the special
case of Hamming's original code.)

If K is large the task of searching the list of possible syndromes becomes
onerous and, unless (as sometimes happens) we can �nd another trick, we
�nd that `decoding becomes dear' although `encoding remains cheap'.

We conclude this section by looking at weights and the weight enumera-
tion polynomial for a linear code. The idea here is to exploit the fact that if
C is linear code and a 2 C then a+ C = C. Thus the `view of C' from any
codeword a is the same as the `view of C' from the particular codeword 0.

De�nition 4.17. The weight w(x) of a vector x 2 Fn2 is given by

w(x) = d(0;x):

Lemma 4.18. If w is the weight function on Fn2 and x;y 2 Fn2 then
(i) w(x) � 0,
(ii) w(x) = 0 if and only if x = 0,
(iii) w(x) + w(y) � w(x+ y).

Since the minimum (non-zero) weight in a linear code is the same as the
minimum (non-zero) distance we can talk about linear codes of minimum
weight d when we mean linear codes of minimum distance d.

The pattern of distances in a linear code is encapsulated in the weight
enumeration polynomial.

De�nition 4.19. Let C be a linear code of length n. We write Aj for the
number of codewords of weight j and de�ne the weight enumeration polyno-
mial WC to be the polynomial in two real variables given by

WC(s; t) =
nX
j=0

Ajs
jtn�j:

Here are some simple properties of WC .

Lemma 4.20. Under the assumptions and with the notation of the De�ni-
tion 4.19, the following results are true.

(i) WC is a homogeneous polynomial of degree n.
(ii) If C has rank r then WC(1; 1) = 2r.
(iii) WC(0; 1) = 1.
(iv) WC(1; 0) takes the value 0 or 1.
(v) WC(s; t) =WC(t; s) for all s and t if and only if WC(1; 0) = 1.
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Lemma 4.21. For our standard model of communication along an error
prone channel with independent errors of probability p and a linear code C
of length n,

WC(p; 1� p) = Pr(receive a code word j code word transmitted)

and

Pr(receive incorrect code word j code word transmitted) = WC(p; 1� p)� (1� p)n:

Example 4.22. (i) If C is the repetition code, WC(s; t) = sn + tn.
(ii) If C is the paper tape code of length n, WC(s; t) =

1
2
((s+t)n+(t�s)n).

Example 4.22 is a special case of the MacWilliams identity.

Theorem 4.23 (MacWilliams identity). If C is a linear code

WC?(s; t) = 2�dimCWC(t� s; t+ s):

We shall not give a proof and even the result may be considered as starred.

5 Some general constructions

However interesting the theoretical study of codes may be to a pure mathe-
matician, the engineer would prefer to have an arsenal of practical codes so
that he or she can select the one most suitable for the job in hand. In this
section we discuss the general Hamming codes and the Reed-Muller codes as
well as some simple methods of obtaining new codes from old.

De�nition 5.1. Let d be a strictly positive integer and let n = 2d� 1. Con-
sider the (column) vector space D = Fd2 . Write down a d � n matrix H
whose columns are the 2d � 1 distinct non-zero vectors of D. The Hamming
(n; n� d) code is the linear code of length n with H as parity check matrix.

Of course the Hamming (n; n�d) code is only de�ned up to permutation
of coordinates. We note that H has rank d so a simple use of the rank nullity
theorem shows that our notation is consistent.

Lemma 5.2. The Hamming (n; n� d) code is a linear code of length n and
rank d [n = 2d � 1].

Example 5.3. The Hamming (7; 4) code is the original Hamming code.
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The fact that any two rows ofH are linearly independent and a look at the
appropriate syndromes gives us the main property of the general Hamming
code.

Lemma 5.4. The Hamming (n; n� d) code has minimum weight 3 and is a
perfect 1 error correcting code [n = 2d � 1].

Hamming codes are ideal in situations where very long strings of binary
digits must be transmitted but the chance of an error in any individual digit
is very small. (Look at Exercise 2.4.) It may be worth remarking that, apart
from the Hamming codes there are only a few (and, in particular, a �nite
number) of examples of perfect codes known.

Here are a number of simple tricks for creating new codes from old.

De�nition 5.5. If C is a code of length n the parity check extension C+ of
C is the code of length n+ 1 given by

C+ =

(
x 2 F

n+1
2 : (x1; x2; : : : ; xn) 2 C;

n+1X
j=1

xj = 0

)
:

De�nition 5.6. If C is a code of length n the truncation C� of C is the
code of length n� 1 given by

C� = f((x1; x2; : : : ; xn�1) : (x1; x2; : : : ; xn) 2 C for some xn 2 F2g:

De�nition 5.7. If C is a code of length n the shortening (or puncturing)
C 0 of C is the code of length n� 1 given by

C 0 = f((x1; x2; : : : ; xn�1) : (x1; x2; : : : ; xn�1; 0) 2 Cg:

Lemma 5.8. If C is linear so is its parity check extension C+, its truncation
C� and its shortening C 0.

How can we combine two linear codes C1 and C2? Our �rst thought might
be to look at their direct sum

C1 � C2 = f(xjy) : x 2 C1; y 2 C2g;

but this is unlikely to be satisfactory.

Lemma 5.9. If C1 and C2 are linear codes then we have the following rela-
tion between minimum distances.

d(C1 � C2) = min(d(C1); d(C2)):
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On the other hand if C1 and C2 satisfy rather particular conditions we
can obtain a more promising construction.

De�nition 5.10. Suppose C1 and C2 are linear codes of length n with C1 �
C2 (i.e. with C2 a subspace of C1). We de�ne the bar product C1jC2 of C1

and C2 to be the code of length 2n given by

C1jC2 = f(xjx+ y) : x 2 C1; y 2 C2g:

Lemma 5.11. Let C1 and C2 be linear codes of length n with C1 � C2. Then
the bar product C1jC2 is a linear code with

rankC1jC2 = rankC1 + rankC2:

The minimum distance of C1jC2 satis�es the inequality

d(C1jC2) � min(2d(C1); d(C2)):

We now return to the construction of speci�c codes. Recall that the
Hamming codes are suitable for situations when the error rate p is very
small and we want a high information rate. The Reed-Muller are suitable
when the error rate is very high and we are prepared to sacri�ce information
rate. They were used by NASA for the radio transmissions from its planetary
probes (a task which has been compared to signalling across the Atlantic with
a child's torch9).

We start by considering the 2d points P0, P1, : : : , P2d�1 of the space
X = F

d
2 . Our code words will be of length n = 2d and will correspond to the

indicator functions IA on X. More speci�cally the possible code word cA is
given by

cAi = 1 if Pi 2 A

cAi = 0 otherwise:

for some A � X.
In addition to the usual vector space structure on Fn2 we de�ne a new

operation

cA ^ cB = cA\B:

Thus if x;y 2 F
n
2 ,

(x0; x1; : : : ; xn�1) ^ (y0; y1; : : : ; yn�1) = (x0y0; x1y1; : : : ; xn�1yn�1):

9Strictly speaking the comparison is meaningless. However, it sounds impressive and
that is the main thing.
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Finally we consider the collection of d hyperplanes

�j = fp 2 X : pj = 0 [1 � j � d]g

in Fn2 and the corresponding indicator functions

hj = c�j ;

together with the special vector

h0 = cX = (1; 1; : : : ; 1):

Exercise 5.12. Suppose that x;y; z 2 Fn2 and A;B � X.
(i) Show that x ^ y = y ^ x.
(ii) Show that (x + y) ^ z = x ^ z+ y ^ z.
(iii) Show that h0 ^ x = x.
(iv) If cA + cB = cE �nd E in terms of A and B.
(v) If h0 + cA = cE �nd E in terms of A.

We refer to A0 = fh0g as the set of terms of order zero. If Ak is the set
of terms of order at most k then the set Ak+1 of terms of order at most k+1
is de�ned by

Ak+1 = fa ^ hj : a 2 Ak; 1 � j � ng:

Less formally but more clearly the elements of order 1 are the hi, the elements
of order 2 are the hi^hj with i < j, the elements of order 3 are the hi^hj^hk

with i < j < k and so on.

De�nition 5.13. Using the notation established above, the Reed-Miller code
RM(d; r) is the linear code (i.e. subspace of Fn) generated by the terms of
order r or less.

Although the formal de�nition of the Reed-Miller codes looks pretty im-
penetrable at �rst sight, once we have looked at su�ciently many examples
it should become clear what is going on.

Example 5.14. (i) The RM(3; 0) code is the repetition code of length 8.
(ii) The RM(3; 1) code is the parity check extension of Hamming's orig-

inal code.
(iii) The RM(3; 2) code is the paper tape code of length 8.
(iii) The RM(3; 3) code is the trivial code consisting of all the elements

of F32 .
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We now prove the key properties of the Reed-Miller codes. We use the
notation established above.

Theorem 5.15. (i) The elements of order d or less (that is the collection of
all possible wedge products formed from the hi) span Fn2 .

(ii) The elements of order d or less are linearly independent.
(iii) The dimension of the Reed-Miller code RM(d; r) is�

d

0

�
+

�
d

1

�
+

�
d

2

�
+ � � �+

�
d

r

�
:

(iv) Using the bar product notation we have

RM(d; r) = RM(d� 1; r)jRM(d� 1; r � 1):

(v) The minimum weight of RM(d; r) is exactly 2d�r.

Exercise 5.16. The Mariner mission to Mars used the RM(5; 1) code. What
was its information rate. What proportion of errors could it correct in a sin-
gle code word?

Exercise 5.17. Show that the RM(d; d�2) code is the parity extension code
of the Hamming (N;N � d) code with N = 2d � 1.

6 Polynomials and �elds

This section is starred and will not be covered in lectures. Its object is
to make plausible the few facts from modern10 algebra that we shall need.
They were covered, along with much else, in the course O4 (Groups, rings
and �elds) but attendance at that course is no more required for this course
than is reading Joyce's Ulysses before going for a night out at an Irish pub.
Anyone capable of criticising the imprecision and general slackness of the
account that follows obviously can do better themselves and should omit
this section.

A �eld K is an object equipped with addition and multiplication which
follow the same rules as do addition and multiplication in R. The only rule
which will cause us trouble is

If x 2 K and x 6= 0 then we can �nd y 2 K such that xy = 1. F

Obvious examples of �elds include R, C and F2 .
We are particularly interested in polynomials over �elds but here an in-

teresting di�culty arises.

10Modern, that is, in 1850.
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Example 6.1. We have t2 + t = 0 for all t 2 F2 .

To get round this, we distinguish between the polynomial in the `indeter-
minate' X

P (X) =
nX
j=0

ajX
j

with coe�cients in aj 2 K and its evaluation P (t) =
Pn

j=0 ajt
j for some

t 2 K. We manipulate polynomials in X according to the standard rules for
polynomials but say that

nX
j=0

ajX
j = 0

if and only if aj = 0 for all j. Thus X2 + X is a non-zero polynomial over
F2 all of whose values are zero.

The following result is familiar, in essence, from school mathematics.

Lemma 6.2 (Remainder theorem). (i) If P is a polynomial over a �eld
K and a 2 K then we can �nd a polynomial Q and an r 2 K such that

P (X) = (X � a)Q(X) + r:

(ii) If P is a polynomial over a �eld K and a 2 K is such that P (a) = 0
then we can �nd a polynomial Q such that

P (X) = (X � a)Q(X):

The key to much of the elementary theory of polynomials lies in the fact
that we can apply Euclid's algorithm to obtain results like the following.

Theorem 6.3. Suppose that P is a set of polynomials,which contains at least
one non-zero polynomial and has the following properties.

(i) If Q is any polynomial and P 2 P then the product PQ 2 P.
(ii) If P1; P2 2 P then P1 + P2 2 P.
Then we can �nd a non-zero P0 2 P which divides every P 2 P.

Proof. Consider a non zero polynomial P0 of smallest degree in P.

Recall that the polynomial P (X) = X2 + 1 has no roots in R (that is
P (t) 6= 0 for all t 2 R). However by considering the collection of formal
expressions a + bi [a; b 2 R] with the obvious formal de�nitions of addition
and multiplication and subject to the further condition i2 + 1 = 0 we obtain
a �eld C � R in which P has a root (since P (i) = 0). We can perform a
similar trick with other �elds.
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Example 6.4. If P (X) = X2 +X + 1 then P has no roots in F2 . However
if we consider

F2 [!] = f0; 1; !; 1 + !g

with obvious formal de�nitions of addition and multiplication and subject to
the further condition !2 + ! + 1 = 0 then F2 [!] is a �eld containing F2 in
which P has root (since P (!) = 0).

Proof. The only thing we really need prove is that F2 [!] is a �eld and to do
that the only thing we need to prove is that F holds. Since

(1 + !)! = 1

this is easy.

In order to state a correct generalisation of the ideas of the previous
paragraph we need a preliminary de�nition.

De�nition 6.5. If P is a polynomial over a �eld K we say that P is re-
ducible if there exists a non-constant polynomial Q of degree strictly less
than P which divides P . If P is a non-constant polynomial which is not
reducible then P is irreducible.

Theorem 6.6. If P is an irreducible polynomial of degree n � 2 over a �eld
K. then P has no roots in K. However if we consider

K[!] =

(
n�1X
j=0

aj!
j : aj 2 K

)

with the obvious formal de�nitions of addition and multiplication and subject
to the further condition P (!) = 0 then K[!] is a �eld containing K in which
P has root.

Proof. The only thing we really need prove is that K[!] is a �eld and to do
that the only thing we need to prove is that F holds. Let Q be a non-zero
polynomial of degree at most n� 1. Since P is irreducible, the polynomials
P and Q have no common factor of degree 1 or more. Hence, by Euclid's
algorithm we can �nd polynomials R and S such that

R(X)Q(X) + S(X)P (X) = 1

and so R(!)Q(!) + S(!)P (!) = 1. But P (!) = 0 so R(!)Q(!) = 1 and we
have proved F.
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In a proper algebra course we would simply de�ne

K[!] = K[X]=(P (X))

where (P (X)) is the ideal generated by P (X). This is a cleaner procedure
which avoids the use of such phrases as `the obvious formal de�nitions of
addition and multiplication' but the underlying idea remains the same.

Lemma 6.7. If P is polynomial over a �eld K which does not factorise
completely into linear factors then we can �nd a �eld L � K in which P has
more linear factors.

Proof. Factor P into irreducible factors and choose a factor Q which is not
linear. By Theorem 6.6 we can �nd a �eld L � K in which Q has a root �
say and so by Lemma 6.2 a linear factor X � �. Since any linear factor of P
in K remains a factor in the bigger �eld L we are done.

Theorem 6.8. If P is polynomial over a �eld K then we can �nd a �eld
L � K in which P factorises completely into linear factors.

We shall be interested in �nite �elds (that is �elds K with only a �nite
number of elements). A glance at our method of proving Theorem 6.8 shows
that the following result holds.

Lemma 6.9. If P is polynomial over a �nite �eld K then we can �nd a
�nite �eld L � K in which P factorises completely.

In this context, we note yet another useful simple consequence of Euclid's
algorithm.

Lemma 6.10. Suppose that P is an irreducible polynomial over a �eld K
which has a linear factor X � � in some �eld L � K. If Q is a polynomial
over K which has the factor X � � in L then P divides Q.

We shall need a lemma on repeated roots.

Lemma 6.11. Let K be �eld. If P (X) =
Pn

j=0 ajX
j is a polynomial over

K we de�ne P 0(X) =
Pn�1

j=1 ajX
j.

(i) If P and Q are polynomials (P+Q)0 = P 0+Q0 and (PQ)0 = P 0Q+PQ0.
(ii) If P and Q are polynomials with P (X) = (X � a)2Q(X) then

P 0(X) = 2(X � a)Q(X) + (X � a)2Q0(X):

(iii) If P is divisible by (X � a)2 then P (a) = P 0(a) = 0.
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If L is a �eld containing F2 then 2y = (1+1)y = 0y = 0 for all y 2 L. We
can thus deduce the following result which will be used in the next section.

Lemma 6.12. If L is a �eld containing F2 and n is an odd integer then
Xn � 1 can have no repeated linear factors as a polynomial over L.

We also need a result on roots of unity given as part (v) of the next
lemma.

Lemma 6.13. (i) If G is a �nite Abelian group and x; y 2 G have coprime
orders r and s then xy has order rs.

(ii) If G is a �nite Abelian group and x; y 2 G have orders r and s then
we can �nd an element z of G with order the lowest common multiple of r
and s.

(iii) If G is a �nite Abelian group then there exists an N and an h 2 G
such that h has order N and gN = e for all g 2 G.

(iv) If G is a �nite subset of a �eld K which is a group under multiplica-
tion then G is cyclic.

(v) Suppose n is an odd integer. If L is a �eld containing F2 such that
Xn � 1 factorises completely into linear terms then we can �nd an ! 2 L
such that the roots of Xn� 1 are 1, �, �2, : : : �n�1. (We call � a primitive
nth root of unity.)

Proof. (ii) Consider z = xuyv where u is a divisor of r, v is a divisor of s,
r=u and s=v are coprime and rs=(uv) = lcm(r; s).

(iii) Let h be an element of highest order in G and use (ii).
(iv) By (iii) we can �nd an integer N and a h 2 G such that h has order

N and any element g 2 G satis�es gN = 1. Thus XN � 1 has a linear factor
X � g for each g 2 G and so

Q
g2G(X � g) divides XN � 1. It follows that

the order jGj of G cannot exceed N . But by Lagrange's theorem N divides
G. Thus jGj = N and g generates G.

(v) Observe that G = f! : !n = 1g is an Abelian group with exactly n
elements (since Xn � 1 has no repeated roots) and use (iv).

Here is another interesting consequence of Lemma 6.13 (iv)

Lemma 6.14. If K is a �eld with 2n elements containing F2 then there is
an element k of K such that

K = f0g [ fkr : 0 � r � 2n � 2

and k2
n�1 = 1.

Proof. Observe that K n f0g forms a group under multiplication.

26



With this hint it is not hard to show that there is indeed a �eld with 2n

elements containing F2 .

Lemma 6.15. Let L be some �eld containing F2 in which X2n�1 � 1 = 0
factorises completely. Then

K = fx 2 L : x2
n

= xg

is a �eld with 2n elements containing F2 .

Lemma 6.14 shows that that there is (up to �eld isomorphism) only one
�eld with 2n elements containing F2 . We call it F2n . We call an element k
with the properties given in Lemma 6.14 a primitive element of F2n .

7 Cyclic codes

In this section we discuss a subclass of linear codes, the so called cyclic codes.

De�nition 7.1. A linear code C in Fn2 is called cyclic if

(a0; a1; : : : ; an�2; an�1) 2 C ) (a1; a2; : : : ; an�1; a0) 2 C:

Let us establish a correspondence between Fn2 and the polynomials on F2

modulo Xn � 1 by setting

Pa =
nX
j=0

ajX
j

whenever a 2 F2 . (Of course, X
n � 1 = Xn + 1 but in this context the �rst

expression seems more natural.)

Exercise 7.2. With the notation just established show that
(i) Pa + Pb = Pa+b,
(ii) Pa = 0 if and only if a = 0.

Lemma 7.3. A code C in Fn2 is cyclic if and only if PC = fPa : a 2 Cg
satis�es the following two conditions (working modulo Xn � 1).

(i) If f; g 2 PC then f + g 2 PC .
(ii) If f 2 PC and g is any polynomial then the product fg 2 PC.

(In the language of abstract algebra, C is cyclic if and only if PC is an ideal
of the quotient ring F2 [X]=(Xn � 1).)

From now on we shall talk of the code word f(X) when we mean the code
word a with Pa(X) = f(X). An application of Euclid's algorithm gives the
following useful result.
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Lemma 7.4. A code C of length n is cyclic if and only if (working modulo
Xn�1, and using the conventions established above) there exists a polynomial
g such that

C = ff(X)g(X) : f a polynomialg

(In the language of abstract algebra, F2 [X] is a Euclidean domain and so a
principal ideal domain. Thus the quotient F2 [X]=(Xn�1) is a principal ideal
domain.) We call g(X) a generator polynomial for C

Lemma 7.5. A polynomial g is a generator for a cyclic code of length n if
and only if it divides Xn � 1.

Thus we must seek generators among the factors of Xn � 1 = Xn + 1. If
there are no conditions on n the result can be rather disappointing.

Exercise 7.6. If we work with polynomials over F2 then

X2r + 1 = (X + 1)2
r

:

In order to avoid this problem and to be able to make use of Lemma 6.12
we shall take n odd from now on. (In this case the cyclic codes are said to be
separable.) Notice that the task of �nding irreducible factors (that is factors
with no further factorisation) is a �nite one.

Lemma 7.7. Consider codes of length n Suppose that g(X)h(X) = Xn� 1.
Then g is a generator of a cyclic code C and h is a generator for a cyclic
code which is the reverse of C?.

As an immediate corollary we have the following remark.

Lemma 7.8. The dual of a cyclic code is itself cyclic.

Lemma 7.9. If a cyclic code C of length n has generator g of degree n� r
then g(X), Xg(X), : : : , Xr�1g(X) form a basis for C.

Cyclic codes are thus easy to specify (we just need to write down the
generator polynomial g) and to encode.

Example 7.10. There are three cyclic codes of length 7 corresponding to
irreducible polynomials of which two are versions of Hamming's original code.

We know that Xn + 1 factorises completely over some larger �nite �eld
and, since n is odd, we know by Lemma 6.12 that it has no repeated factors.
The same is therefore true for any polynomial dividing it.
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Lemma 7.11. Suppose that g is a generator of a cyclic code C of odd length
n. Suppose further that g factorises completely into linear factors in some
�eld K containing F2 . If g = g1g2 : : : gk with each gj irreducible over F2 and
A is a set consisting only of the roots of the gj and containing at least one
root of each gj [1 � j � k], then

C = ff 2 F2 [X] : f(�) = 0 for all � 2 Ag:

De�nition 7.12. A de�ning set for a cyclic code C is a set A of elements
in some �eld K containing F2 such that f 2 F2 [X] belongs to C if and only
if f(�) = 0 for all � 2 A.

(Note that, if C has length n, A must be a set of zeros of Xn � 1.)

Lemma 7.13. Suppose that

A = f�1; �2; : : : ; �rg

is a de�ning set for a cyclic code C in some �eld K containing F2 . Let B be
the r � n matrix over K whose jth column is

(1; �j; �
2
j ; : : : ; �

n�1
j )T

Then a vector a 2 Fn2 is a code word in C if and only if

aB = 0

in K.

The columns in B are not parity checks in the usual sense since the code
entries lie in F2 and the computations take place in the larger �eld K.

With this background we can discuss a famous family of codes known
as the BCH (Bose, Ray-Chaudhuri, Hocquenghem) codes. Recall that a
primitive nth root of unity is an root � of Xn � 1 = 0 such that every root
is a power of �

De�nition 7.14. Suppose that n is odd and K is a �eld containing F2 in
which Xn�1 factorises into linear factors. Suppose that � 2 K is a primitive
nth root of unity. A cyclic code C with de�ning set

A = f�; �2; : : : ; ���1g

is a BCH code of design distance �.
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Note that the rank of C will be n � k where k is the degree of the product
those irreducible factors of Xn � 1 over F which have a zero in A. Notice
also that k may be very much larger than �.

Example 7.15. (i) If K is a �eld containing F2 then (a+ b)2 = a2 + b2 for
all a; b 2 K.

(ii) If P 2 F2 [X] and K is a �eld containing F2 then P (a)2 = P (a2) for
all a 2 K.

(iii) Let K be a �eld containing F2 in which X7� 1 factorises into linear
factors. If � is a root of X3+X +1 in K then � is a primitive root of unity
and �2 is also a root of X3 +X + 1.

(iv) We continue with the notation (iii). The BCH code with f�; �2g as
de�ning set is Hamming's original (7,4) code.

The next theorem contains the key fact about BCH codes.

Theorem 7.16. The minimum distance for a BCH code is at least as great
as the design distance.

Our proof of Theorem 7.16 relies on showing that the matrixB of Lemma 7.13
is non-singular for a BCH. To do this we use a result which every undergrad-
uate knew in 1950.

Lemma 7.17 (The van der Monde determinant). We work over a �eld
K. The determinant�����������

1 1 1 : : : 1
x1 x2 x3 : : : xn
x21 x22 x23 : : : x2n
...

...
...

. . .
...

xn�11 xn�12 xn�13 : : : xn�1n

�����������
=

Y
1�j<i�n

(xi � xj)

How can we construct a decoder for a BCH code? From now on until
the end of this section we shall suppose that we are using the BCH code C
described in De�nition 7.14. In particular C will have length n and de�ning
set

A = f�; �2; : : : ; ���1g

where � is a primitive nth root of unity in K. Let t be the largest integer
with 2t+ 1 � �. We show how we can correct up to t errors.

Suppose that a codeword c = (c0; c1; : : : ; cn�1) is transmitted and that
the string received is r. We write e = r� c and assume that

E = f0 � j � n� 1 : ej 6= 0g
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has no more than t members. In other words e is the error vector and we
assume that there are no more than t errors. We write

c(X) =
n�1X
j=0

cjX
j;

r(X) =
n�1X
j=0

rjX
j;

e(X) =
n�1X
j=0

ejX
j:

De�nition 7.18. The error locator polynomial is

�(X) =
Y
j2E

(1� �jX)

and the error co-locator is

!(X) =
n�1X
i=0

ei�
i
Y

j2E; j 6=i

(1� �jX):

Informally we write

!(X) =
n�1X
i=0

ei�
i �(X)

1� �iX
:

We take !(X) =
P

j !jX
j and �(X) =

P
j �jX

j. Note that ! has degree at
most t� 1 and � degree at most t. Note that we know that �0 = 1 so both
the polynomials ! and � have t unknown coe�cients.

Lemma 7.19. If the error location polynomial is given the value of e and
so of c can be obtained directly.

We wish to make use of relations of the form

1

1� �jX
=

1X
r=0

(�jX)r:

Unfortunately it is not clear what meaning to assign to such a relation. One
way round is to work modulo Z2t (more formally, to work in K[Z]=(Z2t)).
We then have Zu � 0 for all integers u � 2t.
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Lemma 7.20. If we work modulo Z2t then

(1� �jZ)
2t�1X
m=0

(�jZ)m � 1:

Thus, if we work modulo Z2t, as we shall from now on, we may de�ne

1

1� �jZ
=

2t�1X
m=0

(�jZ)m:

Lemma 7.21. With the conventions already introduced.

(i)
!(Z)

�(Z)
�

2t�1X
m=0

Zme(�m+1).

(ii) e(�m) = r(�m) for all 1 � m � 2t.

(iii)
!(Z)

�(Z)
�

2t�1X
m=0

Zmr(�m+1).

(iv) !(Z) �
P2t�1

m=0 Z
mr(�m+1)�(Z):

(v) !j =
X
u+v=j

r(�u+1)�v for all 0 � j � 2t� 1.

(vi) 0 =
X
u+v=j

r(�u+1)�v for all t � j � 2t� 1.

(vii) The conditions in (vi) determine � completely.

Part (vi) of Lemma 7.21 completes our search for a decoding method, since
� determines E , E determines e and e determines c. It is worth noting that
the system of equations in part (v) su�ce to determine the pair � and !
directly.

Compact disk players use BCH codes. Of course errors are likely to
occur in bursts (corresponding to scratches etc) and this is dealt with by
distributing the bits (digits) in a single codeword over a much longer stretch
of track. The code used can correct a burst of 4000 consecutive errors (2.5
mm of track).

Unfortunately none of the codes we have considered work anywhere near
the Shannon bound (see Theorem 3.14). We might suspect that this is be-
cause they are linear but Elias has shown that this is not the case. (We just
state the result without proof.)

Theorem 7.22. In Theorem 3.14 we can replace `code' by `linear code'.

It is clear that much remains to be done.
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Just as pure algebra has contributed greatly to the study of error correct-
ing codes so the study of error correcting codes has contributed greatly to
the study of pure algebra. The story of one such contribution is set out in
T. M. Thompson's From Error-correcting Codes through Sphere Packings to
Simple Groups [8] | a good, not too mathematical, account of the discovery
of the last sporadic simple groups by Conway and others.

8 Shift registers

In this section we move towards cryptography but the topic discussed will
turn out to have connections with the decoding of BCH codes as well.

De�nition 8.1. A general feedback shift register is a map f : Fd2 ! Fd2

given by

f(x0; x1; : : : ; xd�2; xd�1) = (x1; x2; : : : ; xd�1; C(x0; x1; : : : ; xd�2; xd�1))

The stream associated to an initial �ll (y0; y1; : : : ; yd�1) is the sequence

y0; y1; : : : ; yj; yj+1; : : : with yn = C(yn�d; yn�d+1; : : : ; yn�1) for all n � d.

Example 8.2. If the general feedback shift f given in De�nition 8.1 is a
permutation then C is linear in the �rst variable, i.e.

C(x0; x1; : : : ; xd�2; xd�1) = x0 + C 0(x1; x2; : : : ; xd�2; xd�1):

De�nition 8.3. We say that the function f of De�nition 8.1 is a linear
feedback register if

C(x0; x1; : : : ; xd�1) = a0xd�1 + ad�2x1 � � �+ a0xd�1;

with ad�1 = 1.

Exercise 8.4. Discuss briey the e�ect of omitting the condition ad�1 = 1
from De�nition 8.3.

The discussion of the linear recurrence

xn = a0xn�d + a1xn�d�1 � � �+ ad�1xn�1

over F2 follows the 1A discussion of the same problem over R but is compli-
cated by the fact that

n2 = n
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in F2 . We assume that a0 6= 0 and consider the auxiliary polynomial

C(X) = Xd � a0X
d�1 � � � � � ad�2X � ad�1:

In the exercise below

�
n

v

�
is the appropriate polynomial in n.

Exercise 8.5. Consider the linear recurrence

xn = a0xn�d + a1xn�d�1 � � �+ ad�1xn�1 (*)

with aj 2 F2 and a0 6= 0.
(i) Suppose K is a �eld containing F2 such that the auxiliary polynomial

C has a root � in K. Then �n is a solution of (�) in K.
(ii) Suppose K is a �eld containing F2 such that the auxiliary polynomial

C has d distinct roots �1, �2, : : : , �d in K. Then the general solution of (�)
in K is

xn =
dX

j=1

bj�
n
j

for some bj 2 K. If x0; x1; : : : ; xd�1 2 F2 then xn 2 F2 for all n.
(iii) Work out the �rst few lines of Pascal's triangle modulo 2. Show that

the functions fj : Z! F2

fj(n) =

�
n

j

�

are linearly independent in the sense that

mX
j=0

ajfj(n) = 0

for all n implies aj = 0 for 1 � j � m.
(iv) Suppose K is a �eld containing F2 such that the auxiliary polynomial

C factorises completely into linear factors. If the root �u has multiplicity mu

[1 � u � q] then the general solution of (�) in K is

xn =

qX
u=1

m(u)�1X
v=0

bu;v

�
n

v

�
�nu

for some bu;v 2 K. If x0; x1; : : : ; xd�1 2 F2 then xn 2 F2 for all n.
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An strong link with the problem of BCH decoding is provided by Theo-
rem 8.7 below.

De�nition 8.6. If we have a sequence (or stream) x0, x1, x2, : : : of elements
of F2 then its generating function G is given by

G(Z) =
1X
n=0

xjZ
j

Theorem 8.7. The stream (xn) comes from a linear feedback generator with
auxiliary polynomial C if and only if the generating function for the stream
is (formally) of the form

G(Z) =
B(Z)

C(Z)

with B a polynomial of degree strictly than that of C.

If we can recover C from G then we have recovered the linear feedback
generator from the stream.

The link with BCH codes is established by looking at Lemma 7.21 (iii)
and making the following remark.

Lemma 8.8. If a stream (xn) comes from a linear feedback generator with
auxiliary polynomial C of degree d then C is determined by the condition

G(Z)C(Z) � B(Z) mod Z2d

with B a polynomial of degree at most d� 1.

We thus have the following problem.
Problem Given a generating function G for a stream and knowing that

G(Z) =
B(Z)

C(Z)

with B a polynomial of degree less than that of C and the constant term in
C is c0 = 1, recover C.

The Berlekamp-Massey method In this method we do not assume that the
degree d of C is known. The Berlekamp-Massey solution to this problem is
based on the observation that, since

dX
j=0

cjxn�j = 0
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(with c0 = 1) for all n � d we have0
BBB@

xd xd�1 : : : x1 x0
xd+1 xd : : : x2 x1
...

...
. . .

...
...

x2d x2d�1 : : : xd+1 xd

1
CCCA
0
BBB@
1
c1
...
cd

1
CCCA =

0
BBB@
0
0
...
0

1
CCCA F

The Berlekamp-Massey method tells us to look successively at the matri-
ces

A1 = (x0); A2 =

�
x1 x0
x2 x1

�
; A3 =

0
@x2 x1 x0
x3 x2 x1
x4 x3 x2

1
A ; : : :

starting at Ar if it is known that r � d. For each Aj we evaluate detAj. If
detAj 6= 0 then j 6= d. If detAj = 0 then j is a good candidate for d so
we solve F on the assumption that d = j. (Note that a one dimensional
subspace of Fd+1 contains only one non-zero vector.) We then check our
candidate for (c0; c1; : : : ; cd) over as many terms of the stream as we wish. If
it fails the test we then know that d � j and we start again.

As we have stated it, the Berlekamp-Massey method is not an algorithm
in the strict sense of the term although it becomes one if we put an upper
bound on the possible values of d. (A little thought shows that if no upper
bound is put on d, no algorithm is possible because, with a suitable initial
stream a linear feedback register with large d can be made to produce a
stream whose initial values would be produced by a linear feedback register
with much smaller d. For the same reason the Berlekamp-Massey will produce
the B of smallest degree which gives G and not necessarily the original B.)
In practice, however, the Berlekamp-Massey method is very e�ective in cases
when d is unknown.

It might be thought that evaluating determinants is hard but we can use
row reduction to triangularise the matrices and use the fact that Ak�1 is a
sub-matrix of Ak to reduce the work still further.

A method based on Euclid's algorithm (This is starred and will be omitted if
time is short.) For this method we need to know the degree d of C.

Writing G(Z) =
P1

j=0 xjZ
j we take A(Z) =

P2d�1
j=0 xjZ

j so that

B(Z)

C(Z)
= A(Z) + Z2dU(Z)

for some power series U . It follows that

B(Z) = A(Z)C(Z) + Z2dW (Z) (y)

36



where A(Z) is known but B(Z), C(Z) and the power series W (Z) are un-
known.

We now apply Euclid's algorithm to R0(Z) = Z2d, R1(Z) = A(Z) obtain-
ing, as usual,

R0(Z) = R1(Z)Q1(Z) +R2(Z)

R1(Z) = R2(Z)Q2(Z) +R3(Z)

R2(Z) = R3(Z)Q3(Z) +R4(Z)

and so on, but instead of allowing the algorithm to run its full course we
stop at the �rst point when the degree of Rj is no greater than d. Call
the polynomial Rj so obtained ~B. By the method associated with Bezout's
theorem we can �nd polynomials ~C and ~W such that

Rj(Z) = R1(Z) ~C(Z) +R0(Z) ~W (Z)

and so

~B(Z)A(Z) ~C(Z) + Z2d ~W (Z): yy

Lemma 8.9. With the notation above.
(i) ~B and ~C both have degree d or less.

(ii) The power series expansions of
B(Z)

C(Z)
and

~B(Z)
~C(Z)

agree up to the term

Z2d.

(iii) The �rst 2d terms of the power series expansions of
~BC �B ~C

C ~C
van-

ish.

(iv) The power series of
~BC �B ~C

C ~C
is the generating sequence for a linear

feedback system with auxiliary (or feedback) polynomial C ~C.
(v) We have B = ~B and C = ~C.

This method is called the Skorobogarov decoder.

9 A short homily on cryptography

Cryptography is the science of code making. Cryptanalysis is the art of code
breaking.

Two thousand years ago Lucretius wrote that `Only recently has the
true nature of things been discovered'. In the same way mathematicians
are apt to feel that `Only recently has the true nature of cryptography been
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discovered'. The new mathematical science of cryptography with its promise
of codes which are `provably hard to break' seems to make everything that
has gone before irrelevant.

It should, however, be observed that the best cryptographic systems of our
ancestors (such as diplomatic `book codes') served their purpose of ensuring
secrecy for a relatively small number of messages between a relatively small
number of people extremely well. It is the modern requirement for secrecy
on an industrial scale to cover endless streams of messages between many
centres which has made necessary the modern science of cryptography.

More pertinently it should be remembered that the German Submarine
Enigma codes not only appeared to be `provably hard to break' (though not
against the modern criteria of what this should mean) but, considered in iso-
lation probably were unbreakable in practice11. Fortunately the Submarine
codes formed part of an `Enigma system' with certain exploitable weaknesses.
(For an account of how these weaknesses arose and how they were exploited
see Kahn's Seizing the Enigma [3].)

Even the best codes are like the lock on a safe. However good the lock
is, the safe may be broken open by brute force, or stolen together with its
comments, or a key holder may be persuaded by fraud or force to open the
lock, or the presumed contents of the safe may have been tampered with
before they go into the safe, or : : : . The coding schemes we shall consider,
are at best, cryptographic elements of larger possible cryptographic systems.
The planning of cryptographic systems requires not only mathematics but
engineering, economics, psychology, humility and an ability to learn from
past mistakes. Those who do not learn the lessons of history are condemned
to repeat them.

In considering a cryptographic system is important to consider its pur-
pose. Consider a message M sent by A to B. Possible aims include
Secrecy A and B can be sure that no third party X can read the message
M .
Integrity A and B can be sure that no third party X can alter the message
M .
Authenticity B can be sure that A sent the message M .
Non-repudiation B can prove to a third party that A sent the message M .

When you �ll out a cheque giving the sum both in numbers and words you
are seeking to protect the integrity of the cheque. When you sign a traveller's
cheque `in the presence of the paying o�cer' the process is intended, from
your point of view to protect authenticity and, from the bank's point of view
to produce non-repudiation.

11Some versions remained unbroken until the end of the war.
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Another point to consider is the level of security aimed at. It hardly
matters if a few people use forged tickets to travel on the underground, it
does matter if a single unauthorised individual can gain privileged access to
a bank's central computer system. If secrecy is aimed at, how long must the
secret be kept? Some military and �nancial secrets need only remain secret
for a few hours, others must remain secret for years.

We must also, to conclude this non-exhaustive list, consider the level of
security required. Here are three possible levels.

(1) Prospective opponents should �nd it hard to compromise your system
even if they are in possession of a plentiful supply of encoded messages Ci.

(2) Prospective opponents should �nd it hard to compromise your system
even if they are in possession of a plentiful supply of pairs (Mi; Ci) of messages
Mi together with their encodings Ci.

(3) Prospective opponents should �nd it hard to compromise your system
even if they are allowed to produce messages Mi and given their encodings
Ci.
Clearly safety at level (3) implies safety at level (2) and safety at level (2)
implies safety at level (1). Roughly speaking, the best Enigma codes sat-
is�ed (1). The German Navy believed on good but mistaken grounds that
they satis�ed (2). Level (3) would have appeared evidently impossible to
attain until a few years ago. Nowadays, level (3) is considered a minimal
requirement for a really secure system.

10 Stream cyphers

One natural way of enciphering is to use a stream cypher. We work with
streams (that is, sequences) of elements of F2 . We use cypher stream k0, k1,
k2 : : : . The plain text stream p0, p1, p2, : : : is enciphered as the cypher text
stream z0, z1, z2, : : : given by

zn = pn + kn:

This is an example of a private key or symmetric system. The security of
the system depends on a secret (in our case the cypher stream) k shared be-
tween the cypherer and the encipherer. Knowledge of an enciphering method
makes it easy to work out a deciphering method and vice versa. In our case
a deciphering method is given by the observation that

pn = zn + kn:

(Indeed, writing �(p) = p + z we see that the enciphering function � has
the property that �2 = � the identity map. Cyphers like this are called
symmetric.)
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In the one-time pad �rst discussed by Vernam in 1926 the cypher stream is
a random sequence kj = Kj where the Kj are independent random variables
with

Pr(Kj = 0) = Pr(Kj = 1) = 1=2:

If we write Zj = pj + Kj then we see that the Pj are independent random
variables with

Pr(Pj = 0) = Pr(Pj = 1) = 1=2:

Thus (in the absence of any knowledge of the ciphering stream) the code-
breaker is just faced by a stream of perfectly random binary digits. Deci-
pherment is impossible in principle.

It is sometimes said that it is hard to �nd random sequences, and it is
indeed rather harder than might appear at �rst sight, but it is not too di�cult
to rig up a system for producing `su�ciently random' sequences12. The secret
services of the former Soviet Union were particularly fond of one-time pads.
The real di�culty lies in the necessity for sharing the secret sequence k. If
a random sequence is reused it ceases to be random (it becomes `the same
code as last Wednesday' or the `the same code as Paris uses') so, when there
is a great deal of code tra�c, new one-time pads must be sent out. If random
bits can be safely communicated so can ordinary messages and the exercise
becomes pointless.

In practice we would like to start from a short shared secret `seed' and
generate a ciphering string k that `behaves like a random sequence'. This
leads us straight into deep philosophical waters13. As might be expected
there is an illuminating discussion in Chapter III of Knuth's marvellous The
Art of Computing Programming [6]. Note in particular his warning:

: : : random numbers should not be generated with a method cho-
sen at random. Some theory should be used.

One way that we might try to generate our ciphering string is to use a gen-
eral feedback shift register f of length d with the initial �ll (k0; k1; : : : ; kd�1)
as the secret seed.

12Take ten of your favourite long books, convert to binary sequences xj;n and set kn =
P10

j=1 xj;1000+j+n + sn where sn is the output of your favourite `pseudo-random number
generator'. Give a disc with a copy of k to your friend and, provided both of you obey
some elementary rules, your correspondence will be safe from MI5. The anguished debate
in the US about codes and privacy refers to the privacy of large organisations and their
clients, not the privacy of communication from individual to individual.

13Where we drown at once, since, the best (at least my opinion) modern view is that
any sequence that can be generated by a program of reasonable length from a `seed' of
reasonable size is automatically non-random.
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Lemma 10.1. If f is a general feedback shift register of length d then given
any initial �ll (k0; k1; : : : ; kd�1) there will exist N;M � 2d such that the
output stream k satis�es kr+N = kr for all r �M .

Lemma 10.2. Suppose that f is a linear feedback register of length d.
(i) f(x0; x1; : : : ; xd�1) = (x0; x1; : : : ; xd�1) if and only if (x0; x1; : : : ; xd�1) =

(0; 0; : : : ; 0).
(ii) Given any initial �ll (k0; k1; : : : ; kd�1) there will exist N;M � 2d � 1

such that the output stream k satis�es kr+N = kr for all r �M .

We can complement Lemma 10.2 by using Lemma 6.15 and the associated
the discussion.

Lemma 10.3. A linear feedback register of length d attains its maximal pe-
riod 2d � 1 (for a non-trivial initial �ll) when the roots of the feedback poly-
nomial are primitive elements of F2

d
.

(We will note why this result is plausible but we will not prove it.)
It is well known that short period streams are dangerous. During World

War II the British Navy used codes whose period was adequately long for
peace time use. The massive increase in tra�c required by war time con-
ditions meant that the period was now too short. By dint of immense toil
German naval code breakers were able to identify coincidences and by this
means slowly break the British codes.

Unfortunately, whilst short periods are de�nitely unsafe it does not follow
that long periods guarantee safety. Using the Berlekamp-Massey method we
see that stream codes based on linear feedback registers are unsafe at level
(2).

Lemma 10.4. Suppose that an unknown cypher stream k0, k1, k2 : : : is
produced by an unknown linear feedback register f of unknown length d � D.
The plain text stream p0, p1, p2, : : : is enciphered as the cypher text stream
z0, z1, z2, : : : given by

zn = pn + kn:

If we are given p0, p1, : : : p2D�1 and z0, z1, : : : z2D�1 then we can �nd kr
for all r.

Thus if we have a message of length twice the length of the linear feedback
register together with its encipherment the code is broken.

It is easy to construct immensely complicated looking linear feedback
registers with hundreds of registers. Lemma 10.4 shows that, from the point
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of view of a determined, well equipped and technically competent opponent,
cryptographic systems based on such registers are the equivalent of leaving
your house key hidden under the door mat. Professionals say that such
systems seek `security by obscurity'.

However, if you do not wish to ba�e the CIA, but merely prevent little
old ladies in tennis shoes watching subscription television without paying for
it, systems based on linear feedback registers are cheap and quite e�ective.
Whatever they may say in public, large companies are happy to tolerate a
certain level of fraud. So long as 99.9% of the calls made are paid for, the
pro�ts of a telephone company are essentially una�ected by the .1% which
`break the system'.

What happens if we try some simple tricks to increase the complexity of
the cypher text stream.

Lemma 10.5. If xn is a stream produced by a linear feedback system of
length N with auxiliary polynomial P and yn is a stream produced by a linear
feedback system of length N with auxiliary polynomial Q then xn + yn is a
stream produced by a linear feedback system of length N +M with auxiliary
polynomial P (X)Q(X).

Note that this means that adding streams from two linear feedback system
is no more economical than producing the same e�ect with one. Indeed the
situation may be worse since a stream produced by linear feedback system of
given length may, possibly, also be produced by another linear feedback system
of shorter length.

Lemma 10.6. Suppose that xn is a stream produced by a linear feedback
system of length N with auxiliary polynomial P and yn is a stream produced
by a linear feedback system of length N with auxiliary polynomial Q. Let P
have roots �1, �2, : : : �N and Q have roots �1, �2, : : : �M over some �eld
K � F2 . Then xnyn is a stream produced by a linear feedback system of length
NM with auxiliary polynomialY

1�i�N

Y
1�i�M

(X � �i�j):

We shall probably only prove Lemmas 10.5 and 10.6 in the case when all
roots are distinct, leaving the more general case as an easy exercise. We
shall also not prove that the polynomial

Q
1�i�N

Q
1�i�M(X��i�j) obtained

in Lemma 10.6 actually lies in F2 but (for those who are familiar with the
phrase in quotes) this is an easy exercise in `symmetric functions of roots'.

Here is an even easier remark.
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Lemma 10.7. Suppose that xn is a stream which is periodic with period N
and yn is a stream which is periodic with period M . Then the streams xn+yn
and xnyn are periodic with periods dividing the lowest common multiple of N
and M .

Exercise 10.8. One of the most con�dential German codes (called FISH by
the British) involved a complex mechanism which the British found could be
simulated by two loops of paper tape of length 1501 and 1497. If kn = xn+yn
where xn is a stream of period 1501 and yn is stream of period 1497 what is
the longest possible period of kn. How many consecutive values of kn do you
need to to specify the sequence completely.

It might be thought that the lengthening of the underlying linear feed-
back system obtained in Lemma 10.6 is worth having but it is bought at a
substantial price. Let me illustrate this by an informal argument. Suppose
we have 10 streams xj;n (without any peculiar properties) produced linear
feedback registers of length about 100. If we form kn =

Q10
j=1 xj;n then the

Berlekamp-Massey method requires of the order of 1020 consecutive values of
kn and the periodicity of kn can be made still more astronomical. Our cypher
key stream kn appears safe from prying eyes. However it is doubtful if the
prying eyes will mind. Observe that (under reasonable conditions) about 2�1

of the xj;n will have the value 1 and about 2�10 of the kn =
Q10

j=1 xj;n will
have value 1. Thus if zn = pn + kn, in more than 999 cases out of a 1000 we
will have zn = pn. Even if we just combine two streams xn and yn in the way
suggested we may expect xnyn = 0 for about 75% of the time.

Here is another example where the apparent complexity of the cypher key
stream is substantially greater than its true complexity.

Example 10.9. The following is a simpli�ed version of a standard satel-
lite TV decoder. We have 3 streams xn, yn, zn produced by linear feedback
registers. If the cypher key stream is de�ned by

kn =xn if zn = 0

kn =yn if zn = 1

then

kn = (yn + xn)zn + xn

and the cypher key stream is that produced by linear feedback register.

It might be thought that the best way round these di�culties is to use a
non-linear feedback generator f . This is not the easy way out that it appears.
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If chosen by an amateur the complicated looking f so produced will have the
apparent advantage that we do not know what is wrong with it and the very
real disadvantage that we do not know what is wrong with it.

Another approach is to observe that, so far as the potential code breaker
is concerned, the cypher stream method only combines the `unknown secret'
(here the feedback generator f together with the seed (k0; k1; : : : ; kd�1)) with
the unknown message p in a rather simple way. It might be better to consider
a system with two functions F : Fm2 � F

n
2 ! F

q
2 and G : Fm2 � F

q
2 ! F

n
2 . such

that

G(k; F (k;p)) = p:

Here k will be the shared secret, p the message z = F (k;p) the encoded
message we can be decoded by using the fact that G(k; z) = p.

In the next section we shall see that an even better arrangement is pos-
sible. However, arrangements like this have the disadvantage that the the
message p must be entirely known before it is transmitted and the encoded
message z must have been entirely received before in can be decoded. Stream
ciphers have the advantage that they can be decoded `on the y'. They are
also much more error tolerant. A mistake in the coding, transmission or
decoding of a single element only produces an error in a single place of the
sequence. There will continue to be circumstances where stream ciphers are
appropriate.

There is one further remark to be made. Suppose that, as is often the case,
that we know F , that n = q and we know the `encoded message' z. Suppose
also that we know that the `unknown secret' or `key' k 2 K � Fm2 and the
`unknown message' p 2 P � F

n
2 . We are then faced with the problem:- Solve

the system

z = F (k;p) where k 2 K; p 2 P: F

Speaking roughly, the task is hopeless unless F has a unique solution14.
Speaking even more roughly, this is unlikely to happen if jKjjPj > 2n and is
likely to happen if 2n is substantially greater than jKjjPj. (Here, as usual,
jBj denotes the number of elements of B.)

14`According to some, the primordial Torah was inscribed in black ames on white �re.
At the moment of its creation, it appeared as a series of letters not yet joined up in
the form of words. For this reason, in the Torah rolls there appear neither vowels nor
punctuation, nor accents; for the original Torah was nothing but a disordered heap of
letters. Furthermore, had it not been for Adam's sin, these letters might have been joined
di�erently to form another story. For the kabalist, God will abolish the present ordering
of the letters, or else will teach us how to read them according to a new disposition only
after the coming of the Messiah.' ([1], Chapter 2.)
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Now recall the de�nition of the information rate given in De�nition 1.2.
If the message set M has information rate � and the key set (that is the
shared secret set) K has information rate � then, taking logarithms we see
that if

n�m�� n�

is substantially greater than 0 then F is likely to have a unique solution, but
if it is substantially smaller this is unlikely.

Example 10.10. If instead of using binary code we consider an alphabet of
27 letters (the English alphabet plus a space) we must take logarithms to the
base 27 but the considerations above continue to apply. The English language
treated in this way has information rate about .4. (This is very much a
ball park �gure. The information rate is certainly less than .5 and almost
certainly greater than .2.)

(i) In the Caesar code we replace the ith element of our alphabet by the
i+ jth (modulo 27). The shared secret is a single letter (the code for A say).
We have m = 1, � = 1 and � � :4.

n�m�� n� � :6n� 1:

If n = 1 (so n � m� � n� � �:4) it is obviously impossible to decode the
message. If n = 10 (so n � m� � n� � 5) a simple search through the 27
possibilities will almost always give a single possible decode.

(ii) A simple substitution code a permutation of the alphabet is chosen
and applied to each letter of the code in turn. The shared secret is a sequence
of 26 letters (giving the coding of the �rst 26 letters, the 27th can then be
deduced). We have m = 26, � = 1 and � � :4.

n�m�� n� � :6n� 26:

In the Dancing Men Sherlock Holmes solves such a code with n = 68 (so
n � m� � n� � 15) without straining the reader's credulity too much and
would think that, unless the message is very carefully chosen most of my
audience could solve such a code with n = 200 (so n�m�� n� � 100).

(iii) In the one-time pad m = n and � = 1 so (if � > 0)

n�m�� n� = �n�! �1

as n!1.
(iv) Note that the larger � is the slower n � m� � n� increases. This

corresponds to the very general statement that the higher the information
rate of the messages the harder it is to break the code in which they are sent.
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The ideas just introduced can be formalised by the notion of unicity
distance.

De�nition 10.11. The unicity distance of a code is the number of bits of
message required to exceed the number of bits of information in the key plus
the number of bits of information in the message.

If the reader complains that there is a faint smell of red herring about this
de�nition, I would be inclined to agree. Without a clearer discussion of
`information content' than is given in this course it must remain more of a
slogan than a de�nition.

If we only use our code once to send a message which is substantially
shorter than the unicity distance we can be con�dent that no code breaker,
however gifted, could break it, simply because there is there is no unambigu-
ous decode. (A one-time pad has unicity distance in�nity.) However, the
fact that there is a unique solution to a problem does not mean that it is
easy to �nd. We have excellent reasons, some of which are spelled out in the
next section, to believe that there exist codes for which the unicity distance
is essentially irrelevant to the maximum safe length of a message.

11 Asymmetric systems

Towards the end of the previous section we discussed a general coding scheme
depending on a shared secret key k known to the encoder and the decoder.
However, the scheme can be generalised still further by splitting the secret
in two. Consider a system with two functions F : Fm2 � Fn2 ! F

q
2 and

G : Fm2 � F
p
2 ! Fn2 . such that

G(l; F (k;p)) = p:

Here (k; l) will be be a pair of secrets, p the message z = F (k;p) the encoded
message which can be decoded by using the fact that G(l; z) = p. In this
scheme the encoder must know k but need not know l and the decoder must
know l and but need not know k. Such a system is called assymetric.

So far the idea is interesting but not exciting. Suppose however, that we
can show that

(i) knowing F , G and l it is very hard to �nd k,
(ii) if we do not know k then, even if we know F and G, it very hard to

�nd p F (k;p).
Then the code is secure at what we called level (3).
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Lemma 11.1. Suppose that the conditions speci�ed above hold. Then an
opponent who is entitled to demand the encodings zi of any messages pi they
choose to specify will still �nd it very hard to �nd p when given F (k;p).

Let us write F (k;p) = pKA and G(l; z) = zK
�1

A and think of pKA as

participant A's encipherment of p and zK
�1

A as participant B's decipherment
of z. We then have

(pKA)K
�1

A = p:

Lemma 11.1 tells us that such a system is secure however many messages
are sent. Moreover, if we think of A a a spy-master he can broadcast KA

to the world (that is why such systems are called public key systems) and
invite anybody who wants to spy for him to send him secret messages in total
con�dence.

It is all very well to describe such a code but do they exist? There is
very strong evidence that they do but so far all mathematicians have been
able to do is to show that provided certain mathematical problems which are
believed to be hard are indeed hard then good codes exist.

The following problem is believed to be hard.
Problem Given an integer N which is known to be the product N = pq of
two primes p and q, �nd p and q.
Several schemes have been proposed based on assumption that this factori-
sation is hard. (Note however that it is easy to �nd large primes p and q.)
We give a very elegant scheme due to Rabin and Williams. It makes use of
some simple number theoretic results from 1A and 1B.

The following result was proved towards the end of the course Quadratic
Mathematics and is, in any case, easy to obtain by considering primitive
roots.

Lemma 11.2. If p is an odd prime the congruence

x2 � d mod p

is soluble if and only if d � 0 or d(p�1)=2 � 1 modulo p.

Lemma 11.3. Suppose p is a prime such that p = 4k � 1 for some integer
k. Then if the congruence

x2 � d mod p

has any solution, it has dk as a solution.

We now call on the Chinese remainder theorem.
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Lemma 11.4. Let p and q be primes of the form 4k � 1 and set N = pq.
Then the following two problems are of equivalent di�culty.

(A) Given N and d �nd all the m satisfying

m2 � d mod N:

(B) Given N �nd p and q.

(Note that, provided that that d 6� 0, knowing the solution to (A) for any
d gives us the four solutions for d = 1.) The result is also true but much
harder to prove for general primes p and q.

At the risk of giving aid and comfort to followers of the Lakatosian heresy
it must be admitted that the statement of Lemma 11.4 does not really tell
us what the result we are proving is, although the proof makes it clear that
the result (whatever it may be) is certainly true. However, with more work,
everything can be made precise.

We can now give the Rabin-Williams scheme. The spy-master A selects
two very large primes p and q. (Since he has only done an undergraduate
course in mathematics he will take p and q of the form 4k� 1.) He keeps the
pair (p; q) secret but broadcasts the public key N = pq. If B wants to send
him a message she writes it in binary code splits it into blocks of length m
with 2m < N < 2m+1. Each of these blocks is a number rj with 0 � rj < N .
B computes sj such that r2j � sj modulo N and sends sj. The spy-master
(who knows p and q) can use the method of Lemma 11.4 to �nd one of four
possible values for rj (the four square roots of sj). Of these four possible
message blocks it is almost certain that three will be garbage so the fourth
will be the desired message.

If the reader reects, she will see that the ambiguity of the root is gen-
uinely unproblematic. (If the decoding is mechanical then making each block
start with some �xed sequence of length 50 will reduce the risk of ambigu-
ity to negligible proportions.) Slightly more problematic, from the practical
point of view, is the possibility that some one could be known to have sent a
very short message, that is to have started with anm such that 1 � m � N1=2

but provided sensible precautions are taken this should not occur.

12 Commutative public key systems

In the previous sections we introduced the coding and decoding functions
KA and K�1

A with the property that

(pKA)K
�1

A = p;
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and satisfying the condition that knowledge of KA did not help very much in
�ndingK�1

A . We usually require, in addition, that our system be commutative
in the sense that

(pK
�1

A )KA = p:

and that knowledge of K�1
A does not help very much in �nding KA. The

Rabin{Williams scheme, as described in the last section, does not have this
property.

Commutative public key codes are very exible and provide us with simple
means for maintaining integrity, authenticity and non-repudiation. (This is
not to say that non-commutative codes can not do the same; simply that
commutativity makes many things easier.)

Integrity and non-repudiation Let A `own a code', that is know both
KA and K�1

A . Then A can broadcast K�1
A to everybody so that everybody

can decode but only A can encode. (We say that K�1
A is the public key and

KA the private key.) Then, for example, example, A could issue tickets to
the castle ball carrying the coded message `admit Joe Bloggs' which could be
read by the recipients and the guards but would be unforgeable. However,
for the same reason, A could not deny that he had issued the invitation.

Authenticity If B wants to be sure that A is sending a message then B can
send A a harmless random message q. If B receives back a message p such
that pK

�1

A ends with the message q then A must have sent it to B. (Any
body can copy a coded message but only A can control the content.)

Signature Suppose now that B owns a commutative code pair (KB; K
�1
B )

and has broadcast K�1
B . If A wants to send a message p to B he computes

q = pKA and sends pK
�1

B followed by (qK
�1

A )K
�1

B . B can now use the fact
that

(qK
�1

B )KB = q

to recover p and q. B then observes that qK
�1

A = p. Since only A can
produce a pair (p;q) with this property, A must have written it.

There is now a charming little branch of the mathematical literature
based on these ideas in which Albert gets Bertha to authenticate a mes-
sage from Caroline to David using information from Eveline and Fitzpatrick,
Gilbert and Harriet play coin tossing down the phone and Ingred, Jacob,
Katherine and Laszlo play bridge without using a pack of cards. However a
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cryptographic system is only as strong as its weakest link. Unbreakable pass-
word systems do not prevent computer systems being regularly penetrated
by `hackers' and however `secure' a transaction on the net may be it may
still involve a rogue on one end and a fool on the other.

The most famous candidate for a commutative public key system is the
RSA (Rivest, Shamir, Adleman) system. It was the RSA system the �rst
convinced the mathematical community that public key systems might be
feasible. The reader will have met the RSA in 1A but we will push the ideas
a little bit further.

Lemma 12.1. Let p and q be primes. If N = pq and �(N) = lcm(p�1; q�1)
then

M�(N) � 1 (mod N)

for all integers M .

Since we wish to appeal to Lemma 11.4 we shall assume in what follows
that we have secretly chosen large primes p and q of the form 4k� 1. (How-
ever, as before, the arguments can be made to work for general large primes
p and q.) We choose an integer e and then use Euclid's algorithm to �nd an
integer d such that

de � 1: (mod �(N))

Since others may be better psychologists than we are, we would be wise to
use some sort of random method for choosing p, q and e.

The public key includes the value of d and N but we keep secret the value
of e. Given a number M with 1 �M � N � 1 we encode it as the integer E
with 1 �M � N � 1

E �Md (mod N):

The public decoding method is given by the observation that

Ee � Mde �M:

As was observed in 1A, high powers are easy to compute.
To show that (providing that factoring N is indeed hard) �nding d from

e and N is hard we use the following lemma.

Lemma 12.2. Suppose that d, e and N are as above. Set de�1 = 2ab where
b is odd.

(i) a � 1.
(ii) If y � xb (mod N) then there exists an r with 1 � r � 2a�1 such that

yr 6� 1 but yr � 1 (mod N):
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Combined with Lemma 11.4, the idea of Lemma 12.2 gives a fast prob-
abilistic algorithm where by making random choices of x we very rapidly
reduce the probability that we can not �nd p and q to as close to zero as we
wish.

Lemma 12.3. The problem of �nding d from the public information e and
N is, essentially as hard as factorising N .

Remark 1 At �rst glance we seem to have done as well for the RSA code
as for the Rabin{Williams code. But this is not so. In Lemma 11.4 we
showed that �nding the four solutions of M2 � E (mod N) was equivalent
to factorising N . In the absence of further information, �nding one root is
as hard as �nding another. Thus the ability to break the Rabin-Williams
code (without some tremendous stroke of luck) is equivalent to the ability to
factor N . On the other hand it is a priori, possible that it might be possible
to �nd a decoding method for the RSA code which did not involve knowing
d. Thus it might be possible to break the RSA code without �nding d. It
must, however, be said that, in spite of this problem, the RSA code is much
used in practice and the Rabin{Williams code is not.

Remark 2 It is natural to ask what evidence there is that the factori-
sation problem really is hard. Properly organised, trial division requires
O(N1=2) operations to factorise a number N . This order of magnitude was
not bettered until 1972 when Lehman produced a O(N1=3) method. In 1974,
Pollard15 produced a O(N1=4) method. In 1979, as interest in the problem
grew because of its connection with secret codes, Lenstra made a break-
through to a O(ec((logN)(log logN))1=2) method with c � 2. Since then some

progress has been made (Pollard reached O(e2((logN)(log logN))1=3) but in spite
of intense e�orts mathematicians have not produced anything which would
be a real threat to codes based on the factorisation problem. In 1996, it was
possible to factor 100 (decimal) digit numbers routinely, 150 digit numbers
with immense e�ort but 200 digit numbers were out of reach.

Organisations which use the RSA and related systems rely on `security
through publicity'. Because the problem of cracking RSA codes is so notori-
ous any breakthrough is likely to be publically announced16. Moreover, even
if a breakthrough occurs it is unlikely to be one which can be easily exploited
by the average criminal. So long as the secrets covered by RSA-type codes
need only be kept for a few months rather than forever, the codes can be
considered to be one of the strongest links in the security chain.

15Although mathematically trained, Pollard worked outside the professional mathemat-
ical community.

16And if not, is most likely to be a government rather than a Ma�a secret.
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13 Trapdoors and signatures

It might be thought that secure codes are all that are needed to ensure the
security of communications but this is not so. It is not necessary to read
a message to derive information from it17. In the same way, it may not be
necessary to be able to write a message in order to tamper with it.

Here is a somewhat far fetched but worrying example. Suppose that by
wire tapping or by looking over peoples' shoulders I �nd that a bank creates
messages in the formM1,M2 whereM1 is the name of the client andM2 is the
sum to be transfered to the client's account. The messages are then encoded
according to the RSA scheme discussed after Lemma 12.1 as Z1 = Md

1 and
Z2 =Md

2 . I then enter into a transaction with the bank which adds $ 1000 to
my account. I observe the resulting Z1 and Z2 and the transmit Z1 followed
by Z3

2 .

Example 13.1. What will (I hope) be the result of this transaction.

We say that the RSA scheme is vulnerable to `homomorphism attack'.
One way of increasing security against tampering is to �rst code our

message by classical coding method and then use our RSA (or similar) scheme
on the result.

Exercise 13.2. Discuss briey the e�ect of �rst using an RSA scheme and
then a classical code.

However there is another way forward which has the advantage of wider
applicability since it also can be used to protect the integrity of open (non-
coded) messages and to produce password systems. These are the so called
signature systems. (Note that we shall be concerned with the `signature of
the message' and not the signature of the sender.)

De�nition 13.3. A signature or trapdoor or hashing function is a mapping
H :M! S from the spaceM of possible messages to the space S of possible
signatures.

(Let me admit at once that De�nition 13.3 is more of a statement of notation
than a useful de�nition.) The �rst requirement of a good signature function
is that the space M should be much larger than the space S so that H is a
many-to-one function (in fact a great-many-to-one function) so that we can
not work back from H(M) to M . The second requirement is that S should
be large so that a forger can not (sensibly) hope to hit on H(M) by luck.

17During World War II, British bomber crews used to spend the morning before a night
raid testing their equipment, this included the radios.
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Obviously we should aim at the same kind of security as that o�ered by
our `level 2' for codes:-

Prospective opponents should �nd it hard to �nd H(M) givenM
if they are in possession of a plentiful supply of message, signature
pairs (Mi; H(Mi)). of messages Mi together with their encodings
Ci.

I leave it to the reader to think about level 3 security (or to look at section
12.6 of [9]).

Here is a signature scheme due to Elgamal. The message sender A chooses
a very large prime p, some integer 1 < g < p. and some other integer u
with 1 < u < p (as usual, some randomisation scheme should be used). A
then releases the values of p, g and gu (modulo p) but keeps the value of u
secret. Whenever he sends a message m (some positive integer) he chooses
another integer k with 1 � k � p� 2 at random and computes r and s with
1 � r � p� 1 and 0 � s � p� 2 by the rules18

r � gk (mod p) (*)

m � ur + ks (mod p� 1) (**)

Lemma 13.4. If conditions (*) and (**) are satis�ed then

gm � yrrs (mod p)

If A sends the message m followed by the signature (r; s) the recipient need
only verify the relation gm � yrrs (mod p) to check that the message is
authentic.

Since k is random it is believed that the only way to forge signatures is
to �nd u from gu and it is believed that this problem, which is known as the
discrete logarithm problem is very hard.

Needless to say, even if it is impossible to tamper with a message, sig-
nature pair it is always possible to copy one. Every message should thus
contain a unique identi�er such as a time stamp.

The evidence that the discrete logarithm problem is very hard is of the
same kind of nature and strength as the evidence that the factorisation prob-
lem is very hard. We conclude our discussion with a description of the Di�e{
Helman key exchange system which is also based on the discrete logarithm
problem.

18There is a small point which I have glossed over here and elsewhere. Unless k and
and p� 1 are coprime the equation (**) may not be soluble. However the quickest way to
solve (**) if it is soluble is Euclid's algorithm which will also reveal if (**) is insoluble. If
(**) is insoluble we simply choose another k at random and try again.
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The modern coding schemes which we have discussed have the disadvan-
tage that they require lots of computation. This is not a disadvantage when
we deal slowly with a few important messages. For the Web where we must
deal speedily with a lot of less than world shattering messages sent by im-
patient individuals this is a grave disadvantage. Classical coding schemes
are fast but become insecure with reuse. Key exchange schemes use modern
codes to communicate a new secret key for each message. Once the secret
key has been sent slowly, a fast classical method based on the secret key is
used to encode and decode the message. Since a di�erent secret key is used
each time, the classical code is secure.

How is this done? Suppose A and B are at opposite ends of a tapped
telephone line. A sends B a (randomly chosen) large prime p and a randomly
chosen g with 1 < g < p � 1. Since the telephone line is insecure A and B
must assume that p and g are public knowledge. A now chooses randomly a
secret number � and tells B the value of g�. B chooses randomly a secret
number � and tells A the value of g�. Since

g�� = (g�)� = (g�)�;

both A and B can compute k = g�� modulo p and k becomes the shared
secret key.

The eavesdropper is left with the problem of �nding k � g�� from knowl-
edge of g, g� and g� (modulo p). It is conjectured that this is essentially as
hard as �nding � and � from the values of g, g� and g� (modulo p) and this
is the discrete logarithm problem.

We conclude with a quotation from Galbraith (referring to his time as
ambassador to India) taken from Koblitz's entertaining text [5].

I had asked that a cable fromWashington to New Delhi : : : be
reported to me through the Toronto consulate. It arrived in code;
no facilities existed for decoding. They brought it to me at the
airport | a mass of numbers. I asked if they assumed I could
read it. They said no. I asked how they managed. They said
that when something arrived in code, they phoned Washington
and had the original read to them.

14 Further reading

For many students this will be the last university mathematics course they
will take. Although the twin subjects of error-correcting codes and cryptog-
raphy occupy a small place in the grand panorama of modern mathematics,
it seems to me that they form a very suitable topic for such a �nal course.
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Outsiders often think of mathematicians as guardians of abstruse but
settled knowledge. Even those who understand that there are still problems
unsettled ask what mathematicians will do when they run out of problems.
At a more subtle level Kline's magni�cent Mathematical Thought from An-
cient to Modern Times [4] is pervaded by the melancholy thought that though
the problems will not run out they may become more and more baroque and
inbred. `You are not the mathematicians your parents were' whispers Kline
`and your problems are not the problems your parent's were.'

However, when we look at this course we see that the idea of error-
correcting codes did not exist before 1940. The best designs of such codes
depend on the kind of `abstract algebra' that historians like Kline and Bell
consider a dead end but lie behind the superior performance of CD players
and similar artifacts.

In order to go further into both codes, whether secret or error correcting
we need to go into the the question of how the information content of a
message is to be measured. `Information theory' has its roots in the code
breaking of World War II (though technological needs would doubtless have
lead to the same ideas shortly thereafter anyway). Its development required a
level of sophistication in treating probability which was simply not available
in the 19th century. (Even the Markov chain is essentially 20th century.)

The question of what makes a calculation di�cult could not even have
been thought about until G�odel's theorem (itself a product of the great `foun-
dations crisis' at the beginning of the 20th century). Developments by Turing
and Church of G�odel's theorem gave us a theory of computational complex-
ity which is still under development today. The question of whether there
exist `provably hard' public codes is intertwined with still unanswered ques-
tions in complexity theory. There are links with the profound (and very 20th
century) question of what constitutes a random number.

Finally the invention of the electronic computer has produced a cultural
change in the attitude of mathematicians towards algorithms. Before 1950,
the construction of algorithms was a minor interest of a few mathematicians.
(Gauss and Jacobi were consider unusual in the amount of thought they
gave to actual computation.) Today we would consider a mathematician as
much as a maker of algorithms as a prover of theorems. The notion of the
probabilistic algorithm which hovered over much of our discussion of secret
codes is a typical invention of the last decades of the 20th century.

Although both subjects are now `mature' in the sense that they provide
usable and well tested tools for practical application they still contain deep
unanswered questions. For example

How close to the Shannon bound can a `computationally easy' error cor-
recting code get?
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Do provably hard public codes exist?
Even if these questions are too hard there must surely exist error correct-

ing and public codes based on new ideas. Such ideas would be most welcome
and, although they are most likely to come from the professionals they might
come from outside the usual charmed circles.

The best book I know for further reading is Welsh [9]. After this the book
of Goldie and Pinch [7] provides a deeper idea of the meaning of information
and its connection with the topic. The book by Koblitz [5] develops the
number theoretic background. The economic and practical importance of
transmitting, storing and processing data far outweighs the importance of
hiding it. However, hiding data is more romantic. For budding cryptologists
and cryptographers (as well as those who want a good read) Kahn's The
Codebreakers [2] has the same role as is taken by Bell's Men of Mathematics.
for budding mathematicians.
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15 First Sheet of Exercises

Because this is a third term course I have tried to keep the questions simple.
On the whole Examples will have been looked at in the lectures and Exercises
will not but the distinction is not very clear.

Q 15.1. Do Exercise 1.1. In the model of a communication channel we take
the probability p of error to be less than 1=2. Why do we not consider the
case 1 � p > 1=2? What if p = 1=2?

Q 15.2. Do Exercise 2.3 Machines tend to communicate in binary strings
so this course concentrates on binary alphabets with two symbols. There is
no particular di�culty in extending our ideas to alphabets with n symbols
though, of course, some tricks will only work for particular values of n. If
you look at the inner title page of almost any recent book you will �nd its
International Standard Book Number (ISBN). The ISBN uses single digits
selected from 0, 1, : : : , 8, 9 and X representing 10. Each ISBN consists of
nine such digits a1, a2, : : : , a9 followed by a single check digit a10 chosen so
that

10a1 + 9a2 + � � �+ 2a9 + a10 � 0 mod 11: (*)

(In more sophisticated language our code C consists of those elements a 2 F
10
11

such that
P10

j=1(11� j)aj = 0.)
(i) Find a couple of books and check that (�) holds for their ISBNs.
(ii) Show that (�) will not work if you make a mistake in writing down

one digit of an ISBN.
(iii) Show that (�) may fail to detect two errors.
(iv) Show that (�) will not work if you interchange two adjacent digits.

Errors of type (ii) and (iv) are the most common in typing.

Q 15.3. Do Exercise 2.4 Suppose we use eight hole tape with the standard
paper tape code and the probability that an error occurs at a particular
place on the tape (i.e. a hole occurs where it should not or fails to occur
where it should) is 10�4. A program requires about 10 000 lines of tape (each
line containing eight places) using the paper tape code. Using the Poisson
approximation, direct calculation (possible with a hand calculator but really
no advance on the Poisson method) or otherwise show that the probability
that the tape will be accepted as error free by the decoder is less than .04%.

Suppose now that we use the Hamming scheme (making no use of the last
place in each line). Explain why the program requires about 17 500 lines of
tape but that any particular line will be correctly decoded with probability
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about 1 � (21 � 10�8) and the probability that the entire program will be
correctly decoded is better than 99.6%.

Q 15.4. Show that if 0 < � < 1=2 there exists an A(�) > 0 such that
whenever 0 � r � n� we have

rX
j=0

�
n

j

�
� A(�)

�
n

r

�
:

(We use weaker estimates in the course but this is the most illuminating.

Q 15.5. Show that the n-fold repetition code is perfect if and only if n is
odd.

Q 15.6. Let C be the code consisting of the word 10111000100 and its cyclic
shifts (that is 01011100010, 00101110001 and so on) together with the zero
code word. Is C linear? Show that C has minimum distance 5.

Q 15.7. Write down the weight enumerators of the trivial code, the repeti-
tion code and the simple parity code.

Q 15.8. List the codewords of the Hamming (7,4) code and its dual. Write
down the weight enumerators and verify that they satisfy the MacWilliams
identity.

Q 15.9. (a) Show that if C is linear then so are its extension C+, truncation
C� and puncturing C 0 provided the symbol chosen to puncture by is 0.

(b) Show that extension and truncation do not change the size of a code.
Show that it is possible to puncture a code without reducing the information
rate.

(c) Show that the minimum distance of the parity extension C+ is the
least even integer n with n � d(C). Show that the minimum distance of C�

is d(C) or d(C) � 1. Show that puncturing does not change the minimum
distance.

Q 15.10. If C1 and C2 are of appropriate type with generator matrices G1

and G2 write down a generator matrix for C1jC2.

Q 15.11. Show that the weight enumerator of RM(d; 1) is

y2
d

+ (2d � 2)x2
d�1

y2
d�1

+ x2
d

:
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Q 15.12. Do Exercise 3.6 which shows that even if 2n=V (n; e) is an integer,
no perfect code may exist.

(i) Verify that

290

V (90; 2)
= 278:

(ii) Suppose that C is a perfect 2 error correcting code of length 90 and
size 278. Explain why we may suppose without loss of generality that 0 2 C.

(iii) Let C be as in (ii) with 0 2 C. Consider the set

X = fx 2 F
90
2 : x1 = 1; x2 = 1; d(0;x) = 3g:

Show that corresponding to each x 2 X we can �nd a unique c(x) 2 C such
that d(c(x);x) = 2.

(iv) Continuing with the argument of (iii) show that

d(c(x); 0) = 5

and that ci(x) = 1 whenever xi = 1. By looking at d(c(x); c(x0)) for x;x0 2
X and invoking the Dirichlet pigeon-hole principle, or otherwise, obtain a
contradiction.

(v) Conclude that there is no perfect [90; 278] code.
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16 Second Sheet of Exercises

Because this is a third term course I have tried to keep the questions simple.
On the whole Examples will have been looked at in the lectures and Exercises
will not but the distinction is not very clear.

Q 16.1. An erasure is a digit which has been made unreadable in transmis-
sion. Why are they easier to deal with than errors? Find a necessary and
su�cient condition on the parity check matrix of a linear (n; k) code for it
to be able to correct t erasures and relate t to n and k in a useful manner.

Q 16.2. Consider the collection K of polynomials

a0 + a1! + a2!
2

with aj 2 F2 manipulated subject to the usual rules of polynomial arithmetic
and the further condition

1 + ! + !2 = 0:

Show by direct calculation that F � = F n f0g is a cyclic group under multi-
plication and deduce that K is a �nite �eld.
[Of course, this follows directly from general theory but direct calculation is
not uninstructive.]

Q 16.3. (i) Identify the cyclic codes of length n corresponding to each of
the polynomials 1, X � 1 and Xn�1 +Xn�2 + � � �+X + 1.

(ii) Show that there are three cyclic codes of length 7 corresponding to
irreducible polynomials of which two are versions of Hamming's original code.
What are the other cyclic codes?

(iii) Identify the dual codes for each of the codes in (ii).

Q 16.4. Do Example 7.15.
(i) If K is a �eld containing F2 then (a + b)2 = a2 + b2 for all a; b 2 K.
(ii) If P 2 F2 [X] and K is a �eld containing F2 then P (a)2 = P (a2) for

all a 2 K.
(iii) Let K be a �eld containing F2 in which X7 � 1 factorises into linear

factors. If � is a root of X3 +X + 1 in K then � is a primitive root of unity
and �2 is also a root of X3 +X + 1.

(iv) We continue with the notation (iii). The BCH code with f�; �2g as
de�ning set is Hamming's original (7,4) code.

60



Q 16.5. A binary non-linear feedback register of length 4 has de�ning rela-
tion

xn+1 = xnxn�1 + xn�3:

Show that the state space contains 4 cycles of lengths 1, 2, 4 and 9

Q 16.6. A binary LSFR of length 5 was used to generate the following
stream

101011101100 : : :

Recover the feedback polynomial by the Berlekamp-Massey method.

Q 16.7. Do Exercise 8.5 Consider the linear recurrence

xn = a0xn�d + a1xn�d�1 � � �+ ad�1xn�1 (*)

with aj 2 F2 and a0 6= 0.
(i) Suppose K is a �eld containing F2 such that the auxiliary polynomial

C has a root � in K. Then �n is a solution of (�) in K.
(ii) Suppose K is a �eld containing F2 such that the auxiliary polynomial

C has d distinct roots �1, �2, : : : , �d in K. Then the general solution of (�)
in K is

xn =
dX

j=1

bj�
n
j

for some bj 2 K. If x0; x1; : : : ; xd�1 2 F2 then xn 2 F2 for all n.
(iii) Work out the �rst few lines of Pascal's triangle modulo 2. Show that

the functions fj : Z! F2

fj(n) =

�
n

j

�

are linearly independent in the sense that

mX
j=0

ajfj(n) = 0

for all n implies aj = 0 for 1 � j � m.
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(iv) Suppose K is a �eld containing F2 such that the auxiliary polynomial
C factorises completely into linear factors. If the root �u has multiplicitymu

[1 � u � q] then the general solution of (�) in K is

xn =

qX
u=1

m(u)�1X
v=0

bu;v

�
n

v

�
�nu

for some bu;v 2 K. If x0; x1; : : : ; xd�1 2 F2 then xn 2 F2 for all n.

Q 16.8. Do Exercise 10.8 One of the most con�dential German codes (called
FISH by the British) involved a complex mechanism which the British found
could be simulated by two loops of paper tape of length 1501 and 1497. If
kn = xn + yn where xn is a stream of period 1501 and yn is stream of period
1497 what is the longest possible period of kn? How many consecutive values
of kn do you need to to specify the sequence completely?

Q 16.9. We work in F2. I have a secret sequence k1, k2, : : : and a message
p1, p2, : : : , pN . I transmit p1 + k1, p2 + k2, : : : pN + kN and then, by error,
transmit p1 + k2, p2 + k3, : : : pN + kN+1. Assuming that you know this and
that my message makes sense how would you go about �nding my message?
Can you now decipher other messages sent using the same part of my secret
sequence?

Q 16.10. Give an example of a homomorphism attack on an RSA code.
Show in reasonable detail that the Elgamal signature scheme defeats it.

Q 16.11. I announce that I shall be using the Rabin-Williams scheme with
modulus N . My agent in X'Dofdro sends me a message m (with 1 � m �
N � 1) encoded in the requisite form. Unfortunately my cat eats the piece
of paper on which the prime factors of N are recorded so I am unable to
decipher it. I therefore �nd a new pair of primes and announce that I shall
be using the Rabin Williams scheme with modulus N 0 > N . My agent now
recodes the message and sends it to me again.

The dreaded SNDO of X'Dofdro intercept both code messages. Show that
they can �nd m. Can they decipher any other messages sent to me using
only one of the coding schemes?

Q 16.12. Extend the Di�e-Helman key exchange system to cover three par-
ticipants in a way that is likely to be as secure as the two party scheme.

Extend the system to n parties in such a way that they can compute their
common secret key in at most n2 � n communications.
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