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Preface

to Dana

Why fragments�

Several years ago� Sha� Goldwasser and myself have decided to write together
a book titled �Foundations of Cryptography�� In a �rst burst of energy� I�ve
written most of the material appearing in these fragments� but since then very
little progress has been done� The chances that we will complete our original plan
within a year or two seem quite slim� In fact� we even fail to commit ourselves
to a date on which we will resume work on this project�

What is in these fragments�

These fragments contain a �rst draft for three major chapters and an introduc�
tion chapter� The three chapters are the chapters on computational di�culty
	or one�way functions
� pseudorandom generators and zero�knowledge� These
chapters are quite complete with the exception that the zero�knowledge chapter
misses the planned section on non�interactive zero�knowledge� However� none of
these chapters has been carefully proofread and I expect them to be full of vari�
ous mistakes ranging from spelling and grammatical mistakes to minor technical
inaccuracies� I hope and believe that they are no fatal mistakes� but I cannot
guarantee this either�

A major thing which is missing�

An updated list of references is indeed missing� Instead I enclose an old anno�
tated list of references 	compiled mostly in February ���
�

c����� O� Goldreich�

All rights reserved�

�



�

Author�s Note� Text appearing in italics within indented paragraphs� such as
this one� is not part of the book� but rather part of the later comments added to
its fragments���

Author�s Note� The original preface should have started here�

Revolutionary developments which took place in the previous decade have transformed
cryptography from a semi�scienti�c discipline to a respectable �eld in theoretical Computer
Science� In particular� concepts such as computational indistinguishability� pseudorandom�
ness and zero�knowledge interactive proofs were introduced and classical notions as secure
encryption and unforgeable signatures were placed on sound grounds�

This book attempts to present the basic concepts� de�nitions and results in cryptog�
raphy� The emphasis is placed on the clari�cation of fundamental concepts and their in�
troduction in a way independent of the particularities of some popular number theoretic
examples� These particular examples played a central role in the development of the �eld
and still o�er the most practical implementations of all cryptographic primitives� but this
does not mean that the presentation has to be linked to them�

Using this book

Author�s Note� Giving a course based on the material which appears in these
fragments is indeed possible� but kind of strange since the basic tasks of encrypt�
ing and signing are not covered�

� Chapters� sections� subsections� and subsubsections denoted by an asterisk �	
 were
intended for advanced reading�

� Historical notes and suggestions for further reading are provided at the end of each
chapter�

Author�s Note� However� a corresponding list of reference is not provided�
Instead� the read may try to trace the paper by using the enclosed annotated
list of references 	dating to ���
�
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Chapter �

Introduction

In this chapter we shortly discuss the goals of cryptography� In particular� we discuss
the problems of secure encryption� digital signatures� and fault�tolerant protocols� These
problems lead to the notions of pseudorandom generators and zero�knowledge proofs which
are discussed as well�

Our approach to cryptography is based on computational complexity� Hence� this intro�
ductory chapter contains also a section presenting the computational models used through�
out the book� Likewise� the current chapter contains a section presenting some elementary
backgound from probability theory� which is used extensively in the sequal�

��� Cryptography � Main Topics

Traditionally� cryptography has been associated with the problem of designing and analysing
encryption schemes �i�e�� schemes which provide secret communication over insecure commu�
nication media
� However� nowadays� also problems such as constructing unforgeable digital
signatures and designing fault�tolerant protocols� are considered as falling in the domain of
cryptography� Furthermore� it turns out that notions as �pseudorandom generators� and
�zero�knowledge proofs� are very related to the above problems� and hence must be treated
as well in a book on cryptography� In this section we brie�y discuss the above�mentioned
terms�

����� Encryption Schemes

The problem of providing secret communication over insecure media is the most basic prob�
lem of cryptography� The setting of this problem consists of two parties communicating
through a channel which is possibly tapped by an adversary� The parties wish to exchange

��
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information with each other� but keep the �wiretapper� as ignorant as possible regrading
the contents of this information� Loosely speaking� an encryption scheme is a protocol
allowing these parties to communicate secretly with each other� Typically� the encryption
scheme consists of a pair of algorithms� One algorithm� called encryption� is applied by
the sender �i�e�� the party sending a message
� while the other algorithm� called decryp�
tion� is applied by the receiver� Hence� in order to send a message� the sender �rst applies
the encryption algorithm to the message� and sends the result� called the ciphertext� over
the channel� Upon receiving a ciphertext� the other party �i�e�� the receiver
 applies the
decryption algorithm to it� and retrieves the original message �called the plaintext
�

In order for the above scheme to provide secret communication� the communicating
parties �at least the receiver
 must know something which is not known to the wiretapper�
�Otherwise� the wiretapped can decrypt the ciphertext exactly as done by the receiver�
 This
extra knowledge may take the form of the decryption algorithm itself� or some parameters
and�or auxiliary inputs used by the decryption algorithm� We call this extra knowledge the
decryption key� Note that� without loss of generality� we may assume that the decryption
algorithm is known to the wiretapper and that the decryption algorithm needs two inputs�
a ciphertext and a decryption key� We stress that the existence of a secret key� not known
to the wiretapper� is merely a necessary condition for secret communication�

Evaluating the �security� of an encryption scheme is a very tricky business� A pre�
liminary task is to understand what is �security� �i�e�� to properly de�ne what is meant
by this intuitive term
� Two approaches to de�ning security are known� The �rst ��clas�
sic�
 approach is information theoretic� It is concerned with the �information� about the
plaintext which is �present� in the ciphertext� Loosely speaking� if the ciphertext contains
information about the plaintext then the encryption scheme is considered insecure� It has
been shown that such high �i�e�� �perfect�
 level of security can be achieved only if the
key in use is at least as long as the total length of the messages sent via the encryption
scheme� The fact� that the key has to be longer than the information exchanged using it� is
indeed a drastic limitation on the applicability of such encryption schemes� In particular�
it is impractical to use such keys in case huge amounts of information need to be secretly
communicated �as in computer networks
�

The second ��modern�
 approach� followed in the current book� is based on computa�
tional complexity� This approach is based on the observation that it does not matter

whether the ciphertext contains information about the plaintext� but rather whether this in�
formation can be e�ciently extracted� In other words� instead of asking whether it is
possible for the wiretapper to extract speci�c information� we ask whether it is feasible for
the wiretapper to extract this information� It turns out that the new �i�e�� �computational
complexity�
 approach o�ers security even if the key is much shorter than the total length
of the messages sent via the encryption scheme� For example� one may use �pseudorandom
generators� �see below
 which expand short keys into much longer �pseudo�keys�� so that
the latter are as secure as �real keys� of comparable length�
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In addition� the computational complexity approach allows the introduction of concepts
and primitives which cannot exist under the information theoretic approach� A typical
example is the concept of public�key encryption schemes� Note that in the above discus�
sion we concentrated on the decryption algorithm and its key� It can be shown that the
encryption algorithm must get� in addition to the message� an auxiliary input which de�
pends on the decryption key� This auxiliary input is called the encryption key� Traditional
encryption schemes� and in particular all the encryption schemes used in the millenniums
until the �����s� operate with an encryption key equal to the decryption key� Hence� the
wiretapper in this schemes must be ignorant of the encryption key� and consequently the
key distribution problem arises �i�e�� how can two parties wishing to communicate over an
insecure channel agree on a secret encryption�decryption key
� �The traditional solution
is to exchange the key through an alternative channel which is secure� though �more ex�
pensive to use�� for example by a convoy�
 The computational complexity approach allows
the introduction of encryption schemes in which the encryption key may be given to the
wiretapper without compromising the security of the scheme� Clearly� the decryption key
in such schemes is di�erent and furthermore infeasible to compute from the encryption key�
Such encryption scheme� called public�key� have the advantage of trivially resolving the key
distribution problem since the encryption key can be publicized�

In the chapter devoted to encryption schemes� we discuss private�key and public�key en�
cryption schemes� Much attention is placed on de�ning the security of encryption schemes�
Finally� constructions of secure encryption schemes based on various intractability assump�
tions are presented� Some of the constructions presented are based on pseudorandom gen�
erators� which are discussed in a prior chapter� Other constructions use speci�c one�way
functions such as the RSA function and�or squaring modulo a composite number�

����� Pseudorandom Generators

It turns out that pseudorandom generators play a central role in the construction of encryp�
tion schemes �and related schemes
� In particular� pseudorandom generators are the clue
to the construction of private�key encryption schemes� and this observation is often used in
practice �usually implicitly
�

Although the term �pseudorandom generators� is commonly used in practice� both in
the contents of cryptography and in the much wider contents of probabilistic procedures� it is
important to realize that this term is seldom associated a precise meaning� We believe that
using a term without knowing what it means is dangerous in general� and in particular in a
delicate business as cryptography� Hence� a precise treatment of pseudorandom generators
is central to cryptography�

Loosely speaking� a pseudorandom generator is a deterministic algorithm expanding
short random seeds into much longer bit sequences which appear to be �random� �although
they are not
� It other words� although the output of a pseudorandom generator is not
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really random� it is infeasible to tell the di�erence� It turns out that pseudorandomness and
computational di�culty are linked even in a more fundamental manner� as pseudorandom
generators can be constructed based on various intractability assumptions� Furthermore�
the main result in the area asserts that pseudorandom generators exists if and only if one�
way functions exists�

The chapter devoted to pseudorandom generators starts with a treatment of the con�
cept of computational indistinguishability� Pseudorandom generators are de�ned next� and
constructed using special types of one�way functions �de�ned in a prior chapter
� Pseudo�
random functions are de�ned and constructed as well�

����� Digital Signatures

A problem which did not exist in the �pre�computerized� world is that of a �digital signa�
ture�� The need to discuss �digital signatures� has arise with the introduction of computer
communication in business environment in which parties need to commit themselves to
proposals and�or declarations they make� Discussions of �unforgeable signatures� did take
place also in previous centuries� but the objects of discussion were handwritten signatures
�and not digital ones
� and the discussion was not perceived as related to �cryptography��

Relations between encryption and signature methods became possible with the �digital�
ization� of both� and the introduction of the computational complexity approach to security�
Loosely speaking� a scheme for unforgeable signatures requires that

� each user can e�ciently generate his own signature on documents of his choice�

� each user can e�ciently verify whether a given string is a signature of another �speci�c

user on a speci�c document� but

� nobody can e�ciently produce signatures of other users to documents they did not
sign�

We stress that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures� The ingredients are each
person�s ability to sign for himself� a universally agreed veri�cation procedure� and the belief
�or assertion
 that it is infeasible �or at least hard
 to forge signatures in a manner that
pass the veri�cation procedure� Clearly� it is hard to state to what extent do handwritten
signatures meet these requirements� In contrast� our discussion of digital signatures will
supply precise statements concerning the extend by which digital signatures meet the above
requirements� Furthermore� unforgeable digital signature schemes can be constructed using
the same computational assumptions as used in the construction of encryption schemes�

In the chapter devoted to signature schemes� much attention is placed on de�ning the
security �i�e�� unforgeability
 of these schemes� Next� constructions of unforgeable signature
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schemes based on various intractability assumptions are presented� In addition� we treat
the related problem of message authentication�

Message authentication

Message authentication is a task related to the setting considered for encryption schemes�
i�e�� communication over an insecure channel� This time� we consider an active adversary
which is monitoring the channel and may alter the messages sent on it� The parties com�
municating through this insecure channel wish to authenticate the messages they send so
their counterpart can tell an original message �sent by the sender
 from a modi�ed one �i�e��
modi�ed by the adversary
� Loosely speaking� a scheme for message authentication requires
that

� each of the communicating parties can e�ciently generate an authentication tag to
any message of his choice�

� each of the communicating parties can e�ciently verify whether a given string is an
authentication tag of a given message� but

� no external adversary �i�e�� a party other than the communicating parties
 can e��
ciently produce authentication tags to messages not sent by the communicating parties�

In some sense �message authentication� is similar to digital signatures� The di�erence
between the two is that in the setting of message authentication the adversary is not required
to be able to verify the validity of authentication tags produced by the legitimate users�
whereas in the setting of signature schemes the adversary is required to be able to verify the
validity of signatures produced by other users� Hence� digital signatures provide a solution
to the message authentication problem� On the other hand� message authentication schemes
do not necessarily constitute a digital signature scheme�

Signatures widen the scope of cryptography

Considering the problem of digital signatures as belonging to cryptography� widens the
scope of this area from the speci�c �secret communication problem� to a variety of problems
concerned with limiting the �gain� obtained by �dishonest� behaviour of parties �that are
either internal or external to the system
� Speci�cally

� In the �secret communication problem� �solved by use of encryption schemes
 one
wishes to reduce as much as possible the information that a potential wiretapper may
extract from the communication between two �legitimate
 users� In this case� the
legitimate system consists of the two communicating parties� and the wiretapper is
considered as an external ��dishonest�
 party�
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� In the �message authentication problem� one aims at prohibiting an �external
 wire�
tapper from modifying the communication between two �legitimate
 users�

� In the �signature problem� one aims at supplying all users of a system with a way
of making self�binding statements so that other users may not make statements that
bind somebody else� In this case� the legitimate system consists of the set of all users
and a potential forger is considered as an internal yet dishonest user�

Hence� in the wide sense� cryptography is concerned with any problem in which one wishes
to limit the a�ect of dishonest users� A general treatment of such problems is captured by
the treatment of �fault�tolerant� �or cryptographic
 protocols�

����� Fault�Tolerant Protocols and Zero�Knowledge Proofs

A discussion of signature schemes naturally leads to a discussion of cryptographic protocols�
since it is of natural concern to ask under what circumstances should a party send his
signature to another party� In particular� problems like mutual simultaneous commitment
�e�g�� contract signing
� arise naturally� Another type of problems� which are motivated
by the use of computer communication in the business environment� consists of �secure
implementation� of protocols �e�g�� implementing secret and incorruptible voting
�

Simultaneity problems

A typical example of a simultaneity problem is the problem of simultaneous exchange of
secrets� of which contract signing is a special case� The setting in a simultaneous exchange
of secrets consists of two parties� each holding a �secret�� The goal is to execute a protocol
so that if both parties follow it correctly then at termination each holds its counterpart�s
secret� and in any case �even if one party �cheats�
 the �rst party �holds� the second
party�s secret if and only if the second party �holds� the �rst party�s secret� Simultaneous
exchange of secrets can be achieved only when assuming the existence of third parties which
are trusted to some extend�

Simultaneous exchange of secrets can be easily achieved using the active participation
of a trusted third party� Each party sends its secret to the trusted party �using a secure
channel
� who once receiving both secrets send both of them to both parties� There are two
problems with this solution

�� The solution requires active participation of an �external� party in all cases �i�e�� also
in case both parties are honest
� We note that other solutions requiring milder forms
of participation �of external parties
 do exist� yet further discussion is postponed to
the chapter devoted to cryptographic protocols�
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�� The solution requires the existence of a totally trusted entity� In some applications
such an entity does not exist� Nevertheless� in the sequel we discuss the problem of
implementing a trusted third party by a set of users with an honest majority �even if
the identity of the honest users is not known
�

Secure implementation of protocols and trusted parties

A di�erent type of protocol problems are the problems concerned with the secure implemen�
tation of protocols� To be more speci�c� we discuss the problem of evaluating a function
of local inputs each held by a di�erent user� An illustrative and motivating example is
voting� in which the function is majority and the local input held by user A is a single bit
representing the vote of user A �e�g�� �Pro� or �Con�
� We say that a protocol implements
a secure evaluation of a speci�c function if it satis�es

� privacy� No party �gains information� on the input of other parties� beyond what is
deduced from the value of the function� and

� robustness� No party can �in�uence� the value of the function� beyond the in�uence
obtained by selecting its own input�

It is sometimes required that the above conditions hold with respect to �small� �e�g�� mi�
nority
 coalitions of parties �instead of single parties
�

Clearly� if one of the users is known to be totally trusted then there exist a simple
solution to the problem of secure evaluation of any function� Each user just sends its input
to the trusted party �using a secure channel
� who once receiving all inputs� computes the
function� sends te outcome to all users� and erase all intermediate computations �including
the inputs received
 from its memory� Certainly� it is unrealistic to assume that a party
can be trusted to such an extend �e�g� that it erases voluntarily what it has �learnt�
�
Nevertheless� we have seen that the problem of implementing secure function evaluation
reduces to the problem of implementing a trusted party� It turns out that a trusted party
can be implemented by a set of users with an honest majority �even if the identity of the
honest users is not known
� This is indeed a major result in the area�

Zeroknowledge as a paradigm

A major tool in the construction of cryptographic protocols is the concept of zero�knowledge
proof systems� and the fact that zero�knowledge proof systems exist for all languages in NP
�provided that one�way functions exist
� Loosely speaking� zero�knowledge proofs yield
nothing but the validity of the assertion� Zero�knowledge proofs provide a tool for �forcing�
parties to follow a given protocol properly�
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To illustrate the role zero�knowledge proofs� consider a setting in which a party upon
receiving an encrypted message should answer with the least signi�cant bit of the message�
Clearly� if the party just sends the �least signi�cant
 bit �of the message
 then there is no
way to guarantee that it did not cheat� The party may prove that it did not cheat by
revealing the entire message as well as its decryption key� but this would yield information
beyond what has been required� A much better idea is to let the party augment the bit
it sends by a zero�knowledge proof that this bit is indeed the least signi�cant bit of the
message� We stress that the above statement is of the �NP�type� �since the proof speci�ed
above can be e�ciently veri�ed
� and therefore the existence of zero�knowledge proofs for
NP�statements implies that the above statement can be proven without revealing anything
beyond its validity�

��� Some Background from Probability Theory

Probability plays a central role in cryptography� In particular� probability is essential in
order to allow a discussion of information or lack of information �i�e�� secrecy
� We assume
that the reader is familiar with the basic notions of probability theory� In this section� we
merely present the probabilistic notations that are used in throughout the book� and three
useful probabilistic inequalities�

����� Notational Conventions

Throughout the entire book we will refer only to discrete probability distributions� Tradi�
tionally� a random variable is de�ned as a function from the sample space into the reals �or
integers
� In this book we use the term random variable also when referring to functions
mapping the sample space into the set of binary strings� For example� we may say that X
is a random variable assigned values in the set of all strings so that Prob�X ��
  �

� and
Prob�X ���
  �

� � This is indeed a non�standard convention� but a useful one� Also� we
will refer directly to the random variables without specifying the probability space on which
they are de�ned� In most cases the probability space consists of all strings of a particular
length�

How to read probabilistic statements

All our probabilistic statements refer to functions of random variables which are de�ned
beforehand� Typically� we may write Prob�f�X
 �
� where X is a random variable de�ned
beforehand �and f is a function
� An important convention is that all occurrences of the
same symbol in a probabilistic statement refer to the same 	unique
 random variable� Hence�
if E��� �
 is an expression depending on two variables and X is a random variable then
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Prob�E�X�X

 denotes the probability that E�x� x
 holds when x is chosen with probability
Prob�X x
� Namely�

Prob�E�X�X

  
X
x

Prob�X x
 � val�E�x� x



where val�E�x� x

 equals � if E�x� x
 holds and equals � otherwise� For example� for every
random variable X � we have Prob�X  X
  �� We stress that if one wishes to discuss
the probability that E�x� y
 holds when x and y are chosen independently with identical
probability distribution the one needs to de�ne two independent random variables each with
the same probability distribution� Hence� if X and Y are two independent random variables
then Prob�E�X� Y 

 denotes the probability thatE�x� y
 holds when the pair �x� y
 is chosen
with probability Prob�X x
 � Prob�Y  y
� Namely�

Prob�E�X� Y 

  
X
x�y

Prob�X x
 � Prob�Y  y
 � val�E�x� y



For example� for every two independent random variables� X and Y � we have Prob�X  
Y 
  � only if both X and Y are trivial �i�e�� assign the entire probability mass to a single
string
�

Typical random variables

Throughout the entire book� Un denotes a random variable uniformly distributed over the
set of strings of length n� Namely� Prob�Un  �
 equals ��n if � � f�� �gn and equals �
otherwise� In addition� we will occasionally use random variables �arbitrarily
 distributed
over f�� �gn or f�� �gl�n�� for some function l � IN �� IN� Such random variables are typically
denoted by Xn� Yn� Zn� etc� We stress that in some cases Xn is distributed over f�� �gn
whereas in others it is distributed over f�� �gl�n�� for some function l��
� typically a polyno�
mial� Another type of random variable� the output of a randomized algorithm on a �xed
input� is discussed in the next section�

����� Three Inequalities

The following probabilistic inequalities will be very useful in course of the book� All inequal�
ities refer to random variables which are assigned real values� The most basic inequality
is Markov Inequality which asserts that� for random variables assigned values in some in�
terval� some relation must exist between the deviation of a value from the expectation of
the random variable and the probability that the random variable is assigned this value�
Speci�cally�

Markov Inequality� Let X be a non�negative random variable and v a real number� Then

Prob �X�v
 � Exp�X


v
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Equivalently� Prob�X � r � Exp�X

 � �
r �

Proof�

Exp�X
  
X
x

Prob�X x
 � x

�
X
x�v

Prob�X x
 � � !
X
x�v

Prob�X x
 � v

 Prob�X�v
 � v
The claim follows�

Markov inequality is typically used in cases one knows very little about the distribution
of the random variable� It su�ces to know its expectation and at least one bound on the
range of its values�

Exercise ��

�� Let X be a random variable such that Exp�X
  � and X � ��� Give an upper
bound on Prob�X � �

� 
�

�� Let � � �� � � �� and Y be a random variable ranging in the interval ��� �� such that
Exp�Y 
  � ! �� Give a lower bound on Prob�Y � � ! �

�
�

Using Markov�s inequality� one gets a �possibly stronger� bound for the deviation of a
random variable from its expectation� This bound� called Chebyshev�s inequality� is useful
provided one has additional knowledge concerning the random variable �speci�cally a good
upper bound on its variance
�

Chebyshev�s Inequality� Let X be a random variable� and � � �� Then

Prob �jX � Exp�X
j��
 �
Var�X


��

Proof� We de�ne a random variable Y
def
 �X � Exp�X

�� and apply Markov inequality�

We get

Prob �jX � Exp�X
j��
  Prob
�
�X � Exp�X

� � ��

�

�
Exp��X � Exp�X

�


��
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and the claim follows�

Chebyshev�s inequality is particularly useful in the analysis of the error probability of ap�
proximation via repeated sampling� It su�ces to assume that the samples are picked in a
pairwise independent manner�

Corollary �Pairwise Independent Sampling
� Let X�� X�� ���� Xn be pairwise independent
random variables with the identical expectation� denoted �� and identical variance� denoted
	�� Then

Prob

�����
Pn

i��Xi

n
� �

���� � �

�
�

	�

��n

The Xi�s are pairwise independent of for every i 	 j and all a� b� it holds that Prob�Xi 
a 
Xj b
 equals Prob�Xi a
 �Prob�Xj b
�

Proof� De�ne the random variables Xi
def
 Xi � Exp�Xi
� Note that the Xi�s are pair�

wise independent� and each has zero expectation� Applying Chebyshev�s inequality to the
random variable de�ned by the sum

Pn
i��

Xi
n � and using the linearity of the expectation

operator� we get

Prob

�
j
nX
i��

Xi

n
� �j � �

�
�

Var
�Pn

i��
Xi
n

�
��

 
Exp

��Pn
i��Xi

���
�� � n�

Now �again using the linearity of Exp


Exp

�
	
�

nX
i��

X i

��


A  nX

i��

Exp
�
X

�
i

�
!

X
��i��j�n

Exp
�
X iXj

�

By the pairwise independence of the Xi�s� we get Exp�XiXj
  Exp�Xi
 � Exp�Xj
� and
using Exp�Xi
  �� we get

Exp

�
	� nX

i��

Xi

��


A  n � 	�

The corollary follows�

Using pairwise independent sampling� the error probability in the approximation is
decreasing linearly with the number of sample points� Using totally independent sampling
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points� the error probability in the approximation can be shown to decrease exponentially
with the number of sample points� �The random variables X�� X�� ���� Xn are said to be
totally independent if for every sequence a�� a�� ���� an it folds that Prob�
ni��Xi ai
 equalsQn
i�� Prob�Xi ai
�


The bounds quote below are �weakenings of
 a special case of the Martingale Tail In�
equality which su�ces for our purposes� The �rst bound� commonly referred to as Cherno�
Bound� concerns ��� random variables �i�e�� random variables which are assigned as values
either � or �
�

Cherno� Bound� Let p � �
� � and X�� X�� ���� Xn be independent ��� random variables so

that Prob�Xi  �
  p� for each i� Then for all �� � � � � p��� p
� we have

Prob

�����
Pn

i��Xi

n
� p

���� � �

�
� � � e� ��

�p���p� �n

We will usually apply the bound with a constant p � �
� � In this case� n independent samples

give an approximation which deviates by � from the expectation with probability � which is
exponentially decreasing with ��n� Such an approximation is called an ��� �
�approximation�
and can be achieved using n  O���� � log��
�

 sample points� It is important to remember
that the su�cient number of sample points is polynomially related to ��� and logarithmi�
cally related to ���� So using poly�n
 many samples the error probability �i�e� �
 can be
made negligible �as a function in n
� but the accuracy of the estimation can be bounded
above by any �xed polynomial fraction �but cannot be made negligible
�

A more general bound� useful in the approximations of the expectation of a general
random variable �not necessarily ���
� is given below�

Hoefding Inequality� Let X�� X�� ���� Xn be n independent random variables with identi�
cal probability distribution� each ranging over the �real
 interval �a� b�� and let � denote the
expected value of each of these variables� Then�

Prob

�����
Pn

i��Xi

n
� p

���� � �

�
� � � e� ���

b�a
�n

Hoefding Inequality is useful in estimating the average value of a function de�ned over
a large set of values� It can be applied provided we can e�ciently sample the set and have
a bound on the possible values �of the function
�

Exercise �� Let f � f�� �g� �� ��� �� be a polynomial�time computable function� and let
F �n
 denote the average value of f over f�� �gn� Namely�

F �n

def
 

P
x�f���gn f�x


�n
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Let p��
 be a polynomial� Present a probabilistic polynomial�time algorithm that on input
�n outputs an estimate to F �n
� denoted A�n
� such that

Prob

�
jF �n
�A�n
j � �

p�n


�
� ��n

Guidance� The algorithm selects at random polynomially many �how many"
 sample
points si � f�� �gn� These points are selected independently and with uniform probability
distribution �why"
� The algorithm outputs the average value taken over this sample�
Analyze the performance of the algorithm using Hoefding Inequality �hint� de�ne random
variables Xi  f�si

�

��� The Computational Model

Our approach to cryptography is heavily based on computational complexity� Thus� some
background on computational complexity is required for our discussion of cryptography�
In this section� we brie�y recall the de�nitions of the complexity classes P � NP � BPP �
non�uniform P �i�e�� P
poly
� and the concept of oracle machines� In addition� we discuss
the type of intractability assumptions used throughout the rest of the book�

����� P� NP� and NP�completeness

A conservative approach to computing devices associates e�cient computations with the
complexity class P � Jumping ahead� we note that the approach taken in this book is a more
liberal one in that it allows the computing devices to use coin tosses�

De�nition ��� P is the class of languages which can be recognized by a 	deterministic

polynomial�time machine 	algorithm
� Language L is recognizable in polynomial�time if
there exists a 	deterministic
 Turing machine M and a polynomial p��
 such that

� On input a string x� machine M halts after at most p�jxj
 steps�

� M�x
  � if and only if x � L�

Likewise� the complexity class NP is associated with computational problems having solu�
tions that� once given� can be e�ciently tested for validity� It is customary to de�ne NP
as the class of languages which can be recognized by a non�deterministic polynomial�time
machine� A more fundamental interpretation of NP is given by the following equivalent
de�nition�
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De�nition ��� A language L is in NP� if there exists a Boolean relation RL � f�� �g� 
f�� �g� and a polynomial p��
 such that RL can be recognized in 	deterministic
 polynomial�
time and x � L if and only if there exists a y such that jyj � p�jxj
 and �x� y
 � RL� Such
a y is called a witness for membership of x � L�

Thus� NP consists of the set of languages for which there exist short proofs of mem�
bership that can be e�ciently veri�ed� It is widely believed that P 	 NP� and settling
this conjecture is certainly the most intriguing open problem in Theoretical Computer Sci�
ence� If indeed P 	 NP then there exists a language L � NP so that for every algorithm
recognizing L has super�polynomial running�time in the worst�case� Certainly� all NP�
complete languages �see de�nition below
 will have super�polynomial time complexity in
the worst�case�

De�nition ��� A language is NP�complete if it is in NP and every language in NP is
polynomially�reducible to it� A language L is polynomially�reducible to a language L� if
there exist a polynomial�time computable function f so that x � L if and only if f�x
 � L��

Among the languages known to be NP�complete are Satis�ablity �of propositional for�
mulae
� and Graph Colorability�

����� Probabilistic Polynomial�Time

The basic thesis underlying our discussion is the association of �e�cient� computations
with probabilistic polynomial�time computations� Namely� we will consider as e�cient only
randomized algorithms �i�e�� probabilistic Turing machines
 whose running time is bounded
by a polynomial in the length of the input� Such algorithms �machines
 can be viewed in
two equivalent ways�

One way of viewing randomized algorithms is to allow the algorithm to make random
moves ��toss coins�
� Formally this can be modeled by a Turing machine in which the
transition function maps pairs of the form �hstatei� hsymboli
 to two possible triples of the
form �hstatei� hsymboli� hdirectioni
� The next step of such a machine is determined by a
random choice of one of these triples� Namely� to make a step� the machine chooses at
random �with probability one half for each possibility
 either the �rst triple or the second
one� and then acts accordingly� These random choices are called the internal coin tosses
of the machine� The output of a probabilistic machine� M � on input x is not a string
but rather a random variable assuming strings as possible values� This random variable�
denoted M�x
� is induced by the internal coin tosses of M � By Prob�M�x
 y
 we mean
the probability that machine M on input x outputs y� The probability space is that of all
possible outcomes for the internal coin taken with uniform probability distribution� The
last sentence is slightly more problematic than it seems� The simple case is when� on input
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x� machine M always makes the same number of internal coin tosses �independent of their
outcome
� Since� we only consider polynomial�time machines� we may assume without loss
of generality� that the number of coin tosses made by M on input x is independent of their
outcome� and is denoted by tM �x
� We denote by Mr�x
 the output of M on input x when
r is the outcome of its internal coin tosses� Then� Prob�M�x
 y
 is merely the fraction of
r � f�� �gtM�x� for which Mr�x
  y� Namely�

Prob �M�x
 y
  
jfr � f�� �gtM�x� �Mr�x
 ygj

�tM�x�

The second way of looking at randomized algorithms is to view the outcome of the
internal coin tosses of the machine as an auxiliary input� Namely� we consider deterministic
machines with two inputs� The �rst input plays the role of the �real input� �i�e� x
 of the
�rst approach� while the second input plays the role of a possible outcome for a sequence
of internal coin tosses� Thus� the notation M�x� r
 corresponds to the notation Mr�x
 used
above� In the second approach one considers the probability distribution of M�x� r
� for
any �xed x and a uniformly chosen r � f�� �gtM�x�� Pictorially� here the coin tosses are not
�internal� but rather supplied to the machine by an �external� coin tossing device�

Before continuing� let me remark that one should not confuse the �ctitious model of
�non�deterministic� machines with the model of probabilistic machines� The �rst is an
unrealistic model which is useful for talking about search problems the solutions to which
can be e�ciently veri�ed �e�g�� the de�nition of NP
� while the second is a realistic model
of computation�

In the sequel� unless otherwise stated� a probabilistic polynomial�time Turing machine
means a probabilistic machine that always �i�e�� independently of the outcome of its internal
coin tosses
 halts after a polynomial �in the length of the input
 number of steps� It follows
that the number of coin tosses of a probabilistic polynomial�time machine M is bounded
by a polynomial� denoted TM � in its input length� Finally� without loss of generality� we
assume that on input x the machine always makes TM�jxj
 coin tosses�

Thesis� E�cient computations correspond to computations that can be carried out by prob�
abilistic polynomial�time Turing machines�

A complexity class capturing these computations is the class� denoted BPP � of languages
recognizable �with high probability
 by probabilistic polynomial�time machines� The prob�
ability refers to the event �the machine makes correct verdict on string x��

De�nition ��
 �Bounded�Probability Polynomial�time # BPP
� BPP is the class of lan�
guages which can be recognized by a probabilistic polynomial�time machine 	i�e�� randomized
algorithm
� We say that L is recognized by the probabilistic polynomial�time machine M if
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� For every x � L it holds that Prob�M�x
 �
 � �
� �

� For every x 	� L it holds that Prob�M�x
 �
 � �
� �

The phrase �bounded�probability� indicates that the success probability is bounded
away from �

� � In fact� substituting in De�nition ��� the constant
�
� by any other constant

greater than �
� does not change the class de�ned� More generally�

Exercise �� Prove that De�nition ��� is robust under the substitution of �
� by

�
� !

�
p�jxj��

for every polynomial p��
� Namely� that L � BPP if there exists a polynomial p��
 and a
probabilistic polynomial�time machine� M � such that

� For every x � L it holds that Prob�M�x
 �
 � �
� !

�
p�jxj� �

� For every x 	� L it holds that Prob�M�x
 �
 � �
� !

�
p�jxj� �

Guidance� Given a probabilistic polynomial�time machine M satisfying the above condi�
tion� construct a probabilistic polynomial�time machineM � as follows� On input x� machine
M �� runs O�p�jxj

 many copies of M � on the same input x� and rules by majority� Use
Chebyshev�s inequality �see Sec� ���
 to show that M � is correct with probability � �

� �

Exercise �� Prove that De�nition ��� is robust under the substitution of �
� by �� ��jxj�

Guidance� Similar to Exercise �� except that you have to use a stronger probabilistic
inequality �namely Cherno� bound # see Sec� ���
�

We conclude that languages in BPP can be recognized by probabilistic polynomial�
time machines with a negligible error probability� By negligible we call any function which
decreases faster than one over any polynomial� Namely�

De�nition ��� �negligible
� We call a function � � IN �� IN negligible if for every polyno�
mial p��
 there exists an N such that for all n � N

��n
 �
�

p�n


For example� the functions ��
p
n and n� log� n� are negligible �as functions in n
� Negligible

function stay this way when multiplied by any �xed polynomial� Namely� for every negligible

function � and any polynomial p� the function ���n
 def p�n
 � ��n
 is negligible� It follows
that an event which occurs with negligible probability is highly unlikely to occur even if we
repeat the experiment polynomially many times�

Convention� In De�nition ��� we used the phrase �there exists an N such that for all
n � N�� In the future we will use the shorter and less tedious phrase �for all su�ciently
large n�� This makes one quanti�er �i�e�� the �N
 implicit� and is particularly bene�cial in
statements that contain several �more essential
 quanti�ers�



���� THE COMPUTATIONAL MODEL �

����� Non�Uniform Polynomial�Time

A stronger model of e�cient computation is that of non�uniform polynomial�time� This
model will be used only in the negative way� namely� for saying that even such machines
cannot do something�

A non�uniform polynomial�time �machine� is a pair �M� a
� where M is a two�input
polynomial�time machine and a  a�� a�� ��� is an in�nite sequence such that janj  poly�n
�
For every x� we consider the computation of machine M on the input pair �x� ajxj
� Intu�
itively� an may be thought as an extra �advice� supplied from the �outside� �together with
the input x � f�� �gn
� We stress that machine M gets the same advice �i�e�� an
 on all
inputs of the same length �i�e�� n
� Intuitively� the advice an may be useful in some cases
�i�e�� for some computations on inputs of length n
� but it is unlikely to encode enough
information to be useful for all �n possible inputs�

Another way of looking at non�uniform polynomial�time �machines� is to consider an
in�nite sequence of machines�M��M�� ��� so that both the length of the description ofMn and
its running time on inputs of length n are bounded by polynomial in n ��xed for the entire
sequence
� MachineMn is used only on inputs of length n� Note the correspondence between
the two ways of looking at non�uniform polynomial�time� The pair �M� �a�� a�� ���

 �of the

�rst de�nition
 gives rise to an in�nite sequence of machinesMa� �Ma� � ���� whereMajxj�x

def
 

M�x� ajxj
� On the other hand� a sequence M��M�� ��� �as in the second de�nition
 gives rise
to the pair �U� �hM�i� hM�i� ���

� where U is the universal Turing machine and hMni is the
description of machine Mn �i�e�� U�x� hMjxji
  Mjxj�x

�

In the �rst sentence of the current subsection� non�uniform polynomial�time has been
referred to as a stronger model than probabilistic polynomial�time� This statement is valid
in many contexts �e�g�� language recognition as in Theorem � below
� In particular it will
be valid in all contexts we discuss in this book� So we have the following informal �meta�
theorem�

MetaTheorem� Whatever can be achieved by probabilistic polynomial�time machines
can be achieved by non�uniform polynomial�time �machines��

The meta�theorem is clearly wrong if one thinks of the task of tossing coins��� So the
meta�theorem should not be understood literally� It is merely an indication of real theorems
that can be proven in reasonable cases� Let�s consider the context of language recognition�

De�nition ��� The complexity class non�uniform polynomial�time 	denoted P
poly
 is the
class of languages L which can be recognized by a non�uniform 	sequence
 polynomial�time
�machine�� Namely� L � P
poly if there exists an in�nite sequence of machines M��M�� ���
satisfying
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�� There exists a polynomial p��
 such that� for every n� the description of machine Mn

has length bounded above by p�n
�

�� There exists a polynomial q��
 such that� for every n� the running time of machine
Mn on each input of length n is bounded above by q�n
� has length � p�n
�

�� For every n and every x � f�� �gn� machine Mn accepts x if and only if x � L�

Note that the non�uniformity is implicit in the lack of a requirement concerning the
construction of the machines in the sequence� It is only required that these machines exist�
In contrast� if one augments De�nition ��� by requiring the existence of a polynomial�time
algorithm that on input �n �n presented in unary
 outputs the description of Mn then one
gets a cumbersome way of de�ning P � On the other hand� it is obvious that P � P
poly
�in fact strict containment can be proven by considering non�recursive unary languages
�
Furthermore�

Theorem �� BPP � P
poly�

Proof� Let M be a probabilistic machine recognizing L � BPP� Let �L�x
 def � if x � L
and �L�x
  � otherwise� Then� for every x � f�� �g��

Prob�M�x
 �L�x

 � �

�

Assume� without loss of generality� that on each input of length n� machine M uses the
same number� m  poly�n
� of coin tosses� Let x � f�� �gn� Clearly� we can �nd for
each x � f�� �gn a sequence of coin tosses r � f�� �gm such that Mr�x
  �L�x
 �in fact
most sequences r have this property
� But can one sequence r � f�� �gm �t all x � f�� �gn"
Probably not �provide an example�
� Nevertheless� we can �nd a sequence r � f�� �gn which
�ts �

� of all the x�s of length n� This is done by a counting argument �which asserts that if
�
� of the r�s are good for each x then there is an r which is good for at least

�
� of the x�s
�

However� this does not give us an r which is good for all x � f�� �gn� To get such an r
we have to apply the above argument on a machine M � with exponentially vanishing error
probability� Such a machine is guaranteed by Exercise �� Namely� for every x � f�� �g��

Prob�M ��x
 �L�x

 � �� ��jxj

Applying the argument now we conclude that there exists an r � f�� �gm� denoted rn� which
is good for more than a � � ��n fraction of the x � f�� �gn� It follows that rn is good for
all the �n inputs of length n� Machine M � �viewed as a deterministic two�input machine

together with the in�nite sequence r�� r�� ��� constructed as above� demonstrates that L is
in P
poly�
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Finally� let me mention a more convenient way of viewing non�uniform polynomial�time�
This is via �non�uniform
 families of polynomial�size Boolean circuits� A Boolean circuit is
a directed acyclic graph with internal nodes marked by elements in f
����g Nodes with
no ingoing edges are called input nodes� and nodes with no outgoing edges are called output
nodes� A node mark � may have only one child� Computation in the circuit begins with
placing input bits on the input nodes �one bit per node
 and proceeds as follows� If the
children of a node �of indegree d
 marked 
 have values v�� v�� ���� vd then the node gets the
value 
di��vi� Similarly for nodes marked � and �� The output of the circuit is read from
its output nodes� The size of a circuit is the number of its edges� A polynomial�size circuit
family is an in�nite sequence of Boolean circuits� C�� C�� ��� such that� for every n� the circuit
Cn has n input nodes and size p�n
� where p��
 is a polynomial ��xed for the entire family
�
Clearly� the computation of a Turing machine M on inputs of length n can be simulated
by a single circuit �with n input nodes
 having size O��jhMij! n ! t�n

�
� where t�n
 is
a bound on the running time of M on inputs of length n� Thus� a non�uniform sequence
of polynomial�time machines can be simulated by a non�uniform family of polynomial�size
circuits� The converse is also true as machines with polynomial description length can
incorporate polynomial�size circuits and simulate their computations in polynomial�time�
The thing which is nice about the circuit formulation is that there is no need to repeat the
polynomiality requirement twice �once for size and once for time
 as in the �rst formulation�

����� Intractability Assumptions

We will consider as intractable those tasks which cannot be performed by probabilistic
polynomial�time machines� However� the adverserial tasks in which we will be interested
�e�g�� �breaking an encryption scheme�� �forging signatures�� etc�
 can be performed by
non�deterministic polynomial�time machines �since the solutions� once found� can be easily
tested for validity
� Thus� the computational approach to cryptography �and in particular
most of the material in this book
 is interesting only if NP is not contained in BPP
�which certainly implies P 	 NP
� We use the phrase �not interesting� �rather than
�not valid�
 since all our statements will be of the form �if hintractability assumptioni
then huseful consequencei�� The statement remains valid even if P  NP �or just
hintractability assumptioni which is never weaker than P 	 NP is wrong
� but in such
a case the implication is of little interest �since everything is implied by a fallacy
�

In most places where we state that �if hintractability assumptioni then huseful consequencei�
it will be the case that huseful consequencei either implies hintractability assumptioni
or some weaker form of it� which in turn implies NP�BPP 	 �� Thus� in light of the current
state of knowledge in complexity theory� one cannot hope for asserting huseful consequencei
without any intractability assumption�

In few cases an assumption concerning the limitations of probabilistic polynomial�time
machines �e�g�� BPP does not contain NP
 will not su�ce� and we will use instead an
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assumption concerning the limitations of non�uniform polynomial�time machines� Such an
assumption is of course stronger� But also the consequences in such a case will be stronger as
they will also be phrased in terms of non�uniform complexity� However� since all our proofs
are obtained by reductions� an implication stated in terms of probabilistic polynomial�time is
stronger �than one stated in terms of non�uniform polynomial�time
� and will be preferred
unless it is either not known or too complicated� This is the case since a probabilistic
polynomial�time reduction �proving implication in its probabilistic formalization
 always
implies a non�uniform polynomial�time reduction �proving the statement in its non�uniform
formalization
� but the converse is not always true� �The current paragraph may be better
understood in the future after seeing some concrete examples�


Finally� we mention that intractability assumptions concerning worst�case complexity
�e�g�� P 	 NP
 will not su�ce� because we will not be satis�ed with their corresponding
consequences� Cryptographic schemes which are guaranteed to be hard to break in the
worstcase are useless� A cryptographic scheme must be unbreakable on �most cases� �i�e��
�typical case�
 which implies that it is hard to break on the average� It follows that� since
we are not able to prove that �worst�case intractability� imply analogous �intractability for
average case� �such a result would be considered a breakthrough in complexity theory
� our
intractability assumption must concern average�case complexity�

����� Oracle Machines

The original utility of oracle machines in complexity theory is to capture notions of re�
ducibility� In this book we use oracle machines for a di�erent purpose altogether� We use
an oracle machine to model an adversary which may use a cryptosystem in course of its
attempt to break it�

De�nition ��� A 	deterministic�probabilistic
 oracle machine is a 	deterministic�probabilistic

Turing machine with an additional tape� called the oracle tape� and two special states� called
oracle invocation and oracle appeared� The computation of the deterministic oracle ma�
chine M on input x and access to the oracle f � f�� �g� �� f�� �g� is de�ned by the successive
con�guration relation� For con�gurations with state di�erent from �oracle invocation� the
next con�guration is de�ned as usual� Let � be a con�guration in which the state is �oracle
invocation� and the contents of the oracle tape is q� Then the con�guration following �
is identical to �� except that the state is �oracle appeared� and the contents of the oracle
tape is f�q
� The string q is called M �s query and f�q
 is called thee oracle reply� The
computation of a probabilistic oracle machine is de�ned analogously�

We stress that the running time of an oracle machine is the number of steps made during
its computation� and that the oracle�s reply on each query is obtained in a single step�
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��� Motivation to the Formal Treatment

It is indeed unfortunate that our formal treatment of the �eld of cryptography requires
justi�cation� Nevertheless� we prefer to address this �unjusti�ed
 requirement rather than
ignore it� In the rest of this section we address three related issues

�� the mere need for a formal treatment of the �eld�

�� the practical meaning and�or consequences of the formal treatment�

�� the �conservative� tendencies of the treatment�

Parts of this section may become more clear after reading any of the chapters ���

����� The Need to Formalize Intuition

An abstract justi�cation

We believe that one of the roles of science is to formulate our intuition about reality so that
this intuition can be carefully examined� and consequently either be justi�ed as sound or be
rejected as false� Notably� there are many cases in which our initial intuition turns out to
be correct� as well as many cases in which our initial intuition turns out to be wrong� The
more we understand the discipline the better our intuition becomes� At this stage in history
it would be very presumptuous to claim that we have good intuition about the nature of
e�cient computation� In particular� we even don�t know the answer to a basis question
as whether P is strictly contained in NP � let alone having an understanding what makes
one computation problem hard while a seemingly related computational problem is easy�
Consequently� we should be extremely careful when making assertions about what can or
cannot be e�ciently computed� Unfortunately� making assertions about what can or cannot
be e�ciently computed is exactly what cryptography is all about��� Not to mention that may
of the problems of cryptography have a much more cumbersome and delicate description
than what is usually standard in complexity theory� Hence� not only that there is a need
to formalize �intuition� in general� but the need to formalize �intuition� is particularly
required in a sensitive �eld as cryptography�

A concrete justi�cation

Cryptography� as a discipline� is well�motivated� Consequently� cryptographic issues are
being discussed by many researchers� engineers� and students� Unfortunately� most of these
discussions are carried out without a precise de�nition of their subject matter� Instead
it is implicitly assumed that the basic concepts of cryptography �e�g�� secure encryption
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are self�evident �since they are so intuitive
� and that there is no need to present adequate
de�nitions� The fallacy of this assumption is demonstrated by the abandon of papers �not
to mention private discussion
 which derive and�or jump into wrong conclusions concerning
security� In most cases these wrong conclusions can be traced back into implicit miscon�
ceptions regarding security� which could not have escaped the eyes of the authors if made
explicitly� We avoid listing all these cases here for several obvious reasons� Nevertheless�
we mention one well�known example�

In around ���� Ron Rivest claimed that no signature scheme that is �proven secure as�
suming the intractability of factoring� can resist a �chosen message attack�� His argument
was based on an implicit �and unjusti�ed
 assumption concerning the nature of a �proof of
security �which assumes the intractability of factoring
�� Consequently� for several years it
was believe that one has to choose between having a signature scheme �proven to be un�
forgeable under the intractability of factoring� and having a signature scheme which resist a
�chosen message attack�� However� in ���� Goldwasser� Micali and Rivest �himself
 pointed
out the fallacy on which Rivest�s argument �of ���
 was based� and furthermore presented
signature schemes which resist a �chosen message attack�� under general assumptions� In
particular� the intractability of factoring su�ces for proving that there exists a signature
scheme which resist �forgery�� even under a �chosen message attack��

To summary� the basic concepts of cryptography indeed very intuitive� yet they are not
are self�evident and�or well�understood� Hence� we do not understand these issues well
enough yet to be able to discuss them correctly without using precise de�nitions�

����� The Practical Consequences of the Formal Treatment

As customary in complexity theory� our treatment is presented in terms of asymptotic anal�
ysis of algorithms� This makes the statement of the results somewhat less cumbersome� but
is not essential to the underlying ideas� Hence� the results� although stated in an �abstract
manner�� lend themselves to concrete interpolations� To clarify the above statement we
consider a generic example�

A typical result presented in this book relates two computational problems� The �rst
problem is a simple computational problem which is assumed to be intractable �e�g�� in�
tractability of factoring
� whereas the second problem consists of �breaking� a speci�c imple�
mentation of a useful cryptographic primitive �e�g�� a speci�c encryption scheme
� The ab�
stract statement may assert that if integer factoring cannot be performed in polynomial�time
then the encryption scheme is secure in the sense that it cannot be �broken� in polynomial�
time� Typically� the statement is proven by a �xed polynomial�time reduction of integer
factorization to the problem of breaking the encryption scheme� Hence� by working out the
constants one can derive a statement of the following type� if factoring integers of X �say
���
 decimal digits is infeasible in practice then the encryption scheme is secure in practice
provided one uses a key of length Y �say ���
 decimal digits� Actually� the statement will
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have to be more cumbersome so that it includes also the computing power of the real ma�
chines� Namely� if factoring integers of ��� decimal digits cannot be done using ���� years
of a Cray then the encryption scheme cannot be broken in �� years by a Cray� provided
one uses a key of length ��� decimal digits� We stress that the relation between the four
parameters mentioned above can be derived from the reduction �used to prove the abstract
statement
� For most results these reduction yield a reasonable relation between the var�
ious parameters� Consequently� all cryptographic primitives considered in this book �i�e��
public and private�key encryption� signatures� zero�knowledge� pseudorandom generators�
fault�tolerant protocols
 can be implemented in practice based on reasonable intractability
assumptions �such as the unfeasibility of factoring ��� digit integers
�

In few cases� the reductions currently known do not yield practical consequences� since
the �security parameter� �e�g�� key length
 in the derived cryptographic primitive has to be
too large� In all these cases� the �impracticality� of the result is explicitly stated� and the
reader is encouraged to try to provide a more e�cient reduction that would have practical
consequences� Hence� we do not consider these few cases as indicating a de�ciency in our
approach� but rather as important open problems�

����� The Tendency to be Conservative

When reaching the chapters in which cryptographic primitives are de�ned �speci�cally in
Chapters � through 
� the reader may notice that we are unrealistically �conservative� in
our de�nitions of security� In other words� we are unrealistically liberal in our de�nition
of insecurity� Technically speaking� this tendency raises no problems since our primitives
which are secure in a very strong sense are certainly secure also in the �more restricted

reasonable sense� Furthermore� we are able to implement such �strongly secure
 primitives
using reasonable intractability assumptions� and in most cases one can show that such
assumptions are necessary even for much weaker �and in fact less than minimal
 notions
of security� Yet the reader may wonder why we choose to present de�nitions which seem
stronger than what is required in practice�

The reason to our tendency to be conservative� when de�ning security� is that it is
extremely di�cult to capture what is exactly require in practice� Furthermore� a certain
level in security may be required in one application� whereas another level is required
in a di�erent application� In seems impossible to cover whatever can be required in all
applications without taking our conservative approach� In the sequel we shall see how one
can de�ne security in a way covering all possible practical applications�
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Chapter �

Computational Di�culty

In this chapter we present several variants of the de�nition of one�way functions� In par�
ticular� we de�ne strong and weak one�way functions� We prove that the existence of weak
one�way functions imply the existence of strong ones� The proof provides a simple example
of a case where a computational statement is much harder to prove than its �information
theoretic analogue�� Next� we de�ne hard�core predicates� and prove that every one�way
function �has� a hard�core predicate�

��� One�Way Functions� Motivation

As stated in the introduction chapter� modern cryptography is based on a gap between
e�cient algorithms guaranteed for the legitimate user versus the computational infeasibility
of retrieving protected information for an adversary� To illustrate this� we concentrate on
the cryptographic task of secure data communication� namely encryption schemes�

In secure encryption schemes� the legitimate user should be able to easily decipher the
messages using some private information available to him� yet an adversary �not having this
private information
 should not be able to decrypt the ciphertext e�ciently �i�e�� in prob�
abilistic polynomial�time
� On the other hand� a non�deterministic machine can quickly
decrypt the ciphertext �e�g�� by guessing the private information
� Hence� the existence of
secure encryption schemes implies that there are tasks �e�g�� �breaking� encryption schemes

that can be performed by non�deterministic polynomial�time machines� yet cannot be per�
formed by deterministic �or even randomized
 polynomial�time machines� In other words�
a necessary condition for the existence of secure encryption schemes is that NP is not
contained in BPP �and thus P 	 NP
�

Although P 	 NP is a necessary condition it is not a su�cient one� P 	 NP implies
that the encryption scheme is hard to break in the worst case� It does not rule�out the

��
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possibility that the encryption scheme is easy to break almost always� Indeed� one can
construct �encryption schemes� for which the breaking problem is NP�complete� and yet
there exist an e�cient breaking algorithm that succeeds ��$ of the time� Hence� worst�
case hardness is a poor measure of security� Security requires hardness on most cases or at
least �average�case hardness�� A necessary condition for the existence of secure encryption
schemes is thus the existence of languages in NP which are hard on the average� It is not
known whether P 	 NP implies the existence of languages in NP which are hard on the
average�

The mere existence of problems �in NP
 which are hard on the average does not su�ce
either� In order to be able to use such hard�on�the�average problems we must be able to
generate hard instances together with auxiliary information which enable to solve these
instances fast� Otherwise� these hard instances will be hard also for the legitimate users�
and consequently the legitimate users gain no computational advantage over the adversary�
Hence� the existence of secure encryption schemes implies the existence of an e�cient way
�i�e� probabilistic polynomial�time algorithm
 of generating instances with corresponding
auxiliary input so that

�� it is easy to solve these instances given the auxiliary input� and

�� it is hard on the average to solve these instances �when not given the auxiliary input
�

The above requirement is captured by the de�nition of one�way functions presented in
the next subsection� For further details see Exercise ��

��� One�Way Functions� De	nitions

In this section� we present several de�nitions of one�way functions� The �rst version� here�
after referred to as strong one�way function �or just one�way function
� is the most popular
one� We also present weak one�way functions� non�uniformly one�way functions� and plau�
sible candidates for such functions�

����� Strong One�Way Functions

Loosely speaking� a one�way function is a function which is easy to compute but hard to
invert� The �rst condition is quite clear� saying that a function f is easy to compute means
that there exists a polynomial�time algorithm that on input x outputs f�x
� The second
condition requires more elaboration� Saying that a function f is hard to invert means that
every probabilistic polynomial�time algorithm trying� on input y to �nd an inverse of y
under f � may succeed only with negligible �in jyj
 probability� A sequence fsngn�IN is
called negligible in n if for every polynomial p��
 and all su�ciently large n�s it holds that
sn �

�
p�n� � Further discussion proceeds the de�nition�
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De�nition ��� �strong one�way functions
� A function f � f�� �g� �� f�� �g� is called
�strongly� one�way if the following two conditions hold

�� easy to compute� There exists a 	deterministic
 polynomial�time algorithm� A� so that
on input x algorithm A outputs f�x
 	i�e�� A�x
  f�x

�

�� hard to invert� For every probabilistic polynomial�time algorithm� A�� every polynomial
p��
� and all su�ciently large n�s

Prob
�
A��f�Un
� �n
�f��f�Un


�
�

�

p�n


Recall that Un denotes a random variable uniformly distributed over f�� �gn� Hence�
the probability in the second condition is taken over all the possible values assigned to Un
and all possible internal coin tosses of A�� with uniform probability distribution� In addition
to an input in the range of f � the inverting algorithm is also given the desired length of
the output �in unary notation
� The main reason for this convention is to rule out the
possibility that a function is consider one�way merely because the inverting algorithm does
not have enough time to print the output� Consider for example the function flen de�ned by
flen�x
  y where y is the binary representation of the length of x �i�e�� flen�x
  jxj
� Since
jflen�x
j  log� jxj no algorithm can invert flen�x
 in time polynomial in jflen�x
j� yet there
exists an obvious algorithm which inverts flen�x
 in time polynomial in jxj� In general�
the auxiliary input �jxj� provided in conjunction to the input f�x
� allows the inverting
algorithm to run in time polynomial in the total length of the input and the desired output�
Note that in the special case of length preserving functions f �i�e�� jf�x
j  jxj for all x�s
�
the auxiliary input is redundant�

Hardness to invert is interpreted as an upper bound on the success probability of e�cient
inverting algorithms� The probability is measured with respect to both the random choices
of the inverting algorithm and the distribution of the �main
 input to this algorithm �i�e��
f�x

� The input distribution to the inverting algorithm is obtained by applying f to a
uniformly selected x � f�� �gn� If f induces a permutation on f�� �gn then the input to
the inverting algorithm is uniformly distributed over f�� �gn� However� in the general case
where f is not necessarily a one�to�one function� the input distribution to the inverting
algorithm may di�er substantially from the uniform one� In any case� it is required that the
success probability� de�ned over the above probability space� is negligible �as a function of
the length of x
� where negligible means being bounded above by all functions of the form

�
poly�n� � To further clarify the condition made on the success probability� we consider the
following examples�

Consider� an algorithm A� that on input �y� �
n
 randomly selects and outputs a string

of length n� In case f is a ��� function� we have

Prob
�
A��f�Un
� �

n
�f��f�Un

�
 
�

�n
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since for every x the probability that A��f�x

 equals x is exactly �
�n� Hence� the success

probability of A� on any ��� function A� is negligible� On the other hand� for every function
f � the success probability of A� on input f�Un
 is never zero �speci�cally it is at least �

�n
�
In case f is constant over strings of the same length �e�g�� f�x
  �jxj
� we have

Prob
�
A��f�Un
� �

n
�f��f�Un

�
 �

since every x � f�� �gn is a preimage of �n under f � It follows that a one�way function
cannot be constant on strings of the same length� Another trivial algorithm� denoted A��
is one that computes a function which is constant on all inputs of the same length �e�g��
A��y� �

n
  �n
� For every function f we have

Prob
�
A��f�Un
� �

n
�f��f�Un

�
� �

�n

�with equality in case f��n
 has a single preimage under f
� Hence� the success probability
of A� on any ��� function is negligible� On the other hand� if Prob�f�Un
  f��n

 is
non�negligible then so is the success probability of algorithm A��

A few words� concerning the notion of negligible probability� are in place� The above
de�nition and discussion considers the success probability of an algorithm to be negligible
if� as a function of the input length� the success probability is bounded above by every
polynomial fraction� It follows that repeating the algorithm polynomially �in the input
length
 many times yields a new algorithm that also has a negligible success probability� In
other words� events which occur with negligible �in n
 probability remain negligible even if
the experiment is repeated for polynomially �in n
 many times� Hence� de�ning negligible
success as �occurring with probability smaller than any polynomial fraction� is naturally
coupled with de�ning feasible as �computed within polynomial time��

A �strong negation� of the notion of a negligible fraction�probability is the notion of a
non�negligible fraction�probability� We say that a function  is non�negligible if there exists
a polynomial p��
 such that for all su�ciently large n�s it holds that ��n
 � �

p�n� � Note that
functions may be neither negligible nor non�negligible�

����� Weak One�Way Functions

One�way functions as de�ned above� are one�way in a very strong sense� Namely� any
e�cient inverting algorithm has negligible success in inverting them� A much weaker de��
nition� presented below� only requires that all e�cient inverting algorithm fails with some
non�negligible probability�

De�nition ��� �weak one�way functions
� A function f � f�� �g� �� f�� �g� is called weakly
one�way if the following two conditions hold
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�� easy to compute� as in the de�nition of strong one�way function�

�� slightly�hard to invert� There exists a polynomial p��
 such that for every probabilistic
polynomial�time algorithm� A�� and all su�ciently large n�s

Prob
�
A��f�Un
� �n
 	�f��f�Un


�
�

�

p�n


����� Two Useful Length Conventions

In the sequel it will be convenient to use the following two conventions regarding the length
of the of the preimages and images of a one�way function� In the current subsection we
justify the used of these conventions�

Oneway functions de�ned only for some lengths

In many cases it is more convenient to consider one�way functions with domain partial to
the set of all strings� In particular� this facilitates the introduction of some structure in
the domain of the function� A particularly important case� used throughout the rest of this
section� is that of functions with domain �n�INf�� �gp�n�� where p��
 is some polynomial�
Let I � IN� and denote by sI�n
 the successor of n with respect to I � namely� sI�n
 is the

smallest integer that is both greater than n and in the set I �i�e�� sI�n

def
 minfi�I � i�ng
�

A set I � IN is called polynomial�time enumerable if there exists an algorithm that on input
n� halts within poly�n
 steps and outputs sI�n
� Let I be a polynomial�time enumerable set
and f be a function with domain �n�If�� �gn� We call f strongly �resp� weakly
 one�way
on lengths in I if f is polynomial�time computable and is hard to invert over n�s in I �
Such one�way functions can be easily modi�ed into function with the set of all strings as
domain� while preserving one�wayness and some other properties of the original function�
In particular� for any function f with domain �n�If�� �gn� we can construct a function
g � f�� �g� ��f�� �g� by letting

g�x

def
 f�x�


where x� is the longest pre�x of x with length in I � �In case the function f is length
preserving� see de�nition below� we can preserve this property by modifying the construction

so that g�x

def
 f�x�
x�� where x  x�x��� and x� is the longest pre�x of x with length in I �

The following proposition remains valid also in this case� with a minor modi�cation in the
proof�


Proposition ��� � Let I be a polynomial�time enumerable set� and f be strongly 	resp�
weakly
 one�way on lengths in I� Then g 	constructed above
 is strongly 	resp� weakly

one�way 	in the ordinary sense
�
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Although the validity of the above proposition is very appealing� we urge the reader not to
skip the following proof� The proof� which is indeed quite simple� uses for the �rst time in
this book an argument that is used extensively in the sequel� The argument used to prove the
�hardness to invert� property of the function g proceeds by assuming� to the contradiction�
that g can be e�ciently inverted with unallowable success probability� Contradiction is
derived by deducing that f can be e�ciently inverted with unallowable success probability�
In other words� inverting f is �reduced� to inverting g� The term �reduction� is used here
in a non�standard sense� which preserves the success probability of the algorithms� This
kind of an argument is called a reducibility argument�

Proof� We �rst prove that g can be computed in polynomial�time� To this end we use the
fact that I is a polynomial�time enumerable set� It follows that on input x one can �nd
in polynomial�time the largest m � jxj that satis�es m � I � Computing g�x
 amounts to
�nding this m� and applying the function f to the m�bit pre�x of x�

We next prove that g maintains the �hardness to invert� property of f � For sake of
concreteness we present here only the proof for the case that f is strongly one�way� The
proof for the case that f is weakly one�way is analogous�

The prove proceeds by contradiction� We assume� on contrary to the claim �of the
proposition
� that there exists an e�cient algorithm that inverts g with success probabil�
ity that is not negligible� We use this inverting algorithm �for g
 to construct an e�cient
algorithm that inverts f with success probability that is not negligible� hence deriving a
contradiction �to the hypothesis of the proposition
� In other words� we show that inverting
f �with unallowable success probability
 is e�ciently reducible to inverting g �with unallow�
able success probability
� and hence conclude that the latter is not feasible� The reduction
is based on the observation that inverting g on images of arbitrary length yields inverting
g also on images of length in I � and that on such lengths g collides with f � Details follow�

Given an algorithm� B�� for inverting g we construct an algorithm� A�� for inverting f
so that A� has complexity and success probability related to that of B�� Algorithm A� uses
algorithm B� as a subroutine and proceeds as follows� On input y and �n �supposedly y is in
the range of f�Un
 and n � I
 algorithm A� �rst computes sI�n
 and sets k

def
 sI�n
�n� ��

For every � � i � k� algorithm A� initiates algorithm B�� on input �y� �n�i
� obtaining
zi � B��y� �n�i
� and checks if g�zi
  y� In case one of the zi�s satis�es the above condition�
algorithm A� outputs the n�bit long pre�x of zi� This pre�x is in the preimage of y under
f �since g�x�x��
  f�x�
 for all x� � f�� �gn and jx��j � k
� Clearly� if B� is a probabilistic
polynomial�time algorithm then so is A�� We now analyze the success probability of A�

�showing that if B� inverts g with unallowable success probability then A� inverts f with
unallowable success probability
�

Suppose now� on the contrary to our claim� that g is not strongly one�way� and let
B� be an algorithm demonstrating this contradiction hypothesis� Namely� there exists a
polynomial p��
 so that for in�nitely many m�s the probability that B� inverts g on g�Um
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is at least �
p�m� � Let us denote the set of these m�s by M � De�ne a function �I � IN �� I so

that �I�m
 is the largest lower bound of m in I �i�e�� �I�m

def
 maxfi�I � i�mg
� Clearly�

m � sI��I�m

� � for every m� The following two claims relate the success probability of
algorithm A� with that of algorithm B��

Claim ������ Let m be an integer and n  �I�m
� Then

Prob
�
A��f�Un
� �n
�f��f�Un


�
� Prob

�
B��g�Um
� �m
�g��g�Um


�
�Namely� the success probability of algorithm A� on f�U�I�m�
 is bounded below by the
success probability of algorithm B� on g�Um
�


Proof� By construction of A�� on input �f�x�
� �n
� where x��f�� �gn� algorithm A� obtains
the value B��f�x�
� �t
� for every t � sI�n
 � �� In particular� since m � sI��I�m

� �  
sI�n
 � �� it follows that algorithm A� obtains the value B��f�x�
� �m
� By de�nition of g�
for all x���f�� �gm�n� it holds that f�x�
  g�x�x��
� The claim follows� �

Claim ������ There exists a polynomial q��
 such that m � q��I�m

� for all m�s�

Hence� the set S
def
 f�I�m
 �m�Mg is in�nite�

Proof� Using the polynomial�time enumerability of I � we get sI�n
 � poly�n
� for every n�
Therefore� for every m� we have m � sI��I�m

 � poly��I�m

� Furthermore� S must be
in�nite� otherwise for n upper�bounding S we get m � q�n
 for every m�M ��

Using Claims ����� and ������ it follows that� for every n  �I�m
 � S� the probability that
A� inverts f on f�Un
 is at least �

p�m� �
�

p�q�n��  
�

poly�n� � It follows that f is not strongly

one�way� in contradiction to the proposition�s hypothesis�

Lengthregular and lengthpreserving oneway functions

A second useful convention is to assume that the function� f � we consider is length regular
in the sense that� for every x� y � f�� �g�� if jxj  jyj then jf�x
j  jf�y
j� We point
out that the transformation presented above preserves length regularity� A special case of
length regularity� preserved by a the modi�ed transformation presented above� is of length
preserving functions�

De�nition ��
 �length preserving functions
� A function f is length preserving if for every
x � f�� �g� it holds that jf�x
j  jxj�

Given a strongly �resp� weakly
 one�way function f � we can construct a strongly �resp�
weakly
 one�way function h which is length preserving� as follows� Let p be a polynomial
bounding the length expansion of f �i�e�� jf�x
j � p�jxj

� Such a polynomial must exist
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since f is polynomial�time computable� We �rst construct a length regular function g by
de�ning

g�x

def
 f�x
��p�jxj��jf�x�j

�We use a padding of the form ��� in order to facilitate the parsing of g�x
 into f�x
 and
the �leftover� padding�
 Next� we de�ne h only on strings of length p�n
! �� for n � IN� by
letting

h�x�x��
 def g�x�
 � where jx�x��j  p�jx�j
 ! �
Clearly� h is length preserving�

Proposition ��� � If f is a strongly 	resp� weakly
 one�way function then so are g and h

	constructed above
�

Proof Sketch� It is quite easy to see that both g and h are polynomial�time computable�
Using �reducibility arguments� analogous to the one used in the previous proof� we can
establish the hardness�to�invert of both g and h� For example� given an algorithm B� for
inverting g� we construct an algorithm A� for inverting f as follows� On input y and �n �sup�
posedly y is in the range of f�Un

� algorithm A� halts with output B��y��p�n��jyj� �p�n���
�

The reader can easily verify that if f is length preserving then it is redundant to provide
the inverting algorithm with the auxiliary input �jxj �in addition to f�x

� The same holds
if f is length regular and does not shrink its input by more than a polynomial factor �i�e��
there exists a polynomial p��
 such that p�jf�x
j
 � jxj for all x
� In the sequel� we will
only deal with one�way functions that are length regular and does not shrink their its input
by more that a polynomial factor� Furthermore� we will mostly deal with length preserving
functions� Hence� in these cases� we assume� without loss of generality� that the inverting
algorithm is only given f�x
 as input�

Functions which are length preserving are not necessarily ���� Furthermore� the assump�
tion that ��� one�way functions exist seems stronger than the assumption that arbitrary �and
hence length preserving
 one�way functions exist� For further discussion see Section ����

����� Candidates for One�Way Functions

Following are several candidates for one�way functions� Clearly� it is not known whether
these functions are indeed one�way� This is only a conjecture supported by extensive research
which has so far failed to produce an e�cient inverting algorithm �having non�negligible
success probability
�
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Integer factorization

In spite of the extensive research directed towards the construction of e�cient �integer

factoring algorithms� the best algorithms known for factoring an integer N � run in time

L�P 

def
 �O�

p
logP log logP �� where P is the second biggest prime factor of N � Hence it is

reasonable to believe that the function fmult� which partitions its input string into two parts
and returns the �binary representation of the
 integer resulting by multiplying �the integers
represented by
 these parts� is one�way� Namely� let

fmult�x� y
  x � y
where jxj jyj and x � y denotes �the string representing
 the integer resulting by multiply�
ing the integers �represented by the strings
 x and y� Clearly� fmult can be computed in
polynomial�time� Assuming the intractability of factoring and using the �density of primes�
theorem �which guarantees that at least N

log� N
of the integers smaller than N are primes


it follows that fmult is at least weakly one�way� Using a more sophisticated argument� one
can show that fmult is strongly one�way� Other popular functions �e�g� the RSA
 related to
integer factorization are discussed in Subsection ������

Decoding of random linear codes

One of the most outstanding open problems in the area of error correcting codes is that of
presenting e�cient decoding algorithms for random linear codes� Of particular interest are
random linear codes with constant information rate which can correct a constant fraction
of errors� An �n� k� d
�linear�code is a k�by�n binary matrix in which the vector sum �mod
�
 of any non�empty subset of rows results in a vector with at least d one�entries� �A k�bit
long message is encoded by multiplying it with the k�by�n matrix� and the resulting n�bit
long vector has a unique preimage even when �ipping up to d

� of its entries�
 The Gilbert�
Varshanov Bound for linear codes guarantees the existence of such a code� provided that
k
n � � � H��

d
n
� where H��p


def
 �p log� p � �� � p
 log��� � p
 if p � �

� and H��p

def
 �

otherwise �i�e�� H���
 is a modi�cation of the binary entropy function
� Similarly� if for some
� � � it holds that k

n � � � H��
�����d

n 
 then almost all k�by�n binary matrices constitute
�n� k� d
�linear�codes� Consider three constants �� �� � � � satisfying � � � �H���� ! �
�
�
The function fcode� hereafter de�ned� seems a plausible candidate for a one�way function�

fcode�C� x� i

def
 �C� xC ! e�i



where C is an �n�by�n binary matrix� x is a �n�dimensional binary vector� i is the index of an
n�dimensional binary vector having at most �n

� one�entries �the string itself is denoted e�i

�
and the arithmetic is in the n�dimensional binary vector space� Clearly� fcode is polynomial�
time computable� An e�cient algorithm for inverting fcode would yield an e�cient algorithm
for inverting a non�negligible fraction of the linear codes �an earthshaking result in coding
theory
�
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The subset sum problem

Consider the function fss de�nes as follows�

fss�x�� ���� xn� I
  �x�� ���� xn�
X
i�I

xi


where jx�j � � � jxnj n� and I�f�� �� ���� ng� Clearly� fss is polynomial�time computable�
The fact that the subset�sum problem is NP�complete cannot serve as evidence to the one�
wayness of fss� On the other hand� the fact that the subset�sum problem is easy for special
cases �such as having �hidden structure� and�or �low density�
 can not serve as evidence
for the weakness of this proposal� The conjecture that fss is one�way is based on the failure
of known algorithm to handle random �high density� instances �i�e�� instances in which the
length of the elements is not greater than their number
� Yet� one has to admit that the
evidence in favour of this candidate is much weaker than the evidence in favour of the two
previous ones�

����� Non�Uniformly One�Way Functions

In the above two de�nitions of one�way functions the inverting algorithm is probabilistic
polynomial�time� Stronger versions of both de�nitions require that the functions cannot be
inverted even by non�uniform families of polynomial�size circuits� We stress that the �easy
to compute� condition is still stated in terms of uniform algorithms� For example� following
is a non�uniform version of the de�nition of strong one�way functions�

De�nition ��� �non�uniformly strong one�way functions
� A function f �f�� �g� ��f�� �g�
is called non�uniformly one�way if the following two conditions hold

�� easy to compute� There exists a 	deterministic
 polynomial�time algorithm� A� so that
on input x algorithm A outputs f�x
 	i�e�� A�x
  f�x

�

�� hard to invert� For every 	even non�uniform
 family of polynomial�size circuits�
fCngn�IN� every polynomial p��
� and all su�ciently large n�s

Prob
�
Cn�f�Un

�f��f�Un


�
�

�

p�n


The probability in the second condition is taken only over all the possible values of Un�
Note that it is redundant to give �n as an auxiliary input to Cn�

It can be shown that if f is non�uniformly one�way then it is one�way �i�e�� in the
uniform sense
� The proof follows by converting any �uniform
 probabilistic polynomial�time
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inverting algorithm into a non�uniform family of polynomial�size circuits� without decreasing
the success probability� Details follow� Let A� be a probabilistic polynomial�time �inverting

algorithm� Let rn denote a sequence of coin tosses for A

� maximizing the success probability
of A�� Namely� rn satis�es Prob�A�

rn�f�Un
 � f��f�Un

 � Prob�A�f�Un
 � f��f�Un

�
where the �rst probability is taken only over all possible values of Un and the second
probability is also over all possible coin tosses for A�� �Recall that A�

r�y
 denotes the output
of algorithm A� on input y and internal coin tosses r�
 The desired circuit Cn incorporates
the code of algorithm A� and the sequence rn �which is of length polynomial in n
�

It is possible that one�way functions exist �in the uniform sense
 and yet there are
no non�uniformly one�way functions� However� such a possibility is considered not very
plausible�

��� Weak One�Way Functions Imply Strong Ones

We �rst remark that not every weak one�way function is necessarily a strong one� Consider
for example a one�way function f �which without loss of generality is length preserving
�
Modify f into a function g so that g�x� p
  �f�x
� p
 if p starts with log� jxj zeros and
g�x� p
  �x� p
 otherwise� where �in both cases
 jxj jpj� We claim that g is a weak one�
way function but not a strong one� Clearly� g can not be a strong one�way function �since
for all but a �

n fraction of the strings of length �n the function g coincides with the identity
function
� To prove that g is weakly one�way we use a �reducibility argument�� Details
follow�

Proposition ��� Let f be a one�way function 	even in the weak sense
� Then g� con�
structed above� is a weakly one�way function�

Proof� Given a probabilistic polynomial�time algorithm� B�� for inverting g� we construct
a probabilistic polynomial�time algorithm A� which inverts f with �related� success prob�
ability� Following is the description of algorithm A�� On input y� algorithm A� sets n def

 jyj
and l

def
 log� n� selects p

� uniformly in f�� �gn�l� computes z def
 B��y� �lp�
� and halts with

output the n�bit pre�x of z� Let S�n denote the sets of all �n�bit long strings which start

with log� n zeros �i�e�� s�n
def
 f�log� n� � �� f�� �g�n�log� ng
� Then� by construction of A�

and g� we have

Prob
�
A��f�Un

�f��f�Un


�
� Prob

�
B��f�Un
� �lUn�l
��f��f�Un
� �lUn�l


�
 Prob

�
B��g�U�n

�g��g�U�n
 jU�n�S�n

�

� Prob
�
B��g�U�n

�g��g�U�n


�� Prob �U�n 	�S�n

Prob �U�n�S�n
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�

n
�
�
Prob

�
B��g�U�n

�g��g�U�n


�
�
�
�� �

n

��

 �� n �
�
�� Prob

�
B��g�U�n

�g��g�U�n


��

�For the second inequality� we used Prob�AjB
  Prob�A	B�
Prob�B� and Prob�A�B
 � Prob�A
�

Prob�B
�
 It should not come as a surprise that the above expression is meaningful only in
case Prob�B��g�U�n

�g��g�U�n

 � ���� �

n 
�

It follows that� for every polynomial p��
 and every integer n� if B� inverts g on g�U�n

with probability greater than �� �

p��n� then A
� inverts f on f�Un
 with probability greater

than �� n
p��n� � Hence� if g is not weakly one�way �i�e�� for every polynomial p��
 there exist

in�nitely many m�s such that g can be inverted on g�Um
 with probability � � � �
p�m


then also f is not weakly one�way �i�e�� for every polynomial q��
 there exist in�nitely many
n�s such that f can be inverted on f�Un
 with probability � �� �
q�n

� This contradicts
our hypothesis �that f is one�way
�

We have just shown that� unless no one�way functions exist� there exist weak one�way
functions which are not strong ones� Fortunately� we can rule out the possibility that all
one�way functions are only weak ones� In particular� the existence of weak one�way functions
implies the existence of strong ones�

Theorem ��	 � Weak one�way functions exist if and only if strong one�way functions exist�

We strongly recommend to the reader not to skip the following proof� since we believe that
the proof is very instructive to the rest of the book� In particular� the proof demonstrates
that ampli�cation of computational di�culty is much more involved than ampli�cation of
an analogous probabilistic event�

Proof� Let f be a weak one�way function� and let p be the polynomial guaranteed by
the de�nition of a weak one�way function� Namely� every probabilistic polynomial�time
algorithm fails to invert f on f�Un
 with probability at least

�
p�n� � We assume� for simplicity�

that f is length preserving �i�e� jf�x
j  jxj for all x�s
� This assumption� which is not
really essential� is justi�ed by Proposition ���� We de�ne a function g as follows

g�x�� ���� xt�n�

def
 f�x�
� ���� f�xt�n�


where jx�j  jxt�n�j  n and t�n

def
 n � p�n
� Namely� the n�p�n
�bit long input of g is

partitioned into t�n
 blocks each of length n� and f is applied to each block�

Clearly� g can be computed in polynomial�time �by an algorithm which breaks the input
into blocks and applies f to each block
� Furthermore� it is easy to see that inverting g on



���� WEAK ONE�WAY FUNCTIONS IMPLY STRONG ONES �

g�x�� ���� xt�n�
 requires �nding a preimage to each f�xi
� One may be tempted to deduce that
it is also clear that g is a strongly one�way function� An naive argument� assumes implicitly
�with no justi�cation
 that the inverting algorithm works separately on each f�xi
� If this
were indeed the case then the probability that an inverting algorithm successfully inverts
all f�xi
�s is at most ��� �

p�n�

n�p�n� � ��n �which is negligible also as a function of n�p�n

�

However� the assumption that an algorithm trying to invert g works independently on each
f�xi
 cannot be justi�ed� Hence� a more complex argument is required�

Following is an outline of our proof� The proof that g is strongly one�way proceeds
by a contradiction argument� We assume on the contrary that g is not strongly one�
way� namely� we assume that there exists a polynomial�time algorithm that inverts g with
probability which is not negligible� We derive a contradiction by presenting a polynomial�
time algorithm which� for in�nitely many n�s� inverts f on f�Un
 with probability greater
than � � �

p�n� �in contradiction to our hypothesis
� The inverting algorithm for f uses the

inverting algorithm for g as a subroutine �without assuming anything about the manner in
which the latter algorithm operates
� Details follow�

Suppose that g is not strongly one�way� By de�nition� it follows that there exists a
probabilistic polynomial�time algorithm B� and a polynomial q��
 so that for in�nitely many
m�s

Prob
�
B��g�Um

�g��g�Um


�
�

�

q�m


Let us denote by M �� the in�nite set of integers for which the above holds� Let N � denote
the in�nite set of n�s for which n� � p�n
 �M � �note that all m�s considered are of the form
n� � p�n
� for some integer n
�

We now present a probabilistic polynomial�time algorithm� A�� for inverting f � On input
y �supposedly in the range f
 algorithm A� proceeds by applying the following probabilistic
procedure� denoted I � on input y for a�jyj
 times� where a��
 is a polynomial depends on
the polynomials p and q �speci�cally� we set a�n


def
 �n� � p�n
 � q�n�p�n


�

Procedure I
Input� y �denote n

def
 jyj
�

For i  � to t�n
 do begin

�� Select uniformly and independently a sequence of strings x�� ���� xt�n� � f�� �gn�
�� Compute

�z�� ���� zt�n�
� B��f�x�
� ���� f�xi��
� y� f�xi��
� ���� f�xt�n�



�Note that y is placed in the ith position instead of f�xi
�


�� If f�zi
  y then halt and output y�
�This is considered a success
�
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end

We now present a lower bound on the success probability of algorithm A�� To this end we
de�ne a set Sn� which contains all n�bit strings on which the procedure I succeeds with
non�negligible probability �speci�cally greater than n

a�n�
� �The probability is taken only

over the coin tosses of algorithm A�
� Namely�

Sn
def
 


x � Prob

�
I�f�x

�f��f�x


�
�

n

a�n


�

In the next two claims we shall show that Sn contains all but a
�

�p�n� fraction of the strings

of length n � N �� and that for each string x �Sn the algorithm A� inverts f on f�x
 with
probability exponentially close to �� It will follow that A� inverts f on f�Un
� for n �N ��
with probability greater than �� �

p�n� � in contradiction to our hypothesis�

Claim �����	 For every x �Sn
Prob

�
A��f�x
�f��f�x


�
� �� �

�n

Proof� By de�nition of the set Sn� the procedure I inverts f�x
 with probability at least
n

a�n� � Algorithm A� merely repeats I for a�n
 times� and hence

Prob
�
A��f�x
 	�f��f�x


�
�

�
�� n

a�n


�a�n�
�
�

�n

The claim follows� �

Claim �����	 For every n � N ��

jSnj �
�
�� �

�p�n


�
� �n

Proof� We assume� to the contrary� that jSnj � ��� �
�p�n�
��n� We shall reach a contradiction

to our hypothesis concerning the success probability of B�� Recall that by this hypothesis

s�n

def
 Prob

�
B��g�Un�p�n�

�g��g�Un�p�n�


�
�

�

q�n�p�n



Let U
���
n � ���� U

�n�p�n��
n denote the n�bit long blocks in the random variable Un�p�n� �i�e�� these

U
�i�
n �s are independent random variables each uniformly distributed in f�� �gn
� Clearly�

s�n
 is the sum of s��n
 and s��n
 de�ned by

s��n

def
 Prob

�
B��g�Un�p�n�

�g��g�Un�p�n�
 


�
�i s�t� U �i�

n 	�Sn
��
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and

s��n

def
 Prob

�
B��g�Un�p�n�

�g��g�Un�p�n�
 


�
�i � U �i�

n �Sn
��

�Use Prob�A
  Prob�A 
 B
 ! Prob�A 
 �B
�
 We derive a contradiction to the lower
bound on s�n
 by presenting upper bounds for both s��n
 and s��n
 �which sum up to less
�

First� we present an upper bound on s��n
� By the construction of algorithm I it follows
that� for every x�f�� �gn and every �� i�n � p�n
� the probability that I inverts f on f�x

in the ith iteration equals the probability that B� inverts g on g�Un�p�n�
 when U

�i�
n  x� It

follows that� for every x�f�� �gn and every �� i�n � p�n
�

Prob
�
I�f�x

�f��f�x


�
� Prob

�
B��g�Un�p�n�

�g��g�Un�p�n�
 jU �i�

n  x
�

Using trivial probabilistic inequalities �such as Prob��i Ai
 �
P

i Prob�Ai
 and Prob�A 

B
 � Prob�A jB

� it follows that

s��n
 �
n�p�n�X
i��

Prob
�
B��g�Un�p�n�

�g��g�Un�p�n�
 
 U �i�

n 	�Sn
�

�
n�p�n�X
i��

Prob
�
B��g�Un�p�n�

�g��g�Un�p�n�
 jU �i�

n 	�Sn
�

�
n�p�n�X
i��

Prob
�
I�f�Un

�f��f�Un
 jUn 	�Sn

�

� n � p�n
 � n

a�n


�The last inequality uses the de�nition of Sn�


We now present an upper bound on s��n
� Recall that by the contradiction hypothesis�
jSnj � ��� �

�p�n�
 � �n� It follows that

s��n
 � Prob
�
�i � U �i�

n �Sn
�

�
�
�� �

�p�n


�n�p�n�

�
�

�
n
�

Hence� on one hand s��n
 ! s��n
 �
�n��p�n�
a�n�  �

q�n�p�n�� �equality by de�nition of a�n

�

Yet� on the other hand s��n
 ! s��n
  s�n
 � �
q�n�p�n�� � Contradiction is reached and the

claim follows� �
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Combining Claims ����� and ������ It follows that the probabilistic polynomial�time al�
gorithm� A�� inverts f on f�Un
� for n � N �� with probability greater than � � �

p�n� � in

contradiction to our hypothesis �that f cannot be e�ciently inverted with such success
probability
� The theorem follows�

Let us summarize the structure of the proof of Theorem ���� Given a weak one�way function
f � we �rst constructed a polynomial�time computable function g� This was done with the
intention of later proving that g is strongly one�way� To prove that g is strongly one�
way we used a �reducibility argument�� The argument transforms e�cient algorithms
which supposedly contradict the strong one�wayness of g into e�cient algorithms which
contradict the hypothesis that f is weakly one�way� Hence g must be strongly one�way� We
stress that our algorithmic transformation� which is in fact a randomized Cook reduction�
makes no implicit or explicit assumptions about the structure of the prospective algorithms
for inverting g� Such assumptions� as the �natural� assumption that the inverter of g
works independently on each block� cannot be justi�ed �at least not at the current state of
understanding of the nature of e�cient computations
�

Theorem ��� has a natural information theoretic �or �probabilistic�
 analogue which
asserts that repeating an experiment� which has a non�negligible success probability� suf�
�ciently many times yields success with very high probability� The reader is probably
convinced at this stage that the proof of Theorem ��� is much more complex that the proof
of the information theoretic analogue� In the information theoretic context the repeated
events are independent by de�nition� whereas in our computational context no such inde�
pendence can be guaranteed� Another indication to the di�erence between the two settings
follows� In the information theoretic setting the probability that none of the events occur
decreases exponentially in the number of repetitions� However� in the computational set�
ting we can only reach a negligible bounds on the inverting probabilities of polynomial�time
algorithms� Furthermore� it may be the case that g constructed in the proof of Theorem ���
can be e�ciently inverted on g�Un�p�n�
 with success probability which is subexponentially

decreasing �e�g�� with probability �� log��m
� whereas the analogous information theoretic
experiment fails with probability at most ��n�

By Theorem ���� whenever assuming the existence of one�way functions� there is no need
to specify whether we refer to weak or strong ones� Thus� as far as the mere existence of
one�way function goes� the notions of weak and strong one�way functions are equivalent�
However� as far as e�ciency considerations are concerned the two notions are not really
equivalent� since the above transformation of weak one�way functions into strong ones is
not practical� An alternative transformation which is much more e�cient does exist for
the case of one�way permutations and other speci�c classes of one�way functions� Further
details are presented in Section ����
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��� One�Way Functions� Variations

In this section� we discuss several issues concerning one�way functions� In the �rst sub�
section� we present a function that is �strongly
 one�way� provided that one�way functions
exist� The construction of this function is of strict abstract interest� In contrast� the issues
discussed in the other subsections are of practical importance� First� we present a formu�
lation which is better suited for describing many natural candidates for one�way functions�
and use it in order to describe popular candidates for one�way functions� Next� we use this
formulation to present one�way functions with additional properties� speci�cally� �one�way

trapdoor permutations� and clawfree functions� We remark that these additional properties
are used in several constructions �e�g�� trapdoor permutations are used in the construction
of public�key encryption schemes whereas clawfree permutations are used in the construc�
tion of collision�free hashing
� We conclude this section with remarks addressing the �art�
of proposing candidates for one�way functions�

����� 	 Universal One�Way Function

Using the result of the previous section and the notion of a universal machine it is possible
to prove the existence of a universal one�way function�

Proposition ��� There exists a polynomial�time computable function which is 	strongly

one�way if and only if one�way functions exist�

Proof� A key observation is that there exist one�way functions if and only if there exist
one�way functions which can be evaluated by a quadratic time algorithm� �The choice of
the speci�c time bound is immaterial� what is important is that such a speci�c time bound
exists�
 This statement is proven using a padding argument� Details follow�

Let f be an arbitrary one�way function� and let p��
 be a polynomial bounding the time
complexity of an algorithm for computing f � De�ne g�x�x��
 def

 f�x�
x��� where jx�x��j  
p�jx�j
� An algorithm computing g �rst parses the input into x� and x�� so that jx�x��j  
p�jx�j
� and then applies f on x�� The parsing and the other overhead operations can
be implemented in quadratic time �in jx�x��j
� whereas computing f�x�
 is done within time
p�jx�j
  jx�x��j �which is linear in the input length
� Hence� g can be computed �by a Turing
machine
 in quadratic time� The reader can verify that g is one�way using a �reducibility
argument� analogous to the one used in the proof of Proposition ����

We now present a �universal one�way
 function� denoted funi�

funi�desc�M
� x

def
 �desc�M
�M�x
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where desc�M
 is a description of Turing machine M � and M�x
 is de�ned as the output
of M on input x if M runs at most quadratic time on x� and as x otherwise� Clearly� funi
can be computed in polynomial�time by a universal machine which uses a step counter� To
show that funi is one�way we use a �reducibility argument�� By the above observation� we
know that there exist a one�way function g which is computed in quadratic time� LetMg be
the quadratic time machine computing g� Clearly� an �e�cient
 algorithm inverting funi on
inputs of the form funi�desc�Mg
� Un
� with probability ��n
� can be easily modi�ed into an
�e�cient
 algorithm inverting g on inputs of the form g�Un
� with probability ��n
� It follows
that an algorithm inverting funi with probability ��n
� on strings of length jdesc�Mg
j! n�

yields an algorithm inverting g with probability ��n�

�jdesc�Mg�j
on strings of length n� Hence� if

funi is not weakly one�way then also g cannot be weakly one�way�

Using Theorem ���� the proposition follows�

The observation� that it su�ces to consider one�way functions which can be evaluated
within a speci�c time bound� is crucial to the construction of funi� The reason being�
that it is not possible to construct a polynomial�time machine which is universal for the
class of polynomial�time machines �i�e�� a polynomial�time machine that can �simulate� all
polynomial�time machines
� It is however possible to construct� for every polynomial p��
�
a polynomial�time machine that is universal for the class of machines with running�time
bounded by p��
�

The impracticality of the suggestion to use funi as a one�way function stems from the
fact that funi is likely to be hard to invert only on huge input lengths�

����� One�Way Functions as Collections

The formulation of one�way functions� used in so far� is suitable for an abstract discussion�
However� for describing many natural candidates for one�way functions� the following for�
mulation �although being more cumbersome
 is more adequate� Instead of viewing one�way
functions as functions operating on an in�nite domain �i�e�� f�� �g�
� we consider in�nite
collections of of functions each operating on a �nite domain� The functions in the collec�
tion share a single evaluating algorithm� that given as input a succint representation of a
function and an element in its domain� return the value of the speci�ed function at the
given point� The formulation of a collection of functions is also useful for the presentation
of trapdoor permutations and clawfree functions �see the next two subsections
� We start
with the following de�nition�

De�nition ���� �collection of functions
� A collection of functions consists of an in�nite
set of indices� denoted I� a �nite set Di� for each i � I� and a function fi de�ned over Di�
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We will only be interested in collections of functions that can be applied� As hinted
above� a necessary condition for applying a collection of functions is the existence of an
e�cient function�evaluating algorithm �denoted F 
 that� on input i � I and x� returns
fi�x
� Yet� this condition by itself does not su�ce� We need to be able to �randomly
 select
an index� specifying a function over a su�ciently large domain� as well as to be able to
�randomly
 select an element of the domain �when given the domain�s index
� The sampling
property of the index set is captured by an e�cient algorithm �denoted I
 that on input
an integer n �presented in unary
 randomly selects an poly�n
�bit long index� specifying
a function and its associated domain� �As usual unary presentation is used to enhence
the standard association of e�cient algorithms with those running in time polynomial in
their length�
 The sampling property of the domains is captured by an e�cient algorithm
�denoted D
 that on input an index i randomly selects an element in Di� The one�way
property of the collection is captured by requiring that every e�cient algorithm� when
given an index of a function and an element in its range� fails to invert the function� except
for with negligible probability� The probability is taken over the distribution induced by
the sampling algorithms I and D�

De�nition ���� �collection of one�way functions
� A collection of functions� ffi � Di ��
f�� �g�gi�I� is called strongly �resp�� weakly
 one�way if there exists three probabilistic polynomial�
time algorithms� I� D and F � so that the following two conditions hold

�� easy to sample and compute� The output distribution of algorithm I� on input �n� is
a random variable assigned values in the set I � f�� �gn� The output distribution of
algorithm D� on input i � I� is a random variable assigned values in Di� On input
i � I and x � Di� algorithm F always outputs fi�x
�

�� hard to invert �version for strongly one�way
� For every probabilistic polynomial�time
algorithm� A�� every polynomial p��
� and all su�ciently large n�s

Prob
�
A��fIn�Xn
� In
�f��In

fIn�Xn

�
�

�

p�n


where In is a random variable describing the output distribution of algorithm I on
input �n� and Xn is a random variable describing the output of algorithm D on input
	random variable
 In�
	The version for weakly one�way collections is analogous�


We may relate to a collection of one�way functions by indicating the corresponding triplet
of algorithms� Hence� we may say that a triplet of probabilistic polynomial�time algorithms�
�I�D� F 
� constitutes a collection of one�way functions if there exists a collection of functions
for which these algorithms satisfy the above two conditions�
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We stress that the output of algorithm I � on input �n� is not necessarily distributed
uniformly over I � f�� �gn� Furthermore� it is not even required that I��n
 is not entirely
concentrated on one single string� Likewise� the output of algorithm D� on input i� is not
necessarily distributed uniformly overDi� Yet� the hardness�to�invert condition implies that
D�i
 cannot be mainly concentrated on polynomially many �in jij
 strings� We stress that
the collection is hard to invert with respect to the distribution induced by the algorithms I
and D �in addition to depending as usual on the mapping induced by the function itself
�
Clearly� a collection of one�way functions can be represented as a one�way function and vice
versa �see Exercise ��
� yet each formulation has its advantages� In the sequel we use the
formulation of a collection of one�way functions in order to present popular candidates of
one�way functions�

To allow less cumbersome presentation of natural candidates of one�way collections
�of functions
� we relax De�nition ���� in two ways� First� we allow the index sampling
algorithm to output� on input �n� indices of length p�n
� where p��
 is some polynomial�
Secondly� we allow all algorithms to fail with negligible probability� Most importantly�
we allow the index sampler I to output strings not in I as long as the probability that
I��n
 	� I �f�� �gp�n� is a negligible function in n� �The same relaxations can be made when
discussing trapdoor permutations and clawfree functions�


����� Examples of One�way Collections 
RSA� Factoring� DLP�

In this subsection we present several popular collections of one�way functions� based on
computation number theory �e�g�� RSA and Discrete Exponentiation
� In the exposition
which follows� we assume some knowledge of elementary number theory and some famil�
iarity with simple number theoretic algorithms� Further discussion of the relevant number
theoretic material is presented in Appendix �missing�app�cnt��

The RSA function

The RSA collection of functions has an index set consisting of pairs �N� e
� where N is a
product of two ��� � log�N
�bit primes� denoted P and Q� and e is an integer smaller than N
and relatively prime to �P ��
 ��Q��
� The function of index �N� e
� has domain f�� ���� Ng
and maps the domain element x to xe mod N � Using the fact that e is relatively prime to
�P � �
 � �Q� �
� it can be shown that the fuction is in fact a permutation over its domain�
Hence� the RSA collection is a collection of permutations�

We �rst substantiate the fact that the RSA collection satis�es the �rst condition of the
de�nition of a one�way collection �i�e�� that it is easy to sample and compute
� To this end�
we present the triplet of algorithms �IRSA� DRSA� FRSA
�

On input �n� algorithm IRSA selects uniformly two primes� P and Q� such that �n���
P � Q��n� and an integer e such that e is relatively prime to �P � �
 � �Q� �
� Algorithm
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IRSA terminates with output �N� e
� where N  P � Q� For an e�cient implementation
of IRSA� we need a probabilistic polynomial�time algorithms for generating uniformly dis�
tributed primes� Such an algorithm does exist� However� it is more e�cient to generate
two primes by selecting two integers uniformly in the interval ��n��� �n � �� and checking
via a fast randomized primality test whether these are indeed primes �this way we get�
with exponentially small probability� an output which is not of the desired form
� For more
details concerning the uniform generation of primes see Appendix �missing�app�cnt���

As for algorithm DRSA� on input �N� e
� it selects �almost
 uniformly an element in the

set DN�e
def
 f�� ���� Ng� The output of FRSA� on input ��N� e
� x
� is

RSAN�e�x

def
 xe mod N

It is not known whether factoring N can be reduced to inverting RSAN�e� and in fact this
is a well�known open problem� We remark that the best algorithms known for inverting
RSAN�e proceed by �explicitly or implicitly
 factoring N � In any case it is widely believed
that the RSA collection is hard to invert�

In the above description DN�e corresponds to the additive group mod N �and hence
contain N elements
� Alternatively� the domain DN�e can be restricted to the elements of
the multiplicative group modulo N �and hence contain �P � �
 � �Q� �
 � N � �pN � N
elements
� A modi�ed domain sampler may work by selecting an element in f�� ���� Ng
and discarding the unlikely cases in which the selected element is not relatively prime to
N � The function RSAN�e de�ned above indues a permutation on the multiplicative group
modulo N � The resulting collection is as hard to invert as the original one� �A proof of this
statement is left as an exercise to the reader�
 The question which formulation to prefer
seems to be a matter of personal taste�

The Rabin function

The Rabin collection of functions is de�ned analogously to the RSA collection� except that
the function is squaring modulo N �instead of raising to the power e mod N
� Namely�

RabinN�x

def
 x� mod N

This function� however� does not induces a permutation on the multiplicative group modulo
N � but is rather a ��to�� mapping on the multiplicative group modulo N �

It can be shown that extracting square roots modulo N is computationally equivalent
to factoring N �i�e�� the two tasks are reducible to one another via probabilistic polynomial�
time reductions
� For details see Exercise ��� Hence� squaring modulo a composite is a
collection of one�way functions if and only if factoring is intractable� We remind the reader
that it is generally believed that integer factorization is intractable�
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The Factoring Permutations

For a special subclass of the integers� known by the name of Blum Integers� the function
RabinN��
 de�ned above induces a permutation on the quadratic residues modulo N � We
say that r is a quadratic residue mod N if there exists an integer x such that r � x� mod N �
We denote by QN the set of quadratic residues in the multiplicative group mod N � For
purposes of this paragraph� we say thatN is a Blum Integer if it is the product of two primes�
each congruent to � mod �� It can be shown that when N is a Blum integer� each element in
QN has a unique square root which is also in QN � and it follows that in this case the function
RabinN��
 induces a permutation over QN � This leads to the introduction of the following

collection� SQR
def
 �IBI � DQR� FSQR
� of permutations� On input �

n� algorithm IBI selects
uniformly two primes� P and Q� such that �n���P � Q� �n and P � Q � � mod �� and
outputs N  P � Q� It is assumed that the density of such primes is non�negligible and
thus that this step can be e�ciently implemented� On input N � algorithm DQR� uniformly
selects an element of QN � by uniformly selecting an element of the multiplicative group
modulo N � and squaring it mod N � Algorithm FSQR is de�ned exactly as in the Rabin
collection� The resulting collection is one�way� provided that factoring is intractable also
for the set of Blum integers �de�ned above
�

Discrete Logarithms

Another computational number theoretic problem which is widely believed to be intractable
is that of extracting discrete logarithms in a �nite �eld �and in particular of prime cardi�
nality
� The DLP collection of functions� borrowing its name �and one�wayness
 from the
Discrete Logarithm Problem� is de�ned by the triplet of algorithms �IDLP� DDLP� FDLP
�

On input �n� algorithm IDLP selects uniformly a prime� P � such that �n���P ��n� and
a primitive element G in the multiplicative group modulo P �i�e�� a generator of this cyclic
group
� and terminates with output �P�G
� There exists a probabilistic polynomial�time
algorithm for uniformly generating primes together with the prime factorization of P � ��
where P is the prime generated �see Appendix �missing�app�cnt��
� Alternatively� one
may uniformly generate a prime P of the form �Q!�� where Q is also a prime� �In the latter
case� however� one has to assume the intractability of DLP with respect to such primes�
We remark that such primes are commonly believed to be the hardest for DLP�
 Using the
factorization of P � � one can �nd a primitive element by selecting an element of the group
at random and checking whether it has order P �� �by raising to powers which non�trivially
divide P � �
�

Algorithm DDLP� on input �P�G
� selects uniformly a residue modulo P � �� Algorithm
FDLP� on input ��P�G
� x
� halts outputting

DLPP�G�x

def
 Gx mod P
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Hence� inverting DLPP�G amounts to extracting the discrete logarithm �to base G
 modulo
P � For every �P�G
 of the above form� the function DLPP�G induces a ��� and onto mapping
from the additive group mod P � � to the multiplicative group mod P � Hence� DLPP�G
induces a permutation on the the set f�� ���� P � �g�

Exponentiation in other groups is also a reasonable candidate for a one�way function�
provided that the discrete logarithm problem for the group is believed to be hard� For
example� it is believed that the logarithm problem is hard in the group of points on an
Elliptic curve�

Author�s Note� �ll�in more details

����� Trapdoor one�way permutations

The formulation of collections of one�way functions is convenient as a starting point to
the de�nition of trapdoor permutations� Loosely speaking� these are collections of one�way
permutations� ffig� with the extra property that fi is e�ciently inverted once given as
auxiliary input a �trapdoor� for the index i� The trapdoor of index i� denoted by t�i
�
can not be e�ciently computed from i� yet one can e�ciently generate corresponding pairs
�i� t�i

�

De�nition ���� �collection of trapdoor permutations
� Let I be a probabilistic algorithm�
and let I���n
 	resp� I���n

 denote the �rst 	resp� second
 half of the output of I��n
�
A triple of algorithms� �I�D� F 
� is called a collection of strong �resp� weak
 trapdoor
permutations if the following two conditions hold

�� the algorithms induce a collection of one�way permutations� The triple �I�� D� F 

constitutes a collection of one�way permutations�

�� easy to invert with trapdoor� There exists a 	deterministic
 polynomial�time algo�
rithm� denoted F��� so that for every �i� t
 in the range of I and for every x �Di� it
holds that F���t� F �i� x

  x�

A useful relaxation of the above conditions is to require that they are satis�ed with
overwhelmingly high probability� Namely� the index generating algorithm� I � is allowed to
output� with negligible probability� pairs �i� t
 for which either fi is not a permutation or
F���t� F �i� x

  x does not hold for all x � Di�

The RSA �or factoring� Trapdoor

The RSA collection presented above can be easily modi�ed to have the trapdoor property�
To this end algorithm IRSA should be modi�ed so that it outputs both the index �N� e
 and
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the trapdoor �N� d
� where d is the multiplicative inverse of e modulo �P � �
��Q� �
 �note
that e has such inverse since it has been chosen to be relatively prime to �P � �
��Q� �

�
The inverting algorithm F��

RSA is identical to the algorithm FRSA �i�e�� F
��
RSA��N� d
� y
  

yd mod N
� The reader can easily verify that

FRSA ��N� d
� FRSA ��N� e
� x

  xed mod N

indeed equals x for every x in the multiplicative group modulo N � In fact� one can show
that xed � x �mod N
 for every x �even in case x is not relatively prime to N
�

We remark that the Rabin collection presented above can be easily modi�ed in an
analogous manner� enabling to e�ciently compute all � square roots of a given quadratic
residue �mod N
� The square roots mod N can be computed by extracting a square root
modulo each of the primes factors ofN and combining the result using the Chinese Reminder
Theorem� E�cient algorithms for extracting square root modulo a given prime are known�
Furthermore� in case the prime� P � is congruent to � mod �� the square roots of x mod P
can be computed by raising x to the power P��

	 �while reducing the intermediate results
mod P 
� Furthermore� in case N is a Blum integer� the collection SQR� presented above�
forms a collection of trapdoor permutations �provided of course that factoring is hard
�

����� 	 Clawfree Functions

Loosely speaking� a clawfree collection consists of a set of pairs of functions which are easy
to evaluate� both have the same range� and yet it is infeasible to �nd a range element
together with preimages of it under each of these functions�

De�nition ���� �clawfree collection
� A collection of pairs of functions consists of an
in�nite set of indices� denoted I� two �nite sets D�

i and D
�
i � for each i � I� and two functions

f�i and f�i de�ned over D�
i and D�

i � respectively� Such a collection is called clawfree if there
exists three probabilistic polynomial�time algorithms� I� D and F � so that the following
conditions hold

�� easy to sample and compute� The random variable I��n
 is assigned values in the set
I � f�� �gn� For each i � I and 	 � f�� �g� the random variable D�	� i
 is distributed
over D�

i and F �	� i� x
  f�i �x
�

�� identical range distribution� For every i in the index set I� the random variables
f�i �D��� i

 and f

�
i �D��� i

 are identically distributed�

�� hard to form claws� A pair �x� y
 satisfying f�i �x
  f�i �y
 is called a claw for index
i� Let Ci denote the set of claws for index i� It is required that for every probabilistic
polynomial�time algorithm� A�� every polynomial p��
� and all su�ciently large n�s

Prob
�
A��In
 � CIn

�
�

�

p�n
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where In is a random variable describing the output distribution of algorithm I on
input �n�

The �rst requirement in De�nition ���� is analogous to what appears in De�nition �����
The other two requirements �in De�nition ����
 are kind of con�icting� On one hand� it
is required that that claws do exist �to say the least
� whereas on the other hand it is
required that calws cannot be e�ciently found� Clearly� a clawfree collection of functions
yields a collection of strong one�way functions �see Exercise ��
� A special case of interest

is when both domains are identical �i�e�� Di
def
 D�

i  D�
i 
� the random variable D�	� i


is uniformly distributed over Di� and the functions� f�i and f
�
i � are permutations over Di�

Such a collection is called a collection of �clawfree
 permutations�

Again� a useful relaxation of the conditions of De�nition ���� is obtained by allowing
the algorithms �i�e�� I � D and F 
 to fail with negligible probability�

An additional property that a �clawfree
 collection may �or may not
 have is an e�ciently
recognizable index set �i�e�� an probabilistic polynomial�time algorithm for determining
whether a give string is I
� This property is useful in some applications of clawfree collections
�hence this discussion
� E�cient recognition of the index set may be important since the
function�evaluating algorithm F may induce functions also in case its second input �which
is supposedly an index
 is not in I � In this case it is no longer guaranteed that the induced
pair of functions has identical range distribution� In some applications �e�g�� see section ���
�
dishonest parties may choose� on purpose� an illegal index and try to capitalize on the induce
functions having di�erent range distributions�

The DLP Clawfree Collection

We now turn to show that clawfree collections do exists under speci�c reasonable intractabil�
ity assumptions� We start by presenting such a collection under the assumption that the
Discrete Logarithm Problem �DLP
 for �elds of prime cardinality is intractable�

Following is the description a collection of clawfree permutations �based on the above
assumption
� The index sets consists of triples� P�G� Z
� where P is a prime� G is a primitive
element mod P � and Z is an element in the �eld �of residues mod P 
� The index sampling
algorithm� selects P and G as in the DLP collection presented in Subsection ������ and Z
is selected uniformly among the residues mod P � The domain of both functions with index
�P�G� Z
 is identical� and equals the set f�� ���� P � �g� and the domain sampling algorithm
selects uniformly from this set� As for the functions themselves� we set

f�P�G�Z�x

def
 Z� �Gx mod P

The reader can easily verify that both functions are permutations over f�� ���� P � �g� Also�
the ability to form a claw for the index �P�G� Z
 yields the ability to �nd the discrete
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logarithm of Z mod P to base G �since Gx � Z � Gy mod P yields Gx�y � Z mod P 
�
Hence� ability to form claws for a non�negligible fraction of the index set translates to a
contradiction to the DLP intractability assumption�

The above collection does not have the additional property of having an e�ciently rec�
ognizable index set� since it is not known how to e�ciently recognize primitive elements
modulo a prime� This can be amended by making a slightly stronger assumption concern�
ing the intractability of DLP� Speci�cally� we assume that DLP is intractable even if one
is given the factorization of the size of the multiplicative group �i�e�� the factorization of
P � �
 as additional input� Such an assumption allows to add the factorization of P � �
into the description of the index� This makes the index set e�ciently recognizable �since
one can �rst test P for primality� as usual� and next test whether G is a primitive element
by raising it to powers of the form �P � �

Q where Q is a prime factor of P � �
� If DLP
is hard also for primes of the form �Q! �� where Q is also a prime� life is even easier� To
test whether G is a primitive element mod P one just computes G� �mod P 
 and G�P�����

�mod P 
� and checks whether either of them equals ��

The Factoring Clawfree Collection

We now show that a clawfree collection �of functions
 does exists under the assumption
that integer factorization is infeasible for integers which are the product of two primes each
congruent to � mod �� Such composite numbers� hereafter referred to as Blum integers�
have the property that the Jacobi symbol of �� �relative to them
 is � and half of the
square roots of each quadratic residue� in the corresponding multiplicative group �modulo
this composite
� have Jacobi symbol � �see Appendix �missing�app�cnt��
�

The index set of the collection consists of all Blum integers which are composed of
two primes of equal length� The index selecting algorithm� on input �n� uniformly select
such an integers� by uniformly selecting two �n�bit
 primes each congruent to � mod ��
and outputting their product� denoted N � Let J��N �respectively� J��N 
 denote the set of
residues in the multiplicative group modulo N with Jacobi Symbol !� �resp�� ��
� The
functions of index N � denoted f�N and f�N � consist both of squaring modulo N � but their

corresponding domains are disjoint� The domain of function f�N equals the set J
�����
N � The

domain sampling algorithm� denoted D� uniformly selects an element of the corresponding
domain as follows� Speci�cally� on input �	�N
 algorithm D uniformly selects polynomially
many residues mod N � and outputs the �rst residue with Jacobi Symbol ���
��

The reader can easily verify that both f�N �D��� N

 and f�N �D��� N

 are uniformly
distributed over the set of quadratic residues mod N � The di�cult of forming claws follows
from the fact that a claw yield two residues� x � J��N and y � J��N such that x� � y�

�mod N
� Since �� � J��N � it follows that x 	 �y and the gcd of x � y and N yields a
factorization of N �
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The above collection does not have the additional property of having an e�ciently rec�
ognizable index set� since it is not even known how to e�ciently distinguish products of two
primes from products of more than two primes�

����� On Proposing Candidates

Although we do believe that one�way functions exist� their mere existence does not su�ce
for practical applications� Typically� an application which is based on one�way functions
requires the speci�cation of a concrete �candidate one�way
 function� As explained above�
the observation concerning the existence of a universal one�way function is of little practical
signi�cance� Hence� the problem of proposing reasonable candidates for one�way functions
is of great practical importance� Everyone understands that such a reasonable candidate
�for a one�way function
 should have a very e�cient algorithm for evaluating the func�
tion� �In case the �function� is presented as a collection of one�way functions� especially
the domain sampler and function�evaluation algorithm should be very e�cient�
 However�
people seem less careful in seriously considering the di�culty of inverting the candidates
that they propose� We stress that the candidate has to be di�cult to invert on �the av�
erage� and not only on the worst case� and that �the average� is taken with respect to
the instance�distribution determined by the candidate function� Furthermore� �hardness on
the average� �unlike worst case analysis
 is extremely sensitive to the instance�distribution�
Hence� one has to be extremely careful in deducing average�case complexity with respect
to one distribution from the average�case complexity with respect to another distribution�
The short history of the �eld contains several cases in which this point has been ignored
and consequently bad suggestions has been made�

Consider for example the following suggestion to base one�way functions on the con�
jectured di�culty of the Graph Isomorphism problem� Let fGI�G� �
  �G� �G
� where G
is an undirected graph� � is a permutation on its vertex set� and �G denotes the graph
resulting by renaming the vertices of G using � �i�e�� ���u
� ��v

 is an edge in �G i� �u� v

is an edge in G
� Although it is indeed believed that Graph Isomorphism cannot be solved
in polynomial�time� it is easy to see that FGI is easy to invert on most instances �e�g�� use
vertex degree statistics to determine the isomorphism
�

��
 Hard�Core Predicates

Loosely speaking� saying that a function f is one�way means that given y it is infeasible
to �nd a preimage of y under f � This does not mean that it is infeasible to �nd out
partial information about the preimage of y under f � Speci�cally it may be easy to retrieve
half of the bits of the preimage �e�g�� given a one�way function f consider the function g

de�ned by g�x� r

def
 �f�x
� r
� for every jxj jrj
� The fact that one�way functions do not
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necessarily hide partial information about their preimage limits their �direct applicability�
to tasks as secure encryption� Fortunately� assuming the existence of one�way functions� it is
possible to construct one�way functions which hide speci�c partial information about their
preimage �which is easy to compute from the preimage itself
� This partial information can
be considered as a �hard core� of the di�culty of inverting f �

����� Denition

A polynomial�time predicate b� is called a hard�core of a function f if all e�cient algorithm�
given f�x
� can guess b�x
 only with success probability which is negligibly better than half�

De�nition ���
 �hard�core predicate
� A polynomial�time computable predicate b � f�� �g� ��
f�� �g is called a hard�core of a function f if for every probabilistic polynomial�time algorithm
A�� every polynomial p��
� and all su�ciently large n�s

Prob
�
A��f�Un

 b�Un


�
�
�

�
!

�

p�n


It follows that if b is a hard�core predicate �for any function
 then b�Un
 should be almost
unbiased �i�e�� jProb�b�Un
 �
�Prob�b�Un
 �
j must be a negligible function in n
� As b
itself is polynomial�time computable the failure of e�cient algorithms to approximate b�x

from f�x
 �with success probability signi�cantly more than half
 must be due to either
an information loss of f �i�e�� f not being one�to�one
 or to the di�culty of inverting f �

For example� the predicate b�	�
  	 is a hard�core of the function f�	�

def
 ��� where

	�f�� �g and ��f�� �g�� Hence� in this case the fact that b is a hard�core of the function
f is due to the fact that f losses information �speci�cally the �rst bit 	
� On the other
hand� in case f losses no information �i�e�� f is one�to�one
 hard�cores for f exist only if f
is one�way �see Exercise ��
� Finally� we note that for every b and f � there exist obvious
algorithms which guess b�Un
 from f�Un
 with success probability at least half �e�g�� either
an algorithm A� that regardless of its input answers with a uniformly chosen bit� or� in case

b is not biased towards �� the constant algorithm A��x

def
 �
�

Simple hard�core predicates are known for the RSA� Rabin� and DLP collections �pre�
sented in Subsection �����
� provided that the corresponding collections are one�way� Specif�
ically� the least signi�cant bit is a hard�core for the RSA collection� provided that the RSA
collection is one�way� Namely� assuming that the RSA collection is one�way� it is infeasible
to guess �with success probability signi�cantly greater than half
 the least signi�cant bit
of x from RSAN�e�x
  xe mod N � Likewise� assuming that the DLP collection is one�way�
it is infeasible to guess whether x � P

� when given DLPP�G�x
  Gx mod P � In the next
subsection we present a general result of the kind�
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����� Hard�Core Predicates for any One�Way Function

Actually� the title is inaccurate� as we are going to present hard�core predicates only for
�strong
 one�way functions of special form� However� every �strong
 one�way function can
be easily transformed into a function of the required form� with no substantial loss in either
�security� or �e�ciency��

Theorem ���� Let f be an arbitrary strong one�way function� and let g be de�ned by

g�x� r

def
 �f�x
� r
� where jxj jrj� Let b�x� r
 denote the inner�product mod � of the binary

vectors x and r� Then the predicate b is a hard�core of the function g�

In other words� the theorem states that if f is strongly one�way then it is infeasible to
guess the exclusive�or of a random subset of the bits of x when given f�x
 and the subset
itself� We stress that the theorem requires that f is strongly one�way and that the conclusion
is false if f is only weakly one�way �see Exercise ��
� We point out that g maintains
properties of f such as being length�preserving and being one�to�one� Furthermore� an
analogous statement holds for collections of one�way functions with�without trapdoor etc�

Proof� The proof uses a �reducibility argument�� This time inverting the function f

is reduced to predicting b�x� r
 from �f�x
� r
� Hence� we assume �for contradiction
 the
existence of an e�cient algorithm predicting the inner�product with advantage which is not
negligible� and derive an algorithm that inverts f with related �i�e� not negligible
 success
probability� This contradicts the hypothesis that f is a one�way function�

Let G be a �probabilistic polynomial�time
 algorithm that on input f�x
 and r tries to
predict the inner�product �mod �
 of x and r� Denote by �G�n
 the �overall
 advantage of
algorithm G in predicting b�x� r
 from f�x
 and r� where x and r are uniformly chosen in
f�� �gn� Namely�

�G�n

def
 Prob �G�f�Xn
� Rn
  b�Xn� Rn

� �

�
where here and in the sequel Xn and Rn denote two independent random variables� each
uniformly distributed over f�� �gn� Assuming� to the contradiction� that b is not a hard�core
of g means that exists an e�cient algorithm G� a polynomial p��
 and an in�nite set N so
that for every n�N it holds that �G�n
 �

�
p�n� � We restrict our attention to this algorithm

G and to n�s in this set N � In the sequel we shorthand �G by ��

Our �rst observation is that� on at least an 	�n�
� fraction of the x�s of length n� algorithm

G has an 	�n�
� advantage in predicting b�x�Rn
 from f�x
 and Rn� Namely�

Claim ���
��	 there exists a set Sn � f�� �gn of cardinality at least 	�n�
� � �n such that for

every x �Sn� it holds that

s�x

def
 Prob�G�f�x
� Rn
 b�x�Rn

 � �

�
!
��n


�
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This time the probability is taken over all possible values of Rn and all internal coin tosses
of algorithm G� whereas x is �xed�

Proof� The observation follows by an averaging argument� Namely� write Exp�s�Xn

  
�
� ! ��n
� and apply Markov Inequality��

In the sequel we restrict our attention to x�s in Sn� We will show an e�cient algorithm
that on every input y� with y  f�x
 and x � Sn� �nds x with very high probability�
Contradiction to the �strong
 one�wayness of f will follow by noting that Prob�Un�Sn
 �
	�n�
� �

The next three paragraphs consist of a motivating discussion� The inverting algorithm�
that uses algorithm G as subroutine� will be formally described and analyzed later�

A motivating discussion

Consider a �xed x�Sn� By de�nition s�x
 � �
�!

	�n�
� � �

�!
�

�p�n� � Suppose� for a moment�

that s�x
 � �
	!

�
�p�n� � Of course there is no reason to believe that this is the case� we are just

doing a mental experiment� In this case �i�e�� of s�x
 � �
	 !

�
poly�jxj�
 retrieving x from f�x


is quite easy� To retrieve the ith bit of x� denoted xi� we randomly select r � f�� �gn� and
compute G�f�x
� r
 and G�f�x
� r�ei
� where ei is an n�dimensional binary vector with � in
the ith component and � in all the others� and v�u denotes the addition mod � of the binary
vectors v and u� Clearly� if both G�f�x
� r
  b�x� r
 and G�f�x
� r� ei
  b�x� r� ei
� then

G�f�x
� r
�G�f�x
� r� ei
  b�x� r
� b�x� r� ei


 b�x� ei


 xi

since b�x� r
� b�x� s
 � Pn
i�� xiri !

Pn
i�� xisi �

Pn
i�� xi�ri ! si
 � b�x� r� s
 mod �� The

probability that both equalities hold �i�e�� both G�f�x
� r
 b�x� r
 and G�f�x
� r � ei
  
b�x� r�ei

 is at least ������	� �

poly�jxj�
 � �� �
poly�jxj� � Hence� repeating the above procedure

su�ciently many times and ruling by majority we retrieve xi with very high probability�
Similarly� we can retrieve all the bits of x� and hence invert f on f�x
� However� the entire
analysis was conducted under �the unjusti�able
 assumption that s�x
 � �

	!
�

�p�jxj� � whereas
we only know that s�x
 � �

�!
�

�p�jxj��

The problem with the above procedure is that it doubles the original error probability
of algorithm G on inputs of form �f�x
� �
� Under the unrealistic assumption� that the G�s
error on such inputs is signi�cantly smaller than �

	 � the �error�doubling� phenomenon raises
no problems� However� in general �and even in the special case where G�s error is exactly
�
	
 the above procedure is unlikely to invert f � Note that the error probability of G can
not be decreased by repeating G several times �e�g�� G may always answer correctly on
three quarters of the inputs� and always err on the remaining quarter
� What is required
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is an alternative way of using the algorithm G� a way which does not double the original
error probability of G� The key idea is to generate the r�s in a way which requires applying
algorithm G only once per each r �and i
� instead of twice� Speci�cally� we used algorithm
G to obtain a �guess� for b�x� r�ei
 and obtain b�x� r
 in a di�erent way� The good news are
that the error probability is no longer doubled� since we only need to use G to get a �guess�
of b�x� r�ei
� The bad news are that we still need to know b�x� r
� and it is not clear how we
can know b�x� r
 without applying G� The answer is that we can guess b�x� r
 by ourselves�
This is �ne if we only need to guess b�x� r
 for one r �or logarithmically in jxj many r�s
�
but the problem is that we need to know �and hence guess
 b�x� r
 for polynomially many
r�s� An obvious way of guessing these b�x� r
�s yields an exponentially vanishing success
probability� The solution is to generate these polynomially many r�s so that� on one hand
they are �su�ciently random� whereas on the other hand we can guess all the b�x� r
�s with
non�negligible success probability� Speci�cally� generating the r�s in a particular pairwise
independent manner will satisfy both �seemingly contradictory
 requirements� We stress
that in case we are successful �in our guesses for the b�x� r
�s
� we can retrieve x with high
probability� Hence� we retrieve x with non�negligible probability�

A word about the way in which the pairwise independent r�s are generated �and the
corresponding b�x� r
�s are guessed
 is indeed in place� To generate m  poly�n
 many

r�s� we uniformly �and independently
 select l
def
 log��m ! �
 strings in f�� �gn� Let us

denote these strings by s�� ���� sl� We then guess b�x� s�
 through b�x� sl
� Let use denote
these guesses� which are uniformly �and independently
 chosen in f�� �g� by 	� through 	l�
Hence� the probability that all our guesses for the b�x� si
�s are correct is ��l  �

poly�n� �

The di�erent r�s correspond to the di�erent non�empty subsets of f�� �� ���� lg� We compute
rJ

def
 �j�Jsj � The reader can easily verify that the rJ �s are pairwise independent and each

is uniformly distributed in f�� �gn� The key observation is that

b�x� rJ
  b�x��j�Jsj
  �j�Jb�x� sj


Hence� our guess for the b�x� rJ
�s is �j�J	j � and with non�negligible probability all our
guesses are correct�

Back to the formal argument

Following is a formal description of the inverting algorithm� denoted A� We assume�
for simplicity that f is length preserving �yet this assumption is not essential
� On input y

�supposedly in the range of f
� algorithmA sets n
def
 jyj� and l def dlog���n�p�n
�!�
e� where

p��
 is the polynomial guaranteed above �i�e�� ��n
 � �
p�n� for the in�nitely many n�s in N
�

Algorithm A uniformly and independently select s�� ���� sl � f�� �gn� and 	�� ���� 	l � f�� �g�
It then computes� for every non�empty set J � f�� �� ���� lg� a string rJ � �j�Jsj and a
bit �J � �j�J	j � For every i� f�� ���� ng and every non�empty J � f�� ��� lg� algorithm A
computes zJi � �J �G�y� rJ � ei
� Finally� algorithm A sets zi to be the majority of the zJi
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values� and outputs z  z� � � �zn� �Remark� in an alternative implementation of the ideas�
the inverting algorithm� denoted A�� tries all possible values for 	�� ���� 	l� and outputs only
one of resulting strings z� with an obvious preference to a string z satisfying f�z
  y�


Following is a detailed analysis of the success probability of algorithm A on inputs of
the form f�x
� for x � Sn� where n � N � We start by showing that� in case the 	j �s are
correct� then the with constant probability� zi  xi for all i� f�� ���� ng� This is proven by
bounding from below the probability that the majority of the zJi �s equals xi�

Claim ���
��	 For every x � Sn and every �� i�n�

Prob

�
jfJ � b�x� rJ
�G�f�x
� rJ � ei
  xigj � �

�
� ��l � �


�
� �� �

�n

where rJ
def
 �j�Jsj and the sj �s are independently and uniformly chosen in f�� �gn�

Proof� For every J � de�ne a ��� random variable �J � so that �J equals � if and only if
b�x� rJ
�G�f�x
� rJ � ei
  xi� The reader can easily verify that each rJ is uniformly
distributed in f�� �gn� It follows that each �J equals � with probability s�x
� which by
x�Sn� is at least �

�!
�

�p�n� � We show that the �
J �s are pairwise independent by showing that

the rJ �s are pairwise independent� For every J 	 K we have� without loss of generality�
j � J and k � K � J � Hence� for every �� � � f�� �gn� we have

Prob
�
rK � j rJ �

�
 Prob

�
sk � j sj �

�
 Prob

�
sk �

�
 Prob

�
rK �

�

and pairwise independence of the rJ �s follows� Let m
def
 �l��� Using Chebyshev�s Inequal�

ity� we get

Prob

�X
J

�J � �

�
�m
�

� Prob

�
j
X
J

�J � ��
�
!

�

�p�n


 �mj � �

�p�n

�m
�

�
Var��f�g


� �
�p�n�


� � ��n � p�n
�


�
�
	

� �
�p�n�


� � ��n � p�n
�


 
�

�n

The claim now follows� �
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Recall that if 	j  b�x� sj
� for all j�s� then �J  b�x� rJ
 for all non�empty J �s� In this
case z output by algorithm A equals x� with probability at least half� However� the �rst
event happens with probability ��l  �

�n�p�n�� independently of the events analyzed in
Claim ������� Hence� in case x � Sn� algorithm A inverts f on f�x
 with probability at
least �

	p�jxj� �whereas� the modi�ed algorithm� A
�� succeeds with probability � �

�
� Recalling

that jSnj � �
�p�n� � �n� we conclude that� for every n � N � algorithm A inverts f on f�Un


with probability at least �

p�n�� � Noting that A is polynomial�time �i�e�� it merely invokes

G for �n � p�n
�  poly�n
 times in addition to making a polynomial amount of other
computations
� a contradiction� to our hypothesis that f is strongly one�way� follows�

����� 	 Hard�Core Functions

We have just seen that every one�way function can be easily modi�ed to have a hard�core
predicate� In other words� the result establishes one bit of information about the preimage
which is hard to approximate from the value of the function� A stronger result may say
that several bits of information about the preimage are hard to approximate� For example�
we may want to say that a speci�c pair of bits is hard to approximate� in the sense that
it is infeasible to guess this pair with probability signi�cantly larger than �

	 � In general� a
polynomial�time function� h� is called a hard�core of a function f if no e�cient algorithm
can distinguish �f�x
� h�x

 from �f�x
� r
� where r is a random string of length jh�x
j�
For further discussion of the notion of e�cient distinguishability the reader is referred to
Section ���� We assume for simplicity that h is length regular �see below
�

De�nition ���� �hard�core function
� Let h � f�� �g� �� f�� �g� be a polynomial�time com�

putable function� satisfying jh�x
j  jh�y
j for all jxj  jyj� and let l�n

def
 jh��n
j� The

function h � f�� �g� �� f�� �g� is called a hard�core of a function f if for every probabilistic
polynomial�time algorithm D�� every polynomial p��
� and all su�ciently large n�s

jProb �D��f�Xn
� h�Xn

 �
�� Prob �D��f�Xn
� Rl�n�
 �

�
j � �

p�n


where Xn and Rl�n� are two independent random variables the �rst uniformly distributed

over f�� �gn� and the second uniformly distributed over f�� �gl�n��

Theorem ���� Let f be an arbitrary strong one�way function� and let g� be de�ned by

g��x� s

def
 �f�x
� s
� where jsj �jxj� Let c � � be a constant� and l�n


def
 dc log� ne� Let

bi�x� s
 denote the inner�product mod � of the binary vectors x and �si��� ���� si�n
� where

s  �s�� ���� s�n
� Then the function h�x� s

def
 b��x� s
 � � �bl�jxj��x� s
 is a hard�core of the

function g��
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The proof of the theorem follows by combining a proposition concerning the structure
of the speci�c function h with a general lemma concerning hard�core functions� Loosely
speaking� the proposition �reduces� the problem of approximating b�x� r
 given g�x� r
 to
the problem of approximating the exclusive�or of any non�empty set of the bits of h�x� s

given g��x� s
� where b and g are the hard�core and the one�way function presented in the
previous subsection� Since we know that the predicate b�x� r
 cannot be approximated from
g�x� r
� we conclude that no exclusive�or of the bits of h�x� s
 can be approximated from
g��x� s
� The general lemma states that� for every �logarithmically shrinking� function h�

�i�e�� h� satisfying jh��x
j  O�log jxj

� the function h� is a hard�core of a function f � if and
only if the exclusive�or of any non�empty subset of the bits of h� cannot be approximated
from the value of f ��

Proposition ���	 Let f � g� and bi�s be as above� Let I�n
 � f�� �� ���� l�n
g� n� IN� be an

arbitrary sequence of non�empty subsets� and let bI�jxj��x� s

def
 �i�I�jxj�bi�x� s
� Then� for

every probabilistic polynomial�time algorithm A�� every polynomial p��
� and all su�ciently
large n�s

Prob
�
A��g��U�n

  bI�n��U�n


�
�
�

�
!

�

p�n


Proof� The proof is by a �reducibility� argument� It is shown that the problem of ap�
proximating b�Xn� Rn
 given �f�Xn
� Rn
 is reducible to the problem of approximating
bI�n��Xn� S�n
 given �f�Xn
� S�n
� where Xn� Rn and S�n are independent random variable
and the last is uniformly distributed over f�� �g�n� The underlying observation is that� for
every jsj  � � jxj�

bI�x� s
  �i�Ibi�x� s
  b�x��i�Isubi�s


where subi�s�� ���� s�n

def
 �si��� ���� si�n
� Furthermore� the reader can verify that for every

non�empty I � f�� ���� ng� the random variable �i�Isubi�S�n
 is uniformly distributed over
f�� �gn� and that given a string r � f�� �gn and such a set I one can e�ciently select a
string uniformly in the set fs � �i�Isubi�s
  rg� �Veri�cation of both claims is left as an
exercise�


Now� assume to the contradiction� that there exists an e�cient algorithm A�� a polyno�
mial p��
� and an in�nite sequence of sets �i�e�� I�n
�s
 and n�s so that

Prob
�
A��g��U�n

  bI�n��U�n


�
� �

�
!

�

p�n


We �rst observe that for n�s satisfying the above inequality we can �nd in probabilistic
polynomial time �in n
 a set I satisfying

Prob
�
A��g��U�n

  bI�U�n


� � �

�
!

�

�p�n
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�i�e�� by going over all possible I �s and experimenting with algorithm A� on each of them
�
Of course we may be wrong here� but the error probability can be made exponentially small�

We now present an algorithm for approximating b�x� r
� from y
def
 f�x
 and r� On input

y and r� the algorithm �rst �nds a set I as described above �this stage depends only on
jxj which equals jrj
� Once I is found� the algorithm uniformly select a string s so that
�i�Isubi�s
  r� and return A��y� s
� Evaluation of the success probability of this algorithm
is left as an exercise�

Lemma ���� �Computational XOR Lemma
� Let f and h be arbitrary length regular func�

tions� and let l�n

def
 jh��n
j� Let D be an algorithm� Denote

p
def
 Prob �D�f�Xn
� h�Xn

  �
 and q

def
 Prob

�
D�f�Xn
� Rl�n�
  �

�

where Xn and Rl are as above� Let G be an algorithm that on input y� S 	and l�n

� selects r
uniformly in f�� �gl�n�� and outputs D�y� r
�����i�Sri
� where r  r� � � �rl and ri � f�� �g�
Then�

Prob �G�f�Xn
� Il� l�n

 �i�Il�hi�Xn


  
�

�
!

p� q

�l�n� � �
where Il is a randomly chosen non�empty subset of f�� ���� l�n
g and hi�x
 denotes the ith

bit of h�x
�

It follows that� for logarithmically shrinking h�s� the existence of an e�cient algorithm that
distinguishes �with a gap which is not negligible in n
 the random variables �f�Xn
� h�Xn


and �f�Xn
� Rl�n�
 implies the existence of an e�cient algorithm that approximates the
exclusive�or of a random non�empty subset of the bits of h�Xn
 from the value of f�Xn

with an advantage that is not negligible� On the other hand� it is clear that any e�cient
algorithm� which approximates an exclusive�or of an non�empty subset of the bits of h from
the value of f � can be easily modi�ed to distinguish �f�Xn
� h�Xn

 from �f�Xn
� Rl�n�
�
Hence� for logarithmically shrinking h�s� the function h is a hard�core of a function f if and
only if the exclusive�or of any non�empty subset of the bits of h cannot be approximated
from the value of f �

Proof� All that is required is to evaluate the success probability of algorithm G� We start
by �xing an x � f�� �gn and evaluating Prob�G�f�x
� Il� l
  �i�Il�hi�x

� where Il is a
uniformly chosen non�empty subset of f�� ���� lg and l def l�n
� Let B denote the set of all
non�empty subsets of f�� ���� lg� De�ne� for every S � B� a relation �S so that y �S z if and
only if �i�Syi  �i�Szi� where y y� � � �yl and z z� � � �zl� By the de�nition of G� it follows
that on input �f�x
� S� l
 and random choice r � f�� �gl� algorithm G outputs �i�S�hi�x
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if and only if either �D�f�x
� r
  � and r �S h�x
� or �D�f�x
� r
  � and r 	�S h�x
��
By elementary manipulations� we get

s�x

def
 Prob�G�f�x
� Il� l
  �i�Il�hi�x




 
X
S�B

�

jBjProb�G�f�x
� S� l
  �i�S�hi�x



 
X
S�B

�

� � jBj �Prob�D�f�x
� Rl
 � jRl �S h�x

 ! Prob�D�f�x
� Rl
 � jRl 	�S h�x




 
�

�
!

�

�jBj
X
S�B

�Prob�D�f�x
� Rl
 � jRl �S h�x

� Prob�D�f�x
� Rl
 � jRl 	�S h�x




 
�

�
!

�

�jBj �
�

�l��
�
�
	X
S�B

X
r
Sh�x�

Prob�D�f�x
� r
 �
�
X
S�B

X
r �
Sh�x�

Prob�D�f�x
� x
 �




A

 
�

�
!

�

�l � jBj �
�
	X

r

X
S�E�r�h�x��

Prob�D�f�x
� r
 �
�
X
r

X
S�N�r�h�x��

Prob�D�f�x
� r
 �




A

where E�r� z

def
 fS � B � r �S zg and N�r� z


def
 fS � B � r 	�S zg� Observe that for

every r 	 z it holds that jN�r� z
j  �l�� �and jE�r� z
j  �l�� � �
� On the other hand�
E�z� z
  B �and N�z� z
  �
� Hence� we get

s�x
  
�

�
!

�

�ljBj
X

r ��h�x�

�
��l�� � �
 � Prob�D�f�x
� r
  �
� �n�� � Prob�D�f�x
� r
  �


�

!
�

�ljBj � jBj � Prob�D�f�x
� h�x

  �


 
�

�
!

�

jBj � �Prob�D�f�x
� h�x

  �
� Prob�D�f�x
� Rn
  �



Thus

Exp�s�Xn

  
�

�
!

�

jBj � �Prob�D�f�Xn
� h�Xn

  �
� Prob�D�f�Xn
� Rn
  �



and the lemma follows�

��� � Ecient Ampli	cation of One�way Functions

The ampli�cation of weak one�way functions into strong ones� presented in Theorem ���� has
no practical value� Recall that this ampli�cation transforms a function f which is hard to
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invert on a non�negligible fraction �i�e�� �
p�n�
 of the strings of length n into a function g which

is hard to invert on all but a negligible fraction of the strings of length n�p�n
� Speci�cally�
it is shown that an algorithm running in time T �n
 which inverts g on a ��n
 fraction of the
strings of length n�p�n
 yields an algorithm running in time poly�p�n
� n� �

��n�
 �T �n
 which
inverts f on a �� �

p�n� fraction of the strings of length n� Hence� if f is �hard to invert in

practice on a �
���� fraction of the strings of length ���� then all we can say is that g is �hard

to invert in practice on a ���
���� fraction of the strings of length ����������� In contrast� an

e�cient ampli�cation of one�way functions� as given below� should relate the di�culty of
inverting the �weak one�way
 function f on strings of length n to the di�culty of inverting
the �strong one�way
 function g on the strings of length O�n
 �rather than relating it to the
to the di�culty of inverting the function g on the strings of length poly�n

� The following
de�nition is natural for a general discussion of ampli�cation of one�way functions�

De�nition ���� �quantitative one�wayness
� Let T � IN �� IN and � � IN �� IR be polynomial�
time computable functions� A polynomial�time computable function f � f�� �g� �� f�� �g� is
called ���
�one�way with respect to time T ��
 if for every algorithm� A�� with running�time
bounded by T ��
 and all su�ciently large n�s

Prob
�
A��f�Un

 	� f��f�Un


�
� ��n


Using this terminology we review what we know already about ampli�cation of one�
way functions� A function f is weakly one�way if there exists a polynomial p��
 so that
f is �

p����one�way with respect to polynomial time� A function f is strongly one�way if�

for every polynomial p��
� the f is ��� �
p���
�one�way with respect to polynomial time� The

ampli�cation result of Theorem ��� can be generalized and restated as follows� If there exist
a polynomial�time computable function f which is �

poly����one�way with respect to time T ��

then there exist a polynomial�time computable function g which is �� � �

poly���
�one�way
with respect to time T ���
� where T ��poly�n

  T �n
 �i�e�� in other words� T ��n
  T �n�

for some � � �
� In contrast� an e�cient ampli�cation of one�way functions� as given below�
should state that the above should hold with respect to T ��O�n

  T �n
 �i�e�� in other
words� T ��n
  T �� � n
 for some � � �
� Such a result can be obtained for regular one�
way functions� A function f is called regular if there exists a polynomial�time computable
function m � IN �� IN and a polynomial p��
 so that� for every y in the range of f � the number
of preimages �of length n
 of y under f � is between m�n�

p�n� and m�n
 � p�n
� In this book we
only review the result for one�way permutations �i�e�� length preserving ��� functions
�

Theorem ���� �E�cient ampli�cation of one�way permutations
� Let p��
 be a polynomial
and T � IN �� IN be a polynomial�time computable function� Suppose that f is a polynomial�
time computable permutation which is �

p����one�way with respect to time T ��
� Then� there
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exists a polynomial�time computable permutation F so that� for every polynomial�time com�
putable function � � IN �� ��� ��� the function F is ��� ���

�one�way with respect to time T �

���
�
where T �

��O�n


def
 ��n��

poly�n� � T �n
�
The constants� in the O�notation and in the poly�notation� depend on the polynomial p��
�

The key to the ampli�cation of a one�way permutation f is to apply f on many di�erent
arguments� In the proof of Theorem ���� f is applied to unrelated arguments �which are
disjoint parts of the input
� This makes the proof relatively easy� but also makes the
construction very ine�cient� Instead� in the construction presented in the proof of the
current theorem� we apply the one�way permutation f on related arguments� The �rst idea
which comes to mind is to apply f iteratively many times� each time on the value resulting
from the previous application� This will not help if easy instances for the inverting algorithm
keep being mapped� by f � to themselves� We cannot just hope that this will not happen�
The idea is to use randomization between successive applications� It is important that
we use only a small amount of randomization�� since the �randomization� will be encoded
into the argument of the constructed function� The randomization� between successive
applications of f � takes the form of a random step on an expander graph� Hence a few
words about these graphs and random walks on them are in place�

A graph G �V�E
 is called an �n� d� c
�expander if it has n vertices �i�e�� jV j n
� every
vertex in V has degree d �i�e�� G is d�regular
� and G has the following expansion property
�with expansion factor c � �
� for every subset S � V if jSj � n

� then jN�S
j � c � jSj�
where N�S
 denotes the vertices in V � S which have neighbour in S �i�e�� N�S


def
 fu�

V �S � �v � S s�t� �u� v
�Eg
� By explicitly constructed expanders we mean a family of
graphs fGngn�IN so that Gn is a ���n� d� c
 expander �d and c are the same for all graphs
in the family
 having a polynomial�time algorithm that on input a description of a vertex
in an expander outputs its adjacency list �vertices in Gn are represented by binary strings
of length �n
� Such expender families do exist� By a random walk on a graph we mean
the sequence of vertices visited by starting at a uniformly chosen vertex and randomly
selecting at each step one of the neighbouring vertices of the current vertex� with uniform
probability distribution� The expanding property implies �via a non�trivial proof
 that the
vertices along random walks on an expander have surprisingly strong �random properties��
In particular� for every l� the probability that vertices along an O�l
�step long random
walk hit a subset� S� is approximately the same as the probability that at least one of l
independently chosen vertices hits S�

We remind the reader that we are interested in successively applying the permutation
f � while interleaving randomization steps between successive applications� Hence� before
applying permutation f � to the result of the previous application� we take one random step
on an expender� Namely� we associate the domain of the given one�way permutation with
the vertex set of the expander� Our construction alternatively applies the given one�way
permutation� f � and randomly moves from the vertex just reached to one of its neighbours�
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A key observation is that the composition of an expander with any permutation on its
vertices yields an expander �with the same expansion properties
� Combining the properties
of random walks on expanders and a �reducibility� argument� the construction is showed
to amplify the one�wayness of the given permutation in an e�cient manner�

Construction ���� Let fGngn�IN be a family of d�regular graphs� so that Gn has vertex
set f�� �gn and self�loops at every vertex� Consider a labeling of the edges incident to each
vertex 	using the labels �� �� ���� d
� De�ne gl�x
 be the vertex reachable from vertex x by
following the edge labeled l� Let f �f�� �g� ��f�� �g� be a ��� length preserving function� For
every k � �� x � f�� �gn� and 	�� 	�� ���� 	k � f�� �� ���� dg� de�ne

F �x� 	�	����	k
  	�� F �g���f�x

� 	�� ���� 	k


	with F �x� �
  x
� For every k � IN �� IN� de�ne Fk�����

def
 F �x� 	�� ��� 	t
� where t  k�jxj


and 	i�f�� �� ���� dg�

Proposition ���� Let fGng� f � k � IN �� IN� and Fk��� be as in Construction ���� 	above
�
and suppose that fGngn�IN is an explicitly constructed family of d�regular expander graphs�
and f is polynomial�time computable� Suppose that � � IN �� IR and T � IN �� IN are polynomial�
time computable� and f is ���
�one�way with respect to time T � IN� IN� Then� for every
polynomial�time computable � � IN �� IR� the function Fk��� is polynomial�time computable as

well as �� � ���

���
�one�way with respect to time T � � IN� IN� where ��n

def
 �� � �� �

��n

k�n���
 and T ��n! k�n
�log� d
 def 	�n��
�n�
k�n��n � T �n
�

Theorem ���� follows by applying the proposition � ! � times� where � is the degree of
the polynomial p��
 �speci�ed in the hypothesis that f is �

p����one�way
� In all applications

of the proposition we use k�n

def
 �n� In the �rst � applications we use any ��n
 � �

� � The
function resulting from the ith application of the proposition� for i � �� is �

�n��i
�one�way�

In particular� after � applications� the resulting function is �
��one�way� �It seems that the

notion of �
��one�wayness is worthy of special attention� and deserves a name as mostly one�

way�
 In the last �i�e�� �!�st
 application we use ��n
  ��n
� The function resulting of the
last �i�e�� � ! �st
 application of the proposition satis�es the statement of Theorem �����

The proposition itself is proven as follows� First� we use the fact that f is a per�
mutation to show� that the graph Gf  �V�Ef
� obtained from G  �V�E
 by letting

Ef
def
 f�u� f�v

 � �u� v
 � Eg� has the same expansion property as the graph G� Next�

we use the known relation between the expansion constant of a graph and the ratio of the
two largest eigenvalues of its adjacency matrix to prove that with appropriate choice of the
family fGng we can have this ratio bounded below by �p

�
� Finally� we combine the following

two Lemmata�
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Lemma ���
 �Random Walk Lemma
� Let G be a d�regular graph having a normalized 	by
factor �

d 
 adjacency matrix for which the ratio of the �rst and second eigenvalues is smaller
than �p

�
� Let � � �
� and S be a subset of measure � of the expender�s nodes� Then a

random walk of length �k on the expander hits S with probability at least �� ��� �
k�

The proof of the Random Walk Lemma regards probability distributions oven the ex�
pander vertex�set as linear combinations of the eigenvectors of the adjacency matrix� It can
be shown that the largest eigenvalue is �� and the eigenvector associated to it is the uniform
distribution� Going step by step� we bound from above the probability mass assigned to
random walks which do not pass through the set S� At each step� the component of the
current distribution� which is in the direction of the �rst eigenvector� losses a factor � of
its weight �this represents the fraction of the paths which enter S in the current step
� The
problem is that we cannot make a similar statement with respect to the other components�
Yet� using the bound on the second eigenvalue� it can be shown that in each step these
components are �pushed� towards the direction of the �rst eigenvector� The details� being
of little relevance to the topic of the book� are omitted�

Lemma ���� �Reducibility Lemma
� Let �� � � IN �� ��� ��� and Gf�n be a d�regular graph on
�n vertices satisfying the following random path property� for every measure ��n
 subset�
S� of Gf�n�s nodes� at least a fraction ��n! k�n
 � log� d
 of the paths of length k�n
 passes
through a node in S 	typically ��n!k�n
 log� d
 � ��n

� Suppose that f is ����
! exp��

�
one�way with respect to time T ��
� Then� for every polynomial�time computable � � IN �� IR�
the function Fk���� de�ned above� is ��� ���

���
�one�way with respect to time T � � IN� IN�

where ��n!k�n
 log� d

def
 ��� �����n

k�n���
 and T ��n!k�n
 log� d


def
 	�n��
�n�

k�n�n �T �n
�

Proof Sketch� The proof is by a �reducibility argument�� Assume for contradiction that
Fk��� de�ned as above can be inverted in time T ���
 with probability at least � � �� �
��m

 � ��m
 on inputs of length m

def
 n ! k�n
 log� d� Amplify A to invert Fk��� with

overwhelming probability on a � � ��m
 fraction of the inputs of length m �originally A

inverts each such point with probability � ��m
� as we can ignore inputs inverted with
probability smaller than ��m

� Note that inputs to A correspond to k�n
�long paths on
the graph Gn� Consider the set� denoted Bn� of paths �x� p
 such that A inverts Fk�n��x� p

with overwhelming probability�

In the sequel� we use the shorthands k
def
 k�n
� m

def
 n ! k log� d� �

def
 ��m
� �

def
 ��m
�

�
def
 ��n
� and B

def
 Bn� Let Pv be the set of all k�long paths which pass through v� and Bv

be the subset of B containing paths which pass through v �i�e�� Bv  B � Pv
� De�ne v as
good if jBvj
jPvj � ��
k �and bad otherwise
� Intuitively� a vertex v is called good if at least
a ��
k fraction of the paths going through v can be inverted by A� Let B�  B��v badBv �
namely B� contain all �invertible� paths which pass solely through good nodes� Clearly�
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Claim ���
��	 The measure of B� in the set of all paths is greater than �� ��

Proof	 Denote by ��S
 the measure of the set S in the set of all paths� Then

��B�
  ��B
� ���v badBv


� �� ��� �
� �
X
v bad

��Bv


� �� � ! �� �
X
v

���
k
��Pv


� �� � �

Using the random path property� we have

Claim ���
��	 The measure of good nodes is at least �� ��

Proof	 Otherwise� let S be the set of bad nodes� If S has measure � then� by the random
path property� it follows the fraction of path which pass through vertices of S is at least ��
Hence� B�� which cannot contain such paths can contain only a �� � fraction of all paths
in contradiction to Claim ������� �

The following algorithm for inverting f � is quite natural� The algorithm uses as subroutine
an algorithm� denoted A� for inverting Fk���� Inverting f on y is done by placing y on a
random point along a randomly selected path p� taking a walk from y according to the su�x
of p� and asking A for the preimage of the resulting pair under Fk�

Algorithm for inverting f �
On input y� repeat kn

�� times�

�� Select randomly i�f�� �� ���� kg� and 	�� 	�� ���� 	k�f�� �� ���� dg�
�� Compute y�  F �g�i�y
� 	i�����	k
�

�� Invoke A to get x� � A�	�	�� ���� 	k� y�
�

�� Compute x  F �x�� 	����	i��
�

�� If f�x
  y then halt and output x�

Analysis of the inverting algorithm �for a good x
�

Since x is good� a random path going through it �selected above
 corresponds to an
�invertible path� with probability at least ��
k� If such a path is selected then we obtain
the inverse of f�x
 with overwhelming probability� The algorithm for inverting f repeats
the process su�ciently many times to guarantee overwhelming probability of selecting an
�invertible path��
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By Claim ������� the good x�s constitute a � � � fraction of all n�bit strings� Hence� the
existence of an algorithm inverting Fk���� in time T ���
 with probability at least � � �� �
���

���
� implies the existence of an algorithm inverting f � in time T ��
 with probability at
least �����
�exp��
� This constitutes a contradiction to the hypothesis of the lemma� and
hence the lemma follows�

��� Miscellaneous

����� Historical Notes

The notion of a one�way function originates from the paper of Di�e and Hellman �DH����
Weak one�way functions were introduced by Yao �Y�	�� The RSA function was introduced
by Rivest� Shamir and Adleman �RSA���� whereas squaring modulo a composite was in�
troduced and studied by Rabin �R�
�� The suggestion for basing one�way functions on the
believed intractability of decoding random linear codes is taken from �BMT���GKL���� and
the suggestion to base one�way functions on the subset sum problem is taken from �IN�
��

The equivalence of existence of weak and strong one�way functions is implicit in Yao�s
work �Y�	�� The existence of universal one�way functions is stated in Levin�s work �L����
The e�cient ampli�cation of one�way functions� presented in Section ���� is taken from
Goldreich el� al� �GILVZ�� which in turn uses ideas originating in �AKS��

Author�s Note� GILVZ � Goldreich� Impagliazzo� Levin� Venkatesan and
Zuckerman 	FOCS��
� AKS � Ajtai� Komolos and Szemeredi 	STOC�
�

The concept of hard�core predicates originates from the work of Blum andMicali �BM�	��
That work also proves that a particular predicate constitutes a hard�core for the �DLP
function� �i�e�� exponentiation in a �nite �eld
� provided that this function is one�way�
Consequently� Yao proved that the existence of one�way functions implies the existence
of hard�core predicates �Y�	�� However� Yao�s construction� which is analogous to the
contraction used for the proof of Theorem ���� is of little practical value� The fact that the
inner�product mod � is a hard�core for any one�way function �of the form g�x� r
 �f�x
� r


was proven by Goldreich and Levin �GL�
�� The proof presented in this book� which follows
ideas originating in �ACGS��� is due to Charles Racko��

Hard�core predicates and functions for speci�c collections of permutations were sug�
gested in �BM�	�LW�K���ACGS��VV��� Speci�cally� Kalisky �K���� extending ideas of
�BM�	�LW�� proves that the intractability of various discrete logarithm problems yields
hard�core functions for the related exponentiation permutations� Alexi el� al� �ACGS���
building on work by Ben�Or et� al� �BCS���� prove that the intractability of factoring yields
hard�core functions for permutations induced by squaring modulo a composite number�
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����� Suggestion for Further Reading

Our exposition of the RSA and Rabin functions is quite sparse in details� In particular�
the computational problems of generating uniformly distributed �certi�ed primes� and of
�primality checking� deserve much more attention� A probabilistic polynomial�time algo�
rithm for generating uniformly distributed primes together with corresponding certi�cates
of primality has been presented by Bach �BachPhd�� The certi�cate produced� by this algo�
rithm� for a prime P consists of the prime factorization of P � �� together with certi�cates
for primality of these factors� This recursive form of certi�cates for primality originates in
von�Pratt�s proof that the set of primes is in NP �cf� �vP�
� However� the above procedure
is not very practical� Instead� when using the RSA �or Rabin
 function in practice� one is
likely to prefer an algorithm that generates integers at random and checks them for primality
using fast primality checkers such as the algorithms presented in �SSprime�Rprime�� One
should note� however� that these algorithms do not produce certi�cates for primality� and
that with some �small
 probability may assert that a composite number is a prime� Proba�
bilistic polynomial�time algorithms �yet not practical ones
 that� given a prime� produce a
certi�cate for primality� are presented in �GKprime�AHprime�

Author�s Note� SSprime � Solovay and Strassen� Rprime � Rabin� GKprime
� Goldwasser and Kilian� AHprime � Adleman and Haung�

The subset sum problem is known to be easy in two special cases� One case is the case in
which the input sequence is constructed based on a simple �hidden sequence�� For example�
Merkle and Hellman �MH���� suggested to construct an instance of the subset�sum problem

based on a �hidden super increasing sequence� as follows� Let s�� ���� sn�M
def
 sn�� be a

sequence satisfying� si �
Pi��

j�� sj � for every i� and let w be relatively prime to M � Such
a sequence is called super increasing� The instance consists of �x�� ���� xn
 and

P
i�I xi� for

I�f�� ���� ng� where xi def w � si modM � It can be shown that knowledge of both w and M
allows easy solution of the subset sum problem for the above instance� The hope was that�
when w and M are not given� solving the subset�sum problem is hard even for instances
generated based on a super increasing sequence �and this would lead to a trapdoor one�way
function
� However� the hope did not materialize� Shamir presented an e�cient algorithm
for solving the subset�sum problem for instances with a hidden super increasing sequence
�S�	�� Another case for which the subset sum problem is known to be easy is the case of
low density instances� In these instances the length of the elements in binary representation
is considerably larger than the number of elements �i�e� jx�j � � �  jxnj  �� ! �
n for
some constant � � �
� For further details consult the original work of Lagarias and Odlyzko
�LO��� and the later survey of Brickell and Odlyzko �BO����

For further details on hard�core functions for the RSA and Rabin functions the reader is
directed to Alexi el� al� �ACGS��� For further details on hard�core functions for the �DLP
function� the reader is directed to Kalisky�s work �K����
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The theory of average�case complexity� initiated by Levin �L��� is somewhat related to
the notion of one�way functions� For a survey of this theory we refer the reader to �BCGL��
Loosely speaking� the di�erence is that in our context it is required that the �e�cient

�generator� of hard �on�the�average
 instances can easily solve them himself� whereas in
Levin�s work the instances are hard �on�the�average
 to solve even for the �generator��
However� the notion of average�case reducibility introduced by Levin is relevant also in our
context�

Author�s Note� BCGL � Ben�David� Chor� Goldreich and Luby 	JCSS� April
����
�

Readers interested in further details about the best algorithms known for the factoring
problem are directed to Pomerance�s survey �P�	�� Further details on the best algorithms
known for the discrete logarithm problem �DLP
 can be found in Odlyzko�s survey �O���
In addition� the reader is referred to Bach and Shalit�s book on computational number
theory �BS
	book�� Further details about expander graphs� and random walks on them�
can be found in the book of Alon and Spencer �AS
�book��

Author�s Note� Updated versions of the surveys by Pomerance and Odlyzko
do exist�

����� Open Problems

The e�cient ampli�cation of one�way functions� originating in �GILVZ�� is only known to
work for special types of functions �e�g�� regular ones
� We believe that presenting �and
proving
 an e�cient ampli�cation of arbitrary one�way functions is a very important open
problem� It may also be instrumental for more e�cient constructions of pseudorandom
generators based on arbitrary one�way functions �see Section ���
�

An open problem of more practical importance is to try to present hard�core functions
with larger range for the RSA and Rabin functions� Speci�cally� assuming that squaring
mod N is one�way� is the function which returns the �rst half of x a hard�core of squaring
mod N" Some support to a positive answer is provided by the work of Shamir and Shrift
�SS
��� A positive answer would allow to construct extremely e�cient pseudorandom
generators and public�key encryption schemes based on the conjectured intractability of the
factoring problem�

����� Exercises

Exercise �� Closing the gap between the motivating discussion and the de�nition of one�
way functions� We say that a function h �f�� �g� ��f�� �g� is hard on the average but
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easy with auxiliary input if there exists a probabilistic polynomial�time algorithm� G�
such that

�� There exists a polynomial�time algorithm� A� such that A�x� y
  h�x
 for every
�x� y
 in the range of G �i�e�� for every �x� y
 so that �x� y
 is a possible output of
G��n
 for some input �n
�

�� for every probabilistic polynomial�time algorithm� A�� every polynomial p��
� and
all su�ciently large n�s

Prob�A��Xn
 h�Xn

 �
�

p�n


where �Xn� Yn

def
 G��n
 is a random variable assigned the output of G�

Prove that if there exist �hard on the average but easy with auxiliary input� functions
then one�way functions exist�

Exercise �� One�way functions and the P vs� NP question 	part �
� Prove that the
existence of one�way functions implies P 	 NP�
�Guidelines� for every function f de�ne Lf � NP so that if Lf � P then there exists
a polynomial�time algorithm for inverting f �


Exercise �� One�way functions and the P vs� NP question 	part �
� Assuming that
P 	 NP� construct a function f so that the following three claims hold�
�� f is polynomial�time computable�

�� there is no polynomial�time algorithm that always inverts f �i�e�� successfully
inverts f on every y in the range of f
� and

�� f is not �even weakly
 one�way� Furthermore� there exists a polynomial�time
algorithm which inverts f with exponentially small failure probability� where the
probability space is �again
 of all possible choices of input �i�e�� f�x

 and internal
coin tosses for the algorithm�

�Guidelines� consider the function fsat de�ned so that fsat��� �
  ��� �
 if � is a
satisfying assignment to propositional formulae �� and fsat��� �
  ��� �
 otherwise�
Modify this function so that it is easy to invert on most instances� yet inverting fsat
is reducible to inverting its modi�cation�


Exercise 
� Let f be a strongly one�way function� Prove that for every probabilistic
polynomial�time algorithm A� and for every polynomial p��
 the set

BA�p
def
 fx � Prob�A�f�x

�f��f�x

 � �

p�jxj
g

has negligible density in the set of all strings �i�e�� for every polynomial q��
 and all
su�ciently large n it holds that jB	f���gn

�n � �
p�n�
�
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Exercise �� Another de�nition of non�uniformly one�way functions� Consider the de�ni�
tion resulting from De�nition ��� by allowing the circuits to be probabilistic �i�e��
have an auxiliary input which is uniformly selected
� Prove that the resulting new
de�nition is equivalent to the original one�

Exercise �� Let fmult be as de�ned in Section ���� Assume that every integer factoring

algorithm has� on input N � running time L�P 

def
 ��

p
logP log logP �� where P is the

second biggest prime factor of N � Prove that fmult is strongly one�way�
�Guideline� using results on density of smooth numbers� show that the density� of
integers N with second biggest prime smaller than L�N
� is smaller that �

L�N� �


Exercise �� De�ne fadd � f�� �g� �� f�� �g� so that fadd�xy
  prime�x
 ! prime�y
� where
jxj  jyj and prime�z
 is the smallest prime which is larger than z� Prove that fadd is
not a one�way function�
�Guideline� don�t try to capitalize on the possibility that prime�N
 is too large� e�g��
larger than N ! poly�logN
� It is unlikely that such a result� in number theory� can
be proven� Furthermore� it is generally believed that there exists a constant c such
that� for all integer N ��� it holds that prime�N
 � N ! logc�N �
 Hence� it is likely
that fadd is polynomial�time computable�


Exercise 	� Prove that one�way functions cannot have a polynomial�size range� Namely�
prove that if f is �even weakly
 one�way then for every polynomial p��
 and all su��
ciently large n�s it holds jff�x
 � x�f�� �gngj � p�n
�

Exercise �� Prove that one�way functions cannot have polynomially bounded cycles� Namely�
for every function f de�ne cycf �x
 to be the smallest positive integer i such that ap�
plying f for i times on x yields x� Prove that if f is �even weakly
 one�way then
for every polynomial p��
 and all su�ciently large n�s it holds Exp�cycf �Un

 � p�n
�
where Un is a random variable uniformly distributed over f�� �gn�

Exercise ��� on the improbability of strengening Theorem �� 	part �
� Suppose that the
de�nition of weak one�way function is further weakened so that it is required that
every algorithm fails to inverts the function with negligible probability� Demonstrate
the di�culty of extending the proof of Theorem ��� to this case�
�Hint� suppose that there exists an algorithm that if run with time bound t�n
 inverts
the function with probability �
t�n
�


Exercise ��� on the improbability of strengening Theorem �� 	part �
 �due to S� Rudich
�
Suppose that the de�nition of a strong one�way function is further strengthen so that
it is required that every algorithm fails to inverts the function with some speci�ed
negligible probability �e�g�� ��

p
n
� Demonstrate the di�culty of extending the proof

of Theorem ��� to this case�
�Guideline� suppose that that we construct the strong one�way function g as in the
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original proof� Note that you can prove that any algorithm that works separately on
each block of the function g� can invert it only with exponentially low probability�
However� there may be an inverting algorithm� A� that inverts the function g with
probability �� Show that any inverting algorithm for the weakly one�way function f
that uses algorithm A as a black�box �must� invoke it at least �

� times�


Exercise ��� collections of one�way functions and one�way functions� Represent a collec�
tion of one�way functions� �I�D� F 
� as a single one�way function� Given a one�way
function f � represent it as a collection of one�way functions�
�Remark� the second direction is quite trivial�


Exercise ��� a convention for collections of one�way functions� Show that without loss of
generality� algorithms I and D of a collection �of one�way functions
 can be modi�ed
so that each of them uses a number of coins which exactly equals the input length�
�Guideline� �apply padding� �rst on �n� next on the coin tosses and output of I � and
�nally to the coin tosses of D�


Exercise �
� justi�cation for a convention concerning one�way collections� Show that giv�
ing the index of the function to the inverting algorithm is essential for a meaningful
de�nition of a collection of one�way functions�
�Guideline� consider a collection ffi � f�� �gjij ��f�� �gjijg where fi�x
  x� i�


Exercise ��� Rabin�s collection and factoring� Show that the Rabin collection is one�way
if and only if factoring integers which are the product of two primes of equal binary
expsansion is intractable in a strong sense �i�e�� every e�cient algorithm succeeds with
negligible probability
�
�Guideline� For one direction use the Chinese Reminder Theorem and an e�cient
algorithm for extracting square roots modulo a prime� For the other direction observe
that an algorithm for extracting square roots modulo a composite N can be use to
get two integers x and y such that x� � y� mod N and yet x 	� �y mod N � Also�
note that such a pair� �x� y
� yields a split of N �i�e�� two integers a� b 	 � such that
N  a � b
�


Exercise ��� clawfree collections imply one�way functions� Let �I�D� F 
 be a clawfree
collection of functions �see Subsection �����
� Prove that� for every 	f�� �g� the triplet
�I�D� F�
� where F��i� x


def
 F �	� i� x
� is a collection of strong one�way functions�

Repeat the exercise when replacing the word %functions� by %permutations�� �I�D� F 

be a clawfree collection of functions

Exercise ��� more on the inadequacy of graph isomorphism as a basis for one�way func�
tions� Consider another suggestion to base one�way functions on the conjectured
di�culty of the Graph Isomorphism problem� This time we present a collection of
functions� de�ned by the algorithmic triplet �IGI� DGI� FGI
� On input �n� algorithm
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IGI selects uniformly a d�n
�regular graph on n vertices �i�e�� each of the n vertices in
the graph has degree d�n

� On input a graph on n vertices� algorithm DGI randomly
selects a permutation in the symmetric group of n elements �i�e�� the set of permuta�
tions of n elements
� On input a �n�vertex
 graph G and a �n�element
 permutation

�� algorithm FGI returns fG��

def
 �G�

�� Present a polynomial�time implementation of IGI�

�� In light of the known algorithms for the Graph Isomorphism problem� which
values of d�n
 should be de�nitely avoided"

�� Using a known algorithm� prove that the above collection does not have a one�
way property� no matter which function d��
 one uses�

�A search into the relevant literature is indeed required for items ��
 and ��
�


Exercise �	� Assuming the existence of one�way functions� prove that there exist a one�
way function f so that no single bit of the preimage constitutes a hard�core predicate�

�Guideline� given a one�way function f construct a function g so that g�x� I� J

def
 

�f�xI	J
� xI�J � I� J
� where I� J � f�� �� ���jxjg� and xS denotes the string resulting by
taking only the bits of x with positions in the set S �i�e�� xi������is

def
 xi� � � �xis � where

x  x� � � �xjxj
�

Exercise ��� hard�core predicate for a ��� function implies that the function is one�way�

Let f be a ��� function �you may assume for simplicity that it is length preserving

and let b be a hard�core for f �

�� Prove that if f is polynomial�time computable then it is strongly one�way�

�� Prove that �regardless of whether f is polynomial�time computable or not
 f
must be weakly one�way� Furthermore� for every � � �

� � the function f cannot
be inverted on a � fraction of the instances�

Exercise ��� In continuation to the proof of Theorem ����� we present guidelines for a
more e�cient inverting algorithm� In the sequel it will be more convenient to use
arithmetic of reals instead of that of Boolean� Hence� we denote b��x� r
  ���
b�r�x�
and G��y� r
  ���
G�y�r��
�� Prove that for every x it holds that Exp�b��x� r
 �G��f�x
� r!ei

  s��x
 ����
xi�
where s��x
 def � � �s�x
� �

�
�

�� Let v be an l�dimensional Boolean vector� and let R be a uniformly chosen l�by�n
Boolean matrix� Prove that for every v 	 u � f�� �gl it holds that vR and uR
are pairwise independent and uniformly distributed in f�� �gn�

�� Prove that b��x� vR
  b��xRT � v
� for every x � f�� �gn and v � f�� �gl�
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�� Prove that� with probability at least �
� � there exists 	 � f�� �gl so that for every

�� i�n the sign of Pv�f���gl b��	� v
G��f�x
� vR! ei

 equals the sign of ���
xi�
�Hint� 	

def
 xRT �


�� Let B be an �l�by��l matrix with the �	� v
�entry being b��	� v
� and let gi be an
�l�dimensional vector with the vth entry equal G��f�x
� vR! ei
� The inverting
algorithm computes zi � Bgi� for all i�s� and forms a matrix Z in which the
columns are the zi�s� The output is a row that when applying f to it yields f�x
�
Evaluate the success probability of the algorithm� Using the special structure of
matrix B� show that the product Bgi can be computed in time l � �l�
Hint� B is the Sylvester matrix� which can be written recursively as

Sk  

�
Sk�� Sk��
Sk�� Sk��

�

where S�  !� and M means �ipping the !� entries of M to �� and vice versa�
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Chapter �

Pseudorandom Generators

In this chapter we discuss pseudorandom generators� Loosely speaking� these are e�cient
deterministic programs which expand short randomly selected seeds into much longer �pseu�
dorandom� bit sequences� Pseudorandom sequences are de�ned as computationally indis�
tinguishable from truly random sequences by e�cient algorithms� Hence� the notion of
computational indistinguishability �i�e�� indistinguishability by e�cient procedures
 plays a
pivotal role in our discussion of pseudorandomness� Furthermore� the notion of computa�
tional indistinguishability� plays a key role also in subsequent chapters� and in particular in
the discussion of secure encryption� zero�knowledge proofs� and cryptographic protocols�

In addition to de�nitions of pseudorandom distributions� pseudorandom generators� and
pseudorandom functions� the current chapter contains constructions of pseudorandom gen�
erators �and pseudorandom functions
 based on various types of one�way functions� In
particular� very simple and e�cient pseudorandom generators are constructed based on the
existence of one�way permutations�

��� Motivating Discussion

The nature of randomness has attracted the attention of many people and in particular of
scientists in various �elds� We believe that the notion of computation� and in particular of
e�cient computation� provides a good basis for understanding the nature of randomness�

����� Computational Approaches to Randomness

One computational approach to randomness has been initiated by Solomonov and Kol�
mogorov in the early �����s �and rediscovered by Chaitin in the early ����s
� This approach
is �ontological� in nature� Loosely speaking� a string� s� is considered Kolmogorov�random

��
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if its length �i�e�� jsj
 equals the length of the shortest program producing s� This shortest
program may be considered the �simplest� �explanation� to the phenomenon described by
the string s� Hence� the string� s� is considered Kolmogorov�random if it does not posses a
simple explanation �i�e�� an explanation which is substantially shorter than jsj
� We stress
that one cannot determine whether a given string is Kolmogorov�random or not �and more
generally Kolmogorov�complexity is a function that cannot be computed
� Furthermore�
this approach seems to have no application to the issue of �pseudorandom generators��

An alternative computational approach to randomness is presented in the rest of this
chapter� In contrast to the approach of Kolmogorov� the new approach is behavioristic
in nature� Instead of considering the �explanation� to a phenomenon� we consider the
phenomenon�s e�ect on the environment� Loosely speaking� a string is considered pseu�
dorandom if no e�cient observer can distinguish it from a uniformly chosen string of the
same length� The underlying postulate is that objects that cannot be told apart by e�cient
procedures are considered equivalent� although they may be very di�erent in nature �e�g��
have fundamentally di�erent �Kolmogorov
 complexity
� Furthermore� the new approach
naturally leads to the concept of a pseudorandom generator� which is a fundamental concept
with lots of practical applications �and in particular to the area of cryptography
�

����� A Rigorous Approach to Pseudorandom Generators

The approach to pseudorandom generators� presented in this book� stands in contrast to
the heuristic approach which is still common in discussions concerning �pseudorandom gen�
erators� which are being used in real computers� The heuristic approach consider �pseu�
dorandom generators� as programs which produce bit sequences �passing� several speci�c
statistical tests� The choice of statistical tests� to which these programs are subjected�
is quite arbitrary and lacks a systematic foundation� Furthermore� it is possible to con�
struct e�cient statistical tests which foil the �pseudorandom generators� commonly used
in practice �and in particular distinguish their output from a uniformly chosen string of
equal length
� Consequently� before using a �pseudorandom generator�� in a new applica�
tion �which requires �random� sequences
� extensive tests have to be conducted in order to
detect whether the behaviour of the application when using the �pseudorandom generator�
preserves its behaviour when using a �true source of randomness�� Any modi�cation of the
application requires new comparison of the �pseudorandom generator� against the �ran�
dom source�� since the non�randomness of the �pseudorandom generator� may badly e�ect
the modi�ed application �although it did not e�ect the original application
� Furthermore�
using such a �pseudorandom generator� for �cryptographic purposes� is highly risky� since
the adversary may try to exploit the known weaknesses of the �pseudorandom generator��

In contrast the concept of pseudorandom generators� presented below� is a robust one�
By de�nition these pseudorandom generators produce sequences which look random to any
e�cient observer� It follows that the output of a pseudorandom generator may be used
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instead of �random sequences� in any e�cient application requiring such �i�e�� �random�

sequences�

��� Computational Indistinguishability

The concept of e�cient computation leads naturally to a new kind of equivalence between
objects� Objects are considered to be computationally equivalent if they cannot be told apart
by any e�cient procedure� Considering indistinguishable objects as equivalent is one of the
basic paradigms of both science and real�life situations� Hence� we believe that the notion
of computational indistinguishability is fundamental�

Formulating the notion of computational indistinguishability is done� as standard in
computational complexity� by considering objects as in�nite sequences of strings� Hence�
the sequences� fxngn�N and fyngn�N � are said to be computational indistinguishable if no
e�cient procedure can tell them apart� In other words� no e�cient algorithm� D� can accept
in�nitely many xn�s while rejecting their y�counterparts �i�e�� for every e�cient algorithm
D and all su�ciently large n�s it holds that D accepts xn i� D accepts yn
� Objects which
are computationally indistinguishable in the above sense may be considered equivalent as
far as any practical purpose is concerned �since practical purposes are captured by e�cient
algorithms and those can not distinguish these objects
�

The above discussion is naturally extended to the probabilistic setting� Furthermore�
as we shall see� this extension yields very useful consequences� Loosely speaking� two
distributions are called computationally indistinguishable if no e�cient algorithm can tell
them apart� Given an e�cient algorithm� D� we consider the probability that D accepts
�e�g�� outputs � on input
 a string taken from the �rst distribution� Likewise� we consider
the probability that D accepts a string taken from the second distribution� If these two
probabilities are close� we say that D does not distinguish the two distributions� Again�
the formulation of this discussion is with respect to two in�nite sequences of distributions
�rather than with respect to two �xed distributions
� Such sequences are called probability
ensembles�

����� Denition

De�nition ��� �ensembles
� Let I be a countable index set� An ensemble indexed by I is
a sequence of random variables indexed by I� Namely� X  fXigi�I� where the Xi�s are
random variables� is an ensemble indexed by I�

We will use either IN or a subset of f�� �g� as the index set� Typically� in our applications�
an ensemble of the form X  fXngn�IN has each Xn ranging over strings of length n�
whereas an ensemble of the form X  fXwgw�f���g� will have each Xw ranging over strings
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of length jwj� In the rest of this chapter� we will deal with ensembles indexed by IN�
whereas in other chapters �e�g�� in the de�nition of secure encryption and zero�knowledge

we will deal with ensembles indexed by strings� To avoid confusion� we present variants
of the de�nition of computational indistinguishability for each of these two cases� The
two formulations can be uni�ed if one associates the natural numbers with their unary
representation �i�e�� associate IN and f�n �n� INg
�

De�nition ��� �polynomial�time indistinguishability
�

�� variant for ensembles indexed by IN� Two ensembles� X
def
 fXngn�IN and Y

def
 

fYngn�IN� are indistinguishable in polynomial�time if for every probabilistic polynomial�
time algorithm� D� every polynomial p��
� and all su�ciently large n�s

jProb �D�Xn� �
n
 �
� Prob �D�Yn� �n
 �
 j � �

p�n


�� variant for ensembles indexed by a set of strings S� Two ensembles� X
def
 fXwgw�S

and Y
def
 fYwgw�S� are indistinguishable in polynomial�time if for every probabilistic

polynomial�time algorithm� D� every polynomial p��
� and all su�ciently long w�s

jProb �D�Xw� w
 �
� Prob �D�Yw� w
 �
 j � �

p�jwj


The probabilities in the above de�nition are taken over the corresponding random vari�
ables Xi �or Yi
 and the internal coin tosses of algorithm D �which is allowed to be a
probabilistic algorithm
� The second variant of the above de�nition will play a key role in
subsequent chapters� and further discussion of it is postponed to these places� In the rest of
this chapter we refer only to the �rst variant of the above de�nition� The string �n is given
as auxiliary input to algorithm D in order to make the �rst variant consistent with the sec�
ond one� and in order to make it more intuitive� However� in typical cases� where the length
of Xn �resp� Yn
 and n are polynomialy related �i�e�� jXnj� poly�n
 and n� poly�jXnj


and can be computed one from the other in poly�n
�time� giving �n as auxiliary input is
redundant�

The following mental experiment may be instructive� For each � � f�� �g�� consider the
probability� hereafter denoted d��
� that algorithm D outputs � on input �� Consider the
expectation of d taken over each of the two ensembles� Namely� let d��n
  Exp�d�Xn

 and
d��n
  Exp�d�Yn

� Then� X and Y are said to be indistinguishable by D if the di�erence

�function
 &�n

def
 jd��n
� d��n
j is negligible in n� A few examples may help to further

clarify the de�nition�

Consider an algorithm� D�� which obliviously of the input� �ips a ��� coin and outputs
its outcome� Clearly� on every input� algorithm D� outputs � with probability exactly one
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half� and hence does not distinguish any pair of ensembles� Next� consider an algorithm�
D�� which outputs � if and only if the input string contains more zeros than ones� Since
D� can be implemented in polynomial�time� it follows that if X and Y are polynomial�time
indistinguishable then the di�erence jProb���Xn
 �

n
� 
 � Prob���Yn
 � n

� 
j is negligible
�in n
� where ���
 denotes the number of ��s in the string �� Similarly� polynomial�time
indistinguishable ensembles must exhibit the same �pro�le� �up to negligible error
 with
respect to any �string statistics� which can be computed in polynomial�time� However�
it is not required that polynomial�time indistinguishable ensembles have similar �pro�les�
with respect to quantities which cannot be computed in polynomial�time �e�g�� Kolmogorov
Complexity or the function presented right after Proposition ���
�

����� Relation to Statistical Closeness

Computational indistinguishability is a re�nement of a traditional notion from probability

theory� We call two ensembles X
def
 fXngn�IN and Y

def
 fYngn�IN� statistically close if their

statistical di�erence is negligible� where the statistical di�erence �also known as variation
distance
 of X and Y is de�ned as the function

&�n

def
 
X



jProb�Xn �
� Prob�Yn �
j

Clearly� if the ensembles X and Y are statistically close then they are also polynomial�time
indistinguishable �see Exercise �
� The converse� however� is not true� In particular

Proposition ��� There exist an ensemble X  fXngn�IN so that X is not statistically

close to the uniform ensemble� U
def
 fUngn�IN� yet X and U are polynomial�time indis�

tinguishable� Furthermore� Xn assigns all its probability mass to at most �n�� strings 	of
length n
�

Recall that Un is uniformly distributed over strings of length n� Although X and U are
polynomial�time indistinguishable� one can de�ne a function f � f�� �g� �� f�� �g so that f
has average � over X while having average almost � over U �e�g�� f�x
  � if and only if x
is in the range of X
� Hence� X and U have di�erent �pro�le� with respect to the function
f � yet f is �necessarily
 impossible to compute in polynomial�time�

Proof� We claim that� for all su�ciently large n� there exist a random variable Xn� dis�
tributed over some set of at most �n�� strings �each of length n
� so that for every circuit�
Cn� of size �i�e�� number of gates
 �

n�
 it holds that

jProb�Cn�Un
 �
� Prob�Cn�Xn
 �
j � ��n�
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The proposition follows from this claim� since polynomial�time distinguishers �even prob�
abilistic ones � see Exercise �
 yield polynomial�size circuits with at least as big a distin�
guishing gap�

The claim is proven using a probabilistic argument �i�e�� a counting argument
� Let

Cn be some �xed circuit with n inputs� and let pn
def
 Prob�Cn�Un
  �
� We select�

independently and uniformly �n�� strings� denoted s�� ���� s�n��� in f�� �gn� De�ne random
variables �i�s so that �i  Cn�si
 �these random variables depend on the random choices of
the corresponding si�s
� Using Cherno� Bound� we get that

Prob

�
	jpn � �

�n��
�
�n��X
i��

�ij � ��n�



A � �e����n�����n�� � ���n��

Since there are at most ��
n��
di�erent circuits of size �number of gates
 �n�
� it follows that

there exists a sequence of s�� ���� s�n�� � f�� �gn� so that for every circuit Cn of size �
n�
 it

holds that

jProb�Cn�Un
 �
� �

�n��

�n��X
i��

Cn�si
j � ��n�


Letting Xn equal si with probability ��n��� for every �� i��n��� the claim follows�

����� Indistinguishability by Repeated Experiments

By De�nition ���� two ensembles are considered computationally indistinguishable if no
e�cient procedure can tell them apart based on a single sample� We shall now show that
�e�ciently constructible� computational indistinguishable ensembles cannot be �e�ciently

distinguished even by examining several samples� We start by presenting de�nitions of
�indistinguishability by sampling� and �e�ciently constructible ensembles��

De�nition ��
 �indistinguishability by sampling
� Two ensembles� X
def
 fXngn�IN and

Y
def
 fYngn�IN� are indistinguishable by polynomial�time sampling if for every probabilistic

polynomial�time algorithm� D� every two polynomials m��
 and p��
� and all su�ciently large
n�s

jProb
�
D�X���

n � ���� X�m�n��
n 
 �

�
� Prob

�
D�Y ���

n � ���� Y �m�n��
n 
 �

�
j � �

p�n


where X
���
n through X

�m�
n and Y

���
n through Y

�m�
n � are independent random variables with

each X
�i�
n identical to Xn and each Y

�i�
n identical to Yn�
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De�nition ��� �e�ciently constructible ensembles
� An ensemble� X
def
 fXngn�IN� is said

to be polynomial�time constructible if there exists a probabilistic polynomial time algorithm
S so that for every n� the random variables S��n
 and Xn are identically distributed�

Theorem ��� Let X
def
 fXngn�IN and Y

def
 fYngn�IN� be two polynomial�time con�

structible ensembles� and suppose that X and Y are indistinguishable in polynomial�time�
Then X and Y are indistinguishable by polynomial�time sampling�

An alternative formulation of Theorem ��� proceeds as follows� For every ensemble Z
def
 

fZngn�IN and every polynomial m��
 de�ne the m��
�product of Z as the ensemble
f�Z���

n � ���� Z
�m�n��
n 
gn�IN� where the Z�i�

n �s are independent copies of Zn� Theorem ��� as�
serts that if the ensembles X and Y are polynomial�time indistinguishable� and each is
polynomial�time constructible� then� for every polynomial m��
� the m��
�product of X and
the m��
�product of X are polynomial�time indistinguishable�

The information theoretic analogue of the above theorem is quite obvious� if two ensem�
bles are statistically close then also their polynomial�products must be statistically close
�since the statistical di�erence between the m�products of two distributions is bounded by
m times the distance between the individual distributions
� Adapting the proof to the com�
putational setting requires� as usual� a �reducibility argument�� This argument uses� for
the �rst time in this book� the hybrid technique� The hybrid technique plays a central role
in demonstrating the computational indistinguishability of complex ensembles� constructed
based on simpler �computational indistinguishable
 ensembles� Subsequent application of
the hybrid technique will involve more technicalities� Hence� the reader is urged not to skip
the following proof�

Proof� The proof is by a �reducibility argument�� We show that the existence of an
e�cient algorithm that distinguishes the ensembles X and Y using several samples� implies
the existence of an e�cient algorithm that distinguishes the ensembles X and Y using a
single sample� The implication is proven using the following argument� which will be latter
called a �hybrid argument��

Suppose� to the contradiction� that there is a probabilistic polynomial�time algorithm
D� and polynomials m��
 and p��
� so that for in�nitely many n�s it holds that

&�n

def
 jProb

�
D�X���

n � ���� X�m�
n 
 �

�
� Prob

�
D�Y ���

n � ���� Y �m�
n 
 �

�
j � �

p�n


where m
def
 m�n
� and the X

�i�
n �s and Y

�i�
n �s are as in De�nition ���� In the sequel� we will

derive a contradiction by presenting a probabilistic polynomial�time algorithm� D�� that
distinguishes the ensembles X and Y �in the sense of De�nition ���
�
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For every k� ��k�m� we de�ne the hybrid random variable Hk
n as a �m�long
 sequence

consisting of k independent copies of Xn and m� k independent copies of Yn� Namely�

Hk
n
def
 �X���

n � ���� X�k�
n � Y �k���

n � ���� Y �m�
n 


where X
���
n through X

�k�
n and Y

�k���
n through Y

�m�
n � are independent random variables with

each X
�i�
n identical to Xn and each Y

�i�
n identical to Yn� Clearly� H

m
n  X

���
n � ���� X

�m�
n �

whereas H�
n  Y

���
n � ���� Y

�m�
n �

By our hypothesis� algorithm D can distinguish the extreme hybrids �i�e�� H�
n and H

m
n 
�

As the total number of hybrids is polynomial in n� a non�negligible gap between �the
�accepting� probability of D on
 the extreme hybrids translates into a non�negligible gap
between �the �accepting� probability of D on
 a pair of neighbouring hybrids� It follows
that D� although not �designed to work on general hybrids�� can distinguish a pair of
neighbouring hybrids� The punch�line is that� algorithm D can be easily modi�ed into an
algorithm D� which distinguishes X and Y � Details follow�

We construct an algorithm D� which uses algorithm D as a subroutine� On input �
�supposedly in the range of either Xn or Yn
� algorithm D� proceeds as follows� Algorithm
D�� �rst selects k uniformly in the set f�� �� ����m��g� Using the e�cient sampling algorithm
for the ensemble X � algorithm D� generates k independent samples of Xn� These samples
are denoted x�� ���� xk� Likewise� using the e�cient sampling algorithm for the ensemble Y �
algorithm D� generates m� k� � independent samples of Yn� denoted yk��� ���� ym� Finally�
algorithm D� invokes algorithm D and halts with output D�x�� ���� xk� �� yk��� ���� ym
�

Clearly� D� can be implemented in probabilistic polynomial�time� It is also easy to verify
the following claims�

Claim �����	

Prob�D��Xn
 �
  
�

m

m��X
k��

Prob�D�Hk��
n 
 �


and

Prob�D��Yn
 �
  
�

m

m��X
k��

Prob�D�Hk
n
 �


Proof� By construction of algorithm D�� we have

D���
  D�X���
n � ���� X�k�

n � �� Y �k���
n � ���� Y �m�

n 


Using the de�nition of the hybrids Hk
n � the claim follows� �

Claim �����	

jProb�D��Xn
 �
� Prob�D��Yn
 �
j  &�n


m�n
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Proof� Using Claim ����� for the �rst equality� we get

jProb�D��Xn
 �
� Prob�D��Yn
 �
j

 
�

m
� j

m��X
k��

Prob�D�Hk��
n 
 �
� Prob�D�Hk

n
 �
j

 
�

m
� jProb�D�Hm

n 
 �
� Prob�D�H�
n
 �
j

 
&�n


m

The last equality follows by observing that Hm
n  X

���
n � ���� X

�m�
n and H�

n  Y
���
n � ���� Y

�m�
n �

and using the de�nition of &�n
� �

Since by our hypothesis &�n
 � �
p�n� � for in�nitely many n�s� it follows that the probabilistic

polynomial�time algorithm D� distinguishes X and Y in contradiction to the hypothesis of
the theorem� Hence� the theorem follows�

It is worthwhile to give some thought to the hybrid technique �used for the �rst time in the
above proof
� The hybrid technique constitutes a special type of a �reducibility argument�
in which the computational indistinguishability of complex ensembles is proven using the
computational indistinguishability of basic ensembles� The actual reduction is in the other
direction� e�ciently distinguishing the basic ensembles is reduced to e�ciently distinguish�
ing the complex ensembles� and hybrid distributions are used in the reduction in an essential
way� The following properties of the construction of the hybrids play an important role in
the argument�

�� Extreme hybrids collide with the complex ensembles� this property is essential since
what we want to prove �i�e�� indistinguishability of the complex ensembles
 relates to
the complex ensembles�

�� Neighbouring hybrids are easily related to the basic ensembles� this property is es�
sential since what we know �i�e�� indistinguishability of the basic ensembles
 relates
to the basic ensembles� We need to be able to translate our knowledge �speci�cally
computational indistinguishability
 of the basic ensembles to knowledge �speci�cally
computational indistinguishability
 of any pair of neighbouring hybrids� Typically� it
is required to e�ciently transform strings in the range of a basic hybrid into strings in
the range of a hybrid� so that the transformation maps the �rst basic distribution to
one hybrid and the second basic distribution to the neighbouring hybrid� �In the proof
of Theorem ���� the hypothesis that both X and Y are polynomial�time constructible
is instrumental for such e�cient transformation�




�� CHAPTER �� PSEUDORANDOM GENERATORS

�� The number of hybrids is small �i�e� polynomial
� this property is essential in order
to deduce the computational indistinguishability of extreme hybrids from the compu�
tational indistinguishability of neighbouring hybrids�

We remark that� in the course of an hybrid argument� a distinguishing algorithm refer�
ring to the complex ensembles is being analyzed and even executed on arbitrary hybrids�
The reader may be annoyed of the fact that the algorithm �was not designed to work on
such hybrids� �but rather only on the extreme hybrids
� However� �an algorithm is an
algorithm� and once it exists we can apply it to any input of our choice and analyze its
performance on arbitrary input distributions�

����� Pseudorandom Ensembles

A special� yet important� case of computationally indistinguishable ensembles is the case in
which one of the ensembles is uniform� Ensembles which are computational indistinguishable
from the a uniform ensemble are called pseudorandom� Recall that Um denotes a random
variable uniformly distributed over the set of strings of length m� The ensemble fUngn�IN
is called the standard uniform ensemble� Yet� it will be convenient to call uniform also
ensembles of the form fUl�n�gn�IN� where l is a function on natural numbers�

De�nition ��� �pseudorandom ensembles
� Let U
def
 fUl�n�gn�IN be a uniform ensemble�

and X
def
 fXngn�IN be an ensemble� The ensemble X is called pseudorandom if X and U

are indistinguishable in polynomial�time�

We stress that jXnj is not necessarily n �whereas jUmj  m
� In fact� with high proba�
bility jXnj equals l�n

�

In the above de�nition� as in the rest of this book� pseudorandomness is a shorthand
for �pseudorandomness with respect to polynomial�time��

��� De	nitions of Pseudorandom Generators

Pseudorandom ensembles� de�ned above� can be used instead of uniform ensemble in any ef�
�cient application without noticeable degradation in performance �otherwise the e�cient ap�
plication can be transformed into an e�cient distinguisher of the supposedly�pseudorandom
ensemble from the uniform one
� Such a replacement is useful only if we can generate pseudo�
random ensembles at a cheaper cost than required to generate a uniform ensemble� The cost
of generating an ensemble has several aspects� Standard cost considerations are re�ected
by the time and space complexities� However� in the context of randomized algorithms� and
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in particular in the context of generating probability ensembles� a major cost consideration
is the quantity and quality of the randomness source used by the algorithm� In particular�
in many applications �and especially in cryptography
� it is desirable to generate pseudo�
random ensembles using as little randomness as possible� This leads to the de�nition of a
pseudorandom generator�

����� 	 A General Denition of Pseudorandom Generators

De�nition ��	 �pseudorandom generator
� A pseudorandom generator is a deterministic
polynomial�time algorithm� G� satisfying the following two conditions�

�� expansion� for every s � f�� �g� it holds that jG�s
j � jsj�

�� pseudorandomness� the ensemble fG�Un
gn�IN is pseudorandom�

The input� s� to the generator is called its seed� It is required that a pseudorandom
generatorG always outputs a string longer than its seed� and thatG�s output� on a uniformly
chosen seed� is pseudorandom� In other words� the output of a pseudorandom generator� on
a uniformly chosen seed� must be polynomial�time indistinguishable from uniform� although
it cannot be uniform �or even statistically close to uniform
� To justify the last statement
consider a uniform ensemble fUl�n�gn�IN that is polynomial�time indistinguishable from the
ensemble fG�Un
gn�IN �such a uniform ensemble must exist by the pseudorandom property
of G
� We �rst claim that l�n
 � n� since otherwise an algorithm that on input �n and a
string � outputs � if and only if j�j � n will distinguish G�Un
 from Ul�n� �as jG�Un
j � n

by the expansion property of G
� It follows that l�n
 � n! �� We next bound from below
the statistical di�erence between G�Un
 and Ul�n�� as follows

X
x

jProb�Ul�n� x
 � Prob�G�Un
 x
j �
X

x ��fG�s��s�f���gng
jProb�Ul�n� x
� Prob�G�Un
 x
j

 ��l�n� � �n
 � ��l�n�

� �

�

It can be shown� see Exercise �� that all the probability mass of G�Un
� except for a
negligible �in n
 amount� is concentrated on strings of the same length and that this length
equals l�n
� where fG�Un
gn�IN is polynomial�time indistinguishable from fUl�n�gn�IN� For
simplicity� we consider in the sequel� only pseudorandom generators G satisfying jG�x
j  
l�jxj
 for all x�s�
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����� Standard Denition of Pseudorandom Generators

De�nition ��� �pseudorandom generator � standard de�nition
� A pseudorandom generator
is a deterministic polynomial�time algorithm� G� satisfying the following two conditions�

�� expansion� there exists a function l � IN �� IN so that l�n
 � n for all n � IN� and
jG�s
j  l�jsj
 for all s � f�� �g��
The function l is called the expansion factor of G�

�� pseudorandomness �as above
� the ensemble fG�Un
gn�IN is pseudorandom�

Again� we call the input to the generator a seed� The expansion condition requires
that the algorithm G maps n�bit long seeds into l�n
�bit long strings� with l�n
 � n� The
pseudorandomness condition requires that the output distribution� induced by applying
algorithm G to a uniformly chosen seed� is polynomial�time indistinguishable from uniform
�although it is not statistically close to uniform � see justi�cation in previous subsection
�

The above de�nition says little about the expansion factor l � IN �� IN� We merely know
that for every n it holds that l�n
 � n ! �� that l�n
 � poly�n
� and that l�n
 can be
computed in time polynomial in n� Clearly� a pseudorandom generator with expansion
factor l�n
  n ! � is of little value in practice� since it o�ers no signi�cant saving in coin
tosses� Fortunately� as shown in the subsequent subsection� even pseudorandom generators
with such small expansion factor can be used to construct pseudorandom generators with
any polynomial expansion factor� Hence� for every two expansion factors� l� � IN �� IN and
l� � IN �� IN� that can be computed in poly�n
�time� there exists a pseudorandom generator
with expansion factor l� if and only if there exists a pseudorandom generator with expansion
factor l�� This statement is proven by using a pseudorandom generator with expansion

factor l��n

def
 n ! � to construct� for every polynomial p��
� a pseudorandom generator

with expansion factor p�n
� Note that a pseudorandom generator with expansion factor

l��n

def
 n ! � can be derived from any pseudorandom generator �even from one in the

general sense of De�nition ���
�

����� Increasing the Expansion Factor of Pseudorandom Generators

Given a pseudorandom generator� G�� with expansion factor l��n
  n! �� we construct a
pseudorandom generator G with polynomial expansion factor� as follows�

Construction ���� Let G� a deterministic polynomial�time algorithm mapping strings of
length n into strings of length n!�� and let p��
 be a polynomial� De�ne G�s
  	� � � �	p�jsj��
where s�

def
 s� the bit 	i is the �rst bit of G��si��
� and si is the jsj�bit long su�x of G��si��
�

for every �� i�p�jsj
� 	i�e�� 	isi  G��si��
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Hence� on input s� algorithm G applies G� for p�jsj
 times� each time on a new seed�
Applying G� to the current seed yields a new seed �for the next iteration
 and one extra
bit �which is being output immediately
� The seed in the �rst iteration is s itself� The
seed in the ith iteration is the jsj�long su�x of the string obtained from G� in the previous
iteration� Algorithm G outputs the concatenation of the �extra bits� obtained in the p�jsj

iterations� Clearly� G is polynomial�time computable and expands inputs of length n into
output strings of length p�n
�

Theorem ���� Let G�� p��
� and G be as in Construction ���� 	above
� Then� if G� is a
pseudorandom generator then so is G�

Intuitively� the pseudorandomness of G follows from that ofG� by replacing each application
of G� by a random process which on input s outputs 	s� where 	 is uniformly chosen in
f�� �g� Loosely speaking� the indistinguishability of a single application of the random
process from a single application of G� implies that polynomially many applications of
the random process are indistinguishable from polynomially many applications of G�� The
actual proof uses the hybrid technique�

Proof� The proof is by a �reducibility argument� � Suppose� to the contradiction� that G is
not a pseudorandom generator� It follows that the ensembles fG�Un
gn�IN and fUp�n�gn�IN
are not polynomial�time indistinguishable� We will show that it follows that the ensembles
fG��Un
gn�IN and fUn��gn�IN are not polynomial�time indistinguishable� in contradiction
to the hypothesis that G� is a pseudorandom generator with expansion factor l��n
  n!��
The implication is proven� using the hybrid technique�

For every k� � � k � p�n
� we de�ne a hybrid Hk
p�n� as follows� First we de�ne� for

every k� a function gkn � f�� �gn �� f�� �gk by letting g�n�x

def
 � �the empty string
 and

gk��n �x
  	gkn�y
� where 	 is the �rst bit of G��x
 and y is the n�bit long su�x of G��x

�i�e�� 	y  G��x

� Namely� for every k � p�jxj
� the string gkn�x
 equals the k�bit long
pre�x of G�x
� De�ne the random variable Hk

p�n� resulting by concatenating a uniformly

chosen k�bit long string and the random variable gp�n��k�Un
� Namely

Hk
p�n�

def
 U

���
k gp�n��k�U ���

n 


where U
���
k and U

���
n are independent random variables �the �rst uniformly distributed over

f�� �gk and the second uniformly distributed over f�� �gn
� Intuitively� the hybrid Hk
p�n�

consists of the k�bit long pre�x of Up�n� and the �p�n
� k
�bit long su�x of G�Xn
� where
Xn is obtained from Un by applying G� for k times each time to the n�bit long su�x of the
previous result� However� the later way of looking at the hybrids is less convenient for our
purposes�
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At this point it is clear that H�
p�n� equals G�Un
� whereas H

p�n�
p�n� equals Up�n�� It follows

that if an algorithm D can distinguish the extreme hybrids then D can also distinguish
two neighbouring hybrids� since the total number of hybrids is polynomial in n and a non�
negligible gap between the extreme hybrids translates into a non�negligible gap between
some neighbouring hybrids� The punch�line is that� using the structure of neighbouring
hybrids� algorithm D can be easily modi�ed to distinguish the ensembles fG��Un
gn�IN
and fUn��gn�IN� Details follow�

The core of the argument is the way in which the distinguishability of neighbouring
hybrids relates to the distinguishability of G�Un
 from Un��� As stated� this relation stems
from the structure of neighbouring hybrids� Let us� thus� take a closer look at the hybrids
Hk
p�n� and H

k��
p�n�� for some ��k�p�n
 � �� To this end� de�ne a function fm �f�� �gn�� ��

f�� �gm by letting f��z
 def � and fm���z

def
 	gm�y
� where z  	y with 	�f�� �g�

Claim �������

�� Hk
p�n�  U

���
k fp�n��k�Xn��
� where Xn��  G��U

���
n 
�

�� Hk��
p�n�  U

���
k fp�n��k�Yn��
� where Yn��  U

���
n���

Proof	

�� By de�nition of the functions gm and fm� we have gm�x
  fm�G��x

� Using the
de�nition of the hybrid Hk

p�n�� it follows that

Hk
p�n�  U

���
k gp�n��k�U ���

n 
  U
���
k fp�n��k�G��U

���
n 



�� On the other hand� by de�nition fm���	y
  	gm�y
� and using the de�nition of the
hybrid Hk��

p�n�� we get

Hk��
p�n�  U

���
k��g

p�n��k���U ���
n 
  U

���
k fp�n��k�U ���

n��


�

Hence distinguishing G��Un
 from Un�� is reduced to distinguishing the neighbouring hy�
brids �i�e� Hk

p�n� and Hk��
p�n�
� by applying fp�n��k to the input� padding the outcome �in

front of
 by a uniformly chosen string of length k� and applying the hybrid�distinguisher to
the resulting string� Further details follow�

We assume� to the contrary of the theorem� that G is not a pseudorandom generators�
Suppose that D is a probabilistic polynomial�time algorithm so that for some polynomial
q��
 and for in�nitely many n�s it holds that

&�n

def
 jProb�D�G�Un
 �
� Prob�D�Up�n�
 �
j �

�

q�n
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We derive a contradiction by constructing a probabilistic polynomial�time algorithm� D��
that distinguishes G��Un
 from Un���

Algorithm D� uses algorithm D as a subroutine� On input � � f�� �gn��� algorithm D�

operates as follows� First� D� selects an integer k uniformly in the set f�� �� ���� p�n
� �g�
next D� selects � uniformly in f�� �gk� and �nally D� halts with output D��fp�n��k��

�
where fp�n��k is as de�ned above�

Clearly� D� can be implemented in probabilistic polynomial�time �in particular fp�n��k

is computed by applying G� polynomially many times
� It is left to analyze the performance
of D� on each of the distributions G��Un
 and Un���

Claim �������

Prob�D��G�Un

 �
  
�

p�n


p�n���X
k��

Prob�D�Hk
p�n�
 �


and

Prob�D��Un��
 �
  
�

p�n


p�n���X
k��

Prob�D�Hk��
p�n�
 �


Proof� By construction of D� we get� for every � � f�� �gn���

Prob�D���
 �
  
�

p�n


p�n���X
k��

Prob�D�Ukf
p�n��k��

 �


Using Claim ������� our claim follows� �

Let dk�n
 denote the probability that D outputs � on input taken from the hybrid Hk
p�n�

�i�e�� dk�n

def
 Prob�D�Hk

p�n� �

� Recall that H
�
p�n� equals G�Un
� whereas H

p�n�
p�n� equals

Up�n�� Hence� d
��n
  Prob�D�G�Un

  �
� d

p�n��n
  Prob�D�Up�n�
  �
� and &�n
  

jd��n
� dp�n��n
j� Combining these facts with Claim ������� we get�

jProb�D��G��Un

 �
� Prob�D��Un��
 �
j  
�

p�n

� j

p�n���X
k��

dk�n
� dk���n
j

 
jd��n
� dp�n��n
j

p�n


 
&�n


p�n


Recall that by our �contradiction
 hypothesis &�n
 � �
q�n� � for in�nitely many n�s�

Contradiction to the pseudorandomness of G� follows�
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����� The Signicance of Pseudorandom Generators

Pseudorandom generators have the remarkable property of being e�cient �ampli�ers�expanders
of randomness�� Using very little randomness �in form of a randomly chosen seed
 they pro�
duce very long sequences which look random with respect to any e�cient observer� Hence�
the output of a pseudorandom generator may be used instead of �random sequences� in
any e�cient application requiring such �i�e�� �random�
 sequences� The reason being that
such an application may be viewed as a distinguisher� In other word� if some e�cient algo�
rithm su�ers noticeable degradation in performance when replacing the random sequences
it uses by pseudorandom one� then this algorithm can be easily modi�ed into a distinguisher
contradicting the pseudorandomness of the later sequences�

The generality of the notion of a pseudorandom generator is of great importance in
practice� Once you are guaranteed that an algorithm is a pseudorandom generator you
can use it in every e�cient application requiring �random sequences� without testing the
performance of the generator in the speci�c new application�

The bene�ts of pseudorandom generators to cryptography are innumerable �and only
the most important ones will be presented in the subsequent chapters
� The reason that
pseudorandom generators are so useful in cryptography is that the implementation of all
cryptographic tasks requires a lot of �high quality randomness�� Thus� producing� ex�
changing and sharing large amounts of �high quality random bits� at low cost is of primary
importance� Pseudorandom generators allow to produce �resp�� exchange and�or share

poly�n
 pseudorandom bits at the cost of producing �resp�� exchanging and�or sharing

only n random bits�

A key property of pseudorandom sequences� that is used to justify the use of such
sequences in cryptography� is the unpredictability of the sequence� Loosely speaking� a
sequence is unpredictable if no e�cient algorithm� given a pre�x of the sequence� can guess
its next bit with an advantage over one half that is not negligible� Namely�

De�nition ���� �unpredictability
� An ensemble fXngn�IN is called unpredictable in polynomial�
time if for every probabilistic polynomial�time algorithm A and every polynomial p��
 and
for all su�ciently large n�s

Prob�A��n� Xn
 nextA��
n� Xn

 �

�

�
!

�

p�n


where nextA�x
 returns the i!�
st bit of x if A on input ��n� x
 reads only i � jxj of the bits

of x� and returns a uniformly chosen bit otherwise 	i�e� in case A read the entire string x
�

Clearly� pseudorandom ensembles are unpredictable in polynomial�time �see Exercise ��
�
It turns out that the converse holds as well� Namely� only pseudorandom ensembles are
unpredictable in polynomial�time �see Exercise ��
�
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����� A Necessary Condition for the Existence of Pseudorandom Gener�
ators

Up to this point we have avoided the question of whether pseudorandom generators exist at
all� Before saying anything positive� we remark that a necessary condition to the existence
of pseudorandom generators is the existence of one�way function� Jumping ahead� we wish
to reveal that this necessary condition is also su�cient� hence� pseudorandom generators
exist if and only if one�way functions exist� At this point we only prove that the existence
of pseudorandom generators implies the existence of one�way function� Namely�

Proposition ���� Let G be a pseudorandom generator with expansion factor l�n
  �n�

Then the function f �f�� �g� ��f�� �g� de�ned by letting f�x� y

def
 G�x
� for every jxj jyj�

is a strongly one�way function�

Proof� Clearly� f is polynomial�time computable� It is left to show that each probabilistic
polynomial�time algorithm invert f with only negligible probability� We use a �reducibility
argument�� Suppose� on the contrary� that A is a probabilistic polynomial�time algorithm
which for in�nitely many n�s inverts f on f�U�n
 with success probability at least

�
poly�n� �

We will construct a probabilistic polynomial�time algorithm� D� that distinguishes U�n and
G�Un
 on these n�s and reach a contradiction�

The distinguisher D uses the inverting algorithm A as a subroutine� On input � �
f�� �g�� algorithm D uses A in order to try to get a preimage of � under f � Algorithm D
then checks whether the string it obtained from A is indeed a preimage and halts outputting
� in case it is �otherwise it outputs �
� Namely� algorithm A computes � � A��
� and
outputs � if f��
  � and � otherwise�

By our hypothesis� for some polynomial p��
 and in�nitely many n�s�

Prob�f�A�f�U�n


 f�U�n

 �
�

p�n


By f �s construction the random variable f�U�n
 equals G�Un
� and therefore Prob�D�G�Un

 
�
 � �

p�n� � On the other hand� by f �s construction at most �
n di�erent �n�bit long strings

have a preimage under f � Hence� Prob�f�A�U�n

 U�n
 � ��n� It follows that for in�nitely
many n�s

jProb�D�G�Un

 �
� Prob�D�U�n
 �
j � �

p�n

� �

�n
�

�

�p�n


which contradicts the pseudorandomness of G�
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��� Constructions based on One�Way Permutations

In this section we present constructions of pseudorandom generator based on one�way per�
mutations� The �rst construction has a more abstract �avour� as it uses a single length
preserving ��� one�way function �i�e�� a single one�way permutation
� The second construc�
tion utilizes the same underlying ideas to present practical pseudorandom generators based
on collections of one�way permutations�

����� Construction based on a Single Permutation

By Theorem ���� �see Subsection �����
� it su�ces to present a pseudorandom generator
expanding n�bit long seeds into n ! ��bit long strings� Assuming that one�way permuta�
tions �i�e�� ��� length preserving functions
 exist� such pseudorandom generators can be
constructed easily� We remind the reader that the existence of one�way permutation im�
plies the existence of one�way permutation with corresponding hard�core predicates� Thus�
it su�ces to prove the following

Theorem ���
 Let f be a length�preserving ��� 	strongly one�way
 function� and let b

be a hard�core predicate for f � Then the algorithm G� de�ned by G�s

def
 f�s
b�s
� is a

pseudorandom generator�

Intuitively� the ensemble ff�Un
b�Un
gn�IN is pseudorandom since otherwise b�Un
 can
be e�ciently predicted from f�Un
� The proof merely formalizes this intuition�

Proof� We use a �reducibility argument�� Suppose� on the contrary� that there exists
an e�cient algorithm D which distinguishes G�Un
 from Un��� Recalling that G�Un
  
f�Un
b�Un
 and using the fact that f induces a permutation on f�� �gn� we deduce that algo�
rithmD distinguishes f�Un
b�Un
 from f�Un
U�� It follows thatD distinguishes f�Un
b�Un


from f�Un
b�Un
� where b�x
 is the complement bit of b�x
 �i�e�� b�x

def
 f�� �g�b�x

� Hence�

algorithm D provides a good indication of b�Un
 from f�Un
� and can be easily modi�ed
into an algorithm guessing b�Un
 from f�Un
� in contradiction to the hypothesis that b is a
hard�core predicate of f � Details follows�

We assume� on the contrary� that there exists a probabilistic polynomial�time algorithm
D and a polynomial p��
 so that for in�nitely many n�s

jProb�D�G�Un

 �
� Prob�D�Un��
 �
j � �

p�n


Assume� without loss of generality� that for in�nitely many n�s it holds that

&�n

def
 �Prob�D�G�Un

 �
� Prob�D�Un��
 �

 � �

p�n
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We construct a probabilistic polynomial�time algorithm� A� for predicting b�x
 from
f�x
� Algorithm A uses the algorithm D as a subroutine� On input y �equals f�x
 for some
x
� algorithm A proceeds as follows� First� A selects uniformly 	 � f�� �g� Next� A applies
D to y	� Algorithm A halts outputting 	 if D�y	
  � and outputs the complement of 	�
denoted 	� otherwise�

Clearly� A works in polynomial�time� It is left to evaluate the success probability of
algorithm A� We evaluate the success probability of A by considering two complementary
events� The event we consider is whether or not �on input x algorithm A selects 	 so that
	  b�x
��

Claim �������

Prob�A�f�Un

 b�Un
 j 	 b�Un

  Prob�D�f�Un
b�Un

 �


Prob�A�f�Un

 b�Un
 j 	 	 b�Un

  �� Prob�D�f�Un
b�Un

 �


where b�x
 f�� �g� b�x
�

Proof� By construction of A�

Prob�A�f�Un

 b�Un
 j 	 b�Un

  Prob�D�f�Un
	
 � j 	 b�Un


 Prob�D�f�Un
b�Un

 � j 	 b�Un


 Prob�D�f�Un
b�Un

 �


where the last equality follows since D�s behavior is independent of the value of 	� Likewise�

Prob�A�f�Un

 b�Un
 j 	 	 b�Un

  Prob�D�f�Un
	
 � j 	 b�Un


 Prob�D�f�Un
b�Un

 � j 	 b�Un


 �� Prob�D�f�Un
b�Un

 �


The claim follows� �

Claim �������

Prob�D�f�Un
b�Un

 �
  Prob�D�G�Un

 �


Prob�D�f�Un
b�Un

 �
  � � Prob�D�Un��
 �
� Prob�D�f�Un
b�Un

 �


Proof� By de�nition of G� we have G�Un
  f�Un
b�Un
� and the �rst claim follows� To
justify the second claim� we use the fact that f is a permutation over f�� �gn� and hence
f�Un
 is uniformly distributed over f�� �gn� It follows that Un�� can be written as f�Un
U��
We get

Prob�D�Un��
 �
  
Prob�D�f�Un
b�Un

 �
 ! Prob�D�f�Un
b�Un

 �


�
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and the claim follows� �

Combining Claims ������ and ������� we get

Prob�A�f�Un

 b�Un

  Prob�	 b�Un

 � Prob�A�f�Un

 b�Un
 j 	 b�Un


!Prob�	 	 b�Un

 �Prob�A�f�Un

 b�Un
 j 	 	 b�Un



 
�

�
�
�
Prob�D�f�Un
b�Un

 �
 ! �� Prob�D�f�Un
b�Un

 �


�
 

�

�
! �Prob�D�G�Un

 �
� Prob�D�Un��
 �



 
�

�
!&�n


Since &�n
 � �
p�n� for in�nitely many n�s� we derive a contradiction and the theorem follows�

����� Construction based on Collections of Permutations

We now combine the underlying ideas of Construction ���� �of Subsection �����
 and Theo�
rem ���� �above
 to present a construction of pseudorandom generators based on collections
of one�way permutations� Let �I�D� F 
 be a triplet of algorithms de�ning a collection of one�
way permutations �see Section �����
� Recall that I��n� r
 denotes the output of algorithm
I on input �n and coin tosses r� Likewise� D�i� s
 denotes the output of algorithm D on
input i and coin tosses s� The reader may assume� for simplicity� that jrj jsj n� Actually�
this assumption can be justi�ed in general � see Exercise ��� However� in many applications
it is more natural to assume that jrj jsj q�n
 for some �xed polynomial q��
� We remind
the reader that Theorem ���� applies also to collections of one�way permutations�

Construction ���� Let �I�D� F 
 be a triplet of algorithms de�ning a strong collection of
one�way permutations� and let B be a hard�core predicate for this collection� Let p��
 be an
arbitrary polynomial� De�ne G�r� s
  	� � � �	p�n�� where i

def
 I��n� r
� s�

def
 D�i� s
� and

for every ��j�p�jsj
 it holds that 	j  B�sj��
 and sj  fi�sj��
�

On seed �r� s
� algorithm G �rst uses r to determine a permutation fi over Di �i�e��
i � I��n� r

� Secondly� algorithm G uses s to determine a �starting point�� s�� in Di�
For simplicity� let us shorthand fi by f � The essential part of algorithm G is the repeated
application of the function f to the starting point s� and the extraction of a hard�core
predicate for each resulting element� Namely� algorithm G computes a sequence of elements
s�� ���� sp�n�� where sj  f�sj��
 for every j �i�e�� sj  f �j��s�
� where f

�j� denotes j suc�
cessive applications of the function f
� Finally� algorithm G outputs the string 	� � � �	p�n��
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where 	j  B�sj��
� Note that 	j is easily computed from sj�� but is a �hard to approxi�
mate� from sj  f�sj��
� The pseudorandomness property of algorithm G depends on the
fact that G does not output the intermediate sj �s� �In the sequel� we will see that out�
putting the last element� namely sp�n�� does not hurt the pseudorandomness property�
 The
expansion property of algorithm G depends on the choice of the polynomial p��
� Namely�
the polynomial p��
 should be larger than the polynomial �q��
 �where �q�n
 equals the total
length of r and s corresponding to I��n

�

Theorem ���� Let �I�D� F 
� B� p��
� and G be as in Construction ���� 	above
� so that
p�n
 � �q�n
 for all n�s� Suppose that for every i in the range of algorithm I� the random
variable D�i
 is uniformly distbuted over the set Di� Then G is a pseudorandom generator�

Theorem ���� is an immediate corollary of the following proposition�

Proposition ���� Let n and t be integers� For every i in the range of I��n
 and every

x in Di� de�ne Gi�t�x
  	� � � �	t� where s�
def
 x� sj  f

�j�
i �x
 	f �j� denotes j successive

applications of the function f
 and 	j  B�sj��
� for every ��j� t� Let �I�D� F 
 and B be
as in Theorem ���� 	above
� In be a random variable representing I��n
� and Xn  D�In

be a random variable depending on In� Then� for every polynomial p��
� the ensembles

f�In� GIn�p�n��Xn
� f
�p�n��
In

�Xn

gn�IN and f�In� Up�n�� f �p�n��In
�Xn

gn�IN are polynomial�time

indistinguishable�

Hence� the distinguishing algorithm gets� in addition to the p�n
�bit long sequence to be
examined� also the index i chosen by G �in the �rst step of G�s computation
 and the last sj
�i�e�� sp�n�
 computed by G� Even with this extra information it is infeasible to distinguish
GIn�p�n��Xn
  G��nU�q�n�
 from Up�n��

Proof Outline� The proof follows the proofs of Theorems ���� and ���� �of Subsection �����
and the current subsection� resp�
� First� the statement is proven for p�n
  � �for all n�s
�
This part is very similar to the proof of Theorem ����� Secondly� observe that the random
variable Xn has distribution identical to the random variable fIn�Xn
� even conditioned on
In  i �of every i
� Finally� assuming the validity of the case p��
  �� the statement is
proven for every polynomial p��
� This part is analogous to the proof of Theorem ����� one
has to construct hybrids so that the kth hybrid starts with an element i in the support of In�

followed by k random bits� and ends with Gi�p�n��k�Xn
 and f
p�n��k
i �Xn
� where Xn  D�i
�

The reader should be able to complete the argument�

Proposition ��� and Theorem ���� remain valid even if one relaxes the condition concerning
the distribution of D�i
� and only requires that D�i
 is statistically close �as a function in
jij
 to the uniform distribution over Di�



��� CHAPTER �� PSEUDORANDOM GENERATORS

����� Practical Constructions

As an immediate application of Construction ����� we derive pseudorandom generators
based on either of the following assumptions

� The Intractability of the Discrete Logarithm Problem� The genertor is based on the fact
that it is hard to predict� given a prime P � a primitive element G in the multiplicative
group mod P � and an element Y of the group� whether there exists ��x�P
� so that
Y � Gx mod P � In other words� this bit constitues a hard�core for the DLP collection
�of Subsection �����
�

� The di�culty of inverting RSA� The genertor is based on the fact that the least
signi�cant bit constitues a hard�core for the RSA collection�

� The Intractability of Factoring Blum Integers� The genertor is based on the fact that
the least signi�cant bit constitues a hard�core for the Rabin collection� when viewed
as a collection of permutations over the quadratic residues of Blum integers �see
Subsection �����
�

We ellaborate on the last example since it o�ers the most e�cient implementation and
yet is secure under a widely believed intractability assumption� The generator uses its seed
in order to generate a composite number� N � which is the product of two relatively large
primes�

			 PROVIDE DETAILS ABOVE� MORE EFFICIEN HEURISTIC BELOW���

��
 � Construction based on One�Way Functions

It is known that one�way functions exist if and only if pseudorandom generators exist�
However� the known construction which transforms arbitrary one�way functions into pseu�
dorandom generators is impractical� Furthermore� the proof that this construction indeed
yields pseudorandom generators is very complex and unsuitable for a book of the current
nature� Instead� we refrain to present some of the ideas underlying this construction�

����� Using ��� One�Way Functions

Recall that if f is a ��� length�preserving one�way function and b is a corresponding hard�

core predicate then G�s

def
 f�s
b�s
 constitutes a pseudorandom generator� Let us relax the

condition imposed on f and assume that f is a ��� one�way function �but is not necessarily
length preserving
� Without loss of generality� we may assume that there exists a polynomial
p��
 so that jf�x
j p�jxj
 for all x�s� In case f is not length preserving� it follows that
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p�n
 � n� At �rst glance� one may think that we only bene�t in such a case since f by
itself has an expanding property� The impression is misleading since the expanded strings
may not �look random�� In particular� it may be the case that the �rst bit of f�x
 is
zero for all x�s� More generally� f�Un
 may be easy to distinguish from Up�n� �otherwise
f itself constitutes a pseudorandom generator
� Hence� in the general case� we need to
get rid of the expansion property of f since it is not accompanied by a �pseudorandom�
property� In general� we need to shrink f�Un
 back to length � n so that the shrunk result
induces uniform distribution� The question is how to e�ciently carry on this process �i�e�� of
shrinking f�x
 back to length jxj� so that the shrunk f�Un
 induces a uniform distribution
on f�� �gn
�

Suppose that there exists an e�ciently computable function h so that fh�x

def
 h�f�x



is length preserving and ���� In such a case we can let G�s

def
 h�f�s

b�s
� where b is a

hard�core predicate for f � and get a pseudorandom generator� The pseudorandomness of G
follows from the observation that if b is a hard�core for f it is also a hard�core for fh �since
an algorithm guessing b�x
 from h�f�x

 can be easily modi�ed so that it guesses b�x
 from
f�x
� by applying h �rst
� The problem is that we �know nothing about the structure� of
f and hence are not guaranteed that h as above does exist� An important observation is
that a uniformly selected hashing function will have approximately the desired properties�
Hence� hashing functions play a central role in the construction� and consequently we need
to discuss these functions �rst�

Hashing Functions

The following terminology relating to hashing functions is merely an ad�hoc terminology
�which is not a standard one
� Let Smn be a set of strings representing functions mapping
n�bit strings to m�bit strings� In the sequel we freely associate the strings in Smn with the
functions that they represent� Let Hm

n be a random variable uniformly distributed over the
set Smn � We call S

m
n a hashing family if it satis�es the following three conditions�

�� Smn is a pairwise independent family of mappings� for every x 	 y � f�� �gn� the
random variables Hm

n �x
 and Hm
n �y
 are independent and uniformly distributed in

f�� �gm�
�� Smn has succinct representation� Smn  f�� �gpoly�n�m��

�� Smn can be e�ciently evaluated� there exists a polynomial�time algorithm that� on
input a representation of a function� h �in Smn 
� and a string x�f�� �gn� returns h�x
�

A widely used hashing family is the set of a�ne transformations mapping n�dimensional
binary vectors to m�dimensional ones �i�e�� transformations a�ected by multiplying the n�
dimensional vector by an n�by�m binary matrix and adding an m�dimensional vector to
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the result
� A hashing family with more succinct representation is obtained by considering
only the transformations a�ected by Toeplitz matrices �i�e�� matrices which are invariant
along the diagonals
� For further details see Exercise ��� Following is a lemma� concerning
hashing functions� that is central to our application �as well as to many applications of
hashing functions in complexity theory
� Loosely speaking� the lemma asserts that most
h�s in a hashing family have h�Xn
 distributed almost uniformly� provided Xn does not
assign too much probability mass to any single string�

Lemma ���	 Let m � n be integers� Smn be a hashing family� and b and � be two reals so

that b � n and � � �� b�m
� � Suppose that Xn is a random variable distributed over f�� �gn

so that for every x it holds that Prob�Xn x
 � ��b� Then� for every � � f�� �gm� and for
all but a ���b�m���� fraction of the h�s in Smn � it holds that

Prob�h�Xn
 �
 � ��� �
 � ��m

A function h not satisfying Prob�h�Xn
  �
 � �� � �
 � ��m is called bad �for � and the
random variable Xn
� Averaging on all h�s we have Prob�h�Xn
  �
 equal ��m� Hence
the lemma bounds the fraction of h�s which deviate from the average value� Typically we

shall use �
def
 ��

b�m
� � � �making the deviation from average equal the fraction of bad

h�s
� Another useful choice is � � � �which yields an even smaller fraction of bad h�s� yet
badness has only a �lower bound interpretation�� i�e� Prob�h�Xn
 �
 � �� ! �
 � ��m
�

Proof� Fix an arbitrary random variable Xn� satisfying the conditions of the lemma� and

an arbitrary � � f�� �gm� Denote wx
def
 Prob�Xn x
� For every h we have

Prob�h�Xn
 �
  
X
x

wx�x�h


where �x�h
 equal � if h�x
  � and � otherwise� Hence� we are interested in the probability�
taken over all possible choices of h� that j��m �Px wx�x�h
j � ���m� Looking at the �x�s
as random variables de�ned over the random variable Hm

n � it is left to show that

Prob

�
j��m �

X
x

wx�xj � � � ��m
�
�
���b�m�

��

This is proven by applying Chebyshev�s Inequality� using the fact that the �x�s are pairwise
independent� and that �x equals � with probability ��m �and � otherwise
� �We also take
advantage on the fact that wx � ��b�
 Namely�

Prob

�
j��m �

X
x

wx�xj � � � ��m
�

� Var �
P

xwx�x


�� � ��m
�

�

P
x �

�mw�
x

�� � ���m

� ��m��b

�� � ���m
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The lemma follows�

Constructing �Almost� Pseudorandom Generators

Using any ��� one�way function and any hashing family� we can take a major step towards
constructing a pseudorandom generator�

Construction ���� Let f �f�� �g� ��f�� �g� be a function satisfying jf�x
j p�jxj
 for some
polynomial p��
 and all x�s� For any integer function l � IN �� IN� let g �f�� �g� ��f�� �g� be a
function satisfying jg�x
j l�jxj
!�� and Sn�l�n�p�n� be a hashing family� For every x � f�� �gn
and h � S

n�l�n�
p�n� � de�ne

G�x� h

def
 �h�f�x

� h� g�x



Clearly� jG�x� h
j �jxj�l�jxj

! jhj! �l�jxj
!�
  jxj! jhj! ��

Proposition ���� Let f � l� g and G be as above� Suppose that f is ��to�� and g is a
hard�core function of f � Then� for every probabilistic polynomial�time algorithm A� every
polynomial p��
� and all su�ciently large n�s

jProb�A�G�Un� Uk

 �
� Prob�A�Un�k��
 �
j � ��
l�n�
� !

�

p�n


where k is the length of the representation of the hashing functions in S
n�l�n�
p�n� �

The proposition can be extended to the case in which the function f is polynomial�to��
�instead of ��to��
� Speci�cally� let f satisfy jf��f�x
j � q�jxj
� for some polynomial q��

and all su�ciently long x�s� The modi�ed proposition asserts that for every probabilistic
polynomial�time algorithm A� every polynomial p��
� and all su�ciently large n�s

jProb�A�G�Un� Uk

 �
� Prob�A�Un�k��
 �
j � ��
l�n��log� q�n�

� !
�

p�n


where k is as above�

In particular� the above proposition holds for functions l��
 of the form l�n

def
 c log� n�

where c � � is a constant� For such functions l� every one�way function �can be easily
modi�ed into a function which
 has a hard�core g as required in the proposition�s hypothesis
�see Subsection �����
� Hence� we get very close to constructing a pseudorandom generator�
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Proof Sketch� We �rst note that

G�UnUk
  �H
n�l�n�
p�n� �f�Un

� H

n�l�n�
p�n� � g�Un



Un�k��  �Un�l�n�� H
n�l�n�
p�n� � Ul�n���


We consider the hybrid �H
n�l�n�
p�n� �f�Un

� H

n�l�n�
p�n� � Ul�n���
� The proposition is a direct con�

sequence of the following two claims�

Claim �����	 The ensembles

f�Hn�l�n�
p�n� �f�Un

� H

n�l�n�
p�n� � g�Un

gn�IN

and
f�Hn�l�n�

p�n� �f�Un

� H
n�l�n�
p�n� � Ul�n���
gn�IN

are polynomial�time indistinguishable�

Proof Idea� Use a �reducibility argument�� If the claim does not hold then contradiction to
the hypothesis that g is a hard�core of f is derived� �

Claim �����	 The statistical di�erence between the random variables

�H
n�l�n�
p�n� �f�Un

� H

n�l�n�
p�n� � Ul�n���


and
�Un�l�n�� H

n�l�n�
p�n� � Ul�n���


is bounded by ��l�n����

Proof Idea� Use the hypothesis that S
n�l�n�
p�n� is a hashing family� and apply Lemma ����� �

Since the statistical di�erence is a bound on the ability of algorithms to distinguish� the
proposition follows�

Applying Proposition ����

Once the proposition is proven we consider the possibilities of applying it in order to con�
struct pseudorandom generators� We stress that applying Proposition ����� with length
function l��
� requires having a hard�core function g for f with jg�x
j  l�jxj
! �� By The�
orem ��� �of Subsection �����
 such hard�core functions exist practically for all one�way
functions� provided that l��
 is logarithmic �actually� Theorem ��� asserts that such hard�
cores exist for a modi�cation of any one�way function which preserves its ��� property
�
Hence� combining Theorem ��� and Proposition ����� and using a logarithmic length func�
tion� we get very close to constructing a pseudorandom generator� In particular� for every

polynomial p��
� using l�n
 def � log� p�n
� we can construct a deterministic polynomial�time
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algorithm expanding n�bit long seeds into �n!�
�bit long strings so that no polynomial�time
algorithm can distinguish the output strings from uniformly chosen ones� with probability
greater than �

p�n� �except for �nitely many n�s
� Yet� this does not imply that the output is

pseudorandom �i�e�� that the distinguishing gap is smaller than any polynomial fraction
�
A �nal trick is needed �since we cannot use l��
 bigger than any logarithmic function
� In
the sequel we present two alternative ways for obtaining a pseudorandom generator from
the above construction�

The �rst alternative is to use Construction ���� �of Subsection ����
 in order to increase
the expansion factor of the above algorithms� In particular� for every integer k� we con�
struct a deterministic polynomial�time algorithm expanding n�bit long seeds into n��bit long
strings so that no polynomial�time algorithm can distinguish the output strings from uni�
formly chosen ones� with probability greater than �

nk
�except for �nitely many n�s
� Denote

these algorithms by G�� G�� ���� and construct a pseudorandom generator G by letting

G�s

def
 G��s�
�G��s�
 � � � �Gk�jsj��sk�jsj�


where � denotes bit�by�bit exclusive�or of strings� s�s� � � �sk�jsj�  s� jsij  jsj
k�jsj� � �� and

k�n

def
 �
p
n� Clearly� jG�s
j � k�jsj
 � � jsj

k�jsj�

�  jsj�� The pseudorandomness of G follows

by a �reducibility argument�� �The choice of the function k is rather arbitrary� and any
unbounded function k��
 satisfying k�n
 � n��� will do�


The second alternative is to apply Construction ���� to the function f de�ned by

f�x�� ���� xn

def
 f�x�
 � � �f�xn


where jx�j  � � �  jxnj  n� The bene�t in applying Construction ���� to the function f is

that we can use l�n�

def
 n��� and hence Proposition ���� yields that G is a pseudorandom

generator� All that is left is to show that f has a hard core function which maps n��bit
strings into n�bit strings� Assuming that b is a hard�core predicate of the function f � we
can construct such a hard�core function for f � Speci�cally�

Construction ���� Let f �f�� �g� ��f�� �g� and b �f�� �g� ��f�� �g� De�ne

f�x�� ���� xn

def
 f�x�
 � � �f�xn


g�x�� ���� xn

def
 b�x�
 � � �b�xn


where jx�j  � � �  jxnj  n�

Proposition ���� Let f and b be as above� If b is a hard�core predicate of f then g is a
hard�core function of f �
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Proof Idea� Use the hybrid technique� The ith hybrid is�
f�U ���

n � ���� U �n�
n 
� b�U ���

n 
� ���� b�U �i�
n 
� U

�i���
� � ���� U

�n�
�

�
Use a reducibility argument �as in Theorem ���� of Subsection �����
 to convert a distin�
guishing algorithm into one predicting b from f �

Using either of the above alternatives� we get

Theorem ���� If there exist ��� one�way functions then pseudorandom generators exist
as well�

The entire argument can be extended to the case in which the function f is polynomial�to��
�instead of ��to��
� Speci�cally� let f satisfy jf��f�x
j � q�jxj
� for some polynomial q��
 and
all su�ciently long x�s� Then if f is one�way then �either of the above alternatives yields
that
 pseudorandom generators exists� Proving the statement using the �rst alternative
is quite straightforward given the discussion proceeding Proposition ����� In proving the
statement using the second alternative apply Construction ���� to the function f with

l�n�

def
 n � ��! log� q�n

� �� This requires showing that f has a hard core function which

maps n��bit strings into n��!log� q�n

�bit strings� Assuming that g is a hard�core function
of the function f � with jg�x
j  � ! log� q�jxj
� we can construct such a hard�core function
for f � Speci�cally�

g�x�� ���� xn

def
 g�x�
 � � �g�xn


where jx�j  � � �  jxnj  n�

����� Using Regular One�Way Functions

The validity of Proposition ���� relies heavily on the fact that if f is ��� then f�Un
 main�
tains the �entropy� of Un in a strong sense �i�e�� Prob�f�Un
 �
 � ��n for every �
� In this
case� it was possible to shrink f�Un
 and get almost uniform distribution over f�� �gn�l�n��
As stressed above� the condition may be relaxed to requiring that f is polynomial�to�� �in�
stead of ��to��
� In such a case only logarithmic loss of �entropy� occurs� and such a loss
can be compensated by an appropriate increase in the range of the hard�core function� We
stress that hard�core functions of logarithmic length �i�e�� satisfying jg�x
j O�log jxj

 can
be constructed for any one�way function� However� in general� the function f may not be
polynomial�to�� and in particular it can map exponentially many images to the same range
element� If this is the case then applying f to Un yields a great loss in �entropy�� which

cannot be compensated using the above methods� For example� if f�x� y

def
 f ��x
�jyj� for

jxj jyj� then Prob�f�Un
 �
 � ��
j�j
� for some ��s� In this case� achieving uniform distri�

bution from f�Un
 requires shrinking it to length � n
�� In general� we cannot compensate
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for these lost bits since f may not have a hard�core with such huge range �i�e�� a hard�core

g satisfying jg��
j  j
j
� 
� Hence� in this case� the above methods fail for constructing an

algorithm that expands its input into a longer output� A new idea is needed� and indeed
presented below�

The idea is that� in case f maps di�erent preimages into the same image y� we can
augment y by the index of the preimage� in the set f���y
� without damaging the hardness�
to�invert of f � Namely� we de�ne F �x


def
 f�x
 � idxf �x
� where idxf�x
 denotes the index

�say by lexicographic order
 of x in the set fx� � f�x�
 f�x
g� We claim that inverting F
is not substantially easier than inverting f � This claim can be proven by a �reducibility
argument�� Given an algorithm for inverting F we can invert f as follows� On input y
�supposedly in the range of f�Un

� we �rst select m uniformly in f�� ���� ng� next select i
uniformly in f�� ���� �mg� and �nally try to invert F on �y� i
� When analyzing this algorithm�
consider the case i  dlog� jf���y
je�

The function F suggested above does preserve the hardness�to�invert of f � The problem
is that it does not preserve the easy�to�compute property of f � In particular� for general
f it is not clear how to compute idxf�x
 �i�e�� the best we can say is that this task can be
performed in polynomial space
� Again� hashing functions come to the rescue� Suppose� for
example that f is �m�to�� on strings of length n� Then� we can set idxf �x
  �H

m
n � H

m
n �x

�

obtaining �probabilistic indexing� of the set of preimages� We stress that applying the
above trick requires having a good estimate for the size of the set of preimages �of a given
image
� That is� given x it should be easy to compute jf��f�x
j� A simple case where such
an estimate can be handy is the case of regular functions�

De�nition ���
 �Regular functions
� A function f � f�� �g� �� f�� �g� is called regular if
there exists an integer function m � IN �� IN so that for all su�ciently long x � f�� �g� it
holds

jfy � f�x
 f�y

 jxj jyjgj �m�jxj�

For simplicity� the reader may further assume that there exists an algorithm that on input
n computes m�n
 in poly�n
�time� As we shall see� in the end of this subsection� one can
do without this assumption� For sake of simplicity �of notation
� we assume in the sequel
that if f�x
 f�y
 then jxj jyj�

Construction ���� Let f �f�� �g� ��f�� �g� be a regular function withm�jxj
  log� jf��f�x
j
for some integer function m��
� Let l � IN �� IN be an integer function� and S

m�n��l�n�
n be a

hashing family� For every x � f�� �gn and h � S
m�n��l�n�
n � de�ne

F �x� h

def
 �f�x
� h�x
� h
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If f can be computed in polynomial�time and m�n
 can be computed from n in poly�n
�
time� then F can be computed in polynomial�time� We now show that if f is a regular
one�way function� then F is �hard to invert�� Furthermore� if l��
 is logarithmic then F is
�almost �����

Proposition ���� Let f � m� l and F be as above� Suppose that there exists an algorithm
that on input n computes m�n
 in poly�n
�time� Then�

�� F is �almost� ����

Prob
�
jF��F �Un� Hm�n��l�n�

n 
j � �l�n���
�
� ��

l�n�
�

�Recall that Hk
n denotes a random variable uniformly distributed over Skn�


�� F �preserves� the one�wayness of f �
If f is strongly 	resp� weakly
 one�way then so is F �

Proof Sketch� Part ��
 is proven by applying Lemma ����� using the hypothesis that

S
m�n��l�n�
n is a hashing family� Part ��
 is proven using a �reducibility argument� � As�
suming� to the contradiction� that there exists an e�cient algorithm A that inverts F with
unallowable success probability� we construct an e�cient algorithm A� that inverts f with
unallowable success probability �reaching contradiction
� For sake of concreteness� we con�
sider the case in which f is strongly one�way� and assume to the contradiction that algorithm

A inverts F on F �Un� H
m�n��l�n�
n 
 with success probability ��n
� so that ��n
 � �

poly�n� for

in�nitely many n�s� Following is a description of A��

On input y �supposedly in the range of f�Un

� algorithm A� repeats the following
experiment for poly� n

��n�
 many times� Algorithm A� selects uniformly h � S
m�n��l�n�
n and

� � f�� �gm�n��l�n�� and initiates A on input �y� �� h
� Algorithm A� sets x to be the n�bit
long pre�x of A�y� �� h
� and outputs x if y  f�x
� Otherwise� algorithm A� continues to
the next experiment�

Clearly� algorithm A� runs in polynomial�time� provided that ��n
 � �
poly�n� � We now

evaluate the success probability of A�� For every possible input� y� to algorithm A�� we
consider a random variable Xn uniformly distributed in f���y
� Let ��y
 denote the success
probability of algorithm A on input �y�Hk

n�Xn
� H
k
n
� where n

def
 jyj and k def

 m�n
 � l�n
�

Clearly� Exp���f�Un


  ��n
� and Prob���f�Un

�
��n�
� 
 �

��n�
� follows� We �x an arbitrary

y � f�� �gn so that ��y
 � ��n�
� � We prove the following technical claim�

Claim ������	 Let n� k and Xn be as above� Suppose that B is a set of pairs� and

�
def
 Prob��Hk

n�Xn
� H
k
n
�B
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Then�

Prob��Uk� H
k
n
�B
 �

�	

�
 � k
Using this claim� it follows that the probability that A� inverts f on y in a single iteration

is at least � ��y�	 

	 � �k � We reach a contradiction �to the one�wayness of f
� and the proposition

follows� All that is left is to prove Claim ������� The proof� given below� is rather technical�

We stress that the fact that m�n
 can be computed from n does not play an essential role
in the reducibility argument �as it is possible to try all possible values of m�n

�

Claim ������ is of interest for its own sake� However� its proof provides no signi�cant
insights and may be skipped without signi�cant damage �especially by readers that are
more interested in cryptography than in �probabilistic analysis�
�

Proof of Claim ������� We �rst use Lemma ���� to show that only a �tiny� fraction of
the hashing functions in Skn can map �large� probability mass into �small� subsets� Once
this is done� the claim is proven by dismissing those few bad functions and relating the
two probabilities� appearing in the statement of the claim� conditioned on the function not
being bad� Details follow�

We begin by bounding the fraction of the hashing functions that map �large� probability
mass into �small� subsets� We say that a function h � Skn is �T�&
�expanding if there exists
a set R � f�� �gk of cardinality & � �k so that Prob�h�Xn
�R

 � �T ! �
 � &� In other
words� h maps to some set of density & a probability mass T ! � times the density of the
set� Our �rst goal is to prove that at most �

	 of the h�s are �
��k
��
� ��

�	k
�expanding� In other

words� only �
	 of the function map to some set of density

��

�	k a probability mass of more

than �
� �

We start with a related question� We say that � � f�� �gk is t�overweighted by the
function h if Prob�h�Xn
 �

 � �t!�
���k� A function h � Skn is called �t� �
�overweighting
if there exists a set R � f�� �gk of cardinality ��k so that each � � R is t�overweighted by h�
�Clearly� if h is �t� �
�overweighting then it is also �t� �
�expanding� but the converse is not
necessarily true�
 We �rst show that at most a �

t�
fraction of the h�s are �t� �
�overweighting�

The proof is given in the rest of this paragraph� Recall that Prob�Xn x
 � ��k � for every
x� Using Lemma ����� it follows that each �� f�� �gk is t�overweighted by at most a t��
fraction of the h�s� Assuming� to the contradiction� that more than a �

t�
fraction of the

h�s are �t� �
�overweighting� we construct a bipartite graph by connecting each of these h�s
with the ��s that it t�overweights� Contradiction follows by observing that there exists an

� which is connected to more than
jSknj

t��
��k

�k
 �

t�
� jSknj of the h�s�

We now relate the expansion and overweighting properties� Speci�cally� if h is �T�&
�
expanding then there exists an integer i�f�� ���� kg so that h is �T ��i��� �

k��i 
�overweighting�
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Hence� at most a
kX
i��

�

�T � �i��
� � �
k��i

�
�k

T � �&
fraction of the h�s can be �T�&
�expanding� It follows that at most �	 of the h�s are �

��k
�� �

��

�	k
�
expanding�

We call h honest if it is not ���k
��
� ��

�	k 
�expanding� Hence� if h is honest and Prob�h�Xn
�
R
 � �

� then R has density at least ��

�	k � Concentrating on the honest h�s� we now eval�
uate the probability that ��� h
 hits B� when � is uniformly chosen� We call h good if
Prob��h�Xn
� h
�B
 � �

� � Clearly� the probability that H
k
n is good is at least

�
� � and the

probabilityHk
n is both good and honest is at least

�
	 � Denote byG the set of these h�s �i�e�� h�s

which are both good and honest
� Clearly� for every h � G we have Prob��h�Xn
� h
�B
 � �
�

�since h is good
 and Prob��Uk� h
�B
 � ��

�	k �since h is honest
� Using Prob�H
k
n�G
 � �

	 �
the claim follows� �

Applying Proposition ����

It is possible to apply Construction ���� to the function resulting from Construction �����
and the statement of Proposition ���� still holds with minor modi�cations� Speci�cally� Con�
struction ���� is applied with l��
 twice the function �i�e�� the l��

 used in Construction �����
and the bound in Proposition ���� is � � �� l�n�

� �instead of ��
l�n�
� 
� The argument leading

to Theorem ����� remains valid as well� Furthermore� we may even waive the requirement
that m�n
 can be computed �since we can construct functions Fm for every possible value
of m�n

� Finally� we note that the entire argument holds even if the de�nition of regular
functions is relaxed as follows�

De�nition ���� �Regular functions � revised de�nition
� A function f �f�� �g� ��f�� �g� is
called regular if there exists an integer function m� � IN �� IN and a polynomial q��
 so that
for all su�ciently long x � f�� �g� it holds

�m
��jxj� � jfy � f�x
 f�y
gj � q�jxj
 � �m��jxj�

When using these �relaxed
 regular functions in Construction ����� set m�n

def
 m��n
� The

resulting function F will have a slightly weaker �almost� ��� property� Namely�

Prob
�
jF��F �Un� Hm�n��l�n�

n 
j � q�n
 � �l�n���
�
� ��

l�n�
�

The application of Construction ���� will be modi�ed accordingly� We get

Theorem ���	 If there exist regular one�way functions then pseudorandom generators exist
as well�
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����� Going beyond Regular One�Way Functions

The proof of Proposition ���� relies heavily on the fact that the one�way function f is
regular �at least in the weak sense
� Alternatively� Construction ���� needs to be modi�ed
so that di�erent hashing families are associated to di�erent x � f�� �gn� Furthermore� the
argument leading to Theorem ���� cannot be repeated unless it is easy to compute the
cardinality of set f���f�x

 given x� Note that this time we cannot construct functions
Fm for every possible value of dlog� jf���y
je since none of the functions may satisfy the
statement of Proposition ����� Again� a new idea is needed�

A key observation is that although the value of log� jf���f�x

j may vary for di�erent
x � f�� �gn� the value m�n
 def Exp�log� jf���f�Un

j
 is unique� Furthermore� the function
f de�ned by

f�x�� ���� xn�

def
 f�x�
� ���� f�xn�


where jx�j jxn� j n� has the property that all but a negligible fraction of the domain reside
in preimage sets with logarithm of cardinality not deviating too much from the expected

value� Speci�cally� letm�n�

def
 Exp�log� jf���f�Un�

j
� Clearly� m�n�
  n� �m�n
� Using

Cherno� Bound� we get

Prob
�
abs

�
m�n�
� log� jf���f�Un�

j

�
� n�

�
� ��n

Suppose we apply Construction ���� to f setting l�n�

def
 n�� Denote the resulting

function by F � Suppose we apply Construction ���� to F setting this time l�n�

def
 �n�� ��

Using the ideas presented in the proofs of Propositions ���� and ����� one can show that
if the n��bit to l�n�
 ! ��bit function used in Construction ���� is a hard�core of F then
the resulting algorithm constitutes a pseudorandom generator� Yet� we are left with the
problem of constructing a huge hard�core function� G� for the function F � Speci�cally�
jG�x
j has to equal �jxj �� � for all x�s� A natural idea is to de�ne G analogously to the way
g is de�ned in Construction ����� Unfortunately� we do not know how to prove the validity
of this construction �when applied to F 
� and a much more complicated construction is
required� This construction does use all the above ideas in conjunction with additional
ideas not presented here� The proof of validity is even more complex� and is not suitable
for a book of the current nature� We thus conclude this section by merely stating the result
obtained�

Theorem ���� If there exist one�way functions then pseudorandom generators exist as
well�
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��� Pseudorandom Functions

Pseudorandom generators enable to generate� exchange and share a large number of pseu�
dorandom values at the cost of a much smaller number of random bits� Speci�cally� poly�n

pseudorandom bits can be generated� exchanged and shared at the cost of n �uniformly cho�
sen bits
� Since any e�cient application uses only a polynomial number of random values�
providing access to polynomially many pseudorandom entries seems su�cient� However�
the above conclusion is too hasty� since it assumes implicitly that these entries �i�e�� the
addresses to be accessed
 are �xed beforehand� In some natural applications� one may need
to access addresses which are determined �dynamically� by the application� For exam�
ple� one may want to assign random values to �poly�n
 many
 n�bit long strings� produced
throughout the application� so that these values can be retrieved at latter time� Using pseu�
dorandom generators the above task can be achieved at the cost of generating n random bits
and storing poly�n
 many values� The challenge� met in the sequel� is to achieve the above
task at the cost of generating and storying only n random bits� The key to the solution is
the notion of pseudorandom functions� In this section we de�ne pseudorandom functions
and show how to e�ciently implement them� The implementation uses as a building block
any pseudorandom generator�

����� Denitions

Loosely speaking� pseudorandom functions are functions which cannot be distinguished from
truly random functions by any e�cient procedure which can get the value of the function at
arguments of its choice� Hence� the distinguishing procedure may query the function being
examined at various points� depending possibly on previous answers obtained� and yet can
not tell whether the answers were supplied by a function taken from the pseudorandom
ensemble �of functions
 or from the uniform ensemble �of function
� Hence� to formalize the
notion of pseudorandom functions we need to consider ensembles of functions� For sake of
concreteness we consider in the sequel ensembles of length preserving functions� Extensions
are discussed in Exercise ���

De�nition ���� �function ensembles
� A function ensemble is a sequence F  fFngn�IN
of random variables� so that the random variable Fn assumes values in the set of functions
mapping n�bit long strings to n�bit long strings� The uniform function ensemble� denoted
H  fHngn�IN� has Hn uniformly distributed over the set of functions mapping n�bit long
strings to n�bit long strings�

To formalize the notion of pseudorandom functions we use �probabilistic polynomial�
time
 oracle machines� We stress that our use of the term oracle machine is almost identical
to the standard one� One deviation is that the oracle machines we consider have a length
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preserving function as oracle rather than a Boolean function �as is standard in most cases
in the literature
� Furthermore� we assume that on input �n the oracle machine only makes
queries of length n� These conventions are not really essential �they merely simplify the
exposition a little
�

De�nition ���� �pseudorandom function ensembles
� A function ensemble� F  fFngn�IN�
is called pseudorandom if for every probabilistic polynomial�time oracle machine M � every
polynomial p��
 and all su�ciently large n�s

jProb�MFn��n
 �
� Prob�MHn��n
 �
j � �

p�n


where H  fHngn�IN is the uniform function ensemble�

Using techniques similar to those presented in the proof of Proposition ��� �of Subsec�
tion �����
� one can demonstrate the existence of pseudorandom function ensembles which
are not statistically close to the uniform one� However� to be of practical use� we need
require that the pseudorandom functions can be e�ciently computed�

De�nition ���� �e�ciently computable function ensembles
� A function ensemble� F  
fFngn�IN� is called e�ciently computable if the following two conditions hold

�� �e�cient indexing
� There exists a probabilistic polynomial time algorithm� I� and a
mapping from strings to functions� �� so that ��I��n

 and Fn are identically dis�
tributed�
We denote by fi the f�� �gn ��f�� �gn function assigned to i 	i�e�� fi

def
 ��i

�

�� �e�cient evaluation
� There exists a probabilistic polynomial time algorithm� V � so
that V �i� x
  fi�x
�

In particular� functions in an e�ciently computable function ensemble have relatively
succinct representation �i�e�� of polynomial rather than exponential length
� It follows that
e�ciently computable function ensembles may have only exponentially many functions �out
of the double�exponentially many possible functions
�

Another point worthy of stressing is that pseudorandom functions may �if being ef�
�ciently computable
 be e�ciently evaluated at given points� provided that the function
description is give as well� However� if the function �or its description
 is not known �and
it is only known that it is chosen from the pseudorandom ensemble
 then the value of the
function at a point cannot be approximated �even in a very liberal sense and
 even if the
values of the function at other points is also given�

In the rest of this book we consider only e�ciently computable pseudorandom functions�
Hence� in the sequel we sometimes shorthand such ensembles by calling them pseudorandom
functions�
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����� Construction

Using any pseudorandom generator� we construct a �e�ciently computable
 pseudorandom
function �ensemble
�

Construction ���� Let G be a deterministic algorithm expanding inputs of length n into
strings of length �n� We denote by G��s
 the jsj�bit long pre�x of G�s
� and by G��s
 the
jsj�bit long su�x of G�s
 	i�e�� G�s
  G��s
G��s

� For every s � f�� �gn� we de�ne a
function fs �f�� �gn ��f�� �gn so that for every 	�� ���� 	n�f�� �g

fs�	�	� � � �	n
 def G�n�� � ��G���G���s

 � � �


Let Fn be a random variable de�ned by uniformly selecting s � f�� �gn and setting Fn  fs�
Finally� let F  fFngn�IN be our function ensemble�

Pictorially� the function fs is de�ned by n�step walks down a full binary tree of depth n
having labels on the vertices� The root of the tree� hereafter referred to as the level � vertex
of the tree� is labelled by the string s� If an internal node is labelled r then its left child
is labelled G��r
 whereas its right child is labelled G��r
� The value of fs�x
 is the string
residing in the leaf reachable from the root by a path corresponding to string x� when the
root is labelled by s� The random variable Fn is assigned labelled trees corresponding to
all possible �n labellings of the root� with uniform probability distribution�

A function� operating on n�bit strings� in the ensemble constructed above can be speci�ed
by n bits� Hence� selecting� exchanging and storing such a function can be implemented at
the cost of selecting� exchanging and storing a single n�bit string�

Theorem ���
 LetG and F be as in Construction ����� and suppose that G is a pseudoran�
dom generator� Then F is an e�ciently computable ensemble of pseudorandom functions�

Proof� Clearly� the ensemble F is e�ciently computable� To prove that F is pseudorandom
we use the hybrid technique� The kth hybrid will be assigned functions which result by
uniformly selecting labels for the vertices of the kth �highest
 level of the tree and computing
the labels of lower levels as in Construction ����� The ��hybrid will correspond to the
random variable Fn �since a uniformly chosen label is assigned to the root
� whereas the
n�hybrid will correspond to the uniform random variable Hn �since a uniformly chosen label
is assigned to each leaf
� It will be shown that an e�cient oracle machine distinguishing
neighbouring hybrids can be transformed into an algorithm that distinguishes polynomially
many samples of G�Un
 from polynomially many samples of U�n� Using Theorem ��� �of
Subsection �����
� we derive a contradiction to the hypothesis �that G is a pseudorandom
generator
� Details follows�
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For every k� ��k�n� we de�ne a hybrid distribution Hk
n �assigned as values functions

f � f�� �gn �� f�� �gn
 as follows� For every s�� s�� ���� s�k � f�� �gn� we de�ne a function
fs������s�k �f�� �gn ��f�� �gn so that

fs������s�k �	�	� � � �	n

def
 G�n�� � ��G�k���G�k���sidx��k������

 � � �


where idx��
 is index of � in the standard lexicographic order of strings of length j�j� �In
the sequel we take the liberty of associating the integer idx��
 with the string ��
 Namely�
fs	k �����s�k �x
 is computed by �rst using the k�bit long pre�x of x to determine one of the
sj �s� and next using the �n� k
�bit long su�x of x to determine which of the functions G�

and G� to apply at each remaining stage� The random variable H
k
n is uniformly distributed

over the above ��n
�
k
possible functions� Namely�

Hk
n
def
 f

U
���
n �����U

��k�
n

where U
�j�
n �s are independent random variables each uniformly distributed over f�� �gn�

At this point it is clear that H�
n is identical to Fn� whereas H

n
n is identical to Hn� Again�

as usual in the hybrid technique� ability to distinguish the extreme hybrids yields ability to
distinguish a pair of neighbouring hybrids� This ability is further transformed �as sketched
above
 so that contradiction to the pseudorandomness of G is reached� Further details
follow�

We assume� in contradiction to the theorem� that the function ensemble F is not pseu�
dorandom� It follows that there exists a probabilistic polynomial�time oracle machine� M �
and a polynomial p��
 so that for in�nitely many n�s

&�n

def
 jProb�MFn��n
 �
� Prob�MHn��n
 �
j � �

p�n


Let t��
 be a polynomial bounding the running time of M��n
 �such a polynomial exists
since M is polynomial�time
� It follows that� on input �n� the oracle machine M makes
at most t�n
 queries �since the number of queries is clearly bounded by the running time
�
Using the machine M � we construct an algorithm D that distinguishes the t��
�product of
the ensemble fG�Un
gn�IN from the t��
�product of the ensemble fU�ngn�IN as follows�

On input ��� ���� �t � f�� �g�n �with t  t�n

� algorithm D proceeds as follows� First� D
selects uniformly k � f�� �� ���� n� �g� This random choice� hereafter called the checkpoint�
and is the only random choice made by D itself� Next� algorithm D invokes the oracle
machine M �on input �n
 and answers M �s queries as follows� The �rst query of machine
M � denoted q�� is answered by

G�n�� � ��G�k���P�k�����


 � � �
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where q�  	� � � �	n� and P���
 denotes the n�bit pre�x of � �and P���
 denotes the n�bit
su�x of �
� In addition� algorithm D records this query �i�e�� q�
� Subsequent queries are
answered by �rst checking if their k�bit long pre�x equals the k�bit long pre�x of a previous
query� In case the k�bit long pre�x of the current query� denoted qi� is di�erent from the
k�bit long pre�xes of all previous queries� we associate this pre�x a new input string �i�e��
�i
� Namely� we answer query qi by

G�n�� � � �G�k��
�P�k��

��i


 � � �

where qi  	� � � �	n� In addition� algorithm D records the current query �i�e�� qi
� The
other possibility is that the k�bit long pre�x of the ith query equals the k�bit long pre�x of
some previous query� Let j be the smallest integer so that the k�bit long pre�x of the ith

query equals the k�bit long pre�x of the jth query �by hypothesis j � i
� Then� we record
the current query �i�e�� qi
 but answer it using the string associated with query qj � Namely�
we answer query qi by

G�n�� � � �G�k���P�k����j


 � � �

where qi  	� � � �	n� Finally� when machine M halts� algorithm D halts as well and outputs
the same output as M �

Pictorially� algorithm D answers the �rst query by �rst placing the two halves of ��
in the corresponding children of the tree�vertex reached by following the path from the
root corresponding to 	� � � �	k � The labels of all vertices in the subtree corresponding to
	� � � �	k are determined by the labels of these two children �as in the construction of F 
�
Subsequent queries are answered by following the corresponding paths from the root� In
case the path does not pass through a �k ! �
�level vertex which has already a label� we
assign this vertex and its sibling a new string �taken from the input
� For sake of simplicity�
in case the path of the ith query requires a new string we use the ith input string �rather
than the �rst input string not used so far
� In case the path of a new query passes through
a �k ! �
�level vertex which has been labelled already� we use this label to compute the
labels of subsequent vertices along this path �and in particular the label of the leaf
� We
stress that the algorithm does not necessarily compute the labels of all vertices in a subtree
corresponding to 	� � � �	k �although these labels are determined by the label of the vertex
corresponding to 	� � � �	k
� but rather computes only the labels of vertices along the paths
corresponding to the queries�

Clearly� algorithm D can be implemented in polynomial�time� It is left to evaluate its
performance� The key observation is that when the inputs are taken from the t�n
�product
of G�Un
 and algorithm D chooses k as the checkpoint then M behaves exactly as on the
kth hybrid� Likewise� when the inputs are taken from the t�n
�product of U�n and algorithm
D chooses k as the checkpoint then M behaves exactly as on the k ! �st hybrid� Namely�

Claim ������	 Let n be an integer and t
def
 t�n
� Let K be a random variable describing

the random choice of checkpoint by algorithm D �on input a t�long sequence of �n�bit long
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strings
� Then for every k�f�� �� ���� n� �g

Prob
�
D�G�U ���

n 
� ���� G�U �t�
n 

 � jK k

�
 Prob

�
MHk

n��n
 �
�

Prob
�
D�U

���
�n � ���� U

�t�
�n
 � jK k

�
 Prob

�
MHk��

n ��n
 �
�

where the U
�i�
n �s and U

�j�
�n �s are independent random variables uniformly distributed over

f�� �gn and f�� �g�n� respectively�

The above claim is quite obvious� yet a rigorous proof is more complex than one realizes at
�rst glance� The reason being that M �s queries may depend on previous answers it gets�
and hence the correspondence between the inputs of D and possible values assigned to the
hybrids is less obvious than it seems� To illustrate the di�culty consider a n�bit string which
is selected by a pair of interactive processes� which proceed in n iterations� At each iteration
the �rst party chooses a new location� based on the entire history of the interaction� and
the second process sets the value of this bit by �ipping an unbiased coin� It is intuitively
clear that the resulting string is uniformly distributed� and the same holds if the second
party sets the value of the chosen locations using the outcome of a coin �ipped beforehand�
In our setting the situation is slightly more involved� The process of determining the string
is terminated after k � n iterations and statements are made of the partially determined
string� Consequently� the situation is slightly confusing and we feel that a detailed argument
is required�

Proof of Claim ������	 We start by sketching a proof of the claim for the extremely simple
case in which M �s queries are the �rst t strings �of length n
 in lexicographic order� Let
us further assume� for simplicity� that on input ��� ���� �t� algorithm D happens to choose
checkpoint k so that t  �k��� In this case the oracle machine M is invoked on input
�n and access to the function fs������s�k�� � where s�j����  P���j
 for every j � �k and

	 � f�� �g� Thus� if the inputs to D are uniformly selected in f�� �g�n then M is invoked
with access to the k!�st hybrid random variable �since in this case the sj �s are independent
and uniformly distributed in f�� �gn
� On the other hand� if the inputs to D are distributed
as G�Un
 then M is invoked with access to the kth hybrid random variable �since in this
case fs������s�k��  fr������r�k where the rj�s are seeds corresponding to the �j �s
�

For the general case we consider an alternative way of de�ning the random variable
Hm
n � for every ��m� n� This alternative way is somewhat similar to the way in which

D answers the queries of the oracle machine M � �We use the symbol m instead of k since
m does not necessarily equal the checkpoint� denoted k� chosen by algorithm D�
 This
way of de�ning Hm

n consists of the interleaving of two random processes� which together
�rst select at random a function g � f�� �gm �� f�� �gn� that is later used to determine a
function f � f�� �gn �� f�� �gn� The �rst random process� denoted �� is an arbitrary process
��given to us from the outside�
� which speci�es points in the domain of g� �The process
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� corresponds to the queries of M � whereas the second process corresponds to the way A
answers these queries�
 The second process� denoted �� assigns uniformly selected n�bit
long strings to every new point speci�ed by �� thus de�ning the value of g on this point�
We stress that in case � speci�es an old point �i�e�� a point for which g is already de�ned

then the second process does nothing �i�e�� the value of g at this point is left unchanged
�
The process � may depend on the history of the two processes� and in particular on the
values chosen for the previous points� When � terminates the second process �i�e�� �
 selects
random values for the remaining unde�ned points �in case such exist
� We stress that the
second process �i�e�� �
 is �xed for all possible choices of a ���rst�
 process �� The rest of
this paragraph gives a detailed description of the interleaving of the two random processes
�and may be skipped
� We consider a randomized process � mapping sequences of n�bit
strings �representing the history
 to single m�bit strings� We stress that � is not necessarily
memoryless �and hence may �remember� its previous random choices
� Namely� for every
�xed sequence v�� ���� vi�f�� �gn� the random variable ��v�� ���� vi
 is �arbitrarily
 distributed
over f�� �gm�f�g where � is a special symbol denoting termination� A �random� function
g �f�� �gm ��f�� �gn is de�ned by iterating the process � with the random process � de�ned
below� Process � starts with g which is unde�ned on every point in its domain� At the ith

iteration � lets pi
def
 ��v�� ���� vi��
 and� assuming pi 	 �� sets vi def vj if pi  pj for some

j � i and lets vi be uniformly distributed in f�� �gn otherwise� In the latter case �i�e�� pi is
new and hence g is not yet de�ned on pi
� � sets g�pi


def
 vi �in fact g�pi
 g�pj
 vj  vi

also in case pi  pj for some j � i
� When � terminates� i�e�� ��v�� ���� vT
  � for some
T � � completes the function g �if necessary
 by choosing independently and uniformly in
f�� �gn values for the points at which g is unde�ned yet� �Alternatively� we may augment
the process � so that it terminates only after specifying all possible m�bit strings�


Once a function g is totally de�ned� we de�ne a function fg �f�� �gn ��f�� �gn by

fg�	�	� � � �	n
 def G�n�� � � �G�k���G�k���g�	k � � �	�


 � � �

The reader can easily verify that fg equals fg��m������g��m� �as de�ned in the hybrid construc�
tion above
� Also� one can easily verify that the above random process �i�e�� the interleaving
of � with any �
 yields a function g that is uniformly distributed over the set of all possible
functions mapping m�bit strings to n�bit strings� It follows that the above described ran�
dom process yields a result �i�e�� a function
 that is distributed identically to the random
variable Hm

n �

Suppose now that the checkpoint chosen by D equals k and that D�s inputs are inde�
pendently and uniformly selected in f�� �g�n� In this case the way in which D answers the
M �s queries can be viewed as placing independently and uniformly selected n�bit strings
as the labels of the �k ! �
�level vertices� It follows that the way in which D answers M �s
queries corresponds to the above described process with m  k ! � �with M playing the
role of � and A playing the role of �
� Hence� in this case M is invoked with access to the
k ! �st hybrid random variable�
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Suppose� on the other hand� that the checkpoint chosen by D equals k and that D�s
inputs are independently selected so that each is distributed identically to G�Un
� In this
case the way in which D answers the M �s queries can be viewed as placing independently
and uniformly selected n�bit strings as the labels of the k�level vertices� It follows that the
way in which D answers the M �s queries corresponds to the above described process with
m  k� Hence� in this case M is invoked with access to the kth hybrid random variable� �

Using Claim ������� it follows that

jProb
�
D�G�U ���

n 
� ���� G�U �t�
n 

 �

�
� Prob

�
D�U

���
�n � ���� U

�t�
�n 
 �

�
j  &�n


n

which� by the contradiction hypothesis is greater than �
n�p�n� � for in�nitely many n�s� Using

Theorem ���� we derive a contradiction to the hypothesis �of the current theorem
 that G
is a pseudorandom generator� and the current theorem follows�

��� � Pseudorandom Permutations

In this section we present de�nitions and constructions for pseudorandom permutations�
Clearly� pseudorandom permutations �over huge domains
 can be used instead of pseudo�
random functions in any e�cient application� yet pseudorandom permutation o�er the extra
advantage of having unique preimages� This extra advantage may be useful sometimes� but
not always �e�g�� it is not used in the rest of this book
� The construction of pseudorandom
permutation uses pseudorandom functions as a building block� in a manner identical to the
high level structure of the DES� Hence� the proof presented in this section can be viewed
as a supporting the DES�s methodology of converting �randomly looking� functions into
�randomly looking� permutations� �The fact that in the DES this methodology is applied
to functions which are not �randomly looking� is not of our concern here�


����� Denitions

We start with the de�nition of pseudorandom permutations� Loosely speaking a pseudo�
random ensemble of permutations is de�ned analogously to a pseudorandom ensemble of
functions� Namely�

De�nition ���� �permutation ensembles
� A permutation ensemble is a sequence P  
fPngn�IN of random variables� so that the random variable Pn assumes values in the set
of permutations mapping n�bit long strings to n�bit long strings� The uniform permutation
ensemble� denoted K  fKngn�IN� has Kn uniformly distributed over the set of permutations
mapping n�bit long strings to n�bit long strings�
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Every permutation ensemble is a function ensemble� Hence� the de�nition of an e��
ciently computable permutation ensemble is obvious �i�e�� it is derived from the de�nition
of an e�ciently computable function ensemble
� Pseudorandom permutations are de�ned
as computationally indistinguishable from the uniform permutation ensemble�

De�nition ���� �pseudorandom permutation ensembles
� A permutation ensemble� P  
fPngn�IN� is called pseudorandom if for every probabilistic polynomial�time oracle machine
M � every polynomial p��
 and all su�ciently large n�s

jProb�MPn��n
 �
� Prob�MKn��n
 �
j � �

p�n


where K  fKngn�IN is the uniform permutation ensemble�

The fact that P is a pseudorandom permutation ensemble rather then just being a
pseudorandom function ensemble cannot be detected in poly�n
�time by an observer given
oracle access to Pn� This fact steams from the observation that the uniform permutation
ensemble is polynomial�time indistinguishable from the uniform function ensemble� Namely�

Proposition ���� The uniform permutation ensemble 	i�e�� K  fKngn�IN
 constitutes a
pseudorandom function ensemble�

Proof Sketch� The probability that an oracle machine detects a collision in the oracle�
function� when given access to Hn� is bounded by t

� � ��n� where t denotes the number of
queries made by the machine� Conditioned on not �nding such a collision� the answers of
Hn are indistinguishable from those of Kn� Finally� using the fact that a polynomial�time
machine can ask at most polynomially many queries� the proposition follows�

Hence� using pseudorandom permutations instead of pseudorandom functions has reasons
beyond the question of whether a computationally restricted observer can detect the dif�
ference� Typically� the reason is that one wants to be guaranteed of the uniqueness of
preimages� A natural strengthening of this requirement is to require that� given the de�
scription of the permutation� the �unique
 preimage can be e�ciently found�

De�nition ���	 �e�ciently computable and invertible permutation ensembles
� A permu�
tation ensemble� P  fPngn�IN� is called e�ciently computable and invertible if the following
three conditions hold

�� �e�cient indexing
� There exists a probabilistic polynomial time algorithm� I� and
a mapping from strings to permutation� �� so that ��I��n

 and Pn are identically
distributed�
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�� �e�cient evaluation
� There exists a probabilistic polynomial time algorithm� V � so

that V �i� x
  fi�x
� where 	as before
 fi
def
 ��i
�

�� �e�cient inversion
� There exists a probabilistic polynomial time algorithm� N � so that
N�i� x
  f��i �x
 	i�e�� fi�N�i� x

 x
�

Items ��
 and ��
 are guaranteed by the de�nition of an e�ciently computable permuta�
tion ensemble� The additional requirement is stated in item ��
� In some settings it makes
sense to augment also the de�nition of a pseudorandom ensemble by requiring that the
ensemble cannot be distinguished from the uniform one even when the observer gets access
to two oracles� one for the permutation and the other for its inverse�

De�nition ���� �strong pseudorandom permutations
� A permutation ensemble� P  
fPngn�IN� is called strongly pseudorandom if for every probabilistic polynomial�time oracle
machine M � every polynomial p��
 and all su�ciently large n�s

jProb�MPn�P
��
n ��n
 �
� Prob�MKn�K

��
n ��n
 �
j � �

p�n


where Mf�g can ask queries to both of its oracles 	e�g�� query ��� q
 is answered by f�q
�
whereas query ��� q
 is answered by g�q

�

����� Construction

The construction of pseudorandom permutation uses pseudorandom functions as a building
block� in a manner identical to the high level structure of the DES� Namely�

Construction ��
� Let f �f�� �gn ��f�� �gn� For every x� y � f�� �gn� we de�ne

DESf�x� y

def
 �y� x� f�y



where x� y denotes the bit�by�bit exclusive�or of the binary strings x and y� Likewise� for
f�� ���� ft �f�� �gn ��f�� �gn� we de�ne

DESft�����f��x� y

def
 DESft�����f��DESf��x� y



For every function ensemble F  fFngn�IN� and every function t � IN �� IN� we de�ne the

function ensemble fDESt�n�Fn
gn�IN by letting DES

t�n�
Fn

def
 DES

F
�t�
n �����F

���
n
� where t  t�n
 and

the F
�i�
n �s are independent copies of the random variable Fn�



��� CHAPTER �� PSEUDORANDOM GENERATORS

Theorem ��
� Let Fn� t��
� and DESt�n�Fn
be as in Construction ���� 	above
� Then� for ev�

ery polynomial�time computable function t��
� the ensemble fDESt�n�Fn
gn�IN is an e�ciently

computable and invertible permutation ensemble� Furthermore� if F  fFngn�IN is a pseu�

dorandom function ensemble then the ensemble fDES�Fngn�IN is pseudorandom� and the

ensemble fDES	Fngn�IN is strongly pseudorandom�

Clearly� the ensemble fDESt�n�Fn
gn�IN is e�ciently computable� The fact that it is a

permutation ensemble� and furthermore one with e�cient inverting algorithm� follows from
the observation that for every x� y�f�� �gn

DESf�zero�DESf �x� y

  DESf�zero�y� x� f�y



 DESf�x� f�y
� x


 �y� �x� f�y

� f�y



 �x� y


where zero�z

def
 �jzj for all z�f�� �gn�

To prove the pseudorandomness of fDES�Fngn�IN �resp�� strong pseudorandomness of

fDES	Fngn�IN
 it su�ces to prove the pseudorandomness of fDES�Hn
gn�IN �resp�� strong

pseudorandomness of fDES	Hn
gn�IN
� The reason being that if� say� fDES�Hn

gn�IN is pseu�

dorandom while fDES�Fngn�IN is not� then one can derive a contradiction to the pseudo�
randomness of the function ensemble F �i�e�� a hybrid argument is used to bridge between
the three copies of Hn and the three copies of Fn
� Hence� Theorem ���� follows from

Proposition ��
� fDES�Hn
gn�IN is pseudorandom� whereas fDES	Hn

gn�IN is strongly pseu�
dorandom�

Proof Sketch� We start by proving that fDES�Hn
gn�IN is pseudorandom� Let P�n

def
 

fDES�Hn
gn�IN� and K�n be the random variable uniformly distributed over all possible

permutation acting on f�� �g�n� We prove that for every oracle machine� M � that� on input
�n� asks at most m queries� it holds that

jProb�MP�n��n
 �
� Prob�MK�n��n
 �
j � �m�

�n

Let qi  �L�
i � R

�
i 
� with jL�

i j jR�
i j n� denote the random variable representing the ith

query ofM when given access to oracle P�n� Recall that P�n  DESH���
n �H

���
n �H

���
n
� where the

H
�j�
n �s are three independent random variables each uniformly distributed over the functions

acting on f�� �gn� Let Rk��
i

def
 Lki �H�k���

n �Rk
i 
 and L

k��
i

def
 Rk

i � for k �� �� �� We assume�
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without loss of generality� thatM never asks the same query twice� We de�ne the following
a random variable �m representing the event �there exists i � j�m and k� f�� �g so that
Rk
i  Rk

j � �namely� �on input �
n and access to oracle P�n two of the m �rst queries of M

satisfy the relation Rk
i  Rk

j 
� Using induction on m� the reader can prove concurrently the
following two claims �see guidelines below
�

Claim ������	 Given ��m� we have the R�
i �s uniformly distributed over f�� �gn and the L�

i �s
uniformly distributed over the n�bit strings not assigned to previous L�

j �s� Namely� for every
��� ���� �m�f�� �gn

Prob
�

mi���R�

i  �i
 j ��m
�
 

�
�

�n

�m
whereas� for every distinct ��� ���� �m�f�� �gn

Prob
�

mi���L�

i  �i
 j ��m
�
 

mY
i��

�

�n � i! �

Claim ������	

Prob ��m�� j ��m
 � �m

�n

Proof Idea	 The proof of Claim ������ follows by observing that the R�
i �s are determined

by applying the random function H
���
n to di�erent arguments �i�e�� the R�

i �s
� whereas the

L�
i  R�

i �s are determined by applying the random function H
���
n to di�erent arguments

�i�e�� the R�
i �s
 and conditioning that the R

�
i �s are di�erent� The proof of Claim ������

follows by considering the probability that Rk
m�� R

k
i � for some i�m and k�f�� �g� Say

that R�
i  R

�
m�� then certainly �by recalling qi 	 qm��
 we have

R�
i  L

�
i �H���

n �R�
i 
 L

�
i �H���

n �R�
j
 	 L�

m�� �H���
n �R�

m��
 R
�
m��

On the other hand� say that R�
i 	 R�

m�� then

Prob
�
R�
i  R

�
m��

�
 Prob

�
H���
n �R�

i 
�H���
n �R�

m��
 L
�
i � L�

m��

�
 ��n

Furthermore� if R�
i 	 R�

m�� then

Prob
�
R�
i  R

�
m��

�
 Prob

�
H���
n �R�

i 
�H���
n �R�

m��
 R
�
i � R�

m��

�
 ��n

Hence� both claims follow� �

Combining the above claims� we conclude that Prob��m
 �
m�

�n � and furthermore� given that
�m is false� the answers of P�n have left half uniformly chosen among all n�bit strings not
appearing as left halves in previous answers� whereas the right half uniformly distributed
among all n�bit strings� On the other hand� the answers of K�n are uniformly distributed
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among all �n�bit strings not appearing as previous answers� Hence� the statistical di�erence
between the distribution of answers in the two cases �i�e�� answers by P�n or by K�n
 is

bounded by �m�

�n � The �rst part of the proposition follows�

The proof that fDES	Hn
gn�IN is strongly pseudorandom is more complex� yet uses es�

sentially the same ideas� In particular� the event corresponding to �m is the disjunction of
four types of events� Events of the �rst type are of the form Rk

i  Rk
j for k�f�� �g� where

qi  �L
�
i � R

�
i 
 and qj  �L

�
j � R

�
j
 are queries of the forward direction� Similarly� events of the

second type are of the form Rk
i  Rk

j for k�f�� �g� where qi  �L	
i � R

	
i 
 and qj  �L

	
j � R

	
j


are queries of the backwards direction� Events of the third type are of the form Rk
i  Rk

j for
k�f�� �g� where qi  �L�

i � R
�
i 
 is of the forward direction� qj  �L

	
j � R

	
j
 is of the backward

direction� and j � i� Similarly� events of the fourth type are of the form Rk
i  Rk

j for
k�f�� �g� where qi  �L	

i � R
	
i 
 is of the forward direction� qj  �L

�
j � R

�
j
 is of the backward

direction� and j � i� As before� one bounds the probability of event �m� and bounds the
statistical distance between answers by K�n and answers by fDES	Hn

gn�IN given that �m is
false�

��� Miscellaneous

����� Historical Notes

The notion of computational indistinguishable ensembles was �rst presented by Goldwasser
and Micali �in the context of encryption schemes
 �GM�	�� In the general setting� the notion
�rst appears in Yao�s work which is also the origin of the de�nition of pseudorandomness
�Y�	�� Yao also observed that pseudorandom ensembles can be very far from uniform� yet
our proof of Proposition ��� is taken from �GK�
a��

Pseudorandom generators were introduced by Blum and Micali �BM�	�� who de�ned
such generators as producing sequences which are unpredictable� Blum and Micali proved
that such pseudorandom generators do exist assuming the intractability of the discrete
logarithm problem� Furthermore� they presented a general paradigm� for constructing
pseudorandom generators� which has been used explicitly or implicitly in all subsequent
developments� Other suggestions for pseudorandom generators were made soon after by
Goldwasser et� al� �GMT�	� and Blum et� al� �BBS�	�� Consequently� Yao proved that
the existence of any one�way permutation implies the existence of pseudorandom generators
�Y�	�� Yao was the �rst to characterize pseudorandom generators as producing sequences
which are computationally indistinguishable from uniform� He also proved that this char�
acterization of pseudorandom generators is equivalent to the characterization of Blum and
Micali �BM�	��

Generalizations to Yao�s result� that one�way permutations imply pseudorandom gen�
erators� were proven by Levin �L��� and by Goldreich et� al� �GKL���� culminating with
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the result of Hastad et� al� �H
��ILL�
� which asserts that pseudorandom generators exist
if and only if one�way functions exist� The constructions presented in Section ��� follow
the ideas of �GKL��� and �ILL�
�� These constructions make extensive use of universal�
hashing functions� which were introduced by Carter and Wegman �CW� and �rst used in
complexity theory by Sipser �S�	��

Pseudorandom functions were introduced and investigated by Goldreich et� al� �GGM���
In particular� the construction of pseudorandom functions based on pseudorandom genera�
tors is taken from �GGM��� Pseudorandom permutations were de�ned and constructed by
Luby and Racko� �LR���� and our presentation follows their work�

Author�s Note� Pseudorandom functions have many applications to cryptog�
raphy� some of them were to be presented in other chapters of the book 	e�g�� on
signatures and encryption
� As these chapters were not written� the reader is
referred to �GGM�b� and �G��b�O�
��

The hybrid method originates from the work of Goldwasser and Micali �GM�	�� The
terminology is due to Leonid Levin�

����� Suggestion for Further Reading

Section ��� falls short of presenting the construction of Hastad et� al� �HILL�� not to mention
proving its validity� Unfortunately� the proof of this fundamental theorem� asserting that
pseudorandom generators exist if one�way functions exist� is too complicated to �t in a
book of the current nature� The interested reader is thus referred to the original paper of
Hastad et� al� �HILL� �which combines the results in �H
��ILL�
�
 and to Luby�s book
�L
book��

Simple pseudorandom generators based on speci�c intractability assumptions are pre�
sented in �BM�	�BBS�	�ACGS��VV��K���� In particular� �ACGS�� presents pseudoran�
dom generators based on the intractability of factoring� whereas �K��� presents pseudoran�
dom generators based on the intractability of discrete logarithm problems� In both cases�
the major step is the construction of hard�core predicates for the corresponding collections
of one�way permutations�

Proposition ��� presents a pair of ensembles which are computational indistinguishable
although they are statistically far apart� One of the two ensembles is not constructible in
polynomial�time� Goldreich showed that a pair of polynomial�time constructible ensembles
having the above property �i�e�� being both computationally indistinguishable and having a
non�negligibly statistical di�erence
 exists if and only if one�way functions exist �G
�ipl��

Author�s Note� G��ipl has appeared in IPL� Vol� ��� pp� �������

Readers interested in Kolmogorov complexity are referred to �WHAT��



��� CHAPTER �� PSEUDORANDOM GENERATORS

����� Open Problems

Although Hastad et� al� �HILL� showed how to construct pseudorandom generators given
any one�way function� their construction is not practical� The reason being that the �qual�
ity� of the generator on seeds of length n is related to the hardness of inverting the given
function on inputs of length � �

p
n� We believe that presenting an e�cient transformation

of arbitrary one�way functions to pseudorandom generators is one of the most important
open problems of the area�

An open problem of more practical importance is to try to present even more e�cient
pseudorandom generators based on the intractability of speci�c computational problems
like integer factorization� For further details see Subsection �����

����� Exercises

Exercise �� computational indistinguishability is preserved by e�cient algorithms� Let
fXngn�IN and fYngn�IN be two ensembles that are polynomial�time indistinguish�
able� and let A be a probabilistic polynomial�time algorithm� Prove that the ensembles
fA�Xn
gn�IN and fA�Yn
gn�IN are polynomial�time indistinguishable�

Exercise �� statistical closeness is preserved by any function� Let fXngn�IN and fYngn�IN
be two ensembles that are statistically close� and let f �f�� �g� ��f�� �g� be a function�
Prove that the ensembles ff�Xn
gn�IN and ff�Yn
gn�IN are statistically close�

Exercise �� Prove that for every L � BPP and every pair of polynomial�time indistin�
guishable ensembles� fXngn�IN and fYngn�IN� it holds that the function

&L�n

def
 jProb �Xn�L
� Prob �Yn�L
 j

is negligible in n�
It is tempting to think the the converse holds as well� but we don�t know if it
does� note that fXng and fYng may be distinguished by a probabilitic algorithm�
but not by a deterministic one� In such a case� which language should we de�ne"
For example� suppose that A is a probabilistic polynomial�time algorithm and let

L
def
 fx � Prob�A�x
 
 � �

�g� then L is not necessarily in BPP �
Exercise 
� An equivalent formulation of statistical closeness� In the non�computational

setting both the above and its converse are true and can be easily proven� Namely�
prove that two ensembles� fXngn�IN and fYngn�IN� are statistically close if and only
if for every set S � f�� �g��

&S�n

def
 jProb �Xn�S
� Prob �Yn�S
 j

is negligible in n�
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Exercise �� statistical closeness implies computational indistinguishability� Prove that if
two ensembles are statistically close then they are polynomial�time indistinguishable�
�Guideline� use the result of the previous exercise� and de�ne for every function

f �f�� �g� ��f�� �g a set Sf def
 fx � f�x
 �g�


Exercise �� computational indistinguishability by circuits � probabilism versus determin�

ism� Let fXngn�IN and fYngn�IN be two ensembles� and C
def
 fCngn�IN be a family

of probabilistic polynomial�size circuits� Prove that there exists a family of �deter�

ministic
 polynomial�size circuits� D
def
 fDngn�IN� so that for every n

&D�n
 � &C�n


where

&D�n

def
 jProb �Dn�Xn

 �
� Prob �Dn�Yn

 �
 j

&C�n

def
 jProb �Cn�Xn

 �
� Prob �Cn�Yn

 �
 j

Exercise �� computational indistinguishability by circuits � single sample versus several
samples� We say that the ensembles X  fXngn�IN and Y  fYngn�IN are indistin�
guishable by polynomial�size circuits if for every family� fCngn�IN� of �deterministic

polynomial�size circuits� for every polynomial p��
 and all su�ciently large n�s

jProb �Cn�Xn

 �
� Prob �Cn�Yn

 �
 j � �

p�n


Prove thatX and Y are indistinguishable by polynomial�size circuits if and only if their
m��
�products are indistinguishable by polynomial�size circuits� for every polynomial
m��
�
�Guideline� X and Y need not be polynomial�time constructible� Yet� a �good choice�
of x�� ���� � xk and yk��� ���� ym may be �hard�wired� into the circuit�


Exercise 	� On the general de�nition of a pseudorandom generator� Let G be a pseudo�
random generator �by De�nition ���
� and let fUl�n�gn�IN be polynomial�time indis�
tinguishable from fG�Un
gn�IN� Prove that the probability that G�Un
 has length
not equal to l�n
 is negligible �in n
�
�Guideline� Consider an algorithm that for some polynomial p��
 proceeds as follows�
On input �n and a string to be tested �� the algorithm �rst samples G�Un
 for p�n

times and records the length of the shortest string found� Next the algorithm outputs
� if and only if � is longer than the length recorded�


Exercise �� Consider a modi�cation of Construction ����� where si	i  G��si��
 is used
instead of 	isi  G��si��
� Provide a simple proof that the resulting algorithm is also
pseudorandom�
�Guideline� don�t modify the proof of Theorem ����� but rather modify G� itself�
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Exercise ��� Let G be a pseudorandom generator� and h be a polynomial�time computable
permutation �over strings of the same length
� Prove that G� and G�� de�ned by
G��s
 def h�G�s

 and G���s
 def G�h�s

 are both pseudorandom generators�

Exercise ��� Let G be a pseudorandom generator� and h be a permutation �over strings
of the same length
 that is not necessarily polyonimial�time computable�

�� Is G� de�ned by G��s
 def h�G�s

 necessarily a pseudorandom generator"

�� Is G�� de�ned by G���s
 def G�h�s

 necessarily a pseudorandom generator"

�Guideline� you may assume that there exist one�way permutations�


Exercise ��� Alternative construction of pseudorandom generators with large expansion
factor� Let G� be a pseudorandom generator with expansion factor l�n
  n! �� and
let p��
 be a polynomial� De�ne G�s
 to be the result of applying G� iteratively p�jsj

times on s �i�e�� G�s


def
 G

p�jsj�
� �s
 where G�

��s

def
 s and Gi��

�
def
 G��Gi

��s


� Prove
that G is a pseudorandom generator� What are the advantages of using Construction
����"

Exercise ��� Sequential Pseudorandom Generator� A oracle machine is called a sequen�
tial observer if its queries constitute a pre�x of the natural numbers� Namely� on
input �n� the sequential observer makes queries �� �� �� ���� Consider the following two
experiments with a sequential observer having input �n�

�� The observer�s queries are answered by independent �ips of an unbiased coin�

�� The observer�s queries are answered as follows� First a random seed� s� of length
n is uniformly chosen� The ith query is answered by the rightmost �i�e�� the ith

bit of gin�s
� where g

i
n is de�ned as in the proof of Theorem �����

Prove that a probabilistic polynomial�time observer cannot distinguish the two ex�
periments� provided that G used in the construction is a pseudorandom generator�
Namely� the di�erence between the probability that the observer outputs � in the �rst
experiment and the probability that the observer outputs � in the second experiment
is a negligible function �in n
�

Exercise �
� pseudorandomness implies unpredictability� Prove that all pseudorandom en�
sembles are unpredictable �in polynomial�time
�
�Guideline� Given an e�cient predictor show how to construct an e�cient distin�
guisher of the pseudorandom ensemble from the uniform one�


Exercise ��� unpredictability implies unpredictability� Let X  fXngn�IN be an ensemble
such that there exists a function l � IN �� IN so that Xn ranges over string of length
l�n
� and l�n
 can be computed in time poly�n
� Prove that if X is unpredictable �in
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polynomial�time
 then it is pseudorandom�
�Guideline� Given an e�cient distinguisher ofX from the uniform ensemble fUl�n�gn�IN
show how to construct an e�cient predictor� The predictor randomly selects k �
f�� ���� l�n
� �g reads only the �rst k bits of the input� and applies D to the string
resulting by augmenting the k�bit long pre�x of the input with l�n
�k uniformly cho�
sen bits� If D answers � then the predictor outputs the �rst of these random bits else
the predictor outputs the complementary value� Use a hybrid technique to evaluate
the performance of the predictor� Extra hint� an argument analogous to that of the
proof of Theorem ���� has to be used as well�


Exercise ��� Construction of Hashing Families�

�� Consider the set Smn of functions mapping n�bit long strings into m�bit strings as
follows� A function h in Smn is represented by an n�by�m binary matrix A� and
anm�dimensional binary vector b� The n�dimensional binary vector x is mapped
by the function h to the m�dimensional binary vector resulting by multiplying x
by A and adding the vector b to the resulting vector �i�e�� h�x
  xA! b
� Prove
that Smn so de�ned constitutes a hashing family �as de�ned in Section ���
�

�� Repeat the above item when the n�by�m matrices are restricted to be Toeplitz
matrices� An n�by�m Toeplitz matrix� T  fTi�jg� satis�es Ti�j  Ti���j�� for all
i� j�

Note that binary n�by�m Toeplitz matrices can be represented by strings of length
n!m� �� where as representing arbitrary n�by�m binary matrices requires strings of
length n �m�

Exercise ��� Another Hashing Lemma� Let m� n� Smn � b� Xn and � be as in Lemma �����
Prove that� for every set S � f�� �gm� and for all but a ���b�m�log� jSj���� fraction of
the h�s in Smn � it holds that

Prob�h�Xn
�S
 � ��� �
 � jSj
�m

�Guideline� follow the proof of Lemma ����� de�ning �x�h
  � if h�x
 � S and �
otherwise�


Exercise �	� Yet another Hashing Lemma� Letm� n� and Smn be as above� Let B � f�� �gn
and S � f�� �gm be sets� and let b

def
 log� jBj and s def

 log� jSj� Prove that� for all
but a �m

jBj�jSj � ��� fraction of the h�s in Smn � it holds that

jfx �B � h�x
�S
gj � ��� �
 � �jBj � jSj


�Guideline� De�ne a random variable Xn that is uniformly distributed over B�
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Exercise ��� Failure of an alternative construction of pseudorandom functions� Consider
a construction of a function ensemble where the functions in Fn are de�ned as follows�
For every s � f�� �gn� the function fs is de�ned so that

fs�x

def
 G�n�� � ��G���G���x

 � � �


where s  	� � � �	n� and G� is as in Construction ����� Namely the roles of x and s in
Construction ���� are switched �i�e�� the root is labelled x and the value of fs on x is
obtained by following the path corresponding to the index s
� Prove that the resulting
function ensemble is not necessarily pseudorandom �even if G is a pseudorandom
generator
�
�Guideline� Show� �rst� that if pseudorandom generators exist then there exists a
pseudorandom generator G satisfying G��n
  ��n�


Exercise ��� Pseudorandom Generators with Direct Access� A direct access pseudorandom
generator is a deterministic polynomial�time algorithm� G� for which no probabilistic
polynomial�time oracle machine can distinguish the following two cases�

�� New queries of the oracle machine are answered by independent �ips of an unbi�
ased coin� �Repeating the same query yields the same answer�


�� First� a random �seed�� s� of length n is uniformly chosen� Next� each query� q�
is answered by G�s� q
�

The bit G�s� i
 may be thought of as the ith bit in a bit sequence corresponding to
the seed s� where i is represented in binary� Prove that the existence of �regular

pseudorandom generators implies the existence of pseudorandom generators with di�
rect access� Note that modifying the current de�nition� so that only unary queries
are allowed� yields an alternative de�nition of a sequential pseudorandom generator
�presented in Exercise �� above
� Evaluate the advantage of direct access pseudoran�
dom generators over sequential pseudorandom generators in settings requiring direct
access only to bits of a polynomially long pseudorandom sequence�

Exercise ��� other types of pseudorandom functions� De�ne pseudorandom predicate en�
sembles so that the random variable Fn ranges over arbitrary Boolean predicates
�i�e�� functions in the range of Fn are de�ned on all strings and have the form
f � f�� �g� �� f�� �g
� Assuming the existence of pseudorandom generators� con�
struct e�ciently computable ensembles of pseudorandom Boolean functions� Same
for ensembles of functions in which each function in the range of Fn operates on the
set of all strings �i�e�� has the form f � f�� �g� �� f�� �g�
�
�Guideline� Use a modi�cation of Construction ���� in which the building block is a
pseudorandom generator expanding strings of length n into strings of length �n�


Exercise ��� An alternative de�nition of pseudorandom functions� For sake of simplicity
this exercise is stated in terms of ensembles of Boolean functions as presented in
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the previous exercise� We say that a Boolean function ensemble� F  fFngn�IN� is
unpredictable if for every probabilistic polynomial�time oracle machine� M � for every
polynomial p��
 and for all su�ciently large n�s

Prob�corrFn�MFn��n


 �
�

�
!

�

p�n


where MFn assumes values of the form �x� 	
 � f�� �gn�� so that x is not a query
appearing in the computationMFn � and corrf �x� 	
 is de�ned as the predicate �f�x
  
	�� Intuitively� after getting the value of f on points of its choice� the machine M
outputs a new point and tries to guess the value of f on this point� Assuming that
F  fFngn�IN is e�ciently computable� prove that F is pseudorandom if and only if
F is unpredictable�
�Guideline� A pseudorandom function ensemble is unpredictable since the uniform
function ensemble is unpredictable� For the other direction use ideas analogous to
those used in Exercise ���


Exercise ��� Another alternative de�nition of pseudorandom functions� Repeat the above
exercise when modifying the de�nition of unpredictability so that the oracle machine
gets x � f�� �gn as input and after querying the function f on other points of its choice�
the machine outputs a guess for f�x
� Namely� we require that for every probabilistic
polynomial�time oracle machine� M � that does not query the oracle on its own input�
for every polynomial p��
� and for all su�ciently large n�s

Prob�MFn�Un
 Fn�Un

 �
�

�
!

�

p�n


Exercise �
� Let Fn and DES
t
Fn be as in Construction ����� Prove that� regardless of

the choice of the ensemble F  fFngn�IN� the ensemble DES�Fn is not pseudorandom�
Similarly� prove that the ensemble DES�Fn is not strongly pseudorandom�
�Guideline� Start by showing that the ensemble DES�Fn is not pseudorandom�
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Chapter �

Encryption Schemes

In this chapter we discuss the well�known notions of private�key and public�key encryption
schemes� More importantly� we de�ne what is meant by saying that such schemes are secure�
We then turn to some basic constructions� We show that the widely used construction of a
�stream cipher� yields a secure �private�key
 encryption� provided that the �key sequence� is
generated using a pseudorandom generator� Public�key encryption schemes are constructed
based on any trapdoor one�way permutation� Finally� we discuss dynamic notions of security
such as robustness against chosen ciphertext attacks and nonmalleability�

�Plan

�input�enc�set��� The basic setting� private�key� public�key����

�input�enc�sec��� Definitions of Security �semantic�indistinguishable�

�input�enc�eqv��� Equivalence of the two definitions

�input�enc�prg��� Private�Key schemes based on Pseudorandom Generators

�input�enc�pk���� Constrictions of Public�Key Encryption Schemes

�input�enc�str��� Stronger notions of security �chosen msg� ��malleable���

�input�enc�misc�� As usual� History� Reading� Open� Exercises

���
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Chapter �

Digital Signatures and Message
Authentication

The di�erence between message authentication and digital signatures is analogous to the
di�erence between private�key and public�key encryption schemes� In this chapter we de�ne
both type of schemes and the security problem associated to them� We then present several
constructions� We show how to construct message authentication schemes using pseudoran�
dom functions� and how to construct signature schemes using one�way permutations �which
do not necessarily have a trapdoor
�

�Plan

�input�sg�def���� Definitions of Unforgable Signatures

����������������� and Message Authentication

�input�sg�aut���� Construction of Message Authentication

�input�sg�con���� Construction of Signatures by �NY�

����������������� tools� one�time signature� aut�trees� one�way hashing

�input�sg�hash��� � Collision�free hashing�

����������������� def� construct by clawfree� applications �sign�� etc��

�input�sg�con	��� � Alternative Construction of Signatures �EGM�

�input�sg�misc��� As usual� History� Reading� Open� Exercises

���
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Chapter �

Zero�Knowledge Proof Systems

In this chapter we discuss zero�knowledge proof systems� Loosely speaking� such proof
systems have the remarkable property of being convincing and yielding nothing �beyond
the validity of the assertion
� The main result presented is a method to generate zero�
knowledge proof systems for every language in NP � This method can be implemented using
any bit commitment scheme� which in turn can be implemented using any pseudorandom
generator� In addition� we discuss more re�ned aspects of the concept of zero�knowledge
and their a�ect on the applicability of this concept�

��� Zero�Knowledge Proofs� Motivation

An archetypical �cryptographic� problem consists of providing mutually distrustful parties
with a means of �exchanging� �predetermined
 �pieces of information�� The setting consists
of several parties� each wishing to obtain some predetermined partial information concerning
the secrets of the other parties� Yet each party wishes to reveal as little information as
possible about its own secret� To clarify the issue� let us consider a speci�c example�

Suppose that all users in a system keep backups of their entire �le system�
encrypted using their public�key encryption� in a publicly accessible storage
media� Suppose that at some point� one user� called Alice� wishes to reveal to
another user� called Bob� the cleartext of one of her �les �which appears in one of
her backups
� A trivial �solution� is for Alice just to send the �cleartext
 �le to
Bob� The problem with this �solution� is that Bob has no way of verifying that
Alice really sent him a �le from her public backup� rather than just sending
him an arbitrary �le� Alice can simply prove that she sends the correct �le by
revealing to Bob her private encryption key� However� doing so� will reveal to
Bob the contents of all her �les� which is certainly something that Alice does

���
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not want to happen� The question is whether Alice can convince Bob that she
indeed revealed the correct �le without yielding any additional �knowledge��

An analogous question can be phrased formally as follows� Let f be a one�way
permutation� and b a hard�core predicate with respect to f � Suppose that one
party� A� has a string x� whereas another party� denoted B� only has f�x
�
Furthermore� suppose that A wishes to reveal b�x
 to party B� without yielding
any further information� The trivial �solution� is to let A send b�x
 to B� but�
as explained above� B will have no way of verifying whether A has really sent
the correct bit �and not its complement
� Party A can indeed prove that it sends
the correct bit �i�e�� b�x

 by sending x as well� but revealing x to B is much
more than what A had originally in mind� Again� the question is whether A can
convince B that it indeed revealed the correct bit �i�e�� b�x

 without yielding
any additional �knowledge��

In general� the question is whether it is possible to prove a statement without yielding
anything beyond its validity� Such proofs� whenever they exist� are called zero�knowledge�
and play a central role �as we shall see in the subsequent chapter
 in the construction of
�cryptographic� protocols�

Loosely speaking� zero�knowledge proofs are proofs that yield nothing �i�e�� �no knowl�
edge�
 beyond the validity of the assertion� In the rest of this introductory section� we
discuss the notion of a �proof� and a possible meaning of the phrase �yield nothing �i�e��
no knowledge
 beyond something��

����� The Notion of a Proof

We discuss the notion of a proof with the intention of uncovering some of its underlying
aspects�

A Proof as a �xed sequence or as an interactive process

Traditionally in mathematics� a �proof� is a �xed sequence consisting of statements which
are either self�evident or are derived from previous statements via self�evident rules� Actu�
ally� it is more accurate to substitute the phrase �self�evident� by the phrase �commonly
agreed�� In fact� in the formal study of proofs �i�e�� logic
� the commonly agreed statements
are called axioms� whereas the commonly agreed rules are referred to as derivation rules�
We wish to stress two properties of mathematics proofs�

�� proofs are viewed as �xed objects�

�� proofs are considered at least as fundamental as their consequence �i�e�� the theorem
�
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However� in other areas of human activity� the notion of a �proof� has a much wider
interpretation� In particular� a proof is not a �xed object but rather a process by which
the validity of an assertion is established� For example� the cross�examination of a witness
in court is considered a proof in law� and failure to answer a rival�s claim is considered a
proof in philosophical� political and sometimes even technical discussions� In addition� in
real�life situations� proofs are considered secondary �in importance
 to their consequence�

To summarize� in �canonical� mathematics proofs have a static nature �e�g�� they are
�written�
� whereas in real�life situations proofs have a dynamic nature �i�e�� they are es�
tablished via an interaction
� The dynamic interpretation of the notion of a proof is more
adequate to our setting in which proofs are used as tools �i�e�� subprotocols
 inside �cryp�
tographic� protocols� Furthermore� the dynamic interpretation �at least in a weak sense
 is
essential to the non�triviality of the notion of a zero�knowledge proof�

Prover and Veri�er

The notion of a prover is implicit in all discussions of proofs� be it in mathematics or in
real�life situations� Instead� the emphasis is placed on the veri�cation process� or in other
words on �the role of
 the veri�er� Both in mathematics and in real�life situations� proofs
are de�ned in terms of the veri�cation procedure� Typically� the veri�cation procedure is
considered to be relatively simple� and the burden is placed on the party�person supplying
the proof �i�e�� the prover
�

The asymmetry between the complexity of the veri�cation and the theorem�proving
tasks is captured by the complexity class NP � which can be viewed as a class of proof
systems� Each language L � NP has an e�cient veri�cation procedure for proofs of state�
ments of the form �x � L�� Recall that each L � NP is characterized by a polynomial�time
recognizable relation RL so that

L  fx � �y s�t� �x� y
�RLg

and �x� y
�RL only if jyj � poly�jxj
� Hence� the veri�cation procedure for membership
claims of the form �x � L� consists of applying the �polynomial�time
 algorithm for rec�
ognizing RL� to the claim �encoded by
 x and a prospective proof denoted y� Hence� any
y satisfying �x� y
 � RL is considered a proof of membership of x � L� Hence� correct
statements �i�e�� x � L
 and only them have proofs in this proof system� Note that the ver�
i�cation procedure is �easy� �i�e�� polynomial�time
� whereas coming up with proofs may
be �di�cult��

It is worthwhile to stress the distrustful attitude towards the prover in any proof system�
If the veri�er trusts the prover then no proof is needed� Hence� whenever discussing a proof
system one considers a setting in which the veri�er is not trusting the prover and furthermore
is skeptic of anything the prover says�
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Completeness and Validity

Two fundamental properties of a proof system �i�e�� a veri�cation procedure
 are its validity
and completeness� The validity property asserts that the veri�cation procedure cannot be
�tricked� into accepting false statements� In other words� validity captures the veri�er
ability of protecting itself from being convinced of false statements �no matter what the
prover does in order to fool it
� On the other hand� completeness captures the ability of
some prover to convince the veri�er of true statements �belonging to some predetermined
set of true statements
� Note that both properties are essential to the very notion of a proof
system�

We remark here that not every set of true statements has a �reasonable� proof system
in which each of these statements can be proven �while no false statement can be �proven�
�
This fundamental fact is given a precise meaning in results such as G'odel�s Incompleteness
Theorem and Turing�s proof of the unsolvability of the Halting Problem� We stress that in
this chapter we con�ne ourself to the class of sets that do have �e�cient proof systems��
In fact� Section ��� is devoted to discussing and formulating the concept of �e�cient proof
systems�� Jumping ahead� we hint that the e�ciency of a proof system will be associated
with the e�ciency of its veri�cation procedure�

����� Gaining Knowledge

Recall that we have motivated zero�knowledge proofs as proofs by which the veri�er gains
�no knowledge� �beyond the validity of the assertion
� The reader may rightfully wonder
what is knowledge and what is a gain of knowledge� When discussing zero�knowledge proofs�
we avoid the �rst question �which is quite complex
� and treat the second question directly�
Namely� without presenting a de�nition of knowledge� we present a generic case in which it
is certainly justi�ed to say that no knowledge is gained� Fortunately� this �conservative�
approach seems to su�ce as far as cryptography is concerned�

To motivate the de�nition of zero�knowledge consider a conversation between two par�
ties� Alice and Bob� Assume �rst that this conversation is unidirectional� speci�cally Alice

only talks and Bob only listens� Clearly� we can say that Alice gains no knowledge from
the conversation� On the other hand� Bob may or may not gain knowledge from the con�
versation �depending on what Alice says
� For example� if all that Alice says is � ! �  �
then clearly Bob gains no knowledge from the conversation since he knows this fact himself�
If� on the other hand� Alice tells Bob a proof of Fermat�s Theorem then certainly he gained
knowledge from the conversation�

To give a better �avour of the de�nition� we now consider a conversation between Alice
and Bob in which Bob asks Alice questions about a large graph �that is known to both of
them
� Consider �rst the case in which Bob asks Alice whether the graph is Eulerian or
not� Clearly� we say that Bob gains no knowledge from Alice�s answer� since he could have
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determined the answer easily by himself �e�g�� by using Euler�s Theorem which asserts that
a graph is Eulerian if and only if all its vertices have even degree
� On the other hand� if
Bob asks Alice whether the graph is Hamiltonian or not� and Alice �somehow
 answers
this question then we cannot say that Bob gained no knowledge �since we do not know of
an e�cient procedure by which Bob can determine the answer by himself� and assuming
P 	 NP no such e�cient procedure exists
� Hence� we say that Bob gained knowledge
from the interaction if his computational ability� concerning the publicly known graph� has
increased �i�e�� if after the interaction he can easily compute something that he could not
have e�ciently computed before the interaction
� On the other hand� if whatever Bob can
e�ciently compute about the graph after interacting with Alice� he can also e�ciently
compute by himself �from the graph
 then we say that Bob gained no knowledge from the
interaction� Hence� Bob gains knowledge only if he receives the result of a computation which
is infeasible for Bob� The question of how could Alice conduct this infeasible computation
�e�g�� answer Bob�s question of whether the graph is Hamiltonian
 has been ignored so far�
Jumping ahead� we remark that Alice may be a mere abstraction or may be in possession
of additional hints� that enables to e�ciently conduct computations that are otherwise
infeasible �and in particular are infeasible for Bob who does not have these hints
� �Yet�
these hints are not necessarily �information� in the information theoretic sense as they may
be determined by the common input� but not e�ciently computed from it�


Knowledge vs� information

We wish to stress that knowledge �as discussed above
 is very di�erent from information �in
the sense of information theory
�

� Knowledge is related to computational di�culty� whereas information is not� In the
above examples� there was a di�erent between the knowledge revealed in case Alice
answers questions of the form �is the graph Eulerian� and the case she answers ques�
tions of the form �is the graph Hamilton�� From an information theoretic point of view
there is no di�erence between the two cases �i�e�� in both Bob gets no information
�

� Knowledge relates mainly to publicly known objects� whereas information relates
mainly to objects on which only partial information is publicly known� Consider the
case in which Alice answers each question by �ipping an unbiased coin and telling
Bob the outcome� From an information theoretic point of view� Bob gets from Alice

information concerning an event� However� we say that Bob gains no knowledge from
Alice� since he can toss coins by himself�
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��� Interactive Proof Systems

In this section we introduce the notion of an interactive proof system� and present a non�
trivial example of such a system �speci�cally to claims of the form �the following two
graphs are not isomorphic�
� The presentation is directed towards the introduction of zero�
knowledge interactive proofs� Interactive proof systems are interesting for their own sake�
and have important complexity theoretic applications� that are discussed in Chapter ��

����� Denition

The de�nition of an interactive proof system refers explicitly to the two computational tasks
related to a proof system� �producing� a proof and verifying the validity of a proof� These
tasks are performed by two di�erent parties� called the prover and the veri�er� which interact
with one another� The interaction may be very simple and in particular unidirectional �i�e��
the prover sends a text� called the proof� to the veri�er
� In general the interaction may be
more complex� and may take the form of the veri�er interrogating the prover�

Interaction

Interaction between two parties is de�ned in the natural manner� The only point worth
noting is that the interaction is parameterized by a common input �given to both parties
�
In the context of interactive proof systems� the common input represents the statement
to be proven� We �rst de�ne the notion of an interactive machine� and next the notion
of interaction between two such machines� The reader may skip to the next part of this
subsection �titled �Conventions regarding interactive machines�
 with little loss �if at all
�

De�nition ��� �an interactive machine
�

� An interactive Turing machine �ITM
 is a 	deterministic
 multi�tape Turing machine�
The tapes consists of a read�only input�tape� a read�only random�tape� a read�and�
write work�tape� a write�only output�tape� a pair of communication�tapes� and a
read�and�write switch�tape consisting of a single cell initiated to contents �� One
communication�tape is read�only and the other is write�only�

� Each ITM is associated a single bit 	 � f�� �g� called its identity� An ITM is said
to be active� in a con�guration� if the contents of its switch�tape equals the machine�s
identity� Otherwise the machine is said to be idle� While being idle� the state of
the machine� the location of its heads on the various tapes� and the contents of the
writeable tapes of the ITM is not modi�ed�
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� The contents of the input�tape is called input� the contents of the random�tape is called
random�input� and the contents of the output�tape at termination is called output�
The contents written on the write�only communication�tape during a 	time
 period
in which the machine is active is called the message sent at this period� Likewise�
the contents read from the read�only communication�tape during an active period is
called the message received 	at that period
� 	Without loss of generality the machine
movements on both communication�tapes are only in one direction� say left to right
�

The above de�nition� taken by itself� seems quite nonintuitive� In particular� one may
say that once being idle the machine never becomes active again� One may also wonder
what is the point of distinguishing the read�only communication�tape from the input�tape
�and respectively distinguishing the write�only communication�tape from the output�tape
�
The point is that we are never going to consider a single interactive machine� but rather a
pair of machines combined together so that some of their tapes coincide� Intuitively� the
messages sent by an interactive machine are received by a second machine which shares its
communication�tapes �so that the read�only communication�tape of one machine coincides
with the write�only tape of the other machine
� The active machine may become idle by
changing the contents of the shared switch�tape and by doing so the other machine �having
opposite identity
 becomes active� The computation of such a pair of machines consists of
the machines alternatingly sending messages to one another� based on their initial �common

input� their �distinct
 random�inputs� and the messages each machine has received so far�

De�nition ��� �joint computation of two ITMs
�

� Two interactive machines are said to be linked if they have opposite identities� their
input�tapes coincide� their switch�tapes coincide� and the read�only communication�
tape of one machine coincides with the write�only communication�tape of the other
machine� and vice versa� We stress that the other tapes of both machines 	i�e�� the
random�tape� the work�tape� and the output�tape
 are distinct�

� The joint computation of a linked pair of ITMs� on a common input x� is a sequence
of pairs� Each pair consists of the local con�guration of each of the machines� In each
such pair of local con�gurations� one machine 	not necessarily the same one
 is active
while the other machine is idle�

� If one machine halts while the switch�tape still holds its identity the we say that both
machines have halted�

At this point� the reader may object to the above de�nition� saying that the individual
machines are deprived of individual local inputs �and observing that they are given indi�
vidual and unshared random�tapes
� This restriction is removed in Subsection ������ and in
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fact removing it is quite important �at least as far as practical purposes are concerned
� Yet�
for a �rst presentation of interactive proofs� as well as for demonstrating the power of this
concept� we prefer the above simpler de�nition� The convention of individual random�tapes
is however essential to the power of interactive proofs �see Exercise �
�

Conventions regarding interactive machines

Typically� we consider executions when the contents of the random�tape of each machine is
uniformly and independently chosen �among all in�nite bit sequences
� The convention of
having an in�nite sequence of internal coin tosses should not bother the reader since during
a �nite computation only a �nite pre�x is read �and matters
� The contents of each of these
random�tapes can be viewed as internal coin tosses of the corresponding machine �as in the
de�nition of ordinary probabilistic machines� presented in Chapter �
� Hence� interactive
machines are in fact probabilistic�

Notation� Let A and B be a linked pair of ITMs� and suppose that all possible interactions
of A and B on each common input terminate in a �nite number of steps� We denote by
hA�Bi�x
 the random variable representing the �local
 output of B when interacting with
machine A on common input x� when the random�input to each machine is uniformly and
independently chosen�

Another important convention is to consider the time�complexity of an interactive ma�
chine as a function of its input only�

De�nition ��� �the complexity of an interactive machine
� We say that an interactive
machine A has time complexity t � IN �� IN if for every interactive machine B and every
string x� it holds that when interacting with machine B� on common input x� machine A
always 	i�e�� regardless of the contents of its random�tape and B�s random�tape
 halts within
t�jxj
 steps�

We stress that the time complexity� so de�ned� is independent of the contents of the
messages that machine A receives� In other word� it is an upper bound which holds for all
possible incoming messages� In particular� an interactive machine with time complexity t��

reads� on input x� only a pre�x of total length t�jxj
 of the messages sent to it�

Proof systems

In general� proof systems are de�ned in terms of the veri�cation procedure �which may be
viewed as one entity called the veri�er
� A �proof� to a speci�c claim is always considered
as coming from the outside �which can be viewed as another entity called the prover
� The
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veri�cation procedure itself� does not generate �proofs�� but merely veri�es their validity�
Interactive proof systems are intended to capture whatever can be e�ciently veri�ed via
interaction with the outside� In general� the interaction with the outside may be very
complex and may consist of many message exchanges� as long as the total time spent by
the veri�er is polynomial�

In light of the association of e�cient procedures with probabilistic polynomial�time
algorithms� it is natural to consider probabilistic polynomial�time veri�ers� Furthermore�
the veri�er�s verdict of whether to accept or reject the claim is probabilistic� and a bounded
error probability is allowed� �The error can of course be decreased to be negligible by
repeating the veri�cation procedure su�ciently many times�
 Loosely speaking� we require
that the prover can convince the veri�er of the validity of valid statement� while nobody can
fool the veri�er into believing false statements� In fact� it is only required that the veri�er
accepts valid statements with �high� probability� whereas the probability that it accepts
a false statement is �small� �regardless of the machine with which the veri�er interacts
�
In the following de�nition� the veri�er�s output is interpreted as its decision on whether to
accept or reject the common input� Output � is interpreted as %accept�� whereas output �
is interpreted as %reject��

De�nition ��
 �interactive proof system
� A pair of interactive machines� �P� V 
� is called
an interactive proof system for a language L if machine V is polynomial�time and the following
two conditions hold

� Completeness� For every x � L

Prob �hP� V i�x
 �
 � �

�

� Soundness� For every x 	� L and every interactive machine B

Prob �hB� V i�x
 �
 � �

�

Some remarks are in place� We �rst stress that the soundness condition refers to all
potential �provers� whereas the completeness condition refers only to the prescribed prover
P � Secondly� the veri�er is required to be �probabilistic
 polynomial�time� while no re�
source bounds are placed on the computing power of the prover �in either completeness or
soundness conditions�
� Thirdly� as in the case of BPP � the error probability in the above
de�nition can be made exponentially small by repeating the interaction �polynomially

many times �see below
�

Every language in NP has an interactive proof system� Speci�cally� let L � NP and
let RL be a witness relation associated with the language L �i�e�� RL is recognizable in



��� CHAPTER 
� ZERO�KNOWLEDGE PROOF SYSTEMS

polynomial�time and L equals the set fx � �y s�t� jyj  poly�x
 
 �x� y
 � RLg
� Then�
an interactive proof for the language L consists of a prover that on input x � L sends a
witness y �as above
� and a veri�er that upon receiving y �on common input x
 outputs
� if jyj  poly�jxj
 and �x� y
�RL �and � otherwise
� Clearly� when interacting with the
prescribed prover� this veri�er will always accept inputs in the language� On the other hand�
no matter what a cheating �prover� does� this veri�er will never accept inputs not in the
language� We point out that in this proof system both parties are deterministic �i�e�� make
no use of their random�tape
� It is easy to see that only languages in NP have interactive
proof systems in which both parties are deterministic �see Exercise �
�

In other words� NP can be viewed as a a class of interactive proof systems in which
the interaction is unidirectional �i�e�� from the prover to the veri�er
 and the veri�er is
deterministic �and never errs
� In general interactive proofs� both restrictions are waived�
the interaction is bidirectional and the veri�er is probabilistic �and may err with some small
probability
� Both bidirectional interaction and randomization seem essential to the power
of interactive proof systems �see further discussion in Chapter �
�

De�nition ��� �the class IP
� The class IP consists of all languages having interactive
proof systems�

By the above discussion NP � IP� Since languages in BPP can be viewed as having a
veri�er �that decides on membership without any interaction
� it follows that BPP�NP �
IP� We remind the reader that it is not known whether BPP � NP �

We stress that the de�nition of the class IP remains invariant if one replaced the
�constant
 bounds in the completeness and soundness conditions by two functions c� s �
IN �� IN satisfying c�n
 � �� ��poly�n�� s�n
 � ��poly�n�� and c�n
 � s�n
! �

poly�n� � Namely�

De�nition ��� �generalized interactive proof
� Let c� s � IN �� IN be functions satisfying
c�n
 � s�n
 ! �

p�n� � for some polynomial p��
� An interactive pair �P� V 
 is called a �gen�

eralized
 interactive proof system for the language L� with completeness bound c��
 and
soundness bound s��
� if

� �modi�ed
 completeness� For every x � L

Prob �hP� V i�x
 �
 � c�jxj


� �modi�ed
 soundness� For every x 	� L and every interactive machine B

Prob �hB� V i�x
 �
 � s�jxj


The function g��
� where g�n
 def c�n
�s�n
� is called the acceptance gap of �P� V 
� and the

function e��
� where e�n

def
 maxf�� c�n
� s�n
g� is called the error probability of �P� V 
�




��� INTERACTIVE PROOF SYSTEMS ���

Proposition ��� The following three conditions are equivalent

�� L � IP� Namely� there exists a interactive proof system� with completeness bound �
�

and soundness bound �
� � for the language L�

�� L has very strong interactive proof systems� For every polynomial p��
� there exists
an interactive proof system for the language L� with error probability bounded above
by ��p����

�� L has a very weak interactive proof� There exists a polynomial p��
� and a generalized
interactive proof system for the language L� with acceptance gap bounded below by
�
p��
� Furthermore� completeness and soundness bounds for this system� namely the
values c�n
 and s�n
� can be computed in time polynomial in n�

Clearly either of the �rst two items imply the third one �including the requirement for
e�ciently computable bounds
� The ability to e�ciently compute completeness and sound�
ness bounds is used in proving the opposite �non�trivial
 direction� The proof is left as an
exercise �i�e�� Exercise �
�

����� An Example 
Graph Non�Isomorphism in IP�

All examples of interactive proof systems presented so far were degenerate �e�g�� the in�
teraction� if at all� was unidirectional
� We now present an example of a non�degenerate
interactive proof system� Furthermore� we present an interactive proof system for a lan�
guage not known to be in BPP � NP � Speci�cally� the language is the set of pairs of
non�isomorphic graphs� denoted GNI �

Two graphs� G� �V�� E�
 and G� �V�� E�
� are called isomorphic if there exists a ���
and onto mapping� �� from the vertex set V� to the vertex set V� so that �u� v
 � E� if and
only if ���v
� ��u

 � E�� The mapping �� if existing� is called an isomorphism between the
graphs�

Construction ��	 �Interactive proof system for Graph Non�Isomorphism
�

� Common Input� A pair of two graphs� G�  �V�� E�
 and G�  �V�� E�
� Suppose�
without loss of generality� that V�  f�� �� ���� jV�jg� and similarly for V��

� Veri�er�s �rst Step �V�
� The veri�er selects at random one of the two input graphs�
and sends to the prover a random isomorphic copy of this graph� Namely� the veri�er
selects uniformly 	 � f�� �g� and a random permutation � from the set of permutations
over the vertex set V�� The veri�er constructs a graph with vertex set V� and edge set

F
def
 f���u
� ��v

 � �u� v
�E�g

and sends �V�� F 
 to the prover�
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� Motivating Remark� If the input graphs are non�isomorphic� as the prover claims�
then the prover should be able to distinguish 	not necessarily by an e�cient algorithm

isomorphic copies of one graph from isomorphic copies of the other graph� However�
if the input graphs are isomorphic then a random isomorphic copy of one graph is
distributed identically to a random isomorphic copy of the other graph�

� Prover�s �rst Step �P�
� Upon receiving a graph� G�  �V �� E�
� from the veri�er� the
prover �nds a � � f�� �g so that the graph G� is isomorphic to the input graph G� � 	If
both �  �� � satisfy the condition then � is selected arbitrarily� In case no � � f�� �g
satis�es the condition� � is set to �
� The prover sends � to the veri�er�

� Veri�er�s second Step �V�
� If the message� � � received from the prover equals 	

	chosen in Step V�
 then the veri�er outputs � 	i�e�� accepts the common input
�
Otherwise the veri�er outputs � 	i�e�� rejects the common input
�

The veri�er program presented above is easily implemented in probabilistic polynomial�
time� We do not known of a probabilistic polynomial�time implementation of the prover�s
program� but this is not required� We now show that the above pair of interactive machines
constitutes an interactive proof system �in the general sense
 for the language GNI �Graph
Non�Isomorphism
�

Proposition ��� The language GNI is in the class IP� Furthermore� the programs speci�
�ed in Construction �� constitute a generalized interactive proof system for GNI� Namely�

�� If G� and G� are not isomorphic 	i�e�� �G�� G�
 � GNI
 then the veri�er always
accept 	when interacting with the prover
�

�� If G� and G� are isomorphic 	i�e�� �G�� G�
 	� GNI
 then� no matter with what
machine the veri�er interacts� it rejects the input with probability at least �

��

proof� Clearly� if G� and G� are not isomorphic then no graph can be isomorphic to both
G� and G�� It follows that there exists a unique � such that the graph G� �received by the
prover in Step P�
 is isomorphic to the input graph G� � Hence� � found by the prover in
Step �P�
 always equals 	 chosen in Step �V�
� Part ��
 follows�

On the other hand� if G� and G� are isomorphic then the graph G� is isomorphic to
both input graphs� Furthermore� we will show that in this case the graph G� yields no
information about 	� and consequently no machine can �on input G�� G� and G�
 set � so
that it equal 	� with probability greater than �

� � Details follow�

Let � be a permutation on the vertex set of a graph G �V�E
� Then� we denote by
��G
 the graph with vertex set V and edge set f���u
� ��v

 � �u� v
 � Eg� Let � be a
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random variable uniformly distributed over f�� �g� and ( be a random variable uniformly
distributed over the permutations of the set V � We stress that these two random variable
are independent� We are interested in the distribution of the random variable (�G�
� We
are going to show that� although (�G�
 is determined by the random variables ( and ��
the random variables � and (�G�
 are statistically independent� In fact we show

Claim �����	 If the graphs G� and G� are isomorphic then for every graph G� it holds that

Prob
�
� �j(�G�
 G

��  Prob �� �j(�G�
 G
��  �

�

proof	 We �rst claim that the sets S�
def
 f� � ��G�
  G�
 and S�

def
 f� � ��G�
  G�


are of equal cardinality� This follows from the observation that there is a ��� and onto
correspondence between the set S� and the set S� �the correspondence is given by the
isomorphism between the graphs G� and G�
� Hence�

Prob
�
(�G�
 G

�j� ��  Prob
�
(�G�
 G

��
 Prob �(�S�

 Prob �(�S�

 Prob

�
(�G�
 G

�j� ��
Using Bayes Rule� the claim follows��

Using Claim ������ it follows that for every pair� �G�� G�
� of isomorphic graphs and for
every randomized process� R� �possibly depending on this pair
 it holds that

Prob �R�(�G�

 �
  
X
G�

Prob
�
(�G�

 G

�� �Prob �R�G�

 �j(�G�
 G
��

 
X
G�

Prob
�
(�G�

 G

��
�
X

b�f���g
Prob

�
R�G�

 b

� �Prob �b �j(�G�
 G
��

 
X
G�

Prob
�
(�G�

 G

�� �Prob �R�G�

� f�� �g� � �
�

� �

�

with equality in case R always outputs an element in the set f�� �g� Part ��
 of the propo�
sition follows�
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Remarks concerning Construction ��	

In the proof system of Construction ���� the veri�er always accepts inputs in the language
�i�e�� the error probability in these cases equals zero
� All interactive proof systems we shall
consider will share this property� In fact it can be shown that every interactive proof system
can be transformed into an interactive proof system �for the same language
 in which the
veri�er always accepts inputs in the language� On the other hand� as shown in Exercise ��
only languages in NP have interactive proof system in which the veri�er always rejects
inputs not in the language�

The fact that GNI � IP� whereas it is not known whether GNI � NP� is an indi�
cation to the power of interaction and randomness in the context of theorem proving� A
much stronger indication is provided by the fact that every language in PSPACE has an
interactive proof system �in fact IP equals PSPACE
� For further discussion see Chapter ��

����� Augmentation to the Model

For purposes that will become more clear in the sequel we augment the basic de�nition of
an interactive proof system by allowing each of the parties to have a private input �in addi�
tion to the common input
� Loosely speaking� these inputs are used to capture additional
information available to each of the parties� Speci�cally� when using interactive proof sys�
tems as subprotocols inside larger protocols� the private inputs are associated with the local
con�gurations of the machines before entering the subprotocol� In particular� the private
input of the prover may contain information which enables an e�cient implementation of
the prover�s task�

De�nition ���� �interactive proof systems � revisited
�

� An interactive machine is de�ned as in De�nition ���� except that the machine has
an additional read�only tape called the auxiliary�input�tape� The contents of this tape
is call auxiliary input�

� The complexity of such an interactive machine is still measured as a function of the
	common
 input� Namely� the interactive machine A has time complexity t � IN �� IN

if for every interactive machine B and every string x� it holds that when interacting
with machine B� on common input x� machine A always 	i�e�� regardless of contents
of its random�tape and its auxiliary�input�tape as well as the contents of B�s tapes

halts within t�jxj
 steps�

� We denote by hA�y
� B�z
i�x
 the random variable representing the 	local
 output of
B when interacting with machine A on common input x� when the random�input to
each machine is uniformly and independently chosen� and A 	resp�� B
 has auxiliary
input y 	resp�� z
�
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� A pair of interactive machines� �P� V 
� is called an interactive proof system for a
language L if machine V is polynomial�time and the following two conditions hold

� Completeness� For every x � L� there exists a string y such that for every
z � f�� �g�

Prob �hP �y
� V �z
i�x
 �
 � �

�

� Soundness� For every x 	� L� every interactive machine B� and every y� z �
f�� �g�

Prob �hB�y
� V �z
i�x
 �
 � �

�

We stress that when saying that an interactive machine is polynomial�time� we mean
that its running�time is polynomial in the length of the common input� Consequently� it is
not guaranteed that such a machine has enough time to read its entire auxiliary input�

��� Zero�Knowledge Proofs� De	nitions

In this section we introduce the notion of a zero�knowledge interactive proof system� and
present a non�trivial example of such a system �speci�cally to claims of the form �the
following two graphs are isomorphic�
�

����� Perfect and Computational Zero�Knowledge

Loosely speaking� we say that an interactive proof system� �P� V 
� for a language L is zero�
knowledge if whatever can be e�ciently computed after interacting with P on input x �L�
can also be e�ciently computed from x �without any interaction
� We stress that the above
holds with respect to any e�cient way of interacting with P � not necessarily the way de�ned
by the veri�er program V � Actually� zero�knowledge is a property of the prescribed prover
P � It captures P �s robustness against attempts to gain knowledge by interacting with it� A
straightforward way of capturing the informal discussion follows�

Let �P� V 
 be an interactive proof system for some language L� We say that
�P� V 
� actually P � is perfect zero�knowledge if for every probabilistic polynomial�
time interactive machine V � there exists an �ordinary
 probabilistic polynomial�
time algorithm M� so that for every x � L the following two random variables
are identically distributed

� hP� V �i�x
 �i�e�� the output of the interactive machine V � after interacting
with the interactive machine P on common input x
�
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� M��x
 �i�e�� the output of machine M� on input x
�

Machine M� is called a simulator for the interaction of V � with P �

We stress that we require that for every V � interacting with P � not merely for V �
there exists a ��perfect�
 simulator M�� This simulator� although not having access to the
interactive machine P � is able to simulate the interaction of V � with P � This fact is taken
as evidence to the claim that V � did not gain any knowledge from P �since the same output
could have been generated without any access to P 
�

Note that every language in BPP has a perfect zero�knowledge proof system in which
the prover does nothing �and the veri�er checks by itself whether to accept the common
input or not
� To demonstrate the zero�knowledge property of this �dummy prover�� one
may present for every veri�er V � a simulatorM� which is essentially identical to V � �except
that the communication tapes of V � are considered as ordinary work tapes of M�
�

Unfortunately� the above formulation of perfect zero�knowledge is slightly too strict to be
useful� We relax the formulation by allowing the simulator to fail� with bounded probability�
to produce an interaction�

De�nition ���� �perfect zero�knowledge
� Let �P� V 
 be an interactive proof system for
some language L� We say that �P� V 
 is perfect zero�knowledge if for every probabilistic
polynomial�time interactive machine V � there exists a probabilistic polynomial�time algo�
rithm M� so that for every x � L the following two conditions hold�

�� With probability at most �
�� on input x� machine M� outputs a special symbol denoted

� 	i�e�� Prob�M��x
 �
 � �
�
�

�� Let m��x
 be a random variable describing the distribution of M��x
 conditioned on
M��x
 	 � 	i�e�� Prob�m��x
  �
  Prob�M��x
  �jM��x
 	 �
� for every � �
f�� �g�
� Then the following random variables are identically distributed

� hP� V �i�x
 	i�e�� the output of the interactive machine V � after interacting with
the interactive machine P on common input x
�

� m��x
 	i�e�� the output of machine M� on input x� conditioned on not being �
�

Machine M� is called a perfect simulator for the interaction of V � with P �

Condition � �above
 can be replaced by a stronger condition requiring thatM� outputs
the special symbol �i�e�� �
 only with negligible probability� For example� one can require
that on input x machine M� outputs � with probability bounded above by ��p�jxj�� for
any polynomial p��
� see Exercise �� Consequently� the statistical di�erence between the
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random variables hP� V �i�x
 and M��x
 can be made negligible �in jxj
� see Exercise �
Hence� whatever the veri�er e�ciently computes after interacting with the prover� can be
e�ciently computed �up to an overwhelmingly small error
 by the simulator �and hence by
the veri�er himself
�

Following the spirit of Chapters � and �� we observe that for practical purposes there
is no need to be able to �perfectly simulate� the output of V � after interacting with P �
Instead� it su�ces to generate a probability distribution which is computationally indis�
tinguishable from the output of V � after interacting with P � The relaxation is consistent
with our original requirement that �whatever can be e�ciently computed after interacting
with P on input x �L� can also be e�ciently computed from x �without any interaction
��
The reason being that we consider computationally indistinguishable ensembles as being
the same� Before presenting the relaxed de�nition of general zero�knowledge� we recall the
de�nition of computationally indistinguishable ensembles� Here we consider ensembles in�
dexed by strings from a language� L� We say that the ensembles fRxgx�L and fSxgx�L are
computationally indistinguishable if for every probabilistic polynomial�time algorithm� D�
for every polynomial p��
 and all su�ciently long x � L it holds that

jProb�D�x�Rx
 �
� Prob�D�x� Sx
 �
j � �

p�jxj


De�nition ���� �computational zero�knowledge
� Let �P� V 
 be an interactive proof sys�
tem for some language L� We say that �P� V 
 is computational zero�knowledge �or just
zero�knowledge
 if for every probabilistic polynomial�time interactive machine V � there ex�
ists a probabilistic polynomial�time algorithm M� so that the following two ensembles are
computationally indistinguishable

� fhP� V �i�x
gx�L 	i�e�� the output of the interactive machine V � after interacting with
the interactive machine P on common input x
�

� fM��x
gx�L 	i�e�� the output of machine M� on input x
�

Machine M� is called a simulator for the interaction of V � with P �

The reader can easily verify �see Exercise �
 that allowing the simulator to output
the symbol � �with probability bounded above by� say� ��
 and considering the conditional
output distribution �as done in De�nition ����
� does not add to the power of De�nition �����

We stress that both de�nitions of zero�knowledge apply to interactive proof systems in
the general sense �i�e�� having any non�negligible gap in the acceptance probabilities for
inputs inside and outside the language
� In fact� the de�nitions of zero�knowledge apply to
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any pair of interactive machines �actually to each interactive machine
� Namely� we may
say that the interactive machine A is zero�knowledge on L if whatever can be e�ciently
computed after interacting with A on common input x � L� can also be e�ciently computed
from x itself�

An alternative formulation of zeroknowledge

An alternative formulation of zero�knowledge considers the veri�er�s view of the interaction
with the prover� rather than only the output of the veri�er after such an interaction� By the
�veri�er�s view of the interaction� we mean the entire sequence of the local con�gurations of
the veri�er during an interaction �execution
 with the prover� Clearly� it su�ces to consider
only the contents of the random�tape of the veri�er and the sequence of messages that the
veri�er has received from the prover during the execution �since the entire sequence of local
con�gurations as well as the �nal output are determine by these objects
�

De�nition ���� �zero�knowledge � alternative formulation
� Let �P� V 
� L and V � be as
in De�nition ����� We denote by viewPV ��x
 a random variable describing the contents of
the random�tape of V � and the messages V � receives from P during a joint computation on
common input x� We say that �P� V 
 is zero�knowledge if for every probabilistic polynomial�
time interactive machine V � there exists a probabilistic polynomial�time algorithm M� so
that the ensembles fviewPV ��x
gx�L and fM��x
gx�L are computationally indistinguishable�

A few remarks are in place� De�nition ���� is obtained from De�nition ���� by replac�
ing hP� V �i�x
 for viewP

V ��x
� The simulator M� used in De�nition ���� is related� but not
equal� to the simulator used in De�nition ���� �yet� this fact is not re�ected in the text of
these de�nitions
� Clearly� V ��x
 can be computed in �deterministic
 polynomial�time from
viewPV ��x
� for every V �� Although the opposite direction is not always true� De�nition ����
is equivalent to De�nition ���� �see Exercise ��
� The latter fact justi�es the use of Def�
inition ����� which is more convenient to work with� although it seems less natural than
De�nition ����� An alternative formulation of perfect zero�knowledge is straightforward�
and clearly it is equivalent to De�nition �����

� Complexity classes based on ZeroKnowledge

De�nition ���
 �class of languages having zero�knowledge proofs
� We denote by ZK
�also CZK
 the class of languages having �computational
 zero�knowledge interactive proof
systems� Likewise� PZK denotes the class of languages having perfect zero�knowledge in�
teractive proof systems�

Clearly� BPP � PZK � CZK � IP � We believe that the �rst two inclusions are
strict� Assuming the existence of �non�uniformly
 one�way functions� the last inclusion is
an equality �i�e�� CZK  IP
� See Proposition ���� and Theorems ���� and �����
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� Expected polynomialtime simulators

The formulation of perfect zero�knowledge presented in De�nition ���� is di�erent from
the standard de�nition used in the literature� The standard de�nition requires that the
simulator always outputs a legal transcript �which has to be distributed identically to the
real interaction
 yet it allows the simulator to run in expected polynomial�time rather than
in strictly polynomial�time time� We stress that the expectation is taken over the coin
tosses of the simulator �whereas the input to the simulator is �xed
�

De�nition ���� �perfect zero�knowledge � liberal formulation
� We say that �P� V 
 is per�
fect zero�knowledge in the liberal sense if for every probabilistic polynomial�time interactive
machine V � there exists an expected polynomial�time algorithm M� so that for every x � L
the random variables hP� V �i�x
 and M��x
 are identically distributed�

We stress that by probabilistic polynomial�time we mean a strict bound on the run�
ning time in all possible executions� whereas by expected polynomial�time we allow non�
polynomial�time executions but require that the running�time is �polynomial on the aver�
age�� Clearly� De�nition ���� implies De�nition ���� � see Exercise �� Interestingly� there
exists interactive proofs which are perfect zero�knowledge with respect to the liberal de�ni�
tion but not known to be perfect zero�knowledge with respect to De�nition ����� We prefer
to adopt De�nition ����� rather than De�nition ����� because we wanted to avoid the notion
of expected polynomial�time that is much more subtle than one realizes at �rst glance�

A parenthetical remark concerning the notion of average polynomial�time� The
naive interpretation of expected polynomial�time is having average running�time
that is bounded by a polynomial in the input length� This de�nition of expected
polynomial�time is unsatisfactory since it is not closed under reductions and is
�too
 machine dependent� Both aggravating phenomenon follow from the fact
that a function may have an average �say over f�� �gn
 that is bounded by
polynomial �in n
 and yet squaring the function yields a function which is not
bounded by a polynomial �in n
� Hence� a better interpretation of expected
polynomial�time is having running�time that is bounded by a polynomial in a
function which has average linear growing rate�

Furthermore� the correspondence between average polynomial�time and e�cient computa�
tions is more controversial than the more standard association of strict polynomial�time
with e�cient computations�

An analogous discussion applies also to computational zero�knowledge� More speci�cally�
De�nition ���� requires that the simulator works in polynomial�time� whereas a more liberal
notion allows it to work in expected polynomial�time�
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For sake of elegancy� it is customary to modify the de�nitions allowing expected polynomial�
time simulators� by requiring that such simulators exist also for the interaction of expected
polynomial�time veri�ers with the prover�

����� An Example 
Graph Isomorphism in PZK�

As mentioned above� every language in BPP has a trivial �i�e�� degenerate
 zero�knowledge
proof system� We now present an example of a non�degenerate zero�knowledge proof system�
Furthermore� we present a zero�knowledge proof system for a language not known to be in
BPP� Speci�cally� the language is the set of pairs of isomorphic graphs� denoted GI �see
de�nition in Section ���
�

Construction ���� �Perfect Zero�Knowledge proof for Graph Isomorphism
�

� Common Input� A pair of two graphs� G� �V�� E�
 and G� �V�� E�
� Let � be an
isomorphism between the input graphs� namely � is a ��� and onto mapping of the
vertex set V� to the vertex set V� so that �u� v
 � E� if and only if ���v
� ��u

� E��

� Prover�s �rst Step �P�
� The prover selects a random isomorphic copy of G�� and
sends it to the veri�er� Namely� the prover selects at random� with uniform probability
distribution� a permutation � from the set of permutations over the vertex set V�� and
constructs a graph with vertex set V� and edge set

F
def
 f���u
� ��v

 � �u� v
�E�g

The prover sends �V�� F 
 to the veri�er�

� Motivating Remark� If the input graphs are isomorphic� as the prover claims� then
the graph sent in step P� is isomorphic to both input graphs� However� if the input
graphs are not isomorphic then no graph can be isomorphic to both of them�

� Veri�er�s �rst Step �V�
� Upon receiving a graph� G�  �V �� E�
� from the prover� the
veri�ers asks the prover to show an isomorphism between G� and one of the input
graph� chosen at random by the veri�er� Namely� the veri�er uniformly selects 	 �
f�� �g� and sends it to the prover 	who is supposed to answer with an isomorphism
between G� and G�
�

� Prover�s second Step �P�
� If the message� 	� received from the veri�er equals � then
the prover sends � to the veri�er� Otherwise 	i�e�� 	 	 �
� the prover sends � �� 	i�e��

the composition of � on �� de�ned as � � ��v
 def ����v


 to the veri�er� 	Remark�
the prover treats any 	 	 � as 	  ��
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� Veri�er�s second Step �V�
� If the message� denoted �� received from the prover is an
isomorphism between G� and G� then the veri�er outputs �� otherwise it outputs ��

Let use denote the prover�s program by PGI �

The veri�er program presented above is easily implemented in probabilistic polynomial�
time� In case the prover is given an isomorphism between the input graphs as auxiliary input�
also the prover�s program can be implemented in probabilistic polynomial�time� We now
show that the above pair of interactive machines constitutes a zero�knowledge interactive
proof system �in the general sense
 for the language GI �Graph Isomorphism
�

Proposition ���� The language GI has a perfect zero�knowledge interactive proof system�
Furthermore� the programs speci�ed in Construction ���� satisfy

�� If G� and G� are isomorphic 	i�e�� �G�� G�
 � GI
 then the veri�er always accepts
	when interacting with the prover
�

�� If G� and G� are not isomorphic 	i�e�� �G�� G�
 	� GI
 then� no matter with what
machine the veri�er interacts� it rejects the input with probability at least �

��

�� The above prover 	i�e�� PGI 
 is perfect zero�knowledge� Namely� for every probabilistic
polynomial�time interactive machine V � there exists a probabilistic polynomial�time

algorithm M� outputting � with probability at most �
� so that for every x

def
 �G�� G�
 �

GI the following two random variables are identically distributed

� viewPGIV � �x
 	i�e�� the view of V � after interacting with PGI � on common input x
�

� m��x
 	i�e�� the output of machine M�� on input x� conditioned on not being �
�

A zero�knowledge interactive proof system for GI with error probability ��k �only in the
soundness condition
 can be derived by executing the above protocol� sequentially� k times�
We stress that in each repetition� of the above protocol� both �the prescribed
 prover and
veri�er use coin tosses which are independent of the coins used in the other repetitions of the
protocol� For further discussion see Section ������ We remark that k parallel executions will
decrease the error in the soundness condition to ��k as well� but the resulting interactive
proof is not known to be zero�knowledge in case k grows faster than logarithmic in the input
length� In fact� we believe that such an interactive proof is not zero�knowledge� For further
discussion see Section ����

We stress that it is not known whether GI � BPP� Hence� Proposition ��� asserts the
existence of perfect zero�knowledge proofs for languages not known to be in BPP �

proof� We �rst show that the above programs indeed constitute a �general
 interactive proof
system for GI � Clearly� if the input graphs� G� and G�� are isomorphic then the graph G�
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constructed in step �P�
 is isomorphic to both of them� Hence� if each party follows its
prescribed program then the veri�er always accepts �i�e�� outputs �
� Part ��
 follows� On
the other hand� if G� and G� are not isomorphic then no graph can be isomorphic to both
G� and G�� It follows that no matter how the �possibly cheating
 prover constructs G

� there
exists 	 � f�� �g so that G� and G� are not isomorphic� Hence� when the veri�er follows its
program� the veri�er rejects �i�e�� outputs �
 with probability at least �

� � Part ��
 follows�

It remains to show that PGI is indeed perfect zero�knowledge on GI � This is indeed the
di�cult part of the entire proof� It is easy to simulate the output of the veri�er speci�ed
in Construction ���� �since its output is identically � on inputs in the language GI
� It is
also not hard to simulate the output of a veri�er which follows the program speci�ed in
Construction ����� except that at termination it output the entire transcript of its interac�
tion with PGI � see Exercise ��� The di�cult part is to simulate the output of an e�cient
veri�er which deviates arbitrarily from the speci�ed program�

We will use here the alternative formulation of �perfect
 zero�knowledge� and show how
to simulate V ��s view of the interaction with PGI � for every probabilistic polynomial�time
interactive machine V �� As mentioned above it is not hard to simulate the veri�er�s view
of the interaction with PGI in case the veri�er follows the speci�ed program� However� we
need to simulate the view of the veri�er in the general case �in which it uses an arbitrary
polynomial�time interactive program
� Following is an overview of our simulation �i�e�� of
our construction of a simulator� M�� for each V �
�

The simulator M� incorporates the code of the interactive program V �� On input
�G�� G�
� the simulator M

� �rst selects at random one of the input graphs �i�e�� either
G� or G�
 and generates a random isomorphic copy� denoted G��� of this input graph� In
doing so� the simulator behaves di�erently from PGI � but the graph generated �i�e�� G

��
 is
distributed identically to the message sent in step �P�
 of the interactive proof� Say that
the simulator has generated G�� by randomly permuting G�� Then� if V

� asks to see the
isomorphism between G� and G

��� the simulator can indeed answer correctly and in doing
so it completes a simulation of the veri�er�s view of the interaction with PGI � However�
if V � asks to see the isomorphism between G� and G��� then the simulator �which� unlike
PGI � does not �know� �
 has no way to answer correctly� and we let it halt with output
�� We stress that the simulator �has no way of knowing� whether V � will ask to see an
isomorphism to G� or G�� The point is that the simulator can try one of the possibilities
at random and if it is lucky �which happens with probability exactly �

�
 then it can output
a distribution which is identical to the view of V � when interacting with PGI �on common
input �G�� G�

� A detailed description of the simulator follows�

Simulator M�� On input x def
 �G�� G�
� simulator M

� proceeds as follows�

�� Setting the random�tape of V �� Let q��
 denote a polynomial bounding the running�
time of V �� The simulator M� starts by uniformly selecting a string r � f�� �gq�jxj��
to be used as the contents of the random�tape of V ��
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�� Simulating the prover�s �rst step 	P�
� The simulator M� selects at random� with
uniform probability distribution� a �bit� � � f�� �g and a permutation � from the set
of permutations over the vertex set V� � It then constructs a graph with vertex set V�
and edge set

F
def
 f���u
� ��v

 � �u� v
�E�g

Set G�� def �V� � F 
�

�� Simulating the veri�er�s �rst step 	V�
� The simulator M� initiates an execution of
V � by placing x on V ��s common�input�tape� placing r �selected in step ��
 above
 on
V ��s random�tape� and placing G�� �constructed in step ��
 above
 on V ��s incoming
message�tape� After executing a polynomial number of steps of V �� the simulator can
read the outgoing message of V �� denoted 	� To simplify the rest of the description�
we normalize 	 by setting 	  � if 	 	 � �and leave 	 unchanged if 	  �
�

�� Simulating the prover�s second step 	P�
� If 	  � then the simulator halts with
output �x� r� G��� �
�

�� Failure of the simulation� Otherwise �i�e�� 	 	 �
� the simulator halts with output ��

Using the hypothesis that V � is polynomial�time� it follows that so is the simulator M��
It is left to show that M� outputs � with probability at most �

� � and that� conditioned
on not outputting �� the simulator�s output is distributed as the veri�er�s view in a �real
interaction with PGI�� The following claim is the key to the proof of both claims�

Claim ������	 Suppose that the graphs G� and G� are isomorphic� Let � be a random
variable uniformly distributed in f�� �g� and (�G
 be a random variable �independent of
�
 describing the graph obtained from the graph G by randomly relabelling its nodes �cf�
Claim �����
� Then� for every graph G��� it holds that

Prob
�
� �j(�G�
 G

���  Prob �� �j(�G�
 G
���

Claim ����� is identical to Claim ����� �used to demonstrate that Construction ��� consti�
tutes an interactive proof for GNI
� As in the rest of the proof of Proposition ���� it follows
that any random process with output in f�� �g� given (�G�
� outputs � with probability
exactly �

� � Hence� given G
�� �constructed by the simulator in step ��

� the veri�er�s program

yields �normalized
 	 so that 	 	 � with probability exactly �
� � We conclude that the simu�

lator outputs � with probability �
� � It remains to prove that� conditioned on not outputting

�� the simulator�s output is identical to �V ��s view of real interactions�� Namely�

Claim ������	 Let x  �G�� G�
 � GI � Then� for every string r� graph H � and permutation
�� it holds that

Prob
�
viewPGIV � �x
 �x� r�H��


�
 Prob �M��x
 �x� r�H� �
 jM��x
 	 �
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proof	 Let m��x
 describe M��x
 conditioned on its not being �� We �rst observe that both
m��x
 and viewPGIV � �x
 are distributed over quadruples of the form �x� r� �� �
� with uniformly
distributed r � f�� �gq�jxj�� Let �x� r
 be a random variable describing the last two elements
of viewPGI

V � �x
 conditioned on the second element equals r� Similarly� let ��x� r
 describe the
last two elements of m��x
 �conditioned on the second element equals r
� Clearly� it su�ces
to show that �x� r
 and ��x� r
 are identically distributed� for every x and r� Observe that
once r is �xed the message sent by V � on common input x� random�tape r� and incoming
message H � is uniquely de�ned� Let us denote this message by v��x� r�H
� We show that
both �x� r
 and ��x� r
 are uniformly distributed over the set

Cx�r
def
 
n
�H��
 � H  ��Gv��x�r�H�


o

where ��G
 denotes the graph obtained from G by relabelling the vertices using the per�
mutation � �i�e�� if G �V�E
 then ��G
  �V� F 
 so that �u� v
 � E i� ���u
� ��v

 � F 
�
The proof of this statement is rather tedious and unrelated to the subjects of this book
�and hence can be skipped with no damage
�

The proof is slightly non�trivial because it relates �at least implicitly
 to the
automorphism group of the graph G� �i�e�� the set of permutations � for which
��G�
 is identical� not just isomorphic� to G�
� For simplicity� consider �rst
the special case in which the automorphism group of G� consists of merely the
identity permutation �i�e�� G� ��G�
 if and only if � is the identity permuta�
tion
� In this case� �H��
 � Cx�r if and only if H is isomorphic to �both G�

and
 G� and � is the isomorphism between H and Gv��x�r�H�� Hence� Cx�r con�
tains exactly jV�j� pairs� each containing a di�erent graph H as the �rst element�
In the general case� �H��
 � Cx�r if and only if H is isomorphic to �both G�

and
 G� and � is an isomorphism between H and Gv��x�r�H�� We stress that
v��x� r�H
 is the same in all pairs containing H � Let aut�G�
 denotes the size
of the automorphism group of G�� Then� each H �isomorphic to G�
 appears in
exactly aut�G�
 pairs of Cx�r and each such pair contain a di�erent isomorphism
between H and Gv��x�r�H��

We �rst consider the random variable ��x� r
 �describing the su�x ofm��x

�
Recall that ��x� r
 is de�ned by the following two step random process� In the
�rst step� one selects uniformly a pair ��� �
� over the set of pairs f�� �g�times�
permutation� and sets H  ��G�
� In the second step� one outputs �i�e�� sets
��x� r
 to
 ���G�
� �
 if v

��x� r�H
 � �and ignores the ��� �
 pair otherwise
�
Hence� each graphH �isomorphic toG�
 is generated� at the �rst step� by exactly
aut�G�
 di�erent ��� �
�pairs �i�e�� the pairs ��� �
 satisfying H ��G�

� and by
exactly aut�G�
 di�erent ��� �
�pairs �i�e�� the pairs ��� �
 satisfying H ��G�

�
All these � � aut�G�
 pairs yield the same graph H � and hence lead to the same
value of v��x� r�H
� It follows that out of the � � aut�G�
 pairs� ��� �
� yielding
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the graph H ��G�
� only the pairs satisfying � v
��x� r�H
 lead to an output�

Hence� for each H �which is isomorphic to G�
� the probability that ��x� r
  
�H� �
 equals aut�G�

�jV�j�
� Furthermore� for each H �which is isomorphic to
G�
�

Prob ���x� r
 �H��

  

�
�

jV�j� if H ��Gv��x�r�H�


� otherwise

Hence ��x� r
 is uniformly distributed over Cx�r�
We now consider the random variable �x� r
 �describing the su�x of the

veri�er�s view in a �real interaction� with the prover
� Recall that �x� r
 is
de�ned by selecting uniformly a permutation � �over the set V�
� and setting
�x� r
 ���G�
� �
 if v

��x� r� ��G�

 � and �x� r
 ���G�
� � � �
 otherwise�
where � is the isomorphism between G� and G�� Clearly� for each H �which is
isomorphic to G�
� the probability that �x� r
  �H� �
 equals aut�G�

�jV�j�
�
Furthermore� for each H �which is isomorphic to G�
�

Prob ��x� r
 �H��

  

�
�

jV�j� if � � � ���v��x�r�H�

� otherwise

Observing that H  ��Gv��x�r�H�
 if and only if � � ����v��x�r�H�� we conclude
that ��x� r
 and �x� r
 are identically distributed�

The claim follows� �

This completes the proof of Part ��
 of the proposition�

����� Zero�Knowledge w�r�t� Auxiliary Inputs

The de�nitions of zero�knowledge presented above fall short of what is required in practical
applications and consequently a minor modi�cation should be used� We recall that these
de�nitions guarantee that whatever can be e�ciently computed after interaction with the
prover on any common input� can be e�ciently computed from the input itself� However�
in typical applications �e�g�� when an interactive proof is used as a sub�protocol inside a
bigger protocol
 the veri�er interacting with the prover� on common input x� may have
some additional a�priori information� encoded by a string z� which may assist it in its
attempts to �extract knowledge� from the prover� This danger may become even more
acute in the likely case in which z is related to x� �For example� consider the protocol of
Construction ���� and the case where the veri�er has a�priori information concerning an
isomorphism between the input graphs�
 What is typically required is that whatever can be
e�ciently computed from x and z after interaction with the prover on any common input
x� can be e�ciently computed from x and z �without any interaction with the prover
� This
requirement is formulated below using the augmented notion of interactive proofs presented
in De�nition �����
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De�nition ���	 �zero�knowledge � revisited
� Let �P� V 
 be an interactive proof for a lan�
guage L 	as in De�nition ����
� Denote by PL�x
 the set of strings y satisfying the complete�
ness condition with respect to x � L 	i�e�� for every z � f�� �g� Prob �hP �y
� V �z
i�x
 �
 �
�
�
� We say that �P� V 
 is zero�knowledge with respect to auxiliary input �auxiliary input zero�
knowledge
 if for every probabilistic polynomial�time interactive machine V � there exists a
probabilistic algorithm M�� running in time polynomial in the length of its �rst input� so that
the following two ensembles are computationally indistinguishable 	when the distinguishing
gap is considered as a function of jxj


� fhP �y
� V ��z
i�x
gx�L�y�PL�x��z�f���g�
� fM��x� z
gx�L�z�f���g�

Namely� for every probabilistic algorithm� D� with running�time polynomial in length of
the �rst input� every polynomial p��
� and all su�ciently long x � L� all y � PL�x
 and
z � f�� �g�� it holds that

jProb�D�x� z� hP �y
� V ��z
i�x

 �
� Prob�D�x� z�M��x� z

 �
j� �

p�jxj


In the above de�nition y represents a�priori information to the prover� whereas z repre�
sents a�priori information to the veri�er� Both y and z may depend on the common input
x� We stress that the local inputs �i�e�� y and z
 may not be known� even in part� to the
counterpart� We also stress that the auxiliary input z is also given to the distinguishing
algorithm �which may be thought of as an extension of the veri�er
�

Recall that by De�nition ����� saying that the interactive machine V � is probabilistic
polynomial�time means that its running�time is bounded by a polynomial in the length
of the common input� Hence� the veri�er program� the simulator� and the distinguishing
algorithm� all run in time polynomial in the length of x �and not in time polynomial in the
total length of all their inputs
� This convention is essential in many respects� For example�
having allowed even one of these machines to run in time proportional to the length of
the auxiliary input would have collapsed computational zero�knowledge to perfect zero�
knowledge �e�g�� by considering veri�ers which run in time polynomial in the common�input
yet have huge auxiliary inputs of length exponential in the common�input
�

De�nition ���� refers to computational zero�knowledge� A formulation of perfect zero�
knowledge with respect to auxiliary input is straightforward� We remark that the perfect
zero�knowledge proof for Graph Isomorphism� presented in Construction ����� is in fact
perfect zero�knowledge with respect to auxiliary input� This fact follows easily by a minor
augmentation to the simulator constructed in the proof of Proposition ��� �i�e�� when
invoking the veri�er� the simulator should provide it with the auxiliary input which is
given to the simulator
� In general� a demonstration of zero�knowledge can be extended
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to yield zero�knowledge with respect to auxiliary input� provided that the simulator used
in the original demonstration works by invoking the veri�er�s program as a black box� All
simulators presented in this book have this property�

� Implicit nonuniformity in De�nition ���	

The non�uniform nature of De�nition ���� is captured by the fact that the simulator gets
an auxiliary input� It is true that this auxiliary input is also given to both the veri�er
program and the simulator� however if it is su�ciently long then only the distinguisher
can make any use of its su�x� It follows that the simulator guaranteed in De�nition ����
produces output that is indistinguishable from the real interactions also by non�uniform
polynomial�size machines� Namely� for every �even non�uniform
 polynomial�size circuit
family� fCngn�IN� every polynomial p��
� and all su�ciently large n�s� all x � L � f�� �gn�
all y � PL�x
 and z � f�� �g��

jProb�Cn�x� z� hP �y
� V ��z
i�x

 �
� Prob�Cn�x� z�M
��x� z

 �
j� �

p�jxj

Following is a sketch of the proof� We assume� to the contrary� that there exists a polynomial�
size circuit family� fCngn�IN� such that for in�nitely many n�s there exists triples �x� y� z

for which Cn has a non�negligible distinguishing gap� We derive a contradiction by incorpo�
rating the description of Cn together with the auxiliary input z into a longer auxiliary input�
denoted z�� This is done in a way that both V � and M� have no su�cient time to reach
the description of Cn� For example� let q��
 be a polynomial bounding the running�time of
both V � and M�� as well as the size of Cn� Then� we let z

� be the string which results by
padding z with blanks to a total length of q�n
 and appending the description of the circuit
Cn at its end �i�e�� if jzj � q�n
 then z� is a pre�x of z
� Clearly� M��x� z�
  M��x� z

and hP �y
� V ��z�
i�x
  hP �y
� V ��z
i�x
� On the other hand� by using a circuit evaluat�
ing algorithm� we get an algorithm D such that D�x� z�� �
  Cn�x� z
� and contradiction
follows�

����� Sequential Composition of Zero�Knowledge Proofs

An intuitive requirement that a de�nition of zero�knowledge proofs must satisfy is that
zero�knowledge proofs are closed under sequential composition� Namely� if one executes one
zero�knowledge proof after another then the composed execution must be zero�knowledge�
The same should remain valid even if one executes polynomially many proofs one after
the other� Indeed� as we will shortly see� the revised de�nition of zero�knowledge �i�e��
De�nition ����
 satis�es this requirement� Interestingly� zero�knowledge proofs as de�ned
in De�nition ���� are not closed under sequential composition� and this fact is indeed another
indication to the necessity of augmenting this de�nition �as done in De�nition ����
�
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In addition to its conceptual importance� the Sequential Composition Lemma is an
important tool in the design of zero�knowledge proof systems� Typically� these proof system
consists of many repetitions of a atomic zero�knowledge proof� Loosely speaking� the atomic
proof provides some �but not much
 statistical evidence to the validity of the claim� By
repeating the atomic proof su�ciently many times the con�dence in the validity of the claim
is increased� More precisely� the atomic proof o�ers a gap between the accepting probability
of string in the language and strings outside the language� For example� in Construction ����
pairs of isomorphic graphs �i�e�� inputs in GI
 are accepted with probability �� whereas pairs
of non�isomorphic graphs �i�e�� inputs not in GI
 are accepted with probability at most �

� �
By repeating the atomic proof the gap between the two probabilities is further increased�
For example� repeating the proof of Construction ���� for k times yields a new interactive
proof in which inputs in GI are still accepted with probability � whereas inputs not in GI
are accepted with probability at most �

�k
� The Sequential Composition Lemma guarantees

that if the atomic proof system is zero�knowledge then so is the proof system resulting by
repeating the atomic proof polynomially many times�

Before we state the Sequential Composition Lemma� we remind the reader that the
zero�knowledge property of an interactive proof is actually a property of the prover� Also�
the prover is required to be zero�knowledge only on inputs in the language� Finally� we
stress that when talking on zero�knowledge with respect to auxiliary input we refer to all
possible auxiliary inputs for the veri�er�

Lemma ���� �Sequential Composition Lemma
� Let P be an interactive machine 	i�e��
a prover
 which is zero�knowledge with respect to auxiliary input on some language L�
Suppose that the last message sent by P � on input x� bears a special �end of proof� symbol�
Let Q��
 be a polynomial� and let PQ be an interactive machine that� on common input
x� proceeds in Q�jxj
 phases� each of them consisting of running P on common input x�
	We stress that in case P is probabilistic� the interactive machine PQ uses independent coin
tosses for each of the Q�jxj
 phases�
 Then PQ is zero�knowledge 	with respect to auxiliary
input
 on L� Furthermore� if P is perfect zero�knowledge 	with respect to auxiliary input

then so is PQ�

The convention concerning �end of proof� is introduced for technical purposes �and is re�
dundant in all known provers for which the number of messages sent is easily computed from
the length of the common input
� Clearly� every machine P can be easily modi�ed so that
its last message bears an appropriate symbol �as assumed above
� and doing so preserves
the zero�knowledge properties of P �as well as completeness and soundness conditions
�

The Lemma remain valid also if one allows auxiliary input to the prover� The extension
is straightforward� The lemma ignores other aspects of repeating an interactive proof several
times� speci�cally� the e�ect on the gap between the accepting probability of inputs inside
and outside of the language� This aspect of repetition is discussed in the previous section
�see also Exercise �
�
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Proof� Let V � be an arbitrary probabilistic polynomial�time interactive machine interacting
with the composed prover PQ� Our task is to construct a �polynomial�time
 simulator�
M�� which simulates the real interactions of V � with PQ� Following is a very high level
description of the simulation� The key idea is to simulate the real interaction on common
input x in Q�jxj
 phases corresponding to the phases of the operation of PQ� Each phase
of the operation of PQ is simulated using the simulator guaranteed for the atomic prover
P � The information accumulated by the veri�er in each phase is passed to the next phase
using the auxiliary input�

The �rst step in carrying�out the above plan is to partition the execution of an arbitrary
interactive machine V � into phases� The partition may not exist in the code of the program
V �� and yet it can be imposed on the executions of this program� This is done using the
phase structure of the prescribed prover PQ� which is induced by the �end of proof� symbols�
Hence� we claim that no matter how V � operates� the interaction of V � with PQ on common
input x� can be captured by Q�jxj
 successive interaction of a related machine� denoted V ���
with P � Namely�

Claim ������� There exists a probabilistic polynomial�time V �� so that for every common
input x and auxiliary input z it holds that

hPQ� V ��z
i�x
  Z�Q�jxj��

where Z��� def z and Z�i��� def hP� V ���Z�i�
i�x


Namely� Z�Q�jxj�� is a random variable describing the output of V �� after Q�jxj
 successive
interactions with P � on common input x� where the auxiliary input of V �� in the i ! �st

interaction equals the output of V �� after the ith interaction �i�e�� Z�i�
�

proof� Consider an interaction of V ��z
 with PQ� on common input x� Machine V � can be
slightly modi�ed so that it starts its execution by reading the common�input� the random�
input and the auxiliary�input into special regions in its work�tape� and never accesses the
above read�only tapes again� Likewise� V � is modi�ed so that it starts each active period
by reading the current incoming message from the communication�tape to a special region
in the work tape �and never accesses the incoming message�tape again during this period
�
Actually� the above description should be modi�ed so that V � copies only a polynomially
long �in the common input
 pre�x of each of these tapes� the polynomial being the one
bounding the running time of V ��

Considering the contents of the work�tape of V � at the end of each of the Q�jxj
 phases
�of interactions with PQ
� naturally leads us to the construction of V ��� Namely� on common
input x and auxiliary input z�� machine V �� starts by copying z� into the work�tape of V ��
Next� machine V �� simulates a single phase of the interaction of V � with PQ �on input x

starting with the above contents of the work�tape of V � �instead of starting with an empty
work�tape
� The invoked machine V � regards the communication�tapes of machine V �� as
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its own communication�tapes� Finally� V �� terminates by outputting the current contents
of the work�tape of V �� Actually� the above description should be slightly modi�ed to
deal di�erently with the �rst phase in the interaction with PQ� Speci�cally� V

�� copies z�

into the work�tape of V � only if z� encodes a contents of the work�tape of V � �we assume�
w�l�o�g�� that the contents of the work�tape of V � is encoded di�erently from the encoding
of an auxiliary input for V �
� In case z� encodes an auxiliary input to V �� machine V ��

invokes V � on an empty work�tape� and V � regards the readable tapes of V �� �i�e�� common�
input�tape� the random�input�tape and the auxiliary�input�tape
 as its own� Observe that

Z��� def
 hP� V ���z
i�x
 describes the contents of the work�tape of V � after one phase� and

Z�i� def
 hP� V ���Z�i���
i�x
 describes the contents of the work�tape of V � after i phases�

The claim follows� �

Since V �� is a polynomial�time interactive machine �with auxiliary input
 interacting
with P � it follows by the lemma�s hypothesis that there exists a probabilistic machine which
simulates these interactions in time polynomial in the length of the �rst input� Let M��

denote this simulator� We may assume� without loss of generality� that with overwhelmingly
high probability M�� halts with output �as we can increase the probability of output by
successive applications ofM��
� Furthermore� for sake of simplicity� we assume in the rest of
this proof that M�� always halts with output� Namely� for every probabilistic polynomial�
time �in x
 algorithmD� every polynomial p��
� all su�ciently long x � L and all z � f�� �g��
we have

jProb�D�x� z� hP� V ���z
i�x

  �
� Prob�D�x� z�M���x� z

  �
j � �

p�jxj


We are now ready to present the construction of a simulator� M�� that simulates the
�real� output of V � after interaction with PQ� Machine M

� uses the above guaranteed
simulator M��� On input �x� z
� machine M� sets z���  z and proceeds in Q�jxj
 phases�
In the ith phase� machine M� computes z�i� by running machine M�� on input �x� z�i���
�
After Q�jxj
 phases are completed� machine M� stops outputting z�Q�jxj���

Clearly� machine M�� constructed above� runs in time polynomial in its �rst input� �For
non�constant Q��
 it is crucial here that the running�time ofM� is polynomial in the length
of the �rst input� rather than being polynomial in the length of both inputs�
 It is left
to show that machine M� indeed produces output which is polynomially indistinguishable
from the output of V � �after interacting with PQ
� Namely�

Claim ������� For every probabilistic algorithm D� with running�time polynomial in its �rst
input� every polynomial p��
� all su�ciently long x � L and all z � f�� �g�� we have

jProb�D�x� z� hPQ� V ��z
i�x

  �
� Prob�D�x� z�M��x� z

  �
j � �

p�jxj
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proof sketch� We use a hybrid argument� In particular� we de�ne the following Q�jxj
 ! �
hybrids� The ith hybrid� �� i�Q�jxj
� corresponds to the following random process� We
�rst let V �� interact with P for i phases� starting with common input x and auxiliary input
z� and denote by Z�i� the output of V �� after the ith phase� We next repeatedly iterateM��

for the remaining Q�m
� k phases� In both cases� we use the output of the previous phase
as auxiliary input to the new phase� Formally� the hybrid H�i� is de�ned as follows�

H�i��x� z

def
 M��

Q�m��i�x� Z
�i�


where Z��� def z and Z�j��� def
 hP� V ���Z�j�
i�x


M��
� �x� z

�
 def �x� z�
 and M��
j �x� z

�
 def M��
j���x�M

���x� z�



Using Claim ������� the Q�jxj
th hybrid �i�e�� H�Q�jxj���x� z

 equals hPQ� V ��z
i�x

� On the
other hand� recalling the construction of M�� we see that the zero hybrid �i�e�� H����x� z


equalsM��x� z

� Hence� all that is required to complete the proof is to show that every two
adjacent hybrids are polynomially indistinguishable �as this would imply that the extreme
hybrids� H�Q�m�� and H���� are indistinguishable too
� To this end� we rewrite the ith and
i� �st hybrids as follows�

H�i��x� z
  M��
Q�jxj��i�x� hP� V ���Z�i���
i�x



H�i����x� z
  M��
Q�jxj��i�x�M

���x� Z�i���



where Z�i��� is as de�ned above �in the de�nition of the hybrids
�

Using an averaging argument� it follows that if an algorithm� D� distinguishes the hy�
brids H�i��x� z
 and H�i����x� z
 then there exists a z� so that algorithm D distinguishes
the random variables M��

Q�jxj��i�x� hP� V ���z�
i�x

 and M��
Q�jxj��i�x�M

���x� z�

 at least as
well� Incorporating algorithm M�� into D� we get a new algorithm D�� with running time
polynomially related to the former algorithms� which distinguishes the random variables
�x� z�� hP� V ���z�
i�x

 and �x� z��M���x� z�

 at least as well� �Further details are presented
below�
 Contradiction �to the hypothesis that M�� simulates �P� V ��

 follows� �

The lemma follows�

Further details concerning the proof of Claim ������� The proof of Claim ������ is
rather sketchy� The main thing which is missing are details concerning the way in which
an algorithm contradicting the hypothesis that M�� is a simulator for �P� V ��
 is derived
from an algorithm contradicting the statement of Claim ������� These details are presented
below� and the reader is encouraged not to skip them�

Let us start with the non�problematic part� We assume� to the contradiction� that
there exists a probabilistic polynomial�time algorithm� D� and a polynomial p��
� so that
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for in�nitely many x � L there exists z � f�� �g� such that

jProb�D�x� z� hPQ� V ��z
i�x

  �
� Prob�D�x� z�M��x� z

  �
j � �

p�jxj

It follows that for every such x and z� there exists an i � f�� ����Q�jxj
g such that

jProb�D�x� z�H�i��x� z

  �
� Prob�D�x� z�H�i����x� z

  �
j � �

Q�jxj
 � p�jxj


Denote ��n

def
 �
�Q�n
 � p�n

� Combining the de�nition of the ith and i� �st hybrids with

an averaging argument� it follows that for each such x� z and i� there exists a z�� in the
support of Z�i��� �de�ned as above
� such that

jProb�D�x� z��M��
Q�jxj��ihP� V ���z�
i�x

  �


�Prob�D�x� z��M��
Q�jxj��i�M

���x� z�


  �
j � ��jxj


This almost leads to the desired contradiction� Namely� the random variables �x� z�� hP� V ���z�
i�x


and �x� z��M���x� z�

 can be distinguished using algorithms D and M��� provided we
�know� i� The problem is resolved using the fact� pointed out at the end of Subsection ������
that the output ofM�� is undistinguished from the interactions of V �� with the prover even
with respect to non�uniform polynomial�size circuits� Details follow�

We construct a polynomial�size circuit family� denoted fCng� which distinguishes �x� z�� hP� V ���z��
i�x


and �x� z��M���x� z��

� for the above�mentioned �x� z�
 pairs� On input x �supposedly
in L � f�� �gn
 and � �supposedly in either �x� z�� hP� V ���z��
i�x

 or �x� z��M���x� z��


�
the circuit Cn� incorporating �the above�mentioned
 i� uses algorithm M�� to compute
�  MQ�jxj��i�x� �
� Next Cn� using algorithm D� computes 	  D��x� z�
� �
 and halts
outputting 	� Contradiction �to the hypothesis that M�� is a simulator for �P� V ��

 fol�
lows� �

And what about parallel composition�

Unfortunately� we cannot prove that zero�knowledge �even with respect to auxiliary input

is preserved under parallel composition� Furthermore� there exist zero�knowledge proofs
that when played twice in parallel do yield knowledge �to a �cheating veri�er�
� For further
details see Subsection ����

The fact that zero�knowledge is not preserved under parallel composition of protocols
is indeed bad news� One may even think that this fact is a conceptually annoying phe�
nomenon� We disagree with this feeling� Our feeling is that the behaviour of protocols
and �games� under parallel composition is� in general �i�e�� not only in the context of zero�
knowledge
� a much more complex issue than the behaviour under sequential composition�




��� ZERO�KNOWLEDGE PROOFS FOR NP ��

Furthermore� the only advantage of parallel composition over sequential composition is in
e�ciency� Hence� we don�t consider the non�closure under parallel composition to be a
conceptual weakness of the formulation of zero�knowledge� Yet� the �non�closure� of zero�
knowledge motivates the search for either weaker or stronger notions which are preserved
under parallel composition� For further details� the reader is referred to Sections ��� and ����

��� Zero�Knowledge Proofs for NP

This section presents the main thrust of the entire chapter� namely� a method for construct�
ing zero�knowledge proofs for every language in NP � The importance of this method stems
from its generality� which is the key to its many applications� Speci�cally� we observe that
almost all statements one wish to prove in practice can be encoded as claims concerning
membership in languages in NP �

The method� for constructing zero�knowledge proofs for NP�languages� makes essential
use of the concept of bit commitment� Hence� we start with a presentation of this concept�

����� Commitment Schemes

Commitment schemes are a basic ingredient in many cryptographic protocols� The are used
to enable a party to commit itself to a value while keeping it secret� In a latter stage the
commitment is �opened� and it is guaranteed that the �opening� can yield only a single
value determined in the committing phase� Commitment schemes are the digital analogue
of nontransparent sealed envelopes� By putting a note in such an envelope a party commits
itself to the contents of the note while keeping it secret�

De�nition

Loosely speaking� a commitment scheme is an e�cient two�phase two�party protocol through
which one party� called the sender� can commit itself to a value so the following two con�
�icting requirements are satis�ed�

�� Secrecy� At the end of the �rst phase� the other party� called the receiver� does not
gain any knowledge of the sender�s value� This requirement has to be satis�ed even if
the receiver tries to cheat�

�� Unambiguity� Given the transcript of the interaction in the �rst phase� there exists
at most one value which the receiver may later �i�e�� in the second phase
 accept as a
legal �opening� of the commitment� This requirement has to be satis�ed even if the
sender tries to cheat�
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In addition� one should require that the protocol is viable in the sense that if both parties
follow it then� at the end of the second phase� the receiver gets the value committed to
by the sender� The �rst phase is called the commit phase� and the second phase is called
the reveal phase� We are requiring that the commit phase yield no knowledge �at least
not of the sender�s value
 to the receiver� whereas the commit phase does �commit� the
sender to a unique value �in the sense that in the reveal phase the receiver may accept only
this value
� We stress that the protocol is e�cient in the sense that the predetermined
programs of both parties can be implemented in probabilistic� polynomial�time� Without
loss of generality� the reveal phase may consist of merely letting the sender send� to the
receiver� the original value and the sequence of random coin tosses that it has used during
the commit phase� The receiver will accept the value if and only if the supplied information
matches its transcript of the interaction in the commit phase� The latter convention leads
to the following de�nition �which refers explicitly only to the commit phase
�

De�nition ���� �bit commitment scheme
� A bit commitment scheme is a pair of prob�
abilistic polynomial�time interactive machines� denoted �S�R
 	for sender and receiver
�
satisfying�

� Input Speci�cation� The common input is an integer n presented in unary 	serving
as the security parameter
� The private input to the sender is a bit v�

� Secrecy� The receiver 	even when deviating arbitrarily from the protocol
 cannot dis�
tinguish a commitment to � from a commitment to �� Namely� for every probabilis�
tic polynomial�time machine R� interacting with S� the random variables describing
the output of R� in the two cases� namely hS��
� R�i��n
 and hS��
� R�i��n
� are
polynomially�indistinguishable�

� Unambiguity�
Preliminaries

� A receiver�s view of an interaction with the sender� denoted �r�m
� consists of
the random coins used by the receiver 	r
 and the sequence of messages received
from the sender 	m
�

� Let 	 � f�� �g� We say that a receiver�s view 	of such interaction
� �r�m
� is a
possible 	�commitment if there exists a string s such thatm describes the messages
received by R when R uses local coins r and interacts with machine S which uses
local coins s and has input �	� �n
� 	Using the notation of De�nition ����� the

condition may be expressed as m  view
S����n�s�
R��n�r� �


� We say that the receiver�s view �r�m
 is ambiguous if it is both a possible ��
commitment and a possible ��commitment�
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The unambiguity requirement asserts that� for all but a negligible fraction of the coin
tosses of the receiver� there exists no sequence of messages 	from the sender
 which
together with these coin tosses forms an ambiguous receiver view� Namely� that for
all but a negligible fraction of the r � f�� �gpoly�n� there is no m such that �r�m
 is
ambiguous�

The secrecy requirement �above
 is analogous to the de�nition of indistinguishability of en�
cryptions �i�e�� De�nition �missing�enc�indist�def��
� An equivalent formulation analo�
gous to semantic security �i�e�� De�nition �missing�enc�semant�def��
 can be presented�
but is less useful in typical applications of commitment schemes� In any case� the secrecy re�
quirement is a computational one� On the other hand� the unambiguity requirement has an
information theoretic �avour �i�e�� it does not refer to computational powers
� A dual def�
inition� requiring information theoretic secrecy and computational unfeasibility of creating
ambiguities� is presented in Subsection ������

The secrecy requirement refers explicitly to the situation at the end of the commit phase�
On the other hand� we stress that the unambiguity requirement implicitly assumes that the
reveal phase takes the following form�

�� the sender sends to the receiver its initial private input� v� and the random coins� s�
it has used in the commit phase�

�� the receiver veri�es that v and s �together with the coins �r
 used by R in the commit
phase
 indeed yield the messages thatR has received in the commit phase� Veri�cation
is done in polynomial�time �by running the programs S and R
�

Note that the viability requirement �i�e�� asserting that if both parties follow the protocol
then� at the end of the reveal phase� the receiver gets v
 is implicitly satis�ed by the above
convention�

Construction based on any oneway permutation

Some public�key encryption scheme can be used as a commitment scheme� This can be
done by having the sender generate a pair of keys and use the public�key together with the
encryption of a value as its commitment to the value� In order to satisfy the unambiguity
requirement� the underlying public�key scheme needs to satisfy additional requirements �e�g��
the set of legitimate public�keys should be e�ciently recognizable
� In any case� public�
key encryption schemes have additional properties not required of commitment schemes
and their existence seems to require stronger intractability assumptions� An alternative
construction� presented below� uses any one�way permutation� Speci�cally� we use a one�
way permutation� denoted f � and a hard�core predicate for it� denoted b �see Section ���
�
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Construction ���� �simple bit commitment
� Let f � f�� �g� �� f�� �g� be a function� and
b � f�� �g� �� f�� �g be a predicate�

�� commit phase� To commit to value v � f�� �g 	using security parameter n
� the sender
uniformly selects s � f�� �gn and sends the pair �f�s
� b�s
� v
 to the receiver�

�� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if f�s
  � and b�s
� v  	� where ��� 	
 is
the receiver�s view of the commit phase�

Proposition ���� Let f � f�� �g� �� f�� �g� be a length preserving ��� one�way function�
and b � f�� �g� �� f�� �g be a hard�core predicate of f � Then� the protocol presented in
Construction ���� constitutes a bit commitment scheme�

Proof� The secrecy requirement follows directly from the fact that b is a hard�core of f �
The unambiguity requirement follows from the ��� property of f � In fact� there exists no
ambiguous receiver view� Namely� for each receiver view ��� 	
� there is a unique s � f�� �gj
j
so that f�s
  � and hence a unique v � f�� �g so that b�s
� v  	�

Construction based on any oneway function

We now present a construction of a bit commitment scheme which is based on the weakest
assumption possible� the existence of one�way function� Proving the that the assumption is
indeed minimal is left as an exercise �i�e�� Exercise ��
� On the other hand� by the results in
Chapter � �speci�cally� Theorems ���� and ����
� the existence of one�way functions imply
the existence of pseudorandom generators expanding n�bit strings into �n�bit strings� We
will use such a pseudorandom generator in the construction presented below�

We start by motivating the construction� Let G be a pseudorandom generator satisfying
jG�s
j  � � jsj� Assume that G has the property that the sets fG�s
 � s � f�� �gng and
fG�s
� ��n � s � f�� �gng are disjoint� were �� � denote the bit�by�bit exclusive�or of the
strings � and �� Then� the sender may commit itself to the bit v by uniformly selecting
s � f�� �gn and sending the message G�s
 � v�n �vk denotes the all�v�s k�bit long string
�
Unfortunately� the above assumption cannot be justi�ed� in general� and a slightly more
complex variant is required� The key observation is that for most strings � � f�� �g�n
the sets fG�s
 � s � f�� �gng and fG�s
 � � � s � f�� �gng are disjoint� Such a string
� is called good� This observation suggests the following protocol� The receiver uniformly
selects � � f�� �g�n� hoping that it is good� and the sender commits to the bit v by uniformly
selecting s � f�� �gn and sending the message G�s
 if v  � and G�s
� � otherwise�

Construction ���� �bit commitment under general assumptions
� Let G � f�� �g� ��
f�� �g� be a function so that jG�s
j  � � jsj for all s � f�� �g��
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�� commit phase� To receive a commitment to a bit 	using security parameter n
� the
receiver uniformly selects r � f�� �g�n and sends it to the sender� Upon receiving the
message r 	from the receiver
� the sender commits to value v � f�� �g by uniformly
selecting s � f�� �gn and sending G�s
 if v  � and G�s
� r otherwise�

�� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value � if G�s
  � and the value � if G�s
� r  ��
where �r� �
 is the receiver�s view of the commit phase�

Proposition ���
 If G is a pseudorandom generator� then the protocol presented in Con�
struction ���� constitutes a bit commitment scheme�

Proof� The secrecy requirement follows the fact that G is a pseudorandom generator�
Speci�cally� let Uk denote the random variable uniformly distributed on strings of length
k� Then for every r � f�� �g�n� the random variables U�n and U�n � r are identically dis�
tributed� Hence� if it is feasible to �nd an r � f�� �g�n such that G�Un
 and G�Un
 � r
are computationally distinguishable then either U�n and G�Un
 are computationally dis�
tinguishable or U�n � r and G�Un
 � r are computationally distinguishable� In either case
contradiction to the pseudorandomness of G follows�

We now turn to the unambiguity requirement� Following the motivating discussion�
we call � � f�� �g�n good if the sets fG�s
 � s � f�� �gng and fG�s
 � � � s � f�� �gng
are disjoint� We say that � � f�� �g�n yields a collision between the seeds s� and s� if
G�s�
  G�s�
 � �� Clearly� � is good if it does not yield a collision between any pair of
seeds� On the other hand� there is a unique string � which yields a collision between a
given pair of seeds �i�e�� �  G�s�
 � G�s�

� Since there are �

�n possible pairs of seeds�
at most ��n strings yield collisions between seeds and all the other �n�bit long strings are
good� It follows that with probability at least �� ��n��n the receiver selects a good string�
The unambiguity requirement follows�

Extensions

The de�nition and the constructions of bit commitment schemes are easily extended to
general commitment schemes enabling the sender to commit to a string rather than to a
single bit� When de�ning the secrecy of such schemes the reader is advised to consult
De�nition �missing�enc�indist�def��
� For the purposes of the rest of this section we
need a commitment scheme by which one can commit to a ternary value� Extending the
de�nition and the constructions to deal with this case is even more straightforward�

In the rest of this section we will need commitment schemes with a seemingly stronger
secrecy requirement than de�ned above� Speci�cally� instead of requiring secrecy with
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respect to all polynomial�time machines� we will require secrecy with respect to all �not
necessarily uniform
 families of polynomial�size circuits� Assuming the existence of non�
uniformly one�way functions �see De�nition ��� in Section ���
 commitment schemes with
nonuniform secrecy can be constructed� following the same constructions used in the uniform
case�

����� Zero�Knowledge proof of Graph Coloring

Presenting a zero�knowledge proof system for one NP�complete language implies the exis�
tence of a zero�knowledge proof system for every language in NP � This intuitively appealing
statement does require a proof which we postpone to a later stage� In the current subsec�
tion we present a zero�knowledge proof system for one NP�complete language� speci�cally
Graph ��Colorability� This choice is indeed arbitrary�

The language Graph ��Coloring� denoted G�C� consists of all simple graphs �i�e�� no
parallel edges or self�loops
 that can be vertex�colored using � colors so that no two adjacent
vertices are given the same color� Formally� a graph G �V�E
� is ��colorable� if there exists
a mapping � � V �� f�� �� �g so that ��u
 	 ��v
 for every �u� v
 � E�

Motivating discussion

The idea underlying the zero�knowledge proof system for G�C is to break the proof of the
claim that a graph is ��colorable into polynomially many pieces arranged in templates so
that each template by itself yields no knowledge and yet all the templates put together
guarantee the validity of the main claim� Suppose that the prover generates such pieces
of information� places each of them in a separate sealed and nontransparent envelope� and
allows the veri�er to open and inspect the pieces participating in one of the templates� Then
certainly the veri�er gains no knowledge in the process� yet his con�dence in the validity
of the claim �that the graph is ��colorable
 increases� A concrete implementation of this
abstract scheme follows�

To prove that the graph G  �V�E
 is ��colorable� the prover generates a random ��
coloring of the graph� denoted � �actually a random relabelling of a �xed coloring will do
�
The color of each single vertex constitutes a piece of information concerning the ��coloring�
The set of templates corresponds to the set of edges �i�e�� each pair ���u
� ��v

� �u� v
 � E�
constitutes a template to the claim that G is ��colorable
� Each single template �being
merely a random pair of distinct elements in f�� �� �g
 yield no knowledge� However� if all
the templates are OK then the graph must be ��colorable� Consequently� graphs which are
not ��colorable must contain at least one bad template and hence are rejected with non�
negligible probability� Following is an abstract description of the resulting zero�knowledge
interactive proof system for G�C�
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� Common Input� A simple graph G �V�E
�

� Prover�s �rst step� Let � be a ��coloring of G� The prover selects a random per�

mutation� �� over f�� �� �g� and sets ��v
 def
 ����v

� for each v � V � Hence� the

prover forms a random relabelling of the ��coloring �� The prover sends the veri�er
a sequence of jV j locked and nontransparent boxes so that the vth box contains the
value ��v
�

� Veri�er�s �rst step� The veri�er uniformly selects an edge �u� v
 � E� and sends it to
the prover�

� Motivating Remark� The veri�er asks to inspect the colors of vertices u and v�

� Prover�s second step� The prover sends to the veri�er the keys to boxes u and v�

� Veri�er�s second step� The veri�er opens boxes u and v� and accepts if and only if
they contain two di�erent elements in f�� �� �g�

Clearly� if the input graph is ��colorable then the prover can cause the veri�er to accept
always� On the other hand� if the input graph is not ��colorable then any contents placed in
the boxes must be invalid on at least one edge� and consequently the veri�er will reject with
probability at least �
jEj� Hence� the above protocol exhibits a non�negligible gap in the
accepting probabilities between the case of inputs in G�C and inputs not in G�C� The zero�
knowledge property follows easily� in this abstract setting� since one can simulate the real
interaction by placing a random pair of di�erent colors in the boxes indicated by the veri�er�
We stress that this simple argument will not be possible in the digital implementation since
the boxes are not totally ine�ected by their contents �but are rather e�ected� yet in an
indistinguishable manner
� Finally� we remark that the con�dence in the validity of the
claim �that the input graph is ��colorable
 may be increased by sequentially applying the
above proof su�cient many times� �In fact if the boxes are perfect as assumed above then
one can also use parallel repetitions�


The interactive proof

We now turn to the digital implementation of the above abstract protocol� In this imple�
mentation the boxes are implemented by a commitment scheme� Namely� for each box we
invoke an independent execution of the commitment scheme� This will enable us to exe�
cute the reveal phase in only some of the commitments� a property that is crucial to our
scheme� For simplicity of exposition� we use the simple commitment scheme presented in
Construction ���� �or� more generally� any one�way interaction commitment scheme
� We
denote by Cs�	
 the commitment of the sender� using coins s� to the �ternary
 value 	�

Construction ���� �A zero�knowledge proof for Graph ��Coloring
�
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� Common Input� A simple 	��colorable
 graph G  �V�E
� Let n
def
 jV j and V  

f�� ���� ng�
� Auxiliary Input to the Prover� A ��coloring of G� denoted ��

� Prover�s �rst step �P�
� The prover selects a random permutation� �� over f�� �� �g�
and sets ��v


def
 ����v

� for each v � V � The prover uses the commitment scheme

to commit itself to the color of each of the vertices� Namely� the prover uniformly and
independently selects s�� ���� sn � f�� �gn� computes ci  Csi���i

� for each i � V � and
sends c�� ���� cn to the veri�er�

� Veri�er�s �rst step �V�
� The veri�er uniformly selects an edge �u� v
 � E� and sends
it to the prover�

� Motivating Remark� The veri�er asks to inspect the colors of vertices u and v�

� Prover�s second step �P�
� Without loss of generality� we may assume that the message
received for the veri�er is an edge� denoted �u� v
� 	Otherwise� the prover sets �u� v
 to
be some predetermined edge of G�
 The prover uses the reveal phase of the commitment
scheme in order to reveal the colors of vertices u and v to the veri�er� Namely� the
prover sends �su� ��u

 and �sv� ��v

 to the veri�er�

� Veri�er�s second step �V�
� The veri�er checks whether the values corresponding to
commitments u and v were revealed correctly and whether these values are di�erent�
Namely� upon receiving �s� 	
 and �s�� �
� the veri�er checks whether cu  Cs�	
�
cv  Cs���
� and 	 	 � 	and both in f�� �� �g
� If all conditions hold then the veri�er
accepts� Otherwise it rejects�

Let us denote the above prover�s program by PG�C �

We stress that both the programs of the veri�er and of the prover can be implemented in
probabilistic polynomial�time� In case of the prover�s program this property is made possible
by the use of the auxiliary input to the prover� As we will shortly see� the above protocol
constitutes a weak interactive proof for G�C� As usual� the con�dence can be increased
�i�e�� the error probability can be decreased
 by su�ciently many successive applications�
However� the mere existence of an interactive proof for G�C is obvious �since G�C �
NP
� The punch�line is that the above protocol is zero�knowledge �also with respect to
auxiliary input
� Using the Sequential Composition Lemma �Lemma ����
� it follows that
also polynomially many sequential applications of this protocol preserve the zero�knowledge
property�

Proposition ���� Suppose that the commitment scheme used in Construction ���� satis�
�es the 	nonuniform
 secrecy and the unambiguity requirements� Then Construction ����
constitutes an auxiliary input zero�knowledge 	generalized
 interactive proof for G�C�
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For further discussion of Construction ���� see remarks at the end of the current subsection�

Proof of Proposition ����

We �rst prove that Construction ���� constitutes a weak interactive proof for G�C� Assume
�rst that the input graph is indeed ��colorable� Then if the prover follows the program in
the construction then the veri�er will always accept �i�e�� accept with probability �
� On
the other hand� if the input graph is not ��colorable then� no matter what the prover
does� the n commitments sent in Step �P�
 cannot �correspond� to a ��coloring of the
graph �since such coloring does not exists
� We stress that the unique correspondence
of commitments to values is guaranteed by the unambiguity property of the commitment
scheme� It follows that there must exists an edge �u� v
 � E so that cu and cv� sent in step
�P�
� are not commitments to two di�erent elements of f�� �� �g� Hence� no matter how
the prover behaves� the veri�er will reject with probability at least �
jEj� Hence there is
a non�negligible �in the input length
 gap between the accepting probabilities in case the
input is in G�C and in case it is not�

We now turn to show that PG�C � the prover in Construction ����� is indeed zero�
knowledge for G�C� The claim is proven without reference to auxiliary input �to the
veri�er
� yet extending the argument to auxiliary input zero�knowledge is straightforward�
Again� we will use the alternative formulation of zero�knowledge �i�e�� De�nition ����
�
and show how to simulate V ��s view of the interaction with PG�C � for every probabilistic
polynomial�time interactive machine V �� As in the case of the Graph Isomorphism proof
system �i�e�� Construction ����
 it is quite easy to simulate the veri�er�s view of the in�
teraction with PG�C � provided that the veri�er follows the speci�ed program� However� we
need to simulate the view of the veri�er in the general case �in which it uses an arbitrary
polynomial�time interactive program
� Following is an overview of our simulation �i�e�� of
our construction of a simulator� M�� for an arbitrary V �
�

The simulator M� incorporates the code of the interactive program V �� On input a
graph G �V�E
� the simulator M� �not having access to a ��coloring of G
 �rst uniformly
and independently selects n values e�� ���� en � f�� �� �g� and constructs a commitment to
each of them� These ei�s constitute a �pseudo�coloring� of the graph� in which the end�points
of each edge are colored di�erently with probability �

� � In doing so� the simulator behaves
very di�erently from PG�C � but nevertheless the sequence of commitments so generated is
computationally indistinguishable from the sequence of commitments to a valid ��coloring
sent by PG�C in step �P�
� If V

�� when given the commitments generated by the simulator�
asks to inspect an edge �u� v
 so that eu 	 ev then the simulator can indeed answer correctly�
and doing so it completes a simulation of the veri�er�s view of the interaction with PG�C �
However� if V � asks to inspect an edge �u� v
 so that eu  ev then the simulator has no way
to answer correctly� and we let it halt with output �� We stress that we don�t assume that
the simulator a�priori �knows� which edge the veri�er V � will ask to inspect� The validity
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of the simulator stems from a di�erent source� If the veri�er�s request were oblivious of the
prover�s commitment then with probability �

� the veri�er would have asked to inspect an
edge which is properly colored� Using the secrecy property of the commitment scheme it
follows that the veri�er�s request is �almost oblivious� of the values in the commitments�
The zero�knowledge claim follows �yet� with some e�ort
� Further detail follow� We start
with a detailed description of the simulator�

Simulator M�� On input a graph G �V�E
� the simulator M� proceeds as follows�

�� Setting the random tape of V �� Let q��
 denote a polynomial bounding the running�
time of V �� The simulator M� starts by uniformly selecting a string r � f�� �gq�jxj��
to be used as the contents of the local random tape of V ��

�� Simulating the prover�s �rst step 	P�
� The simulator M� uniformly and indepen�
dently selects n values e�� ���� en � f�� �� �g and n random strings s�� ���� sn � f�� �gn
to be used for committing to these values� The simulator computes� for each i � V � a
commitment di  Csi�ei
�

�� Simulating the veri�er�s �rst step 	V�
� The simulator M� initiates an execution of
V � by placing G on V ��s �common input tape�� placing r �selected in step ��
 above

on V ��s �local random tape�� and placing the sequence �d�� ���� dn
 �constructed in step
��
 above
 on V ��s �incoming message tape�� After executing a polynomial number
of steps of V �� the simulator can read the outgoing message of V �� denoted m� Again�
we assume without loss of generality that m � E and let �u� v
  m� �Actually m 	� E
is treated as in step �P�
 in PG�C � namely� �u� v
 is set to be some predetermined edge
of G�


�� Simulating the prover�s second step 	P�
� If eu 	 ev then the simulator halts with
output �G� r� �d�� ���� dn
� �su� eu� sv� ev

�

�� Failure of the simulation� Otherwise �i�e�� eu  ev
� the simulator halts with output
��

Using the hypothesis that V � is polynomial�time� it follows that so is the simulator M��
It is left to show that M� outputs � with probability at most �

� � and that� conditioned
on not outputting �� the simulator�s output is computationally indistinguishable from the
veri�er�s view in a �real interaction with PG�C�� The proposition will follow by running the
above simulator n times and outputting the �rst output di�erent from �� We now turn to
prove the above two claims�

Claim ������	 For every su�ciently large graph� G �V�E
� the probability thatM��G
  �
is bounded above by �

� �
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proof	 As above� n will denote the cardinality of the vertex set of G� Let us denote by
pu�v�G� r� �e�� ���� en

 the probability� taken over all the choices of the s�� ���� sn � f�� �gn�
that V �� on input G� random coins r� and prover message �Cs��e�
� ���� Csn�en

� replies with
the message �u� v
� We assume� for simplicity� that V � always answers with an edge of G
�since otherwise its message is anyhow treated as if it were an edge of G
� We �rst claim
that for every su�ciently large graph� G �V�E
� every r � f�� �gq�n�� every edge �u� v
 � E�
and every two sequences �� � � f�� �� �gn� it holds that

jpu�v�G� r� �
� pu�v�G� r� �
j � �

�jEj
Actually� we can prove the following�

Request Obliviousness Subclaim� For every polynomial p��
� every su�ciently large graph�
G  �V�E
� every r � f�� �gq�n�� every edge �u� v
 � E� and every two sequences �� � �
f�� �� �gn� it holds that

jpu�v�G� r� �
� pu�v�G� r� �
j � �

p�n


The Request Obliviousness Subclaim is proven using the non�uniform secrecy of the com�
mitment scheme� The reader should be able to �ll�up the details of such a proof at this
stage� Nevertheless� a proof of the subclaim follows�

Proof of the Request Obliviousness Subclaim� Assume on the contrary that there
exists a polynomial p��
� and an in�nite sequence of integers such that for each
integer n �in the sequence
 there exists an n�vertices graph� Gn  �Vn� En
�
a string rn � f�� �gq�n�� an edge �un� vn
 � En� and two sequences �n� �n �
f�� �� �gn so that

jpun�vn�Gn� rn� �n
� pun�vn�Gn� rn� �n
j � �

p�n


We construct a circuit family� fAng� by letting An incorporate the interactive
machine V �� the graph Gn� and rn� un� vn� �n� �n� all being as in the contradic�
tion hypothesis� On input� y �supposedly a commitment to either �n or �n
�
circuit An runs V

� �on input Gn coins rn and prover�s message y
� and out�
puts � if and only if V � replies with �un� vn
� Clearly� fAng is a �non�uniform

family of polynomial�size circuits� The key observation is that An distinguishes
commitments to �n from commitments to �n� since

Prob�An�CUn�
��

  �
  pun�vn�Gn� rn� �


where Uk denotes� as usual� a random variable uniformly distributed over f�� �gk�
Contradiction to the �non�uniform
 secrecy of the commitment scheme follows by
a standard hybrid argument �which relates the indistinguishability of sequences
to the indistinguishability of single commitments
�
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Returning to the proof of Claim ������� we now use the above subclaim to upper bound
the probability that the simulator outputs �� The intuition is simple� Since the requests
of V � are almost oblivious of the values to which the simulator has committed itself� it is
unlikely that V � will request to inspect an illegally colored edge more often than if he would
have made the request without looking at the commitment� A formal �but straightforward

analysis follows�

Let M�
r �G
 denote the output of machine M

� on input G� conditioned on the event
that it chooses the string r in step ��
� We remind the reader that M�

r �G
  � only in
case the veri�er on input G� random tape r� and a commitment to some pseudo�coloring
�e�� ���� en
� asks to inspect an edge �u� v
 which is illegally colored �i�e�� eu  ev
� Let
E�e������en� denote the set of edges �u� v
 � E that are illegally colored �i�e�� satisfy eu  ev

with respect to �e�� ���� en
� Then� �xing an arbitrary r and considering all possible choices
of �e�� ���� en
 � f�� �� �gn�

Prob�M�
r �G
  �
  

X
e�f�����gn

�

�n
�
X

�u�v��Ee

pu�v�G� r� e


�Recall that pu�v�G� r� e
 denotes the probability that the veri�er asks to inspect �u� v
 when
given a sequence of random commitments to the values e�
 De�ne Bu�v to be the set of n�
tuples �e�� ���� en
 � f�� �� �gn satisfying eu  ev� Clearly� jBu�v j  �n��� By straightforward
calculation we get

Prob�M�
r �G
  �
  

�

�n
�
X

�u�v��E

X
e�Bu�v

pu�v�G� r� e


� �

�n
�
X

�u�v��E
jBu�vj �

�
pu�v�G� r� ��� ���� �

!

�

�jEj
�

 
�

�
!
�

�
�
X

�u�v��E
pu�v�G� r� ��� ���� �



 
�

�
!
�

�

The claim follows� �

For simplicity� we assume in the sequel that on common input G � G�C� the prover gets
the lexicographically �rst ��coloring of G as auxiliary input� This enables us to omit the
auxiliary input to PG�C �which is now implicit in the common input
 from the notation�
The argument is easily extended to the general case where PG�C gets an arbitrary ��coloring
of G as auxiliary input�

Claim ������	 The ensemble consisting of the output of M� on input G �V�E
 � G�C�
conditioned on it not being �� is computationally indistinguishable from the ensemble
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fviewPG�C
V � �G
gG�G�C � Namely� for every probabilistic polynomial�time algorithm� A� every

polynomial p��
� and all su�ciently large graph G �V�E
�

jProb�A�M��G

  �jM��G
 	 �
� Prob�A�viewPG�C
V � �G

  �
j � �

p�jV j


We stress that these ensembles are very di�erent �i�e�� the statistical distance between them
is very close to the maximum possible
� and yet they are computationally indistinguishable�
Actually� we can prove that these ensembles are indistinguishable also by �non�uniform

families of polynomial�size circuits� In �rst glance it seems that Claim ������ follows easily
from the secrecy property of the commitment scheme� Indeed� Claim ������ is proven
using the secrecy property of the commitment scheme� yet the proof is more complex than
one anticipates �at �rst glance
� The di�culty lies in the fact that the above ensembles
consist not only of commitments to values� but also of an opening of some of the values�
Furthermore� the choice of which commitments are to be opened depends on the entire
sequence of commitments�

proof	 Given a graph G �V�E
� we de�ne for each edge �u� v
 � E two random variables
describing� respectively� the output of M� and the view of V � in a real interaction� in case
the veri�er asked to inspect the edge �u� v
� Speci�cally

� �u�v�G
 describes M��G
 conditioned on M��G
 containing the �reveal information�
for vertices u and v�

� u�v�G
 describes view
PG�C
V � �G
 conditioned on viewPG�C

V � �G
 containing the �reveal
information� for vertices u and v�

Let pu�v�G
 denote the probability thatM��G
 contains �reveal information� for vertices
u and v� conditioned on M��G
 	 �� Similarly� let qu�v�G
 denote the probability that
viewPG�C

V � �G
 contains �reveal information� for vertices u and v�

Assume� in the contrary to the claim� that the ensembles mentioned in the claim are
computationally distinguishable� Then one of the following cases must occur�

Case �� There is a noticeable di�erence between the probabilistic pro�le of the requests
of V � when interacting with PG�C and the requests of V � when invoked by M��
Formally� there exists a polynomial p��
 and an in�nite sequence of integers such that
for each integer n �in the sequence
 there exists an n�vertices graph Gn  �Vn� En
�
and an edge �un� vn
 � En� so that

jpun�vn�Gn
� qun�vn�Gn
j � �

p�n
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Case �� An algorithm distinguishing the above ensembles does so also conditioned on
V � asking for a particular edge� Furthermore� this request occurs with noticeable
probability which is about the same in both ensembles� Formally� there exists a
probabilistic polynomial�time algorithm A� a polynomial p��
 and an in�nite sequence
of integers such that for each integer n �in the sequence
 there exists an n�vertices
graph Gn �Vn� En
� and an edge �un� vn
 � En� so that the following conditions hold

� qun�vn�Gn
 �
�

p�n�

� jpun�vn�Gn
� qun�vn�Gn
j � �
��p�n��

� jProb�A��un�vn�Gn

  �
� Prob�A�un�vn�Gn

  �
j � �
p�jV j� �

Case � can be immediately discarded since it leads easily to contradiction �to the non�
uniform secrecy of the commitment scheme
� The idea is to use the Request Obliviousness
Subclaim appearing in the proof of Claim ������� Details are omitted� We are thus left with
Case ��

We are now going to show that also Case � leads to contradiction� To this end we will
construct a circuit family that will distinguish commitments to di�erent sequences of values�
Interestingly� neither of these sequences will equal the sequence of commitments generated
by either the prover or by the simulator� Following is an overview of the construction�
The nth circuit gets a sequence of �n commitments and produces from it a sequence of n
commitments �part of which is a subsequence of the input
� When the input sequence to the
circuit is taken from one distribution the circuit generates a subsequence corresponding to
the sequence of commitments generated by the prover� Likewise� when the input sequence
�to the circuit
 is taken from the other distribution the circuit will generate a subsequence
corresponding to the sequence of commitments generated by the simulator� We stress that
the circuit does so without knowing from which distribution the input is taken� After
generated an n�long sequence� the circuit feeds it to V �� and depending on V ��s behaviour
the circuit may feed part of the sequence to algorithm A �mentioned in Case �
� Following
is a detailed description of the circuit family�

Let us denote by �n the �lexicographically �rst
 ��coloring of Gn used by the prover�
We construct a circuit family� denoted fAng� by letting An incorporate the interactive
machine V �� the �distinguishing� algorithm A� the graph Gn� the ��coloring �n� and the
edge �un� vn
� all being those guaranteed in Case �� The input to circuit An will be a sequence
of commitments to �n values� each in f�� �� �g� The circuit will distinguish commitments
to a uniformly chosen �n�long sequence from commitments to the �xed sequence �n�n�n

�i�e�� the sequence consisting of n ��values� followed by n ��values� followed by n ��values
�
Following is a description of the operation of An�

On input� y  �y�� ���� y�n
 �where each yi is supposedly a commitment to an element of
f�� �� �g
� the circuit An proceeds as follows�
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� An �rst selects uniformly a permutation � over f�� �� �g� and computes ��i
  ���n�i

�
for each i � Vn�

� For each i � Vn � fun� vng� the circuit sets ci  y��i��n�n�i �i�e�� ci  yi if ��i
  ��
ci  yn�i if ��i
  �� and ci  y�n�i if ��i
  �
� Note that each yj is used at most
once� and �n! � of the yj �s are not used at all�

� The circuit uniformly selects su� sv � f�� �gn� and sets cun  Csun ���un

 and cvn  
Csvn���vn

�

� The circuit initiates an execution of V � by placing Gn on V
��s �common input tape��

placing a uniformly selected r � f�� �gq�n� on V ��s �local random tape�� and placing
the sequence �c�� ���� cn
 �constructed above
 on V ��s �incoming message tape�� The
circuit reads the outgoing message of V �� denoted m�

� If m 	 �un� vn
 then the circuit outputs ��
� Otherwise �i�e�� m  �un� vn

� the circuit invokes algorithm A and outputs

A�Gn� r� �c�� ���� cn
� �sun � ��un
� svn � ��vn




Clearly the size of An is polynomial in n� We now evaluate the distinguishing ability of
An� Let us �rst consider the probability that circuit An outputs � on input a random com�
mitment to the sequence �n�n�n� The reader can easily verify that the sequence �c�� ���� cn

constructed by circuit An is distributed identically to the sequence sent by the prover in
step �P�
� Hence� letting C��
 denote a random commitment to a sequence � � f�� �� �g��
we get

Prob�An�C��
n�n�n

  �
  ��� qun�vn�Gn



!qun�vn�Gn
 � Prob�A�un�vn�Gn

  �


On the other hand� we consider the probability that circuit An outputs � on input a
random commitment to a uniformly chosen �n�long sequence over f�� �� �g� The reader can
easily verify that the sequence �c�� ���� cn
 constructed by circuit An is distributed identically
to the sequence �d�� ���� dn
 generated by the simulator in step ��
� conditioned on dun 	 dvn �
Letting T�n denote a random variable uniformly distributed over f�� �� �g�n� we get

Prob�An�C�T�n
  �
  ��� pun�vn�Gn



!pun�vn�Gn
 �Prob�A��un�vn�Gn

  �


Using the conditions of Case �� and omitting Gn from the notation� we get

jProb�An�C��
n�n�n

  �
� Prob�An�C�T�n
  �
j
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� qun�vn � jProb�A�un�vn
  �
� Prob�A��un�vn
  �
j � � � jpun�vn � qun�vn j
�

�

p�n

� �

p�n

� � � �

� � p�n
�

 
�

� � p�n
�

Hence� the circuit family fAng distinguishes commitments to f�n�n�ng from commitments
to fT�ng� Combining an averaging argument with a hybrid argument� we conclude that there
exists a polynomial�size circuit family which distinguishes commitments� This contradicts
the non�uniform secrecy of the commitment scheme�

Having reached contradiction in both cases� Claim ������� �

Combining Claims ������ and ������� the zero�knowledge property of PG�C follows� This
completes the proof of the proposition�

Concluding remarks

Construction ���� has been presented using a unidirectional commitment scheme� A funda�
mental property of such schemes is that their secrecy is preserved also in case �polynomi�
ally
 many instances are invoked simultaneously� The proof of Proposition ���� indeed took
advantage on this property� We remark that Construction ���� also possesses this simulta�
neous secrecy property� and hence the proof of Proposition ���� can be carried out also if
the commitment scheme in used is the one of Construction ���� �see Exercise ��
� We recall
that this latter construction constitutes a commitment scheme if and only if such schemes
exist at all �since Construction ���� is based on any one�way function and the existence of
one�way functions is implied by the existence of commitment schemes
�

Proposition ���� assumes the existence of a nonuniformly secure commitment scheme�
The proof of the proposition makes essential use of the nonuniform security by incorpo�
rating instances on which the zero�knowledge property fails into circuits which contradict
the security hypothesis� We stress that the sequence of �bad� instances is not necessar�
ily constructible by e�cient �uniform
 machines� Put in other words� the zero�knowledge
requirement has some nonuniform �avour� A uniform analogue of zero�knowledge would
require only that it is infeasible to �nd instances on which a veri�er gains knowledge �and
not that such instances do not exist at all
� Using a uniformly secure commitment scheme�
Construction ���� can be shown to be uniformly zero�knowledge�

By itself� Construction ���� has little practical value� since it o�ers very moderate accep�
tance gap �between inputs inside and outside of the language
� Yet� repeating the protocol�
on common input G  �V�E
� for k � jEj times �and letting the veri�er accept only if all
iterations are accepting
 yields an interactive proof for G�C with error probability bounded




��� ZERO�KNOWLEDGE PROOFS FOR NP ���

by e�k � where e � ���� is the natural logarithm base� Namely� on common input G � G�C
the veri�er always accepts� whereas on common input G 	� G�C the veri�er accepts with
probability bounded above by e�k �no matter what the prover does
� We stress that� by
virtue of the Sequential Composition Lemma �Lemma ����
� if these iterations are per�
formed sequentially then the resulting �strong
 interactive proof is zero�knowledge as well�
Setting k to be any super�logarithmic function of jGj �e�g�� k  jGj
� the error probability of
the resulting interactive proof is negligible� We remark that it is unlikely that one can prove
an analogous statement with respect to the interactive proof which results by performing
these iteration in parallel� See Section ����

An important property of Construction ���� is that the prescribed prover �i�e�� PG�C

can be implemented in probabilistic polynomial�time� provided that it is given as auxiliary
input a ��coloring of the common input graph� As we shall see� this property is essential to
the applications of Construction ���� to the design of cryptographic protocols�

As admitted in the beginning of the current subsection� the choice of G�C as a boot�
strapping NP�complete language is totally arbitrary� It is quite easy to design analogous
zero�knowledge proofs for other popular NP�complete languages� Such constructions will
use the same underlying ideas as those presented in the motivating discussion�

����� The General Result and Some Applications

The theoretical and practical importance of a zero�knowledge proof for Graph ��Coloring
�e�g�� Construction ����
 follows from the fact that it can be applied to prove� in zero�
knowledge� any statement having a short proof that can be e�ciently veri�ed� More pre�
cisely� a zero�knowledge proof system for a speci�c NP�complete language �e�g�� Construc�
tion ����
 can be used to present zero�knowledge proof systems for every language in NP �

Before presenting zero�knowledge proof systems for every language in NP � let us recall
some conventions and facts concerning NP � We �rst recall that every language L � NP is
characterized by a binary relation R satisfying the following properties

� There exists a polynomial p��
 such that for every �x� y
 � R it holds jyj � p�jxj
�
� There exists a polynomial�time algorithm for deciding membership in R�

� L  fx � �w s�t� �x� w
 � Rg�

Actually� each language in NP can be characterized by in�nitely many such relations�
Yet� for each L � NP we �x and consider one characterizing relation� denoted RL� Sec�
ondly� since G�C is NP�complete� we know that L is polynomial�time reducible �i�e�� Karp�
reducible
 to G�C� Namely� there exists a polynomial�time computable function� f � such
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that x � L if and only if f�x
 � G�C� Thirdly� we observe that the standard reduction of
L to G�C� denoted fL� has the following additional property�

There exists a polynomial�time computable function� denoted gL� such that for
every �x� w
 � RL it holds that gL�w
 is a ��coloring of fL�x
�

We stress that the above additional property is not required by the standard de�nition
of a Karp�reduction� Yet� it can be easily veri�ed that the standard reduction fL �i�e��
the composition of the generic reduction of L to SAT � the standard reductions of SAT to
�SAT � and the standard reduction of �SAT to G�C
 does have such a corresponding gL�
�See Exercise ���
 Using these conventions� we are ready to �reduce� the construction of
zero�knowledge proof for NP to a zero�knowledge proof system for G�C�

Construction ���� �A zero�knowledge proof for a language L � NP
�

� Common Input� A string x 	supposedly in L
�

� Auxiliary Input to the Prover� A witness� w� for the membership of x � L 	i�e�� a
string w such that �x� w
 � RL
�

� Local pre�computation� Each party computes G
def
 fL�x
� The prover computes �

def
 

gL�w
�

� Invoking a zero�knowledge proof for G�C� The parties invoke a zero�knowledge proof
on common input G� The prover enters this proof with auxiliary input ��

Proposition ���	 Suppose that the subprotocol used in the last step of Construction ���� is
indeed an auxiliary input zero�knowledge proof for G�C� Then Construction ���� constitutes
an auxiliary input zero�knowledge proof for L�

Proof� The fact that Construction ��� constitutes an interactive proof for L is immediate
from the validity of the reduction �and the fact that it uses an interactive proof for G�C
�
In �rst glance it seems that the zero�knowledge property of Construction ��� follows as
immediately� There is however a minor issue that one should not ignore� The veri�er in
the zero�knowledge proof for G�C� invoked in Construction ���� possesses not only the
common input graph G but also the original common input x which reduces to G� This
extra information might have helped this veri�er to extract knowledge in theG�C interactive
proof� if it were not the case that this proof system is zero�knowledge also with respect to
auxiliary input� can be dealt with using auxiliary input to the veri�er in Details follow�

Suppose we need to simulate the interaction of a machine V � with the prover� on common
input x� Without loss of generality we may assume that machine V � invokes an interactive
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machine V �� which interacts with the prover of the G�C interactive proof� on common input
G  fL�x
 and having auxiliary input x� Using the hypothesis that the G�C interactive
proof is auxiliary input zero�knowledge� it follows that there exists a simulator M�� that
on input �G� x
 simulates the interaction of V �� with the G�C�prover �on common input
G and veri�er�s auxiliary input x
� Hence� the simulator for Construction ���� denoted

M�� operates as follows� On input x� the simulator M� computes G def
 fL�x
 and outputs

M���G� x
� The proposition follows�

We remark that an alternative way of resolving the minor di�culty addressed above is
to observe that the function fL �i�e�� the one induced by the standard reductions
 can be
inverted in polynomial�time �see Exercise �
� In any case� we immediately get

Theorem ���� Suppose that there exists a commitment scheme satisfying the 	nonuni�
form
 secrecy and the unambiguity requirements� Then every language in NP has an aux�
iliary input zero�knowledge proof system� Furthermore� the prescribed prover in this system
can be implemented in probabilistic polynomial�time� provided it gets the corresponding NP�
witness as auxiliary input�

We remind the reader that the condition of the theorem is satis�ed if �and only if
 there ex�
ists �non�uniformly
 one�way functions� See Theorem ���� �asserting that one�way functions
imply pseudorandom generators
� Proposition ���� �asserting that pseudorandom genera�
tors imply commitment schemes
� and Exercise �� �asserting that commitment schemes
imply one�way functions
�

An Example� Proving properties of secrets

A typical application of Theorem ���� is to enable one party to prove some property of
its secrets without revealing the secrets� For concreteness� consider a party� denoted S�
sending encrypted messages �over a public channel
 to various parties� denoted R�� ���� Rt�
and wishing to prove to some other party� denoted V � that all the corresponding plaintext
messages are identical� Further suppose that the messages are sent to the receivers �i�e�� the
Ri�s
 using a secure public�key encryption scheme� and let Ei��
 denote the �probabilistic

encryption employed when sending a message to Ri� Namely� to send messageMi to Ri� the
sender uniformly chooses ri � f�� �gn� computes the encryption Ei�ri�Mi
� and transmits it
over the public channel� In order to prove that C�  E��r��M
 and C�  E��r��M
 both
encrypt the same message it su�ces to reveal r�� r� and M � However� doing so reveals the
message M to the veri�er� Instead� one can prove in zero�knowledge that there exists r��
r� and M such that C�  E��r��M
 and C�  E��r��M
� The existence of such a zero�
knowledge proof follows from Theorem ���� and the fact that the statement to be proven
is of NP�type� Formally� we de�ne a language

L
def
 f�C�� C�
 � �r�� r��M s�t� C�  E��r��M
 and C�  E��r��M
g
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Clearly� the language L is in NP � and hence Theorem ���� can be applied� Additional
examples are presented in Exercise ���

ZeroKnowledge for any language in IP

Interestingly� the result of Theorem ���� can be extended �to the maximum�� in the sense
that under the same conditions every language having an interactive proof system also has
a zero�knowledge proof system� Namely�

Theorem ���� Suppose that there exists a commitment scheme satisfying the 	nonuni�
form
 secrecy and unambiguity requirements� Then every language in IP has a zero�
knowledge proof system�

We believe that this extension does not have much practical signi�cance� Theorem ����
is proven by �rst converting the interactive proof for L into one in which the veri�er uses
only �public coins� �i�e�� an Arthur�Merlin proof
� see Chapter �� Next� the veri�er�s
coin tosses are forced to be almost unbiased by using a coin tossing protocols �see section
				"""
� Finally� the prover�s replies are sent using a commitment scheme� At the end
of the interaction the prover proves in zero�knowledge that the original veri�er would have
accepted the hidden transcript �this is an NP�statement
�

����� E�ciency Considerations

When presenting zero�knowledge proof systems for every language in NP � we made no
attempt to present the most e�cient construction possible� Our main concern was to
present a proof which is as simple to explain as possible� However� once we know that
zero�knowledge proofs for NP exist� it is natural to ask how e�cient can they be�

In order to establish common grounds for comparing zero�knowledge proofs� we have to
specify a desired measure of error probability �for these proofs
� An instructive choice� used
in the sequel� is to consider the complexity of zero�knowledge proofs with error probability
��k � where k is a parameter that may depend on the length of the common input� Another
issue to bear in mind when comparing zero�knowledge proof is under what assumptions �if
at all
 are they valid� Throughout this entire subsection we stick to the assumption used
so far �i�e�� the existence of one�way functions
�

Standard e�ciency measures

Natural and standard e�ciency measures to consider are
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� The communication complexity of the proof� The most important communication
measure is the round complexity �i�e�� the number of message exchanges
� The total
number of bits exchanged in the interaction is also an important consideration�

� The computational complexity of the proof� Speci�cally the number of elementary
steps taken by each of the parties�

Communication complexity seems more important than computational complexity� as long
as the trade�o� between them is �reasonable��

To demonstrate these measures we consider the zero�knowledge proof for G�C presented
in Construction ����� Recall that this proof system has very moderate acceptance gap�
speci�cally �
jEj� on common input graph G  �V�E
� So Construction ���� has to be
applied sequentially k � jEj in order to result in a zero�knowledge proof with error probability
e�k � where e � ���� is the natural logarithm base� Hence� the round complexity of the
resulting zero�knowledge proof is O�k � jEj
� the bit complexity is O�k � jEj � jV j�
� and the
computational complexity is O�k � jEj �poly�jV j

� where the polynomial poly��
 depends on
the commitment scheme in use�

Much more e�cient zero�knowledge proof systems may be custom�made for speci�c
languages inNP � Furthermore� even if one adopts the approach of reducing the construction
of zero�knowledge proof systems for NP languages to the construction of a zero�knowledge
proof system for a single NP�complete language� e�ciency improvements can be achieved�
For example� using Exercise ��� one can present zero�knowledge proofs for the Hamiltonian
Circuit Problem �again with error ��k
 having round complexity O�k
� bit complexity
O�k � jV j���
� and computational complexity O�k � jV j��O���
� where � � � is a constant
depending on the desired security of the commitment scheme �in Construction ���� and
in Exercise �� we chose �  �
� Note that complexities depending on the instance size
are e�ected by reductions among problems� and hence a fair comparison is obtained by
considering the complexities for the generic problem �i�e�� Bounded Halting
�

The round complexity of a protocol is a very important e�ciency consideration and it
is desirable to reduce it as much as possible� In particular� it is desirable to have zero�
knowledge proofs with constant number of rounds and negligible error probability� This
goal is pursued in Section ����

Knowledge Tightness� a particular e�ciency measure

The above e�ciency measures are general in the sense that they are applicable to any
protocol �independent on whether it is zero�knowledge or not
� A particular measure of
e�ciency applicable to zero�knowledge protocols is their knowledge tightness� Intuitively�
knowledge tightness is a re�nement of zero�knowledge which is aimed at measuring the
�actual security� of the proof system� Namely� how much harder does the veri�er need to
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work� when not interacting with the prover� in order to compute something which it can
computes after interacting with the prover� Thus� knowledge tightness is the ratio between
the �expected
 running�time of the simulator and the running�time of the veri�er in the
real interaction simulated by the simulator� Note that the simulators presented so far� as
well as all known simulator� operate by repeated random trials and hence an instructive
measure of tightness should consider their expected running�time �assuming they never err
�i�e�� output the special � symbol

 rather than the worst case�

De�nition ���� �knowledge tightness
� Let t � IN �� IN be a function� We say that a zero�
knowledge proof for language L has knowledge tightness t��
 if there exists a polynomial p��

such that for every probabilistic polynomial�time veri�er V � there exists a simulator M� 	as
in De�nition ����
 such that for all su�ciently long x � L we have

TimeM��x
� p�jxj

TimeV ��x


� t�jxj


where TimeM��x
 denotes the expected running�time of M� on input x� and TimeV ��x

denotes the running time of V � on common input x�

We assume a model of computation allowing one machine to invoke another machine at
the cost of merely the running�time of the latter machine� The purpose of polynomial p��
�
in the above de�nition� is to take care of generic overhead created by the simulation �this is
important in case the veri�er V � is extremely fast
� We remark that the de�nition of zero�
knowledge does not guarantee that the knowledge tightness is polynomial� Yet� all known
zero�knowledge proof� and more generally all zero�knowledge properties demonstrated using
a single simulator with black�box access to V �� have polynomial knowledge tightness� In
particular� Construction ���� has knowledge tightness �� whereas Construction ���� has
knowledge tightness �
�� We believe that knowledge tightness is a very important e�ciency
consideration and that it desirable to have it be a constant�

��
 � Negative Results

In this section we review some negative results concerning zero�knowledge� These results
can be viewed as evidence to the belief that some of the shortcomings of the results and con�
structions presented in previous sections are unavoidable� Most importantly� Theorem ����
asserts the existence of �computational
 zero�knowledge proof systems for NP � assuming
that one�way functions exist� Two natural questions arise

�� An unconditional result� Can one prove the existence of �computational
 zero�knowledge
proof systems for NP � without making any assumptions"
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�� Perfect zero�knowledge� Can one present perfect zero�knowledge proof systems for
NP � even under some reasonable assumptions"

The answer to both question seems to be negative�

Another important question concerning zero�knowledge proofs is their preservation un�
der parallel composition� We show that� in general� zero�knowledge is not preserved under
parallel composition �i�e�� there exists a pair of zero�knowledge protocols that when executed
in parallel leak knowledge in a strong sense
� Furthermore� we consider some natural proof
systems� obtained via parallel composition of zero�knowledge proofs� and indicate that it is
unlikely that the resulting composed proofs can be proven to be zero�knowledge�

����� Implausibility of an Unconditional �NP in ZK� Result

Recall that Theorem ���� asserts the existence of zero�knowledge proofs for any languages
in IP � provided that nonuniform one�way functions exist� In this subsection we consider the
question of whether this su�cient condition is also necessary� The results� known to date�
seem to provide some �yet� weak
 indication in this direction� Speci�cally� the existence of
zero�knowledge proof systems for languages out of BPP implies very weak forms of one�
wayness� Also� the existence of zero�knowledge proof systems for languages which are hard
to approximate� in some average case sense� implies the existence of one�way functions �but
not of nonuniformly one�way functions
� In the rest of this subsection we provide precise
statements of the above results�

��� BPP � CZK implies weak forms of onewayness

De�nition ���� �collection of functions with one�way instances
� A collection of functions�
ffi � Di �� f�� �g�gi�I� is said to have one�way instances if there exists three probabilistic
polynomial�time algorithms� I� D and F � so that the following two conditions hold

�� easy to sample and compute� as in De�nition �����

�� some functions are hard to invert� For every probabilistic polynomial�time algorithm�
A�� every polynomial p��
� and in�nitely many i�s

Prob
�
A��fi�Xn
� i
�f��i fi�Xn


�
�

�

p�n


where Xn is a random variable describing the output of algorithm D on input i�

Actually� since the hardness condition does not refer to the distribution induced by I � we
may assume� without loss of generality� that I  f�� �g� and algorithm I uniformly selects
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a string �of length equal to the length of its input
� Recall that collections of one�way
functions �as de�ned in De�nition ����
 requires hardness to invert of all but a negligible
measure of the functions fi �where the probability measure is induced by algorithm I
�

Theorem ���� If there exist zero�knowledge proofs for languages outside of BPP then
there exist collections of functions with one�way instances�

We remark that the mere assumption that BPP � IP is not known to imply any form of
one�wayness� The existence of a language in NP which is not in BPP implies the existence
of a function which is easy to compute but hard to invert in the worst�case �see Section ���
�
The latter consequence seems to be a much weaker form of one�wayness�

��� zeroknowledge proofs for �hard� languages yield oneway functions

Our notion of hard languages is the following

De�nition ���
 We say that a language L is hard to approximate if there exists a probabilis�
tic polynomial�time algorithm S such that for every probabilistic polynomial�time algorithm
A� every polynomial p��
� and in�nitely many n�s

Prob�A�Xn
 �L�Xn

 �
�

�
!

�

p�n


where Xn
def
 S��n
� and �L is the characteristic function of the language L 	i�e�� �L�x
  �

if x � L and �L�x
  � otherwise
�

Theorem ���� If there exist zero�knowledge proofs for languages that are hard to approx�
imate then there exist one�way functions�

We remark that the mere existence of languages that are hard to approximate �even
in a stronger sense by which the approximater must fail on all su�ciently large n�s
 is not
known to imply the existence of one�way functions �see Section ���
�

����� Implausibility of Perfect Zero�Knowledge proofs for all of NP

A theorem bounding the class of languages possessing perfect zero�knowledge proof systems
follows� We start with some background �for more details see Section �missing�eff�ip�sec��
�
By AM we denote the class of languages having an interactive proof which proceeds as fol�
lows� First the veri�er sends a random string to the prover� next the prover answers with
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some string� and �nally the veri�er decided whether to accept or reject based on a deter�
ministic computation �depending on the common input and the above two strings
� The
class AM seems to be a randomized counterpart ofNP � and it is believed that coNP is not
contained in AM� Additional support to this belief is given by the fact that coNP � AM
implies the collapse of the Polynomial�Time Hierarchy� In any case it is known that

Theorem ���� The class of languages possessing perfect zero�knowledge proof systems is
contained in the class coAM� 	In fact� these languages are also in AM�


The theorem remains valid under several relaxations of perfect zero�knowledge �e�g��
allowing the simulator to run in expected polynomial�time� etc�
� Hence� if some NP�
complete language has a perfect zero�knowledge proof system then coNP � AM� which is
unlikely�

We stress that Theorem ���� does not apply to perfect zero�knowledge arguments� de�
�ned and discussed in Section ���� Hence� there is no con�ict between Theorem ���� and
the fact that� under some reasonable complexity assumptions� perfect zero�knowledge argu�
ments do exist for every language in NP �

����� Zero�Knowledge and Parallel Composition

We discuss two negative results of very di�erent conceptual standing� The �rst result
asserts the failure of the general �Parallel Composition Conjecture�� but says nothing about
speci�c natural candidates� The second result refers to a class of interactive proofs� which
contains several interesting and natural examples� and assert that the members of this class
cannot be proven zero�knowledge using a general paradigm �know by the name �black box
simulation�
� We mention that it is hard to conceive an alternative way of demonstrating
the zero�knowledge property of protocols �rather than by following this paradigm
�

��� Failure of the Parallel Composition Conjecture

For some time� after zero�knowledge proofs were �rst introduced� several researchers insisted
that the following must be true

Parallel Composition Conjecture� Let P� and P� be two zero�knowledge provers� Then the
prover resulting by running both of them in parallel is also zero�knowledge�

Some researchers even considered the failure to prove the Parallel Composition Conjecture
as a sign of incompetence� However� the Parallel Composition Conjecture is just wrong�
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Proposition ���� There exists two provers� P� and P�� such that each is zero�knowledge�
and yet the prover resulting by running both of them in parallel yields knowledge 	e�g�� a
cheating veri�er may extract from this prover a solution to a problem that is not solvable in
polynomial�time
� Furthermore� the above holds even if the zero�knowledge property of each
of the Pi�s can be demonstrated using a simulator which uses the veri�er as a black�box 	see
below
�

We remark that these provers can be incorporated into a single prover that randomly selects
which of the two programs to execute� Alternatively� the choice may be determined by the
veri�er�

Proof idea� Consider a prover� denoted P�� that send �knowledge� to the veri�er if and
only if the veri�er can answer some randomly chosen hard question �i�e�� we stress that
the question is chosen by P�
� Answers to the hard questions look pseudorandom� yet P�
�which is not computationally bounded
 can verify their correctness� Now� consider a second
prover� denoted P�� that answers these hard questions� Each of these provers �by itself
 is
zero�knowledge� P� is zero�knowledge since it is unlikely that any probabilistic polynomial�
time veri�er can answer its questions� whereas P� is zero�knowledge since its answers can
be simulated by random strings� Yet� once played in parallel� a cheating veri�er can answer
the question of P� by sending it to P�� and using this answer gain knowledge from P�� To
turn this idea into a proof we need to implement a hard problem with the above properties�

The above proposition refutes the Parallel Composition Conjecture by means of exponen�
tial time provers� Assuming the existence of one�way functions the Parallel Composition
Conjecture can be refuted also for probabilistic polynomial�time provers �with auxiliary in�
puts
� For example� consider the following two provers P� and P�� which make use of proofs
of knowledge �see Section ��
� Let C be a bit commitment scheme �which we know to
exist provided that one�way functions exist
� On common�input C��n� 	
� where 	 � f�� �g�
prover P� proves to the veri�er� in zero�knowledge� that it knows 	� �To this end the prover
is give as auxiliary input the coins used in the commitment�
 On input C��n� 	
� prover P�
asks the veri�er to prove that it knows 	 and if P� is convinced then it sends 	 to the veri�
�er� This veri�er employs the same system of proofs of knowledge used by the program P��
Clearly� each prover is zero�knowledge and yet their parallel composition is not� Similarly�
using stronger intractability assumptions� one can refute the Parallel Composition Conjec�
ture also with respect to perfect zero�knowledge �rather than with respect to computational
zero�knowledge
�

��� Problems with �natural� candidates

By de�nition� to show that a prover is zero�knowledge one has to present� for each prospec�
tive veri�er V �� a corresponding simulator M� �which simulates the interaction of V � with
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the prover
� However� all known demonstrations of zero�knowledge proceed by presenting
one �universal� simulator which uses any prospective veri�er V � as a black�box� In fact�
these demonstrations use as black�box �or oracle
 the �next message� function determined
by the veri�er program �i�e�� V �
� its auxiliary�input and its random�input� �This property
of the simulators is implicit in our constructions of the simulators in previous sections�
 We
remark that it is hard to conceive an alternative way of demonstrating the zero�knowledge
property�

De�nition ���	 �black�box zero�knowledge
�

� next message function� Let B be an interactive turing machine� and x� z� r be strings
representing a common�input� auxiliary�input� and random�input� respectively� Con�
sider the function Bx�z�r��
 describing the messages sent by machine B such that
Bx�z�r�m
 denotes the message sent by B on common�input x� auxiliary�input z�
random�input r� and sequence of incoming messages m� For simplicity� we assume
that the output of B appears as its last message�

� black�box simulator� We say that a probabilistic polynomial�time oracle machine M is
a black�box simulator for the prover P and the language L if for every polynomial�time
interactive machine B� every probabilistic polynomial�time oracle machine D� every
polynomial p��
� all su�ciently large x � L� and every z� r � f�� �g��

jProb
�
DBx�z�r �hP�Br�z
i�x

 �

�
� Prob

�
DBx�z�r �MBx�z�r �x

 �

�
j � �

p�jxj

where Br�z
 denotes the interaction of machine B with auxiliary�input z and random�
input r�

� We say that P is black�box zero knowledge if it has a black�box simulator�

Essentially� the de�nition says that a black�box simulator mimics the interaction of
prover P with any polynomial�time veri�er B� relative to any auxiliary�input �i�e�� z
 that
B may get and any random�input �i�e�� r
 that B may choose� The simulator does so �ef�
�ciently
� merely by using oracle calls to Bx�z�r �which speci�es the next message that B
sends on input x� auxiliary�input z� and random�input r
� The simulation is indistinguish�
able from the true interaction� even if the distinguishing algorithm �i�e�� D
 is given access
to the oracle Bx�z�r � An equivalent formulation is presented in Exercise ��� Clearly� if P
is black�box zero�knowledge then it is zero�knowledge with respect to auxiliary input �and
has polynomially bounded knowledge tightness �see De�nition ����

�

Theorem ���� Suppose that �P� V 
 is an interactive proof system� with negligible error
probability� for the language L� Further suppose that �P� V 
 has the following properties



��� CHAPTER 
� ZERO�KNOWLEDGE PROOF SYSTEMS

� constant round� There exists an integer k such that for every x � L� on input x the
prover P sends at most k messages�

� public coins� The messages sent by the veri�er V are predetermined consecutive seg�
ments of its random tape�

� black�box zero�knowledge� The prover P has a black�box simulator 	over the language
L
�

Then L � BPP�

We remark that both Construction ���� �zero�knowledge proof for Graph Isomorphism

and Construction ���� �zero�knowledge proof for Graph Coloring
 are constant round� use
public coins and are black�box zero�knowledge �for the corresponding languages
� However�
they do not have negligible error probability� Yet� repeating each of these constructions
polynomially many times in parallel yields an interactive proof� with negligible error prob�
ability� for the corresponding language� Clearly the resulting proof system are constant
round and use public coins� Hence� unless the corresponding languages are in BPP � these
parallelized proof systems are not black�box zero�knowledge�

Theorem ���� is sometimes interpreted as pointing to an inherent limitation of interactive
proofs with public coins �also known asArthur Merlin games� see Section �missing�eff�ip�sec��
�
Such proofs cannot be both round�e�cient �i�e�� have constant number of rounds and negli�
gible error
 and black�box zero�knowledge �unless they are trivially so� i�e�� the language is
in BPP
� In other words� when constructing round�e�cient zero�knowledge proof systems
�for languages not in BPP
� one is advised to use �private coins� �i�e�� to let the veri�er
send messages depending upon� but not revealing its coin tosses
�

��� � Witness Indistinguishability and Hiding

In light of the non�closure of zero�knowledge under parallel composition� see Subsection ������
alternative �privacy� criteria that are preserved under parallel composition are of practical
and theoretical importance� Two notions� called witness indistinguishability and witness
hiding� which refer to the �privacy� of interactive proof systems �of languages in NP
� are
presented in this section� Both notions seem weaker than zero�knowledge� yet they su�ce
for some speci�c applications�

����� Denitions

In this section we con�ne ourself to languages in NP � Recall that a witness relation for a
language L � NP is a binary relation RL that is polynomially�bounded �i�e�� �x� y
�RL
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implies jyj � poly�jxj

� polynomial�time recognizable� and characterizes L by

L  fx � �y s�t� �x� y
�RLg

Witness indistinguishability

Loosely speaking� an interactive proof for a language L � NP is witness independent �resp��
witness indistinguishable
 if the veri�er�s view of the interaction with the prover is statis�
tically independent �resp�� �computationally independent�
 of the auxiliary input of the
prover� Actually� we will relax the requirement so that it applies only to the case in which
the auxiliary input constitutes an NP�witness to the common input� namely� let RL be the
witness relation of the language L and suppose that x � L� then we consider only auxiliary

inputs in RL�x

def
 fy� �x� y
�RLg� By saying that the view is computational independent

of the witness we mean that for every two choices of auxiliary inputs the resulting views
are computationally indistinguishable� In the actual de�nition we combine notations and
conventions from De�nitions ���� and �����

De�nition ��
� �witness indistinguishability � independence
� Let �P� V 
� L � NP and
V � be as in De�nition ���� and let RL be a �xed witness relation for the language L� We

denote by view
P �y�
V ��z��x
 a random variable describing the contents of the random�tape of

V � and the messages V � receives from P during a joint computation on common input x�
when P has auxiliary input y and V � has auxiliary input z� We say that �P� V 
 is witness
indistinguishable for RL if for every probabilistic polynomial�time interactive machine V ��
and every two sequences W �  fw�

xgx�L and W �  fw�
xgx�L� so that w�

x� w
�
x � RL�x
� the

following two ensembles are computationally indistinguishable

� fx� viewP �w�
x�

V ��z� �x
gx�L�z�f���g�

� fx� viewP �w�
x�

V ��z� �x
gx�L�z�f���g�

Namely� for every probabilistic polynomial�time algorithm� D� every polynomial p��
� all
su�ciently long x � L� and all z � f�� �g�� it holds that

jProb�D�x� viewP �w�
x�

V ��z� �x

 �
� Prob�D�x� view
P �w�

x�
V ��z� �x

 �
j �

�

p�jxj


We say that �P� V 
 is witness independent if the above ensembles are identically distributed�
Namely� for every x � L every w�

x� w
�
x � R�x
 and z � f�� �g�� the random variables

view
P �w�

x�
V ��z� �x
 and view

P �w�
x�

V ��z� �x
 are identically distributed�
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A few remarks are in place� First� one may observe that any proof system in which the
prover ignores its auxiliary�input is trivially witness independent� In particular� exponential�
time provers may� without loss of generality� ignore their auxiliary�input �without any de�
crease in the probability that they convince the veri�er
� Yet� probabilistic polynomial�time
provers can not a�ord to ignore their auxiliary input �since otherwise they become useless
�
Hence� for probabilistic polynomial�time provers for languages outside BPP � witness indis�
tinguishability is non�trivial� Secondly� one can easily show that any zero�knowledge proof
system for a language in NP is witness indistinguishable �since the view corresponding to
each witness can be approximated by the same simulator
� Likewise� perfect zero�knowledge
proofs are witness independent� Finally� it is relatively easy to see that witness indistin�
guishability and witness independence are preserved under sequential composition� In the
next subsection we show that they are also preserved under parallel composition�

Witness hiding

We now turn to the notion of witness hiding� Intuitively� a proof system for a language in
NP is witness hiding if after interacting with the prover it is still infeasible for the veri�er
to �nd an NP witness for the common input� Clearly� such a requirement can hold only
if it is infeasible to �nd witnesses from scratch� Since� each NP language has instances
for which witness �nding is easy� we must consider the task of witness �nding for specially
selected hard instances� This leads to the following de�nitions�

De�nition ��
� �distribution of hard instances
� Let L � NP and RL be a witness relation

for L� Let X
def
 fXngn�IN be a probability ensemble so that Xn assign non�zero probability

mass only to strings in L � f�� �gn� We say that X is hard for RL if for every probabilistic
polynomial�time �witness �nding
 algorithm F � every polynomial p��
� all su�ciently large
n�s and all z � f�� �gpoly�n�

Prob�F �Xn� z
�RL�Xn

 �
�

p�n


De�nition ��
� �witness hiding
� Let �P� V 
� L � NP� and RL be as in the above de�ni�
tions�

� Let X  fXngn�IN be a hard instance ensemble for RL� We say that �P� V 
 is witness
hiding for the relation RL under the instance ensemble X if for every probabilistic
polynomial�time machine V �� every polynomial p��
 and all su�ciently large n�s� and
all z � f�� �g�

Prob�hP �Yn
� V ��z
i�Xn
�RL�Xn

 �
�

p�n


where Yn is arbitrarily distributed over RL�Xn
�
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� We say that �P� V 
 is universal witness hiding for the relation RL if the proof system
�P� V 
 is witness hiding for RL under every ensemble of hard instances� for RL� that
is e�ciently constructible 	see De�nition ���


We remark that the relation between the two privacy criteria �i�e�� witness indistin�
guishable and witness hiding
 is not obvious� Yet� zero�knowledge proofs �for NP
 are also
�universal
 witness hiding �for any corresponding witness relation
� We remark that witness
indistinguishability and witness hiding� similarly to zero�knowledge� are properties of the
prover �and more generally of a any interactive machine
�

����� Parallel Composition

In contrary to zero�knowledge proof systems� witness indistinguishable proofs o�er some
robustness under parallel composition� Speci�cally� parallel composition of witness indis�
tinguishable proof systems results in a witness indistinguishable system� provided that the
original prover is probabilistic polynomial�time�

Lemma ��
� �Parallel Composition Lemma
� Let L � NP� and RL be as in De�ni�
tion ����� and suppose that P is probabilistic polynomial�time� and �P� V 
 is witness indis�
tinguishable �resp�� witness independent
 for RL� Let Q��
 be a polynomial� and PQ denote
a program that on common�input x�� ���� xQ�n� � f�� �gn and auxiliary�input w�� ���� wQ�n� �
f�� �g�� invokes P in parallel Q�n
 times� so that in the ith copy P is invoked on common�
input xi and auxiliary�input wi� Then� PQ is witness indistinguishable �resp�� witness inde�
pendent
 for

RQ
L

def
 f�x� w
 � �i �xi� wi
�RLg

where x  �x�� ���� xm
� and w  �w�� ���� wm
� so that m  Q�n
 and jxij n for each i�

Proof Sketch� Both the computational and information theoretic versions follow by a
hybrid argument� We concentrate on the computational version� To avoid cumbersome
notation we consider a generic n for which the claim of the lemma fails� �By contradiction
there must be in�nitely many such n�s and a precise argument will actually handle all these
n�s together�
 Namely� suppose that by using a veri�er program V �

Q� it is feasible to distin�

guish the witnesses w�  �w�
�� ���� w

�
m
 and w

�  �w�
�� ���� w

�
m
� used by PQ� in an interaction

on common�input x � Lm� Then� for some i� the program V �
Q distinguishes also the hybrid

witnesses h
�i�
 �w�

�� ���� w
�
i � w

�
i��� ���� w

�
m
 and h

�i���
 �w�

�� ���� w
�
i��� w

�
i��� ���� w

�
m
� Rewrite

h
�i�
 �w�� ���� wi� w

�
i��� wi��� ���� wm
 and h

�i���
 �w�� ���� wi� w

�
i��� wi��� ���� wm
� We derive

a contradiction by constructing a veri�er V � that distinguishes �the witnesses used by P
in
 interactions with the original prover P � Details follow�
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The program V � incorporates the programs P and V �
Q and proceeds by interacting

with the prover P in parallel to simulating m � � other interactions with P � The real
interaction with P is viewed as the i!�st copy in an interaction of V �

Q� whereas the simulated
interactions are associated with the other copies� Speci�cally� in addition to the common�

input x� machine V � gets the appropriate i and the sequences x� h�i� and h�i��� as part of
its auxiliary input� For each j 	 i!�� machine V � will use xj as common�input and wj as
the auxiliary�input to the jth copy of P � Machine V � invokes V �

Q on common input x and
provides it with an interface to a virtual interaction with PQ� The i! �

st component of a
message �  ���� ���� �m
 sent by V

�
Q is forwarded to the prover P and all other components

are kept for the simulation of the other copies� When P answers with a message �� machine
V � computes the answers of the other copies of P �by feeding the program P with the
corresponding auxiliary�input and the corresponding sequence of incoming messages
� It
follows� that V � can distinguish the case P uses the witness w�

i�� from the case P uses w
�
i���

����� Constructions

In this subsection we present constructions of witness indistinguishable and witness hiding
proof systems�

Constructions of witness indistinguishable proofs

Using the Parallel Composition Lemma and the observation that zero�knowledge proofs are
witness indistinguishable we derive the following

Theorem ��

 Assuming the existence of 	nonuniformly
 one�way functions� every lan�
guage in NP has a constant�round witness indistinguishable proof system with negligible
error probability� In fact� the error probability can be made exponentially small�

We remark that no such result is known for zero�knowledge proof system� Namely� the
known proof systems for NP are either

� not constant�round �e�g�� Construction ���
� or
� have non�negligible error probability �e�g�� Construction ����
� or
� require stronger intractability assumptions �see Subsection �����
� or
� are only computationally sound �see Subsection �����
�

Similarly� we can derive a constant�round witness independent proof system� with exponen�
tially small error probability� for Graph Isomorphism� �Again� no analogous result is known
for perfect zero�knowledge proofs�
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Constructions of witness hiding proofs

Witness indistinguishable proof systems are not necessarily witness hiding� For example�
any language with unique witnesses has a proof system which yields the unique witness�
and yet is trivially witness independent� On the other hand� for some relations� witness
indistinguishability implies witness hiding� For example

Proposition ��
� Let f�f�i � f�i 
 � i � Ig be a collection of 	nonuniform
 clawfree functions�
and let

R
def
 f�x� w
 � w �	� r

 x �i� x�
 
 x� f�i �r
g

Then if a machine P is witness indistinguishable for R then it is also witness hiding for R
under the distribution generated by setting i  I��n
 and x�  f�i �D��� i

� where I and D
are as in De�nition �����

By a collection of nonuniform clawfree functions we mean that even nonuniform families
of circuits fCng fail to form claws on input distribution I��n
� except with negligible prob�
ability� We remark that the above proposition does not relate to the purpose of interacting
with P �e�g�� whether P is proving membership in a language� knowledge of a witness� and
so on
� The proposition is proven by contradiction� Details follow�

Suppose that an interactive machine V � �nds witnesses after interacting with P � By
the witness indistinguishability of P it follows that V � is performing as well regardless on
whether the witness is of the form ��� �
 or ��� �
� Combining the programs V � and P with
algorithm D we derive a claw forming algorithm �and hence contradiction
� Speci�cally� the
claw�forming algorithm� on input i � I� uniformly selects 	 � f�� �g� randomly generates
r  D�	� i
� computes x  �i� f�i �r

� and simulates an interaction of V

� with P on common�
input x and auxiliary�input �	� r
 to P � If machine V � outputs a witness w � R�x
 then�
with probability approximately �

� � we have w  ���	� r�
 and a claw is formed �since
f�i �r
  f���i �r�

��

Furthermore� every NP relation can be �slightly modi�ed� so that� for the modi�ed re�
lation� witness indistinguishability implies witness hiding� Given a relation R� the modi�ed
relation� denoted R�� is de�ned by

R�
def
 f��x�� x�
� w
 � jx�j jx�j 
 �i s�t� �xi� w
�Rg

Namely� w is a witness under R� for the instance �x�� x�
 if and only if w is a witness under
R for either x� or x��

Proposition ��
� Let R and R� be as above� If a machine P is witness indistinguishable
for R� then it is also witness hiding for R� under every distribution of hard instances induced
	see below
 by an e�cient algorithm that randomly selects pairs in R�
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Let S be a probabilistic polynomial�time algorithm that on input �n outputs �x� w
 � R so
that jxj n� Let Xn denotes the distribution induced on the �rst element in the output
of S��n
� The proposition asserts that if P is witness indistinguishable and fXngn�IN an

ensemble of hard instances for R then P is witness hiding under the ensemble fXngn�IN
where Xn consists of two independent copies of Xn� This assertion is proven by contradic�
tion� Suppose that an interactive machine V � �nds witnesses after interacting with P � By
the witness indistinguishability of P it follows that V � is performing as well regardless on
whether the witness w for �x�� x�
 satis�es either �x�� w
 � R or �x�� w
 � R� Combining
the programs V � and P with algorithm S we derive a algorithm� denoted F �� that �nds
witnesses for R �under the distribution Xn
� On input x � L� algorithm F � generates at
random �x�� w�
  S��jxj
 and sets x  �x� x�
 with probability �

� and x  �x
�� x
 otherwise�

Algorithm F � simulates an interaction of V � with P on common�input x and auxiliary
input w� to P � and when V � outputs a witness w algorithm F � checks whether �x� w
 � R�
The reader can easily veri�er that algorithm F � performs well under the instance ensemble
fXng� hence contradicting the hypothesis that Xn is hard for R� �

����� Applications

Applications for the notions presented in this section are scattered in various places in the
book� In particular� witness�indistinguishable proof systems are used in the construction
of constant�round arguments for NP �see Subsection �����
� witness independent proof
systems are used in the zero�knowledge proof for Graph Non�Isomorphism �see Section ��
�
and witness hiding proof systems are used for the e�cient identi�cation scheme based on
factoring �in Section ��
�

��� � Proofs of Knowledge

This section addresses the concept of �proofs of knowledge�� Loosely speaking� these are
proofs in which the prover asserts �knowledge� of some object �e�g�� a ��coloring of a graph

and not merely its existence �e�g�� the existence of a ��coloring of the graph� which in turn
imply that the graph is in the language G�C
� But what is meant by saying that a machine
knows something" Indeed the main thrust of this section is in addressing this question�
Before doing so we point out that �proofs of knowledge�� and in particular zero�knowledge
�proofs of knowledge�� have many applications to the design of cryptographic schemes and
cryptographic protocols� Some of these applications are discussed in a special subsection� Of
special interest is the application to identi�cation schemes� which is discussed in a separate
subsection�
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����� Denition

We start with a motivating discussion�

What does it mean to say that a machine knows something" Any standard
dictionary suggests several meanings to the verb know and most meanings are
phrased with reference to �awareness�� We� however� must look for a behavior�
istic interpretation of the verb� Indeed� it is reasonable to link knowledge with
ability to do something� be it at the least the ability to write down whatever one
knows� Hence� we will say that a machine knows a string � if it can output the
string �� This seems as total nonsense� A machine has a well de�ned output�
either the output equals � or it does not� So what can be meant by saying that
a machine can do something� Loosely speaking� it means that the machine can
be modi�ed so that it does whatever is claimed� More precisely� it means that
there exists an e�cient machine which� using the original machine as oracle�
outputs whatever is claimed�

So far for de�ning the �knowledge of machines�� Yet� whatever a machine knows or does
not know is �its own business�� What can be of interest to the outside is the question of
what can be deduced about the knowledge of a machine after interacting with it� Hence�
we are interested in proofs of knowledge �rather than in mere knowledge
�

For sake of simplicity let us consider a concrete question� how can a machine prove that
it knows a ��coloring of a graph" An obvious way is just to send the ��coloring to the veri�er�
Yet� we claim that applying Construction ���� �i�e�� the zero�knowledge proof system for
G�C
 su�ciently many times results in an alternative way of proving knowledge of a ��
coloring of the graph� Loosely speaking� we say that an interactive machine� V � constitutes
a veri�er for knowledge of ��coloring if the probability that the veri�er is convinced by a
machine P to accept the graph G is inversely proportional to the di�culty of extracting a
��coloring of G when using machine P as a �black box�� Namely� the extraction of the ��
coloring is done by an oracle machine� called an extractor� that is given access to a function
specifying the messages sent by P �in response to particular messages that P receives
� The
�expected
 running time of the extractor� on input G and access to an oracle specifying
P �s messages� is inversely related �by a factor polynomial in jGj
 to the probability that P
convinces V to accept G� In case P always convinces V to accept G� the extractor runs
in expected polynomial�time� The same holds in case P convinces V to accept with non�
negligible probability� We stress that the latter special cases do not su�ce for a satisfactory
de�nition�

Preliminaries

Let R � f�� �g�  f�� �g� be a binary relation� Then R�x

def
 fs � �x� s
 � Rg and LR def

 
fx � �s s�t� �x� s
 � Rg� If �x� s
 � R then we call s a solution for x� We say that R is
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polynomially bounded if there exists a polynomial p such that jsj � p�jxj
 for all �x� s
 � R�
We say that R is an NP relation if R is polynomially bounded and� in addition� there exists
a polynomial�time algorithm for deciding membership in R �i�e�� LR � NP
� In the sequel�
we con�ne ourselves to polynomially bounded relations�

We wish to be able to consider in a uniform manner all potential provers� without making
distinction based on their running�time� internal structure� etc� Yet� we observe that these
interactive machine can be given an auxiliary�input which enables them to �know� and to
prove more� Likewise� they may be luck to select a random�input which enables more than
another� Hence� statements concerning the knowledge of the prover refer not only to the
prover�s program but also to the speci�c auxiliary and random inputs it has� Hence� we �x
an interactive machine and all inputs �i�e�� the common�input� the auxiliary�input� and the
random�input
 to this machine� and consider both the corresponding accepting probability
�of the veri�er
 and the usage of this �prover!inputs
 template as an oracle to a �knowledge
extractor�� This motivates the following de�nition�

De�nition ��
� �message speci�cation function
� Denote by Px�y�r�m
 the message sent
by machine P on common�input x� auxiliary�input y� and random input r� after receiving
messages m� The function Px�y�r is called the message speci�cation function of machine P
with common�input x� auxiliary�input y� and random input r�

An oracle machine with access to the function Px�y�r will represent the knowledge of machine
P on common�input x� auxiliary�input y� and random input r� This oracle machine� called
the knowledge extractor� will try to �nd a solution to x �i�e�� an s � R�x

� The running
time of the extractor is inversely related to the corresponding accepting probability �of the
veri�er
�

Knowledge veri�ers

Now that all the machinery is ready� we present the de�nition of a system for proofs of
knowledge� Actually� the de�nition presented below is a generalization �to be motivated
by the subsequent applications
� At �rst reading� the reader may set the function � to be
identically zero�

De�nition ��
	 �System of proofs of knowledge
� Let R be a binary relation� and � � IN�
��� ��� We say that an interactive function V is a knowledge veri�er for the relation R with
knowledge error � if the following two conditions hold�

� Non�triviality� There exists an interactive machine P so that for every �x� y
 � R

all possible interactions of V with P on common�input x and auxiliary�input y are
accepting�
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� Validity �with error �
� There exists a polynomial q��
 and a probabilistic oracle
machine K such that for every interactive function P � every x � LR and every
y� r � f�� �g�� machine K satis�es the following condition�

Denote by p�x
 the probability that the interactive machine V accepts� on
input x� when interacting with the prover speci�ed by Px�y�r� Then if p�x
 �
��jxj
 then� on input x and access to oracle Px�y�r� machine K outputs a
solution s�R�x
 within an expected number of steps bounded by

q�jxj

p�x
� ��jxj
 �

The oracle machine K is called a universal knowledge extractor�

When ���
 is identically zero� we just say that V is a knowledge veri�er for the relation
R� An interactive pair �P� V 
 so that V is a knowledge veri�er for a relation R and P is a
machine satisfying the non�triviality condition 	with respect to V and R
 is called a system
for proofs of knowledge for the relation R�

����� Observations

The zero�knowledge proof systems for Graph Isomorphism �i�e�� Construction ����
 and
for Graph ��Coloring �i�e�� Construction ����
 are in fact proofs of knowledge �with some
knowledge error
 for the corresponding languages� Speci�cally� Construction ���� is a proof
of knowledge of an isomorphism with knowledge error �

� � whereas Construction ���� is a
proof of knowledge of a ��coloring with knowledge error � � �

jEj �on common input G  
�V�E

� By iterating each construction su�ciently many times we can get the knowledge
error to be exponentially small� �The proofs of all these claims are left as an exercise�
 In
fact� we get a proof of knowledge with zero error� since

Proposition ��
� Let R be an NP relation� and q��
 be a polynomial such that �x� y
 � R
implies jyj � q�jxj
� Suppose that �P� V 
 is a system for proofs of knowledge� for the relation

R� with knowledge error ��n

def
 ��q�n�� Then �P� V 
 is a system for proofs of knowledge

for the relation R 	with zero knowledge error
�

Proof Sketch� Given a knowledge extractor� K� substantiating the hypothesis� we con�
struct a new knowledge extractor which runs K in parallel to conducting an exhaustive
search for a solution� Let p�x
 be as in De�nition ����� To evaluate the performance of the
new extractor consider two cases�
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Case �� p�x
 � � � ��jxj
� In this case� we use the fact
�

p�x
� ��jxj
 �
�

p�x


Case �� p�x
 � � � ��jxj
� In this case� we use the fact that exhaustive search of a solution
boils down to �q�jxj� trials� whereas �

p�x� � �
� � �q�jxj��

It follows that

Theorem ���� Assuming the existence of 	nonuniformly
 one�way function� every NP re�
lation has a zero�knowledge system for proofs of knowledge�

����� Applications

We brie�y review some of the applications for �zero�knowledge
 proofs of knowledge� Typ�
ically� �zero�knowledge
 proofs of knowledge are used for �mutual disclosure� of the same
information� Suppose that Alice and Bob both claim that they know something �e�g�� a
��coloring of a common input
 but are each doubtful of the other person�s claim� Employ�
ing a zero�knowledge proof of knowledge in both direction is indeed a �conceptually
 simple
solution to the problem of convincing each other of their knowledge�

Nonoblivious commitment schemes

When using a commitment scheme the receiver is guaranteed that after the commit phase
the sender is committed to at most one value �in the sense that it can later �reveal� only
this value
� Yet� the receiver is not guaranteed that the sender �knows� to what value it
is committed� Such a guarantee may be useful in many settings� and can be obtained by
using proof of knowledge� For more details see Subsection ������

Chosen message attacks

An obvious way of protecting against chosen message attacks on a �public�key
 encryption
scheme is to augment the ciphertext by a zero�knowledge proof of knowledge of the cleartext�
�For de�nition and alternative constructions of such schemes see Section �missing�enc�strong�sec���

However� one should note that the resulting encryption scheme employs bidirectional com�
munication between the sender and the receiver �of the encrypted message
� It seems
that the use of non�interactive zero�knowledge proofs of knowledge would yield unidirec�
tional �public�key
 encryption schemes� Such claims have been made� yet no proof has
ever appeared �and we refrain from expressing an opinion on the issue
� Non�interactive
zero�knowledge proofs are discussed in Section �����
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A zeroknowledge proof system for GNI

The interactive proof of Graph Non�Isomorphism �GNI
� presented in Construction ���� is
not zero�knowledge �unless GNI � BPP
� A cheating veri�er may construct a graph H

and learn whether it is isomorphic to the �rst input graph by sending H as query to the
prover� A more appealing refutation can be presented to the claim that Construction ���
is auxiliary�input zero�knowledge �e�g�� the veri�er can check whether its auxiliary�input is
isomorphic to one of the common�input graphs
� We observe however� that Construction ���
�would have been zero�knowledge� if the veri�er always knew the answer to its queries �as
is the case for the honest veri�er
� The idea then is to have the veri�er prove to the
prover that he �i�e�� the veri�er
 knows the answer to the query �i�e�� an isomorphism to the
appropriate input graph
� and the prover answers the query only if it is convinced of this
claim� Certainly� the veri�er�s proof of knowledge should not yield the answer �otherwise the
prover can use this information in order to cheat thus foiling the soundness requirement
�
If the veri�er�s proof of knowledge is zero�knowledge then certainly it does not yield the
answer� In fact� it su�ces that the veri�er�s proof of knowledge is witness�independent �see
Section ���
�

����� Proofs of Identity 
Identication schemes�

Identi�cation schemes are useful in large distributed systems in which the users are not
acquainted with one another� A typical� everyday example is the consumer�retailer situa�
tion� In computer systems� a typical example is electronic mail �in communication networks
containing sites allowing too loose local super�user access
� In between� in technological so�
phistication� are the Automatic Teller Machine �ATM
 system� In these distributed systems�
one wishes to allow users to be able to authenticate themselves to other users� This goal
is achieved by identi�cation schemes� de�ned below� In the sequel� we shall also see that
identi�cation schemes are intimately related to proofs of knowledge� We just hint that a
person�s identity can be linked to his ability to do something� and in particular to his ability
to prove knowledge of some sort�

De�nition

Loosely speaking� an identi�cation scheme consists of a public �le containing records for
each user and an identi�cation protocol� Each record consists of the name �or identity
 of
a user and auxiliary identi�cation information to be used when invoking the identi�cation
protocol �as discussed below
� The public �le is established and maintained by a trusted
party which vouches for the authenticity of the records �i�e�� that each record has been
submitted by the user the name of which is speci�ed in it
� All users have read access to
the public �le at all times� Alternatively� the trusted party can supply each user with a
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signed copy of its public record� Suppose now� that Alice wishes to prove to Bob that it is
indeed her communicating with him� To this end� Alice invokes the identi�cation protocol
with the �public �le
 record corresponding to her name as a parameter� Bob veri�es that the
parameter in use indeed matches Alice�s public record and proceeds executing his role in
the protocol� It is required that Alice will always be able to convince Bob �that she is indeed
Alice
� whereas nobody else can fool Bob into believing that she�he is Alice� Furthermore�
Carol should not be able to impersonate as Alice even after receiving polynomially many
proofs of identity from Alice�

Clearly� if the identi�cation information is to be of any use� then Alice must keep in
secret the random coins she has used to generate her record� Furthermore� Alice must use
these stored coins� during the execution of the identi�cation protocol� but this must be done
in a way which does not allow her counterparts to later impersonate her�

Conventions� In the following de�nition we adopt the formalism and notations of interac�
tive machines with auxiliary input �presented in De�nition ����
� We recall that when M
is an interactive machine� we denote by M�y
 the machine which results by �xing y to be
the auxiliary input of machine M � In the following de�nition n is the security parameter�
and we assume with little loss of generality� that the names �i�e�� identities
 of the users are
encoded by strings of length n� If A is a probabilistic algorithm and x� r � f�� �g�� then
Ar�x
 denotes the output of algorithm A on input x and random coins r�

Remark� In �rst reading� the reader may ignore algorithm A and the random variable Tn
in the security condition� Doing so� however� yields a weaker condition� that is typically
unsatisfactory�

De�nition ���� �identi�cation scheme
� An identi�cation scheme consists of a pair� �I�(
�
where I is a probabilistic polynomial time algorithm and ( �P� V 
 is a pair of probabilistic
polynomial�time interactive machines satisfying the following conditions

� Viability� For every n � IN� every � � f�� �gn� and every s � f�� �gpoly�n�

Prob �hP �s
� V i��� Is��

 �
  �

� Security� For every pair of probabilistic polynomial�time interactive machines� A and
B� every polynomial p��
� all su�ciently large n � IN� every � � f�� �gn� and every z

Prob �hB�z� Tn
� V i��� ISn��

 �
 �
�

p�n


where Sn is a random variable uniformly distributed over f�� �gpoly�n�� and Tn is a
random variable describing the output of A�z
 after interacting with P �Sn
 on common
input �� for polynomially many times�
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Algorithm I is called the information generating algorithm� and the pair �P� V 
 is called the
identi�cation protocol�

Hence� to use the identi�cation scheme a user� say Alice� the identity of which is

encoded by the string �� should �rst uniformly select a secret string s� compute i
def
 Is��
�

ask the trusted party to place the record ��� i
 in the public �le� and store the string s in
a safe place� The viability condition asserts that Alice can convince Bob of her identity
by executing the identi�cation� Alice invokes the program P using the stored string s as
auxiliary input� and Bob uses the program V and makes sure that the common input is the
public record containing � �which is in the public �le
� Ignoring� for a moment� algorithm
A and the random variable Tn� the security condition yields that it is infeasible for a party
to impersonate Alice if all this party has is the public record of Alice and some unrelated
auxiliary input� However� such a security condition may not su�ce in many applications
since a user wishing to impersonate Alicemay ask her �rst to prover her identity to him�her�
The �full
 security condition asserts that even if Alice has proven her identity to Carol

many times in the past� still it is infeasible for Carol to impersonate Alice� We stress that
Carol cannot impersonate Alice to Bob provided that she cannot interact concurrently
with both� In case this condition does not hold then nothing is guaranteed �and indeed
Carol can easily cheat by referring Bob�s questions to Alice and answering as Alice does
�

Identi�cation schemes and proofs of knowledge

A natural way of establishing a person�s identity is to ask him�her to supply a proof of
knowledge of a fact that this person is supposed to know� Let us consider a speci�c �and
in fact quite generic
 example�

Construction ���� �identi�cation scheme based on a one�way function
� Let f be a func�
tion� On input an identity � � f�� �gn� the information generating algorithm uniformly
selects a string s � f�� �gn and outputs f�s
� �The pair ��� f�s

 is the public record for
the user with name �
� The identi�cation protocol consists of a proof of knowledge of the
inverse of the second element in the public record� Namely� in order to prove its identity�
user � proves that he knows a string s so that f�s
  r� where ��� r
 is a record in the public
�le� 	The proof of knowledge in used is allowed to have negligible knowledge error�


Proposition ���� If f is a one�way function and the proof of knowledge in use is zero�
knowledge then Construction ���� constitutes an identi�cation scheme�

Hence� identi�cation schemes exist if one�way functions exist� More e�cient identi�ca�
tion schemes can be constructed based on speci�c intractability assumptions� For example�
assuming the intractability of factoring� the so called Fiat�Shamir identi�cation scheme�
which is actually a proof of knowledge of a square root� follows�
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Construction ���
 �the Fiat�Shamir identi�cation scheme
� On input an identity � �
f�� �gn� the information generating algorithm uniformly selects a composite number N �
which is the product of two n�bit long primes� a residue s mod N � and outputs the pair
�N� s� mod N
� �The pair ��� �N� s� mod N

 is the public record for user �
� The iden�
ti�cation protocol consists of a proof of knowledge of the corresponding modular square
root� Namely� in order to prove its identity� user � proves that he knows a square root of

r
def
 s� mod N � where ��� �r�N

 is a record in the public �le� 	Again� negligible knowledge

error is allowed�


The proof of knowledge of square root is analogous to the proof system for Graph
Isomorphism presented in Construction ����� Namely� in order to prove knowledge of a
square root of r � s� �mod N
� the prover repeats the following steps su�ciently many
times�

Construction ���� �atomic proof of knowledge of square root
�

� The prover randomly selects a residue� q� modulo N and send t
def
 q� mod N to the

veri�er�

� The veri�er uniformly selects 	 � f�� �g and sends it to the prover�

� Motivation� in case 	  � the veri�er asks for a square root of t mod N � whereas in
case 	  � the veri�er asks for a square root of t � r mod N � In the sequel we assume�
without loss of generality� that 	 � f�� �g�

� The prover replies with p
def
 q � s� mod N �

� The veri�er accepts 	this time
 if and only if the messages t and p sent by the prover
satis�es p� � t � r� mod N �

When Construction ���� is repeated k times� either sequentially or in parallel� the result�
ing protocol constitutes a proof of knowledge of modular square root with knowledge error
��k � In case these repetitions are conducted sequentially� then the resulting protocol is
zero�knowledge� Yet� for use in Construction ���� it su�ces that the proof of knowledge is
witness�hiding� and fortunately even polynomially many parallel executions can be shown
to be witness�hiding �see Section ���
� Hence the resulting identi�cation scheme has con�
stant round complexity� We remark that for identi�cation purposes it su�ces to perform
Construction ���� superlogarithmically many times� Furthermore� also less repetitions are
of value� when applying Construction ���� k  O�logn
 times� and using the resulting
protocol in Construction ����� we get a scheme �for identi�cation
 in which impersonation
can occur with probability at most ��k�
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Identi�cation schemes and proofs of ability

As hinted above� a proof of knowledge of a string �i�e�� the ability to output the string
 is a
special case of a proof of ability to do something� It turns out that identi�cation schemes
can be based also on the more general concept of proofs of ability� We avoid de�ning this
concept� and refrain ourself to two �natural� examples of using a proof of ability as basis
for identi�cation�

It is an everyday practice to identify people by their ability to produce their signature�
This practice can be carried into the digital setting� Speci�cally� the public record of Alice
consists of her name and the veri�cation key corresponding to her secret signing key in a
predetermined signature scheme� The identi�cation protocol consists of Alice signing a
random message chosen by the veri�er�

A second popular means of identi�cation consists of identifying people by their ability to
answer correctly personal questions� A digital analogue to this practice follows� To this end
we use pseudorandom functions �see Section ���
 and zero�knowledge proofs �of membership
in a language
� The public record of Alice consists of her name and a �commitment� to
a randomly selected pseudorandom function �e�g�� either via a string�commitment to the
index of the function or via a pair consisting of a random domain element and the value of
the function at this point
� The identi�cation protocol consists of Alice returning the value
of the function at a random location chosen by the veri�er� and supplying a zero�knowledge
proof that the value returned indeed matches the function appearing in the public record�
We remark that the digital implementation o�ers more security than the everyday practice�
In the everyday setting the veri�er is given the list of all possible question and answer pairs
and is trusted not to try to impersonate as the user� Here we replaced the possession of the
correct answers by a zero�knowledge proof that the answer is correct�

��� � Computationally�Sound Proofs �Arguments�

In this section we consider a relaxation of the notion of an interactive proof system� Speci��
cally� we relax the soundness condition of interactive proof systems� Instead of requiring that
it is impossible to fool the veri�er into accepting false statement �with probability greater
than some bound
� we only require that it is infeasible to do so� We call such protocols com�
putationally sound proof systems �or arguments
� The advantage of computationally sound
proof systems is that perfect zero�knowledge computationally sound proof systems can be
constructed� under some reasonable complexity assumptions� for all languages in NP � We
remark that perfect zero�knowledge proof systems are unlikely to exists for all languages in
NP �see section ���
� We recall that computational zero�knowledge proof systems do exist
for all languages in NP � provided that one�way functions exist� Hence� the above quoted
positive results exhibit some kind of a trade�o� between the soundness and zero�knowledge
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properties of the zero�knowledge protocols of NP � We remark� however� that this is not
a real trade�o� since the perfect zero�knowledge computationally sound proofs for NP are
constructed under stronger complexity theoretic assumption than the ones used for the
computationally zero�knowledge proofs� It is indeed an interesting research project to try
to construct perfect zero�knowledge computationally sound proofs for NP under weaker
assumptions �and in particular assuming only the existence of one�way functions
�

We remark that it seems that computationally�sound proof systems can be much more
e�cient than ordinary proof systems� Speci�cally� under some plausible complexity as�
sumptions� extremely e�cient computationally�sound proof systems �i�e�� requiring only
poly�logarithmic communication and randomness
 exist for any language in NP � An analo�
gous result cannot hold for ordinary proof systems� unless NP is contained in deterministic
quasi�polynomial time �i�e�� NP � Dtime��polylog

�

����� Denition

The de�nition of computationally sound proof systems follows naturally from the above
discussion� The only issue to consider is that merely replacing the soundness condition of
De�nition ��� by the following computational soundness condition leads to an unnatural
de�nition� since the computational power of the prover in the completeness condition �in
De�nition ���
 is not restricted�

Computational Soundness� For every polynomial�time interactive machine B�
and for all su�ciently long x 	� L

Prob �hB� V i�x
 �
 � �

�

Hence� it is natural to restrict the prover in both �completeness and soundness
 conditions
to be an e�cient one� It is crucial to interpret e�cient as being probabilistic polynomial�
time given auxiliary input �otherwise only languages in BPP will have such proof systems
�
Hence� our starting point is De�nition ���� �rather than De�nition ���
�

De�nition ���� �computationally sound proof system
 �arguments
� A pair of interactive
machines� �P� V 
� is called an computationally sound proof system for a language L if both
machines are polynomial�time �with auxiliary inputs
 and the following two conditions hold

� Completeness� For every x � L there exists a string y such that for every string z

Prob �hP �y
� V �z
i�x
 �
 � �

�
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� Computational Soundness� For every polynomial�time interactive machine B� and for
all su�ciently long x 	� L and every y and z

Prob �hB�y
� V �z
i�x
 �
 � �

�

As usual� the error probability in the completeness condition can be reduced �from �
�


up to ��poly�jxj�� by repeating the protocol su�ciently many times� The same is not true�
in general� with respect to the error probability in the computational soundness condition
�see Exercise ��
� All one can show is that the error probability can be reduced to be
negligible �i�e�� smaller that �
p��
� for every polynomial p��

� Speci�cally� by repeating a
computationally sound proof su�ciently many time �i�e�� superlogarithmically many times

we get a new veri�er V � for which it holds that

For every polynomial p��
� every polynomial�time interactive machine B� and
for all su�ciently long x 	� L and every y and z

Prob
�hB�y
� V ��z
i�x
 �� � �

p�jxj

See Exercise ���

����� Perfect Commitment Schemes

The thrust of the current section is in a method for constructing perfect zero�knowledge
arguments for every language in NP � This method makes essential use of the concept of
commitment schemes with a perfect �or �information theoretic�
 secrecy property� Hence�
we start with an exposition of �perfect� commitment schemes� We remark that such schemes
may be useful also in other settings �e�g�� in settings in which the receiver of the commitment
is computationally unbounded� see for example Section ���
�

The di�erence between commitment scheme �as de�ned in Subsection �����
 and perfect
commitment schemes �de�ned below
 consists of a switching in scope of the secrecy and
unambiguity requirements� In commitment schemes �see De�nition ����
� the secrecy re�
quirement is computational �i�e�� refers only to probabilistic polynomial�time adversaries
�
whereas the unambiguity requirement is information theoretic �and makes no reference to
the computational power of the adversary
� On the other hand� in perfect commitment
schemes �see de�nition below
� the secrecy requirement is information theoretic� whereas
the unambiguity requirement is computational �i�e�� refers only to probabilistic polynomial�
time adversaries
� Hence� in some sense calling one of these schemes �perfect� is somewhat
unfair to the other �yet� we do so in order to avoid cumbersome terms as a �perfectly�
secret�computationally�nonambiguous commitment scheme�
� We remark that it is impos�
sible to have a commitment scheme in which both the secrecy and unambiguity requirements
are information theoretic �see Exercise ��
�
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De�nition

Loosely speaking� a perfect commitment scheme is an e�cient two�phase two�party protocol
through which the sender can commit itself to a value so the following two con�icting
requirements are satis�ed�

�� Secrecy� At the end of the commit phase the receiver does not gain any information
of the sender�s value�

�� Unambiguity� It is infeasible for the sender to interact with the receiver so that the
commit phase is successfully terminated and yet later it is feasible for the sender to
perform the reveal phase in two di�erent ways leading the receiver to accept �as legal
�openings�
 two di�erent values�

Using analogous conventions to the ones used in Subsection ������ we make the following
de�nition�

De�nition ���� �perfect bit commitment scheme
� A perfect bit commitment scheme is a
pair of probabilistic polynomial�time interactive machines� denoted �S�R
 	for sender and
receiver
� satisfying�

� Input Speci�cation� The common input is an integer n presented in unary 	serving
as the security parameter
� The private input to the sender is a bit v�

� Secrecy� For every probabilistic 	not necessarily polynomial�time
 machine R� inter�
acting with S� the random variables describing the output of R� in the two cases�
namely hS��
� R�i��n
 and hS��
� R�i��n
� are statistically close�

� Unambiguity�
Preliminaries� For simplicity v � f�� �g and n � IN are implicit in all notations� Fix
any probabilistic polynomial�time algorithm F ��

� As in De�nition ����� a receiver�s view of an interaction with the sender� denoted
�r�m
� consists of the random coins used by the receiver 	r
 and the sequence of
messages received from the sender 	m
� A sender�s view of the same interac�
tion� denoted �s� )m
� consists of the random coins used by the sender 	s
 and the
sequence of messages received from the receiver 	 )m
� A joint view of the interac�
tion is a pair consisting of corresponding receiver and sender views of the same
interaction�

� Let 	 � f�� �g� We say that a joint view 	of an interaction
� t
def
 ��r�m
� �s� )m

�

has a feasible 	�opening �with respect to F �
 if on input �t� 	
� algorithm F � out�
puts 	say� with probability � �
�
 a string s� such that m describes the messages
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received by R when R uses local coins r and interacts with machine S which uses
local coins s� and input �	� �n
�
	Remark� We stress that s� may� but need not� equal s� The output of algorithm
F � has to satisfy a relation which depends only on the receiver�s view part of the
input� the sender�s view is supplied to algorithm F � as additional help�


� We say that a joint view is ambiguous �with respect to F �
 if it has both a feasible
��opening and a feasible ��opening �w�r�t� F �
�

The unambiguity requirement asserts that� for all but a negligible fraction of the coin
tosses of the receiver� it is infeasible for the sender to interact with the receiver so that
the resulting joint view is ambiguous with respect to some probabilistic polynomial�time
algorithm F �� Namely� for every probabilistic polynomial time interactive machine S��
probabilistic polynomial�time algorithm F �� polynomial p��
� and all su�ciently large
n� the probability that the joint view of the interaction between R and with S�� on
common input �n� is ambiguous with respect to F �� is at most �
p�n
�

In the formulation of the unambiguity requirement� S� describes the �cheating
 sender
strategy in the commit phase� whereas F � describes its strategy in the reveal phase� Hence�
it is justi�ed �and in fact necessary
 to pass the sender�s view of the interaction �between S�

and R
 to algorithm F �� The unambiguity requirement asserts that any e�cient strategy S�

will fail to produce a joint view of interaction� which can be latter �e�ciently
 opened in two
di�erent ways supporting two di�erent values� As usual� events occurring with negligible
probability are ignored�

As in De�nition ����� the secrecy requirement refers explicitly to the situation at the
end of the commit phase� whereas the unambiguity requirement implicitly assumes that the
reveal phase takes the following form�

�� the sender sends to the receiver its initial private input� v� and the random coins� s�
it has used in the commit phase�

�� the receiver veri�es that v and s �together with the coins �r
 used by R in the commit
phase
 indeed yield the messages thatR has received in the commit phase� Veri�cation
is done in polynomial�time �by running the programs S and R
�

Construction based on oneway permutations

Perfect commitment schemes can be constructed using any one�way permutation� The
known scheme� however� involve a linear �in the security parameter
 number of rounds�
Hence� it can be used for the purposes of the current section� but not for the construction
in Section ����
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Construction ���	 �perfect bit commitment
� Let f be a permutation� and b�x� y
 denote
the inner�product mod � of x and y 	i�e�� b�x� y
  

Pn
i�� xiyi mod �
�

�� commit phase 	using security parameter n
�

� The receiver randomly selects n � � linearly indepndent vectors r�� ���� rn�� �
f�� �gn� The sender uniformly selects s � f�� �gn and computes y  f�s
� 	So
far no message is exchanged between the parties�


� The parties proceed in n�� rounds� In the ith round 	i  �� ���� n��
� the receiver
sends ri to the sender� which replies by computing and sending ci

def
 b�y� ri
�

� At this point there are exactly two solutions to the equations b�y� ri
  ci� ��
i � n � �� De�ne j  � if y is the lexicographically �rst solution 	among the
two
� and j  � otherwise� To commit to a value v � f�� �g� the sender sends

cn
def
 j � v to the receiver�

�� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if f�s
  y� b�y� ri
  ci for all �� i�n � ��
and y is the lexicographically �rst solution to these n� � equations i� cn  v�

Proposition ���� Suppose that f is a one�way permutation� Then� the protocol presented
in Construction ��� constitutes a perfect bit commitment scheme�

It is quite easy to see that Construction ���� satis�es the secrecy condition� The proof
that the unambiguity requirement is satis�ed is quite complex and is omitted for space
considerations�

Construction based on clawfree collections

Perfect commitment schemes �of constant number of rounds
 can be constructed using
a strong intractability assumption� speci�cally� the existence of clawfree collections �see
Subsection �����
� This assumption implies the existence of one�way functions� but it is not
known whether the converse is true� Nevertheless� clawfree collections can be constructed
under widely believed assumptions such as the intractability of factoring and DLP� Actually�
the construction of perfect commitment schemes� presented below� uses a clawfree collection
with an additional property� speci�cally� it is assume that the set of indices of the collection
�i�e�� the range of algorithm I
 can be e�ciently recognized �i�e�� is in BPP
� We remark that
such collections do exist under the assumption that DLP is intractable �see Subsection �����
�

Construction ���� �perfect bit commitment
� Let �I�D� F 
 be a triplet of e�cient algo�
rithms�
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�� commit phase� To receive a commitment to a bit 	using security parameter n
� the
receiver randomly generates i  I��n
 and sends it to the sender� To commit to value
v � f�� �g 	upon receiving the message i from the receiver
� the sender checks if indeed
i is in the range of I��n
� and if so the sender randomly generates s  D�i
� computes
c  F �v� i� s
� and sends c to the receiver� 	In case i is not in the range of I��n
 the
sender aborts the protocol announcing that the receiver is cheating�


�� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if F �v� i� s
  c� where �i� c
 is the receiver�s
	partial
 view of the commit phase�

Proposition ���� Let �I�D� F 
 be a clawfree collection with a probabilistic polynomial�
time recognizable set of indices 	i�e�� range of algorithm I
� Then� the protocol presented in
Construction ���� constitutes a perfect bit commitment scheme�

Proof� The secrecy requirement follows directly from Property ��
 of a clawfree collection
�combined with the test i � I��n
 conducted by the sender
� The unambiguity requirement
follows from Property ��
 of a clawfree collection� using a standard reducibility argument�

We remark that the Factoring Clawfree Collection� presented in Subsection ������ can
be used to construct a perfect commitment scheme although this collection is not known to
have an e�ciently recognizable index set� Hence� perfect commitment schemes exists also
under the assumption that factoring Blum integers is intractable� Loosely speaking� this
is done by letting the receiver prove to the sender �in zero�knowledge
 that the selected
index� N � satis�es the secrecy requirement� What is actually being proven is that half of
the square roots� of each quadratic residue mod N � have Jacobi symbol � �relative to N
�
A zero�knowledge proof system of this claim does exist �without assuming anything
� We
remark that the idea just presented can be described as replacing the requirement that
the index set is e�ciently recognizable by a zero�knowledge proof that a string is indeed a
legitimate index�

Commitment Schemes with a posteriori secrecy

We conclude the discussion of perfect commitment schemes by introducing a relaxation
of the secrecy requirement� The resulting scheme cannot be used for the purposes of the
current section� yet it is useful in di�erent settings� The advantage in the relaxation is that
it allows to construct commitment schemes using any clawfree collection� thus waiving the
additional requirement that the index set is e�ciently recognizable�

Loosely speaking� we relax the secrecy requirement of perfect commitment schemes by
requiring that it only holds whenever the receiver follows it prescribed program �denoted
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R
� This seems strange since we don�t really want to assume that the real receiver follows
the prescribed program �but rather allow it to behave arbitrarily
� The point is that a real
receiver may disclose the coin tosses used by it in the commit phase in a later stage� say
even after the reveal phase� and by doing so a posteriori prove that �at least in some weak
sense
 it was following the prescribed program� Actually� the receiver only proves that he
behaved in a manner which is consistent with its program�

De�nition ���� �commitment scheme with perfect a posteriori secrecy
� A bit commitment
scheme with perfect a posteriori secrecy is de�ned as in De�nition ����� except that the
secrecy requirement is replaced by the following a posteriori secrecy requirement� For every
string r � f�� �gpoly�n� it holds that hS��
� Rri��n
 and hS��
� Rri��n
 are statistically close�
where Rr denotes the execution of the interactive machine R when using internal coin tosses
r�

Proposition ���� Let �I�D� F 
 be a clawfree collection� Consider a modi�cation of Con�
struction ����� in which the sender�s check� of whether i is in the range of I��n
� is omitted
	from the commit phase
� Then the resulting protocol constitutes a bit commitment scheme
with perfect a posteriori secrecy�

In contrast to Proposition ����� here the clawfree collection may not have an e�ciently
recognizable index set� Hence� the veri�er�s check must have been omitted� Yet� the receiver
can later prove that the message sent by it during the commit phase �i�e�� i
 is indeed a valid
index by disclosing the random coins it has used in order to generate i �using algorithm I
�

Proof� The a posteriori secrecy requirement follows directly from Property ��
 of a clawfree
collection �combined with the assumption that i in indeed a valid index
� The unambiguity
requirement follows as in Proposition �����

A typical application of commitment scheme with perfect a posteriori secrecy is pre�
sented in Section ���� In that setting the commitment scheme is used inside an interactive
proof with the veri�er playing the role of the sender �and the prover playing the role of
the receiver
� If the veri�er a posteriori learns that the prover has been cheating then the
veri�er rejects the input� Hence� no damage is caused� in this case� by the fact that the
secrecy of the veri�er�s commitments might have been breached�

Nonuniform computational unambiguity

Actually� for the applications to proof�argument systems� both the one below and the
one in Section ���� we need commitment schemes with perfect secrecy and nonuniform
computational unambiguity� �The reasons for this need are analogous to the case of the
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zero�knowledge proof for NP presented in Section ����
 By nonuniform computational
unambiguity we mean that the unambiguity condition should hold also for �nonuniform

families of polynomial�size circuits� We stress that all the constructions of perfect com�
mitment schemes possess the nonuniform computational unambiguity� provided that the
underlying clawfree collections foil also nonuniform polynomial�size claw�forming circuits�

In order to prevent the terms of becoming too cumbersome we omit the phrase �nonuni�
form� when referring to the perfect commitment schemes in the description of the two
applications�

����� Perfect Zero�Knowledge Arguments for NP

Having perfect commitment scheme at our disposal� we can construct perfect zero�knowledge
arguments forNP � by modifying the construction of �computational
 zero�knowledge proofs
�for NP
 in a totally syntactic manner� We recall that in these proof systems �e�g�� Con�
struction ���� for Graph ��Colorability
 the prover uses a commitment scheme in order to
commit itself to many values� part of them it later reveals upon the veri�er�s request� All
that is needed is to replace the commitment scheme used by the prover by a perfect commit�
ment scheme� We claim that the resulting protocol is a perfect zero�knowledge argument
�computationally sound proof
 for the original language� For sake of concreteness we prove

Proposition ���
 Consider a modi�cation of Construction ���� so that the commitment
scheme used by the prover is replaced by a perfect commitment scheme� Then the resulting
protocol is a perfect zero�knowledge weak argument for Graph ��Colorability�

By a weak argument we mean a protocol in which the gap between the completeness and the
computational soundness condition is non�negligible� In our case the veri�er always accepts
inputs in G�C� whereas no e�cient prover can fool him into accepting graphs G �V�E
 not
in G�C with probability greater than �� �

�jEj � We remind the reader that by polynomially
many repetitions the error probability can be made negligible�

Proof Sketch� We start by proving that the resulting protocol is perfect zero�knowledge
for G�C� We use the same simulator as in the proof of Proposition ����� However� this
time analyzing the properties of the simulator is much easier since the commitments are
distributed independently of the committed values� and consequently the veri�er acts in
total oblivion of the values� It follows that the simulator outputs a transcript with proba�
bility exactly �

� � and for similar reasons this transcript is distributed identically to the real
interaction� The perfect zero�knowledge property follows�

The completeness condition is obvious as in the proof of Proposition ����� It is left to
prove that the protocol satis�es the computational soundness requirement� This is indeed
the more subtle part of the current proof �in contrast to the proof of Proposition ���� in
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which proving soundness is quite easy
� We use a reducibility argument to show that a
prover�s ability to cheat with too high probability on inputs not in G�C translates to an
algorithm contradicting the unambiguity of the commitment scheme� Details follows�

We assume� to the contradiction� that there exists a �polynomial�time
 cheating prover
P �� and an in�nite sequence integers� so that for each integer n there exists graphs Gn  
�Vn� En
 	� G�C and a string yn so that P ��yn
 leads the veri�er to accept Gn with probabil�

ity � �� �
�jEnj � Let k

def
 jVnj� Let c�� ���� ck be the sequence of commitments �to the vertices

colors
 sent by the prover in step �P�
� Recall that in the next step� the veri�er sends a
uniformly chosen edge �of En
 and the prover must answer by revealing di�erent colors for
its endpoint� otherwise the veri�er rejects� A straightforward calculation shows that� since
Gn is not ��colorable� there must exist a vertex for which the prover is able to reveal at
least two di�erent colors� Hence� we can construct a polynomial�size circuit� incorporating
P �� Gn and yn� that violates the �nonuniform
 unambiguity condition� Contradiction to
the hypothesis of the proposition follows� and this completes the proof�

Combining Propositions ���� and ����� we get

Corollary ���� If non�uniformly one�way permutations exist then every language in NP
has a perfect zero�knowledge argument�

Concluding Remarks

Propositions ���� and ���� exhibit a kind of a trade�o� between the strength of the soundness
and zero�knowledge properties� The protocol of Proposition ���� o�ers computational zero�
knowledge and �perfect� soundness� whereas the protocol of Proposition ���� o�ers perfect
zero�knowledge and computational soundness� However� one should note that the two results
are not obtained under the same assumptions� The conclusion of Proposition ���� is valid
as long as any one�way functions exist� whereas the conclusion of Proposition ���� requires
a �probably much
 stronger assumption� Yet� one may ask which of the two protocols
should we prefer� assuming that they are both valid� The answer depends on the setting
�i�e�� application
 in which the protocol is to be used� In particular� one should consider the
following issues

� The relative importance attributed to soundness and zero�knowledge in the speci�c
application� In case of clear priori to one of the two properties a choice should be
made accordingly�

� The computational resources of the various users in the application� One of the users
may be known to be in possession of much more substantial computing resources� and
it may be reasonable to require that he�she should not be able to cheat even not in
an information theoretic sense�
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� The soundness requirement refers only to the duration of the execution� whereas in
many applications zero�knowledge may be of concern also for a long time afterwards�
If this is the case then perfect zero�knowledge arguments do o�er a clear advantage
�over zero�knowledge proofs
�

����� Zero�Knowledge Arguments of Polylogarithmic E�ciency

A dramatic improvement in the e�ciency of zero�knowledge arguments for NP � can be
obtained by combining ideas from Chapter �missing�sign�sec�� and a result described
in Section �missing�eff�pcp�sec��� In particular� assuming the existence of very strong
collision�free hashing functions one can construct a computationally�sound �zero�knowledge

proof� for any language in NP � which uses only polylogarithmic amount of communication
and randomness� The interesting point in the above statement is the mere existence of such
extremely e�cient argument� let alone their zero�knowledge property� Hence� we refrain
ourselves to describing the ideas involved in constructing such arguments� and do not address
the issue of making them zero�knowledge�

By Theorem �missing�np�pcp�thm��� every NP language� L� can be reduced to �SAT
so that non�members of L are mapped into �CNF formulae for which every truth assignment
satis�es at most an � � � fraction of the clauses� where � � � is a universal constant� Let
us denote this reduction by f � Now� in order to prove that x � L it su�ces to prove that
the formula f�x
 is satis�able� This can be done by supplying a satisfying assignment for
f�x
� The interesting point is that the veri�er need not check that all clauses of f�x
 are
satis�ed by the given assignment� Instead� it may uniformly select only polylogarithmically
many clauses and check that the assignment satis�es all of them� If x � L �and the prover
supplies a satisfying assignment to f�x

 then the veri�er will always accept� Yet� if x 	� L

then no assignment satis�es more than a � � � fraction of the clauses� and consequently
a uniformly chosen clause is not satis�ed with probability at least �� Hence� checking
superlogarithmically many clauses will do�

The above paragraph explains why the randomness complexity is polylogarithmic� but
it does not explain why the same holds for the communication complexity� For this end
we need an additional idea� The idea is to use a special commitment scheme which allows
to commit to a string of length n so that the commitment phase takes polylogarithmic
communication and individual bits of this string can be revealed �and veri�ed correct
 at
polylogarithmic communication cost� For constructing such a commitment scheme we use a
collision�free hashing function� The function maps strings of some length to strings of half
the length so that it is �hard� to �nd two strings which are mapped by the function to the
same image�

Let n denote the length of the input string to which the sender wishes to commit itself�
and let k be a parameter �which is later set to be polylogarithmic in n
� Denote by H a
collision�free hashing function mapping strings of length �k into strings of length k� The
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sender partitions its input string intom
def
 n

k consequtive blocks� each of length k� Next� the
sender constructs a binary tree of depth log�m� placing the m blocks in the corresponding
leaves of the tree� In each internal node� the sender places the hash value obtained by
applying the function H to the contents of the children of this node� The only message
sent in the commit phase is the contents of the root �sent by the sender to the receiver
�
By doing so� unless the sender can form collisions under H � the sender has �committed�
itself to some n�bit long string� When the receiver wishes to get the value of a speci�c bit
in the string� the sender reveals to the receiver the contents of both children of each node
along the path from the root to the corresponding leaf� The receiver checks that the values
supplied for each node �along the path
 match the value obtained by applying H to the
values supplied for the two children�

The protocol for arguing that x � L consists of the prover committing itself to a sat�
isfying assignment for f�x
� using the above scheme� and the veri�er checking individual
clauses by asking the prover to reveal the values assigned to the variables in these clauses�
The protocol can be shown to be computationally�sound provided that it is infeasible to
�nd a pair �� � � f�� �g�k so that H��
  H��
� Speci�cally� we need to assume that
forming collisions under H is not possible in subexponential time� namely� that for some
� � �� forming collisions with probability greater than ��k� must take at least �k� time� In
such a case� we set k  �logn
��

�
� and get a computationally�sound proof of communication

complexity O� logno��� �m �k
  polylog�n
� �Weaker lower bounds for the collision�forming task
may still yield meaningful results by an appropriate setting of the parameter k�
 We stress
that collisions can always be formed in time ��k and hence the entire approach fails if the
prover is not computationally bounded �and consequently we cannot get �perfectly�sound

proof systems this way
� Furthermore� by a simulation argument one may show that� only
languages in Dtime��polylog
 have proof systems with polylogarithmic communication and
randomness complexity�

��� � Constant Round Zero�Knowledge Proofs

In this section we consider the problem of constructing constant�round zero�knowledge proof
systems with negligible error probability for all languages in NP � To make the rest of the
discussion less cumbersome we de�ne a proof system to be round�e�cient if it is both
constant�round and with negligible error probability�

We present two approaches to the construction of round�e�cient zero�knowledge proofs
for NP �

�� Basing the construction of round�e�cient zero�knowledge proof systems on commit�
ment schemes with perfect secrecy �see Subsection �����
�
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�� Constructing �round�e�cient zero�knowledge
 computationally�sound proof systems
�see Section ���
 instead of �round�e�cient zero�knowledge
 proof systems�

The advantage of the second approach is that round�e�cient zero�knowledge computationally�
sound proof systems for NP can be constructed using any one�way function� whereas it is
not known whether round�e�cient zero�knowledge proof systems forNP can be constructed
under the same general assumption� In particular� we only know how to construct perfect
commitment schemes by using much stronger assumptions �e�g�� the existence of clawfree
permutations
�

Both approaches have one fundamental idea in common� We start with an abstract
exposition of this common idea� Recall that the basic zero�knowledge proof for Graph
��Colorability� presented in Construction ����� consists of a constant number of rounds�
However� this proof system has a non�negligible error probability �in fact the error proba�
bility is very close to �
� In Section ���� it was suggested to reduce the error probability
to a negligible one by sequentially applying the proof system su�ciently many times� The
problem is that this yields a proof system with a non�constant number of rounds� A natural
suggestion is to perform the repetitions of the basic proof in parallel� instead of sequentially�
The problem with this �solution� is that it is not known whether that the resulting proof
system is zero�knowledge�

Furthermore� it is known that it is not possible to present� as done in the proof
of Proposition ����� a single simulator which uses every possible veri�er as a
black box �see Section ���
� The source of trouble is that� when playing many
versions of Construction ���� in parallel� a cheating veri�er may select the edge
to be inspected �i�e�� step �V�

 in each version depending on the commitments
sent in all versions �i�e�� in step �P�

� Such behaviour of the veri�er defeats a
simulator analogous to the one presented in the proof of Proposition �����

The way to overcome this di�culty is to �switch� the order of steps �P�
 and �V�
� But
switching the order of these steps enables the prover to cheat �by sending commitments
in which only the �query� edges are colored correctly
� Hence� a more re�ned approach
is required� The veri�er starts by committing itself to one edge�query for each version
�of Construction ����
� then the prover commits itself to the coloring in each version� and
only then the veri�er reveals its queries and the rest of the proof proceeds as before� The
commitment scheme used by the veri�er should prevent the prover from predicting the
sequence of edges committed to by the veri�er� This is the point were the two approaches
di�er�

�� The �rst approach utilizes for this purpose a commitment scheme with perfect secrecy�
The problem with this approach is that such schemes are known to exists only under
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stronger assumption than merely the existence of one�way function� Yet� such schemes
do exists under assumptions such as the intractability of factoring integers of special
form or the intractability of the discrete logarithm problem�

�� The second approach bounds the computational resources of prospective cheating
provers� Consequently� it su�ces to utilize� �against� these provers �as commitment
receivers
� commitment schemes with computational security� We remark that this
approach utilizes �for the commitments done by the prover
 a commitment scheme
with an extra property� Yet� such schemes can be constructed using any one�way
function�

We remark that both approaches lead to protocols that are zero�knowledge in a liberal sense
�i�e�� using expected polynomial�time simulators
�

����� Using commitment schemes with perfect secrecy

For sake of clarity� let us start by presenting a detailed description of the constant�round
interactive proof �for Graph ��Colorability �i�e�� G�C

 sketched above� This interactive
proof employs two di�erent commitment schemes� The �rst scheme is the simple commit�
ment scheme �with �computational� secrecy
 presented in Construction ����� We denote
by Cs�	
 the commitment of the sender� using coins s� to the �ternary
 value 	� The second
commitment scheme is a commitment scheme with perfect secrecy �see Section �����
� For
simplicity� we assume that this scheme has a commit phase in which the receiver sends one
message to the sender which then replies with a single message �e�g�� the schemes presented
in Section �����
� Let us denote by Pm�s��
 the commitment of the sender to string �� upon
receiving message m �from the receiver
 and when using coins s�

Construction ���� �A round�e�cient zero�knowledge proof for G�C
�

� Common Input� A simple 	��colorable
 graph G �V�E
� Let n
def
 jV j� t def

 n � jEj
and V  f�� ���� ng�

� Auxiliary Input to the Prover� A ��coloring of G� denoted ��

� Prover�s preliminary step �P�
� The prover invokes the commit phase of the perfect
commit scheme� which results in sending to the veri�er a message m�

� Veri�er�s preliminary step �V�
� The veri�er uniformly and independently selects a

sequence of t edges� E
def
 ��u�� v�
� ���� �ut� vt

 � Et� and sends the prover a random

commitment to these edges� Namely� the veri�er uniformly selects s � f�� �gn and
sends Pm�s�E
 to the prover�
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� Motivating Remark� At this point the veri�er is committed to a sequence of t edges�
This commitment is of perfect secrecy�

� Prover�s step �P�
� The prover uniformly and independently selects t permutations�

��� ���� �t� over f�� �� �g� and sets �j�v

def
 �j���v

� for each v � V and � � j � t�

The prover uses the computational commitment scheme to commit itself to colors of
each of the vertices according to each ��coloring� Namely� the prover uniformly and
independently selects s���� ���� sn�t � f�� �gn� computes ci�j  Csi�j ��j�i

� for each i � V
and ��j� t� and sends c���� ���� cn�t to the veri�er�

� Veri�er�s step �V�
� The veri�er reveals the sequence E  ��u�� v�
� ���� �ut� vt

 to the
prover� Namely� the veri�er send �s� E
 to the prover�

� Motivating Remark� At this point the entire commitment of the veri�er is revealed�
The veri�er now expects to receive� for each j� the colors assigned by the jth coloring
to vertices uj and vj 	the endpoints of the j

th edge in E
�

� Prover�s step �P�
� The prover checks that the message just received from the veri�
�er is indeed a valid revealing of the commitment made by the veri�er at step 	V�
�
Otherwise the prover halts immediately� Let us denote the sequence of t edges� just
revealed� by �u�� v�
� ���� �ut� vt
� The prover uses the reveal phase of the computational
commitment scheme in order to reveal� for each j� the jth coloring of vertices uj and
vj to the veri�er� Namely� the prover sends to the veri�er the sequence of quadruples

�su� ��� ���u�
� sv���� ���v�

� ���� �sut�t� �t�ut
� svt�t� �t�vt



� Veri�er�s step �V�
� The veri�er checks whether� for each j� the values in the jth

quadruple constitute a correct revealing of the commitments cuj�j and cvj �j� and whether
the corresponding values are di�erent� Namely� upon receiving �s�� 	�� s

�
�� ��
 through

�st� 	t� s
�
t� �t
� the veri�er checks whether for each j� it holds that cuj�j  Csj�	j
�

cvj�j  Cs�j
��j
� and 	j 	 �j 	and both are in f�� �� �g
� If all conditions hold then the

veri�er accepts� Otherwise it rejects�

We �rst assert that Construction ���� is indeed an interactive proof for G�C� Clearly�
the veri�er always accepts a common input in G�C� Suppose that the common input graph�
G �V�E
� is not in G�C� Clearly� each of the �committed colorings� sent by the prover
in step �P�
 contains at least one illegally�colored edge� Using the perfect secrecy of the
commitments sent by the veri�er in step �V�
� we deduce that at step �P�
 the prover has
�no idea� which edges the veri�er asks to see �i�e�� as far as the information available to the
prover is concerned� each possibility is equally likely
� Hence� although the prover sends the
�coloring commitment� after receiving the �edge commitment�� the probability that all the
�committed edges� have legally �committed coloring� is at most�

�� �

jEj
�t
� e�n � ��n
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We now turn to show that Construction ���� is indeed zero�knowledge �in the liberal
sense allowing expected polynomial�time simulators
� For every probabilistic �expected

polynomial�time interactive machine� V �� we introduce an expected polynomial�time simu�
lator� denoted M�� The simulator starts by selecting and �xing a random tape� r� for V ��
Given the input graph G and the random tape r� the commitment message of the veri�er
V � is determined� Hence� M� invokes V �� on input G and random tape r� and gets the
corresponding commitment message� denoted CM � The simulator proceeds in two steps�

S�
 Extracting the query edges� M� generates a sequence of n � t random commitments
to dummy values �e�g�� all values equal �
� and feeds it to V �� In case V � replies by
revealing correctly a sequence of t edges� denoted �u�� v�
� ���� �ut� vt
� the simulator
records these edges and proceed to the next step� In case the reply of V � is not a
valid revealing of the commitment message CM � the simulator halts outputting the
current view of V � �e�g�� G� r and the commitments to dummy values
�

S�
 Generating an interaction that satis�es the query edges �oversimpli�ed exposition
� Let
�u�� v�
� ���� �ut� vt
 denote the sequence of edges recorded in step �S�
� M

� generates
a sequence of n � t commitments� c���� ���� cn�t� so that for each j  �� ���� t� it holds that
cuj�j and cvj�j are random commitments to two di�erent random values in f�� �� �g and
all the other ci�j �s are random commitments to dummy values �e�g�� all values equal �
�
The underlying values are called a pseudo�colorings� The simulator feeds this sequence
of commitments to V �� If V � replies by revealing correctly the �above recorded

sequence of edges� then M� can complete the simulation of a �real� interaction of
V � �by revealing the colors of the endpoints of these recorded edges
� Otherwise� the
entire step is repeated �until success occurs
�

In the rest of the description we ignore the possibility that� when invoked in steps �S�

and �S�
� the veri�er reveals two di�erent edge commitments� Loosely speaking� this prac�
tice is justi�ed by the fact that during expected polynomial�time computations such event
can occur only with negligible probability �since otherwise it contradicts the computational
unambiguity of the commitment scheme used by the veri�er
�

To illustrate the behaviour of the simulator assume that the program V � always reveals
correctly the commitment done in step �V�
� In such a case� the simulator will �nd out
the query edges in step �S�
� and using them in step �S�
 it will simulate the interaction of
V � with the real prover� Using ideas as in Section ��� one can show that the simulation is
computational indistinguishable from the real interaction� Note that in this case� step �S�

of the simulator is performed only once�

Consider now a more complex case in which� on each possible sequence of internal
coin tosses r� program V � correctly reveals the commitment done in step �V�
 only with
probability �

� � The probability in this statement is taken over all possible commitments
generated to the dummy values �in the simulator step �S�

� We �rst observe that the
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probability that V � correctly reveals the commitment done in step �V�
� after receiving
a random commitment to a sequence of pseudo�colorings �generated by the simulator in
step �S�

� is approximately �

� � �Otherwise� we derive a contradiction to the computational
secrecy of the commitment scheme used by the prover�
 Hence� the simulator reaches step
�S�
 with probability �

� � and each execution of step �S�
 is completed successfully with
probability p � �

� � It follows that the expected number of times that step �S�
 is invoked
when running the simulator is �

� � �p � ��
Let us now consider the general case� Let q�G� r
 denote the probability that� on in�

put graph G and random tape r� after receiving random commitments to dummy values
�generated in step �S�

� program V � correctly reveals the commitment done in step �V�
�
Likewise� we denote by p�G� r
 the probability that� �on input graph G and random tape r

after receiving a random commitment to a sequence of pseudo�colorings �generated by the
simulator in step �S�

� program V � correctly reveals the commitment done in step �V�
�
As before the di�erence between q�G� r
 and p�G� r
 is negligible �in terms of the size of the
graph G
� otherwise one derives contradiction to the computational secrecy of the prover�s
commitment scheme� We conclude that the simulator reaches step �S�
 with probability

q
def
 q�G� r
� and each execution of step �S�
 is completed successfully with probability

p
def
 p�G� r
� It follows that the expected number of times that step �S�
 is invoked when

running the simulator is q � �p � Here are the bad news� we cannot guarantee that qp is approxi�
mately � or even bounded by a polynomial in the input size �e�g�� let p  ��n and q  ��n���
then the di�erence between them is negligible and yet q

p is not bounded by poly�n

� This
is why the above description of the simulator is oversimpli�ed and a modi�cation is indeed
required�

We make the simulator expected polynomial�time by modifying step �S�
 as follows�
We add an intermediate step �S���
� to be performed only if the simulator did not halt
in step �S�
� The purpose of step �S���
 is to provide a good estimate of q�G� r
� The
estimate is computed by repeating step �S�
 until a �xed �polynomial in jGj
 number of
correct V ��reveals are encountered �i�e�� the estimate will be the ratio of the number of
successes divided by the number of trial
� By �xing a su�ciently large polynomial� we can
guarantee that with overwhelmingly high probability �i�e�� � � ��poly�jGj�
 the estimate is
within a constant factor of q�G� r
� It is easily veri�ed that the estimate can be computed
within expected time poly�jGj

q�G� r
� Step �S�
 of the simulator is modi�ed by adding
a bound on the number of times it is performed� and if none of these executions yield a
correct V ��reveal then the simulator outputs a special empty interaction� Speci�cally� step
�S�
 will be performed at most poly�jGj

q� where q is the estimate to q�G� r
 computed in
step �S���
� It follows that the modi�ed simulator has expected running time bounded by

q�G� r
 � poly�jGj�q�G�r�  poly�jGj
�
It is left to analyze the output distribution of the modi�ed simulator� We refrain our�

selves to reducing this analysis to the analysis of the output of the original simulator� by
bounding the probability that the modi�ed simulator outputs a special empty interaction�
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This probability is bounded by

&�G� r

def
 q�G� r
� q�G� r
 �

�
�� ��� p�G� r

poly�jGj��q�G�r�

�
 q�G� r
 � ��� p�G� r

poly�jGj��q�G�r�

We claim that &�G� r
 is a negligible function of jGj� Assume� to the contrary� that there
exists a polynomial P ��
� an in�nite sequence of graphs fGng� and an in�nite sequence of
random tapes frng� such that &�Gn� rn
 � �
P �n
� It follows that for each such n we have
q�Gn� rn
 � �
P �n
� We consider two cases�

Case �� For in�nitely many n�s� it holds that p�Gn� rn
 � q�Gn� rn

�� In such a case we
get for these n�s

&�Gn� rn
 � ��� p�Gn� rn


poly�jGnj��q�Gn�rn�

�
�
�� q�Gn� rn


�

�poly�jGn j��q�Gn�rn�

� ��poly�jGnj���

which contradicts our hypothesis that &�Gn� rn
 � �
poly�n
�

Case �� For in�nitely many n�s� it holds that p�Gn� rn
 � q�Gn� rn

�� It follows that for
these n�s we have jq�Gn� rn
 � p�Gn� rn
j � P �n

�� which leads to contradiction of
the computational secrecy of the commitment scheme �used by the prover
�

Hence� contradiction follows in both cases�

We remark that one can modify Construction ���� so that weaker forms of perfect
commitment schemes can be used� We refer speci�cally to commitment schemes with perfect
a posteriori secrecy �see Subsection �����
� In such schemes the secrecy is only established
a posteriori by the receiver which discloses the coin tosses it has used in the commit phase�
In our case� the prover plays the role of the receiver� and the veri�er plays the role of the
sender� It su�ces to establish the secrecy property a posteriori� since in case secrecy is not
establish the veri�er may reject� In such a case no harm has been caused since the secrecy
of the perfect commitment scheme is used only to establish the soundness of the interactive
proof�

����� Bounding the power of cheating provers

Construction ���� can be modi�ed to yield a zero�knowledge computationally sound proof�
under the �more general
 assumption that one�way functions exist� In the modi�ed pro�
tocol� we let the veri�er use a commitment scheme with computational secrecy� instead of
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the commitment scheme with perfect secrecy used in Construction ����� �Hence� both users
commit to their messages using commitment scheme with computational secrecy�
 Fur�
thermore� the commitment scheme used by the prover must have the extra property that
it is infeasible to construct a commitment without �knowing� to what value it commits�
Such a commitment scheme is called non�oblivious� We start by de�ning and constructing
non�oblivious commitment schemes�

Nonoblivious commitment schemes

The non�obliviousness of a commitment scheme is intimately related to the de�nition of
proof of knowledge �see Section ��
�

De�nition ���� �non�oblivious commitment schemes
� Let �S�R
 be a commitment scheme
as in De�nition ����� We say that the commitment scheme is non�oblivious if the prescribed
receiver� R� constitutes a knowledge�veri�er� that is always convinced by S� for the relation

f���n� r�m
� �	� s

 �m viewS����n�s�
R��n�r� g

where� as in De�nition ����� view
S����n�s�
R��n�r� denotes the messages received by the interactive

machine R on input �n and local�coins r� when interactive with machine S 	that has input
�	� �n
 and uses coins s
�

It follows that the receiver prescribed program�R� may accept or rejects at the end of the
commit phase� and that this decision is supposed to re�ect the sender�s ability to later come
up with a legal opening of the commitment �i�e�� successfully complete the reveal phase
� We
stress that non�obliviousness relates mainly to cheating senders� since the prescribed sender
has no di�culty to later successfully complete the reveal phase �and in fact during the
commit phase S always convinces the receiver of this ability
� Hence� any sender program
�not merely the prescribed S
 can be modi�ed so that at the end of the commit phase it
�locally
 outputs information enabling the reveal phase �i�e�� 	 and s
� The modi�ed sender
runs in expected time that is inversely proportional to the probability that the commit
phase is completed successfully�

We remark that in an ordinary commitment scheme� at the end of the commit phase�
the receiver does not necessarily �know� whether the sender can later successfully conduct
the reveal phase� For example� a cheating sender in Construction ���� can �undetectedly

perform the commit phase without ability to later successfully perform the reveal phase
�e�g�� the sender may just send a uniformly chosen string
� It is only guaranteed that if
the sender follows the prescribed program then the sender can always succeed in the reveal
phase� Furthermore� with respect to the scheme presented in Construction ����� a cheating
sender can �undetectedly
 perform the commit phase in a way that it generates a receiver
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view which does not have any corresponding legal opening �and hence the reveal phase is
doomed to fail
� See Exercise ���

Nevertheless

Theorem ���	 If one�way functions exist then there exist non�oblivious commitment schemes
with constant number of communication rounds�

We recall that �ordinary
 commitment schemes can be constructed assuming the ex�
istence of one�way functions �see Proposition ���� and Theorem ����
� Consider the re�
lation corresponding to such a scheme� Using zero�knowledge proofs of knowledge �see
Section ��
 for the above relation� we get a non�oblivious commitment scheme� �We re�
mark that such proofs do exist under the same assumptions�
 However� the resulting com�
mitment scheme has unbounded number of rounds �due to the round complexity of the
zero�knowledge proof
� We seem to have reached a vicious circle� yet there is a way out�
We can use constant�round witness indistinguishable proofs �see Section ���
� instead of
the zero�knowledge proofs� The resulting commitment scheme has the additional prop�
erty that when applied �polynomially
 many times in parallel the secrecy property holds
simultaneously in all copies� This fact follows from the Parallel Composition Lemma for
witness indistinguishable proofs �see Section ���
� The simultaneous secrecy of many copies
is crucial to the following application�

Modifying Construction ����

We recall that we are referring to a modi�cation of Construction ���� in which the veri�er
uses a commitment scheme �with computational secrecy
� instead of the commitment scheme
with perfect secrecy used in Construction ����� In addition� the commitment scheme used
by the prover is non�oblivious�

We conclude this section by remarking on how to adopt the argument of the �rst ap�
proach �i�e�� of Subsection �����
 to suit our current needs� We start with the claim that the
modi�ed protocol is a computationally�sound proof for G�C� Verifying that the modi�ed
protocol satis�es the completeness condition is easy as usual� We remark that the modi�ed
protocol does not satisfy the �usual
 soundness condition �e�g�� a �prover� of exponential
computing power can break the veri�er�s commitment and generate pseudo�colorings that
will later fool the veri�er into accepting
� Nevertheless� we can show that the modi�ed
protocol does satisfy the computational soundness �of De�nition ����
� Namely� we show
that for every polynomial p��
� every polynomial�time interactive machine B� and for all
su�ciently large graph G 	� G�C and every y and z

Prob �hB�y
� VG�C�z
i�x
 �
 � �

p�jxj
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where VG�C is the veri�er program in the modi�ed protocol�

Using the information theoretic unambiguity of the commitment scheme employed by
the prover� we can talk of a unique color assignment which is induced by the prover�s
commitments� Using the fact that this commitment scheme is non�oblivious� it follows that
the prover can be modi�ed so that� in step �P�
� it outputs the values to which it commits
itself at this step� We can now use the computational secrecy of the veri�er�s commitment
scheme to show that the color assignment generated by the prover is almost independent
of the veri�er�s commitment� Hence� the probability that the prover can fool the veri�er
to accept an input not in the language is non�negligibly greater than what it would have
been if the veri�er asked random queries after the prover makes its �color
 commitments�
The computational soundness of the �modi�ed
 protocol follows� We remark that we do not
know whether the protocol is computationally sound in case the prover uses a commitment
scheme that is not guaranteed to be non�oblivious�

Showing that the �modi�ed
 protocol is zero�knowledge is even easier than it was in
the �rst approach �i�e�� in Subsection �����
� The reason being that when demonstrating
zero�knowledge of such protocols we use the secrecy of the prover�s commitment scheme and
the unambiguity of the veri�er�s commitment scheme� Hence� only these properties of the
commitment schemes are relevant to the zero�knowledge property of the protocols� Yet� the
current �modi�ed
 protocol uses commitment schemes with relevant properties which are not
weaker than the ones of the corresponding commitment schemes used in Construction �����
Speci�cally� the prover�s commitment scheme in the modi�ed protocol possess computation�
ally secrecy just like the prover�s commitment scheme in Construction ����� We stress that
this commitment� like the simpler commitment used for the prover in Construction ����� has
the simultaneous secrecy �of many copies
 property� Furthermore� the veri�er�s commitment
scheme in the modi�ed protocol possess �information theoretic� unambiguity� whereas the
veri�er�s commitment scheme in Construction ���� is merely computationally unambiguous�

���� � Non�Interactive Zero�Knowledge Proofs

Author�s Note� Indeed� this section is missing

������ Denition

������ Construction

���� � Multi�Prover Zero�Knowledge Proofs

In this section we consider an extension of the notion of an interactive proof system� Specif�
ically� we consider the interaction of a veri�er with several �say� two
 provers� The provers
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may share an a�priori selected strategy� but it is assumed that they cannot interact with
each other during the time period in which they interact with the veri�er� Intuitively� the
provers can coordinate their strategies prior to� but not during� their interrogation by the
veri�er�

The notion of multi�prover interactive proof plays a fundamental role in complexity the�
ory� This aspect is not addressed here �but rather postponed to Section �missing�eff�pcp�sec��
�
In the current section we merely address the zero�knowledge aspects of multi�party interac�
tive proofs� Most importantly� the multi�prover model enables the construction of �perfect

zero�knowledge proof systems for NP � independent of any complexity theoretic �or other

assumptions� Furthermore� these proof systems can be extremely e�cient� Speci�cally� the
on�line computations of all parties can be performed in polylogarithmic time �on a RAM
�

������ Denitions

For sake of simplicity we consider the two�prover model� We remark that more provers do
not o�er any essential advantages �and speci�cally� none that interest us in this section
�
Loosely speaking� a two�prover interactive proof system is a three party protocol� where two
parties are provers and the additional party is a veri�er� The only interaction allowed in
this model is between the veri�er and each of the provers� In particular� a prover does not
�know� the contents of the messages sent by the veri�er to the other prover� The provers
do however share a random input tape� which is �as in the one�prover case
 �beyond the
reach� of the veri�er� The two�prover setting is a special case of the two�partner model
described below�

The twopartner model

The two�party model consists of two partners interacting with a third party� called solitary�
The two partners can agree on their strategies beforehand� and in particular agree on a
common uniformly chosen string� Yet� once the interaction with the solitary begins� the
partners can no longer exchange information� The following de�nition of such an interaction
extends De�nitions ��� and ����

De�nition ���� �two�partner model
� The two�partner model consists of three interactive
machines� two are called partners and the third is called solitary� which are linked and interact
as hereby speci�ed�

� The input�tapes of all three parties coincide� and its contents is called the common
input�

� The random�tapes of the two partners coincide� and is called the partners� random�tape�
	The solitary has a separate random�tape�
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� The solitary has two pairs of communication�tapes and two switch�tapes� instead of a
single pair of communication�tapes and a single switch�tape 	as in De�nition ���
�

� Both partners have the same identity and the solitary has an opposite identity 	see
De�nitions ��� and ���
�

� The �rst 	resp�� second
 switch�tape of the solitary coincides with the switch�tape of
the �rst 	resp�� second
 partner� the �rst 	resp�� second
 read�only communication�tape
of the solitary coincides with the write�only communication�tape of the �rst 	resp��
second
 partner and vice versa�

� The joint computation of the three parties� on a common input x� is a sequence of
triplets� Each triplet consists of the local con�guration of each of the three machines�
The behaviour of each partner�solitary pair is as in the de�nition of the joint compu�
tation of a pair of interactive machines�

� Notation� We denote by hP�� P�� Si�x
 the output of the solitary S after interacting
with the partners P� and P�� on common input x�

Twoprover interactive proofs

A two�prover interactive proof system is now de�ned analogously to the one�prover case
�see De�nitions ��� and ���
�

De�nition ���� �two�prover interactive proof system
� A triplet of interactive machines�
�P�� P�� V 
� in the two�partner model is called an proof system for a language L if the machine
V �called veri�er
 is probabilistic polynomial�time and the following two conditions hold

� Completeness� For every x � L

Prob �hP�� P�� V i�x
 �
 � �

�

� Soundness� For every x 	� L and every pair of partners �B�� B�
�

Prob �hB�� B�� V i�x
 �
 � �

�

As usual� the error probability in the completeness condition can be reduced �from �
�


up to ��poly�jxj�� by sequentially repeating the protocol su�ciently many times� We stress
that error reduction via parallel repetitions is not known to work in general�

The notion of zero�knowledge �for multi�prove systems
 remains exactly as in the one�
prover case� Actually� the de�nition of perfect zero�knowledge may even be made more
strict by requiring that the simulator never fails �i�e�� never outputs the special symbol �
�
Namely�
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De�nition ���� We say that a �two�prover
 proof system �P�� P�� V 
 for a language L
is perfect zero�knowledge if for every probabilistic polynomial�time interactive machine V �

there exists a probabilistic polynomial�time algorithm M� such that for every x � L the
random variables hP�� P�� V �i�x
 and M��x
 are identically distributed�

Extension to the auxiliary�input �zero�knowledge
 model is straightforward�

������ Two�Senders Commitment Schemes

The thrust of the current section is in a method for constructing perfect zero�knowledge
two�prover proof systems for every language in NP � This method makes essential use of a
commitment scheme for two senders and one receiver that posses �information theoretic�
secrecy and unambiguity properties� We stress that it is impossible to simultaneously
achieve �information theoretic� secrecy and unambiguity properties in the single sender
model�

A De�nition

Loosely speaking� a two�sender commitment scheme is an e�cient two�phase protocol for
the two�partner model� through which the partners� called senders� can commit themselves
to a value so that the following two con�icting requirements are satis�ed�

�� Secrecy� At the end of the commit phase the solitary� called receiver� does not gain
any information of the senders� value�

�� Unambiguity� Suppose that the commit phase is successfully terminated� Then if later
the senders can perform the reveal phase so that the receiver accepts the value � with
probability p then they cannot perform the reveal phase so that the receiver accepts
the value � with probability substantially bigger than � � p� �Due to the secrecy
requirement and the fact that the senders are computationally unbounded� for every
p� the senders can always conduct the commit phase so that they can later reveal the
value � with probability p and the value � with probability �� p�


Instead of presenting a general de�nition� we restrict our attention to the special case of
two�sender commitment schemes in which only the �rst sender �and the receiver
 takes
part in the commit phase� whereas only the second sender takes part in the reveal phase�
Furthermore� we assume� without loss of generality� that in the reveal phase the �second

sender sends the contents of the joint random�tape �used by the �rst sender in the commit
phase
 to the receiver�
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De�nition ���� �two�sender bit commitment
� A two�sender bit commitment scheme is
a triplet of probabilistic polynomial�time interactive machines� denoted �S�� S�� R
� for the
two�partner model satisfying�

� Input Speci�cation� The common input is an integer n presented in unary� called the
security parameter� The two partners� called the senders� have an auxiliary private
input v � f�� �g�

� Secrecy� The ��commitment and the ��commitment are identically distributed� Namely�
for every probabilistic 	not necessarily polynomial�time
 machine R� interacting with
the �rst sender 	i�e�� S�
� the random variables hS���
� R�i��n
 and hS���
� R�i��n

are identically distributed�

� Unambiguity� Preliminaries� For simplicity v � f�� �g and n � IN are implicit in all
notations�

� As in De�nition ����� a receiver�s view of an interaction with the 	�rst
 sender�
denoted �r�m
� consists of the random coins used by the receiver� denoted r� and
the sequence of messages received from the 	�rst
 sender� denoted m�

� Let 	 � f�� �g� We say that the string s is a possible 	�opening of the receiver�s
view �r�m
 if m describes the messages received by R when R uses local coins r
and interacts with machine S� which uses local coins s and input �	� �n
�

� Let S�� be an arbitrary program for the �rst sender� Let p be a real� and 	 � f�� �g�
We say that p is an upper bound on the probability of a 	�opening of the receiver�s
view of the interaction with S�� if for every random variableX� which is statistically
independent of the receiver�s coin tosses� the probability that X is a possible 	�
opening of the receiver�s view of an interaction with S�� is at most p�
�The probability is taken over the coin tosses of the receiver� the strategy S�� and
the random variable X �


� Let S�� be as above� and� for each 	 � f�� �g� let p� be an upper bound on the
probability of a 	�opening of the interaction with S��� We say that the receiver�s
view of the interaction with S�� is unambiguous if p� ! p� � � ! ��n�

The unambiguity requirement asserts that� for every program for the �rst sender� S���
the receiver�s interaction with S�� is unambiguous�

In the formulation of the unambiguity requirement� the random variables X represent pos�
sible strategies of the second sender� These strategies may depend on the random input
that is shared by the two senders� but is independent of the receiver�s random coins �since
information on these coins� if at all� is only sent to the �rst sender
� Actually� the highest
possible value of p� ! p� is attainable by deterministic strategies for both senders� Thus�
it su�ces to consider an arbitrary deterministic strategy S�� for the �rst sender and a �xed
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	�opening� denoted s� � for the second sender �for each 	 � f�� �g
� In this case� the prob�
ability is taken only over the receiver coin tosses and we can strengthen the unambiguity
condition as follows�

�strong unambiguity condition
 for every deterministic strategy S��� and every pair
of strings �s�� s�
� the probability that for both 	  �� � the string s� is a 	�
opening of the receiver�s view of the interaction with S�� is bounded above by
��n�

In general� in case the sender employ randomized strategies� they determine for each possible
coin�tossing of the receiver a pair of probabilities corresponding to their success in a ��
opening and a ��opening� The unambiguity condition asserts that the average of these
pairs� taken over all possible receiver�s coin tosses is a pair which sums�up to at most
� ! ��n� Intuitively� this means that the senders cannot do more harm than deciding at
random �possibly based also on the receiver�s message to the �rst sender
 whether to commit
to � or to �� Both secrecy and unambiguity requirements are information theoretic �in the
sense that no computational restrictions are placed on the adversarial strategies
� We stress
that we have implicitly assumed that the reveal phase takes the following form�

�� the second sender sends to the receiver the initial private input� v� and the random
coins� s� used by the �rst sender in the commit phase�

�� the receiver veri�es that v and s �together with the private coins �r
 used by R in the
commit phase
 indeed yield the messages that R has received in the commit phase�
Veri�cation is done in polynomial�time �by running the programs S� and R
�

A Construction

By the above conventions� it su�ces to explicitly describe the commit phase �in which only
the �rst sender takes part
�

Construction ���� �two�sender bit commitment
�

� Preliminaries� Let ��� �� denote two permutations over f�� �� �g so that �� is the
identity permutation and �� is a permutation consisting of a single transposition� say
��� �
� Namely� ����
 �� ����
 � and ����
 ��

� Common input� the security parameter n 	in unary
�

� A convention� Suppose that the contents of the senders� random�tape encodes a uni�
formly selected s s� � � �sn � f�� �� �gn�
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� Commit Phase�
�� The receiver uniformly selects r  r� � � �rn � f�� �gn and sends r to the �rst

sender�

�� To commit to a bit 	� the �rst sender computes ci
def
 �ri�si
! 	 mod �� for each

i� and sends c� � � �cn to the receiver�

We remark that the second sender could have opened the commitment either way if he had
known r �sent by the receiver to the �rst sender
� The point is that the second sender does
not �know� r� and this fact drastically limits its ability to cheat�

Proposition ���
 Construction ���� constitutes a two�sender bit commitment scheme�

Proof� The security property follows by observing that for every choice of r � f�� �gn� the
message sent by the �rst sender is uniformly distributed over f�� �� �gn�

The unambiguity property is proven by contradiction� As a motivation� we �rst consider
the execution of the above protocol when n equals � and show that it is impossible for the
two senders to be always able to open the commitments both ways� Consider two messages�
��� s�
 and ��� s�
� sent by the second sender in the reveal phase so that s� is a possible ��
opening and s� is a possible ��opening� both with respect to the receiver�s view� We stress
that these messages are sent obliviously of the random coins of the receiver� and hence
must match all possible receiver�s views �or else the opening does not always succeed
� It
follows that for each r � f�� �g� both �r�s

�
 and �r�s
�
 ! � mod � must �t the message

received by the receiver �in the commit phase
 in response to message r sent by it� Hence�
�r�s

�
 � �r�s
�
 ! � �mod �
 holds� for each r � f�� �g� Contradiction follows since no two

s�� s� � f�� �� �g can satisfy both ���s�
 � ���s�
 ! � �mod �
 and ���s�
 � ���s�
 ! �
�mod �
� �The reason being that the �rst equality implies s� � s� ! � �mod �
 which
combined with the second equality yields ���s�!� mod �
 � ���s�
!� �mod �
� whereas
for every s � f�� �� �g it holds that ���s! � mod �
 	� ���s
 ! � �mod �
�


We now turn to the actual proof of the unambiguity property� We �rst observe that
if there exists a program S�� so that the receiver�s interaction with S

�
� is ambiguous� then

there exists also such a deterministic program� Actually� the program is merely a function�
denoted f � mapping n�bit long strings into sequences in f�� �� �gn� Likewise� the ���opening
and ��opening
 strategies for the second sender can be assumed� without loss of generality�
to be deterministic� Consequently� both strategies consist of constant sequences� denoted
s� and s�� and both can be assumed �with no loss of generality
 to be in f�� �� �gn�

For each 	 � f�� �g� let p� denote the probability that the sequence s� is a possible 	�
opening of the receiver�s view �Un� f�Un

� where Un denotes a random variable uniformly
distributed over f�� �gn� The contradiction hypothesis implies that p� ! p� � � ! ��n� Put
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in other words� jR�j! jR�j � �n ! �� where R� denotes the set of all strings r � f�� �gn for
which the sequence s� is a possible 	�opening of the receiver�s view �r� f�r

� Namely�

R�  fr � ��i
 fi�r
��ri�s�i 
 ! 	 �mod �
g
where r  r� � � �rn� s�  s�� � � �s�n� and f�r
  f��r
 � � �fn�r
� We are going to refute the
contradiction hypothesis by showing that the intersection of the sets R� and R� cannot
contain more than a single element�

Claim ������	 Let R� and R� as de�ned above� Then jR� �R�j � ��
proof	 Suppose� on the contrary� that �� � � R� � R� �and � 	 �
� Then� there exist an i
such that �i 	 �i� and without loss of generality �i  � �and �i  �
� By the de�nition of
R� it follows that

fi��
 � ���s
�
i 
 �mod �


fi��
 � ���s
�
i 
 �mod �


fi��
 � ���s
�
i 
 ! � �mod �


fi��
 � ���s
�
i 
 ! � �mod �


Contradiction follows as in the motivating discussion� �

This completes the proof of the proposition�

We remark that Claim ����� actually yields the strong unambiguity condition �presented
in the discussion following De�nition ���
� More importantly� we remark that the proof
extends easily to the case in which many instances of the protocol are executed in parallel�
namely� the parallel protocol constitutes a two�sender multi�value �i�e�� string
 commitment
scheme�

Author�s Note� The last remark should be elaborated signi�cantly� In addition�
it should be stressed that the claim holds also when the second sender is asked
to reveal only some of the commitments� as long as this request is indepdendent
of the coin tosses used by the receiver during the commit phase�

������ Perfect Zero�Knowledge for NP

Two�prover perfect zero�knowledge proof systems for any language in NP follow easily by
modifying Construction ����� The modi�cation consists of replacing the bit commitment
scheme� used in Construction ����� by the two�sender bit commitment scheme of Construc�
tion ���� Speci�cally� the modi�ed proof system for Graph Coloring proceeds as follows�

Twoprover atomic proof of Graph Coloring
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� The �rst prover uses the prover�s random tape to determine a permutation of the
coloring� In order to commit to each of the resulting colors� the �rst prover invokes
�the commit phase of
 a two�sender bit commitment� setting the security parameter
to be the number of vertices in the graph� �The �rst prover plays the role of the �rst
sender whereas the veri�er plays the role of the receiver�


� The veri�er uniformly selects an edge and sends it to the second prover�
� The second prover reveals the colors of the endpoints of the required edge� by sending
the portions of the prover�s random�tape used in the corresponding instance of the
commit phase�

We now remark on the properties of the above protocol� As usual� one can see that
the provers can always convince the veri�er of valid claims �i�e�� the completeness condition
hold
� Using the unambiguity property of the two�sender commitment scheme we can think
of the �rst prover as selecting at random� with arbitrary probability distribution� a color
assignment to the vertices of the graph� We stress that this claim holds although many
instances of the commit protocol are performed concurrently �see remark above
� If the
graph is not ��colored than each of the possible color assignments chosen by the �rst prover
is illegal� and a weak soundness property follows� Yet� by executing the above protocol
polynomially many times� even in parallel� we derive a protocol satisfying the soundness re�
quirement� We stress that the fact that parallelism is e�ective here �as means for decreasing
error probability
 follows from the unambiguity property of two�sender commitment scheme
and not from a general �parallel composition lemma� �which is not valid in the two�prover
setting
�

Author�s Note� The last sentence refers to a false claim by which the error
probability of a protocol in which a basic protocol is repeated t times in parallel
is at most pt� where p is the error probability of the basic protocol� Interestingly�
Ran Raz has recently proven a general �parallel composition lemma� of slightly
weaker form� the error probability indeed decreases exponentially in t 	but the
base is indeed bigger than p
�

We now turn to the zero�knowledge aspects of the above protocol� It turns out that this
part is much easier to handle than in all previous cases we have seen� In the construction
of the simulator we take advantage on the fact that it is playing the role of both provers
and hence the unambiguity of the commitment scheme does not apply� Speci�cally� the
simulator� playing the role of both senders� can easily open each commitment any way it
wants� �Here we take advantage on the speci�c structure of the commitment scheme of
Construction ����
 Details follow�

Simulation of the atomic proof of Graph Coloring
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� The simulator generates random �commitments to nothing�� Namely� the simulator
invokes the veri�er and answers its messages by uniformly chosen strings�

� Upon receiving the query�egde �u� v
 from the veri�er� the simulator uniformly selects
two di�erent colours� �u and �v� and opens the corresponding commitments so that
to reveal this values� The simulator has no di�culty to do so since� unlike the second
prover� it knows the messages sent by the veri�er in the commit phase� �Given the
receiver�s view� �r� � � �rn� c� � � �cn
� of the commit phase� a ��opening is computed by
setting si  ���ri �ci
 whereas a ��opening is computed by setting si  ���ri �ci � �
� for
all i�


We now remark that the entire argument extends trivially to the case in which polynomially
many instances of the protocol are performed concurrently�

E�ciency improvement

A dramatic improvement in the e�ciency of two�prover �perfect
 zero�knowledge proofs for
NP � can be obtained by using the techniques described in Section �missing�eff�pcp�sec���
In particular� such a proof system with constant error probability� can be implemented in
probabilistic polynomial�time� so that the number of bits exchanged in the interaction is
logarithmic� Furthermore� the veri�er is only required to use logarithmically many coin
tosses� The error can be reduced to ��k by repeating the protocol sequentially for k times�
In particular negligible error probability is achieved in polylogarithmic communication com�
plexity� We stress again that error reduction via parallel repetitions is not known to work
in general� and in particular is not known to work in this speci�c case�

Author�s Note� Again� the last statement is out of date and recent results do
allow to reduce the error probability without increasing the number of rounds�

������ Applications

Multi�prover interactive proofs are useful only in settings in which the �proving entity�
can be separated and its parts kept ignorant of one another during the proving process�
In such cases we get perfect zero�knowledge proofs without having to rely on complexity
theoretic assumptions� In other words� general widely believed mathematical assumptions
are replaced by physical assumptions concerning the speci�c setting�

A natural application is to the problem of identi�cation� and speci�cally the identi��
cation of a user at some station� In Section �� we discuss how to reduce identi�cation to
a zero�knowledge proof of knowledge �for some NP relation
� The idea is to supply each
user with two smart�cards� implementing the two provers in a two�prover zero�knowledge
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proof of knowledge� These two smart�cards have to be inserted in two di�erent slots of the
station� and this guarantees that the smart�cards cannot communicate one with another�
The station will play the role of the veri�er in the zero�knowledge proof of knowledge� This
way the station is protected against impersonation� whereas the users are protected against
pirate stations which may try to extract knowledge from the smart�cards �so to enable
impersonation by its agents
�

���� Miscellaneous

������ Historical Notes

Interactive proof systems were introduced by Goldwasser� Micali and Racko� �GMR����
�Earlier versions of this paper date to early ����� Yet� the paper� being rejected three
times from major conferences� has �rst appeared in public only in ����� concurrently to
the paper of Babai �B����
 A restricted form of interactive proofs� known by the name
Arthur Merlin Games� was introduced by Babai �B���� �The restricted form turned out to
be equivalent in power � see Section �missing�eff�ip�sec���
 The interactive proof for
Graph Non�Isomorphism is due to Goldreich� Micali and Wigderson �GMW����

The concept of zero�knowledge has been introduced by Goldwasser� Micali and Rack�
o�� in the same paper quoted above �GMR���� Their paper contained also a perfect zero�
knowledge proof for Quadratic Non Residuousity� The perfect zero�knowledge proof system
for Graph Isomorphism is due to Goldreich� Micali and Wigderson �GMW���� The latter
paper is also the source to the zero�knowledge proof systems for all languages in NP � using
any �nonunifomly
 one�way function� �Brassard and Cr*epeau have later constructed alter�
native zero�knowledge proof systems for NP � using a stronger intractability assumption�
speci�cally the intractability of the Quadratic Residuousity Problem�


The cryptographic applications of zero�knowledge proofs were the very motivation for
their presentation in �GMR���� Zero�knowledge proofs were applied to solve cryptographic
problems in �FMRW��� and �CF���� However� many more applications were possible once
it was shown how to construct zero�knowledge proof systems for every language in NP �
In particular� general methodologies for the construction of cryptographic protocols have
appeared in �GMW���GMW����

Credits for the advanced sections

The results providing upper bounds on the complexity of languages with perfect zero�
knowledge proofs �i�e�� Theorem ����
 are from Fortnow �For��� and Aiello and Hastad
�AH���� The results indicating that one�way functions are necessary for non�trivial zero�
knowledge are from Ostrovsky and Wigderson �OWistcs
��� The negative results con�



��� CHAPTER 
� ZERO�KNOWLEDGE PROOF SYSTEMS

cerning parallel composition of zero�knowledge proof systems �i�e�� Proposition ��� and
Theorem ����
 are from �GKr�
b��

The notions of witness indistinguishability and witness hiding� were introduced and
developed by Feige and Shamir �FSwitness��

Author�s Note� FSwitness has appeared in STOC���

The concept of proofs of knowledge originates from the paper of Goldwasser� Micali and
Racko� �GMR���� First attempts to provide a de�nition to this concept appear in Fiat�
Feige and Shamir �FFS��� and Tompa and Woll �TW���� However� the de�nitions provided
in both �FFS���TW��� are not satisfactory� The issue of de�ning proofs of knowledge has
been extensively investigated by Bellare and Goldreich �BGknow�� and we follow their sug�
gestions� The application of zero�knowledge proofs of knowledge to identi�cation schemes
was discovered by Feige� Fiat and Shamir �FFS����

Computationally sound proof systems �i�e�� arguments
 were introduced by Brassard�
Chaum� and Cr*epeau �BCC���� Their paper also presents perfect zero�knowledge arguments
for NP based on the intractability of factoring� Naor et� al� �NOVY
	� showed how to
construct perfect zero�knowledge arguments forNP based on any one�way permutation� and
Construction ���� is taken from their paper� The polylogarithmic�communication argument
system for NP �of Subsection �����
 is due to Kilian �K
	��

Author�s Note� NOVY�� has appeared in Crypto��� and K�� in STOC���

Author�s Note�Micali�s model of CS�proofs was intended for the missing chap�
ter on complexity theory�

The round�e�cient zero�knowledge proof systems for NP � based on any clawfree collec�
tion� is taken from Goldreich and Kahan �GKa�
�� The round�e�cient zero�knowledge ar�
guments for NP � based on any one�way function� uses ideas of Feige and Shamir �FSconst�
�yet� their original construction is di�erent
�

Author�s Note� NIZK credits� BFM and others

Multi�prover interactive proofs were introduced by Ben�Or� Goldwasser� Kilian and
Wigderson �BGKW���� Their paper also presents a perfect zero�knowledge two�prover proof
system for NP � The perfect zero�knowledge two�prover proof for NP � presented in Sec�
tion ����� follows their ideas but explicitly states the properties of the two�sender commit�
ment scheme in use� Consequently� we observe that this proof system can be applied in
parallel to decease the error probability to a negligible one�

Author�s Note� This observation escaped Feige� Lapidot and Shamir�
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������ Suggestion for Further Reading

For further details on interactive proof systems see Section �missing�eff�ip�sec���

A uniform�complexity treatment of zero�knowledge was given by Goldreich �Guniform��
In particular� it is shown how to use �uniformly
 one�way functions to construct interactive
proof systems for NP so that it is infeasible to �nd instances on which the prover leaks
knowledge�

Zero�knowledge proof systems for any language in IP � based on �nonuniformly
 one�way
functions� were constructed by Impagliazzo and Yung �IY��� �yet� their paper contains no
details
� An alternative construction is presented by Ben�Or et� al� �Betal����

Further reading related to the advanced sections

Additional negative results concerning zero�knowledge proofs of restricted types appear in
Goldreich and Oren �GO���� The interested reader is also directed to Boppana� Hastad and
Zachos �BHZ��� for a proof that if every language in coNP has a constant�round interactive
proof system then the Polynomial�Time Hierarchy collapses to its second level�

Round�e�cient perfect zero�knowledge arguments for NP � based on the intractability of
the Discrete Logarithm Problem� appears in a paper by Brassard� Cr*epeau and Yung �BCY��
A round�e�cient perfect zero�knowledge proof system for Graph Isomorphism appears in a
paper by Bellare� Micali and Ostrovsky �BMO�
��

Author�s Note� NIZK suggestions

An extremely e�cient perfect zero�knowledge two�prover proof system for NP � appears
in a paper by Dwork et� al� �DFKNS�� Speci�cally� only logarithmic randomness and commu�
nication complexities are required to get a constant error probability� This result uses the
characterization of NP in terms of low complexity multi�prover interactive proof systems�
which is further discussed in Section �missing�eff�pcp�sec���

The paper by Goldwasser� Micali and Racko� �GMR��� contains also a suggestion for a
general measure of �knowledge� revealed by a prover� of which zero�knowledge is merely a
special case� For further details see Goldreich and Petrank �GPkc��

Author�s Note� GPkc has appeared in FOCS��� See also a recent work by
Goldreich� Ostrovsky and Petrank in STOC���

Author�s Note� The discussion of knowledge complexity is better �t into the
missing chapter on complexity�
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������ Open Problems

Our formulations of zero�knowledge �e�g�� perfect zero�knowledge as de�ned in De�ni�
tion ����
 is di�erent from the standard de�nition used in the literature �e�g�� De�ni�
tion ����
� The standard de�nition refers to expected polynomial�time machines rather
to strictly �probabilistic
 polynomial�time machines� Clearly� De�nition ���� implies De��
nition ���� �see Exercise �
� but it is open whether the converse hold�

Author�s Note� Base nizk and arguments on 	more
 general assumptions�

������ Exercises

Exercise �� decreasing the error probability in interactive proofs�
Prove Proposition ���
�Guideline� Execute the weaker interactive proof su�ciently many times� using inde�
pendently chosen coin tosses for each execution� and rule by an appropriate threshold�
Observe that the bounds on completeness and soundness need to be e�ciently com�
putable� Be careful when demonstrating the soundness of the resulting veri�er� The
statement remains valid regardless of whether these repetitions are executed sequen�
tially or �in parallel�� yet demonstrating that the soundness condition is satis�ed is
much easier in the �rst case�


Exercise �� the role of randomization in interactive proofs � part �� Prove that if L has
an interactive proof system in which the veri�er is deterministic then L � NP�
�Guideline� Note that if the veri�er is deterministic then the entire interaction between
the prover and the veri�er is determined by the prover� Hence� a modi�ed prover
can just precompute the interaction and send it to the modi�ed veri�er as the only
message� The modi�ed veri�er checks that the interaction is consistent with the
message that the original veri�er would have sent


Exercise �� the role of randomization in interactive proofs � part �� Prove that if L has an
interactive proof system then it has one in which the prover is deterministic� Further�
more� prove that for every �probabilistic
 interactive machine V there exists a deter�
ministic interactive machine P so that for every x the probability Prob �hP� V i�x
 �

equals the supremum of Prob �hB� V i�x
 �
 taken over all interactive machines B�
�Guideline� for each possible pre�x of interaction� the prover can determine a message
which maximizes the accepting probability of the veri�er V �


Exercise 
� the role of randomization in interactive proofs � part �� Consider a modi��
cation� to the de�nition of an interactive machine� in which the random�tapes of the
prover and veri�er coincide �i�e�� intuitively� both use the same sequence of coin tosses
which is known to both of them
� Prove that every language having such a modi�ed
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interactive proof system has also an interactive proof system �of the original kind
 in
which the prover sends a single message�

Exercise �� the role of error in interactive proofs� Prove that if L has an interactive proof
system in which the veri�er never �not even with negligible probability
 accepts a
string not in the language L then L � NP �
�Guideline� De�ne a relation RL such that �x� y
 � RL if y is a full transcript of an
interaction leading the veri�er to accept the input x� We stress that y contains the
veri�er�s coin tosses and all the messages received from the prover�


Exercise �� error in perfect zero�knowledge simulators � part �� Consider modi�cations of
De�nition ���� in which condition � is replaced by requiring� for some function q��
�
that Prob�M��x
  �
 � q�jxj
� Assume that q��
 is polynomial�time computable�
Show that if for some polynomials� p���
 and p���
� and all su�ciently large n�s� q�n
 �
�
p��n
 and q�n
 � ����p��n� then the modi�ed de�nition is equivalent to the original
one� Justify the bounds placed on the function q��
�
�Guideline� the idea is to repeatedly execute the simulator su�ciently many time�


Exercise �� error in perfect zero�knowledge simulators � part �� Consider the following al�
ternative to De�nition ����� by which we say that �P� V 
 is perfect zero�knowledge if for
every probabilistic polynomial�time interactive machine V � there exists a probabilistic
polynomial�time algorithm M� so that the following two ensembles are statistically
close �i�e�� their statistical di�erence is negligible as a function of jxj

� fhP� V �i�x
gx�L
� fM��x
gx�L

Prove that De�nition ���� implies the new de�nition�

Exercise 	� �E
 error in perfect zero�knowledge simulators � part �� Prove that De�ni�
tion ���� implies De�nition �����

Exercise �� error in computational zero�knowledge simulators� Consider an alternative to
De�nition ����� by which the simulator is allowed to output the symbol � �with prob�
ability bounded above by� say� ��
 and its output distribution is considered conditioned
on its not being � �as done in De�nition ����
� Prove that this alternative de�nition
is equivalent to the original one �i�e�� to De�nition ����
�

Exercise ��� alternative formulation of zero�knowledge � simulating the interaction� Prove
the equivalence of De�nitions ���� and �����

Exercise ��� Present a simple probabilistic polynomial�time algorithm which simulates
the view of the interaction of the veri�er described in Construction ���� with the
prover de�ned there� The simulator� on input x � GI � should have output which is
distributed identically to viewPGIVGI

�x
�
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Exercise ��� Prove that the existence of bit commitment schemes implies the existence of
one�way functions�
�Guideline� following the notations of De�nition ����� consider the mapping of �v� s� r

to the receiver�s view �r�m
� Observe that by the unambiguity requirement range
elements are very unlikely to have inverses with both possible values of v� The mapping
is polynomial�time computable and an algorithm that inverts it� even with success
probability that is not negligible� can be used to contradict the secrecy requirement�


Exercise ��� Considering the commitment scheme of Construction ����� suggest a cheating
sender that induces a receiver�view �of the commit phase
 being both

� indistinguishable from the receiver�view in interactions with the prescribed sender�
� with very high probability� neither a possible ��commitment nor a possible ��
commitment�

�Hint� the sender just replies with a uniformly chosen string�


Exercise �
� using Construction ���� as a commitment scheme in Construction �����
Prove that when the commitment scheme of Construction ���� is used in the G�C
protocol then resulting scheme remains zero�knowledge� Consider the modi�cations
required to prove Claim �������

Exercise ��� more e�cient zero�knowledge proofs for NP � Following is an outline for a
constant�round zero�knowledge proof for the Hamiltonian Circuit Problem �HCP
�
with acceptance gap �

� �between inputs inside and outside of the language
�

� Common Input� a graph G �V�E
�

� Auxiliary Input �to the prover
� a permutation �� over V � representing the order
of vertices along a Hamiltonian Circuit�

� Prover�s �rst step� Generates a random isomorphic copy of G� denoted G�  
�V�E�
� �Let � denote the permutation between G and G�
� For each pair �i� j
 �
V �� the prover sets ei�j  � if �i� j
 � E� and ei�j  � otherwise� The prover
computes a random commitment to each ei�j � Namely� it uniformly chooses
si�j � f�� �gn and computes ci�j  Csi�j�ei�j
� The prover sends all the ci�j�s to
the veri�er�

� Veri�er�s �rst step� Uniformly selects 	 � f�� �g and sends it to the prover�
� Prover�s second step� Let 	 be the message received from the veri�er� If 	  �
then the prover reveals all the jV j� commitments to the veri�er �by reveal�
ing all si�j �s
� and sends along also the permutation �� If 	  � then the
prover reveals only jV j commitments to the veri�er� speci�cally those corre�
sponding to the Hamiltonian circuit in G� �i�e�� the prover sends s�������������
s�����������������s��n��������n��� s��n���������
�




���� MISCELLANEOUS ���

Complete the description of the above interactive proof� evaluate its acceptance proba�
bilities� and provide a sketch of the proof of the zero�knowledge property �i�e�� describe
the simulator
� If you are really serious provide a full proof of the zero�knowledge
property�

Exercise ��� strong reductions� Let L� and L� be two languages in NP � and let R� and R�

be binary relations characterizing L� and L�� respectively� We say that the relation
R� is Levin�reducible to the relation R� if there exist two polynomial�time computable
functions f and g such that the following two conditions hold�

�� standard requirement� x � L� if and only if f�x
 � L��

�� additional requirement� For every �x� w
 � R�� it holds that �f�x
� g�w

 � R��

We call the above reduction after Levin� who upon discovering� independently of
Cook and Karp� the existence of NP�complete problem� made a stronger de�nition
of a reduction which implies the above� Prove the following statements

�� Let L � NP and let LR be the generic relation characterizing L �i�e�� �x a non�
deterministic machine ML and let �x� w
 � RL if w is an accepting computation
of ML on input x
� Let RSAT be the standard relation characterizing SAT �i�e��
�x� w
 � RSAT if w is a truth assignment satisfying the CNF formula x
� Prove
that RL is Levin�reducible to RSAT �

�� Let RSAT be as above� and let R�SAT be de�ned analogously for �SAT � Prove
that RSAT is Levin�reducible to R�SAT �

�� Let R�SAT be as above� and let RG�C be the standard relation characterizing
G�C �i�e�� �x� w
 � RG�C if w is a ��coloring of the graph x
� Prove that R�SAT

is Levin�reducible to RG�C �

�� Levin�reductions are transitive�

Exercise ��� Prove the existence of a Karp�reduction of L to SAT that� when considered
as a function� can be inverted in polynomial�time� Same for the reduction of SAT to
�SAT and the reduction of �SAT to G�C� �In fact� the standard Karp�reductions
have this property�


Exercise �	� applications of Theorem ����� Assuming the existence of non�uniformly one�
way functions� present solutions to the following cryptographic problems�

�� Suppose that party R received over a public channel a message encrypted using
its own public�key encryption� Suppose that the message consists of two parts
and party R wishes to reveal to everybody the �rst part of the message but not
the second� Further suppose that the other parties want a proof that R indeed
revealed the correct contents of the �rst part of its message�



��� CHAPTER 
� ZERO�KNOWLEDGE PROOF SYSTEMS

�� Suppose that party S wishes to send party R a signature to a publicly known
document so that only R gets the signature but everybody else can verify that
such a signature was indeed sent by S� �We assume that all parties share a public
channel�


�� Suppose that party S wishes to send party R a commitment to a partially speci�
�ed statement so that R remains oblivious of the unspeci�ed part� For example�
S may wish to commit itself to some standard o�er while keeping the amount
o�ered secret�

Exercise ��� on knowledge tightness� Evaluate the knowledge tightness of Construction �����
when applied logarithmically many times in parallel�

Exercise ��� error reduction in computationally sound proofs � part �� Given a computa�
tionally sound proof �with error probability �

�
 for a language L construct a compu�
tationally sound proof with negligible error probability �for L
�

Exercise ��� error reduction in computationally sound proofs � part �� Construct a compu�
tationally sound proof that has negligible error probability �i�e�� smaller than �
p�jxj

for every polynomial p��
 and su�ciently long inputs x
 but when repeated sequentially
jxj times has error probability greater than ��jxj� We refer to the error probability in
the �computational
 soundness condition�

Exercise ��� commitment schemes � an impossibility result� Prove that there exists no
two�party protocol which simultaneously satis�es the perfect secrecy requirement of
De�nition ��� and the �information theoretic
 unambiguity requirement of De�ni�
tion �����

Exercise ��� alternative formulation of black�box zero�knowledge� We say that a proba�
bilistic polynomial�time oracle machine M is a black�box simulator for the prover P
and the language L if for every �not necessarily uniform
 polynomial�size circuit family
fBngn�IN� the ensembles fhP�Bjxji�x
gx�L and fMBjxj�x
gx�L are indistinguishable
by �non�uniform
 polynomial�size circuits� Namely� for every polynomial�size circuit
family fDngn�IN� every polynomial p��
� all su�ciently large n and x � f�� �gn � L�

jProb �Dn�hP�Bni�x

 �
� Prob
�
Dn�M

Bn�x

 �
�
j � �

p�n


Prove that the current formulation is equivalent to the one presented in De�nition �����

Exercise �
� Prove that the protocol presented in Construction ���� is indeed a black�box
zero�knowledge proof system for G�C�
�Guideline� use the formulation presented above�




Chapter �

Cryptographic Protocols

Author�s Note� This chapter is a serious obstacle to any future attempt of
completing this book�

�Plan

�input�pt�motiv�� Motivation �Examples� voting� OT�

�input�pt�def���� Definition �of a protocol problem�

����������������� �	 and more parties� w�without ��fairness���

�input�pt�two���� Construction of two�party protocols

�input�pt�many��� Construction of multi�party protocols

����������������� in the private�channel model�

����������������� Adapt to the ��computational model�� �no private channels�

�input�pt�misc��� As usual� History� Reading� Open� Exercises

���
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Chapter �

� New Frontiers

Where is the area going"

That�s always hard to predict�
but following are some recent and not so recent developments�

�Plan

�input�fr�eff���� more stress on efficiency �from a theory perspective��

�input�fr�sys���� �System Problems� �key�mgmt� replay� etc��

�input�fr�dyn���� Dynamic adversaries �in multi�party protocls�

�input�fr�incr��� Incremental Cryptography �BGG�

�input�fr�traf��� Trafic Analysis �RS�

�input�fr�soft��� Software Protection �G�O� �that�s not really new����

��
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Chapter 	

The E�ect of Cryptography on
Complexity Theory

Cryptography had a fundamental e�ect on the development of complexity theory� Notions
such as computational indistinguishability� pseudorandomness �in the sense discussed in
previous chapters
� interactive proofs and random self�reducibility were �rst introduced
and developed with a cryptographic motivation� However� these notions turned out to
in�uence the development of complexity theory as well� and were further developed within
this broader theory� In this chapter we survey some of these developments which have their
roots in cryptography and yet provide results which are no longer �directly
 relevant to
cryptography�

�Plan

�input�eff�rand�� Deterministic Simulation of Randomized Complexity Classes

����������������� �simulations of random�AC�� BPP and RL�

�input�eff�ip���� The power of Interactive Proofs �coNP subset IP�PSPACE�

�input�eff�pcp��� PCP and its applications to hardness of approximation

�input�eff�rsr��� Random Self�Reducibility �DLP�QR� Permanent�

�input�eff�lear�� Learning

�input�eff�misc�� �as usual�

���
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Chapter �


� Related Topics

In this chapter we survey several unrelated topics which are related to cryptography in some
way� For example� a natural problem which arises in light of the excessive use of randomness
is how to extract almost perfect randomness from sources of weak randomness�

�Plan

�input�tp�sour��� Weak sources of randomness

�input�tp�byz���� Byzantine Agreement

�input�tp�check�� Program Checking and Statistical Tests

�input�tp�misc��� As usual� History� Reading� Open� Exercises

���
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Appendix A

Annotated List of References
�compiled Feb� ��	�


Author�s Note� The following list of annotated references was compiled by me
more than �ve years ago� The list was intended to serve as an appendix to class
notes for my course on �Foundations of Cryptography� given at the Technion in
the Spring of ���� Thus� a few pointers to lectures given in the course appear
in the list�

Author�s Note� By the way� copies of the above�mentioned class notes� writ�
ten mostly by graduate students attending my course� can be requested from the
publication o�cer of the Computer Science Department of the Technion� Haifa�
Israel� Although I have a very poor opinion of these notes� I was surprised to
learn that they have been used by several people� The only thing that I can say
in favour of these notes is that they cover my entire 	one�semester
 course on
�Foundations of Cryptography�� in particular� they contain material on encryp�
tion and signatures 	which is most missing in the current fragments
�

���
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Preface

The list of references is partitioned into two parts� Main References and Suggestions for
Further Reading� The Main References consists of the list of papers that I have extensively
used during the course� Other papers which I mentioned brie�y may be found in the list
of Suggestions for Further Reading� This second list also contains papers� reporting further
developments� which I have not mentioned at all�

Clearly� my suggestions for further reading do not exhaust all interesting works done in
the area� Some good works were omitted on purpose �usually when totally superseeded by
others
 and some were omitted by mistake� Also� no consistent policy was implemented in
deciding which version of the work to cite� In most cases I used the reference which I had
available on line �as updating all references would have taken too much time
�



���

PART I � Main References

�BM��� Bellare� M�� and S� Micali� �How to Sign Given any Trapdoor Function�� Proc� ��th
STOC� �����

Simpli�es the construction used in �GMR���� using a weaker condition �i�e� the exis�
tence of trapdoor one�way permutations
�
Readability� reasonable�

�BM��� Blum� M�� and Micali� S�� �How to Generate Cryptographically Strong Sequences of
Pseudo�Random Bits�� SIAM Jour� on Computing� Vol� ��� ����� pp� �������� First
version in FOCS ����

Presents a general method of constructing pseudorandom generators� and the �rst
example of using it� Characterizes such generators as passing all �polynomial�time

prediction tests� Presents the notion of a �hard�core� predicate and the �rst proof of
the existence of such predicate based on the existence of a particular one�way function
�i�e� Discrete Logarithm Problem
�
Readability� confusing in some places� but usually �ne�

�GL��� Goldreich� O�� and L�A� Levin� �A Hard�Core Predicate to any One�Way Function��
��st STOC� ����� pp� ������

Shows that any �padded� one�way function f�x� p
  f��x
 �p� has a simple hard�core
bit� the inner�product mod�� of x and p�
Readability� STOC version is very elegant and laconic �Levin wrote it
� These notes
present a more detailed but cumbersome version�

�GMW��� Goldreich� O�� S� Micali� and A� Wigderson� �Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Design�� Proc� of ��th Symp�
on Foundation of Computer Science� ����� pp� ������ A full version appears as
TR����� Computer Science Dept�� Technion� Haifa� Israel�

Demonstrates the generality and the wide applicability of zero�knowledge proofs� In
particular� using any bit commitment scheme� it is shown how to construct a zero�
knowledge proof for any language in NP � Perfect zero�knowledge proofs are presented
for Graph Isomorphism and its complement�
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Readability� the full version is very detailed� sometimes to a point of exhausting the
reader� A more elegant proof of the main result is sketched in �G��a��

�GMW�� Goldreich� O�� S� Micali� and A� Wigderson� �How to Play any Mental Game�� ��th
STOC� ���� A more reasonable version is available from me�

Deals with the problem of cryptographic protocols in its full generality� showing how
to automatically generate fault�tolerant protocols for computing any function �using
any trapdoor one�way permutation
�
Readability� STOC version is too hand�waving� These notes constitute a better source
of information�

�GM��� Goldwasser� S�� and S� Micali� �Probabilistic Encryption�� JCSS� Vol� ��� No� ��
����� pp� ������� Previous version in STOC ����

Introduces the concept of polynomially indistinguishable probability distributions�
Presents notions of secure encryption� demonstrating the inadequency of previous
intuitions� Presents a general method for constructing such encryption schemes� and
a �rst application of it� First use of the �hybrid� method�
Readability� Nice introduction� The technical part is somewhat messy�

�GMR��� Goldwasser� S�� S� Micali� and C� Racko�� �The Knowledge Complexity of Interactive
Proof Systems�� SIAM J� on Comput�� Vol� ��� No� �� ����� pp� �������� Previous
version in STOC ����

Introduces the concepts of an interactive proof and a zero�knowledge proof� Presents
the �rst �non�trivial
 example of a zero�knowledge proof� First application of zero�
knowledge to the design of cryptographic protocols�
Readability� good�

�GMR��� Goldwasser� S�� S� Micali� and R�L� Rivest� �A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attacks�� SIAM J on Comput�� Vol� �� No� ��
����� pp� �������� Previous version in FOCS ����

Surveys and investigates de�nitions of unforgeable signatures� Presents the �rst signa�
ture scheme which is unforgeable in a very strong sense even under a chosen message
attack�
Readability� excellent as an introduction to the problem� Don�t read the construction�
but rather refer to �BM����



��

�Y��� Yao� A�C�� �Theory and Applications of Trapdoor Functions�� Proc� of the ��rd IEEE
Symp� on Foundation of Computer Science� ����� pp� ������

Presents a general de�nition of polynomially indistinguishable probability distribu�
tions� Characterizes pseudorandom generators as passing all �polynomial�time
 sta�
tistical tests� �This formulation is equivalent to passing all polynomial�time prediction
tests�
 Given any one�way permutation constructs a pseudorandom generator�
Readability� Most interesting statements are not stated explicitly� Furthermore� con�
tains no proofs�
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PART II � Suggestions for Further Reading

My suggestions for further reading are grouped under the following categories�

�� General� Papers which deal or relate several of the following categories�

�� Hard Computational Problems� Pointers to literature on seemingly hard computa�
tional problems �e�g� integer factorization
 and to works relating di�erent hardness
criteria�

�� Encryption� Papers dealing with secure encryption schemes �in the strong sense de�
�ned in lecture �B and �
�

�� Pseudorandomness� Papers dealing with the construction of pseudorandom genera�
tors� pseudorandom functions and permutations and their applications to cryptogra�
phy and complexity theory�

�� Signatures and Commitment Schemes� Papers dealing with unforable signature schemes
�as de�ned in lecture ��
 and secure commitment schemes �mentioned in lecture ��
�

�� Interactive Proofs� Zero�Knowledge and Protocols� In addition to papers with apparent
relevance to cryptography this list contains also papers investigating the complexity
theoretic aspects of interactive proofs and zero�knowledge�

� Additional Topics� Pointers to works on software protection� computation with an
untrusted oracle� protection against abuse of cryptographic systems� Byzantine Agree�
ment� sources of randomness� and �cryptanalysis��

�� Historical Background� The current approach to Cryptography did not emerge �out
of the blue�� It originates in works that were not referenced in the previous categories
�which include only material conforming with the de�nitions and concepts presented
in the course
� This category lists some of these pioneering works�



A��� GENERAL ���

A�� General

Much of the current research in cryptography focuses on reducing the existence of complex
cryptographic primitives �such as the existence of unforgeable signature schemes
 to simple
complexity assumptions �such as the existence of one�way functions
� A �rst work investi�
gating the limitations of these reductions is �IR���� where a �gap� between tasks implying
secret key exchange and tasks reducible to the existence of one�way functions is shown� The
gap is in the sense that a reduction of the �rst task to the second would imply P 	 NP�

Many of the more complex results in cryptography �e�g� the existence of zero�knowledge
interactive proofs for all languages in NP
 are stated and proved in terms of non�uniform
complexity� As demonstrated throughout the course� this simpli�es both the statements
and their proofs� An attempt to treat secure encryption and zero�knowledge in uniform
complexity measures is reported in �G��a�� In fact� the lectures on secure encryption are
based on �G��a��

references

�G��a� Goldreich� O�� �A Uniform�Complexity Treatment of Encryption and Zero�Knowledge��
TR����� Computer Science Dept�� Technion� Haifa� Israel� �����

�IR��� Impagliazzo� R�� and S� Rudich� �Limits on the Provable Consequences of One�Way
Permutations�� ��st STOC� pp� ������ �����

A�� Hard Computational Problems

���� Candidates for One�Way functions

Hard computational problems are the basis of cryptography� The existence of adequately
hard problems �see lecture �
 is not known� The most popular candidates are from compu�
tational number theory� integer factorization �see �P��� for a survey of the best algorithms
known
� discrete logarithms in �nite �elds �see �O��� for a survey of the best algorithms
known
� and the logarithm problem for �Elliptic groups� �cf� �M���
� Additional sugges�
tions are the decoding problem for random linear codes �see �GKL��� and �BMT��
 and
high density subset�sum ��knapsack�
 problems �see �CR��� IN���
� Note that low density
subset�sum problems are usually easy �see survey �BO���
�



�� APPENDIX A� ANNOTATED LIST OF REFERENCES �COMPILED FEB� ����

Much of the early���th research in cryptography used the intractability assumption
of the Quadratic Residuousity Problem �introduced in �GM���
� The nice structure of the
problem was relied upon in constructions as �LMR���� but in many cases further research led
to getting rid of the need to rely on the special structure �and to using weaker intractability
assumptions
�

Attempts to base cryptography on computationally hard combinatorial problems have
been less popular� Graph Isomorphism is very appealing �as it has a nice structure as
the Quadratic Residuousity Problem
� but such a suggestion should not be taken seriously
unless one speci�es an easily samplable instance distribution for which the problem seems
hard�

For details on candidates whose conjectured hardness was refuted see category ���

���� Generic Hard Problems

The universal one�way function presented in lecture � originates from �L���� The same ideas
were used in �G��a� and �AABFH���� but the context there is of �average case complexity�
�originated in �L��� and surveyed in �G��a�
� In this context �hard� means intractable on
in�nitely many instance lengths� rather than intractable on all but �nitely many instance
lengths� Such problems are less useful in cryptography�

���� Hard�Core Predicates

As pointed out in lecture �� hard�core predicates are a useful tool in cryptography� Such
predicates are known to exist for exponentiation modulo a prime �BM���� �more generally

for �repeated addition� in any Abelian group �K��� and for the RSA and Rabin �squaring
mod N
 functions �ACGS���� Recall that the general result of �GL��� �see lectures ���A

guarantees the existence of hard�core predicates for any �padded� function�

references

�AABFH��� Abadi� M�� E� Allender� A� Broder� J� Feigenbaum� and L� Hemachandra� �On Gen�
erating Hard� Solved Instances of Computational Problem�� Crypto proceedings�

�ACGS��� W� Alexi� B� Chor� O� Goldreich and C�P� Schnorr� �RSA and Rabin Functions�
Certain Parts Are As Hard As the Whole�� SIAM Jour� on Computing� Vol� ��
����� pp� �������� A preliminary version appeared in Proc� ��th FOCS� ����� pp�
�������
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�BM��� see main references�

�BMT�� Berlekamp� E�R�� R�J� McEliece� and H�C�A� van Tilborg� �On the Inherent In�
tractability of Certain Coding Problems�� IEEE Trans� on Inform� Theory� ����

�BO��� Brickell� E�F�� and A�M� Odlyzko� �Cryptanalysis� A Survey of Recent Results��
Proceedings of the IEEE� Vol� �� pp� ������� �����

�CR��� Chor� B�� and R�L� Rivest� �A Knapsack Type Public�Key Cryptosystem Based on
Arithmetic in Finite Fields�� IEEE Trans� on Inf� Th�� Vol� ��� pp� �������� �����

�G��a� Goldreich� O�� �Towards a Theory of Average Case Complexity �a survey
�� TR�����
Computer Science Dept�� Technion� Haifa� Israel� �����

�GKL��� see category ��

�GL��� see main references�

�GM��� see main references�

�IN��� Impagliazzo� R�� and M� Naor� �E�cient Cryptographic Schemes Provable as Secure
as Subset Sum�� manuscript� �����

�K��� B�S� Kaliski� Jr�� �Elliptic Curves and Cryptography� A Pseudorandom Bit Generator
and Other Tools�� Ph�D� Thesis� LCS� MIT� �����

�L��� Levin� L�A�� �Average Case Complete Problems�� SIAM Jour� of Computing� �����
Vol� ��� pp� �������� Extended abstract in ��th STOC� �����

�L��� see category ��

�LW� D�L� Long and A� Wigderson� �How Discreet is Discrete Log"�� Proc� ��th STOC�
����� pp� �������� A better version "

�LMR��� see category ��

�M��� Miller� V�S�� �Use of Elliptic Curves in Cryptography�� Crypto� � Proceedings� Lec�
ture Notes in Computer Science� Vol� ���� Springer Verlag� ����� pp� �������

�O��� Odlyzko� A�M�� �Discrete Logarithms in Finite Fields and their Cryptographic Signif�
icance�� Eurocrypt� proceedings� Springer�Verlag� Lecture Notes in Computer Sci�
ence� Vol� ���� pp� �������� ����� manuscript�

�P��� Pomerance� C�� �Analysis and Comparison of some Integer Factorization Algorithms��
Computational Methods in Number Theory� Part I� H�W� Lenstra Jr� and R� Tijdeman
eds�� Math� Center Amsterdam� ����� pp� �������
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A�� Encryption

The e�cient construction of a secure public�key encryption scheme� presented in lecture ��
originates from �BG���� The security of this scheme is based on the intractability assumption
of factoring� while its e�ciency is comparable with that of the RSA� More generally� the
scheme can be based on any trapdoor one�way permutation�

Non�uniform versions of the two de�nitions of security �presented in lecture �
 were
shown equivalent in �MRS���� These versions were also shown equivalent to a third de�nition
appearing in �Y����

The robustness of encryption schemes against active adversaries was addressed in �GMT����
Folklore states that secret communication can be achieved over a channel controlled by an
active adversary by use of bi�directional communication� for every message transmission�
the communicating parties exchange new authenticated cryptographic keys �i�e� the receiver
transmits a new authenticated encryption�key that is used only for the current message
�
Note that this prevents a chosen message attack on the currently used instance of the en�
cryption scheme� Note that this suggestion does not constitute a public�key encryption
scheme� but rather a secure means of private bi�directional communication� It was claimed
that �non�interactive zero�knowledge proofs of knowledge� yield the construction of public�
key encryption secure against chosen ciphertext attack �BFM���� but no proof of this claim
has appeared�

references

�BFM��� see category ��

�BG��� Blum� M�� and S� Goldwasser� �An E�cient Probabilistic Public�Key Encryption
Scheme which hides all partial information�� Advances in Cryptology� Proc� of Crypto
�� ed� B Blakely� Springer Verlag Lecture Notes in Computer Science� vol� ���� pp�
��������

�GMT��� Goldwasser� S�� S� Micali� and P� Tong� �Why and How to Establish a Private Code
in a Public Network�� ��rd FOCS� ����� pp� ��������

�MRS��� Micali� S�� C� Racko�� and B� Sloan� �The Notion of Security for Probabilistic Cryp�
tosystems�� SIAM Jour� of Computing� ����� Vol� �� pp� ��������

�Y��� see main references�
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A�� Pseudorandomness

I have partitioned the works in this category into two subcategories� works with immediate
cryptographic relevance versus works which have a more abstract �say complexity theoretic

orientation� A survey on Pseudorandomness in contained in �G��b��

���� Cryptographically oriented works

The theory of pseudorandomness was extended to deal with functions and permutations�
De�nitions of pseudorandom functions and permutations are presented in �GGM��� and
�LR���� Pseudorandom generators were used to construct pseudorandom functions �GGM����
and these were used to construct pseudorandom permutations �LR���� Cryptographic ap�
plications are discussed in �GGM��b� LR����

In lecture �� we proved that the existence of one�way permutations implies the existence
of pseudorandom generators� Recently� it has been shown that pseudorandom generators
exist if and only if one�way functions exist �ILL��� H���� The construction of pseudorandom
generators presented in these works is very complex and ine�cient� thus the quest for an
e�cient construction of pseudorandom generator based on any one�way function is not over
yet� A previous construction by �GKL��� might turn out useful in this quest�

A very e�cient pseudorandom generator based on the intractability of factoring integers
arises from the works �BBS��� ACGS��� VV���� The generator was suggested in �BBS���
�where it was proved secure assuming intractability of Quadratic Residuousity Problem
�
and proven secure assuming intractability of factoring in �VV��� �by adapting the techniques
in �ACGS���
�

���� Complexity oriented works

The existence of a pseudorandom generator implies the existence of a pair of statistically
di�erent e�ciently constructible probability ensembles which are computationally indistin�
guishable� This su�cient condition turns out to be also a necessary one �G��b��

The di�erence between the output distribution of a pseudorandom generator and more
commonly considered distributions is demonstrated in �L���� The �commonly considered�
distributions �e�g� all distributions having a polynomial�time computable distribution func�
tion
 are shown to be homogenous while a pseudorandom generator gives rise to distributions
which are not homogenous� Homogenous distributions are de�ned as distributions which
allow good average approximation of all polynomial�time invariant characteristics of a string
from its Kolmogorov complexity�
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The use of pseudorandom generators for deterministic simulation of probabilistic com�
plexity classes was �rst suggested in �Y���� A uni�ed approach� leading to better simu�
lations� can be found in �NW���� Other results concerning the �e�cient� generation of
sequences which �look random� to machines of various complexity classes can be found in
�RT��� BNS��� Ni����

The existence of sparse and evasive pseudorandom distributions is investigated in �GKr��a��
A sparse distribution �unlike a distribution statistically close to the uniform one
 ranges
over a negligible fraction of the strings� Evasiveness is the infeasibility of hitting an element
in the distribution�s support� Applications of some results to zero�knowledge are presented
in �GKr��b��

references

�ACGS��� see category ��

�BNS��� Babai� L�� N� Nisan� and M� Szegedy� �Multi�party Protocols and Logspace�Hard
Pseudorandom Sequences�� ��st STOC� pp� ����� �����

�BBS��� L� Blum� M� Blum and M� Shub� A Simple Secure Unpredictable Pseudo�Random
Number Generator� SIAM Jour� on Computing� Vol� ��� ����� pp� �������� Prelimi�
nary version in Crypto��

�BM��� see main references�

�G��b� Goldreich� O�� �Randomness� Interactive Proofs� and Zero�Knowledge � A Survey��
The Universal Turing Machine � A Half�Century Survey� R� Herken ed�� Oxford Sci�
ence Publications� pp� ������ �����

�G��b� Goldreich� O�� �A Note on Computational Indistinguishability�� TR�������� ICSI�
Berkeley� USA� �����
�

�GGM��� Goldreich� O�� S� Goldwasser� and S� Micali� �How to Construct Random Functions��
Jour� of ACM� Vol� ��� No� �� ����� pp� ������ Extended abstract in FOCS��

�GGM��b� Goldreich� O�� S� Goldwasser� and S� Micali� �On the Cryptographic Applications of
Random Functions�� Crypto�� proceedings� Springer�Verlag� Lecture Notes in Com�
puter Science� vol� ���� pp� ������� �����

�GKr��a� Goldreich� O�� and H� Krawczyk� �Sparse Pseudorandom Distributions�� Crypto�
proceedings� to appear�
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�GKr��b� see category ��

�GKL��� Goldreich� O�� H� Krawczyk� and M� Luby� �On the Existence of Pseudorandom Gen�
erators�� ��th FOCS� �����

�GM��� see main references�

�H��� Hastad� J�� �Pseudo�Random Generators with Uniform Assumptions�� preprint� �����

�ILL��� Impagliazzo� R�� L�A� Levin� and M� Luby� �Pseudorandom Generation from One�Way
Functions�� ��st STOC� pp� ������ �����

�L��� L�A� Levin� �One�Way Function and Pseudorandom Generators�� Combinatorica� Vol�
� No� �� ���� pp� ������� A preliminary version appeared in Proc� ��th STOC�
����� pp� ��������

�L��� L�A� Levin� �Homogenous Measures and Polynomial Time Invariants�� ��th FOCS�
pp� ������ �����

�LR��� M� Luby and C� Racko�� �How to Construct Pseudorandom Permutations From Pseu�
dorandom Functions�� SIAM Jour� on Computing� Vol� �� ����� pp� ������� Ex�
tended abstract in FOCS��

�NW��� Nisan� N�� and A� Wigderson� �Hardness vs� Randomness�� Proc� ��th FOCS� pp�
����� �����

�Ni��� Nisan� N�� �Pseudorandom Generators for Bounded Space Machines�� private com�
munication� �����

�RT��� Reif� J�H�� and J�D� Tygar� �E�cient Parallel Pseudo�Random Number Generation��
Crypto�� proceedings� Springer�Verlag� Lecture Notes in Computer Science� vol� ����
pp� �������� �����

�Y��� see main references�

�VV��� Vazirani� U�V�� and V�V� Vazirani� �E�cient and Secure Pseudo�Random Number
Generation�� ��th FOCS� pp� �������� �����

A�
 Signatures and Commitment Schemes

Recent works reduce the existence of these important primitives to assumptions weaker
than ever conjectured�
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���� Unforgeable Signatures Schemes

Unforgeable signature schemes can be constructed assuming the existence of one�way per�
mutations �NY���� The core of this work is a method for constructing �cryptographically
strong� hashing functions� Further improvements and techniques are reported in �G���
EGM���� in �G��� a technique for making schemes as �GMR��� BM��� NY��� �memory�
less� is presented� in �EGS��� the concept of �on�line�o��line� signature schemes is presented
and methods for constructing such schemes are presented as well�

���� Secure Commitment Schemes

Secure commitment schemes can be constructed assuming the existence of pseudorandom
generator �N���� In fact� the second scheme presented in lecture �� originates from this
paper�

references

�BM��� see main references�

�EGM��� Even� S�� O� Goldreich� and S� Micali� �On�Line�O��Line Digital Signature Schemes��
Crypto� proceedings� to appear�

�G��� Goldreich� O�� �Two Remarks concerning the Goldwasser�Micali�Rivest Signature
Scheme�� Crypto�� proceedings� Springer�Verlag� Lecture Notes in Computer Sci�
ence� vol� ���� pp� �������� ����

�GMR��� see main references�

�N��� M� Naor� �Bit Commitment Using Pseudorandomness�� IBM research report� Also to
appear in Crypto� proceedings� �����

�NY��� M� Naor and M� Yung� �Universal One�Way Hash Functions and their Cryptographic
Applications�� ��st STOC� pp� ������ �����

A�� Interactive Proofs� Zero�Knowledge and Protocols

This category is subdivided into three parts� The �rst contains mainly cryptographically
oriented works on zero�knowledge� the second contains more complexity oriented works on
interactive proofs and zero�knowledge� The third subcategory lists works on the design of
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cryptographic protocols� Surveys on Interactive Proof Systems and Zero�Knowledge Proofs
can be found in �G��b� Gw����

���� Cryptographically oriented works
on Zero�Knowledge

An important measure for the �practicality� of a zero�knowledge proof system is its knowl�
edge tightness� Intuitively� tightness is �the supremum taken over all probabilistic polynomial�
time veri�ers of
 the ratio between the time it takes the simulator to simulate an interaction
with the prover and the complexity of the corresponding veri�er �G�a�� The de�nition of
zero�knowledge only guarantees that the knowledge�tightness can be bounded by any func�
tion growing faster than every polynomial� However� the de�nition does not guarantee that
the knowledge�tightness can be bounded above by a particular polynomial� It is easy to see
that the knowledge�tightness of the proof system for Graph Isomorphism �presented in lec�
ture ��
 is �� while the tightness of proof system for Graph colouring �lecture ��
 is m �i�e��
the number of edges
� I believe that the knowledge�tightness of a protocol is an important
aspect to be considered� and that it is very desirable to have tightness be a constant� Fur�
thermore� using the notion of knowledge�tightness one can introduce more re�ned notions
of zero�knowledge and in particular the notion of constant�tightness zero�knowledge� Such
re�ned notions may be applied in a non�trivial manner also to languages in P �

Two standard e�ciency measures associated with interactive proof systems are the com�
putational complexity of the proof system �i�e�� number of steps taken by either or both
parties
 and the communication complexity of the proof system �here one may consider
the number of rounds� and�or the total number of bits exchanged
� Of special importance
to practice is the question whether the �honest
 prover�s program can be a probabilistic
polynomial�time when an auxiliary input is given �as in the case of the proof system� pre�
sented in lecture ��� for Graph Colouability
� An additional measure� the importance of
which has been realized only recently� is the number of strings to which the commitment
scheme is applied individually �see �KMO���
� The zero�knowledge proof system for graph
colourability presented in lecture �� is not the most practical one known� Proof systems
with constant knowledge�tightness� probabilistic polynomial�time provers and a number of
iterations which is merely super�logarithmic exist for all languages in NP �assuming� of
course� the existence of secure commitment
 �IY��� This proof system can be modi�ed to
yield a zero�knowledge proof with f�n
 iterations� for every unbounded function f � Using
stronger intractability assumptions �e�g� the existence of claw�free one�way permutations
�
constant�round zero�knowledge proof systems can be presented for every language in NP
�GKa����

Perfect zero�knowledge arguments� were introduced in �BC��a� BCC��� and shown to
exist for all languages in NP � assuming the intractability of factoring integers� The di�er�

�The term �argument� has appeared �rst in �BCY���� The authors of �BCC��� create an enormous
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ence between arguments and interactive proofs is that in a argument the soundness condition
is restricted to probabilistic polynomial�time machines �with auxiliary input
� Hence� it is
infeasible �not impossible
 to fool the veri�er into accepting �with non�negligible probabil�
ity
 an input not in the language� Assuming the existence of any commitment scheme� it is
shown that any language in NP has a constant�round zero�knowledge argument �FS����

The limitations of zero�knowledge proof systems and the techniques to demonstrate
their existence are investigated in �GO�� GKr��b�� In particular� zero�knowledge proofs
with deterministic veri�er �resp� prover
 exist only for languages in RP �resp� BPP
�
constant�round proofs of the AM�type �cf� �B���
 can be demonstrated zero�knowledge by
an oblivious simulation only if the language is in BPP � Thus� the �parallel versions� of the
interactive proofs �presented in �GMW���
 for Graph Isomorphism and every L � NP are
unlikely to be demonstrated zero�knowledge� However� modi�ed versions of these interactive
proofs yield constant�round zero�knowledge proofs �see �GKa��� for NP and �BMO��� for
Graph Isomorphism
� These interactive proofs are� of course� not of the AM�type�

The concept of a �proof of knowledge� was introduced and informally de�ned in �GMR����
Precise formalizations following this sketch has appeared in �BCC��� FFS�� TW��� This
concept is quite useful in the design of cryptographic protocols and zero�knowledge proof
systems� In fact� it has been used implicitly in �GMR��� GMW�� CR�� and explicitly in
�FFS�� TW��� However� I am not too happy with the current formalizations and intend
to present a new formalization�

�Non�interactive� zero�knowledge proofs are known to exist assuming the existence of
trapdoor one�way permutations �KMO���� These are two�phase protocols� The �rst phase
is a preprocessing which uses bi�directional communication� In the second phase� zero�
knowledge proofs can be produced via one�directional communication from the prover to
the veri�er� The number of statements proven in the second phase is a polynomial in the
complexity of the �rst phase �this polynomial is arbitrarily �xed after the �rst phase is
completed
�

Historical remark� Using a stronger intractability assumption �i�e� the intractability of
Quadratic Residuousity Problem
 �BC��b� showed that every language in NP has a zero�
knowledge interactive proof system� This result has been obtained independently of �but
subsequently to
 �GMW����

amount of confusion by insisting to refer to arguments by the term interactive proofs� For example� the
result of �For�	� does not hold for perfect zero
knowledge arguments� Be careful not to confuse arguments
with interactive proofs in which the completeness condition is satis�ed by a probabilistic polynomial
time
prover �with auxiliary input��
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���� Complexity oriented works
on Interactive Proofs and Zero�Knowledge

The de�nition of interactive proof systems� presented in lecture ��� originates from �GMR����
A special case� in which the veri�er sends the outcome of all its coin tosses to the prover
was suggested in �B��� and termed Arthur Merlin �AM
 games� AM games are easier to
analyze� while general interactive proof systems are easier to design� Fortunately� the two
formalizations coincide in a strong sense� for every polynomial Q� the classes IP�Q�n


and AM�Q�n

 are equal �GS���� where IP�Q�n

 denotes the class of languages having
Q�n
�round interactive proof system� It is also known� that for every k � � and every poly�
nomial Q� the class AM�Q�n

 and AM�k � Q�n

 coincide �BaMo���� A stronger result
does not �relativize� �i�e� there exists an oracle A such that for every polynomial Q and ev�
ery unbounded function g the class AM�Q�n

A is strictly contained in AM�g�n
 �Q�n

A

�AGH����

Author�s Note� However� in light of the results of �LFKN�S� 	see FOCS�
�
this means even less than ever� See also Chang et� al� 	JCSS� Vol� ��� No� �
�

Author�s Note� This list was compiled before the fundamental results of Lund�
Fortnow� Karlo� and Nisan �LFKN� and Shamir �S� were known� By these
results every language in PSPACE has an interactive proof system� Since IP �
PSPACE �folklore�� the two classes collide�

Every language L � IP�Q�n

 has a Q�n
�round interactive proof system in which the
veri�er accepts every x � L with probability �� but only languages in NP have interactive
proof systems in which the veri�er never accepts x 
� L �GMS��� Further developments
appear in �BMO����

The class AM��
 is unlikely to contain coNP � as this will imply the collapse of the
polynomial�time hierarchy �BHZ��� It is also known that for a random oracle A� AM��
  
NPA �NW����

The complexity of languages having zero�knowledge proof systems seems to depend on
whether these systems are perfect or only computational zero�knowledge� On one hand� it is
known that perfect �even almost�perfect
 zero�knowledge proof systems exist only for lan�
guages inside AM��
�coAM��
 �For�� AH��� On the other hand� assuming the existence
of commitment schemes �the very assumption used to show �NP in ZK�
 every languages
in IP has a computational zero�knowledge proof system �IY�� �for a detailed proof see
�Betal���
� Returning to perfect zero�knowledge proof systems� it is worthwhile mentioning
that such systems are known for several computational problems which are considered hard
�e�g� Quadratic Residuousity Problem �GMR���� Graph Isomorphism �GMW���� member�
ship in a subgroup �TW��� and a problem computationally equivalent to Discrete Logarithm
�GKu���
�
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The concept of the knowledge complexity of a languages was introduced in �GMR����
but the particular formalization suggested there is somewhat ad�hoc and unnatural�� The
knowledge complexity of a language is the minimum number of bits released by an interactive
proof system for the language� Namely� a language L � IP has knowledge complexity � k��

if there exists an interactive proof for L such that the interaction of the prover on x � L can
be simulated by a probabilistic polynomial�time oracle machine on input x and up to k�jxj

Boolean queries �to an oracle of �its choice�
� More details will appear in a forthcoming
paper of mine�

An attempt to get rid of the intractability assumption used in the �NP in ZK� result
of �GMW���� led �BGKW��� to suggest and investigate a model of multi�prover interactive
proof systems� It was shown that two �isolated� provers can prove statements in NP in
a perfect zero�knowledge manner� A di�erent multi�prover model� in which one unknown
prover is honest while the rest my interact and cheat arbitrarily� was suggested and inves�
tigated in �FST���� This model is equivalent to computation with a �noisy oracle��

���� On the Design of Cryptographic Protocols

The primary motivation for the concept of zero�knowledge proof systems has been their
potential use in the design of cryptographic protocols� Early examples of such use can
be found in �GMR��� FMRW��� CF���� The general results in �GMW��� allowed the
presentation of automatic generators of two�party and multi�party cryptographic protocols
�see �Y���� and �GMW��� respectively
� Further improvements are reported in �GHY��
GV�� IY���

Two important tools in the construction of cryptographic protocols are Oblivious Trans�
fer and Veri�able Secret Sharing� Oblivious Transfer� introduced in �R���� was further in�
vestigated in �EGL��� FMRW��� BCR��� Cre�� CK��� Kil���� Veri�able Secret Sharing�
introduced in �CGMA���� was further investigated in �GMW��� Bh��a� Fel��� Other useful
techniques appear in �Bh��b� CR���

An elegant model for investigations of multi�party cryptographic protocols was sug�
gested in �BGW���� This model consists of processors connected in pairs via private chan�
nels� The bad processors have in�nite computing resources �and so using computationally
hard problems is useless
� Hence� computational complexity restrictions and assumptions
are substituted by assumptions about the communication model� An automatic generator
of protocols for this model� tolerating up to �

� malicious processors� has been presented
in �BGW��� CCD���� Augmenting the model by a broadcast channel� tolerance can be

�In particular� according to that formalization a prover revealing with probability �
� a Hamiltonian circuit

in the input gragh yields one one bit of knowledge�
�It should be stressed that �Y�� improves over �Y��b�� The earlier paper presented two
party cryp


tographic protocols allowing semi
honest parties to compute privately functions ranging over �small� �i�e�
polynomially bounded� domains�
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improved to �
� �BR���� �The augmentation is necessary� as there are tasks which cannot

be performed if a third of the processors are malicious �e�g� Byzantine Agreement
�
 Be�
yond the �

� bound� only functions of special type �i�e� the exclusive�or of locally computed
functions
 can be privately computed �CKu����
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tocol Equivalent to Factoring�� unpublished manuscript� ����� Preliminary versions
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�G�a� Goldreich� O�� �Zero�Knowledge and the Design of Secure Protocols �an exposition
��
TR����� Computer Science Dept�� Technion� Haifa� Israel� ����

�G��b� see category ��

�GKu��� Goldreich� O�� and E� Kushilevitz� �A Perfect Zero�Knowledge Proof for a Decision
Problem Equivalent to Discrete Logarithm�� Crypto� proceedings�

�GKa��� Goldreich� O�� and A� Kahan� �Using Claw�Free Permutations to Construct Zero�
Knowledge Proofs for NP�� in preparation� �����

�GKr��b� Goldreich� O�� and H� Krawczyk� �On Sequential and Parallel Composition of Zero�
Knowledge Protocols�� preprint� �����

�GV�� Goldreich� O�� and R� Vainish� �How to Solve any Protocol Problem � an E�ciency
Improvement�� Crypto�� proceedings� Springer�Verlag� Lecture Notes in Computer
Science� vol� ���� pp� ����� ����

�GMS�� Goldreich� O�� Y� Mansour� and M� Sipser �Interactive Proof Systems� Provers that
Never Fail and Random Selection�� �th FOCS� pp� �������� ����

�GMW��� see main references�

�GMW�� see main references�

�GO�� Goldreich� O�� and Y� Oren� �On the Cunning Power of Cheating Veri�ers� Some
Observations about Zero�Knowledge Proofs�� in preparation� Preliminary version� by
Y� Oren� in FOCS��

�Gw��� Goldwasser� S�� �Interactive Proof Systems�� Proc� of Symposia in Applied Mathe�
matics� AMS� Vol� ��� �����

�GMR��� see main references�

�GS��� Goldwasser� S�� and M� Sipser� �Private Coins vs� Public Coins in Interactive Proof
Systems�� Proc� �th STOC� ����� pp� ������

�IY�� Impagliazzo� R�� and M� Yung� �Direct Minimum�Knowledge Computations�� Ad�
vances in Cryptology � Crypto� 	proceedings
� C� Pomerance �ed�
� Springer�Verlag�
Lecture Notes in Computer Science� vol� ���� ���� pp� ������

�Kil��� Kilian� J�� �Founding Cryptography on Oblivious Transfer�� ��th STOC� pp� ������
�����

�LMR��� Luby� M�� S� Micali� and C� Racko�� ��th FOCS� �����

�KMO��� Kilian� J�� S� Micali� and R� Ostrovsky� �Simple Non�Interactive Zero�Knowledge
Proofs�� ��th FOCS� to appear� �����
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�NW��� see category ��

�R��� see category ��

�TW�� Tompa� M�� and H� Woll� �Random Self�Reducibility and Zero�Knowledge Interactive
Proofs of Possession of Information�� Proc� �th FOCS� pp� ������� ����

�Y��b� Yao� A�C�� �Protocols for Secure Computations�� ��rd FOCS� ����� pp� ��������

�Y��� Yao� A�C�� �How to Generate and Exchange Secrets�� Proc� ��th FOCS� pp� �������
�����

A�� Additional Topics

This category provides pointers to topics which I did not address so far� These topics
include additional cryptographic problems �e�g� software protection� computation with an
untrusted oracle� and protection against �abuse of cryptographic systems�
� lower level
primitives �e�g� Byzantine Agreement and sources of randomness
 and �cryptanalysis��

���� Software Protection

A theoretical framework for discussing software protection is suggested in �G�b�� Recently�
the solution in �G�b� has been dramatically improved �O����

���� Computation with an Untrusted Oracle

Computation with an untrusted oracle raises two problems� the oracle may fail the compu�
tation by providing wrong answers� and�or the oracle can gain information on the input of
the machine which uses it� The �rst problem can be identi�ed with recent research on �pro�
gram checking� initiated in �BK���� Note that the de�nition of �program checking� is more
re�ned than the one of an interactive proof �in particular it does not trivialize polynomial�
time computations and does not allow in�nitely powerful provers
 and thus is more suitable
for the investigation� The results in �BK��� BLR��� are mainly encouraging as they provide
many positive examples of computations which can be sped�up �and yet con�rmed
 using
an oracle� A formalization of the second problem� presented in �AFK��� seems to have
reached a dead�end with the negative results of �AFK��� Other formalizations appear in
�BF��� and �BLR����
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���� Protection Against Abuse of Cryptographic Systems

How can a third party prevent the abuse of a two�party cryptographic protocol executed
through a channel he controls" As an example consider an attempt of one party to pass
information to his counterpart by using a signature scheme� This old problem �sometimes
referred to as the prisoners� problem or the subliminal channel
 is formalized and solved�
using active intervention of the third party� in �D����

���� Byzantine Agreement

In lectures ����� we have assumed the existence of a broadcast channel accessable by all
processors� In case such a channel does not exist in the network �i�e�� in case we are using
a point�to�point network
� such a channel can be implemented using Byzantine Agreement�
Using private channel� randomized Byzantine Agreement protocols with expected O��

rounds can be implemented �FM���� This work builds on �R���� Additional insight can be
gained from the pioneering works of �Be��� Br���� and from the survey of �CD����

���� Sources of Randomness

A subject related to cryptography is the use of weak sources of randomness in applications
requiring perfect coins� Models of weak sources are presented and investigated in �B���
SV��� CG��� Cetal��� LLS��� Further developments are reported in �V��� VV��� V���

���� Cryptanalysis

In all the famous examples of successful cryptanalysis of a proposed cryptographic scheme�
the success revealed a explicit or implicit assumption made by the designers of the cryp�
tosystem� This should serve as experimental support to the thesis underlying the course
that assumptions have to be made explicitly�

Knapsack cryptosystems� �rst suggested in �MH��� were the target of many attacks�
The �rst dramatic success was the breaking of the original �MH�� scheme� using the ex�
istence of a trapdoor super�increasing sequence �S���� An alternative attack applicable
against low density knapsack �subset sum
 problems was suggested in �LO���� For more
details see �BO���� It seems that the designers conjectured that subset sum problems with a
trapdoor 	resp� with low density
 are as hard as random high density subset sum problems�
It seems that this conjecture is false�

Another target for many attacks were the linear congruential number generators and
their generalizations� Although these generators are known to pass many statistical tests
�K���� they do not pass all polynomial�time statistical tests �Boy���� Generalizations to
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polynomial congruential recurrences and linear generators which output only part of the
bits of the numbers produced can be found in �Kr��� and �S��� respectively� The fact that
a proposed scheme passes some tests or attacks does not mean that it will pass all e�cient
tests�

Another famous cryptographic system which triggered interesting algorithmic research
is the �OSS��� signature scheme� This scheme was based on the conjecture� latter refuted
in �Pol���� that it is hard to solve a modular quadratic equation in two variables� Other
variants �e�g� �OSS��b� OS���
 were broken as well �in �EAKMM��� BD���� resp�
� Proving
that one cannot �nd the trapdoor information used by the legal signer does not mean that
one cannot forge signatures�	

references

�AFK�� Abadi� M�� J� Feigenbaum� and J� Kilian� �On Hiding Information from an Oracle��
��th STOC� pp� �������� ����
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�
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col�� JACM� Vol� ��� No� �� pp� �������� ���� Extended abstract in STOC��

�To further stress this point� consider a signature scheme �based on composites� where the signature of
a message m relative to the public
key N is �mmodN � The infeasibility of retrieving the trapdoor �i�e� the
factorization of N� is a poor guarantee for security�
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by Okamoto and Shiraishi�� Crypto�� proceedings� Springer�Verlag� Lecture Notes in
Computer Science� vol� ���� pp� ������ �����
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Computing Research� Vol� �� S� Micali� ed�� JAI Press� in press�
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Bit Extraction Problem or t�Resilient Functions�� ��th FOCS� pp� ������� �����

�CG��� Chor� B�� and O� Goldreich� �Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity�� ��th Symp� on Foundation of Computer
Science� pp� ������� �����

�D��� Desmedt� Y�� �Abuses in Cryptography and How to Fight Them�� Crypto proceed�
ings� to appear�

�EAKMM��� Estes� D�� L� Adleman� K� Kompella� K� McCurley� and G� Miller� �Breaking the Ong�
Schnorr�Shamir Signature Scheme for Quadratic Number Fields�� Crypto�� proceed�
ings� Springer�Verlag� Lecture Notes in Computer Science� vol� ���� pp� ����� �����

�FM��� Feldman� P�� and S� Micali� �Optimal Algorithms for Byzantine Agreement�� ��th
STOC� pp� �������� �����

�FHKLS� Frieze� A�M�� J� Hastad� R� Kannan� J�C� Lagarias� and A� Shamir� �Reconstructing
Truncated Integer Variables Satisfying Linear Congruences�� SIAM J� Comput�� Vol�
�� No� �� pp� �������� ����� Combines early papers from FOCS� and STOC� �by
Frieze� Kannan and Lagarias� and Hastad and Shamir� resp�
�

�G�b� Goldreich� O�� �Towards a Theory of Software Protection and Simulation by Oblivious
RAMs�� ��th STOC� pp� �������� ����

�K��� Knuth� D�E�� The Art of Computer Programming� Vol� �� Addison�Wesley� Reading�
Mass�� �����

�Kr��� Krawczyk� H�� �How to Predict Congruential Generators�� TR����� Computer Science
Dept�� Technion� Haifa� Israel� ����� To appear in J� of Algorithms�

�LR��� J�C� Lagarias� and J� Reeds� �Unique Extrapolation of Polynomial Recurrences��
SIAM J� Comput�� Vol� �� No� �� pp� �������� �����
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�LLS�� Lichtenstein� D�� N� Linial� and M� Saks� �Imperfect Random Sources and Discrete
Control Processes�� ��th STOC� pp� ������ ����

�MH�� see category ��

�OS��� Okamoto� T�� and A� Shiraishi� �A Fast Signature Scheme Based on Quadratic In�
equalities�� Proc� of ��� Symp� on Security and Privacy� April ����� Oakland�
Cal�

�OSS��� Ong� H�� C�P� Schnorr� and A� Shamir� �An E�cient Signature Scheme Based on
Quadratic Equations�� ��th STOC� pp� �������� �����

�OSS��b� Ong� H�� C�P� Schnorr� and A� Shamir� �E�cient Signature Schemes Based on Polyno�
mial Equations�� Crypto�� proceedings� Springer�Verlag� Lecture Notes in Computer
Science� vol� ���� pp� ����� �����

�O��� Ostrovsky� R�� �An E�cient Software Protection Scheme�� in preparations�

�Pol��� Pollard� J�M�� �Solution of x� ! ky� � m �modn
� with Application to Digital Signa�
tures�� preprint� �����

�R��� Rabin� M�O�� �Randomized Byzantine Agreement�� ��th FOCS� pp� �������� �����

�SV��� Santha� M�� and U�V� Vazirani� �Generating Quasi�Random Sequences from Slightly�
Random Sources�� ��th Symp� on Foundation of Computer Science� pp� ��������
�����

�S��� Shamir� A�� �A Polynomial�Time Algorithm for Breaking the Merkle�Hellman Cryp�
tosystem�� ��rd FOCS� pp� �������� �����

�S�� Stern� J�� �Secret Linear Congruential Generators are not Cryptographically Secure��
�th FOCS� pp� �������� ����

�V��� U�V� Vazirani� �Towards a Strong Communication Complexity Theory or Generating
Quasi�Random Sequences from Two Communicating Slightly�Random Sources�� Proc�
��th ACM Symp� on Theory of Computing� ����� pp� �������

�V�� U�V� Vazirani� �E�ciency Considerations in Using Semi�random Sources�� Proc� ��th
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Random Polynomial Time�� ��th Symp� on Foundation of Computer Science� pp�
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A�� Historical Background

An inspection of the references listed above reveals that all these works were initiated in
the ���s and began to appear in the literature in ���� �e�g� �GM���
� However� previous
work had tremendous in�uence on these works of the ���s� The in�uence took the form of
setting intuitive goals� providing basic techniques� and suggesting potential solutions which
served as a basis for constructive criticism �leading to robust approaches
�

���� Classic Cryptography

Answering the fundamental question of classic cryptography in a gloomy way �i�e� it is
impossible to design a code that cannot be broken
� Shannon suggested a modi�cation to
the question �S���� Rather than asking whether it is possible to break the code� one should
ask whether it is feasible to break it� A code should be considered good if it cannot be
broken when investing work which is in reasonable proportion to the work required of the
legal parties using the code�

���� New Directions in Cryptography

Prospects of commercial application were the trigger for the beginning of civil investigations
of encryption schemes� The DES designed in the early ��s has adopted the new paradigm�
it is clearly possible but supposely infeasible to break it�

Following the challenge of constructing and analyzing new encryption schemes came new
questions like how to exchange keys over an insecure channel �M��� New concepts were
invented� digital signatures �R� DH��� public�key cryptosystems and one�way functions
�DH��� First implementations of these concepts were suggested in �MH�� RSA�� R���

Cryptography was explicitly related to complexity theory in �Br�� EY��� Lem��� it
was understood that problems related to breaking a cryptographic scheme cannot be NP�
complete and that NP�hardness is a poor evidence for cryptographic security� Techniques
as �n�out�of��n veri�cation� �R� and secret sharing �S�� were introduced �and indeed
were used extensively in subsequent research
�

���� At the Dawn of a New Era

Early investigations of cryptographic protocols revealed the inadequacy of imprecise notions
of security and the subtleties involved in designing cryptographic protocols� In particular�
problems as coin tossing over telephone �B��a�� exchange of secrets and oblivious transfer
were formulated �R��� B��b� �cf� �EGL���
� Doubts concerning the security of �mental
poker� protocol of �SRA�� led to the current notion of secure encryption �GM��� and to
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concepts as computational indistinguishability� Doubts concerning the Oblivious Transfer
protocol of �R��� led to the concept of zero�knowledge �GMR��� �early versions date to
March ����
�

An alternative approach to the security of cryptographic protocols was suggested in
�DY��� �see also �DEK���
� but it turned out that it is much too di�cult to test whether a
protocol is secure �EG���� Fortunately� tools for constructing secure protocols do exist �see
�Y��� GMW��
�
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