
TE
AM
FL
Y

Team-Fly®

Fundamentals of
X Programming
Graphical User Interfaces
and Beyond

PLENUM SERIES IN COMPUTER SCIENCE

Series Editor: Rami G. Melhem
University of Pittsburgh
Pittsburgh, Pennsylvania

FUNDAMENTALS OF X PROGRAMMING
Graphical User Interfaces and Beyond
Theo Pavlidis

INTRODUCTION TO PARALLEL PROCESSING
Algorithms and Architectures
Behrooz Parhami

Fundamentals of
X Programming
Graphical User Interfaces
and Beyond

Theo Pavlidis
State University of New York at Stony Brook
Stony Brook, New York

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-46968-5
Print ISBN: 0-306-46065-3

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

Preface

This book provides an overview of the X Window System focusing on
characteristics that have significant impact on the development of both application
programs and widgets. We pay special attention to applications that go beyond
graphical user interfaces (GUIs); therefore we discuss issues affecting video games,
visualization and imaging programs, and designing widgets with a complex
appearance. While the book does not assume previous knowledge of X, it is
intended for experienced programmers, especially those who want to write
programs that go beyond simple GUIs.

X is the dominant window system under Unix, and X servers are available for
Microsoft Windows, thus enabling graphics over a network in the PC world. While
Java offers an apparently universal graphics library (the abstract window toolkit),
the reality is quite different: For high-quality graphics and image display, we must
program on the target platform itself (X or one of Microsoft’s APIs) rather than rely
on Java peer objects.

X is a vast subject, so it is impossible to provide a complete coverage in a few
hundred pages. Thus we selected topics that are fundamental to the system, so that
the reader who masters them should be able to read the documentation of the
numerous libraries and toolkits. Therefore we provide documentation on the most
important Xlib and X toolkit functions only.

Most of the existing X literature and X toolkits (such as Motif) focus on GUI
applications. This excludes such applications as visualization, imaging, video
games, and drawing programs. Such applications may have few windows and a
relatively simple layout but the appearance of each window and the user interaction

v

vi FUNDAMENTALS OF X PROGRAMMING

can be quite complex. Usually the applications programmer is left to struggle with
the low-level Xlib library or to use an existing toolkit component (widget) for what
it was not designed.

If the reader must write an application that cannot be readily assembled from
the widgets of an existing toolkit, then it is necessary to understand not only
drawing functions, but also such issues as resource definition, selections (for
interclient communication), and widget writing. Even if we rely on an existing
toolkit, understanding these issues clarifies the functionality of the components and
their interactions with each other. Quite often the best solution for a complex
application is to write an extension of a toolkit.

In discussing toolkits we tried to avoid limiting our description to a single
toolkit, such as Motif, to emphasize concepts in contrast to implementation details.
A small Starter toolkit is used for rapid prototyping and facilitating drawing
operations that normally require low-level Xlib functions. The code of that toolkit
as well as code in the examples can be obtained through anonymous ftp as
described in Software Installation.

Stony Brook, New York Theo Pavlidis

Acknowledgments

The text was extensively revised on the basis of comments from its early readers.
Kevin Hunter (Ft. Myers) provided significant input on both the organization and
coverage. C. J. Smith (Palo Alto) and Thomas G. Lane (Pittsburgh) had many useful
comments and suggestions. I am also grateful to my students in the graduate
window systems course for their feedback.

Sections 2.2.2, 2.4.1, 3.1.2, and 8.1.3 and Figures 2.1, 2.2, 3.1, 3.2, 3.3, 8.1,
and 8.2 are excerpted from, and some other parts of Chapters 2, 8, and 9 are based
on, Interactive Computer Graphics in X by Theo Pavlidis, © 1996, PWS Publishing,
a division of International Thomson, Publishing, Inc. Used by permission.

vii

This page intentionally left blank.

Contents

Software Installation . xvii

1. Introduction . 1

1.1. Overview of X . 3
1.1.1.
1.1.2.
1.1.3.
1.1.4.

Our Goal and Subject. .
Main Features of the X Window System.
Programming in X .
Note for Those Familiar with Microsoft Windows

3
3
6
7

1.2. Highlights of the X Toolkit. 8
1.2.1.
1.2.2.
1.2.3.

A Simple Program Using the X Toolkit.
Resources and Translations
Widgets. .

8
11
12

1.3. Simplifying X. 13
1.3.1.
1.3.2.

Challenges .
Starter Toolkit .

13
14

1.4. Odds and Ends . 16
1.4.1.
1.4.2.
1.4.3.

A Few Words on Display Hardware.
A Few Words on Software.
Special Issues in Debugging X Programs

16
18
20

1.5. Conclusions. 22
1.5.1. Other Systems—Simple and Complex Servers . . . 22

ix

FUNDAMENTALS OF X PROGRAMMING

1.5.2 Further Reading about X 23
1.6. Projects. 23

2. Fundamentals of the X Window System. 25

2.1. Introduction. 27
2.1.1.
2.1.2.
2.1.3.
2.1.4.

Program Illustrating Basic Concepts
Introduction to the Window Data Structure
Introduction to Events .
XEvent Union .

27
29
31
32

2.2. Advanced Features of the Window Object in X 34
2.2.1.
2.2.2.
2.2.3
2.2.4.
2.2.5.

Overview .
Window Backup .
Properties and Atoms—Text Type.
Properties and Atoms—Hints
Examples of Properties. .

34
34
36
39
40

2.3. Events. 41
2.3.1.
2.3.2.

Types of Events .
Modal Windows .

41
42

2.4. Window Manager . 44
2.4.1.
2.4.2.

Basic Role. .
Interaction among Window Manager and
Application Programs .

44

46
2.5. Grabbing and Spying. 49

2.5.1.
2.5.2.
2.5.3.

Basics of a Window-Spying Program
Connecting Cursor Location to a Window
Finding Out about the W i n d o w

49
51
54

2.6. Conclusions. 57
2.7. Projects. 57

3. Introduction to the X Toolkit . 59

3.1. Widgets. 61
3.1.1.
3.1.2.

3.1.3.
3.1.4.

3.1.5.

Basic Definitions .
Widget Class Hierarchy, Widget Tree, and
Instances. .
Widget Creation and Parameter Specification. . . .
Some Specific Classes and Some of Their
Resources .
Widget Realization, Management,and Mapping

61

62
64

67
67

X

TE
AM
FL
Y

Team-Fly®

CONTENTS

3.2. Using Resources . 68
3.2.1.
3.2.2.
3.2.3.

Overview .
Minimal Program. .
Passing Resource Values through the Command
Line .

68
70

71
3.2.4.
3.2.5.
3.2.6.

Fallback Resources .
Resource Line Syntax .
Priorities .

75
75
78

3.3. Resource Definition. 79
3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.3.7.

Concept .
Resources in X .
Quarks .
XtResource Structure .
Resource Conversion. .
Finding out about Class Resources.
A Warning on the Use of Resources.

79
80
83
84
87
89
90

3.4. Conclusions. 91
3.5. Projects . 92

4. Event Handling in the X T oolkit. 95

4.1. Overview . 97
4.2. Event Processing . 98

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.

Event Handlers .
Callbacks .
Action Procedures. .
Translation Table Syntax
Comparisons. .
Dealing with Window Manager Messages

98
100
103
108
110
114

4.3. Dealing with Nonevent Input. 117

4.3.1.
4.3.2.
4.3.3.

Work Procedures and Animation
Timeouts and Animation
File and Pipe Input—Graphical Front Ends.

117
122
125

4.4. Entering Text . 128
4.4.1.
4.4.2.
4.4.3.

Tools for Entering Text. .
Getting the Focus .
Low-Level Functions for Text Entry.

128
129
130

4.5.
4.6.

Conclusions. .
Projects. .

133
133

xii FUNDAMENTALS OF X PROGRAMMING

5. Programming with Widgets . 135

5.1. Widgets as Building Blocks . 137
5.1.1.
5.1.2.
5.1.3.

Introduction .
Relations between Children and Parents
Finding the Widget Tree.

137
138
139

5.2. Simple Widgets . 141
5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.
5.2.7.
5.2.8.
5.2.9.

Introduction .
Label W i dgets. .
Command or Button Widgets.
Toggle Widgets .
Utility Function for Creating Buttons
Accelerators. .
Gadgets and Objects. .
Widget Sensitivity. .
Finding Widgets by Name

141
141
143
144
145
147
148
149
150

5.3. Widget Geometry . 150
5.4. Container Widgets. 152

5.4.1.
5.4.2.
5.4.3.
5.4.4.
5.4.5.

Simple Layout Widgets
Application with a Visible Menu
More on Widget Sensitivity
Radio Boxes .
Application-Specified L a y o u t

152
152
155
156
156

5.5. Shell Widgets and Pop-ups . 159
5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.

Overview .
Shells .
Widget Forests. .
Pop-up Widgets. .
Image Pop-ups .

159
159
161
164
166

5.6.
5.7.
5.8.

Drawing Widgets. .
Conclusions. .
Projects .

166
169
171

6. Constraint and Compound Widgets . 173

6.1. Constraint Widgets . 175
6.1.1.
6.1.2.
6.1.3.
6.1.4.

Overview .
Constraint Widget of the Athena Toolkit.
Constraint Widget of the Motif Toolkit
Constraint Widgets of the OLIT

175
177
180
183

6.2. Compound Widgets. 183

CONTENTS xiii

6.2.1.
6.2.2.

Overview .
Scrolled Windows. .

183
184

6.3. Transient Menus . 188
6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.
6.3.6.

Overview .
Athena Pop-up Menus. .
Motif Pop-up Menus .
Motif Pull-down M e n u s .
OLIT Pop-up and Pull-down Menus.
Another Note on Sensitivity. .

188
189
189
190
192
193

6.4.
6.5.

Conclusions. .
Projects. .

194
196

7. Text and Dialog Widgets . 197

7.1. Text Widgets . 199
7.1.1.
7.1.2.
7.1.3.
7.1.4.

Overview—Input Focus.
Athena Text Widgets .
Motif Text Widgets .
OLIT Text Widgets. .

199
200
201
202

7.2. Text Widget A p p l i c a t i o n s . 202
7.2.1.
7.2.2.

Entry Form Application .
Placing Text Labels in a Drawing.

202
205

7.3. Dialog Widgets . 208
7.3.1.
7.3.2.

The Basics. .
Details of the Motif Dialog Message Box

208
210

7.4.
7.5.

Conclusions. .
Projects. .

212
212

8. Drawing Operations . 215

8.1. Basics of Drawing . 217
8.1.1.
8.1.2.
8.1.3.
8.1.4.

Overview .
Drawables and Pixmaps
Graphics Context .
Members of the Graphics Context and Their Cache

217
218
220
225

8.2. Drawing Functions . 225
8.2.1.
8.2.2.

Lines, Arcs, and Filled Areas
Polygons and Filled Polygons

225
227

8.3. Icons, Cursors, and Fonts. 231
8.3.1. Definitions and the Icon File Format 231

xiv FUNDAMENTALS OF X PROGRAMMING

8.3.2.

8.3.3.
8.3.4.

8.3.5.
8.3.6.

Creating Bit Maps from Icon Files
Creating Cursors from Icons.
Text and Fonts. .
Font Cursors .
Font Names and Font Libraries

232
234
235
239
239

8.4. Regions. 241
8.4.1.

8.4.2.
Concept .
Nonrectangular Windows

241
244

8.5.
8.6.

Conclusions. .
Projects. .

244
246

9. Color and Images. 249

9.1.
9.2.

Overview .
Using Existing Colormaps .

251
253

9.2.1.
9.2.2.
9.2.3.
9.2.4.
9.2.5.

Using Color in X and the X Toolkit

Color Specification by Name.
Color Specification by RGB Values
Economizing on Colors .
X Colormap Odds and Ends

253
255
256
259
260

9.3.
9.4.
9.5.

Visuals .
Creating and Using New Colormaps
Image Structures .

261
265
267

9.5.1.
9.5.2.
9.5.3.

Xlmage S t r u c t u r e .
Creating Xlmages from Full-Depth Raster Images
Creating Xlmages from 1-Bit-per-Pixel Images . . .

267
268
271

9.6. Overlays . 272
9.6.1.
9.6.2.
9.6.3.

General Considerations .
Allocating Planes. .
Simulating Overlays with Tiling Pixmaps

272
272
275

9.7.
9.8.

Conclusions. .
Projects. .

278
279

10. Selections . 281

10.1. Interclient Communication. 283
10.1.1.
10.1.2.

Introduction .
Basic Selection Mechanism in X

283
284

10.2. The Gory Details. .
10.2.1. Function Specification. .

286
286

CONTENTS xv

10.2.2. Data Transfer. 288
10.3. Nontext Selections. 291

10.3.1.
10.3.2.
10.3.3.

Integers and XIDs .
Image Selections .
Marking Selections .

291
294
296

10.4. Implementation Issues . 298
10.4.1.
10.4.2.
10.4.3.

User Interface .
Application-Programming Interface
Drag and Drop .

298
298
300

10.5.
10.6.

Conclusions. .
Projects. .

300
301

11. Writing Widgets . 303

11.1.
11.2.

Introduction. .
Anatomy of a Widget .

305
307

11.2.1.
11.2.2.
11.2.3.
11.2.4.

Main Structures. .
Where Is What?. .
Core Class Structure—Part 1
Core Class Structure—Part 2

307
310
311
313

11.3. Sketch Widget Implementation . 317
11.3.1.
11.3.2.
11.3.3.
11.3.4.
11.3.5.

Definition Files .
Widget Source File .
Adding Functionality to the Sketch Widget.
What Resources Should a Widget Have?
Attaching User Data to a W i d g e t

317
320
324
326
327

11.4.
11.5.

Conclusions. .
Projects. .

328
330

12. Examples of Widget Implementation . 333

12.1.
12.2.

Introduction. .
Slider Widget. .

335
335

12.2.1.
12.2.2.

Overall Organization. .
Slider Widget Implementation

335
339

12.3. Composite Widget. 351
12.3.1.
12.3.2.
12.3.3.

Definition Files and Class Record Initialization. . .
Widget Source File .
Adding Functionality to the Blackboard Widget . .

351
353
355

xvi FUNDAMENTALS OF X PROGRAMMING

12.3.4. Resizing and Moving Children of a Composite
Widget . 357

12.4.
12.5.

Conclusions. .
Projects. .

357
358

Appendix. Software . 359

A1.
A2.
A3.
A4.

Overview. .
Data Types Used in the Starter Toolkit
Functions. .
Resources and Convenience Function of Paper Class
Widgets. .

361
362
362

365

References . 367

Index . 369

Software Installation

Code for examples used in this book can be obtained via anonymous ftp from:

ftp.cs.sunysb.edu:/pub/TechReports/pavlidis/Xstart/
Xfund.tar.Z

After logging in and changing directory, execute the commands:

binary
get Xfund.tar.Z

If you are using a web browser you may skip the above steps and, instead, go to:
ftp://ftp.cs.sunysb.edu/pub/TechReports/pavlidis/Xstart
and then click on Xfund.tar.Z.

To extract the files, execute the two following Unix commands:

uncompress Xfund.tar.Z
tar -xvf Xfund.tar

Then read the README file for further instructions. There are two directories:
listings and starter. The former contains 12 subdirectories, ch01–ch12,
each of these contains the files mentioned in the listings of the respective chapter. If
a listing does not mention a file name, then there is no file. (This is usually the case
for short listings.) There is no one-to-one correspondence between files and listings.
If many listings mention the same file name (e.g., sel. c in Chap. 10), then all the
code in the listing is in that file, although not necessarily in the same order. The
code of the Starter toolkit is in starter. To compile and run various programs,
requires Release 4 or later of X.

xvii

This page is intentionally left blank

1
Introduction

1.1. Overview of X . 3
1.1.1.
1.1.2.
1.1.3.
1.1.4.

Our Goal and Subject .
Main Features of the X Window System
Programming in X .
Note for Those Familiar with Microsoft Windows .

3
3
6
7

1.2. Highlights of the X Toolkit . 8
1.2.1.
1.2.2.
1.2.3.

Simple Program Using the X Toolkit
Resources and T r a n s l a t i o n s
Widgets .

8
10
12

1.3. Simplifying X . 14

1.3.1.
1.3.2.

C h a l l e n g e s .
Starter T o o l k i t .

14
15

1.4. Odds and E n d s . 16
1.4.1.
1.4.2.
1.4.3.

A Few Words on Display Hardware
A Few Words on Software
Special Issues in Debugging X Programs.

16
18
21

1.5. Conclusions . 22
1.5.1.
1.5.2.

Other Systems—Simple and Complex Servers
Further Reading about X.

22
23

1.6. Projects . 23

1

This page is intentionally left blank

TE
AM
FL
Y

Team-Fly®

INTRODUCTION 3

1.1. OVERVIEW OF X

1.1.1. Our Goal and Subject Chapter 1 introduces most aspects of the X
Window System. This quick tour of X discussed later in detail provides the context
in which each part functions.

Some books use a large application as their central theme, so that by the end of
the book, you have written a complete application. This is fine if you are lucky and
the application described in the book is similar to the programs you want to write. If
not, you are left in the dark because describing a single application may not touch
upon aspects of the system that are essential for other applications. For example,
graphical user interfaces (GUIs) use only a few colors and books focused on them
rarely provide guidance on how to deal with applications such as image displays
that need a large palette of colors. In this book we cover all fundamental aspects of
X. Therefore you will have all the tools to write not only graphical user interface
(GUI) program, but also video games, visualization, and drawing and design
programs, which require a deeper understanding of the software platform than
simple user interfaces.

Mastering the fundamental material makes it easier to use GUI toolkits
because once you understand what such systems are trying to accomplish, you will
have to find out only how they achieve their goal.

We assume that you have used a windowing system (not necessarily X), so that
you are familiar with screens and such devices as the mouse. Windowing systems
rely a lot on such user-driven programs. Such programs are idle most of the time as they
wait for user input or messages from other programs. Such actions cause the
program to execute a piece of code and then return to the waiting state. Because
user actions can be mapped into messages, the usual term for such programs is
message-driven. The X Window system uses the term message for exchanges in
client/server communication, and it uses the term event for user actions or messages
between applications. Therefore we say that programs in X are event-driven. If you
are already familiar with programming in another system, such as Microsoft
Windows, you may assume that X events are synonymous with windows messages
(although this may not be true in all instances). A related term interrupt-driven
programming, which is less general than the other terms. While most hardware
interrupts are mapped into events (or messages), many events (or messages) do not
correspond to interrupts.

1.1.2. Main Features of the X Window System The X Window System,
developed in the late 1980s, not only enabled Unix workstations to have a GUI, but
also made it possible to run applications over a network. That is a program running
on machine Z can be displayed on and accept input from machine Y. In such a
system, instructions that produce a display or describe events must be machine-
independent. Machine independence is a major feature of the X Window System.

4 FUNDAMENTALS OF X PROGRAMMING

A system that supports user-driven window programs over a network needs the
following parts:

1. Procedures that convert user actions into messages to be transmitted to the
appropriate application program

2. Procedures that convert messages from the application program into
display instructions.

3. Communications protocol for the messages in A and B.
4. Procedures that coordinate allocation of resources between different

applications running on the same machine.

In the X Window System items 1 and 2 are functions of the server program.
The name is counterintuitive because most people are familiar with file servers,
machines that are (usually) far from the user and clients, machines that are in front
of the users. In X the name server is used for both the machine in front of the user
and for the program running on that machine that creates displays and converts user
actions into events. The application program is called the client, again a
counterintuitive term. Figure 1.1 shows a possible machine arrangement, where
four client programs use the same server. It is also possible for a single client to use
many servers and for a server program to run on another windowing system, for
example Microsoft Windows NT.

The rules of communication between client and server are specified by the X
protocol. Application programmers do not have to deal directly with the protocol

INTRODUCTION 5

because a library, called Xlib, of over 600 functions generates and interprets X
protocol messages. While there is no one-to-one correspondence between Xlib
functions and protocol messages, the connection is very close. Because the X
protocol provides only rather primitive messages, Xlib functions are also rather
simple in what they do, although rather complex in how they are invoked.

For example to draw a straight line segment, we call the function:

XDrawline(Dpy, w, g, x1, y1, x2, y2)

where the first three arguments refer to what maybe called the drawing environment
and the last four are graphic data. (Dpy is equivalent to a file descriptor referring to
the server, w refers to the window where the line will be drawn, and g refers to the
graphics context, a data structure that contains information about the color, style,
thickness, etc., of the segment to be drawn.)

In an interactive program, we must invoke a function that interrogates the
server for events. One such Xlib function is

XNextEvent(Dpy, result)

where Dpy refers to the server and result is a pointer to a structure where the
function places information about the first unexamined event from the server.
Because the structure must accommodate all possible events, it is actually a union
of about 30 structures, most of which have more than 10 members. Thus, even if the
call appears simple, a lot more work is needed to find out what happened.

While various toolkits (see Sec. 1.1.3) may conceal the complexity of invoking
Xlib functions, they cannot conceal the simplicity of what they do. In particular
they (and the protocol) do not allow for definitions of procedures or macros. Thus
to display a polygon with 100 vertices in different styles, you must do the scaling in
the client, then resend the x, y coordinates of the vertices to the server each time:
There is no way of creating high-level parametrizable server objects.

In X a separate application program, the window manager, provides the
functionality of Item 4; therefore X servers are relatively simple programs. This is
one reason for the quick adoption of the system. It is relatively easy for a hardware
manufacturer to provide a program that interprets and generates X protocol
messages for its devices, since the window manager is just a client (albeit an
important one). The window manager is also responsible for supporting windowing
system provisions that allow the user to invoke commands by pointing and clicking
on a list or an icon.

Communication between the server and client is asynchronous: When the
program generating the display produces a message, it is usually buffered rather
than immediately sent. This delay does not normally pose a problem except in two

6 FUNDAMENTALS OF X PROGRAMMING

situations. The first is debugging (discussed in Sec. 1.4.3); the second involves
messages from programs that perform lengthy computations or handle large files,
such as Please wait while loading the next frame. We must flush the
buffer explicitly to ensure that the message appears when it is supposed to.

X Releases

There have been seven releases of X. The X directory name usually includes
the release number, thus X11R6 indicates the sixth release. The fourth release
had new major contributions to the fundamentals of the system. Later releases
dealt with more advanced features, so you should be able to run our example
programs on your system if you have Release 4 or later.

1.1.3. Programming in X Programming in most windowing systems is
laborious because for even a trivial program, we must provide significant code to
create a window and handle events or messages. The task is particularly difficult in
X because the system was designed as a standard to handle all cases that its
designers knew. As a result structures and functions in X involve parameters that do
not concern most applications. In this book we start with simple versions of various
structures so that concepts become clear, then we gradually move to the real thing.
Our goal is to understand the organization of systems and their different parts rather
than describe all function calls in detail.

The basic software library of X is Xlib, the primitive functions that deal with
protocol messages, as mentioned in Sec. 1.1.2. Because programming with Xlib can
be very laborious various toolkits have been developed.

Definition

A toolkit is a collection of objects and functions.

Toolkits can be fundamental, built directly on top of Xlib, or derived, built on
top of another toolkit. There are two widely used fundamental toolkits: the X toolkit
(abbreviated Xt) and the Tk toolkit. The Tk is related to Tcl, an interpretive
language, and it is by far the simplest toolkit for creating GUIs. The Xt, which is
part of the X Window System, forms the basis for many other toolkits. It is the
fundamental toolkit discussed in this book.

INTRODUCTION 7

There are three widely used toolkits built on top of Xt: Athena has rather
limited facilities, but it is part of the X distribution, which means that it is available
on any system running X. Motif, the most common commercial toolkit, is the
standard in many environments. The Open Look (OLIT) is still used on many SUN
systems, but it seems to be declining in importance.

While there is a Window object in X, it is too low a level structure to be useful
by itself, therefore applications rely on toolkits to create higher level objects
(widgets), which are windows with functionality. The latter includes not only the
appearance of the window and handling user input but also responding when a
message from another program is received. The Interclient Communication
Conventions Manual (ICCCM) specifies how X programs should communicate
with each other, and all X applications are supposed to follow it. Its requirements
include support of cut-and-paste operations. If you use Xt (or one derived from it),
the task of conforming to ICCCM is greatly simplified.

We often hear the claim that if you program in, say, Motif (or another toolkit)
you will not need to use Xlib; unfortunately this is true only for relatively simple
GUIs. If you must draw something on a window or display an image, you must use
Xlib functions. For this and other reasons, programming in X remains quite
complex even when using one of the major toolkits. Section 1.3 discusses toolkits
and software libraries whose main purpose is to deal with either the complexity of
X or using X in special applications, such as three-dimensional graphics. There are
also many software tools for building X applications interactively; however, that
topic is beyond our scope.

Caution

This book is not a programming manual. We assume that you have access to
manuals for Xlib, the X toolkit, and your favorite toolkit (such as Motif).

1.1.4. Note for Those Familiar with Microsoft Windows Similarities
and differences between the X Window System and Microsoft Windows are
obscured by inconsistent terminology. We already pointed out the case when a
different term is used for similar concepts (event versus message), there are also
cases when the same term is used with different meanings. An X window is a much
simpler structure than a Microsoft window. The X widgets (see Sec. 1.2.1) come
closer to Microsoft windows, but it may be necessary to use more than one widget
to create in X an entity whose functionality is comparable to that of a single
Microsoft window. Creating new window classes (widget classes) in X is more
complex than in Microsoft Windows, so this process should not be undertaken lightly.

8 FUNDAMENTALS OF X PROGRAMMING

The X resources (see Sec. 1.2.2) serve a similar purpose (selecting run-time
parameters from a file) as resources in Microsoft Windows, but there are major
differences between the two. It is probably best to forget what you know about
resources in Microsoft Windows when reading about resources in X.

Drawing functions in Windows are called with a handle to a device context
(DC) as their first argument. In Xlib functions that argument is replaced by three. X
has a graphics context that is related to, but not the same as, device context. In
general drawing parameters are handled more cleanly in X than in Windows
because X did not have to worry about backward compatibility.

On the other hand overall program structure is the same: The X event loop is
similar to the Windows message loop, and the event-dispatching mechanism has
similar (but not identical) functionality to the message-dispatching mechanism. X
programs rely a lot on callback procedures as do Windows programs, although the
details differ.

In general X allows greater fine tuning of programs than does Microsoft
Windows; however, it is much easier to write a fully functional simple program in
Microsoft Windows than in X. Roughly speaking the Microsoft Windows API
corresponds to Xt functions with only the drawing operations API at the Xlib level.

1.2. HIGHLIGHTS OF THE X TOOLKIT

1.2.1. Simple Program Using the X Toolkit The X toolkit, discussed in
detail in Chaps. 3-7, consists of a library of functions, the intrinsics, and a set of
structures (objects), the widgets, that are helpful in creating windows with particular
properties. However since Xt objects are rather rudimentary, we need additional
widgets for building an application. This had led to various derived toolkits such as
Athena, Motif, or OLIT. Here we provide an example in order to show the flavor of
Xt code. Listing 1.1 shows an Xt program (using Athena widgets) that creates a
window labeled Hello World. When the user presses the left mouse button, the
program exits, closing the window.

There are five function calls:

• XtVaAppInitialize establishes a connection to the server and creates
the framework for creating windows with functionality.

• XtVaCreateManagedWidget creates the structure supporting a
window that displays a message and has the capacity to respond when
the application user presses the left mouse button.

• xtAddCallback specifies what the response to the action should be:
When the left mouse button is pressed while the pointer (cursor) is in the

INTRODUCTION 9

Listing 1.1. A Trivial Xt Program

/* A Trivial Xt Toolkit Program (using Athena
widgets) */
/* The argument structure is explained in Chapter 4 */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Xaw/Command.h>
int main (int arc, char **arv)
{
Widget toplevel, button;
XtAppContext app;
extern exit();
/* Initialize the Application */
toplevel=XtAppInitialize(&app, "Trivial",
NULL, 0, &arc, arv, NULL, NULL);

/* Create a widget structure */
button=XtVaCreateManagedWidget ("button",
CommandWidgetClass, toplevel, xtNlabel, "Hello World",
XtNwidth, 256, XtNheight, 256, NULL);

/* Arrange so that when a mouse button */
/* is pressed the application exits */
XtAddCallback (button, XtNcallback, exit, NULL);
/* Request that the windows be displayed */
XtRealizeWidget (toplevel);
/* Enter an Infinite Loop */
XtAppMainLoop (app);
return (0);

window of the widget, the function exit () is called. (This is not a clean
design, but it suffices for the trivial program at hand.)

• XtRealize Widget creates windows in the server so these appear on
the screen.

• XtAppMainLoop () is a loop that checks for events.

We discuss these functions in detail in later chapters, but it is worth pointing
out here some features of the Xt. The first string argument in XtVaCreate-
ManagedWidget is used as an internal name, the second argument refers to the
class of objects to which the new widget will belong. The intrinsics store widgets in
a tree (the widget tree), which is used to access the widgets. Thus each new widget

}

10 FUNDAMENTALS OF X PROGRAMMING

must have a parent in the tree, which is the role of the argument toplevel, in
addition to providing a parent window for the window of the button widget.

The remaining arguments are a NULL terminated list of pairs, each consisting
of a symbolic string and a value. Symbolic strings are defined in one of the Xt
include files, for example:

#define XtNlabel "label"
#define XtNwidth "width"
#define XtNheight "height"

This mechanism makes the order of most arguments in a function unimportant at
the expense of having to provide twice as many arguments. Using symbolic names
rather than explicit strings guards against misspellings, since if we type XtNlibel
instead of XtNlabel, the compiler will complain

XtNLibel undefined

However, if we type " libel", the compiler will accept it and Xt ignores the pair,
so that we obtain the default label instead.

Symbolic names are also used for user actions, for example we say that the
program responds when the user presses the left mouse button but we do not see
any reference to such a button in Listing 1.1. However, it is implied by the symbolic
string XtNCallback, where the term callback refers to a function called in
response to some event. The X toolkit widget associates specific events with
callback lists that initially maybe empty. The applications programmer places real
functions in that list with calls of the XtAddCallback() function.

To compile and link this program, we must find the location of relevant
libraries in our system. These usually reside in the same directory as the Xlib
functions. Assuming that everything is in the directory /usr/local/X11R6, we
can use the following makefile:

INC_FILE=usr/local/X11R6/include
LIB_FILE=/usr/local/X11R6/lib
CFLAGS=-I$(INC_FILE)

xt: xt.o
$(CC)-L$(LIB_FILE) xt.o -1Xaw -lXmu -1Xext -lXt -lX11

-o xt

The flags -lXaw -1Xmu -1Xext are needed to access the Athena toolkit.

INTRODUCTION 11

1.2.2. Resources and Translations The Xt uses pairs of arguments for a
more important reason than the convenience of passing arguments to functions
without worrying about their order: such representations provide run-time
parameter values to many programs. When a widget is created the intrinsics look
at a resource database for values of the widget parameters. The files for such a
database may contain such entries as Listing 1.2 shows.

Listing 1.2 also illustrates using the first argument of the function
XtVaCreateManagedWidget () to identify resources associated with a
particular widget.

Because such files can be modified by the user resources allow us to customize
of X programs. The Xt defines a structure, XtResource, with members that
include the name, a default value, a pointer to the memory location where the value
will be stored, etc. Try this approach by modifying the program in Listing 1.1 so the
button widget is created by the statement:

button=XtVaCreateManagedWidget ("button",
commandWidgetClass, toplevel, NULL);

Then create a filed called, say, RESOURCE containing the three lines in Listing 1.2
and execute

setenv XENVIRONMENT RESOURCE

This tells Xt where to look for the resource file for our program. (The X toolkit
always looks for resources in certain files so the preceding statement is not always
necessary; however, without it we must find those files, then edit them!) When we
type xt the window opens with the new dimension and the capitalized label. We
continue changing the appearance of the window by editing the RESOURCE file
without recompiling the program. We must rerun the program though, since
resource values in the environment are checked only when the program starts.

The Xt also allows us to specify events that trigger certain actions, such
pairings are defined in resource files by the following lines:

xt*canvas.translations: <ButtonPress>: quit()

Listing 1.2. Example of Resources

xt*button.label: PRESS
xt*button.width: 100
xt*button.height: 100

1 2 FUNDAMENTALS OF X PROGRAMMING

where translations is a keyword that takes the place of a resource name
(canvas is the widget name). The second field is the event that causes the
invocation of a function referred to in the third field. However the syntax is
misleading: The last entry does not specify a function [parentheses () are
decorative] but a string that must be matched internally with a function. In other
words the user cannot change the function, only the event that causes its invocation.
For example the following line causes the function corresponding to the string
quit to be invoked when the escape key is pressed

xt*canvas.translations: <Key>Escape: quit ()

Section 3.2 discusses the use of resources in detail, and Sec. 3.3 discusses the
definition of resources.

1.2.3. Widgets In X terminology, a window is an area of the screen
without functionality, and widgets are windows with functionality. Functionality
refers to the appearance of the window (for example a clock) and the response to
user actions (for example a window that is a menu).

In X the term widget is used for both what appears on the screen and the
internal representation of the object. Code in Listing 1.3 is an example of such an
object, tremendously simplified from Xt implementations, hence the term
miniwidget. This object has eight attributes and two methods. Five of the attributes
contain information about the geometry of the window x, y, width, height, and
border_width. Two (background_color, and border_color) contain
information about the color of the main window area and its border. There is also a
handle (window) to the server structure representing the window itself.

The functionality is provided mainly by two methods: One for creating the
appearance of the window and the other for handling mouse events (usually
buttonclicks). Note: Objects of Xt widgets are much larger structures. We use
simplified versions to focus on key concepts of the system without being burdened

Listing 1.3. A Widget Object

#include <X11/Xlib.h>
typedef struct _mini_widget {

int x, y, width, height, border_width ;
int background_color, border_color;
Window window;
void (*paint) ();
void (*mouse) ();

} mini_widget;

TE
AM
FL
Y

Team-Fly®

INTRODUCTION 13

by details. (Incidentally the type widget in Listing 1.1 is a pointer to the widget
structure.)

paint () is called whenever the window has to be drawn, either when it is
first created or when it becomes visible after being obscured by other windows or
after being resized. (X does not guarantee window backup.) The syntax of the call is
usually:

mini_widget w;
/*...*/
w.paint(&w);

Making the drawing function a member of the structure simplifies the program
code. In general different window objects require different drawing functions, so if
we do not associate a drawing function with each object, we need a loop or switch
any time we draw an object.

A method can be provided either by the widget writer or the applications
writer. In the former case windows corresponding to that object have a fixed
appearance in all applicants that use them. (Although applications may set such
parameters, as the dimensions or colors used by the drawing function.) As a rule the
drawing function of most widgets is provided by the widget writers; the exception is
canvas or drawing area widgets whose appearance is determined by either the
application (in a video game) or the user (in a drawing program). Event handling is
almost always implemented by the widget writer. At most applications provide
pointers to functions that are called by (the equivalent of) mouse () in response to
particular events.

1.3. SIMPLIFYING X

1.3.1. Challenges Two challenges face X programmers: Both Xt and
toolkits based on it are heavily oriented to GUIs, so they focus on widgets of pre-
defined appearance. While all provide widgets where we can draw, they do not
provide support for drawing operations, we must use the Xlib functions for both
drawing and event handling. The situation is actually worse: Even widgets intended
for drawing inherit properties of the general widget set that impose certain
restrictions on what can be drawn. Major toolkits (such as Motif) have widgets that
allow but do not support drawing.

The other challenge is the relatively flat nature of function calls in both Xlib
and Xt. We need pretty much the same calls to start a trivial application as a
complex one. The program Hello World in Listing 1.1 contains 15 lines of code.
This situation can be compared to C library output functions for example. There we

14 FUNDAMENTALS OF X PROGRAMMING

start with printf (), which produces output only at the terminal; output into files
comes next with redirection, >; only when it is necessary to write to multiple files
do we learn about fprintf (file_des, ...). Even later we learn about
fwrite() and fseek().

There have been many efforts to address these issues. The Tk toolkit [Ou94] is
excellent, particularly in handling the second challenge, but it must be used by
itself; it cannot be mixed with Xt code (including Motif). OpenGL [Kr96] is a
window system independent library that provides very good functionality for
drawing operations, especially for three-dimensional graphics. OpenGL code can
be mixed with other Xt code, however, OpenGL does not address the second
challenge except to a limited extent through an auxiliary library. In addition the X
implementation of OpenGL requires an Xlib extension (GLX) that may not be
available on many servers.

Numerous libraries provide simpler interfaces to X, but most of them are self
contained. The important issue in meeting the second challenge is to use simple
code for a prototype program but then use the full power of X. We may also wish to
develop a program with some parts that require sophisticated code, while the rest of
the program is simple. This is the case in our examples where we consider a
particular feature of X.

For this purpose we developed the Starter toolkit, which pays special attention
to the needs of drawing programs and the issue of migrating from simple to
complex code. This toolkit can be used by itself for simple programs or combined
with any toolkit derived from Xt for more complex programs. See Sec. 1.3.2. for an
overview of the toolkit and Appendix for a full description.

1.3.2. Starter Toolkit The Starter toolkit is based on Xt and supports
drawing and graphic displays so that it is useful in programs that perform many
drawing operations. The toolkit is also designed to facilitate the user’s introduction
to X and to make it easier to write prototype programs. We use it in this text mainly
to create complete X programs that need features of the system that we have not yet
covered. The Appendix describes how to install and use the Starter toolkit, and it
also documents its functions used in examples in this book.

We illustrate the capabilities of the Starter toolkit with a few examples. Listing
1.4 shows a program that displays a single message. The program exits when the
user presses any button; thus it has the same functionality as the (much longer and
more complex) program in Listing 1.1.

Because the Starter toolkit is built on top of Xt, we can write more complex
programs by combining Xlib and Intrinsics calls with Starter toolkit calls. With
such programs it is desirable to use a special prefix for Starter toolkit functions. If
we include a definition file, Stdef . h, we can use function names with the prefix
St_. The example of Listing 1.5 tests X facilities for automatically iconifying (or

INTRODUCTION 15

Listing 1.4. A Hello World Program

void hello()
{

put_text ("The end of the world is near", 20, 20);
}
main()
{

vis_window(hello);
}

Listing 1.5. A Window that Iconifies Itself

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <Stdef.h>
void hello(Widget w)
{

St_put_text("The end of the world is near", 20, 20);
St_xflush (); /* to actually display the message */
sleep (1);
XtVaSetValues(XtParent(w), XtNiconic, False, NULL);
XtVaSetValues(XtParent(w), XtNiconic, True, NULL);

}
main()
{

St_vis_window(hello);

}

minimizing) an application that is displaying its window in reduced size, as an icon.
It uses the special prefix for the Starter toolkit functions.

XtVaSetValues () is an Intrinsics function that changes the attributes
of a widget. In this case its first call requires the widget to be displayed in full
size, then to be displayed as a small icon. When the attribute corresponding to
the resource XtNiconic changes from False to True, Intrinsics iconifies the
widget.

The Starter toolkit supports drawing operations by means of a new
widget class, the PaperWidgetClass. Support is achieved in the following
ways:

16 FUNDAMENTALS OF X PROGRAMMING

• The widget has its own writable graphics context so that application
programmers do not have to create it explicitly; however, they are allowed
to modify it by using simple convenience functions.

• The widget has function wrappers for many Xlib functions and a general
context function, St_draw_area (), so that we can write such code as:

St_draw_area (left_window);
St_put_text("Left", 5, 20);
St_draw_area(right_window);
St_out_text("Right", 5, 20);

• The widget has a simplified event structure that provides concise
information about events involving the mouse or the keyboard.

• There are no constraints on the widget’s use of color, so we can use all
available colors to display an image.

1.4. ODDS AND ENDS

1.4.1. A Few Words on Display Hardware A description of computing
or display hardware is beyond the scope of this text; however, we provide a very
rough outline for future reference.

Most modern display devices center on a piece of memory, called the frame
buffer or refresh memory, whose contents are used to modulate the beams of a
television monitor. (Refresh refers to the need to continuously refresh the image
displayed on the monitor.) The piece of hardware called the video look-up table,
translates bit patterns of the refresh memory into the three basic colors—red, green,
and blue. Another name for that hardware is physical colormap. The table of
correspondence between the bit patterns and colors is usually not fixed, so it can be
loaded at execution in time. It is called the colormap (or logical colormap to
distinguish it from the device).

The memory unit that determines color and brightness of a single spot on the
display screen is called a pixel (which usually consists of 8 bits, although 1-bit and
24-bit pixels are also common). The term plane refers to the corresponding bits of
all pixels. A single plane is also called a bitmap, and a set of planes, a pixmap.
These terms are also used for memory outside the refresh memory, when such
memory is equivalent to a part of the refresh memory. For example we may
compose an image off line in a pixmap, when we finish the composition, we may
copy the pixmap to refresh memory for display. See a graphics book for more
details on the hardware (for example, sec. 1.2, [Pa96]).

INTRODUCTION 17

When placing information in the refresh memory, we have various options on
how to combine the new information with what exits there. Replacement (or copy)
mode refers to discarding and replacing old information with the new. We may also
select any logical or arithmetic operation. The X supports only bitwise logical
operations of which the most important is exclusive OR (or XOR). This mode lets us
use the same call for erasing and drawing. Indeed, if a and b are pixel values, we
have

(a XOR b) XOR b= a

Other drawing modes include clear where each pixel is set to 0 and set where each
pixel is set to 1.

Most display devices support the concept of foreground and background
colors. Many drawing instructions that write into the refresh memory do not have
an explicit argument specifying the color. Instead they use the foreground color for
pixels that are set and the background color for pixels that are cleared. This
arrangement lets us store drawing information in bitmaps, then present it in
different colors just by changing foreground and background values.

X uses the term screen to refer to the combination of refresh memory and
look-up table, since a particular server may have more than one hardware display. It
is also possible to have different logical configurations for the same hardware. In
most installations there is only one screen, so in this text we use the terms screen or
display screen without further specification. Whenever information about the screen
is needed for a program, it is obtained by using a macro returning the display’s
default screen. X has an additional complication because screens can be referred to
either through an integer (the screen number) or by a pointer to a screen structure.
The latter specifies a screen by itself, the former only with respect to a particular
display. For example to find the bit pattern corresponding to black color, we may
use either of the two following macros:

BlackPixel(display_pointer, screen_number)

or

BlackPixelofScreen(screen_pointer)

The screen number is obtained using the macro:

screen_number=DefaultScreen(display_pointer);

1 8 FUNDAMENTALS OF X PROGRAMMING

The screen pointer using the macro

screen_pointer=DefaultScreenOfDisplay(display_pointer);

A macro also converts the screen pointer into the screen number:

screen_number=XScreenNumberOfScreen(screen_pointer);

Chapters 8 and 9 give examples of programs with such macros when we discuss
drawing operations in X as well as additional display hardware issues.

1.4.2. A Few Words on Software Since X makes extensive use of special
types, symbolic names, and bit masks, we present a brief review of these concepts.
Consider for example the Xlib call that asks a server to keep track of button press
events in a window:

XSelectInput(Dpy, w, ButtonPressMask);

where Dpy is a pointer to a structure that includes a file descriptor used to access a
server (an application may use more than one server). w an integer translated by the
server into a pointer to a structure, refers to the window. Such integers are
commonly called handles, and these are widely used in object-oriented
programming. X assigns a special type for such handles, X Identity Number or
XID, which is defined by the statement:

typedef unsigned long XID;

A special window type is defined as:

typedef XID Window;

In a program listing the second argument can be declared by the code:

Window w;

The third argument, ButtonPressMask, is actually one of the constants defined
in the file x. h

/* ... */
#define ButtonPressMask (1L<<2)
#define ButtonReleaseMask (1L<<3)
#define Button1MotionMask (1L<<8)
/* ... */

INTRODUCTION 19

#define ButtonPress 4
#define ButtonRelease 5
/* ... */
#define Button1 1
/* ... */

For example to select both button press and button release events we must call

XSelectInput(Dpy, w, ButtonPressMask ButtonReleaseMask);

Then the mask value is (in binary notation) 0 ... 0110. Notice that not all
symbolic constants can be used as masks.

Masks are quite often used for selecting members of structures. We illustrate
that use with a nonX example to keep things simple. Suppose we are dealing with
points in the space, where each point has three coordinates and a color:

typedef struct {
int x, y, z;
unsigned char * c;

} Point;

We can create a single routine for copying points and use a flags to determine which
coordinates are actually copied, for example:

#define Xcoord 1 /* or (1L) */
#define Ycoord 2 /* OR (1L<<1) */
#define Zcoord 4 /* or (1L<<2) */
#define ALLCoord 7 /* or Xcoord YCoord Zcoord */
#define Color 8 /* or (1L<<3) */

copy_paint (Paint *src, Paint *dest, long mask)
{

if (mask & Xcoord) dest->x=src->x;
if (mask & Ycoord) dest->y=src->y;
if (mask & Zcoord) dest->z=src->z;
if (mask & Color) dest->c=src->c:

}

Note: The if statements contain the bitwise AND operator (&), not the logical
AND operator (&&). In the following code fragment, the first call copies color and
the z-coordinate, while the second call copies all coordinates but no color:

20 FUNDAMENTALS OF X PROGRAMMING

Point A, B, C;
/* ... */
copy_point(&A, &B, Zcoord Color);
copy_point(&B, &C, ALLcoord);

In some cases it is convenient to include the mask as a member of the
structure, especially of operations are not performed between structures of the same
kind or if the variables are uninitialized, for example:

typedef struct {
long mask;
int x, y, z;
unsigned char * c;

} Point;
Print_Point (Point *pnt)
{
if (pnt->mask&Xcoord) printf("x=%d ", pnt->x);
if (pnt->mask&Ycoord) printf("y=%d ", pnt->y);
if (pnt->mask&Zcoord) printf("z=%d ", pnt->z);
if (pnt->mask &Color) printf("Color=%o ", pnt->c);
if (pnt->mask&(ALLcoord Color)) printf("\n");

}

Using masks reduces the number of necessary functions. If it is desirable, we
can hide the masks through such convenience functions as:

copy_Z_coord(Point *src, Point *dest)
{

copy_point(src, dest, Zcoord);
}

The Xlib contains many such sets: A basic function called with masks and
convenience functions that call the former with appropriate mask values.

1.4.3. Special Issues in Debugging X Programs Because each X program
has two parts, each running as a different process (and possibly on a different
machine), debugging can be challenging.

Important Point:

Because of asynchronous communication between client and server, when the
server part of the program crashes, the problem cannot be attributed to the
last message sent. It may well be the result of an earlier one.

INTRODUCTION 21

Therefore it is desirable during development to force a synchronous mode.
When programming directly with Xlib, we can do so by using the sequence:

Dsp = XOpenDisplay(....);
XSynchronize(Dsp, 1);

When we finish development, the XSynchronize () must be removed because
it slows down the program execution. Things are a bit easier with the Xt: We need
only set a flag at execution time:

my_executable -synchronous

Failure in the server produces a diagnostic describing the nature of the error
but little else as the following example shows.

X Error of failed request:
BadDrawable (invalid Pixmap or Window parameter)
Major opcode of failed request: 53 (X_CreatePixmap)
Resource id in failed request: 0x1388
Serial number of failed request: 115
Current serial number in output stream: 136

The first line states the nature of the error, BadDrawable. This suggests that we
passed an invalid argument in an Xlib function where a window or pixmap is
expected. If our program contains only one such statement, we know where it
occurred; otherwise we must look further. The second line refers to the X protocol
number and the third to the server memory, which is of help only if we suspect the
server to be at fault. The last two lines give the message number. Failure occurred at
Message 115, while Message 136 has also been sent. If we ran the same program
with the - sync flag, the last two lines would be

Serial number of failed request: 226
Current serial number in output stream: 227

(or possibly another pair of successive numbers). This is not very helpful either, but
in this case we could have used a debugger, such as dbx, to run the application side
step by step, so that the failure would have occurred right after the statement with
the invalid parameter.

Problems on the application side can be handled with conventional tools with
one caveat: If we debug an interactive program that expects input, there may be

22 FUNDAMENTALS OF X PROGRAMMING

contention between the debugger and the program being debugged. This can lock
the screen, so that to continue processes must be killed from another machine.
Therefore we may wish to recompile the program with sufficient diagnostic output,
then run it without the debugger.

1.5. CONCLUSIONS

1.5.1. Other Systems—Simple and Complex Servers The server–client
model is used by most modern systems that support user-driven programming even
if the separation of the two parts is not so complete as in X. For example the Win32
API (Application Program Interface) in Microsoft Windows can be thought of as the
Xlib counterpart in Windows programming. While it is possible to bypass the
Win32 subsystem, it is not recommended if an application is going to be portable
across various Microsoft Window platforms.

The major issue in all window systems is the functionality of the server. As
pointed out in Sec. 1.1.2, the X server is very simple. The SUN NeWS server is
based on the Postscript language that allows the creation of procedures. The Blit
terminal developed at AT&T Bell Labs in the early 1980s was fully programmable
[Pi83]. An application downloaded a customized server module each time it was
executed. While this caused an initial delay, it made for much faster execution later
as the following example indicates.

Consider a pop-up menu. When the user presses the right mouse button, a
small window containing a list of items pops up. As the user moves the mouse (with
the button still pressed), the item under the cursor is highlighted. When the user
releases the button, a selection is made (provided the cursor is still within the menu
window). In X drawing the menu and highlighting items must be done through the
client. The server creates events that the client interprets and issues drawing
instructions. In a server with procedures, we can create a menu selection procedure
so that no message has to be sent to the client until a selection is made.

Rubber band drawing programs offer another example (see for example, sec.
2.4, [Pa96]). As the user moves the mouse, a line joining the cursor with an anchor
point is erased and redrawm in the new position. Thus any time the mouse moves,
an event is placed in the queue, the client reads the queue, receives the mouse
location, then issues two line-drawing instructions, one to erase and another to
redraw the line. It is much faster if all motion events are kept in the server and the
callback for the event is a server procedure.

These issues are important today when personal computers without disc space
and with limited power are used to browse networks. Their programs are stored at
remote sites, then run on remote machines producing output on, and receiving input
from, the local machine. If the local machine is an X server this entails significant

TE
AM
FL
Y

Team-Fly®

INTRODUCTION 23

traffic, which may create serious delays. The initial delay in downloading
procedures may be preferable to a continuous sluggish response; this is certainly
the case with a video game.

1.5.2. Further Reading about X Many books describe the basic graphics
hardware and software, [Pa96] does so in the context of X. In this book we focus on
the concept of X programming, but we do not provide details about the functions of
the various libraries, so the user needs the respective manuals: [Ny92] is
recommended as a source for Xlib functions; for an in depth coverage of X see
[SG92]. For Xt we recommend [AS90]. [Ki95] provides more examples and a
documentation of Motif and Athena.

The user also needs a manual of whatever other toolkit is being used: Motif,
Athena, or OLIT. O’Reilly and associates publish many books on X, including
those completely documenting Motif and Xt. For complete alternatives to X, as
discussed in Sec. 1.3.1, see [Ou94] and [Kr96]. A search of the web will reveal
many efforts to simplify X programming, especially in educational environments.

1.6. PROJECTS

1. Compile and run the program in Listing 1.1. Use suggestions at the end of
Sec. 1.2.1 to locate the necessary libraries.

2. Modify the definition of Listing 1.3 to allow for resources. (You must
replace some of the attributes by pairs of strings and values and add
methods for changing attribute values.)

3. Use the Starter toolkit to write a program that reads text from its standard
input (or a file) and displays each word in a different color.

This page intentionally left blank

2

Fundamentals of the
X Window System

2.1. Introduction . 27
2.1.1.
2.1.2.
2.1.3.
2.1.4.

Window Manager. 44
2.4.1.
2.4.2.

Basic Role .
Interaction among Window Manager and
Application Programs .

44

46
2.5. Grabbing and Spying . 49

2.5.1. Basics of a Window-Spying Program. 49

25

Program Illustrating Basic Concepts
Introduction to the Window Data Structure
Introduction to Events. .
XEvent Union .

27
29
31
32

2.2. Advanced Features of the Window Object in X. 34
2.2.1.
2.2.2.
2.2.3.
2.2.4.
2.2.5.

Overview .
Window Backup .
Properties and Atoms—Text Type
Properties and Atoms—Hints
Examples of Properties .

34
34
36
39
40

2.3. Events . 42
2.3.1.
2.3.2.

Types of Events. .
Modal Windows. .

42
43

2.4.

26 FUNDAMENTALS OF X PROGRAMMING

51
54
57
57

2.5.2.
2.5.3.

2.6.
2.7.

Connecting Cursor Location to a Window
Finding out about the Window.

Conclusions .
Projects .

X WINDOW SYSTEM 27

2.1. INTRODUCTION

While most X programming is done through higher level toolkits, a review of
low-level structures helps in understanding the capabilities of the system.
Furthermore certain applications, such as graphic displays, cannot be written
entirely with available toolkits.

We pointed out (Sec. 1.1.2) that applications run on the client machine and
send messages to, or receive messages from, the server machine, which does the
actual display and receives user input. Message structure, is specified by the X
protocol. Messages are generated or interpreted by the functions of Xlib. Chapter 2
focuses on structures used by Xlib as well as functions pertaining to window
creation and events. We defer discussion of drawing functions to Chaps. 8 and 9.

2.1 .1 . Program I l lus t ra t ing Bas ic Concepts Listing 2.1 shows a program
that creates a trivial application using only Xlib calls. The program creates and
displays a window that exits when the user presses a mouse button. This program
has a functionality similar to that of the program in Listing 1.1 except for the label
(which required too much additional code). We use this program to explore some
basic Xlib concepts.

The program starts by establishing a connection to the server [the call to
XOpenDisplay ()], and it ends by closing the connection (the call to
XCloseDisplay). The argument of XOpenDisplay () is supposed to be
the name of the server, but using the null string makes the program more flexible.
When the function is called with an empty string (" ") as an argument, it takes its
destination from the Unix shell environment variable DISPLAY. Explicit machine
names should be used only in programs that connect to more than one server.

If a connection to the server is established, the function returns a pointer (Dpy)
to a Display structure, which contains all information needed for both
communicating with the server and creating graphic displays in the server. The
function returns NULL otherwise.

The pointer returned by XOpenDisplay () appears as the first argument of
all Xlib functions and macros, with different functions using different members of
the structure. Most of the functions use the member that is a file descriptor to
send messages through the channel to the server. Most macros access some other
member of the structure.

In contrast to other windowing systems, it is quite simple to write an X
program that uses many servers. All we need is to create an array of Display
pointers, then replace each of the individual Xlib calls in Listing 2.1 by a loop. For
example if we elect to pass server names as command line arguments, the following
code establishes connections to all of them:

/ * . . . * /
main(int arc, char **arv)

28 FUNDAMENTALS OF X PROGRAMMING

Listing 2.1. Trivial X Program

/* A Trivial X Program */
#include <X11/Xlib.h>
int main ()
{

Display *Dpy;
Window w;
XEvent action;
/* Establish a connection to the server. The empty */
/* string argument implies a default server,

usually */
/* the one on the same machine as the client */
/* exit with an error condition if no connection */
Dpy = XOpenDisplay (" ");
if (!Dpy) return (-1);
/* Allocate a window structure */
w = XCreateSimpleWindow(Dpy, DefaultRootWindow (Dpy),

0, 0,200, 100,2,
BlackPixel (Dpy, DefaultScreen(Dpy),
WhitePixel (Dpy, DefaultScreen(Dpy));

/* Request that the server informs the application */
/* when a mouse button is pressed */
XSelectInput (Dpy, w, ButtonPressMask);
/* Request that the window be displayed */
XMapWindow (Dpy, w);
/* Enter an Infinite Loop */
while(1) {

/* Wait until an event has been produced at the */
/* server and then place the information about */
/* it in the structure action and return */
XNextEvent (Dpy, &action);
/* if the event was caused by pressing a mouse */
/* button break from the loop */
if (action.type==ButtonPress) break;

}
/* Close the connection to the server and return 0 */
/* To indicate successful completion of execution */
XCloseDisplay(Dpy);
return(0);

}

X WINDOW SYSTEM 29

{
Display *Dpy[256];
/* ... */
for (i=l; i< arc; i++) Dpy[i]=XOpenDisplay(arv[i]);

/* ... */
}

The same process is also available (and easier to use) with the Xt (see Sec. 5.5.3).

2.1.2. Introduction to the Window Data Structure In X a window is a
rectangular area of the screen (refresh memory) represented by the coordinates of
its top left corner, its width, and its height. In the server it is represented by a
structure that contains two types of data: attributes and properties.

Attributes refer to parameters that specify internal window features, such as
border width, background color, border color, the cursor image to be displayed, etc.

Properties refer to an X mechanism for communication between applications
(clients). Properties have a name (a character string) and an associated structure that
can contain arbitrary information. These are most commonly used to communicate
with the window manager and to contain such information as the window frame
label, window position and size, the icon used when the window is iconified
(minimized), etc.

If it seems counterintuitive that something as basic as window size is a
property rather than an attribute, that is because when an application specifies
values for window position and size, these values are mediated by the window
manager. In Listing 2.1 a window is created with the call to XCreateSimple-
Window (), which has the following prototype:

XCreateSimpleWindow(Display * display_pointer,
Window parent_window,
int x_hint, int y_hint,
unsigned int width_hint, unsigned int height_hint,
unsigned int border_width,
unsigned long border_color,
unsigned long background_color);

where the first argument specifies the server where the window is created and the
second argument specifies the parent window. For the top window of an application,
the parent is the server’s root (base) window. This window typically encompasses
the full screen, and its XID is part of the Display structure. It is retrieved by
using macro DefaultRootWindow(). The word default, refers to the default
screen. The X supports servers with more than one display screen (a combination of
refresh memory and video look-up table), and each of these may have a different
root window. We can access the same structure by using two other macros:

30 FUNDAMENTALS OF X PROGRAMMING

RootWindow(Dpy, DefaultScreen(Dpy))

Of course most servers have only one screen, but X does not let us forget that this is
not always the case.

The following four arguments that include hint in their name specify
coordinates of the top left window corner and its dimensions. However as their
name implies, these are only suggestions (hints) to the window manager. Because
the window manager is responsible for overall window layout, it may modify
requested values. For example if an application is called twice, the window manager
may shift their respective positions so that the two versions do not entirely overlap.

The last three arguments are self-explanatory, and these specify values for
three attributes of the window to be created. (Attributes values not given here are
inherited from the patent window.) In our example we requested: 2-pixel wide black
border and white background. Specifying color is not simple: Bit patterns translated
by the video look-up table (Sec. 1.4.1) into particular colors are not standard, so we
must use macros to extract from the Display structure. Note: In this case we
must call the DefaultScreen explicitly.

When a window is created by the call to XCreateSimpleWindow (), a
structure is created in the server, but there is no fresh memory allocation. The latter
is achieved by the call to XMapWindow (). A window is mapped when a screen
area is assigned (though not necessarily allocated) to the window rectangle.
However the window does not appear on the screen as yet because messages from
the client to the server is buffered. We can force messages sending by calling:

XFlush (Dpy) ;

In that case the window may appear. Whether it actually appears depends on the
window manager. Because a display may have overlapping windows, the window
manager has its own policy about which windows are displayed. In general mapped
windows can be visible, partially visible, or obscured. Only in the first two cases is a
refresh memory allocation made.

Server resource refers to windows and other parts of the server memory, such
as color maps or graphics context. Resource is used here generically; server
resources have nothing to do with Xt resources described in Sec. 1.1.4.

Normally window creation and mapping are done by Xt functions, so we are
not directly concerned with some of the preceding details. On the other hand Xt is
constrained by what Xlib functions can do. For example window position and
dimensions are always hints to the window manager, no matter how they are
specified. We discuss additional window topics in Sec. 2.2.

X WINDOW SYSTEM 31

2.1.3. Introduction to Events In addition to window creation code,
Listing 2.1 contains code to deal with user actions. As explained in Sec. 1 . 1 . 1 the
server converts user actions into structures called events. Events may also be created
as a result of other program actions—in particular, by the window manager. For
each application the server maintains an event queue.

Event-driven programs include an infinite loop, such as the one in Listing 2.1.
The function XNextEvent () checks the event queue; if it contains an event, the
function copies it into the structure indicated by its second argument (action in
our example). If the queue is empty, the function flushes the buffer between client
and server. This is essential because the function is blocking: the program halts until
the queue has events again. Therefore any waiting graphics (or other) instructions
must be sent to the server before the program enters the idle state. If an application
must perform other computations while waiting for events (for example a video
game that keeps an animation going), then a nonblocking function must be used to
check the event queue.

Applications have some control over the type of events placed in the queue.
This is called event selection. In general events generated by other programs are
always placed in the queue. Events generated by the user (through the mouse and
keyboard) must be selected explicitly by a call to XSelectInput (). The
relevant statement in Listing 2.1 selects the event caused by pressing a mouse
button. This particular program ignores all keyboard input, mouse motion, or events
generated when a mouse button is released. Since there events are always selected,
we must always check the type of event when the function XNextEvent ()
returns. In this case the program exists if the type of the event were indeed the one
corresponding to pressing a mouse button.

Normally event selection is carried out by the Xt, which also examines the
event queue. The correspondence between event types and action is also established
indirectly, as in Listing 1.1. However some applications must examine information
in addition to event type. For this reason we may have to look at other members
from the server return, besides type.

The XEvent type used to store event information is actually a union of
structures. This arrangement is necessary because the type of information
associated with an event depends on the type of event itself. A partial listing of
the definition of union follows:

typedef union _XEvent {
int type;
XAnyEvent xany;
XButtonEvent xbutton;

XExposeEvent xexpose;

...

32 FUNDAMENTALS OF X PROGRAMMING

XKeyEvent xkey;

XMotionEvent xmotion;

} XEvent;

The variable type is also the first number of all structures, so the code checking
type in Listing 2.1 can safely be used. Once we know the type, we can refer to the
appropriate structure; for example in a nontrivial program, we may have the code:

switch(action.type) {
case ButtonPress:

/* access members of action.xbutton */
break;

case KeyPress:
/* access members of action.xkey */
break;

/* ... */
}

2.1.4. XEvent Union After type the next four members in all event
structures of the union are

unsigned long serial;
Bool send_event;
Display *display;
Window window;

Together with type these are members of the XAnyEvent structure. The last two
members refer to the display (server) and the window where the event originated.
The member serial is the number of the last message sent to the server; it is
often used for debugging. The member send_event indicates whether another
application produced the event rather than originating in the server. Clearly all such
information is meaningful regardless of event type, and it is always contained in the
structure. The XAnyEvent structure is useful for writing a procedure that tries
from the client side to find the widget (the client-side window object) where an
event occurred. Ifwp is a pointer to a a window object (such as that in Listing 1.4)
and ep is a pointer to a XAnyEvent structure, then the following statement forms
the heart of an event dispatch procedure, which is used in all toolkits.

if (wp ->win= =ep -> window) return wp;

...

...

TE
AM
FL
Y

Team-Fly®

X WINDOW SYSTEM 33

Normally after the widget is identified, the appropriate event-handling routines
associated with the widget are called. We say that the event is dispatched to the
widget.

The event Expose is generated by the window manager when a window
becomes visible and must be redrawn (see Sec. 2.2.2). Because a window may be
covered by many others, there is a cluster of Expose events when that window is
moved in front of the others. It is wasteful to keep redrawing so the XEvent
structure for exposures, xexpose, contains a member, count, with the number of
remaining exposure events for that window. It is a good idea to wait for that number
to become 0 before redrawing. In addition the XExposeEvent structure contains
coordinates of the top left corner of the exposed rectangle (x and y) and its
dimensions (width and height). Figure 2.1 shows the organization of the
structure. Related events (mouse activity and mouse button events) may share
additional members.

Aside

Information about the geometry of the exposed rectangle may be used to
redraw only the part of the window that needs to be redrawn. However this
may differ for each member of the sequence of expose events; therefore

34 FUNDAMENTALS OF X PROGRAMMING

besides waiting for count to become 0, we must keep track of this
information. For simple displays it is easier to redraw the entire window rather
than to keep track of particular areas. To avoid these problems Microsoft
Windows handles expose events (called WM_PAINT messages) differently.
These are not placed in the main queue, but a flag is set so that if there are not
other events in the queue, the program checks the flag, then redraws if
necessary.

2.2. ADVANCED FEATURES OF THE WINDOW OBJECT IN X

2.2.1. Overview Several issues concerning windows were either ignored
or mentioned only briefly in the overview of Sec. 2.1.2. Each window has attributes
and properties. Attributes are members of a structure of type XSetWindowAt-
tributes (despite the verb set, this is a type, not a function). Attributes are set by
a call to the Xlib function XChangeWindowAttributes (). As arguments this
function takes a Display pointer, window XID, value mask, and a pointer to an
XSetWindowAttributes structure. A value mask is an integer of type
unsigned long , whose bits correspond to attributes. If a bit is set to 1, the
corresponding attribute is used in XSetWindowAttributes (). See Sec. 2.2.2
for an illustration of attributes in connection with window backup.

We find a window’s attributes by using the function XGetWindowAttri-
butes (); see Sec. 2.5 for an example of its use.

Properties are strings used for interclient communication. Each property has a
name and associated data. Because different applications may run on different
machines, the only reliable way of passing data between machines is through their
respective windows. Despite the term a property need not pertain to a particular
window; for example a property can be the name of the machine on which the
application is running. Sections 2.2.3–2.2.5 discusses properties in detail.

2.2.2. Window Backup When windows overlap, we must decide what to
do with the memory contents allocated to an obscured window. One possibility
that helps hide window interactions from the client is to have the server copy the
contents into another part of the (nonrefresh) memory, then restore it later.
Unfortunately this simple solution is not supported by the X Window System. The
decision was made not to place responsibility for backing up obscured windows on
the display device (server) because it exceeds the primary task of interpreting
network messages and mapping them into refresh memory.

X WINDOW SYSTEM 35

In X when a window is obscured, nothing happens. When a window becomes
visible, the display device sends a message to the applications program, informing it
of the need to redraw exposed parts of the display. Such messages are placed in the
queue as expose events, and applicants programs must provide a redrawing
function for the event handler to call. An expose event is also used to draw a
window for the first time, not only when it has to be restored after having been
obscured.

Although not required by X Window System specification, many servers offer
a backup facility. To use this facility the application must determine if such a
facility exists and also request that it be used. The application must also specify a
gravity, which is a parameter that determines to which part of the window the
drawing is attached if the window increases in size. This task is achieved with the
following code that relies on window attributes:

if (DoesBackingStore(DefaultScreenOfDisplay(Dpy))==
Always) {

XSetWindowAttributes attr;
unsigned long valuemask = CWBackingStore;
attr.backing_store = Always;
XChangeWindowAttributes(Dpy, w, valuemask, &attr);

Note the use of a mask to select values, as discussed in Sec. 1.4.2.
The macro DefaultScreenOf Display () returns a pointer to the screen

(refresh memory) of the server, and the macro DoesBackingStore () returns
an integer with information about the availability of memory backup in the server.
Both Always and CWBackingStore are predefined constants (1L<<6 for the
latter). Because of this setting, the XChangeWindowAttributes () call tells
the server to ignore all other members of the attr structure and update only the
one determining the backup of window contents. In this example that attribute is set
to the predefined constant Always, thereby asking the server always to make a
copy of the window contents.

If a window is using backup store, we can instruct the server on recreating
window contents after resizing by using a window attribute called bit_gravity. This
attribute determines the side and corner toward to which the contents gravitate when
the window size changes. The preceding code is then modified as follows:

if (DoesBackingStore (DefaultScreenOfDisplay (Dpy))==
Always) {

XSetWindowAttributes attr;
unsigned long valuemask =
attr.backing_store = Always;

36 FUNDAMENTALS OF X PROGRAMMING

attr.bit_gravity = NorthWestGravity;
XChangeWindowAttributes(Dpy, w, valuemask, &attr);

}

The attribute NorthWestGravity specifies that the contents gravitate
toward the top left corner of the window. A second gravity attribute
win_gravity determines the position of subwindows when a window is resized.

If backup is used, then the server does not generate expose events. We may
assume that in this case, we do not need a redrawing function, but this is not true.

Caution

When using Xt (and toolkits built on top of it such as Motif), we must always
provide a redrawing function because a window may be redrawn by the
toolkit in response to events other than expose. For example under Motif,
when a window is resized to a larger area, it is always redrawn even if no parts
were obscured and the current display conforms with the specified gravity.

Recommendation

Always provide a redrawing function and do not rely on the server backup.
Even if your program is going to run only on servers with backup, the
behavior may not be what you expect.

Regardless of the limitations of X, automatic backup is not always desirable.
Suppose we have an application that scales a drawing to fill a window. If the user
reduces the window size, then automatic backup leaves some of the drawing
invisible because it does not fit in the new window. The correct solution is to redo
the drawing using a smaller scale. If the user increases the window size, automatic
backup leaves empty areas. The correct solution is to redraw the drawing using a
larger scale.

2.2.3. Properties and Atoms—Text Type Properties have names that are
character strings; For example " WM_NAME" refers to the label in the window frame
created by the window manager to enclose the top window of the application (see
Sec. 2.4.2). While creating that window, the window manager checks to see if the
original window has such a property associated with it; if so, it uses the associated

X WINDOW SYSTEM 37

data for the label. The structure associated with the property is called the type of the
property, and it sometimes has the same name. The type of "WM_NAME" is
"TEXT" which means that data are stored in the following structure:

typedef struct {
unsigned char *value;
Atom encoding;
int format;
unsigned long nitems;

} XTextProperty;

The member value points to the string of characters that form the label; format
in this case contains 8, which means that data are stored in a byte, and nitems is
the number of characters in the label. The Atom type requires a bit of discussion.
While properties are defined as strings, strings are not convenient for many
operations, such as comparisons. Therefore X has a mechanism to map strings into
integers in a unique way. The function that does this is XInternAtom (), it has
the following prototype:

Atom XInternAtom(Display *Dpy, char * name, Boolean
only_if_exists)

If the last argument is set to True, the function returns an atom only if the
name were already mapped into an atom. Otherwise it returns the symbolic
constant None. If the last argument is set to False, a new atom is created if none
exists for that name. In the latter case an atom is returned for any string whether it is
useful or not. The string mapping into an atom remains for the life of the server
program. Some predefined atoms in the server always have the same values and
these are represented by symbolic names in the file X11/Xatom.h. For example
the atom for "WM_NAME" has the symbolic name XA_WM_NAME, and the value
for text has the symbolic name XA_STRING (in the server we use, these are
numerical values 36 and 31, respectively.) Values of atoms that are not predefined
depend on history.

Given an atom we obtain the string by the function:

char *XGetAtomName (Display *Dpy, Atom atom)

Atoms are used not only for property names, but also for property types, and this is
the meaning of the second element of the XTextProperty structure.

There is a pair of general functions for setting and retrieving properties and
many convenience functions. For "WM_NAME" there are two convenience

38 FUNDAMENTALS OF X PROGRAMMING

functions: One to set the label (after it copied into the value member of the
TextProperty structure):

XSetWMName(Display *Dpy, Window win, TextProperty *tp)

and one to read back the data:

XGetWMName(Display *Dpy, Window win, TextProperty *tp)

The function XSetWMName () is normally called by the application for its top
window and the function XGetWMName () is normally called by the window
manager.

This property is automatically set by Xt for the top window of an application,
but other properties are not handled in this way, as we see in Sec. 2.4.2.

"WM_CLIENT_MACHINE" is another property of TEXT type; it refers
to the name (as viewed from the server) of the machine on which the client
is running. The symbolic value for the atom is XA_WM_CLIENT_MACHINE,
and the pair of convenience functions are XSetWMClientMachine () and
XGetWMClientMachine () with the same arguments as the functions for the
window name. For example to set the name of the machine, we can use the
following code (which assumes that that the machine name is no longer than 31
characters):

TextProperty tp;
tp.value =(char *)malloc(32*sizeof(char));
/* call a system function to retrieve the name */
gethostname(tp.value, sizeof(tp.value));
/* ... */
XSetWMClientMachine(Dpy, win, &tp);

Now the window structure of win has a structure attached to it with the machine
name. We can read back the information with the function call:

XGetWMClientMachine(Dpy, win, &tp);

We can determine the properties attached to a window by calling the function
XListProperties (); see Sec. 2.5 for examples. In general properties are
assigned to the top window in the application because that is where the window
manager looks. The preceding code fragment may reside in the code of a window
manager program that assigns values to window properties and attributes.

X WINDOW SYSTEM 39

2.2.4. Properties and Atoms—Hints TEXT properties are relatively
simple; other properties contain a variety of data. Two of these contain hints
which are data that the window manager sees as suggestions.

The "WM_NORMAL_HINTS" property contains the suggested size of the
window in a structure of type XSizeHints. Its type is "WM_SIZE_HINTS", and
the structure contains the window location (coordinates of top left corner) and
dimension (width and height). Convenience functions for setting and reading these
hints are XSetWMNormalHints () and XGetNormalHints (). The pre-
defined atom for "WM_NORMAL_HINTS" is XA_NORMAL_HINTS (actually the
integer 40).

Because there are many members in a property structure, a mechanism similar
to the value mask used for attributes is used. The property structure contains a
member, flag, declared as long, that is used as a mask. The main difference with
earlier uses of masks is that the mask is part of the data structure rather than a
separate item.

The "WM_HINTS" property corresponds to a structure of type XWMHints;
its type is also "WM_HINTS". It contains a rather odd assortment of data, mainly
about the icon used to represent the window when it is iconified and about how to
direct keyboard input to a window. The "WM_HINTS" has the predefined atom
XA_WM_HINTS (actually the interger 35).

The following code fragment tells the window manager how to direct keyboard
input to window win when the mouse-controlled cursor is located in that window:

XWMHints wmhints;
/* ... */
wmhints .flags = InputHint;
wmhints.input = True;
XSetWMHints(Dpy, win, &wmhints);

Here InputHint is a predefined constant, and XSetWMHints () is the
convenience function. This particular code asks the window manager to direct
keyboard input to window win whenever the pointer is in that window. Keep in
mind that usually the window manager has its own policy for such matters, so hint
specifications are just suggestions. They need not be followed by the window
manager. The reading convenance function is XGetWMHints (); it has a different
argument organization. Its prototype is

char * XGetWMHints(Display *Dpy, Window win)

40 FUNDAMENTALS OF X PROGRAMMING

2.2.5. Examples of Properties Table 2.1 lists some properties and how the
various toolkits handled them. The Xt includes Athena widgets; St stands for the
Starter toolkit when built with Athena widgets only. Table 2.1 is based on
information gathered while running the expanded spy program (see Sec. 2.5) on a
machine with windows created in different ways.

The Xt automatically sets up eight properties, but not the WM_PROTOCOLS.
(We return to this point in Sec. 2.4.2.) The Starter toolkit also sets up the
WM_COLORMAP_WINDOWS property, but it does so indirectly using an Xt call.
Programs created by using only Xlib (such as the one in Listing 2.1) have only the
WM_STATE property automatically attached to them; other properties must be
given explicitly.

Note: Information contained in some properties need not be true. The window
manager supposedly knows about the arguments with which an application was
invoked, but it does not obtain them from the Unix shell. The application must set
the appropriate property, but it may choose not to do so! For example the Starter
toolkit does not require the applications programmer to pass command line

X WINDOW SYSTEM 41

argument to X functions. The toolkit itself passes a string to the window manager
with generic information. Programmers using the Starter toolkit who care about this
issue should call the function arguments () before any other Starter toolkit
functions. The use of this function is illustrated later in Listing 2.4 (Part 1).

2.3. EVENTS

2.3.1. Types of Events We systematically categorize events here by how
they are generated and selected. It is beyond the scope of this book to discuss all
event types. (There are about 40.) Instead we focus on events that are most likely to
concern applications.

Most events initiated by the user are selected by the XSelectInput ()
function with appropriate masks. Besides ButtonPress, shown in Listing 2.1,
symbolic names for events generated by the user include MotionNotify (the
mouse moved), KeyPress (a keyboard key was pressed), ButtonRelease,
and KeyRelease. Thus the following call tells the server that when a mouse
button is pressed, the mouse moves, or a key is struck while the window w has
control of these devices, an appropriate event should be inserted in the queue for the
application that owns window w:

A key issue is the conditions under which a window is considered to control
the keyboard and the mouse. Normally a window receives mouse events if the
cursor is inside the window, although there are exceptions to that rule, which we
discuss in Sec 2.5. We say that a window grabs the pointer if it receives mouse
events when the pointer is outside its boundaries. Such a grab can be explicit (as in
the program of Sec. 2.5) or implicit. In particular whenever the cursor moves
outside a window with a button pressed, the cursor is automatically grabbed by that
window until the button is released. In this way the button press and subsequent
button release events always go to the same window.

Things are a bit more complex for the keyboard. We say that a window has
input focus if it receives keyboard events. Focus is assigned by the window manager
under one of two policies: Focus follows the cursor (as in the case of mouse events),
or it results from clicking on the window (often the default policy). We return to this
topic in Sec. 4.4.1.

The function XSelectInput () is used to select some event types
generated indirectly by the user. The following are of particular interest. The event
Expose is generated when a window becomes visible and must be redrawn.

42 FUNDAMENTALS OF X PROGRAMMING

If we have opted for server backup, such events are not generated (with one
exception that we explain shortly). The event type is selected with the
ExposureMask.

The event ConfigureNotify is generated when the window moves or it is
resized. It is selected with the StructureNotifyMask, and information about
it is stored in the structure xconfigure. When the window is resized, it also
generates an Expose event unless we provide a hint about how to copy the old
window area into the new one. This process was discussed in Sec. 2.2.2.

Two events cannot be selected by XSelectInput (); these must be selected
through the graphics context (see Sec. 1.2). These events are GraphicExpose
and No Expose. The first is generated when part of the refresh memory cannot be
copied into another; the second is generated when copying is successful. Some
programs, such as video games, perform the copying operation many times, which
can flood the event queue with NoExpose events. Unfortunately, it is not possible
to select GraphicExpose but not NoExpose. Hence we recommend including
the following call right after the graphics context is created:

XSetGraphicsExposures (Dp, gc, False);

Copying may fail because the source is an invisible window. If we copy only from
pixmaps (as in the case of video game animation) to a visible window, then such a
failure is not possible. Since copying from one part of a window to another is useful
for scrolling, we should select these events in such applications.

Some events are always selected. Of interest to us is ClientMessage,
which is generated when one program sends a message to another.

2.3.2. Modal Windows In Listing 2.1 a single event loop is expected to
handle any kind of input. This is the rule in most window programs, not only in X.
However it is possible to have many event loops (see Listing 2.2). Such programs
are called modal or said to accept modal input. The most common use of modal
input is for temporary windows (popups) that usually contain a message describing
the next user action. Such windows are often called dialog boxes.

The program in Listing 2.2 goes into a waiting loop only when it expects a
particular event; it exits the loop when the event occurs. This approach is
convenient for programs that do significant computation but only occasionally look
for user input. Because the flow of execution is controlled by the structure of the
program, we do not need static storage between events. However this methodology
is discouraged by various toolkits because the application user may become
frustrated with a program that does not respond to any action unless it is the one the
program expects.

TE
AM
FL
Y

Team-Fly®

X WINDOW SYSTEM 43

Listing 2.2. Program with Modal Input — File modal .c

include <X11/Xlib.h>
static Display *Dpy;
static Window w;
void wait_for_mouse (), wait_for_key ();
int main(void)
{

int x, y, key;
Dpy=XOpenDisplay ("");
w=XCreateSimpleWindow(Dpy, DefaultRootWindow(Dpy),

0, 0, 200, 100, 2,
BlackPixel (Dpy, Default Screen(Dpy),
WhitePixel (Dpy, Default Screen(DPy));

XMapWindow (Dpy, w);
/* read mouse position when button 1 is pressed */
wait_for_mouse (1, &x, &y);
printf("x=%d y=%d for button 1\n", x, y);
/* read mouse position when button 2 is pressed */
wait_for_mouse (2, &x, &y);
printf("x=%d y=%d for button 2\n", x, y);
/* read mouse position when a key is pressed */
wait_for_key(&key, &x, &y);
printf("key %o (%c) at x=%d y=%d\n", key, key, x, y);
XCloseDisplay (Dpy);
return (0);

}
void wait_for_mouse(int button_id, int *xp, int *yp)
{

XEvent activity;
XSelectInput (Dpy, w, ButtonPressMask); /* select
button press events */
while(1) {

XNextEvent (Dpy, &activity);
if(activity.type != ButtonPress) continue;
if(activity.xbutton.button==button_id) break;

}
*cp=activity.xbutton.x;
*yp=activity.xbutton.y;
XSelectInput (Dpy, w, NoEventMask); /* do not place
events in the queue */

}
void wait_for_key(int *cp, int *xp, int *yp)
{

44 FUNDAMENTALS OF X PROGRAMMING

XSelectInput (Dpy, w, KeyPressMask); /* select key
press events */
while(1) {

XNextEvent (Dpy, &activity);
if(activity.type = KeyPress) break;

}
*xp =activity.xkey.x;
*yp = activity.xkey.y;
XSelectInput (Dpy, w, NoEventMask); /* do not place
events in the queue */

}

2.4. WINDOW MANAGER

2.4.1. Basic Role Typing the name of a program in a shell window starts
an application (or client). If this program requires its own window, it then asks the
server for the following sequence of operations: (1) Creation of the appropriate
window data structure, which is added to the list of windows the server maintains;
(2) allocation of a rectangle in refresh memory. The window list not only contains
information about the window position and dimensions but also the stacking order,
that is, the relative order with respect to the display screen. Note: A window may
obscure another window behind it in the stacking order.

When the application asks for a window to be mapped (i.e., take actual control
of the allocated piece of refresh memory), the server does not immediately perform
the operation, but instead passes the request to the window manager. The window
manager can thus control the position and size of each window.

Definition

A window manager is an application (client) program that mediates resource
allocation and deals with user interaction. Resources include refresh memory
(window display), keyboard (determining which window receives the input),
and video lookup table (deciding which colormap to load). A window
manager displays the windows of other applications (usually with additional
decorations) and modifies the size, position, and relative placement of a
window on the basis of user actions.

X WINDOW SYSTEM 45

The window manager usually tracks the position of the mouse-controlled
cursor. When the cursor is inside a window, the process associated with that
window takes control of the keyboard and the video lookup table. Keyboard control
by a process means that all typed input is sent to the standard input of that process.
That window is usually called the active window.

Like other applications, the window manager sends messages to the server to
implement any of those operations. Consider a program that displays the names of a
set of files that each contains a picture. When the user selects a name, the program
displays the respective picture in a new window. Figure 2.2 illustrates the program
response to the user request. The program reads the picture file, computes window
dimensions, then asks the server to create the window data structure (Message 1).
Then it asks the server to map (display) the window (Message 2). The server passes
the request to the window manager (Message 3), which must decide where and how
to position the window relative to other windows on the screen. After doing so the
program asks the server to execute the appropriate graphics primitives (Message 4).

Having the window manager as a program distinct from the server is a
characteristic of the X Window System. (Actually we can run programs, albeit
awkwardly, without a window manager.) Such a separation is not a requirement for
window systems. It is possible to write a server program that also manages the
windows. Having the functions in two separate programs has two advantages:

1. It allows users to vary the look and feel of the window system by choosing
a different window manager. Thus the same server (display) can support
different interface standards at different times.

2. It makes the server a simpler program. Since servers must translate
protocol messages into machine instructions, they are hardware-

46 FUNDAMENTALS OF X PROGRAMMING

dependent. To make a new device conform to the X standard, the
manufacturer must provide a server. Making that task easier helps
establish the standard.

This separation also has a disadvantage: A large part of the X protocol (and as
a consequence of Xlib) pertains to communication between the server and window
manager. Some Xlib functions are reserved for window managers only (although
there is no automatic way of enforcing that). The window manager is indeed a very
important client!

Because the two programs are distinct, we must invoke both to work on a
machine with the X Window System. The typical sequence is to invoke the program
xinit, which starts a server (given as an argument) and a single client. For
example SUN workstations use the xnews server, and the first client is the Open
Look window manager, olwm. Rather lengthy shell scripts are necessary, but in a
well-maintained system, the average user has to invoke only one script to start the
whole process.

One other common configuration is to have X handle the login process so that
the server and window manager are started only once and users find themselves
immediately in an X environment after login.

2.4.2. Interaction among Window Manager and Application Programs
If we compile and run the program in Listing 2.1, we find that the displayed window
has a fancy frame similar to other windows on the screen. Who inserted all
these decorations? Actually no one did anything to the window our program
created. However the window manager inserted a new window (with decorations)
between the root window and the one just created. This process is called
reparenting.

Reparenting occurs because the window manager must allow the user to move
and resize windows, so offering the same facilities to any window created by an
application is a good practice. Because it is impossible to force all applications
programmers to do that, the window manager solves the problem by inserting a
window of its own (with all the desired facilities) between the root and the top
application window. (Strictly speaking the window manager can allow manipulation
without reparenting and without special demands on the applications. It is simply
less user friendly to do so without the facilities offered by reparenting.)

Reparenting imposes various obligations on the applications programmer. The
program must respond gracefully when the user operates on the (new) top window.
How does the program know that the new parent has been manipulated? The server
generates events when the window is moved or resized, and the program must make
provisions to look for them in the event queue and act accordingly. Because the
program in Listing 2.1 does not do anything useful, it may ignore most of these

X WINDOW SYSTEM 47

events. However one event cannot be ignored even by the current trivial program: If
the user terminates the top window, everything disappears from the screen.
Nevertheless the program in Listing 2.1 continues running! Since the connection to
the server has closed, the call to XNextEvent() causes an error with a diagnostic
statement similar to:

XIO: fatal IO error 32 (Broken pipe) on X server "0.0"
after 5 requests (2 known processed) with 0 events
remaining.
the connection was probably broken by a server shutdown or
KillClient.

If we write programs using Motif, OLIT, or the Starter toolkit, interaction with
the window manager is handled by the toolkit, so that problem is taken care of
automatically. If we write programs using the Athena toolkit (or no toolkit at all),
then we must deal with the actions of the window manager directly; in particular
we must provide code to deal with events of type ClientMessage. Such
events are placed in the event queue by another program, often the window
manager. The generating program does so with the Xlib function XSend-
Event (). To provide a response to such an event, we must use the window
properties, specifically the WM_PROTOCOLS property, which is a list of atoms set
with the XSetWMProtocols () function. This function takes as an argument a
list of protocols. The list includes WM_DELETE_WINDOW, which causes the
window manager to send a ClientMessage when the parent window is
destroyed. Not all properties have predefined atoms, and WM_DELETE_W1N-
DOW happens to be one that does not. The following code fragment shows how to
define an atom, then set the protocol:

static Atom wm_quit;

wm_quit=XCInterAtom (Dpy, "WM_DELETE_WINDOW", False);
XSetWMProtocols(Dpy, win, &wm_quit, 1) ;

Because the WM_DELETE_WINDOW is not predefined, instead of just calling the
XSetW. . . functions as we did with predefined atoms, we must also call the
XInterAtom() function to map the property string into an atom.

The call to the function XInterAtom() converts the string WM_DELETE
_WINDOW to an atom, as described in Sec. 2.2.3. The argument win in the call to

48 FUNDAMENTALS OF X PROGRAMMING

XSetWMProtocols () is the XID of the window that is going to receive the
message. Number 1 is simply the number of atoms in the list.

We are now ready to remedy the problem in Listing 2.1. The solution is to give
the simple program window the property WM_DELETE_WINDOW, then provide a
response for an event of ClientMessage type. The code is given in Listing 2.3.
The member of the XEvent union in this case is xclient, which in addition to
the members of type and xany (see Fig. 2.2), contains an atom message_
type, an integer for the format of the message and a union, data, 20 bytes long

Listing 2.3. An Xlib Program that Listens to the Window Manager

#include <X11/Xlib>
int main (void)
{

Display *Dpy;
Window w;
XEvent activity;

Atom wm_quit;
Dpy = XOpenDisplay (" ");
w = XCreateSimpleWindow (Dpy, DefaultRootWindow(Dpy),

0, 0, 256, 256, 4, 1, 0);
XSelectInput(Dpy, w, ButtonPressMask);
wm_quit = Xinternatom(Dpy, "WM_DELETE_WINDOW", False);
XSetWMProtocols (Dpy, w, &wm_quit, 1);
XMapWindow(Dpy, w);
while(1) {

XNextEvent (Dp, &activity);
switch(activity.type) {
case ClientMessage:

if(activity.xclient.data.1[0] != w, _quit)
continue;

printf("Exit because of window manager action\n");
break;

case ButtonPress:
printf("Exit because of user action\n");
break:

default: continue;
}
break;

}
XCloseDisplay(Dpy);
return(0);

}

X WINDOW SYSTEM 49

that can be interpreted as an array of 20 characters, 10 short integers, or 5 long
integers. In this listing we select the long integer interpretation.

We made one minor and two major changes in Listing 2.1. We replaced the "if
equal" statement with a switch that contains printf statements to describe the
action. Major changes—setting the window manager protocol property and
handling the ClientMessage—are highlighted.

Once we intercept the ClientMessage event, we may choose not to exit
immediately or even not exit at all. For example:

if (activity.xclient.data.1[0]!= wm_quit) continue;
printf("You cannot quit that way\n");
continue;

The most common response is to ask the user for confirmation. In an editor we may
save modified files or perform various clean-up tasks.

2.5. GRABBING AND SPYING

We devote this section to a spying program where the user points to a window,
and the program provides information about characteristics of that window. The
program is a complete application that illustrates many of the fundamental features
of X. Because this section deals only with an example program, it may be skipped
without affecting the user’s understanding of the rest of the book.

2.5.1. Basics of a Window-Spying Program A nontrivial application
requires much more code than the examples of X programs we have seen so far.
Because we have not yet covered the material needed to set up such an application,
we use the Starter toolkit (see Sec. 1.3) to obtain basic program functionality.
Starter toolkit functions and data types carry the prefix St. For some parts we must
use the Xt (see Sec. 1.2, it is covered in detail in Chap. 4). Functions of the Xt carry
the prefix Xt. We are going to pass quickly over that code to focus on Xlib
functions that do the real work. The program is given in Listing 2.4.

Creation of the application is shown in Listing 2.4 (Part 1). The program
creates a single window and assigns to it a redrawing function (paint) and a
function to handle user-generated events (act). Functions without prefixes St, Xt,
or X are local.

Listing 2.4 (Part 2) contains the drawing code. The function paint () is
called only once; it is used to initialize certain static variables. Subsequent
redrawing (if needed) is done by the function repaint (). The array buf [] [] is
used to store messages displayed on the screen. The array is read and messages
displayed through the display_info () function, which is called by the

50 FUNDAMENTALS OF X PROGRAMMING

Listing 2.4. Window Spying-File spy.c (Part 1)

/* Interrogate Window Properties - The main function */
/* Create an application with a drawing window */
/* of dimensions WIDTH by HEIGHT and label "Spy" */
/* paint() does the window drawing in response to */
/* expose events and act() handles user generated */
/* events (mouse events) */
#include <Stdef.h>
#define WIDTH 300
#define HEIGHT 100
void paint() , act ();
main (int arc, char **arv)
{

St_arguments(arc, arv);
St_draw_window(paint, act, WIDTH, HEIGHT, "Spy");

}

Listing 2.4. Window Spying-File spy.c (Part 2)

/* Interrogate Window Properties - The redrawing functions */
#include <X11.StringDefs.h>
#include <X11/Intrinsic.h>
#include <Starter.h>
#include <cat.icon> /* icon for cursor in grab state */
static Display *Dpy;
static Cursor grab_cursor;
static Window spy_window;
static int grab = 0;
#define MAX_LINES 64
static char buf[MAX_LINES] [256];
static int nmsg = 0;
/* Redraw Function (except for the first time) */
void repaint (void)/* see Figure 2.3 */
{

/* Create a black rectangle at the bottom of the
window */
St_use_replace_mode();
St_fill_rectangle(2, HEIGHT-22, 140, 20);
/* Display a label in reverse video */
St_use_xor_mode();
if(grab) St_put_text("Click here to Ungrab", 8,
HEIGHT-8);

X WINDOW SYSTEM 51

else St_put_text("Click here to Grab", 8, HEIGHT-8);
/* Show list of properties */
display_info();

}
/* Initial Redraw Function */
void paint(Widget w)
{

Dpy = XtDisplay(w);
spy_window = XtWindow(XtParent(w));
/* Create a cursor icon to be used when the pointer is
grabbed */
grab_cursor = St_true_cursor(

St_make_color_cursor(cat_bits, 8, 8, "red",
"white"));

repaint ();
St_set_redraw(repaint);

}
/* Auxiliary Function called also from other parts of the
program */
void display_info(void)
{

register i;
St_clear_screen(0, 0, WIDTH, HEIGHT-23);
for(i=0; i<nmsg; i ++) St_put_text(buf[i], 20, 20+20*i);

}

repaint () function, as well as from other parts of the program. Storing the
characters of messages rather than the display bitmap offers an economical backup.

The function repaint () outlines a control area to which the user must point
to start spying. It also calls the function display_into (), which displays
information about the last window spied on. The pointer to the Display structure
and the program window XID are obtained by using Xt macros. Because the Starter
toolkit normally uses a different handle type than Xlib to identify cursors, the
Starter toolkit function St_true_cursor () returns the type needed by Xlib
functions. The function display_info () displays the contents of two text
buffers containing information describing a window. Figure 2.3 shows the window,
which contains information about the window where this text was being edited.

2.5.2. Connecting Cursor Location to a Window The central part of the
program is the response to mouse events (see Listing 2.4, Part 3). The key function
is XQueryPointer (), which in its fourth argument returns the XID of the
window were the pointer is located. It is possible for the display to contain several
nested windows; thus the pointer may be in more than one window. To determine

52 FUNDAMENTALS OF X PROGRAMMING

Listing 2.4. Window Spying -File spy.c (Part 3)

/* Interrogate Window Properties - Locating the
pointer */
#define inside_control(X, Y) ((X) < 140 && (Y) <20)
/* act() is called by the Starter Toolkit with argument a
pointer to a simplified event structure. The widget pointer
is contained in the origin member of that structure. */
void act(St_event *p)
{

Widget w = (Widget)p-> origin;
Window basis, root, child, grandchild;
int r_x, r_y, c_x, c_y, t_x, t_y;
unsigned int kb;
/* Handle only mouse button press events */
if(p->kind != BTN_PRESS) return;
/* Exit when the right button is pressed when the */
/* the pointer is not grabbed *
if (P->key==RIGHT && &!grab) e x i t (0);

TE
AM
FL
Y

Team-Fly®

X WINDOW SYSTEM 53

/* **** Do the real spying **** */
/* Find the coordinates of the pointer with respect */
/* the root window */
basis = DefaultRootWindow(Dpy);
XQueryPointer(Dpy, basis,

&root, &child, &r_x, &r_y, &c_x, &c_y, &kb);
if(!child) {

sprintf(buf[0], "No window at %d %d - Root statistics",
c_x, c_y);
window_stats (basis);

}
else {

XQueryPointer (Dpy, child,
&root, &grandchild, &r_x, &r_y, &t_x, &t_y, &kb);

if (grandchild) {
/* Check if event occurred in control area */
if (grandchild==spy_window &&

inside_control(p-> x, HEIGHT-p->y)) {
if(!grab) grab_pointer(XtWindow(w));
else release_pointer();
return;

}
sprintf(buf[0], "Window %o at %d %d",
grandchild, c_x, c_y);

window_stats(grandchild);
}
else { /* Event occurred outside shell window,
probably in another child of the WM inserted
parent */

sprintf(buf[0], "WM Decor Window %o at %d %d",
child, c_x, c_y);
window_stats (child);

}
}
display_info();
return;

}

54 FUNDAMENTALS OF X PROGRAMMING

the window returned by XQueryPointer (), a parent window identifier is passed
as the second argument. The window returned is an immediate child of this parent
window. When the bottom of the nesting hierarchy is reached, zero is returned
instead of a window XID. Thus to find the smallest window containing the pointer,
we execute the following code:

child = DefaultRootWindow (Dpy);
do {

basis = child;
XQueryPointer (Dpy, basis,

&root, &child, &r_x, &r_y, &c_x, &c_y, &kb);
} while (child);

In the code in Listing 2.4 (Part 3), we start with the root window, so the first call to
XQueryPointer () returns the XID of the window inserted by the window
manager between the root window and the top application (shell) window. To find
the top window of the application, we must call XQueryPointer () once more.
The shell window XID is in grandchild. When the window manager reparents
the top window of an application, it also creates siblings for it (where the various
labels and buttons reside). If the pointer is in one of these, there is no other child, so
the value of grandchild is zero. If the grandchild is the same as the spy
window and the pointer is inside the control area, then we change the state of the
program by calling either of the functions given in Listing 2.4 (Part 4). The function
grab_pointer () grabs the pointer, i.e., pointer events are sent to the grabbing
application even if these occur outside its windows. The application lets the user
know about the change by replacing the cursor icon. When the pointer is released,
we return to the normal condition where pointer events are sent to the application
that owns the window where the event occurred. In both cases the window is
repainted to change the control area label.

2.5.3. Finding Out about the Window We are finally ready to interrogate
the window. Functions window_stats_attr () and window_stats_prop ()
provide what we are looking for.

We can add more statements to list additional properties, foe example:

sprintf(buf[nmsg++] , "upper left corner is at %d, %d" ,
window_info.x, window_info.y);

sprintf(buf[nmsg++], "backing store: %d",
window_into.backing_store);

Unfortunately the message generated by the last statement is not very informative
because it has an integer value of significance only to Xlib. A better solution is to
use a switch depending on the symbolic names for backing store values:

X WINDOW SYSTEM 55

Listing 2.4. Window Spying-File spy.c (Part 4)

/* Interrogate Window Properties - Grabbing the pointer */
#include <stdio.h>
void grab_pointer (Window w)
{

int gstat = XGrabPointer (Dpy, w,
False, /* events to window */
ButtonPressMask ButtonReleaseMask,
GrabModeAsync, /* for pointer */
GrabModeAsync, /* for keyboard */
None, /* no confinement */
grab_cursor,
CurrentTime);

if (gstat==GrabSuccess) {
grab = 1;
repaint();

}
else fprintf (stderr, "Failed to Grab Pointer!\n") ;

}
void release_pointer (void)
{

if (grab) XUngrabPointer (Dpy, CurrentTime);
grab = 0;
repaint();

}

switch(window_info.backing_store) {
case Always:

sprintf(buf[nmsg++],
"backing store is always available");
break;

case WhenMapped:
sprintf(buf[nmsg++],

"backing store is available when window is mapped");
break;

case NotUseful:
sprintf(buf[nmsg++], "backing store is not useful");
break;

default:

}

56 FUNDAMENTALS OF X PROGRAMMING

Listing 2.4. Window Spying-File spy.c (Part 5)

/* Ask for all information */
void window_stats(Window w)
{

window_stats_attr(w);
window_stats_prop(w);

}
/* Interrogate Window Attributes -
Finding out about the Window */
void window_stats_attr (Window w)
{

XWindowAttributes window_info;
nmsg = 1;
XGetWindowAttributes(Dpy, w, &window_info);
sprint (buf[nmsg++], "dimensions %d by %d"),

window_info.width, window_info.height); /* ... */
}

Listing 2.4 (Part 6) shows a similar program for investigating window
properties.

Note: The program in Listing 2.4 (Part 6) is not complete, see Project 4.

Listing 2.4. Window Spying-File spy.c (Part 6)

/* Interrogate Window Properties -
Finding about the Window */
void window_stats_prop(Window w)
{

Atom *atom_prop;
int num_prop = 0;
char property_name[32];
register i ;
atom_prop = XListProperties (Dpy, w, &num_prop);
if (num_prop < 1) return;
sprintf(buf[nmsg++], "%d properties", num_prop);
for (i=0; i<num_prop; i++) {

/* Display the atom names instead of the numerical
values */
sprintf (property_name, "%s",

XGetAtomName(Dpy, atom_prop[i]));
switch (atom_prop[i]) {

X WINDOW SYSTEM 57

case XA_WM_NAME:

{
XTextProperty data;
XGetWMName(Dpy, w, &data);
sprintf(buf[nmsg++], "%s: %s"", property_name,
data.value);

}
break;
case XA_WM_CLIENT_MACHINE:
/* ... */
default: sprintf(buf[nmsg++], "%s", property_name);
}

}
}

2.6. CONCLUSIONS

Chapter 2 examines the mechanism of window creation by Xlib and briefly
discusses the X protocol and interaction between window managers and other
applications. For most if not all applications, the programmer need not be
concerned with those issues because these are handled by various toolkits. However
they are important issues because they are the basis of the X Window System,

Creating applications with Xlib alone can be a formidable process. The
program in Listing 2.1 is misleadingly simple. Not only does the window lack
functionality, it also lacks significant features needed to conform to the ICCCM (see
Section 1.1.3). The Xt takes care of the latter, and it also provides mechanisms for
adding functionality, so in most applications the programmer does not have to
worry about conforming to ICCCM or attaching properties to a window.

While window creation is always hidden from the application by the toolkits,
user-generated events may not be. For such events the user must deal directly with
the XEvent (union of) structure(s). Depending on the toolkit being used it may
even be necessary to deal with some window properties (Section 4.2.6 shows how
to handle the WM_DELETE_WINDOW message from Xt).

Note: The programming style often associated with X reflects the constraints
of Xt rather than Xlib. This is certainly the case with modal input.

2.7. PROJECTS

1. Locate the shell script that starts X in your system and try to identify
statements that refer to the server and the window manager.

58 FUNDAMENTALS OF X PROGRAMMING

2. Investigate how to run your programs on a different machine from the one
controlling the display. Normally the Unix shell variable DISPLAY
contains the necessary information. (Type echo $DISPLAY to see the
current destination. Most likely the answer will be: 0 . 0, which stands for
local display.) If you are sitting in front of a display controlled by a
machine named saturn and you want to run your program on a machine
named jupiter, the following sequence may work. (Bold characters
denote the machine prompt.)

saturn 12 % xhost +jupiter
saturn 13 % rlogin jupiter
jupiter 1 % setenv DISPLAY saturn:0
jupiter 2 % a.out

Details of this operation depend on the particular installation, so you
should ask your instructor or system administrator for help if the
preceding sequence does not work. (The third statement assumes a C shell
command interpreter. Although it is the most commonly used shell in
educational environments, it is not universal.)

3. Write a program to create a window in each of several displays. You must
modify Listing 2.1 by enclosing all statements referring to Dpy in a loop,
then replacing the empty string in Statement 1 by the appropriate machine
name. To execute your program, secure appropriate permission for each
machine. You can make that program useful by displaying a message in
each window. (To do so requires you need material in Chap. 8, which can
be read any time, since it depends only on Chap. 1.)

4. Implement the program in Listing 2.4 and complete it so that it displays
information about all attributes and properties.

3

Introduction to the X
Toolkit

3.1.

3.2.

3.3.

61
61

62
64

67
67
68
68
70

71
75
75
78
79
79
80
83

Widgets.
3.1.1.
3.1.2.

3.1.3.
3.1.4.

3.1.5.

3.2.1.
3.2.2.
3.2.3.

3.2.4.
3.2.5.
3.2.6.

3.3.1.
3.3.2.
3.3.3.

Basic Definitions .
Widget Class Hierarchy, Widget Tree, and
I n s t a n c e s .
Widget Creation and Parameter Specification
Some Specific Classes and Some of Their
Resources. .
Widget Realization, Management, and Mapping. .

Using Resources. .
Overview. .
Minimal Program .
Passing Resource Values through the Command
L i n e .
Fallback Resources. .
Resource Line Syntax. .
Priorities. .

Resources Definition.
C o n c e p t .
Resources in X .
Quarks

59

60 FUNDAMENTALS OF X PROGRAMMING

3.3.4. XtResource Structure . 84
3.3.5. Resource Conversion . 87
3.3.6. Finding out about Class Resources 89
3.3.7. A Warning on the Use of Resources 90

3.4. Conclusions . 91
3.5. Projects . 92

X TOOLKIT 61

3.1. WIDGETS

3.1.1. Basic Definitions Creating a window can be a complex affair
because we must deal with interclient communications and other requirements not
yet discussed. On the other hand creating a window is a very common operation
that any X program does. These two conditions, commonality and difficulty, led to
the development of Xt, which we previewed in Sec. 1.2.2.

The Xt includes some basic widgets, which are much larger and more complex
window objects than the example in Listing 1.4. We later examine the internals of
the widgets, but here we point out that these widgets form a hierarchy, the widget
class hierarchy. A widget class is a type of window object. The Xt provides a Core
widget class containing necessary information for any widget. Other widget classes
are built by adding members to the core widget structure.

Definition

Widget class B is derived from widget class A, or B is a subclass of A, if the
structure of B contains all members of A in addition to the other members of
its own class.

Thus Xt has a Composite widget class derived from the Core class by adding
members that deal with children. (In that sense the window object in Listing 1.4 is a
composite window object.) According to the preceding definition, the Composite
class is a subclass of the Core class. Subclass seems counterintuitive because the
Composite class has more members than the Core class, but it makes sense in terms
of class hierarchy.

Two classes are derived from the Composite class: Constraint and Shell.
Constraint widgets can have many children, and they can control their layouts. Shell
widgets can have only one child, but they can interact with the window manager.
These four classes are the major base classes of Xt. Figure 3.1. shows the
relationship between their structures, and Figure 3.2 shows the hierarchy.

Since the base classes are incomplete, additional work is needed to construct
widget classes that can be used by application programs. This is where such toolkits
as Athena, OLIT, and Motif come into play: They provide many widget classes that
can be used by application programs. Each widget class has a name used by
application programs, for example commandWidgetClass in Listing 1.2. The
names are actually pointers to structures; somewhere in the system code there is a
definition:

62 FUNDAMENTALS OF X PROGRAMMING

typedef struct ... *commandWidgetClass;

However application programs are not supposed to access the members of the
structures directly.

3.1.2. Widget Class Hierarchy, Widget Tree, and Instances Do not
confuse class hierarchy with the application widget tree (see Sec. 1.2.1). The former
describes how classes are derived from one another; the latter describes which
window includes another, and it is also used as a data structure for storing the
widgets. The distinction becomes clearer if we distinguish between a widget class
and an instance of a widget.

TE
AM
FL
Y

Team-Fly®

X TOOLKIT 63

A widget class is a structure definition, such as shown in Listing 1.4. An
instance of a widget is a particular object whose type belongs to the class. Thus in
Listing 1.1 variables toplevel and button each point to an instance of the
window object. In the following a statement, int is a type of variable, while n and
m are instances of that type:

int n, m;

Important Point

Class hierarchy deals with classes themselves, whereas the widget tree
consists of instances of widgets.

Figure 3.3 shows the window layout and the widget tree for an application with
a selection panel with buttons and a drawing window. The top widget of the widget
tree is always a shell widget because it must deal with the window manager. A shell
widget can have only one child, so that child must be a composite widget or even
better a constraint widget. A constraint class widget is preferable because it can
dynamically manage the layout of its children. In this case it has two children: A
panel widget (a subclass of Composite) and a drawing widget (which may be a
subclass of Core). The panel widget has as many children as buttons.

In general class hierarchy is primarily of interest to widget writers, so most
application programs do not have to deal with it. However the widget tree is of

64 FUNDAMENTALS OF X PROGRAMMING

obvious interest: with one exception it determines the containment relationship of
an application windows.

Pop-up widgets are the exception to the containment rule. The window of a
pop-up widget is always a child of the root window, but the widget itself can be the
child of any widget in the tree, including the top shell widgets. (The rule that shell
widgets must have only one child does not apply to pop-up widgets. Shell widgets
can have only one managed child.) We discuss pop-up widgets in more detail in
Sec. 4.5.

3.1.3. Widget Creation and Parameter Specification Widgets are
created with the function XtVaCreateManagedWidget (), which we first
saw in Sec. 1.2.1. (Listing 1.1) with the call:

button = XtVaCreateManagedWidget ("button",
commandWidgetClass, toplevel, XtNlabel, "Hello World"
XtNwidth, 256, XtNheight, 256, NULL);

The first argument of the function is the name of the widget instant, the second the
widget class, the third the parent widget, and the rest refer to resource values. In this
case parameters are passed as pairs of names and values. There is another function
for creating that accepts resource values in a different format. The corresponding
example to the preceding call is.

Arg Parameters[]={
{ XtNlabel, "Hello World" },
{ XtNwidth, 256, },
{ XtNheight, 256 } };

/* ... */
button = XtCreateManagedWidget("button",

commandWidgetClass, toplevel, Parameters, 3);

The type Arg is defined as a structure with two members: A pointer to a
character string and a long integer that holds either values (as in the case of
XtNwidth and XtNheight) or pointers (as in the case of XtNlabel). The type
ArgList is a pointer to Arg.

All widget functions that accept resource values as arguments come in two
forms; in general:

XtSomething(/* ... */, Array_of_Arg_Structures,
Number_of_Elements);

XtVaSomething (/* ... */, Resource_Name, Value,
Resource_Name, Value, NULL);...

X TOOLKIT 65

The NULL value (for a resource name) tells the function that the list is finished. For
example in Listing 1.1 we used

toplevel = XtVaAppInitialize(&app, "Trivial",
NULL, 0, &arc, arv, NULL, NULL);

We could instead used

top = XtAppInitialize(&app, "Trivial",
NULL, 0. &arc, arv, NULL,
(Arg)NULL, 0);

Functions that accept a variable number of arguments are called varargs
routines; these were not part of early Xt releases. While indirectly passing the
XtSomething () form usually results in more economical code, explicitly
passing pairs in XtVaSomething () results in more informative code; given the
educational goals of this book, we prefer the latter.

Widget parameters can be set or read by a pair of functions that have the
following prototypes:

XtVaSetValues (Widget, name and value pairs,...,NULL)
XtVaGetValues (Widget, name and value address pairs,...,
NULL)

There are certain restrictions on how values are specified that apply to both varargs
and the original routines.

Caution

In set value functions (either XtVaSetValues () or XtSetValues ()),
values should be in the type expected by the program or one automatically
converted into the type expected by C. (For example int will do if short is
expected.) Values cannot be given as strings.

For example it is wrong to call

/* wrong code */
XtVaSetValue(w, XtNbackground, "blue", NULL);

Instead we must compute a pixel value that corresponds to blue, then call

66 FUNDAMENTALS OF X PROGRAMMING

Pixel blue;

/* ... */
XtVaSetValue(w, XtNbackground, blue, NULL);

Section 3.3.5 discusses how to do such a conversion. Restrictions on type are much
stricter for get value functions.

Caution

When calling a get value function (either XtGetValue () or XtGetVa-
lues ()), special care must be taken to provide the exact type for value
arguments that Xt expects.

For example:

Dimension width, height;
XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,
NULL);

The type dimension is declared by the Intrinsics to be unsigned short. The
following code results in an error in systems where int is not the same size as
short:

/* wrong code */
int width, height;
XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,
NULL);

There is a way of getting around specifying values in their true type that is
offered only by varargs routines. If we provide the argument XtVaTypedArg as
the resource name, then the Intrinsics use the subsequent four arguments to
compute the resource value from a string representation. For example we can set the
background color to blue by using the following code:

XtVaSetValue(w, XtVaTypedArg,
XtNbackground, XtRString, "blue", strlen("blue")+1,
NULL);

The first of the four arguments is the resource name; the second is the type of the
value. Since we plan to use this feature with value names, the second argument must

X TOOLKIT 67

always be XtRString. The third argument is the string with the name of the
value, and the fourth is the length of the string. (The mechanism of
XtVaTypedArg is more general than we just described, but the form we gave
is enough for the scope of this book.)

We return to using set value functions in Sec. 3.4, where we give some reasons
for restricting their use.

3.1.4. Some Specific Classes and Some of Their Resources Resources
are the common mechanism used to specify widget parameters because they allow
parameter specification at either compilation or execution time.

The most basic class is Core, which has 18 resources; these are also resources
of every other widget class. Here we discuss those most relevant to simple
programs. Five of these are used to determine the window position and dimensions;
these are called the geometry resources: XtNx, XtNy (coordinates of top left corner
with default value 0), XtNwidth, XtNheight (dimensions with default value 0),
and XtNborderWidth (default value 1). The type of the first two is Position
(actually int), and the other three are Dimension (actually unsigned
short).

The color of the window is specified by XtNbackground, whose type is
Pixel (actually unsigned long). There is also XtNborderColor, with the
obvious meaning. Default values for the background color is usually white and for
the border color, black. Core does not have a XtNforeground resource (color
with which to draw on). That resource exists only in some derived classes.

A few other resources describe display device properties, and these are
normally used mainly for information by application programs; for example
XtNdepth is the number of bits per pixel. The resource XtNcolormap refers to
the colormap, the table that establishes conversion between bit patterns stored in
refresh memory and actual colors (see Sec. 1.4.1). This resource may be modified
by application programs (see Chap. 9).

The resource XtNmappedWhenManaged (of type Boolean and default
value TRUE) is a flag whose use is explained in Sec. 3.1.5.

The Shell class is important because it is the class of the top widget of each
application as well as of any pop-ups. There are actually four shell classes; the one
of interest at the moment is ApplicationShell. The following are some of its
most commonly used resources: XtNtitle (the string that goes on the window
frame created by the window manager), XtNiconPixmap (the icon that appears
when the window is iconified), XtNiconX and XtNiconY (the position of the
icon), etc. We discuss shell widgets in more detail in Sec. 5.5.

3.1.5. Widget Realization, Management, and Mapping Widgets are
client structures; when they are created, their windows are not. There is a good
reason for that: Container widget dimensions are not usually known until its

68 FUNDAMENTALS OF X PROGRAMMING

children are created. For example menu panel dimensions depend on its button
dimensions, and the dimensions of the latter are determined by their label size. Thus
we normally wait until all widgets are created before creating their windows. The
following function not only creates the window of w but also those of all managed
widgets in the tree whose root is w:

void XtRealizeWidget(Widget w)

By definition a managed widget is one that is taken into account when the window
dimensions of its parents are computed (see Sec. 5.1.2 for more on this topic). For
now we deal only with managed widgets.

The function XtRealizeWidget () is normally called with the argument
of the topmost application widget. If the resource XtNmappedWhenManaged is
true, then the widget window is also mapped; i.e. it appears on the screen (see Sec.
5.1.2 for explicitly mapping and unmapping widgets). This is the most common
case, but there are times when we do not want to display a widget, for example a
button that can be used only after the program has reached a certain state.

The difference between a managed unmapped widget and an unmanaged
widget is that the space occupied by the widget appears vacant in the former case,
while no such space is shown when the widget is unmanaged. If the button in the
example is initially unmanaged, then later managed, it causes a rearrangement of its
parent’s entire layout, which may disturb the application user. If the button is
managed and initially unmapped, when mapped it simply fills a vacant space in its
parent’s layout.

3.2. USING RESOURCES

3.2.1. Overview Resources are a mechanism used by X (and other
window systems) to facilitate customizing programs. X not only allows parameters
to be specified through the command line but also through files read at execution
time. We already considered this subject in Sec. 1.2.2; here we discuss it in more
depth.

Resources can refer to a widget or an application. X lets you specify resources
in six ways:

1. As part of a property (RESOURCE_MANAGER) of the root window of
the display; this ensures that such resources are used by all applications
running on that machine.

2. Within a set of files that each program searches according to certain rules
(we provided an example in Sec. 1.2.2).

X TOOLKIT 69

3. As part of the command line argument list (see Sec. 3.2.3).
4. Through a fallback mechanism (discussed in Sec. 3.2.4).
5. As part of the arguments of the widget creation function [for example

XtVaCreateManagedWidget () in Listing 1.1] or through the
XtVaSetValues () function.

6. As default values of the widget.

The application user has access only to the first three mechanisms;
mechanisms 4–5 are used by application programmers. While a different parameter
specification method may be possible during program writing, the use of resources
ensures uniformity in the parameter specification mechanism.

Resources are a mixed blessing: While a degree of customization is desirable,
it can also be carried too far. A common example is language customization. All
text labels can reside within an application as resources, and we can place all actual
text in a resource file. Then to run the program using a different language, we need
change only the resource file. We believe this is too drastic a change to be left to the
users: There is not much harm to a program if a user displays text labels in lime
green on a peach color background (instead of black on white), but displaying the
wrong text can be disastrous. X does not provide different security levels for
resources, so language customization must be done through an include file that
requires program compilation (but no editing of the source).

The resource mechanism assumes that the user (or the user’s administrator)
will do things right. This is a rather optimistic assumption, so resource files or
resource command line arguments should never be used for essential program
parameters. As we explain in Sec. 3.2.6, resource specification by function
arguments (Mechanism 5) always overrides other specifications, and it should be
used only for critical parameters. By the same token such specification should be
avoided for resources where we want to allow user customization.

X has a resource database utility xrdb, which changes resource values in files
without having to edit such files explicitly. The program operates by setting the
RESOURCE_MANAGER property in the root window. Running the following piece
of code displays the resource database for the root window which is used by all
programs running on the server:

xrdb -query

Running the following piece of code adds the resources in the file new_stuff to
the RESOURCE_MANAGER property:

xrdb -merge new_stuff

70 FUNDAMENTALS OF X PROGRAMMING

If the file name is missing, the following piece of code reads the standard input:

xrdb -merge

The following command copies the RESOURCE_MANAGER property into a file
named junk: xrdb -file junk. The following command places the contents
of the file into the RESOURCE_MANAGER property: xrdb -load junk.

Since resources specified in this way apply to all programs, we should not use
it carelessly (see Sec. 3.2.6).

3.2.2. A Minimal Program In this section we create a minimal application
consisting of an application shell and a core widget to explain how the Xt deals with
resources and (see Sec. 4.2) events. The core widget can be used as a drawing
widget, as we explain in Sec. 5.6, but here we are concerned only with resource
specification, so, we do not provide the application with functionality. Listing 3.1
shows such a minimal program.

The call XtAppInitialize () hides many operations, including initializ-

ing Xt, establishing a connection to the server (by calling XOpenDisplay
(" ")) , dealing with resources, and creating an application shell widget. (Actually

this is a convenience function that calls five others that do the work.) The app (of
type XtAppContext) is a useful structure for programs that open connections to
many servers. (It contains an array of Display pointers.) It is of no use in
programs that use only one server, but we must carry it along as a price for
generality. The string "Min" specifies an applications class—a name for related
programs that may have similar resources. We ignore arguments set to NULL or 0
for the time being and point out that we pass arguments from main() to
XtAppInitialize (). Since these are parsed for values recognized by Xt they
offer a way to provide resource values. In particular the first argument (arv [0]),
which is the name of the program, is used to label the top widget in the widget tree.

The function XtVaCreateManagedWidget () creates the drawing
widget, and XtRealizeWidget () creates and maps the windows. The function
XtAppMainLoop () executes an infinite loop that checks for events (see Sec.
4.1). The program can be compiled and linked with the following Make-file:

INCLUDE = -I/usr/local/X11R6/include
LIB = -L/usr/local/X11R6/lib
CFLAGS = ${INCLUDE} -I. -g
$(PGM): $(PGM).0

$(CC) $(PGM).o $(LIB) -lXt -lX11 -lm -o $(PGM)

If we run the program, a window appears, but when we exit from the
surrounding window, we notice the error message in Sec. 2.4.2. This will not

X TOOLKIT 71

Listing 3.1. Minimal X Toolkit Program

/* Minimal Xt Program */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <X11/Core.h>
int main (int arc, char **arv)
{

Widget top, canvas;
XtAppContext app;
/* Initialize the X Toolkit, read the resource files,

open a connection to the server, and create a shell
widget

*/
top = XtVaAppInitialize(&app, "Min", NULL, 0,

&arc, arv, 0,
NULL);

/* Create a canvas widget using the core class */
canvas = XtVaCreateManagedWidget ("canvas",

coreWidgetClass, top
XtNWidth, 200, XtNheight, 200,

NULL);

XtRealizeWidget(top);
XtAppMainLoop(app);

}

happen if we link the program to the Motif or OLIT libraries, but it will persist if we
link it to the Athena libraries. In the latter case we need the remedy in Sec. 4.2.6.

3.2.3. Passing Resource Values through the Command Line The Xt
allows us to use the resource mechanism in command line arguments. To use
resources to set the application window size we must remove the dimension
arguments during creation of the canvas widget, so that the call is

canvas = XtVaCreateManagedWidget ("canvas",
coreWidgetClass, top,
NULL);

If we compile the program and run it without arguments, it will fail because
the default dimensions of core are 0 and X will not create a window with either of

72 FUNDAMENTALS OF X PROGRAMMING

these equal to 0. To give different dimensions, we can execute

min -xrm "*width : 200" -xrm "*height : 50"

The command line arguments were passed to XtVaAppInitialize (), where
they were parsed to extract resources. When the argument -xrm is seen, the next
argument is parsed as a line from a resource file.

This form seems cumbersome; it is simpler to write

min -w 200 -h 50

It is possible to do that by using the third and fourth arguments of
XtVaAppInitialize () as described in Listing 3.2.

If we compile this code, then we can run it as:

min1 -w 400 -h 500

Listing 3.2. Specifying the Form of the Command Line

/* Command Line Argument Specification */
/* Same include files as in Listing 3.1 */
/* Instructions on parsing the command line for

resources */
XrmOptionDescRec command_line_syntax[] = {

{"-w", "*width", XrmoptionSepArg, NULL},
{ "-h", "*height", XrmoptionSepArg, NULL },
};

main (int arc, char **arv)
{

Widget top, canvas;
XtAppContext app;
/* Initialize the X Toolkit, open a connection to the
server, look at resources, and create a shell widget */
top = XtVaAppInitialize(&app, "Min1",
command_line_syntax, 2,
&arc, arv, 0, NULL);

/* The rest is the same as in Listing 3.1 */
}

TE
AM
FL
Y

Team-Fly®

X TOOLKIT 73

to obtain a window 400 by 500 pixels in size. The entry XrmoptionSepArg is a
symbolic constant specifying that the resource value should be taken from the next
argument in the command line.

The XrmOptionDescRec contains four members: Two character strings—
option (the command line argument defined) and specifier (the resource
name); an enumerator (in effect an integer) argKind (for storing a symbolic
name, such as the preceding XrmoptionSepArg); and a caddr_t (pointer),
called value, where we store a value to be used if the third argument is
XrmoptionNoArg. The type XrmOptionDescList is defined as a pointer to
a XrmOptionDescRec structure.

There are a few other abbreviations known to Xt including the following:

-bg Next argument is the name of the window (background) color
-fg Next argument is the name of the drawing (foreground) color
-font Next argument is the font name
-title Next argument is the title on the window frame
-rv Windows appear in reverse video (no extra argument)
-iconic Applications starts in iconic form (minimized, no extra

argument)
-geometry Specify geometry (see discussion below)
-sync Run in synchrony between client server (good for debugging)

For example the following piece of code displays a green window with the title
"Green Acres" (the first two flags are specified in the code of min1. c in Listing
3.2):

min1 -w 400 -h 500 -bg green -title "Green Acres"

The first three flags (-bg, -fg, and -font) are applicable to any widget; the rest
applies only to the top shell. Unique abbreviations are also acceptable, for example
-g for -geometry. See Sec. 3.6 [AS90] for a complete list of command line
abbreviations known to Xt.

The geometry resource has a specific syntax:

width×height+x+y

where the names in italics must be replaced by integers; + may be replaced by – .
Not all arguments must be present. The following examples are all legal:

... -g 500×300 # Main window to be 500 pixels wide
and 300 pixels tall

74 FUNDAMENTALS OF X PROGRAMMING

... -g +400

... -g 500×300+400

... -g ×100

Main window to be 400 pixels to
the right of the top left corner
All of the above
Main window to be 100 pixels tall

Using command line arguments for resources is easy for simple programs, but
it presents potential conflicts in complex programs that expect many arguments of
their own. Some flags, such as -g and -t, are common letters that may have a more
natural use in certain applications. On the other hand the -xrm flag is rather
unique, so it should pose no problems. An even better solution is to use a common
prefix, for example X, for X resources to avoid conflicts. If we modify the code in
Listing 3.2 as:

{ "-Xw", "*width", XrmoptionSepArg, NULL },
{ "-Xh", "*height", XrmoptionSepArg, NULL },

then we use the following command line to define window dimensions:

mini -Xw 400 -Xh 500

Listing 3.3. Fallback Resources

/* Fallback Resources */
/* Same include files in Listing 3.1 */
/* Resource values if found nowhere else (last resort) */
String fallbacks []={

"*width: 100", "*height: 300",
NULL);

main (int arc, char **arv)
{

Widget top canvas;
XtAppContext app ;
/ * Initialize the X Toolkit, open a connection to the
server, look at resources, and create a shell
widget */
top = XtVaAppInitialize(&app, "Min",

(XrmOptionDescList) NULL, 0,
&arc, arv, fallbacks, NULL);

/* the rest is the same as Listing 3.1 */
}

X TOOLKIT 75

Unfortunately, there is no way of preventing the Intrinsics from interpreting
arguments as they do except by removing such arguments before passing them to
XtVaAppInitialize (). The convention of using a special prefix for all
arguments interpreted by X was not adopted, even though similar conventions were
used in earlier window systems, such as SUNVIEW.

3.2.4. Fallback Resources The seventh argument of XtVaAppInitia-
lize () can be used to pass a pointer to an array of fallback resources. Its use is
shown in Listing 3.3. String is defined as char *, and the array fallbacks is
an array of pointers to strings treated as lines of a resource file.

If the program min2 is run without arguments it produces a window 100 by
300 pixels in size (rather than fail as does the program in Listing 3.2). These default
values can be overridden by passing arguments, for example:

min2 -xrm "*width: 500"

Fallback resources are useful if an application allows the user to specify a
resource but does not use the widget default value, if the user fails to do so.

Recommended

Fallback resources should always be used to specify noncritical parameters
instead of passing the values as arguments at widget creation time or through
the set value functions.

Using the fallback mechanism allows later customization by the application user.
With assignments through fallbacks, we do not have to worry about value
conversion. Thus for a widget with name pad to have a blue background, we need
the fallback entry:

"*pad.background: blue"

The order of items in the fallback array is not important. Unfortunately
fallbacks make the program code more difficult to read, a major concern for
beginners.

Finally we can combine all resource specification methods at application
initialization to create the program in Listing 3.4.

3.2.5. Resource Line Syntax The following basic rules are used to specify
resource lines whether in a file, command line, or fallback array.

76 FUNDAMENTALS OF X PROGRAMMING

Listing 3.4. Using all Arguments of XtAppinitialize-File min.c

/* Illustration of the arguments of XtVaAppInitialize () */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Core.h>

/* Instructions on parsing the command line for
resources */
XrmOptionDescRec command_line_syntax[] = {

{ "-w", "*width", XrmoptionSepArg, NULL),
{ "-h", "*height", XrmoptionSepArg, NULL),
};

/* Resource values if found nowhere else (last resort) */
String fallbacks[] = {

"*width: 100", "*height: 300",
NULL);

int main (int arc, char **arv)
{

Widget top, canvas;
XtAppContext app;
/* Initialize the X Toolkit, open a connection to the
server, look at resources, and create a shell widget
*/
top = XtVaInitialize(&app, "Min" ,

command_line_syntax, 2,
&arc, arv, fallbacks, NULL);

/* Create a canvas widget */
canvas = XtVaCreateManagedWidget("canvas",

coreWidgetClass, top,
NULL);

XtRealizeWidget(top);
XtAppMainLoop(app);

}

Each resource line has two parts separated by a colon, the specification of the
resource and its value.

Resource specification can be given in terms of instances (lower case letters)
or classes (initial capital letters). A complete specification starts with the application
name followed by names of widgets of the tree path that leads to the widget that has
the resource, followed by the resource name. Each entry is separated by a period, for
example for the program in Listing 3.2:

X TOOLKIT 77

min1.canvas.width: 400

Instead of the program name, we may also use the application class (second
argument of XtVaAppInitialize ()) mentioned in Sec. 3.2.2, for example:

Min.canvas.width: 400

We may also replace the widget name by the class name, for example:

min1.Core.width: 400

or

Min.Core.width: 400

If there is more than one specification, the more specific one takes precedence
(widget name over class name, application name over application class). In this
example the order from most specific to least specific is

min1.canvas.width: 1000
min1.Core.width: 500
Min.canvas.width: 250
Min.core.width: 125

In this case all Core class widgets in application min1 have width 500, except
those named canvas; those will have width 1000. (Note: A widget name need not
be unique within an application if all widgets with the same name can have the
same resources.) In applications other than min1 but of class Min, the width of
Core class widgets will be 125 except those named canvas; those will have width
250.

It is possible to omit and replace some names by an asterisk, ‘*’, a process
called wildcarding. This makes sense in our example, where we have only one
canvas widget, for example:

min1*width: 500

We have already used this notation in the examples of the previous section where
we used complete wildcarding such as:

*width: 200

78 FUNDAMENTALS OF X PROGRAMMING

While starting a resource with an asterisk is perfectly safe in a command line or
fallback specification, it should be used with care in file specifications because it
applies to all programs.

Caution

The asterisk symbol (*) does not have the same meaning as in Unix shell
commands and regular expressions. It stands for complete widget names (or
classes) or a sequence of the same.

For example, the following piece of code does not apply to all programs whose
name starts with a z but only to the program named z. z*width: 200 The correct
way of specifying program classes is through the second argument of
XtVaAppInitialize().

3.2.6. Priorit ies What happens if a resource is specified in more than one
place? To understand the process, we must look at the places where resources are
specified. The application initialization function (XtVaAppInitialize ())
reads the files, parses command line arguments, and looks at fallbacks. Resource
specification through function arguments (Mechanism 5 in Sec. 3.2.1) comes later
in the program; therefore resources as function arguments override all others.

Other things being equals, command line arguments have priority over values
read from files or from the RESOURCE_MANAGER property. Fallbacks come into
play only if a resource is not already specified. Thus fallbacks have the lowest
priority except for widget default values.

The situation is more complex for files, but here is a general principle: The
tighter the specification, the higher the priority. Thus specifications tied to an
application take priority over general widget specifications.

We do not discuss priorities between different files where a resource can be
specified. When the XENVIRONMENT variable specifies a file (the mechanism
discussed in Sec. 1.2.2), that file takes priority over all others. Rules for other files
are rather complex; we do not need to know them until we write a program that will
be made public. Many resources are kept in the file named .Xdefaults in the
user’s home directory; the contents of that file are normally loaded into the
RESOURCE_MANAGER property at start-up time.

Priorities are clearly established by the time something is specified. Since
widgets are created after the call to XtVaAppInitialize (), values specified at

X TOOLKIT 79

creation time override any values specified during that call. Since XtVaSetVa-
lues () is called after widget creation, it has the highest priority of all.

Caution

Never specify a resource value through XtVaSetValues () [or XtSet-
Values ()] unless you really mean that this is the only value allowed. The
same warning applies to specifications at widget creation time.

3.3. RESOURCE DEFINITION

3.3.1. Concept So far we have discussed the resource mechanism in
application programs. By associating a character string and a value, we can specify
parameters for widgets through function arguments, command line arguments, and
files. Here we describe how such resources are defined. All examples in this chapter
apply to application resources, but the mechanism is identical for widget resources
as well.

The simplest way of defining a resource is to associate a character string
(resource name) with the memory location where the value is stored, for example:

typedef struct {
const char *name;
int value;

} mini_resource

(We use the const qualifier to make sure the name does not change.) Then we can
use this type in a program to specify two integer parameters as follows:

mini_resource v[2] = {
{"start",1 },
{"stop", 100 }

};

Inside the program we use the values v [0] . value or v [1] . value, etc.
This definition provides default values that can be changed in various ways. For
example we can pass them through the command line as follows:

a.out -start 20

80 FUNDAMENTALS OF X PROGRAMMING

For this scheme to work, inside the program we need a loop with such code as:

for(i=l; i<arc; i++) (/* examine all arguments */
if (arv [i][0]=='-') {

for (j=0; j<2; j++) {
if (strcmp(v[j].name, arv[i]+1)==0) {

if (i+1 < arc) {
int n = atoi(arv[i+1]);
if (n > 0) v[j].value = n;

}
break;

}
}

}
}

The function strcmp () returns 0 when the two strings match. In this case the
match occurs for i equal to i and j equal to 0, so that:

v[0].value = atoi (arv[2]);

In this example we accept all positive values; other permissible ranges can be
treated the same way.

While this simple mechanism works, it has many disadvantages. First it allows
only integer parameters. Obviously we need a wider range, and we also need
additional conversion routines besides atoi (). Second we need to separate the
name definition from the value definition, since having these in the same structure
makes awkward programs if there is another more natural parameter grouping.
It would be better to have an address next to the name instead of a value, for
example:

typedef struct {
char *name;
int *place;

} mini_resource;

X goes farther by including in the resource structure information about the type and
default values, a class name (so that values can be specified for a group of
resources), etc.

3.3.2. Resources in X We continue with the example in Sec. 3.3.1, but
now we create a new structure to store values of the two parameters:

X TOOLKIT 81

typedef struct {
int kstart;
int kstop;

} Parameters;

Then we use X facilities to create a resource array with elements of type
XtResource, which in this case has the form:

static XtResource my_resources[] = {
{"start", "Start", XtRInt, sizeof(int),
XtOffSetOf(Parameters, kstart),
XtRImmediate, (XtPointer)1},
{"stop", "Stop", XtRInt, sizeof(int),
XtOffsetOf(Parameters, kstop),
XtRImmediate, (XtPointer)100 },

};

While the initialization statement of my_resources [] is more complex than the
initialization of the array v [] in Sec. 3.3.1, it is also more general. The resource
structure not only connects parameters with strings, it also provides instructions to a
parsing function. The first two elements of each item are the resource name and the
resource class name. The third item is a symbolic string specifying its type from a
set supported by the Intrinsics; in this case XtRInt defined as "Int". We use a
string rather than the C type int to adhere to the type definitions of the Intrinsics
that need not always be equivalent to C types. The fourth item is the size of the
parameter. The fifth member precomputes the offset of the resource variable from
the start of the structure using the macro XtOffsetOf (). This associates the
resource named "start" with the variable parameter kstart.

The last two members refer to the default value of the resource: The sixth is the
default type (XtRImmediate in this case) and the seventh the address where the
default value may be stored. In general the default type should be the same as the
resource type (the third member). However there are two major exceptions to this
policy. The type XtRImmediate (used in the preceding example) specifies that
the seventh member is the default value rather than the address of the default. In our
example default values of kstart and kstop are 1 and 100, respectively, cast to
XtPointer to match the structure element type. The type XtRCallProc
(demonstrated later) specifies that the value in the address field is a procedure
pointer.

One of the tasks of the XtVaAppInitialize () [more specifically of one
of the functions it calls: XtOpenDisplay ()] is to find resource values. It
collects them from files, command arguments, fallbacks, etc. To make them
accessible to the rest of the application we must call the function

82 FUNDAMENTALS OF X PROGRAMMING

XtVaGetApplicationResources() ,

which has the following prototype:

XtVaGetApplicationResources(Widget w,
XtPointer where_to_store,
XtResource *resource_specs,
int number_of_resource_specs, NULL);

This function looks at the resource data base for names matching those present
in the array of resource structures resource_specs (first or second members),
then stores the corresponding values in the location by the fifth member of the
resource structure. In our example we must first create the database, then call this
function:

static Parameters v;
/* ... */

toplevel=XtVaAppInitialize(/* ... */);
/* ... */
XtVaGetApplicationResources(toplevel, (XtPointer) &v,

my_resources, 2, NULL);

After this call we can use values v.kstart and v.kstop any place in the
program. The reason for computing the offset in the resource specification
is to convey in effect the structure of v to the XtVaGetApplication-
Resources () function.

Listing 3.5 shows a trivial program that prints the values, then exits.
If we compile this program into a.out and execute (using the notation in

Sec. 3.2.3):

a.out -xrm "*start: 40"

we obtain the following:

start=40 stop=100

Note: We let Xt do all the command line parsing and error checking. Clearly these
values can also be stored in a resource file like any other resource.

There is no limitations in specifying a parameter as a resource as long as we
can describe it through the mechanism of the XtResource structure.

TE
AM
FL
Y

Team-Fly®

X TOOLKIT 83

Listing 3.5. Minimal Application Resources — File apres.c

#include <X11/StringDefs/h>
#include <X11/Intrinsic.h>
typedef struct {

int kstart;
int kstop;

} Parameters;
static XtResource my_resources[] = {

{"start", "Start", XtRInt, sizeof(int),
XtOffsetOf(Parameters, kstart),
XtRImmediate, (XtPointer)1 },
{"stop", "Stop", XtRInt, sizeof(int),
XtOffsetOf (Parameters, kstop),
XtRImmediate, (XtPointer)100 },

};
main (arc, arv)

char **arv;
{

XtAppContext app;
Widget toplevel;
static Parameters v;
toplevel=XtVaAppInitialize (&app, "Test",

NULL, 0, &arc, arv, NULL, NULL);
XtVaGetApplicationResources (toplevel, (XtPointer) &v,

my_resources, 2, NULL);
printf ("start=%d stop=%d\n", v.kstart, v.kstop);

}

3.3.3. Quarks Because resources are expressed through character strings,
functions dealing with resources must perform many string comparisons (as in the
example in Sec. 3.3.1). It is desirable to map strings to an integer to replace string
comparisons with integer comparisons. We already saw one such mapping in Sec.
2.4.2: Atoms were introduced as string mappings used for window properties.

The X Window System provides another set of unique mappings for strings:
Quarks. While atoms are used to represent strings uniquely within the server,
quarks are used to represent strings uniquely within an application. The type of
these numbers is XrmQuark (actually an integer). The following two Xlib
functions perform conversions between strings and quarks:

XrmQuark XrmStringToQuark (char * string)
char * XrmQuarkToString (XrmQuark quark)

84 FUNDAMENTALS OF X PROGRAMMING

While quarks are used mainly for resource management, they can be used for any
string conversion in the application.

3.3.4. XtResource Structure The type XtResource is defined formally
as:

typedef struct {
String resource_name; /* name for the particular

resource */
String resource_class; /* name for a class of

resources */
String resource_type; /* describes what type

of variable is the
resource value */

Cardinal resource_size; /* how many bytes */
Cardinal resource_offset; /* bytes from start of

structure in program
using the resource */

String default_type; /* maybe the same as
resource_type */

XtPointerdefault_addr; /* address of default
value */

} XtResource, *XtResourceList;

We used resource names extensively in Secs. 1.2 and 3.2, often given in
symbolic form, for example XtNwidth, defined as "width" in a definition file.
Class names are supposed to cover related resources; for example in a program we
may have resource for text color ("textcolor"), line color (" lineColor"),
and the color of filled areas ("fillColor"). Having a resource class "Color"
allows us to assign a common color to text, lines, and filled areas.

The member resource_type is a string describing either a basic C type or
a defined C type. We already saw the XtRInt type and its use in the previous
section. We discuss additional types in the following examples. (See [AS90], pp.
777–778, for a complete list of resource types.) Members resource_size and
resource_offset are used by XtVaGetApplicationResources () to
store resource values in as structure provided by the program. (The structure is v in
Listing 3.1.) Default type and address were discussed in the previous section.

We devote the rest of this section to examples of different resource types,
starting with strings. We assume that our program has the following structure for
the parameters it uses.

X TOOLKIT 85

typedef struct {
Pixel text_color;
Pixel line_color;
Bollean fixedwindow;
int (*work)();
String work_type;

} OptionsRec;

It also contains a declaration, such as:

static Options Rec options;

In the current discussion we do not need a detailed explanation of how X handles
color (covered in Chap. 9). Here we need know only that a type, Pixel (in reality a
long integer), stores the value that Xlib functions use to produce a particular color.

Resource specification entries for color parameters may be

static XtResource my_resources [] = {
/* ... */
{"textColor", "Color", XtRPixel, sizeof(Pixel),
XtOffsetOf(OptionsRec, text_color),
XtRString, "red" },
{"lineColor", "Color", XtRPixel, sizeof(Pixel),
XtOffsetof(OptionsRec, line_color),
XtRString, "orange" },
/* ... */

};

The following string in a resource file or in a command line (following a -xrm flag)
assigns the color blue to all text labels in the program, but it leaves lines drawn in
orange:

*textColor: blue

The following string assigns the color blue to both text labels and lines:

*Color: blue

Of course nothing happens until we call

XtVaGetApplicationResources(/* top widget name */,
(XtPointer) &options,
my_resources, XtNumber(my_resources), NULL);

86 FUNDAMENTALS OF X PROGRAMMING

and then use a function to set foreground color, for example (if we use the Starter
toolkit to draw):

St_set_foregr (options.text_color);
St_put_text (/* ... */);
St_set_foregr (options.line_color);
St_put_line (/* ... */) ;

The Boolean variable fixedwindow can be used to control window resizing
(see Sec. 5.5.2); the entry for it in the resource structure may be as follows:

{"fixedwindow", "Fixedwindow", XtRBoolean, sizeof(Boolean),
XtOffsetOf(OptionsRec, fixedwindow),
XtRImmediate, (XtPointer) TRUE },

It is initialized as true.
The structure OptionsRec includes a function pointer (work) that can be

made a background procedure by the call:

XtAppAddWorkProc(/*application*/, options.work, /* ... */);

We may consider using the resource mechanism to specify different background
procedures at execution time; however this does not work because functions cannot
be specified outside the program. As we saw in Chap. 3, such specifications can be
made only through a translation table. This is overkill in our case (the function is
not going to be tied to events), so it is best to use a string resource, work_type,
then create our own private translation mechanism. The resource specification can
be

{"work", "Work", XtRString, sizeof(String),
XtOffsetOf(OptionsRec, work_type),
XtRString, "play()" },

To remind the application user that this resource leads to selecting functions,
we provide resource string values that look like function calls: "play ()",
"travel ()", etc. This is the same notational convention used in translation tables.
Listing 3.6 shows a relevant code fragment that translates resource values into
function pointers. Using quarks allows us to avoid string comparisons.

Other externally specified resources include (listed with the corresponding C
or Intrinsic type)

X TOOLKIT 87

Listing 3.6. Simple Translation Table

/* Simple Translation Table */
static struct {

XrmQuark q;
int (*f) () ;

} F[4];
/* ... */
int travel_f(), play_f(), /* ... */
/* ... */

F[0].q = XrmStringToQuark ("travel()");
f[0].f = travel_f;
F[1].q=XrmStringToQuark ("play()") ;
F[1].f=play_f;

/* ... */
XrmQuark q=XrmStringToQuark(options.work_type);
for (i=0; i<4; i++) {

if (q==F[i].q) {
XtAppAddWorkProc(app, F[i].f, /* ... */);
break;

}
}

XtRFloat float
XtRLongBollean long
XtRPixel Pixel
XtRShort short
XtRString String (char *)
StRStringArray String* (char **)

3.3.5. Resource Conversion One reason for using the Xt resource
mechanism is that it provides type conversion facilities. For example we can
specify a color by name, then rely on the resource conversion to provide the
appropriate bit pattern for its display. (Recall Sec. 1.4.1 on generating color
displays). Conversion functions use the following type:

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

88 FUNDAMENTALS OF X PROGRAMMING

The basic function for conversions is XtConvertAndStore (), which
takes five arguments: A widget, a source type, a source pointer, a destination type,
and a destination pointer. Types are (symbolic) strings; the source and destination
have type XrmValue. The function returns TRUE when successful, FALSE
otherwise. The only reason for including a widget among arguments is to extract
information about server resources from its resources, such as the color map (the
table linking bit patterns and colors discussed in Sec. 1.4.1). Therefore it is not
important which particular widget we pass. We illustrate the use of this function
with two examples: One for converting color names into bit patterns and the other
for converting character font names into the structure pointers needed by Xlib.

Listing 3.7 shows how resource conversion is used for color. We created a
function color_convert () with a simple argument structure that creates
arguments needed by XtConvertAndStore (), then calls the latter. The
returned Pixel value can be used in the appropriate Xlib structures and functions
(discussed in Chap. 8 and 9).

Listing 3.8 shows how to use XtConvertAndStore () to find a pointer to
a font structure from a font name. The details of how X handles fonts are discussed
in Secs. 8.3.4–8.3.4.6, but we do not have to worry about these now—the resource
conversion mechanism does all the work for us. The returned structure pointer can
be used in Xlib functions requiring font information.

Besides hiding conversion details from us, the function XtConvertAnd–
Store () has a caching mechanism that can avoid unnecessary trips to the server.
A discussion of memory management for the cache is beyond our scope (see
[AS90], pp. 166–168). The preceding examples also show that the conversion
mechanism can be used outside the resource framework. The conversion
mechanism is also invoked when we pass an XtVaTypedArg argument to an
XtVaSetValues() call (see Sec. 3.1.3). The four arguments that follow

Listing 3.7. Color Name to Pixel Conversion

Boolean color_convert(Widget w, String color_name, Pixel
*color_value)
{

XrmValue source, dest;
source.size = strlen(color_name)+1;
source.addr = color_name;
dest.size = sizeof(Pixel);
dest.addr = (caddr_t)color_value;
return XtConvertAndStore (w, XtRString, &source,
XtRPixel, &dest);

}

X TOOLKIT 89

Listing 3.8. Font Name to Font Structure Conversion

Boolean font_convert(Widget, w, String font_name,
XFontStruct **value)
{

XrmValue source, dest;
source.size = strlen(font_name)+1;
source.addr = font_name;
dest.size = sizeof(XFontStruct *) ;
dest.addr = (cadd_r)value;
return XtConvertAndStore(w, XrRString, &source,
XtRFontStruct, &dest);

}

XtVaTypedArg provide arguments for XtConvertAndStore. The first is the
resource name that provides information about the destination. The second
argument is used as the second argument of the conversion function, while the third
and fourth arguments are used to construct the source argument.

3.3.6. Finding out about Class Resources It is possible to find widget
class resources by calling the function XtGetResourceList (), which has the
following prototype:

XtGetResourceList(WidgetClass wc, XtResourceList *rp,
Cardinal *n)

The class of a widget w is obtained by the convenience function XtClass (w).
The type XtResourceList is simply a pointer to an XtResource array; n
points to the number of resources. After calling this function, we can print resource
names and types by using the following code fragment:

XtResourceList r;
Cardinal n;
XtGetResourceList (XtClass(w), &r, &n);
for (i=0; i<n; i++)

printf("%s %s\n", r[i].resource_name,
r[i].resource_type);

If the widget is not realized, this function returns only its own resources—if it
is realized it returns all inherited resources as well. We must be careful to check
type before printing the remaining values of the resources.

90 FUNDAMENTALS OF X PROGRAMMING

There is a similar function for obtaining constraint resources (see Sec. 6.1.1),
XtGetConstraintResourceList(). These functions are useful for debug-
ging programs or analyzing the structure of compound widgets.

There is no simple way of printing the class name. The Intrinsics have a
function that checks whether a guess is correct. The function prototype is

Boolean XtIsSubclass(Widget w, WidgetClass w_class)

It returns TRUE if w is of class w_class or one of it subclasses, for example:

if(XtIsSubclass (w, paperWidgetClass))
printf ("paper widget\n");

Having a sequence of such statements and assuming that we know all class names
used in the program, we can print class information other than the widget name.
The difficulty is that class names, such as paperWidgetClass, are pointers to
structures, not strings.

A more direct way requires looking at the private structure of the widget and
the Intrinsics. The following code does that:

#include <X11/IntrinsicP.h>
#include <X11/CoreP.h>
char *class_name(Widget w)
{

return XtClass(w)—>core_class.class_name;
}

We explain this code in Chap. 11.

3.3.7. A Warning on the Use of Resources While specifying parameters
through resources offers many advantages, there are cases where this is not
recommended.

The main reason is that when a widget resource changes value (through an
XtSetValues() call for example), the intrinsics redraw the widget, and

X TOOLKIT 91

redrawing a widget with complex appearance not only wastes computation cycles, it
also interferes with the operation of the application. The following two examples
illustrate such a situation.

Example 1: Assume the user selects a different color from the palette in a
drawing program. If the drawing color is specified as resource (possibly the
foreground color of the widget) the whole display will be redrawn, even though
nothing has changed but the palette selection.

Example 2: Assume we want to change the color of the icon depicting a
character to indicate a changed state in a video game. The most economical way of
doing this is to erase and redraw that particular icon rather than the whole display.

Furthermore the main advantage of the resource mechanism (customization by
the application user) does not apply to parameters that change during program
execution. If we want to allow customization of the initial value of a parameter, then
we must use different parameters for that purpose. In Example 2 we may have
resources CoolColor and Hotcolor and a nonresource parameter that holds
the current color of he character. During the game that parameter is given values
from either of the two resources.

3.4. CONCLUSIONS

Chapter 3 discusses general methods for creating widgets and specifying their
parameters through resources. We also discuss resource specification. The resource
mechanism may be used directly in applications without associating it to a widget.
Chapter 3 shows also how to define resources for applications as well as widgets
and how to use the resource conversion mechanism for variables that are not
resources.

Widget parameter specification is a rather complex topic in X because of the
multiple ways that such specifications can be made. Consider for the moment
specifying window dimensions. Listing 3.1 sets values, so we do not expect to have
them changed through command line resource specification. Indeed if we compile
the program and name the executable min, then running the following piece of
code does not affect the dimension:

min -xrm "*canvas.width: 50"

However running the following piece of code (or min -g 50) does:

min -xrm "*width: 50"

92 FUNDAMENTALS OF X PROGRAMMING

What is happening? When we omit the widget name, the parameter is applied to all
widgets in the application, including the top shell widget. If shell widget
dimensions are not specified, the shell widget wraps itself around its child widget.
However if they are explicitly specified, they take precedence, so the child is
adjusted to fit exactly inside the parent!

Suppose now that we specify dimensions of the shell widget in Listing 3.1. If
we compile the program, then the following piece of code no longer has effect on
the dimensions, as we would expect:

min -xrm "*width: 50"

But the following piece of code does:

min -g 50

The flag -g refers to a shell resource XtNgeometry, and geometry specification
overrides specific parameter specification. (Of course the application user can
change the dimensions of a shell window by resizing the window through
interaction with the window manager. The effect of such resizing on the interior
windows is discussed in Chap. 6.)

We can explore the RESOURCE_MANAGER property by using the Xlib
function XGetWindowProperty(), as shown in Listing 3.9. This function is
also used to read and modify properties, so it has many arguments that are of no
particular interest here.

The items in the return string are separated by new lines, so we need not worry
about formatting the output. The output of this program usually shows resource
settings of the desktop environment.

3.5. PROJECTS

1. Implement the program in Listing 3.4, then experiment with various ways
of specifying parameters.

2. Modify the program in Listing 3.4, by including other resources, such as
color, border width, icon position, etc. Then experiment with different
specification forms.

3. Use the resource mechanism to write a program that displays four colored
squares in a 2 by 2 matrix, with color and square size specified at
execution time. (The challenge is to create four widgets that are identical
in all respects except one. Therefore the widget resource mechanism is not
sufficient.) Compare the complexity of this program with one that creates
the same display without using the resources mechanism. (Do not forget
the * prefix in resource names when you run this program.)

TE
AM
FL
Y

Team-Fly®

X TOOLKIT 93

Listing 3.9. Resource Manager Property — File rprop.c

/* Find Resource Manager Property */
/* Equivalent to xrbd -query */
#include <X11/Xlib.h>
#include <X11/Xatom.h>
int main (void)
{

Display *Dpy = XOpenDisplay ("") ;
Atom type_ret;
long offset=0, length = 512;
int form_ret;
unsigned long nitems;
unsigned long left_over;
char *prop
XGetWindowProperty (Dpy, DefaultRootWindow(Dpy),

XA_RESOURCE_MANAGER, /* property atom */
offset, length, /* the values used for all

the data */
False /* do not modify the prop-

erty */
AnyPropertyType, /* We do not specify the

type * /
&type_ret, /* in this case it returns

STRING */
&form_ret, /* In this case returns 8

(i.e. byte) */
&nitems, /* in this case returns

1 */
&left_over, /* in this case it should

return 0 */
&prop_return); /* where the property con-

tents are stored */
printf(
"%d items of type %s read, each of %d bits \
(%d leftover)\n",

nitems, XGetAtomName(Dpy, type_ret), form_ret,
left_over);

printf ("%s\n", prop_return) ;
return (0);

}

This page intentionally left blank

4

Event Handling in
the X Toolkit

4.1.
4.2.

Overview. .
Event Processing. .

97
98

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.

Event Handlers. .
Callbacks. .
Action Procedures .
Translation Table Syntax. .
Comparisons .
Dealing with Window Manager Messages.

98
100
103
108
110
114

4.3. Dealing with Nonevent Input . 117
4.3.1.
4.3.2.
4.3.3.

Work Procedures and Animation
Timeouts and Animation.
File and Pipe Input—Graphical Front Ends

117
122
125

4.4. Entering Text . 128
4.4.1.
4.4.2.
4.4.3.

Tools for Entering Text .
Getting the F o c u s .
Low-Level Functions for Text Entry

128
129
130

4.5.
4.6.

Conclusions. .
Projects .

133
133

95

This page intentionally left blank

EVENT HANDLING IN THE X TOOLKIT 97

4.1. OVERVIEW

In the Xt environment applications do not deal directly with events. Events are
taken from the queue by an Intrinsics function that then processes them according
to certain policies set up by the application. The basic function is XtAppMain-
Loop (), which is a convenience function with code similar to the following:

XtAppMainLoop(XtAppContext app)
{

XEvent activity;
while (1) {

XtAppNextEvent(app, &activity);
XtDispatchEvent (&activity);

}
}

The function XtAppNextEvent() examines the event queue as well as alternative
sources of input (see Sec. 4.2). When the function finds an event, it returns. The event is
then passed to the dispatch routine that does all the work. Among other things, the
dispatch routine finds the widget in whose window the event occurred by using the
method in Sec. 2.1.4. We say that the “event is delivered to the widget.” Associated
with each widget are arrays of function pointers; depending on prespecified policy, one
of these is called with the event as an argument. Applications specify the policy and
assign values to these function pointers. There are three types of such functions: Event
Handlers, Callbacks, and Action Procedures.

We say that an event handler function (or other type) is registered with the
Intrinsics if the function is given as a value to any of the function pointers accessed
by XtDispatchEvent(). Details of the assignment are hidden from the
applications programmer—the function to be used is simply passed as an argument
to a messenger function.

Event handlers are invoked immediately once an event is delivered to the
widget. Action procedures rely on translation tables (see Sec. 1.2.2). If such tables
exist, XtDispatchEvent() calls an internal function, _XtTranslate-
Event(), which identifies the function to be called from the table. Callbacks are
handled by widget methods. Depending on the event an internal widget function is
called that looks at function pointer arrays associated with it.

This rough description of what happens mainly indicates the degree to which
the application controls event processing. Event handlers provide the most general
way, since the handler is invoked with a pointer to the event as an argument without
other preprocessing. Action procedures are a little more restrictive: Conditions for
calling an action procedure must be specified in conformation with translation table

98 FUNDAMENTALS OF X PROGRAMMING

rules. Callbacks are the most restrictive because all event analysis is done by the
Intrinsics and widget methods. In essence for callbacks and action procedures, an
event is first processed by the Intrinsics or widget event handlers before application-
defined functions are invoked. The common usage of the term event handler refers
to an event handler that the application programmer is aware of.

It is possible for an application or a widget to use all three methods, each for
different types of events. For example a program may use an event handler to deal
with mouse events, a callback to deal with exposure events, and an action procedure
to deal with keyboard events. It is also possible to have multiple event handlers,
callbacks, or action procedures, for even the same event. It is not uncommon to call
a sequence of event handlers for the same event.

We discuss each of the three ways of dealing with events in Sec. 4.2, and we
also compare these methods by implementing an application in two different ways.

In addition to dealing with events, we discuss other means of interaction
between a program and its environment. There are three things that a program can
do while waiting for events: Run a process, accept input from or place output to a
file, or respond to a timeout. When there are no events in the queue, the function
XtAppNextEvent() looks at alternative input sources and timeouts; if nothing
is happening there, it may execute what is called a work (rather than background)
procedure. We examine each of these action sources in Sec. 4.3.

In Sec. 4.4 we discuss entering text.

4.2. EVENT PROCESSING

4.2.1. Event Handlers An event handler is a function that takes as one of
its arguments a pointer to an XEvent, say, ep and normally includes a switch
statement examining the value of ep -> type. It then executes the appropriate
code. Each widget maintains an array of pointers to event handlers (the Event
Handler list). The function prototype is

void g(Widget w, XtPointer client_data,
XEvent *ep, Boolean *pass_the_event)

EVENT HANDLING IN THE X TOOLKIT 99

It is added to the event handler list of a widget by the function:

void XtAddEventHandler(Widget w, EventMask em,
Boolean nonmaskable, void (*g)(),
XtPointer client_data)

Highlighted items indicate correspondence between the two functions. The mask
em specifies events for which the handler is called, for example:

ButtonReleaseMask ButtonPressMask PointerMotionMask

(See Sec. 1.4.2 for a discussion of masks.) The nonmaskable argument is TRUE
if the event handler receives events that cannot be selected with masks (such as
those described in Sec. 2.3.1). Finally client_data is a pointer to a structure or
a function that will be part of the arguments of the event handler when it is called.
The pass_the_event argument is TRUE if the rest of the event handler list is
called for that event.

The event handler is the most general and flexible way of dealing with events,
and it is the preferred solution when the interpretation of events depends on
preceding events, as in a rubber band drawing program. The event handler also
involves less work when the widget class is created because the event handlers are
called directly by the Intrinsics, so there is no need to provide a widget method for
that purpose. Listing 4.1 shows a simple handler that deals with mouse clicks—a
quick succession of button press and button release events.

Event handlers can be modified or removed by the function:

void XtRemoveEventHandler(Widget w, EventMask em,
Boolean nonmaskable, void (*g)(),
XtPointer client_data)

In spite of its name, the function does not immediately remove an event handler.
Three of the arguments, the widget, the procedure g (), and the client_data
data must match those of a previously added event handler otherwise the function
has no effect. If a match is found, the function acts on its second and third
arguments in the opposite way that XtAddEventHandler () does. For example
the handler stops mouse-tracking button events if the mask is:

ButtonReleaseMask ButtonPressMask

100 FUNDAMENTALS OF X PROGRAMMING

Listing 4.1. Simple Event Handler

void click_response(Widget w, XtPointer client_data)
{

/* ... code to run in response to a click ... */
}
/* Event Handler */
void click (Widget w, XtPointer client_data, XEvent *ep,

Boolean *disp)
{

static Time time = 0; /* when button was pressed */
if (ep-> type==ButtonPress) time= (ep-> button) .time;
else if (ep->type==ButtonRelease) {

Time dt = (ep->xbutton) .time - time; /* in msecs */
if (dt<500) click_response (w, client_data) ;

}
}

The event handler is removed only when there are no events left to track. To make
sure that the handler is removed, pass the mask XtAllEvents for the second
argument and TRUE for the third.

Changing event handlers is useful for changing the state of complex programs.
For example in a drawing program, one event handler may let the user draw new
shapes, and another event handler may let the user edit shapes. Appropriate visual
feedback is important—for example a pencil icon for the cursor when drawing and
an icon with a pencil and an eraser for editing.

4.2.2. Callbacks A Callback is a function called by a widget (rather than
the Intrinsics) in response to a particular condition. The condition may be an event
or a sequence of events, but it can also be unrelated to any event. Therefore a
callback function does not include in its arguments a pointer to an event, but it
includes two pointers to data, one specified by the application and the other by the
widget. The prototype of a callback is

void f (Widget w, XtPointer client_data,
XtPointer call_data)

where client_data has the same significance as for the event handler and
call_data is a value generated by the widget, as we explain later. A callback list
is an array of pairs, each consisting of a function pointer to an X pointer. The formal
definitions of a callback function and a callback list are

typedef void (*XtCallbackProc) (Widget, XtPointer,
XtPointer);

EVENT HANDLING IN THE X TOOLKIT 101

typedef struct_XtCallbackRec {
XtCallbackProc callback;
XtPointer closure; /* really client data */

} XtCallbackRec, *XtCallbackList;

There are two ways of specifying callbacks for a widget. The most common is
to add a function to the callback list of a widget by the call:

XtAddCallback(Widget w. String name, void (*f)(),
XtPointer client_data)

where name is the resource name of the callback list.
The second way assigns the whole list at creation time, for example:

static XtCallbackRec helpcallbacks[] = {
{generic_help, NULL}, {local_help, NULL}, {NULL, NULL}
};

w = XtVaCreateManagedWidget ("button", ...,
XtNhelpCallback, helpcallbacks, NULL);

The example assumes that we have a widget class with a callback list resource
whose name is XtNhelpCallback. We assign two functions to the list:
generic_help() and local_help(). Neither uses client data, hence the
NULL pointers. Setting the callback through the explicit use of the callback list
seems to be more cumbersome than the first, but we use only one call rather than
many XtAddCallback() calls.

Callback lists are specified for each widget class, and these must be looked up
in the widget documentation. For example the Core class has only one callback list
for functions to be called when the widget is destroyed. The Shell class has two
more lists, one for popups and one for popdowns. The Athena Command class has
one list for button clicking. The Starter toolkit Paper class has two lists one for
redrawing and the other for user-generated events. (Of course all widgets inherit the
callback list of the Core class.)

The particular callback list names tend to be rather arbitrary. Consider a push
button widget where we want to specify a function called when a user clicks a
mouse button while the pointer is on the button window. Symbolic names for that
event combination (pressing and releasing a button in quick succession) are
XmNameCallback for Motif, XtNcallback for Athena, and XtNselect for
OLIT. If we use such a widget, then we do not need the event handler in Listing 4.1;
instead we can register the function click_response() as a callback using the
code of Listing 4.2 (assuming OLIT widgets). In this example we do not register

102 FUNDAMENTAL OF X PROGRAMMING

Listing 4.2. Simple Callback

void click_response(Widget w, XtPointer client_data)
{

/* ... code to run in response to a click ... */
}
main ()
{

/* ... */
XtAddCallback(w, XtNselect, click_response, NULL);

/* ... */
}

client data. In contrast to the event handler, we have no direct control over the time
between button press and release. That interval may be set only through widget
resources.

We illustrate the client_data argument with an example of a set of canvas
widgets that each displays a different raster image. The Starter toolkit paper widget
has a callback list with resource name XtNredrawCallback that is called after
an Expose event. Let: (1) show_image be a function that takes as an argument a
pointer to an image and displays the image; (2) Im[] be an array of images (of
St_Image type in the Starter toolkit for example); and (3) W[] be an array of
widgets used to display the images. The following code assigns the proper exposure
callbacks:

for (i =0; i <Nimages; i ++)
XtAddCallback(W [i], XtNredrawCallback, show_image,

&(Im[i]));

When there is a need to redraw the widget, the function show_image() is called
with a pointer to the widget where the event occurred and a pointer to the image that
corresponds to that widget.

Quite often the callback needs information about the widget before performing
its operations. For example, if we resizes a window, we wish to scale an image
accordingly. Some times such information can be obtained from the widget itself.
For example we can find the window dimensions width and height by calling
the function:

XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,
NULL);

TE
AM
FL
Y

Team-Fly®

EVENT HANDLING IN THE X TOOLKIT 103

However there are situations when the information does not exist in the widget
structure. Suppose we do not attempt to scale an image to fit in a window, but we
use a set of scrollbars to control placement. The display widget must now store the
scrollbar positions, which should be passed to the display functions through the
call_back argument. Because we can pass only one argument, but we have two
numbers, we must use a pointer to a structure with two members, the x and y
offsets.

For example the person who writes the image display widget must create the code
that passes the scrollbar positions to the display callbacks.

Widgets also have predefined methods for dealing with particular events. For
example all Xt widgets contain a method of type XtExposeProc that redraws the
widget window in response to Exposure events. For widgets with predefined
form (push buttons for example) the function is implemented by the widget writer.
For a canvas widget that function should do some basic tasks only, then invoke a
callback list, passing the necessary client and call data. (In the case of the Paper
class, it is the redrawCallback list.)

An applications programmer must remember that there need not be a one-to-
one correspondence between XEvent types and callbacks. It may take more than
one event to cause a widget to invoke a callback, and there may be additional
operations besides the callback in response to a particular event.

Callbacks can be removed by the function:

XtRemoveCallback(Widget w, String name, void (*f)(),
XtPointer client_data)

Both the function and client data arguments must be matched to remove a callback.
The following function removes all callbacks of the named list:

XtRemoveAllCallbacks (Widget w, String name)

Changing a callback is a way of changing the state of a program; it is similar to
changing event handlers as described in Sec. 4.2.1.

4.2.3. Action Procedures An Action procedure is similar to a callback,
but it allows customization through the resource database.

104 FUNDAMENTALS OF X PROGRAMMING

The prototype or an action procedure is

void h(Widget w, XEvent *ep, String *params, int *n)

where w is the widget where the event occurred. While an action procedure is
written for a particular event (or combination thereof), it still takes a pointer to an
XEVent as an argument both to obtain parameters from the structure and to check
errors. (Nothing prevents an application user from incorrectly assigning an action
procedure written for keyboard events to a mouse button event.)

The third argument is a pointer to an array of strings, and the last argument
points to a number specifying how many strings in that array are to be used. It is
necessary to limit the type of arguments to character strings to be able to specify
these through the resource database.

To use action procedures the program must contain an actions table consisting
of pairs of strings and function pointers of the form:

"Name_of_h", h,

and the program must have access to a translation table that links strings to events
with entries of the form:

<Event_name> : Name_of_h()

Note the somewhat misleading syntax. Parentheses following Name_of_h are
purely decorative. Name_of_h is a character string linked to an actual function
name through the action table. Action procedures associate functions to events in
two steps by using an intermediary string. For example to use an action procedure
to specify the response to a button click (Listings 4.1 and 4.2) we need Listing 4.3.
The function XtAppAddActions() passes the correspondence between strings
and functions to the Intrinsics. The macro XtNumber() returns the number of
elements in an array. The translation table can be either in an internal array (as in
Listing 4.3) or in a resource file. (We discuss its format in detail in Sec. 4.2.4.)
When the translation table is internal, it must be passed to the widget through
resource arguments.

EVENT HANDLING IN THE X TOOLKIT 105

Listing 4.3. Simple Action Procedure

void click_response(Widget x, XEvent *ep, char **params,
int *n)
{

/* ... code to be run in response to a click ... */
}
static XtActionRec my_actions [] = {

{ "click", click_response}
};
static char translations[] = "<BtnDown><BtnUp> : click()";
main()
{

/* ... */
XtAppAddActions(app, my_actions, XtNumber(my_actions));

/* ... */
XtVaCreateManagedWidget(...,

XtNtranslations,
XtParseTranslationTable(translations), ...
NULL);

/* ... */
}

A slightly more complex example is given by the following pair of action and
translation tables:

static XtActionRec acts [] = {
("refresh", Scribble}, {"focus", Get_focus },
{"bye", Quit}

};
static char translations[] =
"<Expose> : refresh() \n <Enter> : focus() \n <Key>q : bye()";

Note: The translation table is a single string, not an array of strings. If the table
is in the resource file, it takes the form:

z*translations: <Expose> : refresh() \n\
<Enter> : focus() \n <Key>q : bye()

(We assume that the name of the application is z.) We dropped quotation marks and
used a backslash to fit the string in two lines. In this case we do not need to pass the

1 06 FUNDAMENTALS OF X PROGRAMMING

XtNtranslations argument to the widget creation function, although the call
to XtAppAddActions() is still needed.

The preceding examples show that a translation table is a resource item.
Listing 4.4 contains a complete program using action procedures. It starts an

application, then creates a canvas widget using the paper class and drawing
functions from the Starter toolkit. The user controls the size of the window through
ordinary resources and the color of the window and how to exit the program
through a translations table.

Listing 4.4. Use of Action Procedures—File ap.c

/* Demonstration of Action Procedures */
/* Program draws a filled rectangle with color */
/* and margins determined by arguments of the */
/* action procedure */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Paper.h> /* Starter Toolkit widget */
#include <Stdef.h>

/* Associate strings with functions */
void good_bye(), draw();
static XtActionsRec actionsTable [] = {

{ "quit", good_bye }.
{ "paint", draw },

};

int main (int arc, char **arv)
{

Widget toplevel, canvas;
XtAppContext app;
/* Initialize the application */
toplevel = XtVaAppInitialize(&app, "Toy",

(XrmOptionDescList)NULL, 0,
&arc, arv, (String *)NULL, NULL);

/* Pass the action table to the Intrinsics */
XtAppAddActions(app, actionsTable,

XtNumber (actionsTable)) ;
/* Create a canvas widget */
canvas = XtVaCreateManagedWidget("canvas",

EVENT HANDLING IN THE X TOOLKIT 107

paperWidgetClass, toplevel, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app;

}
/* Exit function */
void good_bye (Widget w)
{

exit (0);
}
/* Redraw function: specified as action procedure */
void draw(Widget w, XEvent, *ep, String *param, int *np)
{

Dimension width, height;
int margin = 10;

if (ep->type != Expose) return;

/* Find dimensions of the widget */
XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,
NULL);

St_draw_area(w); /* Direct all graphics output to w */
if(*np> 0) St_fore_color(param[0]);
else St_fore_color("gray70");

/* Compute margin and make sure it has a reasonable
value */
if(*np>l) {

margin = atoi(param[1]);
if(margin<0 margin>width/2 margin>height/2)

margin = 10;
}
/* Draw a filled rectangle with a margin */
St_fill_rectangle(margin, margin, width-2*margin,

height-2*margin);
}

The resource file may contain the following lines:

y*canvas.width: 400
y*canvas.height: 200
y*canvas.translations: <Key>Escape: quit() \n\

<Expose>: paint(green 40)

108 FUNDAMENTALS OF X PROGRAMMING

The program illustrates the use of parameters in the translation table. The user can
specify the drawing color and margins.

Placing a redrawing function in a translation table, as in Listing 4.4, is somewhat
contrived. In this case it may have been simpler to specify color and margin
parameters as resources. On the other hand a program can have more than one
function used to redraw the window, and a translation table is the only way of selecting
one of them. In general action procedures tend to be better suited for changing the user
action for causing something to happen, for example exiting a program.

4.2.4. Translation Table Syntax Translations are resources, but they have
a more complex specification than those described in Sec. 3.2.5. The first part of the
specification is the same as for all other resources, for example: the following
respectively, for translations of events in all widgets of program z and in widget
canvas of program y:

z*translations:

and

y*canvas.translations:

The table consists of items separated by new line characters (\n), and each item
contains two entries separated by a colon. The first entry is an event (or
combination thereof) and the second a reference to a function.

The function is specified by a name that must appear in the action table of the
polygram, while arguments are strings that are actually passed as arguments to the
function when it is called. Thus in the example from the previous section, the entry
in the translation table means that when an Expose event occurs, a code fragment
similar to the one below is executed:

Widget w;
XEvent e;
String param[] = { "green", "40" };
int n = 2;
draw(w, *e, param, &n);

The correspondence between draw() and paint was made in the action-
sTable[] array. It is possible to have more than one function, for example:

<Key>q: ring_bell() quit()

The first entry of translation table items is the one most under user control. It is
formed by the following rules:

EVENT HANDLING IN THE X TOOLKIT 109

1. It can be an event name (or an abbreviation) enclosed in angular brackets
(‘<’, ‘>’), for example <KeyPress> (abbreviated to <Key>),
<ButtonPress> (abbreviated to <BtnDown>), <MotionNotify>
(abbreviated to <Motion>), etc.

2. It can be an event name followed by a detail, for example <Key>q (the
‘q’ key was pressed), <BtnDown>1 (the left mouse button was pressed),
etc. Abbreviations exist for events with details, in particular <Btn1Up>,
<Btn1Down>, etc., have the obvious meanings.

3. It can be a modified event, such as Ctrl <key>d, other modifiers being
Shift, Lock, Alt, Button1, etc. Modified events can have details.

4. It can be a sequence of entries of the first three types, separated by
commas, for example:

<Key>q, <Key>u, <Key>i, <Key>t : quit ()

Note: Be aware that the preceding notation means to type all four
characters in the right sequence (i.e., the word quit) rather than just one of
them. To be able to quit by pressing any of a certain number of keys, we
must create a translation table entry for each key.

5. It can be an entry of the first three types followed by a number in
parentheses, for example:

<Key>q(2) : quit()

This means that the program exits if the key q is pressed twice in quick
succession. The actual time allowed to elapse between repetitions is an
installation parameter. If we do not want to be confined by that constraint,
we use the following:

<Key>q, <Key>q : quit()

In this case there is no time limit between occurrences of the event.

Finally a few words about the apparently bizarre notation of adding a new line
character, then escaping it, as in:

<Key>q: quit() \n\
<Expose>: paint()

A translation table is expected to be a single string. The last escape character (‘\’) is
needed to continue the string across new lines. Explicit new line characters (‘\n’)
are needed inside the string so that the translations manager can separate items! If
there is a gap between the new line character and the escape, \n\ will not parse
correctly.

11 0 FUNDAMENTALS OF X PROGRAMMING

4.2.5. Comparisons It is possible to write an application with either an
event handler or a translation table. (Callbacks are usually not an alternative
because they are limited to the widget's predefined conditions for invoking
callbacks.) We use a rubber band drawing program to illustrate the two alternatives.
Listing 4.5 shows the part of the main program common in both versions;
numbered comments mark places where code must be added according to the
chosen solution.

Listing 4.5. Main Program for the Rubber Band Program—File rb.c

/* Rubber Band Drawing Program */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Paper.h> /* St widget class */
#include <Sdef.h>

/* 1 - Declarations */

int main(int arc, char **arv)
{

Widget toplevel, canvas;
XtAppContext app;
/* Initialize the application */
toplevel = XtVaAppInitialize(&app, "Toy",

(XrmOptionDescList)NULL, 0,
&arc, arv, (String *)NULL, NULL);

/* Create a canvas widget */
canvas = XtVaCreateManagedWidget("canvas",

paperWidgetClass, toplevel, NULL); /* St widget
class */

/* 2 - Activation of Event Handling Mechanism */

XtRealizeWidget (toplevel);

/* Initialize the drawing functions of the Starter
Toolkit */
St_draw_area (canvas);
St_use_xor_mode();
XtAppMainLoop(app);

}

/* 3 - Event handling functions */

EVENT HANDLING IN THE X TOOLKIT 111

The program starts an application, then creates a canvas widget from the
Starter toolkit. As it stands, the program does nothing. In either version we need a
set of functions to perform the basic application operations. These, shown in Listing
4.6, use the Starter toolkit line-drawing function.

The function anchor() fixes a point on the screen that can be used as an anchor
for the rubber band. The function erase_and_draw() erases the previously drawn
line, then draws a new one from the anchor point to the mouse position; it does nothing

Listing 4.6. Rubber Band Functions—File rb.c

/* Common Functions to both versions */

static int initialized=0;
static int x0, y0, x1, y1;

void anchor(Widget w, XEvent *ep)
{

x0 = x1 = (ep-> xbutton) .x; y0 = y1 = (ep-> xbutton) . y;
initialized = 1

}

void erase_and_draw(Widget w, XEvent *ep)
{

if(initialized) {
St_draw_area(w);
St_put_line(x0, y0, x1, y1); /* erase */
x1 = (ep->xbutton) .x;
y1 = (ep-> xbutton) .y;
St_put_line(x0, y0, x1, y1); /* draw */

}
}

void terminate (Widget w, XEvent *ep /* not used */)
{

if(initialized) {
St_draw_area (w);
St_put_line(x0, y0, x1, y1);
initialized = 0;

}
else exit(0);

}

11 2 FUNDAMENTALS OF X PROGRAMMING

if an anchor point is not defined. If the function terminate() is called when a
rubber band is being drawn, it erases the last line drawn and stops further drawing; if
nothing is being drawn, it causes the program to exit.

Listing 4.7 shows the code that must be added to Listing 4.5 for the event
handler solution. The event handler rubber_band() is registered with the
Intrinsics (Position 2); it is called whenever a button is pressed or the mouse moves.
A more efficient version replaces the code of the three functions inside the event
handler, thereby avoiding the overhead of function calls. External static variables
can also reside within the event handler.

Listing 4.8 shows the code to add for translation table implementation. A table
of pairs of strings and functions is defined, then passed to the intrinsics (Position 2).
The overall code is simpler, but we also need something else, an entry in the
resource data base, for example:

Listing 4.7. Rubber Band Using an Event Handler—File rbl.c

/* In Position 1 */
void rubber_band(), anchor(), terminate(),

erase_and_draw();
/* In Position 2 */
XtAddEventHandler(canvas,

ButtonPressMask PointerMotionMask,
False, rubber_band, NULL);

/* In Position 3 */
/* Rubber band event handler */
void rubber_band(Widget w,

XtPointer client_data/ * not used */,
XEvent *ep, Boolean *pass_the_event /* not used */)

{
switch (ep->type) {
case MotionNotify:

erase_and_draw(w, ep);
return;

case ButtonPress:
if ((ep->xbutton) .button == 1) anchor(w, ep);
else terminate(w, ep);
return;

}
}

TE
AM
FL
Y

Team-Fly®

EVENT HANDLING IN THE X TOOLKIT 113

Listing 4.8. Rubber Band Using a Translation Table— File rb2 . c

/* In Position 1 */
void anchor(), terminate(), erase_and_draw();
static XtActionsRec actionsTable [] = {

{ "pick" , anchor },
{ "quit", terminate },
{ "paint", erase_and_draw },

};
/* In Position 2 */

/* Pass the action table to the Intrinsics */
XtAppAddActions(app, actionsTable,

XtNumber(actions Table));
/* In Position 3 - NOTHING */

rb*canvas.translations: <Btn1Down>: pick() \n\
<Motion>: paint() \n\
<Btn2Down>: quit() \n <Btn3Down>: quit()

(We assume that the name of the program is rb .) We must make sure that the
resource file exists before we can run the program. We must also add an error-
checking statement in two of the functions in Listing 4.6 to confirm that the
structure of ep->type contains information about the pointer coordinates.
(These are KeyPress, KeyRelease, ButtonPress, ButtonRelease, and
MotionNotify.)

On the other hand it is very easy for a user to change the behavior of the
program by using a different translation table, such as:

rb*canvas.translations:<Btn1Up>: pick() \n\
<Motion>: paint() \n\
<Btn2Up>: quit() \n <Btn3Up>: quit()

or

rb*canvas.translations:<Key>a: pick() \n\
<Motion>: paint() \n\
<Key>Escape: quit()

The second version is acceptable because keyboard events contain mouse
coordinates when a key is struck. We can even replace <Motion> by, say,
<Key>z and still have a working program (though not a good one).

114 FUNDAMENTALS OF X PROGRAMMING

The code for the event handler version is much tighter (and easier to maintain),
but the program’s behavior is far more rigid than that of the translation table version.
Because the three functions are closely linked, translation table entries must be
coordinated, for example the following code is a particularly bad choice:

rb*canvas.translations:<Key>a: pick() \n\
<Key>p: paint() \n\
<Key>Escape: quit()

The mouse must be moved to select the new point location, and after each move, the
application user must press a key to see the effects of the move.

The event handler seems to be a better solution for the rubber band program.
On the other hand in programs where the different functions are independent, the
translation table seems preferable.

Note

Section 4.2.6 covers material beyond the needs of most simple programs,
especially those relying on a toolkit; it may be skipped at first reading.

4.2.6. Dealing with Window Manager Messages We conclude the
section on events with a discussion of window manager messages of the type
described in Secs. 2.3.5 and 3.3. If we use the Motif or OLIT toolkit, we need not
worry about these, but we must provide code to handle these if we use the Athena
toolkit or Xt with the paper widget alone (as in this chapter’s examples). We present
two solutions: First with an action procedure then with an event handler. Listing 4.9
repeats code in Listing 4.4, which we modify by adding code from Sec. 2.4.2 in the
context of Xt.

The following remarks are pertinent.
The atom wm_quit is global because it is used by two functions: The action

procedure shutdown() and the initialization procedure create_protocol() .
The former contains code in the switch statement (case ClientMessage) in Listing
2.2; the latter contains the initialization code with a few modifications. In particular it
uses three macros to examine the structure of the widget. XtIsShell() returns to
zero if the widget is not in Shell class (in which case it is meaningless to establish a
protocol); XtDisplay() and XtWindow() return the display structure pointer
and window XID needed for the Xlib functions used.

EVENT HANDLING IN THE X TOOLKIT 115

Listing 4.9. Window Manager Protocol (Action Procedure)—File

wmap.c

/* Demonstration of Action Procedures, including dealing
with Window Manager Events

*/
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Paper.h>

static Atom wm_quit;

/* Action procedure for communication with WM */
void shut_down(Widget w, XEvent *ep,

String *param, int *n)
{

if (ep->type != ClientMessage) return;
if (ep->xclient.data.l[0] == wm_quit) exit(0);

}
void create_protocol(Widget w)
{

Display *dpy = XtDisplay (w);

if (!XtIsShell(w)) {/* issue warning and return */}
wm_quit = XInternAtom (dpy, "WM_DELETE_WINDOW", False);
XSetWMProtocols(dpy, XtWindow(w), &wm_quit, 1);

}
/* Associate strings with functions */
void good_bye(), draw();
static XtActionsRec actionsTable[] = {

{ "quit", good_bye },
{ "out", shutdown },
{ "paint", draw),

},
static char internal_transl[]="<ClientMessage>: out()";

int main(int arc, char **arv)

/* Code from Listing 4.4 */
XtVaSetValues (toplevel,

XtNtranslations,
XtParseTranslationTable(internal_transl), NULL);

XtRealizeWidget (toplevel);
create_protocol (toplevel);
XtAppMainLoop (app);

}
/* Rest of the Code from Listing 4.4 */

116 FUNDAMENTALS OF X PROGRAMMING

Listing 4.10. Window Manager Protocol (Event Handler)—File wmeh.c

/* Demonstration of Event Handler for WM messages */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Paper.h>

static Atom wm_quit;

/* Event handler for communication with WM */
void shut_down(Widget w, XtrPointer client_data,

XEvent ep, Boolean *continue_dispatch)

{
if(ep->type != ClientMessage) return;
if (ep->xclient.data.1[0] == wm_quit) exit(0);

void create_protocol (widget w)
{

Display *dpy = XtDisplay(w);
If(!XtIsShell(w))
own_error(1, "Tried WM protocol for non shell widget");
wm_quit = XInternAtom(dpy, "WM_DELETE_WINDOW", False);
XSetWMProtocols(dpy, XtWindow(w), &wm_quit, 1);
XtAddEventHandler(w, 0, True, shut_down, NULL);

}
/* Associate strings with functions */
void good_bye(), draw();
static XtActionsRec actionsTable[] = {

{ "quit", good_bye },
{ "paint", draw },

};
int main (int arc, char **arv)

/* Code from Listing 4.4, NOT 4.9 */
XtRealizeWidget (toplevel);
Create_protocol(toplevel);
XtAppMainLoop (app);

}
/* Rest of the Code from Listing 4.4 */

Since there is no point in customizing this event, the translation table is
internal and attached to the widget with the call XtVaSetValues(). The
protocol function must be called after the XtRealizeWidget() function call
because this function creates as well as maps windows.

}

EVENT HANDLING IN THE X TOOLKIT 117

It is possible to use an event handler instead of an action procedure; this is
shown in Listing 4.10, again, using, the program in Listing 4.4 as a basis.

The code with the event handler is somewhat clearer than the code with the
action procedure. The function shut_down() need not be known to other parts
of the program than the function that sets the protocol, and there is no need to worry
about translation tables.

4.3. DEALING WITH NONEVENT INPUT

4.3.1. Work Procedures and Animation The Xt function xtAddWork-
Proc() registers a function with the Intrinsics, which is called when there are no
events in the queue. Its prototype is

XtAppAddWorkProc(XtAppContext app,
int (*f)(XtPointer), XtPointer client_data)

The function f() is invoked within XtAppNextEvent() with
client_data as its argument. Its return value is important: If nonzero, then
the function is removed from the system. More than one such function may be
added by calling XtAppAddWorkProc() more than once. These are invoked in
the reverse order in which they were added.

When the highest priority work function is removed, the next one is executed
between events. This is one reason for not using the term background process.
Normally operating systems invoke all background processes periodically.

We must make sure that a work function returns quickly so that events do not
pile up in the queue. For example the following function packs too much
computation into one call:

int f()
{

/* ... A ... */
for (i =0; i<N; i ++) { /* ... B ... */ }

11 8 FUNDAMENTALS OF X PROGRAMMING

/* ... C ... */
return (0);

}

Its code must be distributed into three functions, as shown in the following
example. Static variable can be used to pass information from one to the other, or
information can be kept in a structure associated with the client_data pointer.

int f1()
{

/* ... A ... */
return(1);

}
int f2()
}

static i=0;
/* ... B ... */
i++;
if (i <N) return (0) ;
else return(1);

}
int f3()
{

/* ... c ... */
/* register again f3, f2, and f1 */
return(1);

}

Because work procedures are called in the reverse order of registration, f3() must
be registered first, followed by f2() and f1(). With this arrangement the loop is
executed only once between checking for events.

Work procedures can be used for animation in the following manner. Let
frame[] be an array of N_FRAMES images, each containing an animation frame.
Then the following work procedure performs animation:

#define IDLE_TIME 50000 /* time in microseconds */
int show_frame (void)
{

static i=0;
if(i>= N_FRAMES) return 1 ;
/* Display Frame+i (see Section 9.5.2 for an
example) */
i++;

EVENT HANDLING IN THE X TOOLKIT 119

/* flush the buffer to the server using XFlush() */
usleep(IDLE_TIME);

return 0;
}

The function usleep() suspends execution for as many microseconds as its
argument, so that frames stay visible for a while. (In our example for one-twentieth
of a second.) It is important to flush the client–server buffer before idling so the user
can see the new display. Animation stops after all frames are shown. We could have
made a continuous animation by resetting i to zero.

Besides showing precomputed frames, we can modify a given image by
moving and redrawing objects. In this way we can create video games. We may still
need a delay so that objects do not move too fast. For a game the looping function
f2() takes the form:

#define IDLE_TIME 5000
int f2 ()
{

static i=0;
/* ... redraw one object ... */
i++;
/* Flush the buffer to the server using XFlush() */
usleep(IDLE_TIME);
if(i<N) return (0) ;
else return (1) ;

}

Listing 4.11 shows a simple work procedure that produces a display of
blinking text.

The program registers the work procedure blink() with the intrinsics and
asks the canvas widget to be passed as argument. While widgets are passed
automatically as arguments to callbacks and event handlers, this is not the case with
work procedures. The work procedure calls the redraw procedure, which, because
of the exclusive OR mode erases, then displays the text every other call, thereby
creating the blinking effect.

To turn the blinking on and off, the static variable stop_work is
complemented when button 1 or 2 is pressed. If it is 1, the work procedure is
removed after the next call; if it is 0, we must register blink() with the Intrinsics.
Because XtAppAddWorkProc() requires the application context as its first
argument, we use the convenience function XtWidgetToApplicationCon-
text() to find the application context.

120 FUNDAMENTALS OF X PROGRAMMING

Listing 4.11. Blinking Display—File blink.c

/* Blinking display using Starter Toolkit (St) functions
for drawing */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Paper.h>
#include <Starter.h>
#define VERTICAL_SPACE 20
#define MARGINS 10
#define CHAR_WIDTH 8
void paint(Widget),
act(Widget, XtPointer, XEvent *, Boolean *);

int blink(XtPointer);

static char msg[] = "BLINKING MESSAGE";
int main(int arc, char **arv)
{

XtAppContext app;
Widget top, canvas;

top = XtAppInitialize(&app, "Blink",
NULL, 0, &arc, arv, NULL, NULL, 0);

/* Create a canvas widget big enough to contain the
message */

canvas = XtVaCreateManagedWidget("canvas",
paperWidgetClass, top,
XtNwidth, strlen (msg)*CHAR_WIDTH+MARGINS,
XtNheigth, VERTICAL_SPACE,
NULL);

EVENT HANDLING IN THE X TOOLKIT 121

/* Specify the function that draws the window */
XtAddCallback(canvas, XtNredrawCallback, paint,

NULL);

/* Add an event handler, not essential for this
example */
XtrAddEventHandler (canvas, ButtonPressMask, False,

act, NULL);

/* Register the work procedure to be called with canvas
as argument */
XtAppAddWorkProc (app, blink, (XtPointer) canvas);

XtRealizeWidget(top);

XtAppMainLoop(app);

}
static int stop_work = 0; /* Let us turn blinking on and

off */

/* Work Procedure */
blink(XtPointer w)
{

paint((Widget)w); /* Re-paint window */
St_xflush () ;
usleep (500000); /* sleep for half a second - bad

implementation */
return (stop_work);

}
void paint (Widget w)
{

St_draw_area(w);
St_use_xor_mode();
St_put_text(msg, 5, 15);

}
void act(Widget w, XtPointer client_data,

XEvent *ep, Boolean *pass_the_event)
{

if (ep -> type ! =Button Press) return;
switch ((ep-> xbutton) .button) {
case 1:
case 2:

stop_work = 1 - stop_work;

122 FUNDAMENTALS OF X PROGRAMMING

if (!stop_work) XtAppAddWorkProc(
XtWidgetToApplicationContext(w),
blink, (XtPointer)w);

return;
case 3:

exit(0) ;
}

}

4.3.2. Timeouts and Animation The Intrinsics provide a function for
registering timeouts. Its prototype is

unsigned long XtAppAddTimeOut(XtAppContext app,
unsigned long time_interval,
void (*f)(), XtPointer client_data)

The meaning of the first and fourth arguments is self-explanatory. The time_-
interval is the time in milliseconds before f(), given as the third argument, is
called. This function is called with the following arguments:

void f(XtPointer client_data, unsigned long *timer_id)

The argument timer_id points to the value returned by XtAppAddTime-
Out() when it registers the time out. The argument is a pointer rather than a value
for reasons pertaining to the use of Xt by languages other than C. It is not
something that the function is supposed to modify.

Since the Intrinsics look at timers only when there are no pending events, the
time is not particularly accurate. If we really care about the correct time, we must
call one of the system clock functions shown later in this section. It is possible to
create a blinking message using timeouts rather than work procedures by modifying
the code in Listing 4.11 as follows:

1. Replace the declaration:

int blink();
by
void time_blink();

2. Replace the call to XtAppAddWorkProc(app, ...) in the main
procedure by:

XtAppAddTimeOut(app, 500, time_blink,
(XtPointer)canvas);

TE
AM
FL
Y

Team-Fly®

EVENT HANDLING IN THE X TOOLKIT 123

3. Change the function definition blink (w) to:

void time_blink (w)

4. Inside this function, replace statements:

usleep (500000);
return (stop_work);

with the following:

if(!stop_work)XtAppAddTimeOut(
XtWidgetToApplicationContext((Widget)w),
500, time_blink, w);

5. Inside the event handler act (), replace the call:

If(!stop_work) XtAppAddWorkProc(
XtWidgetToApplicationContext(w),
blink, (XtPointer)w);

with the following:

if(!stop_work) XtAppAddTimeOut(
XtWidgetToApplicationContext(w),
500, time_blink, w);

Once a timeout occurs, it is unregistered; to keep it occurring at regular
intervals, we must register it again. This is best done from the function called in
response to it. Note the different unit of time measurement in usleep ()
(microseconds) and XtAppAddTimeOut () (milliseconds).

The similarity of the code implementing animation by using work procedures
with that using timeouts should not be surprising. Both work procedures and
timeouts are called by XtNextEvent () when there are no pending events. The
only difference is that a work procedure is always called, while a timeout is called
only after a certain amount of time (since registration) has elapsed. The mechanism
of work procedures is a little simpler (see item No. 4 in the preceding list),
especially when we divide a function into many work procedures. Timeouts have
the following advantages:

The event queue is being checked while waiting for the timeout, but it is
not checked when the work procedure goes to sleep. (Note: This does not
apply in cases of large computation where we divide a function into many
work procedures.)

124 FUNDAMENTALS OF X PROGRAMMING

We may have more than one active timer but only one work procedure.
This is useful for animating asynchronously different windows in an
application.

If the exact value of the time is pertinent, use code similar to the following:

#include <time.h> /* may be omitted if Intrinsic.h is
included */

void get_time(char *bfr)
{

struct tm tm;
time_t seconds;

time(&seconds);
tm=*localtime(&seconds);
sprintf(bfr, "%02d", tm.tm_sec);

}

The function time() obtains the time in seconds since January 1, 1970. (The type
time_t is normally just long.) The function localtime () converts that value
into a more usable form, including hours (in tm_hour), minutes (in tm_min), etc. In
the preceding example, the function get_time returns a string that can be used to
update a digital clock. The following code fragment contains the timeout function:

/* update every second */
#include <Stdef.h>
#define T_SPAN 1000
static char buffer[] = " "; /* two blanks and a null */
static int x, y;

void time_out(Widget w)
{

St_draw_area(w);
St_use_xor_mode();
St_put_text(buffer, x, y) ; /* erase old display */
get_time(buffer); /* get new value */
St_put_text(buffer, x, y); /*display new line value*/
/* restart timer */
XtAppAddTimeOut(XtWidgetToApplicationContext(w),

T_SPAN, time_out, w);

}

EVENT HANDLING IN THE X TOOLKIT 125

By calling system time functions, we avoid falling behind if time_out() is
called after an interval longer than one second.

True animation can be achieved if we have successive frames from a motion
picture. Suppose we store frames in an array of image structures Frame [] and that
there are N_FRAMES of them. In the following code we assume that we defined an
appropriate image structure and we also have a display function available for such
image structures. In this case the timeout function follows (we assume copy mode
in drawing):

/* update 30 times a second */
#define T_SPAN 33
#define N_FRAMES 100
static /* Image structure */ Frame [N_FRAMES];
void time_out(Widget w)
{

static i=0;

/* display Frame+i on window of widget w */
i++;
if (i<N_FRAMES)/* restart timer */

XtAppAddTimeOut(XtWidgetToApplicationContext(w),
T_SPAN, time_out, w);

}

4.3.3. File and Pipe Input—Graphical Front Ends The function
XtAppAddInput() registers a file descriptor and a function with the Intrinsics;
when there is input in the file descriptor, the function is called. The prototype for
the function that registers such input is

XtAppAddInput (XtAppContext app, int fid, int mask,
int (*fun) (XtPointer, int *), XtPointer client_data)

Its second argument fid, is a file descriptor returned from an open () call. The
fourth argument, fun(), is the function that reads data corresponding to the file
descriptor. The third argument is a symbolic constant that specifies interaction with
the file. The value XtInputReadMask states that the file descriptor is used for
reading. The last argument is a pointer to structure that is used as the first argument
of fun() when the latter is invoked by the Intrinsics.

This function is useful when we create a graphical front end for an existing
program that expects keyboard input and prints out characters.

126 FUNDAMENTALS OF X PROGRAMMING

We now outline how to create the basic communication mechanism for such a
graphical front end. Let old_program be the name of the existing program (in
/usr/local/bin) for which we want to create the front end. The code in the
main procedure follows:

/* inclusions, declarations, etc */
static int to_child, from_child;
extern read_from_child(XtPointer, int *); /* Function to

read the pipe */

int main (int arc, char **arv)
{

XtAppContext app;
Widget canvas;
/* XtVaAppInitialize(), creation of a canvas */
/* widget, etc. to XtRealizeWidget(); */

/* Open two-way pipe between programs */
two_way_pipe ("/usr/local/bin/old_program" , &to_child,

&from_child);
/* ask the Intrinsics to co-operate */
XtAppAddInput(app, from_child, XtInputReadMask,

read_from_child, (XtPointer)canvas);

XtAppMainLoop(app);
}

data, so that what is read can be displayed on that widget. The function
two_way_pipe () uses Unix system functions to create a two-way pipe between
processes; it is given in Listing 4.12. The variables from_child_p and
to_child_p are pointers to Unix file descriptors, and cmd is the program path to
be invoked. The function relies on Unix system functions fork (), execl (), and
dup (). The function fork () creates a copy of the current process, then returns 0
for the copy (the child process) and 1 for the original (the parent process). The
function dup () returns the lowest unused file descriptor. Thus calling dup () right
after closing 0 returns 0. The function execl () replaces the copy of the original
with the cmd process.

From now on a statement read (from_child, . . .) will read the output
of old_program [or whatever command was the first argument of
two_way_pipe ()]. An example of implementation that simply displays the
input read follows:

We pass the canvas widget to the function that will read the input as client

EVENT HANDLING IN THE X TOOLKIT 127

Listing 4.12. Two-Way Unix Pipe

/* Code written by Bill Sakoda, October, 1994 */
int two_way_pipe(char *cmd, int *to_child_p,

int *from_child_p)

{
static int popen_pid;
int p[2];
intq[2];
/* create two pipes - return on failure */
if (pipe(p) <0) return(0);
if(pipe(q) <0) return(0);
/* Unix fork returns 0 for child, 1 for parent */
if ((popen_pid = fork ()) == 0) { /* child code */

close (p[1]); close(q[0]); /* close what is
not needed */

close (0); dup(p[0]); /* this copies
p[0] to child
stdin */

close (p[0]); /* no longer
needed */

close (1); dup(q[1]); /* this copies
q[1] to child
stout */

close (q[1]); /* no longer
needed */

/* execute cmd command */
execl ("/bin/sh", "sh", "-c", cmd, 0);
/* if call succeeds we should never reach here */
exit(1);

}
else { /* parent code */

if(popen_pid == -1) return (0); /* failure */
close (p[0]); close (q[1]); /* close what is

not needed */
to_child_p = p[1]; / p[1] is parent

stdout */
from _child_p = q[0]; / q[0] is parent

stdin */
return (1);

}
}

1 28 FUNDAMENTALS OF X PROGRAMMING

#include <Stdef.h>
#define BFSIZE 256
static int x, y;

void read_from_child (XtPointer w, int *source)
{

int n;
static char read_bf[BFSIZWE+1];
St_draw_area((Widget)w);
n = read(*source, read_bf, BfSIZE);
if(n>0) {

read_bf[n] = 0 ; /* Make string null terminated */
St_put_text (read_bf, x, y) ;
y += 20; /* for placing the next message */

}
}

Notice that as in the two previous sections, we explicitly request that the
widget be used as an argument when the input function is called. We also pass a
pointer to the file descriptor rather than its value, even though havoc results if
read_f rom_child () changed its value. The Intrinsics insist on that for the
sake of portability to languages other than C.

In most cases we expect the user to initiate input to the program on the other
side of the pipe. Therefore a statement write (to_child, ...) is typically
located inside callbacks or event handlers. The file descriptor can be passed as
client data to such procedures, but it can also be made an external variable, as in the
example of p. 126.

4.4. ENTERING TEXT

4.4.1. Tools for Entering Text So far we discussed mouse input (Sec. 4.2)
as well as file input (Sec. 4.3), but we only briefly mentioned keyboard input (in
connection with action procedures in Sec. 4.2.3). Entering text through the
keyboard is a complex process in X (or for that matter in most window systems) for
two reasons: (1) The keyboard is a shared resource among different windows, so we
must decide how to allocate it to a particular application; (2) each key stroke
generates an event, so we must do all the work to assemble lines of text.

Keyboard allocation is discussed in Sec. 4.4.2. The collection of typed text
itself can be dealt with by using a text-entry widget. All toolkits have at least one
such widget; the topic is covered in Sec. 7.1. These widgets provide a resource that
corresponds to the buffer of collected text and a callback in response to pressing a

EVENT HANDLING IN THE X TOOLKIT 129

particular key or key combination. For example Motif uses the RETURN key for
one-line text entry and the CONTROL–RETURN key combination for multiline
text entry. Application writers can write a simple callback around a XtVaGet-
Values () call that extracts collected text from the resource.

If we want to mix text and graphics entries (for example to label a drawn
figure), then a text widget is not appropriate. The Starter toolkit provides a set of
functions for entering text in a paper class widget, so we can use those to label a
drawing. The functions are as follows:

void St_init_text (int x, int y, int stop_rule) specifies
the location where the lower left corner of the first line of the typed text
appears on the screen (x and y), if the third argument is nonzero, text entry
terminates with a new line; otherwise it terminates when a nonprintable
character (such as Escape) is entered. It also performs the necessary
initializations. It must be called before calls to collect_text ().
void St_set_string_use (void (*f) (char *)) specifies the
function to be called with the typed string as an argument when text entry
terminates. It must be called before call to collect_text ().
void St_collect_text (Event *p) does the real work, and it
must be called from inside the event handler. If it is called before
init_text (), it returns immediately. If it is called before call to
set_string_use (), the typed text is not used.

If we do not want to use the Starter toolkit or a text-entry widget, then we must
write our own text collection facility (see Sec. 4.4.3).

4.4.2. Getting the Focus We say that a widget (window) has the focus
when it receives keyboard events. It is a responsibility of the window manager to
direct such events to a specific widget, and there are various possible policies. The
simplest policy is to have keyboard events sent to the widget whose window
contains the pointer. If this is not already the default policy in the system we are
using, we must explicitly specify it. When using the Athena or OLIT toolkit (or Xt
by itself) the specification is made by the statement:

XtVaSetValues (toplevel, XtNinput, True, NULL);

When using Motif the specification is made by the statement:

XtVaSetValues(toplevel, XmNKeyboardFocusPolicy,
XmPOINTER, NULL);

130 FUNDAMENTALS OF X PROGRAMMING

Note: In both cases only the widget name (toplevel) is a variable. Other values refer
to symbolic names, so these are fixed. In the absence of the above, the translation
<Enter> : focus () accomplishes the task for simple programs provided
focus refers to a function with the following Xlib code:

void Get_focus (w)
Widget w;

{
XSetInputFocus (XtDisplay(w), XtWindow(w),

RevertToParent, CurrentTime);
}

In addition to asking the window manager to direct keyboard events to widget w
whenever the pointer is inside the window of w, this call also provides other
instructions for the window manager. The third argument provides instructions
about what to do with keyboard events when the window of w is no longer visible;
the fourth argument specifies when the focus policy becomes effective.

4.4.3. Low-Level Functions for Text Entry The Xt has a function that looks at
an XEvent union and extracts a code for the key that was pressed. The function
has the following prototype:

KeySym XtGetActionKeysym(XEvent *ep, Modifiers *modp);

Both KeySym and Modifiers types are in effect long. The second argument
indicates whether a shift key was used. (It equals 1 if not locked, 2 if locked). It
does not indicate if CONTROL or ALT were pressed. The return contains a
symbolic code, the keysym defined in the file X11/keysymdef.h. Only the
least significant 18 bits are used. The key symbol code is designed to be the same as
the ASCII code whenever feasible. Its values differ mainly when special pad keys or
modifier keys are pressed, such as the SHIFT, CONTROL, and ALT keys. Table 4.1
lists the returned values of keysym when the ‘A’ key is pressed either alone or in
combination.

EVENT HANDLING IN THE X TOOLKIT 131

Pressing any key generates an event, so it is correct to have two returns;
however it is up to the application to interpret two key combinations when the
modifier is not the shift key.

The keyboard can be used for two purposes: To invoke action procedures (Sec.
4.2.3) or menu accelerators (Sec. 5.2.6), where all key combinations are important,
and to enter text strings. In this case we may ignore some but not all of the modifier
keys. The following rules are pertinent:

The returned value for printable keys is the 7-bit ASCII value.
The returned value for return, backspace, tab, and escape keys is 0177400
ORed with the 7-bit ASCII value. For example the escape key’s code is
0177433.
The returned value for control keys is 0177400 ORed with an 8-bit code.

The preceding rules suggest that we can ignore a key if keysym&0200 is
nonzero. However there is an exception. Many people are used to using the delete
key as a character erasure key, but the code returned for it is 0177777 (sixteen 1s).
These rules are sufficient for simple programs—complex programs must use
symbolic names, such as XK_Control_L, etc.

Listing 4.13 contains the necessary code for collecting text lines and looking
for special characters. It is given so that it can be used either from inside an event
handler or as an action procedure tied to <Key>. The code assumes that characters
are echoed on the screen at position _x, _y and the user is prompted with an
underscore. The collected text is placed in a buffer pointed by _cp. All three are
static variables, so we are not concerned here with their definitions. Typically these
are initialized by the procedure that requests the user to provide text. In filling a
form _x, _y is near the lower left corner of the text entry box, and _cp is
initialized to point to the buffer where the typed text is placed. Listing 4.13 uses

132 FUNDAMENTALS OF X PROGRAMMING

List ing 4.13. Collecting Text—File keys.c

static int_x,_y;
static char *_cp;
void collect_text (Widget w, XEvent *ep)
{ KeySym keysym;

Modifiers mods;
static char bf[2] = " ";

St_draw_area(w);
St_use_xor_mode();
keysym = XtGetActionKeySym(ep, &mods);
if(!keysym) return;
if(keysym &0200) {/* control character */

/* handle special case for DEL */
if(keysym == 0177777) keysym &= 0177577;
else return;

}
St_put_text ("_",_x,_y); /* erase underscore */
if(keysym&0400) { /* Tabs, new lines, etc */

switch(keysym&0177) {
case XK_Tab:

_x += 20; /* for example */

break;
/* other cases, such as new line */
}

}
else {

bf[0] = keysym;
_x += St_put_text(bf, _x, _y) ; /* echo character

and advance horizontal position */
*_cp++ = bf[0];

}
St_put_text("_",_x,_y); /* place new underscore */
return;

}
#ifdef EVENT_HANDLER
void event_handler(Widget w, XtPointer client_data,

XEvent *ep, Boolean *pass_the_event)
{

/* ... */
switch (ep->type) {
case KeyPress:

TE
AM
FL
Y

Team-Fly®

EVENT HANDLING IN THE X TOOLKIT 133

collect_text(w, ep);
break;

/* other cases */
}
#else /* Action Procedure */
static XtActionsRec acts [] = {

/* ... */
{ "collect_text", collect_text},

/* ... */
};
static char translations [] = " ... <Key> : collect_text () ... "
#endif

Starter toolkit functions for drawing. These can easily be replaced by Xlib functions
(see Chap. 8). The code in Listing 4.13 must be completed by providing ways of
dealing with new lines and erasures.

4.5. CONCLUSIONS

We discussed event handlers, callbacks, and action procedures; gave examples
of their use; and made comparisons. We also discussed work procedures, timeouts,
and file input and animation applications (for the first two topics) and building
graphical front ends (for the third topic). Finally we discussed text entry.

Simple X programs may ignore most of these issues because events are dealt
through the widget callbacks. On the other hand material in Chap. 4 is essential for
programs with mixed input (both file and user) or those that do animation.

4.6. PROJECTS

1. Use the resource fallback mechanism (see Sec. 3.2.4) to modify programs
in Listings 4.5–4.7 so these will work even if there is no resource file.

2. The program in Listing 4.11 stops at a random state when the user presses
mouse button 1 or 2. If the display were blinking before, it may be either on or
off now. Modify the program so that when steady, the display is always on.

3. Modify the program in Listing 4.11 so that it scrolls the message (instead
of blinking).

4. Compare the performance of animation with work procedures and
timeouts by running the program in Listing 4.11 in its original form and
with the modifications suggested in Sec. 4.3.2.

1 34 FUNDAMENTALS OF X PROGRAMMING

5. Modify the program in Listing 4.11 by using timeouts and providing for
the following application user inputs: (1) when Button 1 is pressed the rate
of blinking increases; (2) when Button 2 is pressed, the rate of blinking
decreases; and (3) when Button 3 is pressed, blinking pauses/restarts.

6. Create a graphics front end for an interactive Unix command, for example
dc, the desk calculator, using functions described in Sees. 4.3.3 and 4.5.
When the user types a line, a line returns with the result. This is not very
interesting, but once we ensure that the pipe is working, we can create a
true graphical front end using material from subsequent chapters.

5

Programming with
Widgets

5.1. Widgets as Building Blocks. 137
5.1.1.
5.1.2.
5.1.3.

Introduction .
Relations between Children and Parents
Finding the Widget Tree .

137
138
139

5.2. Simple Widgets . 141
5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.
5.2.7.
5.2.8.
5.2.9.

Introduction .
Label Widgets .
Command or Button Widgets
Toggle Widgets. .
Utility Function for Creating Buttons.
Accelerators. .
Gadgets and Objects .
Widget Sensitivity. .
Finding Widgets by Name

141
141
143
144
145
147
148
149
150

5.3.
5.4.

Widget Geometry. .
Container Widgets .

150
152

5.4.1.
5.4.2.
5.4.3.
5.4.4.

Simple Layout Widgets. .
Application with a Visible Menu.
More on Widget Sensitivity.
Radio Boxes. .

152
152
155
156

135

136 FUNDAMENTALS OF X PROGRAMMING

5.4.5. Application-Specified Layout 157
5.5. Shell Widgets and Pop-ups. 159

5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.

Overview. .
Shells. .
Widget Forests .
Pop-up Widgets .
Image Pop-ups. .

159
159
161
164
166

5.6.
5.7.
5.8.

Drawing Widgets .
Conclusions .
Projects .

166
169
171

PROGRAMMING WITH WIDGETS 137

5.1. WIDGETS AS BUILDING BLOCKS

5.1.1. Introduction So far all the examples have had two widgets, one a
shell widget and the other usually a paper class widget. The shell widget window is
tightly wrapped around the window of its child widget, so it is not visible. In
addition such programs have a window inserted by the window manager that
usually has a few subwindows of its own. For practical purposes, we can think of
such applications as one-window applications, since there is only one window that
is both visible to the user and under the control of the application. (Indeed in other
systems, such as Microsoft Windows, such a construct is considered a single
window.) Figure 5.1 shows this arrangement on the left.

Complex X programs can be built by assembling different widgets. All
programs need a shell widget that interacts with the window manager and contains
all other widgets. Because shell widgets can have only one child, programs with
many windows need a basic container widget that is a child of the shell and in turn
contains all other widgets. Some of these widgets may be containers themselves,
and so forth. Such an arrangement is shown on the right of Fig. 5.1.

The term simple widget refers to widgets that have no children. The word
simple is misleading, since some simple widgets such as labels or buttons, are

1 38 FUNDAMENTALS OF X PROGRAMMING

indeed simple, but others, such as sliders, can be quite complex from both a
programmer’s and a user’s perspective. There are also many different kinds of
container widgets. These are characterized mainly by the complexity of the rules
specifying the layout of their children. At one extreme are container widget classes
that arrange their children according to a fixed policy (for example in a vertical
column). In the other extreme are widgets where the application specifies placement
directly through plane coordinates. A strict application-specified policy may seem
attractive but it has one disadvantage: The policy may not provide a good
arrangement if the parent widget is resized. Therefore it is desirable to have a set of
rules by which the parent widget lays out children widgets.

In Chap. 5 we discuss widgets with relatively simple modes of interaction—
simple widgets, simple container widgets, shells (including pop-ups), and drawing
widgets.

The Xt provides only rudimentary widgets, so for nontrivial applications, we
must use widget from another toolkit. The Athena toolkit is free with all
distributions of X, but it is rather limited. The most advanced toolkit is Motif, but
since it is not free, it may not exist in some installations. The OLIT, distributed with
SUN systems, lacks the full functionality of Motif, but it has some widgets that
provide more advanced features than the corresponding Motif widgets.

Since most X programs can be written equally well with any of these toolkits,
in the rest of the text, we attempt as much as possible to provide descriptions that
are independent of a particular toolkit.

5.1.2. Relations between Children and Parents X distinguishes between
managed and unmanaged children of a container widget. A parent must provide
space for each managed child by taking into account its needs. This is normally
done within the function XtRealizeWidget (). At that stage most parent widgets
compute their own size, so that they can accommodate their managed children.
Afterward parent widgets have complete control over their children's layout (in
response for example to window resizing). If an application wishes to preserve a
layout form, it must do so through constraint widgets, as we discuss in Chap. 6.

While parents provide space for their managed children, they provide no space
for unmanaged children. A managed widget may be mapped or unmapped,
depending on whether its window is mapped or not. The parent of an unmapped
widget leaves space for it in the display, but the widget is not visible. Widgets are
managed from the start if created by XtCreateManagedWidget () (as in our
examples). Widgets start unmanaged if they are created with XtCreateWid-
get (). That status can be changed with the following functions:

XtManageChild(Widget w)
XtUnmanageChild(Widget w)

PROGRAMMING WITH WIDGETS 139

These functions are not likely to be of use for the type of applications
discussed in this book. In general it is best to change the mapping rather than the
management status of a widget to make it invisible. Mapping can be changed with
the functions:

XtMapWidget(Widget w)
XtUnmappWidget(Widget w)

These functions leave the position of other widgets unchanged, so these present a
more consistent environment to the user.

As we mention in Sec. 3.1.4, the core class has a boolean resource
XtMappedWhenManaged that ensures widgets are automatically mapped when
managed if its value is TRUE.

All composite widgets have resources XtNchildren (pointer to a list of
widgets), XtNnumChildren (integer), and XtNinsertPosition (pointer to
procedure that determines position in the array of children). An example illustrating
the use of some of these functions is given in Sec. 5.1.3.

5.1.3. Finding the Widget Tree Here we discuss a simple program that
constructs the widget tree of an application. The program uses the resources of
composite widgets and the information function, XtName (), that provide a
widget’s name. Listing 5.1 shows a recursive procedure that can be called with the
top widget as first argument [for example tree (toplevel, 0);] just before
calling XtAppMainLoop () in such programs as Listings 1.2, 5.8, etc. The
essential statements are highlighted.

The function of Listing 5.1 uses tabs to denote depth. Figure 5.2 shows a
simple window layout with the output of the tree () function next to it. The
function is useful for extracting information from a poorly documented program
provided the source is available. It is a weak relative of the spy program discussed
in Chap. 2. That program extracted information from applications whose source
code was not available. Because widgets are client structures and their names are
known only inside an application, the “widget spy” code must be compiled with the
application

The function tree () can be called from inside any callback or event handler
by using the XtParent () information function in the following manner:

some_callback(Widget w, ...)
{

Widget wtop = w;
/* ... */

140 FUNDAMENTALS OF X PROGRAMMING

Listing 5.1. Printing the Widget Tree

/* Traversing the Widget Tree */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>

void tree(Widget w, int depth)
{

register i;
Widget *kids;
int nk=0;

for (i=0; i<depth; i++) printf("\t");
XtVaGetValues(w, XtNnumChildren, &nk, NULL);
printf("%s(%d children)\n", XtName(w), nk);
if(nk==0) return;
XtVaGetValues(w, XtNchidlren, &kids, NULL);
for(i==0; i<nk; i++)tree(kids [i], depth+1);
for(i=0; i<depth; i ++) printf("\t")
printf (" - - - - - - - -\n");

}

while(XtParent(wtop) != NULL) wtop = XtParent(wtop);
tree(wtop, 0);

/* ... */
}

In this way we can add a menu button in an application to print the widget tree.

PROGRAMMING WITH WIDGETS 141

Note: The widget tree computed in this fashion is correct only for applications
that do not include pop-up windows. We return to this topic in Sec. 5.5.

5.2. SIMPLE WIDGETS

5.2.1. Introduction All widget sets have a class that is a subclass of
Core and a superclass for all simple widgets. For Athena the class is
simpleWidgetClass, for Motif XmPrimitiveWidgetClass, and for
OLIT primitiveWidgetClass. These classes contain various resources that
are inherited by all simple widgets. We do not consider these separately now; we
refer to their resources when discussing specific simple widgets. Table 5.1 gives
class relationships for some simple widgets of the three major toolkits. Each widget
class is derived from the class in the row above it. The terms simple and primitive
are somewhat misleading; they mean only that the widget has no children. Some
simple widgets are indeed simple; for example those that serve as menu buttons.
Others, such as scrollbars or text editors, may have quite complex functionality.

5.2.2. Label Widgets One of the simplest possible widgets is a label
widget whose window displays either (noneditable) text or a pixmap. Athena has
the class labelWidgetClass (definitions in Xaw/Label. h), which is a
subclass of Simple, itself a subclass of Core. This class has a large number of
resources that determine its appearance; the most pertinent for simple applications
are

XtNbitmap: Takes as value a bit map (pixmap type) that is displayed.
XtNlabel: Takes as value a string of characters; the text may include
new line characters (‘\n’) that are interpreted correctly. If both a label and a
pixmap are defined, the pixmap has priority.
XtNleftbitmap: Takes as value a bit map (pixmap type); it is displayed
in addition to the label to the left of it.

142 FUNDAMENTALS OF X PROGRAMMING

XtNforeground: The color (pixel value) used to draw the text or the bit
map. Note: The widget also has a XtNbackground resource inherited
from Core.
XtNFont: Takes as value a font information structure (see Sec. 8.3.4) that
specifies the font used to draw the text.

Other resources specify margins, text justification, cursor, cursor color, etc.
(The last two are inherited from Simple.)

Listing 5.2 is a version of the Hello World program that uses this widget. Note:
This program does not exit gracefully (see Sec. 4.2.6 on how to fix the problem).

Motif has a similar label widget class, xmLabelWidgetClass (definitions
in Xm/Label.h), which is a subclass of XmPrimitive. Resources XmNla-
belPixmap and XmNlabelString refer to the pixmap or label string. Note:
The expected string is not an ordinary ASCII string but a special XmString that
may include font specification; it allows us to use character systems other than
ASCII. The simplest way of specifying a label is through the function
XmStringCreateLocalized (), which takes as an argument an ordinary
ASCII string, for example:

XtVaSetValues(motif_label, XmNlabelString,
XmStringCreateLocalized("Price of generality"),
NULL);

An additional resource, XmlabelType, has the symbolic strings XmSTRING and
XmPIXMAP as possible values specifying the type of label.

The OLIT has no label widget class as such; the static text widget class,
statictextWidgetClass (definitions in Xol/staticText .h), with
resource XtNstring, has a similar functionality, but it does not provide for
pixmaps (images stored on the server). Another related class is the caption widget
class, but it is a composite widget whose label is used to describe a child widget.

TE
AM
FL
Y

Team-Fly®

PROGRAMMING WITH WIDGETS 143

Listing 5.2. Hello World Program

/*Hello World */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>

#include <X11/Xaw/Label.h>

main(int arc, char **arv)
{

Widget toplevel, label;
XtAppContext app;

toplevel = XtAppInitialize(&app, "Play",
NULL, 0, &arc, arv, NULL, NULL, 0);

label = XtVaCreateManagedWidget("Label" ,
labelWidgetClass, toplevel,
XtNlabel, "The End of the World is Near",
NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

5.2.3. Command or Button Widgets Command widgets are constructed
in the Athena toolkit from Label widgets by adding a callback function, which is
usually invoked when the user clicks the mouse button on the widget. Their
counterpart in Motif and OLIT are button widgets, which have a three-dimensional
appearance to provide the illusion of actually pushing a button. (Motif has a widget
class called command, but it is used for typing commands.)

The command widget class, commandWidgetClass for the Athena set, is
a subclass of Label having the additional resource, XtNcallback, which is a
callback list. Listing 5.3 is an implementation of the Hello World program with a
graceful exit. (However the program still cannot properly handle an exit through the
window manager.)

The corresponding class in Motif is PushButton, xmPushButtonWidget-
Class (definitions in Xm/PushB.h), which has three callback lists. The one
corresponding to the Athena XtNcallback is XmNactivateCallback. The
corresponding class in OLIT is OblongButton, oblongButtonWidgetClass
(definitions in Xol/OblongButt .h), with callback resource XtNselect.

144 FUNDAMENTALS OF X PROGRAMMING

Listing 5.3. Enhanced Hello World Program

/* Hello World */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>

#include <X11/Xaw/Command.h>

void quit() {
exit(0);

}
main(int arc, char **arv)
{

Widget toplevel, button;
XtAppContext app;

toplevel = XtAppInitialize(&app, "Play",
NULL, 0, &arc, arv, NULL, NULL, 0);

button = XtVaCreateManagedWidget("Button",
commandWidgetClass, toplevel,
XtNlabel, "The End of the World is Near",
NULL);

XtAddCallback(button, XtNcallback, quit, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

Since button widgets are normally used in selection menus, we present
examples of their use when we discuss menus.

Buttons can be labelled with icons in addition to text. Motif and Athena
require the specification of a pixmap, while OLIT requires an X Image (image
stored on the client).

5.2.4. Toggle Widgets Command widgets have no memory. Once a button
is pushed, it pops out immediately, and it is available for another selection by the
user unless explicitly disabled by the application, as discussed in Sec. 5.2.8.
Toggles are command widgets with memory—after a button is selected, it stays off.

PROGRAMMING WITH WIDGETS 145

For example in an animation program, we may have play and pause buttons.
Toggles are often used in radio boxes. These enforce the rule that only one button
can be selected at any one time. We discuss this arrangement in Sec. 5.4.4.

The toggle widget for each of the three major toolkits follow:

• Athena: toggleWidgetClass (definitions in Xm/Toggle .h)
• Motif: xmToggleButtonWidgetClass (definitions in

Xm/ToggleB.h).
• OLIT: rectButtonWidgetClass (definitions in

Xol/RectButton.h).

The callbacks are the same for command buttons except in Motif, where it is
XmNarmCallback.

Toggle widgets have a state resource used by functions to impose radio box
behaviour. The state resource is Boolean; it is called XtNstate in Athena,
XmNset in Motif, and XtNset in OLIT. To change the state of a toggle from the
application, we need a statement such as:

XtVaSetValues(w, XmNset, FALSE, NULL);

In general applications should avoid setting the state explicitly; instead these should
rely on a container widget to enforce such rules as “only one choice at a time.”

Toggle buttons are good for specifying parameters in a program, for example,
the color used in a painting program.

5.2.5. Utility Function for Creating Buttons Many applications need to
create selection buttons without worrying too much about their particular
appearance; the code in Listing 5.4 does that.

Capitalized variables are defined according to the widget set used, as shown in
Listing 5.5.

The code of make_button() for a toggle button is identical to what is
given because we use defined constants. We have to change only definitions of
BUTTON_CLASS and in the case of Motif, of CALLBACK. However before trying
to combine the pieces of code remember the correct procedure for changing
definitions in C:

#define THING something
/* ... */
#undef THING
#define THING something else

146 FUNDAMENTALS OF X PROGRAMMING

Listing 5.4. Button Creation Function—File button. c

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include "button_defs.h"

Widget make_button(Widget parent, char *S, void (*f)(),
XtPointer callback_argument)

{
Widget w = XtVaCreateManagedWidget(s, BUTTON_CLASS,

parent, TEXT(s), NULL);
XtAddCallback(w, CALLBACK, f, callback_argument);
return w;

}

Listing 5.5. Widget-Set-Dependent Definitions for Buttons—
File Button_defs.h

#ifdef ATHENA
#include <X11/Xaw/Command.h>
#define BUTTON_CLASS commandWidgetClass
#define TEXT(A) XtNlabel, A
#define CALLBACK XtNcallback
#endif

ifdef MOTIF
#include <Xm/PushB.h>
#define BUTTONCLASS XmPushButtonWidgetClass
#define TEXT(A) XmNlabelString, XmStringCreateLocalized (A)
#define CALLBACK XmNactivateCallback
#endif

#ifdef OLIT
#include <Xol/OblongButt.h>
#define BUTTON_CLASS oblongButtonWidgetClass
#define TEXT(A) XtNlabel, A
#define CALLBACK XtNselect
#endif

PROGRAMMING WITH WIDGETS 147

5.2.6. Accelerators Buttons let us invoke actions with a mouse button
click. Some users however prefer the keyboard instead of the mouse, particularly
for such applications as text editors, which involve considerable typing anyway. It is
easy to define a second callback for a button that responds to a keyboard event.
However that requires the button to be visible and the pointer to be inside it (to have
the keyboard focus). That is almost as much work as clicking the button and it
certainly does not work with pop-up or pull-down menus, where buttons are not
visible all the time.

The Xt provides a mechanism for associating events in one widget with actions
in another. The core widget has a resource, XtNaccelerators, that points to a
translation table (see Sec. 4.2.3 and 4.2.4) whose actions can be tied to other
widgets. Suppose the accelerator table for a button contains the entry:

Ctrl<KeyPress>q: quit()

If we associate the table with all the widgets in the application, then pressing
CONTROL q causes an action procedure corresponding to quit to be called. The
name accelerator refers to the functionality obtained from such a mechanism. For
example in a text editor, the normal way of saving a file may require pressing a save
button. Instead of leaving the keyboard, the user could press a key combination that
would also save the file. That key combination is an accelerator for the save button.
We say that the text widget is the destination and the button widget is the source of
the accelerator. Clearly the destination widget must have the keyboard focus for
keyboard accelerators to be effective (Sec. 4.4.1).

Both Motif and OLIT provide a simpler way of specifying accelerators than
does Xt. The following code illustrates the definition of an accelerator for a Motif
pushbutton:

out = XtVaCreateManagedWidget("Exit",
xmPushButtonWidgetClass, menu, XmNlabelString,
XmStringCreateLocalized("quit"), NULL);

XtAddCallback(out, XmNactivateCallback, quit, NULL);
XtVaSetValues(out, XmNaccelerator, "Ctrl<Key>q",

XmNacceleratorText, XmStringCreateLocalized ,
NULL);

Note: Two strings are involved: (1) a string with the syntax of the translation
table that specifies simultaneously typing CONTROL and q is the accelerator; and
(2) an XmString that specifies the text to be added to the regular label. After the
accelerator is added, the button label is quit . The relevant OLIT resources
are XtNaccelerator (there is no s at the end) and XtNacceleratorText.

148 FUNDAMENTALS OF X PROGRAMMING

While accelerators in Motif and OLIT can be defined for many widget classes,
they tend to be supported only under special circumstances, namely, for buttons and
toggles that are normally invisible. This is the case when the parent is a pop-up or
pull-down menu (see Chap. 6). No warning of any kind is issued if the parent is the
wrong kind except that the accelerator text (if specified) does not appear in the
label. The reason is that defining the accelerator for the source (usually a button)
does only half the work. We must make sure that the destination widget knows
about it. Motif and OLIT do that automatically, but they impose some policies
during this process.

5.2.7. Gadgets and Objects Creating a separate window for each menu
button seems wasteful, and it often is. For this reason all toolkits provide gadgets as
alternatives to simple widgets. A gadget looks and acts like a widget except that it
has no X window associated with it.

To understand the implementation of gadgets, we must look at the full class
hierarchy of Xt. In Chap. 3 we started with the Core class but there are actually two
classes above it in the class hierarchy. The true base class is Object. It has a subclass
RectObj that has dimension and position information but no window associated
with it. Core is a subclass of RectObj, although the definition file of Core does not
make explicit references to its superclasses; instead it repeats their definitions.

Gadgets are defined as subclasses of RectObj. Note: There is no type Gadget;
whenever necessary we must use the Object as the type. All simple widgets
described so far also have gadget counterparts. For example to create a gadget push
button in Motif, we use the following code:

#include <Xm/PushBG.h>
#define BUTTON_CLASS xmPushButtonGadgetClass
/* other definitions are the same as in Listing 5.5 */

Object make_button(Widget parent, char *s, void (*f)(),
XtPointer callback_argument)

{
Object w = XtVaCreateManagedWidget(s, BUTTON_CLASS,

parent, TEXT(s), NULL);
XtAddCallback(w, CALLBACK, f, callback_argument);
return w;

}

The callback function should have the form

void f(Object w, ...)
{
/* ... */
}

PROGRAMMING WITH WIDGETS 149

Using gadgets reduces demands on the server but increases demands on the
application. For example the server delivers events only to windows, so there is no
way of directly associating events to gadgets. Thus if a widget has gadget children,
it must handle events for them. In particular when the parent widget receives an
event, it must perform the necessary geometric calculations to find the gadget where
the pointer was when the event occurred. Then it invokes the callback associated
with the gadget. Such toolkits as Motif hide these calculations from the applications
programmer, so programmers sometimes forget the difference between gadgets and
widgets.

5.2.8. Widget Sensitivity There are situations when it is inappropriate for
the application user to execute a command, so we may wish to disable the widget.
For example we may wish to disable a start button in an animation if the animation
has already begun. There are three ways of accomplishing this: Unmanage the
widget, unmap the widget, and make it insensitive. When a widget is unmanaged, it
disappears from the screen, and other widgets are rearranged to assume its place.
This is usually too drastic a step, and it can be confusing to the user. When a widget
is unmapped, it also disappears from the screen, but its place remains empty. This is
a more gentle change than when a widget is unmanaged, but it may still be deemed
undesirable by application users.

The preferred way of disabling a widget is to make it insensitive using the core
resource XtNsensitive. The following call makes a widget indifferent to
events:

XtVaSetValues(w, XtNsensitive, False, NULL);

The following call revives it:

XtVaSetValues(w, XtNsensitive, True, NULL);

Suppose we have two button widgets, on_widget and off_widget, with
respective labels “on” and “off”, but we want to have only one of them sensitive.
To start we call

XtVaSetValues(on_widget, XtNsensitive, True, NULL);
XtVaSetValues(off_widget, XtNsensitive, False, NULL);

150 FUNDAMENTALS OF X PROGRAMMING

Then inside the callback of the “on” button, we include statements:

on_callback(Widget w, ...)
{

Widget sibling;
/* ... */
XtVaSetValues(w, XtNsensitive, False, NULL);
sibling = XtNameToWidget(XtParent(w), "off");
XtVaSetValues(sibling, XtNsensitive, True, NULL);

}

and a symmetric set of statements in the callback of the “off” button. Instead of
using the XtNameToWidget () function, we could pass the other widget as part
of the client data. However explicit use of the name makes the code easier to
understand at the cost of very little computation.

While mechanisms for enabling or disabling a widget are very simple, their use
requires special care. We must identify program states and select which command
buttons are meaningful in each state. We present a less trivial example in Sec. 5.5.3.

5.2.9. Finding Widgets by Name When we discussed widget sensitivity,
we used the information function XtNameToWidget () to find the sibling of a
widget to change its sensitivity. This function has the following prototype:

Widget XtNameToWidget(Widget w, String names);

If the string names has only one name the function returns the direct child ofw if
any matching that name. The string may also have a list of names (separated by
periods or asterisks) that specify a path in the tree. Thus to find the widget with the
name “on”, starting from the top of the tree, we must call

XtNameToWidget(toplevel, "*on");

The start character (*) matches any path name. If there is more than one widget
named “on”, the function returns the one closest to the root. Ties are broken in an
unpredictable way. The following call locates a widget named “on” only if it is a
direct child of toplevel.(See [AS90], pp. 415–17, for more on this topic.)

XtNameToWidget(toplevel, "on");

5.3. WIDGET GEOMETRY

The term widget geometry refers to the size of its window (width and height),
coordinates of its top left corner (with respect to the parent window), border width,

PROGRAMMING WITH WIDGETS 151

and depth or stacking position. Stacking refers to which window is displayed on top
of another: If windows of widgets A and B overlap and the stacking order is A, B,
the window of B will be (partially) hidden by the window of A. Note: Stacking
order is always defined even if windows do not overlap. (Widget geometry is
information that resides on the client, while window geometry is information that
resides on the server; thus the two are not the same.)

The general policy in Xt is that window dimensions and positions are
calculated bottom up before windows are created. First each widget that has no
children determines its size, then passes that information to its parent. Then each
parent calculates its own size based on the size of its children, and so forth. (Parents
may override some size requests, see the following discussion.) In Fig. 5.2 widgets
canvas, start, pause, restart, and exit compute their size first, then
menu, and then frame. After windows are created and mapped, the geometry is
controlled top down. Requests by a child to change its size are restricted.

Simple widgets such as those we have seen so far have their dimensions either
specified through the resources XtNwidth and XtNheight or computed based
on the displayed label. Composite widgets follow different policies, so they may
ignore some of the geometry requests from their children. Some composite widgets
have a fixed layout policy. Their children are laid out along a particular direction
(vertically or horizontally) in the order in which they were created. For example in a
vertical layout, the first child is at the top. A container widget may compute the
maximum width (in a vertical layout) or height (in a horizontal layout), then assign
those values to all children; Fig. 5.3 shows the final appearance.

Container widgets with a specific layout policy generally ignore position
requests (resources XtNx and XtNy). Other container widgets honor position
requests (see Sec. 5.4.5).

The major dilemma facing an application writer is caused by conflicting
requirements: On one hand we want to specify the appearance of the windows as we
would like them to be; on the other hand we want to avoid burdening our code with

152 FUNDAMENTALS OF X PROGRAMMING

detailed geometric calculations. Delegating the layout to a composite widget
relieves us from the latter task, but we give up some control over window
appearance. Another difficulty is the need to respond to resizing by the user.

A compromise is to specify constraints on the layout rather than the layout
itself. Container widgets that accommodate such constraints are discussed in
Chap. 6.

5.4. CONTAINER WIDGETS

5.4.1. Simple Layout Widgets The simplest kind of container widgets are
those that lay out their children in particular predefined order, either vertically or
horizontally. Athena has a Box widget class boxWidgetClass (definitions in
Xaw/Box. h) that is a direct subclass of composite. In addition to the resources it
inherits from core and composite widgets, it has three resources of its own:
XtNorientation can have one of two symbolic values: XtorientVerti-

cal or XtorientHorizontal. In the former case children are laid out
vertically, in the latter horizontally; the default value is horizontal. However if there
are no constraints on a widget dimension and all children do not fit in the requested
direction, additional rows (or columns) can be created.

XtNhSpace and XtNvSpace take values in pixels that represent horizontal
and vertical gaps between children and between the children and the widget frame;
the default value is 4 pixels.

Similar functionality (and more) is provided by xmRowColumnWidget-
Class of Motif and controlAreaWidgetClass of OLIT. The relevant
resource of the former is XmNorientation, with values XmVERTICAL and
XmHORIZONTAL. The OLIT widget has resource XtNlayoutType, with values
OL_FIXEDCOLS and OL_FIXEDROWS. These widgets also create multiple rows
or columns if all children do not fit in one.

The Motif row/column widget have a type resource, XmNrowColumnType,
that further specifies its functionality through symbolic values; these include
XmMENU_PULLDOWN, XmMENU_POPUP, and the default value XmWORK_AREA.
If we create menus using Motif convenience functions (see Chap. 6), we need not
be concerned with type specification.

5.4.2. Application with a Visible Menu We can combine two container
widgets with a paper widget and a set of command/button widgets to construct an
application with a drawing area and a visible menu with four buttons arranged
horizontally beneath it. The window layout is shown in Fig. 5.2 (Sec. 5.1.3).

The program is given in Listing 5.6; widget classes definitions are given in
Listing 5.7. The function make_button () is as in Listing 5.4 (with definitions in

TE
AM
FL
Y

Team-Fly®

PROGRAMMING WITH WIDGETS 153

Listing 5.5). Definitions of capital letter variables are straightforward, although
OL1T layout specifications are rather cryptic.

It is quite easy to modify the program in Listing 5.6 to obtain different layouts.
If we create the menu widget before the canvas widget, the menu appear on top. To
have a vertical menu to the side of the canvas, we interchange the layout parameters
of the frame and menu widgets. In this case the menu appears on the right if the
canvas is created first and to the left otherwise.

The contents of the drawing window are specified by whatever the function
paint () draws. The response to events depends on the four callbacks not been
included in Listing 5.6. We added the canvas as client data to the callbacks, so when
one of these functions is called it can draw on the canvas. For example to produce
an animation, we may use the following code:

int animate(Widget w)
{

St_draw_area(w);
/* ... */

}
static XtWorkProcId animation_id;
void start(Widget w, Widget sibling)
{

draw_area(sibling) ;
/* perform any initialization tasks needed */
/* ... */
/* pass the drawing area to the work procedure as
well */
animation = XtAppAddWorkProc(

XtWidgetToApplicationContext(w),
animate, (XtPointer)sibling);

}

If the application user resizes the application, all windows keep their size and
positions. This is probably a desirable property for an animation or game program,
but not for a drawing program where a user may want a larger canvas. For that we
need a constraint widget. (The Motif Row Column widget is a constraint widget,
but we used it in a naive mode in this example.) We need change only the class of
the first container to a constraint widget. The menu container widget should remain
in the same class because we want to keep the button layout constant, since changes
are likely to confuse users. On the other hand we may wish to provide the user with
the option of displaying the menu at the top rather than the bottom.

Before we deal with constraint widgets, we discuss some topics pertinent to
any container widgets.

154 FUNDAMENTALS OF X PROGRAMMING

Listing 5.6. Menu and Drawing Widget—File game. c

#include <X11/StringDefs.h>
#include <X11/Intrinsic.>
#include "box_defs.h" /* See Listing 5.6 */
#include <Paper.h>

void start(), pause(), restart(), quit();
void paint(),
Widget make_button(); /* From Listing 5.4 */

main(int arc, char **arv)
{

Widget toplevel, frame, menu, canvas;
Widget start_button, pause_button, restart_button,
exit_button;

XtAppContext app;

toplevel = XtVaAppInitialize(&app; "Play",
NULL, 0, &arc, arv NULL);

frame = XtVaCreateManagedWidget("frame",
BOX_WIDGET_CLASS, toplevel, VERTICAL_LAYOUT,

NULL);

canvas = XtVaCreateManagedWidget("canvas",
paperWidgetClass, frame,
XtNwidth, 300, XtNheight, 200,
NULL);

XtAddCallback (canvas, XtNredrawCallback, paint,
NULL);

menu = XtVaCreateManagedWidget("menu",
BOX_WIDGET_CLASS, frame, HORIZONTAL_LAYOUT, NULL);

start_button = make_button(menu, "Start", start,
(XtPointer)canvas);

pause_button = make_button(menu, "Pause", pause,
(XtPointer) canvas);

restart_button = makebutton(menu, "Restart", restart,
(XtPointer)canvas);

exit_button = make_button(menu, "Exit", quit, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

PROGRAMMING WITH WIDGETS 155

Listing 5.7. Widget-Set-Dependent Definitions for Containers—File
box_def.h

#ifdef ATHENA
#include <Xll/Xaw/Box.h>
#defme BOX_WIDGET_CLASS boxWidgetClass
#define HORIZONTAL_LAYOUT XtNorientation, XtorientHorizontal
#define VERTICAL_LAYOUT XtNorientation, XtorientVertical
#endif

#ifdef MOTIF
#include (<Xm/rowColumn.h>
#define BOX_WIDGET_CLASS XmRowColumnWidgetClass
#define HORIZONTAL_LAYOUT XmNorientation, XmHORIZONTAL
#define VERTICAL_LAYOUT XmNorientation, XmVERTICAL
#endif

#ifdef OLIT
#include <Xol/ControlAre.h>
#define BOX_WIDGET_CLASS controlAreawidgetClass
#define HORIZONTAL_LAYOUT XtNlayoutType, OL_FIXEDROWS
#define VERTICAL_LAYOUT XtNlayoutType, OL_FIXEDCOLS
#endif

5.4.3. More on Widget Sensitivity The program in Listing 5.6 is a
concrete example of how to change widget sensitivity for proper functionality. For
the sake of generality, we use the terms enable and disable a button, since this lets
us use other means to change functionality. In particular we may define a pair of
macros in one of the following ways, then experiment with the program's behavior:

/* Too drastic */
#define enable(A) XtManageChild(A)
#define disable(A) XtUnmanageChild(A)

/* Less drastic */
#define enable(A) XtMapWidget(A)
#define disable(A) XtUnmapWidget(A)

/* Preferred way */
#define enable(A) XtVaSetValues(A, XtNsensitive, True,\
NULL)
#define disable(A) XtVaSetValues(A, XtNsensitive, False, \
NULL)

156 FUNDAMENTALS OF X PROGRAMMING

We probably want to keep the exit button enabled at all times. In the beginning
the start button must be enabled and the pause and restart buttons disabled. After
start is pressed, it should disable itself and enable pause, etc. Therefore we modify
the code in Listing 5.7 as follows (buttons are normally enabled after creation):

/ * * /
XtRealizeWidget(toplevel);
disable(pause_button);
disable(restart_button);
XtAppMainLoop(app);

}

We must also include corresponding statements to each of the callbacks just before
returning. Listing 5.8 shows examples of callbacks for the game program.

5.4.4. Radio Boxes Radio boxes are containers of toggle widgets that
enforce the rule only one toggle can be set at any given time. Such behavior is
achieved by different means in each toolkit. In Motif the parent is required to be a
row-column container widget (xmRowColumnWidgetClass), with its resource
XmNradioBehavior set to TRUE. In OLIT the parent is required be an exclusive
container widget (exclusiveWidgetClass); there is no need to specify
resources.

Things are more complicated in Athena. Radio box behavior is not enforced
by the container widget but by establishing a widget radio group. Let the array
button [] contain widgets of the toggle class. Then the following code puts them
in one radio group:

for(i=0; ...) {
button[i] = XtVaCreateManagedWidget(...);
if(!i) first_button = button[i];
else XtVaSetValues (button[i], XtNradioGroup,

first_button, NULL);

This is more flexible than the behavior imposed in Motif or OLIT, but it is unclear
whether such flexibility is useful enough to be worth the price of complexity.

If an application uses a radio box, it should avoid explicitly setting the toggle
state, since that may interfere with widget functions that keep track of the state.

5.4.5. Application-Specified Layout Both Motif and OLIT (but not
Athena) have Bulletin Board classes where widgets are placed at values specified by
the XtNx and XtNy resources of the child. For motif the class is xmBulletin-

PROGRAMMING WITH WIDGETS 157

Listing 5.8. Callbacks for Listings 5.6 and 5.7

void start(w, sibling)
Widget w, sibling;

{
/* ... */
disable (w);
disable(XtNameToWidget(XtParent(w), "restart"));
enable) XtNameToWidget(XtParent(w), "pause"));

}

void pause(w, sibling)
Widget w, sibling;

{
/* ... */
disable(w);
enable(XtNameToWidget(XtParent(w), "start"));
enable(XtNameToWidget(XtParent(w), "restart"));

}

void restart(w, sibling)
Widget w, sibling,

{
/* ... */
disable(w);
disable(XtNameToWidget(XtParent(w), "start"));
enable XtNameToWidget(XtParent(w), "pause"));

}

BoardWidgetClass (definitions in Xm/BulletinB.h) and for OL1T
bulletinBoardWidgetClass (definitions in Xol/BulletinBo.h).
These do not respond well to resizing, but they are good for implementing
complex two-dimensional arrangements.

Suppose we display a picture, and we want to display next to it profiles of
vertical and horizontal scan lines, as shown in Fig. 5.4. When the user selects a
point (A) on an image, variations of image intensity along the vertical (dashed) line
through A are displayed in Window V, while those along the horizontal line are
displayed in Window H. It is very important that the top and bottom of Window V
line up with the top and bottom of the image window. Similarly the left and right
sides of Window H must line up with the respective sides of the image window.

A bulletin board widget is the right container for such an application. The
following code fragment creates the arrangement in Fig. 5.4 using Paper class

158 FUNDAMENTALS OF X PROGRAMMING

widgets for display windows. Variables in bold are assumed defined elsewhere in
the program.

#ifdef MOTIF
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#define B_BOARD_CLASS xmBulletinBoardWidgetClass
#else /* assume OLIT */
#include <Xol/OpenLook.h>
#include <Xol/BulletinBo.h>
#define B_BOARD_CLASS bulletinBoardWidgetClass
#endif

#define MARGIN 10
/* . . . */
Widget bb, image, vert, horiz;
/* ... */
bb = XtVaCreateManagedWidget ("Board",

B_BOARD_CLASS, toplevel, NULL);

image = XtVaCreateManagedWidget ("Image",
paperWidgetClass, bb,
XtNx, MARGIN, XtNy, MARGIN
XtNwidth, img_width,
XtNheight, img_height,
NULL);

PROGRAMMING WITH WIDGETS 159

vert = XtVaCreateManagedWidget("Vertical",
paperWidgetClass, bb,
XtNx, img_width+2*MARGIN, XtNy, MARGIN,
XtNwidth, max_img_value,
xtNheight, img_width,
NULL);

horiz = XtVaCreateManagedWidget("Horizontal",
paperWidgetClass, bb,
XtNx, MARGIN, XtNy, img_width+2*MARGIN,
XtNwidth, img_width,
XtNheight, max_img_value,
NULL);

5.5. SHELL WIDGETS AND POP-UPS

5.5.1. Overview Many times an application needs more than one window
that interacts with the window manager. The most common case is pop-up windows
that open outside the main application window. (This includes pop-up menus that
appear in response to user action.) Other examples are applications running in more
than one display: for example an instructor draws on his/her window, which then
appears on each student’s display. One possible implementation is to have only one
application with windows on many servers.

All such windows require a shell widget to handle communications with the
window manager. The Xt provides different kinds of shell widgets, which are
discussed in Sec. 5.5.2; Sec. 5.5.3 discusses pop-ups.

5.5.2. Shells The Xt has four kind of shell widgets:

Application shell (class applicationShellWidgetClass) used to
hold the main window of an application as well as the top window in
another display.
Top-level shell (class topLevelShellWidgetClass) for pop-ups
that may stay for the life of the application.
Transient shell (class transientShellWidgetClass)
Override shell (class overrideShellWidgetClass) for pop-ups of
very short duration. As a rule window managers provide no decorations for
override shell windows.

Typically an override shell holds a pop-up menu (it stays up only while the
user presses a button). Typical uses for top-level and transient shells include dialog
boxes and image display windows that have their own color map. Many window
managers have difficulty dealing with color maps of widgets that are not shells; if

160 FUNDAMENTALS OF X PROGRAMMING

an application requires windows with different color maps, pop-ups are the
solution. The main difference between a transient and a top-level shell occurs when
the main application window is iconified, transient shells are automatically
unmapped, but top-level shells stay mapped. (Applications shells are discussed in
Chap. 3).

All shell classes are subclasses of Composite; therefore they inherit the
resources of the Core and Composite classes. Resources of special interest for
simple applications include the following:

For all shells except override shells: XtNtitle (title placed in the
window frame inserted by the window manager, as described in Sec 2.4.2)
and XtNinput (controlling keyboard input as described in Sec. 4.4.2).
For all shells: XtNsaveUnder can be True or False. If True, the server
saves screen contents beneath the window, so no expose events are
generated when the window is dismissed. The default value is True for
override and transient shells and False for the other two classes.

While shells inherit width and height resources from Core, these are not useful
to them, since shells wrap themselves tightly around their only managed child.
Shells can be resized by the window manager, usually in response to a user action.
When the user attempts to resize a window, the window manager checks the values
of the following set of dimension resources, XtNminWidth, XtNminHeight,
XtNmaxWidth, and XtNmaxHeight, then refuses resizing requests outside
specified limits. In particular values may prohibit resizing the top window of an
application. (This could be useful in a game program for example.) The function in
Listing 5.9 does this; it must be called right after XtRealizeWidget (), which
(among other things) calculates the size of the top window.

By setting the minimum and maximum values of the dimensions to the current
ones, we do not allow resizing. Note: We must ask for current dimensions after the
shell is realized because then its dimensions are defined. We program defensively
by checking whether the function is indeed called with a shell widget as argument.

Note: Do not be confused by the resource XtNallowShellResize. That
resource determines whether the shell can be resized from inside, for example with
such code as:

Dimension ww, wh;

XtVaGetValues(w, XtNwidth, &ww, XtNheight, &wh, NULL);
XtVaSetValues(w, XtNwidth, ww+20, XtNheight, wh+20, NULL);

PROGRAMMING WITH WIDGETS 161

Listing 5.9. Fixing the Window Size

Boolean fix_window_size(Widget w)
{

Dimension current_width, current_height;

if(!XtIsShell(w)) return FALSE;
XtVaCreateValues(w,

XtNwidth, ¤t_width,
XtNheight, ¤t_height, NULL);

XtVaSetValues(w,
XtNminWidth, current_width,
XtNminheight, current_height,
XtNmaxWidth, current_width,
XtNmaxHeight, current_height, NULL);

return TRUE;
}

where w is a child of the shell. If XtNallowShellResize is set to TRUE, the
preceding resizing request is granted. The resource has no bearing on resizing by
the user. Thus it is possible to have a window that cannot be resized by the user but
can be resized internally, a window that cannot resized either by the user or
internally, etc.

5.5.3. Widget Forests We use the term widget forest to denote a collection
of widget trees, each with a separate top application shell. Such a forest is pertinent
for programs that run in many displays, for example a program posting a message to a
group of people. For such programs we need explicit calls to XtOpenDisplay ()
to establish a connection to each server and XtVaAppCreateShell ()
that creates each application shell. Both of these functions are called by
XtVaApp Initialize (), which is all that is needed in programs with only
one top window.

The function XtOpenDisplay () has the following prototype:

display *XtOpenDisplay(XtAppContext app,
char * display_name,
char * app_name, char * app_class,
XrmOptionDescRec *resources,
int res_length, int *arc, char **arv)

162 FUNDAMENTALS OF X PROGRAMMING

The first argument is the application context returned by XtVaAppInitialize
(), and the second argument is the display name, which is the sole argument of the

Xlib function XOpenDisplay () (see Sec. 2.1.1). Remaining arguments pertain
to resource handling. If app_name is specified as NULL, it is taken to be the
name of the program (arv [0]). The rest of the prototype correspond to arguments
of XtVaAppInitialize () shifted by two: the fourth (app_class) to the
second, the fifth to the third, etc.

The function XtVaAppCreateShell () has the following prototype:

XtVaAppCreateShell(char * app_name, char * app_class,
WidgetClass widgetclass, Display Dpy,
/* resource list */, NULL)

The application name (first argument) is the same as that passed to XtOpen-
Display () as third argument; the value NULL is the best choice in most
programs. The second argument is the same as that used in XtVaApp-
Initialize (), while the third is toplevelShellWidgetClass. The
fourth argument is either the return of XtOpenDisplay () or if the window will
be in the same display, XtDisplay (toplevel), where toplevel is the
return of XtAppInitialize ().

When we create a new application shell, we also create a new widget tree, so
that the function XtRealizeWidget () must be called for each such shell.

Listing 5.10 shows the main procedure of a program that creates a widget
forest with trees in different displays. The program creates N-1 widget trees, each
starting with an application shell containing a set of widgets created by the function
create_tablet (). Details of this function are irrelevant for the time being. It
creates a widget that is a child of its first argument, then places that child in the ith

place in the widget array that is its third argument. We could use the following
construct except for the reason stated below:

tablet[i] = create_tablet(toplevel)[i]);

To communicate, each widget must know about the others, so the array tablet []
must be passed as client data to callbacks and event handlers. To avoid passing N to
those functions, we set the last member of the array tablet [] to zero. The
function may create a widget tree of any complexity; the function is also supposed
to realize it before returning.

Widget forests are an example of where it is desirable not to have unique
widget names. Since each tree uses a different server with its own resource files,
ambiguity in resource selection is not likely to be an issue. On the other hand
common names make convenient communication between widgets by using the

TE
AM
FL
Y

Team-Fly®

PROGRAMMING WITH WIDGETS 163

Listing 5.10. Widget Forest—File rpt.c

/* Classroom Repeater */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Shell.h>

#define N 4
static char *display_name[] = { "", "desk_1", "desk_2",
"desk_3", 0 };

main(int arc, char **arv)
{

register i;
XtAppContext app;
Widget toplevel[N], tablet[N+1];
Display *Dpy;

toplevel[0] = XtVaAppInitialize(&app, "Repeater",
(XrmOptionDescList)NULL, 0,
&arc, arv, (String *)NULL, NULL);

XtVaSetValues(toplevel[0], XtNtitle, "Leader", NULL);
create_tablet(toplevel[0], 0, tablet);

for(i=1; i<N; i++) {
Dpy = XtOpenDisplay(app, display_name[i], NULL,
"Repeater", (XrmOptionDescList)NULL, 0,
&arc. arv, (String *)NULL, NULL);

if(Dpy){
toplevel[i] = XtVaAppCreateShell ((String)NULL,
"Repeater", toplevelShellWidgetClass, Dpy
XtNtitle, "Follower", NULL);

create_tablet(toplevel[i], i, tablet);
}
else { /* message about failed connection */ }

}
tablet[N]=0;

XtAppMainLoop(app);

}

164 FUNDAMENTALS OF X PROGRAMMING

function XtNameToWidget (), described in Sec. 5.2.9. In the case of our current
example, the tree may contain, for example, an input widget and an echo widget. If
the user causes a callback in an input widget, the action must produce a message on
all echo widgets. If the array of all the tree tops is in client data, we may have the
following callback:

void buzz(w, all)
Widget w, *all;

{
int i ;
Widget current;
/* here because of events in w */
/* ... */
for (i=0; all[i]; i++) {

current = XtNameToWidget(all[i], "*Echo");
XtVaSetValues(current, /* ... */);

}
}

5.5.4. Pop-up Widgets Pop-up widgets are useful for applications that
need many top windows on the same display. Pop-ups have dual parenthood:
The main pop-up window is a child of the root window of the display. The
corresponding widget though can be the child of any other widget in the
application. The later type of parenthood is needed to place the pop-up in
the widget tree. In this way the event dispatcher can send events to the pop-up
widget.

Pop-up widgets are not automatically displayed even if realized. To display
these we must invoke XtPopup () and to dismiss them XtPopdown (). Both of
these functions take the top widget of the pop-up as an argument; Xt Popup ()
also takes a second argument that describes its input modality. If a pop-up is
displayed for only a short time, we may want to direct all input to it. This is
achieved by the call:

XtPopup(w, XtGrabExclusive);

where w is a shell widget. This is appropriate for dialog windows for example. If the
pop-up will stay up for a long time, as in the case of image-display pop-ups
mentioned earlier, the appropriate call is

XtPopup(w, XtGrabNone);

PROGRAMMING WITH WIDGETS 165

A third choice is

XtPopup(w, XtGrabNoneExclusive);

This is a bit more liberal than the first. A discussion of situations where that call is
appropriate is beyond our scope.

The pop-down call is simply:

XtPopdown (w) ;

The following call creates a pop-up shell:

popup = XtVaCreatePopupShell ("popup",
POP_SHELL, toplevel,
XtNtitle, "Hello World", NULL);

where toplevel is another widget in the application and POP_SHELL can be
defined in one of three ways: The first provides maximum flexibility when
interacting with the window manager, and each pop-up window can be closed and
opened separately:

#define POP_SHELL topLevelShellWidgetClass

The second has limited interaction with the window manager; in particular if one
window is closed all the others are also closed

#define POP_SHELL transientShellWidgetClass

The third provides no means of interaction with the window manager—the pop-up
window is not reparented:

#define POP_SHELL overrideShellWidgetClass

The Xt provides a special way of invoking pop-ups, called spring-loaded.
These pop-ups appear when the user presses a button, and they disappear when the
button is released. (In this case overrideShellWidgetClass is the
appropriate choice.) The following code fragment illustrates their use:

/* Event handler with popup widget passed as client data */
void show_popup(w, client_data, ep, continue_dispatch)

Widget w;
XtPointer client_data;

166 FUNDAMENTALS OF X PROGRAMMING

XEvent *ep;
Boolean *continue_dispatch;

{
switch (ep-> type) {
case ButtonPress :

XtPopupSpringLoaded((Widget) client_data);
break;

case ButtonRelease:
/* not needed because of spring loading */
break;

}
}

Spring-loaded is useful for pop-up menus (their top widget should be an override
shell), so we return to them in Sec. 6.3. The important point here is that spring-
loaded refers to how the widget is called rather than how it is created.

5.5.5. Image Pop-ups Code fragments in Listing 5.11–5.13 shows pop-
ups used to display a set of images whose file names are given as arguments in the
command line. The program creates a set of buttons for each filename. When the
user selects a button for the first time, an attempt is made to read the file as an
image; if the program is successful, it creates a pop-up. Code in the main program is
given in Listing 5.11.

Listing 5.12 shows the procedure that creates pop-up windows. The procedure
is a callback of the button widgets, with the file name as client data. When the
procedure is called, it creates a shell widget and an image display widget; it realizes
and pops up the display; then it changes the button callback to a pop-down. When
an image window is popped up, an expose event is automatically generated, and the
show_image()function is called that creates the actual display. To allow
repeated displays of images, each time a pop-up is called, it changes the callback to
a pop-down, as shown in Listing 5.13.

5.6. DRAWING WIDGETS

The appearance of all widgets discussed so far is determined by the widget
program itself. Thus an application can change the text that appears on a button, but
it cannot add graphics to the button. A drawing widget should allow an application
to create arbitrary graphic displays. It is easy to create a basic widget that does so:
All we need is an instance of Core and an action procedure for expose events.
Listing 5.14 shows an example.

PROGRAMMING WITH WIDGETS 167

Listing 5.11. Using Pop-Ups for Image Display—File pop.c

/* ...include statement and declarations omitted... */
main(int arc, char **arv) {

/* ... */
/* prepare main application window */
toplevel = XrAppInitialize(&app, "Images",

NULL, 0, &arc, arv, NULL, NULL, 0);
XtVaSetValues(toplevel, XtNtitle, "Image Display",
NULL);

/* prepare container for selection buttons */
bb = XtVaCreateManagedWidget("frame",

boxWidgetClass, toplevel,
XtNorientation, XtorientHorizontal,
XtNwidth, 400, XtNheight, 400,
NULL);

/* create buttons with files names */
for(i=1, j=0, i<arc, i++, j++) {

sprintf(bf, "button_%s", arv[i]);
pix[j] = XtVaCreateManagedWidget(bf,

commandWidgetClass, bb, XtNlabel, arv[i], NULL);
XtAddCallback(pix[j], XtNcallback,
make_image_popup, arv[i]);

}
/* create an exit button-see Listing 5.4 */
out = make_button(bb, "Exit", quit, NULL);

XtRealizeWidget(toplevel);
create_protocoltoplevel) ; /* to exit with WM command */
XtAppMainLoop(app);

}

The function draw () could be made much more complex by using various
Xlib functions. Normally we would like a bit more support, such as callbacks for
expose events and user actions (pressing a mouse button for example). Both Motif
and OLIT drawing widgets are also container widgets. The Motif drawing widget is
Drawing Area, xmDrawingAreaWidgetClass (definitions in Xm/Drawing
A.h); it has three callbacks: XmNexposeCallback, XmNresizeCallback,
and XmNinputCallback. The latter is called in response to button, mouse, and
keyboard events. (A pointer to the event union is part of the call_data.)
However it is not called in response to mouse motion events, so we cannot use the
callback for a rubber band routine. Of course we can always add an event handler or

168 FUNDAMENTALS OF X PROGRAMMING

Listing 5.12. Using Pop-Ups for Image Display—File pop.c

static Im_kount = 0;

void make_image_popup(w, name)
Widget w;
String name;

{
/* image structure */ *imp;
int add_on;
static char bf[256];

/* read an image in structure pointed by imp */

pop[Im_kount] = XtVaCreatePopupShell("imageShell",
toplevelShellWidgetClass, toplevel,
XtNtitle, name,
NULL);

image[Im_kount] = XtVaCreateManagedWidget(name,
paperWidgetClass, pop[Im_kount],
XtNwidth, imp->width,
XtNheight, imp-> height,
XtNborderWidth, MARGIN/2,
NULL);

XtAddCallback(image[Im_kount], XtNredrawCallback,
show_image, imp);

/* ... prepare colormap, XImage structure, etc. ... */
/* show the image */
XtRealizeWidget(pop[Im_kount]);
XtPopup(pop[Im_kount], XtGrabNone);

/* Change the button callback */
XtRemoveAllCallbacks(w, XtNcallback);
XtAddCallback(w, XtNcallback, pop_down, pop[Im_kount]);
Im_kount++;

}

PROGRAMMING WITH WIDGETS 169

Listing 5.13. Using Pop-Ups for Image Display—File pop.c

void pop_up(w, pix_w);
Widget w, pix_w;

{
XtPopup(pix_w, XtGrabNone);
XtRemoveAllCallbacks(w, XtNcallback);
XtAddCallback(w, XtNcallback, pop_down, pix_w);

}

void pop_down(w, pix_w)
Widget w, pix_w;

{
XtPopdown(pix_w);
XtRemoveAllCallbacks(w, XtNcallback);
XtAddCallback(w, XtNcallback, pop_up, pix_w);

}

use the translation mechanism, but that increases the complexity of application
programs. The widget also requires the creation of a graphics context and the use of
low-level Xlib functions.

The corresponding OLIT widget is drawAreaWidgetClass (definitions in
Xol/DrawArea.h); it has callbacks for both expose and resize events, but not
for user input. It also requires the creation of a graphics context and the use of low-
level Xlib functions.

It is probably accurate to describe Motif and OLIT widgets as allowing rather
than supporting drawing. In contrast the Paper widget discussed in earlier sections
is a drawing widget that supports drawing. In addition to a callback for expose
events, XtNredrawCallback, it also has a user event callback, XtNuser-
Callback, which is called for all mouse and keyboard events. Call data provide a
simplified event structure, such as that described in the Appendix. A graphics
context is automatically provided; a large number of convenience functions
eliminates the need to deal with Xlib except on rare occasions.

5.7. CONCLUSIONS

There is a bewildering collection of widgets in the various toolkits and an even
more bewildering set of parameters (resources) for them. There are widgets with
over 50 resources of their own and the same number inherited from their
superclasses. My advice is to select a small number of classes from the toolkit of

170 FUNDAMENTALS OF X PROGRAMMING

Listing 5.14. Minimal Drawing Widget

/* Minimal Xt Drawing Program */

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Core.h>

void draw();

static XtActionsRec actions [] = { "draw", draw };
static char translations[] = "<Expose> :draw()";

main (int arc, char **arv)
{

Widget top, canvas;
XtAppContext app;

top = XtVaAppInitialize(&app, "Min", 0, 0, &arc, arv,
0, NULL);

XtAppAddActions(app, actions, XtNumber(actions));
canvas = XtVaCreateManagedWidget("Canvas",

coreWidgetClass, top,
XtNwidth, 200, XtNheight, 200,
XtNtranslations,
XtParseTranslationTable(translations),
NULL);

XtRealizeWidget(top);
XtMainLoop(app);

}

void draw(Widget w)
{

static GC gc = (gc)0;
if(!gc) {

XGCValuesvalues;
values.foreground = 1;
gc = XtGetGC(w, GCForeground, values);

}
XDrawRectangle(XtDisplay(w), XtWindow(w), gc, 25, 25,
150, 150);

}

PROGRAMMING WITH WIDGETS 171

choice, then try to program using only these. A suggested essential list with the
Motif names in parentheses includes: Label (xmLabel), a button with a state
(XmToggle) and one without (XmPushButton), a button container for permanently
displayed menus (XmRowColumn), a bulletin board container (XmBulletinBoard),
and a drawing widget (XmDrawingArea or paper that can be used within Motif).
Additional suggestions are given in the next chapter for more complex widgets. A
good way of customizing widgets involves attaching your own data structure to
them. All Motif widgets have a resource XmNuserData, and OLIT widgets have
XtNuserData. The corresponding resource of the Paper widget is XtNuser-
Data. Let mydata be a structure that contains information required to associate
with the widget; the following piece of code attaches the data to the widget:

Widget fancy_button;
struct special_effects mydata;
/* ... */
XtVaSetValues(fancy_button, XtNuserData, (XtPointer)
(&mydata), NULL);

We access this information from within a callback by the call:

struct special_effects *data;

/* ... */
XtVaGetValues(w, XtNuserData, &data, NULL);

We could use client data to store the pointer to the structure, but we wish to leave
that for other uses. User data, may be common to a family of applications, while
client data differs from application to application. This feature is particularly useful
when combined with a drawing widget, as we show in Sec. 11.3.5.

5.8. PROJECTS

1. Write a program that displays two rows of buttons with the same labels in
each row, for example alpha, beta, gamma, and delta. When a button is
selected in one row, that button is unmanaged; the button with the same
name in the other rows is managed. The program should start with all
buttons visible, but eventually each label should appear in only one row.
[Hint: Use the functions XtName () and XtNameToWidget ().]

2. Implement the function tree () in Listing 5.1 that prints the widget tree.
3. Instead of printing the widget tree, provide routines to display it in a

specially created pop-up window. Use the Paper or another drawing

172 FUNDAMENTALS OF X PROGRAMMING

widget as the canvas. The major challenge in writing this code is the need
for it to be re-entrant. After the new function tree () is called, it should
create a static structure that is read by the expose and other callbacks of
the display window. However each call must create a new structure, since
tree () may be called many times from within an application.
(Hint: It will help if the tree () function computes the label width, say,
label_width at each level by using the XTextWidth () function
with XtName (w) as the text argument. If the value is returned, then the
loop in Listing 5.1 could be modified to:

for(i=0; i<nk; i+ +)
tmp_width +=tree(kids[i]; depth+1);

The larger of label_width or tmp_width should be returned.

TE
AM
FL
Y

Team-Fly®

6

Constraint and
Compound Widgets

6.1. Constraint Widgets. .
6.1.1. Overview.
6.1.2. Constraint Widget of the Athena Toolkit
6.1.3. Constraint Widget of the Motif Toolkit.
6.1.4. Constraint Widgets of the OLIT.

6.2. Compound Widgets. .
6.2.1. Overview. .
6.2.2. Scrolled Windows. .

6.3. Transient Menus . .
6.3.1. Overview.
6.3.2. Athena Pop-up Menus .
6.3.3. Motif Pop-up Menus. .
6.3.4. Motif Pull-down Menus .
6.3.5. OLIT Pop-up and Pull-down Menus
6.3.6. Another Note on Sensitivity

6.4. Conclusions. .
6.5. Projects. .

175
175
177
180
183
183
183
184
188
188
189
189
190
192
193
194
196

173

This page intentionally left blank.

CONSTRAINT AND COMPOUND WIDGETS 175

6.1. CONSTRAINT WIDGETS

6.1.1. Overview Constraint widgets include rules for relatively position-
ing their children. These rules are expressed through resources that are specified for
the parent, but the parameter values are kept within the children. Every widget
contains a hook (a member called constraints of type XtPointer) where
the parent can hang constraint information. The hook is NULL unless the widget is
a child of a constraint widget; in that case it points to a structure with all the
constraint information. When the parent lays out the children, it looks at this
structure for each one of the children.

Suppose for example we want to arrange a set of widgets in rows of three and
XtNbelow is the name of a resource known to the container. This is achieved by
the code:

for(i=3;...)
XtVaSetValues(panel[i], XtNbelow, panel[i-3], NULL);

Normally the function XtVaSetValues () looks for resources in the widget that
is its first argument. However if the resource is not found, the Intrinsics check if the
parent is a constraint widget and if it has the specified resource. That resource
points (in effect) to a parameter in the constraints structure of the widget
panel [i]. In this case that parameter is given the value panel [i-3]. The
actual implementation is more complicated, but the preceding description should
suffice to explain the concept. Figure 6.1 shows the arrangement of the information.
A resource table (see Chap. 3) connects resource names with widget parameters.

176 FUNDAMENTALS OF X PROGRAMMING

Normally both resource and parameter are part of the same widget, but for
constraint resources, resource and parameter belong to different widgets.

During the layout process, the parent reads those records and establishes a set
of relationships. It is helpful to view these in the form of a graph whose nodes are
widgets and whose branches correspond to binary relationships, such as the
preceding. Figure 6.2 shows nine widgets for this case. The graph in Fig. 6.2 is not
sufficient to specify the widget layout because it does not impose any left-right
relationships; however these can be added in a similar way.

Specifying the layout through a set of binary relations is particularly useful
when a window is resized by the application user. Because users can normally
directly resize only the top window (the one inserted by the window manager), such
rules aim to translate resizing the top window into properly resizing subwindows.
For example if an application contains a text-editing window and a menu window,
we may want any changes in size to be taken up by only the text window. This can
be achieved by assigning constraints to the sides of these windows. In addition the
application does not have to be concerned with calculating dimensions, as in the
case of bulletin board widgets discussed in Sec. 5.4.5 because the container widget
does all calculations internally.

If we look at a Motif or OLIT manual, we encounter the resources
XtNresizable, or XmNresizable, since the preceding discussion suggests
a rather tortuous way of dealing with resizing. These resources refer to resizing
initiated by the child widget, not to resizing induced by the application user. The
situation is analogous with shell resizing described in Sec. 5.5.2.

Direct subwindow resizing is possible for certain classes of widgets, Paned in
Athena, XmPanedWindow in Motif. These are container widgets that include
handles with which the application user can resize subwindows. These widgets are
useful for such applications as text editors, where the user may want to change the
relative size of various subwindows. Such widgets may not be appropriate for
simple layouts where the basic resizing mechanism is sufficient provided the right
set of constraints is specified. (Remember: We want to make life easy for the
application user, not the programmer.)

CONSTRAINT AND COMPOUND WIDGETS 177

While simple widgets and minimal container widgets have similar behavior in
various toolkits, constraint widgets differ significantly, so we treat each toolkit
separately. There is a Form widget in Athena, Motif, and OLIT, but these are quite
different in functionality. For simple programs using OLIT, the Rubber tile widget is
most appropriate. In the following sections we discuss implementing the drawing
area with the menu program in Sec. 6.3.2, so that when the window is resized, the
menu keeps its size and only the drawing area is changed.

6.1.2. Constraint Widget of the Athena Toolkit The Athena Form widget
of class formWidgetClass (definitions in Xaw/Form.h) can be used as a
container in applications to adjust internal windows in response to resizing the main
application window. We describe the widget after presenting an example. Listing
6.1 is the same application as Listing 6.5 with one box container widget replaced by
a Form widget. Parts that were changed are shown in bold. The only difference in
the behavior of the two programs is that when the main window is resized, both
internal windows are also resized. Note: We do not provide a layout order for the
frame widget. Instead we specify that the menu widget is below the Canvas
widget. The specification is done with a resource of menu, but it is interpreted by
the frame widget.

To force the menu to have a fixed size, we must use the resources of the Form
widget. The Form has only one regular resource of its own (besides those inherited
from composite); XtNdefaultDistance takes as a value the number of pixels
in the margins between widgets (default value 4). Additional constraint resources of
the Form widget's children include

XtNfromHoriz takes as a value the widget to the right of which the child
is placed.

XtNbottom, XtNtop, XtNleft, and XtNright refer to the relative distance
of the respective edge from one of the edges of the Form. They take as values
symbolic constants of the form XawChainEDGE, where EDGE can be Bottom,
Top, Left, and Right. This means that the child widget edge in the resource
name keeps a fixed distance from the form widget edge in the value. For example
the following piece of code means that the left edge of the child keeps a fixed
distance from the right edge of the container:

XtNleft, XawChainRight

There is another value for these resources, XawRubber (the default), which
requires child edges to keep their proportional values from the parent edges.
Additional constraint resources include margin values for specific orientations.

We illustrate the use of the resource by modifying Listing 6.1. As the program
stands now, when the user enlarges the main application window, both the canvas

178 FUNDAMENTALS OF X PROGRAMMING

Listing 6.1. Menu and Drawing Program for Athena

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Xaw/Box.h>
#include <X11/Xaw/Form.h>
#include <Paper.h>

void start(),pause(), restart(), quit();
void paint();
Widget make_button() ; /* From Listing 5.4 */

main (int arc, char **arv)
{

Widget toplevel, frame, menu, canvas;
Widget start_button, pause_button, restart_button,
exit_button;

XtAppContext app;

toplevel = XtAppInitialize(&app, "Play",
NULL, 0, &arc, arv, NULL, NULL, 0);

frame = XtVaCreateManagedWidget("Frame",
formWidgetClass, toplevel,
NULL;

canvas =XtVaCreateManagedWidget("Canvas",
paperWidgetClass, frame,
XtNwidth, 300, XtNheight, 200,
NULL);

XtAddCallback(canvas, XtNredrawCallback, paint, NULL);

menu = XtVaCreateManagedWidget("Menu",
boxWidgetClass, frame,
XtNfromVert, canvas,
XtNorientation, XtorientHorizontal,
NULL);

/* rest of the code from Listing 5.6 */
/* (button creation, etc) */

}

CONSTRAINT AND COMPOUND WIDGETS 179

and the menu widget increase. This is probably not what the user wants: There is no
point in changing the menu size, since button sizes remain the same. We add the
following statements so that only the canvas increases when the window is
enlarged:

XtVaSetValues(canvas,
XtNbottom, XawChainBottom, /* 1 */

NULL);
XtVaSetValues(menu,

XtNtop, XawChainBottom /* 2 */
XtNbottom, XawChainBottom, /* 3 */
XtNright, XawChainLeft, /* 4 */

NULL);

Specification 1 fixes the distance of the bottom edge of canvas from the bottom
edge of the container, so that the canvas widget absorbs all increases in height.
Specifications 2 and 3 fix the vertical size of the menu widget by fixing the distance
of its top and bottom edges from the container’s bottom edge. This may seem
redundant, but if we do not use them, the menu increases in height, overlapping
with the canvas as we resize the window. Specification 4 keeps the horizontal menu
size fixed. Ideally we should provide specifications for all sides of each widget to
keep all margins fixed, but the preceding specifications ensure that the canvas that is
affected most by resizing.

Changing the menu layout requires more programming changes with the Form
widget than when using the Box widget. The following code produces a vertically
aligned menu to the left of the canvas:

XtVaSetValues(canvas,
XtNfromHoriz, menu,
XtNleft, XawChainLeft,

NULL);

XtVaSetValues(menu,
XtNleft, XawChainLeft,
XtNbottom, XawChainTop,
XtNright, XawChainLeft,
XtNorientation, XtorientVertical,

NULL);

The main weakness of the Form widget design is not allowing specifications
for overall widget size but only for edge positions. This makes things easier for the
widget writer but more difficult for the application programmer, a typical feature of

180 FUNDAMENTALS OF X PROGRAMMING

Xt. Letting programmers specify widget sizes as scalable or not requires a nontrivial
tiling algorithm inside the widget, which was not provided.

6.1.3. Constraint Widget of the Motif Toolkit The Motif XmForm widget
of class xmFormWidget (definitions in Xm/Form.h) operates in the same basic-
ways as the Athena Form widget: By specifying pairwise relations between
children. Thus to force the canvas to be above the menu, we need the statement:

XtVaSetValues (canvas,
XmNbottomWidget, menu,
XmNbottomAttachment, XmATTACH_WIDGET,

NULL);

There are 16 resources whose names are described generically by the expression
XmNedgeKind, where edge can be anyone of the four strings left, right,
bottom, or top; and Kind anyone of the four strings Attachment, Offset,
Position, or Widget. The attachment resource refers to the four sides of a
widget, and it specifies how the side is positioned. It can have the values given in
Table 6.1, with the corresponding interpretation. The values XmATTACH_OPPO-
SITE_FORM and XmATTACH_OPPOSITE_-WIDGET refer to opposite sides of
the form or the neighbor widget.

To keep a child widget from being resized if the parent is resized, we must
attach at least some of its edges to those of the form widget. Leaving an edge
unattached while attaching the opposite edge to a form edge maintains that
dimension unchanged during resizing. The situation in Motif is the opposite of
Athena; in Athena (and OLIT) the default maintains relative distance sizes; in Motif
the default maintains the absolute distance from the edges. Therefore in Motif by
default, a widget maintains its size when the top application window is resized.
Listing 6.2 shows Motif code fragments for the same menu and drawing widget
program in Listing 6.1 for the Athena toolkit.

CONSTRAINT AND COMPOUND WIDGETS 181

The canvas is created after the menu because its resources refer to the menu
widget. The canvas is attached to the frame by three sides while its bottom side is
attached to the menu. When the main application window is resized by the user, the
frame window is resized in the same way (since it is the top window of the
application in this example). Because left and right sides of the canvas are attached
to the frame, the canvas width changes to match frame width. The canvas is also
attached to the frame at the top while the menu is attached at the bottom; therefore
after resizing there is no empty space at either the top or bottom. What happens in
the middle? Because the canvas is attached to the menu, there is no empty space left
(if the frame increases) or overlaps (if the frame decreases). Therefore one or both
of these widgets must have a different window size to accommodate an overall
change in the vertical direction. Note: If a widget is attached to no more than one
side in each direction, then its size does not change. In this case the menu has only
one attachment (bottom), so its size remains fixed. Therefore canvas size changes.

Listing 6.2. Menu and Drawing for Motif

/*...*/
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
/*...*/

frame = XtVaCreateManagedWidget("frame",
xmFormWidgetClass, toplevel, NULL);

menu = XtVaCreateManagedWidget("menu",
xmRowColumnWidgetClass, frame,
XmNorientation, XmHORIZONTAL,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

canvas = XtVaCreateManagedWidget("canvas",
paperWidgetClass, frame,
XtNwidth, 300, XtNheight, 200,
XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNbottonAttachment, XmATTACH_WIDGET,
XmNbottomWidget, menu,
NULL);

182 FUNDAMENTALS OF X PROGRAMMING

The following code produces a vertically aligned menu to the left of the
canvas. Menu size stays fixed when resized, and all size changes are absorbed by
the canvas:

menu = XtVaCreateManagedWidget("menu",
xmRowColumnWidgetClass, frame,
XmNorientation, XmVERTICAL,
XmNleftAttachment, XmATTACH_FORM,
NULL);

canvas = XtVaCreateManagedWidget("canvas",
paperWidgetClass, frame,
XtNwidth, 300, XtNheight, 200,
XmNrightAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNbottonAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, menu,
NULL);

Another example is an application with four canvas windows stacked
vertically. During resizing we want all of these to change in proportion; here is
the code:

#define N 4
/*...*/
frame = XtVaCreateManagedWidget("frame",

xmFormWidgetClass, toplevel,
XmNorientation, XmVERTICAL,
XmNfractionBase, N,
NULL);

for(i=0; i<N; i++) {
canvas[i] = XtVaCreateManagedWidget (/*...*/, frame,

XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
/*-..*/
NULL);

}
XtVaSetValues(canvas[0], XmNtopAttachment,
XmATTACH_FORM, NULL);

TE
AM
FL
Y

Team-Fly®

CONSTRAINT AND COMPOUND WIDGETS 183

for(i=1; i<N; i++) XtVaSetValues(canvas[i],
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, i,
NULL);

for(i=0; i<N-l; i++) XtVaSetValues(canvas[i],
XmNbottomAttacnment, XmATTACH_WIDGET,
XmNbottomWidget, canvas [i+1],
NULL);

XtVaSetValues(canvas[N-l],
XmNbottomAttachment, XmATTACH_FORM, NULL);

Specifying the widget attachment relationship is not sufficient. We must also
specify the position of the top edge of each but the first widget from the top edge of
the frame. Distances are given as fractions whose numerators are obtained from the
resource XmNtopPosition and the common denominator from the parent
resource XmNf ractionBase.

6.1.4. Constraint Widgets of the OLIT The OLIT widget class most
appropriate for our problem is the Rubber Tile class, rubberTileWidget-
Class (definitions in O1/RubberTile. h). It has a resource XtNorienta-
tion, whose values include OL_HORIZONTAL and OL_VERTICAL (then
default). Its widgets are stacked in the order they are created. In this respect it is
quite similar to the control area widget. It also has a constraint resource,
XtNweight, which is an integer specifying the decimal fraction of extra space
allocated to the widget during resizing. Thus to keep the menu at fixed size, we
need only the following statement:

XtVaSetValues(menu, XtNweight, 0, NULL);

No other relational specifications are needed.
Things are even simpler for the example with the four canvas windows—the

desired behavior is the default.

6.2. COMPOUND WIDGETS

6.2.1. Overview A compound widget is a composite widget with children
created by the XtCreateWidget () call at the same time the parent is created.
The most common example are pop-up menu widgets. Both the pop-up shell and a
container widget are created with one call. Depending on the toolkit, the return can
be the container (as in Motif) or the shell (as in OLIT).

1 84 FUNDAMENTALS OF X PROGRAMMING

In addition the widget provides functionality for interaction with children
added by the application, thus greatly simplifying the overall task. For example a
pop-up menu can include child button widgets normally activated by pressing a
mouse button. The compound pop-up menu widget arranges for the button-pressing
event in the widget event handler to be replaced by the enter window event, since a
button-pressing event was already used to display the menu.

Scrolled window widgets are another (and simpler) example. Such widgets
consist of a container, of two scrollbars, and a clipping widget that has the content
widget as a child. (This is the Motif and OLIT arrangement; in Athena the scrolled
widget is a sibling of the clipping widget.) The compound widget deals with
scrollbar callbacks, and shifts the relative position of clipping and content windows.

Note: If the reader completed the Project 6.1, the result can be used to explore
the structure of compound widgets—and to understand material in Sec. 6.2.

We describe scrolled windows in Sec. 6.2.2 and transient menus in Sec. 6.3.

6.2.2. Scrolled Windows A large text file or a large image cannot be
completely shown on a normal display. It is possible to create a virtual window with
all the data, the content window but display only part of the text in a scrolled
window. Listing 6.3 shows a program that displays a (presumably) large image in a
scrolled window. The code is written is terms of variables (in capital letters) with
different definitions in each widget set; the definitions are given later.

The program is very simple (excluding parts dealing with reading the image
and color allocation). The calls TOOLKIT_INIT () and INTERMEDIATE () are
needed only for OLIT; these are empty strings in Motif and Athena. We explicitly
create only two widgets—the compound scrolled window widget scroll and its
child, the content widget pix. Definitions of SCROLL_CLASS, PARENT, and

List ing 6.3. Scrolled Window —File uv.c

/* Image Display with a Scrolled Window Widget */

#include <Xll/StringDefs.h>
#include <Xll/Intrinsic.h>
#include <X11/Shell .h>

include "uv_head.h" /* See Listing 6.4 */

#include <Paper.h>
#include <Stdef.h>

void quit ()
{

exit (0) ;

CONSTRAINT AND COMPOUND WIDGETS 185

}

void show_pix(Widget w, /* Image Structure */ *imgp)
{

/* Display Image Structure pointed by imgp */
/* on window of widget w */

}

main(int arc, char **arv)
{

XtAppContext app;
Widget toplevel, bb, scroll, pix;
/* Image Structure */ Im;

/*...read image and store in structure Im...*/

TOOLKIT_INIT();
toplevel = XtAppInitialize(&app, "viewer",

NULL, 0, &arc, arv, NULL, NULL, 0);

INTERMEDIATE();
scroll = XtVaCreateManagedWidget("scroll",

SCROLL_CLASS, PARENT, SCROLL_RESOURCES
/* no comma */
XtNwidth, 200, XtNheight, 200,
NULL);

pix = XtVaCreateManagedWidget("pix",
paperWidgetClass, scroll,
XtNx, 2, XtNy, 2,
XtNwidth, Im.width, XtNheight, Im.height,
XtNborderWidth, 1,
NULL);

XtAddCallbackfpix, XtNredrawCallback, show_pix, &Im);

/* ...Perform operations needed for establishing */
/* color correspondence between image and display */
/* device, storing image in the server, etc */
/* (see Chapter 9)... */

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

186 FUNDAMENTALS OF X PROGRAMMING

SCROLL_RESOURCES are given in Listing 6.4. Only a few comments are
necessary for each case. The Motif scrolled window widget has many resources, but
for simple programs we need set only the scrolling policy to automatic and we are
done! The scrolled window in OLIT must be parented by a nonshell container;
hence the code is a bit more complex.

Note: Any time the window is scrolled, an expose event is generated for the
canvas. Therefore the repainting function (show_pix in this case) is called quite

Listing 6.4. Definitions for Scrolled Windows—File uv_head.h

#ifdef MOTIF
#include <Xm/ScrolledW.h>
#define TOOLKIT_INIT()
#define INTERMEDIATE()
#define SCROLL_CLASS xmScrolledWindowWidgetClass
#define PARENT toplevel
#define SCROLL_RESOURCES XmNscrollingPolicy, XmAUTOMATIC,
#endif

#ifdef ATHENA
#include <Xll/Xaw/Viewport.h>
#define TOOLKIT_INIT()
#define INTERMEDIATED
#define SCROLL_CLASS viewportWidgetClass
#define PARENT toplevel
#define SCROLL_RESOURCES XtNallowHoriz, True, XtNallowVert, \
True,

#endif

#ifdef OLIT
#include<Xol/OpenLook.h>
#include <Xol/ScrolledWi.h>
#include <Xol/BulletinBo.h>
#define TOOLKIT_INIT() OlToolkitInitialize(\
(XtPointer) NULL)

#define INTERMEDIATE() bb = XtVaCreateManagedWidget
("frame",bulletinBoardWidgetClass, toplevel, NULL)

#define SCROLL_CLASS scrolledWindowWidgetClass
#define PARENT bb
#define SCROLL_RESOURCES
#endif

CONSTRAINT AND COMPOUND WIDGETS 187

frequently, so it worth while to have an efficient implementation for it; for example
store the image in the server (see Sec. 9.5.2).

If we look at the widget tree of a scrolled window (using, for example, the
program of Project 6.1) we see that it consists of a container widget that contains
three other widgets: two scrollbars and yet another container widget (Bulletin Board
for OLIT, Drawing Area for Motif.) The latter is the widget returned by the function
that creates the scrolled window; it is used as the parent for the window to be
scrolled. Therefore the widget tree has the form shown in Fig. 6.3.

An obvious question is how to stop the intermediate container widget from
growing to enclose the canvas window in its entirety. (Remember: The canvas
widget is the item too large to fit on the screen.) It is possible to prevent that with
resource values of the Bulletin Board widget. In OLIT we set the value of
XtNlayout to OL_IGNORE; in Motif we achieve the same result by setting zero
margins for the Drawing Area widget.

A potential complication exists in using scrolled windows for images because
of the way X handles color. As we explained in Sec. 1.4.1, a colormap is a table
describing the correspondence between image bits and actual colors. (Color and
images are discussed thoroughly in Chap. 9, but for the issue at hand, we need not
be concerned with the details.) If the image to be displayed uses the default color
map, everything works fine. But if the image needs its own colormap, we have a bit
of a problem. First, for the window manager to load the colormap reliably requires
us to assign it to the top shell. This can easily be done with the code:

188 FUNDAMENTALS OF X PROGRAMMING

Colormap cmap;
Widget wtop = pix;
while (XtParent (wtop)) {

wtop = XtParent(wtop);
XtVaSetValues(wtop, XtNcolormap, cmap, NULL);

}

Now the image appears with the correct colors, but the scrollbars may not; they may
even be barely visible. The most general solution is to assign color resources to the
scrollbar from colors we know have a high contrast. To do this we must find their
widget IDs by using the XtNchildren resource of the scroll widget followed
by calls for each of the children found.

XtIsSubclass(..., xmScrollBarWidgetClass);

In Motif these are determined from resources XmNhorizontalScroll-
Bar and XmNverticalScrollBar, and in OLIT with XtNhScrollbar and
XtNvScrollbar. After scrollbars are identified, we can assign high contrast
colors to them from those used for the image.

6.3. TRANSIENT MENUS

6.3.1. Overview Two types of menus appear temporarily in response to
user action and disappear after a selection is made: pop-up menus and pull-down
menus. Pop-up menus appear in any part of the screen, typically where the user
presses the mouse button that activates the menu. Pull-down menus appear in a
specific location, usually adjacent to the button of a menu already being displayed.
The term cascade button is used for a menu entry that causes a pull-down menu to
appear. The term menu bar denotes a permanently displayed menu with cascade
buttons.

Building menus from scratch can be a challenge, so it is best to rely on existing
compound widgets. Functions creating such widgets create both a pop-up shell and
a container widget but return only the latter. A pop-up menu can have a widget of
any class as its parent—the parent need not be composite. Theoretically this is true
for pull-down menus as well, but some toolkits impose constraints (see Sec. 6.3.4).

In all toolkits the application provides only the means for popping up the
menu. After that toolkit routines take over handling events. When a menu is popped
up or pulled down it is usually spring loaded, so the menu stays up as long as the
button that caused the action remains pressed. (See toolkit documentation for
exceptions to such a policy.)

CONSTRAINT AND COMPOUND WIDGETS 189

6.3.2. Athena Pop-up Menus Athena has a simple menu class (defini-
tions in Xaw/SimpleMenu.h) that requires children of a particular class—
smeBSBObjectClass (definitions in Xaw/SmeBSB.h). The menu is created
with:

menu = XtVaCreatePopupShell ("menu_name",
simpleMenuWidgetClass, parent,
XtNlabel, "Menu title", NULL);

The title is optional. Buttons can be created with the function in Listing 6.4
provided we define their class as:

#define BUTTON_CLASS smeBSBObjectClass

Separators between buttons or between title and buttons can be added with a similar
class using such code as:

#include <Xll/Xaw/SmeLine.h>
/*...*/
XtVaCreateManagedWidget("line",

smeLineObjectClass, menu,
XtNlineWidth, 4, /* optional */

NULL);

The proper way of activating such a menu is through the action procedure
mechanism, using convenience functions provided by the Intrinsics:

static char internal_trans[] = "#augment \n\
<Btn3Down>: XawPositionSimpleMenu(menu_name) \

XtMenuPopup(menu_name) " ;

/*...later in another widget's function...*/
XtNtranslations,
XtParseTranslationTable(internal_transl),

/*...*/

Highlighted variables in the definition refer to the widget name on the menu.
There is no need for code to pop-down the menu.

6.3.3. Motif Pop-up Menus A pop-up in Motif is created by such a call
as:

Widget menu = XmCreatePopupMenu(parent,"menu", NULL, 0);

190 FUNDAMENTALS OF X PROGRAMMING

where parent need not be a container widget. Buttons can be created with the
function in Listing 6.4. They can also be cascade buttons governing pull-down
menus, as described in the following section.

We give the menu a title by using such code as:

XtVaCreateManagedWidget("title", xmLabelWidgetClass, menu,
XmNlabelString,
XmStringCreateLocalized("Actual Title"),

NULL);

as well as separators with such code as:

XtVaCreateManagedWidget("line", xmSeparatorGadgetClass,
menu, XmNseparatorType, XmDOUBLE_LINE,

NULL);

Consult a motif manual for other types of separators.
While constructing a pop-up menu is routine, we need an event handler to

activate it. The following code provides that:

void mpop(Widget w, Widget mw, XEvent *ep, Boolean
*dispatch)

{
if (ep-> type==ButtonPress && ep->xbutton.button= =3) {

XmMenuPosition(mw, ep) ;
XtManageChild(mw);

}
}

main () {

/*...*/
menu = /*...*/

/*...*/
XtAddEventHandler(parent, ButtonPressMask,

False, mpop, (XtPointer)menu);
/*...*/

}

Note: There is no need to provide for closing the menu when the button is released;
it is handled by Motif routines.

6.3.4. Motif Pull-down Menus A pull-down menu in Motif is created by
such a call as:

CONSTRAINT AND COMPOUND WIDGETS 191

Widget pmenu = XmCreatePulldownMenu (parent, "widget_name",
NULL, 0);

To use such a menu requires a cascade button to cause the menu to appear and
ordinary buttons inside the pull-down menu.

The Motif widget (or gadget) class is xmCascadeButton (definitions in
Xm/CascadeB.h and Xm/CascadeBG.h). It is created with such a call as:

XtVaCreateManagedWidget ("button_widget_name",
xmCascadeButtonWidgetClass, parent,
XmNlabelString, XmStringCreateLocalized ("label"),
XmNsubMenuId, pmenu,

NULL);

Note: Both the pull-down menu and the cascade button must have the same parent.
Cascade buttons have two callback lists; XmNcascadeCallback functions

are invoked just before the pull-down menu is mapped, and, XmNactivate-
Callback functions are invoked when a mouse button is clicked on the cascade
button, but no pull-down menu is attached. In such a case a cascade button
functions as an ordinary button. Why would we do that instead of using the simple
push-button? Some Motif container widgets insist on having all their children from
the same class, so we may be forced to use a cascade button even for a single
choice.

A convenient container for cascade buttons is a menu bar, in reality a row
column widget created with the following call:

mbar = XmCreateMenuBar(frame, "mbar", NULL, 0);
XtManagedChild(mbar);

or more directly with:

mbar = XtVaCreateManagedWidget("mbar",
xmRowColumnWidgetClass, frame,
xmNrowColumnType, XmMENU_BAR,

NULL);

We can modify the program in Listing 6.2 to allow pull-down menus from the
selections, while placing the menu at the top:

menu = XtVaCreateManagedWidget("menu",
xmRowColumnWidgetClass, frame,
XmNrowColumnType, XmMENU_BAR,

192 FUNDAMENTALS OF X PROGRAMMING

XmNorientation, XmHORIZONTAL,
XmNtopAttachment, XmATTACH_FORM,

NULL);

Next we create all buttons with the function in Listing 6.4, while defining
BUTTON_CLASS as xmCascadeButtonWidgetClass. The CALLBACK for
exit and pause buttons can still be an XmNactivateCallback, but for those
two buttons, we can select XmNcascadingCallback with the same functions
as before. We provide the same pull-down menu for the start and restart that allows
the user to select animation speed. We can have buttons with fast, medium, and
slow labels and callback argument that is used to control animation speed. The code
should resemble the following fragment:

static int animation_speed;
animate(/*...*/)
{

/* uses animation_speed */

}
/* cascading callback of start button */
start(/*...*/)
} animation_id = XtAppAddWorkProc(/* . . .animate...*/) ;
}
/* callback from the pulldown menu buttons */
set_speed(Widget w, int speed)
}

animation_speed = speed;
}

We may appear to start animation before selecting the speed parameter but this
is not the case. The function start () does not actually start the animation—it
only adds the work procedure. That function is called by the intrinsics only when
there are no events in the queue, namely, only after all user selection actions are
finished!

6.3.5. OLIT Pop-up and Pull-down Menus OLIT has a compound pop-
up menu widget, but the creation process returns the shell, not the container. The
container widget must be obtained through the resource mechanism. The following
code fragment illustrates its use:

#include <Xol/OpenLook.h>
#include <Xol/Menu.h>
#include <Xol/OblongButt. h>

TE
AM
FL
Y

Team-Fly®

CONSTRAINT AND COMPOUND WIDGETS 193

main () {
/*...*/
menu_shell = XtVaCreatePopupShell("menu",

menuShellWidgetClass,
canvas, NULL);

XtVaGetValues(menu_shell, XtNmenuPane, &menu, NULL);
button1 = make_button(parent, "grid", /*...*/);

/*...*/
}

There is no need to add an event handler: Open Look routines automatically
add such a handler to the parent of the menu shell widget; in this case it is canvas.
Pull-down menus are obtained through the menu button class. An example of the
code follows:

#include <Xol/MenuButton.h>
/*. . .*/
m_button1 = XtVaCreateManagedWidget("m_button1",

menuButtonWidgetClass, menu,
XtNlabel, "color", NULL);

XtVaGetValues(m_button1, XtNmenuPane, &sub_menu,
NULL);

m_button1[0] = make_button(sub_menu, "green", /*...*/);
m_button[l] = make_button(sub_menu, "yellow", /*...*/);
/*...*/

Menu buttons have the same appearance as oblong buttons except for a small
triangle where moving the pointer invokes the pull-down menu.

The menu button widget does not have a cascading callback, but we can
achieve the same effect (albeit less efficiently) by adding the common function to
each of the submenu buttons. (See Sec. 6.3.6.)

6.3.6. Another Note on Sensitivity If we want to make a menu or cascade
button insensitive, we must be more careful than in the case of Sec. 5.4.3 because
pull-down menu buttons are not children of the menu or cascade button. The
simplest solution is to pass widgets whose sensitivity will be changed as client data
in the callback or have a separate callback. We illustrate this for the program with a
menu and a drawing area with animation introduced in Sec. 5.4.2. let
start_button and restart_button be menu (cascade) buttons and
pause and exit ordinary selection buttons. Let bstart [] and brestart []
be widget arrays representing the respective submenu buttons. We then add
callbacks in two loops (in addition to the callback that sets the speed for each
button):

194 FUNDAMENTALS OF X PROGRAMMING

for(i=0; i<3; i++) {
XtAddCallback(bstart[i], XtNselect, start, canvas);
XtAddCallback(bstart[i], XtNselect, sensitize,
start_button);

}

We proceed similarly for brestart []. (Note: We use the OLIT callback name.)
The following is a possible implementation of the second callback:

sensitize(Widget w, Widget caller)
{

disable(caller);
if(strcmp(XtName(caller), "start"))

disable(XtNameToWidget(XtParent(caller),
"start"));

else disable(XtNameToWidget(XtParent(caller),
"restart")) ;

enable(XtNameToWidget(XtParent(caller), "pause"));
}

6.4. CONCLUSIONS

The concluding comments in Chap. 5 are also valid here. As the number of
parameters increases and their mutual interactions grow more obscure, it becomes
less attractive to use a library of functions. Customizing by writing new code may
be the right solution. For example, we may subclass a constraint widget, such as the
Form class in Motif by having resources provide simpler (but less general) rules for
the layout. It is necessary to write only the code that translates the simpler rules into
the rules for the form widget.

Of course it may not even be necessary to create a new widget. For example
suppose we want a vertical layout such that when a window is resized only one of
the widgets increases or decreases and all other retain their size. This is trivial with
the OLIT Rubber Tile widget (see Sec. 6.1.4), but not with Motif. We can write a
function to generate these constraints. The code in Listing 6.5 shows a method that
works for the layout of simple widgets. (For simplicity error-checking statements
are omitted.) The main program does not have to deal with widget constraints—it
has to call only the function fix_size_except () just before widgets are
realized.

CONSTRAINT AND COMPOUND WIDGETS 195

Listing 6.5. Indirect Size Management—File fixsize.c

/* Make widget w be the only one whose size is changed */
/* during window resizing */
fix_size_except(Widget w)

{
Widget parent = XtParent(w);
Widget *kids;
int nk, distance, i, j,

XtVaGetValues(parent, XtNnumChildren, &nk, NULL);
XtVaGetValues(parent, XtNchildren, &kids, NULL)•
/* deal with widgets before w */
distance = MARGIN; /* MARGIN is defined elsewhere */
for(i=0; i<nk, i++) {

if(kids[i]==w) break;
XtVaSetValues(kids[i] ,

XmNtopAttachment, XmATTACH_FORM,
XmNtopOffset, distance, XmNleftAttachment,
XmATTACH_FORM,
NULL);

XtVaGetValues(kids[i], XtNheight, &height, NULL);
distance += height+MARGIN;

}
/* make sure that the w widget follows the size of the
parent */
XtVaSetValues(kids[i],

XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM, NULL);

if(i>0) XtVaSetValues(kids[i] , XmNtopWidget, kids[i-l],
XmNtopAttachment, XmATTACH_WIDGET, NULL);

else XtVaSetValues(kids[i], XmNtopAttachment,
XmATTACH_FORM, NULL);

if(i<nk-1) XtVaSetValues(kids[i], XmNbottomWidget,
kids[i+l], XmNbottomAttachment, XmATTACH_WIDGET, NULL);

else XtVaSetValues(kids[i], XmNbottomAttachment,
XmATTACH_FORM, NULL);
/* deal with the rest */
distance = MARGIN;
for(j=nk-1; j>i,j--) {

XtVaSetValues(kids[j] ,
XmNtopAttachment, XmATTACH_NONE,

XmNbottomAttachment, XmATTACH_FORM,
XmNbottomOffset, distance,

196 FUNDAMENTALS OF X PROGRAMMING

NULL);

XtVaGetValues(kids[j], XtNheight, &height, NULL);
distance += height + MARGIN;

}
}

All major toolkits provide a widget class that allows the user to resize directly
its children. Such widgets are called paned, and these provide means (grips or
sashes) to support direct resizing of a child (pane). However it requires considerable
user effort to achieve a desired layout, so indirect methods tend to be more
convenient for the application user.

6.5. PROJECTS

1. Implement the suggestion in Sec. 6.2.2 for keeping the scrollbars visible
when a special colormap is loaded.

2. Listing 6.5 provides a solution for fixing the size of all but one of the
children when the parent is resized. Will this program work when the
children are composite widgets? Why?

3. Implement a pop-up menu that has as entries the files of the directory the
program is running. If a file is a directory, the button should provide a pull-
out menu with the files of that directory. (If the reader is not sufficiently
familiar with the Unix directory access functions, such as opendir (),
readerdir (), etc, invoke your program with arguments * */* to
obtain the information from the command line argument list.)

7

Text and Dialog
Widgets

7.1. Text Widgets . 199
7.1.1.
7.1.2.
7.1.3.
7.1.4.

Overview—Input Focus .
Athena Text Widgets. .
Motif Text Widgets .
OLIT Text Widgets .

199
200
201
202

7.2. Text Widget Applications . 202
7.2.1.
7.2.2.

Entry Form Application. .
Placing Text Labels in a Drawing

202
205

7.3. Dialog Widgets . 208
7.3.1.
7.3.2.

The Basics .
Details of the Motif Dialog Message Box

208
211

7.4.
7.5.

Conclusions. .
Projects .

212
213

197

This page intentionally left blank

TEXT AND DIALOG WIDGETS 199

7.1. TEXT WIDGETS

7.1.1. Overview—Input Focus Text widgets provide full text-editing
abilities, and they allow extensive use of selections. They also make extensive use
of action procedures that bind keystrokes to editing actions. Text widgets can be
used for a range of text-related operations from entering a single word in a form to
editing large documents. A text widget may support many operations besides
entering text: Reading files, finding and substituting string patterns, cutting and
pasting blocks of text, etc. Many of these operations have nothing to do with the
window system the widget is implemented on (for example reading files). To keep
our focus on window system issues, we limit discussion to entering and editing
multiline strings, as opposed to editing files.

If the main purpose of a widget is to accept text, we must pay some attention to
the issue of input focus, namely, the widget that accepts the keyboard output. In
many applications (and all the examples discussed so far in this text), we ask the
window manager to assign the focus to the widget that contains the pointer. This is
not the best solution for an application whose main purpose is text entry. A better
policy is to direct keyboard input to a text widget whenever the pointer is within the
application, not necessarily within a text window. Suppose an application, such as
an entry form, has N text widgets and the user is expected to enter text into these in
a sequence. Instead of expecting the user to move the pointer with the mouse, we
use a function with the following prototype:

XtSetKeyboardFocus(Widget toplevel, Widget destination)

where destination is a descendant of toplevel in the widget tree (i.e., its
window is a subwindow of the window of toplevel) and the effect of the call is
that whenever toplevel receives the input focus, it passes it to destination.
Figure 7.1 illustrates this arrangement.

Initially we assign the focus to the first text widget:

static Widget toplevel; /* top shell */
static Widget text[N]; /* a set of N text widgets */
/* ... */

XtSetKeyboardFocus(toplevel, text[0]) ;

Let entry_done () be a callback invoked when the user indicates that she/he
finished entering a particular item (usually by pressing a return key). The following
is a possible code fragment for such a callback that has as client data the index of
the widget in the array text []:

200 FUNDAMENTALS OF X PROGRAMMING

/* ... */
int i = (int)client_data;
if (i<N-l) { /* set focus to the next text widget */

XtSetKeyboardFocus(toplevel, text[i+1]);

}
else { /* back to the first text widget */

XtSetKeyboardFocus(toplevel, text[0]);
}

This code assumes that toplevel and the array text[] are external
variables. An alternative is to pass these as part of the client data. Note: The first
argument of XtSetKeyboardFocus() must be the same in each call to make
sure we achieve the focus transfer. In Fig. 7.1 after the user finishes entering his/her
name (by pressing return for example), the focus moves to the next widget because
of the callback action.

To provide visual feedback, we also make text widgets that lack focus
insensitive. Warning: If we vary the sensitivity of widgets, we must call
XtSetKeyboardFocus () after a widget has become sensitive.

In the rest of this section, we review text widgets from three major toolkits,
and in Sec. 7.2 we present detailed examples using the Motif toolkit. One example
involves entering single lines of text in a form and the other editing a given string.

7.1.2. Athena Text Widgets The Athena text-editing widget class is
asciiTextWidgetClass (definitions in Xaw/AsciiText .h). Such a
widget is created with the call:

text = XtVaCreateManagedWidget(
"text", asciiTextWidgetClass, parent,
XtNeditType, XawtextEdit, XtNtype, XawAsciiString,
NULL);

TEXT AND DIALOG WIDGETS 201

We provide values for two resources specifying that our strings are ASCII and
themselves the subject of editing (rather than being file names).

If data are stored in the ASCII string buffer, we provide these to the widget
with the statement:

XtVaSetValues(text, XtNstring, buffer, NULL);

After finishing editing, we retrieve the edited string with the statement:

XtVaGetValues(text, XtNstring, &buffer, NULL);

7.1.3. Motif Text Widgets The basic Motif text-editing widget class is
xmTextWidgetClass (definitions in Xm/Text.h). Text widgets of this class
can handle multiline strings, but it is possible to confine them to one-line text
through the resource mechanism. However Motif has a special widget class for
editing single-line text, xmTextFieldWidgetClass (definitions in Xm/
TextF.h). It is more efficient to use that class for single-line strings. Most
resources of TextField have the same names as resources of Text, so the code
for using either type is nearly identical. The following statements create,
respectively, multiline, single-line, and efficient single-line text widgets.

/* Multiline text widget */
text_ML = XtVaCreateManagedWidget("text_ML",

xmTextWidgetClass, parent,
XmNeditMode, XmMULTI_LINE_EDIT, NULL);

/* Single line text widget */
text_SL = XtVaCreateManagedWidget("text_SL",

xmTextWidgetClass,
parent, NULL);

/* Efficient single line text widget */
text_ESL = XtVaCreateManagedWidget("text_ESL",

xmTextFieldWidgetClass,
parent, NULL);

The default value of the resource

XmNeditMode

is

XmSINGLE_LINE_EDIT;

202 FUNDAMENTALS OF X PROGRAMMING

therefore it need not be specified in the second statement. In all cases values are
assigned and received by the calls:

XtVaSetValues (widget, XmNvalue, buffer, NULL);
/* ... */
XtVaGetValues(widget, XmNvalue, &buffer, NULL);

where buffer has type String (which is really char *). In the case of the
XtVaGetValues (), call the memory allocation is done by the text entry widget.
Note: Buffer contents are regular strings, not XmStrings.

7.1.4. OLIT Text Widgets There are two text-editing widget classes in
OLIT: textEditWidgetClass (definitions in Xol /TextEdit.h) and
textFieldWidgetClass (definitions in Xol/Textfield.h). The first can
handle text with any number of lines, the second only one-line text. TextEdit
has more capabilities than TextField. A widget of that class is created with
the call:

text = XtVaCreateManagedWidget("text",
textEditWidgetClass, parent, NULL);

Default resource values are for multiline text and interpreting given text as
something to be edited rather than a file name. Loading and unloading are achieved
with:

XtVaSetValues(text, XtNsource, buffer, NULL);
/* ... */
XtVaGetValues(text, XtNsource, &buffer, NULL);

Warning: The OLIT resource XtNsource is different from the Athena resource
with the same name and the Motif resource with a similar name (XmNsource).
Both of the latter resources take a text widget value whose buffer holds the text to
be edited.

7.2. TEXT WIDGET APPLICATIONS

7.2.1. Entry Form Application In this section we describe an entry form
application using the Text Field Motif widgets. We select a Form widget as a parent,
then make it contain pairs of Label and Text Field widgets. The following code
fragment creates the parent and such a pair:

#include <Xm/Form.h>
#include <Xm/Label.h>

TE
AM
FL
Y

Team-Fly®

TEXT AND DIALOG WIDGETS 203

#include <Xm/TextF.h>
/* ... */

frame = XtVaCreateManagedWidget("frame",
xmFormWidgetClass, toplevel,
XmNfractionBase, 100, NULL);

label[0] = XtVaCreateManagedWidget("label_0",
xmLabelWidgetClass, frame,
XmNlabelString, XmStringCreateLocalized("Name:"),
NULL);

text[0] = XtVaCreateManagedWidget("text_0",
xmTextFieldWidgetClass, frame,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 25, NULL);

We specify that the text entry area occupies three-fourths of the parent widget
width. Additional entries are created in the same way with only one change: To
achieve uniform vertical spacing, we must specify for each one of these (both the
label and text field widgets) the resources XmNtopAttachment with value
XmATTACH__POSITION and XmNtopPosition with value the proper fraction
of the total height. For example if we have five lines, it must be 20 for the second,
40 for the third, etc. To force a particular order of entry, we allow only one sensitive
widget at a time.

To move from one text-entry location to another, we use the callback
XmNactivateCallback, which is invoked when the user types the return
character:

XtAddCallback(text[0], XmNactivateCallback, next_entry,
text [1]) ;

Client data for the last widget may be either NULL or the first widget (to allow the
user to repeat the process). We must also specify what to do with the data entered.
One solution is to provide a different callback for each text-entry widget. Another is
to provide the same callback but with instructions about further disposition of data.
Instead of using client data for that purpose, we use the Motif resource
XmNuserData to pass a pointer to a character string. Here is the code for the
ith entry:

String data[N]; /* N is the number of text entry
widgets */

XtVaSetValues(text [i], XmNuserData,
(XtPointer) (&(data[i])), NULL);

204 FUNDAMENTALS OF X PROGRAMMING

Listing 7.1. Text Field Entry Callback

/* Text Field Entry Callback */
static Widget toplevel;
void next_entry(Widget w, XtPointer client_data)
{

Widget sibling;
String buffer;
String *result;
XtVaGetValues(w, XmNvalue, &buffer, XmNuserData,

&result, NULL);
/* Copy the entered text to a permanent location */
*result = strdup(buffer);
if(!client_data) {

/* ... wrap up things up ... */
/* ... exit or restart ... */
return;

}
/* Make the current widget insensitive and also */
/* show the cursor position */
XtVaSetValues(w, XtNsensitive, False,

XmNcursorPositionVisible, False, NULL);
/* Make the next widget sensitive with visible
cursor */
sibling = (Widget)client_data;
XtVaSetValues(sibling, XtNsensitive, True,

XmNcursorPositionVisible, True, NULL);
/* redirect the focus */
XtSetKeyboardFocus(toplevel, sibling);

}

Listing 7.1 is a possible implementation of the callback that moves from field to
field.

The XtVaGetValues () returns not only entered text but also the address of
the permanent location to which it must be copied. As discussed in Sec. 7.1.1, it is
necessary to use the top shell widget to reassign keyboard-input focus reliably, and
the call must be made after the widget is made sensitive.

We can specify the size of the text-entry field (measured in number of
characters) through the resource XmNcolumns. The result is accurate only if the
font in effect has fixed width; otherwise, the text entry field accommodates at least
as many characters. The font itself can be defined with the XmNfontList

TEXT AND DIALOG WIDGETS 205

resource, which is an array of XFontStruct pointers. (See Sec. 8.3.4 for details
on how X deals with fonts.)

7.2.2. Placing Text Labels in a Drawing If we wish to create an
illustration that contains both text and line drawings, we cannot use a text widget
because we cannot draw on it. If we use a drawing widget, then we must deal with
the keyboard. As discussed in Sec. 4.4, that is not a simple process. The code in
Listing 4.13 provides a minimal text-editing facility that allows erasing by
backspacing. An alternative method involves using a pop-up text widget to enter
text, then transferring it to the main widget.

We have two choices: Use the function collect_text() in Listing 4.13
for initial entry, then invoke the text edit widget only for modifying entries or
always enter text through the text widget. Listing 7.2 (Part 1) shows the creation of
the text widget and other initializations. The widget_set structure stores the

Listing 7.2. Pop-Up Text Widget (Part 1)—File mfed.c

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Shell .h>
#include <Xm/Text.h>
#include <Xm/DrawingA.h>
/* structure for the objects of the drawing program */
typedef struct {

/* ... */
String text_string;

/* ... */
}App_object;
/* structure for communication between widgets groups */
typedef struct {

Widget canvas, text, main_shell, text_shell;
App_object * found;

} widget_set;
main(int arc, char **arv)
{

Widget toplevel, frame, canvas, /* ... */;
Widget notepad, text;
widget_set group;
/* create toplevel and frame (container) widgets, etc. */
/* Create main drawing widget */
canvas = XtVaCreateManagedWidget("canvas",

xmDrawingAreaWidgetClass, frame, NULL);

206 FUNDAMENTALS OF X PROGRAMMING

/* ... add callbacks for canvas, etc ... */
notepad = XtVaCreatePopupShell("notepad" ,

transientShellWidgetClass, toplevel,
XtNtitle, "Edit Text Here (CTRL/RTN to end)", NULL);

text = XtVaCreateManagedWidget("text",
xmTextWidgetClass, notepad,
XmNeditMode, XmMULTI_LINE_EDIT,
XmNcolumns, 40, XmNrows, 10, NULL);

group.canvas = canvas;
group.main_shell = toplevel;
group.text = text;
group.text_shell = notepad;
XtAddEventHandler(canvas, /* ... event mask ... */,

False, text_entry, &group);
XtAddCallback(text, XmNactivateCallback,

back_to_canvas, &group);
XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

four widgets involved: drawing, text entry, and their respective shells. A pointer to
such a structure is passed as client data to two event-processing functions: The
handler for the canvas and the callback for the text widget.

The function text_entry () is called in response to the event that selects
text to be edited or a position to place text; it is shown in Listing 7.2 (Part 2). The
first task is to find the dimensions of the main shell widget and the absolute
coordinates of its position to place the pop-up shell. Figure 7.2 shows the layout.
The line segment with two arrows show where the text label will appear once entry
is completed.

TEXT AND DIALOG WIDGETS 207

Listing 7.2. Pop-up Text Widget (Part 2)—File mfed.c

/* Event handler for canvas */
void text_entry(Widget w, XtPointer client_data,

XEvent *ep, Boolean *disp)
{

Dimension pwidth, pheight;
Position xpos, ypos;
widget_set *group = (widget_set *)client_data;

/* Check that group is non zero and perform any
unrelated event processing. We reach this point when
text editing is needed. */
/* First find dimensions of canvas to place popup */
XtVaGetValues(group->main_shell, XtNwidth, &pwidth,

XtNheight, &pheight, NULL);
XtTranslateCoords(group->main_shell, pwidth+4, 0,

&xpos, &ypos);
XtVaSetValues(group->text_shell, XtNx, xpos, XtNy,

ypos, NULL);
/* search the list of canvas objects to see if the user
has pointed to one of them. "group->found" points to
one them or is NULL if the user did not point to any
object ... */
if(!group->found) {

/* create a new object, initialize its text to
" ", and, possibly, mark the position on the screen
group->found points now to the new object */

}
XtVaSetValues(group->text, XmNvalue,

group->found->text_string, NULL);
XtPopup(group->text_shell, XtGrabExclusive);

}

The rest of the code (outlined only in comments) searches the list of objects to
find whether the application user has pointed to an existing object or to an empty
space. In the latter case a new object is created with a null string as text. In either
case the text (possibly a null string) to be edited is in group->found->text_
string. This is then passed to the widget by the next XtVaSetValues()
statement, then the text-editing window pops up.

The callback XmNactivateCallback is invoked when the Motif
symbolic key KActivate is pressed. That key is normally bound to

208 FUNDAMENTALS OF X PROGRAMMING

Listing 7.2. Pop-up Text Widget (Part 3)—File mfed.c

/* Callback when text entry is finished */
void back_to_canvas(Widget w, XtPointer client_data,

XtPointer call_data)
{

widget_set *group = (widget_set *)client_data;
String buffer;
/* copy edited text in buffer */
XtVaGetValues(group->text, XmNvalue, &buffer, NULL);
/* erase old object and free any space not needed */
group->found->text_string = strdup(buffer);
/* ... draw new/modified object ... */
/* clean up */
XtVaSetValues(group->text, XmNvalue, " ", NULL);
XtPopdown(group->text_shell);

}

control/return. It terminates text entry, then calls the function back_to_
canvas() to resume normal operation. Listing 7.2 (Part 3) shows this function.

The call XtVaSetValues (. . . XmNvalue, . . .) copies text
into an internal buffer, so after completing text editing, we must copy the processed
text to its original location: found->text_string.

7.3. DIALOG WIDGETS

7.3.1. The Basics Dialog widgets are pop-up windows that open when
there is a need for user input other than that already provided for by the application.
For example if the user selects the exit button, the application may ask for
confirmation. A more elaborate exchange is needed if data must be saved. The
application may ask what to do with the data; if the user opts to save them, the
application may ask for a file name. The text entry widget in the example in Sec.
7.2.2 is a special case of a dialog widget.

The term dialog box is almost synonymous with dialog widget except that the
former does not imply that the dialog window is part of a specific widget. It is easy
to build a dialog box based on the text entry form in Sec. 7.2.1. The frame widget of
that example must be parented by a pop-up shell, as described in Sec. 5.5.4. The
Athena toolkit provides a dialog widget that is in essence a one-line entry form.

Motif has many varieties of dialog widgets, all of which use a pop-up shell
around a constraint or composite widget. It is beyond our scope to discuss all of

TEXT AND DIALOG WIDGETS 209

these. Instead we focus on one built around the message box widget (class pointer
xmMessageBoxWidgetClass, definitions in <Xm/MessageB.h>.) The
widget is created through the following convenience function:

message = XmCreateMessageDialog(parent, "widget_name",
args, nargs);

whereargs is the resource argument vector described in Sec. 3.1.3 and nargs is
the number of its components. The dialog pops up (or down) by managing (or
unmanaging) the returned widget, for example:

XtManageChiId(message);

The message box is a composite widget built based on a bulletin board widget,
and it can be used in other places besides dialog boxes. In its default configuration,
it displays a message (possibly with a pixmap to its left) and three buttons labeled
by default “Ok”, “Cancel”, and “Help”.

The text message is assigned through the resource XmNmessageString,
for example:

XtVaSetValues(message, XmNmessageString,
XmStringCreateLtoR(
"You asked to erase all files.\nDo you really mean \

it? " ,
XmFONTLIST_DEFAULT_TAG) , NULL) ;

If there are no new lines in the string, we may use the simpler function
XmStringCreateLocalized(), which takes only one argument. Besides the

function and resources XmNokCallback, XmNcancelCallback, and
XmNhelpCallback. The call data argument of the callback includes the reason,
so that we can write simpler code by specifying a single callback function with a
switch argument inside it, for example:

/* XmAnyCallbackStruct has an integer member, reason */
/* and an XEvent pointer member, event */
void dialog_callback(Widget w, XtPointer client_data,

XtPointer call_data)
{

XmAnyCallbackStruct
*d = (XmAnyCallbackStruct *) call_data;
switch (d ->reason) {

text message, we must button callbacks by using the XtAddcallback()

210 FUNDAMENTALS OF X PROGRAMMING

case XmCR_OK:
/* ... proceed with action ... */
break;

case XmCR_CANCEL:

/* ... cancel action ... */
break;

case XmCR_HELP:
/* ... display documentation ... */
break;

}
}

An interesting question is how to force the application to wait for the response
to the dialog widget and to take into account the reply provided through that widget.
The first objective can be achieved by making the pop-up window modal (see Sec.
5.5.4). However that does not solve the second requirement, so we need another
approach. Let clean_up() be a function whose invocation requires user
confirmation. Let us also assume we have a button labeled “Clean Up” that invokes
it. The function clean_up () should not be the callback for that button. Instead
the callback should be a trivial function that causes the dialog box to pop up; the
function clean_up() should be the callback of the “OK” button. If we use a
common callback, as in the earlier example, that function must be called in the
XmCR_OK case. The callback for the “Cancel” button (or the code in the
XmCR_CANCEL case) can be a message-confirming cancellation.

It is possible to add widgets to the message box as well as modify button
labels. Additional buttons are placed after the button (originally) labeled “OK”,
other widgets are placed above the button row. For example we can add a text-entry
widget with the statement:

text_entry = XtVaCreateManagedWidget("entry",
xmTextFieldWidgetClass, message, NULL);

There is no need to add a callback, since the message widget provides one
automatically.

The default children of the message box are gadgets rather than widgets. Thus
we cannot assign individual background color to these, among other restrictions.
On the other hand we can add new children that are widgets, as the preceding
example shows.

7.3.2. Details of the Motif Dialog Message Box Many resources can be
used to refine the behavior of the dialog message box; we describe some of these
here.

TEXT AND DIALOG WIDGETS 211

The resource XmDialogType takes one of several symbolic values, such as
XmDIALOG_WORKING, XmDIALOG_QUESTION, etc. The only effect of the type
is to specify the icon appearing next to the message. For example the working type
displays an hourglass icon, the question type displays a question mark icon, etc.
Default icons can be overridden by assigning an icon explicitly through the
XmNsymbolPixmap resource. For example to request confirmation on erasing all
files, we may enhance the seriousness of the message with a skull and bones icon.
Assuming that such an icon exists in the file skull. icon, the following code
fragment accomplishes the task:

#include <skull.icon>
/* ... */

symbol = XCreatePixmapFromBitmapData(
XtDisplay (message),
DefaultRootWindow(XtDisplay(message)),
skull_bits, skull_width, skull_height,
/*foreground*/ 1, /*background*/ 0, /*depth*/ 8);

XtVaSetValues(message, XmNsymbolPixmap, symbol, NULL);

Dialog type should not be confused with dialog style, which refers to pop-up
modality. The following code fragment blocks all input to the application until the
dialog window is poped down:

XtVaSetValues(message, XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL, NULL);

The default setting is nonmodal.
It is possible to modify button labels through resources XmNokLabel-

String, XmNcancelLabelString, and XmNhelpLabelString. Their
values are of XmString type.

A more serious issue is the fact that when a button (or text entry) is activated,
the dialog window pops down. This is fine for many simple tasks, but there are
cases when we may want the window to stay up, for example after entering text.
Setting the resource XmNautoUnmanage to FALSE does the trick. However this
resource must be set during the creation of the widget [not with SetValues ()],
which means that it must be passed as an argument to XmCreateMessage-
Dialog (). Because there is no VarArg version of this function, we must use the
method in Sec. 3.1.3. The following code fragment accomplishes this:

XtSetArg(args[nargs], XmNautoUnmanage, FALSE); nargs++;
XtSetArg(args[nargs], XmNhelpLabelString,

XmStringCreateLocalized("Done")); nargs++;

212 FUNDAMENTALS OF X PROGRAMMING

We also relabel the help button in this case to provide an alternative means of
terminating the dialog session. When we force to dialog to stay open, we have an
opportunity for an extended dialog. After the user types a message, we can add a
callback that changes the displayed message through the set value function, for
example:

XtVaSetValues(message, XmNmessageString,
XmStringCreateLtoR(
"Thanks for responding to our inquiry.",
XmFONTLIST_DEFAULT_TAG), NULL);

The new message immediately replaces the old one.

7.4. CONCLUSIONS

Text-editing widgets of the major toolkits provide extensive facilities, so we
should use these as much as possible in applications instead of trying to create new
ones. A challenging application involves combining text with other types of data,
such as drawings or images. Listing 7.2 (Parts 1–3) provides a simple solution. This
is sufficient when there is room for the text, but not when text labels must be
inserted around other displays. One solution is to use a minimal special text-entry
function (for example the one in Listing 4.13) for the initial placement, then a
regular text edit widget whenever text must be modified. Another solution is to
create an entry form with each field corresponding to a line of text whose width is
computed from available space in the drawing.

Dialog widgets can be adapted to many tasks: They provide a basic pop-
up/pop-down mechanism, a container widget, and a set of standard buttons and
callbacks. There is virtually no limit to the functionality that can be added to these.

7.5. PROJECTS

1. Modify the code in Listing 7.2 (Parts 1–2) by using a dialog widget
instead of the custom-made pop-up widget.

2. The implementation of the extended dialog suggested in Sec. 7.2.2 has the
disadvantage that only one message and one reply are visible at a time.
Create an implementation where past messages and replies remain visible
to the user.

TE
AM
FL
Y

Team-Fly®

TEXT AND DIALOG WIDGETS 213

Hint: Plan in advance for messages and space for replies. It is convenient
to have an array of structures, each consisting of a string and a function
pointer for example:

typedef struct {
char * label;
void (*fun) () ;
} pairs;

Then associate each to a pair of widgets—label for the message and
callback for the text entry.

This page intentionally left blank

8

Drawing Operations

217
217
218
220

225
225
225
227
231
231
232
234
235
239
239
241
241
244
244
246

215

8.1.

8.2.

8.3.

8.4.

8.5.
8.6.

Basics of Drawing .
8.1.1. Overview. .
8.1.2. Drawables and Pixmaps .
8.1.3. Graphics C o n t e x t .
8.1.4. Members of the Graphics Context and their

Cache .
Drawing Functions.. .
8.2.1. Lines, Arcs, and Filled Areas.
8.2.2. Polygons and Filled Polygons
Icons, Cursors, and Fonts .
8.3.1. Definitions and the Icon File Format.
8.3.2. Creating Bit Maps from Icon Files
8.3.3. Creating Cursors from Icons
8.3.4. Text and Fonts .
8.3.5. Font Cursors. .
8.3.6. Font Names and Font L i b r a r i e s
Regions .
8.4.1. Concept. .
8.4.2. Nonrectangular Windows.
Conclusions. .
Projects .

This page intentionally left blank

DRAWING OPERATIONS 217

8.1. Basics of Drawing

8.1.1. Overview All drawing in X is done by Xlib functions. There is
support for line drawing and text display, but not for drawing with curves other than
circles or ellipses with axes parallel to the coordinate axes. There are two broad
families of functions: Those that draw in a single color (monochrome) and those
that can mix colors. Most of the functions discussed in Chap. 8 belong to the former
category. Color and functions that use it are discussed in Chap. 9.

A monochrome function can draw with any single color that the display
supports. Normally we distinguish a foreground color that is given to bits that are 1
and a background color given to bits that are 0. In X their values are part of the
graphics context (see Sec. 8.1.3). For example to draw a green dashed line, we set
the foreground to green, specify line style as dashed, then call the line-drawing
function. If we want spaces between dashes to be red, we must first draw a solid red
line, then draw a green dashed line on top of it (using replacement).

We discuss the following important drawing concepts specific to X as well as
icons, fonts, and filling polygons with texture:

• Drawables: Server resources where drawing operations occur.
• Graphics context: Structure containing parameters used in drawing, such as

color and line style.
• Regions: Unions of rectangles and polygons; useful for clipping opera-

tions.

The first three arguments of all drawing Xlib functions are a pointer to the
display (server), a drawable (see Sec. 8.1.2), which is often a window XID, and the
graphics context (see Sec. 8.1.3). Note: To keep our example code reasonably short,
we do not include window creation operations.

In most examples we assume that the following statements are present earlier
in the program:

static Display *Dpy;
static Window window;
static GC gc;

In programs using Xt and toolkits based on it, we can obtain the first two from a
widget by using such code as:

Dpy = XtDisplay(w);
window = XtWindow(w);

218 FUNDAMENTALS OF X PROGRAMMING

(We already used such statements in the function paint () in Listing 2.4, Part 2.)
The graphics context must be created by methods in Sec. 8.1.3. A simple way of
testing Xlib drawing programs involves creating a drawing window with the Starter
toolkit by using the following code:

/* Template for testing Xlib drawing code */
#include <X11/Xlib.h>
#include <Stdef.h>
void paint()
{

Display *Dpy;
Window window;
GC gc ;
St_get_default_args(&Dpy, &window, &gc);
/* Xlib code for drawing */

}
main()

{
St_vis_window(paint, 400, 400);

}

The function St_vis_window () establishes a connection to the server,
creates and maps a window, then enters the event-waiting loop. When an expose
event occurs, the function paint () is called. This use of the Starter toolkit
complements its use in earlier chapters (with the exception of the spy program in
Sec. 2.5), where we focused on window creation and event handling but did not
bother with details of the drawing operation. Here however we leave window
creation to the Starter toolkit to focus on drawing operations.

8.1.2. Drawables and Pixmaps A server resource that can be the
destination for graphics output is defined by X as a Drawable. A drawable can
be either a Pixmap or a Window. The distinction is somewhat misleading. A
graphics output may go into any piece of memory that can store such information.
The X type Pixmap is an XID that provides access to such a region. A window
must include such a piece of memory, and X offers the option that when the XID of
a window is passed as a function argument, the server uses that to access the
corresponding pixmap. The major difference from an application programmer’s
perspective is that the contents of a window pixmap are under the control of the
window manager (in the absence of server backup), while the contents of a directly
accessed pixmap are under the control of the application.

Given the availability of large amounts of memory in modern computers, it is a
good general practice to draw on pixmaps rather than windows. In that case a

DRAWING OPERATIONS 219

pixmap-to-window copying operation can be used to show the display. This not
only saves time when windows are refreshed (a time versus space trade-off), but it
also avoids showing half-finished drawings to the application user.

The following is a typical call for obtaining a handle to a pixmap:

Pixmap pxmp = XCreatePixmap(Dpy, DefaultRootWindow(Dpy),
width, height, DefaultDepth(Dpy, DefaultScreen(Dpy)));

The Dpy, width, and height arguments are self-explanatory. The second
and last arguments are needed to obtain information about the type of memory we
want to use. Such information cannot be obtained directly from the server
information pointer Dpy because X must account for the possibility of servers with
many screens (recall Sec. 2.1.2). If creating the pixmap fails, the server issues an
error message of the kind we saw in Sec. 1.4.3. Possible diagnostics are
BadAlloc (not enough resources), BadDrawbale (second argument was not a
drawable), and BadValue (zero dimensions or depth not supported by the screen).

Memory accessed through the pixmap XID is not cleared automatically, so it
must be cleared by the application. The following code fragment achieves that:

XSetFunction(Dpy, gc, GXclear);
XFillRectangle(Dpy, pxmp, gc, 0, 0, width, height);

where gc is a graphics context (see Sec. 8.1.3). The GXclear flag causes all
locations of the destination to have values of 0. (Normally XFillRectangle
assigns foreground values.)

After a pixmap is created, it can be copied in whole or in part into another
pixmap or a window by the function XCopyArea () that has the following
prototype:

XCopyArea(Display *Dpy,
Drawable source, Drawable destination,
GC gc, int x_source, int y_source,
int width, int height, int x_dest, int y_dest)

The function copies a rectangle of width width and height height with upper
left corner at x_source, y_source in drawable source into a rectangle with
similar dimensions and upper left corner at x_dest, y_dest in drawable
destination. This is the same as the function bitblt () used in many other
window systems.

Pixmaps are destroyed and their space freed by the function:

XFreePixmap(Display *, Pixmap)

220 FUNDAMENTALS OF X PROGRAMMING

8.1.3. Graphics Context A drawing may contain lines of different color,
thickness, and style. (The word style refers to whether the line is solid, dashed,
dotted, etc.) Similarly text may be displayed with characters of different sizes and
typeface styles. Passing all these parameters as part of line-drawing or text-display
routines is not practical because there are so many of them and only a few are
pertinent at a time. The X Window System uses a data structure in the server where
the values of such pertinent parameters (more than 20 of them) are stored; it is
called the graphics context (GC).

The choice of parameters that are members the GC is rather arbitrary, and it is
an odd assortment. Section 8.1.4 gives a complete list; here we explain the use of
the structure.

An Xlib function creates a GC structure for a given drawable, then returns a
pointer to a structure that contains an XID number and a cache of the server
structure. However the drawable does not acquire ownership of the structure, so it
can also be used with other drawables, provided all of these correspond to a refresh
memory with the same number of bits per pixel as the original.

The following code fragment illustrates use of the function:

GC gc;
XGCValues values;
static unsigned long valuemask = GCForeground |

GCBackground;
values.foreground = BlackPixel(Dpy, DefaultScreen(Dpy));
values.background = WhitePixel(Dpy, DefaultScreen(Dpy));
gc = XCreateGC(Dpy, DefaultRootWindow(Dpy), valuemask,

&values);

The structure with type XGCValues contains all graphics context information on
the client side. The variable valuemask is used to specify which members of the
structure values are read (see Sec. 1.4.2). In this example BlackPixel and
WhitePixel yield values used by the particular server. The preceding code
creates a GC appropriate for the display, with default values for all its members
except foreground and background colors. Instead of returning an XID,
XCreateGC () returns a pointer to an application structure whose members
include an XID called gid and an XGCValues structure called values. This
structure serves as a cache on the client side of values stored in the server. Sec.
8.1.4 discusses the role of the cache. The type GC is a pointer to an _XGC structure;
the arrangement is shown in Fig. 8.1. Members of the structure contain the same
values as the server structure and thus serve as a cache. (We discuss exceptions in
Sec. 8.1.4.)

DRAWING OPERATIONS 221

In summary XCreateGC () performs the following tasks:

• Creates (silently) the _XGC type structure
• Copies appropriate values from the XGCValues structure that was its

fourth argument according to the third argument, valuemask

• Sends structure values to the server
• Receives an XID for the server structure from the server
• Stores that XID in a member of the _XGC type structure
• Returns a pointer to the latter structure (gc)

It is possible to obtain a GC by the following code, which relies on a macro
that extracts information from the display structure:

GC gc = DefaultGC(Dpy, DefaultScreen(Dpy));

Such a GC might be shared among applications, so its usefulness is limited.
A GC is destroyed by:

void XFreeGC(Display *, GC)

For reasons just stated, the default GC should never be destroyed.
The prototype of a function that copies one GC onto another follows:

XCopyGC(Display *Dpy, GC source, unsigned long mask, GC
destination)

222 FUNDAMENTALS OF X PROGRAMMING

The mask determines which members are copied.

For example the following sequence creates a GC g2 that is an identical copy of the
GC g1:

g2 = XCreateGC(Dpy, window, 0, NULL) ; /*usedefaultvalues */
XCopyGC(Dpy, OxFFFF, g2); /* copy all values */

Members of the _XGC structure are not directly accessible, but various
functions can access them, most generally through the function XChangeGC (),
which has the following prototype:

XChangeGC(Display *Dpy, GC gc,
unsigned long valuemask, XGCValues *values);

When a change is made on the client side, the same change is also made at the
server. Listing 8.1 shows examples of using this function.

Listing 8.1. Graphics Context Functions

XGCValues gcvalues;
/* Set line width to n pixels */
gcvalues.line_width = n;
XChangeGC(Dpy, gc, GCLineWidth, &gcvalues);
/* ... */
/* Make lines dashed */
gcvalues.line_style = LineOnOffDash;
XChangeGC(Dpy, gc, GCLineStyle, &gcvalues);
/* ... */
/* Make lines solid and set width to m */
gcvalues.line_style = LineSolid;
gcvalues.line_width = m;
XChangeGC(Dpy, gc, GCLineStyle | GCLineWidth, &gcvalues);

TE
AM
FL
Y

Team-Fly®

DRAWING OPERATIONS 223

Arguments GCLineStyle and GCLineWidth are bit patterns that determine
which of the values of the gcvalues structure will be looked at. (See Sec. 8.1.1
for arguments Dpy and gc.)

Besides the general function XChangeGC (), there is a set of convenience
functions that can be used to change values of members of the GC. Listing 8.2
illustrates how to use some of these.

The last piece of code merits some comments. Exclusive OR (XOR) may give
incorrect results when the background is not zero. The correct way of drawing on a
nonzero background with XOR is to replace the value of the foreground color with
a new value obtained by an XOR between the old foreground color and the
background color, thus:

new_frgr = frgr XOR bcgr

Then, if we draw, we have

result = new_frgr XOR bcgr = (frgr XOR bcgr) XOR bcgr = frgr

Listing 8.2. Graphics Context Convenience Functions

/* ... */
XGCValues gcvalues;
/* ... */
/* Set foreground value to n */
XSetForeground(Dpy, gc, c);
/* ... */
/* Use copy (replacement) mode for drawing operations */
XSetFunction(Dpy, gc, GXcopy);
/* ... */
/* Set exclusive OR (XOR) mode for drawing operations */
XGetGCValues(Dpy, gc, GCForeground | GCBackground |

GCFunction, &gcvalues);
if (gcvalues. function != GXxor) { /* we need the change */

if(gcvalues.background != 0)
XSetForeground(Dpy, gc,

gcvalues.foreground^gcvalues.background);
XSetFunction(Dpy, gc, GXxor);

}
/* ... */

2
2

4
F

U
N

D
A

M
E

N
T

A
L

S
 O

F
 X

 P
R

O
G

R
A

M
M

IN
G

DRAWING OPERATIONS 225

This is what we want. Therefore we use the function XGetGCValues () (which
has the same prototype as XChangeGC ()) to determine background and
foreground values. (We also determine whether the XOR mode is already in use
to avoid unnecessary work.)

Note: It is probably a good idea to use XOR only in one-bit screens and to
avoid it altogether in all other screens. While XOR lets us erase with the same
function as drawing, such a convenience is probably not worth the complexities just
discussed. (Apparently some modern graphics systems do not offer that mode at
all.)

8.1.4. Members of the Graphics Context and Their Cache Table 8.1
divides members of the GC into two groups: Members cached in the client and
those that are not. Actually some of the members in the second group are cached
under some conditions, but it is best for beginning X applications programmers to
be conservative. In practical terms caching means that values provided with a call to
XGetGCValues () are valid.

The values returned by a call to XGetGCValues () are not reliable for GC
members listed in the second group. Unfortunately there are no diagnostics. Thus
we can call the following without problems except that vv.clip_mask may
contain garbage:

XGetGCValues(Dpy, gc, GCClipMask, &vv);

To retrieve the existing value of one of the members in the second part of the
table we must maintain our own cache. Of course this is impossible with the initial
values. Fortunately the defaults for all of these except for font are well-defined. We
discuss how to find the default font in Sec. 8.3.4.

8.2. DRAWING FUNCTIONS

8.2.1. Lines, Arcs, and Filled Areas Here we present examples of simple
drawing operations. We can clear a rectangular area in a window with the call:

XClearArea(Dpy, window, x, y, width, height, False);

To draw a straight line segment from (x1, y1) to (x2 , y2) requires the call:

XDrawLine(Dpy, window, gc, x1, y1, x2, y2) ;

Drawing a circular (or elliptic) arc requires a bit more work because the arc-
drawing function of Xlib, XDrawArc (), accepts somewhat unusual arguments.

226 FUNDAMENTALS OF X PROGRAMMING

It draws an arc within a rectangle of width w and height h; with upper left
coiner at x, y; and the extent specified by two angles, start_angle and
duration_angle. The function prototype is

XDrawArc(Display *dp, Drawable dr, GC gc, int x, int y,
unsigned int w, unsigned int h,
int start_angle, int direction_angle);

If w equals h, the drawn arc is circular; otherwise it is elliptical. Figure 8.2 shows
the definition of angles measured in sixty-fourths of a degree, so that 90 ° is passed
as 90*64, or 5760. The following code draws an arc starting with more intuitive
values: Its center (cx, cy), radii rx and ry, and angles expressed in degrees:

x = cx - rx; y = cy - ry;
w = rx + rx; h = ry + ry;
start_a *= 64;
length_a *= 64;
XDrawArc(Dpy, window, gc, x, y, w, h, start_a, length_a);

A filled arc drawn by the function XFillArc () which takes exactly the
same arguments as XDrawArc (). The shape of the filled area is determined by the
GC. If we call the following, filled arcs resemble a pie slice:

XSetArcMode(Dpy, gc, ArcPieSlice)

If we call the following, the filled area is bounded by the arc and its chord:

XSetArcMode(Dpy, gc, ArcChord)

DRAWING OPERATIONS 227

The form of the filled area is also specified by the GC. To obtain a solid color,
we must call

XSetFillStyle(Dpy, gc, FillSolid);

The foreground color is then used to fill the area. To obtain a pattern that is a
bitmap (1-bit pixmap) requires the following pair of calls:

XSetStipple(Dpy, gc, some_bit_map);
XSetFillStyle(Dpy, gc, FillStippled);

In this case foreground and background colors are used.
To fill with an arbitrary image (pixmap) requires the following pair of calls:

XSetTile(Dpy, gc, some_pix_map);
XSetFillStyle(Dpy, gc, FillTiled);

In this case foreground and background colors have no effect.
It is possible to tile the entire area of a window with a pixmap with the call:

XSetWindowBackgroundPixmap(Dpy, window, pix);

where window and pix are the XIDs of the window and the pixmap, respectively.
The following call uses the same pixmap as the parent window of window, which
produces a transparent window:

XSetWindowBackgroundPixmap(Dpy, window, ParentRelative);

However if the window is moved or resized, the illusion of transparency is lost,
since the original pixmap is still used. The transparent appearance is reinstated if we
force an expose event (by closing and reopening the window for example). The
window is never entirely invisible because the frame of the window created by the
window manager during reparenting remains.

8.2.2. Polygons and Fil led Polygons Some Xlib functions (including
those for drawing polygons) rely on the type XPoint, defined as follows:

typedef struct {
short x, y;

} XPoint;

The Xlib function for polygon plotting is XDrawLines (), which has the
following prototype:

XDrawLines(Display *dp, Drawable dr, GC gc,
XPoint *v, int n, int mode);

228 FUNDAMENTALS OF X PROGRAMMING

where the first three arguments are the standard ones; the fourth argument points to
an array of the polygon vertices, and the fifth argument, n, is the size of the array. It
must be no greater than 2046 to guarantee that the call will work on all Xservers.
The mode argument indicates how coordinates will be interpreted. It can have one
of two (predefined constant) values: CoordModeOrigin, or CoordModePre-
vious. The former specifies that all coordinates are absolute (i.e., with respect to
the origin of the drawable); the latter specifies that all coordinates (except the first)
are relative (i.e., with respect to the previous point).

Listing 8.3 illustrates plotting a polygon on a pixmap just large enough to
contain it. The code in Listing 8.3 assumes that all polygon points have the same
color, so it is drawn on a pixmap of depth one. We start with a structure bit_map
that contains a pointer to a pixmap, its dimensions, and a pair of coordinates. The
function bounding_box() computes the smallest right rectangle containing the
polygon P, and it computes a new polygon Q by moving the origin of the
coordinates to the top-left corner of the bounding rectangle. These coordinates are
stored in p->xoff and p->yoff. We omit listing the function bounding_-
box (), since it is a simple routine. (See Sec. 8.4.1 for some suggestions.) The next
statement creates a pixmap just large enough to allow us to plot Q. Then we create a
GC with the same depth as the pixmap. Because we may have to draw many
polygons, the GC is stored in a static variable, and it is created only once in each
execution of the application.

When the drawing mode is GXClear, all drawn pixels are given the value 0;
when the drawing mode is GXset, all drawn pixels are given the value 1. Therefore
the next group of statements first stores 0 in all pixels of the pixmap, then it stores 1
in all pixels that belong to the polygon.

To actually draw the polygon on the screen, we call the function
bit_plot(), which is a wrapper for XCopyPlane(), which copies the
pixmap to a window. The function XCopyPlane() is similar to XCopyArea(),
discussed in Sec. 8.1.2, but it takes one extra argument that indicates the plane we
copy. In this case we copy into the lowest bit of the memory. The color of the
polygon is determined by the foreground and the color of the surrounding by the
background.

DRAWING OPERATIONS 229

Listing 8.3. Drawing a Polygon on a Bitmap—File pxpol.c

#include <X11/Xlib.h>
typedef struct {

Pixmap pxm;
int width, height, xoff, yoff;

} bit_map;
static Display *Dpy;
static Window window;
static GC gc;
bit_map * prepare_polygon(XPoint P[], int n)
{

static GC pxm_gc = NULL;
XPoint *Q;
bit_map *p = (bit_map *)malloc(sizeof(bit_map));
bounding_box(P, n, &(p->xoff), &(p->yoff), &(p->width),

&(p->height), &Q);
/* Create and clear pixmap. The first time also create a
GC */
p->pxm = XCreatePixmap(Dpy, DefaultRootWindow(Dpy),
p->width, p->height, 1);
if(pxm_gc == NULL)

pxm_gc = XCreateGC(Dpy, p->pxm, 0, 0);
XSetFunction(Dpy, pxm_gc, GXclear);
XFillRectangle(Dpy, p->pxm, pxm_gc, 0, 0, p->width,

p->height);
/* Draw the Polygon on the Pixmap */
XSetFunction(Dpy, pxm_gc, GXset);
XDrawLines (Dpy, p->pxm, pxm_gc, Q, n, CoordModeOrigin);
return p;

}
bit_plot(p, dx, dy)

bit_map *p; int dx, dy;
{

XCopyPlane(Dpy, p->pxm, window, gc, 0, 0, p->width,
p->height, p->xoff + dx, p->yoff + dy, 1);

}

230 FUNDAMENTALS OF X PROGRAMMING

A filled polygon can be drawn by calling XFillPolygon (), which has the
same arguments as XDrawLines () with one exception: The sixth argument of
XDrawLines () (indicating relative or absolute coordinates) is the seventh
argument ofXFillPolygon (). The sixth argument ofXFillPolygon () is
used to indicate whether the polygon is convex or self-intersecting. The predefined
constant Complex is a safe choice, and it should not cause a significant reduction
in speed. Thus to draw the filled polygon in Listing 8.3, we replace the
XDrawLines () call by:

XFillPolygon(Dpy, pxm_gc, Q, n, Complex,
CoordModeOrigin);

The appearance of the filled area is determined by the graphics context as in
the case of filled arcs, described in Sec. 8.2.1. If a polygon is self-intersecting, there
is an ambiguity in the definition of its interior, so Xlib allows the application
programmer to select the appropriate definition through the graphics context. This
is illustrated in Fig. 8.3. The original polygon is shown on the left; a polygon filled
after the following call is shown in the center:

XSetFillRule(Dpy, gc, EvenOddRule);

A polygon filled after the following call is shown on the right:

XSetFillRule(Dpy, gc, WindingRule);

(See [Pa96], Chap. 12 for a discussion of the two algorithms used.)
The function XFillPolygon () draws part but not all of the boundary;

therefore for better quality results, we should use an intermediate pixmap, and also

DRAWING OPERATIONS 231

call XDrawLines () for the boundary. The function has no way of handling
polygons with holes.

8.3. ICONS, CURSORS, AND FONTS

8.3.1. Definitions and the Icon File Format Icons and fonts are bit maps
(pixmaps of depth 1), and cursors are pixmaps constructed from bit maps. The term
icon is often reserved for the bit map displayed on a window when it is reduced to a
small size by the window manager (iconified), but it is also used for any bit map
stored in a file in a particular format, the icon file format. The same format is often
called the bit map format, but we prefer the term icon because bit map has a broader
meaning in other window systems. Bit maps obtained from such files can be used
for any purpose: Marking selection buttons in menus, representing characters in
video games, etc. A font is a set of bit maps stored in another special format, and
their most common (but not only) use is for alphanumeric character images.
Cursors are pixmaps used to mark the position of the pointer; these are normally
constructed from bit maps, either icons or fonts.

Data in icon files are represented by printable characters, so that data can be
included in a C program. In particular pixel values are expressed by hexadecimal
numbers, for example 0×0E. Each hexadecimal digit has 4 bits, so its value
represents a particular bit arrangement. Thus 0×0E represents the bit array:

0000 1110

0×CB represents

1100 1011

Such values can be stored in a char array. Earlier systems used short arrays with
each element holding 16 pixels. However the current X standard requires an 8-bit
pattern. The Unix utility program bitmap always requires an argument; it is used
to produce a file that can be included in a C program; for example if we invoke
bitmap cat. icon, draw an icon, then save it, the file cat. icon contains data
of the form:

#define cat_width 16
#define cat_height 16
static char cat_bits[] = {

0x01, 0x80, 0x03, 0xc0, 0x03, 0xc0, 0xf7, 0xef,
Oxfe, 0x7f, 0xfe, 0x7f, 0x9f, 0xf9, Ox9f, Oxf9,

232 FUNDAMENTALS OF X PROGRAMMING

0xff, 0xff, 0xfe, 0x7f, 0x7e, 0x7e, 0x7c, 0x3e,
0xc3, 0xc3, 0xf8, 0x1f, 0xce, 0x73, 0xc0, 0x03};

Then the image can be included in a C program with the statement:

#include <cat.icon>

Figure 8.4 shows the icon represented by the preceding bits. (This is the icon used
for the grab cursor of the spy program described in Sec. 2.6.)

Converting this format into a pixel array and vice versa is a straightforward
process, but it requires us carefully to writing the code. The X Window System has
functions that create bit maps directly from icon descriptions, which we discuss
next.

8.3.2. Creating Bit Maps from Icon Files The X Window System does
not have a separate data type for bit maps, but the word Bitmap is used in the
names of functions instead of the word Pixmap if the result is always a pixmap of
depth 1. There are two pertinent Xlib functions:

XCreateBitmapFromData(),

used when an icon file has been included with the C code; and

XReadBitmapFile(),

which reads the icon file. The function

XCreateBitmapFromData()

TE
AM
FL
Y

Team-Fly®

DRAWING OPERATIONS 233

creates a pixmap of depth 1, where the bit pattern corresponds to that of an icon file
with the format described in the previous section. The function has the following
prototype:

Pixmap XCreateBitmapFromData(Display *Dpy, Drawable dr,
char * iconbits, int width, int height)

All arguments except iconbits have the same meaning as arguments for
XCreatePixmap () (see Sec. 8.1.2); in particular the role of dr is exactly the
same. The member iconbits is a pointer to a char array where icon data are
stored, as described in Sec. 8.3.1. If the program contains the statement:

#include <cat.icon>

Then the call is

Pixmap cat_icon;
cat_icon = XCreateBitmapFromData(Dpy,

DefaultRootWindow(Dpy),
cat_bits, cat_width, cat_height) ;

We can use the structure bit_map in Sec. 8.2.2 to store all information about
bit maps created by a function prepare_bitmap (), then have the bit map
drawn in different locations with the function bit_plot (), as shown in Listing
8.4. The coordinates cx and cy define the relative position of the bit map with
respect to arguments of this function. In Listing 8.4 the bit map is always centered
with respect to coordinates passed to the plotting function.

The function XReadBitmapFile has the following prototype:

Boolean XReadBitmapFile(Display Dpy, Drawable dr,
char * file_name, int *width, int *height, Pixmap

*px,
int *xpos, int *ypos)

The last two arguments are important only for cursor icons (see Sec. 8.3.3), so we
ignore them for the time being. If we use the bit_map type defined in Listing 8.3,
the following code is appropriate:

bit_map *p;
XReadBitmapFile(Dpy, DefaultRootWindow(Dpy), &(p->width),
&(p->height), &(p->pxm, &(p->xoff), &(p->yoff));

234 FUNDAMENTALS OF X PROGRAMMING

Listing 8.4. Creation of Bit Maps from Icons

bit_map * prepare_bitmap(char iconbits[],int w, int h,
int cx, int cy)

{
bit_map *p = (bit_map *)malloc(sizeof(bit_map));
p->pxm = XCreateBitmapFromData(Dpy,

DefaultRootWindow(Dpy), iconbits, w, h);
p->width = w;
p->height = h;
p->xoff = -cx;
p->yoff = -cy;
return p;

}
/* Program using the above function */

/* ... */
static bit_map *pi;
/* ... */
pi = prepare_bitmap(cat_bits, cat_width, cat_height,

cat_width/2, cat_height/2);
/* ... */
bit_plot(pi, 100, 200);/* defined in Listing 8.3 */

Bit maps are always drawn with foreground (for bits that are 1) and
background (for bits that are 0) colors and mode specified by the graphics context.

A collection of bit maps in icon file format resides in the X subdirectory
include/X11/bitmaps.

8.3.3. Creating Cursors from Icons Cursors (also called pointers or
sprites) are images used to mark a position on the screen that is controlled by the
movement of the mouse. X has a special type Cursor for such objects, which are
created by a function with prototype:

Cursor XCreatePixmapCursor(Display *Dpy,
Pixmap Cursor_icon,
Pixmap Cursor_mask, XColor * foreground,
XColor *background, int hx, int hy)

Both Cursor_icon and Cursor_mask (if present) must be bit maps
(pixmaps of depth 1), and these must have the same size; otherwise an error occurs
(server message BadMatch). Bit maps are usually created through the
XCreateBitmapFromData () function; these can be freed by using the

DRAWING OPERATIONS 235

XFreePixmap () after creating the cursor object. The shape formed by nonzero
pixels of the mask bit map is usually slightly larger than that of the cursor icon, so
the cursor can be outlined when displayed against an area similar in color to its
icon. If we decide not to use a cursor mask, the value None is passed. Arguments
foreground and background point to structures containing color information
for the cursor icon and the mask, respectively. (For type Xcolor, see Sec. 9.2.1.)

The last two arguments (hx and hy) specify the hot spot of the cursor (the point
whose coordinates are controlled by the mouse) relative to the upper left corner of
the pixmap. The size of the cursor is specified by the system, so there is no
information about dimensions in the call to XCreatePixmapCursor ().

It is possible to create a mask automatically for a given icon by using image-
processing techniques: For each bit that is one in the original icon, we set any
neighboring bits that are zero to one. This produces a slightly enlarged version of
the icon figure. (See [Pa96], Sec. 3.2.2 for an example of such a mask creation
program.) Listing 8.5 shows the creation of a red cursor using the cat icon in Fig.
8.4 and assuming availability of a mask-generating function.

We chose the hot spot of the cursor to be its center—a reasonable choice for a
cat, but not an arrow. Creating a cursor does not necessarily mean that it will be
used. It appears on the screen only after a call to XDefineCursor (), which has
following argument structure:

XDefineCursor(Display *Dpy, Window w, Cursor cursor_xid)

The first two arguments are self-explanatory; the third argument is the XID
returned by a call to XCreatePixmapCursor (). The third argument may also
have the value None; in that case the cursor used for the window is the same as the
parent window cursor.

8.3.4. Text and Fonts Most windowing systems display text by means of a
set of bit maps, each of which contains the image of a character. A collection of
such bit maps and a header structure is called a font. Because bit maps cannot be
scaled, a font encapsulates both typeface style and size. This definition is the same

236 FUNDAMENTALS OF X PROGRAMMING

Listing 8.5. Cursor Creation

#include <cat.icon>
static Cursor red_cat_cursor;
void creation_of_cursor(void)
{

XColor Cursor, Cmask;
unsigned char mask_bits[32] ;
Pixmap Cursor_icon;
Pixmap Cursor_mask;
int hot_x = 8, hot_y = 8;
make_cursor_mask(cat_bits, mask_bits, 16, 16);
Cursor_icon = XCreateBitmapFromData(Dpy,

window, cat_bits, 16, 16);
Cursor_mask = XCreateBitmapFromData(Dpy,

window, mask_bits, 16, 16);
/* Assignment of colors - see Chapter 9 */
Ccursor.red = 0xFFFF; Ccursor.blue = Ccursor.green = 0;
/* red */
Cmask.red = Cmask.blue = Cmask.green = 0xFFFF;
/* white */
red_cat_cursor = XCreatePixmapCursor(Dpy,

Cursor_icon, Cursor_mask, &Ccursor, &Cmask,
hot_x, hot_y);

}

as that used in traditional typography, but it differs from that used in some text-
formatting system (such as troff), where the word font refers only to typeface style.
X uses a naming convention for fonts that includes all relevant information (in
addition to style and size). Since this results in cumbersome names, most systems
maintain simple font name aliases, for example timesroman, helvetica, etc.
We discuss naming conventions and font file location in Sec. 8.3.6.

Fonts are always kept on the server; which one is used is specified by the GC.
On the other hand the client may need precise information about the size of text
labels (for example to enclose these by rectangles with a given margin between
lines and text, as in the case of menu buttons). For this purpose X provides the
client with an information structure containing data that can be used to compute the
height and width of character strings.

Determining the default font used by the server is a major headache in X. The
default font is implementation-dependent, so we cannot rely on a known value. The
following function queries the server about a font:

XFontStruct *font_info = XQueryFont(Display *Dpy,
XID font_id);

DRAWING OPERATIONS 237

Unfortunately we must provide a font XID to call it! Since font is part of the GC,
we may try to find its XID by the sequence:

XGCValues v;
XGetGCValues(Dpy, gc, GCFont, &v) ;
font_info = XQueryFont(Dpy, v.font);

However this does not work because XGetGCValues () looks only at the
client GC cache; as mentioned in Sec. 8.1.4, font is one of the values that are not
cached. There is a tortuous way around this problem by using the call:

font_info - XQueryFont(Dpy,
(GContext) XGContextFromGC(gc));

The function XGContextFromGC () returns the XID of the server GC structure
from the client cache (in effect gc->gid), then we rely on the fact that the second
argument of the function XQueryFont () can be an XID of the server GC
structure.

Things are much easier if we load a new font, for example Helvetica. We can
call a function with the font name as second argument and not only obtain
information about it, but also load it on the server:

font_info = XLoadQueryFont(Dpy, "Helvetica");

If the font is not found, the function returns a NULL value. This happens either
because the font itself does not exist or because we have used a nonexisting alias.
The latter is a likely event when we port a program across different systems; Sec.
8.3.6 discusses how to deal with these issues. The X utility xlsfonts lists all font
names that are available on the system.

After a font is loaded, we set it in the GC by the call:

XSetFont(Dpy, gc, font_info->fid);

If we plan to use a mixture of fonts in an application, it is best to create an array of
XFontStruct pointers, fill it using one call to XLoadQueryFont () per font,
then select the current font through XSetFont ().

Once we have a pointer to an XFontStruct, we can lay out text carefully.
The width of a text string in pixels is given by a function with prototype:

XTextWidth(XFontStruct *font_info, char *s, int number);

238 FUNDAMENTALS OF X PROGRAMMING

where number refers to the number of characters in the string s (which can be
obtained with the strlen () function). For example:

XTextWidth(font_info, "Hello", strlen("Hello"));

The function XQueryTextExtents () returns detailed information about the
displayed text, but it is rather complex to use. A simple way of estimating the line
height of text printed with a given font is from the expression:

font_info->ascent + font_info->descent

To display a character string text with its lower left corner at (x, y), we can
use the following Xlib call:

XDrawString (Dpy, window, gc, x, y, text, strlen (text));

Positions x and y can be updated by the following code:

static XFontStruct *font_info;
x += XTextWidth(font_info, text, strlen(text));

or

y += font_info->ascent + font_info->descent;

Xlib has many other functions for displaying text, including

XDrawImageString(),

which takes exactly the same arguments as XDrawString (), but it has a slightly
different behavior. Both functions display the text in the foreground color, but they
do other things differently:

• XDrawString () ignores background color and uses whatever mode is
effective in the GC (XOR, replacement, etc).

• XDrawImageString () ignores the GC mode (it always uses replace-
ment), but it uses the background color to fill a tight rectangle around the
text.

DRAWING OPERATIONS 239

8.3.5. Font Cursors X maintains a cursor font, and it provides a simple
call to construct a cursor from one of these predefined shapes. The function
prototype is

#include <X11/cursorfont.h>
Cursor XCreateFontCursor(Display *Dpy, unsigned int name)

where name can be chosen from a list of symbolic names, for example XC_
leftbutton (shows a mouse with left button pressed), XC_middlebutton
(shows a mouse with middle button pressed), XC_clock (shows a rather cryptic
rendition of a grandfather clock), etc. Once we create a cursor, we must call
XDef ineCursor () to make the new cursor actually appear.

The cursor created by these calls is black and white. We reassign colors with a
function that has the following prototype:

XRecolorCursor(Display *Dpy, Cursor cursor,
XColor * foreground, XColor *background);

The first two arguments are self-explanatory; the last two are the same as in the
function XCreatePixmapCursor (), discussed in Sec. 8.3.3. (Of course we
also can recolor a cursor created by the latter function.)

8.3.6. Font Names and Font Libraries The full X name of a font has 13
parts (fields), as in the following examples:

-adobe-helvetica-bold-r-normal--14-140-75-75-p-82-
iso8859-1
-adobe-new century schoolbook-bold-i-normal--10-100-75-
75-p-66-iso8859-1
-adobe-symbol-medium-r-normal--18-180-75-75-p-107-adobe-
fontspecific
-linotype-helvetica-bold-r-narrow-sans-10-100-72-72-
p-46-iso8859-1
-schumacher-clean-medium-r-normal--8-80-75-75-C-50-
iso8859-1

Dashes serve as field delimiters, and fields themselves may contain blanks. In one
system the first three fonts have the following aliases:

Adobe-Helvetica-Bold
NewCenturySchlbk-Boldltalic
Symbol

240 FUNDAMENTALS OF X PROGRAMMING

These aliases can be used as arguments to XLoadQueryFont () instead of the
full names (at the risk of compromising portability). Wildcarding with * (for
strings) and ? (for single characters) is also allowed but with somewhat
unpredictable results. The meaning of the fields follow:

• Foundry: Name of the font supplier (adobe, linotype, or schu-
macher in the examples); foundry is a historical throwback to the days
when typefaces were cast in lead.

• Typeface or font family: Name describing a particular character style, for
example helvetica, new century schoolbook, symbol, etc.;
some typefaces may have nonalphanumeric characters. Thus the symbol
family contains bit maps representing mathematical symbols and Greek
letters used in equations. Not all foundries have all typefaces.

• Weight: Usually bold, medium, or light. Not all typefaces have all
weights; the light category is rather rare.

• Slant: r (roman), i (italic), or o (oblique); the first represents upright
characters, the other two slanted.

• Set width: Usually normal; there a few narrow fonts, which give words
a crowded appearance.

• Style variations: Often omitted (with two successive dashes). The
expression sans (as in the fourth example) implies no serifs.

• Pixels: Actual point size in pixels (see the following bulleted item).
• Point size times 10: Point size is the height of the tallest character in a font

(usually {) measured in one-seventy-second of an inch. This is the measure
of size used in typesetting languages. Most book text is printed in 10-point
size. This field contains the point size times 10. The previous field depends
on the resolution; For 75 dpi it is approximately the same as the true point
size.

• Vertical and Horizontal Resolution (two fields): Dots per inch used in the
font design.

• Spacing: Proportional (p) or monospace (m) are the two most common
values.

• Average width (in tenths of pixels).
• Character Set (two fields).

Key parameters for display purposes are point size (determines the size of the
labels), weight, and slant (the last two for emphasis).

There is a function lets us find the available fonts in a system. (The utility
xlsfonts [see Sec. 8.3.4] is built around it.) It has the following prototype:

char ** XListFonts(Display *Dpy, char *pattern,
int maximum_count, int *returned_count);

DRAWING OPERATIONS 241

It returns an array of font names that match the given pattern, but no more than
maximum_count. The pattern "*" returns all fonts. The actual number of fonts
found is returned in returned_count. The following simple program lists all
fonts that match a pattern given as a command line argument:

#include <X11/Xlib.h>
int main(int arc, char **arv)

{
char **cp, **cp0;
int i, kount;
Display *Dpy = XOpenDisplay (" ") ;
if(Dpy==NULL) return(-1);
cp = cp0 =

XListFonts (Dpy, ar>1? arv[l]: "*", 256, &kount);
printf("%d fonts found\n", kount);
for(i=0; i<kount; i ++, cp++) printf("%s\n", *cp) ;
if(kount) XFreeFontNames(cp0);
XCloseDisplay(Dpy);
return(0) ;

}

For example, to list all Adobe fonts we must run

a.out "*adobe*"

Note: Quotes on the argument are essential to avoid having the shell interpret
wildcard characters. To find all 10-pointsize fonts (and possibly a few others) run

a.out "*100*"

8.4. REGIONS

8.4.1. Concept X has a facility for creating in effect bit maps on the client
side. The type Region is a handle to a collection of points, the only limitations on
its shape are those imposed by Xlib functions that may be used to build and
manipulate regions. These limit the shape to unions and intersections of rectangles
and/or polygons. The basic region creation function has the following prototype:

#include <X11/Xutil.h>
Region XPolygonRegion(XPoint P[], int nPoints,

int filling_rule);

242 FUNDAMENTALS OF X PROGRAMMING

where argument nPoints is the number of points in the array P[]. The
filling_rule is the same as the argument used in GC functions that specify
how a polygon is filled (Sec. 8.2.2). The Region type is not defined in X11/
Xlib.h but in X11/Xutil.h, which must be included in any files using
regions. Since the region handle refers to a client structure, there is no reference to
the server or a drawable. As a matter of fact we can create and manipulate regions
without a call (explicit or implicit) to XOpen Display ().

The most common use of regions is to specify clip masks, a member of the GC
that specifies which pixels can be drawn on a drawable (See [Pa96], Chap. 16 for
the theory of clipping.) It can be specified through either a 1-bit pixmap by the
function:

XSetClipMask(Display * Dpy, GC gc, Pixmap mask)

or through a region by the function:

XSetRegion(Display * Dpy, GC gc, Region mask);

The use of region clip masks makes various graphics operations possible that
are not directly supported by Xlib, such as filling polygons with holes. Listing 8.6
provides an example of such code. The function XSubtractRegion ()
performs a logical operation on Regions A and B, then stores the result on C.

Because regions are opaque handles, the region where we store the results of
logical operations must have been created previously by the statement:

C = XCreateRegion();

The following statement frees the memory associated with Region R:

XDestroyRegion(R)

Additional region logical operations include unions, intersections, and
exclusive OR:

/* C = A union B */
XUnionRegion(Region A, Region B, Region C)
/* C = A intersection B */
XIntersectRegion(Region A, Region B, Region C)
/* C = A XOR B */
XXorRegion(Region A, Region B, Region C)

In this case Region C must have been created earlier by a call to
XCreateRegion (). All these functions also have a limitation. Since regions

TE
AM
FL
Y

Team-Fly®

DRAWING OPERATIONS 243

Listing 8.6. Filling the Space between Polygons

/* Fill the space between polygons P and Q */
fill_non_simple_polygon (XPoint *P, int n, XPoint *Q, int m)
{

Region A, B, C;
/* construct regions A and B from polygons P and Q */
A = XPolygonRegion(P, n, EvenOddRule);
B = XPolygonRegion(Q, m, EvenOddRule);
/* create an empty region handle */
C = XCreateRegion();
/* make region C have the points of A that are not in
B */
XSubtractRegion(A, B, C) ;
/* we no longer need A and B */
XDestroyRegion(A); XDestroyRegion(B);
/* set clip mask to C */
XSetRegion(Dpy, gc, C) ;
/* free C as well, it has been recreated in the
server */
XDestroyRegion(C) ;
/* fill a large rectangle, only C will show */
XFillRectangle(Dpy, window, gc, 0, 0, 1000, 1000);

}

are in effect bit maps, we cannot use them to find the vertices of the polygon that
results from these operations.

Regions are useful for various geometric operations besides creating clipping.
For example to find whether a point is within a polygon, we can simply call a
function available for the purpose, thus:

if(XPointInRegion(poly_region, x, y) == True)
printf("Point %d %d is inside\n", x, y);

The following function finds the smallest rectangle that encloses the given region:

XClipBox(Region A, XRectangle *G)

Such a function can be used to find the bounding box of a polygon by constructing
the region from the polygon through the XPolygonRegion () function. In this
way we can implement the function bounding_box () in Listing 8.3.

244 FUNDAMENTALS OF X PROGRAMMING

There are many other functions that manipulate regions, but these should be
used with caution. In particular avoid using XShrinkRegion (). This function
attempts to scale regions, a task that cannot be done properly for most scale values
because bit maps cannot be scaled properly (See [Pa96], Sec. 13.1.1); since regions
are stored as bit maps, these cannot be scaled either.

8.4.2. Nonrectangular Windows Regions can be used to create non-
rectangular windows. This feature is supported only by the SHAPE extension of
Xlib, but that seems to be available in most servers. We make sure that it exists with
the code:

int major_v, minor_v;
/* ... */
if(XShapeQueryVersion(Dpy, &major_v, &minor_v)==0)

printf("No SHAPE extension on this server");
else { /* build non rectangular window */ }

To access it, we need the following line in our program and the -1Xext flag in the
object-linking line of the makefile:

#include <X11/extensions/shape.h>

The simplest way of creating a top window that is not rectangular is by
creating a region, say, FunnyShape, with the appropriate shape, then call

XShapeCombineRegion(Dpy, XtWindow(toplevel),
ShapeBounding, 0, 0, FunnyShape, ShapeSet);

where toplevel is the top shell in the application. Listing 8.7 shows a minimal
program that creates a window that is a rhomb. The shape of the shell widget is set
to a rhomb; this in turn clips the canvas. Only widgets from Xt are used; the
window color and dimensions can be changed through the resource mechanism. A
further discussion of nonrectangular windows is beyond our scope. See [JR94],
Chap. 18, for more on this topic.

8.5. CONCLUSIONS

In Chap. 8 we cover the basic drawing operations of X. While the operations
described in Chap. 2 can be implemented in a simpler way by using Xt, there is no
such possibility for drawing functions discussed here: We must deal directly with
Xlib, although in simpler cases we can use the Starter toolkit.

DRAWING OPERATIONS 245

Listing 8.7. Creating a nonrectangular Window—File rhomb. c

/* Nonrectangular window using the X shape extension */
#include <stdio.h>
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <X11/extensions/shape.h>
void paint();
String fallbacks[] = {

"*canvas.width: 200", "*canvas.height: 200",
"*canvas.background: red",
NULL};

main(int arc, char **arv)
{

XtAppContext app;
Widget toplevel, canvas;
toplevel = XtVaAppInitialize(&app, "Rhomb",

(XrmOptionDescList)NULL, 0, &arc, arv,
fallbacks, NULL);

canvas = XtVaCreateManagedWidget("canvas",
coreWidgetClass, toplevel, NULL);

XtAddEventHandler(canvas,
ExposureMask |
StructureNotifyMask,
False, paint, NULL);

XtRealizeWidget(toplevel);
set_clip_mask(canvas);
XtAppMainLoop(app);

}
/* Function that specifies the window shape */
set_clip_mask(Widget w)
{

XPoint P[4];
Dimension width, height;
Region Rhomb;
/* Compute a rhomb shape based on the window
dimensions */
XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,

NULL);
P[0].x = 0; P[0].y = height/2;
P[1].X = width/2; P[1].y = 0;

P[2].x = width; P[2].y = height/2;
P[3].x = width/2; P[3].y = height;

246 FUNDAMENTALS OF X PROGRAMMING

Rhomb = XPolygonRegion(P, 4, EvenOddRule);
XShapeCombineRegion(XtDisplay(w),

XtWindow(XtParent(w)), ShapeBounding, 0, 0,
Rhomb, ShapeSet);

}
/* Function called on Expose and Resize events */
void paint(

Widget w,
XtPointer client_data,
XEvent *ep,
Boolean *disp)

{
static Dimension old_width = 0, old_height = 0;
Dimension width, height;
/* If the window size has changed recompute the rhomb
shape */
XtVaGetValues(w, XtNwidth, &width, XtNheight, &height,

NULL);
if(old_width>0 && old_height>0 &&

(old_width != width || old_height != height))
set_clip_mask(w);
old_width = width; old_height = height;

}

Here we have used Starter toolkit functions for window creation and event
handling because we focus on drawing functions. In contrast in Chaps. 3 and 4 we
used Starter toolkit functions for drawing, since our emphasis there was on events
and window creation. Of course we may avoid using the Starter toolkit altogether,
as we saw in Listing 8.7. Listing 8.8 shows an additional example that uses action
procedures instead of an event handler. The program draws black slices of 30 °
separated by 30° gaps. The canvas is a Core class widget; because it does not have
an exposure callback list, the painting function is made an action procedure.

8.6. PROJECTS

1. Write a program to draw concentric rings of different colors (a real
rainbow!).

2. (a) Modify Listing 8.3 to create a program for constructing an icon bit map
from a polygon or a polyline, (b) Create a sequence of animation frames
from the following process: Start with a simple line figure, compute its
form in a sequence of positions, then convert the line figures into icons
using the program in Part a.

DRAWING OPERATIONS 247

Listing 8.8. Pie Slices—File zpie.c

/* Show six pie slices */
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
static Display *Dpy;
static Window win;
static GC gc;
void paint(void)
{

int i ;
for(i=0; i<6; i ++)

XFillArc(Dpy, win, gc, 60, 55, 200, 200, 3840*i,
1920);

}
/* Make paint() an action procedure */
static XtActionsRec act[] = { {"paint", paint} };
static char trans[] = "<Expose>: paint()";
int main(int arc, char **arv)
{

XtAppContext app;
Widget top, canvas;
top = XtAppInitialize(&app, "Pie",

NULL, 0, &arc, arv, NULL, NULL, 0);
XtAppAddActions(app, act, XtNumber(act));
/* Create a canvas widget */
canvas = XtVaCreateManagedWidget("canvas",

widgetClass, top,
XtNwidth, 300, XtNheight, 300,
XtNtranslations, XtParseTranslationTable(trans),
NULL);

XtRealizeWidget(top);
Dpy = XtDisplay(canvas);
win = XtWindow(canvas) ;
/* Create a Graphics Context */
{

XGCValues values;
int Scr = DefaultScreen(Dpy);
values.foreground = BlackPixel(Dpy, Scr);
values.background = WhitePixel(Dpy, Scr);
gc = XCreateGC(Dpy, win,

GCBackground | GCForeground, &values);
XSetArcMode(Dpy, gc, ArcPieSlice);

}
XtAppMainLoop(app);

}

248 FUNDAMENTALS OF X PROGRAMMING

3. Starting with the code of the short program in Sec. 8.3.6, write a program
that not only prints font names but also displays them on a window. (You
may choose to display a name in its own font.)

4. Reimplemenmt a program from Chaps. 5–7 by replacing the Paper Class
widget with a Core class widget (as done in Listings 8.7 and 8.8) and
using Xlib functions instead of Starter toolkit functions.

9

Color and Images

9.1.
9.2.

9.3.
9.4.
9.5.

9.6.

9.7.
9.8.

Overview. .
Using Existing Colomaps .
9.2.1. Using Color in X and the X T o o l k i t
9.2.2. Color Specification by Name
9.2.3. Color Specification by RGB Values.
9.2.4. Economizing on Colors .
9.2.5. X Colormap Odds and Ends
Visuals. .
Creating and Using New Colormaps
Image Structures .
9.5.1. Xlmage Structure .
9.5.2. Creating Xlmages from Full-Depth Raster Images
9.5.3. Creating Xlmages from 1-Bit-per-Pixel Images. . .
Overlays .
9.6.1. General Considerations .
9.6.2. Allocating Planes .
9.6.3. Simulating Overlays with Tiling Pixmaps.
Conclusions. .
Projects .

251
253
253
255
256
260
260
261
265
267
267
268
271
272
272
272
275
278
279

249

This page intentionally left blank

COLOR AND IMAGES 251

9.1. OVERVIEW

There are two basic reasons for using color in computer system application.
The first is for labeling items (two curves in a graph, menu buttons, etc); the other is
for color image display. In all graphics devices based on television technology, a
color is defined by a triplet of red, green, and blue (RGB) values. The difference
between two application types is seen in how RGB values must be specified.

In an image display RGB values are given for each point in the image. If the
device is incapable of displaying such values, then we must find a close
approximation to them. For example a full-color image is usually given with 24 bits
per pixel (8 bits per color). We can display an approximation to it in an 8-bit device
by using the most significant bits of each color with adjustments to preserve the true
average color of areas. Such transformations are known as color halftoning. (See
[Pa96], Chap. 21, for a description of the process.) Other times we may want to
adjust RGB values to compensate for a too bright or too dim color in a particular
display. In all these cases RGB values are determined by factors beyond control of
the window system. We must also specify a large number of these—many images
contain thousands of values, so that even a rough approximation may contain over
100 colors. For labeling we have more flexibility in the choice of RGB values. We
need distinct colors without caring too much about the exact hue; we also typically
do not need many colors. Using more than 10 labeling colors in a GUI is likely to
overload the user.

Color display is not a challenge if we have a display device with 24 bits per
pixel (16,777,216 possible colors) or even with 16 bits per pixel (65,536 possible
colors). If we insist that our applications run only on machines with at least 16 bits
per pixel, we do not need most of the material in this chapter. Color displays
become a challenge with the (quite common) 8-bit-per-pixel displays.

As discussed in Sec. 1.4.1, pixel values are mapped into colors (RGB values)
through the video lookup table, or hardware colormap. The exact correspondence is
determined by a (logical) colormap loaded into the video lookup table. To display a
particular color, we place the index of the colormap that points to the RGB values
of the color in refresh memory, and the video lookup table takes care of the rest.
Therefore creating color displays is straightforward, once we know the
correspondence between real colors and colormap index values.

The easiest way to deal with color is to let each application create its own
colormap. Unfortunately this has some undesirable side effects. Since the video
lookup table is a unique resource, the colormap of only one application at a time
can be loaded in that table. Normally loading is done by the window manager in
response to the pointer position. This ensures that the active application appears
with the correct colors, but there is no guarantee about the others. A different color-
map for each application causes significant distortions in the appearance of the

252 FUNDAMENTALS OF X PROGRAMMING

screen as well as flashing when we move the pointer over different application
windows.

Another solution is to use a single colormap for all applications. This keeps a
consistent screen appearance and avoids flashing. Such a solution presents only a
minor challenge to labeling applications—these have to find the common table, see
if there is space, then add their own color definitions. In an 8-bit-per-pixel device,
the colormap has 256 places, so we can accommodate 25 different applications even
if each uses ten distinct labeling colors. (Labeling colors are most likely shared, so
the number of applications may be even greater.)

Unfortunately the single colormap solution presents serious difficulties for image
displays when an application requires hundreds of colors. One compromise solution is
to reduce the number of RGB values for an image so they fit in the common colormap
if the appearance of the image is not significantly changed. A good example are gray
scale images that contain many intensities but no color. In this case RGB values are
identical, so we need only 256 places in the colormap. If this is still too many, we can
drop the least significant bit of each pixel without visibly changing the image. Then we
are left with only 128 values to fit in the common colormap.

This solution presents no problems if we run only one copy of the application,
but if we run a second copy, it can add another 128 values to the common colormap.
Therefore we must provide code that checks whether desired values are already in
the common colormap. This solves the problem of running many copies of the same
application, or groups of similar applications, but it leaves the problem of
simultaneously running two applications with different colormaps, as illustrated in
Fig. 9.1, where Application A may be a web browser and Application B a video

TE
AM
FL
Y

Team-Fly®

COLOR AND IMAGES 253

game. (One of the two colormaps may be the default colormap but with most of its
entries taken by one of the applications.)

The situation in Fig. 9.1 requires at least one of the applications to create its
own colormap. It is possible to minimize variations in the display appearance if
while assigning values to elements of a new colormap, we reserve space for some
(if not all) of the common colors (the dark gray part in Fig. 9.1). We describe how to
implement such a strategy in Sec. 9.4. However before dealing with new colormaps,
we discuss how to use existing colormaps in Sec. 9.2.

Dealing with colormaps in X is complex due to the simple design of the X
server. Decisions about color allocation naturally belong to the server, so trying to
do the task from the client side is a little like providing instruction over the phone
for repairing a piece of equipment.

9.2. USING EXISTING COLORMAPS

9.2.1. Using Color in X and the X Toolkit Note: The Colormap type is
an XID that refers to a server structure containing the actual colormap table. All X
servers have a default colormap that can be accessed with the following code
fragment:

Display *Dpy;
Colormap cmap;
/* ... */
cmap = DefaultColormap(Dpy, DefaultScreen (Dpy));

The macro DefaultColormap () obtains the information from the Display
structure.

Each widget also has a colormap that may or not be the same as the default
colormap. In applications using Xt the colormap can be found through the resource
mechanism:

Colormap cmap;
Widget w;
/* ... */
XtVaGetValues(w, XtNcolormap, &cmap, NULL);

A colormap consists of an array of color cells. X provides a client-side
structure with the color cell information. The structure is called XColor, and it has
the following declaration:

typedef struct {
unsigned long pixel;

254 FUNDAMENTALS OF X PROGRAMMING

unsigned short red, green, blue;
char flags; /* whether to ignore some of the colors */
char pad; /* to provide an even number of bytes */

} XColor;

The pixel member is the bit pattern corresponding to color composed of the three
given values red, green, and blue. The member flags is used to allow colors
to be selectively reset. To change all colors, flags must have the value
DoRed | DoGreen | DoBlue.

The space allocated for elements of the XColor structure is generous—it
allows 8 bits per color and an extra 8 bits to be used for a transparency factor. Since
color display becomes a challenge only in devices with 8 bits per pixel (256 entries
in their colormap), we construct all of our examples for such a case. X allows an
application to query a server about its color-handling abilities (see Sec. 9.3), and it
makes sense to have different code for handling color according to display device
capability.

Two functions can be used to create a colormap entry from an XColor
structure: XAllocColor () and XStoreColor (). Both functions have the
same prototype:

Boolean XAllocColor(Display *Dpy, Colormap cmap,
XColor *color_cell_ptr)

Boolean XStoreColor(Display *Dpy, Colormap cmap,
XColor *color_cell_ptr)

Another pair of functions creates entry groups: XAllocColors ()and
XStoreColors (), which take the same arguments and a fourth, the number
of entries to be created.

The arguments are self-explanatory, but there is a major difference in
how the pixel member of color_cell_ptr is treated. The function
XAllocColor () ignores the pixel value given to look for an existing color
cell with the given RGB values. Then it assigns the value from that cell to pixel

COLOR AND IMAGES 255

and returns. If it does not find one, it attempts to create a new cell; if successful, it
places the value corresponding to the first available place in pixel. The value
assigned by this function must be used for all subsequent references to that
particular RGB color. This function also ignores the values of the given flags. Since
applications cannot modify the contents of color cells after the initial assignment,
we say that such cells are read-only.

The function XStoreColor () creates a color cell with the given pixel value
and changes colors according to given flags. However pixel values cannot be
arbitrary, and these must be obtained by another function call that returns
read/write color cells. That process is described in Sec. 9.2.3.

Both functions return False (0) if they fail to accomplish their task, usually
because of a lack of space in the colormap.

9.2.2. Color Specification by Name While other window systems allow
applications to refer to a few selected colors by name, X has a data base of hundreds
of color names for which it provides RGB values. This feature is particularly useful
in applications that use color for labeling (rather than for image display). The data
base can be queried with a function that has the following prototype:

Boolean XParseColor(Display *Dpy, Colormap cmap,
char * color_name, XColor *color_cell_ptr)

The first two arguments are self-explanatory, color_name is the given name and
color_cell_ptr is a pointer to the structure where the RGB values are copied
from the data base. If the color cannot be found, the function returns False. Color
names can be composite, and these can contain spaces (which are ignored). If the
return of XParseColor () is True, the function XAllocColor () can be
called with the pointer color_cell_ptr as its third argument. Such a sequence
of calls is used for example in the color resource conversion routine, color_
convert (), described in Sec. 3.3.5. Because Xt resource conversion routines
hash, their string arguments are better to use than Xlib calls. Thus to use the color
blue to draw in the window of widget w, we need only execute the code:

Pixel brush;
color_convert(w, "blue", &brush);
/* assumes short pixel values */
if(brush >=0) XSetForeground(Dpy, gc, brush);

The code is efficient because the resource conversion function caches color names,
and it does not need to check the color data base in each call. Because brush need
not be a widget resource, we avoid the problems discussed in Sec. 3.4 while taking
advantage of the resource conversion mechanism.

256 FUNDAMENTALS OF X PROGRAMMING

9.2.3. Color Specification by RGB Values If we already have RGB
values, the task is quite easy for one color, as shown in Listing 9.1. The code
assumes that colors are given as 8-bit values; therefore these must be shifted left to
make a 16-bit value as expected in the XColor structure col_def. The latter
serves both to provide values (red, green, and blue) and also to receive values
(pixel) when used as argument to XAllocColor ().

Certain complications arise if we want to assign an array of RGB values.
Application programs that deal with full pictures are usually simpler if we allocate
contiguous colors. That is, if two pixels have values that differ by an amount k, the
corresponding colormap indices also differ by k. We may also not want to give up
so easily if color allocation fails because colors may already be loaded, possibly by
another copy of the same application. The function XQueryColors () reads the
contents of a colormap, then determines whether what we are looking for already
exists. Listing 9.2 provides an example of appropriate code. The function
fit_RGB_colors does three things: It tries to allocate colors in the existing
colormap. If that fails, it checks whether the colors are already loaded; if so, it
returns the pixel value of the colormap where the colors are loaded. If the colors are
not found, then it tries to create a new colormap using the location passed by the last
argument, newmap. If the last argument in null, then no attempt is made to create a
new colormap.

Listing 9.1. Storing RGB values—File addRGB.c

/* Assumes no more than 8 bits per color and a short
colormap */
typedef unsigned char *pPixel;
static Display *Dpy;
static Colormap cmap;
int add_RGB_color(pPixel red, pPixel green, pPixel blue)
{

XColor col_def;
col_def.red = red « 8 ;
col_def.green = green « 8 ;
col_def.blue = blue « 8;
if(XAllocColor(Dpy, cmap, &col_def)

return (int)col_def.pixel;
else return -1; /* allocation failed */

}

COLOR AND IMAGES 257

Listing 9.2. Storing an Array of RGB Values—File fitRGB.c

/* Assumes no more than 8 bits per color and a short
colormap */
typedef unsigned char *pPixel;
#define CMAP_SIZE 256
int fit_RGB_colors(Widget w,

pPixel red_pix[], ppixel green_pix[],
pPixel blue_pix[],
int RGB_length, Colormap *newmap)

{
int i, j;
Display *Dpy = XtDisplay(w);
Colormap cmap;
XColor ccell[CMAP_SIZE];
unsigned long plane_masks[2];
Pixel pixels[CMAP_SIZE] ;
int cstat, nr, ng, nb; /* auxiliary variables */
int red[CMAP_SIZE], green[CMAP_SIZE], blue[CMAP_SIZE];
/* Obtain colormap of widget (error checking
omitted) */
XtVaGetValues(w, XtNcolormap, &cmap, NULL);

for(i=0; i<RGB_length; i ++) {
red[i] = red_pix[i] « 8 ;
green[i] = green_pix[i] « 8;
blue[i] = blue_pix[i] « 8;

}
/* Ask for enough read/write color cells to fit the

given colors */
cstat = XAllocColorCells(Dpy, cmap, True, plane_masks,

0, pixels, RGB_length);
if(cstat) { /* Successful allocation */

/* Assign proper color values to the color
cells */
for(i=0; i<RGB_length; i++) {

ccell[i].pixel = pixels[i];
ccell[i].red = red[i];
ccell[i].green = green[i];
ccell[i].blue = blue[i];
ccell[i].flags = DoRed | DoGreen DoBlue;

}
XStoreColors(Dpy, cmap, ccell, RGB_length);
return (int)pixels[0]; /* ccell[0].pixel */

}

258 FUNDAMENTALS OF X PROGRAMMING

else { /* Allocation failed */
/* Read colormap contents and check whether */
/* the colors we want are already there */
for(i=0; i<CMAP_SIZE; i ++) ccell[i].pixel = i;
XQueryColors(Dpy, cmap, ccell, CMAP_SIZE);
/* we guess matching colormap entry starts at j */
for(j=0; j<CMAP_SIZE-RGB_length; j++) {

/* try to confirm guess */
for(i=0; i<RGB_length; i++) {

nr = ccell[j+i].red&0177400; /* red, etc
are unsigned! */

ng = ccell[j+i].green&0177400;
nb = ccell[j+i].blue&0177400;
if(nr != red[i] || ng != green[i] |
nb != blue[i]) break;

}
if(i == RGB_length)

return (int)ccell[j].pixel; /* success! all
colors found */

}
/* Colors were not found */
if(newmap) {

/* Try for a new colormap - See Section 9.4 */
}
else return -1; /* failure */

}
}

The first few statements of the function fit_RGB_colors () are equivalent to
those ofadd_RGB_color (). The call to function XAllocColorCells () is
the first new operation. This function has the following prototype:

int XAllocColorCells(Display *Dpy, Colormap cmap,
Boolean contiguous,
unsigned long plane_masks[], int nplanes,
unsigned long pixels[], int RGB_length)

The first two arguments are self-explanatory; the third is set to True for contiguous
color cells. The functions offers the option of allocating read/write colormap
entries in two forms, either as planes (see Sec. 1.4.1) or pixels. The plane feature is
useful for overlays; and it is discussed in Sec. 9.6.2. In Listing 9.2 we ignore the

COLOR AND IMAGES 259

planes by setting the fifth argument to zero and requesting the allocation of
RGB_length pixels. The array pixels [] contains returned values.

If allocation succeeded, i.e., we find room for all colors, we proceed to create
colormap entries. First we copy the returned pixel values and the given RGB values
into the XColor array ofccell [], then we call XStoreColors () to load the
pixel and RGB values into the colormap. Finally the function returns the value of
the first pixel. This is an offset used to modify values during the creation of
displays. Thus to see the color described by:

red [n], green [n], blue [n]

we must put in refresh memory not n but n+of fset, where offset is the value
returned by fit_RGB_colors ().

If cell allocation by XAllocColorCells () fails, we read the values of all
colormap cells using the function XQueryColors (). (The arguments of this
function are self-explanatory.) Then we look for a match between the RGB values
returned in the array ccell [] and the given color arrays. The variable j in Listing
9.2 refers to the presumed start in the colormap of the block of colors we are
looking for. In general the first few entries in the colormap are likely to correspond
to colors other than those of an image. Therefore we would have saved time by
starting with a nonzero value of j. Because comparing unsigned variables may not
work, we copy members of structures in the ccell [] into int variables.

If we are unable to find a match, then we have the option of creating a new
colormap. That process is discussed in Sec. 9.4.

9.2.4. Economizing on Colors It is possible to save on colormap entries
by observing that not all entries of the red, blue, and green arrays are used in a given
image. Assume that we deal with an 8-bit image and let u [] be an array of type
int and size 256 initialized to all 0. We can examine all pixels of the image and set
u [z] equal to 1 if the 8-bit value z occurs in the image. Then we run the code:

for(z=0; z<256; z++) {
if(u[z]) u[z] = add_RGB_color(red[z], green[z],

blue[2]);
}

This allocates noncontiguous color cells and only when they are actually needed.
To display the image, we must replace each value z by u [z], which is where

problems can occur. If we are going to display only one image, this is an acceptable
solution. If we are going to display a group of images, then it is likely that each
image will have colors not seen in others; so if we need new colormap entries, we
may run out of colors anyway. The same is true if we start with one image but
perform various operations on it: New versions are likely to have new colors.

260 FUNDAMENTALS OF X PROGRAMMING

An aggressive color-economizing technique may replace colors in an image by
similar colors if entries for the latter exist in the colormap. Again this may be
acceptable for decorative displays but not for serious image-processing applications
where slight differences in color may be quite significant in the application.

X supports certain standard colormaps and encourages their use (so images
can share the same colormap), but this is of little help in practice. If we use colors
for labeling or displaying simple images, then the default colormap is likely to
suffice. Problems occur when we need to display images for nondecorative
purposes. An image may come with a colormap that is quite distinct for good
reason (for example conventions used by physicians to label medical images.)

An even more aggressive color-economizing technique looks for the nearest
available color if there is no space on the colormap to allocate a new color. This can
be accomplished with the following code:

/* Find nearest color to given RGB values */
/* Find the values of the existing colormap */
XColor existing_cells[256];
XQueryColors(Dpy, cmap, existing_cells, 256);
{

long i, d, d0, i0;
/* initialize d0 to the distance between pure white and
pure black */

d0 = 65536*3;
/* initialize i0 to a value indicating failure */

i0 = -1;
for(i=0; i<256; i++) {

d = abs (red - existing_cells[i].red) +
abs(green - existing_cells[i].green) +
abs (blue - existing_cells[i].blue);

if(d<d0) { d0 = d; i0 = i; }

}
/* i0 is the index of the nearest color */
}

The preceding technique is appropriate only for decorative displays because
the actual displayed colors may be quite far from the original colors. In addition the
resulting image may have contouring artifacts because too many different original
colors were mapped on the same color. Halftoning (see [Pa96], Chap. 21) may be
used to remove those artifacts.

9.2.5. X Colormap Odds and Ends There are many subtle differences in
the effects of various colormap related functions we used so far, so it is worth
revisiting them. X distinguishes between read-only color cells that cannot be

COLOR AND IMAGES 261

modified by any application and read/write color cells that can be modified by the
allocating application. (They are read-only for other applications.) If we use an
existing colormap (as we do throughout Sec. 9.2), the only way of obtaining
read/write color cells is by calling XAllocColorCells (), as described in
Listing 9.2. (There is another function that provides read/write color planes, but its
discussion is beyond our scope.) The function XStoreColors () can be used to
write on such cells. The function XAllocColors () can be used to access color
cells in a read-only mode. In this way we allow applications to share information
about a colormap. Thus if Application A uses XAllocColorCells () and
XStoreColor() to create an entry with RGB values (200, 180, 20), then
Application B can find the colormap index (pixel value) to this RGB triplet by
calling XAllocColor ().

Because of such color cell sharing, freeing color cells is a bit complex. The
function FreeColors () frees an array of color cells only if it is called by the
same application that called XAllocColorCells () to obtain that array.
Otherwise cells are actually freed only if the calling application is the only one
running that called XAllocColors (). The prototype for this function is:

void FreeColors(Display * Dpy, Colormap cmap, unsigned
long pixels[], int npixels, unsigned long planes)

The last argument is 0 unless we want to free whole planes.

9.3. VISUALS

How we deal with color depends a lot on the capability of the device. If a
device has 24 bits per pixel, life is much easier than with a device with 8 bits per
pixel. Also not all displays have writable video lookup tables, so if we plan to create
a new colormap, we must first determine whether the server supports colormaps.
This information is contained in a structure of type Visual. A pointer to a visual

262 FUNDAMENTALS OF X PROGRAMMING

is also needed by certain Xlib routines, so we need to know about them even if we
do not plan to create a new colormap.

The server has a default visual that is returned by the macro Default-
Visual (), as shown in the following code fragment:

Display *Dpy;

Visual *visual;
/* ... */
visual = Defaultvisual(Dpy, DefaultScreen(Dpy))

Applications using Xt can find the visual used through the following code:

Visual *visual;
Widget w;
/* ... */
XtVaGetValues(w, XtNvisual, &visual, NULL);

The visual so obtained can be passed to the functions that need it without further
analysis.

If you are creating a new colormap and you are concerned about porting the
application to different platforms, then you need to know more about visuals. They
tell you whether the platform supports the kind of colormap you want to create.
However before checking the visuals, we must first check whether there is enough
depth in the display. The following macro returns the number of bits per pixel in the
refresh memory:

DefaultDepth(Display *Dpy)

If there are not enough bits per pixel to support the number of colors desired, we
must drastically change display strategy. This typically means creating new images
using halftoning (see [Pa96], Chap. 21, for a discussion of the process) and starting
over again. If there are enough bits, then we must deal with visuals.

TE
AM
FL
Y

Team-Fly®

COLOR AND IMAGES 263

We cannot look directly at members of the Visual structure because it is
opaque. Instead we look into the information structure XVisualInfo obtained by
using the function XGetVisualInfo (). The first member of this structure is a
pointer to a Visual structure; the rest include the number of colormap entries, the
number of bits per colormap index (which should be the same as the number
returned by Default Depth), and most important a class member referring
directly to the capacity and programmability of the video lookup table. The six
possible classes are referred to by symbolic names DirectColor, Pseudo-
Color, Grayscale, TrueColor, StaticColor, and StaticGray. The
first three imply a programmable video lookup table, the other three a fixed table.
The names are not particularly informative; this is a place where the practice of
using long descriptive names in X would have helped. Table 9.1 gives an
explanation for the names.

The classes DirectColor and TrueColor imply that refresh memory can
accommodate three separate indices for the red, green, and blue colors and of
course three Digital-to-Analog (D/A) converters so that the full range of colors
supported by the device can be displayed at the same time. TrueColor is usually
found in color displays with 24 bits per pixels, where there is no real need for a
programmable colormap. DirectColor is found in color displays with 16 bits
per pixel. There we may use 5 bits per color and the colormap to decide the
mapping of 8-bit image colors to the 5 bits of the display.

Classes Pseudocolor and StaticColor imply that there is only one
index for the colormap but three D/A converters. We can show color pictures on
such a device but with a limited range of colors. (These classes are often found in
color displays with 8 bits per pixel.)

The classes Grayscale and StaticGray imply that there is only one
D/A converter and shades of only one color are shown. (It need not be actually
gray—the color seen depends on the phosphorus of the display!)

Clearly there is a hierarchy among the three types of devices: If a device can
support Pseudocolor, it can also support Grayscale by setting values of the
three basic colors equal to each other. Similarly if a device can support
DirectColor, it can also support Pseudocolor by setting the three color
indices equal to each other.

264 FUNDAMENTALS OF X PROGRAMMING

A typical case of the second situation occurs when a color monitor on a
particular device is replaced by a monochrome monitor. This is easy to do; We need
connect it only to the output of the green D/A converter. There is no way of
ensuring that the server is aware of such an external wiring change, so interrogating
the visual structure provides the answer that the display supports color whereas in
reality it does not.

Suppose now that an application has two sets of label colors: One with real
color and the other with shades of gray. If the visual says there is no support for
color, the program selects the second set of labels. However if the visual says there
is color support, the program should also check a user-provided flag or
environmental variable before selecting the real color label set.

The simplest way of checking the visual structure is by using the function
XMatchVisualInfo () (instead of XGetVisualInfo ()). Its use is
illustrated by the code in Listing 9.3 for the case when we want to determine if
it is possible to load a colormap for an 8-bit-per-pixel display.

Listing 9.3. Visual Checking

static Display *Dpy;
/* ... */

Visual *v = find_visual(8, Pseudocolor);
/* ... */
Visual *find_visual(int desired_depth, int desired_type)
{

XVisualInfo vtemp;
if(XMatchVisualInfo(Dpy, DefaultScreen(Dpy),

desired_depth, desired_type, &vtemp))
return vtemp.visual;

else return (Visual *) 0;
}

COLOR AND IMAGES 265

9.4. CREATING AND USING NEW COLORMAPS

Creating a new colormap is the simplest way of using color, but it is an
antisocial act for other applications, as explained in Sec. 9.1. Therefore new color-
maps should be created only when there is no other way of running an application.

The Xlib function that creates new colormaps has the following prototype:

Colormap XCreateColormap(Display *Dpy, Window win,
Visual *visual, int allocation_policy)

The first and third arguments are self-explanatory. For window we may pass the root
window—it need not be an application window, since it is used only to provide
information about the display screen. The fourth argument specifies the color cell
allocation policy. The symbolic value AllocAll specifies that all colormap
entries are read/write; thus they are under the complete control of the application.
The other possible value, AllocNone, allows colormap entries to be used as read-
only by other applications, so it is the more sociable solution. (Clearly this is the
case with the default colormap.) However if we create a colormap because we have
an image with many colors, we are justified in being greedy. The following code is
safe in most cases:

Display *Dpy;
Colormap cmap = XCreateColormap(Dpy,

DefaultRootWindow(Dpy),
DefaultVisual(Dpy, DefaultScreen
(Dpy)), AllocAll);

The call to XCreateColormap () initializes only a data structure, and
neither assigns values to colormap entries nor loads it in the video lookup table. All
such operations come later: Values are added by the XAllocColors () or
XStoreColors () functions.

After creating a new colormap we must tell the window manager so that
whenever the pointer is in the application window, the colormap is automatically
loaded into the video lookup table. This is achieved with the code:

Widget toplevel;
Colormap cmap;
XtVaSetValues(toplevel, XtNcolormap, cmap, NULL);

While it is theoretically possible to have different colormaps in different
application windows, some window managers cannot handle the situation.

266 FUNDAMENTALS OF X PROGRAMMING

Listing 9.4. Storing Colors—File setRGB.c

static Display *Dpy;
#define CMAP_SIZE 256
int set_RGB_colors(Colormap new_cmap, Colormap old_cmap,

pPixel red[], pPixel green[], pPixel blue[], int n)
{

int i, j , skip_cells;
XColor ccell[CMAP_SIZE];
if(new_cmap == NULL | n>=CMAP_SIZE) return -1;
if(old_cmap != NULL) {

skip_cells = CMAP_SIZE -n;
if(skip_cells>0){ /* Copy some color cells from

old colormap */
for(i=0; i<skip_cells; i ++) {

ccell [i] .pixel = i;
ccell[i].flags = DoRed | DoGreen | DoBlue:

}
/* Find the RGB values of these cells in the old
colormap */
XQueryColors(Dpy, old_cmap, ccell, skip_cells);
/* Write the found RGB values in the new
colormap */
XStoreColors(Dpy, new_cmap, ccell, skip_cells);

}
else { /* no space in colormap, error */ }

}
else skip_cells = 0;
/* Create array of color cells for additional
colors starting at index (pixel value) skip_cells */

for(j=0, i=skip_cells; j<n; i++, j++) {
ccell[j]. pixel = i;
ccell [j]. red = red[j]<<8;
ccell [j]. green = green[j]<<8;
ccell [j]. blue = blue[j]<<8;
ccell[j].flags = DoRed DoGreen DoBlue;

}
/* Add new color cells in new colormap */
XStoreColors(Dpy, cmap, ccell, n) ;
return skip_cells; /* same as ccell[0].pixel */

}

COLOR AND IMAGES 267

Therefore a new map should be assigned to a Shell widget, normally the top widget
of an application or a pop-up shell.

Listing 9.4 shows the code that fills the cells of a new colormap. First it tries to
be sociable by copying colors from the common colormap, then it uses code similar
to that in Listing 9.2.

The code can be modified so that not all available spaces (besides the n given)
are filled from the old colormap. On the other hand if n equals CMAP_SIZE, we
may have to take drastic measures. In such case the values 0 and 1 are likely to
correspond to black and a very dark color. Since in most displays 0 and 1 are used
for white and black (or vice versa), loading such a colormap makes most other
applications disappear. We can choose to assign 0 (or 1) to white, but then we must
modify the image so that pixels with that value are mapped into a neighboring one.

The name of the function in Listing 9.4, set_RGB_colors (), emphasizes
that it ensures that such colors will be in the colormap; the function
fit_RGB_colors () in Listing 9.2 tries only to place them.

9.5. IMAGE STRUCTURES

9.5.1. Xlmage Structure Raster images (or simply images) are usually
read from a file in one of the many common formats (plain raster file, GIF, etc). A
description of image file formats is beyond our scope (see [MvR96] for detailed
coverage). We assume that the image has been read and converted into a pixel array,
so it is ready for display. Each image is also associated with a (logical) colormap
that establishes correspondence between pixel bit patterns and colors. The color-
map can be explicit (arrays of RGB values) or implicit (rules to connect pixel bit
patterns and colors).

Before the image is actually displayed, we must (1) add the color
correspondence (possibly modified) of the image colormap to the server color-
map and (2) create the appropriate X structure for image display. We dealt with the
first step in the first four sections of this chapter; here we focus on the second step.
X provides two options for image storage: Keep the image on the server side in the
form of a pixmap or keep the image on the client side in an XImage structure. Xlib
has several functions for manipulating XImages, including copying them onto a
(server) drawable. The choice between the two is a time–space trade-off. If we keep
the image on the client, we must copy it to the server each time the window that
displays it has to be redrawn in response to expose events. This copying generates
substantial traffic between client and server. If we keep the image on the server, we
avoid the traffic but double server memory requirements by keeping in effect a
backup copy of all windows that display images.

268 FUNDAMENTALS OF X PROGRAMMING

There is an additional complication. Quite often the image read from a file
must be modified before it can be displayed because of server limitations (refresh
memory and/or colormap). As mentioned in the discussion of colormaps, we can
drop the least significant bit in an 8-bit gray scale image, or we can perform a
halftoning operation to display a 24-bit full-color image using an 8-bit refresh
memory. In such cases we may have to keep a copy of the original image. Consider
for example an image-editing program where the user selects a subimage from a
display. What is usually needed is not a subimage of what is displayed, but the
corresponding subimage of the original.

In all cases the first step is to create an XImage structure before doing
anything else. This is the point where an approximation must be performed; part of
the structure follows:

typedef struct _XImage {
int width, height; /* size of image */
/* ... */
int format; / * XYBitmap, XYPixmap,

ZPixmap */
char *data; /* pointer to image data */
int byte_order; /* data byte order, LSBFirst,

 MSBFirst */
int bitmap_bit_order; /* bit order within bytes */
/* ... */
int depth; /* depth of image */
/* ... */

} XImage;

The member data contain values to be copied to a drawable. The significance
of many of the other members is obvious, but a few require special attention:
format, which can assume the three symbolic values listed, specifies the
connection between bits and pixel. In a ZPixmap each byte (or more) of the data
array corresponds to a pixel; in the other two forms, there is more than 1 pixel per
byte. Since we do not give full coverage of all details of Xlib, we focus on two
common special cases: a ZPixmap with 1 byte per pixel and a XYBitmap where
8 pixels are packed in 1 byte. In both cases pixels are stored in scan line order in a
byte array. Various Xlib functions manipulate members of XImage, so we never
have to deal with them directly.

Note: Most image files also contain the appropriate colormap and this should
be examined before attempting to create the XImage structure.

9.5.2. Creating XImages from Full-Depth Raster Images We assume
here an 8-bit-per-pixel display, an image that is also 8 bits per pixel, that we already
created appropriate colormap entries, and we know the values of the following
variables:

COLOR AND IMAGES 269

char *img_pstart Start of pixel array
int img_width Image width
int img_height mage height

if color cells are contiguous:

int img_pixel_offset First colormap location
where pixel color is stored

If we do not use contiguous colormap entries, we assume we have already modified
pixel values as described in Sec. 9.2.4. The value of img_pixel_off set can be
obtained as the return of a function, such as set_RGB_colors () (Listing 9.4)
or fit_RGB_colors () (Listing 9.2). Then the XImage can be created by the
code in Listing 9.5.

The function XCreateImage () takes 10 arguments, the first two of which
are self-explanatory. The next three arguments describe the arrangement of input
data. The third argument is the number of bits per pixel (8 in this case). The fourth
argument (ZPixmap) is discussed in Sec. 9.5.1. The fifth argument is an offset
value that indicates how many pixels to ignore in the beginning of the data array;
this value is usually 0.

The sixth argument must always be an array of bytes containing data. This
array is not copied, so it should never be freed until we are ready to free the
XImage. The function XCreateImage () stores only a pointer to it. The seventh
(img_width) and eighth (img_height) arguments are self-explanatory.

The ninth argument is an integer that must be an integer submultiple of the
scan line length: Only values 8, 16, and 32 are acceptable. If the actual scan line

Listing 9.5. Creating an Xlmage

Display *Dpy;
Visual *visual;
XImage *xi;
xi = XCreateImage(Dpy, visual,

8, /* bits per pixel */
ZPixmap,
0, /* bit/byte arrangement */
img_pstart, img_width, img_height,
8, /* scanline length is multiple of 8 */
0 /* bytes to skip at the end of a scanline */
);

/* if contiguous color cells are used */
XAddPixel(xi, (long)img_pixel_offset);

270 FUNDAMENTALS OF X PROGRAMMING

length is not a multiple of these numbers, data must be added to make the length
such a multiple. The last argument has the value 0, indicating contiguous scan lines.

The last statement adds to all the pixels the pixel offset determined while
assigning values to the colormap. As we saw earlier in this chapter, RGB values of 0
are not stored at the 0th position of the colormap but at the first free position.
Therefore a 0 value of the image must be replaced by a value equal to the pixel
offset. Because color cells are contiguous, the same offset must be added to all
pixels. If we did not use contiguous color cells, pixel values should have been
replaced already by the method in Sec. 9.2.4.

An XImage (or part of it) can be copied into a pixmap or displayed in a
window with the function XPutImage () that has the following prototype:

void XPutImage(Display *Dpy, Drawable px, GC gc, XImage
*xi, int x_src, int y_src, int x_dest, int y_dest,
int width, int height)

This function copies only part of an image unless both x_src and y_src are zero
and width and height equal the image dimensions.

Two functions can be used to copy from a drawable into an XImage:
XGetImage() copies a new XImage and XGetSubImage () copies a
preexisting XImage. Both return a pointer to an XImage. These functions
perform the equivalent of a screen dump. Also they can ignore values in some
refresh memory planes. The function XSubImage () is quite different from those
two: It creates a new XImage from an existing one without looking at a drawable.
It has the following prototype:

XImage *XSubImage(XImage *xi, int x, int y,
int width, int height)

where x and y are coordinates of the top-left corner of the new image with respect
to the old one, while width and height refer to the new image. Because data in
an XImage may be quite different than data in an image file (see Sec. 9.5.1), this
function is not as useful as it seems.

To save the image in the server, we must store it on a pixmap (created using
methods in Secs. 8.1.2 and 8.2.2) by using the XPutImage () function with the
pixmap as drawable. In this case we must free the XImage structure by calling:

XFree((caddr_t)xi);

To display the image, we must use the XCopyArea () function discussed in Sec.
8.1.

COLOR AND IMAGES 271

9.5.3. Creating XImages from 1-Bit-per-Pixel Images One-bit-per-pixel
images are usually stored as character sequences, as described in Sec. 8.3.1. In this
case an XImage may be created with the code:

Display *Dpy;
Visual *visual;
XImage *xi;
unsigned char *bitmap_data;
int width, height;
xi = XCreateImage (Dpy, visual, 1, XYBitmap, 0,

bitmap_data, width, height, 8, 0);

The array bitmap_data can be read from a file or included in the program code.
The flag XYBitmap specifies that data are in 1-bit per-pixel format. The resulting
XImage can be displayed with the XPutImage () function without changing the
process described in Sec. 9.5.2. The function checks the format of the structure,
then displays pixels correctly, provided that the order of bits and bytes is the same in
system that created the image as in the system that displays the image. We do that
by comparing the values of xi->bitmap_bit_order and xi->byte_or-
der with the values returned by the macros BitmapBitOrder (Dpy) and
ImageByteOrder (Dpy) respectively.

Usually when the data are in bit-per-pixel form we may bypass the XImage
structure and create a pixmap directly from the bitmap by using the function
XCreatePixmapFromBitmapData (). In this case we must select explicitly
the two colors to be used. (The XImage solution relies on the colormap for that.)
The following is a typical call:

int Scr = DefaultScreen(Dpy) ;
Pixmap pxm = XCreatePixmapFromBitmapData(Dpy,

DefaultRootWindow(Dpy),
bitmap_start, width, height,
BlackPixel(Dpy, Scr), /* pixels with value 1 */
WhitePixel(Dpy, Scr), /* pixels with value 0 */
DefaultDepth(Dpy, Scr));

Note: Motif widgets store icons for labeling menu buttons as pixmaps, while OLIT
widgets store them as XImages.

272 FUNDAMENTALS OF X PROGRAMMING

9.6. OVERLAYS

9.6.1. General Considerations The term overlay refers to the display of two
(or more) independently drawn images. For example in a video game, one image is the
background, and another image is the set of moving characters. In this discussion we
use the term basic display for a background image and overlay for the rest.

There are two ways of creating overlays in X. The first is based on the general
technique, where some color planes are reserved for the basic display and some for
the overlay. The second is based on a special facility of X, which allows the use of a
pixmap rather than a fixed color for the color used in drawing; strictly speaking this
technique only simulates an overlay.

The first technique reduces the number of available colors: If we use b bits for
the background and v bits for the overlay, we have a total of colors rather
than colors.

The second technique has no effect on how many colors are available for the
display, but it requires an extra copy of the background pixmap for each color. The
amount of server memory used can be reduced if we create the pixmap for each
overlay color dynamically; this amounts to a time versus space trade-off.

If we have a display with large depth compared to the depth of the background
image and the overlays, allocating planes may be the preferred method because
writing application programs is much simpler in this case (after the initial
allocation). Dynamically updated pixmaps may be the preferred solution for
displays with small depth. In such a case we trade some server memory and
programming complexity for a larger number of colors. We discuss each technique
in the next two sections.

9.6.2. Allocating Planes According to the graphics hardware description
in Sec. 1.4.1 when writing in refresh memory, we can specify how new information
is stored. For example new information can replace old information (copy mode) or
the two can be combined by using a bitwise logical operation, such as exclusive OR
(XOR). It is possible to refine the writing operation even further by specifying the
bits in each pixel that are affected. For example we can change only the third and
fourth bits of each pixel (in copy, XOR, or whatever mode is enabled). Section 1.4.1
introduces the term plane to refer to corresponding bits of pixels, so we can say that
we are writing on the third and fourth plane if we change only the third and fourth
bits of each pixel.

X allows us to select planes through the graphics context and the function
XSetPlaneMask(). The following code selects the three planes corresponding

#define HIGH_BITS 0340
XSetPlaneMask(Dpy, gc, HIGH_BITS);

to the most significant bits:

TE
AM
FL
Y

Team-Fly®

COLOR AND IMAGES 273

The value 0340 masks the 5 lower bits. To draw on the five least significant bits,
we use

#define LOW_BITS 037
XSetPlaneMask(Dpy, gc, LOW_BITS);

Such selective writing is useful for overlays. For example in a video game, we
may use the five least significant bits for the background image and the three most
significant bits for moving objects. When an object is redrawn to another position,
we do not have to worry about restoring what was behind it in the previous position.
Selecting planes is simple enough, but there is a complication: The video lookup
table looks at all bits to determine color., so we must define a colormap that
contains multiple color definitions. Suppose for example that the bit pattern 10001
corresponds to red color in the background. This should appear whenever there is
no other object in front, so that we can assign pixel value 00010001 to red. (We
do not worry for the moment about how to convince X to do that.) Let red now be
represented by 001 in the overlay. Red must show on the screen no matter what is
in the background; therefore all bit patterns 001xxxxx must correspond to red.
This is where we waste colormap space (as mentioned in Sec. 9.6.1): We must use
32 values for red rather than just one value.

The colormap specification takes the following form:

000 xxxxx xxxxx determines color (32 values)
001 xxxxx 001 determines color, same for all xxxxx
010 xxxxx 010 determines color, same for all xxxxx

111 xxxxx 111 determines color, same for all xxxxx

In this example the 3-bit overlay allows seven colors (rather than eight) because the
000 value is used to let the lower 5 bits specify the color. The colormap contains
seven groups of 32 values, all mapped to a single color, and 32 additional values,
each corresponding to a distinct color.

Such a colormap specification can be straightforward if we create a new
colormap for an application, but it is not so if we are using a colormap shared with
other applications. We must convince the X server to allocate the proper color cells
by calling XAllocColorCells()with carefully selected arguments. We
provide the code for the preceding example with one modification: We request only
4 bits for the background to allow for the possibility that some colormap entries are
used by other applications. We still assume that the total of background colors and
other application colors is no more than 32. We start with the call:

XAllocColorCells(Dpy, cmap, True, plane_masks, 0, pixels,
16) ;

274 FUNDAMENTALS OF X PROGRAMMING

This is similar to the call of the same function in Listing 9.2. The next call is more
interesting; we use symbolic constants for generality:

#define BACK_VALUES 32
#define BACK_VALUES_LOG 5
#define HIGH_VALUES 7
XAllocColorCells(Dpy, cmap, True, plane_masks,

BACK_VALUES_LOG, pixels, HIGH_VALUES);

We ask for seven color cells and five planes. Strictly speaking we do not obtain the
whole planes, only values connected with returned color cells. If we print plane
masks values in octal (after the function returns), we see the following numbers:

001 002 004 010 020

If we print the pixel values in octal, we see the following numbers:

040 100 140 200 240 300 340

This means that we have color cells 040–077, 100–137, etc. However color cell 020
is not available, since the plane 020 is ours only in combination with returned pixel
values.

Next we must assign color values to colormap entries. The part for the
background image is straightforward, but for the sake of presenting a complete
example, assume we want to display a 4-bit gray image. The following code does
the job:

XColor ccell[256];
for(n=0; n<16; n++) {

ccell [n] .pixel = pixels[n];
ccell [n] .red = n«12;
ccell [n] .green = n«12;
ccell [n] .blue = n«12;

}

We shift by 12 bits rather than 8 because our image data are only 4 bits deep. The
image offset is pixels [0].

The color assignment for the overlay is a bit more complex. Let
overlay_color [] be an array of Xcolor type that has RGB values filled

COLOR AND IMAGES 275

by, for example XParseColor (). We must fill not only the seven values, but also
those that correspond to various combinations of the lower five bits. We create a
mask array as follows:

unsigned char mask[BACK_VALUES];
for(i=0; i<BACK_VALUES; i++) mask[i] = i;

Then the color assignment code is

/* start from the previous value of n * /
for(j=0; j<HIGH_VALUES; j++) {

for(i=0; i<BACK_VALUES; i++, n++) {
ccell[n].pixel = pixels[j] mask[i];
ccell[n].red = overlay_color[j].red;
ccell[n].green = overlay_color[j].green;
ccell[n].blue = overlay_color[j].blue;

}
}

We can then store colors in the colormap by using the statement:

XStoreColors(Dpy, cmap, ccell, n);

While the overall code is rather short, it must be carefully written.
Once we have completed this arrangement, the rest of the program is rather

simple. We select the planes to write by calls to XSetPlaneMask () and colors
by calls to XSetForeground (). For example to draw in the color corresponding
to overlay_color [3], we must set the foreground by the call:

XSetForeground(Dpy, gc, pixels[3]);

9.6.3. Simulating Overlays with Tiling Pixmaps We can simulate
overlays using the fact that in X, the foreground need not be a fixed color; it can
be a pixmap or a bit map. In such a case the color given to a pixel depends on its
location. We already saw how to use pixmaps (Tiles) and bit maps (Stipples)
to fill regions (Sec. 8.2.1). The function XSetFillStyle()selects not only how
pixels are colored during filling, but also how they are colored during drawing. In
particular pixels normally given the foreground color are now assigned a value from
the stipple or tile pattern. As a result drawing with an exclusive OR operation on the
filled area produces images whose color corresponds to the 0 value, usually white.
Let pxm be a pixmap with a copy of the background display. The following code

276 FUNDAMENTALS OF X PROGRAMMING

lets us draw a white l ine on top of the pixmap:

Display *Dpy;
Window w;
GC gc ;
Pixmap pxm;

/* display pixmap */
XCopyArea(Dpy, pxm, w, gc, 0, 0, width, height, 0, 0);

/* set drawing style and mode */
XSetFillStyle(Dpy, gc, FillTiled);
XSetFunction(Dpy, gc, GXxor);

/* make the pixmap itself the foreground*/
XSetTile(Dpy, gc, pxm);

/* Draw a white line diagonally across the window*/
XDrawLine(Dpy, w, gc, 0, 0, width, height);

To draw in a different color, we must pass a pixmap to the XSetTile() function
that is the result of an exclusive OR between the original pixmap and the pixel value
for the color. The following code fragment shows how to construct such a pixmap:

static Display *Dpy;
static Window w;
static GC gc;
static Pixmap pxm;
void use_color(char *s)
{

XSetFunction(Dpy, gc, GXxor);
/* erase old color */
XFillRectangle(Dpy, pxm, gc, 0, 0, width, height);
/* select new color */
XSetForeground(Dpy, gc, add_named_color(s));
/* give a new value to the pixmap */
XFillRectangle(Dpy, pxm, gc, 0, 0, width, height);

}

There is no need to call XSetTile () again. We changed only the values of the
pixmap, not the pixmap XID.

When using this method, we must be sure to have the background image cover
the entire window because X assumes that the image is repeated over the entire
window (hence the term tiling). Drawing in the tiling mode on empty areas results
in incorrect displays. (Of course we could write code to look for the background
image boundaries, then change mode when drawing outside.) Such problems do not
arise when using separate planes for the overlay, as described in Sec. 9.6.2.

COLOR AND IMAGES 277

Things become more complex when overlay images are multicolor, for
example an icon drawn on a rectangle of a different color. In this case we divide
drawing and erasing operations into two parts.

1. To draw a filled rectangle, use FillTiled, GXxor, and XOR the
pixmap with the rectangle color, then call XFillRectangle ().

2. To draw the icon, use FillSolid, GXcopy, set the foreground to the
icon color, set the background to the rectangle color, then draw the icon bit
map usingXCopyPlane ().

3. To erase the icon on the rectangle, use FillSolid, GXcopy, set the
foreground to the rectangle color, then call XFillRectangle ().

4. To erase the rectangle, use the same code as in Step 1.

The order of operation is important. The following code implements drawing an
overlay that is an icon with a red figure on a yellow background with left corner at
x, y:

static Display *Dpy;
static Window w;
static GC gc;
static Pixmap pxm;
static Pixmap icon_pixels;
/ * DRAW * /
/* Draw a filled rectangle using the tiling mode */

XSetTile(Dpy, gc, pxm);
XSetFunction(Dpy, gc, GXxor);
use_color("yellow");
XFillRectangle(Dpy, w, c, x, y, icon_width,

icon_height);
/* Draw using ordinary mode */

XSetFillStyle(Dpy, gc, FillSolid);
XSetFunction(Dpy, gc, GXcopy);
XSetForeground(Dpy, gc, add_named_color("red"));
XSetBackground(Dpy, gc, add_named_color("yellow"));
XCopyPlane(Dpy, icon_pixels, w, gc, 0, 0,

icon_width, icon_height, x, y, 1);

The following code can be used for erasing:

/* ERASE */
/* replace the icon by a solid rectangle */

XSetFillStyle(Dpy, gc, FillSolid);

278 FUNDAMENTALS OF X PROGRAMMING

XSetFunction(Dpy, gc, GXcopy);
XSetForeground(Dpy, gc, add_named_color("yellow"));
XFillRectangle(Dpy, w, c, x, y, icon_width,

icon_height);
/* Draw a filled rectangle using the tiling mode, removing
it in effect */

XSetTile(Dpy, gc, pxm);
XSetFunction(Dpy, gc, GXxor);
use_color("yellow");
XFillRectangle(Dpy, w, c, x, y, icon_width,

icon_height);

Note: The first block of drawing code is the same as the second block in the erasing
code. We use the exclusive OR tiling operation only for a solid overlay. Once the
solid overlay is created, we can draw more complex images on it.

We can use many more colors than in regular overlays. If we use n colors for
the background and other applications, we have 256 – n colors available for the
overlay versus according to Sec. 9.6.2. We pay a price by having to
keep a copy of the window and the time needed to redraw the pixmap whenever we
call the use_color() function. We may save some time at the expense of
programming complexity by not changing the whole pixmap but only the part
relevant to drawing. In that case the pixmap should be restored to its original value
after each operation.

9.7 CONCLUSIONS

We discuss the Xlib facilities for creating and using colormaps and for
displaying raster images, including the XImage structure. Full-color or gray-scale
images are large consumers of memory, and these usually demand their own color-
maps. Displaying full pictures in color (as opposed to using a gray scale) on 8-bit
displays is a challenge, but it can be done with color halftoning.

Handling colormaps with the X Window System is more complicated than
with many earlier graphics systems because X tries to preserve the proper
appearance for all windows in a display, so it imposes various restrictions on using
colormaps. This approach is reasonable for GUIs, but it creates complications for
graphics- and image-processing applications where user attention may be focused
only on one or two windows. The simple design of the X server causes additional
difficulties. If a display with 24 or more bits per pixel is available, displaying full
pictures in color at the same time as other applications presents no problem.

COLOR AND IMAGES 279

9.8. PROJECTS

1. Write a program to list all visuals supported by a display device. Use the
function XGetVisualInfo ().

2. Create a filled rectangle whose color varies smoothly along the horizontal
axis from pure red to pure green.

3. Modify the code in Listing 9.2 to let the application create a new color-
map if there is no space for image colors in the existing colormap. In
particular when an address for a new map is given, create a new one by a
call such as:

*newmap = XCreateColormap(...) ;

Then call the function set_RGB_colors () with arguments the new
map, the old map, and the color arrays given.

4. Write a program that uses three overlays, each of 1 bit.

This page intentionally left blank.

10

Selections

10.1.

10.2.

10.3.

10.4.

10.5.
10.6.

Interclient Communication . 283
283
284
286
286
288
290
290
294
296
298
298
298
300
300
301

10.1.1.
10.1.2.

Introduction. .
Basic Selection Mechanism in X.

The Gory Details .
10.2.1.
10.2.2.

Function Specification
Data Transfer. .

Nontext Selections. .
10.3.1.
10.3.2.
10.3.3.

Integers and XIDS .
Image Selections .
Marking Selections .

Implementation Issues .
10.4.1.
10.4.2.
10.4.3.

User Interface .
Application-Programming Interface
Drag and Drop . .

Conclusion .
Projects .

281

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

SELECTIONS 283

10.1. INTERCLIENT COMMUNICATION

10.1.1. Introduction Communication between different application pro-
grams is desirable in many circumstances. Transferring a block of text from one text
editor to another is one of the most obvious cases where communication between
two running programs is useful. The cut-and-paste or drag-and-drop operations
used in most desktop environments involve communication between applications.

There are many ways of transferring data between programs. One-way pipes
where one application’s output is another application’s input are used extensively in
Unix, and these are easily set up by the user. For example, the following command
lists the five largest files of a directory sorted in order of size:

ls -1 | sort -nr +3 | head -5

Two-way pipes (see Sec. 4.3.3) are more useful, but these are more difficult to set
up. In contrast to one-way pipes, the two-way pipe mechanism must be written
explicitly in a program.

Because all X programs communicate with the server with a mechanism
roughly equivalent to a two-way pipe, we can take advantage of that situation to
allow communication between any two applications by using the server as an
intermediary. So far we saw two methods of interclient communication: Window
properties and client messages.

The spy program in Sec. 2.5 obtains information about other programs by
looking at their window properties. For example, the WM_CLASS property provides
the name of the application running in the window, and the WM_CLIENT-
MACHINE provides the name of the machine on which the client is running. Clearly
an application must plan in advance to assign a property to one of its windows that
contains information to be made available to other programs.

The client message mechanism described in Sec. 2.4.2 is more general. We
dealt with the case when the window manager sends a message to an application
asking it to exit, but there is no theoretical limit on either the type of message or the
sender. For practical reasons such messages have to be relatively short. An
application composes an event, then places it in the event queue of the intended
recipient. If the receiving application contains code that looks for client messages, it
will eventually look at that event.

Both of these mechanisms require advanced planning, we also need another
method that lets desktop users transfer data between any two programs whenever
such a transfer makes sense. The X Window System provides such a mechanism,
called selection. The user identifies data to be transferred in one application, then
points to the application where the data must go. (Similar mechanisms are provided
by most modern desktop systems.) There is not data transfer when a selection is

284 FUNDAMENTALS OF X PROGRAMMING

made. The first application simply informs the server that it owns the selection data.
When the user points to the second application, it requests data from the server; the
server passes the request to the first application. Therefore the first application must
still be running.

There is another mechanism, called clipboard selection, that makes it possible
to transfer data even after the first application exits. In essence the clipboard is a
process whose main purpose is to take the selection from the original owner and
keep it for future requests. Rather than move data from Application A to
Application B directly, we move data from A to the clipboard, and later from the
clipboard to B. (Most other window systems support only clipboard selections.)

The ICCCM (Sec. 1.1.3) specifies how X programs should communicate with
each other, and all X applications are supposed to follow it. The Xt provides a few
high-level functions that implement these specifications; therefore application
programmers do not have to refer to the ICCCM.

There are many variations in the user interface of selection. For example
double clicking the mouse while the cursor is on a word in a text editor renders the
characters of that word the selection data. Clicking the left button in one line and
the right button in another results in the selection of a block of text. Visual feedback
is provided by displaying the selected text in reverse video.

The common drag-and-drop mechanism is a user interface for identifying the
recipient of data. Obviously selection data does not actually follow the cursor.
When the mouse button is released over a window, the corresponding application
requests selection data from the server.

While text is the most common type of selected data, it is relatively easy to
establish a mechanism for data selections of any type, such as integers, pixmaps,
etc. We need only agree on a common format for the data between the provider and
the receiver of the selection, then implement two data conversion processes, one for
each side. The reason that applications with nontext selection are not common is the
reluctance of developers to invest effort for a feature that will find limited use rather
than an inherent implementation difficulty. A new type of selection is not useful
until it is available in more than one application.

10.1.2. Basic Selection Mechanism in X We explain the basic selection
mechanism in X in more detail than in Sec. 10.1.1 by listing the functions called in
each step. We use the familiar example of transferring text between two text editing
programs, A and B, each editing a different file. To transfer a block of text from A
and B, follow steps 1–2.

• Step 1: Select the block of text by some means (for example, double
clicking in a window of A to select a single word). The appropriate callback
or event handler of Application A responds to that action by providing

SELECTIONS 285

visual feedback and also calling the function XtOwnSelection(),
(which informs the server that Application A owns the selection.)
Arguments of this call include a pointer to a function that is called
whenever the server wants data.
Step 2: Indicate the intention to transfer data to recipient Application B (for
example by a single mouse click in the area where data are to be inserted).
The appropriate callback or event handler of Application B responds to that
action by calling the function XtGetSelectionValue(). Once selec-
ted, data can be copied by other applications besides B by repeating the
Step.

Functions XtOwnSelection() and XtGetSelectionValue() (see
Sec. 10.2.1) do not perform data transfers—instead they register functions that do
the actual work with the Intrinsics. Two pointers to functions, SelectionToServer ()
and LoseSelection () , are among the arguments of XtOwnSelection(). One of
the arguments of the function XtGetSelectionValue() is a pointer to a
callback SelectionFromServer () . (Names of the last three functions can be
anything; they are provided by the applications.) The data transfer takes place as
follows:

1. When XtGetSelectionValue() is called, the Intrinsics call
SelectionToServer(. . . , &D, . . .) in the application that owns the
selection, (see Sec. 10.2.2 for a prototype of this function and a detailed
discussion of its arguments) D is a place to store the selection data.

2. On return of SelectionToServer () the Intrinsics call SelectionFromServer
(. . . D,&E . . .) in the application that wants the selection (see Sec.
10.2.2.) This function copies data from D to E, (the intended location in
Application B). The Intrinsics know about E because its address is passed
through XtGetSelectionValue().

Figure 10.1 shows the process. Server location D is not permanent storage: If
application A exits, the selection is lost.

The function LoseSelection () is called by the Intrinsics when an application
requests selection ownership. Since the function was registered by the previous
owner, it informs that application that it is no longer the owner. Normally this
function removes selection markings (such as highlighting).

The preceeding outline of the mechanism needs some clarifications. Strictly
speaking the selection owner is not an application but a widget, so we can use
selection to transfer data within an application. However within an application, data
transfer can be accomplished with a simpler mechanism than selections. This
discussion assumes there is only one selection on the server, but we can have more

286 FUNDAMENTALS OF X PROGRAMMING

because selections must have distinctive names and relevant functions check them.
We discuss this point when describing specifications of the X functions involved.

The application receiving a selection need not exist when a selection is made.
Selections are commonly used to select a text string representing a file name and
then to start an application that needs a file name. The new applications asks the
server for the selection, if one exists, it uses the string for a file name. If no selection
exists, it may ask the application user to provide the name.

The basic mechanism is the same regardless of the data form: To exchange
pixmaps instead of text between applications, nothing changes in the preceeding
discussion. Only functions that transfer data from the selection owner to the server
and from the server to the selection requester deal with the precise data form.

10.2. THE GORY DETAILS

10.2.1. Function Specification Here we provide prototypes for functions
discussed informally in Sec. 10.1.2. First is the function that is called to make an
application the owner of a selection:

XtOwnSelection (Widget w, Atom selection_name, Time time,
Boolean (*SelectionToServer)(),
void (* LoseSelection) (),
void (*Done) ()) ;

where w is the widget that becomes the selection owner. This function is usually
called by the event handler or an action procedure of the widget. The

SELECTIONS 287

selection_name is an atom corresponding to a name that characterizes the
selection; it is used by those requesting the selection. Predefined selection atoms
include XA_PRIMARY and XA_SECONDARY. New atoms can be specified by code
similar to that used in Sec. 2.4.2, for example:

XA_TRIANGLE = XinternAtom(XtdISPLAY (w),
"TRIANGLE_SELECT", FALSE);

A good value for time is

XtLastTimestampProcessed(XtDisplay(w)).

The three function pointer arguments are registered with the Intrinsics, and
SelectionToServer () does the important work of delivering, so these selection data,
as described in Sec. 10.2.2. (Note: the three function names are variables, so these
can be changed.) The role of the function LoseSelection () is explained in Sec.
10.1, its prototype is

void (*LoseSelection) (Widget w, Atom * selection_name)

The function Done () is called after the selection is delivered to the requester, its
prototype follows:

void (*Done) (Widget w, Atom * selection_name, Atom * type)

This function can be used to free memory allocated for the data transfer. In both
cases w is the selection owner; selection_name is a pointer to the name of the
selection, such as XA_PRIMARY, and for the last function, type is the data type of
the selection (see the following discussion).

While the first function, SelectionToServer () , is essential, the other two are
optional, and the corresponding arguments may be NULL, especially for the
Done () function.

The prototype for the function that requests the selection is

void XtGetSelectionValue (Widget w, Atom selection_name,
Atom type, void (*SelectionFromServer) () ,
XtPointer client_data, Time time)

where w is the widget making the request (it must be realized) and
selection_name has the same meaning as in XtOwnSelection (). The
type is an atom describing data type, for example as a character string
(XA_STRING). The function SelectionFromServer () is registered as a callback.
It is the one that does the actual work—XtGetSelectionValue () returns

288 FUNDAMENTALS OF X PROGRAMMING

immediately. Theclient_data are provided for SelectionFrom Server () ,time
can be

XtLastTimestampProcessed(XtDisplay(w))).

10.2.2. Data Transfer Here we discuss two functions essential for data
transfer. Their names are defined by the application and registered with the
Intrinsics as described in Sec. 10.2.1. The function that delivers the selection to the
server has the following prototype:

Boolean SelectionToServer (Widget w, Atom *selection_name,
Atom*target_type, Atom *type_r,
XtPointer *value_r, unsigned long *length_r,
int *format_r)

The first two arguments are self-explanatory. The target_type refers to the
type of selection data; the remaining four arguments are assigned values that
contain the selection and describe it as well. An example of such a function is
shown in Listing 10.1. The application is a graphics editor (such as a computer-
aided design [CAD] program). We assume two kinds of selection by the user: A
block of text that is the primary selection (atom of name XA_PRIMARY) or a
triangle that is a selection selection (atom of name XA_TRIANGLE). However
information about the triangle is also transmitted in the form of text, so for this
reason we need an extra step to convert integers into a string. The *format_r
value specifies data are interpreted as bytes.

The code assumes that the text of the primary selection is pointed to by the
variable textp and geometric data are in the array v. (Information is placed there
when a selection is made.) The function SelectionToServer () is not called until
there is a request for the selection.

Note: Even though the function in Listing 10.1 handles both of types of
selections, the function XtOwnSelection () must be called twice, once for each
selection name. For example:

XtOwnSelection(w, XA_PRIMARY,
XtLastTimestampProcessed (Dpy),
SelectionToServer, LoseSelection, NULL) ;

XtOwnSelection (w, XA_TRIANGLE,
XtLastTimestampProcessed (Dpy),
SelectionToServer, LoseSelection, NULL) ;

SELECTIONS 289

Listing 10.1. Example of a Function That Delivers a Selection to the
Server—File sel.c

static char *textp; /* Applications stores primary
selection there */

static Xpoint v[3]; /* Applications stores three points
there */

Boolean SelectionToServer (Widget w, Atom * selection,
Atom *target,
Atom *type_r, XtPointer *value_r,
unsigned long *length_r, int * format_r)

{
/* code to be added later - Listing 10.3 */

if (*target==XA_STRING) {
*type_r = XA_STRING;
if (*selection==XA_PRIMARY) {

*value_r = XtNewString(textp);
*length_r = strlen(textp);

}
else if (*selection==XA_TRIANGLE) {

static char bf[128];
sprint(bf, "%d %d %d %d %d %d",

v[0] .x, v[0] .y, v[1] .x, v[1] .y,
v[2] .x, v[2] .y);

*value_r = XtNewString(bf);
*length_r = strlen(bf);

}
else return (FALSE);
format_r = 8;
return (TRUE);

}
return (FALSE);

}

Listing 10.2 describes the function that receives the data; it is registered as
callback by XtGetSelectionValue (). The last five arguments of this
callback correspond to call data, but for this special case, these are given
individually rather than lumped in a single structure. The client data argument holds
a function that takes as argument selection data and was specified during the call of
XtGetSelectionValue (). Again we must call this function twice, once for
each type of selection:

290 FUNDAMENTALS OF X PROGRAMMING

Listing 10.2. Example of a Function That Receives a Selection from the
Server—File sel. c

void SelectionFromServer (Widget w, XtPointer client_data,
Atom *selection, Atom *type, XtPointer value,
unsigned long *length, int *format)

{
void (*use)() = (void (*)())client_data;

/* check if reasonable values */
if (*type==XA_STRING && *format==8 && value != NULL) {

if(*selection==XA_PRIMARY) use (w, (char *) value);
else if(*selection==XA_TRIANGLE) {

XPoint V[3];
sscanf((char *)value,

"%d %d %d %d %d %d",
&(V[0].x), &(v[0].y),
&(v[1] .x), &(V[1] .y) ,
&(V[2].x), &(V[2].y));

use (w, V);
}

}
}

void use_text (Widget w, char *);
void use_triangle (Widget w, Xpoint *) ;
XtGetSelectionValue (w, XA_PRIMARY, XA_STRING,

SelectionFromServer, (XtPointer) use_text,
XtLastTimestampProcessed (XtDisplay(w)));

XtGetSelectionValue (w, XA_TRIANGLE, XA_STRING,
SelectionFromServer, (XtPointer) use_triangle,
XtLastTimestampProcessed (XtDisplay(w)));

Notice the symmetry between the code of functions SeleclionToServer () and
SelectionFromServer () . We are implementing a communication protocol. Only one
thing is missing: The ICCCM requires a selection delivery function to respond to an
inquiry about supported targets. Listing 10.3 does that and replaces the first
comment in Listing 10.1.

In this case the reply is that only one type, text string, is supported. The format
is set to 32 because atoms have values that are stored in full words. We discuss
additional selection types in Sec. 10.3.

SELECTIONS 291

Listing 10.3. Responding to a TARGETS inquiry—File sel. c

static Atom targets = 0;

if (targets ==0)
targets = XInternAtom(XtDisplay(w),

"TARGETS", False);

if(*target==targets) {
*type_r = XA_ATOM;
*value_r = (XtPointer) XtNew(Atom);
*(Atom *) *value_r = XA_STRING;
*length_r = 1;
*format_r - 32;
return (TRUE);

}

10.3. NONTEXT SELECTIONS

10.3.1. Integers and XIDs It is not difficult to introduce new types of
selections: We define selection name, type, then provide appropriate code in the
functions that interact with the server. Of course such a type can be used only
between applications that know about it. We must also be more careful with
conversions other than strings of text. We start with integer types. In the example in
Sec. 10.2.2 we may prefer to send point coordinates directly without the additional
work performed by sprintf () and sscanf (). Furthermore we can use an
arbitrary polygon rather than a triangle. In this case we give the selection the more
appropriate name POLY_SELECT. The needed code is shown in Listing 10.4. In
the first function, we allocate memory for an integer array to hold data and pass the
array address to the server by the assignment:

*vale_r = (XtPointer) v;

We can also do things differently by breaking the selection into parts and passing
the number of points in the first part, then use the assignment for the second:

*value_r = (XtPointer) P;

(Similar considerations apply in the opposite direction.) However we must be
careful with word length in such cases. Since members of the XPoint structure are
shorts, we must declare the variable u as pointing to shorts rather than integers.

292 FUNDAMENTALS OF X PROGRAMMING

Listing 10.4. Integer Conversion—File sel. c

/* Selection Owner Data */
static Xpoint *P;
static int np;

/* code inside SelectionToServer() */
if(*selection==POLY_SELECT && *target==XA_INTEGER) {

register i;
*type_r =(XA_INTEGER;

*format_r = 32;
v = (int *)malloc((2*np+1)*sizeof(int));
*value_r = (XtPointer)v;
*v=np;
for(i=0; i<np; I++) (

*(v+2*i+l) = P[i].x;
*(v+2*i+2) = P[i].y;

}
*length_r = 2*np+1;
return (TRUE);

}
/* code inside SelectionFromServer() */
if(*selection==POLY_SELECT && *type++XA_INTEGER
&& &format==32
&& value !=NULL) {
int *v;
v=(int *)value;
/* *v is the number of points, *(v+2*i+1) and
*(v+2*i+2) are the x, y coordinates of the ith
point */

}

Listing 10.5. Pixmap—File sel. c

static Pixmap selPx; /* value assigned by user action */
/* ... */
/*code inside SelectionToServer() */
if (*target==XA_PIXMAP {

/* selection type is checked elsewhere */
Pixmap *pxp = (Pixmap *)malloc(size of(Pixmap));
*type_r = XA_PIXMAP;

*format_r = 32;
*value_r = (XtPointer)pxp;

TE
AM
FL
Y

Team-Fly®

SELECTIONS 293

pxp = selpx}
length_r = 1; / Only one Pixmap */
return(TRUE);

}
/* code inside SelectionFromServer() */
if*type==XA_PIXMAP && *format==32 && value !=NULL) {

Pixmap *fpx = (Pixmap *)value;
/* use the pixmap, for example */
XSetFunction(Dpy, gc, GXcopy);
XCopyArea(Dpy, *fpx, win, gc,
0, 0, wsel, hsel, xt, yt) ;

}

Another type of selections involve XIDs, the tags sent by the server to the
client to identify server resources. As explained in Sec. 1.4.2, these implement the
types Window, Pixmap, Colormap, etc. The code in Listing 10.5 shows how to
implement pixmap selection. If we must do some photocomposition, we can cut,
then paste parts of one picture to another by transferring only the pixmap XJD. The
atom XA_PIXMAP is predefined.

Variables Dpy, gc, etc., are assumed to be defined elsewhere. The received
pixmap is copied in a window whose upper left corner is at xt and yt. It is easy to
define these variables in the receiving program except for two: The width (w_sel)
and height (h_sel) of the pixmap, which are determined during the selection
process. Unless these are constant for all selections, they must become part of the
selection as well.

Since it is possible to have a selection with more than one type, we show how
to use the feature in that case. Assume the user selects a rectangle from a display
pixmap. Then the program creates a new pixmap selPx, which contains the
selection; static variables w_sel and h_sel store the dimensions. Then call:

XtOwnSelection (w, PIX_SELECT, /* ... */);

The type PIX_SELECT has been previously defined as

Atom PIX_SELECT = XInternAtom(XtDisplay(toplevel),
"PIX_SELECT", False);

Listing 10.6 shows the delivery function.
To initiate a selection transfer, the receiving application must make two

requests:

XtGetSelectionValue(w, PIX_SELECT, XA_Integer,
grab_pix, (XtPointer) f,
XtLastTimestampProcessed(XtDisplay(w)));

294 FUNDAMENTALS OF X PROGRAMMING

Listing 10.6. Providing Pixmap Dimensions—File sel. C.

/* code inside SelectionToServer() */
if(*selection == PIX_SELECT) {

if (*target ==XA_Interger) {
int *u;
*type_r = XA_INTEGER;
*format_r = 32;
u=(int *)malloc (2*sizeof (int));
*value_r = (XtPointer)u;
*u = w_sell;
*(u+1) = h_sell;
*length_r = 2;
return(TRUE);

}
if (*target ==XA_PIXMAP) {
/* ... code from Listing 10.5 ... */

}
}

XtGetSelectionValue(w, PIX_SELECT, XA_PIXMAP,
grab_pix, (XtPointer) f,
XtLastTimestampProcessed(XtDisplay(w)));

The function grab_pix () is the callback, with code given in Listing 10.7.
Since the callback order is not guaranteed, we store received values in static

variables and keep a count. When we receive two selections, then we are ready to
use the pixmap. The function use_pixmap () is provided by the application and
passed to the callback as client data. Inside that function is code to cast its last
argument into a pixmap, for example:

Pixmap *fpx = (Pixmap *)img_data;

Besides using the full-selection mechanism to copy pixmaps from one
application to another, we can also use the window property mechanism as in the
spy program in Sec. 2.5. Once a program grabs the pointer, then it can use it to
identify a window and copy the window contents (or part of it) on a pixmap of its
ow

10.3.2. Image Selections Using pixmaps for selections is efficient, since

n (see Project 3).

we need to transfer only an XID, but it is not enough if we want to use original
image data. In that case we must transfer image pixel values. Necessary
modifications in the pixmap transfer code are:

SELECTIONS 295

Listing 10.7. Receiving Pixmap and Its Dimensions—File sel. c

void grab_pix(Widget w, XtPointer client_data,
Atom *selection, Atom*type, XtPointer value,
unsigned long *length, int *format)

{
static XRectangle rdim;
static XtPointer img_data;
static int kount = 0
void (*use_pixmap)() = (void (*)())client_data;
if (*selection !=PIX_SELECT) return;

if(*type==XA_INTEGER && *format==32 && values !=NULL) {
int *u;
u = (int *)value;
rdim.width = *u;
rdim.height = *(u+1);
kount++;

}
else
if(*type==XA_PIXMAP && *format==32 && values !=NULL) {
img_data = value;

kount++;
}
if (kount==2) {
use_pixmap (w, &rdim, img_data);
kount = 0;

}
}

/* Establish Selection Name and Data Type - in main () */
XA_IMAGE = XInternAtom(XtDisplay(toplevel), "IMAGE",
False);

/* ... */
static unsigned char *output_block; /* filled after selection */

/* inside SelectionToServer() */
if (*target==XA_IMAGE) {

*type_r = XA_IMAGE;
*value_r = (XtPointer)output_block;
*length_r = w_sel*h_sel;
*format_r = 8;
return(TRUE);

}

296 FUNDAMENTALS OF X PROGRAMMING,

We need not change anything in the SelectionFromServer () function,
since in Listing 10.7 we pass the value as an XtPointer. The receiving function
must have code to do the unpacking:

for(y=0; y<r -> height; y++) for (x=0; x<r-> width; x++) {
*cp++ = * (v+y*r -> width+x) ;

}

where cp is a pointer to a pixel array.
For an application to use a selection type it must include all pertinent pieces of

code. In practice this often means that the new selection is available only between
copies of the same application. In such a case simpler solutions may be available.

If we allow a single application to have more than one image-editing widget,
then we can transfer from one widget to another by copying data from an internal
array to another internal array. In other words we need one copying operation rather
than three. (The third is done by the Intrinsics.) Of course a program with many
editing widgets is going to be more complex than a program with just one, so there
is a trade-off between the simplicity of the data exchange mechanism and the
complexity of the application.

10.3.3. Marking Selections A common way of marking text selections is
by reverse video. We can achieve a similar effect in line drawings by drawing
polygons with larger width on top of the original while using the exclusive OR
mode. An alternative method uses blinking, as described in Sec. 4.3.2. When a
selection is made, we add a time-out process to invoke a function that draws with
exclusive OR, successively drawing and erasing the chosen object. The code that
follows shows a possible implementation that assumes a (private) object type
Own_Object. The type is also assumed to have a method plot for plotting the
object. It also advisable to include the widget ID, say, w, as part of the object. A
pointer to the selected object is passed as client data to the time-out:

/* Mark a Selection by Flashing - It assumes an object */
/* structure and a function for plotting it. */
static int has_selection;

/* ... */
#define APP(B) XtWidgetToApplicationContext(B)
#define T_SPAN 100 /* period of blinking in milliseconds */
static int erased = 0;
void time_out(Own_0bject *sp)
{

sp->plot(sp) ;
erased = 1 - erased;
if(has_selection) XtAppAddTimeOut(APP(sp-> w) , T_SPAN,

time_out, sp);

SELECTIONS 297

else {
if (erased) {

sp ->plot (sp) ;
erased = 0;

}
}

}
mark_selection(Own_0bject *S)
{

if(has_selection) XtAppAddTimeOut(APP(w), T_SPAN,
time_out, S);

}

This works well if the selection moves from one application to another. In this
case the flag has_selection is set to FALSE (0), and the time-out is not
reinstalled. A few lines of code ensure that the object is not erased. Unfortunately it
does not work if the selection moves within an application because has_selec-
tion will still be TRUE. We cannot explicitly remove the time-out because the
Intrinsics do not keep proper track of them (see [AS90], pp. 299–300).

The correct solution is not to add the time-out for the new selection when it is
made but to add the time-out at the next call of the time-out process. We can do this
by using the fact that the application must keep a pointer to the selected object to be
passed to other applications. (This may be either a static variable or better attached
to the widget through the user data mechanism described in Sec.11.3.) Let S denote
the pointer and diff () a function that takes as arguments two object pointers and
returns TRUE if these are not the same. Then the preceding code can be modified as
follows:

void time_out(Own_0bject *sp)
{

if(diff(sp, S)) {
XtAppAddTimeOut (APP(S->w), T_SPAN, time_out, S);
if(erased) {

sp ->plot (sp) ;
erased = 0;

}
}
else {

/* time_out code from version above */
sp ->plot (sp) ;
/* ... etc ... */

}
}

298 FUNDAMENTALS OF X PROGRAMMING

While this method is far more complex than marking the selection with reverse
video, it is applicable to any selected objects other than text or lines. If need be,
instead of a blinking object, we can have a blinking outline.

10.4. IMPLEMENTATION ISSUES

10.4.1 User Interface Most systems accept the convention that the left
mouse button (No. 1) is used to select, the middle button (No. 2) to transfer data,
and the right button (No. 3) to activate pop-up menus. However, the term select has
a broader meaning in this case. In a text editor we use the left button to select the
place to insert new text and in a drawing program to color a pixel on the screen. In
text editors text is selected (in the narrow sense) as the string between locations of
successive clicks of the left and middle buttons. A double click of the left button
selects the nearest word.

Successive clicks of the left and middle button can be used to select a rectangle
of pixels or pixmaps, but there is no natural counterpart to words in the case of
images. Things are a bit more complex in the case of polylines, where there is no
natural order. The following description is possible for a drawing editor (or CAD
programs in general) policy.

When the left button is clicked away from an object, we interpret the action as
drawing. If it is clicked near an object, we set a flag and take no action until the next
button click. If it is from the middle button, we check whether it is near the same
object, then select that object or part of it. If it is again from the left button, we
assume the user wishes to draw. Note: Double clicking has a different meaning here
than in text editors.

We can also enclose objects (or parts thereof) in rectangles to select them. A
complete coverage of this topic is beyond our scope.

Besides making a selection, we also need a means of inserting a selection. A
drag-and-drop operation is a possibility, but it has limitation. For example we can
select an object, then copy it in many locations—a drag-and-drop operation is quite
cumbersome in this case. Another possibility is to apply the following rule: When
the user's action indicates drawing (in general creation of an object), if there is a
selection, then the selection is copied at that point. The code should invoke
XGetSelectionValue () and provide a callback to copy the selection.

10.4.2. Application-Programming Interface Selections are usually sup-
ported by the widget code, but as we showed, they can be supported by an
application as well. If an application provides selections, it needs a static storage for
data; since there can be only one selection of each type at a time, this is not a
problem. We need a library that supports selections by hiding some of the details
from the application writer. Suggestions follow:

SELECTIONS 299

For text selection the library must provide a function select_text (w, x,
y, s), where w is a widget, x and y are coordinates of the top-left character, and s
is a null terminated string. Coordinates are needed for the function marking the text.
A possible implementation of the function follows:

#define LATEST(A) XtLastTimestampProcessed(XtDisplay(A))
static Boolean has_text_selection = FALSE;
Boolean select_text(Widget w, int x, int y, char *s)
{

if (has_text_selection) XtDisownSelection (w,
XA_PRIMARY, LATEST (w));

/* copy x, y, and s in static storage, */
/* compute length of s (needed for selection) */
/* and dimensions of text block (needed for marking) */
has_text_selection = XtOwnSelection (w, XA_PRIMARY,

LATEST(w), SelectionToServer, LoseSelection, NULL);
if (has_text_selection) mark_text_selection (w) ;
return has_text_selection;

}

where the function mark_text_selection () uses static data to highlight the
selection. The highlight is removed by the function LoseSelection (). This function
is called by the server when the application loses selection ownership, but it is not
called when a different selection is made within the application—that is the purpose
of calling XtDisownSelection (), which forces the call of LoseSelection ().

A function request_text (w, f) (where w is a widget) can request the
text selection to be passed as an argument to a function f with the prototype void
f (Widget w, char *s). A possible implementation follows:

void request_text(Widget w, void (*f)())
{

XtGetSelectionValue(w, XA_Primary, XA_STRING,
SelectionFromServer,(XtPointer) f , LATEST (w)) ;}

}

Similar pairs of functions, such as select_polygon (w, P, n) and
request_polygon (w, f 1) or select_pixmap (w, rp, px) and
request_pixmap (w, rp, f 2), can be used for other selection types. The P
may be an array of XPoints, rp a pointer to an XRectangle structure, and px
a pixmap. Possible prototypes for f 1 and f2 are

void f1(Widget w, Xpoint P[], int n)
void f2(widget w, Xrectangle *rp, Pixmap px)

300 FUNDAMENTALS OF X PROGRAMMING

If we adopt this organization, the functions Selection ToServer (), SelectionFrom-
Server () , and LoneSelection () can be declared static, so they are private to the
module.

10.4.3. Drag and Drop Drag and drop is a user interface for transferring a
selection from one application into another. When the user presses the selection
button (usually the left button) over an already selected object, the cursor icon is
replaced by a set of widgets that provide a visual representation of the selected
object. The original icon is restored only when the button is released (the selection
is dropped). As the cursor moves over different windows, the icon shape changes to
indicate whether the window under the cursor is an acceptable drop site.

Implementing the drag and drop is quite complex, but the complexity is due to
the user interface, which involves extensive visual feedback rather than to data
transfer.

10.5. CONCLUSIONS

The selection mechanism allows arbitrary data transfer between applications,
provided a protocol for the data type is established. The protocol is implemented by
the functions SelectionToServer () and SelectionFromServer (), as
shown in examples in Sec. 10.2.2, 10.3.1, and 10.3.2. Such applications can call
high-level functions like those described in Sec. 10.4.2.

The selection mechanism involves a certain overhead because of the need to
move data through the server. In general it should not be used to transfer data within
an application. Suppose for example an application has different widgets that
display images and transfer a set of pixels from Widget A to Widget B. Clearly the
pixel array can be copied entirely within the client. Unfortunately the literature
contains many examples of inappropriate selection use, including the case where a
drag-and-drop mechanism is used to color shapes within an application.

Application designers should give serious considerations to editing multiple
pictorial or graphic files within a single application by using different editing
widgets for each file. Then data can be transferred between widgets without having
to access the server. The price of such integration is a more complex program than a
single editor file.

The application in Sec. 7.2.2 it involves such a dilemma. We could choose to
use a text editor running separately from the drawing–editing program, then use the
selection mechanism to transfer data back and forth. For example we can select a
block of text in the text editor, so that when the application user selects a place in
the drawing, the function XtGetSelectionValue () is called to copy the

SELECTIONS 301

selection instead of typing the text in place. To modify the text later, we select it in
the drawing editor, then copy the selection to a text editor.

10.6. PROJECTS

1. Implement a selection mechanism for nonrectangular image parts. In
particular the user should be able to select an image region by outlining it
with a polygon. Hint: Two approaches are possible. In one we find the
bounding rectangle of the polygon and use as selection data the image
rectangle (as in Sec. 10.3.2) and the polygon (as in Sec.10.3.1). When the
selection is copied in the requesting application, the entire rectangle is
copied by using the polygon as a clip mask. In the other approach the
polygon is scan-converted into a set of line segments, and each segment is
then mapped into the corresponding pixel array. The selection consists of a
sequence of pixel arrays, each with a header giving its position in the
image and the number of pixels. The second method requires more
complex implementation, but it results in a smaller amount of data in the
selection.

2. Implement the program in Sec. 7.2.2 (Listing 7.2) by using the selection
mechanism as suggested in Sec. 10.5. Compare the complexity and size of
the two programs as well as the ease of use.

3. Modify the spy program in Sec. 2.5, so that instead of listing window
properties, it copies its contents to a window of the spy application. This
method allows pixmap transfers between applications.

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

11

Writing Widgets

11.1.
11.2.

Introduction .
Anatomy of a Widget .

305
307

11.2.1.
11.2.2.
11.2.3.
11.2.4.

Main Structures .
Where Is What? .
Core Class Structure—Part 1
Core Class Structure—Part 2

307
310
311
313

11.3. Sketch Widget Implementation . 317
11.3.1. Definition Files .
11.3.2.
11.3.3.
11.3.4.
11.3.5.

Widget Source File .
Adding Functionality to the Sketch Widget
What Resources Should a Widget Have?.
Attaching User Data to a Widget

317
320
324
326
327

11.4.
11.5.

Conclusions .
Projects .

328
330

This page intentionally left blank

WRITING WIDGETS 305

11.1. INTRODUCTION

Writing a widget involves two major tasks: Creating an object with a particular
functionality and making the object conform to Xt specifications. Chapter 11
focuses on the second task, since operations for drawing or event handling are
essentially the same whether in a widget or an application.

The obvious question is what do we gain by conforming to Xt widget
specifications? Two major gains involve taking advantage of the functionality
offered by the resource mechanism and a uniform interface. To illustrate, we use a
very simple widget class, a drawing widget, that is a subclass of Core with a few
extra resources. If we need a widget to draw on, the Core class itself offers that
facility. The program in Listing 11.1 shows part of program for displaying drawings
using the Core widget class.

Listing 11.1. Program for Simple Displays

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
void Scribble ();
main (arc, arv)

char **arv;
{

Widget toplevel, board;
XtAppContext app;
static XtActionsRec act[] = { "refresh", Scribble};
toplevel = XtVaApplnitialize (&app, "Quick Test",

(XrmOptionDescList)NULL, 0,
&arc, arv, (String *)NULL, NULL);

XtAppAddActions(app, act, XtNumber(act));
board = XtVaCreateManagedWidget("board", widgetClass,

toplevel, XtNwidth, 200, XtNheight, 200, NULL);
XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}
void Scribble (w, ep)

Widget w;
XEvent *ep;

{
if (ep->type !=Expose) return;

}

306 FUNDAMENTALS OF X PROGRAMMING

The application consists of a window with one action procedure that can be
specified in a resource file as:

z*board.translations: <Expose> : refresh()

Right now Scribble () does nothing, we must provide more code for drawing.
But we already see something cumbersome: We must provide code and a resource
file entry to handle Expose events, which seems superfluous. It should take no more
than one statement to register Scribble () with the Intrinsics, so that it can be
called in response to such events.

We next try to have Scribble () draw something. The new code is shown is
Listing 11.2.

We must create a GC and ensure that the foreground is black. (This is not
necessarily the default value.) In this program Scribble () draws only one line,
but we can easily make it more general. We can add two members to the Core
widget, an exposure callback, and a GC, which will make our program and all
future drawing programs much simpler. We describe widget construction in Sec.
11.2, but Listing 11.3 shows the drawing program using the new widget.

The new program has 26 (nonempty) lines of code versus 34 in the previous
program—a 23% reduction—but that is not the main benefit. We eliminated code

Listing 11.2. Action Procedure for Drawing

void Scribble (w, event)
Widget w;
XEvent *event;

{
Display *Dpy = XtDisplay(w);
Window win = XtWindow(w);
static GC gc = 0;
if (event->type != Expose) return;
if(!gc){

XGCValuesvalues;
unsigned long valuemask = GCForeground;
values.foreground = BlackPixel (Dpy,
DefaultScreen(Dpy));

gc = XCreateGC(Dpy, DefaultRootWindow(Dpy),
valuemask, & values);

}
XDrawLine(Dpy, win, gc, 10, 10, 180, 180);

}

WRITING WIDGETS 307

Listing 11.3. Program Using a Sketch Widget—File tsk.c

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Sketch.h>

void Scribble();

main(int arc, char **arv)
{

Widget toplevel, board;
XtAppContext app;
toplevel = XtAppInitialize (&app, "Test",

(XrmOptionDescList)NULL, 0,
&arc, arv, (String *)NULL, (ArgList)NULL, 0);

board = XtVaCreateManagedWidget("board",
sketchWidgetClass, toplevel, XtNwidth, 200,
XtNheight, 200, NULL);

XtAddCallback (board, XtNredrawCallback, Scribble,
NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

}

void Scribble (Widget w)/* we are not using the other
callback arguments */

{
Display *Dpy = XtDisplay(w);
Window win = XtWindow (w);
GC gc = sketch_gc(w);

XDrawLine(Dpy, win, gc, 10, 10, 180, 180);
}

for the action procedure and the GC; code not obviously relevant to the simple task
at hand.

11.2. ANATOMY OF A WIDGET

11.2.1. Main Structures Each widget has two structures: One is the same
for all its instances (for the most part it holds pointers to functions); the other differs
from instance to instance. The former is called the class record and the latter the

308 FUNDAMENTALS OF X PROGRAMMING

instance record. In our case we have nothing useful to add to the class record—the
callback and the GC go to the instance record, since these are likely to differ from
instance to instance. The Xt convention for naming these structures is to append
ClassRec and Rec, respectively, to the widget class name. If we call our new
widget Sketch, the two parts are SketchClassRec and SketchRec.

Each widget inherits the members of its superclasses in each of the two parts,
so if a widget has N superclasses, the class record and the instance record are each
divided into parts. The parts are named like the structures by appending
ClassPart and Part to the widget class name. In our example we have
SketchClassPart and SketchPart. Listing 11.4 shows part of the private
definition file SketchP. h. Because C does not allow empty structures, we include
a member in the class part, even though we do not need it.

Listing 11.5 shows part of the private definition file CommandP. h of the
Athena Command widget. Note: The order of the records is arbitrary. In
SketchP. H the instance comes before the class; in CommandP. H it is the other
way around. On the other hand the order of part declarations is important: New
parts must be defined before full records, since these are used there. Also the
declaration sequence inside each record corresponds to the widget hierarchy.

Listing 11.4. Widget Structure for the Sketch Widget

typedef struct {
/* ... various new members ... */

} SketchPart;

/* Full Instance Record */
typedef struct_SketchRec {

CorePart core;
SketchPart sketch;

} SketchRec;

typedef struct {
/* ... in this case only a place holder ... */

} SketchClassPart;

/* Full Class Record */
typedef struct_SketchClassRec {

CoreClassPart core_class;
SketchClassPart sketch_class;

} SketchClassRec, *SketchWidgetClass;

WRITING WIDGETS 309

11.5. Widget Structure for the Athena Command Widget

typedef struct _CommandClass {
/* a place holder */

}CommandClassPart ;

/* Full class record declaration */
typedef struct _CommandClassRec {

CoreClassPart core_class;
SimpleClassPart simple_class;
LabelClassPart label_class;
CommandClassPart command_class;

} CommandClassRec;

typedef struct {
/* ... resources and private members ... */

} CommandPart;

/* Full widget declaration */
typedef struct _CommandRec {

CorePart core;
SimplePart simple;
LabelPart label;

CommandPart command;
} CommandRec;

A widget always has two definition files: The public file, whose name is the
capitalized widget name (truncated if necessary to eight characters) with a . h
appended (for example Sketch.h or Command.h); and the private file, whose
name ends always with P.h (for example SketchP.h or CommandP.h). The
latter contains structure definitions, which are normally hidden from application
programs. (We give partial listings of two examples in Listings 11.4 and 11.5.) The
former contains definitions needed by the application programs, such as resource
names and types of convenience functions—in our case the following among
others:

#define XtNredrawCallback "redrawCallback"
GC sketch_gc();

We provide complete listings later.
When writing code for a widget, we must assign values to class parts of

superclasses as well as to the new class. This seems to be the most burdensome task

310 FUNDAMENTALS OF X PROGRAMMING

of all, since superclasses may have many members that are not relevant to the
functionality of the new widget.

Note: We do not need the superclass source to write code for a widget, only the
private definition file. (The public definition file is always available.) On the other
hand it is always helpful to look at the code of another widget for guidance. This
model widget should be one with similar functionality.

11.2.2 Where Is What? Before describing the widget itself, we consider
where the different parts are and how these are accessed. When we call a function to
construct a widget [for example XtCreateWidget ()], we pass as argument to a
point to the class record, then we receive a pointer to the instance record. For
example we can create a sketch widget by the call:

extern SketchClassRec skc;
SketchRec *sw = XtCreateWidget (. . . , &skc, . . .);

Things are not done this way in Xt because Xt does not encourage accessing
individual class and instance members. (If we use C+ + , members can be declared
Private, but we are working in C.) In particular in the widget source file
(sketch. c in this case), we have the code:

SketchClassRec skc = { . . . }
WidgetClass sketchWidgetClass = (WidgetClass)&skc;

In the public definition file (Sketch.h in this case), we have

extern Widget Class sketchWidgetClass;

Then the application code becomes

#include <Sketch.h>
SketchRec *sw = XtCreateWidget(..., sketchWidgetClass, ...);

This is more mnemonic than the original and avoids reference to the class record.
(Note: With this approach the variable name used for the class record, skc, is not
visible to applications, so it can be anything. The X encourages mnemonic names
for widget writers as well, so the name SketchClassRec is the one actually
used.)

The previous code for widget creation still allows private access to the instance
record. The Xt has created the type Widget as a generic reference to an instance

WRITING WIDGETS 311

record, so the widget creation code is

Widget sw = XtCreateWidget (. . . , sketchWidgetClass, . . .);

This is fine for applications, but not for the widget code itself, which must access
individual instance members.

To deal with this problem, the public definition file Sketch.h also includes
the following code:

typedef struct _SketchRec *SketchWidget;

Since we declare only a pointer to a structure, the C compiler need not know
anything about the structure itself; therefore the definition is fine even in the
absence of a private declaration file. We take advantage of this declaration inside the
widget file sketch. c (which includes the private definition file). All functions are
declared with arguments of the generic type Widget, but inside the functions we
cast these arguments into the SketchWidget type, and then we can access the
individual instance members, for example:

redraw(Widget w)
{

SketchWidget sw = (SketchWidget)w;
int width = sw->core.width;
/* . . . */

}

If we had written

redraw(Widget w)
{

int width = w->core.width;
/* . . . */

}

the compiler would have complained.

11.2.3. Core Class Structure—Part 1 Since all widgets are subclasses of
Core, we must familiarize ourselves with that structure. The definition files,
Core. h and CoreP.h, are normally in the subdirectory include/X11. The
widget program must initialize all parts of the class records—in our case both
core_class (of type CoreClassPart) and sketch_class (of type
SketchClassPart).

Members of instance records are initialized as needed. In particular the widget
can safely ignore part of the instance record of its superclasses that has no bearing
on it. Superclasses are assigned values by the Intrinsics. For example the core

312 FUNDAMENTALS OF X PROGRAMMING

instance part has a member window that is given a value during realization of the
widget. On the other we may wish to access the width and height members to
assign nonzero default dimensions to our widget. We discuss how this is done in
Sec. 11.3.2. For now we focus on the class part. Listing 11.6 (pp. 314–315) shows a
possible initialization. Bold-faced values are always the same, as we explain later.

Comments in Listing 11.6 replicate the corresponding member of the structure
definition. For example in CoreP.h there are the statements:

typedef struct_CoreClassPart {
WidgetClass superclass;
String class_name;
/* ... */

} CoreClassPart;

Note: All but one structure member is from Core. The new widget has only one
member, extension, that in this case serves only as a place holder; it is
initialized to NULL. We now discuss core members individually.

The superclass is given the address of the class record of whatever the
superclass is; it is used to access methods of that class. Here widgeClassRec
refers to the Core class; for a composite widget, it is compositeClassRec, etc.
The variable widgetClassRec is defined in the CoreP.h file. We do not use
the methods (function) of the Core class in the sketch widget, so this assignment is
not important here. We describe a widget in Sec. 11.5, where that member is used in
a nontrivial way. This upward linking is the mechanism of inheritance: How a
subclass obtains information about its superclass.

The role of the next two members, class_name and widget_size, is
obvious as well as very important. When a widget is created, the Intrinsics have
access only to the class record. Intrinsics use the widget_size member to
allocate memory for the instance record.

The class_initialize is a procedure called by the Intrinsics before
widgets in this class (in our case Sketch) are created. The class_part_
initialize is similar, but it is also called before subclasses are created. Due
to the simplicity of our widget, we do not need such initialization, so we assign
both to NULL. The Intrinsics always check for null pointers before calling a
procedure to avoid problems with such an assignment. The first procedure is useful
when a new widget class introduces a new resource conversion type that must be
registered with the Intrinsics. The second procedure is used in connection with
inheritance.

The member class_inited should always be assigned the value
FALSE. The Intrinsics change it to TRUE after initialization. The function
initialize () is called to initialize the record of each instance of a particular

TE
AM
FL
Y

Team-Fly®

WRITING WIDGETS 313

widget class. As we pointed out previously the Intrinsics know only the size of the
widget record, so its members must be accessed by Functions provided by the
widget writer. By assigning the value Initialize to this member, we promise to
provide a function called Initialize (). In our case it is going to create the GC
and provide default dimensions for the widget window, as described in Sec. 11.3.2.
The Initialize_hook allows us to define a second initialization procedure.
Since we can accommodate all initialization with one procedure, we assign it the
value NULL. To avoid name space issues, Initialize () (and other functions
in the right-hand column of Listing 11.6) should be declared static. Since the
Intrinsics call such functions only through the widget record, for example,
w->core_class. initialize (), there is no problem with the static
declaration.

The function realize () is called by the Intrinsics to realize the widget, so it
cannot be NULL. (Otherwise the widget never appears on the screen.) However we
can assign a default procedure to the function through XtInhereitRealize
value (defined in CoreP. h)

11.2.4. Core Class Structure—Part 2 The members actions and
num_actions are used only if our widget has action procedures, namely, pairs
of strings and function pointers, as described in Sec. 4.3.2. Since the Sketch
widget class does not have such procedures, these members are given null values.

The next member, resources, is a pointer to an array of resource definitions
as described in Sec. 3.3.2. It is essential for this to have a nontrivial value—there is
little point in creating a widget without resources. Our assignment obligates us to
define and initialize an array of type XtResource named own_resources [].
(The type XtResourceList is simply a pointer to the XtResource type.) The
macro XtNumber () is used to compute the number of elements in an array and to
assign it to num_resources .

The member xrm_class is used only by the Intrinsics, so it should always
be assigned the value NULLQUARK.

If we set compress_motion to TRUE, consecutive motion events are
compressed into one, which is what most widgets want. A drawing widget such as
this is an exception to the rule. In a drawing widget we probably want to implement
rubber banding, so we assign the value FALSE.

Exposure events often occur in groups, so it is wasteful to redraw the widget
each time, therefore we assign the predefined value XtExposeCompress-
Multiple. This is the case with most widgets. The same is true with the next
member, compress_enterleave, which is normally given the value FALSE.
The member visible_interest is usually given the value FALSE. Its
purpose is to reduce unnecessary computation for displaying the widget. A detailed
discussion of this is beyond our scope.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

