

J

For C Programmers

Henry Rich
2002/04/11

Copyright © 2002 Henry H. Rich. All rights reserved.

Send comments to glasss@bellsouth.net

 ii

Foreword

You are an experienced C programmer who has heard about J, and you think you'd
like to see what it's all about. Congratulations! You have made a decision that will
change your programming life, if only you see it through. The purpose of this book is to
help you do that.

It won't be easy, and it certainly won't be what you're expecting. You've learned
languages before, and you know the drill: find out how variables are declared, learn the
syntax for conditionals and loops, learn how to call a function, get a couple of examples
to edit, and you're a coder. Fuggeddaboutit! In J, there are no declarations, seldom will
you see a loop, and conditionals often go incognito. As for coding from examples, well,
most of our examples are only a couple of lines of code�you won't get much momentum
from that! You're just going to have to grit your teeth and learn a completely new way to
write programs.

Why should you bother? To begin with, for the productivity. J programs are usually
a fifth to a tenth as long as corresponding C programs, and along with that economy of
expression comes coding speed. Next, for the programming environment: J is an
interpreted language, so your programs will never crash, you can modify code while it's
running, you don't have to deal with makefiles and linking, and you can test your code
simply by entering it at the keyboard and seeing what it does.

If you stick with it, J won't just help the way you code, it'll help the way you think. C
is a computer language; it lets you control the things the computer does. J is a language
of computation: it lets you describe what needs to be done without getting bogged down
in details (but in those details, the efficiency of its algorithms is extraordinary). Because
J expressions deal with large blocks of data, you will stop thinking of individual numbers
and start thinking at a larger scale. Confronted with a problem, you will immediately
break it down into pieces of the proper size and express the solution in J�and if you can
express the problem, you have a J program, and your problem is solved.

Unfortunately, it seems to be the case that the more experience you have as a C
programmer, the less likely you are to switch to J. This may not be because prolonged
exposure to C code limits your vision and contracts the scope of your thinking to the size
of a 32-bit word�though studies to check that are still under way and it might be wise
for you to stop before it's too late�but because the better you are at C, the more you have
to lose by switching to J. You have developed a number of coding habits: for example,
how to manage loops to avoid errors at extreme cases; how to manage pointers
effectively; how to use type-checking to avoid errors. None of that will be applicable to
J. J will take advantage of your skill in grasping the essence of a problem�indeed, it
will develop that skill considerably by making it easier for you to express what you
grasp�but you will go through a period during which it will seem like it takes forever to
get things done.

During that period, please remember that to justify your choice of J, you don't have to
be as expert in J as you were in C; you only have to be more productive in J than you

 iii

were in C. That might well happen within a month. After you have fully learned J, it
will usually be your first choice for describing a program.

Becoming a J programmer doesn't mean you'll have to give up C completely; every
language has its place. In the cases where you want to write code in C (either to use a
library you have in C or to write a DLL for a function that is inefficiently computed in J),
you will find interfacing J to DLLs to be simple and effective.

This book's goal is to explain rudimentary J using language familiar to a C
programmer. After you finish reading it, you should do yourself the honor of carefully
reading the J Dictionary, in which you can learn the full language, one of the great
creations in computer science and mathematics.

Acknowledgements
I am obliged to the reviewers who commented on a early draft: Michel Dumontier,

David Ness, Richard Payne, and Keith Smillie. Brian Schott, Nicholas Spies, and
Norman Thomson exchanged emails with me at length to smooth over rough spots.
David Steele conducted a painstaking review of several early drafts and suggested many
changes great and small. Kip Murray's 'review' became more of a dismantling, cleaning,
and reassembly operation in which large sections of prose were rewritten as he pointed
out to me their essential meaninglessness; the reader should be as grateful to him as I am.

Without the patient explanations of my early teachers in J, Raul Miller and Martin
Neitzel, I would have given up on J. I hope that this book pays to others the debt I owe to
them.

My current happy career as a J programmer would not have been possible without the
work of the staff at Jsoftware, Inc., who created J. For the patriarch, Ken Iverson, I am
unworthy to express admiration: I have only awe. I hope his achievement eases the lives
of programmers for generations to come. To the rest, both Iversons and non-Iversons, I
give my thanks.

The implementation of the J interpreter has required diverse skills: architectural
vision, careful selection of algorithms, cold-eyed project management to select features
for implementation, robust and efficient coding, performance optimization, and expertise
in numerical analysis. Most improbably, all these talents have resided in one man, Roger
Hui il miglior fabbro. Used properly, J gives us all a way to have a little of Roger's code
in our own. We should aspire no higher.

 iv

Contents

Foreword ... ii
Acknowledgements.. iii

1. Introduction... 1

Programming In J 2

2. Preliminaries ... 3
Notation .. 3
Terminology.. 3
Sentences (statements) ... 4
Word Formation (tokenizing rules) .. 4
Numbers.. 5
Characters ... 5
Valence of Verbs (Binary and Unary Operators) ... 5
How Names (Identifiers) Get Assigned... 6
Order of Evaluation .. 7
What a verb (function) looks like... 7
Running a J program... 8

Interrupting Execution.. 9
Getting Help.. 9

3. A First Look At J Programs .. 10
Average Daily Balance ... 10
Calculating Chebyshev Coefficients... 13

4. Declarations .. 15
Arrays.. 15
Cells .. 16

Choosing Axis Order.. 17
Negative Cell-Rank; Items ... 17
Lists .. 17

Constant Lists ... 18
Array-creating verbs ... 18

Dyad $ ($hape) and monad $ ($hape Of) .. 18
Monad # (Tally) ... 22
Monad i. (Integers) .. 22

5. Loopless Code I�Verbs Have Rank.. 24
Examples of Implicit Loops.. 24
The Concept of Verb Rank ... 26
Verb Execution�How Rank Is Used (Monads) .. 26
Controlling Verb Execution By Specifying a Rank.. 28
Examples Of Verb Rank ... 29
Negative Verb Rank.. 32
Verb Execution�How Rank Is Used (Dyads) ... 33
When Dyad Frames Differ: Operand Agreement ... 36

 v

A Mistake To Avoid ... 39
6. Starting To Write In J ... 41
7. More Verbs ... 44

Arithmetic Dyads.. 44
Boolean Dyads.. 45
Min and Max Dyads ... 45
Arithmetic Monads ... 45
Boolean Monad... 45
Operations on Arrays .. 46

Dyads.. 46
Monads ... 51

8. Loopless Code II�Adverbs / and ~.. 55
Modifiers... 55
The Adverb Monad u/ ... 55
The adverb ~ ... 57

9. Continuing to Write in J.. 59
10. Compound Verbs .. 65

Verb Sequences�u@:v and u@v .. 65
Making a Monad Into a Dyad: The Verbs [and]... 66
Making a Dyad Into a Monad: u&n and m&v... 67

11. Boxing (structures).. 69
Terminology.. 71
Boxing As an Equivalent For Structures In C .. 72

12. Empty Operands.. 73
Execution On a Cell Of Fills... 73
Empty cells ... 75
If Fill-Cells Are Not Enough .. 75

13. Loopless Code III�Adverbs \ and \. .. 76
14. More Verbs ... 79

Dyads .. 79
Monads (all rank 0)... 80

15. Loopless Code IV ... 81
Power/If/DoWhile Conjunction u^:n and u^:v .. 82
Tie and Agenda (switch) .. 84

The Tie Conjunction u`v u`n m`v m`n.. 84
The Agenda (switch) conjunction m@.v ... 85

16. More Verbs For Boxes.. 87
Dyad ; (Link) And Monad ; (Raze).. 87

Verbs With More Than 2 Operands�Multiple Assignment 89
Dyad { Revisited .. 90
Split String Into J Words: Monad ;: ... 92
Fetch From Structure: Dyad {:: ... 93
Report Boxing Level: Monad L. ... 94

17. Verb-Definition Revisited... 95
What really happens during m :n and verb define 95

 vi

Compound Verbs Can Be Assigned ... 96
Dual-Valence verbs: u :v ... 97
The Suicide Verb [: .. 97
Multi-Line Comments Using 0 :0 ... 98
Final Reminder ... 98

18. u^:_1, u&.v, and u :.v.. 99
The Obverse u^:_1 ... 99
Apply Under Transformation: u&.v and u&.:v .. 99
Defined obverses: u :.v .. 101
u&:v and u&v ... 101
An observation about dyadic verbs... 101

19. Performance Measurement ... 102
20. Input And Output .. 105

Foreigns .. 105
File Operations 1!:n; Error Handling... 105

Error Handling: u ::v, 13!:11, and 9!:8 ... 106
Format Data For Printing: Monad And Dyad ": ... 106

Monad ": ... 107
Format binary data: 3!:n .. 108
printf, sprintf, and qprintf.. 108
Convert Character To Numeric: Dyad ". .. 109

21. Calling a DLL Under Windows.. 110
Memory Management... 111

22. Loopless Code V�Partitions ... 112
Find Unique Items: Monad ~. and Monad ~: .. 112
Apply On Subsets: Dyad u/. .. 112
Apply On Partitions: Monad u;.1 and u;.2... 114
Apply On Specified Partitions: Dyad u;.1 and u;.2 115

Find Sequence Of Items: Dyad E.. 116
Apply On Subarray: Dyad u;.0.. 117
Apply On All Subarrays: Dyad u;.3 and u;._3 .. 118

23. When Programs Are Data ... 119
Calling a Published Name... 119
Using the Argument To a Modifier .. 119
Invoking a Gerund: m`:6... 120
Passing the Definition Of a Verb.. 121
Passing an Executable Sentence: Monad ". and 5!:5....................................... 121

24. Loopless Code VI ... 123
25. Modifying an array: m}... 127

Modification In Place.. 128
26. Control Structures ... 130

for./do./end. and for_x./do./end.. 130
while./do./end. and whilst./do./end. ... 130
if./do./else./end., if./do./elseif./do./end.................................. 130

 vii

try./catch./end.. 131
return... 131

27. Modular Code ... 132
Locales And Locatives.. 132
Assignment ... 132
Name Lookup ... 133
Changing The Current Locale... 134
The Shared Locale 'z' .. 136
Using Locales ... 137

28. Writing Your Own Modifiers ... 138
Modifiers That Do Not Refer To x. Or y. ... 138
Modifiers That Refer To x. Or y. .. 140

29. Odds And Ends ... 142
Dyad # Revisited .. 142
Boxed words to string: Monad ;:^:_1 .. 142
Spread: #^:_1 ... 142
Choose From Lists Item-By-Item: monad m} .. 142
Random Numbers: ?... 143
Recursion: $: ... 143
Make a Table: Adverb dyad u/.. 143
Boolean Functions: Dyad m b. ... 144
Operations Inside Boxes: u L: n, u S: n .. 144
Comparison Tolerance !.f.. 146
Right Shift: Monad |.!.f .. 147
Generalized Transpose: Dyad |: ... 147
Monad i: and Dyad i: ... 148
Plot .. 148
Window Driver And Form Editor... 149
Verbs for matrices... 149

Tacit Programming 150

30. Tacit Programming ... 151
31. First Look At Forks... 153
32. Parsing and Execution I .. 155
33. Parsing and Execution II... 158

The Parsing Table ... 158
Examples Of Parsing And Execution ... 159
Undefined Words.. 163

34. Forks and Hooks ... 164
Referring To a Noun In a Tacit Verb.. 167

35. Readable Tacit Definitions ... 168
Flatten a Verb: Adverb f... 168

Using f. to improve performance ... 169
36. Explicit-To-Tacit Converter.. 171
37. Tacit Adverbs and Conjunctions... 173

 viii

The Fragment Table.. 173
Identity Conjunctions [.]. And Identity Adverb]:....................................... 175
Examples Of Tacit Modifiers ... 175
Explicit-To-Tacit Converter For Modifiers .. 177
Writing Tacit Modifiers .. 177
Graduate Project For Gurus .. 179

38. Valedictory.. 182
39. Glossary .. 183
40. Index ... 187

 1

1. Introduction

This book will tell you enough about J for you to use it as a language for developing
serious applications, but it is about more than learning the J language: it is also about
'thinking big' in programming, and how programming in J is fundamentally different
from programming in C. C programs deal intimately with scalars (single numbers and
characters), and even when they combine those scalars into arrays and structures, the
operations on the arrays and structures are defined by operations on the scalars. To
ensure that each item of an array is operated on, loops are created that visit each element
of the array and perform a scalar operation on the element.

Writing code in a scalar language makes you rather like a general who gives orders to
his troops by visiting each one and whispering in his ear. That touch-of-Harry kind of
generalling can achieve victorious results, and it has the advantage that the orders can be
tailored to the man, but its disadvantages are significant: the general spends much mental
energy in formulating individual orders and much breath in communicating them
individually; more significant, his limited attention is drawn toward individuals and away
from the army as a whole. Even the great Rommel was overtaxed at times.

The J programmer is, in contrast, a general who stands before his army and snaps out
orders to the army as a whole. Every man receives the same order, but the order itself
contains enough detail for the individual men to act appropriately. Such a general can
command a corps as easily as a platoon, and always has the 'big picture' in mind.

OK, maybe you're not Rommel, but you are a working programmer, and you suspect
that very few practical programs can be represented as general array operations�matrix
multiplication maybe, or adding a list of numbers�and that, even if a wide range of
programs were possible, the set of operations supported must be too vast to be practical:
wouldn't we need an array operation for every possible program?

The first half of this book is devoted to showing you that it is indeed possible to write
meaningful programs with array operations. We take the approach of looking at the
different ways loops are used, and seeing what facilities J has for producing the same
result using array operations. We will find that J contains a couple of dozen array-
processing primitives and a dozen or so very cleverly chosen pipe-fittings that allow
those primitives to be connected together to provide the limitless supply of array-
processing functions needed for practical programming.

Interspersed with the elaboration of more and more intricate array operations are
treatments of other matters of use in practical programming: structure definition, input
and output, performance measurement, calling DLLs, modular programming. Eventually
we will see how to use if-then-else and do-while in J, though you will have learned more
elegant ways to get the same results.

The last portion of the book is devoted to the optional topic of tacit programming, J's
language for functional programming. Tacit programming is an extremely terse way of
expressing algorithms, one that allows programs that have been compressed from a page
of C into a few lines of J to be compressed still further.

 2

Programming In J

 3

2. Preliminaries

Notation
C code is set in Arial font, like this: for(I = 0;I<10;I++)p[I] = q;
J code is set in Courier New font, like this: p =. 10 $ q

When J and C use different words for the same idea, the J word is used. The first few
times, the C word may be given in parentheses, in Arial font: verb (function). When a
word is given a formal definition, it is set in bold italics: verb.

Terminology
To describe the elements of programming, J uses a vocabulary that will be familiar,

though possibly frightening: the vocabulary of English grammar. We will speak of
nouns, verbs, and the like. Don't worry, you're not going to have to write a book report!

Use of this terminology is not as strange as it may seem. Take 'verb', for example, an
idea that corresponds to the C 'function' or 'operator'. Why not just say 'operator'?
Well, that word is also used in mathematics and physics, with a meaning quite different
from C's. Even a C 'function' is not a true mathematical function�it can return different
values after invocations with the same arguments.

J avoids imprecise usage by choosing a familiar set of words and giving them entirely
new meanings. Since J is a language, the vocabulary chosen is that of English grammar.
It is hoped that the familiarity of the words will provide some mnemonic value, but as
long as you learn the J meanings you are free to forget the grammatical ones. The
following table may help:

J word C word

verb function or operator

noun object
copula assignment

punctuation separator
adverb (untranslatable)

conjunction (untranslatable)

In keeping with the grammatical flavor of the vocabulary, we say that every word
(token) in a J program has a part of speech (name type) which is one of the following:
noun, verb, adverb, adjective, copula, or punctuation.

The primary parts of speech are noun, verb, adverb, and conjunction. Every name
we can create, and every word defined by J except for the copulas (=. and =:) and
punctuation, will be a definite one of the primary parts of speech. In this book, the term
entity is used to mean something that can be any of the primary parts of speech. An

 4

entity can be assigned to a name, but most entities are anonymous, appearing and
disappearing during the execution of a single sentence (just like intermediate results in
the evaluation of C expressions).

A noun holds data; a verb operates on one or two nouns to produce a result which is a
noun; an adverb operates on one noun or verb to produce a derived entity; a conjunction
operates on two nouns or verbs to produce a derived entity. Adverbs and conjunctions
are called modifiers.

A word on punctuation under J's definition: it consists of the characters () ' and
end-of-line (written LF but representing either a single LF character or the CRLF
combination), along with the comment delimiter NB. and a few other special words like
if. and case. . There are a lot of other characters that you think of as punctuation,
namely [] , . " ; { }, that J uses to do work. You will be especially surprised
to find that [] and { } are independent rather than matched pairs, but you'll get used
to it.

Sentences (statements)
The executable unit in J is called the sentence, corresponding to the C statement.

The sentence delimiters in J (corresponding to the semicolon in C)are the linefeed LF
and the control words like if. that we will learn about later. A sentence comprises all
the characters between sentence delimiters; since LF is a sentence delimiter, it follows
that a J sentence must all fit on one line. There is nothing corresponding to \<CR> in C
that allows you to split a sentence across lines.

All comments start with NB. and run to the next LF . The comment is ignored when
the sentence is executed.

Word Formation (tokenizing rules)
J's names (identifiers) are formed much as in C. Case matters, names must begin

with an alphabetic, and underscore is allowed. Names that end with an underscore or
contain two consecutive underscores are special, and you should avoid them until you
know what a locale is.

The ASCII graphic characters ('+', for example) are called primitives (operators) in
J. You will learn their meanings as we go on.

Any name or primitive (identifier or operator) can be made into a new primitive by
adding '.' or ':' at the end. Since all primitives are system-defined (i. e. they are
reserved words), you may not put '.' or ':' in your names. No space is required after a
primitive. The part of speech for each primitive is fixed. Example primitives are:

+ +. +: { {: {:: i. i: for. select. case. end.

The first step in processing a sentence is to split it into words. The words correspond
roughly to C tokens, after making allowance for the special status of the '.' and ':'
characters. The space and TAB characters are treated as whitespace. One big surprise
will be that a sequence of numbers separated by spaces is treated as a single word which
denotes the entire list of numbers.

 5

We will be careful to distinguish periods used for English punctuation from the dot
that may be at the end of a primitive. When a J word comes at the end of an English
sentence, we will be sure to leave a space before the period. For example, the verb for
Boolean Or is +., while the verb for addition is + .

Numbers
You do not need to trouble yourself with the distinction between integers, floats, and

complex numbers. If it's a number, J will handle it properly. There are a great many
ways to specify numbers; consult the Dictionary to learn details, including, among other
things, complex numbers, extended-precision integers, and exponential forms. Example
numbers are:

2

_2 (underscore, not -, is the negative sign)

0.5 (since '.' is special, it must not be the first character of a number)
1e2

16b1f (equivalent to 0x1f)
_ (infinity)

__ (negative infinity, represented by two underscores)

A noun whose value is one of the numbers 0 and 1 is said to be Boolean. Many verbs
in J are designed to use or produce Boolean values, with 0 meaning false and 1 meaning
true, but there is no Boolean data type: any noun can be used as a Boolean if its values
are 0 or 1.

A word is in order in defense of the underscore as the negative sign. -x means 'take
the negative of the number x'; likewise -5 means 'take the negative of the number 5'. In
J, the number 'negative 5' is no cloistered companion, accessible only by reference to the
number 5: it is a number in its own right and it deserves its own symbol: _5.

Characters
An ASCII string enclosed in single quotes is a constant of character type (examples:

'a', 'abc'). There is no notation to make the distinction between C's single-quoted
character constants and double-quoted character strings.

There are no special escape sequences such as '\n'. If you need a quote character
inside a string, double the quote: 'cannot can be shortened to can''t'.
Character constants do not include a trailing NUL (\0) character, and NUL is a legal
character within a string.

Valence of Verbs (Binary and Unary Operators)
C operators can be unary or binary depending on whether they have one or two

operands; for example, the unary * operator means pointer dereferencing (*p), while the
binary * operator means multiplication (x*y).

 6

Similarly, when a J verb (function or operator) is executed with only one operand
(i. e. without a noun or phrase that evaluates to a noun on its left) we say its invocation is
monadic (unary); if there is a noun or noun-phrase on its left, that noun becomes a
second operand to the verb and we say that the invocation is dyadic (binary). In the case
of programmer-defined verbs (functions), the versions handling the two cases are
defined independently. We use the term valence to describe the number of operands
expected by a verb-definition: a verb-definition has monadic valence if it can be applied
only monadically, dyadic valence if it can be applied only dyadically, and dual valence if
it can be applied either way. Since the definitions of the monadic and dyadic forms of a
verb can be wildly different, when we name a verb we will be careful to indicate which
version we are talking about: 'monad $', 'dyad i.'.

Note that the syntax of J limits verbs (functions) to at most two operands. When
you need a verb with more than two operands, you will represent it as a monad or dyad in
which one of the verb's syntactic operands is an aggregate of the actual operands the verb
will use during its execution. The first thing the verb will do is to split its operand into
the individual pieces. J has primitives to make this process easy.

The value produced by any entity when it is applied to its operand(s) is called its
result (returned value).

How Names (Identifiers) Get Assigned
Assignment in J is performed by expressions of the form

name =. entity NB. private
and
name =: entity NB. public

Names assigned by public assignment are visible outside the entity in which they are
defined; names assigned by private assignment usually are not; we will learn the details
when we discuss modular code. The difference between the two forms of assignment is
in the character following the = . Just as in C, the assignment expression is considered
to produce as its result the value that was assigned, so expressions like
a =. 1 + b =. 5
are legal. J calls =. and =: copulas. Just as in C, the entity that is assigned to the name
can be the result of evaluating an expression.

There are a number of additional capabilities of J assignment that you can read about
in the Dictionary. One that has no counterpart in C is that the name being assigned can
itself be a variable, i. e. you can calculate the name that you want to assign the value to.

The value assigned can be a noun (object), verb (function), adverb, or conjunction;
the name then becomes whatever part of speech was assigned to it (even if it was
previously defined as a different part of speech!). For example,
n =: 5
creates a noun, and
v =: verb define
x. + y.
)
creates a verb (more below).

 7

 Note: the J Dictionary uses the terms 'local' and 'global' instead of 'private' and
'public'. I think 'private' and 'public' are more accurate terms, because there is another
dimension to name scope in J, using the J notions locale and path, that causes public
variables to be visible only in certain entities. It will be a long time before we learn about
locales; until then, public names will be global.

Order of Evaluation
Forget the table of operator precedence! All J verbs (functions and operators)

have the same priority and associate right-to-left. For example, a * b + c is
equivalent to a * (b + c), not (a * b) + c. Use care when copying
mathematical formulas. Note that the negative sign _ is a part of the number, not a verb.
_5 + _4 is _9, while -5 + -4 is _1.

The executable bits of a sentence (statement) are called fragments
(subexpressions). A verb with its operand(s) is a fragment, as is a copula with its
name and value. We will meet other types of fragment later. Execution of a sentence
consists of the right-to-left execution of its fragments, with the result of each fragment's
execution replacing the fragment and being passed as an operand into the next fragment.
The result of the last execution becomes the result of the sentence. This result is usually
a noun but it can be any of the primary parts of speech. As an example, execution of the
sentence
 a =. 3 + b =. 4 * 5
consists of execution of the following fragments: 4 * 5 with result 20; b =. 20 with
result 20; 3 + 20 with result 23; a =. 23 with result 23 . The names a and b are
assigned when the assignment fragments are executed.

What a verb (function) looks like
As we saw, a J verb (function) is defined by lines that look like:

name =: verb define
J sentences here
)

The result of the verb define is a verb, and normally you will assign the result to
a name so you can execute the verb by name when you need it. Subsequent lines, starting
with the one after verb define and ending before the next line containing only the
word ')', are read and saved as the text of the verb (heaven help you if you leave out
the)!). The verb is not 'compiled'�only the most rudimentary syntax checking is
performed; the text is saved and will be interpreted when the verb is executed.

Each line of the verb is a sentence (statement). The result of the last sentence
executed becomes the result of the whole verb (this is not precisely true but it's close
enough for now).

Since a J verb has only one or two operands, there is no need for you to provide a list
of parameter names as you do in a function definition in C; instead, J names them for
you. At the start of a verb's execution, the private name y. is initialized with the value of
the right operand of the verb. If the verb is dyadic, the private name x. is initialized with

 8

the value of the left operand. Many programmers like to start their verbs by assigning
these values to more descriptive names.

If your verb is going to define only a monadic or dyadic form, you should use
monad define or dyad define instead of verb define . If you are going to
define both valences, the way to do so is:
name =: verb define
monadic case here
:
dyadic case here
)
where a line with the single word : separates the two cases. If you use verb define
and don't have the :, the verb will be monadic.

If your verb is only one line long (not at all unusual in J!) you can define it all in one
line by using the appropriate one of the forms
name =: monad : 'text of verb'
name =: dyad : 'text of verb'

Running a J program
No compiling. No linking. No makefiles. No debugger. You simply type J

sentences and the interpreter executes them and displays any result. At the very simplest,
you can use it as a desk calculator:
 22 + 55
77

J prints 3 spaces as a prompt, so when you scroll through the log of a session, your
input will be indented 3 spaces while J's typeout will be unindented. The result of a
sentence typed on the keyboard is displayed, except that to avoid excessive typeout
nothing is displayed if the last fragment executed in the sentence is an assignment. If you
are at the keyboard while you are reading this book, you can type the examples and see
the responses, or experiment on your own.

Of course, in any practical application you will need to have most of your programs
in a library so you can quickly make them all available to J. J calls these libraries scripts
(filename extension '.ijs') and runs them with the load verb, for example:
load 'JforC'

load reads lines from the script and executes them. These lines will normally be all
the verb and noun definitions your application needs, possibly including load
commands for other scripts. A script may end with a line executing one of the verbs it
defined, thereby launching the application; or, it may end after defining names, leaving
you in control at the keyboard to type sentences for J to execute.

If you are used to debugging with Visual C++� or the like, you will find the
environment less glitzy and more friendly. If you want to change a verb (function), you
simply edit the script, using the editor of your choice (I use the built-in editor provided
with J), and rerun it. The verb will be updated, but all defined nouns (objects) will be
unchanged. Even if you are running a large application�yea, even if the application is in

 9

the middle of reading from an asynchronous socket�you can change the program,
without recompiling, relinking, or reinitializing. If you'd like to add some debugging
code while the system is running, go right ahead. This easy interaction with an executing
program is one of the great benefits of programming in J.

Interrupting Execution
If a J verb is taking too long to run, press the BREAK key (Ctrl+BREAK, in

Windows) to return control to the keyboard.

Getting Help
Your first step in learning J should be to sign up for the J Forum at

www.jsoftware.com. A great many experienced J users monitor messages sent to the
Forum and are willing to answer your questions on J, from the trivial to the profound.

 10

3. A First Look At J Programs

Before we get into learning the details of J, let's look at a couple of realistic, if simple,
problems, comparing solutions in C to solutions in J. The J code will be utterly
incomprehensible to you, but we will nevertheless be able to see some of the differences
between J programs and C programs. If you stick with me through this book, you will be
able to come back at the end and understand the J code presented here.

Average Daily Balance
Here is a program a bank might use. It calculates some information on accounts

given the transactions that were performed during a month. We are given two files, each
one containing numbers in lines ended by (CR,LF) and numeric fields separated by TAB
characters (they could come from spreadsheets). Each line in the Accounts file contains
an account number followed by the balance in the account at the beginning of the month.
Each line in the Journal file contains an account number, the day of the month for a
transaction, and the amount of the transaction (positive if money goes into the account,
negative if money goes out). The records in the Journal file are in order of date, but not
in order of account. We are to match each journal entry with its account, and print a line
for each account giving the starting balance, ending balance, and average daily balance
(which is the average of each day's closing balance). The number of days in the month is
an input to the program, as are the filenames of the two files.

I will offer C code and J code to solve this problem. To keep things simple, I am not
going to deal with file-I/O errors, or data with invalid format, or account numbers in the
Journal that don't match anything in the Accounts file.

C code to perform this function might look like this:

#include <stdio.h>
#define MAXACCT 500
// Program to process journal and account files, printing
// start/end/avg balance. Parameters are # days in current
// month, filename of Accounts file, filename of Journal file
void acctprocess(int daysinmo, char * acctfn, char *jourfn)
{
 FILE fid;
 int nacct, acctx;
 float acctno, openbal, xactnday, xactnamt
 struct {
 float ano; // account number
 float openbal; // opening balance
 float prevday; // day number of last activity
 float currbal; // balance after last activity
 float weightbal; // weighted balance: sum of closing balances
 } acct[MAXACCT];

 11

 // Read initial balances; set day to start-of-month, sum of balances to 0
 fid = fopen(acctfn);
 for(nacct = 0;2 == fscanf(fid,"%f%f",acctno,openbal) {
 acct[nacct].ano = acctno;
 acct[nacct].openbal = openbal;
 acct[nacct].prevday = 1;
 acct[nacct].currbal = openbal;
 acct[nacct].weightbal = 0;
 ++nacct;
 }
 fclose(acctfn);

 // Process the journal: for each record, look up the account
 // structure; add closing-balance values for any days that
 // ended before this journal record; update the balance
 fid = fopen(jourfn);
 while(3 == fscanf(fid,"%f%f%f",acctno,xactnday,xactnamt) {
 for(acctx = 0;acct[acctx].ano != acctno;++acctx);
 acct[nacct].weightbal +=
 acct[nacct].currbal * (xactnday - acct[nacct].prevday);
 acct[nacct].currbal += xactnamt;
 acct[nacct].prevday = xactnday;
 }

 // Go through the accounts. Close the month by adding
 // closing-balance values applicable to the final balance;
 // produce output record
 for(acctx = 0;acctx < nacct;++acctx) {
 acct[nacct].weightbal +=
 acct[nacct].currbal * (daysinmo - acct[nacct].prevday);
 printf("Account %d: Opening %d, closing %d, avg %d\n",
 acct[acctx].ano, acct[acctx].openbal, acct[acctx].currbal,
 acct[acctx].weightbal/daysinmo);
 }
 fclose(fid);
}

The corresponding J program would look like this:

 12

NB. Verb to convert TAB-delimited file into numeric array
rdtabfile =: (0&".;.2@:(TAB&,)@:}:);._2) @ ReadFile @<

NB. Verb to process journal and account files
NB. y. is (# days in current month);(Account filename);
NB. (Journal filename)
acctprocess =: monad define
'daysinmo acctfn jourfn' =. y.
NB. Read files
'acctano openbal' =. |: rdtabfile acctfn
'jourano jourday jouramt' =. |: rdtabfile jourfn

NB. Verb: given list of days y., return # days that
NB. each balance is a day's closing balance
wt =. 13 : '(-~ 1&(|.!.(>:ndays))) 0{"1 y.'
NB. Verb: given an Account entry followed by the Journal
NB. entries for the account, produce (closing balance),
NB. (average daily balance)
ab =. 13 : '(wt y.) ({:@] , (%&ndays)@(+/)@:*) +/\ 1{"1 y.'

NB. Create (closing balance),(average daily balance) for
NB. each account. Assign the start-of-month day (1) to the
NB. opening balance
cavg =. (acctano,jourano) ab/.(1,.openbal),jourday,.jouramt

NB. Format and print all results
s =. 'Account %d: Opening %d, closing %d, avg %d\n'
s&printf"1 acctano ,. openbal ,. cavg
''
)

Let's compare the two versions. The first thing we notice is that the J code is mostly
commentary (beginning with NB.). The actual processing is done in 3 lines that read the
files, 3 lines to perform the computation of closing and average balance, and 2 lines to
print the results. J expresses the algorithm much more briefly.

The next thing we notice is that there seems to be nothing in the J code that is looping
over the journal records and the accounts. The commentary says 'create balances for each
account' and 'produce average daily balance for an account', tasks that clearly require
loops, and yet there is nothing resembling loop indexes. This is one of the miracles of J:
loops are implied; in C terminology, they are expressions rather than statements,
and so they can be assembled easily into single lines of code that replace many nested
loops. We will be spending a lot of time learning how to do this.

We also note that there is nothing in the J code corresponding to the
#define MAXACCT 500 in the C. This is one of the things that makes programming in
J so pleasant: you don't have to worry about allocating storage, or freeing it, or wondering
how long is long enough for a character-string variable, or how big to make an array.
Here, even though we don't know how many accounts there are until we have read the

 13

entire Accounts file, we simply read the file, split it into lines and numbers, and let the
interpreter allocate as much storage as it needs to hold the resulting array.

The last thing to see, and perhaps the most important, is that the C version is just a toy
program. It searches through the Accounts information for every record in the Journal
file. We can test it with a small dataset and verify that it works, but if we scale it up to
10,000 accounts and 1,000,000 journal entries, we are going to be disappointed in the
performance, because its execution time will be proportional to A*J where A is the
number of accounts and J the number of journal entries. It is every programmer's dread:
a function that will have to be rewritten when the going gets tough.

The J version, in contrast, will have execution time proportional to (A+J)*log(A+J).
We did nothing meritorious to achieve this better behavior; we simply expressed our
desired result and let the interpreter pick an implementation. Because we 'think big'�we
treat the entire Journal and Accounts files as units�we give the interpreter great latitude
in picking a good algorithm. In many cases the interpreter makes better decisions than
we could hope to, because it looks at the characteristics of the data before it decides on its
algorithm. For example, when we sort an array, the interpreter will use a very fast
method if the range of numbers to be sorted is fairly small, where 'fairly small' depends
on the number of items to be sorted. The interpreter takes great care in its
implementation of its primitives, greater care than we can normally afford in our own C
coding. In our example, it will use a high-speed method for matching journal entries with
accounts.

Calculating Chebyshev Coefficients
This algorithm for calculating coefficients of the Chebyshev approximation of a

function is taken verbatim from Numerical Recipes in C. I have translated it into J just so
you can see how compact the J representation of an algorithm can be. Again, the J code
will be gobbledygook for now, but it's concentrated gobbledygook.

 14

// Program to calculate Chebyshev coefficients
// Code taken from Numerical Recipes in C 1/e
#include <math.h>
#define PI 3.141592653589793
void chebft(a,b,c,n,func)
float a,b,c[];
float (*func)();
int n;
{
 int k,j;
 float fac,bpa,bma,f[300];

 bma = 0.5 * (b-a)
 bpa = 0.5 * (b+a)
 for(k = 0;k<n;k++) {
 float y = cos(PI*(k+0.5)/n);
 f[k] = (*func)(y*bma+bpa);
 }
 fac = 2.0/n;
 for (j = 0;j<n;j++) {
 double sum = 0.0;
 for(k = 0;k<n;k++)
 sum += f[k] * cos(PI*j*(k+0.5)/n);
 c[j] = fac*sum;
 }
}

J version:
chebft =: adverb define
:
f =. u. 0.5 * (+/y.) - (-/y.) * 2 o. o. (0.5 + i. x.) % x.
(2 % x.) * +/ f * 2 o. o. (0.5 + i. x.) *"0 1 (i. x.) % x.
)

 15

4. Declarations

J has no declarations. Good riddance! No more will you have to warn the computer
of all the names you intend to use, and their types and sizes. No more will your program
crash if you step outside an array bound. You specify the calculations you want to
perform; if, along the way, you want to assign a result to a name, J will allocate enough
space for the data. It will free the space when the name is no longer needed.

Seasoned C programmers have learned to use declarations to create a web of type-
checking, making sure that objects pointed to are of the expected type. This is an
example of making a virtue of necessity. Since J solves the problem much more
directly�by not having pointers at all�you will soon lose your uneasiness with weak
typing.

Arrays
But, you ask, without declarations, how does the computer know that a name

represents an array? For that matter, how do I know that a name represents an array?

The answer affords a first glimpse of the power of J. Every J verb, whether a
primitive (operator) or a user-written verb (function), accepts arguments that can be
arrays, even multidimensional arrays. How is this possible? Like this: Suppose you
write a verb that works with 2-dimensional arrays. Part of your verb definition will
indicate that fact. If your verb is executed with an argument that is a 3-dimensional
array, J will automatically split the 3-dimensional array into a sequence of 2-dimensional
arrays, call your verb, and put the pieces back together into an array of results.

We will very soon go into this procedure in great detail. For now, you should learn
the vocabulary J uses to deal with arrays.

What C calls an n-dimensional array of rank i×j×�×k is in J an array of rank n
with axes of length i,j,�,k.

Every noun (variable or object) has a shape which is the array (of rank 1) made by
concatenating the lengths of all its axes. For example, if q is the array corresponding to
the C array defined by the declaration

int q[4][5][6];
its shape is the array 4 5 6 . As you can see, the number of items in the shape is
exactly the rank.

Note: a sequence of numbers written with no intervening
punctuation defines a numeric array of rank 1 (i. e. a list).

You may have to use parentheses if you have adjacent
numbers that you don't want to have made into a list.

Unlike in C, an array in J may have one or more axes of length 0. Such an array has
no atoms, but its rank is still the number of its axes.

 16

A single number or character is called an atom (object of basic type) which is said
to have the type numeric or character as appropriate. (Actually, there are types other than
number and character, including a type that resembles a structure, but we won't get to
them for a while). An atom is also called a scalar. An atom is defined to have rank 0;
therefore, its shape is an array with 0 items, i. e. an empty array of rank 1.

Just as in C, every atom of an array must have the same type.

Cells
Because the execution of every J verb involves breaking the argument into pieces,

presenting the pieces to the verb, and assembling results, J has a vocabulary for
describing these operations.

A rank-3 array of shape 4 5, 6 such as the one defined in C by the declaration
 int q[4][5][6];
can be thought of as an array of 4 elements, each with rank 2 and shape 5 6, or as a 4×5
array of elements, each with rank 1 and shape 6, or as a 4×5×6 array of rank-0 atoms.
The term cell is used to indicate the rank of the elements that will be operated on. A
0-cell is an atom, a 1-cell is an element of rank 1, a 2-cell is an element of rank 2, and so
on.

Once you have picked a cell size, you can think of your noun as an array of cells; the
shape of that array is called the frame of the noun relative to the chosen rank of cell. It
follows that the frame, concatenated with the shape of the cells, will be equal to the shape
of the noun. The frame itself (like all shapes) is an array of rank 1.

The diagram illustrates cells of different ranks. Note that the twenty 6-atom 1-cells
are arranged in a 4×5 array; this is the meaning of the frame of the 1-cells. The four 5×6
2-cells are arranged as a vector of 2-cells; this is the meaning of their frame.

A selected cell is analogous to the subarray selected by indexing in C. Using q as
defined above, in C q[3] is a 5×6 array (i. e. a 2-cell); q[1][0] is a 6-element vector (i. e.
a 1-cell); q[2][0][3] is a scalar (0-cell).

 17

The noun q we have been using as an example can be thought of in any of the
following 4 ways:

 Frame Cells

as an array of Length Value Rank Shape

0-cells 3 4 5 6 0 (empty)

1-cells 2 4 5 1 6

2-cells 1 4 2 5 6

3-cells 0 (empty) 3 4 5 6

Choosing Axis Order
Because J verbs operate on cells of nouns, you should choose an order of axes that

makes the cells meaningful for your application. Referring to the figure, we can see that
the groups of items that fall into horizontal strips (1-cells) or horizontal slabs (2-cells)
will be easy to operate on individually. Vertical strips or slabs will not correspond to
cells and so will not be accessible individually; to work on them we may have to reorder
the axes of the noun to make them correspond to cells. Such reordering of axes is easy in
J but it can often be avoided by ordering the axes properly in the first place.

Negative Cell-Rank; Items
In some cases, you may know the length of the frame and want to define the cells to

have whatever rank is left over (for example, you may have a noun with one cell per
employee, but you may not know the rank of the cells). We say that you are selecting the
cells of the noun relative to the given frame. Negative cell-ranks indicate this. A _1-cell
has the shape corresponding to a frame of length 1 (5 6 in our example), a _2-cell has
the shape corresponding to a frame of length 2 (6 in our example), and so on. If the
specified frame is longer than the rank of the noun, the entire shape of the noun is used
for the frame (and the cells are 0-cells, i. e. atoms). In our example, a _3-cell, a _4-cell, a
_5-cell, etc., all refer to atoms. As an important case of this, the _1-cell of an atom is the
atom itself.

_1-cells are so important in J that they are given the name items. Our example has 4
items, each of shape 5 6 . An atom has one item, itself.

Remember: an atom has one item: itself.
The index of an item in an array is the sequence number of the item from the

beginning of the array. The first item in an array has the index 0, just as in C.

Lists
When we choose to view an array as a collection of its items, we say that the array is

a list of its items. In our example above, the items of the 4×5×6 array are 5×6 arrays, and
we say that the whole array is a list of 4 items each with shape 5 6 (equivalently, we say
that it is a list of four 5×6 arrays). So many of J's primitives operate on items of their
operands that we will find ourselves usually thinking of an array as a list of its items.

 18

When the word 'list' is used without any indication of what the list contains, the list is
assumed to contain atoms. So, 'the list x' refers to an array of rank 1 (one-dimensional
array). 0 3 5 is a numeric list.

Note that J's use of the term 'list' has nothing to do with linked lists such as you are
familiar with, where an element in the list contains a pointer to other elements. Since J
has no pointers at all, you will not need that meaning, and you can get used to calling
rank-1 arrays 'lists'. A list can also be called a vector.

Constant Lists
Character and numeric lists can be created without using a verb, simply by including

the list in a sentence. We have seen that a numeric list is recognized as a single word
representing the list. Similarly, a character or a character list can be represented directly
by a quoted string. C distinguishes between single-character constants (such as 'a') and
strings (such as "abc"), using single quotes for characters and double quotes for strings.
J uses only single quotes for defining character constants (the " character is a primitive in
its own right). If exactly one character is between the quotes, the value is an atom; if
none or more than one, the result is a list.

Array-creating verbs
Now that we know how to talk about arrays, we might as well create a few and see

what they look like. As mentioned earlier, every J verb can be used to create an array�
there are no special 'declaration' verbs�but we will start with a couple that do little else.
The J lines are taken from an interpreter session; you can type them into your own
session and get the same results. The indented lines were typed into J, and the
unindented ones are J's responses.

Dyad $ ($hape) and monad $ ($hape Of)
The verb dyad $ is invoked as x $ y . The result of dyad $ has the frame x

relative to the rank of the items of y, and is made up of the items of y, repeated cyclically
as needed. It follows that the shape of this result is x concatenated with the shape of an
item of y .

We will have to work together on this. Confronted with a definition like that, you
might: (a) decide that J must be a language for tax accountants, and give up; (b) decide
the definition is Greek and go on, hoping it will make sense later; (c) try a few examples
to get an idea for what the definition means; (d) read it over and over again until you
understand it. I hope you will eschew (a) and (b), and settle for no less than full
understanding. For my part, I will offer a few useful examples that you can compare
against the definition. Not everything in J will be as abstract as this.
 5 $ 2
2 2 2 2 2
The simplest case, creating (and displaying) a list of 5 items, each of which is 2 . Let's
see how this result matches the definition. y is a scalar, so it has one item, which is also
a scalar. Therefore, the result has the shape 5 (x (i. e. 5) concatenated with the shape of
an item of y; the shape of a scalar item of y is the empty list; 5 concatenated with an

 19

empty list is a list with the single element 5). The scalar is repeated to fill the 5 items of
the result. J displays a 1-cell on a single line, as shown.
 5 $ 'ab'
ababa
Now y is a list, but its items are still scalars, with rank 0 and shape empty; so the result
still has the shape 5 . The 5 items come from the items of y, cyclically.
 4 4 $ 'There is a tide in the affairs of men'
Ther
e is
 a t
ide
The items of y are still scalars, with rank 0 and shape empty; the result has the shape
4 4 . The 16 items come from the items of y, cyclically. Not all items of y are used. J
displays a rank-2 array as a sequence of lines, one for each 1-cell.
 0 $ 2

(The display is a single blank line) Just like 5 $ 2, but the resulting list has 0 items,
i. e. it is an empty list.
 1 $ 2
2
Similarly, a 1-item list.
 (0 $ 2) $ 2
2
Here (0 $ 2) produces an empty list, as we saw above, and that is the x to the second
$. The items of y are still scalars, so the result has shape empty (an empty list
concatenated with an empty list), i. e. it is a scalar.

The displays of a scalar and a 1-item list are identical. Does that mean that a scalar is
the same thing as a 1-item list? No. I mean no. NO! They are not (I say this with the
same resignation as when I tell my kids not to rollerblade too fast down our street,
knowing that only painful experience will drive the message home). How can you tell
them apart? What we need is a way to see the shape of a noun.

That way is monad $. The result of $ y is the shape of y (always a numeric list).
For example:
 $ 1 2 3 4
4
A 4-item list has the shape 4 . Did you forget that 1 2 3 4 is a single list rather than 4
separate numbers? You can ask the interpreter how it splits a line into words by using
monad ;: :
 ;: '$ 1 2 3 4'
+-+-------+
|$|1 2 3 4|
+-+-------+
The words are shown in boxes. The list 1 2 3 4 is recognized as a single word.

 20

 $ 6

The shape of a scalar is a 0-length list, as we have seen.
 $ 1 $ 2
1
Remember, all verbs execute right-to-left, so this is $ (1 $ 2), which gives the shape
of the 1-item list. When a verb can be invoked dyadically, it is, so the last $ is executed
as a monad, not as a dyad.
 $ (0 $ 2) $ 2

Here, we get the shape of the scalar�an empty list.
 $ 'a'

A single character is an atom, whose shape is the empty list.
 $'abc'
3
A 3-item list, one item for each character.
 $ ''
0
'' is the empty character string, which you will see a lot of. Because it is easy to type, it
is the value most often used when an empty list of any type will do.

Executing monad $ twice gives the rank: $ $ y is the rank of y (as a single-item
list). I suggest you not read on until you understand why.

Resuming our inquiries into dyad $, we have
 2 5 $ 1 10
 1 10 1 10 1
10 1 10 1 10
Again y is a list, so the items of y are scalars. The shape of the result is 2 5, and the
items of y are repeated to fill that shape. Note that the corresponding atoms in each cell
are aligned in the display.
 1 5 $ 1 10
1 10 1 10 1
Similarly, but now the result has shape 1 5. This is not the same as a 5-item list, which
has shape 5 . Again, monad $ shows the shape:
 $ 1 5 $ 1 10
1 5

When y is not a scalar or a list, its items are not scalars:

 21

 3 $ 1 5 $ 1 10
1 10 1 10 1
1 10 1 10 1
1 10 1 10 1
Remember, this is processed as 3 $ (1 5 $ 1 10). The parenthesized part
produces an array of shape 1 5; since this has rank 2, its items are its 1-cells, each with
shape 5. The shape of the overall result is x concatenated with the shape of an item of y,
to wit 3 5. This is populated with the cells of y, of which there is only 1.
 3 $ 2 5 $ 'There is a tide in the affairs of men'
There
 is a
There
You should be able to explain where each line came from.
 2 2 $ 2 5 $ 1 10
 1 10 1 10 1
10 1 10 1 10

 1 10 1 10 1
10 1 10 1 10
 $ 2 2 $ 2 5 $ 1 10
2 2 5
Now the shape of the result is 2 2 5, a rank-3 array. J displays the 2-cells with a blank
line in between. Similarly, a rank-4 array is displayed as all the 3-cells with 2 blank lines
in between, and so on for higher ranks.

Here are two exercises. Once you can explain each result, you will be well on your
way to becoming a J programmer. What will each of these sentences produce (answer on
the next page)?
 3 1 $ 2 5 $ 1 10
 2 3 $ 2 5 $ 1 10 15

 22

Solutions:
 3 1 $ 2 5 $ 1 10
 1 10 1 10 1

10 1 10 1 10

 1 10 1 10 1

 2 3 $ 2 5 $ 1 10 15
 1 10 15 1 10
15 1 10 15 1
 1 10 15 1 10

15 1 10 15 1
 1 10 15 1 10
15 1 10 15 1

Monad # (Tally)
The result of # y is a scalar, the number of items in y . This is the first item in the

list $y, except that if y is an atom, $y is empty but #y is 1 (because, remember, an atom
has one item, itself). If y is a list, #y is the length of the list. Quiz question: What is the
difference between the results of $ 1 2 3 and # 1 2 3?
 $ 1 2 3
3
 # 1 2 3
3
Answer: the result of monad $ is always a list, but the result of monad # is a scalar:
 $ $ 1 2 3
1
 $ # 1 2 3

#$y, like $$y, gives the rank of y . Since monad # produces a scalar rather than a
list, #$y is usually preferred. Just remember that the length of the shape is the rank.

Monad i. (Integers)
Monad i. has infinite rank and creates an array. i. y produces the same result as

y $ ints, where ints is the list of all nonnegative integers in order. Examples:
 i. 5
0 1 2 3 4
A list of 5 items; the items are ascending integers.
 i. 2 3
0 1 2
3 4 5
A rank-2 result.

 23

 i. 2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
A rank-3 result.
 i. 0

A list of 0 items.
 i. _5
4 3 2 1 0
If the argument is negative, the absolute value is used for the shape, but the items run in
reverse order.

 24

5. Loopless Code I�Verbs Have Rank

Most J programs contain no loops equivalent to while and for in C. J does contain
while. and for. constructs, but they carry a performance penalty and are a wise
choice only when the body of the loop is a time-consuming operation. You are just going
to have to learn to learn to code without loops.

I think this is the most intimidating thing about learning J�more intimidating even
than programs that look like a three-year-old with a particular fondness for periods and
colons was set before the keyboard. You have developed a solid understanding of loops,
and can hardly think of programming without using them. But J is a revolutionary
language, and all that is solid melts into air: you will find that most of your loops
disappear altogether, and the rest are replaced by small gestures to the interpreter
indicating your intentions.

Come, let us see how it can be done. I promise, if you code in J for 6 months, you
will no longer think in loops, and if you stay with it for 2 years, you will see that looping
code was an artifact of early programming languages, ready to be displayed in museums
along with vacuum tubes, delay lines, and punched cards. Remember, in the 1960s
programmers laughed at the idea of programming without gotos!

You are not used to classifying loops according to their function, but I am going to do
so as a way of introducting J's primitives. We will treat the subject of loopless iteration in
6 scattered chapters, showing how to replace different variants of loops:

1. Loops where each iteration of the loop performs the same operation on different
data;

2. Loops that apply an operation between all the items of the array, for example
finding the largest item;

3. Loops where the operation to be performed on each cell is different;

4. Loops that are applied to regularly-defined subsets of the data;

5. Loops that are applied to subsets of the data defined irregularly;

6. Loops that accumulate information between iterations of the loop.

The simplest case is the most important, and we start with a few experiments.

Examples of Implicit Loops
 2 + 3 4 5
5 6 7
The verb dyad + is addition, and we have our first example of an implicit loop: the left
argument 2 was added to each atom in the right argument.

 25

 1 2 3 + 4 5 6
5 7 9
And look! If each operand is a list, the respective items are added. We wonder if the
items of the shorter operand are repeated cyclically:
 1 2 + 4 5 6
|length error
| 1 2 +4 5 6
Evidently not. A 'length error' means that the operands to + did not 'agree' (and you get
an error if you try to add them). We will shortly understand exactly what this means.
 i. 2 3
0 1 2
3 4 5
A reminder of what monad i. does.
 0 100 + i. 2 3
 0 1 2
103 104 105
Whoa! The atoms of the left operand were applied to rows of the right operand.
Interesting. This seems to be some kind of nested implicit loop.

Let's learn a couple of more verbs, monad #. and monad #: . Monad #: creates the
binary representation of an integer (i. e. a list of 0s and 1s), and monad #. is its inverse,
creating the integer from the binary representation. For the longest time I couldn't
remember which was which, but at last I saw the mnemonic: the verb with the single dot
(#.) creates an atom from a list; the verb with multiple dots (#:) creates a list from an
atom:
 #: 5
1 0 1
 #. 1 0 1
5
Yes, they seem to perform as advertised. They can be applied to arrays:
]a =. #: 5 9
0 1 0 1
1 0 0 1
Look: the result is not a rank-1 list, but rather a rank-2 array, where each item has the
binary representation of one operand value (and notice, an extra leading zero was added
to the representation of 5). The little trick with]a =. will be explained later, but for
now just think of]a =. as 'assign to a and display the result'. With a assigned, we
have:
 #. a
5 9

This seems to be the desired result, but on reflection we are puzzled: how did the
interpreter know to apply #. to each 1-cell rather than to each 0-cell? Contrast this result
with the result of the verb monad +:, which means 'multiply by 2':

 26

 +: a
0 2 0 2
2 0 0 2
Evidently the verbs themselves have some attribute that affects the rank of cell they are
applied to. It's time for us to stop experimenting and learn what that attribute is.

The Concept of Verb Rank
Every verb has a rank�the rank of the cells to which it is applied. If the rank of the

verb's operand is smaller than the rank of the verb, the verb is applied to the entire
operand and it is up to the author of the verb to ensure that it produces a meaningful
result in that case.

Dyads have a rank for each operand, not necessarily the same.

A verb's rank can be infinite (_), in which case the verb is always applied to the
operand in its entirety. In other words, if a verb has infinite rank for an operand, that
operand is always processed as a single cell (having the rank of the operand).

If you don't know the rank of a verb, you don't know the verb. Using a verb of
unknown rank is like wiring in a power-supply of unknown voltage�it will do
something when you plug it in; it might even work; but if the voltage is wrong it will
destroy what it's connected to. Avoid embarrassment! Know the rank of the verbs you
use.

The definition page of each J verb gives the ranks of the verbs defined on the page,
right at the top of the page after the name of the verb. Since most pages define both a
monad and a dyad, you will usually find 3 numbers: the first is the rank of the monad, the
other two are the left and right rank of the dyad. For example, click up the page for #:
and you will see

#: _ 1 0
which means that monad #: has infinite rank, while dyad #: has left rank 1 and right
rank 0. For any verb, including user-written verbs, you can ask the interpreter the rank
by typing verbname b. 0 :
 #: b. 0
_ 1 0

Verb Execution�How Rank Is Used (Monads)
The implicit looping in J results from the interplay of verb rank and noun rank. For

monads, it goes like this:

1. Figure out the rank r of the cells that will be operated on; this will be the smaller
of rank of the verb and the rank of the operand. This rule applies even if the verb
has infinite rank: r will be the rank of the operand, which is another way of saying
that the verb applies to the operand in its entirety.

2. Find the frame f of the operand with respect to cells of rank r.
3. Think of the operand as an array with shape f whose items are cells of rank r.

Apply the verb to each r-cell, replacing each cell with the result of the verb.

 27

Obviously, this will yield an array of shape f whose items have the shape of the
result of applying the verb to an r-cell.

Let's look at some simple examples:
 i. 2 2
0 1
2 3
This will be the right operand.
 +: i. 2 2
0 2
4 6
The steps to get this result are:

Another example:
]a =. 2 2 4 $ 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0
0 0 1 1
0 0 0 1

0 1 0 0
0 0 1 0
This is a rank-3 array.

The verb rank is 0 and the noun rank is 2, so we will be
applying the verb to 0-cells. The frame f is 2 2

Think of the operand as a 2×2 array of
0-cells:

0 1

2 3

The verb is applied to each cell:
0 2

4 6

Since each result is an atom, i. e. a 0-cell, the
result is a 2×2 array of 0-cells, i. e. an array of

shape 2 2

0 2
4 6

Figure 1. Execution of +: i. 2 2

 28

 #. a
3 1
4 2

Controlling Verb Execution By Specifying a Rank
The implicit loops we have used so far are interesting, but they are not powerful

enough for our mission of replacing all explicit loops. To understand the deficiency and
its remedy, consider the new verb monad +/, which creates the total of the items of its
operand (just think of it as 'monad SumItems'):
 +/ 1 2 3
6
The result was 1 + 2 + 3, as expected.
 i. 2 3
0 1 2
3 4 5
 +/ i. 2 3
3 5 7
The result was 0 1 2 + 3 4 5, as expected (remember that the items are added, and
the items of i. 2 3 are 1-cells). Adding together a pair of 1-cells adds the respective
atoms, as we will soon learn.

This application of monad +/ to a rank-2 array corresponds to the C code fragment:
 for(j = 0;j<3;++j)sum[j] = 0;
 for(i = 0;i<2;++i)
 for(j = 0;j<3;++j)sum[j] += array[i][j];

Suppose we wanted to add up the items of each row, as in the C code fragment

The verb rank is 1 and the noun rank is 3, so we will be applying the
verb to 1-cells. The frame f is 2 2

Think of the operand as a 2×2 array of
1-cells:

0 0 1 1 0 0 0 1

0 1 0 0 0 0 1 0

The verb is applied to each cell:
3 1

4 2

Since each result is an atom, i. e. a 0-cell, the
result is a 2×2 array of 0-cells, i. e. an array of

shape 2 2

3 1
4 2

Figure 2. Execution of #. 2 2 4 $ 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0

 29

 for(i = 0;i<2;++i) {
 sum[i] = 0;
 for(j = 0;j<3;++j)sum[i] += array[i][j];
 }
to produce the result 3 12? How can we do it in J? What we have learned so far is not
enough, but if we had a way to make monad +/ apply to 1-cells�if we could make
monad +/ have rank 1�our problem would be solved: the implicit looping would cause
each row to be summed and the results collected.

You will not be surprised to learn that J does indeed provide a way to apply monad
+/ on 1-cells. That way is the rank conjunction " .

We will learn all about conjunctions later on�the syntax is a little different than for
verbs�but for now, we'll try to understand this " . It's used like this:
 v"r
to produce a new verb that is v applied to r-cells individually. This is a simple idea,
but its ramifications spread wide. As a first example:
 +/"1 i. 2 3
3 12
This is what we were looking for. It happened this way:

Examples Of Verb Rank
Here are some more examples using a rank-3 array as data:

The verb rank is 1 and the noun rank is 2, so we will be applying
the verb to 1-cells. The frame f is 2

Think of the operand as a list of 2 1-cells: 0 1 2 3 4 5

The verb monad +/ is applied to each cell: 3 12

Since each result is an atom, i. e. a 0-cell, the
result is a list of 2 0-cells, i. e. an array of shape

2
3 12

Figure 3. Execution of +/"1 i. 2 3

 30

 i. 2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

 +/"1 i. 2 3 4
6 22 38
54 70 86

The verb rank is 1 and the noun rank is 3, so we will be applying the
verb to 1-cells. The frame f is 2 3

Think of the operand
as a 2×3 array of 1-cells:

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

The verb monad +/ is
applied to each cell:

6 22 38

54 70 86

Since each result is an
atom, i. e. a 0-cell, the
result is a 2×3 array of
0-cells, i. e. an array of

shape 2 3

6 22 38
54 70 86

Figure 4. Execution of +/"1 i. 2 3 4

 31

 +/"2 i. 2 3 4
12 15 18 21
48 51 54 57

 +/"3 i. 2 3 4
12 14 16 18
20 22 24 26
28 30 32 34
The 2-cells are added, leaving a single 2-cell as the result.

How about i."0 (2 2 2)�can you figure out what that will produce? (Notice I
put parentheses around the numeric list 2 2 2 so that the rank 0 wouldn't be treated as
part of the list)

The verb rank is 2 and the noun rank is 3, so we will be applying the
verb to 2-cells. The frame f is 2

Think of the operand
as a list of 2 2-cells:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

The verb monad +/ is
applied to each cell. As

we have learned, this sums
the items, making each

result a rank-1 list

12 15 18 21 48 51 54 57

Since each result is a
rank-1 list, i. e. a 1-cell,
the result is a list of 2

1-cells, i. e. an array of
shape 2 4

12 15 18 21
48 51 54 57

Figure 5. Execution of +/"2 i. 2 3 4

 32

 i."0 (2 2 2)
0 1
0 1
0 1

If you worked through that, it might have occurred to you that the shape of each result
cell depended on the value of the operand cell, and that if those cells had not been
identical, there would be some rough edges showing when it came time at the end to join
the dissimilar result cells together. If so, full marks to you! That can indeed happen. If it
does, then just before the cells are joined together to make the final result, the interpreter
will bulk up the smaller results to bring them up to the shape of the largest. First, if the
ranks of the results are not identical, each result will have leading axes of length 1 added
as needed to bring all the results up to the same rank (e. g. if one result has shape 2 5
and another has shape 5, the second will be converted to shape 1 5, leaving the data
unchanged). Then, if the lengths of the axes are not identical, the interpreter will extend
each axis to the maximum length found at that axis in any result: this requires adding
atoms, called fills, which are always 0 for numeric results and ' ' for literal results.
Example:
 i."0 (0 1 2 3)
0 0 0 NB. original result was empty list; 3 fills added
0 0 0 NB. original result was 0; 2 fills added
0 1 0 NB. original result was 0 1; 1 fill added
0 1 2 NB. this was the longest result, no fill added

Negative Verb Rank
Recall that we defined the _1-cell of a noun n to be the cells with rank one less than

the rank of n, and similarly for other negative ranks. If a verb is defined with negative
rank r, it means as usual that the verb will apply to r-cells if possible, but with r negative
the rank of those r-cells will depend on the rank of the operand. After the first step of
processing the verb, which decides what rank of cell the verb will be applied to, verbs
with negative rank are processed just like verbs of positive rank.

The verb rank is 0 and the noun rank is 1, so we will be applying
the verb to 0-cells. The frame f is 3

Think of the operand as a list of 3 0-cells
(i. e. atoms): 2 2 2

The verb monad i. is applied to each cell: 0 1 0 1 0 1

Since each result is a list, i. e. a 1-cell, the
result is a list of 3 1-cells each with shape 2, i. e.

an array of shape 3 2

0 1
0 1
0 1

Figure 6. Execution of i."0 (2 2 2)

 33

 +/ "_1 i. 3
0 1 2
Here the _1-cells are atoms, so applying monad SumItems on each one has no effect.
 +/ "_1 i. 2 3
3 12
The operand has rank 2, so this expression totals the items in each 1-cell.
 +/ "_2 i. 2 2 3
 3 12
21 30
The operand has rank 3, so this totals the items in each 1-cell, leaving a 2×2 array of
totals.

Verb Execution�How Rank Is Used (Dyads)
We are at last ready to understand the implicit looping that is performed when J

processes a dyadic verb. Because a dyadic verb has two ranks (one for each operand),
and these two ranks interact with each other as well as the ranks of the operands, you
should not read further until you thoroughly understand what we have covered already.

The rank conjunction u"n is used to specify the rank of a verb. Since each verb has
the potential of being invoked monadically or dyadically, the rank conjunction must
specify the ranks for both valences. This requires 3 ranks, since the monad has a single
rank and the dyad a left and a right rank. The ranks n may comprise from 1 to 3 items: if
3 ranks are given they are, in order, the monad's rank, the dyad's left rank, and the dyad's
right rank. If two ranks are given, the first is the dyad's left rank and the second is used
for the dyad's right rank and the rank of the monad. If there is only one item in the list, it
is used for all ranks. So, v"0 1 has monad rank 1, dyad left rank 0, and dyad right rank
1 . As usual, J primitives themselves have the ranks shown in the Dictionary.

Processing of a dyad follows the same overall plan as for monads, except that with
two operands there are two cell-sizes (call them lr and rr) and two frames (call them lf
and rf). If the left and right frames are identical, the operation can be simply described:
the lr-cells of the left operand match one-to-one with the rr-cells of the right operand; the
dyad is applied to those matched pairs of cells, producing a result for each pair; those
results are collected as an array with frame lf. We illustrate this case with an example:

 34

 (i. 2 2) + i. 2 2
0 2
4 6

As you can see, we were correct when we asserted that the sum of two cells of the
same shape is taken by adding their respective items.

For a second example we will introduce a new verb, dyad , (the verb is the comma
character). x , y creates an array that contains the items of x followed by the items of
y; in other words, it concatenates x and y . Dyad , has infinite rank, which means that
it applies to its operands in their entirety and so its detailed operation is defined not by
the implicit looping we have been learning, but instead by the definition of the verb in the
Dictionary. You are invited to read the entry for dyad , to understand exactly what
happens when x and y have different rank; we are interested only in the cases where x
and y are scalars or lists, and a few examples will suffice:

The verb has left rank 0, and the left operand has rank 2, so the operation will be
applied to 0-cells of the left operand. The verb has right rank 0, and the right

operand has rank 2, so the operation will be applied to 0-cells of the right operand.
The left frame is 2 2, the right frame is 2 2 .

Think of the left operand
as a 2×2 array of 0-cells,
and the right operand as a

2×2 array of 0-cells:

0 1
2 3

0 1
2 3

The corresponding left
and right operand cells are

paired:

0 0 1 1

2 2 3 3

The operation dyad + is
performed on each pair of

cells:

0 2

4 6

Since each result is an
atom, and the frame is

2 2, the result is an array
with shape 2 2

0 2
4 6

Figure 7. Execution of (i. 2 2) + i. 2 2

 35

 1 2 3 , 6
1 2 3 6
 1 2 3 , 1 2 3
1 2 3 1 2 3
 4 , 6
4 6
 1 2 3 , 0$6
1 2 3

As long as you have just scalars and lists, the result of dyad , is simply
concatenation, always resulting in a list. Now see if you can figure out what
(i. 3 3) ,"1 0 i. 3 will do before reading the explanation that follows:

The verb (dyad ,"1 0) has left rank 1, and the left operand has rank 2, so the
operation will be applied to 1-cells of the left operand. The verb has right rank 0,
and the right operand has rank 1, so the operation will be applied to 0-cells of the

right operand. The left frame is 3, the right frame is 3 .

Think of the left operand
as a list of 3 1-cells, and
the right operand as a list

of 3 0-cells:

0 1 2 3 4 5 6 7 8 0 1 2

The corresponding left
and right operand cells are

paired:
0 1 2 0 3 4 5 1 6 7 8 2

The operation dyad , is
performed on each pair of

cells:
0 1 2 0 3 4 5 1 6 7 8 2

Since each result is a
1-cell of shape 4, and the
frame is 3, the result is an

array with shape 3 4

0 1 2 0
3 4 5 1
6 7 8 2

Figure 8. Execution of (i. 3 3) ,"1 0 i. 3

 36

 (i. 3 3) ,"1 0 i. 3
0 1 2 0
3 4 5 1
6 7 8 2

When Dyad Frames Differ: Operand Agreement
The processing of dyads has an extra step not present for monads, namely the pairing

of corresponding cells of the left and right operands. As long as the frames lf and rf are
the same, as in the examples so far, this is straightforward. If the frames are different, J
may still be able to pair left and right cells, using another level of implicit looping, one
that provides considerable additional programming power. The formal description that
follows is not easy to follow�you might want to skim over it and read it in detail after
you have studied the examples that follow.

J requires that one of the frames be a prefix of the other (if the frames are identical,
each is a prefix of the other and all the following reduces to the simple case we have
studied). The common frame cf is the part of the frames that is identical, namely the
shorter of the two frames; its length is designated rcf. If we look at the cells of the
operands relative to this common frame (i. e. the (-rcf)-cells), we see that for the operand
with the shorter frame, these cells are exactly the rank that will be operated on, while for
the operand with the longer frame, each (-rcf)-cell contains multiple operand cells.

First, the (-rcf)-cells of the two operands are paired one-to-one (because they have the
same frame), leaving each shorter-frame operand cell paired with a longer-frame
(-rcf)-cell. Then, the longer-frame (-rcf)-cells are broken up into operand cells, with each
operand cell being paired with a copy of the shorter-frame operand cell that was paired
with the (-rcf)-cell (an equivalent statement is that the cells of the shorter-frame operand
are replicated to match the surplus frame of the longer-frame operand). This completes
the pairing of operand cells, and the operation is then performed on the paired operand
cells, and collected using the longer frame. Maybe some examples will help.

 37

 100 200 + i. 2 3
100 101 102
203 204 205

The simplest and most common case of different-length frames is when the shorter
frame is of zero length; in other words, when one of the operands has only one cell. In
that case, the single cell is replicated to match every cell of the longer operand. An easy
way to force an operand to be viewed as a single cell is to make the verb have infinite
rank for that operand. This is not a special case�the behavior follows from the rules
already given�but it's worth an example:

The verb (dyad +) has left rank 0, and the left operand has rank 1, so the operation
will be applied to 0-cells of the left operand. The verb has right rank 0, and the
right operand has rank 2, so the operation will be applied to 0-cells of the right

operand. The left frame is 2, the right frame is 2 3 .

The common frame is 2, with
length 1, so think of each operand

as a list of 2 _1-cells
100 200 0 1 2 3 4 5

The _1-cells of the operands are
paired: 100 0 1 2 200 3 4 5

The longer-frame operand (the right
one) is broken up into operand

0-cells, each being paired with a
copy of the shorter-frame operand

cell. Each paired _1-cell becomes a
row of paired operand cells:

100 0 100 1 100 2

200 3 200 4 200 5

The operation dyad + is performed
on each pair of cells:

100 101 102

203 204 205

Since each result is an atom, and
the longer frame is 2 3, the result

is an array with shape 2 3

100 101 102
203 204 205

Figure 9. Execution of 100 200 + i. 2 3

 38

 'abc' ,"_ 0 'defg'
abcd
abce
abcf
abcg

You must thoroughly understand this example, where one operand has only one cell,
because it occurs frequently. The handling of the general case of dissimilar frames is
uncommon enough that you do not need to understand it perfectly right now�you'll
know when you need it, and you can sweat out the solution the first few times. Here are
a few observations that may help when that time comes:

It is always entire cells of the operand with the shorter frame that are replicated.
A cell is never tampered with; nothing inside a cell will be replicated. And, it is not the
entire shorter-frame operand that is replicated, but cells singly, to match the surplus
frame of the other operand.

The verb (dyad ,"_ 0) has left rank _, and the left operand has rank 1, so the
operation will be applied to 1-cells of the left operand. The verb has right rank 0,
and the right operand has rank 1, so the operation will be applied to 0-cells of the

right operand. The left frame is (empty), the right frame is 4 .

The common frame is
(empty), with length 0, so
take each operand in its

entirety:

abc defg

The cells of the operands
are paired: abc defg

The longer-frame operand
(the right one) is broken up
into operand 0-cells, each

being paired with a copy of
the shorter-frame operand

cell:

abc d abc e abc f abc g

The operation dyad , is
performed on each pair of

cells:
abcd abce abcf abcg

Since each result is a 1-cell
with length 4, and the

longer frame is 4, the result
is an array with shape 4 4

abcd
abce
abcf
abcg

Figure 10. Execution of 'abc' ,"_ 0 'defg'

 39

This fact, that single operand cells are replicated, is implied by the decision that the
shorter frame must be a prefix of the longer frame: the single cell is the only unit that can
be replicated, since the surplus frame is at the end of the frame rather than the beginning.
Take a moment to see that this was a good design decision. Why should the following
fail?
 1 2 3 + i. 2 3
|length error
| 1 2 3 +i.2 3

The 'length error' means that the operands do not agree, because the frame-prefix rule
is not met. Your first thought might be that adding a 3-item list to an array of 2 3-item
lists should be something that a fancy language like J would do without complaining; if
so, think more deeply. J does give you a way to add lists together�just tell J to apply the
verb to lists:
 1 2 3 +"1 i. 2 3
1 3 5
4 6 8

Operands in which one shape is a suffix of the other, as in this example, are handled
by making the verb have the rank of the lower-rank operand; that single operand cell will
then be paired with all the cells of the other operand. By requiring dissimilar frames to
match at the beginning, J gives you more control over implicit looping, because each
different verb-rank causes different operand cells to be paired. If dissimilar frames
matched at the end, the pairing of operand cells would be the same regardless of verb-
rank.

A Mistake To Avoid
Do not fall into the error of thinking that v"r is 'v with the rank changed to r'. It is

not. Nothing can ever change the rank of the verb v�v"r is a new verb which has the
rank r. This distinction will become important presently as we discuss nested loops.
Consider the verb v"1"2,which is parsed as (v"1)"2 . If v"r changed the rank of
v, it would follow that v"1"2 would be 'v with the rank changed to 1 and then to 2', i. e.
identical to v"2 . But it is not: actually, v"1"2 applies v"1 on the 2-cells of the
operand, while v"2 applies v on those same cells�and we have seen that v and v"1 are
very different verbs:
 +/"1"2 i. 2 3 4
 6 22 38
54 70 86
 +/"2 i. 2 3 4
12 15 18 21
48 51 54 57
Summing the 2-cells (+/"2) is not the same as summing the 1-cells within each 2-cell
(+/"1"2). Make sure you see why.

Ah, you may say, but +/"1"2 is equivalent to +/"1 . You are right for the
monadic case, but not for the dyadic:

 40

 (i. 3 4) +"1"2 i. 2 3 4
 0 2 4 6
 8 10 12 14
16 18 20 22

12 14 16 18
20 22 24 26
28 30 32 34
 (i. 3 4) +"1 i. 2 3 4
|length error
| (i.3 4) +"1 i.2 3 4
Dyad +"1"2 is executed as (+"1)"2, i. e. it has rank 2. So, there is only one 2-cell of
the left operand i. 3 4, and that cell is replicated to match the shape of the right
operand. The operands then agree, and the 1-cells can be added. Trying to add the
1-cells directly with +"1 fails, because the frames of the operands with respect to 1-cells
do not agree.

The situation becomes even more complicated if the assigned left and right ranks are
not the same. My advice to you is simple: remember that u"r is a new verb that
executes u on r-cells.

 41

6. Starting To Write In J

It's time to write some simple J programs. Writing code without loops will be a shock
at first. Many accomplished C programmers give up because they find that writing every
loop is a struggle, and they remember how easy it was in C. I hope you will have more
persistence. If you do, you will soon stop thinking in loops, translating each one into J;
instead, you will think directly about operand cells, and the code will flow effortlessly.

In C, when you are going to operate on some array, say x[3][4][5], you write the
code from the outside in. You know you are going to need 3 nested loops to touch all the
cells; you write the control structure for each loop (possibly after thinking a bit about the
order of nesting); finally, you fill in code at whatever nesting level it fits. Even if all your
work is in the innermost loop, you have to write all the enclosing layers just to be able to
index the array. When I was writing in C, I made sure my output was measured in lines
of code, so that I could call this 'productivity'.

In J, you grab the heart of the watermelon rather than munching your way in starting
at the rind. You decide what rank of operand cell you are going to work on, and you
write the verb to operate on a cell. You give the verb the rank of the cells it operates on,
and then you don't care about the shape of the operand, because J's implicit looping will
apply the verb to all the cells, no matter how many there are. A pleasant side effect of
this way of coding is that the verbs you write can be applied to operands of any shape:
write a verb to calculate the current value of a loan, and you can use that very verb to
calculate the current value of all loans at a branch, or at all branches in the city, or all
over the state.

We will write a number of J verbs starting from their C counterparts so you can see
how you need to change your thinking. For these examples, we will imagine we are in
the payroll department of a small consulting business, and we will answer certain
questions concerning some arrays defined as follows:

empno[nemp] (in J, just empno) - employee number for each member of the staff.
The number of employees is nemp.

payrate[nemp] - number of dollars per hour the employee is paid

billrate[nemp] - number of dollars per hour the customer is billed for the services of
this employee

clientlist[nclients] - every client has a number; this is the list of all of them. The
number of clients is nclient.

emp_client[nemp] - number of the client this employee is billed to

hoursworked[nemp][31] - for each employee, and for each day of the month, the
number of hours worked

To get you started thinking about cells rather than loops, I am going to suggest that
you use C-style pseudocode written in a way that is easily translatable into J. Your
progress in J will be measured by how little you have to use this crutch.

 42

Problem 1: How many hours did each employee work? The C code for this is:
void emphours(hrs)
int hrs[]; // result: hrs[i] is hours for employee i
{
 int i, j;
 for(i = 0;i<nemp;++i)
 for(j = 0,hrs[i] = 0;j<31;++j)hrs[i] += hoursworked[i][j];
}

The first step in translating this into J is to write the loops, but without loop indexes:
instead, indicate what elements will be operated on:
for (each employee)
 for(each day)take the sum of hoursworked

Now, figure out what ranks the operands have. The hoursworked items that are
added are scalars, so we will be looping over a list of them; that means we want the sum
of items of a rank-1 list. So the inner loop is going to be +/"1 . What about the outer
loop? The information for each employee has rank 1 (each employee is represented in
hoursworked by a single row), so a verb applied to each employee should have rank 1.
Note that we don't worry about the actual shape of hoursworked�once we figure out
that our verb is going to operate on 1-cells, we let J's implicit looping handle any
additional axes. We build up the loops by applying the rank conjunction for each one, so
we have the inner loop +/"1 and the outer loop of rank 1; combined, they are
+/"1"1 . The "1"1 can be changed to a single "1, and we get the final program:
emphours =: monad : '+/"1 hoursworked'

Problem 2: How much did each employee earn in wages? The C code is:
void empearnings(earns)
int earns[]; // result: earns[i] is wages for employee i
{
 int i, j;
 for(i = 0;i<nemp;++i) {
 for(j = 0,earns[i] = 0;j<31;++j)earns[i] += hoursworked[i][j];
 earns[i] *= payrate[i];
 }
}

When we write the pseudocode, we will change the algorithm just a bit: rather than
multiplying each total by the billing rate just after the total is calculated, we will make
one loop to calculate the totals, and then a second pass to multiply by the billing rate.
This is a case where good J practice differs from good C practice. Because of the implicit
looping that is performed on all verbs, you get better performance if you let each verb
operate on as much data as possible. You may at first worry that you're using too much
memory, or that you might misuse the processor's caches; get over it. Apply verbs to
large operands. The pseudocode is:

 43

for (each employee)
 for(each day)take the sum of hoursworked
for(each pair of wage_rate and sum)multiply the pair

The first two loops are just +/"1 hoursworked as before. The last loop clearly
multiplies scalars, so it is *"0 . We note that dyad * has rank 0, so we don't need to
specify the rank, and we get the final program:
empearns =: monad : 'payrate * +/"1 hoursworked'

Problem 3: How much profit did each employee bring in? C code:
void empprofit(profit)
int profit[]; // result: profit[i] is profit from employee i
{
 int i, j, temp;
 for(i = 0;i<nemp;++i) {
 for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j];
 profit[i] = temp * (billrate[i] - payrate[i]);
 }
}

Again, we create a new loop to calculate the list of profit for each employee:
for (each employee)
 for(each day)take the sum of hoursworked
for (each employee)take billing_rate - wage_rate;
for(each pair of profit and sum)multiply the pair

The profit is clearly a difference of scalars applied to two lists, therefore it will be
-"0 or equivalently simply - . The program then is
empprofit =: monad define
(billrate - payrate) * +/"1 hoursworked
)

 44

7. More Verbs

Before we can write more complex programs, we need to learn some more verbs. We
will group them into classes and give a few mnemonic hints.

Before we start, I should point out a convention of J: if a dyadic verb is asymmetric,
you should think of x as operating on y, i. e. x is control information and y is data. We
will note the exceptions to this rule�%, /:, \:, -, -., and e.�and the reasons for the
exception.

Arithmetic Dyads
All these verbs have rank 0 and produce a scalar result, so if they are applied to two

operands of equal shape the result will also have that shape; if applied to two operands
that agree, the result has the shape of the larger operand.

x + y addition

x - y subtraction (y operates on x to match the mathematical definition)

x * y multiplication

x % y division Note that the slash has another use, so % is division. You don't have to
worry about division by zero: it produces _ (infinity) or __ (negative infinity) except
for 0%0, which yields 0 .

x ^ y exponentiation (x to the power y). 0^0 yields 1 .

x ^. y logarithm (base-x logarithm of y)

x | y modulus (remainder when y is divided by x . For the longest time I had trouble
remembering dyad |; it seemed that the divisor should be y by analogy to dyad % .
The inconsistency is that J defines x % y as 'x divided by y' to match accepted
practice in mathematics; that makes dyad % anomalous in J, because we have y
operating on x).

The comparison verbs have rank 0, and produce Boolean results in which 1 means
true, 0 means false. They use tolerant comparison, which means that two values that are
very close to equal are considered equal. This saves you the trouble of adding small
amounts to mask the effects of floating-point rounding: 1 = 3 * 1 % 3 is 1, unlike
1.0 == 3.0 * 1.0 / 3.0 whose value depends on the compiler. If you need exact
comparison, the Dictionary will tell you how to do it.

x = y equal

x ~: y not equal (if you squint the colon looks like an equal sign)

x > y greater-than

 45

x < y less-than

x >: y greater-than or equal (if you squint the colon looks like an equal sign)

x <: y less-than or equal

Boolean Dyads
These verbs have rank 0 and are applied to Boolean arguments to produce Boolean

results:

x *. y Boolean AND

x +. y Boolean OR

x = y Boolean XNOR (1 if the operands are equal)

x ~: y Boolean XOR (1 if operands differ)

Min and Max Dyads
These verbs are useful for performing tests, because they perform the operation item-

by-item, replacing a C loop that does a test for each atom. They have rank 0 and produce
a scalar in each cell, so the result has the shape of the larger operand.

x >. y the greater of x and y

x <. y the lesser of x and y

Arithmetic Monads
These verbs have rank 0.

>: y increment (y+1)

<: y decrement (y-1)

<. y the largest integer not greater than y (floor function)

>. y the smallest integer not less than y (ceiling function)

| y absolute value of y

* y signum of y (_1 if y is negative, 0 if y is tolerantly close to 0, 1 if y is positive)

x o. y trigonometric function. Think of dyad o. as a monad, selecting the function
based on x . For example, 1 o. y is sin(y), and _3 o. y is arctan(y). The
Dictionary lists the functions.

-. y 1-y

Boolean Monad
-. y (rank 0) Negate y This is simply the boolean interpretation of 1-y .

 46

Operations on Arrays
These verbs operate on entire arrays; they have infinite right rank (so they look at the

entire y), and they have left rank as appropriate for the operation performed. I am going
to give a highly simplified definition of the functions of these verbs; consult the
Dictionary to see all they can do.

Dyads
Selection: { # -.

x { y (From)

No, nothing was left out! { is not paired with }; it is a verb and stands by itself.

The left rank is 0; the result is item number x of y . One of the great insights of J
is the realization that selection, which in most other languages requires a special
syntax like C's y[x], is really just a dyadic verb like any other. Examples:
 2 { 3 1 4 1 5 9
4
y has rank 1; its items have rank 0; item number 2 is 4 .
 2 4 { 3 1 4 1 5 9
4 5
The left frame is 2; each atom of x selects an item of y (each an atom), and the
results are made into a 2-item list.
 1 { i. 3 3
3 4 5
y has rank 2; its items have rank 1; item number 1 is 3 4 5 .
 2 1 { i. 3 3
6 7 8
3 4 5
The left frame is 2; each atom of x selects an item of y (each a list), and the results
are made into a 2×3-item array.

There are many variations on the format of x, providing for multidimensional
indexing where each index can be a list. You will have to wait a bit to learn them, but
I will note that a negative index counts back from the end of the array:
 _1 { 3 1 4 1 5 9
9

x # y (Copy)

Left rank is 1. If x is a list whose items are all 0 or 1, the result has the same rank
as y, and contains just the items of y for which the corresponding item of x is 1. For
example:

 47

 1 0 1 0 0 0 # 3 1 4 1 5 9
3 4
 0 0 1 # i. 3 4
8 9 10 11

x -. y (Remove)

Left rank is infinite. Any items of x that match items of y are removed:
 1 2 3 4 5 4 3 -. 2 4
1 3 5 3

The verb is defined with y operating on x because of the analogy with - .

Indexing: i. e.

x i. y (Index Of)

The left rank is infinite. x i. y looks through the items of x to find one that
matches y; the result is the item number of the first match. Examples:
 3 1 4 1 5 9 i. 5
4
 (i. 4 3) i. 6 7 8
2

It may occur to you that for y to match an item of x, the rank of y must be the
same as the rank of an item of x (call that rix, which is one less than the rank of x
(namely #$x) unless x is an atom; formally, rix is (0 >. (#$x) - 1) or, more
cleverly, #${.x). If y is of higher rank, each rix-cell of y is matched against items
of x . Formally, x i. y is equivalent to x i."(_,rix) y . Example:
 3 1 4 1 5 9 i. 1 5
1 4
 (i. 3 3) i. (i. 2 3)
0 1

If an rix-cell of y matches none of the items of x, the result value for that cell is
#x, i. e. one more than the largest valid item-number of x :
 3 1 4 1 5 9 i. 8 4 _1
6 2 6

To be hair-splittingly accurate we must say that x i. y is equivalent to
x i."(_,rix)"_ y because the rank of dyad i. is infinite. This distinction will
matter eventually.

x e. y (Element Of)

The left rank is infinite. x e. y is a lightweight version of y i. x; the result
is 1 if x matches an item of y, 0 if not. The verb is applied to riy-cells of x (where
riy is the rank of an item of y). Formally, x e. y is the same as
(#y) ~: y i. x . Dyad e. is an exception to the rule that x is control

 48

information and y is data. It was defined to be reminiscent of mathematical epsilon
meaning 'element of'.

Take and Drop: {. }.

x {. y (Take)
x }. y (Drop)

The left rank is 1, but the verb handles scalars also; we will consider only the case
where x is a scalar. x {. y (take) takes the first x items of y, i. e. it produces a
result which consists of the first x items of y; x }. y (drop) discards the first x
items of y . If x is negative, x {. y takes the last (|x) items of y, and x }. y
discards the last (|x) items (remember, |x is the absolute value of x). The rank of
the result is always the same as the rank of y, and in all cases the order of items is
unchanged. Examples:
 2 {. 3 1 4 1 5 9
3 1
 2 }. 3 1 4 1 5 9
4 1 5 9
 _2 {. 3 1 4 1 5 9
5 9
 _1 }. i. 3 3
0 1 2
3 4 5

x {. y always gives you as many items as you asked for. If you overtake by
asking for more than #y items, J will create extra ones, filling them with 0 or ' ' as
appropriate:
 5 {. 3 1 4
3 1 4 0 0
 _5 {. 'abc'
 abc NB. Negative overtake: fills added at front

We have met fills before; they were added to bring the results from different cells
of a verb up to a common shape so that they could be made into an array. The fills
added by overtake are different: they are part of the execution of the verb itself. We
will distinguish the two types of fill, calling the ones added by the verb itself verb
fills and the ones added to make cell-results compatible framing fills. Framing fills
are always 0 or ' ', but you can specify the value to use for a verb fill, using the fit
conjunction !. :
 5 {.!.9 (3 1 4)
3 1 4 9 9
 _5 {.!.'x' 'abc'
xxabc

The fit conjunction creates a new verb; in this case {.!.f is a verb that looks
just like {. but uses f for the verb fill.

The fit conjunction is by no means reserved for specifying verb fills: it is
available for use on any primitive to make a small change to the operation of the

 49

primitive. If !. has a meaning for a primitive, that meaning is given in the
Dictionary entry for the primitive.

Joining Arrays: ,. ,:

x ,. y (Stitch)

The left rank is infinite. x ,. y is equivalent to x ,"_1 y . That means
that dyad , is applied to the corresponding items of x and y, making each item of
the overall result the concatenation of the corresponding items. Example:
 3 4 5 ,. 7 8 9
3 7
4 8
5 9

x ,: y (Laminate)

The left rank is infinite. x ,: y is a list of 2 items: item 0 is x and item 1 is y . If
x and y do not have the same shape, they are brought to a common rank and padded with
fills to a common shape. Dyad ,: concatenates x and y along an added axis, in contrast
to dyad , which concatenates them along their leading axis:
 3 4 5 ,: 7 8 9
3 4 5
7 8 9
Contrast this with dyad ,. above or dyad , which would produce 3 4 5 7 8 9 .

 1 2 , 3 4 ,: 5 6
1 2
3 4
5 6

Take a moment to understand why in this example the first verb is dyad , and the second
is dyad ,: .

Rotate Left and Shift Left: |.

x |. y (Rotate Left)

The left rank is 1, but we will discuss only the case where x is a scalar. The result
has the same shape as y, with the items of y rotated x places to the left (with
wraparound). If x is negative, the items are rotated to the right. Examples:

 50

 2 |. 3 1 4 1 5 9
4 1 5 9 3 1
 _1 |. i. 3 3
6 7 8
0 1 2
3 4 5

x |.!.f y (Shift Left)

When the fit conjunction is used, any item that is rotated across the beginning of
y is replaced by the fill f . This turns the rotate into a shift where f gives the value
to be shifted in:
 2 |.!.'x' 'abcde'
cdexx
 _2 |.!.'x' 'abcde'
xxabc

Sort: /: \:

x /: y (Sort Up Using)
x \: y (Sort Down Using)

The left rank is infinite. x and y must have the same number of items. The items
of x are records and the items of y are keys; x /: y is the records x sorted into
ascending order of corresponding keys y . x \: y sorts into descending order.
Examples:
 3 1 4 1 5 9 /: 0 1 2 3 4 5
3 1 4 1 5 9
y was already in order.
 3 1 4 1 5 9 /: 5 4 3 2 1 0
9 5 1 4 1 3
Sorting into reverse order.
 3 1 4 1 5 9 /: 0 10 1 20 2 30
3 4 5 1 1 9
x in order of ascending y .
 (i. 4 3) /: 10 20 1 2
6 7 8
9 10 11
0 1 2
3 4 5
Items of x in order of ascending y .
 1 3 5 /: 7 8 , 1 2 ,: 4 5
3 5 1
The keys y do not have to be single numbers; they don't even have to be numeric.
Here, 1 2 is lowest, then 4 5, then 7 8 . The Dictionary gives complete rules for
ordering y .

 51

Because sorting is not so easy in C, C programmers are not quick to recognize
applications of /: and \: . The J implementation of /: and \: runs in linear time
for most y and should not be avoided.

According to our general principle, we would expect that in dyad /: x held the
keys and y the data. Dyad /: is an exception to the rule.

y /: y
y \: y

When x and y are the same, you have the simple case of sorting y into ascending
or descending order.

Match: -:

x -: y (Match)

The left rank is infinite. The result is 1 if x and y are the same, 0 otherwise,
except: (1) if they are numeric, the comparison is tolerant; (2) for some reason I don't
understand, if they are empty, they are considered to match even if the types are
different, which means that getting a result of 1 from x -: y is no guarantee that x
and y will behave identically:
 (0$0) -: ''
1
 (1 {. 0$0) -: (1 {. '')
0

The important difference between dyad -: and dyad = is that dyad -: has infinite
rank so you get a single result covering the entire array, and it won't fail if the shapes
of x and y do not agree.

Monads
Enfile: ,

, y (Enfile)

, y consists of all the atoms of y, made into a list with the last axis varying
fastest. Examples:
 , i. 2 3
0 1 2 3 4 5
The atoms were made into a list.
 a =. 2 2 3 $ 'abcdefghijkl'
 a
abc
def

ghi
jkl
 ,a
abcdefghijkl
y of any shape produces a list.

 52

Recall that a single quoted character is an atom rather than a list:
 $'x'

To get a 1-character list, use monad , :
 $,'x'
1

The official name for monad , is the quaint but unedifying 'ravel', meaning
'separate or undo the texture of'. I prefer the equally quaint but more descriptive
'enfile', which means 'arrange in a line (as if on a string)'.

Reverse and Transpose: |. |:

|. y (Reverse)

The items of y are put into reverse order:
 |. i. 5
4 3 2 1 0

|: y (Transpose)

The axes of y are reversed. This is difficult to visualize for high ranks but easy
for the most common case, rank 2:
 |: i. 3 4
0 4 8
1 5 9
2 6 10
3 7 11

Take and Drop Single Item: {. {: }. }:

{. y (Head)
{: y (Tail)
}. y (Behead)
}: y (Curtail)

The operations performed are simple; the biggest problem is remembering which
primitive does what. Remember that { means take and } means drop, and that .
means beginning and : means end. So, {.y is the first item of y, {:y is the last
item of y, }.y is all of y except the first item, }:y is all of y except the last item:
 {. 3 4 5
3
 {: i. 3 4
8 9 10 11
 }. 3 4 5
4 5

}.y is identical to 1}.y and }:y is identical to _1}.y . {.y is not identical
to 1{.y, because 1{.y has the same rank as y while {.y has the rank of an item of
y .

 53

Grade (Create Ordering Permutation): /: \:

/: y (Grade Up)
\: y (Grade Down)

/: y creates a numeric list with #y items, such that i{/:y is the index of the
ith-largest item of y . (/:y){y gives y sorted into ascending order. /:y is a
permutation vector, i. e. it contains each integer in the range 0 to (#y)-1. \: is
similar but works in descending order. Example:
 /: 3 1 4 1 5 9
1 3 0 2 4 5
Read this result as follows: the smallest item of y is item 1 (with value 1), the next-
smallest is item 3 (1), then item 0 (3), then item 2 (4), then item 4 (5), then item 5 (9).
Monad /: defined this way turns out to be surprisingly useful. As a limbering-up
exercise in the use of permutation vectors, and an example of how compactly J can
express ideas, see if you can describe in words what two applications of monad /:
will give:
 /: /: 3 1 4 1 5 9
2 0 3 1 4 5

Add An Axis: ,: (Itemize)
,: y

The result of ,: y has rank one higher than the rank of y, with one item, which
is y . The shape of ,: y is the shape of y with 1 prepended (in plain J, $,:y is
1,$y).

Constant Verb
m"n

We have met the rank conjunction " applied to verb left arguments; applied to
noun left arguments it produces a verb whose result is always the value of the noun.
The created verb (which can be used as either a monad or a dyad) has ranks, given as
the right operand of " . Examples:
 5"_ i. 4 4
5
The simplest and most common case. Since the verb has infinite rank, it operates on
the entire operand and produces the scalar value.
 5"0 i. 3
5 5 5
Here the verb is applied to each 0-cell of the list, giving the scalar result for each cell.

 54

 1 2 3"0 i. 3
1 2 3
1 2 3
1 2 3
Here the result at each cell is the left argument of " , the list 1 2 3 . If you were
expecting the 3 to be repeated, remember that you can look at the words as J sees
them:
 ;: '1 2 3"0 i. 3'
+-----+-+-+--+-+
|1 2 3|"|0|i.|3|
+-----+-+-+--+-+
1 2 3 is a single word.

_9:…_1: 0: 1:…9: _: __:

For a few special values, namely the integers _9 through 9, infinity _, and
negative infinity __, you can create an infinite-rank verb to produce the value by
following the constant value with : . This is equivalent to value"_ .
 3: 'abc'
3
The operand 'abc' was ignored, and the result was 3 .

 55

8. Loopless Code II�Adverbs / and ~

The monad +/, which sums the items of its operand, is a special case of the use of the
adverb / . It is time to learn about adverbs, and other uses of this one.

Modifiers
An adverb is a modifier. It appears to the right a noun or verb; the usual notation in J

is u a where u is the noun or verb and a is the adverb. The compound u a is a new
entity, and not necessarily the same part of speech as u . When the compound u a is
executed, it performs the function given by the definition of a and has access to u during
its execution. If u a is a verb, then it also has access to the operands of the verb during
its execution; the verb u a will then be invoked as u a y if monadic or x u a y if
dyadic.

You will note that I didn't have to write x (u a) y . While J gives all verbs equal
precedence and executes them right-to-left, it does give modifiers (adverbs and
conjunctions) higher precedence than verbs (just as C and standard mathematical notation
give multiplication precedence over addition). We will discuss the parsing rules in detail
later; for now, know that modifiers are bound to their operands before verbs are executed,
and that if the left operand of a modifier has a conjunction to its left (e. g. x c y a), the
conjunction is bound to its arguments first, and the result of that becomes the left
argument to the modifier: x c y a is (x c y) a, not x c (y a) . In other
words, modifiers associate left-to-right. So, +"1/ (in which " is a conjunction and / is
an adverb) is the same as (+"1)/, not +"(1/) . The phrase
| +/"1 (4) + i. 3 3 is executed as | ((+/"1) ((4) + (i. 3 3))), in
accordance with the rule: right-to-left among verbs, but applying modifiers first. Note
that I had to put parentheses around the 4, because "1 4 would have been interpreted as
rank 1 4 : collecting adjacent numbers into a list is done before anything is executed.

J includes a rich set of modifiers and even allows you to write your own, though
many J programmers will never write a modifier. We will begin our understanding of
modifiers with the adverb monad u/ which goes by the mnemonic 'Insert'.

The Adverb Monad u/
Monad u/ (by which we mean / with a verb left operand, used as u/ y rather than

as x u/ y which is dyad u/ and is completely different; note that m/ y where m is a
noun is different yet), inserts u between items of y . Monad u/ has infinite rank. As a
simple example, +/ 1 2 3 is equivalent to 1 + 2 + 3 :
 +/ 1 2 3
6

The great power of the adverb concept is that u can be any verb; it's not restricted to
+, -, or any other subset of verbs (it can even be a user-written verb). What would

 56

monad >./ mean? Well, >./ 1 2 3 would be equivalent to 1 >. 2 >. 3; since
each >. picks the larger operand, the result is going to be the largest number; so monad
>./ means 'maximum':
 >./ 3 1 4 1 5 9
9
and of course 'minimum' is similar:
 <./ 3 1 4 1 5 9
1

What about monad ,/? Convince yourself that it combines the first two axes of its
operand:
 ,/ i. 2 3
0 1 2 3 4 5
 i. 2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
 $,/ i. 2 3 4
6 4
 ,/ i. 2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

How many atoms are in y? Why, */ $ y :
 */ $ i. 2 3 4
24

We can verify that the rows and columns of the following magic square sum to the
same value:
 +/ 3 3 $ 8 1 6 3 5 7 4 9 2
15 15 15
 +/"1 (3 3) $ 8 1 6 3 5 7 4 9 2
15 15 15

As this last example shows, the items can be of any shape. Applying +/ to the rank-2
array added up 1-cells, while applying +/"1 added up the 0-cells within each 1-cell.

Have you wondered what would happen if there is no cell or only 1? Good on you if
you did. The answer is: if there is only 1 cell, the result is just that cell; if there is no cell,
the result is a cell of identity elements. The identity element i for a dyadic verb v is that
value of i such that i v y is y for any choice of y . For example, the identity element

 57

for + is 0, because0 + y is always y . The identity element for * is 1, and for <. is
_ . If there is no identity element for a verb v (for example, $ has no identity element),
you will get a domain error if you apply v/ to an empty list. Examples:
 +/ 0$0
0
 */ 0$0
1
Empty list; result is the identity element.
 +/ 1 3 $ 3 5 7
3 5 7
There is 1 1-cell, so the result is that cell. This result has shape 3, not 1 3 .
 +/ 0 3 $ 0
0 0 0
There are 0 1-cells, so the result is a cell of identity elements. Note that even though
there are no cells, the cell still has a shape which is made visible by +/ .
 $/ 0$0
|domain error
| $/0$0

If you don't want to figure out what an identity element for a verb v is you can ask the
interpreter by typing v/ 0$0 .

Before we move on you should note that since v/ 1 2 3 is equivalent to
1 v 2 v 3, 2 v 3 is evaluated first: the operation starts at the end of the list and
moves toward the beginning.

The adverb ~
~ is an adverb. Like all adverbs, it has a monadic and dyadic form. The dyadic form

x u~ y is equivalent to y u x; in other words, the operands of u are reversed. The
ranks of dyad u~ are the same as those of dyad u, but with left and right rank
interchanged. For advanced J dyad ~ is indispensable; even in ordinary use it can save
time and obviate the need for parentheses:
 (10 + 2) % 3
4
 3 %~ 10 + 2
4

Using %~ to mean 'y divided by x', we can have right-to-left execution without
parentheses.
 -~/ 2 4
2
When we know y contains exactly 2 items, -/ y is a convenient shorthand to subtract
the second from the first without having to write ({.y) - ({:y) . To subtract the
first from the second, we simply invert the order of subtraction with -~ .

 58

The monadic form u~ y has infinite rank and is equivalent to y u y, i. e. it applies
dyad u with both the left and the right operands equal to the one operand of monad u~ .
As with dyad u~, most uses of monad u~ are esoteric, but we know one already: we can
sort y into ascending order with either y /: y or our new equivalent /:~ y :
 /:~ 3 1 4 1 5 9
1 1 3 4 5 9

 59

9. Continuing to Write in J

Now that we have a formidable battery of verbs at our command, let's continue
writing programs in J. The data definitions are repeated here for convenience:

empno[nemp] (in J, just empno) - employee number for each member of the staff.
The number of employees is nemp.

payrate[nemp] - number of dollars per hour the employee is paid

billrate[nemp] - number of dollars per hour the customer is billed for the services of
this employee

clientlist[nclients] - every client has a number; this is the list of all of them. The
number of clients is nclient.

emp_client[nemp] - number of the client this employee is billed to

hoursworked[nemp][31] - for each employee, and for each day of the month, the
number of hours worked

Problem 4: Find the amount to bill a given client. C code:
int billclient(cno)
int cno; // number of client we are looking up
{
 int i, j, temp, total;
 total = 0;
 for(i = 0;i<nemp;++i) {
 if(emp_client[i]==cno) {
 for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j];
 total += billrate[i] * temp;
 }
return(total);
}

The function is implemented in C by looping over the employees and picking the
ones that are working for the specified client. In J we deal with entire arrays rather than
with elements one at a time, and the general plan is:
get the mask of employees billed to the requested client;
select the hoursworked records for the applicable employees;
for(each employee) // 1
 for(each day) accumulate total hours; // 2
for(each employee)multiply hours by billing rate;
for(each employee)get total billing;

This example is the first one in which an argument is passed into the J verb. Within
the verb the right argument is referred to as y. and the left argument (if the verb is a
dyad) is referred to as x. . As usual in C we might use fewer big loops, but in J we stick
to small loops. The mask of employees billed to the client is given by

 60

emp_client = y. which is a mask with 1 for the selected employees, 0 for the
others (remember that = is a test for equality, not an assignment). We can select the
hoursworked items for the specified client by
(emp_client = y.) # hoursworked; then the sum for each day will be a sum
within each 1-cell, resulting in a list of hours for each selected employee. The line
+/"1 (emp_client = y.) # hoursworked performs the functions of loops 1
and 2 in the pseudocode: loop 1 within each cell and loop 2 in the implied loop over the
cells. Then, it is a simple matter to select the billing rates for the employees, multiply
each billing rate by the number of hours worked, and take the total over all employees
billed to the customer. The solution (using a temporary variable to hold the mask) is
billclient =: monad define
mask =. emp_client = y.
+/ (mask # billrate) * +/"1 mask # hoursworked
)

Problem 5: For each day, find the worker who billed the most hours. C code:
int dailydrudge(drudges)
int drudges[31]; // result: empno of worker with most hours each day
{
 int i, j, highhours;
 for(i = 0;i<31;++i) {
 highhours = -1;
 for(j = 0;j<nemp;++j)
 if(hoursworked[j][i]>highhours) {
 drudges[i] = empno[j];
 highhours = hoursworked[j][i];
 }
 }
 }
}

We note that the inner loop, which records the employee number of any employee
who worked more than the previous high, does not correspond to any of our J verbs. So,
we break this loop into operations that do correspond to J verbs:
for(each day)find the maximum number of hours worked; // 1
for(each day)find the index of the employee who worked that much; // 2
for(each day)translate the index to an employee number; // 3

Loop 1 is simply >./ hoursworked . Loop 2 calls for dyad i. to perform the
search, but there is a little problem: each search must go through a column of
hoursworked, giving the hours worked by each employee on that day, but the column
is not an item of hoursworked; each item is a row, giving hours worked on each day
by one employee. The solution is to transpose hoursworked (by
|: hoursworked), making the items correspond to days rather than employees. Then
we match up the resulting1-cells with the 0-cells of the maximum found by loop 1 and
find the index of each maximum, using i."1 0 or the equivalent i."_1 . Loop 3 is a
simple application of dyad { . The final code is

 61

dailydrudge =: monad define
((|: hoursworked) i."_1 >./ hoursworked) { empno
)

Problem 6: Order the employees by the amount of profit produced. This is a bagatelle
for J and we won't even bother with C code. We have a verb that returns the profit for
each employee, so we call it and use the result as the keys for sorting the employee
numbers into descending order. Note that a verb must be given an argument when it is
executed; we use 0 as a convenient value. The final J code is
producers=: monad : 'empno \: empprofit 0'
which makes use of the verb we defined earlier:
empprofit =: monad define
(billrate - payrate) * +/"1 hoursworked
)

Problem 7 is similar: Order the clients by the amount of profit produced. It requires
more ingenuity, and the C code would be more than I want to show, so let's try to write in
J directly. We start with the list of clients clientlist, the list that tells which client
each employee worked for emp_client, and the profit per employee given by
empprofit 0 . For each client, we need to find the employees that worked for the
client and add up the profit they brought in. For this kind of problem we want an array
with employees for one axis and clients for the other, with a 1 in the positions where the
employee is assigned; then we can do array * empprofit 0 and do some suitable
summing of the result. Let's work out what array must look like. Since dyad * has
rank 0, array * empprofit 0 is going to replicate 0-cells of the shorter-frame
argument (empprofit 0) which means that a single profit value is going to multiply
an entire 1-cell of array . So we see that the leading axis of array must be clients and
the second axis must be employees; each item will have the client mask for one
employee. The way to create that is by clientlist ="1 0 emp_client which
will compare the entire client list against each 0-cell of emp_client and form the
results into an array. Then, (clientlist ="1 0 emp_client) *
empprofit 0 will have one item per employee, each item having the amount billed to
each client; we sum these items to produce a list with the profit from each client, and use
that to order the client numbers. Solution:
custbyprofit =: monad define
clientlist \: +/ (clientlist="1 0 emp_client) * empprofit 0
)

For our final problem in the payroll department, consider how to calculate
withholding tax on each employee's earnings. The tax rate within tax brackets will be
assumed to be the same for all employees. C code for this would look like:

 62

int renderuntocaesar(shekels)
float shekels[]; // result: withholding for each employee
{
 // tax-bracket table: start of each bracket, ending with high value
 float bktmin[4] = {0,10000,20000,1e9};
 // tax-bracket table: rate in each bracket
 float bktrate[3] = {0.05,0.10,0.20};
 int earns[nemp];
 int i, j;
 empearnings(earns); // get earnings for each employee
 for(i = 0;i<nemp;++i) {
 shekels[i]= 0.0;
 for(j = 0;j<sizeof(bktrate)/sizeof(bktrate[0]);++j) {
 if(earns[i] > bktmin[j]) {
 float bktval = bktmin[j+1];
 if(earns[i] < bktval)bktval = earns[i];
 shekels[i] += bktval * bktrate[j];
 }
 }
 }
}

In J, we will sum over the tax brackets and we must create a suitable array for the
summation. The items in this array will be the amounts earned in each tax bracket.
Corresponding to the two if statements we will use conditional operators to discard
amounts earned outside the tax bracket. The conditionals will operate on each row, so
they will have rank 1, and they will look something like
0 >. (bracket_top <. earned) - bracket_bottom which will give the
amount earned in the bracket, set to 0 if the earnings are below the bracket and to the size
of the bracket if above. We will create bracket_top by shifting the brackets left and
filling with infinity (this corresponds to the bktmin[j+1] reference in the C code). We
could create earned by replicating the earnings for each employee to form a 1-cell for
each bracket�the code for this would be (#bktmin)$"0 empearnings ''�but
it's not necessary to create that array explicitly: we just use the implicit looping to cause
each cell of empearnings '' to be replicated during the comparison with
bracket_top. Making all these substitutions, noting that all the operations have rank
1, and summing at the end over the items within each 1-cell, we get the final code:
renderuntocaesar =: monad define
bktmin =. 0 10000 20000
bktrate =. 0.05 0.10 0.20
t=. ((1 |.!:_ bktmin) <."1 0 empearnings '') -"1 bktmin
+/"1 bktrate *"1 (0) >. t
)
We used the temporary variable t so our sentences would fit on the page.

Let's write a program to count the lines and words in a file. This is a simple task, and
in C it might look like:

 63

int[2] wc(f)
char *f; /* pointer to filename */
{
 FILE fid;
 int ct[2]; /* # words, # lines */
 char c;

 fid = fopen(f);
 while(EOF != (c = fgetc(fid)) {
 if(c == ' ')++ct[0];
 if(c == LF)++ct[1];
 }
 return (ct);
}

Rather than loop for each character, in J we process files by reading the whole file
into a list of characters and then operating on the list. The monad ReadFile (defined in
the script JforC.ijs) has infinite rank; it takes a filename y and yields as result the
contents of the file, as a list of characters. Once the file is a list, it is trivial to compare
each character against space and linefeed, yielding for each a list of 1s at each position
filled by the character; then summing the list gives the number of each character. J code
to do this is:
NB. y. is string filename, result is (#words),(#lines)
wc =: monad define
+/"1 (' ',LF) ="0 1 ReadFile y.
)

Suppose our user complains that wc needs improvement: specifically, it should also
return the number of characters in the file, should not count multiple consecutive
whitespace characters (including TAB) as separate words, and should treat the trailing LF
as a word delimiter as well as a line delimiter. In C, we would respond by adding a few
more tests and flags, but in J we realize that a major change to the program's function
calls for a thorough rethinking.

To ignore multiple whitespace characters we need to define what an ignored
whitespace is, without using flags and loops. This part of the problem often calls for
creative thought; here we realize that a whitespace character is to be ignored if the
previous character is whitespace. That's easy, then: we just calculate a Boolean vector, 1
if the character is whitespace, and then use shift and Boolean AND to ignore multiple
whitespace. The code to do this is worth looking at; it is

sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF
where f is the contents of the file. Note that we assign a value to w just before we right-
shift w . This is legal in J: sentences are processed right-to-left, and the interpreter has
not seen the reference to w at the time w is assigned. A similar statement in C, for
example x = w + (w = 4); , would be undefined. Of course, even though it's legal in J,
some would cavil�we will eventually learn ways to do this without defining a variable at

 64

all�but I leave it to you to decide how far you will detour to avoid jaywalking. Once sw
has been calculated, the rest of the program is trivial. The final result is:
NB.Version 2. Discard multiple whitespace,
NB.and return (#chars),(#words),(#lines)
wc2 =: monad define
f =. ReadFile y.
sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF
(#f),(+/sw),(+/ LF = f)
)

 65

10. Compound Verbs

On New Year's Day my rich uncle gives me x dollars, which I add to the y dollars I
already have earning 4% interest. How much money will I have at the end of the year?
Simple in J�I just write 1.04 * x + y, and I have the answer, whether x and y are
scalars or arrays. That's nice, but here's my problem: I expect his largesse to continue,
and in my anticipation I have estimated his gifts for the next few years as the list x; I
want to know what I'll be left with at the end. I need to pass each year's starting balance
into the calculation for the next year. I know what I want the result to look like: it'll be
v/ (|.x) , y which will be evaluated as xn v …x2 v x1 v x0 v y . But
what is v? The problem with 1.04 * x + y is that it contains 2 verbs and a constant,
and I need it all lumped into a single verb so that I can have the adverb dyad / modify the
whole thing. One solution would be to create the verb
v =: dyad : '1.04 * x. + y.'
after which v/ (|.x),y works, but it's a shame to have to interrupt a J sentence just to
define a verb with such a puny function�I want magic words to let me say
(1.04 * + abracadabra…combine!)/ (|.x),y . J has such magic words,
and we will learn a few now.

The magic words will join verbs and nouns together, so they must be modifiers:
adverbs and conjunctions. Before we start, we need a little notation to help with the
different cases we will encounter. Given a conjunction c or adverb a, we call its left
operand m if it is a noun, or u if it is a verb. Similarly we call a conjunction's right
operand n if it is noun, v if a verb. There are four possible ways to invoke a conjunction
(u c v, m c v, u c n, and m c n) and two for an adverb (u a and m a) and they
are defined independently. Moreover, the derived verb produced by the invocation (the
derived entity may be a noun, adverb, or conjunction too but that is unusual) can be used
as a dyad (e. g. x u c n y) or as a monad (e. g. m a y), and those cases are defined
independently as well. You won't get the cases mixed up, because verbs and nouns are so
different that it will seem natural for u c n to be different from u c v; just be aware
that the variants are many and that we will be learning a tiny subset of J's toolkit. The
adverb / is an example: we have learned about monad u/, but dyad u/ is very different,
as is m/ .

Verb Sequences�u@:v and u@v
u@:v creates a derived verb of infinite rank that applies v to its argument(s) and then

applies u to the result. In other words, u@:v y is the same as u v y and x u@:v y
is the same as u x v y . Examples:
 {. @: /: 3 1 4 1 5 9
1
Monad /: produced the permutation 1 3 0 2 4 5 of which we took the first item.

 66

 1 2 3 +/@:* 1 2 3
14
Dyad * produced 1 4 9 whose items we then summed.

u@v is like u@:v except that the rank of the derived verb is the rank of v (also
expressible as u@:v"v because u"v is defined to have the function of u with the rank of
v). My advice is to stick to @: and avoid @ unless you're sure you need it:
 1 2 3 +/@* 1 2 3
1 4 9
What happened? We thought we were multiplying the vectors and then taking the sum,
but because we used @ rather than @:, the derived verb had the rank of dyad *, namely 0,
which means that the derived verb was applied to each cell: at each cell we multiplied
and then took the sum of the single cell.

Making a Monad Into a Dyad: The Verbs [and]
The characters [and] are not paired in J; each is an independent verb. This is

jarring at first but you'll get used to it.

[and] are identity verbs: they have infinite rank, and] y and [y both result in
y . As dyads, they pick one operand: x [y is x, and x] y is y . They can be
useful when you have a monadic verb that for one reason or another must be used as a
dyad with an unwanted operand: then x v@:[y applies v to x, and x v@:] y applies
v to y . Example:
 1 2 3 {.@:[4 5 6
1

Here are some other uses of [and] . We have already met the first one, which is
to display the result of an assignment:
 a =. 1 2 3
produces no typeout, but
]a =. 1 2 3
1 2 3

Second, [can be used to put multiple assignments on the same line, since each
application of [ignores what is to its right:
 a =. 5 [b =. 'abc' [c =. 0

Finally,] can be used instead of parentheses to separate numbers that would
otherwise be treated as a list:

 67

 5 ,"0 1 2
|syntax error
| 5 ,"0 1 2
 5 ,"0 (1 2)
5 1
5 2
 5 ,"0] 1 2
5 1
5 2

Making a Dyad Into a Monad: u&n and m&v
A dyadic verb takes two operands, but if you know you are going to hold one fixed,

you can create a monadic verb out of the combination of the dyad and the fixed operand;
the monad's operand will be applied to whichever operand of the dyad was not held fixed.
The conjunction &, when one of its operands is a noun, fixes an operand to a dyad:
m&v y has infinite rank and is equivalent to m v y; u&n y has infinite rank and is
equivalent to y u n . Examples:
 2&^ 0 1 2 3
1 2 4 8
 (-&2) 4 5 6
2 3 4

Now we can solve our original problem, which was to put 1.04 * x + y into the
form x v y . v should be
1.04&* @: +
and to get my total savings after receiving all payments I use monad / to apply that verb
for each payment, giving the expression:
1.04&* @: + / (|.x) , y

Let's take a moment to understand the parsing and execution of 1.04&* @: + / .
The left operand of a modifier includes all preceding words up to and including the
nearest noun or verb that is not immediately preceded by a conjunction. This is a
precise way of saying that modifiers associate left to right. In the phrase
1.04&* @: + /, the 1.04 is not preceded by a conjunction, so it is the beginning of
all the conjunctions' left operands, and the verb is parsed as if it were written
(((1.04&*) @: +) /) .

Note that left-to-right association of modifiers corresponds to right-to-left execution.
When the derived verb monad (((1.04&*) @: +) /) is executed, it performs
according to the definition of monad u/, with ((1.04&*) @: +) as the u; execution
of monad u/ inserts u between items, so ((1.04&*) @: +) is executed between
items; at each such execution the dyad + is executed first, followed by the monad
1.04&* . Fortunately, the result of the parsing rules is that conjunctions and adverbs,
just like verbs, should be read right-to-left.

If I wanted to spend half of my uncle's money , the amount I would be left with is

 68

0.5 * 1.04&* @: + / (|.x) , y

No parentheses are needed, because 1.04 is still not preceded by a conjunction and
so 1.04&* @: + / (|.x),y is still evaluated before that value is multiplied by
0.5 .

Once you get the hang of it, you will be able to understand and build composite verbs
of great power. That will be a useful skill to develop, because you never know when you
are going to want to make some sequence of functions the operand of a modifier, and
then you're going to have to be able to express the sequence in a single compound verb.
It will take a lot of practice, as well as coding techniques to break a gristly mass of
conjunction-bound words into digestible pieces (we'll learn them later). For the time
being, be content if you can understand the simple examples shown above.

 69

11. Boxing (structures)

The nouns we have encountered so far have all had items with identical shapes, and
with all atoms of the same type, either numeric or character. You may be afraid that such
regular arrays are all that J supports and that you will have to forgo C structures; and you
may wonder how J will fare in the rough-and-tumble of the real world where data is not
so regular. This chapter will put those fears to rest.

I think we should get a formal understanding of boxing in J before we try to relate it
to structures in C, because the ideas are just different enough to cause confusion. The
box is an atomic data type in J, along with number and character. As with the other
types, a single box is a scalar, with rank 0 and empty shape. Just as a numeric or
character atom has a value, so a boxed atom has a value, called its contents. The box is
special in that its contents can be an array while the box itself is an atom. The boxing
protects the contents and allows them to be treated as an atom.

Arrays of boxes are allowed, and as always all the atoms in an array must have the
same type: if any element is boxed, all must be boxed.

Various verbs create boxes. Monad < has infinite rank and exists for the sole
purpose of boxing its operand: < y creates a box whose contents are y, for example:
 <1
+-+
|1|
+-+
 <1 2 3
+-----+
|1 2 3|
+-----+
 <'abc'
+---+
|abc|
+---+
When a box is displayed, the contents are surrounded by the boxing characters as seen in
the examples.

Only certain primitives can accept boxes as operands; generally, you cannot perform
arithmetic on boxes but you can do other things like monad and dyad #, monad and
dyad $, and other primitives that do not perform arithmetic. The significant exception to
this rule is that you can use monad and dyad /: and \: to order boxed arrays.
Comparison for equality between two atoms is not strictly an arithmetic operation�you
can compare two characters or a character and a number for equality, for example�and it
is allowed on boxes, both explicitly using dyad = and dyad -:or implicitly using
dyad i. and dyad e.; but there is an arithmetic flavor to the operation: if the contents of
corresponding components of the boxes are both numbers, tolerant comparison is used.

 70

Most primitives that accept boxes as operands do not examine the contents of the
boxes, but instead perform their operation on the box atoms themselves. Any deviation
from this behavior will be noted in the definition of the verb (we have not encountered
any yet). Examples:
 3 $ <'abc'
+---+---+---+
|abc|abc|abc|
+---+---+---+
The dyad $ was applied to the box, creating a list of identical boxes.
 (<1 2),(<5),(<'abc')
+---+-+---+
|1 2|5|abc|
+---+-+---+
The boxes were concatenated, resulting in a list of boxes. Note that the contents of the
boxes do not have to have the same shape or type.
 1 0 1 # (<1 2),(<5),(<'abc')
+---+---+
|1 2|abc|
+---+---+
The selection performed by dyad # is performed on the boxes, not on their contents.

Since applying a verb may result in the addition of verb fills and framing fills, we
need to meet the fill element used for boxed nouns. It is the noun a: . a: is defined to
be <0$0, i. e. an atom which is a box containing an empty numeric list (note that this is
not the same thing as a box containing an empty string or an empty boxed list).
 a:
++
||
++
 3 {. <5
+-+++
|5|||
+-+++
a: was used for the fills added by overtaking from this boxed noun.

The contents of a box can be any noun, including a box or array of boxes:

 71

 < < 2 3
+-----+
|+---+|
||2 3||
|+---+|
+-----+
 (<'abc'),(<<1 2)
+---+-----+
abc	+---+		
		1 2	
	+---+		
+---+-----+

The contents of a box can be recovered by opening the box with monad > . Monad >
has rank 0 (since it operates only on boxes, which are atoms), and its result is the contents
of the box:
 > < 'abc'
abc
The contents of the box is the character string.
 a =. (<1 2),(<<5),(<'abc')
 > 0 { a
1 2
 > 1 { a
+-+
|5|
+-+
Here we recover the contents of the selected box (which may be a box).
 > (<1 2 3),(<4)
1 2 3
4 0 0
Remember that monad > has rank 0, so it is applied to each box and the results are
collected using the frame. Here framing fills were added to the shorter result. 0 was
used as the framing fill because the contents of the boxes were numeric.
 >a
|domain error
| >a
Here the results on the different cells were of different types, so it was impossible to
collect them into an array.

If y is unboxed, the result of > y is y .

Terminology
Before we go further with boxes, let's agree on some terminology. Because every

atom in an array must have the same type, it is reasonable to speak of an array as being
'boxed' if its atoms are boxed, 'unboxed' otherwise (some writers use 'open' as a synonym
for 'unboxed'). Trouble arises with a phrase like 'boxed list'. If I box a list (e. g.
<1 2 3), does that give me a boxed list? If I have a list whose atoms are boxes, (e. g.

 72

(<1),(<2)), is that also a boxed list? Unfortunately, writers on J have not agreed on
terminology for these cases.

In this book, a boxed list will be a list that has been put into a box (it is therefore an
atom), and a list of boxes is a list each atom of which is a box. Higher ranks are
described similarly. If we say that a noun 'is boxed', that simply means that its atoms are
boxes.

Boxing As an Equivalent For Structures In C
A C struct corresponds to a list of boxes in J, where each box in the list corresponds

to one structure element. Referencing a structure element in C corresponds to
selecting and opening an item in J. For example,
struct {
 int f[] = {1,2,3};
 char g[] = "abc";
 float h = 1.0;
)
is equivalent to
(<1 2 3) , (<'abc') , (<1.0)

A C n-dimensional array of structures is equivalent to a J array of boxes of
rank n+1. The last axis of the J array corresponds to the structure, and its length is the
number of structure elements in the C structure.

C has no exact equivalent for a single box.

 73

12. Empty Operands

Every programmer knows that errors lurk near boundaries: for example, at the
beginning and end of arrays, or at the point in execution where an array becomes empty.
Our discussion of verb rank omitted one important situation: suppose there are no cells?
An operand with no cells is said to be empty, and it gets special treatment in J.

The definition of an empty operand is not as obvious as you might think. An array is
empty if it has no atoms (i. e. has a 0 in its shape), but whether an operand is empty
depends on the rank of its cells: it is empty if there is a 0 in the frame with respect to the
cells operated on by the verb. Consider an array with shape 3 0 4 . This is an empty
array, because it has no atoms. As an operand of a verb with rank 0, it has frame 3 0 4,
so there are no cells and the array is an empty operand. As an operand of a verb with
rank 1, it has frame 3 0 and again is empty. As an operand of a verb with rank 2,
though, it has frame 3 and is not empty: there are 3 cells, each of which has shape 0 4 .
In this case each cell is an empty array, but the operand is not empty. As an operand of a
verb with rank 3 or higher, the frame is empty and each cell has shape 3 0 4, so there is
one cell and the operand is not empty, though each cell is an empty array. You can see
that an operand may have items and yet be an empty operand, if the verb operates on cells
smaller than items, as is the case in this example for a verb of rank 0 or 1.

We are left with the question, What is executed when an operand is empty? For
something must be executed. It is fundamental in J that if a verb produces a result with
shape s when applied to a single cell, executing that verb over an array of that cell�even
an array of none of them�produces an array of results each with shape s. The only way
to find out what shape a verb is going to produce is to execute it and see�and that is
what J does.

Execution On a Cell Of Fills
If an operand is empty, i. e. its frame contains a 0 and it therefore has no cells, the

verb is executed on a cell c of fills. The shape of c is the shape of a cell of the
corresponding operand, and the value of each atom is the appropriate fill for that operand:
0 for numeric operands, ' ' for characters, a: for boxes. The shape s and type t of the
result of executing the verb on c are noted. Then, the shape of the overall result is the
frame of the operand (the longer frame, for dyads) concatenated with s, and the result is
given type t. The result will necessarily be empty, because it will have a 0 in its shape
(from the frame, which contained a 0). Example:
 $ +/"2 (3 0 3 4 $ 100)
3 0 4
Remember that a cell has a shape, even if there are none of them! Here the verb monad
+/"2 is applied to 2-cells, each with shape 3 4 . The frame 3 0 contains a 0, so the
verb is executed on the fill cell c which is (3 4 $ 0). Monad +/ adds the items of the
cell, producing a list with shape 4 . The frame 3 0 is concatenated with 4 to give the
shape of the result, 3 0 4 .

 74

 3!:0 +/"2 (3 0 3 4 $ 100)
4
The verb 3!:0 (one of dozens of special goodies provided by the !: conjunction and
documented under Foreigns) tells you the type of its operand. Here, 4 means numeric
type: the result has shape 3 0 4 and numeric type.
 $ <"2 (3 0 3 4 $ 100)
3 0
 3!:0 <"2 (3 0 3 4 $ 100)
32
Here the verb monad < was applied to the same fill-cell c (3 4 $ 0) but it produced a
boxed scalar result (shape empty), so the shape of the overall result is the frame 3 0
concatenated with an empty list, i. e. shape 3 0 and type boxed (as indicated by the 32
returned by 3!:0).

Note that the contents of each box in an empty array of boxes are all empty. In the
example <"2 (3 0 3 4 $ 100), execution on the fill-cell produced (<3 4 $ 0),
and if the frame weren't empty the box would contain an array; but when the frame is
empty, the value of the result is discarded; all that is remains is its type.

If executing the verb on a cell of fills results in an error, execution continues as if the
verb had returned the scalar 0 :
 5 + ' '
|domain error
| 5 +' '
Trying to add 5 to a space is nonsense�
 5 + ''

 $ 5 + ''
0
 (3!:0) 5 + ''
4
�but adding 5 to an empty list of characters produces an empty numeric list. The
addition is attempted with a cell of fills for the empty operand (the values added are 5 on
the left, ' ' on the right), the addition fails, and the error-fallback result of scalar 0 is
used; appending the longer frame (0) gives shape 0, numeric. Note that y here is an
empty operand, but it nonetheless has the longer frame (the scalar x has empty shape and
perforce empty frame).

Note: there is much special code in the interpreter to handle the cases of empty
operands. To improve performance, the interpreter recognizes a great many
combinations of verb, operand shape, and type, handling each with separate code. In
most cases the interpreter produces its result in accordance with the rules given above,
but in a few exotic cases it goes awry. You are quite unlikely to encounter these cases in
practice.

 75

Empty cells
As we discussed above, a cell, like any array, is called empty if it has a 0 in its shape.

Whether the cells of an operand are empty is independent of whether the operand itself is
empty.

How a verb handles an empty cell is entirely up to the verb; the fill-cell processing we
discussed above does not apply. The J primitives generally preserve the type of empty
lists that are 'data' but ignore the type of empty lists that are 'control information'. So,
even though characters are not allowable left operands of dyad |., '' |. i. 5
produces the same result as (0$0) |. i. 5, because the rotation count is 'control
information'. In contrast, 3 {. '' produces a 3-character string, while 3 {. (0$0)
produces a 3-item numeric list, because the right operand of dyad {. is 'data'. The
distinction between 'control information' and 'data' is not clear-cut, but in all cases the
interpreter does what you'd want it to, and you should experiment if you need
reassurance.

If Fill-Cells Are Not Enough
Sometimes executing a verb on a cell of fills simply won't do: maybe your verb

produces a side effect, or maybe it will go berserk if its operand is 0 . In those cases,
you must take steps to ensure that it is not executed on an empty list. To help you out
with the most common case, in which the only way a list can be empty is to have no
items (that is another way of saying that the first item of the shape is 0), I offer you a set
of adverbs and conjunctions which you can have by executing
load 'JforC'

u Ifany applies the verb u (which may be monadic or dyadic) provided y has
items; if y has 0 items, the result of u Ifany is y :
 $ (,/) i. 0 4
0
 $ (,/) Ifany i. 0 4
0 4
Since i. 0 4 has no items, Ifany caused it to be passed through unchanged.

x u Ifanyx y produces x u y if x has items, or y if x has no items.

The conjunction u Butifnull n can be monadic or dyadic; it applies u if y has
items; if y has no items it produces a result of n .
 5 + Butifnull 6 (0)
5
 5 + Butifnull 6 (0$0)
6

x u Butifxnull n y produces x u y if x has items, or n if x has no items.

 76

13. Loopless Code III�Adverbs \ and \.

We have learned about ordinary verbs that operate on the cells of an operand, and we
have learned u/ which operates between all the cells of its operand. In between those
extremes are verbs that operate on subsets of the cells of its operand. In this chapter we
will learn a couple of adverbs that apply verbs to subsets of cells chosen according to
simple rules; in later chapters we will learn how to form irregular subsets.

u\ y has infinite rank and applies u to successive prefixes of y . It applies u to the
first item of y (i. e. u 1 {. y) to produce the first item of the result; it then applies u to
the first 2 items of y (i. e. u 2 {. y) to produce the second item of the result; and so
on, with the last item of the result being u (#y) {. y . Example:
 #\ 9 8 7 6
1 2 3 4
This just gives the length of each prefix, not a terribly edifying result.

Note that u is always applied to lists, because {. always produces a list. In
particular, the first item of the result comes from applying u to a 1-item list; conversely,
even if y is a scalar, (#y) {. y is a 1-item list. Note also that if the applications of u
produce results of different shapes, framing fills are added to bring the results to a
common shape, just as if they were the results from applying a verb to different cells:
]\ i. 3
0 0 0
0 1 0
0 1 2
The result is the prefixes themselves, assembled as items of a rank-2 array.

u\ is most often used when u is of the form u/, i. e. as u/\ . Then the verb u/ is
applied to the successive prefixes. Here are some commonly-used forms:
 +/\ i. 6
0 1 3 6 10 15
+/ means 'total the items', so +/\ i. 6 is (0),(0+1),(0+1+2),(0+1+2+3)…,
i. e. the running total of the items of y .
 >./\ 9 5 3 10 3 2 20
9 9 9 10 10 10 20
For each item of y, the result is the largest item occurring in the list up to that item of y .
 </\ 0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0
</\ y on a Boolean list (i. e. one containing only 0 or 1) is a tricky way to turn off all
1s following the first. See how it works: </ y will produce a result of 1 only in the case
where the last item of y is 1 and the rest are 0, i. e. 0 < 0…0 < 1, so </\ y produces
a 1 for that prefix and 0 for all the others.
 *./\ 1 1 1 1 0 0 1 1 1
1 1 1 1 0 0 0 0 0
Keep the leading 1s of y, but set the rest to 0 .

 77

u\. y is similar to u\ y, except that it applies u to suffixes of y . It applies u to
all of y (i. e. u 0 }. y) to produce the first item of the result; it then applies u to all
but the first item of y (i. e. u 1 }. y) to produce the second item of the result; and so
on, with the last item of the result being u ((#y)-1) }. y (that is, u applied to the
last item of y). Example:
 +/\. i. 6
15 15 14 12 9 5
The running total now starts at the end and runs backward.

The dyadic form x u\ y has rank 0 _ and applies u to infixes of y . An infix is a
sequence of adjacent items. x gives the length of the infixes. The first item of the result
comes from the infix of length |x (that is, the absolute value of x) starting with the first
item of y, and subsequent items of the result come from subsequent infixes. If x is
positive, successive infixes start at successive items of y (and they overlap); if x is
negative, infixes do not overlap: each one starts with the item following the last item of
the previous infix, and the last infix may be shorter than |x . Examples:
 _2]\ 100 2 110 6 120 8 130 3
100 2
110 6
120 8
130 3
This is a convenient way to reshape a list to have 2 items per row when you don't know
how many rows there will be.
 2 -/\ 10 8 6 4 2
2 2 2 2
 2 -~/\ 10 8 6 4 2
_2 _2 _2 _2
Applying -/ between each pair of items (with adjacent pairs overlapping) takes the
backward difference of each pair. To take the forward difference, subtract the first from
the second using -~/ .
 3 >./\ 1 2 3 8 2 3 1 5 4 3 12 3 2
3 8 8 8 3 5 5 5 12 12 12
This takes the maximum over a rolling window 3 items wide.

x u\. y is similar to x u\ y , but it operates on outfixes which contain all of y
except the corresponding infix. Its uses are few.

The interpreter treats empty operands with care, so that you don't have to worry about
them as special cases. If you simply must know the details, here they are: If u\ or u\.
is applied where there are no applicable subsets of y (either because y is empty or
because it is too short to muster even a single infix), u is applied to a list of fills f and the
result has 0 items, each with the shape and type of the result of u f . The items of f
have the shape of items of y, and the length of f is 0 for monad u\ or u\., or the length
of an infix or outfix for dyad u\ or u\. . For example:

 78

 $ 2]\ i. 1 3
0 2 3
We were looking for infixes of length 2; each one would have had shape 2 3, but with
only one item in y we have insufficient data for an infix. So, we create a 2×3 array of
fills and apply the verb] to it; the verb returns shape 2 3 and the overall result is a list
of 0 items with that shape.
 $]\ i. 0 2 3
0 0 2 3
The cells of y have shape 2 3 so we apply the verb] to a list of 0 of them (i. e. with
shape 0 2 3). The result of] has the same shape as the input, and the final result is a
list of 0 items each with shape 0 2 3, i. e. with overall shape 0 0 2 3 .

 79

14. More Verbs

It's time to build your J vocabulary with a few more verbs.

Dyads
x ! y (rank 0 0) number of ways to choose x things from a population of y things.

More generally, (!y) % (!x) * (!y-x)

x %: y (rank 0 0) The xth root of y

x #. y (rank 1 1) y evaluated in base x, i. e. the atoms of y are digits in the base-x
representation. x and y must have the same length, unless x is a scalar in which case
it is replicated to the length of y . A place-value list p is calculated, in which each
item is the product of all the subsequent corresponding items of x; formally, this is
p=.*/\.}.x,1 (the last item of p is always 1 and the first item of x is immaterial).
Then each item in y is multiplied by its place value and the results are summed to
give the result (formally this is +/ y * p). In the simplest case x is a scalar:
 10 #. 2 3 4
234
The digits 2 3 4 interpreted as base-ten digits.
 16 #. 2 3 4
564
The same interpreted as base-sixteen digits.
 16b234
564
as expected (16b234 is 234 in base 16, equivalent to 0x234).

Here is an example where x is a list, converting time in hours/minutes/seconds to
seconds since midnight:
 24 60 60 #. 12 30 0
45000
The list p was 3600 60 1 . The first item in x has no effect on the result.

x #: y (rank 1 0) This is the inverse of x #. y except that if the first digit of the
result is not between 0 and {.x, it is changed (modulo x) to lie within that range.
For example,
 24 60 60 #: 45000
12 30 0
The normal case, converting the number of seconds since midnight back to
hours/minutes/seconds.

 80

 24 60 60 #. 36 30 0
131400
 24 60 60 #: 131400
12 30 0
Here the result would have been 36 30 0, but 36 is outside the range 0 to 24, so it
is replaced by 24|36, which is 12 . If you want the first item of the result to be
unconstrained, make the first item of x either 0 or _ :
 0 60 60 #: 131400
36 30 0

Note that monad #: and monad #. are similar to the dyadic forms with x set to 2 .
To keep #: and #. straight in your mind, remember that the one with a single dot (#.)
produces a single scalar result, while the one with multiple dots (#:) produces a list
result.

Monads (all rank 0)
! y factorial of y (more generally, the gamma function Γ(1+y))

^ y same as (the base of natural logarithms e) ^ y

^. y same as (the base of natural logarithms e) ^. y

+: y same as y * 2

-: y same as y % 2

*: y same as y ^ 2

%: y same as 2 %: y

You can see the common feature in the arithmetic primitives ending in : .

 81

15. Loopless Code IV

In our quest to write loopless code, we first learned about J's implicit looping, which
we can use to replace loops in which the same function is performed on each cell; then
we learned monad / which lets us accumulate an operation across all the items of a noun,
and \ and \. which apply verbs to certain regular subsets of a noun. We now examine
cases in which the operations on the cells are different, but where there is no sharing of
information between cells.

In such cases, the J solution is to create an array that contains control information
describing the difference between the cells, and then create a dyadic operation that
produces the desired result when given a cell of control information and a cell of data.
Writing code this way can seem ingeniously clever or awkwardly roundabout, depending
on your point of view; we will simply accept it as a necessary part of coding in J, and we
will learn to be effective with it. What follows is a hodgepodge of tricks to treat cells
individually. If you were writing in C, you would use if statements, but since if by
necessity involves a scalar comparison we will avoid it.

To add one to the elements of y whose values are odd:
y + 1 = 2 | y

To double all the elements of y whose values are odd:
y * 1 + 1 = 2 | y

To create an array whose even-numbered elements come from y and whose odd-
numbered elements come from x :
(x * -.sv) + y * sv =. (#y) $ 1 0
which, homely as it is, is a standard idiom in J. This expression works only for numeric
operands; for general operands we can select using a selection vector sv with
sv {"_1 x ,. y

To replace lowercase 'a' through 'f' with uppercase 'A' through 'F':
(('abcdef' , a.) i. y) { 'ABCDEF' , a.
To understand this you need to know the special noun a. which is the character string
containing all the ASCII characters in order. Work through a simple example until you
understand how this works�it's a good example of how J thinking differs from C
thinking.

A similar problem: given a list of keys y and a list of data z, with each item of y
corresponding to an item of z; and another list of search keys x; and a default element
d : return the item in z corresponding to the item of y that matches the item of x, or d
if the item of x didn't match anything in y :
(y i. x) { z , d

To evaluate the polynomial defined by x, so that if for example x is 2 1 5 the result
is 5y2+y+1:

 82

+/ x * y ^ i. # x
(and now you can see why 0^0 is 1).

To evaluate the polynomial defined by x going the other direction, so that if for
example x is 2 1 5 the result is 2y2+y+5:
y #. x

The last example, due to Roger Hui, has a power and economy that amount to
sorcery. Suppose you had a list, and you wanted to know, for each item in the list, how
many identical items appeared earlier in the list. You could find out this way:
 y =. 2 2 2 1 2 1 4 6 4 2
 t - (i.~ y) { t =. /: /: y
0 1 2 0 3 1 0 0 1 4
Take a little time�maybe a long time�to see how this works. The /: /: y is an
idiom we discussed earlier�did you figure it out? It gives the ordinal of each item of y,
in other words the rank of the item among the items of y . If there are equal items, they
will occupy a block of successive ordinals. In this example you can see that t does
indeed hold the ordinals:
 t
2 3 4 0 5 1 7 9 8 6
(i.~ y) takes the index of each item of y within y itself, in other words, for each item,
the index of the first item with the same value:
 (i.~ y)
0 0 0 3 0 3 6 7 6 0
Since the identical items of y are a block of successive ordinals, and (i.~ y)
comprises indexes of first items in blocks, we can find relative positions in blocks by
subtracting the ordinal of the first item with a value from the ordinals of all the other
items with the same value. That is what this expression does. Lovely!

In addition to the foregoing ad hoc means of varying the operation cell-by-cell J has
some language features expressly designed for that purpose:

Power/If/DoWhile Conjunction u^:n and u^:v
u^:n y has infinite rank. It applies the verb u to y, then applies u to that result, and

so on, for a total of n applications of u, ; in other words u u u…(n times) y, as we
see when it is used with the >: (increment) primitive:
 >: 5
6
 >:^:2 (5)
7
 >:^:3 (5)
8

x u^:n y also has infinite rank. It evaluates x u x u…(n times) y . A
simpler way to say this is to say that it is equivalent to x&u^:n y, since x&u y is
equivalent to x u y .

 83

 2 * 2 * 2 * 2 * 5
80
 2 *^:4 (5)
80

u^:v y and x u^:v y are defined similarly: first v is evaluated (monadically or
dyadically as appropriate), and then result is used as n . Formally, u^:v y is
u^:(v y) y and x u^:v y is x u^:(x v y) y . With dyad u^:v, it will be
rare that x and y both make sense as an operand into both u and v, and you will usually
use @:[and @:] to cause u or v to operate on only one operand. For example, to
coalesce the x+1 leading axes of y into one axis, you could use x ,/@:]^:[y :
 1 ,/@:]^:[i. 2 2 3
0 1 2
3 4 5
6 7 8
9 10 11
 2 ,/@:]^:[i. 2 2 3
0 1 2 3 4 5 6 7 8 9 10 11

This is hardly a commonplace usage, but let's analyze it, since conjunctions are still
new to us. The verb is parenthesized ((,/)@:])^:[, so the first thing executed is
u^:v where v is [. x [y is just x, so x is going to tell us how many times to apply
x&((,/)@:]) . Now, x&((,/)@:]) y is just the same as ,/ y, because the
purpose of the @:] is to ignore the left argument that was put on by x& . We remember
monad ,/ from our discussion of monad u/ : it combines the 2 leading axes of y . So,
x ,/@:]^:[y will combine the 2 leading axes of y, x times; in other words, combine
the x+1 leading axes of y .

Our interest in u^:n is not in applying a verb several times�usually we could just
write the instances out if we needed to�but rather in 4 special values of n : _1, 0, 1,
and _ (infinity). u^:0, meaning apply u 0 times, is simple: it does nothing, with the
result y in both dyadic and monadic forms. u^:1 means apply u once. Thinking about
that, we see that if n is restricted to the values 0 or 1, ^:n means 'If n' : u^:n y is
y, but modified by application of u if n is 1. If we want to apply the verb u only on the
items of y for which x is 1, we can write x u@:]^:["_1 y :
 1 0 0 1 0 >:@]^:["_1 (1 2 3 4 5)
2 2 3 5 5

When n is _, u^:_ means 'keep applying u until the result doesn't change'. This is
obviously a splendid way to perform a numerical calculation that converges on a result;
for example if you take �cos(cos(cos(cos(y)))) until the result stops changing, you get
the solution of the equation y=cos(y):
 2 o.^:_ (0)
0.739085
but that's not why we love ^:_ . Consider the verb u^:v^:_ (either monad or dyad),
with the understanding that v always produces a Boolean result of 0 or 1 . It is
parenthesized (u^:v)^:_, i. e. u^:v repeated until the result stops changing. Now, if

 84

v evaluates to 0, the result of u^:v will certainly be the same as its input because u will
not be executed; if v is 1, u^:v causes u to be executed once. So this construct is like
C's while(v(y))y = u(y); (except that the J version also stops if the result of u y is the
same as y). The great thing about having a verb to do this loop rather than a statement is
that we can give the verb a rank and apply it to cells, with independent loop control on
each cell:
 2 *^:(100&>@:])^:_"0 (1 3 5 7 9 11)
128 192 160 112 144 176
Read this as 'for each atom of y, double it as long as the value is less than 100'.

u^:_1 is also of great interest but we will discuss it later.

One last point:
 >:^:1 2 4 (5)
6 7 9

As you can see, n may be an array, in which case u^:n1 y is repeatedly evaluated,
with n1 assuming the value of each atom of n, and the results are assembled using the
shape of n as the frame with framing fills added as needed. Pop quiz: express the
preceding English sentence in J.

Solution: u^:n y is equivalent to n u@:]^:["0 _ y, and x u^:n y is
equivalent to n x&u@:]^:["0 _ y . If you can make sense of the answer, you
should be content with your progress. If you came up with either half on your own, you
are entitled to claim Apprentice Guru status.

Tie and Agenda (switch)
The Tie Conjunction u`v u`n m`v m`n

The backquote character ` is the conjunction named Tie. ` is one of the few
conjunctions that produces a noun, so it is neither monadic or dyadic. If an operand of `
is a verb, it is converted to its atomic representation which is a noun form from which
the verb can be recovered; then the two operands m and n (both nouns now since any verb
was converted to a noun) are joined by executing m,n . So, the result of ` applied
between the members of a sequence of verbs is a list of special nouns, each of which is
the atomic representation of a verb. We are not concerned with the format of the atomic
representation, nor will we create or modify an atomic representation (that's Advanced-
Guru work); we will be content to use the values produced by ` . An example is:

 85

 +`-`*`%`(+/)
+-+-+-+-+-------+
+	-	*	%	+-+---+					
					/	+-+			
							+		
						+-+			
				+-+---+					
+-+-+-+-+-------+

What makes the result of ` special is not the boxing, but the fact that what's in the
boxes is not just any old data, but data in the format that can be used to recover the
original verbs. Once created, the result of ` can be operated on like any other noun:
 a =. +:`-`*`%`(+/)
 3 { a
+-+
|%|
+-+
 0 0 1 0 1 # a
+-+-------+
*	+-+---+					
		/	+-+			
				+		
			+-+			
	+-+---+					
+-+-------+

In English grammar, a gerund is a form of a verb that is used as a noun, for example
the word cooking in Cooking is fun. The result of ` in J is also called a gerund, and we
can see that the name is apt: a gerund in J is a set of J verbs put into a form that can be
used as a J noun. It has the latent power of the verbs put into a portable form, like
nitroglycerine that has been stabilized by kieselguhr to become dynamite. The blasting
cap that sets it off is

The Agenda (switch) conjunction m@.v
m@.v (either monad or dyad) uses the result of v to select a verb from the list of

verbs m, and then executes that verb.

m@.v requires that m be a valid gerund. It produces a verb which can be used
monadically or dyadically and whose ranks are the ranks of v . The operation of this
verb is as follows: v y (if monadic) or x v y (if dyadic) is evaluated; it must produce
a scalar result r that is a valid index into m; i. e. (-#m) <: r and r < #m . Then,
item r{m is selected�it is the atomic representation of one of the verbs that went into
m�and that atomic representation is converted to a verb u . Finally, u y (if monadic)
or x u y (if dyadic) is executed, and its result is the result of the execution of m@.v .

So, verb0`verb1`verb2 @. v y evaluates v y, resulting in r, and then
executes verbr y . x verb0`verb1`verb2 @. v y evaluates x v y,

 86

resulting in r, and then executes x verbr y . The verbs may be any valid verb, e. g. a
primitive, a compound verb, or a named verb.

Examples:
 (1&+)`(-&2)@.(2&|) "0 i. 6
1 _1 3 1 5 3
This added 1 to each even number and subtracted 2 from each odd number. Note that we
had to assign rank 0 to the overall combined verb, because otherwise the rank of
(1&+)`(-&2)@.(2&|) would have been the rank of 2&| which is infinite because
m&v has infinite rank.
 _5 _3 _1 1 3 5 +`-@.(0&>@:["0) 2
_7 _5 _3 3 5 7
Subtract 2 from elements of x that are negative, add 2 to elements that are nonnegative.
Here we assigned the rank to the selector verb in m@.v; that rank was then inherited by
m@.v .
 5 uname`+`] @. (*@:]"0) _5 0 5
(Remember that monad * is the signum function returning _1 for negative, 0 for zero,
and 1 for positive operands) For each atom of y, execute 5 uname y if y is zero,
5 + y if y is positive, and pass y through unchanged (5] y) if y is negative. uname
must be defined elsewhere. This expression makes use of negative indexing: if * y is
negative, verb number _1 (the last item) is taken from the gerund.

m@.v obviously can be used with a small rank to afford great control over what
operation is performed cell-by-cell, but if you do that it will have to apply J verbs on
small operands, which is inefficient. After all we've been through, I feel confident that I
can trust you not to use m@.v with small rank unless it's absolutely necessary.

 87

16. More Verbs For Boxes

Dyad ; (Link) And Monad ; (Raze)
Dyad ; has infinite rank. It boxes its operands and concatenates the boxes:

 'abc' ; 1 2 3
+---+-----+
|abc|1 2 3|
+---+-----+
Dyad ; is the easiest way to create a list of boxes:
 'abc' ; 1 2 3 ; (i. 2 2)
+---+-----+---+
|abc|1 2 3|0 1|
| | |2 3|
+---+-----+---+

Did you notice that I gave you an inaccurate definition? If dyad ; just boxed the
operands and concatenated, its result would be like
 dyadsemicolon =: dyad : '(<x.) , (<y.)'
 'abc' dyadsemicolon 1 2 3 dyadsemicolon (i. 2 2)
+---+-----------+
abc	+-----+---+			
		1 2 3	0 1	
			2 3	
	+-----+---+			
+---+-----------+

That's not the list of boxes we wanted! Actually dyad ; is more subtle: x ; y
always boxes x, but it boxes y only if y is unboxed. That produces the behavior we want
most of the time; the exception is when the last item in the list is boxed already:
 (<'abc');(<'def');(<'ghi')
+-----+-----+---+
+---+	+---+	ghi				
	abc			def		
+---+	+---+					
+-----+-----+---+
If we expected all the items to be boxed the same, we are disappointed. We must develop
the habit that when we use a sequence of dyad ;s we box the last operand (unless we are
sure it is unboxed, and even then we might do it to reinforce our habit):

 88

 (<'abc');(<'def');<(<'ghi')
+-----+-----+-----+
+---+	+---+	+---+						
	abc			def			ghi	
+---+	+---+	+---+						
+-----+-----+-----+

Monad ; (infinite rank) removes one level of boxing from an array of boxes,
concatenating the contents of all the boxes into one long list. The shape of the boxed
operand is immaterial. If the items do not have a common shape�the items of the
contents of the different boxes, mind you, not the contents themselves�they are brought
up to a common shape as described below. Examples:
 'abc';'d';'ef'
+---+-+--+
|abc|d|ef|
+---+-+--+
A list of boxes.
 ; 'abc';'d';'ef'
abcdef
The items, which are scalars, are joined into one long list.
 ; 1 ; 2 3 4
1 2 3 4
It works for numbers too.
 ; (i. 2 3) ; (i. 2 3)
0 1 2
3 4 5
0 1 2
3 4 5
The items are lists, so the lists are concatenated into a rank-2 array.
 ; 1 2 ; i. 2 3
1 2 0
0 1 2
3 4 5
Here the second box contains a rank-2 array, while the first box contains a rank-1 array.
The items of highest rank have rank 1, which means that rank-1 items are going to be
lined up as the items of a rank-2 result. Any contents of lower rank is brought up to the
rank of the highest-rank contents, by adding single-length leading axes; that will mean of
course that the items of all the modified contents have the same rank (but not necessarily
the same shape). If the shapes of any of those items differ, verb fills are added to bring
each axis up to the length of the longest axis; then the items are assembled into a list
whose rank is 1 higher than the rank of an item. In this example the concatenated items
have rank 1, and verb fill was added to bring the single item of the first box up to a length
of 3.

 89

 ; 1 ; ,: 2 3 4
1 1 1
2 3 4
There is one amendment to the processing as described above: if any of the contents is an
atom, it is replicated to bring it up to the shape of an item of the result before items are
concatenated. Here the atom 1 was replicated to become 1 1 1 .
 ; (,1) ; ,: 2 3 4
1 0 0
2 3 4
Here the first box was a 1-item list rather than an atom, so it was padded with fills rather
than replicated.

When we discussed dyad , we glossed over the treatment of operands with different
shapes. Now we can reveal that the padding and replication for dyad , is just like what
monad ; does on the contents of boxes. In fact, x , y is equivalent to
; (<x),(<y) .

When you have an array of boxes, the difference between opening it with monad >
and with monad ; is that monad > keeps the frame of the array of boxes, and brings
every opened box up to the same shape, while monad ; just runs the items of the contents
together into one long list with no regard for the shape of the array of boxes.

Verbs With More Than 2 Operands�Multiple Assignment
Dyad ; is part of the standard J method of passing many operands to a verb. The

invocation of the verb normally looks like this:
 verbname op1 ; op2 … ;< opn
(the < is needed only if opn is boxed), and the verb that is so invoked looks like:
verbname =: monad define
'op1 op2 … opn' =. y.
remainder of verb
)

The line 'op1 op2 … opn' =. y. is J's handy multiple assignment. When the
target of the assignment is a string, the string is broken into words and the words are
matched with items of the value being assigned (they must match one-for-one or a length
error results). Then, each word from the string is used as a name which is assigned the
corresponding item of the value. If the value being assigned is boxed, each item is
unboxed before it is assigned.

When defined and invoked as shown above, the variables op1, op2, etc. during
execution of the called verb will hold the values of op1, op2, etc. in the calling verb.

Multiple assignment is not restricted to parameter-passing; you may use it as you see
fit, if only to save typing. I have found it very useful in loading configuration parameters
from a file: the file contains both noun-names and the values, with the values being
assigned to the names by multiple assignment. Such a design is easily portable from
release to release of a product, since the file has no 'format'�it simply defines all the
names it understands.

 90

Dyad { Revisited
Now that we know about boxes, we can understand the full description of the

selection verb dyad { . In the general form, the left argument of x { y is a box whose
contents is a list of boxes. Pictorially, it is

+---------------------------------------+

|+-----------------+-----------------+-+|

||axis-0 selections|axis-1 selections|…||

|+-----------------+-----------------+-+|

+---------------------------------------+

We will call the inner boxes (i. e. the items of the contents of the box x) the selectors.
The first selector gives the indexes to be selected along the first axis (i. e. axis 0); the
second selector gives the selections for axis 1; and so on.
 i. 2 2 3
0 1 2
3 4 5

6 7 8
9 10 11
 <0;1;1
+-------+
|+-+-+-+|
||0|1|1||
|+-+-+-+|
+-------+
 (<0;1;1) { i. 2 2 3
4

If not all axes are specified, the selectors are applied starting with the leading axis and
any axes left over at the end are taken in full:
 (<0;1) { i. 2 2 3
3 4 5

Each of the selectors may contain either a scalar or a list. If a selector contains a
scalar, the corresponding axis will disappear from the shape of the result, as in the
examples above. If a selector contains a list, even a list with only one item, the
corresponding axis will remain in the shape of the result (its length will be the length of
the selection list):
 (<0;1 0) { i. 2 2 3
3 4 5
0 1 2
We select two rows of item number 0. The rows stay in the order we requested them, and
the result has rank 2.

 91

 (<0 1;1 0;2) { i. 2 2 3
 5 2
11 8
Understand where each number came from. We are taking a 2×2 array of 1-cells, but
only item 2 from each 1-cell. That leaves a 2×2 result.
 (<0;,1) { i. 2 2 3
3 4 5
 $ (<0;1) { i. 2 2 3
3
 $ (<0;,1) { i. 2 2 3
1 3
In the last example we are requesting a list of 1-cells; even though the list has only one
item, its axis remains in the result.

If a selector contains a box (rather than the usual numeric), it calls for complementary
selection along that axis: the contents of that box (i. e. the contents of the contents of the
selector) indicate the indexes to exclude from the selection, and all other indexes are
selected. Such a selector is considered to be specifying the list of non-excluded indexes,
so the corresponding axis remains in the result. Example:
 (<0;1;<<1)
+---------+
|+-+-+---+|
	0	1	+-+			
				1		
			+-+			
+-+-+---+						
+---------+						
(<0;1;<<1) { i. 2 2 3						
3 5						
We select a single 2-cell, and from that a single 1-cell, and within that we select all						
except item 1. The result is a 2-item list. Note that we had to put an extra < after the last						
; to ensure that the contents of the last selector was boxed.						
(<0;(<0$0);2)						
+--------+						
+-+--+-+						
	0	++	2			
		++				
+-+--+-+						
+--------+
 (<0;(<0$0);2) { i. 2 2 3
2 5
Complementary indexing can be used to select all of an axis, as in this example. We
request all of axis 1 except the named items, and then we name an empty list: we get all
the items. This trick is called for when we need to specify a selector for an axis after the
axis we want to take completely (trailing axes can be taken in full simply by omitting
their selectors).

 92

If our use of x { y does not require any selector to specify a list (i. e. each selector
is a scalar), we are allowed to omit the boxing of the selectors. This leaves x as a boxed
numeric list (or scalar) in which the successive items indicate the single index to be
selected from each axis. This form, in which x is <i,j,k…, corresponds to C's
array[i][j][k]� .
 <0 1
+---+
|0 1|
+---+
 <0;1
+-----+
|+-+-+|
||0|1||
|+-+-+|
+-----+
 (<0 1) { i. 2 2 3
3 4 5
 (<0;1) { i. 2 2 3
3 4 5
The results are identical.

As a final simplification, if the selection is just a single item from axis 0, the left
operand of dyad { may be left unboxed. This is the form in which we first met dyad { .
Now that you have learned dyad { completely, take this quiz: what is the difference
between 0 1 { y and (<<0 1) { y?
 0 1 { i. 6
0 1
 (<<0 1) { i. 6
0 1
Answer: the results are identical, but because the left rank of dyad { is 0, 0 1 { y
applies dyad { twice, once for each atom of 0 1, and collects the results into an array,
while (<<0 1) { y applies dyad { just once.

Split String Into J Words: Monad ;:
Monad ;: splits a string of characters into J words, putting each word into a box of

its own. Each word is a list of characters, so the result of monad ;: is a list of boxed
lists:
 ;: 'Words, words; and more words.'
+-----+-+-----+-+---+----+------+
|Words|,|words|;|and|more|words.|
+-----+-+-----+-+---+----+------+

Monad ;: is a handy way to get boxed character strings, or to break an input stream
into words if your language has word-formation rules similar to J's. Be aware that if the
operand has an unmatched quote, monad ;: will fail.

 93

Fetch From Structure: Dyad {::
Dyad {:: (this is a single primitive) has left rank 1, right rank infinite. It selects an

atom from an array of boxes and opens it; it is therefore analogous to the -> operator in
C:
 1 {:: 'abc';1 2 3; i. 2 2
1 2 3
Item 1 was selected and opened.

x {:: y can go through multiple levels of structure referencing at once. If x is a
list of boxes, the first box must be a valid left argument to dyad {; it is used to select an
item of y, which is then opened; the next box of x selects an item from that opened box
of y, which item is then opened; and so on till x is exhausted:
 struct1 =: 'abc' ; 1 2 3
]struct2 =: 'def';struct1;4 5 6
+---+-----------+-----+
def	+---+-----+	4 5 6			
		abc	1 2 3		
	+---+-----+				
+---+-----------+-----+					
Here we have a structure in which item 1 is another structure.					
1 {:: struct2					
+---+-----+					
abc	1 2 3				
+---+-----+					
We select and open item 1, resulting in the enclosed structure.					
(1;1) {:: struct2					
1 2 3					
We select and open item 1 of struct2, and then open item 1 of the enclosed structure.					
(1;<<1 0) {:: struct2					
+-----+---+					
1 2 3	abc				
+-----+---+					
If the last selection specifies a list of items, as in this example, the selected boxes are not					
opened. Note that the Dictionary's description of dyad {:: incorrectly indicates that the					
boxes are opened.					
(1;<<,1) {:: struct2					
+-----+					
1 2 3					
+-----+
Even if the list contains only one item, it is not opened.

Only the last box of x may specify selection of a list of boxes:

 94

]a =. <"0 i. 3 3
+-+-+-+
|0|1|2|
+-+-+-+
|3|4|5|
+-+-+-+
|6|7|8|
+-+-+-+
a is a 3×3 array of boxes.
 (1;1) {:: a
|rank error
| (1;1) {::a
The first selection took item 1 of a . This was a 3-item list of boxes, and it is
inadmissible to open the list and perform further selections.

Note that if x is unboxed, dyad {:: first boxes it and then uses it for selection. The
Dictionary's description does not mention the boxing step.

Report Boxing Level: Monad L.
Monad L. has infinite rank and tells you the boxing level of its operand. Boxing

level is defined recursively: if y is unboxed or empty, its boxing level is 0; otherwise its
boxing level is one greater than the maximum of the boxing levels of its opened items:
 1 ;< 2 ;< 3 ;< 4
+-+---------+
1	+-+-----+						
		2	+-+-+				
				3	4		
			+-+-+				
	+-+-----+						
+-+---------+
 L. 1 ;< 2 ;< 3 ;< 4
3
 L. {. 1 ;< 2 ;< 3 ;< 4
1

You can use monad L. to decide how many levels of boxing to remove:
 >^:L. <<<6
6

 95

17. Verb-Definition Revisited

Before we discuss verbs in more detail, let me point out that the colon character (:),
which you have seen used mostly as a suffix to create new primitives, has its own
meaning when it is used alone or as the first character of a primitive: : is a conjunction,
and so are :. and :: . The dot (.) also has a meaning but we won't be discussing it for
a while. If you want . or : not to be treated as a suffix, make sure you precede it by a
space: 3 : 'y.' defines a verb, while 3: 'y.' applies the verb 3: to the noun
'y.' producing the result 3 .

What really happens during m :n and verb define
Now that you're getting older it's time we had a little talk. About verbs. Up till now

the verb-definition sequence has been exotic and peculiar, with a form all its own; a
possessor of great power but shrouded in mystery. We know only that it somehow
breathes life into lines of text:
name =: verb define
verb definition
)
or
name =: verb : 'verb definition'
leaving name a verb.

With a layer of cosmetics scrubbed off it is more approachable. In both cases the
conjunction m :n is at work. m must be a number, and n may be either a character string
or the special number 0 (a boxed list is also possible but we consider it a curiosity).
m :n produces an entity which can be any of the primary parts of speech (noun, adverb,
conjunction, verb), and m indicates which one: m=0 means noun, 1 means adverb, 2
means conjunction, 3 means verb, 4 means dyadic verb; 10-13 have meanings we will
learn later. You can remember the numbers 0-2 because nouns take no operands, adverbs
1, and conjunctions 2; verbs are last in the precedence order so they get number 3, and
dyadic verbs with their extra operand get number 4. If n is a character string, it supplies
the text of the result (which, again, is given the part of speech indicated by m); if n is 0,
the interpreter interrupts what it's doing at the moment it executes the : conjunction, and
reads lines from its input source until it finds one that contains only the word ')';
execution of the interrupted sentence then continues, with the text of those lines
becoming the right argument to : and thence the text of the defined
noun/adverb/conjunction/verb. If the verb is defined in a script file, the input source (for
lines to satisfy m :0) is the script file; otherwise the input source is the keyboard. If you
forget the) in a definition at the end of a script file, the interpreter will switch over to
keyboard input and you will find the system unresponsive until you satisfy it by typing
) .

 96

So what's with this 'verb define' lingo? Simple: when you start J, you get a few
names defined automatically, and verb and define are two of them�as you can see
by asking the interpreter what their values are:
 verb
3
 define
:0
�so when you use verb define you are really executing 3 :0 to produce a verb;
similarly dyad : 'one-line definition' is the same as
4 : 'one-line definition' which executes the : conjunction to produce a
dyadic-verb result.

The point is that a verb-definition sequence is just an instance of a compound verb
produced by a conjunction, and the resulting verb can appear anywhere a verb is allowed.
You may assign the verb to a name but that's not required. Here are some examples
showing how a definition is just an ordinary part of a sentence:
 addrow =: monad : '+/y.' "1
We define the verb, using the : conjunction, and then we give the resulting verb a rank
using the " conjunction. This is a principle to live by: Always make sure any verb you
define has the proper rank. Following this rule will save you untold trouble by
guaranteeing that the verb is applied to the rank of cell that you intended. The verb
produced by the : conjunction has infinite rank; here, we expect to apply our verb on
lists, so we assign a rank of 1 before we assign the verb to the name addrow .
 (3 : '+/y.') i. 6
15
See? we define a verb, then we execute it. It doesn't have to be assigned to a name. The
distinction between code and data is not sharp as it is in C.
 a =. '+/';'*/'
 b =. (0{::a),'y.'
 (3 : b) 1 2 3 4 5 6
21
b is '+/y.' so we can use it as the text of a verb which we then execute.
 b =. (1{::a),'y.'
 (3 : b) 1 2 3 4 5 6
720
Here b is '*/y.' . In a later chapter we will explore the delights that result from being
able to change the text of a program while you are executing it.

Remember: make sure the verbs you define have the proper
rank.

Compound Verbs Can Be Assigned
Since we now understand that verb define is just a conjunction producing a verb

result, and we know that we can assign its result to a name, we wonder whether we are
allowed to assign any compound verb to a name. Yes indeed, we can, as we saw in the
assignment to addrow in the previous section. Any verb can be assigned to a name:

 97

 dotprod =: +/@:*"1
Dot-product of two lists is the sum of the products of respective pairs of elements in the
lists.
 1 2 3 dotprod 1 2 3
14
dotprod takes the dot-product.
 veclength =: %:@:(dotprod~)"1
The length of a vector is the square root of its dot-product with itself.
 veclength 1 2 3
3.74166

Dual-Valence verbs: u :v
u :v also defines a verb of infinite rank but it is completely different from m :n .

The defined verb is u if it is used monadically, but v if used dyadically:
 bv =. (monad : '+/y.') : (dyad : 'y. - x.')
 bv i. 7
21
 2 bv i. 7
_2 _1 0 1 2 3 4
You can see that the appropriate valence was chosen based on whether the verb was
executed as a dyad or as a monad.

u :v is often used to assign a default left operand to a dyadic verb:
 pwr =: 2&pwr : (dyad : 'x.^y.')
If you execute pwr as a dyad you get x^y . If you execute it as a monad you get
2 pwr y which is then executed (using the dyadic valence of pwr) to become
2 ^ y :
 3 pwr 4
81
 pwr 4
16

The Suicide Verb [:
The verb [: fails if it is executed. Use it as one side of u :v to produce a verb that

fails if it is used with the wrong valence. Example:
 i. 100 110 120 130
|out of memory
| i.100 110 120 130
Oops, we thought we were looking those values up in a list. Sometimes using the wrong
valence of a verb can have catastrophic consequences. To prevent it, use

 98

 dyadi =: [: : i.
 dyadi 100 110 120 130
|valence error: dyadi
| dyadi 100 110 120 130
 100 130 150 dyadi 100 110 120 130
0 3 3 1

[: also has a special meaning when it appears in a fork, which we will encounter
later.

Multi-Line Comments Using 0 :0
We know that all comments in J start with NB. and go only to the end of the line.

There is no way to extend a comment to more than one line, but there is a way to put a
series of non-executing lines into a script without having to have NB. in each of them.
You simply define a noun using 0 :0 and put your comment inside the noun:
 0 :0
This is the first line of a comment.
The lines of the comment will become a noun; but,
since the noun is not assigned to anything, it simply
disappears.
)

Final Reminder
Remember: make sure the verbs you define have the proper

rank.

 99

18. u^:_1, u&.v, and u :.v

The Obverse u^:_1
What would it mean to apply a verb a negative number of times? Applying a verb _1

times should undo the effect of applying the verb once. In J, u^:n applies the verb u n
times, and u^:_1 is defined as the verb that undoes the effect of applying u once.
u^:_1 is called the obverse in J, and where possible it is the same as the mathematical
inverse of u (or x&u in the dyadic case). Examples:
 >: 4
5
 >:^:_1 (5)
4
Monad >: adds 1; its obverse subtracts 1.
 *&2^:_1 (10)
5
Monad *&2 multiplies by 2; its obverse divides by 2.
 2 *^:_1 (10)
5
In the dyadic case, the obverse of x&u is applied. The obverse of 2&* is %&2 .

Not all verbs have obverses; you can see the obverse of a verb v, if there is one, by
typing v b. _1 :
 +&2 b. _1
-&2
 (%&5)@:(+&1) b. _1
-&1@:(5&*)
 $ b. _1
|domain error
There is no obverse for monad $.

Some of J's obverses are very ingenious, and you can have a pleasant afternoon
experimenting to find them. Most of them are listed in the Dictionary under the ^:
conjunction.

Apply Under Transformation: u&.v and u&.:v
Using its ability to apply the obverse of a verb, J provides a feature of great elegance

and power with the conjunction u&.v (monadic or dyadic). u&.v (all of whose ranks
are the ranks of monad v) executes u after a temporary change in representation given by
monad v . Formally, u&.v y is v^:_1@u@v y; informally, x u&.v y is
v^:_1 (v x) u (v y) applied to each cell of x and y, with the results collected as
usual (we will learn a formal notation for this later). The idea is that you change the

 100

operands using the transformation given by v; then do your work with u; then invert the
transformation with v^:_1 . Examples:
 (<1) +&.> 4;5;6
+-+-+-+
|5|6|7|
+-+-+-+
We add x to y; the transformation is that we remove the boxing before we add, and put it
back after we finish. The verb +&.> has rank 0 (since monad > has rank 0), so here the
scalar x is replicated to the shape of y before the unboxing occurs.
 <.&.(10&*) 4 4.43 4.89
4 4.4 4.8
<. y finds the largest integer not greater than y; by temporarily multiplying by 10 we
truncate y to the next-lower tenth.

We can easily define a verb to take the arithmetic mean (i. e. the average) of a list:
 mean =: monad : '(+/ y.) % #y.'
 mean 1 2 4
2.33333
If we want to take the geometric mean, we could define a new verb to multiply and take
the root, or we could just take the arithmetic mean of the logarithms and then undo the
logarithm:
 mean&.(^."_) 1 2 4
2
Note that we had to use a verb of infinite rank as v so that u would be applied to the
entire list. This is a common enough pattern that the conjunction &.: is provided which
is just like &. but with infinite rank. We could have used mean&.:^. here.

To add 10 minutes to a time represented as hours,minutes,seconds, we can transform
to seconds after midnight, do the addition, and transform back:
 0 10 0 +&.(24 60 60&#.) 13 55 0
14 5 0

Suppose we had a list of boxed scalar numbers, and we wanted to add them and leave
the result boxed. How can we do it?
]a =. <"0 i. 6
+-+-+-+-+-+-+
|0|1|2|3|4|5|
+-+-+-+-+-+-+
The easy way is
 < +/ > a
+--+
|15|
+--+
but after you get used to &., you will find that

 101

 +/&.(>"_) a
+--+
|15|
+--+
seems clearer, because it expresses the temporary nature of the unboxing/reboxing. As
an exercise, take the time to see why
 +&.>/ a
gives the same answer but
 +/&.> a
does not.

Defined obverses: u :.v
u :.v has the same ranks as u, and it produces the same result as u, except that the

obverse of u :. v is v . By defining verbs with appropriate obverses, you make it
possible to use &. and ^:_1 with them. For example, in a finance application it is
necessary to deal with dates in both (year,month,day) form and 'market day' form (for
example, if Friday is market day number 1200, the following Monday will be market day
number 1201). If you have written routines to convert between them:
ymdtomd =: dyad : 'definition'
mdtoymd =: dyad : 'definition'
you would be well advised to make them obverses of each other:
ymdtomd =: dyad : 'definition' :. mdtoymd
mdtoymd =: dyad : 'definition' :. ymdtomd
so that if you want to find the (y,m,d) date of the next market day after the date ymd, you
simply code
1&+&.ymdtomd ymd
and J will convert ymd to a market day, add one, and convert back to (y,m,d) form.

u&:v and u&v
x u&:v y has infinite rank and is the same as (v x) u (v y) . It resembles

u&.y but without the application of the obverse. It is just a way of saving a few
keystrokes. x u&v y is like x u&:v y except that its ranks are both the same as the
rank of monad v . As with @: and @, you are advised to stick to u&:v unless you are
sure you need u&v .

An observation about dyadic verbs
We noted earlier that usually if a dyad x v y is not symmetric (i. e. if x and y are

treated differently), the x operand is the one which is more like control information and
the y operand is the one more like data. We can see now that this is a consequence of the
definition of x u^:v y : the verb that is applied repeatedly, or the verb whose obverse
is taken, is x&u; only the value of y changes between executions of u . When you
define dyadic verbs, you should take care to follow the same rule in assigning the left and
right operands.

 102

19. Performance Measurement

J lets you express your ideas tersely, but it is up to you to make sure they are good
ideas. Since each keystroke in a J sentence can summon up billions of machine cycles,
you must make sure that you don't force the interpreter into a bad choice of algorithm.
This will be hard at first, when you are struggling to figure out what the interpreter is
doing, never mind how it is doing it; fortunately the interpreter gives you tools to
measure the performance of your code.

If you run the JforC script with
load 'JforC'
it will define the verb Ts. Ts stands for 'time and space' and it tells you how long it
takes to run a given J sentence, and how much space the interpreter used during the
execution. For example:
 a3 =. i. 1000
 Ts '+/\ a3'
4.3581e_5 5248
We define a noun a3, and we calculate the running total of its items. It took 0.00004
seconds to create the 1000-item running total, and used 5248 bytes. We could have done
the whole operation in one line with Ts '+/\ i. 1000', but the monad i. uses time
and space too, so if we want to find out only what is used by +/\, we make sure that's all
we measure.

We can use Ts to start to understand what can make J programs slow. Let's define a
verb to do the addition operation:
 sum =: dyad : 'x. + y.'"0
sum is an exact replacement for dyad +, having the same rank and function. Replacing +
with sum does not change the result of a sentence:
 +/\ i. 7
0 1 3 6 10 15 21
 sum/\ i. 7
0 1 3 6 10 15 21

But the performance is quite different, as we can measure:
 a10 =. i. 10
 1000 Ts '+/\ a10'
2.68191e_5 1280
Because +/\ is so fast, we give Ts a left argument to report the average time over 1000
runs. If we just ran the sentence once, the result would be corrupted by small timing
variations introduced by the operating system. sum/\ is not so fast so we run it only
once:
 Ts 'sum/\ a10'
0.00181867 3648
Quite a difference: in this running total sum seems to be about 50 times slower than + .
Let's just try adding a list to itself (remember that u~ y is equivalent to y u y):

 103

 1000 Ts '+~ a10'
2.68191e_5 896
 100 Ts 'sum~ a10'
0.00033021 2560
Yes, sum is definitely slower than +, though only by a factor of 10 or so this time. Why
should it be slower? The answer is, Because it deals with atoms. Since J verb-definitions
are not compiled, but interpreted line-by-line on each execution, every single time we add
two numbers with sum, the interpreter has to parse 'x. + y.' and perform the
addition. Why, it's a miracle that it only slows down by a factor of 10! The lesson is that
if you define verbs with small rank, the interpretive overhead will be significant.

Still, that doesn't fully explain why sum/\ is so much slower than +/\ . Let's
investigate further by increasing the size of the operand:
 a20 =. i. 20
 1000 Ts '+/\ a20'
2.68191e_5 1280
 Ts 'sum/\ a20'
0.00728641 3648
+/\ is unchanged when we move to a list of 20 items�the operation is so fast that time
is being spent starting the verb rather than running it�but sum/\ slows down
noticeably. Interesting; let's try bigger and bigger operands:
 a40 =. i. 40
 1000 Ts '+/\ a40'
2.76572e_5 1408
 Ts 'sum/\ a40'
0.0299561 4160

 a100 =. i. 100
 1000 Ts '+/\ a100'
2.76572e_5 1664
 Ts 'sum/\ a100'
0.185741 5184

 a400 =. i. 400
 1000 Ts '+/\ a400'
3.77143e_5 3200
 Ts 'sum/\ a400'
3.00367 11328
Holy cow! On a 400-item list, sum/\ is 80000 times slower than +/\! What
happened?

Recall what monad sum/\ is really doing. It applies monad sum/ to the first item of
the list; then to the list made of the first 2 items; then the list made of the first 3 items;
and so on. At each evaluation of monad sum/, the dyad sum verb is interleaved between
the items and the result is evaluated right-to-left. The problem is, the interpreter doesn't
analyze sum to know that it is associative�that x sum (y sum z) is the same as
(x sum y) sum z�so it doesn't know that it can use the result from one subset as an

 104

input to the operation for the next subset, and it winds up performing every single
addition: for the 400th item it adds all 400 numbers together. That's why its time
increases as the square of the length of the list.

Monad +/\ is fast because the interpreter knows that dyad + is associative, and
therefore it reuses the result from one subset as input to the next, producing each item of
the result with a single addition.

Well then, can we give a hint to the interpreter that sum is associative? Alas, no, but
we have another trick up our sleeve. Consider monad sum/\., which applies
monad sum/ to successive suffixes. If the interpreter is clever, it will notice that if it
starts with the smallest suffix�the one made up of just the last item�and processes the
suffixes in order of increasing size, it will always be evaluating
x sum (previous suffix result), and right-to-left evaluation implies that the
result of the previous suffix can always be used as the right operand to each application
of monad sum, without needing any knowledge of associativity. Let me tell you, this
interpreter is nothing if not clever, and that's just what it does. All we have to do is to
convert our sum/\ into a variant of sum/\. . The way to do that is simple: we reverse
the order of the items, apply sum/\., and reverse the order again:
 sum/\.&.|. i. 7
0 1 3 6 10 15 21

This happens enough to be a standard J idiom: use it whenever you need to apply an
associative verb on prefixes. It's much faster:
 Ts 'sum/\.&.|. a400'
0.014805 59264
Still not as fast as +/\, but the suffix version uses time proportional to the number of
items rather than the square of the number of items.

 105

20. Input And Output

Foreigns
In J, all file operations are handled by foreigns which are created by the foreign

conjunction !: . The foreigns are a grab-bag of functions and you would do well to
spend some time glancing over their descriptions in the Dictionary so you'll have an idea
what is available. All the foreigns defined to date in J are of the form m!:n with
numeric m and n, and they are organized with m identifying the class of the foreign. For
example, the foreigns for operations on files have m=1.

File Operations 1!:n; Error Handling
The foreigns 1!:n perform file operations. For ease of use I have given several of

them names in JforC.ijs . To see the details of what they do, read the Dictionary.

Monad 1!:1 (ReadFile) has rank 0 . 1!:1 y takes a filename as y and produces a
result that is a list of characters containing the text of the file. In our examples, the
filename is a boxed character string; y can be a file number but we won't get into that.
 s =. 1!:1 <'c:\JforC\JforC.ijs'
 s
NB. File definitions for'J For C Programmers'
NB. Copyright (c) 2002 Henry H. Rich
…

Dyad 1!:2 (WriteFile) has rank _ 0 . 1!:2 y writes to the file y, using the
character string x to provide the contents. Any existing file y is overwritten. y is a
boxed character string or a file number.
 ('Test Data',CR,LF) 1!:2 <'c:\Temp\temp.dat'

Dyad 1!:3 (AppendFile) has rank _ 0 . x 1!:3 y appends the character string x
to the of file y (creating the file if it does not exist):
 ('Line 2',CR,LF) 1!:3 <'c:\Temp\temp.dat'

Monad 1!55 (EraseFile) has rank 0 . 1!:55 y erases the file y with no
prompting. Be careful: the power of J makes it possible for you to delete every file
on your system with one sentence.

The special file number 2 sends output to the screen. The verb monad Display in
JforC.ijs uses file number 2 to display its operand (which must be a character string)
on the screen; you can put Display sentences in a long verb to see intermediate results.
In most cases you will prefer to use printf, described below.

There are many other 1!:n foreigns to manage file locks, query directories, handle
index read/write, and do other useful things. The Dictionary describes them, and I will
add only that the description of 1!:12 is misleading: the length to be written is implied

 106

by the string argument x and must not be included in y; therefore item 1 of y is a boxed
scalar, rather than a boxed list of 2 integers as for 1!:11 .

Error Handling: u ::v, 13!:11, and 9!:8
When you deal with files you have to expect errors, which will look something like

 s =. 1!:1 <'c:\xxx\yyy.dat'
|file name error
| s=. 1!:1<'c:\xxx\yyy.dat'
indicating that the file was not found.

You can set up your verbs to catch errors instead of interrupting with a message at the
console. We will learn one way here and another later when we study control structures
for J verbs. The conjunction u ::v has infinite rank, and can be applied either
monadically or dyadically. u ::v executes the verb u first (monad or dyad, as
appropriate); if u completes without error, its result becomes the result of u ::v; but if
u encounters an error, v is then executed, and its result becomes the result of u ::v :
 rerr =: 1!:1 :: (13!:11)
rerr y will execute 1!:1 to read y; if that fails it will execute the foreign 13!:11 .
13!:11 y ignores y and produces as result the error number of the last error
encountered. This means that if 1!:1 succeeds, the result of rerr will be a string,
while if 1!:1 fails, the result will be a number:
 rerr <'c:\JforC\JforC.ijs'
NB. File definitions for'J For C Programmers'
NB. Copyright (c) 2002 Henry H. Rich
…

 rerr <'c:\xxx\yyy.dat'
25

You could use 3!:0 to see whether the result of rerr is a string or a number (2
means string, 1, 4, 8, or 16 means number). If you want to see the error message
associated with an error number, there's a foreign 9!:8 to give you the list of errors (it
ignores its y too):
 25 { 9!:8 ''
+-----------------+
|file number error|
+-----------------+

Format Data For Printing: Monad And Dyad ":
Since J reads and writes all files as character strings, you will need to be able to

convert numbers to their character representation. Dyad ": has rank 1 _ . y may be
numeric or boxed, of any rank (we will not consider boxed y here). If x is a scalar it is
replicated to the length of a 1-cell of y . If y is numeric, each 1-cell of y produces a
character-list result, with each atom in the 1-cell of y being converted to a character
string as described by the corresponding atom of x and with the results of adjacent 0-cells
being run together; the results from all 1-cells are collected into an array using the frame

 107

with respect to 1-cells. That sounds like the description of a verb with rank 1; almost so
but not quite, because ": looks at the entire y and adds extra spaces as necessary to make
all the columns line up neatly.

A field descriptor in x needs two numbers, w and d . These are represented as the
real and imaginary parts of a complex number, so that only a single scalar is needed to
hold the field descriptor. The real part of the field descriptor is w, and it gives the width
of the field in characters. If the result will not fit into the field, the entire field is filled
with asterisks; to prevent this you may use a w of 0 which will cause the interpreter to
make the field as wide as necessary. The imaginary part of the field descriptor is d,
giving the number of digits following the decimal point. If either w or d is less than zero,
the result is in exponential form (and the absolute value of w or d gives the corresponding
width), otherwise the result is in standard form. Examples:
 0 ": i. 4 4
 0 1 2 3
 4 5 6 7
 8 9 10 11
12 13 14 15
Note that extra spaces were added to the one-digit values to make them line up. Note
also that 'enough space' includes a leading space to keep adjacent results from running
together.
 1 ": i. 4 4
0123
4567
89**

When you specify a width, you are expected to mean it, and no extra space is added.
Here two-digit results would not fit and were replaced with '*'.
 0 0j3 0j_3 ": 100 %~ i. 3 3
0 0.010 2.000e_2
0 0.040 5.000e_2
0 0.070 8.000e_2
A complex number has its parts separated by 'j' . Here the first field is an integer, the
second has 3 decimal places, and the third is in exponential form.

When dyad ": is applied to an array, the result has the same rank as y . If you need
to write that result to a file, you will need to use monad , to convert it to a list, possibly
after adding CR or LF characters at the ends of lines.

Monad ":
Monad ": resembles dyad ": with a default x, except that x depends on the value of

the corresponding atom of y . The simple description of monad ": is that it formats
numbers the way you'd like to see them formatted. The full description is as follows: The
precision d is given by a system variable that can be set by the foreign 9!:11 y (and
queried by 9!:10 y; initially it is 6) ; as a quick override you may use the fit
conjunction ":!.d to specify the value of d for a single use of ": . If an atom of y is

 108

an integer, a field descriptor of 0 is applied; if the atom has significance in the first 4
decimal places, a field descriptor of 0jd is applied; otherwise a field descriptor of 0j_3
is applied. Trailing zeros below the decimal point are omitted.
 9!:10 ''
6
 ": 0 0.01 0.001 0.000015 0.12345678 2
0 0.01 0.001 1.5e_5 0.123457 2
In spite of all the detail I gave about the default formatting, in practice you just apply
monad ": to any numeric operand and you get a good result. Monad ": accepts
character arguments as well and leaves them unchanged:
 ; ":&.> 'Today ';'is ';2002 1 24
Today is 2002 1 24
We went inside the boxes with &.> and formatted each box's contents with monad ":;
this made all the contents strings and we could run them together using monad ; .

Monad ": also converts boxed operands to the character arrays, including boxing
characters, that we have seen in the display of boxed nouns.

Format binary data: 3!:n
If you need to write numbers to file in binary format, you need something that will

coerce your numbers into character strings without changing the binary representation.
Look into the foreigns 3!:n, which provide a great many format conversions.

printf, sprintf, and qprintf
When you need formatted lines for printing you may feel at home using printf and

sprintf, which work like their C counterparts. printf displays a line, while
sprintf produces a string result:
 'The population of %s is %d\n' printf 'Raleigh';240000
The population of Raleigh is 240000

 s =. 'The total of %j is %d.\n' sprintf 1 2 3;+/1 2 3
 s
The total of 1 2 3 is 6.

You need to execute
load 'printf'
to get the printf verbs defined. J's printf contains a few features beyond C's such
as the %j field type seen above. Rather than discuss them in detail here, I suggest that
you take this opportunity to learn how to run J's labs, which are interactive demos
describing various topics in J. To run the lab for printf, start a J session, on the menu bar
select Studio|Labs�, then select the lab 'Formatting with printf', then press 'Run'. The
lab provides explanatory text interspersed with examples executed in your J session
which you are free to experiment with as you step through the lab.

 109

Once you have gone through the lab for printf you have my permission to tarry a
while among the labs, and run whichever ones seem interesting. Much of the description
of the J system can be found only there.

Back on the subject of printing variables, one feature with no analogue in C is
qprintf, which produces handy typeout for debugging:
 a =. 3 4 5 [b =. 'abc';'def';5 [c =: i. 3 3
 qprintf 'a b c '
a=3 4 5 b=
+---+---+-+
|abc|def|5|
+---+---+-+
 c=
0 1 2
3 4 5
6 7 8
qprintf is described in the 'Formatting with printf' lab.

Convert Character To Numeric: Dyad ".
Dyad ". has infinite rank. x ". y looks for numbers in the words of y, which

must be a character array. Words representing valid numbers are converted to numbers;
words not representing valid numbers are replaced by x . If 1-cells of y have differing
numbers of numbers, x is used to pad short rows. 'Valid numbers' to dyad ". are
anything you could type into J as a number, and more: the negative sign may be '-'
rather than '_'; numbers may contain commas, which are ignored; and a number may
start with a decimal point rather than requiring a digit before the decimal point. With the
relaxed rules you can import numbers from a spreadsheet into J, using x&". to convert
them to numbers:
 999 ". '12 .5 3.6 -4 1,000 x25'
12 0.5 3.6 _4 1000 999
All legal numbers except for 'x25' .

 110

21. Calling a DLL Under Windows

Interfacing to a DLL is one thing you can do the old-fashioned way: by getting a copy
of a working program and editing it. You can find starter programs in the J distribution.
A good one to start with is \system\packages\winapi\registry.ijs. You
can glance through this program to see what it does. It starts with
require 'dll'
which defines the verb cd . Calls to the DLL appear in lines like
rc =. 'Advapi32 RegCreateKeyExA i i *c i *c i i i *i *i'
 cd root;key;0;'';0;sam;0;(,_1);(,_1)
(this is a single line in the program; I have shown it here as 2 lines because it won't fit on
the page as a single line)

This example exhibits the elements of a call to a DLL. The left operand of cd is a
character list describing the function to be called and what arguments it is expecting.
Here we are calling the entry point RegCreateKeyExA in the library Advapi32. The
sequence of is and *cs describes the interface to the function. The first item in that
sequence describes the type of value returned by the function; the other items are the
arguments to the function and are a one-for-one rendering of the argument list that would
be passed in C. So, the line above is appropriate for calling a function defined with the
prototype
int RegCreateKeyExA(int, char *, int , char *, int, int, int, int *, int *);

The descriptors can be c (char), s (short) , i (int), f (float), d (double), j
(complex), or n (placeholder�a value of 0 is used and the result is ignored); all but n
can be preceded by * to indicate an array of that type. * by itself indicates an array of
unspecified type.

The right operand of cd is the actual arguments to be passed to the called function. It
must be a list of boxes in which the contents of each box holds one argument to the called
function (there is no box to correspond to the returned value). An argument whose
description does not include * must correspond to a boxed scalar of the appropriate type.
An argument described with * must correspond to a box whose contents are either an
array or a boxed memory address (see below). The address of the array or memory area
is passed to the DLL and the DLL may modify the array or memory area; this is how you
return an array from the function.

s and f are not native J types. A scalar argument described by s or f is converted by
the interpreter to the correct form, while an argument described by *s or *f is assumed
to point to an memory area with the correct format.

Note that if you get things wrong and the function scribbles outside the bounds of an
array, J may crash. Note also that a vector of 0s and 1s is held inside J as a vector of
Booleans, which are chars. When the function calls for a vector of ints, J will convert
any Boolean to int. In the example above, (,_1) reserved space for an int; (,0)
would have worked too but would require a conversion.

 111

When the function returns, its returned value will be boxed and appended to the front
of the boxed list that was the right operand of cd to produce the result of the execution of
cd . You may use this returned value as you see fit. Any box that contained an array
may have had its contents modified by the function; you may open the box to get the
changed value.

Memory Management
Passing arrays into the called function is adequate only for simple functions. If the

function expects an argument to be a structure, possibly containing pointers to other
structures, you will have to allocate memory for the structures, fill the structures
appropriately, and free the memory when it is no longer needed. J provides a set of verbs
to support such memory management.

Allocate memory: mema

mema length allocates a memory area of length bytes. The result is the
address of the memory area, as an integer. It is 0 if the allocation failed. mema has
infinite rank.

You must box the memory address before using it as an operand to cd . Do not box
the address for use as an operand to memf, memw, or memr .

Free memory: memf

memf address frees the memory area pointed to by address . address must
be a value that was returned by mema . Result of 0 means success, 1 means failure.
memf has infinite rank.

Write Into a Memory Area: memw
data memw address,byteoffset,count,type

causes data to be written, starting at an offset of byteoffset from the area pointed to
by address, for a length of count items whose type is given by type . type is 2
for characters, 4 for integers, 8 for floating-point numbers, 16 for complex numbers; if
omitted, the default is 2 . If type is 2, count may be one more than the length of
data to cause a string-terminating NUL (\0) to be written after the data .

Read From a Memory Area: memr
memr address,byteoffset,count,type

produces as its result the information starting at an offset of byteoffset from the area
pointed to by address, for a length of count items whose type is given by type .
type is 2 for characters, 4 for integers, 8 for floating-point numbers, 16 for complex
numbers; if omitted, the default is 2 . The result is a list with count items of the type
given by type .If type is 2, count may be _1 which causes the read to be terminated
before the first NUL (\0) character encountered.

 112

22. Loopless Code V�Partitions

The adverb \ operated on subsets of the operand y that were taken in a regular way.
Now we will take the next step, and operate on irregular subsets of y . This will finally
give us the chance to do interesting work with character strings.

Find Unique Items: Monad ~. and Monad ~:
Monad ~. has infinite rank. ~. y is y with duplicate items removed and is called

the nub of y. The items of ~. y are in the order of their first appearance in y :
 ~. 'Green grow the lilacs'
Gren gowthliacs
]a =. _2]\ 0 1 1 2 0 1 2 3 1 3 1 2
0 1
1 2
0 1
2 3
1 3
1 2
 ~.a
0 1
1 2
2 3
1 3
y can have any rank, and ~. y gives the unique items.

Monad ~: has infinite rank and tells you which items monad ~. would pick. ~: y
is a Boolean list where each element is 1 if the corresponding item of y would have been
selected for the nub of y :
 ~: 'Green grow the lilacs'
1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1
 ~: a
1 1 0 1 1 0
 (~: a) # a
0 1
1 2
2 3
1 3

~. y is equivalent to (~: y) # y .

Apply On Subsets: Dyad u/.
Dyad u/. has infinite rank. x u/. y applies u to subsets of y for which the

corresponding items of x (called the keys) are identical. I will skip the formal description
in favor of a verbal one: First find the nub of x, call it nx . Then, for each item of nx,

 113

find all matching items of x; make an array of the corresponding items of y (this array
will always have rank one more than the rank of an item of y), and apply u to that array;
the result becomes one item of the result of x u/. y . The items of x u/. y thus
correspond to items of the nub of x . Note that the subsets of y may have different
shapes (they will all have the same rank, being made of items of y, but each subset may
have a different number of items). For this reason, we usually have u produce a boxed
result to avoid framing fills.
]a =. 2 0 1 0 2 </. 'Hello'
+--+--+-+
|Ho|el|l|
+--+--+-+
The subsets were created, and each one was boxed. Note that each subset is a list, even
the one with only one element:
 $&.> a
+-+-+-+
|2|2|1|
+-+-+-+

 3 0 3 0 3 +//. 100 1 200 2 300
600 3
The summing was performed for each subset. Note that the result is sorted not on the
value of the keys, but rather on the smallest index of each key in x .
]a =. _2]\ 'Fred';100;'Joe';200;'Fred';50;'Sam';30
+----+---+
|Fred|100|
+----+---+
|Joe |200|
+----+---+
|Fred|50 |
+----+---+
|Sam |30 |
+----+---+
A small database of amounts we owe. We can quickly get a total for each creditor:
]b =. ({."1 a) +/@:>/. ({:"1 a)
150 200 30
({."1 a) gives the list of names, which we use as keys for the data given by
({:"1 a) . For each subset, we open the boxes and add up the results. Note that
+/@>/. would not do, and understand why.

It would be nice to have names associated with the totals:

 114

 (~. {."1 a) ,. <"0 b
+----+---+
|Fred|150|
+----+---+
|Joe |200|
+----+---+
|Sam |30 |
+----+---+
We box the totals using <"0 before we join items of the totals to the items of the nub.
Recall that x ,. y concatenates each item of x with the corresponding item of y .We
take advantage of the fact that the results of u/. have the same order as the nub.

Apply On Partitions: Monad u;.1 and u;.2
Unlike dyad u/. which applies u to scattered subsets of y, u;.n applies u to

sequential subsets of y . In monad u;.n, the subsets are computed from information in
y itself; in dyad u;.n, x specifies the subsets. u;.n is really 4 different cases
distinguished by the number n; we will start with the case where n is 1, 2, _1, or _2 .

Avoid the error of thinking that an operation on a subset of y somehow modifies y .
Never happens. In J, the result of a verb is always a new noun. You may assign that
noun to the same name as one of the operands, but until you do, the old operand is
unchanged, and both it and the result of the verb are available for further use.

u;.1 y partitions y by finding the items of y that match the first item of y (i. e.
0{y); each such item, called a fret, is the start of an interval of y which runs from the
fret to the last item before the next fret (the last interval runs to the end of y). Monad u is
applied to each interval (which is always a list of items of y), and the results of u become
the items of the overall result of u;.1 y .
 <;.1 ' a list of words '
+--+-----+---+------+-+
| a| list| of| words| |
+--+-----+---+------+-+
Each ' ' character, even the one at the end, started a new interval. We are not restricted
to boxing the intervals:
 #;.1 ' a list of words '
2 5 3 6 1
Here we report the length of each word.

u;._1 y is like u;.1 y except that the fret itself is omitted from the interval. The
interval could be empty in that case:

 115

 <;._1 ' a list of words '
+-+----+--+-----++
|a|list|of|words||
+-+----+--+-----++
 #;._1 ' a list of words '
1 4 2 5 0

u;.2 y and u;._2 y are like u;.1 y and u;._1 y except that the frets are
those items of y that match its last item, and each marks the end of an interval:
 <;.2 'Mississippi'
+--+---+---+---+
|Mi|ssi|ssi|ppi|
+--+---+---+---+

Use u;.2 y to split a list when you know the ending marker for the intervals:
 ;: ;._2 (0 : 0)
Fred 500
Joe 200
Fred 50
Sam 30
)
+----+---+
|Fred|500|
+----+---+
|Joe |200|
+----+---+
|Fred|50 |
+----+---+
|Sam |30 |
+----+---+
Here (0 : 0) creates a noun from the lines that follow. Each line ends with an unseen
LF character which provides a convenient fret for splitting the lines. We use ;._2 to
apply monad ;: to the text of each line (not including the fret, which is dropped by
;._2). Monad ;: splits each string into words and boxes the words. The result is not
the same as the array we created earlier, because the second column is character rather
than numeric. We could have written noun define instead of (0 : 0) .

Monad u;.n has rank 1 _ when n is 1, 2, _1, or _2 .

Apply On Specified Partitions: Dyad u;.1 and u;.2
When n is 1, 2, _1, or _2, x u;.n y has infinite rank and resembles u;.n y .

The difference is that the frets are given by the positions of 1s in x rather than by values
of the items of y . x must be a Boolean list of 0s and 1s. We can define u;.1 y as
(({.y)="_ _1 y) u;.1 y, and u;.n for the other values of n similarly.
 0 1 0 1 0 +/;.1 (20 30 40 50 60)
70 110
As in this example, some leading items of y may not be in any interval.

 116

Find Sequence Of Items: Dyad E.
Dyad E. has infinite rank and is used to slide a pattern across an array and look for

positions at which the pattern matches the items of the array. x and y should have the
same rank, and the sliding occurs along all axes of y, giving a Boolean result with the
same shape as y . We will consider only the cases where y is a list.
 'is' E. 'Mississippi'
0 1 0 0 1 0 0 0 0 0 0
The 1s in the result tell where the pattern starts. The result of E. is often used as input to
u;.1 :
 ('is' E. 'Mississippi') <;.1 'Mississippi'
+---+-------+
|iss|issippi|
+---+-------+

A more ambitious example:
 html =. 0 : 0
<th>Press here to go back</th>
<th>Press here to go home</th>
<th>Press here to go away</th>
</table>
</center>
)
 ('<a' E. html) {.@:(<@:(8&}.);._1)@:('>'&,);.1 html
+------------+------------+------------+
|'page1.html'|'page2.html'|'page3.html'|
+------------+------------+------------+
That looks like a useful result, but what a mess to produce it! If you want, you may try to
understand that, but a better approach is to break it up:
 extracthref =: <@:(8&}.) ;._1 @:('>'&,)
This seems understandable, with effort: we prepend '>' to y, then we use ;._1 on the
string. That will make the prepended '>' the fret, and so we will break the string into
parts that start with '>', throw away the first 8 characters of each part, and box each
trimmed-down part. We can even try it on a test bit:
 extracthref 'abcdefghijkl>xxx'
+----++
|ijkl||
+----++
Now we can look again at our original line, rewritten:
 ('<a' E. html) {.@:extracthref ;.1 html
+------------+------------+------------+
|'page1.html'|'page2.html'|'page3.html'|
+------------+------------+------------+
This makes some sense now. We use E. to find all the starting positions of '<a' tags;
then, for each one, we split what follows the '<a' into blocks terminated by '>', and
then we take the first one, which will have the data before the '>' that matched the
'a<' .

 117

Apply On Subarray: Dyad u;.0
Dyad u;.0 has rank 2 _ . x u;.0 y uses x to specify a subarray of y; the

subarray is extracted, and u is applied to it to produce the final result. We will discuss
the simple case where x is a rank-2 array.

The first item of x (call that s) gives the starting corner of the subarray. The second
item of x gives the length of each axis of the subarray. If x is shorter than the rank of y,
unspecified axes are taken in full. For example:
]a =. a. {~ (a. i. 'a') + i. 4 4
abcd
efgh
ijkl
mnop
A cute little expression in its own right. See why this produces the 4×4 array of
characters shown. Remember that a. is the alphabet of all ASCII characters in order.
 (0 0 ,: 2 2)];.0 a
ab
ef
Starting corner 0 0; lengths 2 2; result is a 2×2 subarray, left unchanged by monad] .
 (1 2 ,: 3 2)];.0 a
gh
kl
op
Starting corner 1 2; lengths 3 2; result is a 3×2 subarray, left unchanged by monad] .
You get the idea.

If an item of s is negative, the corresponding axis of the subarray extends backward
from the starting point (and its absolute value is used as the starting position):
 (2 _2 ,: 2 2)];.0 a
jk
no
Starting corner 2 2 (the character k); lengths 2 2, but running backward in axis 1;
result is a 2×2 subarray, left unchanged by monad] . Note that the axis extends
backward, but the items retain their normal order�you have merely specified the interval
by its endpoint rather than its beginning point. If you want to reverse the order of the
axis, you can do that too, by making the corresponding length negative:
 (2 _2 ,: 2 _2)];.0 a
kj
on
Starting corner 2 2 (the character k); lengths 2 2, but running backward in axis 1;
result is a 2×2 subarray with axis 1 reversed, left unchanged by monad] .

The subarray must end at the limits of the array. If the length requests more than that,
the subarray will be shorter than was requested. A length of _ will always fetch from the
starting point to the limit of the array.

 118

Dyad u;.0 is a great way to pick out a subarray to work on. Always consider using
it whenever you find yourself using more than one application of {.and }. to select a
portion of an array. Even if you are working with a list, using dyad u;.0 is a good way
to work on a portion of the list without copying any part you aren't working on.

Apply On All Subarrays: Dyad u;.3 and u;._3
x u;._3 y applies u to subarrays of y as specified by x . The operation is similar

to dyad u/ (infix), but dyad u/ slides a one-dimensional window across y to select
sequences of items of y, while dyad u;._3 moves a multidimensional window
throughout y to select multidimensional regions. When the window has only one
dimension, the operation is like dyad u/ but with a little extra control over the positions
of the window.

The second item of x (actually, | 1{x) gives the size of the window (if an item is
negative the corresponding axis is reversed before u is applied to the window). The first
item of x (0{x) is the movement vector: the window is positioned at every point at
which each item of the window position is an integral multiple of the corresponding item
of the movement vector, as long as the window fits inside y . If an item of the
movement vector is smaller than the corresponding item of the size, the windows will
overlap along that axis.

Dyad u;._3 is useful in imaging applications. The following example averages
2×2-pixel regions in an image using a simple box filter:
]image =. ? 8 8 $ 100
31 88 65 15 68 38 38 49
14 58 84 59 95 55 14 98
40 14 56 25 48 46 96 12
19 31 62 12 65 62 80 24
47 38 20 2 90 42 14 94
41 13 88 9 16 7 36 25
13 78 45 34 45 80 93 65
21 67 90 25 86 47 50 60
 (2 2,:2 2) (*&0.25)@:(+/)@:, ;._3 image
47.75 55.75 64 49.75
 26 38.75 55.25 53
34.75 29.75 38.75 42.25
44.75 48.5 64.5 67

The rank of each operand presented to u is the same as the rank of y . The shape of
each operand presented to u is the shape of y with the leading items replaced by |1{x
(formally, this is (|1{x),(#x)}.$y).

If x has rank less than 2, it is processed as if it were 1,:x which will try the window
at all possible locations.

x u;.3 y is similar to x u;._3 y, but the window is positioned at every starting
point that is within y, even if the entire window will not fit within y . For those
positions at which the window will not fit, the operand to u is truncated.

 119

23. When Programs Are Data

One characteristic of maturity in programming is readiness to pass a program as an
argument. A well-designed program does not exhibit a megalomanic urge to do
everything the user may desire; it is content to perform a limited function well, and to
leave other functions to other programs. A suite of such programs can be variously
connected to perform a great variety of functions, with each program doing its bit and
passing control to the next one.

In C a program is passed to another program by pointer reference, and invoked by
(*pfi)(arguments). J has no pointers, but it has a great many ways to pass executable
nuggets around the system. We will learn them now.

Calling a Published Name
The simplest way to get a verb f to pass control to another program g is to define f

to call a verb with a public name, say f_subfn, and then to define f_subfn to be g .
In C, this would be ridiculous, because it would imply that f_subfn is permanently
bound to a single value of g, with the result that all calls to f from anywhere in your
program would be stuck with the same value of g .

J overcomes this objection by allowing redefinition of f_subfn . Each invocation
of f looks like
 f_subfn =: g
 f arguments
When f is invoked elsewhere, the correct value of f_subfn will be assigned similarly,
so each invocation of f can pass control properly.

I find this technique hideous, but I have to admit it is effective. J uses it to get
callbacks from DLLs. It must not be used if f_subfn is going to be called in response
to an event, since its value may have been redefined by the time the event occurs.

Using the Argument To a Modifier
If the verb isn't going to call a name of its own choosing, you have to tell it what to

call. The simplest way to do this is to make it a modifier instead of a verb; then when it
executes it has access to its operands, which can be verbs. So, instead of
f =: verb : 'definition'
you write
f =: adverb define
monadic definition
:
dyadic definition
)
and within the definition of f you can refer to the left operand of the adverb, which goes
by the name u. . If you decide to write a conjunction instead, its right operand is v. .

 120

The noun operands of the derived verb (u f or u f v) are x. and y., as usual. We
will discuss user-defined modifiers in a later chapter.

In Chapter 3 this technique was used to calculate the Chebyshev coefficients of a
function. The function to be approximated is one of the inputs to this calculation, so we
write an adverb and let its left operand be the function. With chebft defined as in the
example, an example of its use is:
 10 (2&o.) chebft 0 1
1.64717 _0.232299 _0.0537151 0.00245824 0.000282119…
Here the function to be approximated is the cosine function 2&o., evaluated for 10
Chebyshev coefficients over the interval 0 1 .

When you define a modifier, you have no way to specify that you are defining only
the dyadic case as you can for a verb with dyad define . Instead, you use the form
given above, in which the monadic definition (if any) is separated from the dyadic by a
line containing a single ':' character. chebft did this, since its derived verb is always
dyadic.

Invoking a Gerund: m`:6
Sometimes you want use a noun rather than a verb to designate a verb to be called.

An asynchronous socket handler is an example: the socket handler will have many
transfers going on at once, each one with a callback to be executed when the transfer is
complete. The callbacks must be put into a table along with other information about the
transfer; in other words, the callbacks must be nouns.

We have already met nouns that carried verbs; we called them gerunds. We found
that gerunds were created by the conjunction ` and executed by m@.v . While these
tools are adequate to allow verbs to be passed as arguments, some simplifications are
available that we will discuss now.

A gerund created by u`v is always a list (each element of which, as we learned, is an
atomic representation of a verb which we will treat as untouchable). Even if there is only
one verb, the result of ` is a list:
 +`''
+-+
|+|
+-+
 $ +`''
1

It makes sense for the gerund created by ` to be a list, since it contains a list of verb-
representations one of which is selected for execution by m@.v . But when we are
passing a single verb-as-noun as an argument, it is OK for it to be a scalar box. And, it
can be invoked using the `: conjunction: m`:6 converts the gerund m into a verb. So, in
our example, we pass the callback as one box in a parameter list, and then we select it,
turn it into a verb with m`:6, and execute it, as we can see in a stripped-down example.
The gerund operations are not difficult so I am going to keep your interest with a couple
of new tricks:

 121

 callback =: dyad : '(x.) =: y.'
Howzat? (x.) =:? Yeah, this means that the value of x. tells what variable will be
assigned. x. can be a simple name, as a character list, or other exotic forms.
 calledfn =: monad : '(0 { y.)`:6 (1 {:: y.)'
So calledfn is expecting an argument of (at least) 2 boxes. The first one will be the
gerund to execute, and the second one will be the argument to pass to that verb. We open
the second box (with {::) but we leave the first as a box so that `:6 can turn it into a
verb.
 calledfn 'vbl'&callback ` (<25)
The first challenge is figuring out what the argument to calledfn is. ` sees a verb on
its left; it converts that to a gerund. It sees a noun to its right, so it appends it unchanged
to the gerund from the left. This produces
 'vbl'&callback ` (<25)
+----------------------+--+
+-+------------------+	25									
	&	+-------+--------+								
			+-+---+	callback						
				0	vbl					
			+-+---+							
		+-------+--------+								
+-+------------------+										
+----------------------+--+
The first box is the atomic representation of the verb, just as mysterious as it was billed to
be, and the second box has the 25. Now what do we get when we pass that in as the
argument to calledfn (try to work it out before you peek at the answer)?
 calledfn 'vbl'&callback ` (<25)
25
Did you get it? We executed 'vbl'&callback 25 which then executed
vbl =: 25 which has the result 25, which comes back as the result of calledfn .
The assignment was public:
 vbl
25

Passing the Definition Of a Verb
As an alternative to passing a gerund and invoking it with m`:6, you could pass the

string representation of a verb and make a verb out of it with 3 :n or 4 :n . Which of
these methods you choose is a matter of taste.

Passing an Executable Sentence: Monad ". and 5!:5
As the ultimate in flexibility, you can pass an entire J sentence as a character string

and then execute it with monad ". . It is executed exactly as if it had been a line of the
executing verb (or from the keyboard if that's where ". was entered). For example:
 ". 'a =. i. 4'
0 1 2 3
The sentence was executed.

 122

 a
0 1 2 3
The assignment was performed.
 ". '+/' , ": a
6
The operand of monad ". must be a string, so before we can take its total we must
convert a to a sequence of characters that will have the value of a when executed. For a
large operand, converting to string form adds overhead that might steer you towards
using a gerund instead.

I think C programmers are likely to overlook opportunities to use monad ". because
it is so foreign to their experience. It is equivalent to compiling and executing a code
segment as part of the running program�it's just unthinkable. But in J, it's
commonplace.

If you are going to use monad ". you will face the problem of converting your nouns
to string form. Here's the display of a noun: what character string would you execute to
produce a noun with that value?
 a
+------------+----------------------------------+
+---+--+---+	0 2.25 4.5 6.75 9 11.25 13.5 15.75				
	abc	de	fgh		
+---+--+---+					
+------------+----------------------------------+
Fortunately, you don't have to worry about it. The foreign monad 5!:5 takes as y a
boxed name (not a value) and produces a string which when executed has the same value
as the variable named by y . So:
 5!:5 <'a'
(<<;._1 ' abc de fgh'),<2.25*i.8
�and if you tell me you came up with the same string, I'm not going to believe you.

 123

24. Loopless Code VI

The algorithms that are hardest to put into loopless form are the ones that chug
through the items of an array, modifying a set of temporary variables that control the
operation at each step. I am going to show you how to put one example of such an
algorithm into loopless form. The resulting structure can be used for many such
problems.

The example problem is a simulation. In a certain church most of the worshippers are
devout, but the front pew is always packed with knaves. Collection is taken every
Sunday. Each knave brings two coins to throw in, but, being a knave, he first removes
the two most-valuable coins from the plate before adding his own. Given p, the contents
of the plate when it reaches the front row (a list of coin-values) and k, the coins brought
by the knaves (an n×2 array), what is the final contents of the plate, and what does each
knave make off with? For test data, we will use
 p =. 100 25 100 50 5 10
giving the contents of the plate as it enter the knaves' row, ,and
]k =. _2]\ 50 50 100 25 5 10 25 50 25 10
 50 50
100 25
 5 10
 25 50
 25 10
as the coins to be thrown in by the greedy knaves.

After trying for a clever solution for a little while we give up and decide we are going
to have to simulate the action of each knave. We start by writing a verb knave to
perform a knave's action. The design of this verb requires a little careful joinery to make
it useful later: we will invoke it as x knave y where x is an item of k, i. e. the input
for one knave, and y is the result from applying knave for the previous knave; the result
of knave must have the same format as the y operand of knave; finally, the result of
knave must include whatever we want as the final solution of the problem.

We see that the result of knave, which will be the input to the next invocation of
knave, must carry all the information needed by the next invocation of knave; this is
the way information is passed from knave to knave. The main design decision is to
figure out what the format of the y operand of knave will be.

Obviously we need to know the contents of the plate as it is given to each knave.
Also, the purpose of knave is to calculate what coins are removed, so those coins should
be part of the result. We decide that the y operand of knave will consist of those two
things, in the order (coins removed),(plate contents), and we already
know that the x operand will have the format of an item of k, i. e. the knave's two coins..
Now we are ready to code knave .

 124

It should look at the plate-contents portion of its right argument, sort it into order of
size, take the two biggest values as the result of interest, and use the rest (with the knave's
own coins added) as the plate contents to be passed to the next knave. The coins that
were removed are put into their place at the beginning of the result vector. In J this will
be:
 knave =: dyad define
xlen =. #x. NB. number of coins added/removed
splate =. \:~ xlen }. y. NB. extract plate contents, sort
(xlen {. splate) , (xlen }. splate) , x. NB. build result
)

Let's test it. The y operand to the first invocation of knave will have a couple of
placeholders in the place where the coins removed by the previous knave would be,
followed by the initial contents of the plate. In other words,
]inity =. ({:k),p
25 10 100 25 100 50 5 10
Here we used the last item of k as a placeholder. The values don't matter but we want the
right shape so the program will still work if we change the number of coins in k .
Applying this value to the first knave we get
 50 50 knave inity
100 100 50 25 10 5 50 50
Yes, that's right: the first two items of the result are the two dollar coins the knave took,
and he threw his coins in at the end.

Before we go on we can't help noticing that taking the first two items of splate and
then dropping those same items�that's needless work. We can simplify knave to
 knave =: dyad : '(\:~ (#x.) }. y.) , x.'

Now we need to apply knave sequentially on all items of k . We have learned
enough J to write a sentence to do that, but because this is a recurring problem I have
written a conjunction LoopWithInitial to hide the complexity (we'll look at its
details in a moment). This conjunction takes the verb knave, the initial value inity,
and the array k and applies knave repeatedly, with each item of k taking a turn as x
with the y set to the result from the previous invocation of knave :
]res =. knave LoopWithInitial inity k
100 100 50 25 10 5 50 50
 50 50 50 25 10 5 100 25
100 50 25 25 10 5 5 10
 25 25 10 10 5 5 25 50
 50 25 10 10 5 5 25 10
We see the result after each application of knave (if you want to see the input alongside
the result, type k ,&<"_1 res). The contents of the plate are included in res as well;
we can extract the desired result simply as

 125

 2 {."1 res
100 100
 50 50
100 50
 25 25
 50 25

Once you have defined the verb and the initial value, you can use
LoopWithInitial to solve problems of this kind.

You may skip the rest of this chapter if you are not curious about how
LoopWithInitial works. It performs the following steps:
 LoopWithInitial =: conjunction define
by =. <"_1 y. NB. 1 box items of y
ry =. |. by NB. 2 reverse order for \.
ey =. ry , <n. NB. 3 append initial value
r =. u.&.>/\. ey NB. 4 apply u. in boxes
er =. }: r NB. 5 remove initial value
rr =. |. er NB. 6 put in original order
>rr NB. 7 remove boxing
)

Since the initial value is going to be appended to the y operand, and they have
dissimilar shapes, it is necessary to box each item of y as well as the initial value. Once
the items of y are boxed, they are put into reverse order, because as we have seen u/\.
is much faster than u/\ . Then the initial value is appended to the reversed boxed y .
With that preparation complete, the operation can be performed: u.&.>/\. applies
u.&.> (in words: unbox each operand, apply u., and rebox) starting at the end of the
reversed y . The first application of u.&.> will be between the original first element of
y and the initial value; the next application will be between the original second element
of y and the result of the first application; and so on. The results from the applications of
u.&.> are collected in an array. Finally, the preparation steps are undone, discarding
the initial value, reversing the array into original order, and unboxing the result.

The actual implementation of LoopWithInitial is a bit more elegant than that
schematic representation. Observe that step 7 is the inverse of step 1, step 6 of 2, and
step 5 of 3; each pair is an opportunity to use u&.v, and the actual verb produced by
LoopWithInitial is:
 knave LoopWithInitial inity
knave&.>/\.&.(,&(<25 10 100 25 100 50 5 10))&.|.&.(<"_1)
which performs all the steps of the longer form. You will have to wait almost until the
end of the book to learn how LoopWithInitial produces this result.

You may object that since the left operand of LoopWithInitial is applied to
each item, it still has to be interpreted for each item, so nothing is gained by avoiding the
loop. An astute observation, but in the second part of this book we will learn how to
write verbs that are not reinterpreted for each item.

 126

Finally, you may observe that the temporary vector, which only needs to be a list,
turns into a rank-2 array by the time we have passed it through each item. Doesn't that
waste a lot of space? Yes, it does, and if your problem is big enough that the space
matters, you may have a valid application for a loop. An alternative would be to make
the temporary vector a public variable accessed by knave in the same way that
temporary variables would be used in C.

 127

25. Modifying an array: m}

Modification of a portion of an array, performed in C by the simple expression
x[m] = y, fits uneasily into J. To begin with, 3 pieces of information are needed: the
array x, the index m, and the replacement data y . Since J verbs take only 2 operands,
that means the primitive to modify the array will be an adverb so that its left operand can
hold one of the 3; the verb derived from the adverb and its operand will perform the
modification.

Moreover, the adverb cannot be a modifier of the array's name as [m] is a modifier of
x in x[m] = y. In J, the array x may not have a name. While in C every array is declared
and named, in J we summon up anonymous arrays in the blink of an i., use them, and let
them disappear. We expect modification of a subarray to be like other primitives in this
regard, which means that it must not be a form of assignment to a name using a copula
(=. or =:), but instead a (derived) verb operating on an array to produce a result.

What will the result of the assignment be? This is not much of an issue in C. There
the result of the assignment is y, but it is seldom used: in C, after we have employed
x[m] = expression; we are usually content to put down the pencil, satisfied that we
have described a statement's worth of computation. In J we routinely use weapons of
larger bore: after we have modified the array we expect to be able to sort it, or add it to
another array, or the like. It is clear that the result of the modification of the array must
be the entire modified array.

This reasoning justifies J's design. } is an adverb. Modification of an array is
performed by dyad m} which produces a derived verb of infinite rank. x m} y installs
the atoms of x into the positions in y selected by m . m specifies portions of y in the
same way as the left operand of m{y . Even though dyad { has left rank 0, m may have
any shape: the atoms of m are processed to accumulate a list of selected portions of y . x
must either have the same shape as the selected portion(s) m{y or have the same shape as
some cell of m{y in which case x is replicated to come up to the shape of m{y .
Examples are a recap of the forms of the left operand of dyad {, with a couple of twists:
 0 (<1 1)} 4 4 $ 5
5 5 5 5
5 0 5 5
5 5 5 5
5 5 5 5
The simplest example. We select an atom and modify it.
 0 1 2 3 (0)} 4 4 $ 5
0 1 2 3
5 5 5 5
5 5 5 5
5 5 5 5
Here we are modifying a selected row.

 128

 0 (0)} 4 4 $ 5
0 0 0 0
5 5 5 5
5 5 5 5
5 5 5 5
x is shorter than m{y but x can be replicated to match the shape of m{y .
 0 1 (0)} 4 4 $ 5
|length error
| 0 1 (0)}4 4$5
Here the shape of x is 2 while the shape of m{y is 4, so the operands do not agree.
 1 2 (1 1;2 2)} 4 4 $ 5
5 5 5 5
5 1 5 5
5 5 2 5
5 5 5 5
Here m has 2 atoms, each selecting a single atom of y . x has two atoms and they are
stored into the selected positions.
 1 2 (1 1;1 1)} 4 4 $ 5
5 5 5 5
5 2 5 5
5 5 5 5
5 5 5 5
The same element is modified twice. As it happens, the modifications are performed in
order, and the last one survives in the result. Do not rely on this behavior! As a general
rule in J, the order in which a parallel operation is performed is undefined and may
change from release to release or from machine to machine.

The interpreter may incorrectly modify the first atom in the array if the atoms of m
select portions of y that do not have the same shape. You should avoid such m :
 0 1 2 3 (2;1 1)} 4 4 $ 5
3 5 5 5
5 0 5 5
0 1 2 3
5 5 5 5
Don't even try to figure out what happened; avoid mixed m .

Modification In Place
It is fundamental to the design of J that, in general, verbs produce output in a separate

memory block from the inputs. Thus, if I execute >: y, the result will be in a different
memory area from y . This takes more space than incrementing y in place, but not
much additional computation, since every atom of y must be visited and incremented
either way. Usually the extra memory usage is immaterial to overall performance.
Sometimes we regret having to make a new copy for the output, for example when we
just remove the end of a long list with }: y or add a single character to the end of a long
string with x , ' ' .

 129

Dyad m}'s profligacy with memory bandwidth reaches an extreme: even if y is huge
and only one atom is modified, the whole y must be copied to produce the result.
Sometimes this can be a noticeable drag on performance. To help out in those cases, the
interpreter recognizes the specific forms
name =. x m} name
name =: x m} name
and executes the modification in place, i. e. without creating a new copy of name . For
the modification to be in-place, there must be nothing else in the sentence either before or
after the form shown above, and the two appearances of name must be identical. x and
m may be any expressions that evaluate to nouns.

 130

26. Control Structures

Your reward for persevering through two dozen chapters on J is to be shown the
direct equivalent of if/then/else, for, and while. I have waited until I am sure you
realize that you don't need them, and will choose them not because you see no other way
to solve a problem, but because you think they are the best way.

if., while., and the rest are classified as control words in J. Their part of speech
is 'punctuation', like a parenthesis or LF character. They are allowed only inside
definitions, that is to say inside right operands of the : conjunction. If you want to use
them from the keyboard or in a script, you must define a verb/adverb/conjunction and
then execute it. A control word ends any sentence to its left, as if the control word started
with an end-of-line character. We will cover only a few important control sequences
here; to find the rest, bring up the J Vocabulary by pressing F1 and click on Controls
which is hidden in plain view next to the heading "Vocabulary".

for./do./end. and for_x./do./end.
The allowed forms are:

for. T-block do. block end.
for_x. T-block do. block end.
The T-block is evaluated and its result A is saved. block is executed once for each
item (item, not atom) of A . If you use the handy for_x. form (where x represents any
valid name of your choice), the private variables x and x_index are created, and every
time block is executed, x_index is assigned the index of an item of A and x is
assigned x_index { A .

The break. and continue. control words do what you would expect.

while./do./end. and whilst./do./end.
The allowed forms are:

while. T-block do. block end.
whilst. T-block do. block end.
while. corresponds to while and whilst. corresponds to do while. The 'st' in
whilst. stands for 'skip test' (the first time through), so you get one free pass through
the loop, just as with do while.

The break. and continue. control words do what you would expect.

if./do./else./end., if./do./elseif./do./end.
The allowed forms (with optional components underlined) are:

 131

if. T-block do. block else. block end.
if. T-block do. block elseif. T-block do. block… end.

The flow of control is as you would expect. T-blocks and blocks are both
sequences of zero or more J sentences. The result of the last sentence in a T-block
provides the result of the T-block . The result of a T-block tests true if its first atom
is nonzero, or if it is empty, or if the T-block was empty. The flow of control is as you
would expect based on the tests. The sequence elseif. T-block do. block
may be repeated as often as desired, but you will be surprised to learn that once you code
an elseif. you are not allowed to use else. in the same control structure: use
elseif. 1 instead.

My antipathy for for. and while. has scarcely been concealed, but I harbor no ill
will toward if. . As long as you don't apply it in a loop, if. makes the structure of
code obvious and you should use it. Examples are legion; the form
if. # name =. sentence to create an array
 code to process name, which is now known to have items
end.
is the most common in my code, used to guarantee that a block of code is executed only
when a certain noun has a nonzero number of items.

When we first learned about verb definitions we said that the result of a verb was the
result of the last sentence executed. Now we must emend that statement: sentences in
T-blocks do not affect the result of the verb.

try./catch./end.
The simplest form (see the Dictionary for others) is:

try. block1 catch. block2 end.

try./catch./end. is the control-structure equivalent of u ::v . block2 is
executed only if there was an error during the execution of block1 .

If you want to signal an error, execute the foreign 13!:8 y where y is the error
number you want to signal. You can use this in a try. block to transfer execution to the
corresponding catch. block.

return.
return. ends execution of the definition that is running. The result of the last

sentence not in a T-block is the result. Example:
if. T-block do. return-value return. end.

 132

27. Modular Code

Separating your code into independent modules boils down to segmenting the space
of variable names into subspaces that overlap to the extent you want. We will discuss
how J handles namespaces, and then see how this corresponds to the classes and
objects provided by C++.

Locales And Locatives
Every public named entity in J is a member of a single locale. Each locale has a

name which is a list of characters. A locative is a name containing a simple name (the
only kind of name we have encountered so far) and an explicit locale, in one of the two
forms simplename_localename_ and simplename__var . In the form
simplename_localename_, localename is the name of the explicit locale; in the
form simplename__var, the variable var must be a scalar boxed string whose
opened contents provide the name of the explicit locale. Examples:

abc_z_ is simple name abc and locale z
vv =. <'lname'
def__vv is simple name def and locale lname

Note that a simple name may contain an underscore; it may not end with an underscore or
contain two underscores in a row.

(Note: J makes a distinction between named locales whose names are valid J variable
names not including an underscore, and numbered locales whose names are strings
representing nonnegative decimal integers with no leading zeroes. The difference
between the two is small and we will ignore it).

The current locale is a value kept by J and used to influence the processing of names.
We will learn what causes it to change. The current locale is the name of a locale. When
J starts, the current locale is set to 'base' .

Assignment
An assignment is private if it is of the form simplename=.value and is executed

while an explicit definition is running. An entity assigned by private assignment is not
part of any locale and is accessible only by sentences executed by the explicit definition
that was running when the entity was assigned. The idea is this: there is a pushdown
stack of namespaces in which private entities are assigned. When an explicit definition E
is executed, it starts with a new empty namespace that will be destroyed when E finishes.
Any private assignments made while E is running are made in this private namespace.
Any private variables referred to by E or by tacitly-defined entities invoked by E are
taken from this private namespace. If E invokes another explicit definition F, F starts off
with its own private namespace and has no access to elements of E's private namespace.
When F finishes, returning control to E, F's private namespace is destroyed. E is said to
be suspended while F is running.

 133

Assignments that are not private (because they assign to a locative, use =:, or are
executed when no explicit definition is running) are public. Assignment to a locative
creates an entity having the simple name in the locative, residing in the explicit locale
given by the locative. A public assignment to a simple name creates the named entity in
the current locale. Entities in a locale are not affected by completion of an explicit
definition; they have a life of their own and can be referred to by any verb that knows
how to reach the locale they are in. The following examples illustrate assignments; the
interpretation given is correct if the lines are entered from the keyboard:
 simp1 =. 5 NB. public (outside of explicit definition)
 vb1 =: verb define NB. public
isimp =. simp1 NB. private, referring to public simp1
simp1 =. 8 NB. private (=. inside definition)
loc1_z_ =. 10 NB. public (locative)
simp2 =: 12 NB. public (=:)
isimp,simp1 NB. result
)
 vb1 '' NB. execute vb1, see result
5 8
Note that simp1 was set to 8 by the explicit definition. Because this was a private
assignment, the public value was not changed:
 simp1
5
The public value is still 5, as it was before the explicit definition was executed.
 loc1_z_
10
 simp2
12
The other public assignments leave their results in the locale they were assigned to.
 isimp
|value error: isimp
The entities assigned by private assignment were destroyed when vb1 finished.

Note that the load verb (which runs scripts) is an explicit definition. Any
assignment using =. executed during load will be lost. Use =: to define names in
scripts.

Name Lookup
Names and locatives used to refer to entities look just like names appearing as targets

of assignments, but there is an additional level of complexity for references. Each locale
has a search path (usually called simply the path) which is a list of boxed locale names.
The path is set and queried by the foreign 18!:2 which goes by the alias copath .
Examples:
 ('loc1';'loc2';'z') 18!:2 <'loc3'
Sets the path for locale 'loc3' to 'loc1' followed by 'loc2' (and the obligatory
'z').

 134

 copath <'loc3'
+----+----+-+
|loc1|loc2|z|
+----+----+-+
Queries the path for 'loc3' .

Every reference to a name implicitly uses a path. A reference to a locative looks for
the simple name in the explicit locale; if the name is not found there, the locales in the
path of the explicit locale are examined one by one until the simple name is found (if the
name is not found in any locale in the path, it is an undefined name). A reference to a
simple name is similar, but first the private namespace of the executing explicit definition
(if any) is searched, and only if that search fails are locales searched, starting in the
current locale and continuing if necessary in the locales in the current locale's path.

Note that only the path of the starting locale (either the current locale or the explicit
locale) specifies the search order. No other paths are used.

Examples of references:
 ('loc1';'loc2';'z') 18!:2 <'loc3'
 a_loc1_ =: 'a'
 a_loc2_ =: 'b'
 c_loc3_ =: 'c'
 c_loc2_ =: 'd'
 a_loc3_
a
The name was not defined in 'loc3' so the path was used, and the name was found in
'loc1' .
 a_loc2_
b
The value in 'loc2' can be retrieved if we start the search there.
 c_loc3_
c
If the value is found in the starting locale, no search is performed.
 c_loc1_
|value error: c_loc1_
 We have not defined a path for 'loc1', so 'loc2' is not searched.

Changing The Current Locale
The current locale can be changed in two ways: explicitly by executing the

cocurrent verb whose purpose is to change the current locale, and implicitly by
executing a verb named by a locative.

cocurrent y sets the current locale to y . Simple as that. cocurrent uses the
foreign 18!:4 . Do not use 18!:4 directly! It is intended to be used under an alias,
and it has side effects.

Executing an entity named by a locative (almost always a verb, but it could be a
modifier as well) saves the current locale, changes the current locale to the explicit locale
of the locative before starting the entity, and resets the current locale to the saved value

 135

when the entity finishes. Note that the entity always runs in the explicit locale of the
locative, even if the search for the name found the entity in some other locale in the
search path.

Whenever a named entity finishes execution, the locale is restored to its original
value, even if the entity changed the current locale.

Here are examples of actions affecting the current locale:
 load 'printf'
 18!:5 ''
+----+
|base|
+----+
This is how you query the name of the current locale. Next we define two verbs.
 v1_z_ =: verb define
'Locale at start of v1 is %j' printf 18!:5 ''
qprintf 'n1 '
v2_result =. v2_loc1_ n1
'Value returned by v2 is %s' printf <v2_result
'Locale in v1 after calling v2 is %j' printf 18!:5 ''
qprintf 'n1 '
)
 cocurrent <'loc2'
 v2 =: verb define
'Locale at start of v2 is %j' printf 18!:5 ''
qprintf 'n1 y. '
cocurrent <'loc2'
qprintf 'n1 '
'Locale at end of v2 is %j' printf 18!:5 ''
n1
)
The verb v1 was defined in locale 'z' because it was an assignment to a locative; the
verb v2 was defined in locale 'loc2' because it was an assignment to a simple name
and the current locale at the time of its assignment was 'loc2' .
 cocurrent <'loc3'
 v2 =: [:
Now the verb v2 is defined in both locale 'loc2' and 'loc3' . Next we define the
noun n1 in each of our locales, so we can see which locale a name was found in:
 n1_loc1_ =: 'n1 in loc1'
 n1_loc2_ =: 'n1 in loc2'
 n1_loc3_ =: 'n1 in loc3'
Now run the verbs. I will insert interpretation of the execution.
 v1 ''
J searches for the simple name v1 in the current locale 'loc3'; not finding it there it
looks in 'loc1', 'loc2', and 'z', finally finding it in 'z' . J executes the
definition of the verb found in 'z', but without changing the current locale.

 136

Locale at start of v1 is loc3
Yes, the current locale is still 'loc3' �
n1=n1 in loc3
�and a name lookup uses the current locale as the starting point.
Locale at start of v2 is loc1
v1 has executed v2_loc1_ . J starts searching for the name v2 in locale 'loc1' and
its path, eventually finding it in 'z' . v2 is executed, using the definition found in
'z', but with the current locale set to the explicit locale of the locative, namely
'loc1' . Note that v2 was also defined in 'loc3' (as [: which would give an
error), but 'loc3' was never searched. The operand of v2 was n1; note that the lookup
for n1 is completely independent of the lookup for v2; n1 is sought and found in
'loc3' and it is that value that becomes y. at the start of execution of v2 .
n1=n1 in loc1 y.=n1 in loc3
Simple name lookups start in the current locale 'loc1' . The private name y. has the
value it was given on entry.
n1=n1 in loc2
Here we have switched the current locale to 'loc2' using cocurrent, and the name
is found in the new current locale.
Locale at end of v2 is loc2
Value returned by v2 is n1 in loc2
Here v2 has finished and control has returned to v1 . Note that the value returned by
v2 is simply the result of the last sentence executed; it is a noun. Here it is the value of
n1 at the end of v2, at which time the current locale was 'loc2' .
Locale in v1 after calling v2 is loc3
Note that when v2 finished the current locale was restored to its value before execution
of v2 . The cocurrent in v2 has no effect once v2 finishes.
n1=n1 in loc3
Execution of the verb v1 is complete. We should be back in locale 'loc3' from which
we executed v1 :
 18!:5 ''
+----+
|loc3|
+----+

The Shared Locale 'z'
It is a J convention, universally adhered to, that every locale's search path must end

with the locale 'z' . Any name in the 'z' locale can then be referred to by a simple
name from any locale, making names in the 'z' locale truly global names.

 137

Using Locales
You have my sympathy for having to read through that detailed description of name

processing; I refuse to apologize, though, because you really can't write programs if you
don't know what names mean. But, you wonder, How do I use locales?

You won't go far wrong to think of a locale as akin to a class in C++. When you
have a set of functions that go together as a module, define all their verbs and nouns in a
single locale. The easiest way to do this is to put a line
coclass <'localename'
at the beginning of each source file for the module (coclass is like cocurrent but it
supports inheritance). Then, every public assignment in the file will automatically be
made in the locale localename .

The names defined in the locale are the equivalent of the private portion of class. To
provide the public interface to the class, you need to put those names in a place where
they can be found by other modules. The traditional way to do this is to define them in
the locale 'z' by ending each file with lines like
epname_z_ =: epname_localename_
Here epname is the name of a verb, and localename is the name of the module's
locale. Take a minute to see what happens when some other locale invokes epname .
The name search for epname will end in the locale 'z' where this definition is found.
Execution of this definition immediately results in execution of
epname_localename_ which switches the current locale to localename and runs
the definition of epname found there. The benefit is that the calling module doesn't need
to know the locale that epname is going to be executed in.

If you tire of writing out the public definitions one by one, I have included in
JforC.ijs a verb to do it for a list of entry points using a sentence like
PublishEntryPoints 'public1 public2 public3'

If you want to create multiple copies of objects derived from a class, you should
consult the Lab on Object Oriented Programming. There you will learn about numbered
locales and how to create and destroy objects. We will not discuss these topics here.

By following the guidelines given above you will be able to emulate the class
facilities of C++. Because J is interpreted, you can do much more if you want: you can
change search paths dynamically; you can use locales and paths to create a high-
performance network database; you can pass locales as data and use them to direct
processing; you can peek at a module's private data. You can even modify a module's
private data from outside the module, but if you are struck by lightning after doing so the
coroner will find it was suicide.

Using locale-names as data allows for dynamic separation of namespaces. For
example, the processing of forms in J requires definition of verbs for a great many events.
You may let these verbs all share the same locale; but if you want to segregate them, the
Window Driver will remember what locale was running when each form was displayed,
and direct events for a form to the locale handling the form.

 138

28. Writing Your Own Modifiers

If you find that you are coding recurring patterns of operations, you can write a
modifier that represents the pattern. You will find that reading your code is easier when
the patterns are exhibited with names of your choosing.

You write a modifier like you write a verb, using conjunction define or
adverb define, or 2 :n or 1 :n for one-liners. When you assign the modifier to a
name, that name becomes a conjunction or adverb, and it will be invoked as
u name v y (monad) or x u name v y (dyad) if it is a conjunction, or u name y
(monad)or x u name y (dyad) if it is an adverb.

When a modifier is invoked, the lines of the modifier are executed one by one, just as
when a verb is invoked, and the result of the last sentence executed becomes the result of
the modifier. The u (and v, for conjunctions) operand(s) of the modifier are assigned to
the local names u. (and v.) when the modifier starts execution (in addition, if u is a
noun, it is assigned to the local name m. and if v is a noun it is assigned to n.)

User-written modifiers are of two types: those that refer to the variables x. and y.,
and those that do not.

Modifiers That Do Not Refer To x. Or y.
If the modifier does not refer to x. or y., its text is interpreted when its operands (u

and, for conjunctions, v), and its result may be an entity which is any of the four principal
parts of speech. The result replaces the modifier and its operands in the sentence, and
execution of the sentence continues.

Usually you will want to create a verb, but nothing keeps you from writing a
conjunction whose result is another conjunction. Here we will confine ourselves to verb
results.

If a modifier does not refer to x. or y., it can be invoked without any x. or y.; only
the u. (and v., for conjunctions) are used. The text of the modifier is executed and the
resulting verb replaces the modifier and its operands in the execution of the sentence.

Let's write some of the utility modifiers referred to in earlier chapters. Ifany was an
adverb that executed u if y had a nonzero number of items:
 9!:3 (5) NB. Do this once to select simplified display
 Ifany =: 1 : 'u. ^: (*@#@])'
 < Ifany
<^:(*@#@])
Ifany does not need to look at y.; it creates a verb that executes u only if y has items.
Here we have executed the adverb Ifany with the left operand <, and the result is a
verb�the compound verb <^:(*@#@]) . We can execute that verb on a noun
operand:

 139

 < Ifany 1 2 3
+-----+
|1 2 3|
+-----+
Remember that Ifany is an adverb, so it has precedence and the line is executed as if
(< Ifany) 1 2 3 . The verb (< Ifany), which has the value <^:(*@#@]), is
applied to 1 2 3 and produces the boxed result.
 < Ifany ''

An empty y is left unboxed.

u Butifnull n was a conjunction that applied u if y had items, otherwise it
produced a result of n . It could be written:
 Butifnull =: 2 : 'n."_ ` u. @. (*@:#@:])'
Again (*@:#@:]) will check whether y has items, and this time the result will be used
to select the appropriate verb to execute.
 < Butifnull 5
5"_`<@.(*@:#@:])
When Butifnull is executed with operands, it produces a verb.
 < Butifnull 5 'abc'
+---+
|abc|
+---+
 < Butifnull 5 ''
5
The verb it produces can be applied to its own noun operands.

The great thing about modifiers that do not refer to x. or y. is that they are fully
interpreted before the x and y operands are supplied, so there is no interpretive overhead
during the processing of the data. Here is a more complex example taken from the J
system. The goal is to define a verb playsound that can be used to play a .wav file
under Windows:
NB. y. is the file data to be played
playsound =: '' adverb define
select. 9!:12 NIL
case. 2 do.
 'winmm.dll sndplaysound i *c i' & (15!:0) @ (;&1)
case. 6 do.
NB. 2=nodefault + 4=memory + 16b20000 = file
 'winmm.dll PlaySound i *c i i' & (15!:0) @ (;&(0;4))
end.
)
To begin with, let's make sense of this odd sequence '' adverb define . The
adverb define defines an adverb, but what's the ''? Simple�it's the left argument
to the adverb that was defined: the adverb is executed with u. set to '' . The result of
that execution of the adverb is what gets assigned to playsound .

 140

 So, what happens when the adverb is executed? The adverb calls the foreign 9!:12
to see what operating system is running, and executes a selected line that contains the
definition of a compound verb. Since that line is the last one executed, it becomes the
result of the adverb; so the result of the adverb is the selected verb, and that is what is
assigned to playsound . On my system, this leaves playsound defined as a single
compound verb:
 playsound
'winmm.dll PlaySound i *c i i'&(15!:0)@(;&(0;4))
Lovely! No check for operating system needs to be made when I invoke playsound;
the check was made when playsound was defined.

Modifiers That Refer To x. Or y.
Most of the modifiers you write will be refer to x. and y. . The names x. and y.

refer to the noun operands that are supplied when the modifier is invoked as
[x] u adverb y or [x] u conjunction v y .

Here is an example, which is invoked as [x] u InLocales n y, where u is a
verb and n is a list of locale names; it executes u y (or x u y if the invocation is
dyadic) in each locale of n :
InLocales =: 2 : 0
for_l. n. do.
 cocurrent l
 u. y.
end.
''
:
for_l. n. do.
 cocurrent l
 x. u. y.
end.
''
)
This illustrates the important points. The text of the definition is not interpreted until the
x. and y. are available, in other words until the verb defined by u InLocales n is
invoked. Since that invocation may be either monadic or dyadic, two versions of the
conjunction are given, one for each valence. The result of the execution must be a noun,
because the definition defines a verb and the result of a verb is always a noun.

That last point is important and I want to emphasize it. It is true that InLocales is
a conjunction, and yet its text defines a verb. How is this possible? Because
InLocales is executed as a conjunction at the time it gets its u and n operands,
but its text is not interpreted until the derived verb gets its x and y operands. When
InLocales is supplied with u and n, it is executed to produce a verb which consists of
the text of InLocales along with u and the value of n . This derived verb is hidden
inside the interpreter where it waits to be applied to a y (and possibly x). When the
derived verb is given its operands, it starts interpreting the text of InLocales, which

 141

was unusable until the time that y. and x. could be given values, and initializes u. and
n. from the values that were saved when u InLocales n was executed. Thus the
text of InLocales describes a verb operating on y. and x. .

Your modifiers should refer to x. and y. only if necessary. Ifany from the
previous section could have been written
 Ifany =: 1 : 'u.^:(*#y.) y.'
which would produce exactly the same result as the other definition, but it would usually
be slower, because the text could not be interpreted until x. and y. could be defined. If
the conjunction happens to be used in a verb of low rank, the result could be soporific.

Here's a puzzle that may be of interest to those readers whose eventual goal is Full
Guru certification. Why did InLocales save and restore the current locale? Didn't we
say that completion of any named entity restores the original locale?

Let's see what happens when we don't restore, using a simple testcase:
 t =: 1 : 0
cocurrent u.
y.
)
 (<'abc') t 0
0
 18!:5 ''
+---+
|abc|
+---+
Sure enough, the current locale was changed! But see what happens when we give a
name to the verb created by the execution of t :
 cocurrent <'base'
 tt =: (<'abc') t
 tt 0
0
 18!:5 ''
+----+
|base|
+----+

The current locale was restored. What causes the difference?

The answer is that in the sentence (<'abc') t 0, the named adverb t is executed
when it is given its operand <'abc' . The result of that execution is the derived verb
(<'abc') t which has no name. When the derived verb is executed with the operand
0, the text is interpreted, causing a change to the current locale, and when the derived
verb finishes, the current locale is not restored because the derived verb is anonymous. If
we give that derived verb a name (tt here), it restores the current locale on completion.

Another way to say this is that the text of a modifier that refers to x. or y. is not
interpreted when the modifier is executed; it is interpreted only when the derived verb
is executed.

 142

29. Odds And Ends

To keep my discussion from wandering too far afield I left out a number of useful
features of J. I will discuss some of them briefly here.

Dyad # Revisited
x # y does not require that x be a Boolean list. The items of x actually tell how

many copies of the corresponding item of y to include in the result:
 1 2 0 2 # 5 6 7 8
5 6 6 8 8
Boolean x, used for simple selection, is a special case. If an item of x is complex, the
imaginary part tells how many cells of fill to insert after making the copies of the item of
y . The fill atom is the usual 0, ' ', or a: depending on the type of y, but the fit
conjunction !.f may be used to specify f as the fill:
 1j2 1 0j1 2 # 5 6 7 8
5 0 0 6 0 8 8
 1j2 1 0j1 2 (#!.99) 5 6 7 8
5 99 99 6 99 8 8

Finally, a scalar x is replicated to the length of y . This is a good way to take all
items of y if x is 1, or no items if x is 0 .

Boxed words to string: Monad ;:^:_1
;:^:_1 y converts y from a list of boxed strings to a single character string with

spaces between the boxed strings.
 ;:^:_1 ('a';'list';'of';'words')
a list of words

Spread: #^:_1
x #^:_1 y creates an array with the items of y in the positions corresponding to

nonzero items of the Boolean vector x, and fills in the other items. +/x must equal #y .
 1 1 0 0 1 #^:_1 'abc'
ab c

You can specify a fill atom, but if you do you must bond x to # rather than giving it
as a left operand:
 1 1 0 0 1&#^:_1!.'x' 'abc'
abxxc

Choose From Lists Item-By-Item: monad m}
Suppose you have two arrays a and b and a Boolean list m, and you want to create a

composite list from a and b using each item of m to select the corresponding item of
either a (if the item of m is 0) or b (if 1). You could simply write

 143

 m {"_1 a ,. b
and have the answer. There's nothing wrong with that, but J has a little doodad that is
faster and uses less space, as long as you want to assign the result to a name. You write
 name =. m} a ,: b
(assignment with =: works too). This form does not create the intermediate result from
dyad ,: . If name is the same as a or b, the whole operation is done in-place.

More than two arrays may be merged this way, using the form
name =. m} a , b , … ,: c
in which each item of m selects from one of a, b, �, c . The operation is not done in-
place but it avoids forming the intermediate result.

Random Numbers: ?
Monad ? has rank 0. ? y is a random element of i. y . An example use is

 ? 3 3 $ 1000
755 458 532
218 47 678
679 934 383

Dyad ? has rank 0. x ? y is a list of x items selected without repetition from
i. y, as if the list i. y were shuffled and the first x elements were taken:
 5 ? 52
24 8 48 46 22

The ? verbs use a multiplicative-congruential random-number generator.

Recursion: $:
In tacit verbs, recursion can be performed elegantly using the verb $:, which stands

for the longest verb-phrase it appears in (that is, the anonymous verb, created by parsing
the sentence containing the $:, whose execution resulted in executing the $:).
Recursion is customarily demonstrated with the factorial function, which we can write as:
 factorial =: (* factorial@<:) ^: (1&<)
 factorial 4
24
factorial(n) is defined as n*factorial(n-1), except that factorial(1) is 1. Here we just
wrote out the recursion by referring to factorial by name. Using $:, we can recur
without a name:
 (* $:@<:) ^: (1&<) 4
24
$: stands for the whole verb containing the $:, namely (* $:@<:) ^: (1&<) .

Make a Table: Adverb dyad u/
x u/ y is x u"(lu,_) y where lu is the left rank of u . Thus, each cell of x is

applied to the entire y .

The definition is simplicity itself, and yet many J programmers stumble learning it. I
think the problem comes from learning dyad u/ by the example of a multiplication table.

 144

The key is to note that each cell of x is applied to the entire y : cell, not item or
atom. The rank of a cell depends on the left rank of u . The multiplication table comes
from a verb with rank 0:
 1 2 3 */ 1 2 3
1 2 3
2 4 6
3 6 9

You can control the result by specifying the rank of u :
 (i. 2 2) ,"1/ 8 9
0 1 8 9
2 3 8 9
 (i. 2 2) ,"0 _/ 8 9
0 8 9
1 8 9

2 8 9
3 8 9

These results follow directly from the definition of dyad u/ .

Boolean Functions: Dyad m b.
I will just illustrate dyad m b. by example. It is a verb with rank 0.

 9 b./~ 0 1
1 0
0 1
u/~ 0 1 is the function table with x values running down the left and y values running
along the top. 9 is 1001 binary (in J, 2b1001), and the function table of 9 b. is
1 0 0 1 if you ravel it into a vector. Similarly:
 , 14 b./~ 0 1
1 1 1 0

You can use m b. in place of combinations of Boolean verbs. Unfortunately,
comparison verbs like > and <: have better performance than m b., so you may have to
pay a performance penalty if you write, for example, 2 b. instead of >, even though
they give the same results on Booleans:
 >/~ 0 1
0 0
1 0

Operations Inside Boxes: u L: n, u S: n
u&.> is the recommended way to perform an operation on the contents of a box,

leaving the result boxed. It is the idiom used most often by J coders and the first one to
be supported by special code when performance improvements are made in the
interpreter.

 145

In unusual cases you need to operate inside boxes but u&.> is inadequate to the task.
For example, you may need to operate on the innermost boxes where the boxing level
varies from box to box. In these cases consider using u L: n which has infinite rank.
It goes inside the operands and applies u to contents at boxing level n .

The monadic case u L: n y is the simpler one. It is defined recursively. If the
boxing level of y is no more than n, the result is u y . Otherwise, u L: n is applied
to each opened atom of y, and the result of that is boxed. The effect is that u is applied
on each level-n subbox and the result replaces that subbox, with outer levels of boxing
intact. For example,
]a =. 0;(1 2;3 4 5);<<6;7 8;9
+-+-----------+-----------+
0	+---+-----+	+---------+						
		1 2	3 4 5			+-+---+-+		
	+---+-----+			6	7 8	9		
			+-+---+-+					
		+---------+						
+-+-----------+-----------+
A boxed noun.
 L. a
3
Its boxing level is 3.
 # L:0 a
+-+-----+---------+
1	+-+-+	+-------+						
		2	3			+-+-+-+		
	+-+-+			1	2	1		
			+-+-+-+					
		+-------+						
+-+-----+---------+
The contents of each innermost box (where boxing level is 0) is replaced by the number
of items there.
 # L:1 a
+-+-+---+
1	2	+-+		
			3	
		+-+		
+-+-+---+
Each level-1 boxed entity is replaced by the number of items.
 # L:2 a
+-+-+-+
|1|2|1|
+-+-+-+
Similarly for level-2 entities.

 146

 # L:_2 a
+-+-+---+
1	2	+-+		
			3	
		+-+		
+-+-+---+
Negative level -n means ((level of y) minus n). Note that this does not mean 'n levels
down into y'. That would result in u's being applied at different levels in the different
items of y; instead, the level at which u is to be applied is calculated using the level of
the entire y .

The dyadic case x u L: n y is similar, but you need to know how the items of x
and y correspond. During the recursion, as long as both x and y have a higher boxing
level than the one specified in n, the atoms of x and y are matched as they would be
matched in processing a verb with rank 0 0 (with replication of cells if necessary). If
either operand is at the specified level, it is not changed as the items of the other operand
only are opened. When both operands are at or below the specified boxing level, u is
applied between them. The results of each recursion are boxed; this will give each the
deeper boxing level of the two operands at each application of u .An example:
 (0 1;<2;3) +L:0 (10 20)
+-----+-------------+
10 21	+-----+-----+			
		12 22	13 23	
	+-----+-----+			
+-----+-------------+				
y was passed through and applied to each level-0 entity.				
(0 1;<2;3) +L:0 (<<10 20)				
+-------+-------------+				
+-----+	+-----+-----+			
	10 21			12 22
+-----+	+-----+-----+			
+-------+-------------+
Once again y was applied to each entity, but because it has boxing level 2, all the results
have boxing level 2.

The conjunction S: is like L:, but instead of preserving the boxing of the operands it
accumulates all results into a list:
 (0 1;<2;3) +S:0 (<<10 20)
10 21
12 22
13 23

Comparison Tolerance !.f
Like a diamond earring that adds a sparkle to any outfit, the fit conjunction !. is a

general-purpose modifier whose interpretation is up to the verb it modifies. We have
seen !.f used to specify the fill atom for a verb, and to alter the formatting of

 147

monad ": . Its other important use is in specifying the comparison tolerance for
comparisons. A comparison like x = y calls two operands equal if they are close,
where close is defined as differing by no more than the comparison tolerance times the
magnitude of the larger number. If you want exact comparison, you can set the
comparison tolerance to 0 using !.0 :
 1 (=!.0) 1.000000000000001
0
 1 = 1.000000000000001
1

Tolerant comparison is used in the obvious places�verbs like dyad =, dyad >, and
dyad -:�and also in some unobvious ones, like the verbs monad ~., monad ~:, and
dyad i., and the adverb /. . For all of these you can specify comparison tolerance with
!.f . You may wonder whether an exact comparison using !.0 is faster than a tolerant
comparison. The answer is, Usually not, but there is one important exception: if the
comparison is used for finding equal items whose rank is greater than 0 (or are complex
numbers), exact comparison can be much faster. So, if x has rank 2 or higher, it's worth
the trouble to write x u/.!.0 y or x i.!.0 y; similarly use ~.!.0 y, ~:!.0 y,
and x e.!.0 y if y has rank greater than 0.

The f in !.f can be no larger than about 2^_34 . The reason for this is that there
is much special code in J for handling integer operands, and for speed it assumes that
comparison tolerance cannot affect integer comparisons.

Right Shift: Monad |.!.f
One of my personal favorites is the infinite-rank verb monad |.!.f , defined as

_1&(|.!.f); in other words it shifts y right one place, discarding the last item and
shifting an item of fs into the first position.

Generalized Transpose: Dyad |:
Dyad |: has rank 1 _ . x |: y rearranges y so that the axes given in x become

the last axes of the result. So, if y has rank 3, 0 |: y puts the axes of y into the order
1 2 3 0 and 0 2 |: y puts them into the order 1 3 0 2 . For example:

 148

 i. 2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
 0 |: i. 2 3 4
 0 12
 1 13
 2 14
 3 15

 4 16
 5 17
 6 18
 7 19

 8 20
 9 21
10 22
11 23

Formally, putting the axes into an order p means that (<p{x) { p |: y is the
same as (<x) { y . I wish I could give you an intuitive definition but I can't.

An item of x can be negative to count axes from the end. The Dictionary shows how
you can use boxed x to take elements along diagonals of y .

Monad i: and Dyad i:
Monad i: is like monad i., but its interval is centered on 0 rather than starting at 0 :

 i: 5
_5 _4 _3 _2 _1 0 1 2 3 4 5
 i: _5
5 4 3 2 1 0 _1 _2 _3 _4 _5
Monad i: can also take a complex operand to specify a different spacing between items
of the result.

Dyad i: is like dyad i., but it gives the index of the last occurrence (or #x if there
is none).

Plot
J includes a great package for making 2-D and 3-D plots. Check out the Lab named

Plot Package to see how to use it.

 149

Window Driver And Form Editor
Designing user interfaces is quick and painless with J's Form Editor. The Lab named

Form Editor will show you how.

Verbs for matrices
J has primitive verbs for operations on matrices, some using the conjunction . .

-/ .* y gives the determinant of y; x +/ .* y is the matrix product of x and y;
%. y is the matrix inverse of y; x %. y is the projection of x onto y .

x %. y is a rough-and-ready way to get a least-squares approximation of x as a
linear combination of the columns of y . If your y is singular or close to it, avoid %.
and use methods based on singular value decomposition.

 150

Tacit Programming

 151

30. Tacit Programming

There is another language within J, a microcode for J as it were. Like Molière's M.
Jourdain, who was astonished to find he had been speaking prose for forty years without
knowing it, you have been using a small subset of this language unwittingly throughout
our investigations. The hidden language describes a way of coding called tacit
programming, and it is time for you to learn it in full. J's tacit language is the irreducible
essence of a programming language. It describes your algorithm using only the ordering
of the J primitives you have already learned. It has a grammar without words, which you
use to write programs without visible operands; yet its renouncing these seemingly
essential components is self-denial rather than self-mutilation, for it retains the vigor to
express any algorithm. It is as evanescent as the breeze and as powerful as the hurricane.
It is a sublime creation.

We begin our exploration with this simple program:
 -
The first step toward enlightenment is to realize that something so simple is a program.
You may object: But it can't be a program. It has no parameters. It has no name. How
would I invoke it? It's a primitive, maybe. Or a verb. Or a typographical error. But not
a program.

Let me make the case that it is indeed a program. I say that a bit of text deserves the
title of 'program' if it produces a systematic result when executed with suitable
arguments. And I say that the program '-' satisfies this definition. Certainly I can
supply it with arguments
 5 7 - 2
3 5
and get the expected result. The program does not refer to its operands explicitly, but as
long as we make the agreement that the arguments to a program appear as nouns to its
left and right, the program has no doubt about how to find its arguments. Of course, we
have been using this convention for verbs all along.

I can give this program a name:
 minus =: -
 5 7 minus 2
3 5
minus can be used in place of - anywhere. When we look at the value of minus, we
see what it contains:
 9!:3 (5) NB. Do this once to select simplified display

 minus
-

minus is equivalent to - . In J we call it a verb, but it has all the essential features
of a program. In fact, minus is two programs, because it can be executed monadically
as well:

 152

 minus 6 8
_6 _8

The point is that every J verb, even the primitives and the compound verbs, is a
program in the usual sense. Verbs like minus, that do not mention their operands by
name but instead apply them according to J's parsing rules, are called tacit verbs. Verbs
created by m :n, like dyad : '+/ y.', that mention their operands by name are
called explicit verbs. The compound verbs we have learned already are examples of tacit
verbs. Some of the verbs that we have had occasion to define so far can be written in
tacit form:
addrow =: monad : '+/ y.'"1
could be rewritten as
addrow =: +/"1
and
v =: dyad : '1.04 * x. + y.'
is equivalent to
v =: 1.04&*@:+
as we have seen. We have already encountered tacit definitions without noticing:
 dotprod =: +/@:*"1
 1 2 3 dotprod 1 2 3
14
and we can certainly define more.
 sortup =: /:~
defines a verb that sorts its operand into ascending order:
 sortup 31 41 59 26 53
26 31 41 53 59

Some of the verbs we have encountered seem too complex for a compound verb. For
example, in
 mean =: monad : '(+/ y.) % #y.'
we need to perform two operations on y. and combine their results, something that is
beyond the capabilities of the compound verbs we have encountered so far. We will next
learn how to produce a tacit equivalent for mean and a great many other verbs.

 153

31. First Look At Forks

Before we learn the rules for making tacit forms, you should understand why you are
going to the trouble of learning how to write programs that hide their operands. First,
they are extraordinarily compact. The explicit definitions we have written so far are
laconically terse by the standards of most computer languages, but they will seem
positively windy compared to the tacit forms. Second, the shorter definitions are easier to
combine with other verbs, and with the modifiers that add so much power to J
expressions. Third, the tacit definitions are parsed when they are defined, in contrast to
explicit definitions, in which each line is parsed as it is executed; we reduce interpretive
overhead by using tacit forms. Fourth, in learning to write tacit verbs you are also
learning to write tacit adverbs and conjunctions, with which you will be able to craft your
own private toolkit of modifiers that you can use to combine verbs in ways that are useful
to your application.

In what follows, Nx will represent a noun, Vx a verb, Cx a conjunction, and Ax an
adverb, where x is any suffix.

We begin by observing that the rules we have learned so far give no meaning to some
combinations of words. Consider three verbs in a row, with no noun to operate on, as in
the sequence
 (V0 V1 V2)
where each Vn represents a verb�an example would be ((+/) % #) . Without some
special rules, we have no way to interpret this sequence. Such sequences of words that
cannot immediately be executed to produce a result are called trains. Examples are
C0 C1 A2, V0 V1, and the V0 V1 V2 we are considering now.

Understanding tacit programming will largely be a matter of understanding how
trains are parsed and executed. You will learn that (V0 V1 V2) is a new verb that can
be applied to noun operands, and you will learn how it applies to nouns. To begin with,
observe that there is no reason that (V0 V1 V2) N should be the same as
V0 V1 V2 N which as we know is (V0 (V1 (V2 N))) .

The meaning J assigns to (V0 V1 V2) Ny is:
 (V0 V1 V2) Ny is (V0 Ny) V1 (V2 Ny)
This substitution goes by the name monadic fork. I think finding this definition was a
stroke of brilliance in the design of J. An example of the use of the fork is:
 (+/ % #) 4 6 8
6
which calculates the mean of the operand. It is processed using the substitution rule
above as
 (+/ 4 6 8) % (# 4 6 8)
6
which divides the sum of the items in the list by the number of items in the list.

The sequence (+/ % #) is a verb. It can therefore be assigned to a name:

 154

 mean =: (+/ % #)
or
 mean =: +/ % #
and then used by that name:
 mean 12 18 24
18
Neat, eh? With just 4 symbols we described a program to take the mean of a list of
numbers (or a list of lists�). The trick is in understanding how the operands and verbs
are connected; that's what we'll be learning in the next few chapters.

At this point you may be impressed with the economy of the monadic fork but a bit
confused about the details. For example, we said that (V0 V1 V2) Ny is not the
same as V0 V1 V2 Ny and yet we said that mean =: (+/ % #) is the same as
mean =: +/ % # . How can that be? If we use the version without parentheses, why
doesn't mean 12 18 24 get evaluated like
 +/ % # 12 18 24
0.333333
?

I could give you a simple rule of thumb, namely that you can always imagine an extra
set of parentheses around any value assigned to a name. That would be true but
misleading, because it would encourage you to think that the values of defined names are
substituted into a sentence before the sentence is executed. That gets it backwards: in
reality the operands are supplied to the stored definitions. In fact, the execution of a J
sentence is a subtle alternation between creating definitions and executing them. We will
take the next couple of chapters to give you a thorough understanding of execution, after
which we will return to see what magic we can work with forks and their brethren.

 155

32. Parsing and Execution I

I hope your hunger for understanding will be enough to motivate you to read a couple
of difficult chapters. If you do, you will learn something few J programmers know�
what really happens when J executes a sentence. In this chapter we will analyze
sentences from the top down, to get an idea for the order of execution. In the next
chapter we will follow the interpreter as it alternately parses and executes sentences from
the bottom up.

Since the understanding of parsing and execution that you have developed during
your work so far is probably a bit inaccurate, we will work through examples of
increasing complexity.
 9!:3 (5) NB. Do this once to select simplified display

 &.
&.
With only one word, there are no operands and nothing to execute, so the result of the
sentence is the word itself:the conjunction &. .
 -:&.^.
-:&.^.
The result of executing -:&.^., i. e. executing &. with -: and ^. as operands, is an
anonymous verb. This anonymous verb will execute according to the definition of &.,
given its operands -: and ^. (i. e. -:&.^. y will be ^ -: ^. y).
 Note that the conjunction &. is executed without reference to the operand of the
anonymous verb (indeed, in this case there is no such operand and the anonymous verb is
the result of the sentence). We could assign the anonymous verb to a name, in which
case it would no longer be anonymous (e. g. sqrt =: -:&.^.); without such an
assignment we will refer to it here by the nickname av . The value of av is the verb
described by -:&.^. .
 -:&.^. 16
4
We know that this is executed as ^ -: ^. 16; let's see how that happens.
Conjunctions are executed before verbs, so first -:&.^. will be executed to produce the
anonymous verb we called av . Then av is executed with the operand 16 . av
operates according to the definition of &. : it produces the same result as
^ -: ^. 16 (but it may use a different algorithm than executing ^ -: ^. 16
directly).
 It appears that &. was executed twice: once to create av and then again during the
execution of av . No, it was executed only once, to create av . av operates according
to the definition of &., but it is av that is executing, not &. . The confusion arises
because of the way the interpreter displays av . There is no better way to show a verb
that performs the function -:&.^. than to show the way the verb was created, i. e. with
the characters '-:&.^.', but you should think of this as an exhibition of the pedigree of

 156

av, and an assurance of its good behavior, rather than a list of functions to be executed.
In fact, part of the reason for J's good performance comes from its recognizing functions
that can be combined efficiently and providing customized routines to handle anonymous
verbs that call for those combinations.

Confusion between a conjunction and the anonymous verb it produces is most likely
when the conjunction is one you wrote using conjunction define or 2 :n . In
most cases the text of the conjunction actually describes a derived verb, and it is natural
for you to say 'the conjunction C is executed with operands u., v., and y.' rather than
the more accurate 'the anonymous verb created by the application of C to u and v is
executed, with u. and v. available during the interpretation of the text of C and with y.
as the operand'. Such confusion is almost always harmless, but let's go through a few
examples so you can see the layers of execution:
 2 : 'u.'
2 : 'u.'
We execute 2 : 'u.' and the result is an anonymous conjunction that we'll call ac1 .
The display of ac1 shows where it came from. When ac1 is executed, its result will be
its left operand.
 +: (2 : 'u.') -:
+:
Here 2 : 'u.' is executed first to produce ac1; then ac1 is executed with left
operand of +: and right operand of -: . The result is an anonymous verb that we'll call
av1; its value is the verb +: which was the left operand to ac1 .
 +: (2 : 'u.') -: 5
10
Remember, (2 : 'u.') is a conjunction (the conjunction we have called ac1), and
conjunctions are executed before verbs, so this is executed as
(+: (2 : 'u.') -:) 5, which becomes av1 5 . We execute av1 with the
operand 5 . Monad +: doubles its operand, and the result is 10 .

We know that a conjunction can produce a conjunction result. That's how explicit
conjunctions are formed: executing the conjunction : with left operand 2,as in 2 :n,
produces a conjunction. There is nothing special about 2 :n : any conjunction is
allowed to produce a conjunction result:
 2 : '&'
2 : (,'&')
We execute 2 : '&' and the result is an anonymous conjunction that we'll call ac2 .
The display of ac2 shows where it came from. (the , in the display of ac2 is harmless, a
reminder that internally the anonymous entity resulting from m :n stores n as a list of
characters.)
 +: (2 : '&') -:
&
We execute ac2 with left operand of +: and right operand of -: . The result is an
anonymous conjunction that we'll call ac3 . ac3 is a conjunction because its value &
(the last sentence executed by ac2) is a conjunction. Yes, & by itself can be a result:

 157

modifiers can return any primary part of speech (but try to return a conjunction from a
verb and you will get an error).
 Note that this is not the same as u.&v. : that would also be a valid return value
from a conjunction, but u. and v. would be substituted and & would be executed to
make the returned value an anonymous verb with the description u&v .
 Make sure you see why the +: and -: disappeared. First, the conjunction : was
executed with operands 2 and '&'; that produced a conjunction ac2 which was then
executed with operands +: and -:; but the defining text of ac2 does not look at its
operands; it simply produces the value & . So, the operands to ac2 disappear without a
trace, and the result of the whole phrase is a conjunction with the value & .
 2 (+: (2 : '&') -:) *
2&*
Continuing the example, we execute ac3 (which was just the conjunction &) with left
operand 2 and right operand * . The result is the anonymous verb av2 which will
execute as 2&* .
 2 (+: (2 : '&') -:) * 5
10
Finally, we execute av2 with the operand 5, and get the result 10 .

Explicit modifiers that refer to the operands of their derived verb (as x. or y.) come
in for special treatment. A simple example is the conjunction defined by
 2 : 'u. v. y.'
2 : 'u. v. y.'
We execute 2 : 'u. v. y.' and the result is an anonymous conjunction that we'll
call ac4 . You can't tell it from the display, but ac4 is a special kind of conjunction.
Because it refers to y., the text of ac4 can be executed only as a verb (only then are x.
and y. meaningful). The stored ac4 makes note of this fact.
 +: (2 : 'u. v. y.') - 5
_10
When ac4 itself is executed (as +: (2 : 'u. v. y.') - here�since ac4 is a
conjunction it is executed before its result is applied to the noun operand 5), the text of
ac4 is not interpreted (as it was in our other examples). Instead, the new anonymous
verb av3 is created. av3 contains the defining text of ac4, along with the operands that
were given to ac4 (+: and - here). When the verb av3 is executed as in the line above,
the text of ac4 is finally interpreted, with the operands of ac4 (+: and - here) available
as u. and v., and the noun operands of av3 (5 here) available as y. (and x. if the
invocation is dyadic); the result is the result of +: - 5 . If you experiment in this area,
note that as of J Release 4.06, verbs derived from explicitly-defined modifiers are not
displayed correctly, and that in some cases they produce incorrect results when modified
by other modifiers.

 158

33. Parsing and Execution II

Now that you understand what an anonymous verb/adverb/conjunction is, you are
ready to follow parsing and execution word by word. We will finally abandon all
shortcuts and process sentences exactly as the interpreter does.

In any compiled language, a program is broken into words (tokens) and then parsed,
and code is generated from the parsed result. Not so in J: a sentence is broken into
words, but the sentence is not fully parsed; rather, parsing and execution proceed
simultaneously, scanning the text from right to left. Parsing finds patterns in the
sentence that are then executed. Execution includes the usual supplying of noun
operands to verbs to obtain a result from the verb, but also other actions: supplying verb
and noun operands to conjunctions and adverbs to produce derived entities, and
recognition of other sequences that we will learn soon. Execution of a bit of a sentence,
which we will call a fragment, consists of replacing the fragment with an appropriate
single word, namely the result of executing the fragment. In the simple case, where the
fragment is the invocation of a verb (i. e. the fragment looks like verb noun or
noun verb noun), the word that replaces it is the noun that is the result of the verb.
If the fragment is the invocation of a modifier, the result of executing it will be a noun or
a derived verb/adverb/conjunction. A noun is nothing but its value, but the derived
verb/adverb/conjunction will itself eventually be executed: it is called an anonymous
verb/adverb/conjunction and is saved by the interpreter in a private form, and the single
word used to replace the fragment is a reference to this anonymous
verb/adverb/conjunction (for the case of an anonymous verb, you may think of the single
word as a pointer to a function that performs according to the definition of the
anonymous verb). In all cases the word replacing the fragment has a definite part of
speech, and if it is a verb, a definite rank.

The Parsing Table
Execution of a sentence begins by breaking the sentence into words. The words (with

a beginning-of-line marker, shown here as §, prepended) become the initial contents of
the unprocessed word list. A push-down stack will also be used during execution; it is
initially empty. Execution of the sentence is performed by repetition of the parsing step
which comprises: (1) examining the top 4 elements of the stack to see if they match one
of the 10 executable patterns; (2) if a match was found, executing the executable portion
of the stack (what we called the executable fragment in the last chapter), resulting in a
single word which replaces the fragment on the stack; (3) if no match was found, moving
the rightmost word of the unprocessed word list into the leftmost position of the stack,
pushing the rest of the stack to the right. Execution finishes when there are no
unprocessed words and the stack does not contain an executable pattern. Note that
execution of a fragment may leave the stack matching one of the executable patterns, so
several sequential parsing steps may perform an execution without moving anything onto
the stack. After all words have been processed, the stack should contain a beginning-of-
line marker followed by a single word which becomes the result of the sentence.

 159

To follow the parsing we need to know what patterns at the top of the stack contain
an executable fragment. The parsing table below gives the complete list. More than one
symbol in a box means that any one of them matches the box. name means any valid
variable name, and C, A, V, and N stand for conjunction, adverb, verb, and noun
respectively.

The lines in the parsing table are processed in order. If the leftmost 4 words on the
stack match a line in the table, the fragment (those words on the stack which are in
boldface in the parsing table) is executed and replaced on the stack by the single word
returned. Because the fragment is always either two or three words long, it is officially
known as a bident or trident. The last column of the parsing table gives a description of
what execution of the fragment entails.

You will have an easier time following the parsing if you note that the leftmost word
in the executable pattern is usually one of § =. =: (A V N . This means that you
can scan from the right until you hit a word that matches one of those before you even
start checking for an executable pattern. If you find one of § =. =: (A V N and it
doesn't match an executable pattern, keep looking for the next occurrence.

Note that the leftmost stack word in the parsing table is never a conjunction. This is
the ultimate source of our long-noted rule that conjunctions associate left-to-right: a
conjunction can be executed when it appears in the third stack position, but if another
conjunction is in the leftmost position then, the stack will always be pushed down to
examine that conjunction's left argument.

Examples Of Parsing And Execution
We will now follow a few sentences through parsing. We will represent anonymous

entities by names in italics, with an indication of how the anonymous entity was created.
Up till now in this book we have scarcely noticed that the term 'verb' was used both for
an entity that can be applied to a noun to produce a noun result, and also for the name of
that entity. This ambiguity will continue�being precise would be too cumbersome�but
you should be aware of it. When we say 'the result is av, defined as +/', that means that
an anonymous verb was created whose function is described as +/, and the nickname we
are giving it�the word, that is, that goes on the execution stack to betoken this verb�is
av.

leftmost stack word other stack words action
§ =. =: (V N anything 0 Monad
§ =. =: (A V N V V N 1 Monad
§ =. =: (A V N N V N 2 Dyad
§ =. =: (A V N V N A anything 3 Adverb
§ =. =: (A V N V N C V N 4 Conj
§ =. =: (A V N V V V 5 Trident
§ =. =: (C A V N C A V N C A V N 6 Trident
§ =. =: (C A V N C A V N anything 7 Bident
name N =. =: C A V N anything 8 Is
(C A V N) anything 9 Paren

 160

Sentence: +/2*a where a is 1 2 3

The column labeled 'line' indicates which line of the parsing table was matched by the
stack. The fragment is marked in boldface and underlined. Note that when the noun a
moved onto the stack, its value was moved; when a named verb, adverb, or conjunction is
moved onto the stack, only the name is moved. Note also that the noun's value (1 2 3
here) is a single word.

From now on we will omit the lines that do not contain an executable fragment.

Sentence: mean =: +/ % #

I want to emphasize that what is assigned to mean is the result of parsing +/ % # . It
is not the sequence +/ % #, ,but rather a single verb which performs the function
described by the fork. Now you see why putting parentheses around the definition
doesn't matter: av2 would be parsed the same either way.

Sentence: mean 4 5 6

Since mean is the result from parsing +/ % #, it is executed without further ado. As
you can see, a single 'execution' step can trigger a cascade of processing as each verb

unprocessed word list stack line

§ + / 2 * a

§ + / 2 * 1 2 3 (not executable)

§ + / 2 * 1 2 3 (not executable)

§ + / 2 * 1 2 3 (not executable)

§ + / 2 * 1 2 3 (result 2 4 6) 2

 § + / 2 4 6 (result av, defined as +/) 3

 § av 2 4 6 (result 12) 0

 § 12

unprocessed word list stack line

§ mean =: + / % #

§ mean =: + / % # (result av1, defined as +/) 3

§ mean =. av1 % # (result av2, defined as av1 % #) 5

 § mean =: av2 (result av2; mean is assigned av2) 8

 § av2

unprocessed word list stack line

§ mean 4 5 6

 § mean 4 5 6 (result 5) 0

 § 5

 161

referred to by an executing verb is executed in turn. Here, execution of mean does the
entire processing of the fork, returning the result 5 . The verb to be executed can be
quite complex, and can have a mixture of named and anonymous components, as in the
next example.

Sentence: (mean - (+/ % #)&.(^."1)) 4 5 6 (find the difference
between arithmetic and geometric mean)

Again, there was only one execution of a verb. It happened at the very end: after av5 was
created, it was executed, and its execution included the execution of everything else.

Sentence: inc =: ({.a)&+ where a is 4 5 6

unprocessed word list stack line

§ (mean - (+ / % #) &. (^. " 1)
) 4 5 6

§ (mean - (+ / % #) &. (^. " 1)) 4 5 6 (result av1, defined as
^. " 1)

4

§ (mean - (+ / % #) &. (av1)) 4 5 6 (result av1) 9

§ (mean - (+ / % #) &. av1) 4 5 6 (result av2,
defined as +/

3

§ (mean - (av2 % #) &. av1) 4 5 6 (result av3,
defined as av2 % #)

5

§ (mean - (av3) &. av1) 4 5 6 (result av3) 9

§ (mean - av3 &. av1) 4 5 6 (result av4,
defined as av3 &. av1)

4

§ (mean - av4) 4 5 6 (result av5,
defined as mean - av4)

5

§ (av5) 4 5 6 (result av5) 9

§ av5 4 5 6 (result 0.0675759) 0

§ 0.0675759

unprocessed word list stack line

§ inc =: ({. a) & +

§ inc =: ({. 4 5 6) & + (result 4) 0

§ inc =: (4) & + (result 4) 9

§ inc =: 4 & + (result av, defined as 4&+) 4

§ inc =: av (result av; inc is assigned av) 8

 § av

 162

This illustrates an important point. Even in the middle of a complex definition, verbs are
applied to nouns wherever possible. And, the value of a noun in a definition is the value
at the time the definition was parsed. If a parsed definition refers to a verb, it does so by
name, so the value of a verb is its value when it is executed.

The remaining examples are curiosities to show you that it's worth your trouble to
learn the intricacies of parsing.

Sentence: a + a =. 5

a is assigned a value just before that value is pushed onto the stack.

Sentence: 2 +: (2 : '&') -: * 5

Look at what happens when we omit the parentheses:

Sentence: 2 +: 2 : '&' -: * 5

unprocessed word list stack line

§ a + a =. 5

§ a + a =. 5 (result is 5; a is assigned 5) 0

 § 5 + 5 (result is 10) 2

 § 10

unprocessed word list stack line

§ 2 +: (2 : '&') -: * 5

§ 2 +: (2 : '&') -: * 5 (result is ac1, defined as 2 : '&') 4

§ 2 +: (ac1) -: * 5 (result is ac1) 9

§ 2 +: ac1 -: * 5 (result is ac2, defined as &) 4

 § 2 ac2 * 5 (result is av, defined as 2&*) 4

 § av 5 (result is 10) 0

 § 10

unprocessed word list stack line

§ 2 +: 2 : '&' -: * 5

§ 2 +: 2 : '&' -: * 5 (result is 1) 1

§ 2 +: 2 : '&' -: 1 (result is ac1, defined as 2 : '&') 4

§ 2 +: ac1 -: 1 (result is ac2, defined as &) 4

 § 2 ac2 1 (domain error: 2&1 is illegal) 4

 163

The omission produces a subtle but fatal change in the parsing order. As the Dictionary
says, "it may be necessary to parenthesize an adverbial or conjunctival phrase that
produces anything other than a noun or verb". Now you see why.

Undefined Words
If you try to execute a nonexistent verb, you get an error:

 z 5
|value error: z
| z 5
However, that error occurs during execution of the name, not during its parsing. During
parsing, an undefined name is assumed to be a verb of infinite rank. This allows you to
write verbs that refer to each other, and relieves you from having to be scrupulous about
the order in which you define verbs. For example:
 a =: z
This produces a verb a which, when executed, will execute z.
 z =: +
 a 5
5
With z defined, a executes correctly. Of course, it's OK to assign z to another verb too:
 b =: z
 b 5
5

Now, can you tell me what +/@b 1 2 3 will do? Take a minute to figure it out
(Hint: note that I used @ rather than @:).
 +/@b 1 2 3
1 2 3
Because b has rank 0, +/@b also has rank zero, so the summing is applied to atoms
individually and we get a list result. Do you think +/@a 1 2 3 will have the same
result?
 +/@a 1 2 3
6
Even though a has the same value as b, its rank is different. a's rank was assigned when
it was parsed, and at that time z was assumed to have infinite rank. b's rank was
assigned when it was parsed too, but by that time z had been defined with rank 0. You
can win a lot of bar bets with this one if you hang out with the right crowd.

 164

34. Forks and Hooks

Now that you understand execution, and in particular how anonymous entities are
created and then executed, you are ready to see forks used in some practical applications.
This will be a relief after the last two chapters of theory.

You have learned the rule for the trident called the monadic fork:
 (V0 V1 V2) Ny is (V0 Ny) V1 (V2 Ny)

Now learn the other 3 bidents/tridents involving only verbs. The dyadic fork:
 Nx (V0 V1 V2) Ny is (Nx V0 Ny) V1 (Nx V2 Ny)
The monadic hook:
 (V0 V1) Ny is Ny V0 (V1 Ny)
The dyadic hook:
 Nx (V0 V1) Ny is Nx V0 (V1 Ny)

The purpose of taking you through the 2 preceding chapters was for you to
understand that 'is' in these definitions is shorthand for 'replaces the parenthesized part
with an anonymous entity that when executed on an x and y produces the same result as'
(you don't have to be a politician to hesitate over the meaning of 'is').

It may be helpful to think of these bidents and tridents as ghostly conjunctions, with
no actual symbol, that create an entity (the bident/trident) out of the sequence of verbs.
The entity so created is quite real: it is executed just like any anonymous verb created by
a modifier.

You can see that for both the hooks and the forks, the monadic case is derived from
the dyadic: for forks by omitting Nx, and for hooks by replacing Nx with Ny . The verbs
produced by hooks and forks have infinite rank.

Using hooks and forks, assisted by all the modifiers we have learned, we can produce
any function of 2 operands. If we have more than 2 operands, we can link them together
into a boxed list using dyad ; and then extract the pieces as needed using dyad {:: .
For the rest of this chapter we will show examples of functions turned into tacit verbs
using hooks and forks. If I don't show the expansion using the bident/trident rules, you
should produce it yourself.

To find how much x has changed from y, as a percentage of y :
 pctchg =: 100&*@:(- %])
 12 pctchg 10
20
This becomes 100 * (x - y) % y . Note the use of] to select the original y
operand. Similarly, [can be used to select the original x operand. Tacit verbs make
heavy use of [and] .
 Another way to code pctchg is
 pctchg =: 100"_ * (- %])
where we used the constant verb 100"_ which produces 100 no matter what its
operands are. Which of these forms you prefer is a matter of taste.

 165

To find the elements common to x and y, keeping the same order as in x :
 setintersect =: e. # [
 3 1 4 1 5 9 setintersect 4 6 9
4 9
This becomes (x e. y) # x . You can see that the identity verbs [and] are useful
for steering operands through hooks and forks. As an exercise, see how the alternative
version ([-. -.) produces the same result.

To list all the indexes of the 1s in a Boolean list:
 booltondx =: (# i.@:#)"1
 booltondx 0 1 0 1 0 0 1
1 3 6
Note that we are careful to give our verb a rank of 1, since it works only with lists.

To find the difference between the largest and smallest items in a list:
 range =: (>./ - <./)"1
 range 3 1 4 1 5 9
8

To find the index of the largest item in a list:
 indexmax =: (i. >./)"1
 indexmax 3 1 4 1 5 9 2 6 5 3 5
5

To create a Boolean list with a 1 at each position that is different from the previous
position:
 changeflag =: 1: , 2: ~:/\]
 changeflag 1 1 2 2 7 7 7 3 3 4 5 8 8
1 0 1 0 1 0 0 1 0 1 1 1 0
We could have done this without using forks, with (1&,)@:(2&(~:/\) . Which
version you use is a matter of taste. The number verbs _9: through 9: are very useful if
you like forks rather than long conjunction chains. Note that changeflag is executed
as if parenthesized (1: , (2: (~:/\)])) . If you work with long trains of verbs
like this you will soon notice that if you count the verbs from the right (starting at 0, of
course), the even-numbered verbs have the original x and y applied, and the odd-
numbered ones combine the results from the even-numbered.

To replace multiple spaces by a single space:
 delmb =: ((#~ -.) ' '&E.)"1
 delmb 'abc nb'
abc nb

To create an array in which each item is a list of (value,number of times that value
appeared):

 166

histogram =: ~. ,. #/.~
 histogram 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9
3 2
1 2
4 1
5 3
9 3
2 1
6 1
8 1
7 1

To append the contents of the first item of x in front of y and the contents of the last
item of x behind y :
 enclose =: >@:{.@:[,] , >@:{:@[
 '*' enclose 'xyz'
xyz
 '()' enclose 'abc'
(abc)

To produce 1 if all the items of y are equal, 0 if not
 allitemsequal =: -: 1&|.
 allitemsequal 1 1 1 1 1
1
 allitemsequal 1 1 1 2 1
0

To extend x to the length of y, where the items of y supply default values for the
corresponding omitted items of x :
 default =: [, (}.~ #)~
 ('abc';2) default 'Defname';0;'Deftype';100
+---+-+-------+---+
|abc|2|Deftype|100|
+---+-+-------+---+
 ('abc';2;'xyz';30) default 'Defname';0;'Deftype';100
+---+-+---+--+
|abc|2|xyz|30|
+---+-+---+--+

The verb [:, which we met as a way to cause an error, has a special meaning in a
fork. As the leftmost verb of the fork, [: means 'ignore the left branch'. So,
Nx ([: V1 V2) Ny is V1 Nx V2 Ny and ([: V1 V2) Ny is V1 V2 Ny . In
both cases, ([: V1 V2) is equivalent to V1@:V2 . Almost always, the choice
between one form or the other is a matter of taste. Do not fear that the extra word in the
fork leads to slower execution; the [: is not executed�it is recognized by the parser
when it creates the anonymous verb for the fork.

As a final example, here is a definition of the word-counting example we wrote
earlier. See if you can convince yourself that it is equivalent to wc2 :

 167

WS =: ' ',TAB,LF
wc3 =: (# , (*. -.@(|.!:0))@(e.&WS) , +/@(LF&=))@ReadFile

I could go on with pages more of hooks and forks for you to study, but what you
really need is to write some yourself. It will be a frustrating experience for the first few
weeks as you struggle to jigsaw your verbs into pieces that have one or two operands and
yet fit together to perform a complex function. It's not a necessary skill�you can get
along acceptably in J writing mostly explicit definitions, with an occasional fork thrown
in where obvious�but it is a useful, honorable, and satisfying one. Learning to write
tacit verbs is like learning to walk with a book balanced on your head: it will slow you
down at first, but in the end you'll stand taller for it.

The book J Phrases, which is part of the J release, has dozens of interesting examples
of tacit programs which you can use as exercises. I will end this chapter with one final
trick:

Referring To a Noun In a Tacit Verb
Suppose you want a verb v that returns the current value of the noun n (maybe it's a

button handler). Suppose you want v to be tacitly defined. How would you do it? You
can't use
 v =: n
because that would use the value of n at the time v is defined (in fact, v would be a
noun), and you want the value of n when v is executed. Use this trick:
 v =: ".@:('n'"_)
When this is executed, the operand is ignored and replaced by the string 'n', which is
then executed by ". to produce the value of the noun n .

 168

35. Readable Tacit Definitions

Heron's formula for the area of a triangle, given the lengths of the sides a, b, and c, is
sqrt(s*(s-a)*(s-b)*s-c)) where s is (a+b+c)%2 . This can be written
 triarea =: [: %: [: */ -:@:(+/) - 0: ,]
 triarea 3 4 5
6
Regardless of your diligence in commenting your code and the level of J expertise in you
and the sorry wretches who will have to read it, long tacit definitions like this can become
trackless wastelands, Saharas of verb following verb unendingly with nothing to suggest
an interpretation of the intermediate results. I know of two ways to mark a trail through
such a definition. The first is to develop a regimen for using spaces and parentheses to
help the reader group the parts. I would write
 triarea =: [: %: [: */ (-:@:(+/)) - 0:,]

The second way is to split the line into multiple lines, where each line can have a
comment or a verb-name indicating what it produces. This approach, carried almost to an
extreme, would yield
 semiperimeter =: -:@:(+/)
 factors =: semiperimeter - 0:,]
 product =: [: */ factors
 triarea =: [: %: product
Combining the two approaches, you can find a comfortable level of complexity.

Flatten a Verb: Adverb f.
Splitting the definition into many lines has the unfortunate side-effect that all the

names referred to by triarea must be defined when triarea is executed:
 triarea
[: %: product
triarea refers to product which refers to factors which refers to
semiperimeter . If you define many tacit verbs this way, the result is pollution of
the namespace. To leave a smaller footprint, use private assignment for all the names
except the name that will be public, and use the adverb f. which replaces names in its
operand with their definitions:
 semiperimeter =. -:@:(+/)
 factors =. semiperimeter - 0:,]
 product =. [: */ factors
 triarea =: ([: %: product) f.
 triarea
 [: %: [: */ -:@:(+/) - 0: ,]
If these verbs are run from a script, the temporary verbs will disappear (since they were
assigned by private assignment), leaving only the main verb triarea .

f. is also used in initialization of objects, as you can learn in the Lab for Object-
Oriented Programming.

 169

Note that f. has no effect on explicit definitions.

Using f. to improve performance
Flattening a verb has two beneficial effects on performance. The first is easy to see

by comparing the difference between the two sequences:
 a =. i. 100000
 abs0 =: 3 : '| y.' "0
 6!:2 'abs0 a'
3.17136
 abs1 =: 3 : '| y.'
 6!:2 'abs1"0 a'
3.54908
To be sure, in each case we have committed the crime of applying an explicitly-defined
verb at a low rank (|"0 a executes in time 0.006), but that is not the point. Why is
abs1"0 slower than abs0? Each one reinterprets its verb for each atom of a .

The answer is that when abs1"0 is executed, the definition of abs1 must be looked
up for every atom of a (for all the interpreter knows, abs1 might be redefined during its
execution). The time spent doing this lookup accounts for the difference in time between
abs0 and abs1"0 . If we eliminate the lookup of the name abs1, that time is saved:
 6!:2 'abs1 f."0 a'
3.00941

The important lesson to learn from this is that you should define your verbs with the
proper rank. That will eliminate superfluous name lookups. In exceptional cases you
may use f. to avoid name lookups during execution of a complex verb.

The second case where f. can improve performance applies only to those users who
feel compelled to redefine the J primitives with mnemonic names. This is a practice that
I strongly deprecate, and if you don't heed my advice, the interpreter stands ready to
punish you. See what can happen when the primitives are replaced by mnemonic names:
 tally =: #
 a =. 100000 $ i. 6
 b =. i. 100000 10
 6!:2 'a #/. b'
0.0157688
 6!:2 'a tally/. b'
0.154675
What happened is that #&.> is handled by special code in the interpreter, but
tally&.> is not. The fact that tally is defined to be # is immaterial: the interpreter
doesn't know that at the time it creates the anonymous verb for tally&.> . The
penalty is an almost-tenfold increase in execution time.
 6!:2 'a tally f./. b'
0.0167351
By flattening tally, we cause it to be replaced by its definition #, and then the special
case #&.> is recognized.

 170

 b =. 0 = i. 100000
 6!:2 '(# i.@#) b'
0.0011616
 6!:2 '(tally index@tally) b'
0.00385943
Again, (# i.@#) is handled by special code, but the names prevent the interpreter from
recognizing the situation.
 6!:2 '(tally f. index f. @(tally f.)) b'
0.0018061
If we flatten every name, we get good performance, but what an effort! It's much better
to use the J primitives directly, so the interpreter can do its job effectively.

 171

36. Explicit-To-Tacit Converter

Q: What's the most common cause of blindness among J programmers?

A: Conjunctivitis.

In the early weeks, complex tacit definitions are torturous to write and next-to-
impossible to read; blurred vision and sleepless nights are the occupational hazard of the
programmer who dives into tacit J. If a co-worker is banging into doors as he stumbles to
refill his tankard of coffee, here's how to check him out: hold up three fingers and ask
him how many he sees. If he says "three", he's merely fallen in love or is working to a
deadline, and he will recover. But if he replies "I see a list of 3 items each of which is a
finger", you can expect to start receiving emails that look like they've been encrypted.

You can offer as a temporary palliative J's mechanism for converting an explicit
definition to a tacit one. You request the conversion by using a left operand to : in the
range 11 to 13 instead of 1 to 4 .
 9!:3 (5) NB. Do this once to select simplified display

 3 : 'x. - y.'
3 : 'x.-y.'
We defined a verb, and since we didn't assign it to anything, we see its value, which is
just what we defined it to be.
 13 : 'x. - y.'
-
by using 13 instead of 3, we ask the interpreter to try to find a tacit equivalent, which it
did.

Here is another way to define the verb enclose from the previous chapter:
 13 : '(>{.x.) , y. , (>{:x.)'
([: > [: {. [) ,] , [: > [: {: [
The interpreter likes to use [: in its tacit definitions. Note that you use 13 : to get an
equivalent for both monadic and dyadic verbs; there is no 14 : .

I recommend that you use 13 : as your first choice for defining tacit verbs. It will
find all tacit equivalents that can be generated systematically, and the explicit definition
is much easier to read than a tacit definition. You will still have to use your tacit-
definition skills for irregular cases, such as
 13 : '+:^:x. y.'
4 : '+:^:x. y.'
If x. or y. is used as an operand to a conjunction, as in this example, the tacit converter
is not going to be able to make a tacit equivalent. The result of 13 : is still a verb
performing the requested function, but it is an explicit definition rather than a tacit one.
Note that the interpreter saw that the definition contained a reference to x., so it made
the verb a dyad.

 172

 2 (13 : '+:^:x. y.') 3
12
This verb applies monad +: to y., x. times. Knowing about u^:v, you might find the
tacit equivalent +:@]^:[:
 2 (+:@]^:[) 3
12

 173

37. Tacit Adverbs and Conjunctions

Knowing how to write tacit verbs is a useful if not quite essential skill in J, since
those verbs can be part of larger expressions and you save parsing time by using tacit
forms. Tacit modifiers are less important, because you don't code custom modifiers
inside expressions, and if a modifier is parsed repeatedly it can only be because you are
executing an explicit verb with a small rank, and performance is going to be poor no
matter what you do. Nevertheless, you may find the economy of tacit forms attractive,
and we will finish our exploration of J's tacit language by studying them in this optional
chapter.

The Fragment Table
Just as the fork V0 V1 V2, which originally had no meaning, made possible a

universe of tacit programs when properly defined as (x V0 y) V1 (x V2 y), so
there are many other fragments that had no meaning until one was assigned. In fact, there
are 36 such fragments in all. The assignments that were chosen make up the grammar of
J's tacit language. I think it is a towering achievement. Unless you have abundant
leisure, you will not learn it all at once, but will instead use the parts that you need to
solve problems you encounter.

You should at least make the acquaintance of the table of fragments so you will know
how to use it when you need it. Each fragment occupies 3 columns in the table. (note:
the table here is a bit different from the one in the Dictionary to make clear which
fragments return unpredictable parts of speech)

 174

The processing of a fragment is determined by the parts of speech of its words. The
first column of the table identifies the type of fragment; the third column indicates what
action is performed when the fragment is executed; the second column indicates what
part of speech is assigned to the anonymous entity created by the execution.

Do not confuse the execution of a modifier with the execution of the entity derived
from the modifier. For example, executing the conjunction & is different from executing
the verb 2&+ that is created by & : in the sentence 2&+ 5, & is executed with the
operands 2 and +, and then the derived verb 2&+ is executed with the operand 5 . In the
'description' column of the fragment table, x and y refer to operands at the time the
anonymous derived entity is executed. If the derived entity is a verb, x and y will be
nouns; if the derived entity is itself a modifier, they may be nouns or verbs. Execution of
the fragment itself does not refer to x or y; it merely creates a derived entity that may
later have an x and y . Take the rather fanciful example
+: (@ &. &) -:
The first fragment executed is @ &. & which is of the form C0 C1 C2 . This is
executed (with no x or y) to produce the anonymous conjunction ac, leaving
+: ac -:
This is of the form V0 C1 V2, so the conjunction ac is executed with x set to +: and y
set to -: .ac operates according to its definition (x C0 y) C1 (x C2 y) ; it then
executes (x C0 y) and (x C2 y) to produce anonymous verbs ac1 (defined as
+:@-:) and ac2 (defined as +:&-:); these are joined by &. to produce the final result
ac1&.ac2 which is the final result, displayed as

Fragment P/S Description Fragment P/S Description
V0 V1 V2 verb (x V0 y) V1 (x V2 y) A0 C1 A2 conj (x A0) C1 (y A2)
V0 V1 C2 conj V0 V1 (x C2 y) A0 C1 C2 conj (x A0) C1 (x C2 y)
A0 V1 V2 adv (x A0) V1 V2 C0 C1 N2 conj (x C0 y) C1 N2
C0 V1 V2 conj (x C0 y) V1 V2 C0 C1 V2 conj (x C0 y) C1 V2
C0 V1 C2 conj (x C0 y) V1 (x C2 y) C0 C1 A2 conj (x C0 y) C1 (y A2)
A0 A1 V2 conj (x A0) (y A1) V2 C0 C1 C2 conj (x C0 y) C1 (x C2 y)
A0 A1 A2 adv ((x A0) A1) A2 N0 A1 any x? (N0 A1) y?

C0 A1 A2 conj ((x C0 y) A1) A2 N0 C1 adv N0 C1 x

N0 C1 N2 any x? (N0 C1 N2) y? V0 V1 verb x (or y) V0 V1 y

N0 C1 V2 any x? (N0 C1 V2) y? V0 A1 any x? (V0 A1) y?

N0 C1 A2 adv N0 C1 (x A2) V0 C1 adv V0 C1 x

N0 C1 C2 conj N0 C1 (x C2 y) A0 V1 adv (x A0) V1

V0 C1 N2 any x? (V0 C1 N2) y? A0 A1 adv (x A0) A1

V0 C1 V2 any x? (V0 C1 V2) y? A0 C1 adv (x A0) C1 x

V0 C1 A2 adv V0 C1 (x A2) C0 N1 adv x C0 N1

V0 C1 C2 conj V0 C1 (x C2 y) C0 V1 adv x C0 V1

A0 C1 N2 adv (x A0) C1 N2 C0 A1 conj (x C0 y) A1
A0 C1 V2 adv (x A0) C1 V2

 175

+:@-:&.(+:&-:)
which is a verb that awaits noun operands to produce its result.

The second column of the table (labeled 'P/S') indicates the part of speech that is
assigned to the result of executing the fragment. Most of the lines have a single fixed
part of speech, but when you finally get down to executing a single adverb or conjunction
with its noun or verb operands, the result can be any primary part of speech. It's not that
the result of executing the modifier has an undefined part of speech�that's impossible�
it's just that you don't know the part of speech until you execute the modifier. Take the
conjunction : as an example: it can return any of the four primary parts of speech.
Depending on what part is returned, the derived entity will expect no operand (if a noun),
one operand on the left (if an adverb), two operands (if a conjunction), or a noun right
and optional noun left operand (if a verb).

Identity Conjunctions [.]. And Identity Adverb]:
When we write tacit verbs, we use [and] to select a single operand. Similarly, the

identity conjunction [. selects its left operand, and the identity conjunction]. selects
its right operand. You use [when you need a verb, or [. when you need a conjunction.
Similarly, the identity adverb]: produces the value of its operand (which is to the left of
]:, since]: is an adverb).

Examples Of Tacit Modifiers
Before we write our own tacit forms, let's try reading some. Let's start with

(]. @ [.)
The first task is to figure out what part of speech this is. We fill in the part of speech of
each component; that's (C0 C1 C2) . We then go to the fragment table and see that
C0 C1 C2 produces a conjunction. So this is a conjunction. Now, what happens when
it is executed with operands x and y as x (]. @ [.) y? To find out, we look at the
definition of C0 C1 C2, which we find is (x C0 y) C1 (x C2 y) . That will be
(x]. y) @ (x [. y) . Since this gives operands to the conjunctions [. and].,
they will be executed next. Their execution leaves a result of y @ x, which is
V0 C1 V2, so @ is executed to produce y@x which will be the final result:
 + (]. @ [.) -
-@+
Note that even though a phrase has legal syntax, it may have invalid semantics:
 + (]. @ [.) 5
|domain error
| +(].@[.)5
This was parsed as above, but when it was executed it produced 5@+ which is
meaningless.

I want to digress a bit to pursue this last point, which we neglected when we
discussed execution. The tridents in the fragment table whose P/S entry is conj or adv
(V0 V1 C2 is an example) all contain modifiers that are executed when the fragment is
executed. When such a modifier is executed, the modifier will be replaced by its result,
which may be any part of speech; this replacement may (and almost always will) change

 176

the parts of speech making up the fragment, because the modifier's result is usually a
verb. In other words, executing the trident consumes its operands and transforms the
trident into a different trident. If the new trident corresponds to a line in the fragment
table whose P/S entry is any, it is immediately executed to produce its result; if the new
trident corresponds to any other line in the fragment table, the new trident needs further
operands and it becomes an anonymous entity waiting for operands. In either case, the
single stack word representing the original trident is replaced by a single word
representing the result of its execution. If the new trident does not correspond to any line
in the fragment table, the result is an error. Take C0 V1 C2 as an example:
 + ([. *].) -
+ * -
With the conjunctions replaced by the verbs they produce, the fragment becomes
V0 V1 V2 which is a fork.
 [([. *].) 6
|syntax error
| [([.*].)6
The case V0 V1 N2 is not a valid fragment. The fact that [* 6 could be executed if
entered on a line by itself is immaterial. At this point we are not parsing, we are
executing.

Returning to examples of tacit forms, see if you can figure out what this one does:
 Endtoend =: ;@:(<@]:)
Inside the parentheses we have V0 C1 A2 which is an adverb, so the whole thing is
V0 C1 A2 which is an adverb. Executed with a verb operand x, we make the
substitutions according to the definitions and see that the result is ;@:(<@x) :
 i."0 Endtoend
;@:(<@(i."0))
The verb is applied to each 0-cell of its argument; each result is boxed; then the boxes are
removed and the results are run together. This sequence is used when the results on the
cells have different lengths and we don't want the shorter ones padded by fills:
 , (i."0) 3 4 5
0 1 2 0 0 0 1 2 3 0 0 1 2 3 4
has fills between the results, but
 i."0 Endtoend 3 4 5
0 1 2 0 1 2 3 0 1 2 3 4
does not.

Take a look at
 OnRavel =: (@,) ($~) $
With the parentheses included, the parsing order is clear and we don't have to go through
a full simulation of parsing. @, is C0 V1 which produces an adverb; $~ is V0 A1
which executes immediately to produce the verb $~; with those substituted the whole
thing will be A0 V1 V2 which we can see produces an adverb. So OnRavel is an
adverb. If we execute it with an operand *:, we just follow the definitions of the
components: x (C0 V1) produces x C0 V1 or *:@,, and the whole result is
(*:@, $~ $) . I put the parentheses in to remind you that this is the result of

 177

execution of the adverb; this result is not going to be parsed again, it is just a verb waiting
to be applied to a noun. We can see the verb at work:
 +/\ OnRavel i. 3 3
 0 1 3
 6 10 15
21 28 36

Explicit-To-Tacit Converter For Modifiers
J's explicit-to-tacit converter is even more valuable for adverbs and conjunctions than

it is for verbs. You can define a tacit adverb with 11 : or a tacit conjunction with
12 :, but you need to know a few secrets. First, your modifier may not refer to the
operands of the derived verb; it may refer only to the operands of the modifier itself.
Second, you must refer to those operands as x. and y., not as u./m. and v./n. .
Third, x. and y. are expected to be verbs; if you execute the result with a noun operand,
it may fail. Finally, if 11 : or 12 : is unable to find a tacit equivalent, the result may
be invalid (unlike 13 : which produces a valid explicit verb if it can't find a tacit one).
You should use 11 : and 12 : as a way of getting suggestions that will let you finish
the tacit definition on your own. When 11 : and 12 : work, the results are elegant:
 11 : 'x./'
/
 12 : 'x.@y./'
@ /
You can look at the line for the fragment C0 A1 to see that this is correct. If you are
going to use 11 : and 12 : you have to understand tacit definitions well enough to
know when the result is invalid:
 11 : 'u./'
].(u./)
Interesting though it is, this is gibberish and will fail when executed.

Writing Tacit Modifiers
OK, let's try to write some tacit forms, with the explicit-to-tacit converter and the

fragment table as our aids. We often need a verb described as (V0 x) V1 y, i. e.
apply V0 to x before using that result in V1 . It's similar to the hook, which is defined
by x V0 V1 y, applying V1 to y before using that result in V0 . In fact, using ~ to
exchange operands, we can get the result we want:
 3 ({.~ -)~ 'abcdefgh'
fgh
We negated 3 to take the last 3 elements of y . I can testify that code written like this is
hard to follow. Can we define a conjunction Ux_Vy that does what we want? Let's ask
the interpreter:
 Ux_Vy =: 12 : '(y.~ x.)~'
 Ux_Vy
(((]. ~) ` [.) (`:6)) ~
Wow. Who'd have guessed that? Does it work?

 178

 - Ux_Vy {.
({.~ -)~
Yes, it does. When we discussed `:6 I didn't mention that if it is given a list, it creates a
train of all the verbs in the list, as here. When you can't figure out how to generate a
sequence of verbs, this is a good trick to remember.

It also turns out to be useful to have a conjunction that produces a simple hook. That
is easy to write:
 12 : 'x. y.'
` (`:6)
 Xuvy =: 12 : 'x. y.'
 4 * Xuvy - 3
_12

We can follow the definitions of some of the utilities we mentioned earlier. The
adverb Ifany applied u to y only if y had a nonzero number of items:
 Ifany =: 11 : 'x. ^: (*@#@])'
 Ifany
^:(*@#@])
 < Ifany
<^:(*@#@])

u Butifnull n produced [x] u y if y has no items, otherwise it produced n .
It helps to start with an example of what the conjunction would produce:
 + Butifnull 0
would produce
(0"_)`+ @. (*@#@])
The verb *@#@] generates 0 if there are no items, 1 if there are items; we use that to
select the verb n"_ (we have to make it a verb so it can go into a gerund) or the verb u .
We try the tacit generator, remembering to use x. and y. instead of u. and n. :
 Butifnull =: 12 : '((y."_)`x.) @. (*@#@])'
|domain error
| Butifnull=: 12 :'((y."_)`x.) @. (*@#@])'
Uh-oh. We're going to have to do this one by hand. So be it.

The @. is a conjunction and (*@#@]) is a verb. No substitution of operands is
required there. We note that C0 C1 V2 is defined by (x C0 y) C1 V2, so it will
leave @. and (*@#@]) unchanged, and we focus on writing a conjunction producing
n"_`u . We could pore over the fragment table to work out a solution, but it's always a
good idea to try 12 : :
 12 : 'y."_ ` x.'
(]. " _) ` [.
Great! That will return a noun, and we can write the final solution:
 Butifnull =: ((]."_)`[.) @. (*@#@])
which we can verify with
 + Butifnull 0
0"_`+@.(*@#@])

Suppose we find that we often write lines like

 179

 (verb y) # y
In other words, we use the verb to create a Boolean list which we then use to select items
of y . We would like to give this pattern a name, say UsedToSelect . Since the
only operand is the verb, we want to define an adverb. We can write it as
 UsedToSelect =: 1 : '(u. y.) # y.'
with a typical invocation being
 0&> UsedToSelect _3 0 3
_3
This solution has a drawback. We would like the verb derived from verb to be usable
either as a dyad or as a monad, but the dyad fails:
 0 > UsedToSelect _3 0 3
|valence error
| 0 >UsedToSelect _3 0 3
This happens because explicitly-defined adverbs produce verbs that may have monadic
and dyadic valences, and we have defined only the monadic. We could go ahead and
code a dyadic case, but that seems a pity because what we want in either case is
verb #]; maybe we can find a tacit form to produce that. Our first thought should be
to ask the interpreter for help using 11 :, but since our adverb refers to u. and y., that
is doomed to fail. So, we run our finger down the fragment table, looking for lines that
produce an adverb, and then seeing if the definition seems useful. Sure enough,
A0 V1 V2 is just what we want, so we try
 UsedToSelect =:]: #]
and it works:
 0&> UsedToSelect _3 0 3
_3
 0 > UsedToSelect _3 0 3
_3
Since UsedToSelect is tacit, we can even see the result of its application to an
operand:
 > UsedToSelect
> #]
Yes, that's the derived verb we wanted. Now that we see the answer we realize that we
could have used 11 : after all if we had thought of the proper way to write it:
 UsedToSelect =: 11 : 'x. #]'
]: #]
That's easier to understand, so that's the definition we'll use.

Graduate Project For Gurus
As a final project, we will define the conjunction LoopWithInitial which we

promised as an alternative to writing a hard-to-follow sequence of operations. We expect
u LoopWithInitial n
to produce the verb
u&.>/\. &.(,&(<n))&.|.&.(<"_1)
Well, let's try it:

 180

 12 : 'x.&.>/\. &.(,&(<y.))&.|.&.(<"_1)'
((((([.&.>)/)\.)&. (, & ([< (]. (@])))))&.|.)&.(<"_1)
Promising if incomprehensible. Let's hope it produces the correct verb:
 L =: 12 : 'x.&.>/\. &.(,&(<y.))&.|.&.(<"_1)'
 + L 5
|domain error: L
| +L 5
"Drat!" would be a considerable understatement. Searching for clues in the mess that is
L, we note that the < corresponding to <y. seems to be used dyadically. Even if we
don't follow exactly what's going on, it's hard to see how ([< anything) could be
right, so let's try creating a version that doesn't box n :
 12 : 'x.&.>/\. &.(,&(y.))&.|.&.(<"_1)'
((((([. &. >) /) \.) &. (, &].)) &. |.) &. (<"_1)
Always look at the result of the tacit generator to make sure it's not garbage.
 L2 =: 12 : 'x.&.>/\. &.(,&(y.))&.|.&.(<"_1)'
 + L2 (<5)
+&.>/\.&.(,&(<5))&.|.&.(<"_1)
That's what we expected. We could prudently accept L2 as a final solution, requiring
that n be boxed, or resolutely work on finding a way to box n in the conjunction. We
soldier on. Let's try to understand what went wrong, by examining a smaller conjunction:
 12 : 'x.&(<y.)'
[. & ([< (]. (@])))
 + 12 : 'x.&(<y.)' 5
|domain error
| +12 :'x.&(<y.)'5
Why did it fail? Let's see if we can get it to show us a result:
 + 12 : 'x.&(<y.)' *
+&([< *@])
Aha! Look at what has happened: it thinks y. is a verb. When we give a noun for y.,
it's going to produce noun@], which causes a domain error. Now we remember that
restriction on 11 : and 12 :�they expect x. and y. to be verbs. Well, at least we
know what the problem is, and we can see the similar erroneous code in the result for L .
To get a valid solution, we start with the working L2, which was
((((([. &. >) /) \.) &. (, &].)) &. |.) &. (<"_1)
The]. is where y. comes into the result. What we need is a conjunction that boxes its
noun right operand to produce a noun result; we will put that in place of]. .
Unfortunately, there is no fragment that applies a verb to its operand to produce a noun,
so we are going to have to use an explicit conjunction
 (2 : '<v.')
This is a conjunction that returns the boxed value of its right argument:
 + (2 : '<v.') 5
+-+
|5|
+-+
Substituting that into the tacit converter's effort for L2, we get the final solution

 181

 L3 =: ([. &. >)/\.&.(,&(2 :'<v.'))&.|.&.(<"_1)
which we can test with
 + L3 5
+&.>/\.&.(,&(<5))&.|.&.(<"_1)
�a pleasant result indeed.

If you tried to find a tacit way to box v you may have thought of the conjunction
 (] <].)
thinking that x (]]].) y would be processed as (] < (x]. y)), which
would become (] < y), which is just 2 verbs applied to a noun and so would produce
<y . But if you tried it, you got
 0 (] <].) 5
|syntax error
| 0(]<].)5
Remember, V0 V1 N2 is not a valid fragment. We are executing, not parsing.

If you made it all the way through this chapter, you should pat yourself on the back.
As a cool-down exercise, notice that the conjunction L3 includes the phrase
&.(,&(<n)) which implies that there must be some obverse to (,&(<n)) that undoes
its operation. What do you suppose that would be?
 ,&(<5) b. _1
}: :.(,&(<5))
The obverse is }: (with its own defined obverse which is the original verb). Isn't that
clever!

This chapter gives you an idea of the power of tacit modifiers, as well as the care
required to craft them. If you stick to ones generated by 11 : and 12 : to begin with,
you will obtain useful and understandable results. When those fail you, you will usually
be able to solve your problem after conjuring with the fragment table.

 182

38. Valedictory

You have learned enough J to understand J programs and to put your own ideas into
J. I hope you will now do two things: practice using J so that J becomes the language of
your mind's ear, the way you naturally express algorithms; and read the Dictionary with
care, so you can learn J fully. It'll be like weight training: in a few months you'll look in
the mirror and be amazed at the programmer you've turned into.

Good luck, and I hope to see you on the J Forum!

 183

39. Glossary

Adverb One of the primary parts of speech. An adverb modifies the word or phrase to
its left to produce a derived entity that can be any of the four primary parts of speech.

Anonymous Having no name. Said of the result of an execution.

Atom Any single number, single character, or single box. Also called a scalar. An atom
is a noun with rank 0 .

Array A noun comprising atoms arranged along one or more axes. Each atom is
identified by its index list. J arrays are rectangular, meaning that all 1-cells contain
an identical number of 0-cells, and all 2-cells contain an identical number of 1-cells,
and so on.

Axis One of the dimensions along which the atoms of an array are arranged. The atoms
of every noun are arranged along zero or more axes where each axis has a
corresponding length and each unique list of nonnegative integers in which each
integer is less than the length of the corresponding axis designates a unique atom of
the noun.

Boolean Having a numeric value restricted to the values 0 and 1 .

Cell A subarray of a noun consisting of all the atoms of the noun whose index lists have
a given prefix. For positive k, each k-cell of a noun whose shape is s has the shape
((- k <. #s) {. s) and together they can be assembled to reconstruct the
noun. For negative k, the k-cells are defined to be the (0 >. k + #s)-cells.

Conjunction One of the primary parts of speech. A conjunction modifies the words or
phrases to its left and right to produce a derived entity that can be any of the four
primary parts of speech.

Copula One of the parts of speech, signifying an assignment of a value to a name. The
copulas are =. and =: .

Derived Entity The result of executing an adverb or conjunction. If the part of speech
of a derived entity is known, it may be called, for example, a derived verb.

Dyad (dyadic) A verb with left and right operands (which must be nouns). Any verb
may be used as a monad or dyad, depending on whether it has a left noun operand
when it is executed.

Entity A noun, verb, conjunction, or adverb

Execution The process of replacing a verb and its operands on the execution stack with
the result from applying the verb to those operands; or of converting a fragment into a
derived entity in accordance with the definition of the fragment, and replacing the
fragment on the execution stack by a single word referring to the derived entity.

 184

Execution Stack The set of words of a sentence that have been examined by parsing in
its search for an executable fragment, as modified by the replacement performed by
execution.

Fill An atom appended to a noun to extend the length of the noun to a required length,
especially when the noun must be extended because it is being made a cell in an array
whose cells are longer than the noun.

Fragment 2 or 3 words on the execution stack in a context that makes them executable.

Frame The frame of a noun with respect to k-cells is the shape of the noun with the last
r items removed, where r is the rank of a k-cell of the noun. When a noun is viewed
as an array of k-cells, the frame with respect to k-cells is the shape of the array of
k-cells.

Framing Fill A fill added when the results from applying a verb on its operand cells are
being joined into an array. Framing fills are always 0, ' ', or a: depending on the
type of the result.

Fret A merker indicating the start or end of an interval.

Functional Programming A method of writing programs that describes only the
operations to be performed on the inputs to the programs, without the use of
temporary variables to store intermediate results. J's tacit programs are an example of
functional programming. Aficionados of functional programming consider it to be a
purer statement of an algorithm than the usual statement in a procedural language; as
the expert J programmer Randy MacDonald has said, "If you're not programming
functionally, you're programming dysfunctionally".

Global Of a name, accessible as a simple name by any verb. In the J Dictionary the
word 'global' has the meaning we have assigned to the word 'public'.

Index In an array, an integer indicating position along an axis. The index of the first
atom along an axis is 0 .

Index List A list of integers with the same length as the shape of a noun, designating an
atom of the noun by giving its position along each axis.

Interval A sequence of consecutive indexes or cells.

Item A _1-cell of a noun. An array is a vector of its items. An atom has one item, itself.

List An array of rank 1 .

List of An array whose items are; as in 'list of 3-item lists'.

Local See private.

Locale A namespace in J. The locale in which a public name is defined is an attribute of
the name. A locale is identified by a locale name which is a character string not
containing an underscore.

Locative A name including both a simple name and an explicit locale.

Modifier An adverb or conjunction, which modifies its operand(s) to produce a derived
entity.

 185

Monad (monadic) A verb with no left operand. Any verb may be used as a monad or
dyad, depending on whether it has a left noun operand when it is executed.

Name Either a simple name or a locative, to which an entity can be assigned.

Noun One of the primary parts of speech. An atom or array of atoms. Nouns hold the
data that verbs operate on.

Parsing The right-to-left search for suitable patterns in a sentence. When a suitable
pattern is found, that subset of it that constitutes an executable fragment is executed.

Part of Speech One of the six categories into which words are classified; or, the word or
entity so classified. Every word has a part of speech: for primitives, the part of
speech is defined by the language; for names, the part of speech is that of the entity
assigned to the name. The parts of speech are: noun, verb, conjunction, adverb,
punctuation, and copula. The primary parts of speech are noun, verb, conjunction,
and adverb.

Partition A selection of (possibly noncontiguous) items of an array, brought together as
the items of a new array to be operated on by a verb.

Path See search path.

Primitive A word whose meaning is assigned by the J language.

Private Of a name, assigned in the namespace of an explicit definition and accessible
only within the explicit definition in which it was assigned.

Public Of a name, assigned in a locale and accessible from any locale via a locative.

Punctuation A part of speech. Punctuation is not executed but it affects the execution
of other words. Punctuation in J comprises (,), NB., and control words.

Rank Of a noun, the number of axes along which the atoms of the noun are arranged;
the number of items in the shape. Of a verb, the highest rank of the noun operands
that the verb can operate on.

Scalar See atom.

Script A file containing J sentences.

Search Path Of a locale l, the list of the names of locales that will be searched to find
the definition of a name originally sought but not found in l.

Sentence An entire executable line.

Shape The list of the lengths of the axes of a noun.

Simple Name A list of letters, numbers, and underscores beginning with a letter, used to
refer to an entity.

Train A sequence of words that cannot immediately be executed to produce a noun
result.

Type An attribute of a noun: numeric, literal (also called string), or boxed.

Valence Of a verb definition, an indication of the number of noun operands that the
definition can accept: monadic if 1, dyadic if 2, dual-valence if either 1 or 2.

 186

Vector A sequence of cells arranged with a leading axis. An array can be construed as a
vector of its items.

Verb One of the primary parts of speech. A verb operates on the noun to its right (and
its left, if a noun is to its left) to produce a noun result.

Verb Fill Fill added during processing of a verb. The fit conjunction !.f can often be
used to specify the fill atom to be used for verb fill.

Word A sequence of characters in a sentence, recognized as a lexical unit. A word is
either a name, a primitive, a constant (which may be a number or a character or a list of
either), or a synthetic word used to refer to the result of an execution.

 187

40. Index

- dyad · 44

!

! dyad · 79
! monad · 80
!. · 48, 146
!: · 105

"

" · 29
". dyad · 107, 109
". monad · 121
": dyad · 106

dyad · 46, 142
monad · 22
#. dyad · 79
#. monad · 25
#: dyad · 79
#: monad · 25
#^:_1 dyad · 142

$

$ dyad · 18
$ monad · 19
$: · 143

%

% dyad · 44
%: dyad · 79
%: monad · 80

*

* dyad · 44
* monad · 45
*. dyad · 45
*: monad · 80

,

, monad · 51
,. dyad · 49
,: dyad · 49
,: monad · 53

.

Apply On All Subarrays conjunction ·
118

Apply On Partitions conjunction · 114
Apply On Selected Partitions

conjunction · 115
Apply On Subarray conjunction · 117
-. dyad · 47
-. monad · 45
u;.3 and u · 118
u · 117
and u · 115
u;.1 and u · 114

/

-/ .* · 149
/: dyad · 50
/: monad · 53

:

-: dyad · 51
-: monad · 80

 2

;

; dyad · 87
; monad · 88
;: monad · 92
;:^:_1 monad · 142

?

? · 143

[

[· 66
[. · 175
[: · 97

\

\: dyad · 50
\: monad · 53

]

] · 66
]. · 175
]: · 175

^

^ dyad · 44
^ monad · 80
^. dyad · 44
^. monad · 80

{

{ dyad · 46
details · 90

{. dyad · 48
{. monad · 52
{: monad · 52
{:: dyad · 93

|

| dyad · 44
| monad · 45
|. dyad · 49
|. monad · 52
|.!.f monad · 147
|: dyad · 147
|: monad · 52

}

}. dyad · 48
}. monad · 52
}: monad · 52

~

~ · 57
~. monad · 112
~: dyad · 44, 45
~: monad · 112

+

+ dyad · 44
+. dyad · 45
+/ .* · 149
+: monad · 80

<

< dyad · 45
< monad · 69
<. dyad · 45
<. monad · 45
<: dyad · 45
<: monad · 45

=

= dyad · 44, 45

 3

>

> dyad · 44
>. dyad · 45
>. monad · 45
>: dyad · 45
>: monad · 45

A

a: · 70
agreement of operands · 36
Amend adverb } · 127
anonymous entity · 4
Antilog verb ^ · 80
Apply At Level conjunction L: · 144
Apply On Subsets adverb /. · 112
Apply Under Transformation

conjunction &. · 99
array · 15
assignment · 6

multiple · 89
private · 132
public · 133

atom · 16
atomic representation · 84
axis · 17

order · 17

B

Behead verb }. · 52
Boolean Functions verb m b. · 144
Box verb < · 69
boxing · 69

C

C
belittled · ii
derided · 41
J equivalent for class · 132
structure equivalent in J · 72

calling a DLL · 110
cd verb · 110
cell · 16

character constants · 5, 18
comments in code · 98
comparison tolerance !. · 146
compound verb · 65
Constant verb m"n · 53
control structures · 130

for. do. end. · 130
if. do. else. elseif. end. · 130
return. · 131
try. catch. end. · 131
while. whilst. do. end. · 130

copula · 6
Copy verb # · 46
Curtail verb }: · 52

D

Deal verb ? · 143
derived entity · 4
derived verb · 65
Do verb ". · 121
DoWhile conjunction u^:v^:_ · 83
Drop verb }. · 48

E

e. dyad · 47
E. dyad · 116
Element Of verb e. · 47
empty cells · 75
empty operands · 73
Enfile verb , · 51
entity · 3
error handling · 106, 131

F

f. · 168
Factorial verb ! · 80
Fetch verb {:: · 93
fill · 70

framing · 32
verb · 48
with empty operands · 73

Find Sequence verb E. · 116
Fit conjunction !. · 48

 4

Flatten adverb · 168
Foreign conjunction !: · 105
form editor · 149
format for printing · 106
frame · 16, 26, 33
From verb { · 46

G

gerund · 85
Grade verbs /: \\: · 53

H

Head verb {. · 52

I

i. dyad · 47
i. monad · 22
i: · 148
Identity adverb]: · 175
Identity conjunctions [.]. · 175
identity element · 56
Identity verbs [] · 66
If conjunction ^: · 83
Index Of verb i. · 47
Infix adverb · 77
input and output · 105
interrupting execution · 9
inverse of verb · 99
Invoke Gerund conjunction `: · 120
item · 17
Itemize verb ,: · 53

J

J Forum · 9

L

L. monad · 94
L: · 144
Laminate verb ,: · 49
Level verb L. · 94

Link verb ; · 87
list · 17
load verb · 8
locale

changing current · 134
current · 132
defined · 132
locative · 132
name lookup · 133
search path · 133
used for modular programming · 137
z · 136

Log verb ^. · 80

M

m :n · 95
m b. · 144
m"n · 53
m&v monad · 67
m@.v · 85
m`:6 · 120
m} dyad · 127
m} monad · 142
Match verb -: · 51
matrix verbs · 149
memory management · 111

mema · 111
memf · 111
memr · 111
memw · 111

modification in place · 128, 142
modifier · 4

user-defined · 138
Modifier

order of execution · 55
Modify adverb } · 127
modular code · 132

N

name · 4
Nub Sieve verb ~: · 112
Nub verb ~. · 112
Number Of Combinations verb ! · 79
Numbers verb ". · 109

 5

O

o. (trigonometric function) · 45
obverse of verb · 99

defined by u :.v · 101
discussed under ^: · 99

P

parts of speech · 3
passing a verb as an argument · 119
performance measurement · 102
plot package · 148
Power conjunction ^: · 82
primitive · 4
printf · 108
punctuation · 4

R

random numbers · 143
rank · 15, 20, 22, 26, 96

negative · 32
Rank conjunction " · 29
Ravel verb , · 51
Raze verb ; · 88
recursion · 143
Remove verb -. · 47
Reverse verb |. · 52
Right Shift verb |.!.f · 147
Roll verb ? · 143
Root verb %: · 79
Rotate Left verb |. · 49

S

S: · 144
scalar · 16
sentence · 4
shape · 15
Shift Left verb |.!.f · 50
Sort Using verb /: \\: · 50
Sort verb /: \\: · 51
Spread verb #^:_1 · 142
Square Root verb %: · 80
Stitch verb ,. · 49

Suicide verb [: · 97

T

Table adverb / · 143
tacit programming

anonymous verb · 155
explicit-to-tacit converter · 171, 177
fork · 153
forks and hooks · 164
fragment table · 174
improving readability · 168
introduction · 151
parsing and execution · 155
parsing table · 158
summary of execution · 158
tacit modifiers · 173
trains · 153

Tail verb {: · 52
Take verb {. · 48
Tie conjunction ` · 85
Transpose verb |: · 52, 147
type · 16

U

u ::v · 106
u :v · 97
u"n · 29
u&.v · 99
u&:v · 101
u&n monad · 67
u&v · 101
u/ dyad · 143
u/ monad · 55
u/. dyad · 112
u/\\ monad · 76
u@:v dyad · 65
u@v dyad · 66
u\\ dyad · 77
u\\ monad · 76
u\\. dyad · 77
u\\. monad · 77

for performance · 104
u^:_1 (obverse) · 99
u^:n · 82

 6

u^:v · 83
u`v · 85
undefined names · 163

V

valence · 6, 97

verb
definition · 95

W

window driver · 149
word · 3, 4

