
IBM Home Products Consulting Industries News About IBM Search

IBM : developerWorks : Linux library

Common threads: Awk by example, Part 2
Records, loops, and arrays

Daniel Robbins
President/CEO, Gentoo Technologies, Inc.
January 2001

Contents:
 Multi-line records

 OFS and ORS

 Multi-line to tabbed

 Looping constructs

 Break and continue

 Arrays

 Array index
stringiness

 Array tools

 Resources

 About the author

In this sequel to his previous intro to awk, Daniel Robbins continues to explore
awk, a great language with a strange name. Daniel will show you how to handle
multi-line records, use looping constructs, and create and use awk arrays. By the
end of this article, you'll be well versed in a wide range of awk features, and
you'll be ready to write your own powerful awk scripts.

Multi-line records
Awk is an excellent tool for reading in and processing structured data, such as the
system's /etc/passwd file. /etc/passwd is the UNIX user database, and is a
colon-delimited text file, containing a lot of important information, including all
existing user accounts and user IDs, among other things. In my previous article, I
showed you how awk could easily parse this file. All we had to do was to set the FS
(field separator) variable to ":".

By setting the FS variable correctly, awk can be configured to parse almost any kind of
structured data, as long as there is one record per line. However, just setting FS won't
do us any good if we want to parse a record that exists over multiple lines. In these
situations, we also need to modify the RS record separator variable. The RS variable tells awk when the
current record ends and a new record begins.

As an example, let's look at how we'd handle the task of processing an address list of Federal Witness
Protection Program participants:

Jimmy the Weasel
100 Pleasant Drive
San Francisco, CA 12345

Big Tony
200 Incognito Ave.
Suburbia, WA 67890

Ideally, we'd like awk to recognize each 3-line address as an individual record, rather than as three separate
records. It would make our code a lot simpler if awk would recognize the first line of the address as the first
field ($1), the street address as the second field ($2), and the city, state, and zip code as field $3. The
following code will do just what we want:

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (1 of 9) [1/10/2001 3:08:51 PM]

http://www.ibm.com/shop1/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/home/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/news/
http://www.ibm.com/ibm/
http://www-109.ibm.com/redirectdWPS.htm
http://www.ibm.com/
http://www.ibm.com/developer/
http://www-105.ibm.com/developerworks/papers.nsf/dw/linux-papers-bytitle?OpenDocument&Count=500
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/l-awk1.html
http://www-106.ibm.com/developerworks/library/l-awk1.html

BEGIN {
 FS="\n"
 RS=""
}

Above, setting FS to "\n" tells awk that each field appears on its own line. By setting RS to "", we also tell
awk that each address record is separated by a blank line. Once awk knows how the input is formatted, it can
do all the parsing work for us, and the rest of the script is simple. Let's look at a complete script that will
parse this address list and print out each address record on a single line, separating each field with a comma.

address.awk

BEGIN {
 FS="\n"
 RS=""
}

{
 print $1 ", " $2 ", " $3

}

If this script is saved as address.awk, and the address data is stored in a file called address.txt, you can
execute this script by typing "awk -f address.awk address.txt". This code produces the following output:

Jimmy the Weasel, 100 Pleasant Drive, San Francisco, CA 12345
Big Tony, 200 Incognito Ave., Suburbia, WA 67890

OFS and ORS
In address.awk's print statement, you can see that awk concatenates (joins) strings that are placed next to each
other on a line. We used this feature to insert a comma and a space (", ") between the three address fields that
appeared on the line. While this method works, it's a bit ugly looking. Rather than inserting literal ", " strings
between our fields, we can have awk do it for us by setting a special awk variable called OFS. Take a look at
this code snippet.

print "Hello", "there", "Jim!"

The commas on this line are not part of the actual literal strings. Instead, they tell awk that "Hello", "there",
and "Jim!" are separate fields, and that the OFS variable should be printed between each string. By default,
awk produces the following output:

Hello there Jim!

This shows us that by default, OFS is set to " ", a single space. However, we can easily redefine OFS so that

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (2 of 9) [1/10/2001 3:08:51 PM]

awk will insert our favorite field separator. Here's a revised version of our original address.awk program that
uses OFS to output those intermediate ", " strings:

A revised version of address.awk

BEGIN {
 FS="\n"
 RS=""
 OFS=", "
}

{
 print $1, $2, $3

}

Awk also has a special variable called ORS, called the "output record separator". By setting ORS, which
defaults to a newline ("\n"), we can control the character that's automatically printed at the end of a print
statement. The default ORS value causes awk to output each new print statement on a new line. If we wanted
to make the output double-spaced, we would set ORS to "\n\n". Or, if we wanted records to be separated by a
single space (and no newline), we would set ORS to " ".

Multi-line to tabbed
Let's say that we wrote a script that converted our address list to a single-line per record, tab-delimited format
for import into a spreadsheet. After using a slightly modified version of address.awk, it would become clear
that our program only works for three-line addresses. If awk encountered the following address, the fourth
line would be thrown away and not printed:

Cousin Vinnie
Vinnie's Auto Shop
300 City Alley
Sosueme, OR 76543

To handle situations like this, it would be good if our code took the number of records per field into account,
printing each one in order. Right now, the code only prints the first three fields of the address. Here's some
code that does what we want:

A version of address.awk that works for addresses with any number of fields

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (3 of 9) [1/10/2001 3:08:51 PM]

BEGIN {
 FS="\n"
 RS=""
 ORS=""
}

{
 x=1
 while (x<NF) {
 print $x "\t"
 x++
 }
 print $NF "\n"
}

First, we set the field separator FS to "\n" and the record separator RS to "" so that awk parses the multi-line
addresses correctly, as before. Then, we set the output record separator ORS to "", which will cause the print
statement to not output a newline at the end of each call. This means that if we want any text to start on a new
line, we need to explicitly write print "\n".

In the main code block, we create a variable called x that holds the number of current field that we're
processing. Initially, it's set to 1. Then, we use a while loop (an awk looping construct identical to that found
in the C language) to iterate through all but the last record, printing the record and a tab character. Finally, we
print the last record and a literal newline; again, since ORS is set to "", print won't output newlines for us.
Program output looks like this, which is exactly what we wanted:

Our intended output. Not pretty, but tab delimited for easy import into a spreadsheet

Jimmy the Weasel 100 Pleasant Drive San Francisco, CA 12345
Big Tony 200 Incognito Ave. Suburbia, WA 67890
Cousin Vinnie Vinnie's Auto Shop 300 City Alley Sosueme, OR 76543

Looping constructs
We've already seen awk's while loop construct, which is identical to its C counterpart. Awk also has a
"do...while" loop that evaluates the condition at the end of the code block, rather than at the beginning like a
standard while loop. It's similar to "repeat...until" loops that can be found in other languages. Here's an
example:

do...while example

{
 count=1
 do {
 print "I get printed at least once no matter what"
 } while (count != 1)
}

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (4 of 9) [1/10/2001 3:08:51 PM]

Because the condition is evaluated after the code block, a "do...while" loop, unlike a normal while loop, will
always execute at least once. On the other hand, a normal while loop will never execute if its condition is
false when the loop is first encountered.

for loops
Awk allows you to create for loops, which like while loops are identical to their C counterpart:

for (initial assignment; comparison; increment) {
 code block
}

Here's a quick example:

for (x = 1; x <= 4; x++) {
 print "iteration",x
}

This snippet will print:

iteration 1
iteration 2
iteration 3
iteration 4

Break and continue
Again, just like C, awk provides break and continue statements. These statements provide better control over
awk's various looping constructs. Here's a code snippet that desperately needs a break statement:

An infinite while loop

while (1) {
 print "forever and ever..."
}

Because 1 is always true, this while loop runs forever. Here's a loop that only executes ten times:

An example of the break statement

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (5 of 9) [1/10/2001 3:08:51 PM]

x=1
while(1) {
 print "iteration",x
 if (x == 10) {
 break
 }
 x++
}

Here, the break statement is used to "break out" of the innermost loop. "break" causes the loop to
immediately terminate and execution to continue at the line after the loop's code block.

The continue statement complements break, and works like this:

x=1
while (1) {
 if (x == 4) {
 x++
 continue
 }
 print "iteration",x
 if (x > 20) {
 break
 }
 x++
}

This code will print "iteration 1" through "iteration 21", except for "iteration 4". If iteration equals 4, x is
incremented and the continue statement is called, which immediately causes awk to start to the next loop
iteration without executing the rest of the code block. The continue statement works for every kind of awk
iterative loop, just as break does. When used in the body of a for loop, continue will cause the loop control
variable to be automatically incremented. Here's an equivalent for loop:

for (x=1; x<=21; x++) {
 if (x == 4) {
 continue
 }
 print "iteration",x
}

It wasn't necessary to increment x just before calling continue as it was in our while loop, since the for loop
increments x automatically.

Arrays
You'll be pleased to know that awk has arrays. However, under awk, it's customary to start array indices at 1,
rather than 0:

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (6 of 9) [1/10/2001 3:08:51 PM]

myarray[1]="jim"
myarray[2]=456

When awk encounters the first assignment, myarray is created and the element myarray[1] is set to
"jim". After the second assignment is evaluated, the array has two elements.

Iterating over arrays
Once defined, awk has a handy mechanism to iterate over the elements of an array, as follows:

for (x in myarray) {
 print myarray[x]
}

This code will print out every element in the array myarray. When you use this special "in" form of a for
loop, awk will assign every existing index of myarray to x (the loop control variable) in turn, executing
the loop's code block once after each assignment. While this is a very handy awk feature, it does have one
drawback -- when awk cycles through the array indices, it doesn't follow any particular order. That means
that there's no way for us to know whether the output of above code will be:

jim
456

or

456
jim

To loosely paraphrase Forrest Gump, iterating over the contents of an array is like a box of chocolates -- you
never know what you're going to get. This has something to do with the "stringiness" of awk arrays, which
we'll now take a look at.

Array index stringiness
In my previous article, I showed you that awk actually stores numeric values in a string format. While awk
performs the necessary conversions to make this work, it does open the door for some odd-looking code:

a="1"
b="2"
c=a+b+3

After this code executes, c is equal to 6. Since awk is "stringy", adding strings "1" and "2" is functionally no
different than adding the numbers 1 and 2. In both cases, awk will successfully perform the math. Awk's
"stringy" nature is pretty intriguing -- you may wonder what happens if we use string indexes for arrays. For
instance, take the following code:

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (7 of 9) [1/10/2001 3:08:51 PM]

http://www-106.ibm.com/developerworks/library/l-awk1.html

myarr["1"]="Mr. Whipple"
print myarr["1"]

As you might expect, this code will print "Mr. Whipple". But how about if we drop the quotes around the
second "1" index?

myarr["1"]="Mr. Whipple"
print myarr[1]

Guessing the result of this code snippet is a bit more difficult. Does awk consider myarr["1"] and
myarr[1] to be two separate elements of the array, or do they refer to the same element? The answer is that
they refer to the same element, and awk will print "Mr. Whipple", just as in the first code snippet. Although it
may seem strange, behind the scenes awk has been using string indexes for its arrays all this time!

After learning this strange fact, some of us may be tempted to execute some wacky code that looks like this:

myarr["name"]="Mr. Whipple"
print myarr["name"]

Not only does this code not raise an error, but it's functionally identical to our previous examples, and will
print "Mr. Whipple" just as before! As you can see, awk doesn't limit us to using pure integer indexes; we can
use string indexes if we want to, without creating any problems. Whenever we use non-integer array indices
like myarr["name"], we're using associative arrays. Technically, awk isn't doing anything different
behind the scenes than when we use a string index (since even if you use an "integer" index, awk still treats it
as a string). However, you should still call 'em associative arrays -- it sounds cool and will impress your
boss. The stringy index thing will be our little secret. ;)

Array tools
When it comes to arrays, awk gives us a lot of flexibility. We can use string indexes, and we aren't required
to have a continuous numeric sequence of indices (for example, we can define myarr[1] and
myarr[1000], but leave all other elements undefined). While all this can be very helpful, in some
circumstances it can create confusion. Fortunately, awk offers a couple of handy features to help make arrays
more manageable.

First, we can delete array elements. If you want to delete element 1 of your array fooarray, type:

delete fooarray[1]

And, if you want to see if a particular array element exists, you can use the special "in" boolean operator as
follows:

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (8 of 9) [1/10/2001 3:08:51 PM]

if (1 in fooarray) {
 print "Ayep! It's there."
} else {
 print "Nope! Can't find it."
}

Next time
We've covered a lot of ground in this article. Next time, I'll round out your awk knowledge by showing you
how to use awk's math and string functions and how to create your own functions. I'll also walk you through
the creation of a checkbook balancing program. Until then, I encourage you to write some of your own awk
programs, and to check out the following resources.

Resources
Read Awk by example, Part 1 on developerWorks.●

If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition is a wonderful choice.●

Be sure to check out the comp.lang.awk FAQ. It also contains lots of additional awk links.●

Patrick Hartigan's awk tutorial is packed with handy awk scripts.●

Thompson's TAWK Compiler compiles awk scripts into fast binary executables. Versions are available
for Windows, OS/2, DOS, and UNIX.

●

The GNU Awk User's Guide is available for online reference.●

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies, Inc.,
the creator of Gentoo Linux, an advanced Linux for the PC, and the Portage system, a next-generation ports
system for Linux. He has also served as a contributing author for the Macmillan books Caldera OpenLinux
Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming language as well as a
potentially dangerous dose of Pac Man. This probably explains why he has since served as a Lead Graphic
Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his
new baby daughter, Hadassah. You can reach Daniel at drobbins@gentoo.org.

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

Privacy Legal Contact

developerWorks : Linux : Common threads - Awk by example, Part 2

http://www-106.ibm.com/developerworks/library/l-awk2.html (9 of 9) [1/10/2001 3:08:51 PM]

http://www-106.ibm.com/developerworks/library/l-awk1.html
http://www.oreilly.com/catalog/sed2/
http://www.faqs.org/faqs/computer-lang/awk/faq/
http://sparky.rice.edu/~hartigan/awk.html
http://www.teleport.com/~thompson
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.gentoo.org/
mailto:drobbins@gentoo.org
javascript:void newWindow()
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

	ibm.com
	developerWorks : Linux : Common threads - Awk by example, Part 2

	GJIINACBLELAMEGOEICADNJDDMJECPFN:
	form1:
	x:
	f1: Common threads: Awk by example, Part 2
	f2: Linux
	f3: http://www.ibm.com/developer/thankyou/feedback-linux.html
	f4: Off
	f5:

	f6:

