
Linux From Scratch

Version 6.1

Gerard Beekmans



Linux From Scratch: Version 6.1
by Gerard Beekmans
Copyright © 1999–2005 Gerard Beekmans

Copyright (c) 1999–2005, Gerard Beekmans

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

• Redistributions in any form must retain the above copyright notice, this list of conditions and the following disclaimer

• Neither the name of “Linux From Scratch” nor the names of its contributors may be used to endorse or promote products derived from this material without specific
prior written permission

• Any material derived from Linux From Scratch must contain a reference to the “Linux From Scratch” project

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



Table of Contents
Preface .............................................................................................................................................................. vii

1. Foreword ................................................................................................................................................ vii
2. Audience ...............................................................................................................................................viii
3. Prerequisites ............................................................................................................................................. x
4. Host System Requirements ..................................................................................................................... xi
5. Typography ............................................................................................................................................ xii
6. Structure ................................................................................................................................................xiii
7. Errata ..................................................................................................................................................... xiv

I. Introduction .................................................................................................................................................. 15
1. Introduction ............................................................................................................................................ 16

1.1. How to Build an LFS System ....................................................................................................... 16
1.2. Changelog ..................................................................................................................................... 17
1.3. Resources ...................................................................................................................................... 26
1.4. Help ............................................................................................................................................... 27

2. Preparing a New Partition ...................................................................................................................... 30
2.1. Introduction ................................................................................................................................... 30
2.2. Creating a New Partition ............................................................................................................... 31
2.3. Creating a File System on the Partition ........................................................................................ 32
2.4. Mounting the New Partition .......................................................................................................... 33

II. Preparing for the Build ................................................................................................................................ 34
3. Packages and Patches ............................................................................................................................. 35

3.1. Introduction ................................................................................................................................... 35
3.2. All Packages .................................................................................................................................. 36
3.3. Needed Patches ............................................................................................................................. 40

4. Final Preparations .................................................................................................................................. 42
4.1. About $LFS ................................................................................................................................... 42
4.2. Creating the $LFS/tools Directory ................................................................................................ 43
4.3. Adding the LFS User .................................................................................................................... 44
4.4. Setting Up the Environment .......................................................................................................... 45
4.5. About SBUs .................................................................................................................................. 47
4.6. About the Test Suites .................................................................................................................... 48

5. Constructing a Temporary System ......................................................................................................... 49
5.1. Introduction ................................................................................................................................... 49
5.2. Toolchain Technical Notes ........................................................................................................... 50
5.3. Binutils-2.15.94.0.2.2 - Pass 1 ...................................................................................................... 53
5.4. GCC-3.4.3 - Pass 1 ........................................................................................................................ 55
5.5. Linux-Libc-Headers-2.6.11.2 ........................................................................................................ 57
5.6. Glibc-2.3.4 .................................................................................................................................... 58
5.7. Adjusting the Toolchain ................................................................................................................ 61
5.8. Tcl-8.4.9 ........................................................................................................................................ 63
5.9. Expect-5.43.0 ................................................................................................................................ 65
5.10. DejaGNU-1.4.4 ........................................................................................................................... 67
5.11. GCC-3.4.3 - Pass 2 ...................................................................................................................... 68
5.12. Binutils-2.15.94.0.2.2 - Pass 2 .................................................................................................... 71

Linux From Scratch - Version 6.1

iii



5.13. Gawk-3.1.4 .................................................................................................................................. 73
5.14. Coreutils-5.2.1 ............................................................................................................................. 74
5.15. Bzip2-1.0.3 .................................................................................................................................. 75
5.16. Gzip-1.3.5 ................................................................................................................................... 76
5.17. Diffutils-2.8.1 .............................................................................................................................. 77
5.18. Findutils-4.2.23 ........................................................................................................................... 78
5.19. Make-3.80 ................................................................................................................................... 79
5.20. Grep-2.5.1a ................................................................................................................................. 80
5.21. Sed-4.1.4 ..................................................................................................................................... 81
5.22. Gettext-0.14.3 ............................................................................................................................. 82
5.23. Ncurses-5.4 ................................................................................................................................. 83
5.24. Patch-2.5.4 .................................................................................................................................. 84
5.25. Tar-1.15.1 .................................................................................................................................... 85
5.26. Texinfo-4.8 .................................................................................................................................. 86
5.27. Bash-3.0 ...................................................................................................................................... 87
5.28. M4-1.4.3 ...................................................................................................................................... 88
5.29. Bison-2.0 ..................................................................................................................................... 89
5.30. Flex-2.5.31 .................................................................................................................................. 90
5.31. Util-linux-2.12q .......................................................................................................................... 91
5.32. Perl-5.8.6 ..................................................................................................................................... 92
5.33. Stripping ...................................................................................................................................... 93

III. Building the LFS System ........................................................................................................................... 94
6. Installing Basic System Software .......................................................................................................... 95

6.1. Introduction ................................................................................................................................... 95
6.2. Mounting Virtual Kernel File Systems ......................................................................................... 96
6.3. Entering the Chroot Environment ................................................................................................. 97
6.4. Changing Ownership .................................................................................................................... 98
6.5. Creating Directories ...................................................................................................................... 99
6.6. Creating Essential Symlinks ....................................................................................................... 100
6.7. Creating the passwd, group, and log Files .................................................................................. 101
6.8. Populating /dev ........................................................................................................................... 103
6.9. Linux-Libc-Headers-2.6.11.2 ...................................................................................................... 105
6.10. Man-pages-2.01 ........................................................................................................................ 106
6.11. Glibc-2.3.4 ................................................................................................................................ 107
6.12. Re-adjusting the Toolchain ....................................................................................................... 113
6.13. Binutils-2.15.94.0.2.2 ............................................................................................................... 115
6.14. GCC-3.4.3 ................................................................................................................................. 118
6.15. Coreutils-5.2.1 ........................................................................................................................... 121
6.16. Zlib-1.2.2 ................................................................................................................................... 126
6.17. Mktemp-1.5 ............................................................................................................................... 128
6.18. Iana-Etc-1.04 ............................................................................................................................. 129
6.19. Findutils-4.2.23 ......................................................................................................................... 130
6.20. Gawk-3.1.4 ................................................................................................................................ 131
6.21. Ncurses-5.4 ............................................................................................................................... 132
6.22. Readline-5.0 .............................................................................................................................. 134
6.23. Vim-6.3 ..................................................................................................................................... 136
6.24. M4-1.4.3 .................................................................................................................................... 139
6.25. Bison-2.0 ................................................................................................................................... 140
6.26. Less-382 .................................................................................................................................... 141

Linux From Scratch - Version 6.1

iv



6.27. Groff-1.19.1 .............................................................................................................................. 142
6.28. Sed-4.1.4 ................................................................................................................................... 145
6.29. Flex-2.5.31 ................................................................................................................................ 146
6.30. Gettext-0.14.3 ........................................................................................................................... 148
6.31. Inetutils-1.4.2 ............................................................................................................................ 150
6.32. IPRoute2-2.6.11-050330 ........................................................................................................... 152
6.33. Perl-5.8.6 ................................................................................................................................... 154
6.34. Texinfo-4.8 ................................................................................................................................ 156
6.35. Autoconf-2.59 ........................................................................................................................... 158
6.36. Automake-1.9.5 ......................................................................................................................... 160
6.37. Bash-3.0 .................................................................................................................................... 162
6.38. File-4.13 .................................................................................................................................... 164
6.39. Libtool-1.5.14 ........................................................................................................................... 165
6.40. Bzip2-1.0.3 ................................................................................................................................ 166
6.41. Diffutils-2.8.1 ............................................................................................................................ 168
6.42. Kbd-1.12 ................................................................................................................................... 169
6.43. E2fsprogs-1.37 .......................................................................................................................... 171
6.44. Grep-2.5.1a ............................................................................................................................... 174
6.45. GRUB-0.96 ............................................................................................................................... 175
6.46. Gzip-1.3.5 ................................................................................................................................. 177
6.47. Hotplug-2004_09_23 ................................................................................................................ 179
6.48. Man-1.5p ................................................................................................................................... 181
6.49. Make-3.80 ................................................................................................................................. 183
6.50. Module-Init-Tools-3.1 .............................................................................................................. 184
6.51. Patch-2.5.4 ................................................................................................................................ 186
6.52. Procps-3.2.5 .............................................................................................................................. 187
6.53. Psmisc-21.6 ............................................................................................................................... 189
6.54. Shadow-4.0.9 ............................................................................................................................ 191
6.55. Sysklogd-1.4.1 .......................................................................................................................... 194
6.56. Sysvinit-2.86 ............................................................................................................................. 196
6.57. Tar-1.15.1 .................................................................................................................................. 199
6.58. Udev-056 ................................................................................................................................... 200
6.59. Util-linux-2.12q ........................................................................................................................ 202
6.60. About Debugging Symbols ....................................................................................................... 206
6.61. Stripping Again ......................................................................................................................... 207
6.62. Cleaning Up .............................................................................................................................. 208

7. Setting Up System Bootscripts ............................................................................................................ 209
7.1. Introduction ................................................................................................................................. 209
7.2. LFS-Bootscripts-3.2.1 ................................................................................................................. 210
7.3. How Do These Bootscripts Work? ............................................................................................. 212
7.4. Device and Module Handling on an LFS System ....................................................................... 214
7.5. Configuring the setclock Script .................................................................................................. 217
7.6. Configuring the Linux Console .................................................................................................. 218
7.7. Configuring the sysklogd script .................................................................................................. 220
7.8. Creating the /etc/inputrc File ...................................................................................................... 221
7.9. The Bash Shell Startup Files ....................................................................................................... 223
7.10. Configuring the localnet Script ................................................................................................. 225
7.11. Creating the /etc/hosts File ........................................................................................................ 226
7.12. Configuring the network Script ................................................................................................ 227

Linux From Scratch - Version 6.1

v



8. Making the LFS System Bootable ....................................................................................................... 229
8.1. Introduction ................................................................................................................................. 229
8.2. Creating the /etc/fstab File .......................................................................................................... 230
8.3. Linux-2.6.11.12 ........................................................................................................................... 231
8.4. Making the LFS System Bootable .............................................................................................. 234

9. The End ................................................................................................................................................ 236
9.1. The End ....................................................................................................................................... 236
9.2. Get Counted ................................................................................................................................ 237
9.3. Rebooting the System ................................................................................................................. 238
9.4. What Now? ................................................................................................................................. 239

IV. Appendices .............................................................................................................................................. 240
A. Acronyms and Terms .......................................................................................................................... 241
B. Acknowledgments ............................................................................................................................... 244

Index .............................................................................................................................................................. 247

Linux From Scratch - Version 6.1

vi



Preface
1. Foreword

My adventures in Linux began in 1998 when I downloaded and installed my first distribution. After working
with it for a while, I discovered issues I definitely would have liked to see improved upon. For example, I didn't
like the arrangement of the bootscripts or the way programs were configured by default. I tried a number of
alternative distributions to address these issues, yet each had its pros and cons. Finally, I realized that if I wanted
full satisfaction from my Linux system, I would have to build my own from scratch.

What does this mean? I resolved not to use pre-compiled packages of any kind, nor CD-ROMs or boot disks
that would install basic utilities. I would use my current Linux system to develop my own customized system.
This “perfect” Linux system would then have the strengths of various systems without their associated
weaknesses. In the beginning, the idea was rather daunting, but I remained committed to the idea that a system
could be built that would conform to my needs and desires rather than to a standard that just did not fit what I
was looking for.

After sorting through issues such as circular dependencies and compile-time errors, I created a custom-built
Linux system that was fully operational and suitable to individual needs. This process also allowed me to create
compact and streamlined Linux systems which are faster and take up less space than traditional operating
systems. I called this system a Linux From Scratch system, or an LFS system for short.

As I shared my goals and experiences with other members of the Linux community, it became apparent that
there was sustained interest in the ideas set forth in my Linux adventures. Such custom-built LFS systems serve
not only to meet user specifications and requirements, but also serve as an ideal learning opportunity for
programmers and system administrators to enhance their Linux skills. Out of this broadened interest, the Linux
From Scratch Project was born.

This Linux From Scratch book provides readers with the background and instruction to design and build custom
Linux systems. This book highlights the Linux from Scratch project and the benefits of using this system. Users
can dictate all aspects of their system, including directory layout, script setup, and security. The resulting system
will be compiled completely from the source code, and the user will be able to specify where, why, and how
programs are installed. This book allows readers to fully customize Linux systems to their own needs and
allows users more control over their system.

I hope you will have a great time working on your own LFS system, and enjoy the numerous benefits of having
a system that is truly your own.

--
Gerard Beekmans
gerard@linuxfromscratch.org

Linux From Scratch - Version 6.1

vii



2. Audience
There are many reasons why somebody would want to read this book. The principal reason is to install a Linux
system from the source code. A question many people raise is, “why go through all the hassle of manually
building a Linux system from scratch when you can just download and install an existing one?” That is a good
question and is the impetus for this section of the book.

One important reason for LFS's existence is to help people learn how a Linux system works from the inside out.
Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend
on each other. One of the best things that this learning experience provides is the ability to customize Linux to
your own tastes and needs.

A key benefit of LFS is that it allows users to have more control over the system without relying on someone
else's Linux implementation. With LFS, you are in the driver's seat and dictate every aspect of the system, such
as the directory layout and bootscript setup. You also dictate where, why, and how programs are installed.

Another benefit of LFS is the ability to create a very compact Linux system. When installing a regular
distribution, one is often forced to include several programs which are probably never used. These programs
waste disk space, or worse, CPU cycles. It is not difficult to build an LFS system of less than 100 megabytes
(MB), which is substantially smaller than the majority of existing installations. Does this still sound like a lot of
space? A few of us have been working on creating a very small embedded LFS system. We successfully built a
system that was specialized to run the Apache web server with approximately 8MB of disk space used. Further
stripping could bring this down to 5 MB or less. Try that with a regular distribution! This is only one of the
many benefits of designing your own Linux implementation.

We could compare Linux distributions to a hamburger purchased at a fast-food restaurant—you have no idea
what might be in what you are eating. LFS, on the other hand, does not give you a hamburger. Rather, LFS
provides the recipe to make the exact hamburger desired. This allows users to review the recipe, omit unwanted
ingredients, and add your own ingredients to enhance the flavor of the burger. When you are satisfied with the
recipe, move on to preparing it. It can be made to exact specifications—broil it, bake it, deep-fry it, or barbecue
it.

Another analogy that we can use is that of comparing LFS with a finished house. LFS provides the skeletal plan
of a house, but it is up to you to build it. LFS maintains the freedom to adjust plans throughout the process,
customizing it to the user's needs and preferences.

An additional advantage of a custom built Linux system is security. By compiling the entire system from source
code, you are empowered to audit everything and apply all the security patches desired. It is no longer necessary
to wait for somebody else to compile binary packages that fix a security hole. Unless you examine the patch and
implement it yourself, you have no guarantee that the new binary package was built correctly and adequately
fixes the problem.

The goal of Linux From Scratch is to build a complete and usable foundation-level system. Readers who do not
wish to build their own Linux system from scratch may not benefit from the information in this book. If you
only want to know what happens while the computer boots, we recommend the “From Power Up To Bash
Prompt” HOWTO located at http://axiom.anu.edu.au/~okeefe/p2b/ or on The Linux Documentation Project's
(TLDP) website at http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html. The
HOWTO builds a system which is similar to that of this book, but it focuses strictly on creating a system
capable of booting to a BASH prompt. Consider your objective. If you wish to build a Linux system while
learning along the way, then this book is your best choice.

Linux From Scratch - Version 6.1

viii

http://axiom.anu.edu.au/~okeefe/p2b/
http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html


There are too many good reasons to build your own LFS system to list them all here. This section is only the tip
of the iceberg. As you continue in your LFS experience, you will find the power that information and
knowledge truly bring.

Linux From Scratch - Version 6.1

ix



3. Prerequisites
This book assumes that the reader has a reasonable knowledge of using and installing Linux software. Before
building an LFS system, we recommend reading the following HOWTOs:

• Software-Building-HOWTO
http://www.tldp.org/HOWTO/Software-Building-HOWTO.html

This is a comprehensive guide to building and installing “generic” Unix software distributions under Linux.

• The Linux Users' Guide
http://www.linuxhq.com/guides/LUG/guide.html

This guide covers the usage of assorted Linux software.

• The Essential Pre-Reading Hint
http://www.linuxfromscratch.org/hints/downloads/files/essential_prereading.txt

This is an LFS Hint written specifically for users new to Linux. It includes a list of links to excellent sources
of information on a wide range of topics. Anyone attempting to install LFS should have an understanding of
many of the topics in this hint.

Linux From Scratch - Version 6.1

x

http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
http://www.linuxhq.com/guides/LUG/guide.html
http://www.linuxfromscratch.org/hints/downloads/files/essential_prereading.txt


4. Host System Requirements
The host must be running at least a 2.6.2 kernel compiled with GCC-3.0 or higher. There are two main reasons
for this requirement. First, the Native POSIX Threading Library (NPTL) test suite will segfault if the host's
kernel has not been compiled with GCC-3.0 or a later version. Second, the 2.6.2 or later version of the kernel is
required for the use of Udev. Udev creates devices dynamically by reading from the sysfs file system.
However, support for this filesystem has only recently been implemented in most of the kernel drivers. We must
be sure that all critical system devices get created properly.

In order to determine whether the host kernel meets the requirements outlined above, run the following
command:

cat /proc/version

This will produce output similar to:

Linux version 2.6.2 (user@host) (gcc version 3.4.0) #1
Tue Apr 20 21:22:18 GMT 2004

If the results of the above command do not state that the host kernel is either 2.6.2 (or later), or that it was not
compiled using a GCC-3.0 (or later) compiler, one will need to be installed. There are two methods you can take
to solve this. First, see if your Linux vendor provides a 2.6.2 (or later) kernel package. If so, you may wish to
install it. If your vendor doesn't offer a 2.6.2 (or later) kernel package, or you would prefer not to install it, then
you can compile a 2.6 kernel yourself. Instructions for compiling the kernel and configuring the boot loader
(assuming the host uses GRUB) are located in Chapter 8. This second option can also be seen as a gauge of your
current Linux skills. If this second requirement is too steep, then the LFS book will not likely be much use to
you at this time.

Linux From Scratch - Version 6.1

xi



5. Typography
To make things easier to follow, there are a few typographical conventions used throughout this book. This
section contains some examples of the typographical format found throughout Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is
also used in the explanation sections to identify which of the commands is being referenced.

install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, probably as the result of commands issued. This
format is also used to show filenames, such as /etc/ld.so.conf.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or
items.

http://www.linuxfromscratch.org/

This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs,
download locations, and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file
$LFS/etc/group from whatever is typed on the following lines until the sequence end of file (EOF) is
encountered. Therefore, this entire section is generally typed as seen.

[REPLACED TEXT]

This format is used to encapsulate text that is not to be typed as seen or copied-and-pasted.

passwd(5)

This format is used to refer to a specific manual page (hereinafter referred to simply as a “man” page). The
number inside parentheses indicates a specific section inside of man. For example, passwd has two man pages.
Per LFS installation instructions, those two man pages will be located at
/usr/share/man/man1/passwd.1 and /usr/share/man/man5/passwd.5. Both man pages have
different information in them. When the book uses passwd(5) it is specifically referring to
/usr/share/man/man5/passwd.5. man passwd will print the first man page it finds that matches
“passwd”, which will be /usr/share/man/man1/passwd.1. For this example, you will need to run man
5 passwd in order to read the specific page being referred to. It should be noted that most man pages do not
have duplicate page names in different sections. Therefore, man [program name] is generally sufficient.

Linux From Scratch - Version 6.1

xii

http://www.linuxfromscratch.org/


6. Structure
This book is divided into the following parts.

6.1. Part I - Introduction
Part I explains a few important notes on how to proceed with the LFS installation. This section also provides
meta-information about the book.

6.2. Part II - Preparing for the Build
Part II describes how to prepare for the building process—making a partition, downloading the packages, and
compiling temporary tools.

6.3. Part III - Building the LFS System
Part III guides the reader through the building of the LFS system—compiling and installing all the packages one
by one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on
which other software can be built to expand the system as desired. At the end of this book, there is an easy to
use reference listing all of the programs, libraries, and important files that have been installed.

Linux From Scratch - Version 6.1

xiii



7. Errata
The software used to create an LFS system is constantly being updated and enhanced. Security warnings and
bug fixes may become available after the LFS book has been released. To check whether the package versions
or instructions in this release of LFS need any modifications to accomodate security vulnerabilities or other bug
fixes, please visit http://www.linuxfromscratch.org/lfs/errata/6.1/ before proceeding with your build. You
should note any changes shown and apply them to the relevant section of the book as you progress with building
the LFS system.

Linux From Scratch - Version 6.1

xiv

http://www.linuxfromscratch.org/lfs/errata/6.1/


Part I. Introduction

Linux From Scratch - Version 6.1



Chapter 1. Introduction

1.1. How to Build an LFS System
The LFS system will be built by using a previously installed Linux distribution (such as Debian, Mandrake, Red
Hat, or SuSE). This existing Linux system (the host) will be used as a starting point to provide necessary
programs, including a compiler, linker, and shell, to build the new system. Select the “development” option
during the distribution installation to be able to access these tools.

As an alternative to installing an entire separate distribution onto your machine, you may wish to use the Linux
From Scratch LiveCD. The CD works well as a host system, providing all the tools you need to successfully
follow the instructions in this book. Additionally, it contains all the source packages, patches and a copy of this
book. So once you have the CD, no network connection or additional downloads are necessary. For more
information about the LFS LiveCD or to download a copy, visit http://www.linuxfromscratch.org/livecd/.

Chapter 2 of this book describes how to create a new Linux native partition and file system, the place where the
new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be
downloaded to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup
for an appropriate working environment. Please read Chapter 4 carefully as it explains several important issues
the developer should be aware of before beginning to work through Chapter 5 and beyond.

Chapter 5 explains the installation of a number of packages that will form the basic development suite (or
toolchain) which is used to build the actual system in Chapter 6. Some of these packages are needed to resolve
circular dependencies—for example, to compile a compiler, you need a compiler.

Chapter 5 also shows the user how to build a first pass of the toolchain, including Binutils and GCC (first pass
basically means these two core packages will be re-installed a second time). The next step is to build Glibc, the
C library. Glibc will be compiled by the toolchain programs built in the first pass. Then, a second pass of the
toolchain will be built. This time, the toolchain will be dynamically linked against the newly built Glibc. The
remaining Chapter 5 packages are built using this second pass toolchain. When this is done, the LFS installation
process will no longer depend on the host distribution, with the exception of the running kernel.

While this may initially seem like a lot of work to isolate the new system from the host distribution, a full
technical explanation is provided at the beginning of Chapter 5.

In Chapter 6, the full LFS system is built. The chroot (change root) program is used to enter a virtual
environment and start a new shell whose root directory will be set to the LFS partition. This is very similar to
rebooting and instructing the kernel to mount the LFS partition as the root partition. The system does not
actually reboot, but instead chroot's because creating a bootable system requires additional work which is not
necessary just yet. The major advantage is that “chrooting” allows the builder to continue using the host while
LFS is being built. While waiting for package compilation to complete, a user can switch to a different virtual
console (VC) or X desktop and continue using the computer as normal.

To finish the installation, the LFS-Bootscripts are set up in Chapter 7, and the kernel and boot loader are set up
in Chapter 8. Chapter 9 contains information on furthering the LFS experience beyond this book. After the steps
in this book have been implemented, the computer will be ready to reboot into the new LFS system.

This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and
package descriptions. Items that may seem complicated will be clarified, and everything will fall into place as
the reader embarks on the LFS adventure.

Linux From Scratch - Version 6.1

16

http://www.linuxfromscratch.org/livecd/


1.2. Changelog
This is version 6.1 of the Linux From Scratch book, dated July 9, 2005. If this book is more than six months old,
a newer and better version is probably already available. To find out, please check one of the mirrors via
http://www.linuxfromscratch.org/.

Below is a list of changes made since the previous release of the book. First a summary, then a detailed log.

• Upgraded to:

• Automake 1.9.5

• Binutils 2.15.94.0.2.2

• Bison 2.0

• Bzip2 1.0.3

• E2fsprogs 1.37

• Expect 5.43.0

• File 4.13

• Findutils 4.2.23

• GCC 3.4.3

• Gettext 0.14.2

• Glibc 2.3.4

• Grep 2.5.1a

• Grub 0.96

• Iana-Etc 1.04

• Iproute2 2.6.11-050330

• LFS-Bootscripts 3.2.1

• Libtool 1.5.14

• Linux 2.6.11.12

• Linux-libc-headers 2.6.11.2

• M4 1.4.3

• Man 1.5p

• Man-pages 2.01

• Module-init-tools 3.1

• Perl 5.8.6

• Procps 3.2.5

Linux From Scratch - Version 6.1

17

http://www.linuxfromscratch.org/


• Psmisc 21.6

• Sed 4.1.4

• Shadow 4.0.9

• Sysvinit 2.86

• Tar 1.15.1

• Texinfo 4.8

• Tcl 8.4.9

• Udev 056

• Util-linux 2.12q

• Zlib 1.2.2

• Added:

• bash-3.0-fixes-3.patch

• bash-3.0-avoid_WCONTINUED-1.patch

• flex-2.5.31-debian_fixes-3.patch

• glibc-2.3.4-fix_test-1.patch

• gzip-1.3.5-security_fixes-1.patch

• Hotplug 2004_09_23

• mktemp-1.5-add_tempfile-2.patch

• sysklogd-1.4.1-fixes-1.patch

• tar-1.15.1-sparse_fix-1.patch

• util-linux-2.12p-cramfs-1.patch

• vim-6.0-security_fix-1.patch

• zlib-1.2.2-security_fix-1.patch;

• Removed:

• bash-3.0-display_wrap-1.patch

• flex-2.5.31-debian_fixes-2.patch

• man-1.5o1-80cols-1.patch

• mktemp-1.5-add_tempfile-1.patch

• sysklogd-1.4.1-kernel_headers-1.patch

Linux From Scratch - Version 6.1

18



• sysvinit-2.85-proclen-1.patch

• texinfo-4.7-segfault-1.patch

• util-linux-2.12b-sfdisk-1.patch

• zlib-1.2.1-security-1.patch

• July 9th, 2005 [archaic]: Rewrote kernel notes.

• July 9th, 2005 [matt]: Added information regarding security mailing lists and freshmeat to
chapter09/whatnow.xml. Fixes bug 1583. Thanks to Steve Crosby for the report and the suggested text.

• July 7th, 2005 [manuel]: Revised packages and patches sizes. Using the lfs-packages-6.1.tar package and
`du -k` to meassure it. Fixed beginpage tags for PDF output. Removed blank pages in PDF output for
non-published versions.

• July 6th, 2005 [archaic]: Added security patch for zlib.

• July 6th, 2005 [matt]: Several typo corrections, as suggested by Bernard Leak.

• July 5th, 2005 [archaic]: Removed reference to the wiki. Pointed to the FAQ.

• July 4th, 2005 [archaic]: Reworded errata page so it only refers to security warnings and bug fixes, not new
features.

• July 4th, 2005 [archaic]: Brought (hopefully) all references of man/info pages into conformity. Man page
conformity was based on if referring to a specific man page or man pages in general. Updated typography to
reflect this.

• July 2nd, 2005 [archaic]: Several minor wording changes in chapters 8 and 9 (matt). Also removed the
paragraph about compressing kernel modules as it is hint material at best.

• July 2nd, 2005 [archaic]: Several minor wording changes in chapter 8 (matt).

• July 1st, 2005 [archaic]: Several minor wording changes in chapter 6 (matt).

• July 1st, 2005 [archaic]: Brought all occurences of LFS-Bootscripts into conformity.

• June 30th, 2005 [archaic]: Several minor wording changes in chapters 1 - 5 (matt).

• June 30th, 2005 [archaic]: Added a livecd-root entity.

• June 29th, 2005 [archaic]: Moved the host requirements page to the preface section of the book.

• June 28th, 2005 [archaic]: Switched from mounting /dev on a ramfs to a tmpfs.

• June 27th, 2005 [matthew]: Removed mention of test suite problems from chapter 1 as more comprehensive
information is given in chapter 5 (archaic).

• June 27th, 2005 [matthew]: Reworded description of the glibc atime failure case, and removed the
description of the shm test failure as we already mount a tmpfs (archaic).

• June 27th, 2005 [archaic]: Filled in text for errata page. Thanks for the text, Steve!

• June 26th, 2005 [manuel]: Small tags corrections.

• June 25th, 2005 [archaic]: Added placeholder for errata page and a temporary link (currently dead).

Linux From Scratch - Version 6.1

19



• June 25th, 2005 [archaic]: Added "generic-version" and "test-results" entities.

• June 25th, 2005 [archaic]: Added the compress symlink to gzip.

• June 25th, 2005 [jhuntwork]: Added a --with-tclinclude flag to Expect build to ensure that it knows where to
find the Tcl source directory.

• June 25th, 2005 [matthew]: Updated to the latest version of the mktemp tempfile patch, which supports
building outside the source directory

• June 23rd, 2005 [archaic]: Rewrote the inputrc page.

• June 22nd, 2005 [archaic]: Added a link to point to test results.

• June 22nd, 2005 [archaic]: Upgraded shadow to 4.0.9. Removed lastlog patch.

• June 21st, 2005 [archaic]: Removed --with-included-regex from chapter05/grep since there seems to no
longer be a valid reason to use it and the explanation of it was incorrect.

• June 21st, 2005 [archaic]: Updated to findutils-4.2.23.

• June 20th, 2005 [archaic]: Updated flex patch from -2 to -3.

• June 20th, 2005 [manuel]: Added a warning about kernel headers and Linux-Libc-Headers, plus fixed the
list of installed files on kernel.xml (bug 1569). Some typos and tags fixes ported from trunk (r6048 to r6050
and r6053 to r6056.) Fixed top program description (bug 1549.) Fixed tar description (bug 1553.) Reworded
Util-linux patch explanation (bug 1554.)

• June 19th, 2005 [jhuntwork]: Changed listing of IRC servers to show only irc.linuxfromscratch.org.

• June 19th, 2005 [jhuntwork]: Removed outdated bootcd page and added a brief description of the LiveCD to
section 1.1.

• June 16th, 2005 [archaic]: Added installation dependencies for hotplug.

• June 16th, 2005 [matthew]: Another round of typo and markup fixes in chapter 7, as reported by Randy
McMurchy.

• June 16th, 2005 [matthew]: Typo and markup fixes in chapter 7, as reported by Randy McMurchy.

• June 16th, 2005 [jhuntwork]: Adjusted description of the patch package. Thanks Randy McMurchy.

• June 16th, 2005 [archaic]: Fixed link to BLFS's db page referenced in iproute2. (merged from trunk r6006)

• June 15th, 2005 [archaic]: Added --disable-nls to pass2 binutils to avoid requirement of gettext. (merged
from trunk r5983)

• June 14th, 2005 [archaic]: Updated all build sizes. (merged from trunk r5916, r5917, r5918, and r5972)

• June 14th, 2005 [archaic]: Removed --with-included-regex from chapter6's grep since it is less reliable than
glibc's in non-C locales.

• June 14th, 2005 [archaic]: Removed references to separate gcc tarballs (gcc-core, gcc-g++, etc.)

• June 12th, 2005 [matt]: Upgraded to linux-2.6.11.12.

• June 8th, 2005 [archaic]: Removed suggestion on where to move /sources, and reworded the rest of the page
(chapter06/revisedchroot.xml).

Linux From Scratch - Version 6.1

20



• June 8th, 2005 [archaic]: Added a command to prevent module-init-tools from rewriting it's man page
(which relies on docbook2man).

• Jun 1st, 2005 [manuel]: Changed patches root to lfs/svn/testing/

• May 23nd, 2005 [manuel]: Minor wording improvements (thanks to Peter Ennis)

• May 22nd, 2005 [matt]: Updated to Linux-2.6.11.10.

• May 15th, 2005 [matt]: Added gzip security patch.

• May 15th, 2005 [matt]: Updated to Linux 2.6.11.9.

• May 15th, 2005 [matt]: Updated to LFS-Bootscripts 3.2.1.

• May 12th, 2005 [matt]: More wording and tagging improvements (thanks to Peter Ennis and Tony Morgan)

• May 12th, 2005 [matt]: Minor wording improvements (thanks to Peter Ennis)

• April 27th, 2005 [archaic]: Added a patch to fix 2 glibc testsuite failures when the running kernel is
2.6.11.x.

• April 18th, 2005 [manuel]: Adjusted the beginpage tags to match the previous text changes.

• April 17th, 2005 [manuel]: Updated the stylesheets to use DocBook-XSL 1.68.1.

• April 17, 2005 [matt]: Don't create hotplug's events log file; the bootscripts handle that for us.

• April 17, 2005 [matt]: Use canonical charmaps in /etc/profile and don't set LC_ALL (Ken Moffat and
Alexander Patrakov)

• April 16, 2005 [matt]: Reword handling of hotpluggable devices now that we install the hotplug package
(Andrew Benton)

• April 16, 2005 [matt]: Minor wording/typo fixes (Allard Welter)

• April 16, 2005 [matt]: Minor wording/typo fixes (Peter Ennis)

• April 16, 2005 [matt]: Removed references to statically linking the pass 1 toolchain which should have gone
as part of bug 1061 (Andrew Benton)

• April 13, 2005 [manuel]: Spelling fixes pointed by Archiac. Added tags to fix the PDF look in chapter 06.

• April 12, 2005 [manuel]: Small redaction changes. Added tags to fix the PDF look in all chapters except
chapter 06.

• April 11, 2005 [manuel]: Mention bzip2's testsuite. Several tags and text corrections.

• April 6, 2005 [matt]: Move e2fsprogs sed command to before entering the build directory (Steffen R.
Knollmann).

• April 4, 2005 [matt]: Typo: The udev initscript registers udevsend, not udev, as the hotplug handler (Bryan
Kadzban)

• April 4, 2005 [matt]: No need to manually create /var/log/hotplug as hotplug's Makefile creates it
(Ken Moffat). Also minor rewording to improve consistency.

• April 4, 2005 [matt]: Fix e2fsprogs compile problem (Ken Moffat & Greg Schafer)

Linux From Scratch - Version 6.1

21



• April 2, 2005 [jhuntwork]: Fixed dtd url for sysklogd xml files

• March 31, 2005 [jhuntwork]: Changed the link for less to point to ftp.gnu.org

• March 31, 2005 [matt]: Upgraded to LFS-Bootscripts 3.2.0

• March 31, 2005 [matt]: Upgraded to m4-1.4.3

• March 30, 2005 [matt]: Upgraded to iproute2-2.6.11-050330

• March 30, 2005 [jhuntwork]: Removed syslog-ng-1.6.6, libol-0.3.15. Reinstated sysklogd-1.4.1. Thanks to
Archaic for the patch.

• March 26, 2005 [matt]: Upgraded to linux-libc-headers-2.6.11.2

• March 26, 2005 [matt]: Upgraded to linux-libc-headers-2.6.11.1

• March 26, 2005 [matt]: Upgraded to linux-2.6.11.6

• March 22, 2005 [jim]: Upgraded to e2fsprogs-1.3.7.

• March 21, 2005 [jim]: Added patch to fix issue with shadow and lastlog.

• March 19, 2005 [jim]: Added patch to fix issue with tar -S

• March 19, 2005 [matt]: Removed references to kernel security patch

• March 19, 2005 [jim]: Upgraded to udev-056

• March 19, 2005 [jim]: Upgraded to linux-2.6.11.5

• March 19, 2005 [jim]: Change references to Iproute2 to IPRoute2

• March 18, 2005 [jim]: Upgraded to Findutils 4.2.20

• March 16, 2005 [jim]: Upgraded to linux-2.6.11.4

• March 16, 2005 [jim]: Removed reference to kernel security patch

• March 16, 2005 [jim]: Removed find_update patch for IPRoute2, it is not needed anymore

• March 15, 2005 [matt]: Upgraded to iproute2-2.6.11-050314

• March 14, 2005 [matt]: List the installed files/directories descriptions in a somewhat more alphabetic order.

• March 14, 2005 [matt]: Fix typos, and reword some of the hotplug explanations for (hopefully) improved
clarity

• March 14, 2005 [matt]: Upgraded to gettext-0.14.3

• March 14, 2005 [jim]: Added /var/log/hotplug for capturing of hotplug events. Added /lib/firmware
for firmware loading with hotplug

• March 13, 2005 [jim]: Updated iproute2 db patch to iproute2-2.6.11-050310. Removed unneeded
find_update patch also for iproute2-2.6.11-050310

• March 13, 2005 [matt]: Upgraded to iproute2-2.6.11-050310

• March 13, 2005 [matt]: Upgraded to linux-2.6.11.3 and linux-libc-headers-2.6.11.0

• March 13, 2005 [matt]: Reword About SBUs section to reflect the earlier fix for bug 1061

Linux From Scratch - Version 6.1

22



• March 13, 2005 [matt]: Dynamically link the pass1 toolchain to workaround bug 1061 and remove all
related explanatory text

• March 12, 2005 [matt]: Upgraded to udev-054

• March 12, 2005 [matt]: Upgraded to findutils-4.2.19

• March 12, 2005 [matt]: Upgraded psmisc to 21.6

• March 10, 2005 [matt]: gettext no longer installs libgettext{lib,src}.a (Jack Brown)

• March 3, 2005 [matt]: Remove --without-cvs from glibc instructions, as we're not using glibc CVS
snapshots anymore

• March 3, 2005 [matt]: Fixed a couple of typo's in the download locations

• March 2, 2005 [matt]: Add note regarding potential custom features in a host distribution's version of
e2fsprogs. Fixes bug 1047. Thanks to Steve Crosby for the suggested explanatory text.

• March 2, 2005 [jim]: Update download locations

• February 28, 2005 [jim]: Upgraded bash fixes patch to -3

• February 28, 2005 [matt]: Upgraded binutils to 2.14.94.0.2.2

• February 28, 2005 [matt]: Move /usr/bin/logger to /bin as the bootscripts need it there. Fixes bug
1035.

• February 28, 2005 [matt]: Upgraded to iana-etc-1.04

• February 28, 2005 [matt]: Correct the instructions for invoking udev's testsuite (Randy McMurchy)

• February 27, 2005 [matt]: Correct the title of the readline patch in chapter 3. Fixes bug 1049

• February 27, 2005 [matt]: Mention udev's testsuite. Fixes bug 1042

• February 27, 2005 [matt]: Use --without-csharp instead of --disable-csharp, as the latter doesn't work as
intended. Fixes bug 1033

• February 27, 2005 [matt]: Upgraded to gettext-0.14.2

• February 27, 2005 [matt]: Upgraded to findutils-4.2.18

• February 27, 2005 [matt]: Upgraded to bzip2-1.0.3

• February 19, 2005 [gerard]: Chapter 5-Stripping: removed doc from the directories to be removed in
/tools. This directory is not created anymore.

• February 19, 2005 [jeremy]: Added correction to chapter 5 glibc build to fix the disabling of selinux
functionality. Thanks to Bobson on IRC (bobson@bobson.net) for pointing this out. Closes bugzilla 1034.

• February 19, 2005 [gerard]: Synchronized Testing branch with current Unstable/Trunk. Move Testing
branch to Trunk and discontinue Testing branch as per lfs-dev discussion on branch changes.

• February 5, 2005 [matt]: Copy hotplug's pnp.distmap file to silence its warnings. Also tidy up some
explanatory text

• January 29, 2005 [matt]: Upgraded to sed-4.1.4

Linux From Scratch - Version 6.1

23



• January 29, 2005 [matt]: Upgraded to procps-3.2.5

• January 29, 2005 [matt]: Upgraded to shadow-4.0.7

• January 29, 2005 [matt]: Upgraded to util-linux-2.12q.

• January 27, 2005 [matt]: Added a warning that the /usr/src/linux symlink shouldn't be created. Fixes
bug 1012.

• January 27, 2005 [matt]: Added link to the live-cd FTP location. Fixes bug 1014.

• January 27, 2005 [matt]: Added bison, flex and m4 to binutils dependency list. Fixes Bug 1018.

• January 27, 2005 [manuel]: Updated to gcc-3.4.3-specs-2.patch.

• January 19, 2005 [jeremy]: Added an extra symlink for libgcc_s.so to chapter 6 - this never migrated from
unstable until now.

• January 9, 2005 [matt]: Added a security patch for the kernel

• January 9, 2005 [matt]: Added a security patch for vim

• January 9, 2005 [matt]: Upgraded to man-1.5p

• January 9, 2005 [matt]: Upgraded to texinfo-4.8

• January 9, 2005 [matt]: Upgraded to util-linux-2.12p

• January 9, 2005 [matt]: Upgraded to udev-050

• January 9, 2005 [matt]: Upgraded to tcl-8.4.9

• January 9, 2005 [matt]: Upgraded to tar-1.15.1

• January 9, 2005 [matt]: Upgraded to perl-5.8.6

• January 9, 2005 [matt]: Upgraded to man-pages-2.01

• January 9, 2005 [matt]: Upgraded to linux-libc-headers-2.6.10.0

• January 9, 2005 [matt]: Upgraded to linux-2.6.10

• January 9, 2005 [matt]: Upgraded to gcc-3.4.3

• January 9, 2005 [matt]: Upgraded to bison-2.0

• January 9, 2005 [matt]: Upgraded to autoconf-1.9.4

• January 5, 2005 [jeremy]: Minor textual correction in network configuration, since iproute will not
recognize the old eth0:1 format for ip aliasing. Closes bug 1013.

• January 5, 2005 [jeremy]: Added the --disable-selinux parameter to Ch 5 glibc. Allows building from hosts
which use SELinux functionality, like Fedora Core 3

• December 25, 2004 [jeremy]: Added text suggested by MSB, closing Bug 943

• December 25, 2004 [jeremy]: Upgraded binutils to 2.14.94.0.2 - should fix the TLS strip issue that's been
seen, at least on X86

• December 22, 2004 [manuel]: Readded to chapter09/reboot.xml a para lost from version 5.1.

Linux From Scratch - Version 6.1

24



• December 20, 2004 [manuel]: Made grub's configuration location FHS compliant.

• December 19, 2004 [manuel]: Added the irc.lfs-matrix.de IRC server.

• December 5, 2004 [jeremy]: Added the DOCBOOKTOMAN parameter to Module-init-utils - without this,
compilation fails. Thanks Boris Buegling

• December 2, 2004 [jeremy]: Removed the old display_wrap bash patch, in favor of the newer fixes patch,
and added the avoid_WCONTINUED patch as well

• December 2, 2004 [jeremy]: Upgraded to TCL 8.4.8, Grep 2.5.1a Util-linux 2.12i, Iana-etc 1.03, File 4.12,
Module-init-tools 3.1, Procps 3.2.4

• December 2, 2004 [jeremy]: Migrated change from unstable to build Glibc against sanitized
linux-libc-headers instead of raw kernel headers, bringing us more in line with what the kernel developers
think should be happening.

• December 1, 2004 [jeremy]: Dropped Udev from being built in Chapter 5, in favor of creating a minimal set
of devices at the beginning of Chapter 6. All devices are created after the installation of Udev near the end
of Chapter 6

• December 1, 2004 [jeremy]: Upgraded to Automake 1.9.3, Binutils 2.15.92.0.2, Findutils 4.2.3, GCC 3.4.2,
Glibc 20041011, Iana-Etc 1.02 Iproute2 2.6.9-041019, LFS-Bootscripts 2.2.3, Libtool 1.5.10, Linux 2.6.9
Linux-libc-headers 2.6.9.1, Man 1.5o1, Man-pages 1.70, Shadow 4.0.6, Udev 046, Zlib 1.2.2, Hotplug
2004_09_23, Libol 0.3.14, Syslog-ng 1.6.5

Branch frozen for LFS 6.0 as of October 10, 2004

Linux From Scratch - Version 6.1

25



1.3. Resources

1.3.1. FAQ
If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in
the book, please start by consulting the Frequently Asked Questions (FAQ) that is located at
http://www.linuxfromscratch.org/faq/.

1.3.2. Mailing Lists
The linuxfromscratch.org server hosts a number of mailing lists used for the development of the LFS
project. These lists include the main development and support lists, among others.

For information on the different lists, how to subscribe, archive locations, and additional information, visit
http://www.linuxfromscratch.org/mail.html.

1.3.3. News Server
The mailing lists hosted at linuxfromscratch.org are also accessible via the Network News Transfer
Protocol (NNTP) server. All messages posted to a mailing list are copied to the corresponding newsgroup, and
vice versa.

The news server is located at news.linuxfromscratch.org.

1.3.4. IRC
Several members of the LFS community offer assistance on our community Internet Relay Chat (IRC) network.
Before using this support, please make sure that your question is not already answered in the LFS FAQ or the
mailing list archives. You can find the IRC network at irc.linuxfromscratch.org. The support channel
is named #LFS-support.

1.3.5. References
For additional information on the packages, useful tips are available in the LFS Package Reference page located
at http://www.linuxfromscratch.org/~matthew/LFS-references.html.

1.3.6. Mirror Sites
The LFS project has a number of world-wide mirrors to make accessing the website and downloading the
required packages more convenient. Please visit the LFS website at
http://www.linuxfromscratch.org/mirrors.html for a list of current mirrors.

1.3.7. Contact Information
Please direct all your questions and comments to one of the LFS mailing lists (see above).

Linux From Scratch - Version 6.1

26

http://www.linuxfromscratch.org/faq/
http://www.linuxfromscratch.org/mail.html
http://www.linuxfromscratch.org/~matthew/LFS-references.html
http://www.linuxfromscratch.org/mirrors.html


1.4. Help
If an issue or a question is encountered while working through this book, check the FAQ page at
http://www.linuxfromscratch.org/faq/#generalfaq. Questions are often already answered there. If your question
is not answered on this page, try to find the source of the problem. The following hint will give you some
guidance for troubleshooting: http://www.linuxfromscratch.org/hints/downloads/files/errors.txt.

We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC
(see the Section 1.3, “Resources” section of this book). In order to assist with diagnosing and solving the
problem, please include all relevant information in your request for help.

1.4.1. Things to Mention
Apart from a brief explanation of the problem being experienced, the essential things to include in any request
for help are:

• The version of the book being used (in this case 6.1)

• The host distribution and version being used to create LFS

• The package or section the problem was encountered in

• The exact error message or symptom being received

• Note whether you have deviated from the book at all

Note

Deviating from this book does not mean that we will not help you. After all, LFS is about personal
preference. Being upfront about any changes to the established procedure helps us evaluate and
determine possible causes of your problem.

1.4.2. Configure Script Problems
If something goes wrong while running the configure script, review the config.log file. This file may
contain errors encountered during configure which were not printed to the screen. Include the relevant lines if
you need to ask for help.

1.4.3. Compilation Problems
Both the screen output and the contents of various files are useful in determining the cause of compilation
problems. The screen output from the configure script and the make run can be helpful. It is not necessary to
include the entire output, but do include enough of the relevant information. Below is an example of the type of
information to include from the screen output from make:

Linux From Scratch - Version 6.1

27

http://www.linuxfromscratch.org/faq/#generalfaq
http://www.linuxfromscratch.org/hints/downloads/files/errors.txt


gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to properly diagnose the problem because it only notes that something went
wrong, not what went wrong. The entire section, as in the example above, is what should be saved because it
includes the command that was executed and the associated error message(s).

An excellent article about asking for help on the Internet is available online at
http://catb.org/~esr/faqs/smart-questions.html. Read and follow the hints in this document to increase the
likelihood of getting the help you need.

Linux From Scratch - Version 6.1

28

http://catb.org/~esr/faqs/smart-questions.html


Linux From Scratch - Version 6.1

29



Chapter 2. Preparing a New Partition

2.1. Introduction
In this chapter, the partition which will host the LFS system is prepared. We will create the partition itself,
create a file system on it, and mount it.

Linux From Scratch - Version 6.1

30



2.2. Creating a New Partition
Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended
approach to building an LFS system is to use an available empty partition or, if you have enough unpartitioned
space, to create one. However, an LFS system (in fact even multiple LFS systems) may also be installed on a
partition already occupied by another operating system and the different systems will co-exist peacefully. The
document http://www.linuxfromscratch.org/hints/downloads/files/lfs_next_to_existing_ systems.txt explains how
to implement this, whereas this book discusses the method of using a fresh partition for the installation.

A minimal system requires a partition of around 1.3 gigabytes (GB). This is enough to store all the source
tarballs and compile the packages. However, if the LFS system is intended to be the primary Linux system,
additional software will probably be installed which will require additional space (2-3 GB). The LFS system
itself will not take up this much room. A large portion of this requirement is to provide sufficient free temporary
storage. Compiling packages can require a lot of disk space which will be reclaimed after the package is
installed.

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a
good idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and
leave more memory available for active processes. The swap partition for an LFS system can be the same as the
one used by the host system, in which case it is not necessary to create another one.

Start a disk partitioning program such as cfdisk or fdisk with a command line option naming the hard disk on
which the new partition will be created—for example /dev/hda for the primary Integrated Drive Electronics
(IDE) disk. Create a Linux native partition and a swap partition, if needed. Please refer to cfdisk(8) or
fdisk(8) if you do not yet know how to use the programs.

Remember the designation of the new partition (e.g., hda5). This book will refer to this as the LFS partition.
Also remember the designation of the swap partition. These names will be needed later for the /etc/fstab
file.

Linux From Scratch - Version 6.1

31

http://www.linuxfromscratch.org/hints/downloads/files/lfs_next_to_existing_systems.txt


2.3. Creating a File System on the Partition
Now that a blank partition has been set up, the file system can be created. The most widely-used system in the
Linux world is the second extended file system (ext2), but with newer high-capacity hard disks, journaling file
systems are becoming increasingly popular. We will create an ext2 file system. Build instructions for other file
systems can be found at http://www.linuxfromscratch.org/blfs/view/svn/ postlfs/filesystems.html.

To create an ext2 file system on the LFS partition, run the following:

mke2fs /dev/[xxx]

Replace [xxx] with the name of the LFS partition (hda5 in our previous example).

Note

Some host distributions use custom features in their filesystem creation tools (e2fsprogs). This can
cause problems when booting into your new LFS in Chapter 9, as those features will not be
supported by the LFS-installed e2fsprogs; you will get an error similar to “unsupported filesystem
features, upgrade your e2fsprogs”. To check if your host system uses custom enhancements, run the
following command:

debugfs -R feature /dev/[xxx]

If the output contains features other than: dir_index; filetype; large_file; resize_inode or
sparse_super then your host system may have custom enhancements. In that case, to avoid later
problems, you should compile the stock e2fsprogs package and use the resulting binaries to
re-create the filesystem on your LFS partition:

cd /tmp
tar xjf /path/to/sources/e2fsprogs-1.37.tar.bz2
cd e2fsprogs-1.37
mkdir build
cd build
../configure
make #note that we intentionally don't 'make install' here!
./misc/mke2fs /dev/[xxx]
cd /tmp
rm -rf e2fsprogs-1.37

If a swap partition was created, it will need to be initialized for use by issuing the command below. If you are
using an existing swap partition, there is no need to format it.

mkswap /dev/[yyy]

Replace [yyy] with the name of the swap partition.

Linux From Scratch - Version 6.1

32

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/filesystems.html


2.4. Mounting the New Partition
Now that a file system has been created, the partition needs to be made accessible. In order to do this, the
partition needs to be mounted at a chosen mount point. For the purposes of this book, it is assumed that the file
system is mounted under /mnt/lfs, but the directory choice is up to you.

Choose a mount point and assign it to the LFS environment variable by running:

export LFS=/mnt/lfs

Next, create the mount point and mount the LFS file system by running:

mkdir -p $LFS
mount /dev/[xxx] $LFS

Replace [xxx] with the designation of the LFS partition.

If using multiple partitions for LFS (e.g., one for / and another for /usr), mount them using:

mkdir -p $LFS
mount /dev/[xxx] $LFS
mkdir $LFS/usr
mount /dev/[yyy] $LFS/usr

Replace [xxx] and [yyy] with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid,
nodev, or noatime options). Run the mount command without any parameters to see what options are set for the
mounted LFS partition. If nosuid, nodev, and/or noatime are set, the partition will need to be remounted.

Now that there is an established place to work, it is time to download the packages.

Linux From Scratch - Version 6.1

33



Part II. Preparing for the Build

Linux From Scratch - Version 6.1



Chapter 3. Packages and Patches

3.1. Introduction
This chapter includes a list of packages that need to be downloaded for building a basic Linux system. The
listed version numbers correspond to versions of the software that are known to work, and this book is based on
their use. We highly recommend not using newer versions because the build commands for one version may not
work with a newer version. The newest package versions may also have problems that require work-arounds.
These work-arounds will be developed and stabilized in the development version of the book.

Download locations may not always be accessible. If a download location has changed since this book was
published, Google (http://www.google.com/) provides a useful search engine for most packages. If this search is
unsuccessful, try one of the alternative means of downloading discussed at http://www.linuxfromscratch.org/
lfs/packages.html.

Downloaded packages and patches will need to be stored somewhere that is conveniently available throughout
the entire build. A working directory is also required to unpack the sources and build them. $LFS/sources
can be used both as the place to store the tarballs and patches and as a working directory. By using this
directory, the required elements will be located on the LFS partition and will be available during all stages of
the building process.

To create this directory, execute, as user root, the following command before starting the download session:

mkdir $LFS/sources

Make this directory writable and sticky. “Sticky” means that even if multiple users have write permission on a
directory, only the owner of a file can delete the file within a sticky directory. The following command will
enable the write and sticky modes:

chmod a+wt $LFS/sources

Linux From Scratch - Version 6.1

35

http://www.google.com/
http://www.linuxfromscratch.org/lfs/packages.html
http://www.linuxfromscratch.org/lfs/packages.html


3.2. All Packages
Download or otherwise obtain the following packages:

• Autoconf (2.59) - 908 kilobytes (KB):
http://ftp.gnu.org/gnu/autoconf/

• Automake (1.9.5) - 748 KB:
http://ftp.gnu.org/gnu/automake/

• Bash (3.0) - 1,824 KB:
http://ftp.gnu.org/gnu/bash/

• Binutils (2.15.94.0.2.2) - 11,056 KB:
http://www.kernel.org/pub/linux/devel/binutils/

• Bison (2.0) - 916 KB:
http://ftp.gnu.org/gnu/bison/

• Bzip2 (1.0.3) - 596 KB:
http://www.bzip.org/

• Coreutils (5.2.1) - 4,184 KB:
http://ftp.gnu.org/gnu/coreutils/

• DejaGNU (1.4.4) - 852 KB:
http://ftp.gnu.org/gnu/dejagnu/

• Diffutils (2.8.1) - 648 KB:
http://ftp.gnu.org/gnu/diffutils/

• E2fsprogs (1.37) - 3,100 KB:
http://prdownloads.sourceforge.net/e2fsprogs/

• Expect (5.43.0) - 416 KB:
http://expect.nist.gov/src/

• File (4.13) - 324 KB:
ftp://ftp.gw.com/mirrors/pub/unix/file/

Note

File (4.13) may no longer be available at the listed location. The site administrators of the master
download location occasionally remove older versions when new ones are released. An
alternative download location that may have the correct version available is
ftp://ftp.linuxfromscratch.org/pub/lfs/.

• Findutils (4.2.23) - 784 KB:
http://ftp.gnu.org/gnu/findutils/

• Flex (2.5.31) - 672 KB:
http://prdownloads.sourceforge.net/lex/

Linux From Scratch - Version 6.1

36

http://ftp.gnu.org/gnu/autoconf/
http://ftp.gnu.org/gnu/automake/
http://ftp.gnu.org/gnu/bash/
http://www.kernel.org/pub/linux/devel/binutils/
http://ftp.gnu.org/gnu/bison/
http://www.bzip.org/
http://ftp.gnu.org/gnu/coreutils/
http://ftp.gnu.org/gnu/dejagnu/
http://ftp.gnu.org/gnu/diffutils/
http://prdownloads.sourceforge.net/e2fsprogs/
http://expect.nist.gov/src/
ftp://ftp.gw.com/mirrors/pub/unix/file/
ftp://ftp.linuxfromscratch.org/pub/lfs/
http://ftp.gnu.org/gnu/findutils/
http://prdownloads.sourceforge.net/lex/


• Gawk (3.1.4) - 1,696 KB:
http://ftp.gnu.org/gnu/gawk/

• GCC (3.4.3) - 26,816 KB:
http://ftp.gnu.org/gnu/gcc/

• Gettext (0.14.3) - 4,568 KB:
http://ftp.gnu.org/gnu/gettext/

• Glibc (2.3.4) - 12,924 KB:
http://ftp.gnu.org/gnu/glibc/

• Glibc-Linuxthreads (2.3.4) - 236 KB:
http://ftp.gnu.org/gnu/glibc/

• Grep (2.5.1a) - 520 KB:
http://ftp.gnu.org/gnu/grep/

• Groff (1.19.1) - 2,096 KB:
http://ftp.gnu.org/gnu/groff/

• GRUB (0.96) - 768 KB:
ftp://alpha.gnu.org/gnu/grub/

• Gzip (1.3.5) - 284 KB:
ftp://alpha.gnu.org/gnu/gzip/

• Hotplug (2004_09_23) - 40 KB:
http://www.kernel.org/pub/linux/utils/kernel/hotplug/

• Iana-Etc (1.04) - 176 KB:
http://www.sethwklein.net/projects/iana-etc/downloads/

• Inetutils (1.4.2) - 752 KB:
http://ftp.gnu.org/gnu/inetutils/

• IPRoute2 (2.6.11-050330) - 276 KB:
http://developer.osdl.org/dev/iproute2/download/

• Kbd (1.12) - 624 KB:
http://www.kernel.org/pub/linux/utils/kbd/

• Less (382) - 216 KB:
http://ftp.gnu.org/gnu/less/

• LFS-Bootscripts (3.2.1) - 32 KB:
http://downloads.linuxfromscratch.org/

• Libtool (1.5.14) - 1,604 KB:
http://ftp.gnu.org/gnu/libtool/

• Linux (2.6.11.12) - 35,792 KB:
http://www.kernel.org/pub/linux/kernel/v2.6/

• Linux-Libc-Headers (2.6.11.2) - 2,476 KB:
http://ep09.pld-linux.org/~mmazur/linux-libc-headers/

Linux From Scratch - Version 6.1

37

http://ftp.gnu.org/gnu/gawk/
http://ftp.gnu.org/gnu/gcc/
http://ftp.gnu.org/gnu/gettext/
http://ftp.gnu.org/gnu/glibc/
http://ftp.gnu.org/gnu/glibc/
http://ftp.gnu.org/gnu/grep/
http://ftp.gnu.org/gnu/groff/
ftp://alpha.gnu.org/gnu/grub/
ftp://alpha.gnu.org/gnu/gzip/
http://www.kernel.org/pub/linux/utils/kernel/hotplug/
http://www.sethwklein.net/projects/iana-etc/downloads/
http://ftp.gnu.org/gnu/inetutils/
http://developer.osdl.org/dev/iproute2/download/
http://www.kernel.org/pub/linux/utils/kbd/
http://ftp.gnu.org/gnu/less/
http://downloads.linuxfromscratch.org/
http://ftp.gnu.org/gnu/libtool/
http://www.kernel.org/pub/linux/kernel/v2.6/
http://ep09.pld-linux.org/~mmazur/linux-libc-headers/


• M4 (1.4.3) - 304 KB:
http://ftp.gnu.org/gnu/m4/

• Make (3.80) - 904 KB:
http://ftp.gnu.org/gnu/make/

• Man (1.5p) - 208 KB:
http://www.kernel.org/pub/linux/utils/man/

• Man-pages (2.01) - 1,640 KB:
http://www.kernel.org/pub/linux/docs/manpages/

• Mktemp (1.5) - 68 KB:
ftp://ftp.mktemp.org/pub/mktemp/

• Module-Init-Tools (3.1) - 128 KB:
http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/

• Ncurses (5.4) - 1,556 KB:
ftp://invisible-island.net/ncurses/

• Patch (2.5.4) - 156 KB:
http://ftp.gnu.org/gnu/patch/

• Perl (5.8.6) - 9,484 KB:
http://ftp.funet.fi/pub/CPAN/src/

• Procps (3.2.5) - 224 KB:
http://procps.sourceforge.net/

• Psmisc (21.6) - 188 KB:
http://prdownloads.sourceforge.net/psmisc/

• Readline (5.0) - 1,456 KB:
http://ftp.gnu.org/gnu/readline/

• Sed (4.1.4) - 632 KB:
http://ftp.gnu.org/gnu/sed/

• Shadow (4.0.9) - 1,084 KB:
ftp://ftp.pld.org.pl/software/shadow/

Note

Shadow (4.0.9) may no longer be available at the listed location. The site administrators of the
master download location occasionally remove older versions when new ones are released. An
alternative download location that may have the correct version available is
ftp://ftp.linuxfromscratch.org/pub/lfs/.

• Sysklogd (1.4.1) - 72 KB:
http://www.infodrom.org/projects/sysklogd/download/

• Sysvinit (2.86) - 88 KB:
ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/

Linux From Scratch - Version 6.1

38

http://ftp.gnu.org/gnu/m4/
http://ftp.gnu.org/gnu/make/
http://www.kernel.org/pub/linux/utils/man/
http://www.kernel.org/pub/linux/docs/manpages/
ftp://ftp.mktemp.org/pub/mktemp/
http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/
ftp://invisible-island.net/ncurses/
http://ftp.gnu.org/gnu/patch/
http://ftp.funet.fi/pub/CPAN/src/
http://procps.sourceforge.net/
http://prdownloads.sourceforge.net/psmisc/
http://ftp.gnu.org/gnu/readline/
http://ftp.gnu.org/gnu/sed/
ftp://ftp.pld.org.pl/software/shadow/
ftp://ftp.linuxfromscratch.org/pub/lfs/
http://www.infodrom.org/projects/sysklogd/download/
ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/


• Tar (1.15.1) - 1,580 KB:
http://ftp.gnu.org/gnu/tar/

• Tcl (8.4.9) - 2,748 KB:
http://prdownloads.sourceforge.net/tcl/

• Texinfo (4.8) - 1,492 KB:
http://ftp.gnu.org/gnu/texinfo/

• Udev (056) - 476 KB:
http://www.kernel.org/pub/linux/utils/kernel/hotplug/

• Udev Rules Configuration - 5 KB:
http://downloads.linuxfromscratch.org/udev-config-3.rules

• Util-linux (2.12q) - 1,344 KB:
http://www.kernel.org/pub/linux/utils/util-linux/

• Vim (6.3) - 3,620 KB:
ftp://ftp.vim.org/pub/vim/unix/

• Vim (6.3) language files (optional) - 540 KB:
ftp://ftp.vim.org/pub/vim/extra/

• Zlib (1.2.2) - 368 KB:
http://www.zlib.net/

Total size of these packages: 146 MB

Linux From Scratch - Version 6.1

39

http://ftp.gnu.org/gnu/tar/
http://prdownloads.sourceforge.net/tcl/
http://ftp.gnu.org/gnu/texinfo/
http://www.kernel.org/pub/linux/utils/kernel/hotplug/
http://downloads.linuxfromscratch.org/udev-config-3.rules
http://www.kernel.org/pub/linux/utils/util-linux/
ftp://ftp.vim.org/pub/vim/unix/
ftp://ftp.vim.org/pub/vim/extra/
http://www.zlib.net/


3.3. Needed Patches
In addition to the packages, several patches are also required. These patches correct any mistakes in the
packages that should be fixed by the maintainer. The patches also make small modifications to make the
packages easier to work with. The following patches will be needed to build an LFS system:

• Bash Various Fixes - 23 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/bash-3.0-fixes-3.patch

• Bash Avoid Wcontinued Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/bash-3.0-avoid_WCONTINUED-1.patch

• Coreutils Suppress Uptime, Kill, Su Patch - 15 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/coreutils-5.2.1-suppress_uptime_kill_su-1.patch

• Coreutils Uname Patch - 4 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/coreutils-5.2.1-uname-2.patch

• Expect Spawn Patch - 7 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/expect-5.43.0-spawn-1.patch

• Flex Brokenness Patch - 156 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/flex-2.5.31-debian_fixes-3.patch

• GCC Linkonce Patch - 12 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-linkonce-1.patch

• GCC No-Fixincludes Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-no_fixincludes-1.patch

• GCC Specs Patch - 14 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-specs-2.patch

• Glibc Fix Testsuite Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/glibc-2.3.4-fix_test-1.patch

• Gzip Security Patch - 2 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/gzip-1.3.5-security_fixes-1.patch

• Inetutils Kernel Headers Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/inetutils-1.4.2-kernel_headers-1.patch

• Inetutils No-Server-Man-Pages Patch - 4 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/inetutils-1.4.2-no_server_man_pages-1.patch

• IPRoute2 Disable DB Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/iproute2-2.6.11_050330-remove_db-1.patch

• Mktemp Tempfile Patch - 3 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/mktemp-1.5-add_tempfile-2.patch

• Perl Libc Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/perl-5.8.6-libc-1.patch

Linux From Scratch - Version 6.1

40

http://www.linuxfromscratch.org/patches/lfs/6.1/bash-3.0-fixes-3.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/bash-3.0-avoid_WCONTINUED-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/coreutils-5.2.1-suppress_uptime_kill_su-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/coreutils-5.2.1-uname-2.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/expect-5.43.0-spawn-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/flex-2.5.31-debian_fixes-3.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-linkonce-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-no_fixincludes-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/gcc-3.4.3-specs-2.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/glibc-2.3.4-fix_test-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/gzip-1.3.5-security_fixes-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/inetutils-1.4.2-kernel_headers-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/inetutils-1.4.2-no_server_man_pages-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/iproute2-2.6.11_050330-remove_db-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/mktemp-1.5-add_tempfile-2.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/perl-5.8.6-libc-1.patch


• Readline Fixes Patch - 7 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/readline-5.0-fixes-1.patch

• Sysklogd Fixes Patch - 27 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/sysklogd-1.4.1-fixes-1.patch

• Tar Sparse Fix Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/tar-1.15.1-sparse_fix-1.patch

• Util-linux Cramfs Patch - 3 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/util-linux-2.12q-cramfs-1.patch

• Vim Security Patch - 8 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/vim-6.3-security_fix-1.patch

• Zlib Security Patch - 1 KB:
http://www.linuxfromscratch.org/patches/lfs/6.1/zlib-1.2.2-security_fix-1.patch

In addition to the above required patches, there exist a number of optional patches created by the LFS
community. These optional patches solve minor problems or enable functionality that is not enabled by default.
Feel free to peruse the patches database located at http://www.linuxfromscratch.org/patches/ and acquire any
additional patches to suit the system needs.

Linux From Scratch - Version 6.1

41

http://www.linuxfromscratch.org/patches/lfs/6.1/readline-5.0-fixes-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/sysklogd-1.4.1-fixes-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/tar-1.15.1-sparse_fix-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/util-linux-2.12q-cramfs-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/vim-6.3-security_fix-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.1/zlib-1.2.2-security_fix-1.patch
http://www.linuxfromscratch.org/patches/


Chapter 4. Final Preparations

4.1. About $LFS
Throughout this book, the environment variable LFS will be used several times. It is paramount that this
variable is always defined. It should be set to the mount point chosen for the LFS partition. Check that the LFS
variable is set up properly with:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is /mnt/lfs if the provided
example was followed. If the output is incorrect, the variable can be set with:

export LFS=/mnt/lfs

Having this variable set is beneficial in that commands such as mkdir $LFS/tools can be typed literally. The
shell will automatically replace “$LFS” with “/mnt/lfs” (or whatever the variable was set to) when it processes
the command line.

Do not forget to check that $LFS is set whenever you leave and reenter the current working environment (as
when doing a “su” to root or another user).

Linux From Scratch - Version 6.1

42



4.2. Creating the $LFS/tools Directory
All programs compiled in Chapter 5 will be installed under $LFS/tools to keep them separate from the
programs compiled in Chapter 6. The programs compiled here are temporary tools and will not be a part of the
final LFS system. By keeping these programs in a separate directory, they can easily be discarded later after
their use. This also prevents these programs from ending up in the host production directories (easy to do by
accident in Chapter 5).

Create the required directory by running the following as root:

mkdir $LFS/tools

The next step is to create a /tools symlink on the host system. This will point to the newly-created directory
on the LFS partition. Run this command as root as well:

ln -s $LFS/tools /

Note

The above command is correct. The ln command has a few syntactic variations, so be sure to check
info coreutils ln and ln(1) before reporting what you may think is an error.

The created symlink enables the toolchain to be compiled so that it always refers to /tools, meaning that the
compiler, assembler, and linker will work both in this chapter (when we are still using some tools from the host)
and in the next (when we are “chrooted” to the LFS partition).

Linux From Scratch - Version 6.1

43



4.3. Adding the LFS User
When logged in as user root, making a single mistake can damage or destroy a system. Therefore, we
recommend building the packages in this chapter as an unprivileged user. You could use your own user name,
but to make it easier to set up a clean working environment, create a new user called lfs as a member of a new
group (also named lfs) and use this user during the installation process. As root, issue the following commands
to add the new user:

groupadd lfs
useradd -s /bin/bash -g lfs -m -k /dev/null lfs

The meaning of the command line options:

-s /bin/bash
This makes bash the default shell for user lfs.

-g lfs
This option adds user lfs to group lfs.

-m
This creates a home directory for lfs.

-k /dev/null
This parameter prevents possible copying of files from a skeleton directory (default is /etc/skel) by
changing the input location to the special null device.

lfs
This is the actual name for the created group and user.

To log in as lfs (as opposed to switching to user lfs when logged in as root, which does not require the lfs user to
have a password), give lfs a password:

passwd lfs

Grant lfs full access to $LFS/tools by making lfs the directory owner:

chown lfs $LFS/tools

If a separate working directory was created as suggested, give user lfs ownership of this directory:

chown lfs $LFS/sources

Next, login as user lfs. This can be done via a virtual console, through a display manager, or with the following
substitute user command:

su - lfs

The “-” instructs su to start a login shell as opposed to a non-login shell. The difference between these two
types of shells can be found in detail in bash(1) and info bash.

Linux From Scratch - Version 6.1

44



4.4. Setting Up the Environment
Set up a good working environment by creating two new startup files for the bash shell. While logged in as user
lfs, issue the following command to create a new .bash_profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

When logged on as user lfs, the initial shell is usually a login shell which reads the /etc/profile of the host
(probably containing some settings and environment variables) and then .bash_profile. The exec env
-i.../bin/bash command in the .bash_profile file replaces the running shell with a new one with a
completely empty environment, except for the HOME, TERM, and PS1 variables. This ensures that no unwanted
and potentially hazardous environment variables from the host system leak into the build environment. The
technique used here achieves the goal of ensuring a clean environment.

The new instance of the shell is a non-login shell, which does not read the /etc/profile or
.bash_profile files, but rather reads the .bashrc file instead. Create the .bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
PATH=/tools/bin:/bin:/usr/bin
export LFS LC_ALL PATH
EOF

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash
table to remember the full path of executable files to avoid searching the PATH time and again to find the same
executable. However, the new tools should be used as soon as they are installed. By switching off the hash
function, the shell will always search the PATH when a program is to be run. As such, the shell will find the
newly compiled tools in $LFS/tools as soon as they are available without remembering a previous version of
the same program in a different location.

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only
writable by their owner, but are readable and executable by anyone (assuming default modes are used by the
open(2) system call, new files will end up with permission mode 644 and directories with mode 755).

The LFS variable should be set to the chosen mount point.

The LC_ALL variable controls the localization of certain programs, making their messages follow the
conventions of a specified country. If the host system uses a version of Glibc older than 2.2.4, having LC_ALL
set to something other than “POSIX” or “C” (during this chapter) may cause issues if you exit the chroot
environment and wish to return later. Setting LC_ALL to “POSIX” or “C” (the two are equivalent) ensures that
everything will work as expected in the chroot environment.

By putting /tools/bin ahead of the standard PATH, all the programs installed in Chapter 5 are picked up by
the shell immediately after their installation. This, combined with turning off hashing, limits the risk that old
programs are used from the host when the same programs are available in the chapter 5 environment.

Linux From Scratch - Version 6.1

45



Finally, to have the environment fully prepared for building the temporary tools, source the just-created user
profile:

source ~/.bash_profile

Linux From Scratch - Version 6.1

46



4.5. About SBUs
Many people would like to know beforehand approximately how long it takes to compile and install each
package. Because Linux From Scratch can be built on many different systems, it is impossible to provide
accurate time estimates. The biggest package (Glibc) will take approximately 20 minutes on the fastest systems,
but could take up to three days on slower systems! Instead of providing actual times, the Standard Build Unit
(SBU) measure will be used instead.

The SBU measure works as follows. The first package to be compiled from this book is Binutils in Chapter 5.
The time it takes to compile this package is what will be referred to as the Standard Build Unit or SBU. All
other compile times will be expressed relative to this time.

For example, consider a package whose compilation time is 4.5 SBUs. This means that if a system took 10
minutes to compile and install the first pass of Binutils, it will take approximately 45 minutes to build this
example package. Fortunately, most build times are shorter than the one for Binutils.

In general, SBUs are not entirely accurate because they depend on many factors, including the host system's
version of GCC. Note that on Symmetric Multi-Processor (SMP)-based machines, SBUs are even less accurate.
They are provided here to give an estimate of how long it might take to install a package, but the numbers can
vary by as much as dozens of minutes in some cases.

To view actual timings for a number of specific machines, we recommend The LinuxFromScratch SBU Home
Page at http://www.linuxfromscratch.org/~bdubbs/.

Linux From Scratch - Version 6.1

47

http://www.linuxfromscratch.org/~bdubbs/


4.6. About the Test Suites
Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can
provide a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks
usually proves that the package is functioning as the developer intended. It does not, however, guarantee that the
package is totally bug free.

Some test suites are more important than others. For example, the test suites for the core toolchain
packages—GCC, Binutils, and Glibc—are of the utmost importance due to their central role in a properly
functioning system. The test suites for GCC and Glibc can take a very long time to complete, especially on
slower hardware, but are strongly recommended.

Note

Experience has shown that there is little to be gained from running the test suites in Chapter 5.
There can be no escaping the fact that the host system always exerts some influence on the tests in
that chapter, often causing inexplicable failures. Because the tools built in Chapter 5 are temporary
and eventually discarded, we do not recommend running the test suites in Chapter 5 for the average
reader. The instructions for running those test suites are provided for the benefit of testers and
developers, but they are strictly optional.

A common issue with running the test suites for Binutils and GCC is running out of pseudo terminals (PTYs).
This can result in a high number of failing tests. This may happen for several reasons, but the most likely cause
is that the host system does not have the devpts file system set up correctly. This issue is discussed in greater
detail in Chapter 5.

Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed
non-critical. Consult the logs located at http://www.linuxfromscratch.org/lfs/build-logs/6.1/ to verify whether or
not these failures are expected. This site is valid for all tests throughout this book.

Linux From Scratch - Version 6.1

48

http://www.linuxfromscratch.org/lfs/build-logs/6.1/


Chapter 5. Constructing a Temporary System

5.1. Introduction
This chapter shows how to compile and install a minimal Linux system. This system will contain just enough
tools to start constructing the final LFS system in Chapter 6 and allow a working environment with more user
convenience than a minimum environment would.

There are two steps in building this minimal system. The first step is to build a new and host-independent
toolchain (compiler, assembler, linker, libraries, and a few useful utilities). The second step uses this toolchain
to build the other essential tools.

The files compiled in this chapter will be installed under the $LFS/tools directory to keep them separate
from the files installed in the next chapter and the host production directories. Since the packages compiled here
are temporary, we do not want them to pollute the soon-to-be LFS system.

Before issuing the build instructions for a package, the package should be unpacked as user lfs, and a cd into the
created directory should be performed. The build instructions assume that the bash shell is in use.

Several of the packages are patched before compilation, but only when the patch is needed to circumvent a
problem. A patch is often needed in both this and the next chapter, but sometimes in only one or the other.
Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages
about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the
patch was still successfully applied.

During the compilation of most packages, there will be several warnings that scroll by on the screen. These are
normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but not
invalid, use of the C or C++ syntax. C standards change fairly often, and some packages still use the older
standard. This is not a problem, but does prompt the warning.

After installing each package, delete its source and build directories, unless specifically instructed otherwise.
Deleting the sources saves space and prevents mis-configuration when the same package is reinstalled later.
Only three of the packages need to retain the source and build directories in order for their contents to be used
by later commands. Pay special attention to these reminders.

Check one last time that the LFS environment variable is set up properly:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is /mnt/lfs, using our
example.

Linux From Scratch - Version 6.1

49



5.2. Toolchain Technical Notes
This section explains some of the rationale and technical details behind the overall build method. It is not
essential to immediately understand everything in this section. Most of this information will be clearer after
performing an actual build. This section can be referred back to at any time during the process.

The overall goal of Chapter 5 is to provide a temporary environment that can be chrooted into and from which
can be produced a clean, trouble-free build of the target LFS system in Chapter 6. Along the way, we separate
the new system from the host system as much as possible, and in doing so, build a self-contained and
self-hosted toolchain. It should be noted that the build process has been designed to minimize the risks for new
readers and provide maximum educational value at the same time.

Important

Before continuing, be aware of the name of the working platform, often referred to as the target
triplet. Many times, the target triplet will probably be i686-pc-linux-gnu. A simple way to
determine the name of the target triplet is to run the config.guess script that comes with the source
for many packages. Unpack the Binutils sources and run the script: ./config.guess and note
the output.

Also be aware of the name of the platform's dynamic linker, often referred to as the dynamic loader
(not to be confused with the standard linker ld that is part of Binutils). The dynamic linker provided
by Glibc finds and loads the shared libraries needed by a program, prepares the program to run, and
then runs it. The name of the dynamic linker will usually be ld-linux.so.2. On platforms that
are less prevalent, the name might be ld.so.1, and newer 64 bit platforms might be named
something else entirely. The name of the platform's dynamic linker can be determined by looking in
the /lib directory on the host system. A sure-fire way to determine the name is to inspect a
random binary from the host system by running: readelf -l <name of binary> | grep
interpreter and noting the output. The authoritative reference covering all platforms is in the
shlib-versions file in the root of the Glibc source tree.

Some key technical points of how the Chapter 5 build method works:

• The process is similar in principle to cross-compiling, whereby tools installed in the same prefix work in
cooperation, and thus utilize a little GNU “magic”

• Careful manipulation of the standard linker's library search path ensures programs are linked only against
chosen libraries

• Careful manipulation of gcc's specs file tells the compiler which target dynamic linker will be used

Binutils is installed first because the configure runs of both GCC and Glibc perform various feature tests on the
assembler and linker to determine which software features to enable or disable. This is more important than one
might first realize. An incorrectly configured GCC or Glibc can result in a subtly broken toolchain, where the
impact of such breakage might not show up until near the end of the build of an entire distribution. A test suite
failure will usually highlight this error before too much additional work is performed.

Linux From Scratch - Version 6.1

50



Binutils installs its assembler and linker in two locations, /tools/bin and
/tools/$TARGET_TRIPLET/bin. The tools in one location are hard linked to the other. An important
facet of the linker is its library search order. Detailed information can be obtained from ld by passing it the
--verbose flag. For example, an ld --verbose | grep SEARCH will illustrate the current search
paths and their order. It shows which files are linked by ld by compiling a dummy program and passing the
--verbose switch to the linker. For example, gcc dummy.c -Wl,--verbose 2>&1 | grep
succeeded will show all the files successfully opened during the linking.

The next package installed is GCC. An example of what can be seen during its run of configure is:

checking what assembler to use...
/tools/i686-pc-linux-gnu/bin/as

checking what linker to use... /tools/i686-pc-linux-gnu/bin/ld

This is important for the reasons mentioned above. It also demonstrates that GCC's configure script does not
search the PATH directories to find which tools to use. However, during the actual operation of gcc itself, the
same search paths are not necessarily used. To find out which standard linker gcc will use, run: gcc
-print-prog-name=ld.

Detailed information can be obtained from gcc by passing it the -v command line option while compiling a
dummy program. For example, gcc -v dummy.c will show detailed information about the preprocessor,
compilation, and assembly stages, including gcc's included search paths and their order.

The next package installed is Glibc. The most important considerations for building Glibc are the compiler,
binary tools, and kernel headers. The compiler is generally not an issue since Glibc will always use the gcc
found in a PATH directory. The binary tools and kernel headers can be a bit more complicated. Therefore, take
no risks and use the available configure switches to enforce the correct selections. After the run of configure,
check the contents of the config.make file in the glibc-build directory for all important details. Note
the use of CC="gcc -B/tools/bin/" to control which binary tools are used and the use of the
-nostdinc and -isystem flags to control the compiler's include search path. These items highlight an
important aspect of the Glibc package—it is very self-sufficient in terms of its build machinery and generally
does not rely on toolchain defaults.

After the Glibc installation, make some adjustments to ensure that searching and linking take place only within
the /tools prefix. Install an adjusted ld, which has a hard-wired search path limited to /tools/lib. Then
amend gcc's specs file to point to the new dynamic linker in /tools/lib. This last step is vital to the whole
process. As mentioned above, a hard-wired path to a dynamic linker is embedded into every Executable and
Link Format (ELF)-shared executable. This can be inspected by running: readelf -l <name of
binary> | grep interpreter. Amending gcc's specs file ensures that every program compiled from
here through the end of this chapter will use the new dynamic linker in /tools/lib.

The need to use the new dynamic linker is also the reason why the Specs patch is applied for the second pass of
GCC. Failure to do so will result in the GCC programs themselves having the name of the dynamic linker from
the host system's /lib directory embedded into them, which would defeat the goal of getting away from the
host.

During the second pass of Binutils, we are able to utilize the --with-lib-path configure switch to control
ld's library search path. From this point onwards, the core toolchain is self-contained and self-hosted. The
remainder of the Chapter 5 packages all build against the new Glibc in /tools.

Linux From Scratch - Version 6.1

51



Upon entering the chroot environment in Chapter 6, the first major package to be installed is Glibc, due to its
self-sufficient nature mentioned above. Once this Glibc is installed into /usr, perform a quick changeover of
the toolchain defaults, then proceed in building the rest of the target LFS system.

Linux From Scratch - Version 6.1

52



5.3. Binutils-2.15.94.0.2.2 - Pass 1
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.0 SBU
Required disk space: 170 MB

Installation depends on: Bash, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc, Grep, M4, Make, Perl,
Sed, and Texinfo

5.3.1. Installation of Binutils
It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on
the available linker and assembler to determine which of their own features to enable.

This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building Binutils.

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build
directory:

mkdir ../binutils-build
cd ../binutils-build

Note

In order for the SBU values listed in the rest of the book to be of any use, measure the time it takes
to build this package from the configuration, up to and including the first install. To achieve this
easily, wrap the three commands in a time command like this: time { ./configure ...
&& make && make install; }.

Now prepare Binutils for compilation:

../binutils-2.15.94.0.2.2/configure --prefix=/tools --disable-nls

The meaning of the configure options:

--prefix=/tools
This tells the configure script to prepare to install the Binutils programs in the /tools directory.

--disable-nls
This disables internationalization as i18n is not needed for the temporary tools.

Continue with compiling the package:

make

Compilation is now complete. Ordinarily we would now run the test suite, but at this early stage the test suite
framework (Tcl, Expect, and DejaGNU) is not yet in place. The benefits of running the tests at this point are
minimal since the programs from this first pass will soon be replaced by those from the second.

Linux From Scratch - Version 6.1

53



Install the package:

make install

Next, prepare the linker for the “Adjusting” phase later on:

make -C ld clean
make -C ld LIB_PATH=/tools/lib

The meaning of the make parameters:

-C ld clean
This tells the make program to remove all compiled files in the ld subdirectory.

-C ld LIB_PATH=/tools/lib
This option rebuilds everything in the ld subdirectory. Specifying the LIB_PATH Makefile variable on the
command line allows us to override the default value and point it to the temporary tools location. The value of
this variable specifies the linker's default library search path. This preparation is used later in the chapter.

Warning

Do not remove the Binutils build and source directories yet. These will be needed again in their
current state later in this chapter.

Details on this package are located in Section 6.13.2, “Contents of Binutils.”

Linux From Scratch - Version 6.1

54



5.4. GCC-3.4.3 - Pass 1
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 4.4 SBU
Required disk space: 219 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc, Grep, Make, Perl,
Sed, and Texinfo

5.4.1. Installation of GCC
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building GCC.

The GCC documentation recommends building GCC outside of the source directory in a dedicated build
directory:

mkdir ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

../gcc-3.4.3/configure --prefix=/tools \
--libexecdir=/tools/lib --with-local-prefix=/tools \
--disable-nls --enable-shared --enable-languages=c

The meaning of the configure options:

--with-local-prefix=/tools
The purpose of this switch is to remove /usr/local/include from gcc's include search path. This is not
absolutely essential, however, it helps to minimize the influence of the host system.

--enable-shared
This switch allows the building of libgcc_s.so.1 and libgcc_eh.a. Having libgcc_eh.a
available ensures that the configure script for Glibc (the next package we compile) produces the proper
results.

--enable-languages=c
This option ensures that only the C compiler is built.

Continue with compiling the package:

make bootstrap

Linux From Scratch - Version 6.1

55



The meaning of the make parameters:

bootstrap
This target does not just compile GCC, but compiles it several times. It uses the programs compiled in a first
round to compile itself a second time, and then again a third time. It then compares these second and third
compiles to make sure it can reproduce itself flawlessly. This also implies that it was compiled correctly.

Compilation is now complete. At this point, the test suite would normally be run, but, as mentioned before, the
test suite framework is not in place yet. The benefits of running the tests at this point are minimal since the
programs from this first pass will soon be replaced.

Install the package:

make install

As a finishing touch, create a symlink. Many programs and scripts run cc instead of gcc, which is used to keep
programs generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always
installed. Running cc leaves the system administrator free to decide which C compiler to install.

ln -s gcc /tools/bin/cc

Details on this package are located in Section 6.14.2, “Contents of GCC.”

Linux From Scratch - Version 6.1

56



5.5. Linux-Libc-Headers-2.6.11.2
The Linux-Libc-Headers package contains the “sanitized” kernel headers.

Approximate build time: 0.1 SBU
Required disk space: 26.9 MB

Installation depends on: Coreutils

5.5.1. Installation of Linux-Libc-Headers
For years it has been common practice to use “raw” kernel headers (straight from a kernel tarball) in
/usr/include, but over the last few years, the kernel developers have taken a strong stance that this should
not be done. This gave birth to the Linux-Libc-Headers Project, which was designed to maintain an Application
Programming Interface (API) stable version of the Linux headers.

Install the header files:

cp -R include/asm-i386 /tools/include/asm
cp -R include/linux /tools/include

If your architecture is not i386 (compatible), adjust the first command accordingly.

Details on this package are located in Section 6.9.2, “Contents of Linux-Libc-Headers.”

Linux From Scratch - Version 6.1

57



5.6. Glibc-2.3.4
The Glibc package contains the main C library. This library provides the basic routines for allocating memory,
searching directories, opening and closing files, reading and writing files, string handling, pattern matching,
arithmetic, and so on.

Approximate build time: 11.8 SBU
Required disk space: 454 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Make, Perl, Sed, and
Texinfo

5.6.1. Installation of Glibc
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building Glibc.

It should be noted that compiling Glibc in any way other than the method suggested in this book puts the
stability of the system at risk.

Glibc has two tests which fail when the running kernel is 2.6.11.x The problem has been determined to be with
the tests themselves, not with the libc nor the kernel. If you plan to run the testsuite apply this patch:

patch -Np1 -i ../glibc-2.3.4-fix_test-1.patch

The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build
directory:

mkdir ../glibc-build
cd ../glibc-build

Next, prepare Glibc for compilation:

../glibc-2.3.4/configure --prefix=/tools \
--disable-profile --enable-add-ons \
--enable-kernel=2.6.0 --with-binutils=/tools/bin \
--without-gd --with-headers=/tools/include \
--without-selinux

The meaning of the configure options:

--disable-profile
This builds the libraries without profiling information. Omit this option if profiling on the temporary tools is
necessary.

--enable-add-ons
This tells Glibc to use the NPTL add-on as its threading library.

--enable-kernel=2.6.0
This tells Glibc to compile the library with support for 2.6.x Linux kernels.

Linux From Scratch - Version 6.1

58



--with-binutils=/tools/bin
While not required, this switch ensures that there are no errors pertaining to which Binutils programs get used
during the Glibc build.

--without-gd
This prevents the build of the memusagestat program, which insists on linking against the host's libraries
(libgd, libpng, libz, etc.).

--with-headers=/tools/include
This tells Glibc to compile itself against the headers recently installed to the tools directory, so that it knows
exactly what features the kernel has and can optimize itself accordingly.

--without-selinux
When building from hosts that include SELinux functionality (e.g. Fedora Core 3), Glibc will build with
support for SELinux. As the LFS tools environment does not contain support for SELinux, a Glibc compiled
with such support will fail to operate correctly.

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless, but it can sometimes cause issues when
running the test suite. This msgfmt program is part of the Gettext package which the host distribution should
provide. If msgfmt is present but deemed incompatible, upgrade the host system's Gettext package or continue
without it and see if the test suite runs without problems regardless.

Compile the package:

make

Compilation is now complete. As mentioned earlier, running the test suites for the temporary tools installed in
this chapter is not mandatory. To run the Glibc test suite (if desired), the following command will do so:

make check

For a discussion of test failures that are of particular importance, please see Section 6.11, “Glibc-2.3.4.”

In this chapter, some tests can be adversely affected by existing tools or environmental issues on the host
system. Glibc test suite failures in this chapter are typically not worrisome. The Glibc installed in Chapter 6 is
the one that will ultimately end up being used, so that is the one that needs to pass most tests (even in Chapter 6,
some failures could still occur, for example, with the math tests).

When experiencing a failure, make a note of it, then continue by reissuing the make check command. The test
suite should pick up where it left off and continue. This stop-start sequence can be circumvented by issuing a
make -k check command. If using this option, be sure to log the output so that the log file can be examined for
failures later.

Linux From Scratch - Version 6.1

59



The install stage of Glibc will issue a harmless warning at the end about the absence of
/tools/etc/ld.so.conf. Prevent this warning with:

mkdir /tools/etc
touch /tools/etc/ld.so.conf

Install the package:

make install

Different countries and cultures have varying conventions for how to communicate. These conventions range
from the format for representing dates and times to more complex issues, such as the language spoken. The
“internationalization” of GNU programs works by locale.

Note

If the test suites are not being run in this chapter (as per the recommendation), there is no need to
install the locales now. The appropriate locales will be installed in the next chapter.

To install the Glibc locales anyway, use the following command:

make localedata/install-locales

To save time, an alternative to running the previous command (which generates and installs every locale Glibc
is aware of) is to install only those locales that are wanted and needed. This can be achieved by using the
localedef command. Information on this command is located in the INSTALL file in the Glibc source.
However, there are a number of locales that are essential in order for the tests of future packages to pass, in
particular, the libstdc++ tests from GCC. The following instructions, instead of the install-locales
target used above, will install the minimum set of locales necessary for the tests to run successfully:

mkdir -p /tools/lib/locale
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i ja_JP -f EUC-JP ja_JP

Details on this package are located in Section 6.11.4, “Contents of Glibc.”

Linux From Scratch - Version 6.1

60



5.7. Adjusting the Toolchain
Now that the temporary C libraries have been installed, all tools compiled in the rest of this chapter should be
linked against these libraries. In order to accomplish this, the linker and the compiler's specs file need to be
adjusted.

The linker, adjusted at the end of the first pass of Binutils, is installed by running the following command from
within the binutils-build directory:

make -C ld install

From this point onwards, everything will link only against the libraries in /tools/lib.

Note

If the earlier warning to retain the Binutils source and build directories from the first pass was
missed, ignore the above command. This results in a small chance that the subsequent testing
programs will link against libraries on the host. This is not ideal, but it is not a major problem. The
situation is corrected when the second pass of Binutils is installed later.

Now that the adjusted linker is installed, the Binutils build and source directories should be removed.

The next task is to amend the GCC specs file so that it points to the new dynamic linker. A simple sed script
will accomplish this:

SPECFILE=`gcc --print-file specs` &&
sed 's@ /lib/ld-linux.so.2@ /tools/lib/ld-linux.so.2@g' \

$SPECFILE > tempspecfile &&
mv -f tempspecfile $SPECFILE &&
unset SPECFILE

Alternatively, the specs file can be edited by hand. This is done by replacing every occurrence of
“/lib/ld-linux.so.2” with “/tools/lib/ld-linux.so.2”

Be sure to visually inspect the specs file in order to verify the intended changes have been made.

Important

If working on a platform where the name of the dynamic linker is something other than
ld-linux.so.2, replace “ld-linux.so.2” with the name of the platform's dynamic linker in the
above commands. Refer back to Section 5.2, “Toolchain Technical Notes,” if necessary.

There is a possibility that some include files from the host system have found their way into GCC's private
include dir. This can happen as a result of GCC's “fixincludes” process, which runs as part of the GCC build.
This is explained in more detail later in this chapter. Run the following command to eliminate this possibility:

rm -f /tools/lib/gcc/*/*/include/{pthread.h,bits/sigthread.h}

Linux From Scratch - Version 6.1

61



Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of
the new toolchain are working as expected. To perform a sanity check, run the following
commands:

echo 'main(){}' > dummy.c
cc dummy.c
readelf -l a.out | grep ': /tools'

If everything is working correctly, there should be no errors, and the output of the last command
will be of the form:

[Requesting program interpreter:
/tools/lib/ld-linux.so.2]

Note that /tools/lib appears as the prefix of the dynamic linker.

If the output is not shown as above or there was no output at all, then something is wrong.
Investigate and retrace the steps to find out where the problem is and correct it. This issue must be
resolved before continuing on. First, perform the sanity check again, using gcc instead of cc. If this
works, then the /tools/bin/cc symlink is missing. Revisit Section 5.4, “GCC-3.4.3 - Pass 1,”
and install the symlink. Next, ensure that the PATH is correct. This can be checked by running echo
$PATH and verifying that /tools/bin is at the head of the list. If the PATH is wrong it could
mean that you are not logged in as user lfs or that something went wrong back in Section 4.4,
“Setting Up the Environment.” Another option is that something may have gone wrong with the
specs file amendment above. In this case, redo the specs file amendment.

Once all is well, clean up the test files:

rm dummy.c a.out

Linux From Scratch - Version 6.1

62



5.8. Tcl-8.4.9
The Tcl package contains the Tool Command Language.

Approximate build time: 0.9 SBU
Required disk space: 23.3 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

5.8.1. Installation of Tcl
This package and the next two (Expect and DejaGNU) are installed to support running the test suites for GCC
and Binutils. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not
essential, to know that the most important tools are working properly. Even if the test suites are not run in this
chapter (they are not mandatory), these packages are required to run the test suites in Chapter 6.

Prepare Tcl for compilation:

cd unix
./configure --prefix=/tools

Build the package:

make

To test the results, issue: TZ=UTC make test. The Tcl test suite is known to experience failures under
certain host conditions that are not fully understood. Therefore, test suite failures here are not surprising, and are
not considered critical. The TZ=UTC parameter sets the time zone to Coordinated Universal Time (UTC), also
known as Greenwich Mean Time (GMT), but only for the duration of the test suite run. This ensures that the
clock tests are exercised correctly. Details on the TZ environment variable are provided in Chapter 7.

Install the package:

make install

Warning

Do not remove the tcl8.4.9 source directory yet, as the next package will need its internal
headers.

Set a variable containing the full path of the current directory. The next package, Expect, will use this variable
to find Tcl's headers.

cd ..
export TCLPATH=`pwd`

Now make a necessary symbolic link:

ln -s tclsh8.4 /tools/bin/tclsh

Linux From Scratch - Version 6.1

63



5.8.2. Contents of Tcl
Installed programs: tclsh (link to tclsh8.4) and tclsh8.4
Installed library: libtcl8.4.so

Short Descriptions

tclsh8.4 The Tcl command shell

tclsh A link to tclsh8.4

libtcl8.4.so The Tcl library

Linux From Scratch - Version 6.1

64



5.9. Expect-5.43.0
The Expect package contains a program for carrying out scripted dialogues with other interactive programs.

Approximate build time: 0.1 SBU
Required disk space: 4.0 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed, and Tcl

5.9.1. Installation of Expect
First, fix a bug that can result in false failures during the GCC test suite run:

patch -Np1 -i ../expect-5.43.0-spawn-1.patch

Now prepare Expect for compilation:

./configure --prefix=/tools --with-tcl=/tools/lib \
--with-tclinclude=$TCLPATH --with-x=no

The meaning of the configure options:

--with-tcl=/tools/lib
This ensures that the configure script finds the Tcl installation in the temporary tools location instead of
possibly locating an existing one on the host system.

--with-tclinclude=$TCLPATH
This explicitly tells Expect where to find Tcl's source directory and internal headers. Using this option avoids
conditions where configure fails because it cannot automatically discover the location of the Tcl source
directory.

--with-x=no
This tells the configure script not to search for Tk (the Tcl GUI component) or the X Window System
libraries, both of which may reside on the host system but will not exist in the temporary environment.

Build the package:

make

To test the results, issue: make test. Note that the Expect test suite is known to experience failures under
certain host conditions that are not within our control. Therefore, test suite failures here are not surprising and
are not considered critical.

Install the package:

make SCRIPTS="" install

The meaning of the make parameter:

SCRIPTS=""
This prevents installation of the supplementary expect scripts, which are not needed.

Linux From Scratch - Version 6.1

65



Now remove the TCLPATH variable:

unset TCLPATH

The source directories of both Tcl and Expect can now be removed.

5.9.2. Contents of Expect
Installed program: expect
Installed library: libexpect-5.42.a

Short Descriptions

expect Communicates with other interactive programs according to a script

libexpect-5.42.a Contains functions that allow Expect to be used as a Tcl extension or to be used
directly from C or C++ (without Tcl)

Linux From Scratch - Version 6.1

66



5.10. DejaGNU-1.4.4
The DejaGNU package contains a framework for testing other programs.

Approximate build time: 0.1 SBU
Required disk space: 6.1 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

5.10.1. Installation of DejaGNU
Prepare DejaGNU for compilation:

./configure --prefix=/tools

Build and install the package:

make install

5.10.2. Contents of DejaGNU
Installed program: runtest

Short Descriptions

runtest A wrapper script that locates the proper expect shell and then runs DejaGNU

Linux From Scratch - Version 6.1

67



5.11. GCC-3.4.3 - Pass 2
Approximate build time: 11.0 SBU
Required disk space: 292 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc, Grep, Make, Perl,
Sed, and Texinfo

5.11.1. Re-installation of GCC
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building GCC.

The tools required to test GCC and Binutils—Tcl, Expect and DejaGNU—are installed now. GCC and Binutils
can now be rebuilt, linking them against the new Glibc and testing them properly (if running the test suites in
this chapter). Please note that these test suites are highly dependent on properly functioning PTYs which are
provided by the host. PTYs are most commonly implemented via the devpts file system. Check to see if the
host system is set up correctly in this regard by performing a quick test:

expect -c "spawn ls"

The response might be:

The system has no more ptys.
Ask your system administrator to create more.

If the above message is received, the host does not have its PTYs set up properly. In this case, there is no point
in running the test suites for GCC and Binutils until this issue is resolved. Please consult the LFS FAQ at
http://www.linuxfromscratch.org//lfs/faq.html#no-ptys for more information on how to get PTYs working.

First correct a known problem and make an essential adjustment:

patch -Np1 -i ../gcc-3.4.3-no_fixincludes-1.patch
patch -Np1 -i ../gcc-3.4.3-specs-2.patch

The first patch disables the GCC fixincludes script. This was briefly mentioned earlier, but a more in-depth
explanation of the fixincludes process is warranted here. Under normal circumstances, the GCC fixincludes
script scans the system for header files that need to be fixed. It might find that some Glibc header files on the
host system need to be fixed, and will fix them and put them in the GCC private include directory. In Chapter 6,
after the newer Glibc has been installed, this private include directory will be searched before the system
include directory. This may result in GCC finding the fixed headers from the host system, which most likely
will not match the Glibc version used for the LFS system.

The second patch changes GCC's default location of the dynamic linker (typically ld-linux.so.2). It also
removes /usr/include from GCC's include search path. Patching now rather than adjusting the specs file
after installation ensures that the new dynamic linker is used during the actual build of GCC. That is, all of the
final (and temporary) binaries created during the build will link against the new Glibc.

Linux From Scratch - Version 6.1

68

http://www.linuxfromscratch.org//lfs/faq.html#no-ptys


Important

The above patches are critical in ensuring a successful overall build. Do not forget to apply them.

Create a separate build directory again:

mkdir ../gcc-build
cd ../gcc-build

Before starting to build GCC, remember to unset any environment variables that override the default
optimization flags.

Now prepare GCC for compilation:

../gcc-3.4.3/configure --prefix=/tools \
--libexecdir=/tools/lib --with-local-prefix=/tools \
--enable-clocale=gnu --enable-shared \
--enable-threads=posix --enable-__cxa_atexit \
--enable-languages=c,c++ --disable-libstdcxx-pch

The meaning of the new configure options:

--enable-clocale=gnu
This option ensures the correct locale model is selected for the C++ libraries under all circumstances. If the
configure script finds the de_DE locale installed, it will select the correct gnu locale model. However, if the
de_DE locale is not installed, there is the risk of building Application Binary Interface (ABI)-incompatible
C++ libraries because the incorrect generic locale model may be selected.

--enable-threads=posix
This enables C++ exception handling for multi-threaded code.

--enable-__cxa_atexit
This option allows use of __cxa_atexit, rather than atexit, to register C++ destructors for local statics and
global objects. This option is essential for fully standards-compliant handling of destructors. It also affects the
C++ ABI, and therefore results in C++ shared libraries and C++ programs that are interoperable with other
Linux distributions.

--enable-languages=c,c++
This option ensures that both the C and C++ compilers are built.

--disable-libstdcxx-pch
Do not build the pre-compiled header (PCH) for libstdc++. It takes up a lot of space, and we have no use
for it.

Compile the package:

make

There is no need to use the bootstrap target now because the compiler being used to compile this GCC was
built from the exact same version of the GCC sources used earlier.

Linux From Scratch - Version 6.1

69



Compilation is now complete. As previously mentioned, running the test suites for the temporary tools compiled
in this chapter is not mandatory. To run the GCC test suite anyway, use the following command:

make -k check

The -k flag is used to make the test suite run through to completion and not stop at the first failure. The GCC
test suite is very comprehensive and is almost guaranteed to generate a few failures. To receive a summary of
the test suite results, run:

../gcc-3.4.3/contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at http://www.linuxfromscratch.org/lfs/build-logs/6.1/.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues,
but have not resolved them yet. Unless the test results are vastly different from those at the above URL, it is safe
to continue.

Install the package:

make install

Note

At this point it is strongly recommended to repeat the sanity check we performed earlier in this
chapter. Refer back to Section 5.7, “Adjusting the Toolchain,” and repeat the test compilation. If
the result is wrong, the most likely reason is that the GCC Specs patch was not properly applied.

Details on this package are located in Section 6.14.2, “Contents of GCC.”

Linux From Scratch - Version 6.1

70

http://www.linuxfromscratch.org/lfs/build-logs/6.1/


5.12. Binutils-2.15.94.0.2.2 - Pass 2
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.5 SBU
Required disk space: 114 MB

Installation depends on: Bash, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc, Grep, M4, Make, Perl,
Sed, and Texinfo

5.12.1. Re-installation of Binutils
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building Binutils.

Create a separate build directory again:

mkdir ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

../binutils-2.15.94.0.2.2/configure --prefix=/tools \
--disable-nls --enable-shared --with-lib-path=/tools/lib

The meaning of the new configure options:

--with-lib-path=/tools/lib
This tells the configure script to specify the library search path during the compilation of Binutils, resulting in
/tools/lib being passed to the linker. This prevents the linker from searching through library directories
on the host.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary
tools here in this chapter. To run the Binutils test suite anyway, issue the following command:

make check

Install the package:

make install

Now prepare the linker for the “Re-adjusting” phase in the next chapter:

make -C ld clean
make -C ld LIB_PATH=/usr/lib:/lib

Linux From Scratch - Version 6.1

71



Warning

Do not remove the Binutils source and build directories yet. These directories will be needed again
in the next chapter in their current state.

Details on this package are located in Section 6.13.2, “Contents of Binutils.”

Linux From Scratch - Version 6.1

72



5.13. Gawk-3.1.4
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 16.4 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

5.13.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.20.2, “Contents of Gawk.”

Linux From Scratch - Version 6.1

73



5.14. Coreutils-5.2.1
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 0.9 SBU
Required disk space: 53.3 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl, and Sed

5.14.1. Installation of Coreutils
Prepare Coreutils for compilation:

DEFAULT_POSIX2_VERSION=199209 ./configure --prefix=/tools

This package has an issue when compiled against versions of Glibc later than 2.3.2. Some of the Coreutils
utilities (such as head, tail, and sort) will reject their traditional syntax, a syntax that has been in use for
approximately 30 years. This old syntax is so pervasive that compatibility should be preserved until the many
places where it is used can be updated. Backwards compatibility is achieved by setting the
DEFAULT_POSIX2_VERSION environment variable to “199209” in the above command. If you do not want
Coreutils to be backwards compatible with the traditional syntax, then omit setting the
DEFAULT_POSIX2_VERSION environment variable. It is important to remember that doing so will have
consequences, including the need to patch the many packages that still use the old syntax. Therefore, it is
recommended that the instructions be followed exactly as given above.

Compile the package:

make

To test the results, issue: make RUN_EXPENSIVE_TESTS=yes check. The RUN_EXPENSIVE_
TESTS=yes parameter tells the test suite to run several additional tests that are considered relatively expensive
(in terms of CPU power and memory usage) on some platforms, but generally are not a problem on Linux.

Install the package:

make install

Details on this package are located in Section 6.15.2, “Contents of Coreutils.”

Linux From Scratch - Version 6.1

74



5.15. Bzip2-1.0.3
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with
bzip2 yields a much better compression percentage than with the traditional gzip.

Approximate build time: 0.1 SBU
Required disk space: 3.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, and Make

5.15.1. Installation of Bzip2
The Bzip2 package does not contain a configure script. Compile it with:

make

To test the results, issue: make test.

Install the package:

make PREFIX=/tools install

Details on this package are located in Section 6.40.2, “Contents of Bzip2.”

Linux From Scratch - Version 6.1

75



5.16. Gzip-1.3.5
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 2.2 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

5.16.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/tools

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Details on this package are located in Section 6.46.2, “Contents of Gzip.”

Linux From Scratch - Version 6.1

76



5.17. Diffutils-2.8.1
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.1 SBU
Required disk space: 5.6 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

5.17.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/tools

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Details on this package are located in Section 6.41.2, “Contents of Diffutils.”

Linux From Scratch - Version 6.1

77



5.18. Findutils-4.2.23
The Findutils package contains programs to find files. These programs are provided to recursively search
through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but
unreliable if the database has not been recently updated).

Approximate build time: 0.2 SBU
Required disk space: 8.9 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make and Sed

5.18.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.19.2, “Contents of Findutils.”

Linux From Scratch - Version 6.1

78



5.19. Make-3.80
The Make package contains a program for compiling packages.

Approximate build time: 0.2 SBU
Required disk space: 7.1 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, and Sed

5.19.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.49.2, “Contents of Make.”

Linux From Scratch - Version 6.1

79



5.20. Grep-2.5.1a
The Grep package contains programs for searching through files.

Approximate build time: 0.1 SBU
Required disk space: 4.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Make, Sed, and Texinfo

5.20.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/tools \
--disable-perl-regexp

The meaning of the configure options:

--disable-perl-regexp
This ensures that the grep program does not get linked against a Perl Compatible Regular Expression (PCRE)
library that may be present on the host but will not be available once we enter the chroot environment.

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.44.2, “Contents of Grep.”

Linux From Scratch - Version 6.1

80



5.21. Sed-4.1.4
The Sed package contains a stream editor.

Approximate build time: 0.2 SBU
Required disk space: 8.4 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Texinfo

5.21.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.28.2, “Contents of Sed.”

Linux From Scratch - Version 6.1

81



5.22. Gettext-0.14.3
The Gettext package contains utilities for internationalization and localization. These allow programs to be
compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 0.5 SBU
Required disk space: 63.0 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

5.22.1. Installation of Gettext
Prepare Gettext for compilation:

./configure --prefix=/tools --disable-libasprintf \
--without-csharp

The meaning of the configure options:

--disable-libasprintf
This flag tells Gettext not to build the asprintf library. Because nothing in this chapter or the next requires
this library and Gettext gets rebuilt later, exclude it to save time and space.

--without-csharp
This ensures that Gettext does not build support for the C# compiler which may be present on the host but will
not be available once we enter the chroot environment.

Compile the package:

make

To test the results, issue: make check. This takes quite some time, around 7 SBUs. The Gettext test suite is
known to experience failures under certain host conditions, for example when it finds a Java compiler on the
host. An experimental patch to disable Java is available from the LFS Patches project at
http://www.linuxfromscratch.org/patches/.

Install the package:

make install

Details on this package are located in Section 6.30.2, “Contents of Gettext.”

Linux From Scratch - Version 6.1

82

http://www.linuxfromscratch.org/patches/


5.23. Ncurses-5.4
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.7 SBU
Required disk space: 27.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

5.23.1. Installation of Ncurses
Prepare Ncurses for compilation:

./configure --prefix=/tools --with-shared \
--without-debug --without-ada --enable-overwrite

The meaning of the configure options:

--without-ada
This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but
will not be available once we enter the chroot environment.

--enable-overwrite
This tells Ncurses to install its header files into /tools/include, instead of
/tools/include/ncurses, to ensure that other packages can find the Ncurses headers successfully.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Details on this package are located in Section 6.21.2, “Contents of Ncurses.”

Linux From Scratch - Version 6.1

83



5.24. Patch-2.5.4
The Patch package contains a program for modifying or creating files by applying a “patch” file typically
created by the diff program.

Approximate build time: 0.1 SBU
Required disk space: 1.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

5.24.1. Installation of Patch
Prepare Patch for compilation:

CPPFLAGS=-D_GNU_SOURCE ./configure --prefix=/tools

The preprocessor flag -D_GNU_SOURCE is only needed on the PowerPC platform. It can be left out on other
architectures.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Details on this package are located in Section 6.51.2, “Contents of Patch.”

Linux From Scratch - Version 6.1

84



5.25. Tar-1.15.1
The Tar package contains an archiving program.

Approximate build time: 0.2 SBU
Required disk space: 12.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

5.25.1. Installation of Tar
Prepare Tar for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.57.2, “Contents of Tar.”

Linux From Scratch - Version 6.1

85



5.26. Texinfo-4.8
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.2 SBU
Required disk space: 14.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and
Sed

5.26.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.34.2, “Contents of Texinfo.”

Linux From Scratch - Version 6.1

86



5.27. Bash-3.0
The Bash package contains the Bourne-Again SHell.

Approximate build time: 1.2 SBU
Required disk space: 20.7 MB

Installation depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, and Sed.

5.27.1. Installation of Bash
Bash has a problem when compiled against newer versions of Glibc, causing it to hang inappropriately. This
patch fixes the problem:

patch -Np1 -i ../bash-3.0-avoid_WCONTINUED-1.patch

Prepare Bash for compilation:

./configure --prefix=/tools --without-bash-malloc

The meaning of the configure options:

--without-bash-malloc
This options turns off the use of Bash's memory allocation (malloc) function which is known to cause
segmentation faults. By turning this option off, Bash will use the malloc functions from Glibc which are more
stable.

Compile the package:

make

To test the results, issue: make tests.

Install the package:

make install

Make a link for the programs that use sh for a shell:

ln -s bash /tools/bin/sh

Details on this package are located in Section 6.37.2, “Contents of Bash.”

Linux From Scratch - Version 6.1

87



5.28. M4-1.4.3
The M4 package contains a macro processor.

Approximate build time: 0.1 SBU
Required disk space: 2.8 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl, and Sed

5.28.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.24.2, “Contents of M4.”

Linux From Scratch - Version 6.1

88



5.29. Bison-2.0
The Bison package contains a parser generator.

Approximate build time: 0.6 SBU
Required disk space: 10.0 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4, Make, and Sed

5.29.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.25.2, “Contents of Bison.”

Linux From Scratch - Version 6.1

89



5.30. Flex-2.5.31
The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.6 SBU
Required disk space: 22.5 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4, Make, and
Sed

5.30.1. Installation of Flex
Flex contains several known bugs. These can be fixed with the following patch:

patch -Np1 -i ../flex-2.5.31-debian_fixes-3.patch

The GNU autotools will detect that the Flex source code has been modified by the previous patch and tries to
update the man page accordingly. This does not work on many systems, and the default page is fine, so make
sure it does not get regenerated:

touch doc/flex.1

Now prepare Flex for compilation:

./configure --prefix=/tools

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Details on this package are located in Section 6.29.2, “Contents of Flex.”

Linux From Scratch - Version 6.1

90



5.31. Util-linux-2.12q
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file
systems, consoles, partitions, and messages.

Approximate build time: 0.2 SBU
Required disk space: 8.9 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Sed,
and Zlib

5.31.1. Installation of Util-linux
Util-linux does not use the freshly installed headers and libraries from the /tools directory by default. This is
fixed by altering the configure script:

sed -i 's@/usr/include@/tools/include@g' configure

Prepare Util-linux for compilation:

./configure

Compile some support routines:

make -C lib

Only a few of the utilities contained in this package need to be built:

make -C mount mount umount
make -C text-utils more

This package does not come with a test suite.

Copy these programs to the temporary tools directory:

cp mount/{,u}mount text-utils/more /tools/bin

Details on this package are located in Section 6.59.3, “Contents of Util-linux.”

Linux From Scratch - Version 6.1

91



5.32. Perl-5.8.6
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 0.8 SBU
Required disk space: 79.8 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

5.32.1. Installation of Perl
First adapt some hard-wired paths to the C library by applying the following patch:

patch -Np1 -i ../perl-5.8.6-libc-1.patch

Prepare Perl for compilation (make sure to get the 'IO Fcntl POSIX' part of the command correct—they are all
letters):

./configure.gnu --prefix=/tools -Dstatic_ext='IO Fcntl POSIX'

The meaning of the configure options:

-Dstatic_ext='IO Fcntl POSIX'
This tells Perl to build the minimum set of static extensions needed for installing and testing the Coreutils
package in the next chapter.

Only a few of the utilities contained in this package need to be built:

make perl utilities

Although Perl comes with a test suite, it is not recommended to run it at this point. Only part of Perl was built
and running make test now will cause the rest of Perl to be built as well, which is unnecessary at this point.
The test suite can be run in the next chapter if desired.

Install these tools and their libraries:

cp perl pod/pod2man /tools/bin
mkdir -p /tools/lib/perl5/5.8.6
cp -R lib/* /tools/lib/perl5/5.8.6

Details on this package are located in Section 6.33.2, “Contents of Perl.”

Linux From Scratch - Version 6.1

92



5.33. Stripping
The steps in this section are optional, but if the LFS partition is rather small, it is beneficial to learn that
unnecessary items can be removed. The executables and libraries built so far contain about 130 MB of unneeded
debugging symbols. Remove those symbols with:

strip --strip-debug /tools/lib/*
strip --strip-unneeded /tools/{,s}bin/*

The last of the above commands will skip some twenty files, reporting that it does not recognize their file
format. Most of these are scripts instead of binaries.

Take care not to use --strip-unneeded on the libraries. The static ones would be destroyed and the
toolchain packages would need to be built all over again.

To save another 30 MB, remove the documentation:

rm -rf /tools/{info,man}

There will now be at least 850 MB of free space on the LFS file system that can be used to build and install
Glibc in the next phase. If you can build and install Glibc, you can build and install the rest too.

Linux From Scratch - Version 6.1

93



Part III. Building the LFS System

Linux From Scratch - Version 6.1



Chapter 6. Installing Basic System Software

6.1. Introduction
In this chapter, we enter the building site and start constructing the LFS system in earnest. That is, we chroot
into the temporary mini Linux system, make a few final preparations, and then begin installing the packages.

The installation of this software is straightforward. Although in many cases the installation instructions could be
made shorter and more generic, we have opted to provide the full instructions for every package to minimize the
possibilities for mistakes. The key to learning what makes a Linux system work is to know what each package is
used for and why the user (or the system) needs it. For every installed package, a summary of its contents is
given, followed by concise descriptions of each program and library the package installed.

If using the compiler optimizations provided in this chapter, please review the optimization hint at
http://www.linuxfromscratch.org/hints/downloads/files/optimization.txt. Compiler optimizations can make a
program run slightly faster, but they may also cause compilation difficulties and problems when running the
program. If a package refuses to compile when using optimization, try to compile it without optimization and
see if that fixes the problem. Even if the package does compile when using optimization, there is the risk it may
have been compiled incorrectly because of the complex interactions between the code and build tools. The small
potential gains achieved in using compiler optimizations are often outweighed by the risks. First-time builders
of LFS are encouraged to build without custom optimizations. The subsequent system will still run very fast and
be stable at the same time.

The order that packages are installed in this chapter needs to be strictly followed to ensure that no program
accidentally acquires a path referring to /tools hard-wired into it. For the same reason, do not compile
packages in parallel. Compiling in parallel may save time (especially on dual-CPU machines), but it could result
in a program containing a hard-wired path to /tools, which will cause the program to stop working when that
directory is removed.

Before the installation instructions, each installation page provides information about the package, including a
concise description of what it contains, approximately how long it will take to build, how much disk space is
required during this building process, and any other packages needed to successfully build the package.
Following the installation instructions, there is a list of programs and libraries (along with brief descriptions of
these) that the package installs.

To keep track of which package installs particular files, a package manager can be used. For a general overview
of different styles of package managers, please refer to http://www.linuxfromscratch.org/blfs/view/svn/
introduction/important.html. For a package management method specifically geared towards LFS, we
recommend http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt.

Note

The remainder of this book is to be performed while logged in as user root and no longer as user lfs.
Also, double check that $LFS is set.

Linux From Scratch - Version 6.1

95

http://www.linuxfromscratch.org/hints/downloads/files/optimization.txt
http://www.linuxfromscratch.org/blfs/view/svn/introduction/important.html
http://www.linuxfromscratch.org/blfs/view/svn/introduction/important.html
http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt


6.2. Mounting Virtual Kernel File Systems
Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file
systems are virtual in that no disk space is used for them. The content of the file systems resides in memory.

Begin by creating directories onto which the file systems will be mounted:

mkdir -p $LFS/{proc,sys}

Now mount the file systems:

mount -t proc proc $LFS/proc
mount -t sysfs sysfs $LFS/sys

Remember that if for any reason you stop working on the LFS system and start again later, it is important to
check that these file systems are mounted again before entering the chroot environment.

Additional file systems will soon be mounted from within the chroot environment. To keep the host up to date,
perform a “fake mount” for each of these now:

mount -f -t tmpfs tmpfs $LFS/dev
mount -f -t tmpfs tmpfs $LFS/dev/shm
mount -f -t devpts -o gid=4,mode=620 devpts $LFS/dev/pts

Linux From Scratch - Version 6.1

96



6.3. Entering the Chroot Environment
It is time to enter the chroot environment to begin building and installing the final LFS system. As user root, run
the following command to enter the realm that is, at the moment, populated with only the temporary tools:

chroot "$LFS" /tools/bin/env -i \
HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \
PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
/tools/bin/bash --login +h

The -i option given to the env command will clear all variables of the chroot environment. After that, only the
HOME, TERM, PS1, and PATH variables are set again. The TERM=$TERM construct will set the TERM variable
inside chroot to the same value as outside chroot. This variable is needed for programs like vim and less to
operate properly. If other variables are needed, such as CFLAGS or CXXFLAGS, this is a good place to set them
again.

From this point on, there is no need to use the LFS variable anymore, because all work will be restricted to the
LFS file system. This is because the Bash shell is told that $LFS is now the root (/) directory.

Notice that /tools/bin comes last in the PATH. This means that a temporary tool will no longer be used
once its final version is installed. This occurs when the shell does not “remember” the locations of executed
binaries—for this reason, hashing is switched off by passing the +h option to bash.

It is important that all the commands throughout the remainder of this chapter and the following chapters are run
from within the chroot environment. If you leave this environment for any reason (rebooting for example),
remember to first mount the proc and devpts file systems (discussed in the previous section) and enter
chroot again before continuing with the installations.

Note that the bash prompt will say I have no name! This is normal because the /etc/passwd file has
not been created yet.

Linux From Scratch - Version 6.1

97



6.4. Changing Ownership
Currently, the /tools directory is owned by the user lfs, a user that exists only on the host system. Although
the /tools directory can be deleted once the LFS system has been finished, it can be retained to build
additional LFS systems. If the /tools directory is kept as is, the files are owned by a user ID without a
corresponding account. This is dangerous because a user account created later could get this same user ID and
would own the /tools directory and all the files therein, thus exposing these files to possible malicious
manipulation.

To avoid this issue, add the lfs user to the new LFS system later when creating the /etc/passwd file, taking
care to assign it the same user and group IDs as on the host system. Alternatively, assign the contents of the
/tools directory to user root by running the following command:

chown -R 0:0 /tools

The command uses 0:0 instead of root:root, because chown is unable to resolve the name “root” until the
password file has been created. This book assumes you ran this chown command.

Linux From Scratch - Version 6.1

98



6.5. Creating Directories
It is time to create some structure in the LFS file system. Create a standard directory tree by issuing the
following commands:

install -d /{bin,boot,dev,etc/opt,home,lib,mnt}
install -d /{sbin,srv,usr/local,var,opt}
install -d /root -m 0750
install -d /tmp /var/tmp -m 1777
install -d /media/{floppy,cdrom}
install -d /usr/{bin,include,lib,sbin,share,src}
ln -s share/{man,doc,info} /usr
install -d /usr/share/{doc,info,locale,man}
install -d /usr/share/{misc,terminfo,zoneinfo}
install -d /usr/share/man/man{1,2,3,4,5,6,7,8}
install -d /usr/local/{bin,etc,include,lib,sbin,share,src}
ln -s share/{man,doc,info} /usr/local
install -d /usr/local/share/{doc,info,locale,man}
install -d /usr/local/share/{misc,terminfo,zoneinfo}
install -d /usr/local/share/man/man{1,2,3,4,5,6,7,8}
install -d /var/{lock,log,mail,run,spool}
install -d /var/{opt,cache,lib/{misc,locate},local}
install -d /opt/{bin,doc,include,info}
install -d /opt/{lib,man/man{1,2,3,4,5,6,7,8}}

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the
commands above, two changes are made—one to the home directory of user root, and another to the directories
for temporary files.

The first mode change ensures that not just anybody can enter the /root directory—the same as a normal user
would do with his or her home directory. The second mode change makes sure that any user can write to the
/tmp and /var/tmp directories, but cannot remove another user's files from them. The latter is prohibited by
the so-called “sticky bit,” the highest bit (1) in the 1777 bit mask.

6.5.1. FHS Compliance Note
The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at
http://www.pathname.com/fhs/). In addition to the tree created above, this standard stipulates the existence of
/usr/local/games and /usr/share/games. The FHS is not precise as to the structure of the
/usr/local/share subdirectory, so we create only the directories that are needed. However, feel free to
create these directories if you prefer to conform more strictly to the FHS.

Linux From Scratch - Version 6.1

99

http://www.pathname.com/fhs/


6.6. Creating Essential Symlinks
Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs,
create a number of symbolic links which will be replaced by real files throughout the course of this chapter after
the software has been installed.

ln -s /tools/bin/{bash,cat,pwd,stty} /bin
ln -s /tools/bin/perl /usr/bin
ln -s /tools/lib/libgcc_s.so{,.1} /usr/lib
ln -s bash /bin/sh

Linux From Scratch - Version 6.1

100



6.7. Creating the passwd, group, and log Files
In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries
in the /etc/passwd and /etc/group files.

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
EOF

The actual password for root (the “x” used here is just a placeholder) will be set later.

Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:
sys:x:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
EOF

The created groups are not part of any standard—they are groups decided on in part by the requirements of the
Udev configuration in the next section, and in part by common convention employed by a number of existing
Linux distributions. The Linux Standard Base (LSB, available at http://www.linuxbase.org) recommends only
that, besides the group “root” with a Group ID (GID) of 0, a group “bin” with a GID of 1 be present. All other
group names and GIDs can be chosen freely by the system administrator since well-written programs do not
depend on GID numbers, but rather use the group's name.

To remove the “I have no name!” prompt, start a new shell. Since a full Glibc was installed in Chapter 5 and the
/etc/passwd and /etc/group files have been created, user name and group name resolution will now
work.

exec /tools/bin/bash --login +h

Note the use of the +h directive. This tells bash not to use its internal path hashing. Without this directive, bash
would remember the paths to binaries it has executed. To ensure the use of the newly compiled binaries as soon
as they are installed, the +h directive will be used for the duration of this chapter.

Linux From Scratch - Version 6.1

101

http://www.linuxbase.org


The login, agetty, and init programs (and others) use a number of log files to record information such as who
was logged into the system and when. However, these programs will not write to the log files if they do not
already exist. Initialize the log files and give them proper permissions:

touch /var/run/utmp /var/log/{btmp,lastlog,wtmp}
chgrp utmp /var/run/utmp /var/log/lastlog
chmod 664 /var/run/utmp /var/log/lastlog

The /var/run/utmp file records the users that are currently logged in. The /var/log/wtmp file records
all logins and logouts. The /var/log/lastlog file records when each user last logged in. The
/var/log/btmp file records the bad login attempts.

Linux From Scratch - Version 6.1

102



6.8. Populating /dev

6.8.1. Creating Initial Device Nodes
When the kernel boots the system, it requires the presence of a few device nodes, in particular the console
and null devices. Create these by running the following commands:

mknod -m 600 /dev/console c 5 1
mknod -m 666 /dev/null c 1 3

6.8.2. Mounting tmpfs and Populating /dev
The recommended method of populating the /dev directory with devices is to mount a virtual filesystem (such
as tmpfs) on the /dev directory, and allow the devices to be created dynamically on that virtual filesystem as
they are detected or accessed. This is generally done during the boot process. Since this new system has not
been booted, it is necessary to do what the LFS-Bootscripts package would otherwise do by mounting /dev:

mount -n -t tmpfs none /dev

The Udev package is what actually creates the devices in the /dev directory. Since it will not be installed until
later on in the process, manually create the minimal set of device nodes needed to complete the building of this
system:

mknod -m 622 /dev/console c 5 1
mknod -m 666 /dev/null c 1 3
mknod -m 666 /dev/zero c 1 5
mknod -m 666 /dev/ptmx c 5 2
mknod -m 666 /dev/tty c 5 0
mknod -m 444 /dev/random c 1 8
mknod -m 444 /dev/urandom c 1 9
chown root:tty /dev/{console,ptmx,tty}

There are some symlinks and directories required by LFS that are created during system startup by the
LFS-Bootscripts package. Since this is a chroot environment and not a booted environment, those symlinks and
directories need to be created here:

ln -s /proc/self/fd /dev/fd
ln -s /proc/self/fd/0 /dev/stdin
ln -s /proc/self/fd/1 /dev/stdout
ln -s /proc/self/fd/2 /dev/stderr
ln -s /proc/kcore /dev/core
mkdir /dev/pts
mkdir /dev/shm

Finally, mount the proper virtual (kernel) file systems on the newly-created directories:

mount -t devpts -o gid=4,mode=620 none /dev/pts
mount -t tmpfs none /dev/shm

Linux From Scratch - Version 6.1

103



The mount commands executed above may result in the following warning message:

can't open /etc/fstab: No such file or directory.

This file—/etc/fstab—has not been created yet but is also not required for the file systems to be properly
mounted. As such, the warning can be safely ignored.

Linux From Scratch - Version 6.1

104



6.9. Linux-Libc-Headers-2.6.11.2
The Linux-Libc-Headers package contains the “sanitized” kernel headers.

Approximate build time: 0.1 SBU
Required disk space: 26.9 MB

Installation depends on: Coreutils

6.9.1. Installation of Linux-Libc-Headers
For years it has been common practice to use “raw” kernel headers (straight from a kernel tarball) in
/usr/include, but over the last few years, the kernel developers have taken a strong stance that this should
not be done. This gave birth to the Linux-Libc-Headers Project, which was designed to maintain an API stable
version of the Linux headers.

Install the header files:

cp -R include/asm-i386 /usr/include/asm
cp -R include/linux /usr/include

Ensure that all the headers are owned by root:

chown -R root:root /usr/include/{asm,linux}

Make sure the users can read the headers:

find /usr/include/{asm,linux} -type d -exec chmod 755 {} \;
find /usr/include/{asm,linux} -type f -exec chmod 644 {} \;

6.9.2. Contents of Linux-Libc-Headers
Installed headers: /usr/include/{asm,linux}/*.h

Short Descriptions

/usr/include/{asm,linux}/*.h The Linux headers API

Linux From Scratch - Version 6.1

105



6.10. Man-pages-2.01
The Man-pages package contains over 1,200 man pages.

Approximate build time: 0.1 SBU
Required disk space: 25.8 MB

Installation depends on: Bash, Coreutils, and Make

6.10.1. Installation of Man-pages
Install Man-pages by running:

make install

6.10.2. Contents of Man-pages
Installed files: various man pages

Short Descriptions

man pages Describe the C and C++ functions, important device files, and significant configuration files

Linux From Scratch - Version 6.1

106



6.11. Glibc-2.3.4
The Glibc package contains the main C library. This library provides the basic routines for allocating memory,
searching directories, opening and closing files, reading and writing files, string handling, pattern matching,
arithmetic, and so on.

Approximate build time: 12.3 SBU
Required disk space: 476

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Make, Perl, Sed, and
Texinfo

6.11.1. Installation of Glibc
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building Glibc.

The Glibc build system is self-contained and will install perfectly, even though the compiler specs file and
linker are still pointing at /tools. The specs and linker cannot be adjusted before the Glibc install because the
Glibc autoconf tests would give false results and defeat the goal of achieving a clean build.

The linuxthreads tarball contains the man pages for the threading libraries installed by Glibc. Unpack the tarball
from within the Glibc source directory:

tar -xjvf /sources/glibc-linuxthreads-2.3.4.tar.bz2

Glibc has two tests which fail when the running kernel is 2.6.11.x The problem has been determined to be with
the tests themselves, not with the libc nor the kernel. This patch fixes the problem:

patch -Np1 -i ../glibc-2.3.4-fix_test-1.patch

The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build
directory:

mkdir ../glibc-build
cd ../glibc-build

Prepare Glibc for compilation:

../glibc-2.3.4/configure --prefix=/usr \
--disable-profile --enable-add-ons \
--enable-kernel=2.6.0 --libexecdir=/usr/lib/glibc

The meaning of the new configure options:

--libexecdir=/usr/lib/glibc
This changes the location of the pt_chown program from its default of /usr/libexec to
/usr/lib/glibc.

Linux From Scratch - Version 6.1

107



Compile the package:

make

Important

In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.

Test the results:

make check

The Glibc test suite is highly dependent on certain functions of the host system, in particular the kernel. In
general, the Glibc test suite is always expected to pass. However, in certain circumstances, some failures are
unavoidable. This is a list of the most common issues:

• The math tests sometimes fail when running on systems where the CPU is not a relatively new genuine Intel
or authentic AMD. Certain optimization settings are also known to be a factor here.

• The gettext test sometimes fails due to host system issues. The exact reasons are not yet clear.

• If you have mounted the LFS partition with the noatime option, the atime test will fail. As mentioned in
Section 2.4, “Mounting the New Partition”, do not use the noatime option while building LFS.

• When running on older and slower hardware, some tests can fail because of test timeouts being exceeded.

Though it is a harmless message, the install stage of Glibc will complain about the absence of
/etc/ld.so.conf. Prevent this warning with:

touch /etc/ld.so.conf

Install the package:

make install

The locales that can make the system respond in a different language were not installed by the above command.
Install this with:

make localedata/install-locales

To save time, an alternative to running the previous command (which generates and installs every locale Glibc
is aware of) is to install only those locales that are wanted and needed. This can be achieved by using the
localedef command. Information on this command is located in the INSTALL file in the Glibc source.
However, there are a number of locales that are essential in order for the tests of future packages to pass, in
particular, the libstdc++ tests from GCC. The following instructions, instead of the install-locales
target used above, will install the minimum set of locales necessary for the tests to run successfully:

mkdir -p /usr/lib/locale
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH

Linux From Scratch - Version 6.1

108



localedef -i en_US -f ISO-8859-1 en_US
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i ja_JP -f EUC-JP ja_JP

Some locales installed by the make localedata/install-locales command above are not properly supported by
some applications that are in the LFS and BLFS books. Because of the various problems that arise due to
application programmers making assumptions that break in such locales, LFS should not be used in locales that
utilize multibyte character sets (including UTF-8) or right-to-left writing order. Numerous unofficial and
unstable patches are required to fix these problems, and it has been decided by the LFS developers not to
support such complex locales. This applies to the ja_JP and fa_IR locales as well—they have been installed only
for GCC and Gettext tests to pass, and the watch program (part of the Procps package) does not work properly
in them. Various attempts to circumvent these restrictions are documented in internationalization-related hints.

Build the linuxthreads man pages, which are a great reference on the threading API (applicable to NPTL as
well):

make -C ../glibc-2.3.4/linuxthreads/man

Install these pages:

make -C ../glibc-2.3.4/linuxthreads/man install

6.11.2. Configuring Glibc
The /etc/nsswitch.conf file needs to be created because, although Glibc provides defaults when this file
is missing or corrupt, the Glibc defaults do not work well in a networked environment. The time zone also needs
to be configured.

Create a new file /etc/nsswitch.conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
# Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

# End /etc/nsswitch.conf
EOF

Linux From Scratch - Version 6.1

109



To determine the local time zone, run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g.,
EST5EDT or Canada/Eastern). Then create the /etc/localtime file by running:

cp --remove-destination /usr/share/zoneinfo/[xxx] \
/etc/localtime

Replace [xxx] with the name of the time zone that tzselect provided (e.g., Canada/Eastern).

The meaning of the cp option:

--remove-destination
This is needed to force removal of the already existing symbolic link. The reason for copying the file instead
of using a symlink is to cover the situation where /usr is on a separate partition. This could be important
when booted into single user mode.

6.11.3. Configuring Dynamic Loader
By default, the dynamic loader (/lib/ld-linux.so.2) searches through /lib and /usr/lib for
dynamic libraries that are needed by programs as they are run. However, if there are libraries in directories other
than /lib and /usr/lib, these need to be added to the /etc/ld.so.conf file in order for the dynamic
loader to find them. Two directories that are commonly known to contain additional libraries are
/usr/local/lib and /opt/lib, so add those directories to the dynamic loader's search path.

Create a new file /etc/ld.so.conf by running the following:

cat > /etc/ld.so.conf << "EOF"
# Begin /etc/ld.so.conf

/usr/local/lib
/opt/lib

# End /etc/ld.so.conf
EOF

6.11.4. Contents of Glibc
Installed programs: catchsegv, gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, locale,
localedef, mtrace, nscd, nscd_nischeck, pcprofiledump, pt_chown, rpcgen, rpcinfo, sln, sprof, tzselect, xtrace,
zdump, and zic
Installed libraries: ld.so, libBrokenLocale.[a,so], libSegFault.so, libanl.[a,so], libbsd-compat.a, libc.[a,so],
libcrypt.[a,so], libdl.[a,so], libg.a, libieee.a, libm.[a,so], libmcheck.a, libmemusage.so, libnsl.a,
libnss_compat.so, libnss_dns.so, libnss_files.so, libnss_hesiod.so, libnss_nis.so, libnss_nisplus.so,
libpcprofile.so, libpthread.[a,so], libresolv.[a,so], librpcsvc.a, librt.[a,so], libthread_db.so, and libutil.[a,so]

Linux From Scratch - Version 6.1

110



Short Descriptions

catchsegv Can be used to create a stack trace when a program terminates with a segmentation
fault

gencat Generates message catalogues

getconf Displays the system configuration values for file system specific variables

getent Gets entries from an administrative database

iconv Performs character set conversion

iconvconfig Creates fastloading iconv module configuration files

ldconfig Configures the dynamic linker runtime bindings

ldd Reports which shared libraries are required by each given program or shared library

lddlibc4 Assists ldd with object files

locale Tells the compiler to enable or disable the use of POSIX locales for built-in operations

localedef Compiles locale specifications

mtrace Reads and interprets a memory trace file and displays a summary in human-readable
format

nscd A daemon that provides a cache for the most common name service requests

nscd_nischeck Checks whether or not secure mode is necessary for NIS+ lookup

pcprofiledump Dumps information generated by PC profiling

pt_chown A helper program for grantpt to set the owner, group and access permissions of a slave
pseudo terminal

rpcgen Generates C code to implement the Remote Procecure Call (RPC) protocol

rpcinfo Makes an RPC call to an RPC server

sln A statically linked ln program

sprof Reads and displays shared object profiling data

tzselect Asks the user about the location of the system and reports the corresponding time zone
description

xtrace Traces the execution of a program by printing the currently executed function

zdump The time zone dumper

zic The time zone compiler

ld.so The helper program for shared library executables

libBrokenLocale Used by programs, such as Mozilla, to solve broken locales

libSegFault The segmentation fault signal handler

Linux From Scratch - Version 6.1

111



libanl An asynchronous name lookup library

libbsd-compat Provides the portability needed in order to run certain Berkey Software Distribution
(BSD) programs under Linux

libc The main C library

libcrypt The cryptography library

libdl The dynamic linking interface library

libg A runtime library for g++

libieee The Institute of Electrical and Electronic Engineers (IEEE) floating point library

libm The mathematical library

libmcheck Contains code run at boot

libmemusage Used by memusage to help collect information about the memory usage of a program

libnsl The network services library

libnss The Name Service Switch libraries, containing functions for resolving host names, user
names, group names, aliases, services, protocols, etc.

libpcprofile Contains profiling functions used to track the amount of CPU time spent in specific
source code lines

libpthread The POSIX threads library

libresolv Contains functions for creating, sending, and interpreting packets to the Internet
domain name servers

librpcsvc Contains functions providing miscellaneous RPC services

librt Contains functions providing most of the interfaces specified by the POSIX.1b
Realtime Extension

libthread_db Contains functions useful for building debuggers for multi-threaded programs

libutil Contains code for “standard” functions used in many different Unix utilities

Linux From Scratch - Version 6.1

112



6.12. Re-adjusting the Toolchain
Now that the final C libraries have been installed, it is time to adjust the toolchain again. The toolchain will be
adjusted so that it will link any newly compiled program against these new libraries. This is the same process
used in the “Adjusting” phase in the beginning of Chapter 5, but with the adjustments reversed. In Chapter 5,
the chain was guided from the host's /{,usr/}lib directories to the new /tools/lib directory. Now, the
chain will be guided from that same /tools/lib directory to the LFS /{,usr/}lib directories.

Start by adjusting the linker. The source and build directories from the second pass of Binutils were retained for
this purpose. Install the adjusted linker by running the following command from within the binutils-build
directory:

make -C ld INSTALL=/tools/bin/install install

Note

If the earlier warning to retain the Binutils source and build directories from the second pass in
Chapter 5 was missed, or if they were accidentally deleted or are inaccessible, ignore the above
command. The result will be that the next package, Binutils, will link against the C libraries in
/tools rather than in /{,usr/}lib. This is not ideal, however, testing has shown that the
resulting Binutils program binaries should be identical.

From now on, every compiled program will link only against the libraries in /usr/lib and /lib. The extra
INSTALL=/tools/bin/install option is needed because the Makefile file created during the second
pass still contains the reference to /usr/bin/install, which has not been installed yet. Some host distributions
contain a ginstall symbolic link which takes precedence in the Makefile file and can cause a problem.
The above command takes care of this issue.

Remove the Binutils source and build directories now.

Next, amend the GCC specs file so that it points to the new dynamic linker. A perl command accomplishes this:

perl -pi -e 's@ /tools/lib/ld-linux.so.2@ /lib/ld-linux.so.2@g;' \
-e 's@\*startfile_prefix_spec:\n@$_/usr/lib/ @g;' \

`gcc --print-file specs`

It is a good idea to visually inspect the specs file to verify the intended change was actually made.

Important

If working on a platform where the name of the dynamic linker is something other than
ld-linux.so.2, substitute “ld-linux.so.2” with the name of the platform's dynamic linker in the
above commands. Refer back to Section 5.2, “Toolchain Technical Notes,” if necessary.

Linux From Scratch - Version 6.1

113



Caution

It is imperative at this point to stop and ensure that the basic functions (compiling and linking) of
the adjusted toolchain are working as expected. To do this, perform a sanity check:

echo 'main(){}' > dummy.c
cc dummy.c
readelf -l a.out | grep ': /lib'

If everything is working correctly, there should be no errors, and the output of the last command
will be (allowing for platform-specific differences in dynamic linker name):

[Requesting program interpreter: /lib/ld-linux.so.2]

Note that /lib is now the prefix of our dynamic linker.

If the output does not appear as shown above or is not received at all, then something is seriously
wrong. Investigate and retrace the steps to find out where the problem is and correct it. The most
likely reason is that something went wrong with the specs file amendment above. Any issues will
need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm dummy.c a.out

Linux From Scratch - Version 6.1

114



6.13. Binutils-2.15.94.0.2.2
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.3 SBU
Required disk space: 158 MB

Installation depends on: Bash, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc, Grep, M4, Make, Perl,
Sed, and Texinfo

6.13.1. Installation of Binutils
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building Binutils.

Verify that the PTYs are working properly inside the chroot environment. Check that everything is set up
correctly by performing a simple test:

expect -c "spawn ls"

If the following message shows up, the chroot environment is not set up for proper PTY operation:

The system has no more ptys.
Ask your system administrator to create more.

This issue needs to be resolved before running the test suites for Binutils and GCC.

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build
directory:

mkdir ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

../binutils-2.15.94.0.2.2/configure --prefix=/usr \
--enable-shared

Compile the package:

make tooldir=/usr

Normally, the tooldir (the directory where the executables will ultimately be located) is set to
$(exec_prefix)/$(target_alias). For example, i686 machines would expand that to
/usr/i686-pc-linux-gnu. Because this is a custom system, this target-specific directory in /usr is not
required. $(exec_prefix)/$(target_alias) would be used if the system was used to cross-compile
(for example, compiling a package on an Intel machine that generates code that can be executed on PowerPC
machines).

Linux From Scratch - Version 6.1

115



Important

The test suite for Binutils in this section is considered critical. Do not skip it under any
circumstances.

Test the results:

make check

Install the package:

make tooldir=/usr install

Install the libiberty header file that is needed by some packages:

cp ../binutils-2.15.94.0.2.2/include/libiberty.h /usr/include

6.13.2. Contents of Binutils
Installed programs: addr2line, ar, as, c++filt, gprof, ld, nm, objcopy, objdump, ranlib, readelf, size, strings,
and strip
Installed libraries: libiberty.a, libbfd.[a,so], and libopcodes.[a,so]

Short Descriptions

addr2line Translates program addresses to file names and line numbers; given an address and the name
of an executable, it uses the debugging information in the executable to determine which
source file and line number are associated with the address

ar Creates, modifies, and extracts from archives

as An assembler that assembles the output of gcc into object files

c++filt Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from
clashing

gprof Displays call graph profile data

ld A linker that combines a number of object and archive files into a single file, relocating their
data and tying up symbol references

nm Lists the symbols occurring in a given object file

objcopy Translates one type of object file into another

objdump Displays information about the given object file, with options controlling the particular
information to display; the information shown is useful to programmers who are working on
the compilation tools

ranlib Generates an index of the contents of an archive and stores it in the archive; the index lists all
of the symbols defined by archive members that are relocatable object files

readelf Displays information about ELF type binaries

Linux From Scratch - Version 6.1

116



size Lists the section sizes and the total size for the given object files

strings Outputs, for each given file, the sequences of printable characters that are of at least the
specified length (defaulting to four); for object files, it prints, by default, only the strings from
the initializing and loading sections while for other types of files, it scans the entire file

strip Discards symbols from object files

libiberty Contains routines used by various GNU programs, including getopt, obstack, strerror, strtol,
and strtoul

libbfd The Binary File Descriptor library

libopcodes A library for dealing with opcodes—the “readable text” versions of instructions for the
processor; it is used for building utilities like objdump.

Linux From Scratch - Version 6.1

117



6.14. GCC-3.4.3
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 11.7 SBU
Required disk space: 451 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc, Grep, Make, Perl,
Sed, and Texinfo

6.14.1. Installation of GCC
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building GCC.

Apply only the No-Fixincludes patch (not the Specs patch) also used in the previous chapter:

patch -Np1 -i ../gcc-3.4.3-no_fixincludes-1.patch

GCC fails to compile some packages outside of a base Linux From Scratch install (e.g., Mozilla and
kdegraphics) when used in conjunction with newer versions of Binutils. Apply the following patch to fix this
issue:

patch -Np1 -i ../gcc-3.4.3-linkonce-1.patch

Apply a sed substitution that will suppress the installation of libiberty.a. The version of libiberty.a
provided by Binutils will be used instead:

sed -i 's/install_to_$(INSTALL_DEST) //' libiberty/Makefile.in

The GCC documentation recommends building GCC outside of the source directory in a dedicated build
directory:

mkdir ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

../gcc-3.4.3/configure --prefix=/usr \
--libexecdir=/usr/lib --enable-shared \
--enable-threads=posix --enable-__cxa_atexit \
--enable-clocale=gnu --enable-languages=c,c++

Compile the package:

make

Important

In this section, the test suite for GCC is considered critical. Do not skip it under any circumstance.

Linux From Scratch - Version 6.1

118



Test the results, but do not stop at errors:

make -k check

Some of the errors are known issues and were noted in the previous chapter. The test suite notes from
Section 5.11, “GCC-3.4.3 - Pass 2,” are still relevant here. Be sure to refer back to them as necessary.

Install the package:

make install

Some packages expect the C preprocessor to be installed in the /lib directory. To support those packages,
create this symlink:

ln -s ../usr/bin/cpp /lib

Many packages use the name cc to call the C compiler. To satisfy those packages, create a symlink:

ln -s gcc /usr/bin/cc

Note

At this point, it is strongly recommended to repeat the sanity check performed earlier in this
chapter. Refer back to Section 6.12, “Re-adjusting the Toolchain,” and repeat the check. If the
results are in error, then the most likely reason is that the GCC Specs patch from Chapter 5 was
erroneously applied here.

6.14.2. Contents of GCC
Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gccbug, and gcov
Installed libraries: libgcc.a, libgcc_eh.a, libgcc_s.so, libstdc++.[a,so], and libsupc++.a

Short Descriptions

cc The C compiler

cpp The C preprocessor; it is used by the compiler to expand the #include, #define, and similar
statements in the source files

c++ The C++ compiler

g++ The C++ compiler

gcc The C compiler

gccbug A shell script used to help create useful bug reports

gcov A coverage testing tool; it is used to analyze programs to determine where optimizations will
have the most effect

libgcc Contains run-time support for gcc

libstdc++ The standard C++ library

Linux From Scratch - Version 6.1

119



libsupc++ Provides supporting routines for the C++ programming language

Linux From Scratch - Version 6.1

120



6.15. Coreutils-5.2.1
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 0.9 SBU
Required disk space: 52.8 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl, and Sed

6.15.1. Installation of Coreutils
A known issue with the uname program from this package is that the -p switch always returns unknown. The
following patch fixes this behavior for Intel architectures:

patch -Np1 -i ../coreutils-5.2.1-uname-2.patch

Prevent Coreutils from installing binaries that will be installed by other packages later:

patch -Np1 -i \
../coreutils-5.2.1-suppress_uptime_kill_su-1.patch

Now prepare Coreutils for compilation:

DEFAULT_POSIX2_VERSION=199209 ./configure --prefix=/usr

Compile the package:

make

The test suite of Coreutils makes several assumptions about the presence of system users and groups that are not
valid within the minimal environment that exists at the moment. Therefore, additional items need to be set up
before running the tests. Skip down to “Install the package” if not running the test suite.

Create two dummy groups and a dummy user:

echo "dummy1:x:1000:" >> /etc/group
echo "dummy2:x:1001:dummy" >> /etc/group
echo "dummy:x:1000:1000:::/bin/bash" >> /etc/passwd

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=dummy check-root

Then run the remainder of the tests as the dummy user:

src/su dummy -c "make RUN_EXPENSIVE_TESTS=yes check"

When testing is complete, remove the dummy user and groups:

sed -i '/dummy/d' /etc/passwd /etc/group

Install the package:

make install

Linux From Scratch - Version 6.1

121



Move programs to the proper locations:

mv /usr/bin/{[,basename,cat,chgrp,chmod,chown,cp,dd,df} /bin
mv /usr/bin/{date,echo,false,head,hostname,install,ln} /bin
mv /usr/bin/{ls,mkdir,mknod,mv,pwd,rm,rmdir,sync} /bin
mv /usr/bin/{sleep,stty,test,touch,true,uname} /bin
mv /usr/bin/chroot /usr/sbin

Finally, create a symlink to be FHS-compliant:

ln -s ../../bin/install /usr/bin

6.15.2. Contents of Coreutils
Installed programs: basename, cat, chgrp, chmod, chown, chroot, cksum, comm, cp, csplit, cut, date, dd, df,
dir, dircolors, dirname, du, echo, env, expand, expr, factor, false, fmt, fold, groups, head, hostid, hostname, id,
install, join, link, ln, logname, ls, md5sum, mkdir, mkfifo, mknod, mv, nice, nl, nohup, od, paste, pathchk,
pinky, pr, printenv, printf, ptx, pwd, readlink, rm, rmdir, seq, sha1sum, shred, sleep, sort, split, stat, stty, sum,
sync, tac, tail, tee, test, touch, tr, true, tsort, tty, uname, unexpand, uniq, unlink, users, vdir, wc, who, whoami,
and yes

Short Descriptions

basename Strips any path and a given suffix from a file name

cat Concatenates files to standard output

chgrp Changes the group ownership of files and directories

chmod Changes the permissions of each file to the given mode; the mode can be either a symbolic
representation of the changes to make or an octal number representing the new permissions

chown Changes the user and/or group ownership of files and directories

chroot Runs a command with the specified directory as the / directory

cksum Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm Compares two sorted files, outputting in three columns the lines that are unique and the lines
that are common

cp Copies files

csplit Splits a given file into several new files, separating them according to given patterns or line
numbers and outputting the byte count of each new file

cut Prints sections of lines, selecting the parts according to given fields or positions

date Displays the current time in the given format, or sets the system date

dd Copies a file using the given block size and count, while optionally performing conversions on
it

Linux From Scratch - Version 6.1

122



df Reports the amount of disk space available (and used) on all mounted file systems, or only on
the file systems holding the selected files

dir Lists the contents of each given directory (the same as the ls command)

dircolors Outputs commands to set the LS_COLOR environment variable to change the color scheme
used by ls

dirname Strips the non-directory suffix from a file name

du Reports the amount of disk space used by the current directory, by each of the given directories
(including all subdirectories) or by each of the given files

echo Displays the given strings

env Runs a command in a modified environment

expand Converts tabs to spaces

expr Evaluates expressions

factor Prints the prime factors of all specified integer numbers

false Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt Reformats the paragraphs in the given files

fold Wraps the lines in the given files

groups Reports a user's group memberships

head Prints the first ten lines (or the given number of lines) of each given file

hostid Reports the numeric identifier (in hexadecimal) of the host

hostname Reports or sets the name of the host

id Reports the effective user ID, group ID, and group memberships of the current user or specified
user

install Copies files while setting their permission modes and, if possible, their owner and group

join Joins the lines that have identical join fields from two separate files

link Creates a hard link with the given name to a file

ln Makes hard links or soft (symbolic) links between files

logname Reports the current user's login name

ls Lists the contents of each given directory

md5sum Reports or checks Message Digest 5 (MD5) checksums

mkdir Creates directories with the given names

mkfifo Creates First-In, First-Outs (FIFOs), a “named pipe” in UNIX parlance, with the given names

mknod Creates device nodes with the given names; a device node is a character special file, a block
special file, or a FIFO

Linux From Scratch - Version 6.1

123



mv Moves or renames files or directories

nice Runs a program with modified scheduling priority

nl Numbers the lines from the given files

nohup Runs a command immune to hangups, with its output redirected to a log file

od Dumps files in octal and other formats

paste Merges the given files, joining sequentially corresponding lines side by side, separated by tab
characters

pathchk Checks if file names are valid or portable

pinky Is a lightweight finger client; it reports some information about the given users

pr Paginates and columnates files for printing

printenv Prints the environment

printf Prints the given arguments according to the given format, much like the C printf function

ptx Produces a permuted index from the contents of the given files, with each keyword in its context

pwd Reports the name of the current working directory

readlink Reports the value of the given symbolic link

rm Removes files or directories

rmdir Removes directories if they are empty

seq Prints a sequence of numbers within a given range and with a given increment

sha1sum Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

shred Overwrites the given files repeatedly with complex patterns, making it difficult to recover the
data

sleep Pauses for the given amount of time

sort Sorts the lines from the given files

split Splits the given file into pieces, by size or by number of lines

stat Displays file or filesystem status

stty Sets or reports terminal line settings

sum Prints checksum and block counts for each given file

sync Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac Concatenates the given files in reverse

tail Prints the last ten lines (or the given number of lines) of each given file

tee Reads from standard input while writing both to standard output and to the given files

test Compares values and checks file types

Linux From Scratch - Version 6.1

124



touch Changes file timestamps, setting the access and modification times of the given files to the
current time; files that do not exist are created with zero length

tr Translates, squeezes, and deletes the given characters from standard input

true Does nothing, successfully; it always exits with a status code indicating success

tsort Performs a topological sort; it writes a completely ordered list according to the partial ordering
in a given file

tty Reports the file name of the terminal connected to standard input

uname Reports system information

unexpand Converts spaces to tabs

uniq Discards all but one of successive identical lines

unlink Removes the given file

users Reports the names of the users currently logged on

vdir Is the same as ls -l

wc Reports the number of lines, words, and bytes for each given file, as well as a total line when
more than one file is given

who Reports who is logged on

whoami Reports the user name associated with the current effective user ID

yes Repeatedly outputs “y” or a given string until killed

Linux From Scratch - Version 6.1

125



6.16. Zlib-1.2.2
The Zlib package contains compression and decompression routines used by some programs.

Approximate build time: 0.1 SBU
Required disk space: 2.7 MB

Installation depends on: Binutils, Coreutils, GCC, Glibc, Make, and Sed

6.16.1. Installation of Zlib
Zlib has a buffer overflow vulnerability that can lead to a Denial of Service attack. The following patch fixes the
problem:

patch -Np1 -i ../zlib-1.2.2-security_fix-1.patch

Note

Zlib is known to build its shared library incorrectly if CFLAGS is specified in the environment. If
using a specified CFLAGS variable, be sure to add the -fPIC directive to the CFLAGS variable for
the duration of the configure command below, then remove it afterwards.

Prepare Zlib for compilation:

./configure --prefix=/usr --shared --libdir=/lib

Compile the package:

make

To test the results, issue: make check.

Install the shared library:

make install

The previous command installed a .so file in /lib. We will remove it and relink it into /usr/lib:

rm /lib/libz.so
ln -sf ../../lib/libz.so.1.2.2 /usr/lib/libz.so

Build the static library:

make clean
./configure --prefix=/usr
make

To test the results again, issue: make check.

Install the static library:

make install

Linux From Scratch - Version 6.1

126



Fix the permissions on the static library:

chmod 644 /usr/lib/libz.a

6.16.2. Contents of Zlib
Installed libraries: libz.[a,so]

Short Descriptions

libz Contains compression and un-compression functions used by some programs

Linux From Scratch - Version 6.1

127



6.17. Mktemp-1.5
The Mktemp package contains programs used to create secure temporary files in shell scripts.

Approximate build time: 0.1 SBU
Required disk space: 436 KB

Installation depends on: Coreutils, Make, and Patch

6.17.1. Installation of Mktemp
Many scripts still use the deprecated tempfile program, which has functionality similar to mktemp. Patch
Mktemp to include a tempfile wrapper:

patch -Np1 -i ../mktemp-1.5-add_tempfile-2.patch

Prepare Mktemp for compilation:

./configure --prefix=/usr --with-libc

The meaning of the configure options:

--with-libc
This causes the mktemp program to use the mkstemp and mkdtemp functions from the system C library.

Compile the package:

make

Install the package:

make install
make install-tempfile

6.17.2. Contents of Mktemp
Installed programs: mktemp and tempfile

Short Descriptions

mktemp Creates temporary files in a secure manner; it is used in scripts

tempfile Creates temporary files in a less secure manner than mktemp; it is installed for
backwards-compatibility

Linux From Scratch - Version 6.1

128



6.18. Iana-Etc-1.04
The Iana-Etc package provides data for network services and protocols.

Approximate build time: 0.1 SBU
Required disk space: 1.9 MB

Installation depends on: Make

6.18.1. Installation of Iana-Etc
The following command converts the raw data provided by IANA into the correct formats for the
/etc/protocols and /etc/services data files:

make

Install the package:

make install

6.18.2. Contents of Iana-Etc
Installed files: /etc/protocols and /etc/services

Short Descriptions

/etc/protocols Describes the various DARPA Internet protocols that are available from the TCP/IP
subsystem

/etc/services Provides a mapping between friendly textual names for internet services, and their
underlying assigned port numbers and protocol types

Linux From Scratch - Version 6.1

129



6.19. Findutils-4.2.23
The Findutils package contains programs to find files. These programs are provided to recursively search
through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but
unreliable if the database has not been recently updated).

Approximate build time: 0.1 SBU
Required disk space: 9.4 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make and Sed

6.19.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/usr --libexecdir=/usr/lib/locate \
--localstatedir=/var/lib/locate

The localstatedir option above changes the location of the locate database to be in
/var/lib/locate, which is FHS-compliant.

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.19.2. Contents of Findutils
Installed programs: bigram, code, find, frcode, locate, updatedb, and xargs

Short Descriptions

bigram Was formerly used to produce locate databases

code Was formerly used to produce locate databases; it is the ancestor of frcode.

find Searches given directory trees for files matching the specified criteria

frcode Is called by updatedb to compress the list of file names; it uses front-compression, reducing the
database size by a factor of four to five.

locate Searches through a database of file names and reports the names that contain a given string or
match a given pattern

updatedb Updates the locate database; it scans the entire file system (including other file systems that are
currently mounted, unless told not to) and puts every file name it finds into the database

xargs Can be used to apply a given command to a list of files

Linux From Scratch - Version 6.1

130



6.20. Gawk-3.1.4
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 16.4 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

6.20.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/usr --libexecdir=/usr/lib

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.20.2. Contents of Gawk
Installed programs: awk (link to gawk), gawk, gawk-3.1.4, grcat, igawk, pgawk, pgawk-3.1.4, and pwcat

Short Descriptions

awk A link to gawk

gawk A program for manipulating text files; it is the GNU implementation of awk

gawk-3.1.4 A hard link to gawk

grcat Dumps the group database /etc/group

igawk Gives gawk the ability to include files

pgawk The profiling version of gawk

pgawk-3.1.4 Hard link to pgawk

pwcat Dumps the password database /etc/passwd

Linux From Scratch - Version 6.1

131



6.21. Ncurses-5.4
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.6 SBU
Required disk space: 18.6 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

6.21.1. Installation of Ncurses
Prepare Ncurses for compilation:

./configure --prefix=/usr --with-shared --without-debug

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Give the Ncurses libraries execute permissions:

chmod 755 /usr/lib/*.5.4

Fix a library that should not be executable:

chmod 644 /usr/lib/libncurses++.a

Move the libraries to the /lib directory, where they are expected to reside:

mv /usr/lib/libncurses.so.5* /lib

Because the libraries have been moved, a few symlinks point to non-existent files. Recreate those symlinks:

ln -sf ../../lib/libncurses.so.5 /usr/lib/libncurses.so
ln -sf libncurses.so /usr/lib/libcurses.so

Linux From Scratch - Version 6.1

132



6.21.2. Contents of Ncurses
Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), reset (link to tset), tack, tic,
toe, tput, and tset
Installed libraries: libcurses.[a,so] (link to libncurses.[a,so]), libform.[a,so], libmenu.[a,so], libncurses++.a,
libncurses.[a,so], and libpanel.[a,so]

Short Descriptions

captoinfo Converts a termcap description into a terminfo description

clear Clears the screen, if possible

infocmp Compares or prints out terminfo descriptions

infotocap Converts a terminfo description into a termcap description

reset Reinitializes a terminal to its default values

tack The terminfo action checker; it is mainly used to test the accuracy of an entry in the terminfo
database

tic The terminfo entry-description compiler that translates a terminfo file from source format into
the binary format needed for the ncurses library routines. A terminfo file contains information
on the capabilities of a certain terminal

toe Lists all available terminal types, giving the primary name and description for each

tput Makes the values of terminal-dependent capabilities available to the shell; it can also be used
to reset or initialize a terminal or report its long name

tset Can be used to initialize terminals

libcurses A link to libncurses

libncurses Contains functions to display text in many complex ways on a terminal screen; a good
example of the use of these functions is the menu displayed during the kernel's make
menuconfig

libform Contains functions to implement forms

libmenu Contains functions to implement menus

libpanel Contains functions to implement panels

Linux From Scratch - Version 6.1

133



6.22. Readline-5.0
The Readline package is a set of libraries that offers command-line editing and history capabilities.

Approximate build time: 0.11 SBU
Required disk space: 9.1 MB

Installation depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, and Sed

6.22.1. Installation of Readline
The following patch includes a fix for a problem where Readline sometimes only shows 33 characters on a line
and then wraps to the next line. It also includes other fixes recommended by the Readline author.

patch -Np1 -i ../readline-5.0-fixes-1.patch

Prepare Readline for compilation:

./configure --prefix=/usr --libdir=/lib

Compile the package:

make SHLIB_XLDFLAGS=-lncurses

The meaning of the make option:

SHLIB_XLDFLAGS=-lncurses
This option forces Readline to link against the libncurses library.

Install the package:

make install

Give Readline's dynamic libraries more appropriate permissions:

chmod 755 /lib/lib{readline,history}.so*

Now move the static libraries to a more appropriate location:

mv /lib/lib{readline,history}.a /usr/lib

Next, remove the .so files in /lib and relink them into /usr/lib.

rm /lib/lib{readline,history}.so
ln -sf ../../lib/libreadline.so.5 /usr/lib/libreadline.so
ln -sf ../../lib/libhistory.so.5 /usr/lib/libhistory.so

Linux From Scratch - Version 6.1

134



6.22.2. Contents of Readline
Installed libraries: libhistory.[a,so], and libreadline.[a,so]

Short Descriptions

libhistory Provides a consistent user interface for recalling lines of history

libreadline Aids in the consistency of user interface across discrete programs that need to provide a
command line interface

Linux From Scratch - Version 6.1

135



6.23. Vim-6.3
The Vim package contains a powerful text editor.

Approximate build time: 0.4 SBU
Required disk space: 38.0 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

Alternatives to Vim

If you prefer another editor—such as Emacs, Joe, or Nano—please refer to
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html for suggested installation
instructions.

6.23.1. Installation of Vim
First, unpack both vim-6.3.tar.bz2 and (optionally) vim-6.3-lang.tar.gz archives into the same
directory. Then, change the default locations of the vimrc and gvimrc configuration files to /etc:

echo '#define SYS_VIMRC_FILE "/etc/vimrc"' >> src/feature.h
echo '#define SYS_GVIMRC_FILE "/etc/gvimrc"' >> src/feature.h

Vim has a security vulnerability already addressed upstream. The following patch fixes the problem:

patch -Np1 -i ../vim-6.3-security_fix-1.patch

Now prepare Vim for compilation:

./configure --prefix=/usr --enable-multibyte

The optional but highly recommended --enable-multibyte switch includes support for editing files in
multibyte character encodings into vim. This is needed if using a locale with a multibyte character set. This
switch is also helpful to be able to edit text files initially created in Linux distributions like Fedora Core that use
UTF-8 as a default character set.

Compile the package:

make

To test the results, issue: make test. However, this test suite outputs a lot of binary data to the screen, which
can cause issues with the settings of the current terminal. This can be resolved by redirecting the output to a log
file.

Install the package:

make install

Many users are used to using vi instead of vim. To allow execution of vim when users habitually enter vi, create
a symlink:

ln -s vim /usr/bin/vi

Linux From Scratch - Version 6.1

136

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html


If an X Window System is going to be installed on the LFS system, it may be necessary to recompile Vim after
installing X. Vim comes with a GUI version of the editor that requires X and some additional libraries to be
installed. For more information on this process, refer to the Vim documentation and the Vim installation page in
the BLFS book at http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html#postlfs-editors-vim.

6.23.2. Configuring Vim
By default, vim runs in vi-incompatible mode. This may be new to users who have used other editors in the
past. The “nocompatible” setting is included below to highlight the fact that a new behavior is being used. It
also reminds those who would change to “compatible” mode that it should be the first setting in the
configuration file. This is necessary because it changes other settings, and overrides must come after this
setting. Create a default vim configuration file by running the following:

cat > /etc/vimrc << "EOF"
" Begin /etc/vimrc

set nocompatible
set backspace=2
syntax on
if (&term == "iterm") || (&term == "putty")

set background=dark
endif

" End /etc/vimrc
EOF

The set nocompatible makes vim behave in a more useful way (the default) than the vi-compatible
manner. Remove the “no” to keep the old vi behavior. The set backspace=2 allows backspacing over line
breaks, autoindents, and the start of insert. The syntax on enables vim's syntax highlighting. Finally, the if
statement with the set background=dark corrects vim's guess about the background color of some
terminal emulators. This gives the highlighting a better color scheme for use on the black background of these
programs.

Documentation for other available options can be obtained by running the following command:

vim -c ':options'

6.23.3. Contents of Vim
Installed programs: efm_filter.pl, efm_perl.pl, ex (link to vim), less.sh, mve.awk, pltags.pl, ref, rview (link to
vim), rvim (link to vim), shtags.pl, tcltags, vi (link to vim), view (link to vim), vim, vim132, vim2html.pl,
vimdiff (link to vim), vimm, vimspell.sh, vimtutor, and xxd

Short Descriptions

efm_filter.pl A filter for creating an error file that can be read by vim

efm_perl.pl Reformats the error messages of the Perl interpreter for use with the “quickfix” mode of
vim

ex Starts vim in ex mode

Linux From Scratch - Version 6.1

137

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html#postlfs-editors-vim


less.sh A script that starts vim with less.vim

mve.awk Processes vim errors

pltags.pl Creates a tags file for Perl code for use by vim

ref Checks the spelling of arguments

rview Is a restricted version of view; no shell commands can be started and view cannot be
suspended

rvim Is a restricted version of vim; no shell commands can be started and vim cannot be
suspended

shtags.pl Generates a tags file for Perl scripts

tcltags Generates a tags file for TCL code

view Starts vim in read-only mode

vi Is the editor

vim Is the editor

vim132 Starts vim with the terminal in 132-column mode

vim2html.pl Converts Vim documentation to HypterText Markup Language (HTML)

vimdiff Edits two or three versions of a file with vim and show differences

vimm Enables the DEC locator input model on a remote terminal

vimspell.sh Spell checks a file and generates the syntax statements necessary to highlight in vim. This
script requires the old Unix spell command, which is provided neither in LFS nor in
BLFS

vimtutor Teaches the basic keys and commands of vim

xxd Creates a hex dump of the given file; it can also do the reverse, so it can be used for
binary patching

Linux From Scratch - Version 6.1

138



6.24. M4-1.4.3
The M4 package contains a macro processor.

Approximate build time: 0.1 SBU
Required disk space: 2.8 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl, and Sed

6.24.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.24.2. Contents of M4
Installed program: m4

Short Descriptions

m4 copies the given files while expanding the macros that they contain. These macros are either built-in or
user-defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in
functions for including named files, running Unix commands, performing integer arithmetic, manipulating
text, recursion, etc. The m4 program can be used either as a front-end to a compiler or as a macro
processor in its own right.

Linux From Scratch - Version 6.1

139



6.25. Bison-2.0
The Bison package contains a parser generator.

Approximate build time: 0.6 SBU
Required disk space: 9.9 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4, Make, and Sed

6.25.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.25.2. Contents of Bison
Installed programs: bison and yacc
Installed library: liby.a

Short Descriptions

bison Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a
replacement for Yacc (Yet Another Compiler Compiler)

yacc A wrapper for bison, meant for programs that still call yacc instead of bison; it calls bison with the
-y option

liby.a The Yacc library containing implementations of Yacc-compatible yyerror and main functions; this
library is normally not very useful, but POSIX requires it

Linux From Scratch - Version 6.1

140



6.26. Less-382
The Less package contains a text file viewer.

Approximate build time: 0.1 SBU
Required disk space: 2.3 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

6.26.1. Installation of Less
Prepare Less for compilation:

./configure --prefix=/usr --bindir=/bin --sysconfdir=/etc

The meaning of the configure options:

--sysconfdir=/etc
This option tells the programs created by the package to look in /etc for the configuration files.

Compile the package:

make

Install the package:

make install

6.26.2. Contents of Less
Installed programs: less, lessecho, and lesskey

Short Descriptions

less A file viewer or pager; it displays the contents of the given file, letting the user scroll, find
strings, and jump to marks

lessecho Needed to expand meta-characters, such as * and ?, in filenames on Unix systems

lesskey Used to specify the key bindings for less

Linux From Scratch - Version 6.1

141



6.27. Groff-1.19.1
The Groff package contains programs for processing and formatting text.

Approximate build time: 0.5 SBU
Required disk space: 38.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

6.27.1. Installation of Groff
Groff expects the environment variable PAGE to contain the default paper size. For users in the United States,
PAGE=letter is appropriate. Elsewhere, PAGE=A4 may be more suitable.

Prepare Groff for compilation:

PAGE=[paper_size] ./configure --prefix=/usr

Compile the package:

make

Install the package:

make install

Some documentation programs, such as xman, will not work properly without the following symlinks:

ln -s soelim /usr/bin/zsoelim
ln -s eqn /usr/bin/geqn
ln -s tbl /usr/bin/gtbl

6.27.2. Contents of Groff
Installed programs: addftinfo, afmtodit, eqn, eqn2graph, geqn (link to eqn), grn, grodvi, groff, groffer, grog,
grolbp, grolj4, grops, grotty, gtbl (link to tbl), hpftodit, indxbib, lkbib, lookbib, mmroff, neqn, nroff, pfbtops,
pic, pic2graph, post-grohtml, pre-grohtml, refer, soelim, tbl, tfmtodit, troff, and zsoelim (link to soelim)

Short Descriptions

addftinfo Reads a troff font file and adds some additional font-metric information that is used by the
groff system

afmtodit Creates a font file for use with groff and grops

eqn Compiles descriptions of equations embedded within troff input files into commands that
are understood by troff

eqn2graph Converts a troff EQN (equation) into a cropped image

geqn A link to eqn

grn A groff preprocessor for gremlin files

Linux From Scratch - Version 6.1

142



grodvi A driver for groff that produces TeX dvi format

groff A front-end to the groff document formatting system; normally, it runs the troff program
and a post-processor appropriate for the selected device

groffer Displays groff files and man pages on X and tty terminals

grog Reads files and guesses which of the groff options -e, -man, -me, -mm, -ms, -p, -s, and
-t are required for printing files, and reports the groff command including those options

grolbp Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers)

grolj4 Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4
printer

grops Translates the output of GNU troff to PostScript

grotty Translates the output of GNU troff into a form suitable for typewriter-like devices

gtbl A link to tbl

hpftodit Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file

indxbib Creates an inverted index for the bibliographic databases with a specified file for use with
refer, lookbib, and lkbib

lkbib Searches bibliographic databases for references that contain specified keys and reports any
references found

lookbib Prints a prompt on the standard error (unless the standard input is not a terminal), reads a
line containing a set of keywords from the standard input, searches the bibliographic
databases in a specified file for references containing those keywords, prints any references
found on the standard output, and repeats this process until the end of input

mmroff A simple preprocessor for groff

neqn Formats equations for American Standard Code for Information Interchange (ASCII)
output

nroff A script that emulates the nroff command using groff

pfbtops Translates a PostScript font in .pfb format to ASCII

pic Compiles descriptions of pictures embedded within troff or TeX input files into commands
understood by TeX or troff

pic2graph Converts a PIC diagram into a cropped image

post-grohtml Translates the output of GNU troff to HTML

pre-grohtml Translates the output of GNU troff to HTML

refer Copies the contents of a file to the standard output, except that lines between .[ and .] are
interpreted as citations, and lines between .R1 and .R2 are interpreted as commands for how
citations are to be processed

soelim Reads files and replaces lines of the form .so file by the contents of the mentioned file

Linux From Scratch - Version 6.1

143



tbl Compiles descriptions of tables embedded within troff input files into commands that are
understood by troff

tfmtodit Creates a font file for use with groff -Tdvi

troff Is highly compatible with Unix troff; it should usually be invoked using the groff
command, which will also run preprocessors and post-processors in the appropriate order
and with the appropriate options

zsoelim A link to soelim

Linux From Scratch - Version 6.1

144



6.28. Sed-4.1.4
The Sed package contains a stream editor.

Approximate build time: 0.2 SBU
Required disk space: 8.4 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Texinfo

6.28.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/usr --bindir=/bin

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.28.2. Contents of Sed
Installed program: sed

Short Descriptions

sed Filters and transforms text files in a single pass

Linux From Scratch - Version 6.1

145



6.29. Flex-2.5.31
The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.1 SBU
Required disk space: 22.5 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4, Make, and
Sed

6.29.1. Installation of Flex
Flex contains several known bugs. Fix these with the following patch:

patch -Np1 -i ../flex-2.5.31-debian_fixes-3.patch

The GNU autotools detects that the Flex source code has been modified by the previous patch and tries to
update the man page accordingly. This does not work correctly on many systems, and the default page is fine, so
make sure it does not get regenerated:

touch doc/flex.1

Prepare Flex for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

There are some packages that expect to find the lex library in /usr/lib. Create a symlink to account for
this:

ln -s libfl.a /usr/lib/libl.a

A few programs do not know about flex yet and try to run its predecessor, lex. To support those programs,
create a wrapper script named lex that calls flex in lex emulation mode:

cat > /usr/bin/lex << "EOF"
#!/bin/sh
# Begin /usr/bin/lex

exec /usr/bin/flex -l "$@"

# End /usr/bin/lex
EOF
chmod 755 /usr/bin/lex

Linux From Scratch - Version 6.1

146



6.29.2. Contents of Flex
Installed programs: flex, flex++ (link to flex), and lex
Installed library: libfl.a

Short Descriptions

flex A tool for generating programs that recognize patterns in text; it allows for the versatility to specify
the rules for pattern-finding, eradicating the need to develop a specialized program

flex++ Invokes a version of flex that is used exclusively for C++ scanners

lex A script that runs flex in lex emulation mode

libfl.a The flex library

Linux From Scratch - Version 6.1

147



6.30. Gettext-0.14.3
The Gettext package contains utilities for internationalization and localization. These allow programs to be
compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 1.2 SBU
Required disk space: 65.1 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

6.30.1. Installation of Gettext
Prepare Gettext for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check. This takes a very long time, around 7 SBUs.

Install the package:

make install

6.30.2. Contents of Gettext
Installed programs: autopoint, config.charset, config.rpath, envsubst, gettext, gettextize, hostname, msgattrib,
msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec, msgfilter, msgfmt, msggrep, msginit, msgmerge,
msgunfmt, msguniq, ngettext, and xgettext
Installed libraries: libasprintf.[a,so], libgettextlib.so, libgettextpo.[a,so], and libgettextsrc.so

Short Descriptions

autopoint Copies standard Gettext infrastructure files into a source package

config.charset Outputs a system-dependent table of character encoding aliases

config.rpath Outputs a system-dependent set of variables, describing how to set the runtime search
path of shared libraries in an executable

envsubst Substitutes environment variables in shell format strings

gettext Translates a natural language message into the user's language by looking up the
translation in a message catalog

gettextize Copies all standard Gettext files into the given top-level directory of a package to begin
internationalizing it

hostname Displays a network hostname in various forms

Linux From Scratch - Version 6.1

148



msgattrib Filters the messages of a translation catalog according to their attributes and manipulates
the attributes

msgcat Concatenates and merges the given .po files

msgcmp Compares two .po files to check that both contain the same set of msgid strings

msgcomm Finds the messages that are common to to the given .po files

msgconv Converts a translation catalog to a different character encoding

msgen Creates an English translation catalog

msgexec Applies a command to all translations of a translation catalog

msgfilter Applies a filter to all translations of a translation catalog

msgfmt Generates a binary message catalog from a translation catalog

msggrep Extracts all messages of a translation catalog that match a given pattern or belong to
some given source files

msginit Creates a new .po file, initializing the meta information with values from the user's
environment

msgmerge Combines two raw translations into a single file

msgunfmt Decompiles a binary message catalog into raw translation text

msguniq Unifies duplicate translations in a translation catalog

ngettext Displays native language translations of a textual message whose grammatical form
depends on a number

xgettext Extracts the translatable message lines from the given source files to make the first
translation template

libasprintf defines the autosprintf class, which makes C formatted output routines usable in C++
programs, for use with the <string> strings and the <iostream> streams

libgettextlib a private library containing common routines used by the various Gettext programs;
these are not intended for general use

libgettextpo Used to write specialized programs that process .po files; this library is used when the
standard applications shipped with Gettext (such as msgcomm, msgcmp, msgattrib,
and msgen) will not suffice

libgettextsrc A private library containing common routines used by the various Gettext programs;
these are not intended for general use

Linux From Scratch - Version 6.1

149



6.31. Inetutils-1.4.2
The Inetutils package contains programs for basic networking.

Approximate build time: 0.2 SBU
Required disk space: 8.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

6.31.1. Installation of Inetutils
Inetutils has issues with the Linux 2.6 kernel series. Fix these issues by applying the following patch:

patch -Np1 -i ../inetutils-1.4.2-kernel_headers-1.patch

All programs that come with Inetutils will not be installed. However, the Inetutils build system will insist on
installing all the man pages anyway. The following patch will correct this situation:

patch -Np1 -i ../inetutils-1.4.2-no_server_man_pages-1.patch

Prepare Inetutils for compilation:

./configure --prefix=/usr --libexecdir=/usr/sbin \
--sysconfdir=/etc --localstatedir=/var \
--disable-logger --disable-syslogd \
--disable-whois --disable-servers

The meaning of the configure options:

--disable-logger
This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to
the System Log Daemon. Do not install it because Util-linux installs a better version later.

--disable-syslogd
This option prevents Inetutils from installing the System Log Daemon, which is installed with the Sysklogd
package.

--disable-whois
This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better
whois client are in the BLFS book.

--disable-servers
This disables the installation of the various network servers included as part of the Inetutils package. These
servers are deemed not appropriate in a basic LFS system. Some are insecure by nature and are only
considered safe on trusted networks. More information can be found at
http://www.linuxfromscratch.org/blfs/view/svn/basicnet/inetutils.html. Note that better replacements are
available for many of these servers.

Compile the package:

make

Linux From Scratch - Version 6.1

150

http://www.linuxfromscratch.org/blfs/view/svn/basicnet/inetutils.html


Install the package:

make install

Move the ping program to its FHS-compliant place:

mv /usr/bin/ping /bin

6.31.2. Contents of Inetutils
Installed programs: ftp, ping, rcp, rlogin, rsh, talk, telnet, and tftp

Short Descriptions

ftp Is the file transfer protocol program

ping Sends echo-request packets and reports how long the replies take

rcp Performs remote file copy

rlogin Performs remote login

rsh Runs a remote shell

talk Is used to chat with another user

telnet An interface to the TELNET protocol

tftp A trivial file transfer program

Linux From Scratch - Version 6.1

151



6.32. IPRoute2-2.6.11-050330
The IPRoute2 package contains programs for basic and advanced IPV4-based networking.

Approximate build time: 0.1 SBU
Required disk space: 4.3 MB

Installation depends on: GCC, Glibc, Make, Linux-Headers, and Sed

6.32.1. Installation of IPRoute2
The arpd binary included in this package is dependent on Berkeley DB. Because arpd is not a very common
requirement on a base Linux system, remove the dependency on Berkeley DB by applying the patch using the
command below. If the arpd binary is needed, instructions for compiling Berkeley DB can be found in the
BLFS Book at http://www.linuxfromscratch.org/blfs/view/svn/server/databases.html#db.

patch -Np1 -i ../iproute2-2.6.11_050330-remove_db-1.patch

Prepare IPRoute2 for compilation:

./configure

Compile the package:

make SBINDIR=/sbin

The meaning of the make option:

SBINDIR=/sbin
This ensures that the IPRoute2 binaries will install into /sbin. This is the correct location according to the
FHS, because some of the IPRoute2 binaries are used by the LFS-Bootscripts package.

Install the package:

make SBINDIR=/sbin install

6.32.2. Contents of IPRoute2
Installed programs: ctstat (link to lnstat), ifcfg, ifstat, ip, lnstat, nstat, routef, routel, rtacct, rtmon, rtpr, rtstat
(link to lnstat), ss, and tc.

Short Descriptions

ctstat Connection status utility

ifcfg A shell script wrapper for the ip command

ifstat Shows the interface statistics, including the amount of transmitted and received packets by
interface

Linux From Scratch - Version 6.1

152

http://www.linuxfromscratch.org/blfs/view/svn/server/databases.html#db


ip The main executable. It has several different functions:

ip link [device] allows users to look at the state of devices and to make changes

ip addr allows users to look at addresses and their properties, add new addresses, and delete
old ones

ip neighbor allows users to look at neighbor bindings and their properties, add new neighbor
entries, and delete old ones

ip rule allows users to look at the routing policies and change them

ip route allows users to look at the routing table and change routing table rules

ip tunnel allows users to look at the IP tunnels and their properties, and change them

ip maddr allows users to look at the multicast addresses and their properties, and change
them

ip mroute allows users to set, change, or delete the multicast routing

ip monitor allows users to continously monitor the state of devices, addresses and routes

lnstat Provides Linux network statistics. It is a generalized and more feature-complete replacement
for the old rtstat program

nstat Shows network statistics

routef A component of ip route. This is for flushing the routing tables

routel A component of ip route. This is for listing the routing tables

rtacct Displays the contents of /proc/net/rt_acct

rtmon Route monitoring utility

rtpr Converts the output of ip -o back into a readable form

rtstat Route status utility

ss Similar to the netstat command; shows active connections

tc Traffic Controlling Executable; this is for Quality Of Service (QOS) and Class Of Service
(COS) implementations

tc qdisc allows users to setup the queueing discipline

tc class allows users to setup classes based on the queuing discipline scheduling

tc estimator allows users to estimate the network flow into a network

tc filter allows users to setup the QOS/COS packet filtering

tc policy allows users to setup the QOS/COS policies

Linux From Scratch - Version 6.1

153



6.33. Perl-5.8.6
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 2.9 SBU
Required disk space: 137 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

6.33.1. Installation of Perl
To have full control over the way Perl is set up, run the interactive Configure script and hand-pick the way this
package is built. If the defaults it auto-detects are suitable, prepare Perl for compilation with:

./configure.gnu --prefix=/usr -Dpager="/bin/less -isR"

The meaning of the configure options:

-Dpager="/bin/less -isR"
This corrects an error in the perldoc code with the invocation of the less program.

Compile the package:

make

To run the test suite, first create a basic /etc/hosts file which is needed by a couple of the tests to resolve
the network name localhost:

echo "127.0.0.1 localhost $(hostname)" > /etc/hosts

Now run the tests, if desired:

make test

Install the package:

make install

6.33.2. Contents of Perl
Installed programs: a2p, c2ph, dprofpp, enc2xs, find2perl, h2ph, h2xs, libnetcfg, perl, perl5.8.6 (link to perl),
perlbug, perlcc, perldoc, perlivp, piconv, pl2pm, pod2html, pod2latex, pod2man, pod2text, pod2usage,
podchecker, podselect, psed (link to s2p), pstruct (link to c2ph), s2p, splain, and xsubpp
Installed libraries: Several hundred which cannot all be listed here

Short Descriptions

a2p Translates awk to Perl

c2ph Dumps C structures as generated from cc -g -S

Linux From Scratch - Version 6.1

154



dprofpp Displays Perl profile data

en2cxs Builds a Perl extension for the Encode module from either Unicode Character Mappings or Tcl
Encoding Files

find2perl Translates find commands to Perl

h2ph Converts .h C header files to .ph Perl header files

h2xs Converts .h C header files to Perl extensions

libnetcfg Can be used to configure the libnet

perl Combines some of the best features of C, sed, awk and sh into a single swiss-army language

perl5.8.6 A hard link to perl

perlbug Used to generate bug reports about Perl, or the modules that come with it, and mail them

perlcc Generates executables from Perl programs

perldoc Displays a piece of documentation in pod format that is embedded in the Perl installation tree
or in a Perl script

perlivp The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries
have been installed correctly

piconv A Perl version of the character encoding converter iconv

pl2pm A rough tool for converting Perl4 .pl files to Perl5 .pm modules

pod2html Converts files from pod format to HTML format

pod2latex Converts files from pod format to LaTeX format

pod2man Converts pod data to formatted *roff input

pod2text Converts pod data to formatted ASCII text

pod2usage Prints usage messages from embedded pod docs in files

podchecker Checks the syntax of pod format documentation files

podselect Displays selected sections of pod documentation

psed A Perl version of the stream editor sed

pstruct Dumps C structures as generated from cc -g -S stabs

s2p Translates sed scripts to Perl

splain Is used to force verbose warning diagnostics in Perl

xsubpp Converts Perl XS code into C code

Linux From Scratch - Version 6.1

155



6.34. Texinfo-4.8
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.2 SBU
Required disk space: 14.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and
Sed

6.34.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

Optionally, install the components belonging in a TeX installation:

make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

TEXMF=/usr/share/texmf
The TEXMF makefile variable holds the location of the root of the TeX tree if, for example, a TeX package
will be installed later.

The Info documentation system uses a plain text file to hold its list of menu entries. The file is located at
/usr/share/info/dir. Unfortunately, due to occasional problems in the Makefiles of various packages, it
can sometimes get out of sync with the info pages installed on the system. If the /usr/share/info/dir
file ever needs to be recreated, the following optional commands will accomplish the task:

cd /usr/share/info
rm dir
for f in *
do install-info $f dir 2>/dev/null
done

Linux From Scratch - Version 6.1

156



6.34.2. Contents of Texinfo
Installed programs: info, infokey, install-info, makeinfo, texi2dvi, and texindex

Short Descriptions

info Used to read info pages which are similar to man pages, but often go much deeper than just
explaining all the available command line options. For example, compare man bison and
info bison.

infokey Compiles a source file containing Info customizations into a binary format

install-info Used to install info pages; it updates entries in the info index file

makeinfo Translates the given Texinfo source documents into info pages, plain text, or HTML

texi2dvi Used to format the given Texinfo document into a device-independent file that can be
printed

texindex Used to sort Texinfo index files

Linux From Scratch - Version 6.1

157



6.35. Autoconf-2.59
The Autoconf package contains programs for producing shell scripts that can automatically configure source
code.

Approximate build time: 0.5 SBU
Required disk space: 8.5 MB

Installation depends on: Bash, Coreutils, Diffutils, Grep, M4, Make, Perl, and Sed

6.35.1. Installation of Autoconf
Prepare Autoconf for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check. This takes a long time, about 2 SBUs.

Install the package:

make install

6.35.2. Contents of Autoconf
Installed programs: autoconf, autoheader, autom4te, autoreconf, autoscan, autoupdate, and ifnames

Short Descriptions

autoconf Produces shell scripts that automatically configure software source code packages to adapt to
many kinds of Unix-like systems. The configuration scripts it produces are
independent—running them does not require the autoconf program.

autoheader A tool for creating template files of C #define statements for configure to use

autom4te A wrapper for the M4 macro processor

autoreconf Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in
the correct order to save time when changes are made to autoconf and automake template
files

autoscan Helps to create a configure.in file for a software package; it examines the source files in
a directory tree, searching them for common portability issues, and creates a
configure.scan file that serves as as a preliminary configure.in file for the package

autoupdate Modifies a configure.in file that still calls autoconf macros by their old names to use the
current macro names

Linux From Scratch - Version 6.1

158



ifnames Helps when writing configure.in files for a software package; it prints the identifiers that
the package uses in C preprocessor conditionals. If a package has already been set up to have
some portability, this program can help determine what configure needs to check for. It can
also fill in gaps in a configure.in file generated by autoscan

Linux From Scratch - Version 6.1

159



6.36. Automake-1.9.5
The Automake package contains programs for generating Makefiles for use with Autoconf.

Approximate build time: 0.2 SBU
Required disk space: 8.8 MB

Installation depends on: Autoconf, Bash, Coreutils, Diffutils, Grep, M4, Make, Perl, and Sed

6.36.1. Installation of Automake
Prepare Automake for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check. This takes a long time, about 5 SBUs.

Install the package:

make install

6.36.2. Contents of Automake
Installed programs: acinstall, aclocal, aclocal-1.9.5, automake, automake-1.9.5, compile, config.guess,
config.sub, depcomp, elisp-comp, install-sh, mdate-sh, missing, mkinstalldirs, py-compile, symlink-tree, and
ylwrap

Short Descriptions

acinstall A script that installs aclocal-style M4 files

aclocal Generates aclocal.m4 files based on the contents of configure.in files

aclocal-1.9.5 A hard link to aclocal

automake A tool for automatically generating Makefile.in files from Makefile.am files. To
create all the Makefile.in files for a package, run this program in the top-level
directory. By scanning the configure.in file, it automatically finds each appropriate
Makefile.am file and generates the corresponding Makefile.in file

automake-1.9.5 A hard link to automake

compile A wrapper for compilers

config.guess A script that attempts to guess the canonical triplet for the given build, host, or target
architecture

config.sub A configuration validation subroutine script

Linux From Scratch - Version 6.1

160



depcomp A script for compiling a program so that dependency information is generated in
addition to the desired output

elisp-comp Byte-compiles Emacs Lisp code

install-sh A script that installs a program, script, or data file

mdate-sh A script that prints the modification time of a file or directory

missing A script acting as a common stub for missing GNU programs during an installation

mkinstalldirs A script that creates a directory tree

py-compile Compiles a Python program

symlink-tree A script to create a symlink tree of a directory tree

ylwrap A wrapper for lex and yacc

Linux From Scratch - Version 6.1

161



6.37. Bash-3.0
The Bash package contains the Bourne-Again SHell.

Approximate build time: 1.2 SBU
Required disk space: 20.6 MB

Installation depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, and Sed.

6.37.1. Installation of Bash
The following patch fixes various issues, including a problem where Bash will sometimes only show 33
characters on a line, then wrap to the next:

patch -Np1 -i ../bash-3.0-fixes-3.patch

Bash also has issues when compiled against newer versions of Glibc. The following patch resolves this
problem:

patch -Np1 -i ../bash-3.0-avoid_WCONTINUED-1.patch

Prepare Bash for compilation:

./configure --prefix=/usr --bindir=/bin \
--without-bash-malloc --with-installed-readline

The meaning of the configure options:

--with-installed-readline
This options tells Bash to use the readline library that is already installed on the system rather than using
its own readline version.

Compile the package:

make

To test the results, issue: make tests.

Install the package:

make install

Run the newly compiled bash program (replacing the one that is currently being executed):

exec /bin/bash --login +h

Note

The parameters used make the bash process an interactive login shell and continue to disable
hashing so that new programs are found as they become available.

Linux From Scratch - Version 6.1

162



6.37.2. Contents of Bash
Installed programs: bash, bashbug, and sh (link to bash)

Short Descriptions

bash A widely-used command interpreter; it performs many types of expansions and substitutions on a
given command line before executing it, thus making this interpreter a powerful tool

bashbug A shell script to help the user compose and mail standard formatted bug reports concerning bash

sh A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of
historical versions of sh as closely as possible, while conforming to the POSIX standard as well

Linux From Scratch - Version 6.1

163



6.38. File-4.13
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.1 SBU
Required disk space: 6.2 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed, and Zlib

6.38.1. Installation of File
Prepare File for compilation:

./configure --prefix=/usr

Compile the package:

make

Install the package:

make install

6.38.2. Contents of File
Installed programs: file
Installed library: libmagic.[a,so]

Short Descriptions

file Tries to classify each given file; it does this by performing several tests—file system tests, magic
number tests, and language tests

libmagic Contains routines for magic number recognition, used by the file program

Linux From Scratch - Version 6.1

164



6.39. Libtool-1.5.14
The Libtool package contains the GNU generic library support script. It wraps the complexity of using shared
libraries in a consistent, portable interface.

Approximate build time: 1.5 SBU
Required disk space: 19.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

6.39.1. Installation of Libtool
Prepare Libtool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.39.2. Contents of Libtool
Installed programs: libtool and libtoolize
Installed libraries: libltdl.[a,so]

Short Descriptions

libtool Provides generalized library-building support services

libtoolize Provides a standard way to add libtool support to a package

libltdl Hides the various difficulties of dlopening libraries

Linux From Scratch - Version 6.1

165



6.40. Bzip2-1.0.3
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with
bzip2 yields a much better compression percentage than with the traditional gzip.

Approximate build time: 0.1 SBU
Required disk space: 3.9 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, and Make

6.40.1. Installation of Bzip2
Prepare Bzip2 for compilation with:

make -f Makefile-libbz2_so
make clean

The -f flag will cause Bzip2 to be built using a different Makefile file, in this case the
Makefile-libbz2_so file, which creates a dynamic libbz2.so library and links the Bzip2 utilities
against it.

Compile the package:

make

To test the results, issue: make test.

If reinstalling Bzip2, perform rm -f /usr/bin/bz* first, otherwise the following make install will fail.

Install the programs:

make install

Install the shared bzip2 binary into the /bin directory, make some necessary symbolic links, and clean up:

cp bzip2-shared /bin/bzip2
cp -a libbz2.so* /lib
ln -s ../../lib/libbz2.so.1.0 /usr/lib/libbz2.so
rm /usr/bin/{bunzip2,bzcat,bzip2}
ln -s bzip2 /bin/bunzip2
ln -s bzip2 /bin/bzcat

6.40.2. Contents of Bzip2
Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp, bzdiff, bzegrep, bzfgrep, bzgrep,
bzip2, bzip2recover, bzless, and bzmore
Installed libraries: libbz2.[a,so]

Short Descriptions

bunzip2 Decompresses bzipped files

bzcat Decompresses to standard output

Linux From Scratch - Version 6.1

166



bzcmp Runs cmp on bzipped files

bzdiff Runs diff on bzipped files

bzgrep Runs grep on bzipped files

bzegrep Runs egrep on bzipped files

bzfgrep Runs fgrep on bzipped files

bzip2 Compresses files using the Burrows-Wheeler block sorting text compression algorithm with
Huffman coding; the compression rate is better than that achieved by more conventional
compressors using “Lempel-Ziv” algorithms, like gzip

bzip2recover Tries to recover data from damaged bzipped files

bzless Runs less on bzipped files

bzmore Runs more on bzipped files

libbz2* The library implementing lossless, block-sorting data compression, using the
Burrows-Wheeler algorithm

Linux From Scratch - Version 6.1

167



6.41. Diffutils-2.8.1
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.1 SBU
Required disk space: 5.6 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

6.41.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.41.2. Contents of Diffutils
Installed programs: cmp, diff, diff3, and sdiff

Short Descriptions

cmp Compares two files and reports whether or in which bytes they differ

diff Compares two files or directories and reports which lines in the files differ

diff3 Compares three files line by line

sdiff Merges two files and interactively outputs the results

Linux From Scratch - Version 6.1

168



6.42. Kbd-1.12
The Kbd package contains key-table files and keyboard utilities.

Approximate build time: 0.1 SBU
Required disk space: 11.8 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc, Grep, Gzip,
M4, Make, and Sed

6.42.1. Installation of Kbd
Prepare Kbd for compilation:

./configure

Compile the package:

make

Install the package:

make install

6.42.2. Contents of Kbd
Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, getunimap, kbd_mode, kbdrate,
loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to psfxtable), psfgettable (link to psfxtable),
psfstriptable (link to psfxtable), psfxtable, resizecons, setfont, setkeycodes, setleds, setlogcons, setmetamode,
setvesablank, showconsolefont, showkey, unicode_start, and unicode_stop

Short Descriptions

chvt Changes the foreground virtual terminal

deallocvt Deallocates unused virtual terminals

dumpkeys Dumps the keyboard translation tables

fgconsole Prints the number of the active virtual terminal

getkeycodes Prints the kernel scancode-to-keycode mapping table

getunimap Prints the currently used unicode-to-font mapping table

kbd_mode Reports or sets the keyboard mode

kbdrate Sets the keyboard repeat and delay rates

loadkeys Loads the keyboard translation tables

loadunimap Loads the kernel unicode-to-font mapping table

Linux From Scratch - Version 6.1

169



mapscrn An obsolete program that used to load a user-defined output character mapping table
into the console driver; this is now done by setfont

openvt Starts a program on a new virtual terminal (VT)

psfaddtable A link to psfxtable

psfgettable A link to psfxtable

psfstriptable A link to psfxtable

psfxtable Handle Unicode character tables for console fonts

resizecons Changes the kernel idea of the console size

setfont Changes the Enhanced Graphic Adapter (EGA) and Video Graphics Array (VGA)
fonts on the console

setkeycodes Loads kernel scancode-to-keycode mapping table entries; this is useful if there are
unusual keys on the keyboard

setleds Sets the keyboard flags and Light Emitting Diodes (LEDs)

setlogcons Sends kernel messages to the console

setmetamode Defines the keyboard meta-key handling

setvesablank Lets the user adjust the built-in hardware screensaver (a blank screen)

showconsolefont Shows the current EGA/VGA console screen font

showkey Reports the scancodes, keycodes, and ASCII codes of the keys pressed on the keyboard

unicode_start Puts the keyboard and console in UNICODE mode. Never use it on LFS, because
applications are not configured to support UNICODE.

unicode_stop Reverts keyboard and console from UNICODE mode

Linux From Scratch - Version 6.1

170



6.43. E2fsprogs-1.37
The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3
journaling file system.

Approximate build time: 0.6 SBU
Required disk space: 40.0 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Glibc, Grep, Make, Sed,
and Texinfo

6.43.1. Installation of E2fsprogs
Fix a compilation error in E2fsprogs' testsuite:

sed -i -e 's/-DTEST/$(ALL_CFLAGS) &/' lib/e2p/Makefile.in

It is recommended that E2fsprogs be built in a subdirectory of the source tree:

mkdir build
cd build

Prepare E2fsprogs for compilation:

../configure --prefix=/usr --with-root-prefix="" \
--enable-elf-shlibs --disable-evms

The meaning of the configure options:

--with-root-prefix=""
Certain programs (such as the e2fsck program) are considered essential programs. When, for example, /usr
is not mounted, these programs still need to be available. They belong in directories like /lib and /sbin. If
this option is not passed to E2fsprogs' configure, the programs are installed into the /usr directory.

--enable-elf-shlibs
This creates the shared libraries which some programs in this package use.

--disable-evms
This disables the building of the Enterprise Volume Management System (EVMS) plugin. This plugin is not
up-to-date with the latest EVMS internal interfaces and EVMS is not installed as part of a base LFS system,
so the plugin is not required. See the EVMS website at http://evms.sourceforge.net/ for more information
regarding EVMS.

Compile the package:

make

To test the results, issue: make check.

Linux From Scratch - Version 6.1

171

http://evms.sourceforge.net/


Install the binaries and documentation:

make install

Install the shared libraries:

make install-libs

6.43.2. Contents of E2fsprogs
Installed programs: badblocks, blkid, chattr, compile_et, debugfs, dumpe2fs, e2fsck, e2image, e2label, findfs,
fsck, fsck.ext2, fsck.ext3, logsave, lsattr, mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mklost+found, resize2fs,
tune2fs, and uuidgen.
Installed libraries: libblkid.[a,so], libcom_err.[a,so], libe2p.[a,so], libext2fs.[a,so], libss.[a,so], and
libuuid.[a,so]

Short Descriptions

badblocks Searches a device (usually a disk partition) for bad blocks

blkid A command line utility to locate and print block device attributes

chattr Changes the attributes of files on an ext2 file system; it also changes ext3 file systems,
the journaling version of ext2 file systems

compile_et An error table compiler; it converts a table of error-code names and messages into a C
source file suitable for use with the com_err library

debugfs A file system debugger; it can be used to examine and change the state of an ext2 file
system

dumpe2fs Prints the super block and blocks group information for the file system present on a given
device

e2fsck Is used to check, and optionally repair ext2 file systems and ext3 file systems

e2image Is used to save critical ext2 file system data to a file

e2label Displays or changes the file system label on the ext2 file system present on a given device

findfs Finds a file system by label or Universally Unique Identifier (UUID)

fsck Is used to check, and optionally repair, file systems

fsck.ext2 By default checks ext2 file systems

fsck.ext3 By default checks ext3 file systems

logsave Saves the output of a command in a log file

lsattr Lists the attributes of files on a second extended file system

mk_cmds Converts a table of command names and help messages into a C source file suitable for use
with the libss subsystem library

mke2fs Creates an ext2 or ext3 file system on the given device

Linux From Scratch - Version 6.1

172



mkfs.ext2 By default creates ext2 file systems

mkfs.ext3 By default creates ext3 file systems

mklost+found Used to create a lost+found directory on an ext2 file system; it pre-allocates disk
blocks to this directory to lighten the task of e2fsck

resize2fs Can be used to enlarge or shrink an ext2 file system

tune2fs Adjusts tunable file system parameters on an ext2 file system

uuidgen Creates new UUIDs. Each new UUID can reasonably be considered unique among all
UUIDs created, on the local system and on other systems, in the past and in the future

libblkid Contains routines for device identification and token extraction

libcom_err The common error display routine

libe2p Used by dumpe2fs, chattr, and lsattr

libext2fs Contains routines to enable user-level programs to manipulate an ext2 file system

libss Used by debugfs

libuuid Contains routines for generating unique identifiers for objects that may be accessible
beyond the local system

Linux From Scratch - Version 6.1

173



6.44. Grep-2.5.1a
The Grep package contains programs for searching through files.

Approximate build time: 0.1 SBU
Required disk space: 4.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Make, Sed, and Texinfo

6.44.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/usr --bindir=/bin

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.44.2. Contents of Grep
Installed programs: egrep (link to grep), fgrep (link to grep), and grep

Short Descriptions

egrep Prints lines matching an extended regular expression

fgrep Prints lines matching a list of fixed strings

grep Prints lines matching a basic regular expression

Linux From Scratch - Version 6.1

174



6.45. GRUB-0.96
The GRUB package contains the GRand Unified Bootloader.

Approximate build time: 0.2 SBU
Required disk space: 10.0 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

6.45.1. Installation of GRUB
This package is known to have issues when its default optimization flags (including the -march and -mcpu
options) are changed. If any environment variables that override default optimizations have been defined, such
as CFLAGS and CXXFLAGS, unset them when building GRUB.

Prepare GRUB for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Note that the test results will always show the error “ufs2_stage1_5 is too big.” This is due to a compiler issue,
but can be ignored unless you plan to boot from an UFS partition. The partitions are normally only used by Sun
workstations.

Install the package:

make install
mkdir /boot/grub
cp /usr/lib/grub/i386-pc/stage{1,2} /boot/grub

Replace i386-pc with whatever directory is appropriate for the hardware in use.

The i386-pc directory contains a number of *stage1_5 files, different ones for different file systems.
Review the files available and copy the appropriate ones to the /boot/grub directory. Most users will copy
the e2fs_stage1_5 and/or reiserfs_stage1_5 files.

6.45.2. Contents of GRUB
Installed programs: grub, grub-install, grub-md5-crypt, grub-terminfo, and mbchk

Short Descriptions

grub The Grand Unified Bootloader's command shell

grub-install Installs GRUB on the given device

grub-md5-crypt Encrypts a password in MD5 format

Linux From Scratch - Version 6.1

175



grub-terminfo Generates a terminfo command from a terminfo name; it can be employed if an
unknown terminal is being used

mbchk Checks the format of a multi-boot kernel

Linux From Scratch - Version 6.1

176



6.46. Gzip-1.3.5
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 2.2 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

6.46.1. Installation of Gzip
Gzip has 2 known security vulnerabilities. The following patch addresses both of them:

patch -Np1 -i ../gzip-1.3.5-security_fixes-1.patch

Prepare Gzip for compilation:

./configure --prefix=/usr

The gzexe script has the location of the gzip binary hard-wired into it. Because the location of the binary is
changed later, the following command ensures that the new location gets placed into the script:

sed -i 's@"BINDIR"@/bin@g' gzexe.in

Compile the package:

make

Install the package:

make install

Move the gzip program to the /bin directory and create some commonly used symlinks to it:

mv /usr/bin/gzip /bin
rm /usr/bin/{gunzip,zcat}
ln -s gzip /bin/gunzip
ln -s gzip /bin/zcat
ln -s gzip /bin/compress
ln -s gunzip /bin/uncompress

6.46.2. Contents of Gzip
Installed programs: compress (link to gzip), gunzip (link to gzip), gzexe, gzip, uncompress (link to gunzip),
zcat (link to gzip), zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless, zmore, and znew

Short Descriptions

compress Compresses and decompresses files

gunzip Decompresses gzipped files

Linux From Scratch - Version 6.1

177



gzexe Creates self-decompressing executable files

gzip Compresses the given files using Lempel-Ziv (LZ77) coding

uncompress Decompresses compressed files

zcat Uncompresses the given gzipped files to standard output

zcmp Runs cmp on gzipped files

zdiff Runs diff on gzipped files

zegrep Runs egrep on gzipped files

zfgrep Runs fgrep on gzipped files

zforce Forces a .gz extension on all given files that are gzipped files, so that gzip will not compress
them again; this can be useful when file names were truncated during a file transfer

zgrep Runs grep on gzipped files

zless Runs less on gzipped files

zmore Runs more on gzipped files

znew Re-compresses files from compress format to gzip format—.Z to .gz

Linux From Scratch - Version 6.1

178



6.47. Hotplug-2004_09_23
The Hotplug package contains scripts that react upon hotplug events generated by the kernel. Such events
correspond to every change in the kernel state visible in the sysfs filesystem, e.g., the addition and removal of
hardware. This package also detects existing hardware during boot and inserts the relevant modules into the
running kernel.

Approximate build time: 0.01 SBU
Required disk space: 460 KB

Installation depends on: Bash, Coreutils, Find, Gawk, and Make

6.47.1. Installation of Hotplug
Install the Hotplug package:

make install

Copy a file that the “install” target omits.

cp etc/hotplug/pnp.distmap /etc/hotplug

Remove the init script that Hotplug installs since we are going to be using the script included in the
LFS-Bootscripts package:

rm -rf /etc/init.d

Network device hotplugging is not yet supported by the LFS-Bootscripts package. For that reason, remove the
network hotplug agent:

rm -f /etc/hotplug/net.agent

Create a directory for storing firmware that can be loaded by hotplug:

mkdir /lib/firmware

6.47.2. Contents of Hotplug
Installed program: hotplug
Installed scripts: /etc/hotplug/*.rc, /etc/hotplug/*.agent
Installed files: /etc/hotplug/hotplug.functions, /etc/hotplug/blacklist, /etc/hotplug/{pci,usb},
/etc/hotplug/usb.usermap, /etc/hotplug.d, and /var/log/hotplug/events

Linux From Scratch - Version 6.1

179



Short Descriptions

hotplug This script is called by default by the Linux kernel when
something changes in its internal state (e.g., a new device is
added or an existing device is removed)

/etc/hotplug/*.rc These scripts are used for cold plugging, i.e., detecting and
acting upon hardware already present during system startup.
They are called by the hotplug initscript included in the
LFS-Bootscripts package. The *.rc scripts try to recover hotplug
events that were lost during system boot because, for example,
the root filesystem was not mounted by the kernel

/etc/hotplug/*.agent These scripts are called by hotplug in response to different types
of hotplug events generated by the kernel. Their action is to
insert corresponding kernel modules and call any user-provided
scripts

/etc/hotplug/blacklist This file contains the list of modules that should never be
inserted into the kernel by the Hotplug scripts

/etc/hotplug/hotplug.functions This file contains common functions used by other scripts in the
Hotplug package

/etc/hotplug/{pci,usb} These directories contain user-written handlers for hotplug
events

/etc/hotplug/usb.usermap This file contains rules that determine which user-defined
handlers to call for each USB device, based on its vendor ID and
other attributes

/etc/hotplug.d This directory contains programs (or symlinks to them) that are
interested in receiving hotplug events. For example, Udev puts
its symlink here during installation

/lib/firmware This directory contains the firmware for devices that need to
have their firmware loaded before use

/var/log/hotplug/events This file contains all the events that hotplug has called since
bootup

Linux From Scratch - Version 6.1

180



6.48. Man-1.5p
The Man package contains programs for finding and viewing man pages.

Approximate build time: 0.1 SBU
Required disk space: 2.9 MB

Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, and Sed

6.48.1. Installation of Man
Two adjustments need to be made to the sources of Man.

The first is a sed substitution to add the -R switch to the PAGER variable so that escape sequences are properly
handled by Less:

sed -i 's@-is@&R@g' configure

The second is also a sed substitution to comment out the “MANPATH /usr/man” line in the man.conf file to
prevent redundant results when using programs such as whatis:

sed -i 's@MANPATH./usr/man@#&@g' src/man.conf.in

Prepare Man for compilation:

./configure -confdir=/etc

The meaning of the configure options:

-confdir=/etc
This tells the man program to look for the man.conf configuration file in the /etc directory.

Compile the package:

make

Install the package:

make install

Note

If you will be working on a terminal that does not support text attributes such as color and bold,
you can disable Select Graphic Rendition (SGR) escape sequences by editing the man.conf file
and adding the -c option to the NROFF variable. If you use multiple terminal types for one
computer it may be better to selectively add the GROFF_NO_SGR environment variable for the
terminals that do not support SGR.

Linux From Scratch - Version 6.1

181



If the character set of the locale uses 8-bit characters, search for the line beginning with “NROFF” in
/etc/man.conf, and verify that it matches the following:

NROFF /usr/bin/nroff -Tlatin1 -mandoc

Note that “latin1” should be used even if it is not the character set of the locale. The reason is that, according to
the specification, groff has no means of typesetting characters outside International Organization for Standards
(ISO) 8859-1 without some strange escape codes. When formatting man pages, groff thinks that they are in the
ISO 8859-1 encoding and this -Tlatin1 switch tells groff to use the same encoding for output. Since groff
does no recoding of input characters, the formatted result is really in the same encoding as input, and therefore it
is usable as the input for a pager.

This does not solve the problem of a non-working man2dvi program for localized man pages in non-ISO
8859-1 locales. Also, it does not work with multibyte character sets. The first problem does not currently have a
solution. The second issue is not of concern because the LFS installation does not support multibyte character
sets.

Additional information with regards to the compression of man and info pages can be found in the BLFS book
at http://www.linuxfromscratch.org/blfs/view/cvs/postlfs/compressdoc.html.

6.48.2. Contents of Man
Installed programs: apropos, makewhatis, man, man2dvi, man2html, and whatis

Short Descriptions

apropos Searches the whatis database and displays the short descriptions of system commands that
contain a given string

makewhatis Builds the whatis database; it reads all the man pages in the MANPATH and writes the name
and a short description in the whatis database for each page

man Formats and displays the requested on-line man page

man2dvi Converts a man page into dvi format

man2html Converts a man page into HTML

whatis Searches the whatis database and displays the short descriptions of system commands that
contain the given keyword as a separate word

Linux From Scratch - Version 6.1

182

http://www.linuxfromscratch.org/blfs/view/cvs/postlfs/compressdoc.html


6.49. Make-3.80
The Make package contains a program for compiling packages.

Approximate build time: 0.2 SBU
Required disk space: 7.1 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, and Sed

6.49.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.49.2. Contents of Make
Installed program: make

Short Descriptions

make Automatically determines which pieces of a package need to be (re)compiled and then issues the
relevant commands

Linux From Scratch - Version 6.1

183



6.50. Module-Init-Tools-3.1
The Module-Init-Tools package contains programs for handling kernel modules in Linux kernels greater than or
equal to version 2.5.47.

Approximate build time: 0.1 SBU
Required disk space: 4.9 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Glibc, Grep, M4, Make, and
Sed

6.50.1. Installation of Module-Init-Tools
Module-Init-Tools attempts to rewrite its modprobe.conf man page during the build process. This is
unnecessary and also relies on docbook2man — which is not installed in LFS. Run the following command to
avoid this:

touch modprobe.conf.5

Prepare Module-Init-Tools for compilation:

./configure --prefix="" --enable-zlib

The meaning of the configure options:

--enable-zlib
This allows the Module-Init-Tools package to handle compressed kernel modules.

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.50.2. Contents of Module-Init-Tools
Installed programs: depmod, insmod, insmod.static, lsmod (link to insmod), modinfo, modprobe (link to
insmod), and rmmod (link to insmod)

Short Descriptions

depmod Creates a dependency file based on the symbols it finds in the existing set of modules; this
dependency file is used by modprobe to automatically load the required modules

insmod Installs a loadable module in the running kernel

insmod.static A statically compiled version of insmod

Linux From Scratch - Version 6.1

184



lsmod Lists currently loaded modules

modinfo Examines an object file associated with a kernel module and displays any information that
it can glean

modprobe Uses a dependency file, created by depmod, to automatically load relevant modules

rmmod Unloads modules from the running kernel

Linux From Scratch - Version 6.1

185



6.51. Patch-2.5.4
The Patch package contains a program for modifying or creating files by applying a “patch” file typically
created by the diff program.

Approximate build time: 0.1 SBU
Required disk space: 1.5 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

6.51.1. Installation of Patch
Prepare Patch for compilation. The preprocessor flag -D_GNU_SOURCE is only needed on the PowerPC
platform. It can be left it out on other architectures:

CPPFLAGS=-D_GNU_SOURCE ./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.51.2. Contents of Patch
Installed program: patch

Short Descriptions

patch Modifies files according to a patch file. A patch file is normally a difference listing created with the
diff program. By applying these differences to the original files, patch creates the patched versions.

Linux From Scratch - Version 6.1

186



6.52. Procps-3.2.5
The Procps package contains programs for monitoring processes.

Approximate build time: 0.1 SBU
Required disk space: 2.3 MB

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Ncurses

6.52.1. Installation of Procps
Compile the package:

make

Install the package:

make install

6.52.2. Contents of Procps
Installed programs: free, kill, pgrep, pkill, pmap, ps, skill, snice, sysctl, tload, top, uptime, vmstat, w, and
watch
Installed library: libproc.so

Short Descriptions

free Reports the amount of free and used memory (both physical and swap memory) in the system

kill Sends signals to processes

pgrep Looks up processes based on their name and other attributes

pkill Signals processes based on their name and other attributes

pmap Reports the memory map of the given process

ps Lists the current running processes

skill Sends signals to processes matching the given criteria

snice Changes the scheduling priority of processes matching the given criteria

sysctl Modifies kernel parameters at run time

tload Prints a graph of the current system load average

top Displays a list of the most CPU intensive processes; it provides an ongoing look at processor
activity in real time

uptime Reports how long the system has been running, how many users are logged on, and the system load
averages

vmstat Reports virtual memory statistics, giving information about processes, memory, paging, block
Input/Output (IO), traps, and CPU activity

Linux From Scratch - Version 6.1

187



w Shows which users are currently logged on, where, and since when

watch Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user
to watch the output change over time

libproc Contains the functions used by most programs in this package

Linux From Scratch - Version 6.1

188



6.53. Psmisc-21.6
The Psmisc package contains programs for displaying information about running processes.

Approximate build time: 0.1 SBU
Required disk space: 1.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and
Sed

6.53.1. Installation of Psmisc
Prepare Psmisc for compilation:

./configure --prefix=/usr --exec-prefix=""

The meaning of the configure options:

--exec-prefix=""
This ensures that the Psmisc binaries will install into /bin instead of /usr/bin. This is the correct location
according to the FHS, because some of the Psmisc binaries are used by the LFS-Bootscripts package.

Compile the package:

make

Install the package:

make install

There is no reason for the pstree and pstree.x11 programs to reside in /bin. Therefore, move them to
/usr/bin:

mv /bin/pstree* /usr/bin

By default, Psmisc's pidof program is not installed. This usually is not a problem because it is installed later in
the Sysvinit package, which provides a better pidof program. If Sysvinit will not be used for a particular system,
complete the installation of Psmisc by creating the following symlink:

ln -s killall /bin/pidof

6.53.2. Contents of Psmisc
Installed programs: fuser, killall, pstree, and pstree.x11 (link to pstree)

Short Descriptions

fuser Reports the Process IDs (PIDs) of processes that use the given files or file systems

killall Kills processes by name; it sends a signal to all processes running any of the given commands

Linux From Scratch - Version 6.1

189



pstree Displays running processes as a tree

pstree.x11 Same as pstree, except that it waits for confirmation before exiting

Linux From Scratch - Version 6.1

190



6.54. Shadow-4.0.9
The Shadow package contains programs for handling passwords in a secure way.

Approximate build time: 0.4 SBU
Required disk space: 13.7 MB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

6.54.1. Installation of Shadow
Prepare Shadow for compilation:

./configure --libdir=/lib --enable-shared

Remove the installation of the groups program, and its man page as Coreutils provides a better version:

sed -i 's/groups$(EXEEXT) //' src/Makefile
sed -i '/groups/d' man/Makefile

Compile the package:

make

Install the package:

make install

Shadow uses two files to configure authentication settings for the system. Install these two configuration files:

cp etc/{limits,login.access} /etc

Instead of using the default crypt method, use the more secure MD5 method of password encryption, which also
allows passwords longer than 8 characters. It is also necessary to change the obsolete /var/spool/mail
location for user mailboxes that Shadow uses by default to the /var/mail location used currently. Both of
these can be accomplished by changing the relevant configuration file while copying it to its destination:

sed -e's@#MD5_CRYPT_ENAB.no@MD5_CRYPT_ENAB yes@' \
-e 's@/var/spool/mail@/var/mail@' \
etc/login.defs.linux > /etc/login.defs

Move a misplaced program to its proper location:

mv /usr/bin/passwd /bin

Move Shadow's libraries to more appropriate locations:

mv /lib/libshadow.*a /usr/lib
rm /lib/libshadow.so
ln -sf ../../lib/libshadow.so.0 /usr/lib/libshadow.so

Linux From Scratch - Version 6.1

191



The -D option of the useradd program requires the /etc/default directory for it to work properly:

mkdir /etc/default

6.54.2. Configuring Shadow
This package contains utilities to add, modify, and delete users and groups; set and change their passwords; and
perform other administrative tasks. For a full explanation of what password shadowing means, see the
doc/HOWTO file within the unpacked source tree. If using Shadow support, keep in mind that programs which
need to verify passwords (display managers, FTP programs, pop3 daemons, etc.) must be Shadow-compliant.
That is, they need to be able to work with shadowed passwords.

To enable shadowed passwords, run the following command:

pwconv

To enable shadowed group passwords, run:

grpconv

Under normal circumstances, passwords will not have been created yet. However, if returning to this section
later to enable shadowing, reset any current user passwords with the passwd command or any group passwords
with the gpasswd command.

6.54.3. Setting the root password
Choose a password for user root and set it by running:

passwd root

6.54.4. Contents of Shadow
Installed programs: chage, chfn, chpasswd, chsh, expiry, faillog, gpasswd, groupadd, groupdel, groupmod,
groups, grpck, grpconv, grpunconv, lastlog, login, logoutd, mkpasswd, newgrp, newusers, passwd, pwck,
pwconv, pwunconv, sg (link to newgrp), useradd, userdel, usermod, vigr (link to vipw), and vipw
Installed libraries: libshadow.[a,so]

Short Descriptions

chage Used to change the maximum number of days between obligatory password changes

chfn Used to change a user's full name and other information

chpasswd Used to update the passwords of an entire series of user accounts

chsh Used to change a user's default login shell

expiry Checks and enforces the current password expiration policy

faillog Is used to examine the log of login failures, to set a maximum number of failures before an
account is blocked, or to reset the failure count

gpasswd Is used to add and delete members and administrators to groups

Linux From Scratch - Version 6.1

192



groupadd Creates a group with the given name

groupdel Deletes the group with the given name

groupmod Is used to modify the given group's name or GID

groups Reports the groups of which the given users are members

grpck Verifies the integrity of the group files /etc/group and /etc/gshadow

grpconv Creates or updates the shadow group file from the normal group file

grpunconv Updates /etc/group from /etc/gshadow and then deletes the latter

lastlog Reports the most recent login of all users or of a given user

login Is used by the system to let users sign on

logoutd Is a daemon used to enforce restrictions on log-on time and ports

mkpasswd Generates random passwords

newgrp Is used to change the current GID during a login session

newusers Is used to create or update an entire series of user accounts

passwd Is used to change the password for a user or group account

pwck Verifies the integrity of the password files /etc/passwd and /etc/shadow

pwconv Creates or updates the shadow password file from the normal password file

pwunconv Updates /etc/passwd from /etc/shadow and then deletes the latter

sg Executes a given command while the user's GID is set to that of the given group

su
Runs a shell with substitute user and group IDs

useradd Creates a new user with the given name, or updates the default new-user information

userdel Deletes the given user account

usermod Is used to modify the given user's login name, User Identification (UID), shell, initial group,
home directory, etc.

vigr Edits the /etc/group or /etc/gshadow files

vipw Edits the /etc/passwd or /etc/shadow files

libshadow Contains functions used by most programs in this package

Linux From Scratch - Version 6.1

193



6.55. Sysklogd-1.4.1
The Sysklogd package contains programs for logging system messages, such as those given by the kernel when
unusual things happen.

Approximate build time: 0.1 SBU
Required disk space: 704 KB

Installation depends on: Binutils, Coreutils, GCC, Glibc, Make

6.55.1. Installation of Sysklogd
The following patch fixes various issues, including a problem building Sysklogd with Linux 2.6 series kernels

patch -Np1 -i ../sysklogd-1.4.1-fixes-1.patch

Compile the package:

make

Install the package:

make install

6.55.2. Configuring Sysklogd
Create a new /etc/syslog.conf file by running the following:

cat > /etc/syslog.conf << "EOF"
# Begin /etc/syslog.conf

auth,authpriv.* -/var/log/auth.log
*.*;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
*.emerg *

# log the bootscript output:
local2.* -/var/log/boot.log

# End /etc/syslog.conf
EOF

Linux From Scratch - Version 6.1

194



6.55.3. Contents of Sysklogd
Installed programs: klogd and syslogd

Short Descriptions

klogd A system daemon for intercepting and logging kernel messages

syslogd Logs the messages that system programs offer for logging. Every logged message contains at least
a date stamp and a hostname, and normally the program's name too, but that depends on how
trusting the logging daemon is told to be

Linux From Scratch - Version 6.1

195



6.56. Sysvinit-2.86
The Sysvinit package contains programs for controlling the startup, running, and shutdown of the system.

Approximate build time: 0.1 SBU
Required disk space: 1012 KB

Installation depends on: Binutils, Coreutils, GCC, Glibc, and Make

6.56.1. Installation of Sysvinit
When run-levels are changed (for example, when halting the system), init sends termination signals to those
processes that init itself started and that should not be running in the new run-level. While doing this, init
outputs messages like “Sending processes the TERM signal” which seem to imply that it is sending these
signals to all currently running processes. To avoid this misinterpretation, modify the source so that these
messages read like “Sending processes started by init the TERM signal” instead:

sed -i 's@Sending processes@& started by init@g' \
src/init.c

Compile the package:

make -C src

Install the package:

make -C src install

Linux From Scratch - Version 6.1

196



6.56.2. Configuring Sysvinit
Create a new file /etc/inittab by running the following:

cat > /etc/inittab << "EOF"
# Begin /etc/inittab

id:3:initdefault:

si::sysinit:/etc/rc.d/init.d/rc sysinit

l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

su:S016:once:/sbin/sulogin

1:2345:respawn:/sbin/agetty -I '\033(K' tty1 9600
2:2345:respawn:/sbin/agetty -I '\033(K' tty2 9600
3:2345:respawn:/sbin/agetty -I '\033(K' tty3 9600
4:2345:respawn:/sbin/agetty -I '\033(K' tty4 9600
5:2345:respawn:/sbin/agetty -I '\033(K' tty5 9600
6:2345:respawn:/sbin/agetty -I '\033(K' tty6 9600

# End /etc/inittab
EOF

The -I '\033(K' option tells agetty to send this escape sequence to the terminal before doing anything else.
This escape sequence switches the console character set to a user-defined one, which can be modified by
running the setfont program. The console initscript from the LFS-Bootscripts package calls the setfont program
during system startup. Sending this escape sequence is necessary for people who use non-ISO 8859-1 screen
fonts, but it does not affect native English speakers.

Linux From Scratch - Version 6.1

197



6.56.3. Contents of Sysvinit
Installed programs: halt, init, killall5, last, lastb (link to last), mesg, pidof (link to killall5), poweroff (link to
halt), reboot (link to halt), runlevel, shutdown, sulogin, telinit (link to init), utmpdump, and wall

Short Descriptions

halt Normally invokes shutdown with the -h option, except when already in run-level 0, then it
tells the kernel to halt the system; it notes in the file /var/log/wtmp that the system is
being brought down

init The first process to be started when the kernel has initialized the hardware which takes over
the boot process and starts all the proceses it is instructed to

killall5 Sends a signal to all processes, except the processes in its own session so it will not kill the
shell running the script that called it

last Shows which users last logged in (and out), searching back through the /var/log/wtmp
file; it also shows system boots, shutdowns, and run-level changes

lastb Shows the failed login attempts, as logged in /var/log/btmp

mesg Controls whether other users can send messages to the current user's terminal

mountpoint Checks if the directory is a mountpoint

pidof Reports the PIDs of the given programs

poweroff Tells the kernel to halt the system and switch off the computer (see halt)

reboot Tells the kernel to reboot the system (see halt)

runlevel Reports the previous and the current run-level, as noted in the last run-level record in
/var/run/utmp

shutdown Brings the system down in a secure way, signaling all processes and notifying all logged-in
users

sulogin Allows root to log in; it is normally invoked by init when the system goes into single user
mode

telinit Tells init which run-level to change to

utmpdump Displays the content of the given login file in a more user-friendly format

wall Writes a message to all logged-in users

Linux From Scratch - Version 6.1

198



6.57. Tar-1.15.1
The Tar package contains an archiving program.

Approximate build time: 0.2 SBU
Required disk space: 12.7 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, and Sed

6.57.1. Installation of Tar
Tar has a bug when the -S option is used with files larger than 4 GB. The following patch properly fixes this
issue:

patch -Np1 -i ../tar-1.15.1-sparse_fix-1.patch

Prepare Tar for compilation:

./configure --prefix=/usr --bindir=/bin --libexecdir=/usr/sbin

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

6.57.2. Contents of Tar
Installed programs: rmt and tar

Short Descriptions

rmt Remotely manipulates a magnetic tape drive through an interprocess communication connection

tar Creates, extracts files from, and lists the contents of archives, also known as tarballs

Linux From Scratch - Version 6.1

199



6.58. Udev-056
The Udev package contains programs for dynamic creation of device nodes.

Approximate build time: 0.1 SBU
Required disk space: 6.7 MB

Installation depends on: Coreutils and Make

6.58.1. Installation of Udev
Compile the package:

make udevdir=/dev

udevdir=/dev
This tells udev in which directory devices nodes are to be created.

To test the results, issue: make test.

Install the package:

make udevdir=/dev install

Udev's configuration is far from ideal by default, so install the configuration files here:

cp ../udev-config-3.rules /etc/udev/rules.d/25-lfs.rules

Run the udevstart program to create our full complement of device nodes.

/sbin/udevstart

6.58.2. Contents of Udev
Installed programs: udev, udevd, udevsend, udevstart, udevinfo, and udevtest
Installed directory: /etc/udev

Short Descriptions

udev Creates device nodes in /dev or renames network interfaces (not in LFS) in response to
hotplug events

udevd A daemon that reorders hotplug events before submitting them to udev, thus avoiding various
race conditions

udevsend Delivers hotplug events to udevd

udevstart Creates device nodes in /dev that correspond to drivers compiled directly into the kernel; it
performs that task by simulating hotplug events presumably dropped by the kernel before
invocation of this program (e.g., because the root filesystem has not been mounted) and
submitting such synthetic hotplug events to udev

Linux From Scratch - Version 6.1

200



udevinfo Allows users to query the udev database for information on any device currently present on the
system; it also provides a way to query any device in the sysfs tree to help create udev rules

udevtest Simulates a udev run for the given device, and prints out the name of the node the real udev
would have created or (not in LFS) the name of the renamed network interface

/etc/udev Contains udev configuation files, device permissions, and rules for device naming

Linux From Scratch - Version 6.1

201



6.59. Util-linux-2.12q
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file
systems, consoles, partitions, and messages.

Approximate build time: 0.2 SBU
Required disk space: 11.6 MB

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Sed,
and Zlib

6.59.1. FHS compliance notes
The FHS recommends using the /var/lib/hwclock directory instead of the usual /etc directory as the
location for the adjtime file. To make the hwclock program FHS-compliant, run the following:

sed -i 's@etc/adjtime@var/lib/hwclock/adjtime@g' \
hwclock/hwclock.c

mkdir -p /var/lib/hwclock

6.59.2. Installation of Util-linux
Util-linux fails to compile against newer versions of Linux-Libc-Headers. The following patch properly fixes
this issue:

patch -Np1 -i ../util-linux-2.12q-cramfs-1.patch

Prepare Util-linux for compilation:

./configure

Compile the package:

make HAVE_KILL=yes HAVE_SLN=yes

The meaning of the make parameters:

HAVE_KILL=yes
This prevents the kill program (already installed by Procps) from being built and installed again.

HAVE_SLN=yes
This prevents the sln program (a statically linked version of ln already installed by Glibc) from being built
and installed again.

This package does not come with a test suite.

Install the package and move the logger binary to /bin as it is needed by the LFS-Bootscripts package:

make HAVE_KILL=yes HAVE_SLN=yes install
mv /usr/bin/logger /bin

Linux From Scratch - Version 6.1

202



6.59.3. Contents of Util-linux
Installed programs: agetty, arch, blockdev, cal, cfdisk, chkdupexe, col, colcrt, colrm, column, ctrlaltdel,
cytune, ddate, dmesg, elvtune, fdformat, fdisk, fsck.cramfs, fsck.minix, getopt, hexdump, hwclock, ipcrm, ipcs,
isosize, line, logger, look, losetup, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount,
namei, pg, pivot_root, ramsize (link to rdev), raw, rdev, readprofile, rename, renice, rev, rootflags (link to rdev),
script, setfdprm, setsid, setterm, sfdisk, swapdev, swapoff (link to swapon), swapon, tunelp, ul, umount,
vidmode (link to rdev), whereis, and write

Short Descriptions

agetty Opens a tty port, prompts for a login name, and then invokes the login program

arch Reports the machine's architecture

blockdev Allows users to call block device ioctls from the command line

cal Displays a simple calendar

cfdisk Manipulates the partition table of the given device

chkdupexe Finds duplicate executables

col Filters out reverse line feeds

colcrt Filters nroff output for terminals that lack some capabilities, such as overstriking and
half-lines

colrm Filters out the given columns

column Formats a given file into multiple columns

ctrlaltdel Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

cytune Tunes the parameters of the serial line drivers for Cyclades cards

ddate Gives the Discordian date or converts the given Gregorian date to a Discordian one

dmesg Dumps the kernel boot messages

elvtune Tunes the performance and interactivity of a block device

fdformat Low-level formats a floppy disk

fdisk Manipulates the partition table of the given device

fsck.cramfs Performs a consistency check on the Cramfs file system on the given device

fsck.minix Performs a consistency check on the Minix file system on the given device

getopt Parses options in the given command line

hexdump Dumps the given file in hexadecimal or in another given format

hwclock Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic
Input-Output System (BIOS) clock

ipcrm Removes the given Inter-Process Communication (IPC) resource

Linux From Scratch - Version 6.1

203



ipcs Provides IPC status information

isosize Reports the size of an iso9660 file system

line Copies a single line

logger Enters the given message into the system log

look Displays lines that begin with the given string

losetup Sets up and controls loop devices

mcookie Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mkfs Builds a file system on a device (usually a hard disk partition)

mkfs.bfs Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs Creates a cramfs file system

mkfs.minix Creates a Minix file system

mkswap Initializes the given device or file to be used as a swap area

more A filter for paging through text one screen at a time

mount Attaches the file system on the given device to a specified directory in the file-system tree

namei Shows the symbolic links in the given pathnames

pg Displays a text file one screen full at a time

pivot_root Makes the given file system the new root file system of the current process

ramsize Sets the size of the RAM disk in a bootable image

raw Used to bind a Linux raw character device to a block device

rdev Queries and sets the root device, among other things, in a bootable image

readprofile Reads kernel profiling information

rename Renames the given files, replacing a given string with another

renice Alters the priority of running processes

rev Reverses the lines of a given file

rootflags Sets the rootflags in a bootable image

script Makes a typescript of a terminal session

setfdprm Sets user-provided floppy disk parameters

setsid Runs the given program in a new session

setterm Sets terminal attributes

sfdisk A disk partition table manipulator

swapdev Sets the swap device in a bootable image

Linux From Scratch - Version 6.1

204



swapoff Disables devices and files for paging and swapping

swapon Enables devices and files for paging and swapping and lists the devices and files currently in
use

tunelp Tunes the parameters of the line printer

ul A filter for translating underscores into escape sequences indicating underlining for the
terminal in use

umount Disconnects a file system from the system's file tree

vidmode Sets the video mode in a bootable image

whereis Reports the location of the binary, source, and man page for the given command

write Sends a message to the given user if that user has not disabled receipt of such messages

Linux From Scratch - Version 6.1

205



6.60. About Debugging Symbols
Most programs and libraries are, by default, compiled with debugging symbols included (with gcc's -g option).
This means that when debugging a program or library that was compiled with debugging information included,
the debugger can provide not only memory addresses, but also the names of the routines and variables.

However, the inclusion of these debugging symbols enlarges a program or library significantly. The following is
an example of the amount of space these symbols occupy:

• a bash binary with debugging symbols: 1200 KB

• a bash binary without debugging symbols: 480 KB

• Glibc and GCC files (/lib and /usr/lib) with debugging symbols: 87 MB

• Glibc and GCC files without debugging symbols: 16 MB

Sizes may vary depending on which compiler and C library were used, but when comparing programs with and
without debugging symbols, the difference will usually be a factor between two and five.

Because most users will never use a debugger on their system software, a lot of disk space can be regained by
removing these symbols. The next section shows how to strip all debugging symbols from the programs and
libraries. Additional information on system optimization can be found at
http://www.linuxfromscratch.org/hints/downloads/files/optimization.txt.

Linux From Scratch - Version 6.1

206

http://www.linuxfromscratch.org/hints/downloads/files/optimization.txt


6.61. Stripping Again
If the intended user is not a programmer and does not plan to do any debugging on the system software, the
system size can be decreased by about 200 MB by removing the debugging symbols from binaries and libraries.
This causes no inconvenience other than not being able to debug the software fully anymore.

Most people who use the command mentioned below do not experience any difficulties. However, it is easy to
make a typo and render the new system unusable, so before running the strip command, it is a good idea to
make a backup of the current situation.

Before performing the stripping, take special care to ensure that none of the binaries that are about to be stripped
are running. If unsure whether the user entered chroot with the command given in Section 6.3, “Entering the
Chroot Environment,” first exit from chroot:

logout

Then reenter it with:

chroot $LFS /tools/bin/env -i \
HOME=/root TERM=$TERM PS1='\u:\w\$ ' \
PATH=/bin:/usr/bin:/sbin:/usr/sbin \
/tools/bin/bash --login

Now the binaries and libraries can be safely stripped:

/tools/bin/find /{,usr/}{bin,lib,sbin} -type f \
-exec /tools/bin/strip --strip-debug '{}' ';'

A large number of files will be reported as having their file format not recognized. These warnings can be safely
ignored. These warnings indicate that those files are scripts instead of binaries.

If disk space is very tight, the --strip-all option can be used on the binaries in /{,usr/}{bin,sbin}
to gain several more megabytes. Do not use this option on libraries—they will be destroyed.

Linux From Scratch - Version 6.1

207



6.62. Cleaning Up
From now on, when reentering the chroot environment after exiting, use the following modified chroot
command:

chroot "$LFS" /usr/bin/env -i \
HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \
PATH=/bin:/usr/bin:/sbin:/usr/sbin \
/bin/bash --login

The reason for this is that the programs in /tools are no longer needed. Since they are no longer needed you
can delete the /tools directory if so desired or tar it up and keep it to build another final system.

Note

Removing /tools will also remove the temporary copies of Tcl, Expect, and DejaGNU which
were used for running the toolchain tests. If you need these programs later on, they will need to be
recompiled and re-installed. The BLFS book has instructions for this (see
http://www.linuxfromscratch.org/blfs/).

Linux From Scratch - Version 6.1

208

http://www.linuxfromscratch.org/blfs/


Chapter 7. Setting Up System Bootscripts

7.1. Introduction
This chapter details how to install and configure the LFS-Bootscripts package. Most of these scripts will work
without modification, but a few require additional configuration files because they deal with
hardware-dependent information.

System-V style init scripts are employed in this book because they are widely used. For additional options, a
hint detailing the BSD style init setup is available at http://www.linuxfromscratch.org/hints/
downloads/files/bsd-init.txt. Searching the LFS mailing lists for “depinit” will also offer additional choices.

If using an alternative style of init scripts, skip this chapter and move on to Chapter 8.

Linux From Scratch - Version 6.1

209

http://www.linuxfromscratch.org/hints/downloads/files/bsd-init.txt
http://www.linuxfromscratch.org/hints/downloads/files/bsd-init.txt


7.2. LFS-Bootscripts-3.2.1
The LFS-Bootscripts package contains a set of scripts to start/stop the LFS system at bootup/shutdown.

Approximate build time: 0.1 SBU
Required disk space: 0.3 MB

Installation depends on: Bash and Coreutils

7.2.1. Installation of LFS-Bootscripts
Install the package:

make install

7.2.2. Contents of LFS-Bootscripts
Installed scripts: checkfs, cleanfs, console, functions, halt, hotplug, ifdown, ifup, localnet, mountfs,
mountkernfs, network, rc, reboot, sendsignals, setclock, static, swap, sysklogd, template, and udev

Short Descriptions

checkfs Checks the integrity of the file systems before they are mounted (with the exception of
journal and network based file systems)

cleanfs Removes files that should not be preserved between reboots, such as those in /var/run/
and /var/lock/; it re-creates /var/run/utmp and removes the possibly present
/etc/nologin, /fastboot, and /forcefsck files

console Loads the correct keymap table for the desired keyboard layout; it also sets the screen font

functions Contains common functions, such as error and status checking, that are used by several
bootscripts

halt Halts the system

hotplug Loads modules for system devices

ifdown Assists the network script with stopping network devices

ifup Assists the network script with starting network devices

localnet Sets up the system's hostname and local loopback device

mountfs Mounts all file systems, except ones that are marked noauto or are network based

mountkernfs Mounts virtual kernel file systems, such as proc

network Sets up network interfaces, such as network cards, and sets up the default gateway (where
applicable)

rc The master run-level control script; it is responsible for running all the other bootscripts
one-by-one, in a sequence determined by the name of the symbolic links being processed

reboot Reboots the system

Linux From Scratch - Version 6.1

210



sendsignals Makes sure every process is terminated before the system reboots or halts

setclock Resets the kernel clock to local time in case the hardware clock is not set to UTC time

static Provides the functionality needed to assign a static Internet Protocol (IP) address to a
network interface

swap Enables and disables swap files and partitions

sysklogd Starts and stops the system and kernel log daemons

template A template to create custom bootscripts for other daemons

udev Prepares the /dev directory and starts Udev

Linux From Scratch - Version 6.1

211



7.3. How Do These Bootscripts Work?
Linux uses a special booting facility named SysVinit that is based on a concept of run-levels. It can be quite
different from one system to another, so it cannot be assumed that because things worked in one particular
Linux distribution, they should work the same in LFS too. LFS has its own way of doing things, but it respects
generally accepted standards.

SysVinit (which will be referred to as “init” from now on) works using a run-levels scheme. There are seven
(numbered 0 to 6) run-levels (actually, there are more run-levels, but they are for special cases and are generally
not used. See init(8) for more details), and each one of those corresponds to the actions the computer is
supposed to perform when it starts up. The default run-level is 3. Here are the descriptions of the different
run-levels as they are implemented:

0: halt the computer
1: single-user mode
2: multi-user mode without networking
3: multi-user mode with networking
4: reserved for customization, otherwise does the same as 3
5: same as 4, it is usually used for GUI login (like X's xdm or KDE's kdm)
6: reboot the computer

The command used to change run-levels is init [runlevel], where [runlevel] is the target run-level. For
example, to reboot the computer, a user could issue the init 6 command, which is an alias for the reboot
command. Likewise, init 0 is an alias for the halt command.

There are a number of directories under /etc/rc.d that look like rc?.d (where ? is the number of the
run-level) and rcsysinit.d, all containing a number of symbolic links. Some begin with a K, the others
begin with an S, and all of them have two numbers following the initial letter. The K means to stop (kill) a
service and the S means to start a service. The numbers determine the order in which the scripts are run, from 00
to 99—the lower the number the earlier it gets executed. When init switches to another run-level, the
appropriate services are either started or stopped, depending on the runlevel chosen.

The real scripts are in /etc/rc.d/init.d. They do the actual work, and the symlinks all point to them.
Killing links and starting links point to the same script in /etc/rc.d/init.d. This is because the scripts
can be called with different parameters like start, stop, restart, reload, and status. When a K link
is encountered, the appropriate script is run with the stop argument. When an S link is encountered, the
appropriate script is run with the start argument.

There is one exception to this explanation. Links that start with an S in the rc0.d and rc6.d directories will
not cause anything to be started. They will be called with the parameter stop to stop something. The logic
behind this is that when a user is going to reboot or halt the system, nothing needs to be started. The system
only needs to be stopped.

These are descriptions of what the arguments make the scripts do:

start
The service is started.

stop
The service is stopped.

Linux From Scratch - Version 6.1

212



restart
The service is stopped and then started again.

reload
The configuration of the service is updated. This is used after the configuration file of a service was modified,
when the service does not need to be restarted.

status
Tells if the service is running and with which PIDs.

Feel free to modify the way the boot process works (after all, it is your own LFS system). The files given here
are an example of how it can be done.

Linux From Scratch - Version 6.1

213



7.4. Device and Module Handling on an LFS System
In Chapter 6, we installed the Udev package. Before we go into the details regarding how this works, a brief
history of previous methods of handling devices is in order.

Linux systems in general traditionally use a static device creation method, whereby a great many device nodes
are created under /dev (sometimes literally thousands of nodes), regardless of whether the corresponding
hardware devices actually exist. This is typically done via a MAKEDEV script, which contains a number of
calls to the mknod program with the relevant major and minor device numbers for every possible device that
might exist in the world. Using the Udev method, only those devices which are detected by the kernel get device
nodes created for them. Because these device nodes will be created each time the system boots, they will be
stored on a tmpfs file system (a virtual file system that resides entirely in system memory). Device nodes do
not require much space, so the memory that is used is negligible.

7.4.1. History
In February 2000, a new filesystem called devfs was merged into the 2.3.46 kernel and was made available
during the 2.4 series of stable kernels. Although it was present in the kernel source itself, this method of creating
devices dynamically never received overwhelming support from the core kernel developers.

The main problem with the approach adopted by devfs was the way it handled device detection, creation, and
naming. The latter issue, that of device node naming, was perhaps the most critical. It is generally accepted that
if device names are allowed to be configurable, then the device naming policy should be up to a system
administrator, not imposed on them by any particular developer(s). The devfs file system also suffers from
race conditions that are inherent in its design and cannot be fixed without a substantial revision to the kernel. It
has also been marked as deprecated due to a lack of recent maintenance.

With the development of the unstable 2.5 kernel tree, later released as the 2.6 series of stable kernels, a new
virtual filesystem called sysfs came to be. The job of sysfs is to export a view of the system's hardrware
configuration to userspace processes. With this userspace-visible representation, the possibility of seeing a
userspace replacement for devfs became much more realistic.

7.4.2. Udev Implementation
The sysfs filesystem was mentioned briefly above. One may wonder how sysfs knows about the devices
present on a system and what device numbers should be used for them. Drivers that have been compiled into the
kernel directly register their objects with sysfs as they are detected by the kernel. For drivers compiled as
modules, this registration will happen when the module is loaded. Once the sysfs filesystem is mounted (on
/sys), data which the built-in drivers registered with sysfs are available to userspace processes and to udev
for device node creation.

The S10udev initscript takes care of creating these device nodes when Linux is booted. This script starts by
registering /sbin/udevsend as a hotplug event handler. Hotplug events (discussed below) are not usually
generated during this stage, but udev is registered just in case they do occur. The udevstart program then walks
through the /sys filesystem and creates devices under /dev that match the descriptions. For example,
/sys/class/tty/vcs/dev contains the string “7:0” This string is used by udevstart to create /dev/vcs
with major number 7 and minor 0. The names and permissions of the nodes created under the /dev directory
are configured according to the rules specified in the files within the /etc/udev/rules.d/ directory.
These are numbered in a similar fashion to the LFS-Bootscripts package. If udev can't find a rule for the device
it is creating, it will default permissions to 660 and ownership to root:root.

Linux From Scratch - Version 6.1

214



Once the above stage is complete, all devices that were already present and have compiled-in drivers will be
available for use. This leads us to the devices that have modular drivers.

Earlier, we mentioned the concept of a “hotplug event handler.” When a new device connection is detected by
the kernel, the kernel will generate a hotplug event and look at the file /proc/sys/kernel/hotplug to
determine the userspace program that handles the device's connection. The udev bootscript registered udevsend
as this handler. When these hotplug events are generated, the kernel will tell udev to check the /sys filesystem
for the information pertaining to this new device and create the /dev entry for it.

This brings us to one problem that exists with udev, and likewise with devfs before it. It is commonly referred
to as the “chicken and egg” problem. Most Linux distributions handle loading modules via entries in
/etc/modules.conf. Access to a device node causes the appropriate kernel module to load. With udev,
this method will not work because the device node does not exist until the module is loaded. To solve this, the
S05modules bootscript was added to the LFS-Bootscripts package, along with the
/etc/sysconfig/modules file. By adding module names to the modules file, these modules will be
loaded when the computer starts up. This allows udev to detect the devices and create the appropriate device
nodes.

Note that on slower machines or for drivers that create a lot of device nodes, the process of creating devices
may take a few seconds to complete. This means that some device nodes may not be immediately accessible.

7.4.3. Handling Hotpluggable/Dynamic Devices
When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the
device is now connected and generates a hotplug event. If the driver is already loaded (either because it was
compiled into the kernel or because it was loaded via the S05modules bootscript), udev will be called upon to
create the relevant device node(s) according to the sysfs data available in /sys.

If the driver for the just plugged in device is available as a module but currently unloaded, the Hotplug package
will load the appropriate module and make this device available by creating the device node(s) for it.

7.4.4. Problems with Creating Devices
There are a few known problems when it comes to automatically creating device nodes:

1) A kernel driver may not export its data to sysfs.

This is most common with third party drivers from outside the kernel tree. Udev will be unable to automatically
create device nodes for such drivers. Use the /etc/sysconfig/createfiles configuration file to
manually create the devices. Consult the devices.txt file inside the kernel documentation or the
documentation for that driver to find the proper major/minor numbers.

2) A non-hardware device is required. This is most common with the Advanced Linux Sound Architecture
(ALSA) project's Open Sound System (OSS) compatibility module. These types of devices can be handled in
one of two ways:

• Adding the module names to /etc/sysconfig/modules

Linux From Scratch - Version 6.1

215



• Using an “install” line in /etc/modprobe.conf. This tells the modprobe command “when loading this
module, also load this other module, at the same time.” For example:

install snd-pcm modprobe -i snd-pcm ; modprobe \
snd-pcm-oss ; true

This will cause the system to load both the snd-pcm and snd-pcm-oss modules when any request is made to
load the driver snd-pcm.

7.4.5. Useful Reading
Additional helpful documentation is available at the following sites:

• A Userspace Implementation of devfs
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf

• udev FAQ
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ

• The Linux Kernel Driver Model
http://public.planetmirror.com/pub/lca/2003/proceedings/papers/Patrick_Mochel/Patrick_Mochel.pdf

Linux From Scratch - Version 6.1

216

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ


7.5. Configuring the setclock Script
The setclock script reads the time from the hardware clock, also known as the BIOS or the Complementary
Metal Oxide Semiconductor (CMOS) clock. If the hardware clock is set to UTC, this script will convert the
hardware clock's time to the local time using the /etc/localtime file (which tells the hwclock program
which timezone the user is in). There is no way to detect whether or not the hardware clock is set to UTC, so
this needs to be configured manually.

If you cannot remember whether or not the hardware clock is set to UTC, find out by running the hwclock
--localtime --show command. This will display what the current time is according to the hardware
clock. If this time matches whatever your watch says, then the hardware clock is set to local time. If the output
from hwclock is not local time, chances are it is set to UTC time. Verify this by adding or subtracting the proper
amount of hours for the timezone to the time shown by hwclock. For example, if you are currently in the MST
timezone, which is also known as GMT -0700, add seven hours to the local time.

Change the value of the UTC variable below to a value of 0 (zero) if the hardware clock is not set to UTC time.

Create a new file /etc/sysconfig/clock by running the following:

cat > /etc/sysconfig/clock << "EOF"
# Begin /etc/sysconfig/clock

UTC=1

# End /etc/sysconfig/clock
EOF

A good hint explaining how to deal with time on LFS is available at http://www.linuxfromscratch.org/
hints/downloads/files/time.txt. It explains issues such as time zones, UTC, and the TZ environment variable.

Linux From Scratch - Version 6.1

217

http://www.linuxfromscratch.org/hints/downloads/files/time.txt
http://www.linuxfromscratch.org/hints/downloads/files/time.txt


7.6. Configuring the Linux Console
This section discusses how to configure the console bootscript that sets up the keyboard map and the console
font. If non-ASCII characters (e.g., the British pound sign and Euro character) will not be used and the keyboard
is a U.S. one, skip this section. Without the configuration file, the console bootscript will do nothing.

The console script reads the /etc/sysconfig/console file for configuration information. Decide which
keymap and screen font will be used. Various language-specific HOWTO's can also help with this (see
http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html. A pre-made /etc/sysconfig/console
file with known settings for several countries was installed with the LFS-Bootscripts package, so the relevant
section can be uncommented if the country is supported. If still in doubt, look in the /usr/share/kbd
directory for valid keymaps and screen fonts. Read loadkeys(1) and setfont(8) to determine the correct
arguments for these programs. Once decided, create the configuration file with the following command:

cat >/etc/sysconfig/console <<"EOF"
KEYMAP="[arguments for loadkeys]"
FONT="[arguments for setfont]"
EOF

For example, for Spanish users who also want to use the Euro character (accessible by pressing AltGr+E), the
following settings are correct:

cat >/etc/sysconfig/console <<"EOF"
KEYMAP="es euro2"
FONT="lat9-16 -u iso01"
EOF

Note

The FONT line above is correct only for the ISO 8859-15 character set. If using ISO 8859-1 and,
therefore, a pound sign instead of Euro, the correct FONT line would be:

FONT="lat1-16"

If the KEYMAP or FONT variable is not set, the console initscript will not run the corresponding program.

In some keymaps, the Backspace and Delete keys send characters different from ones in the default keymap
built into the kernel. This confuses some applications. For example, Emacs displays its help (instead of erasing
the character before the cursor) when Backspace is pressed. To check if the keymap in use is affected (this
works only for i386 keymaps):

zgrep '\W14\W' [/path/to/your/keymap]

Linux From Scratch - Version 6.1

218

http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html


If the keycode 14 is Backspace instead of Delete, create the following keymap snippet to fix this issue:

mkdir -p /etc/kbd && cat > /etc/kbd/bs-sends-del <<"EOF"
keycode 14 = Delete Delete Delete Delete

alt keycode 14 = Meta_Delete
altgr alt keycode 14 = Meta_Delete

keycode 111 = Remove
altgr control keycode 111 = Boot

control alt keycode 111 = Boot
altgr control alt keycode 111 = Boot
EOF

Tell the console script to load this snippet after the main keymap:

cat >>/etc/sysconfig/console <<"EOF"
KEYMAP_CORRECTIONS="/etc/kbd/bs-sends-del"
EOF

To compile the keymap directly into the kernel instead of setting it every time from the console bootscript,
follow the instructions given in Section 8.3, “Linux-2.6.11.12.” Doing this ensures that the keyboard will
always work as expected, even when booting into maintenance mode (by passing init=/bin/sh to the
kernel), because the console bootscript will not be run in that situation. Additionally, the kernel will not set the
screen font automatically. This should not pose many problems because ASCII characters will be handled
correctly, and it is unlikely that a user would need to rely on non-ASCII characters while in maintenance mode.

Since the kernel will set up the keymap, it is possible to omit the KEYMAP variable from the
/etc/sysconfig/console configuration file. It can also be left in place, if desired, without consequence.
Keeping it could be beneficial if running several different kernels where it is difficult to ensure that the keymap
is compiled into every one of them.

Linux From Scratch - Version 6.1

219



7.7. Configuring the sysklogd script
The sysklogd script invokes the syslogd program with the -m 0 option. This option turns off the periodic
timestamp mark that syslogd writes to the log files every 20 minutes by default. If you want to turn on this
periodic timestamp mark, edit the sysklogd script and make the changes accordingly. See man syslogd
for more information.

Linux From Scratch - Version 6.1

220



7.8. Creating the /etc/inputrc File
The inputrc file handles keyboard mapping for specific situations. This file is the startup file used by
Readline — the input-related library — used by Bash and most other shells.

Most people do not need user-specific keyboard mappings so the command below creates a global
/etc/inputrc used by everyone who logs in. If you later decide you need to override the defaults on a
per-user basis, you can create a .inputrc file in the user's home directory with the modified mappings.

For more information on how to edit the inputrc file, see info bash under the Readline Init File section. info
readline is also a good source of information.

Below is a generic global inputrc along with comments to explain what the various options do. Note that
comments cannot be on the same line as commands. Create the file using the following command:

cat > /etc/inputrc << "EOF"
# Begin /etc/inputrc
# Modified by Chris Lynn <roryo@roryo.dynup.net>

# Allow the command prompt to wrap to the next line
set horizontal-scroll-mode Off

# Enable 8bit input
set meta-flag On
set input-meta On

# Turns off 8th bit stripping
set convert-meta Off

# Keep the 8th bit for display
set output-meta On

# none, visible or audible
set bell-style none

# All of the following map the escape sequence of the
# value contained inside the 1st argument to the
# readline specific functions

"\eOd": backward-word
"\eOc": forward-word

# for linux console
"\e[1~": beginning-of-line
"\e[4~": end-of-line
"\e[5~": beginning-of-history
"\e[6~": end-of-history
"\e[3~": delete-char
"\e[2~": quoted-insert

# for xterm
"\eOH": beginning-of-line
"\eOF": end-of-line

Linux From Scratch - Version 6.1

221



# for Konsole
"\e[H": beginning-of-line
"\e[F": end-of-line

# End /etc/inputrc
EOF

Linux From Scratch - Version 6.1

222



7.9. The Bash Shell Startup Files
The shell program /bin/bash (hereafter referred to as “the shell”) uses a collection of startup files to help create
an environment to run in. Each file has a specific use and may affect login and interactive environments
differently. The files in the /etc directory provide global settings. If an equivalent file exists in the home
directory, it may override the global settings.

An interactive login shell is started after a successful login, using /bin/login, by reading the /etc/passwd
file. An interactive non-login shell is started at the command-line (e.g., [prompt]$/bin/bash). A
non-interactive shell is usually present when a shell script is running. It is non-interactive because it is
processing a script and not waiting for user input between commands.

For more information, see info bash under the Bash Startup Files and Interactive Shells section.

The files /etc/profile and ~/.bash_profile are read when the shell is invoked as an interactive login
shell.

The base /etc/profile below sets some environment variables necessary for native language support.
Setting them properly results in:

• The output of programs translated into the native language

• Correct classification of characters into letters, digits and other classes. This is necessary for bash to
properly accept non-ASCII characters in command lines in non-English locales

• The correct alphabetical sorting order for the country

• Appropriate default paper size

• Correct formatting of monetary, time, and date values

This script also sets the INPUTRC environment variable that makes Bash and Readline use the
/etc/inputrc file created earlier.

Replace [ll] below with the two-letter code for the desired language (e.g., “en”) and [CC] with the two-letter
code for the appropriate country (e.g., “GB”). [charmap] should be replaced with the canonical charmap for
your chosen locale.

The list of all locales supported by Glibc can be obtained by running the following command:

locale -a

Locales can have a number of synonyms, e.g. “ISO-8859-1” is also referred to as “iso8859-1” and “iso88591”.
Some applications cannot handle the various synonyms correctly, so it is safest to choose the canonical name for
a particular locale. To determine the canonical name, run the following command, where [locale name] is
the output given by locale -a for your preferred locale (“en_GB.iso88591” in our example).

LC_ALL=[locale name] locale charmap

For the “en_GB.iso88591” locale, the above command will print:

ISO-8859-1

Linux From Scratch - Version 6.1

223



This results in a final locale setting of “en_GB.ISO-8859-1”.

Once the proper locale settings have been determined, create the /etc/profile file:

cat > /etc/profile << "EOF"
# Begin /etc/profile

export LANG=[ll]_[CC].[charmap]
export INPUTRC=/etc/inputrc

# End /etc/profile
EOF

Note

The “C” (default) and “en_US” (the recommended one for United States English users) locales are
different.

Setting the keyboard layout, screen font, and locale-related environment variables are the only
internationalization steps needed to support locales that use ordinary single-byte encodings and left-to-right
writing direction. More complex cases (including UTF-8 based locales) require additional steps and additional
patches because many applications tend to not work properly under such conditions. These steps and patches are
not included in the LFS book and such locales are not yet supported by LFS.

Linux From Scratch - Version 6.1

224



7.10. Configuring the localnet Script
Part of the job of the localnet script is setting the system's hostname. This needs to be configured in the
/etc/sysconfig/network file.

Create the /etc/sysconfig/network file and enter a hostname by running:

echo "HOSTNAME=[lfs]" > /etc/sysconfig/network

[lfs] needs to be replaced with the name given to the computer. Do not enter the Fully Qualified Domain
Name (FQDN) here. That information will be put in the /etc/hosts file in the next section.

Linux From Scratch - Version 6.1

225



7.11. Creating the /etc/hosts File
If a network card is to be configured, decide on the IP address, FQDN, and possible aliases for use in the
/etc/hosts file. The syntax is:

<IP address> myhost.example.org aliases

Unless the computer is to be visible to the Internet (i.e., there is a registered domain and a valid block of
assigned IP addresses—most users do not have this), make sure that the IP address is in the private network IP
address range. Valid ranges are:

Class Networks
A 10.0.0.0
B 172.16.0.0 through 172.31.0.255
C 192.168.0.0 through 192.168.255.255

A valid IP address could be 192.168.1.1. A valid FQDN for this IP could be www.linuxfromscratch.org (not
recommended because this is a valid registered domain address and could cause domain name server issues).

Even if not using a network card, an FQDN is still required. This is necessary for certain programs to operate
correctly.

Create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
# Begin /etc/hosts (network card version)

127.0.0.1 localhost
[192.168.1.1] [<HOSTNAME>.example.org] [HOSTNAME]

# End /etc/hosts (network card version)
EOF

The [192.168.1.1] and [<HOSTNAME>.example.org] values need to be changed for specific users or
requirements (if assigned an IP address by a network/system administrator and the machine will be connected to
an existing network).

If a network card is not going to be configured, create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
# Begin /etc/hosts (no network card version)

127.0.0.1 [<HOSTNAME>.example.org] [HOSTNAME] localhost

# End /etc/hosts (no network card version)
EOF

Linux From Scratch - Version 6.1

226



7.12. Configuring the network Script
This section only applies if a network card is to be configured.

If a network card will not be used, there is likely no need to create any configuration files relating to network
cards. If that is the case, remove the network symlinks from all run-level directories (/etc/rc.d/rc*.d).

7.12.1. Creating Network Interface Configuration Files
Which interfaces are brought up and down by the network script depends on the files and directories in the
/etc/sysconfig/network-devices hierarchy. This directory should contain a sub-directory for each
interface to be configured, such as ifconfig.xyz, where “xyz” is a network interface name. Inside this
directory would be files defining the attributes to this interface, such as its IP address(es), subnet masks, and so
forth.

The following command creates a sample ipv4 file for the eth0 device:

cd /etc/sysconfig/network-devices &&
mkdir ifconfig.eth0 &&
cat > ifconfig.eth0/ipv4 << "EOF"
ONBOOT=yes
SERVICE=ipv4-static
IP=192.168.1.1
GATEWAY=192.168.1.2
PREFIX=24
BROADCAST=192.168.1.255
EOF

The values of these variables must be changed in every file to match the proper setup. If the ONBOOT variable is
set to “yes” the network script will bring up the Network Interface Card (NIC) during booting of the system. If
set to anything but “yes” the NIC will be ignored by the network script and not be brought up.

The SERVICE variable defines the method used for obtaining the IP address. The LFS-Bootscripts package has
a modular IP assignment format, and creating additional files in the
/etc/sysconfig/network-devices/services directory allows other IP assignment methods. This
is commonly used for Dynamic Host Configuration Protocol (DHCP), which is addressed in the BLFS book.

The GATEWAY variable should contain the default gateway IP address, if one is present. If not, then comment
out the variable entirely.

The PREFIX variable needs to contain the number of bits used in the subnet. Each octet in an IP address is 8
bits. If the subnet's netmask is 255.255.255.0, then it is using the first three octets (24 bits) to specify the
network number. If the netmask is 255.255.255.240, it would be using the first 28 bits. Prefixes longer than 24
bits are commonly used by DSL and cable-based Internet Service Providers (ISPs). In this example
(PREFIX=24), the netmask is 255.255.255.0. Adjust the PREFIX variable according to your specific subnet.

Linux From Scratch - Version 6.1

227



7.12.2. Creating the /etc/resolv.conf File
If the system is going to be connected to the Internet, it will need some means of Domain Name Service (DNS)
name resolution to resolve Internet domain names to IP addresses, and vice versa. This is best achieved by
placing the IP address of the DNS server, available from the ISP or network administrator, into
/etc/resolv.conf. Create the file by running the following:

cat > /etc/resolv.conf << "EOF"
# Begin /etc/resolv.conf

domain {[Your Domain Name]}
nameserver [IP address of your primary nameserver]
nameserver [IP address of your secondary nameserver]

# End /etc/resolv.conf
EOF

Replace [IP address of the nameserver] with the IP address of the DNS most appropriate for the
setup. There will often be more than one entry (requirements demand secondary servers for fallback capability).
If you only need or want one DNS server, remove the second nameserver line from the file. The IP address may
also be a router on the local network.

Linux From Scratch - Version 6.1

228



Chapter 8. Making the LFS System Bootable

8.1. Introduction
It is time to make the LFS system bootable. This chapter discusses creating an fstab file, building a kernel for
the new LFS system, and installing the GRUB boot loader so that the LFS system can be selected for booting at
startup.

Linux From Scratch - Version 6.1

229



8.2. Creating the /etc/fstab File
The /etc/fstab file is used by some programs to determine where file systems are to be mounted by default,
in which order, and which must be checked (for integrity errors) prior to mounting. Create a new file systems
table like this:

cat > /etc/fstab << "EOF"
# Begin /etc/fstab

# file system mount-point type options dump fsck
# order

/dev/[xxx] / [fff] defaults 1 1
/dev/[yyy] swap swap pri=1 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs defaults 0 0
devpts /dev/pts devpts gid=4,mode=620 0 0
shm /dev/shm tmpfs defaults 0 0
# End /etc/fstab
EOF

Replace [xxx], [yyy], and [fff] with the values appropriate for the system, for example, hda2, hda5,
and ext2. For details on the six fields in this file, see man 5 fstab.

When using a journalling file system, the 1 1 at the end of the line should be replaced with 0 0 because such a
partition does not need to be dumped or checked.

The /dev/shm mount point for tmpfs is included to allow enabling POSIX-shared memory. The kernel must
have the required support built into it for this to work (more about this is in the next section). Please note that
very little software currently uses POSIX-shared memory. Therefore, consider the /dev/shm mount point
optional. For more information, see Documentation/filesystems/tmpfs.txt in the kernel source
tree.

There are other lines which may be added to the /etc/fstab file. One example is a line for USB devices:

usbfs /proc/bus/usb usbfs devgid=14,devmode=0660 0 0

This option will only work if “Support for Host-side USB” and “USB device filesystem” are configured in the
kernel. If “Support for Host-side USB” is compiled as a module, then usbcore must be listed in
/etc/sysconfig/modules.

Linux From Scratch - Version 6.1

230



8.3. Linux-2.6.11.12
The Linux package contains the Linux kernel.

Approximate build time: 4.20 SBU
Required disk space: 181 MB

Installation depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make, Modutils, Perl,
and Sed

8.3.1. Installation of the kernel
Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in
the kernel source tree for alternative methods to the way this book configures the kernel.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued
prior to each kernel compilation. Do not rely on the source tree being clean after un-tarring.

If, in Section 7.6, “Configuring the Linux Console,” it was decided to compile the keymap into the kernel, issue
the command below:

loadkeys -m /usr/share/kbd/keymaps/[path to keymap] > \
drivers/char/defkeymap.c

For example, if using a Dutch keyboard, use /usr/share/kbd/keymaps/i386/qwerty/nl.map.gz.

Configure the kernel via a menu-driven interface. BLFS has some information regarding particular kernel
configuration requirements of packages outside of LFS at http://www.linuxfromscratch.org/blfs/view/svn/
longindex.html#kernel-config-index:

make menuconfig

Alternatively, make oldconfig may be more appropriate in some situations. See the README file for more
information.

If desired, skip kernel configuration by copying the kernel config file, .config, from the host system
(assuming it is available) to the unpacked linux-2.6.11.12 directory. However, we do not recommend this
option. It is often better to explore all the configuration menus and create the kernel configuration from scratch.

Note

NPTL requires the kernel to be compiled with GCC-3.x, in this case 3.4.3. It is not recommended to
compile the kernel with GCC-2.95.x, as this causes failures in the Glibc test suite. Normally, this
wouldn't be mentioned as LFS doesn't build GCC-2.95.x. Unfortunately, the kernel documentation
is outdated and still claims GCC-2.95.3 is the recommended compiler.

Compile the kernel image and modules:

Linux From Scratch - Version 6.1

231

http://www.linuxfromscratch.org/blfs/view/svn/longindex.html#kernel-config-index
http://www.linuxfromscratch.org/blfs/view/svn/longindex.html#kernel-config-index


make

If using kernel modules, an /etc/modprobe.conf file may be needed. Information pertaining to modules
and kernel configuration is located in the kernel documentation in the
linux-2.6.11.12/Documentation directory. Also, modprobe.conf(5) may be of interest.

Be very careful when reading other documentation relating to kernel modules because it usually applies to 2.4.x
kernels only. As far as we know, kernel configuration issues specific to Hotplug and Udev are not documented.
The problem is that Udev will create a device node only if Hotplug or a user-written script inserts the
corresponding module into the kernel, and not all modules are detectable by Hotplug. Note that statements like
the one below in the /etc/modprobe.conf file do not work with Udev:

alias char-major-XXX some-module

Because of the complications with Hotplug, Udev, and modules, we strongly recommend starting with a
completely non-modular kernel configuration, especially if this is the first time using Udev.

Install the modules, if the kernel configuration uses them:

make modules_install

After kernel compilation is complete, additional steps are required to complete the installation. Some files need
to be copied to the /boot directory.

The path to the kernel image may vary depending on the platform being used. The following command assumes
an x86 architecture:

cp arch/i386/boot/bzImage /boot/lfskernel-2.6.11.12

System.map is a symbol file for the kernel. It maps the function entry points of every function in the kernel
API, as well as the addresses of the kernel data structures for the running kernel. Issue the following command
to install the map file:

cp System.map /boot/System.map-2.6.11.12

The kernel configuration file .config produced by the make menuconfig step above contains all the
configuration selections for the kernel that was just compiled. It is a good idea to keep this file for future
reference:

cp .config /boot/config-2.6.11.12

Linux From Scratch - Version 6.1

232



It is important to note that the files in the kernel source directory are not owned by root. Whenever a package is
unpacked as user root (like we did inside chroot), the files have the user and group IDs of whatever they were
on the packager's computer. This is usually not a problem for any other package to be installed because the
source tree is removed after the installation. However, the Linux source tree is often retained for a long time.
Because of this, there is a chance that whatever user ID the packager used will be assigned to somebody on the
machine. That person would then have write access to the kernel source.

If the kernel source tree is going to be retained, run chown -R 0:0 on the linux-2.6.11.12 directory to
ensure all files are owned by user root.

Warning

Some kernel documentation recommends creating a symlink from /usr/src/linux pointing to
the kernel source directory. This is specific to kernels prior to the 2.6 series and must not be created
on an LFS system as it can cause problems for packages you may wish to build once your base LFS
system is complete.

Also, the headers in the system's include directory should always be the ones against which
Glibc was compiled, that is, the ones from the Linux-Libc-Headers package, and therefore, should
never be replaced by the kernel headers.

8.3.2. Contents of Linux
Installed files: config-2.6.11.12, lfskernel-2.6.11.12, and System.map-2.6.11.12

Short Descriptions

config-2.6.11.12 Contains all the configuration selections for the kernel

lfskernel-2.6.11.12 The engine of the Linux system. When turning on the computer, the kernel is
the first part of the operating system that gets loaded. It detects and initializes
all components of the computer's hardware, then makes these components
available as a tree of files to the software and turns a single CPU into a
multitasking machine capable of running scores of programs seemingly at the
same time

System.map-2.6.11.12 A list of addresses and symbols; it maps the entry points and addresses of all
the functions and data structures in the kernel

Linux From Scratch - Version 6.1

233



8.4. Making the LFS System Bootable
Your shiny new LFS system is almost complete. One of the last things to do is to ensure that the system can be
properly booted. The instructions below apply only to computers of IA-32 architecture, meaning mainstream
PCs. Information on “boot loading” for other architectures should be available in the usual resource-specific
locations for those architectures.

Boot loading can be a complex area, so a few cautionary words are in order. Be familiar with the current boot
loader and any other operating systems present on the hard drive(s) that need to be bootable. Make sure that an
emergency boot disk is ready to “rescue” the computer if the computer becomes unusable (un-bootable).

Earlier, we compiled and installed the GRUB boot loader software in preparation for this step. The procedure
involves writing some special GRUB files to specific locations on the hard drive. We highly recommend
creating a GRUB boot floppy diskette as a backup. Insert a blank floppy diskette and run the following
commands:

dd if=/boot/grub/stage1 of=/dev/fd0 bs=512 count=1
dd if=/boot/grub/stage2 of=/dev/fd0 bs=512 seek=1

Remove the diskette and store it somewhere safe. Now, run the grub shell:

grub

GRUB uses its own naming structure for drives and partitions in the form of (hdn,m), where n is the hard drive
number and m is the partition number, both starting from zero. For example, partition hda1 is (hd0,0) to GRUB
and hdb3 is (hd1,2). In contrast to Linux, GRUB does not consider CD-ROM drives to be hard drives. For
example, if using a CD on hdb and a second hard drive on hdc, that second hard drive would still be (hd1).

Using the above information, determine the appropriate designator for the root partition (or boot partition, if a
separate one is used). For the following example, it is assumed that the root (or separate boot) partition is hda4.

Tell GRUB where to search for its stage{1,2} files. The Tab key can be used everywhere to make GRUB
show the alternatives:

root (hd0,3)

Warning

The following command will overwrite the current boot loader. Do not run the command if this is
not desired, for example, if using a third party boot manager to manage the Master Boot Record
(MBR). In this scenario, it would make more sense to install GRUB into the “boot sector” of the
LFS partition. In this case, this next command would become setup (hd0,3).

Tell GRUB to install itself into the MBR of hda:

setup (hd0)

If all went well, GRUB will have reported finding its files in /boot/grub. That's all there is to it. Quit the
grub shell:

quit

Linux From Scratch - Version 6.1

234



Create a “menu list” file defining GRUB's boot menu:

cat > /boot/grub/menu.lst << "EOF"
# Begin /boot/grub/menu.lst

# By default boot the first menu entry.
default 0

# Allow 30 seconds before booting the default.
timeout 30

# Use prettier colors.
color green/black light-green/black

# The first entry is for LFS.
title LFS 6.1
root (hd0,3)
kernel /boot/lfskernel-2.6.11.12 root=/dev/hda4
EOF

Add an entry for the host distribution if desired. It might look like this:

cat >> /boot/grub/menu.lst << "EOF"
title Red Hat
root (hd0,2)
kernel /boot/kernel-2.6.5 root=/dev/hda3
initrd /boot/initrd-2.6.5
EOF

If dual-booting Windows, the following entry will allow booting it:

cat >> /boot/grub/menu.lst << "EOF"
title Windows
rootnoverify (hd0,0)
chainloader +1
EOF

If info grub does not provide all necessary material, additional information regarding GRUB is located on its
website at: http://www.gnu.org/software/grub/.

The FHS stipulates that GRUB's menu.lst file should be symlinked to /etc/grub/menu.lst. To satisfy
this requirement, issue the following command:

mkdir /etc/grub &&
ln -s /boot/grub/menu.lst /etc/grub

Linux From Scratch - Version 6.1

235

http://www.gnu.org/software/grub/


Chapter 9. The End

9.1. The End
Well done! The new LFS system is installed! We wish you much success with your shiny new custom-built
Linux system.

It may be a good idea to create an /etc/lfs-release file. By having this file, it is very easy for you (and
for us if you need to ask for help at some point) to find out which LFS version is installed on the system. Create
this file by running:

echo 6.1 > /etc/lfs-release

Linux From Scratch - Version 6.1

236



9.2. Get Counted
Now that you have finished the book, do you want to be counted as an LFS user? Head over to
http://www.linuxfromscratch.org/cgi-bin/lfscounter.cgi and register as an LFS user by entering your name and
the first LFS version you have used.

Let's reboot into LFS now.

Linux From Scratch - Version 6.1

237

http://www.linuxfromscratch.org/cgi-bin/lfscounter.cgi


9.3. Rebooting the System
Now that all of the software has been installed, it is time to reboot your computer. However, you should be
aware of a few things. The system you have created in this book is quite minimal, and most likely will not have
the functionality you would need to be able to continue forward. By installing a few extra packages from the
BLFS book while still in our current chroot environment, you can leave yourself in a much better position to
continue on once you reboot into your new LFS installation. Installing a text mode web browser, such as Lynx,
you can easily view the BLFS book in one virtual terminal, while building packages in another. The GPM
package will also allow you to perform copy/paste actions in your virtual terminals. Lastly, if you are in a
situation where static IP configuration does not meet your networking requirements, installing packages such as
Dhcpcd or PPP at this point might also be useful.

Now that we have said that, lets move on to booting our shiny new LFS installation for the first time! First exit
from the chroot environment:

logout

Then unmount the virtual files systems:

umount $LFS/dev/pts
umount $LFS/dev/shm
umount $LFS/dev
umount $LFS/proc
umount $LFS/sys

Unmount the LFS file system itself:

umount $LFS

If multiple partitions were created, unmount the other partitions before unmounting the main one, like this:

umount $LFS/usr
umount $LFS/home
umount $LFS

Now, reboot the system with:

shutdown -r now

Assuming the GRUB boot loader was set up as outlined earlier, the menu is set to boot LFS 6.1 automatically.

When the reboot is complete, the LFS system is ready for use and more software may be added to suit your
needs.

Linux From Scratch - Version 6.1

238



9.4. What Now?
Thank you for reading this LFS book. We hope that you have found this book helpful and have learned more
about the system creation process.

Now that the LFS system is installed, you may be wondering “What next?” To answer that question, we have
compiled a list of resources for you.

• Maintenance

Bugs and security notices are reported regularly for all software. Since an LFS system is compiled from
source, it is up to you to keep abreast of such reports. There are several online resources that track such
reports, some of which are shown below:

• Freshmeat.net (http://freshmeat.net/)

Freshmeat can notify you (via email) of new versions of packages installed on your system.

• CERT (Computer Emergency Response Team)

CERT has a mailing list that publishes security alerts concerning various operating systems and
applications. Subscription information is available at http://www.us-cert.gov/cas/signup.html.

• Bugtraq

Bugtraq is a full-disclosure computer security mailing list. It publishes newly discovered security issues,
and occasionally potential fixes for them. Subscription information is available at
http://www.securityfocus.com/archive.

• Beyond Linux From Scratch

The Beyond Linux From Scratch book covers installation procedures for a wide range of software beyond
the scope of the LFS Book. The BLFS project is located at http://www.linuxfromscratch.org/blfs/.

• LFS Hints

The LFS Hints are a collection of educational documents submitted by volunteers in the LFS community.
The hints are available at http://www.linuxfromscratch.org/hints/list.html.

• Mailing lists

There are several LFS mailing lists you may subscribe to if you are in need of help, want to stay current with
the latest developments, want to contribute to the project, and more. See Chapter 1 - Mailing Lists for more
information.

• The Linux Documentation Project

The goal of The Linux Documentation Project (TLDP) is to collaborate on all of the issues of Linux
documentation. The TLDP features a large collection of HOWTOs, guides, and man pages. It is located at
http://www.tldp.org/.

Linux From Scratch - Version 6.1

239

http://freshmeat.net/
http://www.cert.org/
http://www.us-cert.gov/cas/signup.html
http://www.securityfocus.com/archive
http://www.linuxfromscratch.org/blfs/
http://www.linuxfromscratch.org/hints/list.html
http://www.tldp.org/


Part IV. Appendices

Linux From Scratch - Version 6.1



Appendix A. Acronyms and Terms
ABI Application Binary Interface

ALFS Automated Linux From Scratch

ALSA Advanced Linux Sound Architecture

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input/Output System

BLFS Beyond Linux From Scratch

BSD Berkeley Software Distribution

chroot change root

CMOS Complementary Metal Oxide Semiconductor

COS Class Of Service

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVS Concurrent Versions System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

EGA Enhanced Graphics Adapter

ELF Executable and Linkable Format

EOF End of File

EQN equation

EVMS Enterprise Volume Management System

ext2 second extended file system

FAQ Frequently Asked Questions

FHS Filesystem Hierarchy Standard

FIFO First-In, First Out

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GB Gibabytes

GCC GNU Compiler Collection

Linux From Scratch - Version 6.1

241



GID Group Identifier

GMT Greenwich Mean Time

GPG GNU Privacy Guard

HTML Hypertext Markup Language

IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronic Engineers

IO Input/Output

IP Internet Protocol

IPC Inter-Process Communication

IRC Internet Relay Chat

ISO International Organization for Standardization

ISP Internet Service Provider

KB Kilobytes

LED Light Emitting Diode

LFS Linux From Scratch

LSB Linux Standards Base

MB Megabytes

MBR Master Boot Record

MD5 Message Digest 5

NIC Network Interface Card

NLS Native Language Support

NNTP Network News Transport Protocol

NPTL Native POSIX Threading Library

OSS Open Sound System

PCH Pre-Compiled Headers

PCRE Perl Compatible Regular Expression

PID Process Identifier

PLFS Pure Linux From Scratch

PTY pseudo terminal

QA Quality Assurance

QOS Quality Of Service

Linux From Scratch - Version 6.1

242



RAM Random Access Memory

RPC Remote Procedure Call

RTC Real Time Clock

SBU Standard Build Unit

SCO The Santa Cruz Operation

SGR Select Graphic Rendition

SHA1 Secure-Hash Algorithm 1

SMP Symmetric Multi-Processor

TLDP The Linux Documentation Project

TFTP Trivial File Transfer Protocol

TLS Thread-Local Storage

UID User Identifier

umask user file-creation mask

USB Universal Serial Bus

UTC Coordinated Universal Time

UUID Universally Unique Identifier

VC Virtual Console

VGA Video Graphics Array

VT Virtual Terminal

Linux From Scratch - Version 6.1

243



Appendix B. Acknowledgments
We would like to thank the following people and organizations for their contributions to the Linux From
Scratch Project.

• Gerard Beekmans <gerard@linuxfromscratch.org> – LFS Creator, LFS Project Leader

• Matthew Burgess <matthew@linuxfromscratch.org> – LFS Project Leader, LFS Technical Writer/Editor,
LFS Release Manager

• Archaic <archaic@linuxfromscratch.org> – LFS Technical Writer/Editor, HLFS Project Leader, BLFS
Editor, Hints and Patches Project Maintainer

• Nathan Coulson <nathan@linuxfromscratch.org> – LFS-Bootscripts Maintainer

• Bruce Dubbs <bdubbs@linuxfromscratch.org> – BLFS Project Leader

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – LFS/BLFS/HLFS XML and XSL Maintainer

• Jim Gifford <jim@linuxfromscratch.org> – LFS Technical Writer, Patches Project Leader

• Jeremy Huntwork <jhuntwork@linuxfromscratch.org> – LFS Technical Writer, LFS LiveCD Maintainer,
ALFS Project Leader

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Website Backend-Scripts Maintainer

• Ryan Oliver <ryan@linuxfromscratch.org> – LFS Toolchain Maintainer

• James Robertson <jwrober@linuxfromscratch.org> – Bugzilla Maintainer

• Tushar Teredesai <tushar@linuxfromscratch.org> – BLFS Book Editor, Hints and Patches Project Leader

• Countless other people on the various LFS and BLFS mailing lists who helped make this book possible by
giving their suggestions, testing the book, and submitting bug reports, instructions, and their experiences
with installing various packages.

Translators

• Manuel Canales Esparcia <macana@lfs-es.com> – Spanish LFS translation project

• Johan Lenglet <johan@linuxfromscratch.org> – French LFS translation project

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Portuguese LFS translation project

• Thomas Reitelbach <tr@erdfunkstelle.de> – German LFS translation project

Mirror Maintainers

North American Mirrors

• Scott Kveton <scott@osuosl.org> – lfs.oregonstate.edu mirror

• Mikhail Pastukhov <miha@xuy.biz> – lfs.130th.net mirror

Linux From Scratch - Version 6.1

244

mailto:gerard@linuxfromscratch.org
mailto:matthew@linuxfromscratch.org
mailto:archaic@linuxfromscratch.org
mailto:nathan@linuxfromscratch.org
mailto:bdubbs@linuxfromscratch.org
mailto:manuel@linuxfromscratch.org
mailto:jim@linuxfromscratch.org
mailto:jhuntwork@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:ryan@linuxfromscratch.org
mailto:jwrober@linuxfromscratch.org
mailto:tushar@linuxfromscratch.org
mailto:macana@lfs-es.com
mailto:johan@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:tr@erdfunkstelle.de
mailto:scott@osuosl.org
mailto:miha@xuy.biz


• William Astle <lost@l-w.net> – ca.linuxfromscratch.org mirror

• Jeremy Polen <jpolen@rackspace.com> – us2.linuxfromscratch.org mirror

• Tim Jackson <tim@idge.net> – linuxfromscratch.idge.net mirror

• Jeremy Utley <jeremy@linux-phreak.net> – lfs.linux-phreak.net mirror

South American Mirrors

• Andres Meggiotto <sysop@mesi.com.ar> – lfs.mesi.com.ar mirror

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – lfsmirror.lfs-es.info mirror

• Eduardo B. Fonseca <ebf@aedsolucoes.com.br> – br.linuxfromscratch.org mirror

European Mirrors

• Barna Koczka <barna@siker.hu> – hu.linuxfromscratch.org mirror

• UK Mirror Service – linuxfromscratch.mirror.ac.uk mirror

• Martin Voss <Martin.Voss@ada.de> – lfs.linux-matrix.net mirror

• Guido Passet <guido@primerelay.net> – nl.linuxfromscratch.org mirror

• Bastiaan Jacques <baafie@planet.nl> – lfs.pagefault.net mirror

• Roel Neefs <lfs-mirror@linuxfromscratch.rave.org> – linuxfromscratch.rave.org mirror

• Justin Knierim <justin@jrknierim.de> – www.lfs-matrix.de mirror

• Stephan Brendel <stevie@stevie20.de> – lfs.netservice-neuss.de mirror

• Antonin Sprinzl <Antonin.Sprinzl@tuwien.ac.at> – at.linuxfromscratch.org mirror

• Fredrik Danerklint <fredan-lfs@fredan.org> – se.linuxfromscratch.org mirror

• Parisian sysadmins <archive@doc.cs.univ-paris8.fr> – www2.fr.linuxfromscratch.org mirror

• Alexander Velin <velin@zadnik.org> – bg.linuxfromscratch.org mirror

• Dirk Webster <dirk@securewebservices.co.uk> – lfs.securewebservices.co.uk mirror

• Thomas Skyt <thomas@sofagang.dk> – dk.linuxfromscratch.org mirror

• Simon Nicoll <sime@dot-sime.com> – uk.linuxfromscratch.org mirror

Asian Mirrors

• Pui Yong <pyng@spam.averse.net> – sg.linuxfromscratch.org mirror

• Stuart Harris <stuart@althalus.me.uk> – lfs.mirror.intermedia.com.sg mirror

Linux From Scratch - Version 6.1

245

mailto:lost@l-w.net
mailto:jpolen@rackspace.com
mailto:tim@idge.net
mailto:jeremy@linux-phreak.net
mailto:sysop@mesi.com.ar
mailto:manuel@linuxfromscratch.org
mailto:ebf@aedsolucoes.com.br
mailto:barna@siker.hu
http://www.mirror.ac.uk
mailto:Martin.Voss@ada.de
mailto:guido@primerelay.net
mailto:baafie@planet.nl
mailto:lfs-mirror@linuxfromscratch.rave.org
mailto:justin@jrknierim.de
mailto:stevie@stevie20.de
mailto:Antonin.Sprinzl@tuwien.ac.at
mailto:fredan-lfs@fredan.org
mailto:archive@doc.cs.univ-paris8.fr
mailto:velin@zadnik.org
mailto:dirk@securewebservices.co.uk
mailto:thomas@sofagang.dk
mailto:sime@dot-sime.com
mailto:pyng@spam.averse.net
mailto:stuart@althalus.me.uk


Australian Mirrors

• Jason Andrade <jason@dstc.edu.au> – au.linuxfromscratch.org mirror

Former Project Team Members

• Christine Barczak <theladyskye@linuxfromscratch.org> – LFS Book Editor

• Jeroen Coumans <jeroen@linuxfromscratch.org> – Website Developer, FAQ Maintainer

• Nicholas Leippe <nicholas@linuxfromscratch.org> – Wiki Maintainer

• Scot Mc Pherson <scot@linuxfromscratch.org> – LFS NNTP Gateway Maintainer

• Alexander Patrakov <semzx@newmail.ru> – LFS Technical Writer

• Jeremy Utley <jeremy@linuxfromscratch.org> – LFS Technical Writer, Bugzilla Maintainer,
LFS-Bootscripts Maintainer

• Zack Winkles <zwinkles@gmail.com> – Former LFS Technical Writer

A very special thank you to our donators

• Dean Benson <dean@vipersoft.co.uk> for several monetary contributions

• Hagen Herrschaft <hrx@hrxnet.de> for donating a 2.2 GHz P4 system, now running under the name of
Lorien

• VA Software who, on behalf of Linux.com, donated a VA Linux 420 (former StartX SP2) workstation

• Mark Stone for donating Belgarath, the linuxfromscratch.org server

Linux From Scratch - Version 6.1

246

mailto:jason@dstc.edu.au
mailto:theladyskye@linuxfromscratch.org
mailto:jeroen@linuxfromscratch.org
mailto:nicholas@linuxfromscratch.org
mailto:scot@linuxfromscratch.org
mailto:semzx@newmail.ru
mailto:jeremy@linuxfromscratch.org
mailto:zwinkles@gmail.com
mailto:dean@vipersoft.co.uk
mailto:hrx@hrxnet.de
http://www.vasoftware.com
http://www.linux.com


Index
Packages
Autoconf: 158
Automake: 160
Bash: 162

tools: 87
Binutils: 115

tools, pass 1: 53
tools, pass 2: 71

Bison: 140
tools: 89

Bootscripts: 210
usage: 212

Bzip2: 166
tools: 75

Coreutils: 121
tools: 74

DejaGNU: 67
Diffutils: 168

tools: 77
E2fsprogs: 171
Expect: 65
File: 164
Findutils: 130

tools: 78
Flex: 146

tools: 90
Gawk: 131

tools: 73
GCC: 118

tools, pass 1: 55
tools, pass 2: 68

Gettext: 148
tools: 82

Glibc: 107
tools: 58

Grep: 174
tools: 80

Groff: 142
GRUB: 175

configuring: 234
Gzip: 177

tools: 76
Hotplug: 179
Iana-Etc: 129
Inetutils: 150

IPRoute2: 152
Kbd: 169
Less: 141
Libtool: 165
Linux: 231
Linux-Libc-Headers: 105

tools, headers: 57
M4: 139

tools: 88
Make: 183

tools: 79
Man: 181
Man-pages: 106
Mktemp: 128
Module-Init-Tools: 184
Ncurses: 132

tools: 83
Patch: 186

tools: 84
Perl: 154

tools: 92
Procps: 187
Psmisc: 189
Readline: 134
Sed: 145

tools: 81
Shadow: 191

configuring: 192
Sysklogd: 194

configuring: 194
Sysvinit: 196

configuring: 197
Tar: 199

tools: 85
Tcl: 63
Texinfo: 156

tools: 86
Udev: 200

usage: 214
Util-linux: 202

tools: 91
Vim: 136
Zlib: 126

Programs
a2p: 154 , 154
acinstall: 160 , 160
aclocal: 160 , 160
aclocal-1.9.5: 160 , 160

Linux From Scratch - Version 6.1

247



addftinfo: 142 , 142
addr2line: 115 , 116
afmtodit: 142 , 142
agetty: 202 , 203
apropos: 181 , 182
ar: 115 , 116
arch: 202 , 203
as: 115 , 116
autoconf: 158 , 158
autoheader: 158 , 158
autom4te: 158 , 158
automake: 160 , 160
automake-1.9.5: 160 , 160
autopoint: 148 , 148
autoreconf: 158 , 158
autoscan: 158 , 158
autoupdate: 158 , 158
awk: 131 , 131
badblocks: 171 , 172
basename: 121 , 122
bash: 162 , 163
bashbug: 162 , 163
bigram: 130 , 130
bison: 140 , 140
blkid: 171 , 172
blockdev: 202 , 203
bunzip2: 166 , 166
bzcat: 166 , 166
bzcmp: 166 , 167
bzdiff: 166 , 167
bzegrep: 166 , 167
bzfgrep: 166 , 167
bzgrep: 166 , 167
bzip2: 166 , 167
bzip2recover: 166 , 167
bzless: 166 , 167
bzmore: 166 , 167
c++: 118 , 119
c++filt: 115 , 116
c2ph: 154 , 154
cal: 202 , 203
captoinfo: 132 , 133
cat: 121 , 122
catchsegv: 107 , 111
cc: 118 , 119
cfdisk: 202 , 203
chage: 191 , 192
chattr: 171 , 172
chfn: 191 , 192

chgrp: 121 , 122
chkdupexe: 202 , 203
chmod: 121 , 122
chown: 121 , 122
chpasswd: 191 , 192
chroot: 121 , 122
chsh: 191 , 192
chvt: 169 , 169
cksum: 121 , 122
clear: 132 , 133
cmp: 168 , 168
code: 130 , 130
col: 202 , 203
colcrt: 202 , 203
colrm: 202 , 203
column: 202 , 203
comm: 121 , 122
compile: 160 , 160
compile_et: 171 , 172
compress: 177 , 177
config.charset: 148 , 148
config.guess: 160 , 160
config.rpath: 148 , 148
config.sub: 160 , 160
cp: 121 , 122
cpp: 118 , 119
csplit: 121 , 122
ctrlaltdel: 202 , 203
ctstat: 152 , 152
cut: 121 , 122
cytune: 202 , 203
date: 121 , 122
dd: 121 , 122
ddate: 202 , 203
deallocvt: 169 , 169
debugfs: 171 , 172
depcomp: 160 , 161
depmod: 184 , 184
df: 121 , 123
diff: 168 , 168
diff3: 168 , 168
dir: 121 , 123
dircolors: 121 , 123
dirname: 121 , 123
dmesg: 202 , 203
dprofpp: 154 , 155
du: 121 , 123
dumpe2fs: 171 , 172
dumpkeys: 169 , 169

Linux From Scratch - Version 6.1

248



e2fsck: 171 , 172
e2image: 171 , 172
e2label: 171 , 172
echo: 121 , 123
efm_filter.pl: 136 , 137
efm_perl.pl: 136 , 137
egrep: 174 , 174
elisp-comp: 160 , 161
elvtune: 202 , 203
en2cxs: 154 , 155
env: 121 , 123
envsubst: 148 , 148
eqn: 142 , 142
eqn2graph: 142 , 142
ex: 136 , 137
expand: 121 , 123
expect: 65 , 66
expiry: 191 , 192
expr: 121 , 123
factor: 121 , 123
faillog: 191 , 192
false: 121 , 123
fdformat: 202 , 203
fdisk: 202 , 203
fgconsole: 169 , 169
fgrep: 174 , 174
file: 164 , 164
find: 130 , 130
find2perl: 154 , 155
findfs: 171 , 172
flex: 146 , 147
flex++: 146 , 147
fmt: 121 , 123
fold: 121 , 123
frcode: 130 , 130
free: 187 , 187
fsck: 171 , 172
fsck.cramfs: 202 , 203
fsck.ext2: 171 , 172
fsck.ext3: 171 , 172
fsck.minix: 202 , 203
ftp: 150 , 151
fuser: 189 , 189
g++: 118 , 119
gawk: 131 , 131
gawk-3.1.4: 131 , 131
gcc: 118 , 119
gccbug: 118 , 119
gcov: 118 , 119

gencat: 107 , 111
geqn: 142 , 142
getconf: 107 , 111
getent: 107 , 111
getkeycodes: 169 , 169
getopt: 202 , 203
gettext: 148 , 148
gettextize: 148 , 148
getunimap: 169 , 169
gpasswd: 191 , 192
gprof: 115 , 116
grcat: 131 , 131
grep: 174 , 174
grn: 142 , 142
grodvi: 142 , 143
groff: 142 , 143
groffer: 142 , 143
grog: 142 , 143
grolbp: 142 , 143
grolj4: 142 , 143
grops: 142 , 143
grotty: 142 , 143
groupadd: 191 , 193
groupdel: 191 , 193
groupmod: 191 , 193
groups: 191 , 193
groups: 121 , 123
grpck: 191 , 193
grpconv: 191 , 193
grpunconv: 191 , 193
grub: 175 , 175
grub-install: 175 , 175
grub-md5-crypt: 175 , 175
grub-terminfo: 175 , 176
gtbl: 142 , 143
gunzip: 177 , 177
gzexe: 177 , 178
gzip: 177 , 178
h2ph: 154 , 155
h2xs: 154 , 155
halt: 196 , 198
head: 121 , 123
hexdump: 202 , 203
hostid: 121 , 123
hostname: 121 , 123
hostname: 148 , 148
hotplug: 179 , 180
hpftodit: 142 , 143
hwclock: 202 , 203

Linux From Scratch - Version 6.1

249



iconv: 107 , 111
iconvconfig: 107 , 111
id: 121 , 123
ifcfg: 152 , 152
ifnames: 158 , 159
ifstat: 152 , 152
igawk: 131 , 131
indxbib: 142 , 143
info: 156 , 157
infocmp: 132 , 133
infokey: 156 , 157
infotocap: 132 , 133
init: 196 , 198
insmod: 184 , 184
insmod.static: 184 , 184
install: 121 , 123
install-info: 156 , 157
install-sh: 160 , 161
ip: 152 , 153
ipcrm: 202 , 203
ipcs: 202 , 204
isosize: 202 , 204
join: 121 , 123
kbdrate: 169 , 169
kbd_mode: 169 , 169
kill: 187 , 187
killall: 189 , 189
killall5: 196 , 198
klogd: 194 , 195
last: 196 , 198
lastb: 196 , 198
lastlog: 191 , 193
ld: 115 , 116
ldconfig: 107 , 111
ldd: 107 , 111
lddlibc4: 107 , 111
less: 141 , 141
less.sh: 136 , 138
lessecho: 141 , 141
lesskey: 141 , 141
lex: 146 , 147
lfskernel-2.6.11.12: 231 , 233
libnetcfg: 154 , 155
libtool: 165 , 165
libtoolize: 165 , 165
line: 202 , 204
link: 121 , 123
lkbib: 142 , 143
ln: 121 , 123

lnstat: 152 , 153
loadkeys: 169 , 169
loadunimap: 169 , 169
locale: 107 , 111
localedef: 107 , 111
locate: 130 , 130
logger: 202 , 204
login: 191 , 193
logname: 121 , 123
logoutd: 191 , 193
logsave: 171 , 172
look: 202 , 204
lookbib: 142 , 143
losetup: 202 , 204
ls: 121 , 123
lsattr: 171 , 172
lsmod: 184 , 185
m4: 139 , 139
make: 183 , 183
makeinfo: 156 , 157
makewhatis: 181 , 182
man: 181 , 182
man2dvi: 181 , 182
man2html: 181 , 182
mapscrn: 169 , 170
mbchk: 175 , 176
mcookie: 202 , 204
md5sum: 121 , 123
mdate-sh: 160 , 161
mesg: 196 , 198
missing: 160 , 161
mkdir: 121 , 123
mke2fs: 171 , 172
mkfifo: 121 , 123
mkfs: 202 , 204
mkfs.bfs: 202 , 204
mkfs.cramfs: 202 , 204
mkfs.ext2: 171 , 173
mkfs.ext3: 171 , 173
mkfs.minix: 202 , 204
mkinstalldirs: 160 , 161
mklost+found: 171 , 173
mknod: 121 , 123
mkpasswd: 191 , 193
mkswap: 202 , 204
mktemp: 128 , 128
mk_cmds: 171 , 172
mmroff: 142 , 143
modinfo: 184 , 185

Linux From Scratch - Version 6.1

250



modprobe: 184 , 185
more: 202 , 204
mount: 202 , 204
mountpoint: 196 , 198
msgattrib: 148 , 149
msgcat: 148 , 149
msgcmp: 148 , 149
msgcomm: 148 , 149
msgconv: 148 , 149
msgen: 148 , 149
msgexec: 148 , 149
msgfilter: 148 , 149
msgfmt: 148 , 149
msggrep: 148 , 149
msginit: 148 , 149
msgmerge: 148 , 149
msgunfmt: 148 , 149
msguniq: 148 , 149
mtrace: 107 , 111
mv: 121 , 124
mve.awk: 136 , 138
namei: 202 , 204
neqn: 142 , 143
newgrp: 191 , 193
newusers: 191 , 193
ngettext: 148 , 149
nice: 121 , 124
nl: 121 , 124
nm: 115 , 116
nohup: 121 , 124
nroff: 142 , 143
nscd: 107 , 111
nscd_nischeck: 107 , 111
nstat: 152 , 153
objcopy: 115 , 116
objdump: 115 , 116
od: 121 , 124
openvt: 169 , 170
passwd: 191 , 193
paste: 121 , 124
patch: 186 , 186
pathchk: 121 , 124
pcprofiledump: 107 , 111
perl: 154 , 155
perl5.8.6: 154 , 155
perlbug: 154 , 155
perlcc: 154 , 155
perldoc: 154 , 155
perlivp: 154 , 155

pfbtops: 142 , 143
pg: 202 , 204
pgawk: 131 , 131
pgawk-3.1.4: 131 , 131
pgrep: 187 , 187
pic: 142 , 143
pic2graph: 142 , 143
piconv: 154 , 155
pidof: 196 , 198
ping: 150 , 151
pinky: 121 , 124
pivot_root: 202 , 204
pkill: 187 , 187
pl2pm: 154 , 155
pltags.pl: 136 , 138
pmap: 187 , 187
pod2html: 154 , 155
pod2latex: 154 , 155
pod2man: 154 , 155
pod2text: 154 , 155
pod2usage: 154 , 155
podchecker: 154 , 155
podselect: 154 , 155
post-grohtml: 142 , 143
poweroff: 196 , 198
pr: 121 , 124
pre-grohtml: 142 , 143
printenv: 121 , 124
printf: 121 , 124
ps: 187 , 187
psed: 154 , 155
psfaddtable: 169 , 170
psfgettable: 169 , 170
psfstriptable: 169 , 170
psfxtable: 169 , 170
pstree: 189 , 190
pstree.x11: 189 , 190
pstruct: 154 , 155
ptx: 121 , 124
pt_chown: 107 , 111
pwcat: 131 , 131
pwck: 191 , 193
pwconv: 191 , 193
pwd: 121 , 124
pwunconv: 191 , 193
py-compile: 160 , 161
ramsize: 202 , 204
ranlib: 115 , 116
raw: 202 , 204

Linux From Scratch - Version 6.1

251



rcp: 150 , 151
rdev: 202 , 204
readelf: 115 , 116
readlink: 121 , 124
readprofile: 202 , 204
reboot: 196 , 198
ref: 136 , 138
refer: 142 , 143
rename: 202 , 204
renice: 202 , 204
reset: 132 , 133
resize2fs: 171 , 173
resizecons: 169 , 170
rev: 202 , 204
rlogin: 150 , 151
rm: 121 , 124
rmdir: 121 , 124
rmmod: 184 , 185
rmt: 199 , 199
rootflags: 202 , 204
routef: 152 , 153
routel: 152 , 153
rpcgen: 107 , 111
rpcinfo: 107 , 111
rsh: 150 , 151
rtacct: 152 , 153
rtmon: 152 , 153
rtpr: 152 , 153
rtstat: 152 , 153
runlevel: 196 , 198
runtest: 67 , 67
rview: 136 , 138
rvim: 136 , 138
s2p: 154 , 155
script: 202 , 204
sdiff: 168 , 168
sed: 145 , 145
seq: 121 , 124
setfdprm: 202 , 204
setfont: 169 , 170
setkeycodes: 169 , 170
setleds: 169 , 170
setlogcons: 169 , 170
setmetamode: 169 , 170
setsid: 202 , 204
setterm: 202 , 204
setvesablank: 169 , 170
sfdisk: 202 , 204
sg: 191 , 193

sh: 162 , 163
sha1sum: 121 , 124
showconsolefont: 169 , 170
showkey: 169 , 170
shred: 121 , 124
shtags.pl: 136 , 138
shutdown: 196 , 198
size: 115 , 117
skill: 187 , 187
sleep: 121 , 124
sln: 107 , 111
snice: 187 , 187
soelim: 142 , 143
sort: 121 , 124
splain: 154 , 155
split: 121 , 124
sprof: 107 , 111
ss: 152 , 153
stat: 121 , 124
strings: 115 , 117
strip: 115 , 117
stty: 121 , 124
su: 191 , 193
sulogin: 196 , 198
sum: 121 , 124
swapdev: 202 , 204
swapoff: 202 , 205
swapon: 202 , 205
symlink-tree: 160 , 161
sync: 121 , 124
sysctl: 187 , 187
syslogd: 194 , 195
tac: 121 , 124
tack: 132 , 133
tail: 121 , 124
talk: 150 , 151
tar: 199 , 199
tbl: 142 , 144
tc: 152 , 153
tclsh: 63 , 64
tclsh8.4: 63 , 64
tcltags: 136 , 138
tee: 121 , 124
telinit: 196 , 198
telnet: 150 , 151
tempfile: 128 , 128
test: 121 , 124
texi2dvi: 156 , 157
texindex: 156 , 157

Linux From Scratch - Version 6.1

252



tfmtodit: 142 , 144
tftp: 150 , 151
tic: 132 , 133
tload: 187 , 187
toe: 132 , 133
top: 187 , 187
touch: 121 , 125
tput: 132 , 133
tr: 121 , 125
troff: 142 , 144
true: 121 , 125
tset: 132 , 133
tsort: 121 , 125
tty: 121 , 125
tune2fs: 171 , 173
tunelp: 202 , 205
tzselect: 107 , 111
udev: 200 , 200
udevd: 200 , 200
udevinfo: 200 , 201
udevsend: 200 , 200
udevstart: 200 , 200
udevtest: 200 , 201
ul: 202 , 205
umount: 202 , 205
uname: 121 , 125
uncompress: 177 , 178
unexpand: 121 , 125
unicode_start: 169 , 170
unicode_stop: 169 , 170
uniq: 121 , 125
unlink: 121 , 125
updatedb: 130 , 130
uptime: 187 , 187
useradd: 191 , 193
userdel: 191 , 193
usermod: 191 , 193
users: 121 , 125
utmpdump: 196 , 198
uuidgen: 171 , 173
vdir: 121 , 125
vi: 136 , 138
vidmode: 202 , 205
view: 136 , 138
vigr: 191 , 193
vim: 136 , 138
vim132: 136 , 138
vim2html.pl: 136 , 138
vimdiff: 136 , 138

vimm: 136 , 138
vimspell.sh: 136 , 138
vimtutor: 136 , 138
vipw: 191 , 193
vmstat: 187 , 187
w: 187 , 188
wall: 196 , 198
watch: 187 , 188
wc: 121 , 125
whatis: 181 , 182
whereis: 202 , 205
who: 121 , 125
whoami: 121 , 125
write: 202 , 205
xargs: 130 , 130
xgettext: 148 , 149
xsubpp: 154 , 155
xtrace: 107 , 111
xxd: 136 , 138
yacc: 140 , 140
yes: 121 , 125
ylwrap: 160 , 161
zcat: 177 , 178
zcmp: 177 , 178
zdiff: 177 , 178
zdump: 107 , 111
zegrep: 177 , 178
zfgrep: 177 , 178
zforce: 177 , 178
zgrep: 177 , 178
zic: 107 , 111
zless: 177 , 178
zmore: 177 , 178
znew: 177 , 178
zsoelim: 142 , 144

Libraries
ld.so: 107 , 111
libanl: 107 , 112
libasprintf: 148 , 149
libbfd: 115 , 117
libblkid: 171 , 173
libBrokenLocale: 107 , 111
libbsd-compat: 107 , 112
libbz2*: 166 , 167
libc: 107 , 112
libcom_err: 171 , 173
libcrypt: 107 , 112
libcurses: 132 , 133

Linux From Scratch - Version 6.1

253



libdl: 107 , 112
libe2p: 171 , 173
libexpect-5.42: 65 , 66
libext2fs: 171 , 173
libfl.a: 146 , 147
libform: 132 , 133
libg: 107 , 112
libgcc*: 118 , 119
libgettextlib: 148 , 149
libgettextpo: 148 , 149
libgettextsrc: 148 , 149
libhistory: 134 , 135
libiberty: 115 , 117
libieee: 107 , 112
libltdl: 165 , 165
libm: 107 , 112
libmagic: 164 , 164
libmcheck: 107 , 112
libmemusage: 107 , 112
libmenu: 132 , 133
libncurses: 132 , 133
libnsl: 107 , 112
libnss: 107 , 112
libopcodes: 115 , 117
libpanel: 132 , 133
libpcprofile: 107 , 112
libproc: 187 , 188
libpthread: 107 , 112
libreadline: 134 , 135
libresolv: 107 , 112
librpcsvc: 107 , 112
librt: 107 , 112
libSegFault: 107 , 111
libshadow: 191 , 193
libss: 171 , 173
libstdc++: 118 , 119
libsupc++: 118 , 120
libtcl8.4.so: 63 , 64
libthread_db: 107 , 112
libutil: 107 , 112
libuuid: 171 , 173
liby.a: 140 , 140
libz: 126 , 127

Scripts
/etc/hotplug/*.agent: 179 , 180
/etc/hotplug/*.rc: 179 , 180
checkfs: 210 , 210
cleanfs: 210 , 210

console: 210 , 210
configuring: 218

functions: 210 , 210
halt: 210 , 210
hotplug: 210 , 210
ifdown: 210 , 210
ifup: 210 , 210
localnet: 210 , 210

/etc/hosts: 226
configuring: 225

mountfs: 210 , 210
mountkernfs: 210 , 210
network: 210 , 210

/etc/hosts: 226
configuring: 227

rc: 210 , 210
reboot: 210 , 210
sendsignals: 210 , 211
setclock: 210 , 211

configuring: 217
static: 210 , 211
swap: 210 , 211
sysklogd: 210 , 211

configuring: 220
template: 210 , 211
udev: 210 , 211

Others
/boot/config-2.6.11.12: 231 , 233
/boot/System.map-2.6.11.12: 231 , 233
/dev/*: 103
/etc/fstab: 230
/etc/group: 101
/etc/hosts: 226
/etc/hotplug.d: 179 , 180
/etc/hotplug/blacklist: 179 , 180
/etc/hotplug/hotplug.functions: 179 , 180
/etc/hotplug/usb.usermap: 179 , 180
/etc/hotplug/{pci,usb}: 179 , 180
/etc/inittab: 197
/etc/inputrc: 221
/etc/ld.so.conf: 110
/etc/lfs-release: 236
/etc/limits: 191
/etc/localtime: 109
/etc/login.access: 191
/etc/login.defs: 191
/etc/nsswitch.conf: 109
/etc/passwd: 101

Linux From Scratch - Version 6.1

254



/etc/profile: 223
/etc/protocols: 129
/etc/resolv.conf: 228
/etc/services: 129
/etc/syslog.conf: 194
/etc/udev: 200 , 201
/etc/vim: 137
/lib/firmware: 179 , 180
/usr/include/{asm,linux}/*.h: 105 , 105
/var/log/btmp: 101
/var/log/hotplug/events: 179 , 180
/var/log/lastlog: 101
/var/log/wtmp: 101
/var/run/utmp: 101
man pages: 106 , 106

Linux From Scratch - Version 6.1

255


	Linux From Scratch
	Table of Contents
	Preface
	1. Foreword
	2. Audience
	3. Prerequisites
	4. Host System Requirements
	5. Typography
	6. Structure
	6.1. Part I - Introduction
	6.2. Part II - Preparing for the Build
	6.3. Part III - Building the LFS System

	7. Errata

	Part I. Introduction
	Chapter 1. Introduction
	1.1. How to Build an LFS System
	1.2. Changelog
	1.3. Resources
	1.3.1. FAQ
	1.3.2. Mailing Lists
	1.3.3. News Server
	1.3.4. IRC
	1.3.5. References
	1.3.6. Mirror Sites
	1.3.7. Contact Information

	1.4. Help
	1.4.1. Things to Mention
	1.4.2. Configure Script Problems
	1.4.3. Compilation Problems


	Chapter 2. Preparing a New Partition
	2.1. Introduction
	2.2. Creating a New Partition
	2.3. Creating a File System on the Partition
	2.4. Mounting the New Partition


	Part II. Preparing for the Build
	Chapter 3. Packages and Patches
	3.1. Introduction
	3.2. All Packages
	3.3. Needed Patches

	Chapter 4. Final Preparations
	4.1. About $LFS
	4.2. Creating the $LFS/tools Directory
	4.3. Adding the LFS User
	4.4. Setting Up the Environment
	4.5. About SBUs
	4.6. About the Test Suites

	Chapter 5. Constructing a Temporary System
	5.1. Introduction
	5.2. Toolchain Technical Notes
	5.3. Binutils-2.15.94.0.2.2 - Pass 1
	
	5.3.1. Installation of Binutils
	

	5.4. GCC-3.4.3 - Pass 1
	
	5.4.1. Installation of GCC
	

	5.5. Linux-Libc-Headers-2.6.11.2
	
	5.5.1. Installation of Linux-Libc-Headers
	

	5.6. Glibc-2.3.4
	
	5.6.1. Installation of Glibc
	

	5.7. Adjusting the Toolchain
	5.8. Tcl-8.4.9
	
	5.8.1. Installation of Tcl
	5.8.2. Contents of Tcl

	5.9. Expect-5.43.0
	
	5.9.1. Installation of Expect
	5.9.2. Contents of Expect

	5.10. DejaGNU-1.4.4
	
	5.10.1. Installation of DejaGNU
	5.10.2. Contents of DejaGNU

	5.11. GCC-3.4.3 - Pass 2
	
	5.11.1. Re-installation of GCC
	

	5.12. Binutils-2.15.94.0.2.2 - Pass 2
	
	5.12.1. Re-installation of Binutils
	

	5.13. Gawk-3.1.4
	
	5.13.1. Installation of Gawk
	

	5.14. Coreutils-5.2.1
	
	5.14.1. Installation of Coreutils
	

	5.15. Bzip2-1.0.3
	
	5.15.1. Installation of Bzip2
	

	5.16. Gzip-1.3.5
	
	5.16.1. Installation of Gzip
	

	5.17. Diffutils-2.8.1
	
	5.17.1. Installation of Diffutils
	

	5.18. Findutils-4.2.23
	
	5.18.1. Installation of Findutils
	

	5.19. Make-3.80
	
	5.19.1. Installation of Make
	

	5.20. Grep-2.5.1a
	
	5.20.1. Installation of Grep
	

	5.21. Sed-4.1.4
	
	5.21.1. Installation of Sed
	

	5.22. Gettext-0.14.3
	
	5.22.1. Installation of Gettext
	

	5.23. Ncurses-5.4
	
	5.23.1. Installation of Ncurses
	

	5.24. Patch-2.5.4
	
	5.24.1. Installation of Patch
	

	5.25. Tar-1.15.1
	
	5.25.1. Installation of Tar
	

	5.26. Texinfo-4.8
	
	5.26.1. Installation of Texinfo
	

	5.27. Bash-3.0
	
	5.27.1. Installation of Bash
	

	5.28. M4-1.4.3
	
	5.28.1. Installation of M4
	

	5.29. Bison-2.0
	
	5.29.1. Installation of Bison
	

	5.30. Flex-2.5.31
	
	5.30.1. Installation of Flex
	

	5.31. Util-linux-2.12q
	
	5.31.1. Installation of Util-linux
	

	5.32. Perl-5.8.6
	
	5.32.1. Installation of Perl
	

	5.33. Stripping


	Part III. Building the LFS System
	Chapter 6. Installing Basic System Software
	6.1. Introduction
	6.2. Mounting Virtual Kernel File Systems
	6.3. Entering the Chroot Environment
	6.4. Changing Ownership
	6.5. Creating Directories
	6.5.1. FHS Compliance Note

	6.6. Creating Essential Symlinks
	6.7. Creating the passwd, group, and log Files
	6.8. Populating /dev
	6.8.1. Creating Initial Device Nodes
	6.8.2. Mounting tmpfs and Populating /dev

	6.9. Linux-Libc-Headers-2.6.11.2
	
	6.9.1. Installation of Linux-Libc-Headers
	6.9.2. Contents of Linux-Libc-Headers

	6.10. Man-pages-2.01
	
	6.10.1. Installation of Man-pages
	6.10.2. Contents of Man-pages

	6.11. Glibc-2.3.4
	
	6.11.1. Installation of Glibc
	6.11.2. Configuring Glibc
	6.11.3. Configuring Dynamic Loader
	6.11.4. Contents of Glibc

	6.12. Re-adjusting the Toolchain
	6.13. Binutils-2.15.94.0.2.2
	
	6.13.1. Installation of Binutils
	6.13.2. Contents of Binutils

	6.14. GCC-3.4.3
	
	6.14.1. Installation of GCC
	6.14.2. Contents of GCC

	6.15. Coreutils-5.2.1
	
	6.15.1. Installation of Coreutils
	6.15.2. Contents of Coreutils

	6.16. Zlib-1.2.2
	
	6.16.1. Installation of Zlib
	6.16.2. Contents of Zlib

	6.17. Mktemp-1.5
	
	6.17.1. Installation of Mktemp
	6.17.2. Contents of Mktemp

	6.18. Iana-Etc-1.04
	
	6.18.1. Installation of Iana-Etc
	6.18.2. Contents of Iana-Etc

	6.19. Findutils-4.2.23
	
	6.19.1. Installation of Findutils
	6.19.2. Contents of Findutils

	6.20. Gawk-3.1.4
	
	6.20.1. Installation of Gawk
	6.20.2. Contents of Gawk

	6.21. Ncurses-5.4
	
	6.21.1. Installation of Ncurses
	6.21.2. Contents of Ncurses

	6.22. Readline-5.0
	
	6.22.1. Installation of Readline
	6.22.2. Contents of Readline

	6.23. Vim-6.3
	
	6.23.1. Installation of Vim
	6.23.2. Configuring Vim
	6.23.3. Contents of Vim

	6.24. M4-1.4.3
	
	6.24.1. Installation of M4
	6.24.2. Contents of M4

	6.25. Bison-2.0
	
	6.25.1. Installation of Bison
	6.25.2. Contents of Bison

	6.26. Less-382
	
	6.26.1. Installation of Less
	6.26.2. Contents of Less

	6.27. Groff-1.19.1
	
	6.27.1. Installation of Groff
	6.27.2. Contents of Groff

	6.28. Sed-4.1.4
	
	6.28.1. Installation of Sed
	6.28.2. Contents of Sed

	6.29. Flex-2.5.31
	
	6.29.1. Installation of Flex
	6.29.2. Contents of Flex

	6.30. Gettext-0.14.3
	
	6.30.1. Installation of Gettext
	6.30.2. Contents of Gettext

	6.31. Inetutils-1.4.2
	
	6.31.1. Installation of Inetutils
	6.31.2. Contents of Inetutils

	6.32. IPRoute2-2.6.11-050330
	
	6.32.1. Installation of IPRoute2
	6.32.2. Contents of IPRoute2

	6.33. Perl-5.8.6
	
	6.33.1. Installation of Perl
	6.33.2. Contents of Perl

	6.34. Texinfo-4.8
	
	6.34.1. Installation of Texinfo
	6.34.2. Contents of Texinfo

	6.35. Autoconf-2.59
	
	6.35.1. Installation of Autoconf
	6.35.2. Contents of Autoconf

	6.36. Automake-1.9.5
	
	6.36.1. Installation of Automake
	6.36.2. Contents of Automake

	6.37. Bash-3.0
	
	6.37.1. Installation of Bash
	6.37.2. Contents of Bash

	6.38. File-4.13
	
	6.38.1. Installation of File
	6.38.2. Contents of File

	6.39. Libtool-1.5.14
	
	6.39.1. Installation of Libtool
	6.39.2. Contents of Libtool

	6.40. Bzip2-1.0.3
	
	6.40.1. Installation of Bzip2
	6.40.2. Contents of Bzip2

	6.41. Diffutils-2.8.1
	
	6.41.1. Installation of Diffutils
	6.41.2. Contents of Diffutils

	6.42. Kbd-1.12
	
	6.42.1. Installation of Kbd
	6.42.2. Contents of Kbd

	6.43. E2fsprogs-1.37
	
	6.43.1. Installation of E2fsprogs
	6.43.2. Contents of E2fsprogs

	6.44. Grep-2.5.1a
	
	6.44.1. Installation of Grep
	6.44.2. Contents of Grep

	6.45. GRUB-0.96
	
	6.45.1. Installation of GRUB
	6.45.2. Contents of GRUB

	6.46. Gzip-1.3.5
	
	6.46.1. Installation of Gzip
	6.46.2. Contents of Gzip

	6.47. Hotplug-2004_09_23
	
	6.47.1. Installation of Hotplug
	6.47.2. Contents of Hotplug

	6.48. Man-1.5p
	
	6.48.1. Installation of Man
	6.48.2. Contents of Man

	6.49. Make-3.80
	
	6.49.1. Installation of Make
	6.49.2. Contents of Make

	6.50. Module-Init-Tools-3.1
	
	6.50.1. Installation of Module-Init-Tools
	6.50.2. Contents of Module-Init-Tools

	6.51. Patch-2.5.4
	
	6.51.1. Installation of Patch
	6.51.2. Contents of Patch

	6.52. Procps-3.2.5
	
	6.52.1. Installation of Procps
	6.52.2. Contents of Procps

	6.53. Psmisc-21.6
	
	6.53.1. Installation of Psmisc
	6.53.2. Contents of Psmisc

	6.54. Shadow-4.0.9
	
	6.54.1. Installation of Shadow
	6.54.2. Configuring Shadow
	6.54.3. Setting the root password
	6.54.4. Contents of Shadow

	6.55. Sysklogd-1.4.1
	
	6.55.1. Installation of Sysklogd
	6.55.2. Configuring Sysklogd
	6.55.3. Contents of Sysklogd

	6.56. Sysvinit-2.86
	
	6.56.1. Installation of Sysvinit
	6.56.2. Configuring Sysvinit
	6.56.3. Contents of Sysvinit

	6.57. Tar-1.15.1
	
	6.57.1. Installation of Tar
	6.57.2. Contents of Tar

	6.58. Udev-056
	
	6.58.1. Installation of Udev
	6.58.2. Contents of Udev

	6.59. Util-linux-2.12q
	
	6.59.1. FHS compliance notes
	6.59.2. Installation of Util-linux
	6.59.3. Contents of Util-linux

	6.60. About Debugging Symbols
	6.61. Stripping Again
	6.62. Cleaning Up

	Chapter 7. Setting Up System Bootscripts
	7.1. Introduction
	7.2. LFS-Bootscripts-3.2.1
	
	7.2.1. Installation of LFS-Bootscripts
	7.2.2. Contents of LFS-Bootscripts

	7.3. How Do These Bootscripts Work?
	7.4. Device and Module Handling on an LFS System
	7.4.1. History
	7.4.2. Udev Implementation
	7.4.3. Handling Hotpluggable/Dynamic Devices
	7.4.4. Problems with Creating Devices
	7.4.5. Useful Reading

	7.5. Configuring the setclock Script
	7.6. Configuring the Linux Console
	7.7. Configuring the sysklogd script
	7.8. Creating the /etc/inputrc File
	7.9. The Bash Shell Startup Files
	7.10. Configuring the localnet Script
	7.11. Creating the /etc/hosts File
	7.12. Configuring the network Script
	7.12.1. Creating Network Interface Configuration Files
	7.12.2. Creating the /etc/resolv.conf File


	Chapter 8. Making the LFS System Bootable
	8.1. Introduction
	8.2. Creating the /etc/fstab File
	8.3. Linux-2.6.11.12
	
	8.3.1. Installation of the kernel
	8.3.2. Contents of Linux

	8.4. Making the LFS System Bootable

	Chapter 9. The End
	9.1. The End
	9.2. Get Counted
	9.3. Rebooting the System
	9.4. What Now?


	Part IV. Appendices
	Appendix A. Acronyms and Terms
	Appendix B. Acknowledgments

	Index

