
www.linuxformat.co.uk90 LXF66 MAY 2005

TUTORIAL udev

DEVICE-NAMING SYSTEM

Connect your devices with udev
Neil Bothwick explains how to code a name for your hardware when ‘Bob’ just won’t do.

‘Everything is a file’ is one of the Unix creeds. It sounds
strange at first, but in a way it’s true. Of course, we’re not
suggesting that your hard disk is a file – we all know it’s

a precision-engineered piece of electromechanical hardware
designed to store as much of your valuable data as possible
before crashing the heads into the disk and destroying the lot.

However, your hard disk is represented as a file in the Linux
filesystem, usually as /dev/hda/. You probably already know this,
but any piece of hardware you connect to your computer is
represented by a device file in /dev, be it your MP3 player or
your webcam.

The /dev directory was originally a standard directory
containing device files for every piece of hardware likely to be
connected. This usually meant that whenever a driver was
installed, the relevant files were created in /dev. This had two
really important disadvantages. The first was that as more
devices were supported, the number of files in the directory was
becoming unmanageable.

It also meant that if you tried to connect a piece of
hardware for which there was no device file, you had to create it
yourself, first scouring Google for the correct major and minor
device number to pass to the mknod command.

As the number of devices supported by Linux increased,
especially the huge number of removable devices that could be
connected to USB or IEEE1394 (aka Firewire) ports, this
became unacceptable. Not only was /dev becoming totally
unwieldy, but we were in danger of running out of major and
minor device numbers to cover every possible device that could
be connected, even though any one computer would only ever
see a tiny fraction of them.

The solution was devfs, a system in the Linux kernel that
would react to devices being connected or discovered and

create their /dev entries automatically. While this improved the
situation, there are some issues with devfs that mean its use is
now deprecated. The main problem with devfs is that it has a
number of bugs, ranging from annoying to serious, some of
which cannot be fixed.

Knowing u – a-ha!
Udev is a new alternative developed by Greg Kroah-Hartman
that can do all that devfs needs to do but in user space,
avoiding the need to keep any code for it inside the kernel.
Using the new /sys filesystem from kernel 2.6 and the hotplug
system for connecting peripherals, all the device node creation
is handled by user space programs. As devfs is not being
actively maintained now, udev has become the default choice. If
you have installed a recent distribution, you probably already
have udev without realising it.

At this point, you may be wondering why all this matters to
you. After all, the main differences between devfs and udev
seem to lie in the implementation, and how they affect the
system from a development point of view. So how does it affect
the end user? Well, we’ve saved one of udev’s best
advantages until last, and it’s a feature that will make a real
difference to you.

The feature is called persistent device naming, and it works
like this. Devices are normally named in the order in which they
are connected. That’s fine if you only have one of each type of
device, but this is becoming less common. For example, many
devices use the USB storage module to appear as disk drives.
These include digital cameras, MP3 players, USB key disks and
memory card readers, as well as external disk drives.

If you connect your camera, say, it will often be seen as
/dev/sda/. If you then hook up your USB keyring it will appear

LXF66.tut_udev 90LXF66.tut_udev 90 15/3/05 4:39:13 pm15/3/05 4:39:13 pm

www.linuxformat.co.uk LXF66 MAY 2005 91

TUTORIAL udev

as /dev/sdb/. But if you connect the keyring first, that will
appear as /bedev/sda/.

This makes dealing with these devices through fstab entries
or automounters more complex than it needs to be. The
situation is potentially worse with printers. I have two USB
printers: a laser for text documents and an inkjet for printing
photographs. One is /dev/lp0 and the other /dev/lp1, but which
gets which depends on which is detected first. If one of the
printers is turned off when I boot, the devices can be reversed.

Udev fixes this nonsense by enabling you to specify your
own device names for each product. Using a simple set of rules,
udev will set the device name according to the identification
data available from each device. It will also create symlinks, so a
device can have more than one name. For example, a DVD-
ROM drive could be accessed as any one of /dev/hdc, /dev/
cdrom or /dev/dvd. So, how do we write our own udev rules?

Making up the rules
The rules are contained in files in /etc/udev/rules.d. The default
file is usually called 50-udev.rules. Don’t change this file as it
could be overwritten when you upgrade udev. Instead, write your
rules in a file called 10-udev.rules. The low number ensures it
will take priority over any definitions in the default file.

Each time a device is detected by the hotplug system, the
files are read in order, line by line, until a match is found. This
may be useful in more complex systems as you can set up
specific rules followed by more general ones – but we’re getting
ahead of ourselves here.

The basic format of a rule is:
key1=”value”, key2=”value”, ... keyN=”value”, name=”value”,
symlink=”value”

You must provide at least one key and a name. Extra keys
are optional, but all must match for the rule to be applied.
Symlinks are optional too. Here is an example of a udev rule,
used to detect and name an iRiver MP3/Ogg player.
BUS=”usb”, KERNEL=”sd[a-z]1”, SYSFS{product}=”iRiver
H300 Series”, NAME=”%k”, SYMLINK=”usb/iriver”
The first three items are keys used to identify the device. The
NAME, as you would expect, defines the name to be used. %k
is the name that the kernel would have given it, such as /dev/
sda1, so this rule leaves the name unchanged, but sets a
symlink to /dev/usb/iriver. The /dev/usb directory does not
need to exist, as udev will create it when needed and delete it
when the last device in there is removed. There is no standard
convention to use /dev/usb; I just find it convenient to have all
hotplugged USB devices appear here.

There are other substitutions that can be used in NAME and
SYMLINK. After %k, %n is probably the most useful (it contains
the kernel number of the device). If %k contains sda3, %n
contains 3. See the udev man page for a full list of substitutions.

Configuring udev
The real work is done by the keys, of course, so how do we
know what to use here? There are several keys available but the
three most useful ones are BUS, KERNEL and SYSFS.
■ BUS covers how the device is connected.
■ KERNEL refers to the standard kernel identification of the
device (as used by devfs or a static /dev).
■ SYSFS keys use the information on each device that appears
in the /sys directory. This directory was added for kernel 2.6
and is a virtual filesystem, somewhat like /proc, containing
information on various devices.

You can browse through this filesystem to find information
on a device, but udev provides a tool to make this task easier.
The udevinfo command is used to extract information from /sys.
You will need to be logged in as root to do most of this, so open

a terminal window and type su to become root. Now plug in
your USB device, wait a few seconds for it to be detected, type
dmesg and look for information on the device at the end of the
output. It will look something like this:
usb 1-1: new high speed USB device using ehci_hcd and
address 6
scsi8 : SCSI emulation for USB Mass Storage devices
usb-storage: device found at 6
usb-storage: waiting for device to settle before scanning
 Vendor: TOSHIBA Model: MK2004GAL Rev: JC10
 Type: Direct-Access ANSI SCSI revision: 00
SCSI device sdd: 39063024 512-byte hdwr sectors (20000
MB)
sdd: assuming drive cache: write through
SCSI device sdd: 39063024 512-byte hdwr sectors (20000 MB)
sdd: assuming drive cache: write through
sdd: sdd1
Attached scsi disk sdd at scsi8, channel 0, id 0, lun 0
Attached scsi generic sg5 at scsi8, channel 0, id 0, lun 0,
type 0
usb-storage: device scan complete

This tells us that the device has been
detected as
 /dev/sdd with a single
partition at /dev/sdd1. It is the
partition we’re interested in
here, although some
mass-storage devices have no
partitions (much like a floppy
disk). Note that the device is
called sdd because there are other
pseudo-SCSI devices on this
computer – a few SATA hard drives. If
you have standard IDE drives and no
other USB storage devices connected, it
is more likely to be /dev/sda.

Now that we know how the device is
named, we can use udevinfo to find the
key information. First we need to find out
where in /sys the information is contained,
which we do with:
udevinfo -q path -n /dev/sdd1

This tells us that it is at /block/sdd/sdd1 (this is
relative to /sys so if you want to look at the
information directly, look in /sys/block/sdd/sdd1. Now
give this information to udevinfo to see the device
details. You will get a lot of output, so enlarge your
terminal window to full screen and pipe it through a pager
like less or, my favourite, most.
udevinfo -a -p /block/sdd/sdd1 | less

You can combine the two stages with:
udevinfo -a -p $(udevinfo -q path -n /dev/sdd1) | less

Picking the right keys
The key information is divided into sections: you will generally
be looking for matches in one of the first few sections that
appear. You cannot mix information from different directories in
/sys – all keys used in a single rule must come from the same
section of udevinfo’s output. Here are the relevant sections
from the output of the above command:
looking at the device chain at ‘/sys/devices/
pci0000:00/0000:00:10.4/usb1/1-1/1-1:2.0/host8/
target8:0:0/8:0:0:0’:
 BUS=”scsi”
 [snip]
looking at the device chain at ‘/sys/devices

>>

LXF66.tut_udev 91LXF66.tut_udev 91 15/3/05 4:39:16 pm15/3/05 4:39:16 pm

www.linuxformat.co.uk92 LXF66 MAY 2005

TUTORIAL udev

>> pci0000:00/0000:00:10.4/usb1/1-1/1-1:2.0/host8/
target8:0:0’:
 BUS=””
 [snip]
looking at the device chain at ‘/sys/devices/
pci0000:00/0000:00:10.4/usb1/1-1/1-1:2.0/host8’:
 BUS=””
 ID=”host8”
 SYSFS{detach_state}=”0”
looking at the device chain at ‘/sys/devices/
pci0000:00/0000:00:10.4/usb1/1-1/1-1:2.0’:
 BUS=”usb”
 [snip]
 looking at the device chain at ‘/sys/devices/
pci0000:00/0000:00:10.4/usb1/1-1’:
 BUS=”usb”
 ID=”1-1”
 SYSFS{bConfigurationValue}=”2”
 SYSFS{bDeviceClass}=”00”
 SYSFS{bDeviceProtocol}=”00”
 SYSFS{bDeviceSubClass}=”00”
 SYSFS{bMaxPower}=” 98mA”
 SYSFS{bNumConfigurations}=”1”
 SYSFS{bNumInterfaces}=” 1”
 SYSFS{bcdDevice}=”0100”
 SYSFS{bmAttributes}=”c0”
 SYSFS{detach_state}=”0”
 SYSFS{devnum}=”6”
 SYSFS{idProduct}=”3003”
 SYSFS{idVendor}=”1006”
 SYSFS{manufacturer}=”iRiver”
 SYSFS{maxchild}=”0”
 SYSFS{product}=”iRiver H300 Series”
 SYSFS{serial}=”0123456789AB”
 SYSFS{speed}=”480”
 SYSFS{version}=” 2.00”

The last section shown (several have been omitted) has
information specific to the piece of hardware to be named. You
should be looking for information that will uniquely identify your
device. It’s usually enough to use the model name or
manufacturer code. Where these use a generic term, I have
used an Epson printer that had a model string of ‘USB printer’.
You may need to use something like a serial number, but it is
not normally necessary to be this specific unless you have more
than one device of the same model.

I only have one MP3 player, so the product key should be
distinctive enough. However... it isn’t. The reason for this is that
the entry for sdd also contains this key, and possibly an sg*
entry too, so we need a way to differentiate between the
partition and the disk containing it. This is why the rule above
has a KERNEL key too. This key uses a pattern to match the
first partition on any SCSI disk -- – USB storage devices
are identified as SCSI disks. So /dev/sdd1 matches this, but
/dev/sdd does not.

You can use some standard pattern-matching characters in
the keys: * matches zero or more characters, ? matches one or
more characters and [] matches any one of the characters
within the brackets. The above KERNEL match could just as well
have been written as sd?1. The BUS=”usb” part of the rule is
not really necessary, but it does make things a little clearer
when you have a number of rules. So the final rule is:
BUS=”usb”, KERNEL=”sd[a-z]1”, SYSFS{product}=”iRiver
H300 Series”, NAME=”%k”, SYMLINK=”usb/iriver”
The code means: find the device on the USB bus that the
kernel identifies as the first partition of a disk and has the
product ID of iRiver H300 Series, give it its original name and
create a symlink to this name from /dev/usb/iriver. You can
use /udevtest to test your rule without disconnecting and
reconnecting the device. Give it the path to your device in /sys
and it will report which device nodes and symlinks it will create.

You could put usb/iriver in the NAME field, but using
symlinks means that the old-style kernel name is still there
should anything need it. Equally, you could put your name in the
NAME field and %k in the symlink. With udev, you control
exactly how your devices are named.

Whichever way you do it, pick one and stick to it to avoid
confusion later. You can create multiple symlinks to the same
device but list them in the SYMLINK section, separated by
spaces. Here’s an entry for a DVD-ROM drive that covers all
the bases with the old-style name, a devfs style name and
symlinks to /dev/cdrom and /dev/dvd. Wherever software may
look for a CD or DVD, it will find it.
KERNEL=”hdc”, NAME=”%k”, SYMLINK=”dvd cdrom cdroms/
cdrom0”

Note that all names, whether in KERNEL keys or the NAME
and SYMLINK assignations, are relative to /dev/b/.

How about the situation with two printers? Once again, you
can use udevinfo to find information unique to each. It is
usually sufficient to use a model description, but if you have two
devices of the same model, you can still distinguish between

The GTK program USBView (above right) maps installed
devices. You can also try KDE’s Info Centre (far right).

ALL MAPPED OUT
Forgotten the specs of a device? Here’s how to run a query

You can use udevinfo to query
devices in the udev database, but
there are graphical alternatives. The
information they provide isn’t as
graphical, nor is it in a format
suitable for pasting directly into a
rule. However, they are handy for an
overview of what information is
available on a device.

KDE users can use the KDE Info
Centre to view information on
various classes of devices. If you’re
working with USB devices, you can
also get some of this information
from USBView. This may not have
been installed by default but should
be on most distros’ installation discs.

LXF66.tut_udev 92LXF66.tut_udev 92 15/3/05 4:39:18 pm15/3/05 4:39:18 pm

www.linuxformat.co.uk LXF66 MAY 2005 93

TUTORIAL udev

them with the serial numbers. These are the rules I use for my
laser and deskjet printers:
BUS=”usb”, SYSFS{product}=”Samsung ML-1510_700”,
NAME=”%k”, SYMLINK=”printers/laser”
BUS=”usb”, SYSFS{product}=”deskjet 5100”, NAME=”%k”,
SYMLINK=”printers/colour”

By using NAME=”%k”, the printers still have their usual
designation of /dev/lp0 and /dev/lp1, but whichever way
around these names are allocated, /dev/printers/colour and
/dev/printers/laser point to the correct devices. Although these
rules are for two USB printers, you could use similar rules if you
have one parallel and one USB printer.

Network name-calling
Udev is not limited to devices found in /dev. It also works with
network devices, as they still appear in /sys. If you have two
network cards in your computer, you need to know which is
which. If they are different cards, you can get away with using
the order in which you load the modules to determine which is
eth0 and which is eth1, but wouldn’t it be easier if you could
give them more meaningful names, and also work easily with
more than one of the same type of card?

Information on your Ethernet device is contained in
/sys/class/net.
udevinfo -a -p /sys/class/net/eth0
looking at class device ‘/sys/class/net/eth0’:
 SYSFS{addr_len}=”6”
 SYSFS{address}=”00:03:0d:06:52:b5”
 SYSFS{broadcast}=”ff:ff:ff:ff:ff:ff”
udevinfo -a -p /sys/class/net/eth1
 looking at class device ‘/sys/class/net/eth1’:
 SYSFS{addr_len}=”6”
 SYSFS{address}=”00:09:5b:24:dc:fb”
 SYSFS{broadcast}=”ff:ff:ff:ff:ff:ff”

SYSFS{address} contains the MAC address of the network
hardware. This is unique for every network card, so it provides a
guaranteed way of distinguishing between them. To give these
interfaces more meaningful and persistent names, use the
following rules:
KERNEL=”eth*”, SYSFS{address}=”00:03:0d:06:52:b5”,
NAME=”inet”
KERNEL=”eth*”, SYSFS{address}=”00:09:5b:24:dc:fb”,
NAME=”lan”

You can’t use symlinks here, because each interface can
only have one name and they are not device files in /dev. These
rules will only take effect when the interfaces are initialised. You
can rmmod the modules and reload them with modprobe
(provided they are modules and not built into the kernel), or
reboot to reload them. Now the two interfaces are named inet
and lan, far more useful for a box acting as a firewall or gateway,
and it results in easier to read iptables rules too.

Memory card readers can cause difficulties if cards are
inserted or removed while they are connected to the computer.
This is particularly acute with multi-card readers.

Only the cards present when the device was connected will
be registered. For empty slots the device for the disk will be
created, say /dev/sda, but not for any partitions like /dev/sda1,
so it’s impossible to mount a card if you insert it after
connecting the reader.

This is not too much of a problem with external readers, as
you’d simply unplug it before inserting the card, but this is hardly
practical if you have an internal card reader. Fortunately, udev
provides a solution. Instead of NAME=, use NAME{all_
partitions}=. udev will now create 15 partition nodes as well as
one for the disk. These rules work with an unbranded four slot
multi-card reader:

BUS=”scsi”, KERNEL=”sd?”, SYSFS{model}=”USB SD
Reader”, NAME{all_partitions}=”usb/sd”
BUS=”scsi”, KERNEL=”sd?”, SYSFS{model}=”USB CF
Reader”, NAME{all_partitions}=”usb/cf”
BUS=”scsi”, KERNEL=”sd?”, SYSFS{model}=”USB SM
Reader”, NAME{all_partitions}=”usb/sm”
BUS=”scsi”, KERNEL=”sd?”, SYSFS{model}=”USB MS
Reader”, NAME{all_partitions}=”usb/ms”

Ensuring a removable device always has the same device
node really comes into its own when combined
with one of the systems of automatically mounting
new devices, such as supermount.

 By adding suitable lines to /etc/fstab, you can
have a device mount when you connect it and
unmount when you remove it, and the user doesn’t have to
do anything. If your kernel has supermount enabled you can
have a device automount with a line like this in /etc/fstab.
none /mnt/camera supermount fs=auto,dev=/dev/usb/
camera,--,users,sync,noatime 0 0

This assumes that you have set up a udev rule to create
/dev/usb/camera when you connect your digital camera and
that the directory /mnt/camera exists. Note that not all digital
cameras work as USB storage devices, so make sure yours does
before trying to get this to work. You must use the sync option
when creating fstab entries for this. The option ensures that
data is written to the device immediately. Without it, you could
copy files to the device, wait for the copy to finish, unplug the
device and find that when you reconnect it the files are
nowhere to be seen.

Some people don’t like supermount. An alternative is autofs.
If your distro uses this you need to add a line like:
/media /etc/autofs/auto.media

to /etc/autofs/auto.master. Then create the file /etc/autofs/
auto.media and add a line like
camera -fstype=auto,users,sync,noatime,umask=0
 :/dev/usb/camera

Unlike with supermount, you do not need to create the
/media/camera or /media directories.

Access privileges
So far, we have only looked at udev’s naming rules. But you can
also control the permissions of each device node created by
udev. The default file for this is /etc/udev/permissions.d/50-
udev.permissions so put your own settings in /etc/udev/
permissions.d10-udev.permissions. You normally will not
need to do anything here, but you can easily change the
permissions or ownership of any device. The format is one
device per line, giving owner, group and permissions, separated
by colons. The device name can include pattern-matching
characters. The following
printers/*:root:print:0660
would restrict access to printers to only those users who are
members of the print group.

There is a significant difference between devfs and udev in
terms of module handling. The former will load kernel modules
for new devices. Udev is purely about creating device nodes –
module loading needs to be taken care of by hotplug scripts or
by adding them to /etc/modules or /etc/modprobe.conf,
depending on your distro.

We doubt you’ll miss any devfs features – the fact that udev
operates outside the kernel makes it much more user-friendly,
and it supports symlinks and network devices too. Now that
devfs is obsolete, udev is being shipped with almost every distro,
and it makes sense for you to master writing udev rules. If you
want to go beyond this tutorial and learn more, check out our
More Information box, right. LXF

The man pages for udev and
udevinfo provide useful
information and there are
some useful websites,
notably www.reactivated.
net/udevrules.php. Gentoo is
one of the few distributions
that does not include udev by
default in its latest release
(the 2005 release will default
to udev, though). If you’re a
Gentoo user, you’ll appreciate
the excellent tutorial on
switching over to udev, which
is easy when explained
properly, at http://webpages.
charter.net/decibelshelp/
LinuxHelp_UDEVPrimer.html.

MORE INFORMATION

LXF66.tut_udev 93LXF66.tut_udev 93 15/3/05 4:39:20 pm15/3/05 4:39:20 pm

