
www.linuxformat.co.uk92 LXF68 JULY 2005

TUTORIAL Shell secrets

SHELL SECRETS COMMAND LINE SERIES

Shell Exit codes
and flow control
 PART 4 Marco Fioretti helps you to come out of your shell and structure your code for group projects.

Parts one to three of this series looked at several
basic commands that you can use straight away in
simple scripts. In this final part, we’ll be structuring

and managing code for more complex tasks – perhaps work
that’s co-developed with other programmers, or that depends
on the result of other programs or scripts.

In such collaborative projects, how does a script know what’s
happening, or if something is true? The answer is that it looks
at numerical clues left by the previous scripts or commands.
Every command-line program leaves an exit or return status
behind after it runs. Exit status 0 means success, and errors are
signalled with an integer code between 1 and 255. 126, for
example, means that there was a problem with file permissions.

When the last instruction in a script is an exit command with
no arguments, the exit status given to the line before it will relate
to the whole script. The special variable $? always contains the
exit status of the last command executed in a script or at the
prompt. To verify this, just type the following two commands:
exit 50
echo $?

Checks on external objects or events can be performed with
the test built in, or by using square bracket operators. The latter
is a more efficient option; here are some examples of it:
[-f mailrc]
[-d MailDir]
[$COUNTER]
[“$NAME” -eq “Carl”]

As you can see, these tests can be performed on files,
numbers or strings. In this example, the first two return true if
mailrc is an actual file and MailDir is a directory. The third will
be false unless $COUNTER is equal to 1, and the last will fail if
$NAME returns a value other than Carl. (Find details on syntax

in the bash man page). Remember that the ((...)) and
let constructs also return a 0 exit status if the

calculations they perform yield a non-zero value.
As confusing as this is, at least it’s consistent.

Using for loops
Once tests and exist codes have let you
know what’s going on with your script you
can start to do something about it. A very
simple script follows one straight flow: do

this, then that, then this other thing... More
complex scripts must repeat some steps

several times, or make choices on their own,

In LXF67 we looked at arrays,
dialogs and even went as far
as image processing. If you
missed the issue, call 0870
8374722 or +44 1858
438794 for overseas orders.

while running. Let’s look at which bash constructs can give a
script this kind of autonomy. A for loop simply does something
to or with each element of a fixed list:
for XYZ in list_of_arguments
 do
 something using the current value of XYZ
 done

You can also use for loops interactively, as long as there is a
semicolon after the list. Try typing this at the prompt:
for XYZ in “Hello” “Johnny Dear”; do echo $XYZ; done

You can work through a two-dimensional array with an
iterative loop – going over each entry in the array once for the
first dimension, and once for the second – but a more readable
alternative might be the set command, which assigns each
sub-string of a list to a positional variable:
for $member in “John London” “Ann Liverpool” “Bill Glasgow”
do
 set --$member
 echo “$1 lives in $2”
done

This is really useful when parsing plain text databases where
each line is a separate record. In general, however, the power of
this and other loops is only unleashed when the argument list is
generated on the fly, out of some other command.
for file in $(find / -type l -name ‘*html’)
do
#whatever
done

The first instruction above is all you need to find and process in
real time all the files in your system that have a .html extension
but are just links (-type l) to other pages.

While and until commands
Sometimes you’ll want to do something to each element of a
more or less fixed set. Other times you need to carry out an
action an unknown number of times, until something else
happens. In these cases you need the while and until
commands. while tests for a condition at the top of a loop, and
keeps looping as long as that condition is false. until has the
same syntax but does the opposite – that is, it keeps looping as
long as its condition is true. These two loops do the same thing:
while [condition is false]
 do
 command...
 done

LXF68.tut_shell 92LXF68.tut_shell 92 12/5/05 2:52:44 pm12/5/05 2:52:44 pm

www.linuxformat.co.uk LXF68 JULY 2005 93

TUTORIAL Shell secrets

and
until [condition is true]
do
command...
done

You can terminate these loops earlier if you need, with
break or continue statements. break does just what you
would expect of it: it breaks the loop that it’s in. continue only
stops the current iteration: it skips all the remaining commands.

Even with these constructs it is possible to nest loops. Of
course, a break will have different effects depending on where it
is in the loop hierarchy. To understand this, try to uncomment
the break instructions in this script, one at a time:
#! /bin/bash
A=0
while [[“$A” -lt “5”]]
 do
echo A: $A
B=0
if [“$A” == “2”]
then
echo “ Hello from outer loop”
#break
else
while [[“$B” -lt “4”]]
if [“$A” == “1”]
then
echo “ Hello from inner loop”
#break
else
echo “ B : $B”
fi
let B=$B+1
done
fi
let A=$A+1
done

What if...
Sometimes, a program doesn’t have to iterate over the same
route again and again, but must choose a route to go down
once. An if/then instruction just decides which of two paths to
follow in a flow diagram, according to the exit status of a test or
a command. Syntax-wise, the if test and if [condition is true]
forms are equivalent. if/then blocks can be nested if needed.
In this simple example, elif is simply an abbreviation for ‘else if’:
if [something_is_true]
then
 # do this
elif [something_else_is_true]
then
 # do_that
else
 # just do whatever is written here
fi

An if/then block is OK if there are only two choices, but
what if there are more? Sure, you could use several such blocks
nested or cascaded in some way, but things would get ugly
quite fast. Luckily, we have the case instruction. This is just the
equivalent of the switch keyword used in C programming. Don’t
worry if you’ve never used C before: this basic example of an
interactive menu shows all the syntax you need to know.
while [“$os” == “”]
do
echo “Choose an operating system”
echo “[L]inux”

echo “[W]indows”
echo
read os
case “$os” in
 “L” | “l”)
echo ‘Excellent Choice’
;;
 “W” | “w”)
echo ‘Yuck! Are you sure?’
 ;;
 *)
echo ‘Come on, make your choice!’
;;
esac
done

Normally, case works on one test variable – $os in this
script. The various branches of code are separated by double
semicolons. Each one begins with a list of all the possible values
of the test variable that will trigger the execution of the
following commands. Equivalent values are separated by the
pipe character (|). The various alternatives are evaluated from
top to bottom, stopping at the first one that matches. In the
script above, if you type ‘L’ or ‘l’, the execution will end by
printing ‘Excellent Choice’ to the screen. Should you enter ‘W’
or ‘w’ (why?) the first branch will be ignored and you’ll get the
reaction you deserve. The final option, *), simply does what is
necessary if $os has any other value not explicitly mentioned in
the previous cases. Remember to always add such a final
default branch – to send back an error message if nothing else.

Running shell functions
The first time you try out these techniques, you’ll notice a
couple of things that might seem a bit odd. First of all, chances
are that you’ll spot a lot of small (and some not so small)
chunks of repetitive code, in which only a few initial parameters
change. How can you structure it to avoid repetition and make it
easier to see the general flow of the source code?

The first step is to create some shell functions. These are
simply blocks of code that implement some specified task, and
they must be declared before they can be called. The most
portable way to do so is this:
Name_Of_Your_Function () {
command_1
command_2
return
}

To run a shell function you invoke its name and provide any
required arguments in the right order. As with stand-alone scripts,
these arguments will be available within the function in the
variables $1, $2, etc. Functions also have their local I/O streams,
which can be redirected, or can be fed with HERE documents:
A_Shell_Function <$file
Another_Shell_Function <<Function_data
Christmas
Easter
Function_data

The first instruction sends to A_Shell_Function the content
of $file; the second runs it with Christmas as the first
argument and Easter as the second. Variables can be declared
local to a shell function, using the local command. This also
makes recursion possible – if you really want to have it in
something less computationally efficient than a shell script.

Last but not least, even shell functions return an exit status.
This will relate to the last command executed or to the
argument given to the final return command. Again, the calling
script will find the exit status in $?. LXF

Sourcing old files
It can be helpful to place
common code in a separate
file, which can be loaded with
just one instruction by any

script that needs it. Write
. some_file_name
[arguments]

or
source some_file_name
[arguments]

to virtually paste the content
of some_file_name just
before launching the script. If
any arguments are supplied,
they become the positional
parameters when some_file_
name is executed. If some_
file_name is not found or
cannot be read, the return
status will be given as false.

QUICK TIP

NEXT
STEPS
Hopefully, by now you know
enough to start serious
scripting – just remember to
always back everything up
before you change anything.
Oh, and to learn more,
bookmark the Advanced
Bash-Scripting Guide at
www.tldp.org/LDP/abs/html.

LXF68.tut_shell 93LXF68.tut_shell 93 12/5/05 2:52:48 pm12/5/05 2:52:48 pm

