MySQL Reference Manual

Copyright (© 1997-2002 MySQL AB

Table of Contents

1 General Information 1
1.1 About This Manual 2
1.1.1 Conventions Used in This Manual................ 2
1.2 What Is MySQL?o 3
1.2.1 History of MySQLo 5
1.2.2 The Main Features of MySQL 5
1.2.3 How Stable Is MySQL? 7
1.2.4 How Big Can MySQL Tables Be? 8
1.2.5 Year 2000 Compliance 9
1.3 What Is MySQL AB? ... 11
1.3.1 The Business Model and Services of MySQL AB.. 11
1.3.1.1 Support ... 12
1.3.1.2 Training and Certification 12
1.3.1.3 Consulting 13
1.3.1.4 Commercial Licenses 13
1.3.1.5 Partnering.............. 13
1.3.1.6 Advertising........................... 14
1.3.2 Contact Information........................... 14
1.4 MySQL Support and Licensing 15
1.4.1 Support Offered by MySQL AB................. 15
1.4.2 Copyrights and Licenses Used by MySQL. 16
1.4.3 MySQL Licenses.cooiiviiiin... 16
1.4.3.1 Using the MySQL Software Under a
Commercial License....................... 17
1.4.3.2 Using the MySQL Software for Free Under
GPL . 17
1.4.4 MySQL AB Logos and Trademarks 18
1.4.4.1 The Original MySQL Logo............. 18
1.4.4.2 MySQL Logos that may be Used Without
Written Permission 18
1.4.4.3 When do you need a Written Permission to
use MySQL Logos? 19
1.4.4.4 MySQL AB Partnership Logos......... 19
1.4.4.5 Using the word MySQL in Printed Text or
Presentations............. 19
1.4.4.6 Using the word MySQL in Company and
Product Names........................... 20
1.5 MySQL 4.0 In A Nutshell 20
1.5.1 Stepwise Rollout............................... 20
1.5.2 Ready for Immediate Development Use.......... 20
1.5.3 Embedded MySQL 20
1.5.4 Other Features Available From MySQL 4.0.0 21

1.5.5 Future MySQL 4.0 Features 21

1.5.6 MySQL 4.1, The Following Development Release

.. 22
1.6 MySQL Information Sources 22
1.6.1 MySQL Portals.............. 22
1.6.2 MySQL Mailing Lists 23
1.6.2.1 The MySQL Mailing Lists 23
1.6.2.2 Asking Questions or Reporting Bugs. ... 25
1.6.2.3 How to Report Bugs or Problems 26
1.6.2.4 Guidelines for Answering Questions on the
Mailing List 30
1.7 How Standards-compatible Is MySQL?................... 30
1.7.1 What Standards Does MySQL Follow? 31
1.7.2 Running MySQL in ANSI Mode 31
1.7.3 MySQL Extensions to ANSI SQL92............. 32
1.7.4 MySQL Differences Compared to ANSI SQL92... 34
1.7.4.1 SubSELECTScovvueiaennn... 34
1.74.2 SELECT INTOTABLE 35
1.7.4.3 Transactions and Atomic Operations ... 35
1.7.4.4 Stored Procedures and Triggers 38
1.74.5 Foreign Keys 38
1.746 Views..........oiiiiiinin... 39
1.7.4.7 ‘== as the Start of a Comment......... 40
1.7.5 Known Errors and Design Deficiencies in MySQL
.. 40
1.8 MySQL and The Future (The TODO) 43
1.8.1 Things That Should bein 4.0................... 44
1.8.2 Things That Should bein4.1................... 44
1.8.3 Things That Must be Done in the Near Future. .. 45
1.8.4 Things That Have to be Done Sometime 48
1.8.5 Things We Don’t Plan To Do................... 49
1.9 How MySQL Compares to Other Databases.............. 50
1.9.1 How MySQL Compares tomSQL 50
1.9.1.1 How to Convert mSQL Tools for MySQL
... 53
1.9.1.2 How mSQL and MySQL Client/Server
Communications Protocols Differ........... 53
1.9.1.3 How mSQL 2.0 SQL Syntax Differs from
MySQL .o 54
1.9.2 How MySQL Compares to PostgreSQL.......... 56
1.9.2.1 MySQL and PostgreSQL development
strategies....... il 56
1.9.2.2 Featurewise Comparison of MySQL and
PostgreSQL 57

1.9.2.3 Benchmarking MySQL and PostgreSQL

ii

2 MySQL Installation.......................

2.1

2.2

2.3

24

2.5

2.6

Quick Standard Installation of MySQL..................
2.1.1 Installing MySQL on Linux....................
2.1.2 Installing MySQL on Windows

2.1.2.1 Installing the Binaries................
2.1.2.2 Preparing the Windows MySQL

Environment
2.1.2.3 Starting the Server for the First Time ..

General Installation Issues

2.2.1 Howto Get MySQL
2.2.2 Operating Systems Supported by MySQL

2.2.3 Which MySQL Version to Use

2.2.4 Installation Layouts...........................
2.2.5 How and When Updates Are Released..........
2.2.6 MySQL Binaries Compiled by MySQL AB......
2.2.7 Installing a MySQL Binary Distribution........
Installing a MySQL Source Distribution.................

2.3.1 Quick Installation Overview

2.3.2 Applying Patches.............................
2.3.3 Typical configure Options
2.3.4 Installing from the Development Source Tree. . ..
2.3.5 Problems Compiling?
2.3.6 MIT-pthreads Notes
2.3.7 Windows Source Distribution..................

Post-installation Setup and Testing.....................

2.4.1 Problems Running mysql_install_db..........
2.4.2 Problems Starting the MySQL Server
2.4.3 Starting and Stopping MySQL Automatically . . .
Upgrading/Downgrading MySQL.......................

2.5.1 Upgrading From Version 3.23 to Version 4.0

2.5.2 Upgrading From Version 3.22 to Version 3.23 ... °

2.5.3 Upgrading from Version 3.21 to Version 3.22. ...
2.5.4 Upgrading from Version 3.20 to Version 3.21....
2.5.5 Upgrading to Another Architecture
Operating System Specific Notes
2.6.1 Linux Notes (All Linux Versions)
2.6.1.1 Linux Notes for Binary Distributions . .

2.6.1.2 Linux x86 Notes

2.6.1.3 Linux SPARC Notes

2.6.1.4 Linux Alpha Notes...................

2.6.1.5 Linux PowerPC Notes................

2.6.1.6 Linux MIPS Notes

2.6.1.7 Linux TA64 Notes....................

2.6.2 Windows Notes.

80

83
86
87
89
90

113

2.6.2.1 Starting MySQL on Windows 95, 98 or Me

113

2.6.2.2 Starting MySQL on Windows NT, 2000 or

XP oo

114

iii

2.6.2.3 Running MySQL on Windows......... 115
2.6.2.4 Connecting to a Remote MySQL from
Windows with SSH 117
2.6.2.5 Splitting Data Across Different Disks on
Windows 117
2.6.2.6 Compiling MySQL Clients on Windows
.. 118
2.6.2.7 MySQL-Windows Compared to Unix
MYSQL .« .ot 118
2.6.3 Solaris Notes............. 120
2.6.3.1 Solaris 2.7/28 Notes 123
2.6.3.2 Solaris x86 Notes 124
2.6.4 BSD Notes......ooviiii .. 124
2.6.4.1 FreeBSD Notes 124
2.6.4.2 NetBSDmnotes....................... 125
2.6.4.3 OpenBSD 2.5 Notes.................. 125
2.6.4.4 OpenBSD 2.8 Notes.................. 126
2.6.4.5 BSD/OS Version 2.x Notes 126
2.6.4.6 BSD/OS Version 3.x Notes 126
2.6.4.7 BSD/OS Version 4.x Notes 127
2.6.5 MacOS X Notescovvviiniiinaa... 127
2.6.5.1 Mac OS X Public Beta,............... 127
2.6.5.2 MacOS X Server 127
2.6.6 Other Unix Notes 128
2.6.6.1 HP-UX Notes for Binary Distributions
.. 128
2.6.6.2 HP-UX Version 10.20 Notes........... 129
2.6.6.3 HP-UX Version 11.x Notes............ 129
2.6.6.4 IBM-AIX notes...................... 131
2.6.6.5 SunOS 4 Notes 132
2.6.6.6 Alpha-DEC-UNIX Notes (Tru64)...... 132
2.6.6.7 Alpha-DEC-OSF/1 Notes............. 134
2.6.6.8 SGIIrix Notes....................... 135
2.6.6.9 Caldera (SCO) Notes................. 136
2.6.6.10 Caldera (SCO) Unixware Version 7.0
Notes ..o 138
2.6.7 OS/2NOteSovviiiiiii i 138
2.6.8 BeOSNotes.......cooviiiiiiiii . 139
2.6.9 Novell NetWare Notes 139
2.7 Perl Installation Comments 139
2.7.1 Installing Perl on Unix........................ 139
2.7.2 Installing ActiveState Perl on Windows 140
2.7.3 Installing the MySQL Perl Distribution on Windows
... 141
2.7.4 Problems Using the Perl DBI/DBD Interface 141

iv

3 Tutorial Introduction 144

3.1 Connecting to and Disconnecting from the Server........ 144
3.2 Entering Queries...............iiiiiiiiii . 145
3.3 Creating and Using a Database......................... 148
3.3.1 Creating and Selecting a Database............. 149
3.3.2 Creatinga Table 150
3.3.3 Loading Data intoa Table 151
3.3.4 Retrieving Information from a Table 152
3.3.4.1 Selecting All Data 152
3.3.4.2 Selecting Particular Rows............. 153
3.3.4.3 Selecting Particular Columns 154
3.3.4.4 Sorting Rows 156
3.3.4.5 Date Calculations.................... 157
3.3.4.6 Working with NULL Values............ 160
3.3.4.7 Pattern Matching 160
3.3.4.8 Counting Rows 163
3.3.4.9 Using More Than one Table 165
3.4 Getting Information About Databases and Tables 167
3.5 Examples of Common Queries.......................... 168
3.5.1 The Maximum Value for a Column 168
3.5.2 The Row Holding the Maximum of a Certain

Columnoo ., 169
3.5.3 Maximum of Column per Group 169

3.5.4 The Rows Holding the Group-wise Maximum of a
Certain Field 170
3.5.5 Using user variables........................... 171
3.5.6 Using Foreign Keys........................... 171
3.5.7 Searching on Two Keys 172
3.5.8 Calculating Visits Per Day 173
3.5.9 Using AUTO_INCREMENT........................ 173
3.6 Using mysql in Batch Mode............................ 175
3.7 Queries from T'win Project............................. 176
3.7.1 Find all Non-distributed Twins 176
3.7.2 Show a Table on Twin Pair Status............. 179
3.8 Using MySQL with Apache 179
4 Database Administration................. 181
4.1 Configuring MySQL 181
4.1.1 mysqld Command-line Options 181
4.1.2 ‘my.cnf’ Option Files......................... 186

4.1.3 Installing Many Servers on the Same Machine .. 189
4.1.4 Running Multiple MySQL Servers on the Same

Machine ... 190

4.2 General Security Issues and the MySQL Access Privilege
SYSUEINL. . oottt 191
4.2.1 General Security Guidelines 191

4.2.2 How to Make MySQL Secure Against Crackers.. 194

4.2.3 Startup Options for mysqld Concerning Security

... 195
4.2.4 Security issues with LOAD DATA LOCAL 196
4.2.5 What the Privilege System Does............... 197
4.2.6 How the Privilege System Works............... 197
4.2.7 Privileges Provided by MySQL 200
4.2.8 Connecting to the MySQL Server.............. 202
4.2.9 Access Control, Stage 1: Connection Verification

... 203
4.2.10 Access Control, Stage 2: Request Verification .. 206
4.2.11 Causes of Access denied Errors.............. 208

4.3 MySQL User Account Management..................... 212
4.3.1 GRANT and REVOKE Syntax..................... 212
4.3.2 MySQL User Names and Passwords............ 216
4.3.3 When Privilege Changes Take Effect 217
4.3.4 Setting Up the Initial MySQL Privileges. 218
4.3.5 Adding New Users to MySQL 219
4.3.6 Limiting user resources. 222
4.3.7 Setting Up Passwords......................... 223
4.3.8 Keeping Your Password Secure 224
4.3.9 Using Secure Connections 225

4391 Basics.......oiiiiiiii 225
4.3.9.2 Requirements........................ 225
4.3.9.3 GRANT Options....................... 226

4.4 Disaster Prevention and Recovery 227
4.4.1 Database Backups............... 227
4.4.2 BACKUP TABLE Syntaxc.oovveuun.... 228
4.4.3 RESTORE TABLE Syntax........................ 229
4.4.4 CHECK TABLE Syntaxoveuunenn... 229
4.4.5 REPAIR TABLE Syntaxooveviunnon.. 230
4.4.6 Using myisamchk for Table Maintenance and Crash

Recovery 231
4.4.6.1 myisamchk Invocation Syntax......... 232

4.4.6.2 General Options for myisamchk 233

4.4.6.3 Check Options for myisamchk......... 234

4.4.6.4 Repair Options for myisamchk 235

4.4.6.5 Other Options for myisamchk......... 236

4.4.6.6 myisamchk Memory Usage............ 236

4.4.6.7 Using myisamchk for Crash Recovery .. 237

4.4.6.8 How to Check Tables for Errors....... 238

4.4.6.9 How to Repair Tables 239
4.4.6.10 Table Optimisation 241

4.4.7 Setting Up a Table Maintenance Regimen 242
4.4.8 Getting Information About a Table............ 242

4.5 Database Administration Language Reference 247
4.5.1 OPTIMIZE TABLE Syntax..............c........ 247
4.5.2 ANALYZE TABLE Syntax........................ 248

4.5.3 FLUSH Syntaxouueeiunneeinneeinnan. 248

vii

4.5.4 BRESET SYNEAX + .\ v vttt etieeeeiieeeiiaean 250

4.5.5 KILL Syntaxoviuneeinneeianennn.. 250

4.5.6 SHOW Syntaxoveeiineeinneennn... 251
4.5.6.1 Retrieving information about Database,

Tables, Columns, and Indexes............. 251

4.5.6.2 SHOW TABLE STATUS 252

4.5.6.3 SHOW STATUS........cvvrirnennnnn... 253

4.5.6.4 SHOW VARIABLES 256

456.5 SHOWLOGS........ivirininan.. 265

4.5.6.6 SHOW PROCESSLIST................... 265

4.5.6.7 SHOWGRANTS...........coiiienon .. 267

4.5.6.8 SHOW CREATETABLE 267

4.6 MySQL Localisation and International Usage............ 267

4.6.1 The Character Set Used for Data and Sorting... 267

4.6.1.1 German character set 268

4.6.2 Non-English Error Messages................... 269

4.6.3 Adding a New Character Set 269

4.6.4 The Character Definition Arrays............... 271

4.6.5 String Collating Support 271

4.6.6 Multi-byte Character Support 271

4.6.7 Problems With Character Sets................. 272

4.7 MySQL Server-Side Scripts and Utilities 272
4.7.1 Overview of the Server-Side Scripts and Utilities

... 272

4.7.2 safe_mysqld, The Wrapper Around mysqld.... 274
4.7.3 mysqld_multi, Program for Managing Multiple

MySQL Servers.oouiiiiiiiiinnnee.. 275
4.7.4 myisampack, The MySQL Compressed Read-only
Table Generator 279
4.7.5 mysqld-max, An Extended mysqld Server....... 285
4.8 MySQL Client-Side Scripts and Utilities 287
4.8.1 Overview of the Client-Side Scripts and Utilities
... 287
4.8.2 mysql, The Command-line Tool................ 288

4.8.3 mysqladmin, Administrating a MySQL Server .. 295

4.8.4 Using mysqlcheck for Table Maintenance and Crash
Recovery....... ..o 297

4.8.5 mysqldump, Dumping Table Structure and Data

... 299
4.8.6 mysqlhotcopy, Copying MySQL Databases and
Tableso 303
4.8.7 mysqlimport, Importing Data from Text Files.. 304
4.8.8 Showing Databases, Tables, and Columns 307
4.8.9 perror, Explaining Error Codes 307
4.8.10 How to Run SQL Commands from a Text File.. 308
4.9 The MySQL Log Files.......... 308
4.9.1 The Error Log.............oo . 308

4.9.2 The General Query Log....................... 309

viii

4.9.3 The Update Log.............. 309

4.94 The Binary Update Log....................... 310

4.9.5 The Slow Query Log........... 311

4.9.6 Log File Maintenance 312

4.10 Replication in MySQL............... 312

4.10.1 Introduction 312

4.10.2 Replication Implementation Overview......... 313

4.10.3 How To Set Up Replication 314

4.10.4 Replication Features and Known Problems 316

4.10.5 Replication Options in ‘my.cnf’ 318

4.10.6 SQL Commands Related to Replication 323

4.10.7 Replication FAQ 326

4.10.8 Troubleshooting Replication.................. 331

5 MySQL Optimisation.................... 333

5.1 Optimisation Overview 333

5.1.1 MySQL Design Limitations/Tradeoffs 333

5.1.2 Portability 334

5.1.3 What Have We Used MySQL For?............. 335

5.1.4 The MySQL Benchmark Suite................. 3306

5.1.5 Using Your Own Benchmarks.................. 337

5.2 Optimising SELECTs and Other Queries 338
5.2.1 EXPLAIN Syntax (Get Information About a SELECT)

... 338

5.2.2 Estimating Query Performance 343

5.2.3 Speed of SELECT Queries 344

5.2.4 How MySQL Optimises WHERE Clauses 344

5.2.5 How MySQL Optimises DISTINCT.............. 346
5.2.6 How MySQL Optimises LEFT JOIN and RIGHT JOIN

... 346

5.2.7 How MySQL Optimises ORDERBY 347

5.2.8 How MySQL Optimises LIMIT................. 348

5.2.9 Speed of INSERT Queries 349

5.2.10 Speed of UPDATE Queries 351

5.2.11 Speed of DELETE Queries 351

5.2.12 Other Optimisation Tips..................... 351

5.3 Locking Issues i 354

5.3.1 How MySQL Locks Tables 354

5.3.2 Table Locking Issues.......................... 355

5.4 Optimising Database Structure......................... 350

5.4.1 Design Choicescoooviiiin... 356

5.4.2 Get Your Data as Small as Possible............ 357

5.4.3 How MySQL Uses Indexes 358

54.4 Column Indexes.............................. 360

5.4.5 Multiple-Column Indexes...................... 360

5.4.6 Why So Many Open tables? 361

5.4.7 How MySQL Opens and Closes Tables 361

5.4.8 Drawbacks to Creating Large Numbers of Tables in

the Same Database 362
5.5 Optimising the MySQL Server 363
5.5.1 System/Compile Time and Startup Parameter
Tuning......... 363
5.5.2 Tuning Server Parameters..................... 363
5.5.3 How Compiling and Linking Affects the Speed of
MySQL .o 365
5.5.4 How MySQL Uses Memory.................... 367
5.5.5 How MySQL uses DNS 368
5.5.6 SET Syntax.......oouuuummnnneeeeiiaann.. 369
5.6 Disk Issues ... 372
5.6.1 Using Symbolic Links......................... 373
5.6.1.1 Using Symbolic Links for Databases ... 374
5.6.1.2 Using Symbolic Links for Tables 374
6 MySQL Language Reference 376
6.1 Language Structure 376
6.1.1 Literals: How to Write Strings and Numbers. ... 376
6.1.1.1 Strings..........coooiiiiiii.. 376
6.1.1.2 Numbers............................ 378
6.1.1.3 Hexadecimal Values.................. 378
6.1.1.4 NULL Values 378
6.1.2 Database, Table, Index, Column, and Alias Names
... 379
6.1.3 Case Sensitivity in Names..................... 380
6.1.4 User Variables.............. 380
6.1.5 System Variables 381
6.1.6 Comment Syntax.................cooiiiii... 385
6.1.7 Is MySQL Picky About Reserved Words?. 385
6.2 Column Types......cooiiunmi i 387
6.2.1 Numeric Types..........co .. 392
6.2.2 Date and Time Types......................... 394
6.2.2.1 Y2K Issues and Date Types........... 395
6.2.2.2 The DATETIME, DATE, and TIMESTAMP Types
6.2.2.3 The TIME Typeconoo... 398
6.2.2.4 The YEAR Type 399
6.2.3 String Types 400
6.2.3.1 The CHAR and VARCHAR Types......... 400
6.2.3.2 The BLOB and TEXT Types............ 401
6.2.3.3 The ENUM Typecovvvo.. 402
6.234 TheSET Type 403
6.2.4 Choosing the Right Type for a Column......... 404
6.2.5 Using Column Types from Other Database Engines
... 404
6.2.6 Column Type Storage Requirements 405

6.3 Functions for Use in SELECT and WHERE Clauses 406

6.3.1 Non-Type-Specific Operators and Functions 407

6.3.1.1 Parentheses.......................... 407

6.3.1.2 Comparison Operators 407

6.3.1.3 Logical Operators.................... 411

6.3.1.4 Control Flow Functions............... 412

6.3.2 String Functions.............................. 413
6.3.2.1 String Comparison Functions 420

6.3.2.2 Case-Sensitivity...................... 422

6.3.3 Numeric Functions............................ 423
6.3.3.1 Arithmetic Operations 423

6.3.3.2 Mathematical Functions.............. 424

6.3.4 Date and Time Functions 429
6.3.5 Cast Functions 437
6.3.6 Other Functions.............................. 438
6.3.6.1 DBit Functions........................ 438

6.3.6.2 Miscellaneous Functions 439

6.3.7 Functions for Use with GROUP BY Clauses 445
6.4 Data Manipulation: SELECT, INSERT, UPDATE, DELETE 447
6.4.1 SELECT Syntaxoveeiunneeinnneennnnann. 447
6.4.1.1 JOIN Syntax..........c.coveeunnnon.. 451

6.4.1.2 UNION Syntax..............ocoueeenn.. 453

6.4.2 HANDLER Syntaxoeeiinneeininaa.. 453
6.4.3 INSERT Syntaxeuuuveeiunneeunnnann. 454
6.4.3.1 INSERT ... SELECT Syntax 456

6.4.4 INSERT DELAYED Syntax....................... 457
6.4.5 UPDATE SYNEAX vvvveeeeeeeeeeeeenn. 458
6.4.6 DELETE Syntaxc.uueeeiunneeuinnann. 459
6.4.7 TRUNCATE Syntaxoveeiunneennnnnennn.. 460
6.4.8 REPLACE Syntaxooiiiiiiiiinna.. 461
6.4.9 LOAD DATA INFILE Syntax..................... 461
6.4.10 DO SYNEAX . . o e vt e e et e 467
6.5 Data Definition: CREATE, DROP, ALTER 468
6.5.1 CREATE DATABASE Syntax...................... 468
6.5.2 DROP DATABASE Syntax.............oovevun.... 468
6.5.3 CREATE TABLE Syntaxcooeuuun... 469
6.5.3.1 Silent Column Specification Changes .. 476

6.5.4 ALTER TABLE Syntaxcoovuneun... 476
6.5.5 RENAME TABLE Syntax 480
6.5.6 DROP TABLE Syntaxoo.... 480
6.5.7 CREATE INDEX Syntaxcovevvnn... 481
6.5.8 DROP INDEX Syntaxeouumeeiinnaann. 481
6.6 Basic MySQL User Utility Commands 482
6.6.1 USE Syntax..........cooviiiineiiiineeinnn... 482
6.6.2 DESCRIBE Syntax (Get Information About Columns)
... 482

6.7 MySQL Transactional and Locking Commands.......... 482
6.7.1 BEGIN/COMMIT/ROLLBACK Syntax............... 482

6.7.2 LOCK TABLES/UNLOCK TABLES Syntax........... 483

6.7.3 SET TRANSACTION Syntax.............oooovun.. 485
6.8 MySQL Full-text Search............................... 485
6.8.1 Full-text Restrictions 489
6.8.2 Fine-tuning MySQL Full-text Search........... 489
6.8.3 Full-text Search TODO 490
6.9 MySQL Query Cache.................................. 490
6.9.1 How The Query Cache Operates............... 491
6.9.2 Query Cache Configuration.................... 492
6.9.3 Query Cache Options in SELECT 492
6.9.4 Query Cache Status and Maintenance.......... 492
7 MySQL Table Types............ooovun... 494
7.1 MyISAM Tables......... 494
7.1.1 Space Needed for Keys........................ 497
7.1.2 MyISAM Table Formats 497
7.1.2.1 Static (Fixed-length) Table Characteristics
.. 498
7.1.2.2 Dynamic Table Characteristics........ 498
7.1.2.3 Compressed Table Characteristics 499
7.1.3 MyISAM Table Problems....................... 500
7.1.3.1 Corrupted MyISAM Tables............. 500
7.1.3.2 Clients is using or hasn’t closed the table
properly. 500
7.2 MERGE Tableso 501
7.2.1 MERGE Table Problems 503
7.3 ISAM Tables........co oo 504
7.4 HEAP Tables....... 505
7.5 InnoDB Tables 506
7.5.1 InnoDB Tables Overview...................... 506
7.5.2 InnoDB Startup Options...................... 507
7.5.3 Creating InnoDB Tablespace 512
7.5.3.1 If Something Goes Wrong in Database
Creation ..., 513
7.5.4 Creating InnoDB Tables 514
7.5.4.1 Converting MyISAM Tables to InnoDB
.. 514
7.5.4.2 Foreign Key Constraints.............. 515
7.5.5 Adding and Removing InnoDB Data and Log Files
... 516
7.5.6 Backing up and Recovering an InnoDB Database
... 517
7.5.6.1 Checkpoints 518
7.5.7 Moving an InnoDB Database to Another Machine
... 518
7.5.8 InnoDB Transaction Model.................... 519
7.5.8.1 Consistent Read 519

7.5.8.2 LockingReads....................... 520

xi

xii

7.5.8.3 Next-key Locking: Avoiding the Phantom

Problem.............. 520

7.5.8.4 Locks Set by Different SQL Statements in
InmoDB 521
7.5.8.5 Deadlock Detection and Rollback. 522

7.5.8.6 An Example of How the Consistent Read
Works inInnoDB 522
7.5.8.7 How to cope with deadlocks? 523
7.5.9 Performance Tuning Tips 523
7.5.9.1 The InnoDB Monitor................. 524
7.5.10 Implementation of Multi-versioning 527
7.5.11 Table and Index Structures................... 527
7.5.11.1 Physical Structure of an Index 528
7.5.11.2 Insert Buffering..................... 528
7.5.11.3 Adaptive Hash Indexes.............. 529
7.5.11.4 Physical Record Structure........... 529
7.5.11.5 How an Auto-increment Column Works in
InmoDB 529
7.5.12 File Space Management and Disk I/O......... 530
75121 DiskI/O........ ... 530
7.5.12.2 File Space Management 531
7.5.12.3 Defragmenting a Table 532
7.5.13 FError Handling.............................. 532
7.5.14 Restrictions on InnoDB Tables 532
7.5.15 InnoDB Contact Information................. 533
7.6 BDB or BerkeleyDB Tables............................. 533
7.6.1 Overview of BDB Tables...................... 534
7.6.2 Installing BDB............................... 534
7.6.3 BDB startup options.............. 534
7.6.4 Characteristics of BDB tables: 535

7.6.5 Things we need to fix for BDB in the near future:
... 536
7.6.6 Operating systems supported by BDB........... 537
7.6.7 Restrictions on BDB Tables................... 537
7.6.8 Errors That May Occur When Using BDB Tables

... 537
8 MySQL APIs...... ..., 539
8.1 MySQL PHP API..... ... 539
8.1.1 Common Problems with MySQL and PHP 539
8.2 MySQL Perl APT ... 539
8.2.1 DBI withDBD::mysql......................... 539
8.2.2 The DBI Interface............................. 540
8.2.3 More DBI/DBD Information 545
8.3 MySQL ODBC Support ... 546
8.3.1 How To Install MyODBC 546

8.3.2 How to Fill in the Various Fields in the ODBC
Administrator Program 547

xiii

8.3.3 Connect parameters for MyODBC 547
8.3.4 How to Report Problems with MyODBC 549
8.3.5 Programs Known to Work with MyODBC. 549
8.3.6 How to Get the Value of an AUTO_INCREMENT
Column in ODBC....... 554
8.3.7 Reporting Problems with MyODBC............ 554
84 MySQL C APIL. ... 555
8.4.1 C API Datatypes............cooiiiiii .. 556
8.4.2 C API Function Overview..................... 558
8.4.3 C API Function Descriptions 562
8.4.3.1 mysql_affected_rows() 563
8.4.3.2 mysql_change_user() 563
8.4.3.3 mysql_character_set_name()........ 564
8.4.34 mysql_close() 565
8.4.3.5 mysql_connect().................... 565
8.4.3.6 mysql_create_db().................. 566
8.4.3.7 mysql_data_seek().................. 566
8.4.3.8 mysql_debug() 567
8.4.3.9 mysql_drop_db().................... 567
8.4.3.10 mysql_dump_debug_info() 568
8.4.3.11 mysql_eof() 569
8.4.3.12 mysql_errno() 570
8.4.3.13 mysql_error() 570
8.4.3.14 mysql_escape_string() 571
8.4.3.15 mysql_fetch_field() 571
8.4.3.16 mysql_fetch_fields() 572
8.4.3.17 mysql_fetch_field_direct()....... 573
8.4.3.18 mysql_fetch_lengths() 573
8.4.3.19 mysql_fetch_row() 574
8.4.3.20 mysql_field_count() 575
8.4.3.21 mysql_field_seek() 576
8.4.3.22 mysql_field_tell() 577
8.4.3.23 mysql_free_result() 577
8.4.3.24 mysql_get_client_info().......... 578
8.4.3.25 mysql_get_host_info() 578
8.4.3.26 mysql_get_proto_info() 578
8.4.3.27 mysql_get_server_info() 579
8.4.3.28 mysql_info() 579
8.4.3.29 mysql_init() 580
8.4.3.30 mysql_insert_id() 580
8.4.3.31 mysql_kill() 581
8.4.3.32 mysql_list_dbs().................. 581
8.4.3.33 mysql_list_fields() 582
8.4.3.34 mysql_list_processes() 583
8.4.3.35 mysql_list_tables() 583
8.4.3.36 mysql_num_fields() 584
8.4.3.37 mysql_num_rows().................. 585

8.4.3.38 mysql_options()................... 586

xiv

8.4.3.39 mysql_ping() 588
8.4.3.40 mysql_query() 588
8.4.3.41 mysql_real_connect() 589
8.4.3.42 mysql_real_escape_string()....... 591
8.4.3.43 mysql_real_query() ! 592
8.4.3.44 mysql_reload() 593
8.4.3.45 mysql_row_seek().................. 594
8.4.3.46 mysql_row_tell().................. 594
8.4.3.47 mysql_select_db() 595
8.4.3.48 mysql_shutdown().................. 595
8.4.3.49 mysql_stat() 596
8.4.3.50 mysql_store_result() 596
8.4.3.51 mysql_thread_id() 597
8.4.3.52 mysql_use_result() 598
8.4.4 C Threaded Function Descriptions............. 599
84.4.1 my_init() 599
8.4.4.2 mysql_thread_init() 599
8.4.4.3 mysql_thread_end() 600
8.4.44 mysql_thread_safe() 600
8.4.5 C Embedded Server Function Descriptions. 600
8.4.5.1 mysql_server_init() 601
8.4.5.2 mysql_server_end() 602

8.4.6 Common questions and problems when using the C
AP . 602

8.4.6.1 Why Is It that After mysql_query()
Returns Success, mysql_store_result ()

Sometimes Returns NULL? 602
8.4.6.2 What Results Can I Get From a Query?
.. 602
8.4.6.3 How Can I Get the Unique ID for the Last
Inserted Row? 603
8.4.6.4 Problems Linking with the C API..... 603
8.4.7 Building Client Programs 604
8.4.8 How to Make a Threaded Client 604
8.4.9 libmysqld, the Embedded MySQL Server Library
... 605
8.4.9.1 Overview of the Embedded MySQL Server
Library ... 605

8.4.9.2 Compiling Programs with 1ibmysqld.. 606
8.4.9.3 Restrictions when using the Embedded

MySQL Server...................... ... 606
8.4.9.4 Using Option Files with the Embedded

SEIVET . o ettt 606
8.4.9.5 Things left to do in Embedded Server

(TODO) ... 607
8.4.9.6 A Simple Embedded Server Example .. 607
8.4.9.7 Licensing the Embedded Server 611

85 MySQL C++ APIs.........co . 611

85.1 Borland C++ 611
8.6 MySQL Java Connectivity (JDBC)..................... 611
8.7 MySQL Python APIs...... 611
8.8 MySQL Tcl APIs ... 612
8.9 MySQL Eiffel wrapper.................... ... 612
Extending MySQL....................... 613
9.1 MySQL Internals......... ... i 613
9.1.1 MySQL Threads...............cooiiiiiii.... 613
9.1.2 MySQL Test Suite................... .. 613
9.1.2.1 Running the MySQL Test Suite....... 614
9.1.2.2 Extending the MySQL Test Suite 614
9.1.2.3 Reporting Bugs in the MySQL Test Suite
.. 615
9.2 Adding New Functions to MySQL 616
9.2.1 CREATE FUNCTION/DROP FUNCTION Syntax....... 617
9.2.2 Adding a New User-definable Function 617
9.2.2.1 UDF Calling Sequences for simple functions
.. 619
9.2.2.2 UDF Calling Sequences for aggregate
functions.......... ... 620
9.2.2.3 Argument Processing................. 621
9.2.2.4 Return Values and Error Handling 622
9.2.2.5 Compiling and Installing User-definable
Functions, 623
9.2.3 Adding a New Native Function 624
9.3 Adding New Procedures to MySQL..................... 626
9.3.1 Procedure Analyse............................ 626
9.3.2 Writing a Procedure 626

Appendix A Problems and Common Errors

....................................... 627
A.1 How to Determine What Is Causing Problems 627
A.2 Common Errors When Using MySQL 628
A.2.1 Accessdenied Error......................... 628
A.2.2 MySQL server has gone away Error............ 628
A.2.3 Can’t connect to [local] MySQL server Error
... 629
A.2.4 Host’...’ is blocked Error................. 631
A.2.5 Too many connections Error 631
A.2.6 Some non-transactional changed tables
couldn’t be rolled back Error 632
A.2.7 Out of memory Error......................... 632
A.2.8 Packet too large Error...................... 632
A.2.9 Communication Errors / Aborted Connection .. 633
A.2.10 The table is full Error.................... 634

A.211 Can’t create/write to file Error.......... 634

XV

A.2.12 Commands out of sync Error in Client........ 635
A.2.13 Ignoringuser Error........................ 635
A.2.14 Table ’xxx’ doesn’t exist Frror........... 636
A.2.15 Can’t initialize character set xxx error .. 636
A.2.16 File Not Found 636
A.3 Installation Related Issues............................. 637

A.3.1 Problems When Linking with the MySQL Client
Library ... 637
A.3.2 How to Run MySQL As a Normal User........ 638
A.3.3 Problems with File Permissions 639
A.4 Administration Related Issues......................... 639
A.4.1 What To Do If MySQL Keeps Crashing. 640
A.4.2 How to Reset a Forgotten Root Password 642
A.4.3 How MySQL Handles a Full Disk.............. 643
A.4.4 Where MySQL Stores Temporary Files 643

A.4.5 How to Protect or Change the MySQL Socket File

‘/tmp/mysql.sock’ ... 644
A.4.6 Time Zone Problems 644
A5 Query Related Issues............., 645
A.5.1 Case-Sensitivity in Searches................... 645
A.5.2 Problems Using DATE Columns 645
A.5.3 Problems with NULL Values 646
A.5.4 Problems with alias......................... 647
A.5.5 Deleting Rows from Related Tables............ 647
A.5.6 Solving Problems with No Matching Rows 648
A.5.7 Problems with Floating-Point Comparison 648
A.6 Table Definition Related Issues 650
A.6.1 Problems with ALTER TABLE................... 650

A.6.2 How To Change the Order of Columns in a Table
... 651
A.6.3 TEMPORARY TABLE problems 651
Appendix B Contributed Programs......... 653
Bl APIs. . 653
B2 Clients........cooiii 656
B3 Web Tools 659
B.4 Performance Benchmarking Tools 660
B.5 Authentication Tools........... 661
B.6 Convertersoioiiii 661
B.7 Using MySQL with Other Products 662
B.8 Utilities. ... 663
B.9 RPMs for Common Tools (Most Are for RedHat 6.1) 664
B.10 Useful Functions. 664
B.11 Windows Programs 664
B.12 Uncategorised 664

Xvi

Appendix C Credits....................... 666
C.1 Developers at MySQL AB............................. 666
C.2 Contributors to MySQL 668
C.3 Supporters to MySQL 674

Appendix D MySQL Change History....... 675
D.1 Changes in release 4.0.x (Development; Alpha).......... 675

D.1.1 Changes in release 4.0.3 675
D.1.2 Changes in release 4.0.2 (01 July 2002) 676
D.1.3 Changes in release 4.0.1 (23 Dec 2001)......... 679
D.1.4 Changes in release 4.0.0 (Oct 2001: Alpha)..... 680
D.2 Changes in release 3.23.x (Stable)...................... 682
D.2.1 Changes in release 3.23.52 682
D.2.2 Changes in release 3.23.51 (31 May 2002) 682
D.2.3 Changes in release 3.23.50 (21 Apr 2002)....... 683
D.2.4 Changes in release 3.23.49 684
D.2.5 Changes in release 3.23.48 (07 Feb 2002)....... 684
D.2.6 Changes in release 3.23.47 (27 Dec 2001)....... 685
D.2.7 Changes in release 3.23.46 (29 Nov 2001) 685
D.2.8 Changes in release 3.23.45 (22 Nov 2001) 686
D.2.9 Changes in release 3.23.44 (31 Oct 2001)....... 686
D.2.10 Changes in release 3.23.43 687
D.2.11 Changes in release 3.23.42 (08 Sep 2001)...... 688
D.2.12 Changes in release 3.23.41 (11 Aug 2001) 689
D.2.13 Changes in release 3.23.40 689
D.2.14 Changes in release 3.23.39 (12 Jun 2001)...... 690
D.2.15 Changes in release 3.23.38 (09 May 2001) 690
D.2.16 Changes in release 3.23.37 (17 Apr 2001) 691
D.2.17 Changes in release 3.23.36 (27 Mar 2001) 692
D.2.18 Changes in release 3.23.35 (15 Mar 2001) 693
D.2.19 Changes in release 3.23.34a 693
D.2.20 Changes in release 3.23.34 (10 Mar 2001) 693
D.2.21 Changes in release 3.23.33 (09 Feb 2001)...... 694
D.2.22 Changes in release 3.23.32 (22 Jan 2001: Stable)
... 695
D.2.23 Changes in release 3.23.31 (17 Jan 2001)...... 696
D.2.24 Changes in release 3.23.30 (04 Jan 2001)...... 696
D.2.25 Changes in release 3.23.29 (16 Dec 2000). 697
D.2.26 Changes in release 3.23.28 (22 Nov 2000: Gamma)
... 699
D.2.27 Changes in release 3.23.27 (24 Oct 2000)...... 700
D.2.28 Changes in release 3.23.26 701
D.2.29 Changes in release 3.23.25 702
D.2.30 Changes in release 3.23.24 (08 Sep 2000).. 703
D.2.31 Changes in release 3.23.23 703
D.2.32 Changes in release 3.23.22 (31 Jul 2000) 704
D.2.33 Changes in release 3.23.21 705
D.2.34 Changes in release 3.23.20 706

xvii

D.2.35 Changes in release 3.23.19 706
D.2.36 Changes in release 3.23.18 706
D.2.37 Changes in release 3.23.17 707
D.2.38 Changes in release 3.23.16 707
D.2.39 Changes in release 3.23.15 (May 2000: Beta) .. 708
D.2.40 Changes in release 3.23.14 709
D.2.41 Changes in release 3.23.13 709
D.2.42 Changes in release 3.23.12 710
D.2.43 Changes in release 3.23.11 710
D.2.44 Changes in release 3.23.10 711
D.2.45 Changes in release 3.23.9 711
D.2.46 Changes in release 3.23.8 712
D.2.47 Changes in release 3.23.7 713
D.2.48 Changes in release 3.23.6 713
D.2.49 Changes in release 3.23.5.................... 714
D.2.50 Changes in release 3.23.4 715
D.2.51 Changes in release 3.23.3 715
D.2.52 Changes in release 3.23.2 716
D.2.53 Changes in release 3.23.1 717
D.2.54 Changes in release 3.23.0 (Sep 1999: Alpha)... 717
D.3 Changes in release 3.22.x (Older; still supported)........ 719
D.3.1 Changes in release 3.22.35 719
D.3.2 Changes in release 3.22.34 719
D.3.3 Changes in release 3.22.33 719
D.3.4 Changes in release 3.22.32 720
D.3.5 Changes in release 3.22.31 720
D.3.6 Changes in release 3.22.30 720
D.3.7 Changes in release 3.22.29 720
D.3.8 Changes in release 3.22.28 721
D.3.9 Changes in release 3.22.27 721
D.3.10 Changes in release 3.22.26 721
D.3.11 Changes in release 3.22.25 721
D.3.12 Changes in release 3.22.24 721
D.3.13 Changes in release 3.22.23 722
D.3.14 Changes in release 3.22.22 722
D.3.15 Changes in release 3.22.21 722
D.3.16 Changes in release 3.22.20 723
D.3.17 Changes in release 3.22.19 (Mar 1999: Stable)
... 723
D.3.18 Changes in release 3.22.18 723
D.3.19 Changes in release 3.22.17 723
D.3.20 Changes in release 3.22.16 (Feb 1999: Gamma)
... 723
D.3.21 Changes in release 3.22.15................... 724
D.3.22 Changes in release 3.22.14 724
D.3.23 Changes in release 3.22.13 725
D.3.24 Changes in release 3.22.12 725
D.3.25 Changes in release 3.22.11 725

xviil

D.3.26 Changes in release 3.22.10 726
D.3.27 Changes in release 3.22.9 727
D.3.28 Changes in release 3.22.8 727
D.3.29 Changes in release 3.22.7 (Sep 1998: Beta).... 728
D.3.30 Changes in release 3.22.6 728
D.3.31 Changes in release 3.22.5 729
D.3.32 Changes in release 3.22.4 730
D.3.33 Changes in release 3.22.3 731
D.3.34 Changes in release 3.22.2 731
D.3.35 Changes in release 3.22.1 (Jun 1998: Alpha) .. 732
D.3.36 Changes in release 3.22.0 732
D.4 Changes inrelease 3.21.x. ..., 734
D.4.1 Changes in release 3.21.33 734
D.4.2 Changes in release 3.21.32 734
D.4.3 Changes in release 3.21.31 734
D.4.4 Changes in release 3.21.30 735
D.4.5 Changes in release 3.21.29 735
D.4.6 Changes in release 3.21.28 735
D.4.7 Changes in release 3.21.27 736
D.4.8 Changes in release 3.21.26 736
D.4.9 Changes in release 3.21.25 736
D.4.10 Changes in release 3.21.24 737
D.4.11 Changes in release 3.21.23 737
D.4.12 Changes in release 3.21.22 738
D.4.13 Changes in release 3.21.21a.................. 738
D.4.14 Changes in release 3.21.21 738
D.4.15 Changes in release 3.21.20 739
D.4.16 Changes in release 3.21.19 739
D.4.17 Changes in release 3.21.18 739
D.4.18 Changes in release 3.21.17 739
D.4.19 Changes in release 3.21.16 740
D.4.20 Changes in release 3.21.15................... 740
D.4.21 Changes in release 3.21.14b.................. 741
D.4.22 Changes in release 3.21.14a 741
D.4.23 Changes in release 3.21.13 742
D.4.24 Changes in release 3.21.12 742
D.4.25 Changes in release 3.21.11 743
D.4.26 Changes in release 3.21.10 743
D.4.27 Changes in release 3.21.9 744
D.4.28 Changes in release 3.21.8 744
D.4.29 Changes in release 3.21.7 744
D.4.30 Changes in release 3.21.6 745
D.4.31 Changes in release 3.21.5 745
D.4.32 Changes in release 3.21.4 745
D.4.33 Changes in release 3.21.3 745
D.4.34 Changes in release 3.21.2 746
D.4.35 Changes in release 3.21.0 47

D.5 Changes in release 3.20.X 748

Xix

D.5.1 Changes in release 3.20.18 748
D.5.2 Changes in release 3.20.17 749
D.5.3 Changes in release 3.20.16 750
D.5.4 Changes in release 3.20.15 750
D.5.5 Changes in release 3.20.14 750
D.5.6 Changes in release 3.20.13 751
D.5.7 Changes in release 3.20.11 751
D.5.8 Changes in release 3.20.10 752
D.5.9 Changes in release 3.20.9 752
D.5.10 Changes in release 3.20.8 752
D.5.11 Changes in release 3.20.7 752
D.5.12 Changes in release 3.20.6 753
D.5.13 Changes in release 3.20.3 754
D.5.14 Changes in release 3.20.0 755
D.6 Changes in release 3.19.x. ...t 755
D.6.1 Changes in release 3.19.5 755
D.6.2 Changes in release 3.19.4 756
D.6.3 Changes in release 3.19.3 756
Appendix E Porting to Other Systems...... 757
E.1 Debugging a MySQL server............................ 758
E.1.1 Compiling MYSQL for Debugging 758
E.1.2 Creating Trace Files.......................... 759
E.1.3 Debugging mysqld under gdb 760
E.1.4 Using a Stack Trace.......................... 761

E.1.5 Using Log Files to Find Cause of Errors in mysqld
... 762

E.1.6 Making a Test Case When You Experience Table

Corruptiont 763
E.2 Debugging a MySQL client 763
E.3 The DBUG Package ..., 764
E.4 Locking methods, 765
E.5 Comments about RTS threads 767
E.6 Differences between different thread packages 768
Appendix F Environment Variables......... 770

Appendix G MySQL Regular Expressions... 771

Appendix H GNU General Public License .. 774

H.1

Preamble 774

H.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 775

H.3 How to Apply These Terms to Your New Programs 779

XX

poel

Appendix I GNU Lesser General Public License

....................................... 780
I.1 Preamble....... ... 780
[.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION 781
[.3 How to Apply These Terms to Your New Libraries....... 788
SQL command, type and function index...... 789

Concept Indexoeiiiiiiinn... 798

Chapter 1: General Information 1

1 General Information

The MySQL (TM) software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-
critical, heavy-load production systems as well as for embedding into mass-deployed soft-
ware. MySQL is a trademark of MySQL AB.

The MySQL software has Dual Licensing, which means you can use the MySQL software
free of charge under the GNU General Public License (http://www.gnu.org/licenses/).
You can also purchase commercial MySQL licenses from MySQL AB if you do not wish to be
bound by the terms of the GPL. See Section 1.4 [Licensing and Support|, page 15.

The MySQL web site (http://www.mysql.com/) provides the latest information about the
MySQL software.

The following list describes some sections of particular interest in this manual:

e For information about the company behind the MySQL Database Server, see Section 1.3
[What is MySQL AB]J, page 11.

e For a discussion about the capabilities of the MySQL Database Server, see Section 1.2.2
[Features], page 5.

e For installation instructions, see Chapter 2 [Installing], page 65.

e For tips on porting the MySQL Database Software to new architectures or operating
systems, see Appendix E [Porting], page 757.

e For information about upgrading from a Version 3.23 release, see Section 2.5.1
[Upgrading-from-3.23], page 100.

e For information about upgrading from a Version 3.22 release, see Section 2.5.2
[Upgrading-from-3.22], page 102.

e For a tutorial introduction to the MySQL Database Server, see Chapter 3 [Tutorial],
page 144.

e For examples of SQL and benchmarking information, see the benchmarking directory
(‘sql-bench’ in the distribution).

e For a history of new features and bug fixes, see Appendix D [News|, page 675.

e For a list of currently known bugs and misfeatures, see Section 1.7.5 [Bugs|, page 40.

e For future plans, see Section 1.8 [TODO], page 43.

e For a list of all the contributors to this project, see Appendix C [Credits|, page 666.

Important:

Reports of errors (often called bugs), as well as questions and comments, should be sent
to the mailing list at mysql@lists.mysql.com. See Section 1.6.2.3 [Bug reports|, page 26.
The mysqlbug script should be used to generate bug reports. For source distributions, the
mysqlbug script can be found in the ‘scripts’ directory. For binary distributions, mysqlbug
can be found in the ‘bin’ directory. If you have found a sensitive security bug in MySQL
Server, you should send an e-mail to security@mysql.com.

2 MySQL Technical Reference for Version 4.0.3-beta

1.1 About This Manual

This is the MySQL reference manual; it documents MySQL Version 4.0.3-beta. Being a refer-
ence manual, it does not provide general instruction on SQL or relational database concepts.

As the MySQL Database Software is under constant development, the manual is also up-

dated frequently. The most recent version of this manual is available at http://www.mysql.com/documenta
in many different formats, including Texinfo, plain text, Info, HTML, PostScript, PDF,

and Windows HLP versions.

The primary document is the Texinfo file. The HTML version is produced automatically
using a modified version of texi2html. The plain text and Info versions are produced
with makeinfo. The PostScript version is produced using texi2dvi and dvips. The PDF
version is produced with pdftex.

If you have a hard time finding information in the manual, you can try our searchable PHP
version at http://www.mysql.com/doc/.

If you have any suggestions concerning additions or corrections to this manual, please send
them to the documentation team at docs@mysql.com.

This manual is written and maintained by David Axmark, Michael (Monty) Widenius,
Jeremy Cole, Arjen Lentz, and Paul DuBois. For other contributors, see Appendix C
[Credits], page 666.

The copyright (2002) to this manual is owned by the Swedish company MySQL AB. See
Section 1.4.2 [Copyright], page 16.

1.1.1 Conventions Used in This Manual

This manual uses certain typographical conventions:

constant Constant-width font is used for command names and options; SQL statements;
database, table, and column names; C and Perl code; and environment vari-
ables. Example: “To see how mysqladmin works, invoke it with the --help

option.”

‘filename’
Constant-width font with surrounding quotes is used for filenames and path-
names. Example: “The distribution is installed under the ‘/usr/local/’ direc-
tory.”

‘c’ Constant-width font with surrounding quotes is also used to indicate character
sequences. Example: “To specify a wildcard, use the ‘%’ character.”

italic Italic font is used for emphasis, like this.

boldface Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed by a particular program, the
program is indicated by a prompt shown before the command. For example, shell> indi-
cates a command that you execute from your login shell, and mysql> indicates a command
that you execute from the mysql client program:

Chapter 1: General Information 3

shell> type a shell command here

mysql> type a mysql command here
Shell commands are shown using Bourne shell syntax. If you are using a csh-style shell,
you may need to issue commands slightly differently. For example, the sequence to set an
environment variable and run a command looks like this in Bourne shell syntax:

shell> VARNAME=value some_command

For csh, you would execute the sequence like this:

shell> setenv VARNAME value

shell> some_command
Often database, table, and column names must be substituted into commands. To indicate
that such substitution is necessary, this manual uses db_name, tbl_name and col_name.
For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own
database, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case-sensitive and may be written in uppercase or lowercase. This
manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) are used to indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by
vertical bars (‘|”). When one member from a set of choices may be chosen, the alternatives
are listed within square brackets (‘[’ and ‘1’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within
braces (‘{" and ‘}):
{DESCRIBE | DESC} tbl_name {col_name | wild}

1.2 What Is MySQL?

MySQL, the most popular Open Source SQL database, is developed and provided by MySQL
AB. MySQL AB is a commercial company that builds its business providing services around
the MySQL database. See Section 1.3 [What is MySQL ABJ, page 11.

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
software and MySQL AB.

MySQL is a database management system.
A database is a structured collection of data. It may be anything from a simple
shopping list to a picture gallery or the vast amounts of information in a corpo-
rate network. To add, access, and process data stored in a computer database,
you need a database management system such as MySQL Server. Since com-
puters are very good at handling large amounts of data, database management

4 MySQL Technical Reference for Version 4.0.3-beta

plays a central role in computing, as stand-alone utilities, or as parts of other
applications.

MySQL is a relational database management system.
A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility. The tables are linked
by defined relations making it possible to combine data from several tables on
request. The SQL part of “MySQL” stands for “Structured Query Language”the
most common standardised language used to access databases.

MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify. Anybody
can download the MySQL software from the Internet and use it without paying
anything. Anybody so inclined can study the source code and change it to fit
their needs. The MySQL software uses the GPL (GNU General Public License),
http://www.gnu.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the
GPL or need to embed MySQL code into a commercial application you can buy
a commercially licensed version from us. See Section 1.4.3 [MySQL licenses|,
page 16.

Why use the MySQL Database Server?
The MySQL Database Server is very fast, reliable, and easy to use. If that is
what you are looking for, you should give it a try. MySQL Server also has a
practical set of features developed in close cooperation with our users. You
can find a performance comparison of MySQL Server to some other database
managers on our benchmark page. See Section 5.1.4 [MySQL Benchmarks|
page 336.

MySQL Server was originally developed to handle large databases much faster
than existing solutions and has been successfully used in highly demanding pro-
duction environments for several years. Though under constant development,
MySQL Server today offers a rich and useful set of functions. Its connectivity,
speed, and security make MySQL Server highly suited for accessing databases
on the Internet.

The technical features of MySQL Server
For advanced technical information, see Chapter 6 [Referencel, page 376. The
MySQL Database Software is a client/server system that consists of a multi-
threaded SQL server that supports different backends, several different client
programs and libraries, administrative tools, and a wide range of programming
interfaces (APIs).

We also provide MySQL Server as a multi-threaded library which you can link
into your application to get a smaller, faster, easier-to-manage product.

There is a large amount of contributed MySQL software available.
It is very likely that you will find that your favorite application or language
already supports the MySQL Database Server.

The official way to pronounce MySQL is “My Ess Que EllI” (not “my sequel”), but we don’t
mind if you pronounce it as “my sequel” or in some other localised way.

Chapter 1: General Information 5

1.2.1 History of MySQL

We once started out with the intention of using mSQL to connect to our tables using our
own fast low-level (ISAM) routines. However, after some testing we came to the conclusion
that mSQL was not fast enough nor flexible enough for our needs. This resulted in a new
SQL interface to our database but with almost the same API interface as mSQL. This API
was chosen to ease porting of third-party code.

The derivation of the name MySQL is not perfectly clear. Our base directory and a large
number of our libraries and tools have had the prefix “my” for well over 10 years. However,
Monty’s daughter (some years younger) is also named My. Which of the two gave its name
to MySQL is still a mystery, even for us.

1.2.2 The Main Features of MySQL

The following list describes some of the important characteristics of the MySQL Database
Software. See Section 1.5 [MySQL 4.0 In A Nutshell], page 20.

Internals and Portability

e Written in C and C++. Tested with a broad range of different compilers.

e Works on many different platforms. See Section 2.2.2 [Which OS], page 69.

e Uses GNU Automake (1.4), Autoconf (Version 2.52 or newer), and Libtool
for portability.

e APIs for C, C++, Eiffel, Java, Perl, PHP, Python, and Tcl. See Chapter 8
[Clients], page 539.

e Fully multi-threaded using kernel threads. This means it can easily use
multiple CPUs if available.

e Very fast B-tree disk tables with index compression.

e A very fast thread-based memory allocation system.

e Very fast joins using an optimised one-sweep multi-join.

e In-memory hash tables which are used as temporary tables.

e SQL functions are implemented through a highly optimised class library
and should be as fast as possible! Usually there isn’t any memory allocation
at all after query initialisation.

e The MySQL code gets tested with Purify (a commercial memory leakage de-
tector) as well as with Valgrind, a GPL tool (http://developer.kde.org/ sewardj/).

Column Types
e Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes
long, FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, and ENUM types. See Section 6.2 [Column types|,
page 387.

e Fixed-length and variable-length records.

MySQL Technical Reference for Version 4.0.3-beta

e All columns have default values. You can use INSERT to insert a subset of

a table’s columns; those columns that are not explicitly given values are
set to their default values.

Commands and Functions

Security

e Full operator and function support in the SELECT and WHERE parts of

queries. For example:

mysql> SELECT CONCAT(first_name, " ", last_name)
-> FROM tbl_name
-> WHERE income/dependents > 10000 AND age > 30;

Full support for SQL GROUP BY and ORDER BY clauses. Support for group
functions (COUNT (), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(),
and MINQ)).

Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with ANSI SQL and
ODBC syntax.

Aliases on tables and columns are allowed as in the SQL92 standard.

DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were
changed (affected). It is possible to return the number of rows matched
instead by setting a flag when connecting to the server.

The MySQL-specific SHOW command can be used to retrieve information
about databases, tables, and indexes. The EXPLAIN command can be used
to determine how the optimiser resolves a query.

Function names do not clash with table or column names. For example,
ABS is a valid column name. The only restriction is that for a function call,
no spaces are allowed between the function name and the ‘(’ that follows
it. See Section 6.1.7 [Reserved words], page 385.

You can mix tables from different databases in the same query (as of Ver-
sion 3.22).

A privilege and password system that is very flexible and secure, and allows
host-based verification. Passwords are secure because all password traffic
is encrypted when you connect to a server.

Scalability and Limits

Connectivity

e Handles large databases. We are using MySQL Server with some databases

that contain 50 million records and we know of users that use MySQL Server
with 60,000 tables and about 5,000,000,000 rows.

Up to 32 indexes per table are allowed. Each index may consist of 1 to
16 columns or parts of columns. The maximum index width is 500 bytes
(this may be changed when compiling MySQL Server). An index may use
a prefix of a CHAR or VARCHAR field.

Clients may connect to the MySQL server using TCP /IP Sockets, Unix Sock-
ets (Unix), or Named Pipes (NT).

Chapter 1: General Information 7

e 0DBC (Open-DataBase-Connectivity) support for Win32 (with source). All
ODBC 2.5 functions and many others. For example, you can use MS Access
to connect to your MySQL server. See Section 8.3 [ODBC], page 546.

Localisation
e The server can provide error messages to clients in many languages. See
Section 4.6.2 [Languages|, page 269.
e Full support for several different character sets, including ISO-8859-1
(Latinl), german, bigh, ujis, and more. For example, the Scandinavian

characters ”’, 7 and " are allowed in table and column names.

e All data is saved in the chosen character set. All comparisons for normal
string columns are case-insensitive.

e Sorting is done according to the chosen character set (the Swedish way by
default). It is possible to change this when the MySQL server is started. To
see an example of very advanced sorting, look at the Czech sorting code.
MySQL Server supports many different character sets that can be specified
at compile and runtime.

Clients and Tools
e Includes myisamchk, a very fast utility for table checking, optimisation, and
repair. All of the functionality of myisamchk is also available through the
SQL interface as well. See Chapter 4 [MySQL Database Administration],
page 181.
e All MySQL programs can be invoked with the ——help or -7 options to obtain
online assistance.

1.2.3 How Stable Is MySQL?

This section addresses the questions “How stable is MySQL Server?” and “Can I depend
on MySQL Server in this project?” We will try to clarify these issues and answer some
important questions that concern many potential users. The information in this section is
based on data gathered from the mailing list, which is very active in identifying problems
as well as reporting types of use.

Original code stems back from the early ’80s, providing a stable code base, and the ISAM ta-
ble format remains backward-compatible. At TcX, the predecessor of MySQL AB, MySQL code
has worked in projects since mid-1996, without any problems. When the MySQL Database
Software was released to a wider public, we noticed that there were some pieces of “untested
code” that were quickly found by the new users who made different types of queries from
us. Each new release has had fewer portability problems (even though each new release has
had many new features).

Fach release of the MySQL Server has been usable. There have only been problems when
users try code from the “gray zones.” Naturally, new users don’t know what the gray zones
are; this section attempts to indicate those that are currently known. The descriptions
mostly deal with Version 3.23 of MySQL Server. All known and reported bugs are fixed in
the latest version, with the exception of those listed in the bugs section, which are things
that are design-related. See Section 1.7.5 [Bugs|, page 40.

8 MySQL Technical Reference for Version 4.0.3-beta

The MySQL Server design is multi-layered with independent modules. Some of the newer
modules are listed here with an indication of how well-tested each of them is:

Replication — Gamma
Large server clusters using replication are in production use, with good results.
Work on enhanced replication features is continuing in MySQL 4.0.

InnoDB tables — Stable (in 3.23 from 3.23.49)
The InnoDB transactional table handler has now been declared stable in the
MySQL 3.23 tree, starting from version 3.23.49. InnoDB is being used in large,
heavy-load production systems.

BDB tables — Gamma
The Berkeley DB code is very stable, but we are still improving the BDB transac-
tional table handler interface in MySQL Server, so it will take some time before
this is as well tested as the other table types.

FULLTEXT — Beta
Full-text search works but is not yet widely used. Important enhancements are
being implemented for MySQL 4.0.

MyODBC 2.50 (uses ODBC SDK 2.5) — Gamma
Increasingly in wide use. Some issues brought up appear to be application-
related and independent of the ODBC driver or underlying database server.

Automatic recovery of MyISAM tables — Gamma
This status only regards the new code in the MyISAM table handler that checks if
the table was closed properly on open and executes an automatic check/repair
of the table if it wasn’t.

Bulk-insert — Alpha
New feature in MyISAM tables in MySQL 4.0 for faster insert of many rows.

Locking — Gamma
This is very system-dependent. On some systems there are big problems using
standard OS locking (fcnt1()). In these cases, you should run mysqld with the
--skip-external-locking flag. Problems are known to occur on some Linux
systems, and on SunOS when using NFS-mounted filesystems.

MySQL AB provides high-quality support for paying customers, but the MySQL mailing list
usually provides answers to common questions. Bugs are usually fixed right away with a
patch; for serious bugs, there is almost always a new release.

1.2.4 How Big Can MySQL Tables Be?

MySQL Version 3.22 has a 4G limit on table size. With the new MyISAM table type in MySQL
Version 3.23, the maximum table size is pushed up to 8 million terabytes (2 = 63 bytes).

Note, however, that operating systems have their own file-size limits. Here are some exam-
ples:

Operating System File-Size Limit

Chapter 1: General Information 9

Linux-Intel 32 bit 2@G, 4G or more, depends on Linux version
Linux-Alpha 8T (7)

Solaris 2.5.1 2G (possible 4G with patch)

Solaris 2.6 4G (can be changed with flag)

Solaris 2.7 Intel 4G

Solaris 2.7 UltraSPARC 512G

On Linux 2.2 you can get bigger tables than 2G by using the LFS patch for the ext2
filesystem. On Linux 2.4 patches also exist for ReiserF'S to get support for big files.

This means that the table size for MySQL databases is normally limited by the operating
system.

By default, MySQL tables have a maximum size of about 4G. You can check the maximum
table size for a table with the SHOW TABLE STATUS command or with the myisamchk -dv
table_name. See Section 4.5.6 [SHOW], page 251.

If you need bigger tables than 4G (and your operating system supports this), you should
set the AVG_ROW_LENGTH and MAX_ROWS parameter when you create your table. See Sec-
tion 6.5.3 [CREATE TABLE|, page 469. You can also set these later with ALTER TABLE.
See Section 6.5.4 [ALTER TABLE]|, page 476.

If your big table is going to be read-only, you could use myisampack to merge and compress
many tables to one. myisampack usually compresses a table by at least 50%, so you can
have, in effect, much bigger tables. See Section 4.7.4 [myisampack], page 279.

You can go around the operating system file limit for MyISAM data files by using the RAID
option. See Section 6.5.3 [CREATE TABLE], page 4609.

Another solution can be the included MERGE library, which allows you to handle a collection
of identical tables as one. See Section 7.2 [MERGE tables|, page 501.

1.2.5 Year 2000 Compliance

The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

e MySQL Server uses Unix time functions and has no problems with dates until 2069; all
2-digit years are regarded to be in the range 1970 to 2069, which means that if you
store 01 in a year column, MySQL Server treats it as 2001.

e All MySQL date functions are stored in one file, ‘sql/time.cc’, and are coded very
carefully to be year 2000-safe.

e In MySQL Version 3.22 and later, the new YEAR column type can store years 0 and 1901
to 2155 in 1 byte and display them using 2 or 4 digits.

You may run into problems with applications that use MySQL Server in a way that is not
Y2K-safe. For example, many old applications store or manipulate years using 2-digit values
(which are ambiguous) rather than 4-digit values. This problem may be compounded by
applications that use values such as 00 or 99 as “missing” value indicators.

Unfortunately, these problems may be difficult to fix because different applications may be
written by different programmers, each of whom may use a different set of conventions and
date-handling functions.

10 MySQL Technical Reference for Version 4.0.3-beta

Here is a simple demonstration illustrating that MySQL Server doesn’t have any problems
with dates until the year 2030:

mysql> DROP TABLE IF EXISTS yZ2k;
Query 0K, O rows affected (0.01 sec)

mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,

-> time_stamp TIMESTAMP) ;
Query 0K, O rows affected (0.00 sec)
mysql> INSERT INTO y2k VALUES
("1998-12-31","1998-12-31
("1999-01-01","1999-01-01
("1999-09-09","1999-09-09
("2000-01-01","2000-01-01
("2000-02-28","2000-02-28
("2000-02-29","2000-02-29
("2000-03-01","2000-03-01
("2000-12-31","2000-12-31
("2001-01-01","2001-01-01
("2004-12-31","2004-12-31
("2005-01-01","2005-01-01
("2030-01-01","2030-01-01
("2050-01-01","2050-01-01 00:00:
Query OK, 13 rows affected (0.01 sec)
Records: 13 Duplicates: O Warnings: O

23:
00:
23:
00:
00:
00:
00:
23:
00:
23:
00:

59:
00:
59:
00:
00:
00:
00:
59:
00:
59:
00:
00:00:

59",19981231235959) ,
00",19990101000000) ,
59",19990909235959) ,
00",20000101000000) ,
00",20000228000000) ,
00",20000229000000) ,
00",20000301000000) ,
59",20001231235959) ,
00",20010101000000) ,
59",20041231235959) ,
00",20050101000000) ,
00",20300101000000) ,
00",20500101000000) ;

mysql> SELECT * FROM y2k;

This shows that the DATE and DATETIME types will not give any problems with future dates

o e o +
| date | date_time | time_stamp
o o o +
1998-12-31	1998-12-31 23:59:59	19981231235959
1999-01-01	1999-01-01 00:00:00	19990101000000
1999-09-09	1999-09-09 23:59:59	19990909235959
2000-01-01	2000-01-01 00:00:00	20000101000000
2000-02-28	2000-02-28 00:00:00	20000228000000
2000-02-29	2000-02-29 00:00:00	20000229000000
2000-03-01	2000-03-01 00:00:00	20000301000000
2000-12-31	2000-12-31 23:59:59	20001231235959
2001-01-01	2001-01-01 00:00:00	20010101000000
2004-12-31	2004-12-31 23:59:59	20041231235959
2005-01-01	2005-01-01 00:00:00	20050101000000
2030-01-01	2030-01-01 00:00:00	20300101000000
2050-01-01	2050-01-01 00:00:00	00000000000000
o e Fmm +
13 rows in set (0.00 sec)

(they handle dates until the year 9999).

Chapter 1: General Information 11

The TIMESTAMP type, which is used to store the current time, has a range up to only 2030~
01-01. TIMESTAMP has a range of 1970 to 2030 on 32-bit machines (signed value). On
64-bit machines it handles times up to 2106 (unsigned value).

Even though MySQL Server is Y2K-compliant, it is your responsibility to provide unambigu-
ous input. See Section 6.2.2.1 [Y2K issues|, page 395 for MySQL Server’s rules for dealing
with ambiguous date input data (data containing 2-digit year values).

1.3 What Is MySQL AB?

MySQL AB is the company of the MySQL founders and main developers. MySQL AB was origi-
nally established in Sweden by David Axmark, Allan Larsson, and Michael Monty Widenius.

All the developers of the MySQL server are employed by the company. We are a virtual or-
ganisation with people in a dozen countries around the world. We communicate extensively
over the Net every day with each other and with our users, supporters and partners.

We are dedicated to developing the MySQL software and spreading our database to new users.
MySQL AB owns the copyright to the MySQL source code, the MySQL logo and trademark, and
this manual. See Section 1.2 [What-is|, page 3.

The MySQL core values show our dedication to MySQL and Open Source.
We want the MySQL Database Software to be:

e The best and the most widely used database in the world.

e Available and affordable for all.

e Fasy to use.

e Continuously improving while remaining fast and safe.

e Fun to use and improve.

e Free from bugs.

MySQL AB and the people at MySQL AB:
e Promote Open Source philosophy and support the Open Source community.
e Aim to be good citizens.
e Prefer partners that share our values and mind-set.
e Answer e-mail and provide support.
e Are a virtual company, networking with others.
e Work against software patents.

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.

1.3.1 The Business Model and Services of MySQL AB

One of the most common questions we encounter is: “How can you make a living from
something you give away for free?” This is how.

12 MySQL Technical Reference for Version 4.0.3-beta

MySQL AB makes money on support, services, commercial licenses, and royalties, and we use
these revenues to fund product development and to expand the MySQL business.

The company has been profitable since its inception. In October 2001, we accepted ven-
ture financing from leading Scandinavian investors and a handful of business angels. This
investment is used to solidify our business model and build a basis for sustainable growth.

1.3.1.1 Support

MySQL AB is run and owned by the founders and main developers of the MySQL database. The
developers are committed to giving support to customers and other users in order to stay
in touch with their needs and problems. All our support is given by qualified developers.
Really tricky questions are answered by Michael Monty Widenius, principal author of the
MySQL Server. See Section 1.4.1 [Support], page 15.

To order support at various levels, please visit the order section at https://order.mysql.com/
or contact our sales staff at sales@mysql.com.

1.3.1.2 Training and Certification

MySQL AB delivers MySQL and related training worldwide. We offer both open courses and
in-house courses tailored to the specific needs of your company. MySQL Training is also
available through our partners, the Authorised MySQL Training Centers.

Our training material uses the same example databases as our documentation and our
sample applications, and it is always updated to reflect the latest MySQL version. Our
trainers are backed by the development team to guarantee the quality of the training and
the continuous development of the course material. This also ensures that no questions
raised during the courses remain unanswered.

Attending our training courses will enable you to achieve your goals related to your MySQL
applications. You will also:

e Save time.
e Improve the performance of your application(s).
e Reduce or eliminate the need for additional hardware, decreasing cost.
e Enhance security.
e Increase customers’ and co-workers’ satisfaction.
e Prepare yourself for MySQL Certification.
If you are interested in our training as a potential participant or as a training partner,

please visit the training section at http://www.mysql.com/training/ or contact us at:
training@mysql. com.

The MySQL Certification Program is being released in the second half of 2002. For details
please see http://www.mysql.com/training/certification.html.

Chapter 1: General Information 13

1.3.1.3 Consulting

MySQL AB and its Authorised Partners offer consulting services to users of MySQL Server
and to those who embed MySQL Server in their own software, all over the world.

Our consultants can help you design and tune your databases, construct efficient queries,
tune your platform for optimal performance, resolve migration issues, set up replication,
build robust transactional applications, and more. We also help customers embed MySQL
Server in their products and applications for large-scale deployment.

Our consultants work in close collaboration with our development team, which ensures the
technical quality of our professional services. Consulting assignments range from 2-day
power-start sessions to projects that span weeks and months. Our expertise not only covers
MySQL Server, but also extends into programming and scripting languages such as PHP,
Perl, and more.

If you are interested in our consulting services or want to become a consulting partner,
please visit the consulting section of our web site at http://www.mysql.com/consulting/
or contact our consulting staff at consulting@mysql.com.

1.3.1.4 Commercial Licenses

The MySQL database is released under the GNU General Public License (GPL). This means
that the MySQL software can be used free of charge under the GPL. If you do not want
to be bound by the GPL terms (like the requirement that your own application becomes
GPL as well), you may purchase a commercial license for the same product from MySQL AB
at https://order.mysql.com/. Since MySQL AB owns the copyright to the MySQL source
code, we are able to employ Dual Licensing which means that the same product is available
under GPL and under a commercial license. This does not in any way affect the Open Source
commitment of MySQL AB. For details about when a commercial license is required, please
see Section 1.4.3 [MySQL licenses], page 16.

We also sell commercial licenses of third-party Open Source GPL software that adds value to
MySQL Server. A good example is the InnoDB transactional table handler that offers ACID
support, row-level locking, crash recovery, multi-versioning, foreign key support, and more.
See Section 7.5 [InnoDBJ, page 506.

1.3.1.5 Partnering

MySQL AB has a worldwide partner programme that covers training courses, consulting &
support, publications plus reselling and distributing MySQL and related products. MySQL AB
Partners get visibility on the http://www.mysql.com/ web site and the right to use special
versions of the MySQL trademarks to identify their products and promote their business.

If you are interested in becoming a MySQL AB Partner, please e-mail partner@mysql.com.

The word MySQL and the MySQL dolphin logo are trademarks of MySQL AB. See Section 1.4.4
MySQL AB Logos and Trademarks|, page 18. These trademarks represent a significant
value that the MySQL founders have built over the years.

14 MySQL Technical Reference for Version 4.0.3-beta

1.3.1.6 Advertising

The MySQL web site (http://www.mysql.com/) is popular among developers and users. In
October 2001, we served 10 million page views. Our visitors represent a group that makes
purchase decisions and recommendations for both software and hardware. Twelve percent of
our visitors authorise purchase decisions, and only nine percent are not involved in purchase
decisions at all. More than 65% have made one or more online business purchase within
the last half-year, and 70% plan to make one in the next months.

If you are interested in placing banner ads on our web site, http://www.mysql.com/, please
send an e-mail message to advertising@mysql. com.

1.3.2 Contact Information

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.

For press service and inquiries not covered in our News releases (http://www.mysql.com/news/),
please send e-mail to press@mysql. com.

If you have a valid support contract with MySQL AB, you will get timely, precise answers to
your technical questions about the MySQL software. For more information, see Section 1.4.1
[Support], page 15. You can order your support contract at https://order.mysql.com/,
or send an e-mail message to sales@mysql.com.

For information about MySQL training, please visit the training section at http://www.mysql.com/training
If you have restricted access to the Internet, please contact the MySQL AB training staff at
training@mysql.com. See Section 1.3.1.2 [Business Services Training], page 12.

For information on the MySQL Certification Program, please see http://www.mysql.com/training/cert
See Section 1.3.1.2 [Business Services Training], page 12.

If you’re interested in consulting, please visit the consulting section at http://www.mysql.com/consulting,
If you have restricted access to the Internet, please contact the MySQL AB consulting staff

at consulting@mysql.com. See Section 1.3.1.3 [Business Services Consulting], page 13.

Commercial licenses may be purchased online at https://order.mysql.com/. There you
will also find information on how to fax your purchase order to MySQL AB. If you have
questions regarding licensing or you want a quote for a high-volume license deal, please fill
in the contact form on our web site (http://www.mysql.com/) or send an e-mail message to
licensing@mysql.com (for licensing questions) or to sales@mysql. com (for sales inquiries).
See Section 1.4.3 [MySQL licenses|, page 16.

If you represent a business that is interested in partnering with MySQL AB, please send e-mail
to partner@mysql.com. See Section 1.3.1.5 [Business Services Partnering], page 13.

If you are interested in placing a banner advertisement on the MySQL web site (http://www.mysql.com/),
please send e-mail to advertising@mysql.com. See Section 1.3.1.6 [Business Services Ad-

vertising], page 14.

For more information on the MySQL trademark policy, refer to http://www.mysql.com/company/trademark
or send e-mail to trademark@mysql.com. See Section 1.4.4 [MySQL AB Logos and Trade-

marks|, page 18.

Chapter 1: General Information 15

If you are interested in any of the MySQL AB jobs listed in our jobs section (http://www.mysql.com/developn
please send an e-mail message to jobs@mysql.com. Please do not send your CV as an at-
tachment, but rather as plain text at the end of your e-mail message.

For general discussion among our many users, please direct your attention to the appropriate
mailing list. See Section 1.6.2 [Questions|, page 23.

Reports of errors (often called bugs), as well as questions and comments, should be sent to
the mailing list at mysql@lists.mysql.com. If you have found a sensitive security bug in
the MySQL Server, please send an e-mail to security@mysql.com. See Section 1.6.2.3 [Bug
reports|, page 26.

If you have benchmark results that we can publish, please contact us at benchmarks@mysql . com.

If you have any suggestions concerning additions or corrections to this manual, please send
them to the manual team at docs@mysql.com.

For questions or comments about the workings or content of the MySQL web site (http://www.mysql.com/),
please send e-mail to webmaster@mysql . com.

Questions about the MySQL Portals (http://www.mysql.com/portal/) may be sent to
portals@mysql.com.

MySQL AB has a privacy policy, which can be read at http://www.mysql.com/company/privacy.html.
For any queries regarding this policy, please e-mail privacy@mysql.com.

For all other inquires, please send e-mail to info@mysql.com.

1.4 MySQL Support and Licensing

This section describes MySQL support and licensing arrangements.

1.4.1 Support Offered by MySQL AB

Technical support from MySQL AB means individualised answers to your unique problems
direct from the software engineers who code the MySQL database engine.

We try to take a broad and inclusive view of technical support. Almost any problem
involving MySQL software is important to us if it’s important to you. Typically customers
seek help on how to get different commands and utilities to work, remove performance
bottlenecks, restore crashed systems, understand operating system or networking impacts
on MySQL, set up best practices for backup and recovery, utilise APIs, etc. Our support
covers only the MySQL server and our own utilities, not third-party products that access the
MySQL server, though we try to help with these where we can.

Detailed information about our various support options is given at https://order.mysql.com/,
where support contracts can also be ordered online. If you have restricted access to the
Internet, contact our sales staff at sales@mysql.com.

Technical support is like life insurance. You can live happily without it for years, but when
your hour arrives it becomes critically important, yet it’s too late to buy it! If you use
MySQL Server for important applications and encounter sudden troubles, it might take too
long to figure out all the answers yourself. You may need immediate access to the most
experienced MySQL troubleshooters available, those employed by MySQL AB.

16 MySQL Technical Reference for Version 4.0.3-beta

1.4.2 Copyrights and Licenses Used by MySQL

MySQL AB owns the copyright to the MySQL source code, the MySQL logos and trademarks
and this manual. See Section 1.3 [What is MySQL ABJ, page 11. Several different licenses
are relevant to the MySQL distribution:

1. All the MySQL-specific source in the server, the mysqlclient library and the client, as
well as the GNU readline library is covered by the GNU General Public License. See
Appendix H [GPL license|, page 774. The text of this license can also be found as the
file ‘COPYING’ in the distributions.

2. The GNU getopt library is covered by the GNU Lesser General Public License. See
Appendix I [LGPL license], page 780.
3. Some parts of the source (the regexp library) are covered by a Berkeley-style copyright.

4. Older versions of MySQL (3.22 and earlier) are subject to a more strict license
(http://www.mysql.com/support/arrangements/mypl.html). See the documen-
tation of the specific version for information.

5. The manual is currently not distributed under a GPL-style license. Use of the manual
is subject to the following terms:

e Conversion to other formats is allowed, but the actual content may not be altered
or edited in any way.

e You may create a printed copy for your own personal use.

e For all other uses, such as selling printed copies or using (parts of) the manual in
another publication, prior written agreement from MySQL AB is required.

Please e-mail docs@mysqgl.com for more information or if you are interested in doing a
translation.

For information about how the MySQL licenses work in practice, please refer to Section 1.4.3
[MySQL licenses], page 16. Also see Section 1.4.4 [MySQL AB Logos and Trademarks],

)

page 18.

1.4.3 MySQL Licenses

The MySQL software is released under the GNU General Public License (GPL), which proba-
bly is the best known Open Source license. The formal terms of the GPL license can be found
athttp://www.gnu.org/licenses/. See alsohttp://www.gnu.org/licenses/gpl-faq.html
and http://www.gnu.org/philosophy/enforcing-gpl.html.

Since the MySQL software is released under the GPL, it may often be used for free, but

for certain uses you may want or need to buy commercial licenses from MySQL AB at
https://order.mysql.com/.

Older versions of MySQL (3.22 and earlier) are subject to a more strict license (http://www.mysql. com/suppc
See the documentation of the specific version for information.

Please note that the use of the MySQL software under commercial license, GPL, or the old

MySQL license does not automatically give you the right to use MySQL AB trademarks. See
Section 1.4.4 [MySQL AB Logos and Trademarks|, page 18.

Chapter 1: General Information 17

1.4.3.1 Using the MySQL Software Under a Commercial License

The GPL license is contagious in the sense that when a program is linked to a GPL program
the resulting product must also be released under GPL lest you break the license terms and
forfeit your right to use the GPL program altogether.

You need a commercial license:

e When you link a program with code from the MySQL software or from GPL released
clients and don’t want the resulting product to be GPL, maybe because you want to
build a commercial product or keep the added non-GPL code closed source for other
reasons. When purchasing commercial licenses, you are not using the MySQL software
under GPL even though it’s the same code.

e When you distribute a non-GPL application that only works with the MySQL software
and ship it with the MySQL software. This type of solution is actually considered to be
linking even if it’s done over a network.

e When you distribute copies of the MySQL software without providing the source code
as required under the GPL license.

e When you want to support the further development of the MySQL database even if you
don’t formally need a commercial license. Purchasing support directly from MySQL AB
is another good way of contributing to the development of the MySQL software, with
immediate advantages for you. See Section 1.4.1 [Support|, page 15.

If you require a license, you will need one for each installation of the MySQL software. This
covers any number of CPUs on a machine, and there is no artificial limit on the number of
clients that connect to the server in any way.

To purchase commercial licenses and support, please visit the order section of our web site
at https://order.mysql.com/. If you have special licensing needs or you have restricted
access to the Internet, please contact our sales staff at sales@mysql. com.

1.4.3.2 Using the MySQL Software for Free Under GPL

You can use the MySQL software for free under the GPL:

e When you link a program with code from the MySQL software and release the resulting
product under GPL.

e When you distribute the MySQL source code bundled with other programs that are not
linked to or dependent on MySQL Server for their functionality even if you sell the
distribution commercially.

e When using the MySQL software internally in your company.

e When you are an Internet Service Provider (ISPs) offering web hosting with MySQL
servers for your customers. On the other hand, we do encourage people to use ISPs
that have MySQL support, as this will give them the confidence that if they have some
problem with the MySQL installation, their ISP will in fact have the resources to solve
the problem for them.

18 MySQL Technical Reference for Version 4.0.3-beta

All ISPs that want to keep themselves up-to-date should subscribe to our announce
mailing list so that they can be aware of critical issues that may be relevant for their
MySQL installations.

Note that even if an ISP does not have a commercial license for MySQL Server, they
should at least give their customers read access to the source of the MySQL installation
so that the customers can verify that it is patched correctly.

e When you use the MySQL Database Software in conjunction with a web server, you do
not need a commercial license. This is true even if you run a commercial web server that
uses MySQL Server, because you are not selling an embedded MySQL version yourself.
However, in this case we would like you to purchase MySQL support because the MySQL
software is helping your enterprise.

If your use of MySQL database software does not require a commercial license, we encourage
you to purchase support from MySQL AB anyway. This way you contribute toward MySQL
development and also gain immediate advantages for yourself. See Section 1.4.1 [Support]
page 15.

If you use the MySQL database software in a commercial context such that you profit by its
use, we ask that you further the development of the MySQL software by purchasing some
level of support. We feel that if the MySQL database helps your business, it is reasonable to
ask that you help MySQL AB. (Otherwise, if you ask us support questions, you are not only
using for free something into which we’ve put a lot a work, you're asking us to provide free
support, t0o.)

1.4.4 MySQL AB Logos and Trademarks

Many users of the MySQL database want to display the MySQL AB dolphin logo on their web
sites, books, or boxed products. We welcome and encourage this, although it should be noted
that the word MySQL and the MySQL dolphin logo are trademarks of MySQL AB and may only
be used as stated in our trademark policy at http://www.mysql.com/company/trademark.html.

1.4.4.1 The Original MySQL Logo

The MySQL dolphin logo was designed by the Finnish advertising agency Priority in 2001.
The dolphin was chosen as a suitable symbol for the MySQL database since it is a smart, fast,
and lean animal, effortlessly navigating oceans of data. We also happen to like dolphins.
The original MySQL logo may only be used by representatives of MySQL AB and by those
having a written agreement allowing them to do so.

1.4.4.2 MySQL Logos that may be Used Without Written
Permission

We have designed a set of special Conditional Use logos that may be downloaded from
our web site at http://www.mysql.com/downloads/logos.html and used on third-party
web sites without written permission from MySQL AB. The use of these logos is not entirely

Chapter 1: General Information 19

unrestricted but, as the name implies, subject to our trademark policy that is also available
on our web site. You should read through the trademark policy if you plan to use them.
The requirements are basically:

e Use the logo you need as displayed on the http://www.mysql.com/ site. You may
scale it to fit your needs, but not change colours or design, or alter the graphics in any
way.

e Make it evident that you, and not MySQL AB, are the creator and owner of the site that
displays the MySQL trademark.

e Don’t use the trademark in a way that is detrimental to MySQL AB or to the value of
MySQL AB trademarks. We reserve the right to revoke the right to use the MySQL AB
trademark.

e If you use the trademark on a web site, make it clickable, leading directly to
http://www.mysql.com/.

e If you are using the MySQL database under GPL in an application, your application must
be Open Source and be able to connect to a MySQL server.

Contact us at trademark@mysql.com to inquire about special arrangements to fit your
needs.

1.4.4.3 When do you need a Written Permission to use MySQL
Logos?

In the following cases you need a written permission from MySQL AB before using MySQL
logos:
e When displaying any MySQL AB logo anywhere except on your web site.

e When displaying any MySQL AB logo except the Conditional Use logos mentioned pre-
viously on web sites or elsewhere.

Out of legal and commercial reasons we have to monitor the use of MySQL trademarks
on products, books, etc. We will usually require a fee for displaying MySQL AB logos on
commercial products, since we think it is reasonable that some of the revenue is returned
to fund further development of the MySQL database.

1.4.4.4 MySQL AB Partnership Logos

MySQL partnership logos may only be used by companies and persons having a written
partnership agreement with MySQL AB. Partnerships include certification as a MySQL trainer
or consultant. Please see Section 1.3.1.5 [Partnering], page 13.

1.4.4.5 Using the word MySQL in Printed Text or Presentations

MySQL AB welcomes references to the MySQL database, but note that the word MySQL is a
trademark of MySQL AB. Because of this, you should append the trademark symbol (TM)

20 MySQL Technical Reference for Version 4.0.3-beta

to the first or most prominent use of the word MySQL in a text and where appropriate,
state that MySQL is a trademark of MySQL AB. Please refer to our trademark policy at
http://www.mysql.com/company/trademark.html for details.

1.4.4.6 Using the word MySQL in Company and Product Names

Use of the word MySQL in product or company names or in Internet domain names is not
allowed without written permission from MySQL AB.

1.5 MySQL 4.0 In A Nutshell

Dateline: 16 October 2001, Uppsala, Sweden

Long promised by MySQL AB and long awaited by our users, MySQL Server 4.0 is now
available in beta version for download from http://www.mysql.com/ and our mirrors.

Main new features of MySQL Server 4.0 are geared toward our existing business and com-
munity users, enhancing the MySQL database software as the solution for mission-critical,
heavy-load database systems. Other new features target the users of embedded databases.

1.5.1 Stepwise Rollout

The rollout of MySQL Server 4.0 will come in several steps, with the first version labelled
4.0.0 already containing most of the new features. Additional features will be incorporated
into MySQL 4.0.1, 4.0.2, and onward; very probably within a couple of months, MySQL
4.0 will be labelled beta. Further new features will then be added in MySQL 4.1, which is
targeted for alpha release in third quarter 2002.

1.5.2 Ready for Immediate Development Use

Users are not recommended to switch their production systems to MySQL Server 4.0 until
it is released in beta version. However, even the initial release has passed our extensive test
suite without any errors on any of the platforms we test on. Due to the large number of
new features, we thus recommend MySQL Server 4.0 even in alpha form for development
use, with the release schedule of MySQL Server 4.0 being such that it will reach stable state
before the deployment of user applications now under development.

1.5.3 Embedded MySQL

libmysqld makes MySQL Server suitable for a vastly expanded realm of applications. Using
the embedded MySQL server library, one can embed MySQL Server into various applications
and electronics devices, where the end user has no knowledge of there actually being an
underlying database. Embedded MySQL Server is ideal for use behind the scenes in internet

Chapter 1: General Information 21

appliances, public kiosks, turnkey hardware/software combination units, high performance
internet servers, self-contained databases distributed on CD-ROM, etc.

Many users of libmysqld will benefit from the MySQL Dual Licensing. For those not
wishing to be bound by the GPL, the software is also made available under a commercial
license. The embedded MySQL library uses the same interface as the normal client library,
so it is convenient and easy to use. See Section 8.4.9 [libmysqld], page 605.

1.5.4 Other Features Available From MySQL 4.0.0

e Version 4.0 further increases the speed of MySQL Server in a number of areas, such as
bulk INSERTs, searching on packed indexes, creation of FULLTEXT indexes, as well as
COUNT(DISTINCT).

e The table handler InnoDB is now offered as a feature of the standard MySQL server,
including full support for transactions and row-level locking.

e MySQL Server 4.0 will support secure traffic between the client and the server, greatly
increasing security against malicious intrusion and unauthorised access. Web applica-
tions being a cornerstone of MySQL use, web developers have been able to use Secure
Socket Layer (SSL) to secure the traffic between the the end user browser and the web
application, be it written in PHP, Perl, ASP or using any other web development tool.
However, the traffic between the development tool and the mysqld server process has
been protected only by virtue of them being processes residing on computers within the
same firewall. In MySQL Server 4.0, the mysqld server daemon process can itself use
SSL, thus enabling secure traffic to MySQL databases from, say, a Windows application
residing outside the firewall.

e Our German, Austrian, and Swiss users will note that we have a new character set,
latin_de, which corrects the German sorting order, placing German umlauts in the
same order as German telephone books.

e Features to simplify migration from other database systems to MySQL Server include
TRUNCATE TABLE (like in Oracle) and IDENTITY as a synonym for automatically incre-
mented keys (like in Sybase). Many users will also be happy to learn that MySQL
Server now supports the UNION statement, a long-awaited standard SQL feature.

e In the process of building features for new users, we have not forgotten requests by the
community of loyal users. We have multi-table DELETE statements. By adding support
for symbolic linking to MyISAM on the table level (and not just the database level as
before), as well as by enabling symlink handling by default on Windows, we hope to
show that we take enhancement requests seriously. Functions like SQL_CALC_FOUND_
ROWS and FOUND_ROWS () make it possible to know how many rows a query would have
returned without a LIMIT clause.

1.5.5 Future MySQL 4.0 Features

For the upcoming MySQL Server 4.x releases, expect the following features now still under
development:

22 MySQL Technical Reference for Version 4.0.3-beta

e Mission-critical, heavy-load users of MySQL Server will appreciate the additions to our
replication system and our online hot backup. Later versions of 4.0 will include fail-
safe replication; already existing in 4.0.0, the LOAD DATA FROM MASTER command
will soon automate slave setup. The online backup will make it easy to add a new
replication slave without taking down the master, and have a very low performance
penalty on update-heavy systems.

e A convenience feature for Database Administrators is that mysqld parameters (startup
options) can soon be set without taking down the servers.

e The new FULLTEXT search properties of MySQL Server 4.0 enable the use of FULLTEXT
indexing of large text masses with both binary and natural-language searching logic.
Users can customise minimal word length and define their own stop word lists in any
human language, enabling a new set of applications to be built on MySQL Server.

e Many read-heavy applications will benefit from further increased speed through the
rewritten key cache.

e Many developers will also be happy to see the MySQL command help in the client.

1.5.6 MySQL 4.1, The Following Development Release

Internally, through a new .frm file format for table definitions, MySQL Server 4.0 lays
the foundation for the new features of MySQL Server 4.1 and onward, such as nested
subqueries, stored procedures, and foreign key integrity rules, which form the top
of the wish list for many of our customers. Along with those, we will also include simpler
additions, such as multi-table UPDATE statements.

After those additions, critics of the MySQL Database Server have to be more imaginative
than ever in pointing out deficiencies in the MySQL Database Management System. For
long already known for its stability, speed, and ease of use, MySQL Server will then match
the requirement checklist of very demanding buyers.

1.6 MySQL Information Sources

1.6.1 MySQL Portals

The MySQL Portals (http://www.mysql.com/portal/) represent the ultimate resource to
find MySQL AB Partners, as well as books, or other MySQL-related solutions that you may
be looking for. Items are categorised and rated in order to make it easy for you to locate
information.

By registering as a user, you will have the ability to comment on and rate items presented
in portals. You will also receive relevant newsletters according to your user profile that you
may update at any time.

Some of the current MySQL Portal categories include:

Partners Find MySQL AB partners worldwide.

Chapter 1: General Information 23

Books Comment on, vote for, and buy books related to MySQL.

Development
Various links to different sites that are using MySQL Server for different pur-
poses, with a description of each site. This information can give you an idea
of who uses the MySQL database software and how MySQL Server can fulfill
requirements.

Let us know about your site or success story, too! Visit http://www.mysql.com/feedback/tes

Software Find, buy, and download several applications and wrappers that make use of
the MySQL server.

Distributions
From here you can find the various Linux distributions and other software
packages that contain the MySQL software.

Service Providers
Companies providing MySQL-related services.

1.6.2 MySQL Mailing Lists

This section introduces you to the MySQL mailing lists, and gives some guidelines as to
how to use them. By subscribing to a mailing list, you will receive as e-mail messages all
other postings on the list, and you will be able to send in your own questions and answers.

1.6.2.1 The MySQL Mailing Lists

To subscribe to the main MySQL mailing list, send a message to the electronic mail address
mysql-subscribe@lists.mysql.com.

To unsubscribe from the main MySQL mailing list, send a message to the electronic mail
address mysql-unsubscribe@lists.mysql.com.

Only the address to which you send your messages is significant. The subject line and the
body of the message are ignored.

If your reply address is not valid, you can specify your address explicitly, by adding a hyphen
to the subscribe or unsubscribe command word, followed by your address with the ‘@ char-
acter in your address replaced by a ‘=". For example, to subscribe your_name®@host.domain,
send a message to mysql-subscribe-your_name=host.domain@lists.mysql.com.

Mail to mysql-subscribe@lists.mysql.com or mysql-unsubscribe@lists.mysql.com is
handled automatically by the ezmlm mailing list processor. Information about ezmlm is
available at the ezmlm web site (http://www.ezmlm.org/).

To post a message to the list itself, send your message to mysql@lists.mysql.com. How-
ever, please do not send mail about subscribing or unsubscribing to mysql@lists.mysql.com
because any mail sent to that address is distributed automatically to thousands of other
users.

Your local site may have many subscribers to mysql@lists.mysql.com. If so, it may have
a local mailing list, so messages sent from lists.mysql.com to your site are propagated

24 MySQL Technical Reference for Version 4.0.3-beta

to the local list. In such cases, please contact your system administrator to be added to or
dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set
up a filter based on the message headers. You can use either the List-ID: or Delivered-
To: headers to identify list messages.

The following MySQL mailing lists exist:

announce-subscribe@lists.mysql.com announce
This is for announcement of new versions of MySQL and related programs.
This is a low-volume list all MySQL users should subscribe to.

mysql-subscribe@lists.mysql.com mysql
The main list for general MySQL discussion. Please note that some topics are
better discussed on the more-specialised lists. If you post to the wrong list, you
may not get an answer!

mysql-digest-subscribe@lists.mysql.com mysql-digest
The mysql list in digest form. That means you get all individual messages, sent
as one large mail message once a day.

bugs-subscribe@lists.mysql.com bugs

On this list you should only post a full, repeatable bug report using the
mysqlbug script (if you are running on Windows, you should include a descrip-
tion of the operating system and the MySQL version). Preferably, you should
test the problem using the latest stable or development version of MySQL
Server before posting! Anyone should be able to repeat the bug by just using
mysql test < script on the included test case. All bugs posted on this list
will be corrected or documented in the next MySQL release! If only small code
changes are needed, we will also post a patch that fixes the problem.

bugs-digest-subscribe@lists.mysql.com bugs-digest
The bugs list in digest form.

internals-subscribe@lists.mysql.com internals
A list for people who work on the MySQL code. On this list one can also discuss
MySQL development and post patches.

internals-digest-subscribe@lists.mysql.com internals-digest
A digest version of the internals list.

java-subscribe@lists.mysql.com java
Discussion about the MySQL server and Java. Mostly about the JDBC drivers.

java-digest-subscribe@lists.mysql.com java-digest
A digest version of the java list.

win32-subscribe@lists.mysql.com win32
All things concerning the MySQL software on Microsoft operating systems such
as Windows 9x/Me/NT/2000/XP.

win32-digest-subscribe@lists.mysql.com win32-digest
A digest version of the win32 list.

Chapter 1: General Information 25

myodbc-subscribe@lists.mysql.com myodbc
All things about connecting to the MySQL server with ODBC.

myodbc-digest-subscribe@lists.mysql.com myodbc-digest
A digest version of the myodbc list.

mycc-subscribe@lists.mysql.com mycc
All things about the MySQL MyCC graphical client.

mycc-digest-subscribe@lists.mysql.com mycc-digest
A digest version of the mycc list.

plusplus-subscribe@lists.mysql.com plusplus
All things concerning programming with the C++ API to MySQL.

plusplus-digest-subscribe@lists.mysql.com plusplus-digest
A digest version of the plusplus list.

msql-mysql-modules-subscribe@lists.mysql.com msql-mysql-modules
A list about the Perl support for MySQL with msql-mysql-modules.

msql-mysql-modules-digest-subscribe@lists.mysql.com
msql-mysql-modules-digest
A digest version of the msql-mysql-modules list.

You subscribe or unsubscribe to all lists in the same way as described previously. In your
subscribe or unsubscribe message, just put the appropriate mailing list name rather than
mysql. For example, to subscribe to or unsubscribe from the myodbc list, send a message
to myodbc-subscribe@lists.mysql.com or myodbc-unsubscribe@lists.mysql.com.

If you can’t get an answer for your questions from the mailing list, one option is to pay for
support from MySQL AB, which will put you in direct contact with MySQL developers.
See Section 1.4.1 [Support], page 15.

The following table shows some MySQL mailing in languages other than English. Note that
these are not operated by MySQL AB, so we can’t guarantee the quality on these.
mysql-france-subscribe@yahoogroups.com A French mailing list

list@tinc.net A Korean mailing list

E-mail subscribe mysql your@e-mail.address to this list.

mysql-de-request@lists.4t2.com A German mailing list
E-mail subscribe mysql-de your@e-mail.address to this list. You can find
information about this mailing list at http://www.4t2.com/mysql/.

mysql-br-request@listas.linkway.com.br A Portugese mailing list
E-mail subscribe mysql-br your@e-mail.address to this list.

mysql-alta@elistas.net A Spanish mailing list
E-mail subscribe mysql your@e-mail.address to this list.

1.6.2.2 Asking Questions or Reporting Bugs

Before posting a bug report or question, please do the following:

26 MySQL Technical Reference for Version 4.0.3-beta

e Start by searching the MySQL online manual at:
http://www.mysql.com/doc/
We try to keep the manual up to date by updating it frequently with solutions to newly
found problems!

e Search the MySQL mailing list archives:
http://lists.mysql.com/

e You can also use http://www.mysql.com/search.html to search all the web pages
(including the manual) that are located at http://www.mysql.com/.

If you can’t find an answer in the manual or the archives, check with your local MySQL
expert. If you still can’t find an answer to your question, go ahead and read the next section
about how to send mail to mysql@lists.mysql.com.

1.6.2.3 How to Report Bugs or Problems

Writing a good bug report takes patience, but doing it right the first time saves time for
us and for you. A good bug report containing a full test case for the bug will make it very
likely that we will fix it in the next release. This section will help you write your report
correctly so that you don’t waste your time doing things that may not help us much or at
all.

We encourage everyone to use the mysqlbug script to generate a bug report (or a report
about any problem), if possible. mysqlbug can be found in the ‘scripts’ directory in the
source distribution, or for a binary distribution, in the ‘bin’ directory under your MySQL
installation directory. If you are unable to use mysqlbug, you should still include all the
necessary information listed in this section.

The mysqlbug script helps you generate a report by determining much of the following
information automatically, but if something important is missing, please include it with
your message! Please read this section carefully and make sure that all the information
described here is included in your report.

The normal place to report bugs and problems is mysql@lists.mysql.com. If you
can make a test case that clearly demonstrates the bug, you should post it to the
bugs@lists.mysql.com list. Note that on this list you should only post a full, repeatable
bug report using the mysqlbug script. If you are running on Windows, you should include
a description of the operating system and the MySQL version. Preferably, you should
test the problem using the latest stable or development version of MySQL Server before
posting! Anyone should be able to repeat the bug by just using “mysql test < script” on
the included test case or run the shell or Perl script that is included in the bug report. All
bugs posted on the bugs list will be corrected or documented in the next MySQL release!
If only small code changes are needed to correct this problem, we will also post a patch
that fixes the problem.

If you have found a sensitive security bug in MySQL, you should send an e-mail to
security@mysql.com.

Remember that it is possible to respond to a message containing too much information,
but not to one containing too little. Often people omit facts because they think they know

Chapter 1: General Information 27

the cause of a problem and assume that some details don’t matter. A good principle is: if
you are in doubt about stating something, state it! It is a thousand times faster and less
troublesome to write a couple of lines more in your report than to be forced to ask again
and wait for the answer because you didn’t include enough information the first time.

The most common errors are that people don’t indicate the version number of the MySQL
distribution they are using, or don’t indicate what platform they have the MySQL server
installed on (including the platform version number). This is highly relevant information,
and in 99 cases out of 100 the bug report is useless without it! Very often we get questions
like, “Why doesn’t this work for me?” Then we find that the feature requested wasn’t
implemented in that MySQL version, or that a bug described in a report has been fixed
already in newer MySQL versions. Sometimes the error is platform-dependent; in such
cases, it is next to impossible to fix anything without knowing the operating system and
the version number of the platform.

Remember also to provide information about your compiler, if it is related to the prob-
lem. Often people find bugs in compilers and think the problem is MySQL-related. Most
compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler
is used. Note that every compiling problem should be regarded as a bug report and reported
accordingly.

It is most helpful when a good description of the problem is included in the bug report.
That is, a good example of all the things you did that led to the problem and the problem
itself exactly described. The best reports are those that include a full example showing how
to reproduce the bug or problem. See Section E.1.6 [Reproduceable test casel, page 763.
If a program produces an error message, it is very important to include the message in your
report! If we try to search for something from the archives using programs, it is better that
the error message reported exactly matches the one that the program produces. (Even the
case should be observed!) You should never try to remember what the error message was;
instead, copy and paste the entire message into your report!

If you have a problem with MyODBC, you should try to generate a MyODBC trace file.
See Section 8.3.7 [MyODBC bug report], page 554.

Please remember that many of the people who will read your report will do so using an
80-column display. When generating reports or examples using the mysql command-line
tool, you should therefore use the --vertical option (or the \G statement terminator) for
output that would exceed the available width for such a display (for example, with the
EXPLAIN SELECT statement; see the example later in this section).

Please include the following information in your report:

e The version number of the MySQL distribution you are using (for example, MySQL Ver-
sion 3.22.22). You can find out which version you are running by executing mysqladmin
version. mysqladmin can be found in the ‘bin’ directory under your MySQL instal-
lation directory.

e The manufacturer and model of the machine you are working on.

e The operating system name and version. For most operating systems, you can get this
information by executing the Unix command uname -a.

e Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include
these values.

28

MySQL Technical Reference for Version 4.0.3-beta

If you are using a source distribution of the MySQL software, the name and version
number of the compiler used is needed. If you have a binary distribution, the distribu-
tion name is needed.

If the problem occurs during compilation, include the exact error message(s) and also
a few lines of context around the offending code in the file where the error occurred.

If mysqld died, you should also report the query that crashed mysqld. You can usually
find this out by running mysqld with logging enabled. See Section E.1.5 [Using log
files], page 762.

If any database table is related to the problem, include the output from mysqldump -~
no-data db_name tbl_namel tbl_name2 This is very easy to do and is a powerful
way to get information about any table in a database that will help us create a situation
matching the one you have.

For speed-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT
statement produces. The more information you give about your situation, the more
likely it is that someone can help you! For example, the following is an example of a
very good bug report (it should of course be posted with the mysqlbug script):

Example run using the mysql command-line tool (note the use of the \G statement
terminator for statements whose output width would otherwise exceed that of an 80-
column display device):

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
<A short version of the output from SELECT,
including the time taken to run the query>
mysql> SHOW STATUS;
<output from SHOW STATUS>

If a bug or problem occurs while running mysqld, try to provide an input script that
will reproduce the anomaly. This script should include any necessary source files. The
more closely the script can reproduce your situation, the better. If you can make a
reproduceable test case, you should post this to bugs@lists.mysql.com for a high-
priority treatment!

If you can’t provide a script, you should at least include the output from mysqladmin
variables extended-status processlist in your mail to provide some information
of how your system is performing!

If you can’t produce a test case in a few rows, or if the test table is too big to be mailed
to the mailing list (more than 10 rows), you should dump your tables using mysqldump
and create a ‘README’ file that describes your problem.

Create a compressed archive of your files using tar and gzip or zip, and use ftp to
transfer the archive to ftp://support.mysql.com/pub/mysql/secret/. Then send a
short description of the problem to bugs@lists.mysql.com.

Chapter 1: General Information 29

e If you think that the MySQL server produces a strange result from a query, include
not only the result, but also your opinion of what the result should be, and an account
describing the basis for your opinion.

e When giving an example of the problem, it’s better to use the variable names, table
names, etc., that exist in your actual situation than to come up with new names. The
problem could be related to the name of a variable or table! These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to
provide an example that uses your actual situation, and it is by all means better for us.
In case you have data you don’t want to show to others, you can use ftp to transfer
it to ftp://support.mysql.com/pub/mysql/secret/. If the data is really top secret
and you don’t want to show it even to us, then go ahead and provide an example using
other names, but please regard this as the last choice.

e Include all the options given to the relevant programs, if possible. For example, indicate
the options that you use when you start the mysqld daemon and that you use to run
any MySQL client programs. The options to programs like mysqld and mysql, and to
the configure script, are often keys to answers and are very relevant! It is never a
bad idea to include them anyway! If you use any modules, such as Perl or PHP, please
include the version number(s) of those as well.

e If your question is related to the privilege system, please include the output of
mysqlaccess, the output of mysqladmin reload, and all the error messages you
get when trying to connect! When you test your privileges, you should first run
mysqlaccess. After this, execute mysqladmin reload version and try to connect
with the program that gives you trouble. mysqlaccess can be found in the ‘bin’
directory under your MySQL installation directory.

e If you have a patch for a bug, that is good. But don’t assume the patch is all we need,
or that we will use it, if you don’t provide some necessary information such as test
cases showing the bug that your patch fixes. We might find problems with your patch
or we might not understand it at all; if so, we can’t use it.

If we can’t verify exactly what the patch is meant for, we won’t use it. Test cases will
help us here. Show that the patch will handle all the situations that may occur. If we
find a borderline case (even a rare one) where the patch won’t work, it may be useless.

e Guesses about what the bug is, why it occurs, or what it depends on are usually
wrong. Even the MySQL team can’t guess such things without first using a debugger
to determine the real cause of a bug.

e Indicate in your mail message that you have checked the reference manual and mail
archive so that others know you have tried to solve the problem yourself.

e If you get a parse error, please check your syntax closely! If you can’t find something
wrong with it, it’s extremely likely that your current version of MySQL Server doesn’t
support the query you are using. If you are using the current version and the manual at
http://www.mysql.com/doc/ doesn’t cover the syntax you are using, MySQL Server
doesn’t support your query. In this case, your only options are to implement the syntax
yourself or e-mail 1icensing@mysql.com and ask for an offer to implement it!

If the manual covers the syntax you are using, but you have an older version of MySQL
Server, you should check the MySQL change history to see when the syntax was imple-

30 MySQL Technical Reference for Version 4.0.3-beta

mented. In this case, you have the option of upgrading to a newer version of MySQL
Server. See Appendix D [News], page 675.

e If you have a problem such that your data appears corrupt or you get errors when you
access some particular table, you should first check and then try repairing your tables
with myisamchk or CHECK TABLE and REPAIR TABLE. See Chapter 4 [MySQL Database
Administration|, page 181.

e If you often get corrupted tables you should try to find out when and why this happens.
In this case, the ‘mysql-data-directory/’hostname’.err’ file may contain some in-
formation about what happened. See Section 4.9.1 [Error log], page 308. Please include
any relevant information from this file in your bug report. Normally mysqld should
never crash a table if nothing killed it in the middle of an update! If you can find the
cause of mysqld dying, it’s much easier for us to provide you with a fix for the problem.
See Section A.1 [What is crashing], page 627.

e If possible, download and install the most recent version of MySQL Server and check
whether it solves your problem. All versions of the MySQL software are thoroughly
tested and should work without problems. We believe in making everything as
backward-compatible as possible, and you should be able to switch MySQL versions
without any hassle. See Section 2.2.3 [Which version|, page 71.

If you are a support customer, please cross-post the bug report to mysql-support@mysql.com
for higher-priority treatment, as well as to the appropriate mailing list to see if someone
else has experienced (and perhaps solved) the problem.

For information on reporting bugs in My0ODBC, see Section 8.3.4 [ODBC Problems|, page 549.
For solutions to some common problems, see Appendix A [Problems|, page 627.

When answers are sent to you individually and not to the mailing list, it is considered good
etiquette to summarise the answers and send the summary to the mailing list so that others
may have the benefit of responses you received that helped you solve your problem!

1.6.2.4 Guidelines for Answering Questions on the Mailing List

If you consider your answer to have broad interest, you may want to post it to the mailing
list instead of replying directly to the individual who asked. Try to make your answer
general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.
Try to summarise the essential part of the question in your reply; don’t feel obliged to quote
the entire original message.

Please don’t post mail messages from your browser with HTML mode turned on! Many
users don’t read mail with a browser!

1.7 How Standards-compatible Is MySQL?

This section describes how MySQL relates to the ANSI SQL standards. MySQL Server has
many extensions to the ANSI SQL standards, and here you will find out what they are and

Chapter 1: General Information 31

how to use them. You will also find information about functionality missing from MySQL
Server, and how to work around some differences.

Our goal is to not, without a very good reason, restrict MySQL Server usability for any
usage. Even if we don’t have the resources to do development for every possible use, we are
always willing to help and offer suggestions to people who are trying to use MySQL Server
in new territories.

One of our main goals with the product is to continue to work toward ANSI 99 compliancy,
but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or
support for non-SQL features if this greatly increases the usability of MySQL Server for a
big part of our users. (The new HANDLER interface in MySQL Server 4.0 is an example of
this strategy. See Section 6.4.2 [HANDLER|, page 453.)

We will continue to support transactional and non-transactional databases to satisfy both
heavy web/logging usage and mission-critical 24/7 usage.

MySQL Server was designed from the start to work with medium size databases (10-100
million rows, or about 100 MB per table) on small computer systems. We will continue
to extend MySQL Server to work even better with terabyte-size databases, as well as to
make it possible to compile a reduced MySQL version that is more suitable for hand-held
devices and embedded usage. The compact design of the MySQL server makes both of these
directions possible without any conflicts in the source tree.

We are currently not targeting realtime support or clustered databases (even if you can
already do a lot of things with our replication services).

We don’t believe that one should have native XML support in the database, but will instead
add the XML support our users request from us on the client side. We think it’s better
to keep the main server code as “lean and clean” as possible and instead develop libraries
to deal with the complexity on the client side. This is part of the strategy mentioned
previously of not sacrificing speed or reliability in the server.

1.7.1 What Standards Does MySQL Follow?

Entry-level SQL92. ODBC levels 0-3.51.

We are aiming toward supporting the full ANSI SQL99 standard, but without concessions
to speed and quality of the code.

1.7.2 Running MySQL in ANSI Mode

If you start mysqld with the --ansi option, the following behaviour of MySQL Server
changes:

e || is string concatenation instead of OR.

e You can have any number of spaces between a function name and the ‘(". This forces
all function names to be treated as reserved words.

‘n?

will be an identifier quote character (like the MySQL Server ‘“’ quote character)
and not a string quote character.

32 MySQL Technical Reference for Version 4.0.3-beta

e REAL will be a synonym for FLOAT instead of a synonym for DOUBLE.

e The default transaction isolation level is SERIALIZABLE. See Section 6.7.3 [SET
TRANSACTION], page 485.

This is the same as using --sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,SERIALIZE,ONLY_FULL_GROUP_BY.

1.7.3 MySQL Extensions to ANSI SQL92

MySQL Server includes some extensions that you probably will not find in other SQL
databases. Be warned that if you use them, your code will not be portable to other SQL
servers. In some cases, you can write code that includes MySQL extensions, but is still
portable, by using comments of the form /*! ... x/. In this case, MySQL Server will
parse and execute the code within the comment as it would any other MySQL statement,
but other SQL servers will ignore the extensions. For example:

SELECT /! STRAIGHT_JOIN */ col_name FROM tablel,table2 WHERE ...

If you add a version number after the ’!’, the syntax will be executed only if the MySQL
version is equal to or newer than the used version number:

CREATE /%!32302 TEMPORARY */ TABLE (a int);

This means that if you have Version 3.23.02 or newer, MySQL Server will use the TEMPORARY
keyword.

The following is a list of MySQL extensions:
e The field types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT types.
e The field attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

e All string comparisons are case-insensitive by default, with sort ordering determined
by the current character set (ISO-8859-1 Latinl by default). If you don’t like this, you
should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done according to the ASCII order used on the MySQL server
host.

e MySQL Server maps each database to a directory under the MySQL data directory,
and tables within a database to filenames in the database directory.

This has a few implications:

— Database names and table names are case-sensitive in MySQL Server on oper-
ating systems that have case-sensitive filenames (like most Unix systems). See
Section 6.1.3 [Name case sensitivity], page 380.

— Database, table, index, column, or alias names may begin with a digit (but may
not consist solely of digits).

— You can use standard system commands to back up, rename, move, delete, and
copy tables. For example, to rename a table, rename the ‘.MYD’, *.MYI’, and ‘.frm’
files to which the table corresponds.

e In SQL statements, you can access tables from different databases with the db_
name.tbl_name syntax. Some SQL servers provide the same functionality but call
this User space. MySQL Server doesn’t support tablespaces as in: create table
ralph.my_table...IN my_tablespace.

Chapter 1: General Information 33

e LIKE is allowed on numeric columns.

e Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement. See Section 6.4.1
[SELECT], page 447.

e The SQL_SMALL_RESULT option in a SELECT statement.
e EXPLAIN SELECT to get a description on how tables are joined.

e Use of index names, indexes on a prefix of a field, and use of INDEX or KEY in a CREATE
TABLE statement. See Section 6.5.3 [CREATE TABLE|, page 469.

e Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

e Use of COUNT(DISTINCT list) where list is more than one element.

e Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in an
ALTER TABLE statement. See Section 6.5.4 [ALTER TABLE|, page 476.

e Use of RENAME TABLE. See Section 6.5.5 [RENAME TABLE|, page 480.

e Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.

e Use of DROP TABLE with the keywords IF EXISTS.

e You can drop multiple tables with a single DROP TABLE statement.

e The LIMIT clause of the DELETE statement.

e The DELAYED clause of the INSERT and REPLACE statements.

e The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

e Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle’s LOAD
DATA INFILE. See Section 6.4.9 [LOAD DATA|, page 461.

e The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

e The SHOW statement. See Section 4.5.6 [SHOW|, page 251.

‘(n? [

e Strings may be enclosed by either ‘"’ or *’’, not just by **’.

e Use of the escape ‘\’ character.

e The SET statement. See Section 5.5.6 [SET|, page 369.

e You don’t need to name all selected columns in the GROUP BY part. This gives better
performance for some very specific, but quite normal queries. See Section 6.3.7 [Group
by functions|, page 445.

e One can specify ASC and DESC with GROUP BY.

e To make it easier for users who come from other SQL environments, MySQL Server
supports aliases for many functions. For example, all string functions support both
ANSI SQL syntax and ODBC syntax.

e MySQL Server understands the || and && operators to mean logical OR and AND, as
in the C programming language. In MySQL Server, || and OR are synonyms, as are &&
and AND. Because of this nice syntax, MySQL Server doesn’t support the ANSI SQL
| | operator for string concatenation; use CONCAT() instead. Because CONCAT() takes
any number of arguments, it’s easy to convert use of the | | operator to MySQL Server.

e CREATE DATABASE or DROP DATABASE. See Section 6.5.1 [CREATE DATABASE], page 468.

e The ¥ operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

o The =, <> <= <, >=> << >> <=> AND, OR, or LIKE operators may be used in column
comparisons to the left of the FROM in SELECT statements. For example:

34 MySQL Technical Reference for Version 4.0.3-beta

mysql> SELECT coll=1 AND col2=2 FROM tbl_name;
e The LAST_INSERT_ID() function. See Section 8.4.3.30 [mysql_insert_id ()], page 580.
e The REGEXP and NOT REGEXP extended regular expression operators.

e CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL
Server, these functions can take any number of arguments.)

e The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT (), IF (), PASSWORD (), ENCRYPT(),
MD5 (), ENCODE (), DECODE (), PERIOD_ADD (), PERIOD_DIFF (), TO_DAYS(), or WEEKDAY ()
functions.

e Use of TRIMQ) to trim substrings. ANSI SQL only supports removal of single characters.
e The GROUP BY functions STD(), BIT_OR(), and BIT_AND().

e Use of REPLACE instead of DELETE + INSERT. See Section 6.4.8 [REPLACE|, page 461.

e The FLUSH, RESET and DO statements.

e The ability to set variables in a statement with :=:

SELECT @a:=SUM(total) ,@b=COUNT (*),0a/@b AS avg FROM test_table;
SELECT @t1:=(0t2:=1)+0t3:=4,0t1,0t2,0t3;

1.7.4 MySQL Differences Compared to ANSI SQL92

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard,
but in some cases MySQL Server does things differently:

e For VARCHAR columns, trailing spaces are removed when the value is stored. See Sec-
tion 1.7.5 [Bugs], page 40.

e In some cases, CHAR columns are silently changed to VARCHAR columns. See Sec-
tion 6.5.3.1 [Silent column changes|, page 476.

e Privileges for a table are not automatically revoked when you delete a table. You must
explicitly issue a REVOKE to revoke privileges for a table. See Section 4.3.1 [GRANT],
page 212.

e NULL AND FALSE will evaluate to NULL and not to FALSE. This is because we don’t think
it’s good to have to evaluate a lot of extra conditions in this case.

For a prioritised list indicating when new extensions will be added to MySQL Server, you
should consult the online MySQL TODO list at http://www.mysql.com/documentation/manual.php?sec
That is the latest version of the TODO list in this manual. See Section 1.8 [TODO], page 43.

1.7.4.1 SubSELECTs

MySQL Server currently only supports nested queries of the form INSERT ... SELECT ...
and REPLACE ... SELECT You can, however, use the function IN() in other contexts.
Subselects are currently being implemented in the 4.1 development tree.

Meanwhile, you can often rewrite the query without a subselect:
SELECT * FROM tablel WHERE id IN (SELECT id FROM table2);

This can be rewritten as:

Chapter 1: General Information 35

SELECT tablel.*x FROM tablel,table2 WHERE tablel.id=table2.id;
The queries:
SELECT * FROM tablel WHERE id NOT IN (SELECT id FROM table2);

SELECT * FROM tablel WHERE NOT EXISTS (SELECT id FROM table2
WHERE tablel.id=table2.id);

Can be rewritten as:

SELECT tablel.*x FROM tablel LEFT JOIN table2 ON tablel.id=table2.id
WHERE table2.id IS NULL;

For more complicated subqueries you can often create temporary tables to hold the sub-
query. In some cases, however, this option will not work. The most frequently encountered
of these cases arises with DELETE statements, for which standard SQL does not support joins
(except in subselects). For this situation there are two options available until subqueries
are supported by MySQL Server.

The first option is to use a procedural programming language (such as Perl or PHP) to
submit a SELECT query to obtain the primary keys for the records to be deleted, and then
use these values to construct the DELETE statement (DELETE FROM ... WHERE ... IN (keyl,
key2, ...)).

The second option is to use interactive SQL to construct a set of DELETE statements auto-
matically, using the MySQL extension CONCAT() (in lieu of the standard || operator). For
example:

SELECT CONCAT(’DELETE FROM tabl WHERE pkid = >, "’", tabl.pkid, "’", ’;’)

FROM tabl, tab2
WHERE tabl.coll = tab2.col2;

You can place this query in a script file and redirect input from it to the mysql command-line
interpreter, piping its output back to a second instance of the interpreter:

shell> mysql --skip-column-names mydb < myscript.sql | mysql mydb

MySQL Server 4.0 supports multi-table deletes that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time.

1.7.4.2 SELECT INTO TABLE

MySQL Server doesn’t yet support the Oracle SQL extension: SELECT ... INTO TABLE
MySQL Server supports instead the ANSI SQL syntax INSERT INTO ... SELECT ..., which
is basically the same thing. See Section 6.4.3.1 [INSERT SELECT], page 456.

INSERT INTO tblTemp2 (£f1dID) SELECT tblTempl.fldOrder_ID
FROM tblTempl WHERE tblTempl.fldOrder_ID > 100;

Alternatively, you can use SELECT INTO OUTFILE. .. or CREATE TABLE ... SELECT.

1.7.4.3 Transactions and Atomic Operations

MySQL Server supports transactions with the InnoDB and BDB Transactional table
handlers. See Chapter 7 [Table types|, page 494. InnoDB provides ACID compliancy.

36 MySQL Technical Reference for Version 4.0.3-beta

However, the non-transactional table types in MySQL Server such as MyISAM follow an-
other paradigm for data integrity called “Atomic Operations.” Atomic operations often
offer equal or even better integrity with much better performance. With MySQL Server
supporting both paradigms, the user is able to decide if he needs the speed of atomic op-
erations or if he need to use transactional features in his applications. This choice can be
made on a per-table basis.

How does one use the features of MySQL Server to maintain rigorous integrity and how do
these features compare with the transactional paradigm?

1. In the transactional paradigm, if your applications are written in a way that is depen-
dent on the calling of ROLLBACK instead of COMMIT in critical situations, transactions
are more convenient. Transactions also ensure that unfinished updates or corrupting
activities are not committed to the database; the server is given the opportunity to do
an automatic rollback and your database is saved.

MySQL Server, in almost all cases, allows you to resolve potential problems by including
simple checks before updates and by running simple scripts that check the databases
for inconsistencies and automatically repair or warn if such an inconsistency occurs.
Note that just by using the MySQL log or even adding one extra log, one can normally
fix tables perfectly with no data integrity loss.

2. More often than not, fatal transactional updates can be rewritten to be atomic. Gen-
erally speaking, all integrity problems that transactions solve can be done with LOCK
TABLES or atomic updates, ensuring that you never will get an automatic abort from
the database, which is a common problem with transactional databases.

3. Even a transactional system can lose data if the server goes down. The difference
between different systems lies in just how small the time-lap is where they could lose
data. No system is 100% secure, only “secure enough.” Even Oracle, reputed to be the
safest of transactional databases, is reported to sometimes lose data in such situations.

To be safe with MySQL Server, whether using transactional tables or not, you only
need to have backups and have the update logging turned on. With this you can
recover from any situation that you could with any other transactional database. It is,
of course, always good to have backups, independent of which database you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application
developers depend on the ease with which they can code around problems where an abort
appears to be, or is necessary. However, even if you are new to the atomic operations
paradigm, or more familiar with transactions, do consider the speed benefit that non-
transactional tables can offer on the order of three to five times the speed of the fastest and
most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-level
or better reliability and integrity even for non-transactional tables. If you lock tables with
LOCK TABLES, all updates will stall until any integrity checks are made. If you only obtain
a read lock (as opposed to a write lock), reads and inserts are still allowed to happen. The
new inserted records will not be seen by any of the clients that have a read lock until they
release their read locks. With INSERT DELAYED you can queue inserts into a local queue,
until the locks are released, without having the client wait for the insert to complete. See
Section 6.4.4 [INSERT DELAYED], page 457.

Chapter 1: General Information 37

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can
be sure that while each specific update is running, no other user can interfere with it, and
there will never be an automatic rollback (which can happen with transactional tables if
you are not very careful). MySQL Server also guarantees that there will not be any dirty
reads.

Following are some techniques for working with non-transactional tables:

e Loops that need transactions normally can be coded with the help of LOCK TABLES, and
you don’t need cursors when you can update records on the fly.

e To avoid using ROLLBACK, you can use the following strategy:
1. Use LOCK TABLES ... to lock all the tables you want to access.
2. Test conditions.
3. Update if everything is okay.
4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible ROLLBACKs,
although not always. The only situation this solution doesn’t handle is when someone
kills the threads in the middle of an update. In this case, all locks will be released but
some of the updates may not have been executed.

e You can also use functions to update records in a single operation. You can get a very
efficient application by using the following techniques:

e Modify fields relative to their current value.

e Update only those fields that actually have changed.

For example, when we are doing updates to some customer information, we update
only the customer data that has changed and test only that none of the changed data,
or data that depends on the changed data, has changed compared to the original row.
The test for changed data is done with the WHERE clause in the UPDATE statement. If
the record wasn’t updated, we give the client a message: "Some of the data you have
changed has been changed by another user." Then we show the old row versus the new
row in a window, so the user can decide which version of the customer record he should
use.

This gives us something that is similar to column locking but is actually even better
because we only update some of the columns, using values that are relative to their
current values. This means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+’relative change’;

UPDATE customer

SET
customer_date=’current_date’,
address=’new address’,
phone=’new phone’,
money_he_owes_us=money_he_owes_us+’new_money’

WHERE
customer_id=id AND address=’0ld address’ AND phone=’o0ld phone’;

As you can see, this is very efficient and works even if another client has changed the
values in the pay_back or money_he_owes_us columns.

38 MySQL Technical Reference for Version 4.0.3-beta

e In many cases, users have wanted ROLLBACK and/or LOCK TABLES for the purpose of
managing unique identifiers for some tables. This can be handled much more efficiently
by using an AUTO_INCREMENT column and either the SQL function LAST_INSERT_ID()
or the C API function mysql_insert_id (). See Section 8.4.3.30 [mysql_insert_id ()],
page 580.

You can generally code around row-level locking. Some situations really need it, but
they are very few. InnoDB tables support row-level locking. With MyISAM, you can
use a flag column in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag
wasn’t already 1 in the original row.

You can think of it as though MySQL Server changed the preceding query to:
UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.7.4.4 Stored Procedures and Triggers

A stored procedure is a set of SQL commands that can be compiled and stored in the server.
Once this has been done, clients don’t need to keep re-issuing the entire query but can refer
to the stored procedure. This provides better performance because the query has to be
parsed only once, and less information needs to be sent between the server and the client.
You can also raise the conceptual level by having libraries of functions in the server.

A trigger is a stored procedure that is invoked when a particular event occurs. For ex-
ample, you can install a stored procedure that is triggered each time a record is deleted
from a transaction table and that automatically deletes the corresponding customer from a
customer table when all his transactions are deleted.

The planned update language will be able to handle stored procedures. Our aim is to have
stored procedures implemented in MySQL Server around version 5.0. We are also looking
at triggers.

1.7.4.5 Foreign Keys

Note that foreign keys in SQL are not used to join tables, but are used mostly for checking
referential integrity (foreign key constraints). If you want to get results from multiple tables
from a SELECT statement, you do this by joining tables:

SELECT * FROM tablel,table2 WHERE tablel.id = table2.id;
See Section 6.4.1.1 [JOIN], page 451. See Section 3.5.6 [example-Foreign keys], page 171.
In MySQL Server 3.23.44 and up, InnoDB tables support checking of foreign key constraints.
See Section 7.5 [InnoDB], page 506. For other table types, MySQL Server does parse the
FOREIGN KEY syntax in CREATE TABLE commands, but without further action being taken.
The FOREIGN KEY syntax without ON DELETE . .. is mostly used for documentation purposes.
Some ODBC applications may use this to produce automatic WHERE clauses, but this is
usually easy to override. FOREIGN KEY is sometimes used as a constraint check, but this
check is unnecessary in practice if rows are inserted into the tables in the right order.

Chapter 1: General Information 39

In MySQL Server, you can work around the problem of ON DELETE ... not being imple-
mented by adding the appropriate DELETE statement to an application when you delete
records from a table that has a foreign key. In practice this is as quick (in some cases
quicker) and much more portable than using foreign keys.

In MySQL Server 4.0 you can use multi-table delete to delete rows from many tables with
one command. See Section 6.4.6 [DELETE], page 459.

In the near future we will extend the FOREIGN KEY implementation so that the information
will be saved in the table specification file and may be retrieved by mysqldump and ODBC.
At a later stage we will implement the foreign key constraints for applications that can’t
easily be coded to avoid them.

Do keep in mind that foreign keys are often misused, which can cause severe problems.
Even when used properly, it is not a magic solution for the referential integrity problem,
although it does make things easier in some cases.

Some advantages of foreign key enforcement:

e Assuming proper design of the relations, foreign key constraints will make it more
difficult for a programmer to introduce an inconsistency into the database.

e Using cascading updates and deletes can simplify the client code.

e Properly designed foreign key rules aid in documenting relations between tables.

Disadvantages:

e Mistakes, which are easy to make in designing key relations, can cause severe problems-
for example, circular rules, or the wrong combination of cascading deletes.

e A properly written application will make sure internally that it is not violating refer-
ential integrity constraints before proceding with a query. Thus, additional checks on
the database level will only slow down performance for such an application.

e It is not uncommon for a DBA to make such a complex topology of relations that it
becomes very difficult, and in some cases impossible, to back up or restore individual
tables.

1.7.4.6 Views

It is planned to implement views in MySQL Server around version 5.0.

Views are mostly useful for letting users access a set of relations as one table (in read-only
mode). Many SQL databases don’t allow one to update any rows in a view, but you have
to do the updates in the separate tables.

As MySQL Server is mostly used in applications and on web systems where the application
writer has full control on the database usage, most of our users haven’t regarded views to
be very important. (At least no one has been interested enough in this to be prepared to
finance the implementation of views.)

One doesn’t need views in MySQL Server to restrict access to columns, as MySQL Server
has a very sophisticated privilege system. See Section 4.2 [Privilege system|, page 191.

40 MySQL Technical Reference for Version 4.0.3-beta

1.7.4.7 ‘--’ as the Start of a Comment

Some other SQL databases use ‘==’ to start comments. MySQL Server has ‘# as the start
comment character. You can also use the C comment style /* this is a comment */ with
MySQL Server. See Section 6.1.6 [Comments|, page 385.

MySQL Server Version 3.23.3 and above support the ‘==’ comment style, provided the
comment is followed by a space. This is because this comment style has caused many
problems with automatically generated SQL queries that have used something like the
following code, where we automatically insert the value of the payment for !payment!:

UPDATE tbl_name SET credit=credit-!payment!

Think about what happens if the value of payment is negative. Because 1--1 is legal in
SQL, the consequences of allowing comments to start with ‘==’ are terrible.

Using our implementation of this method of commenting in MySQL Server Version 3.23.3
and up, 1-- This is a comment is actually safe.

Another safe feature is that the mysql command-line client removes all lines that start with

4 b

The following information is relevant only if you are running a MySQL version earlier than

3.23.3:
If you have a SQL program in a text file that contains ‘==’ comments you should use:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql database

instead of the usual:
shell> mysql database < text-file-with-funny-comments.sql

You can also edit the command file “in place” to change the ‘==’ comments to ‘#’ comments:
shell> replace " —-" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

1.7.5 Known Errors and Design Deficiencies in MySQL

The following problems are known and have a very high priority to get fixed:

e ANALYZE TABLE on a BDB table may in some case make the table unusable until one
has restarted mysqld. When this happens you will see errors like the following in the
MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

e Don’t execute ALTER TABLE on a BDB table on which you are running multi-statement
transactions until all those transactions complete. (The transaction will probably be
ignored.)

e ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

e Doing a LOCK TABLE ... and FLUSH TABLES ... doesn’t guarantee that there isn’t a
half-finished transaction in progress on the table.

Chapter 1: General Information 41

BDB tables are a bit slow to open. If you have many BDB tables in a database, it will
take a long time to use the mysql client on the database if you are not using the -A
option or if you are using rehash. This is especially notable when you have a big table
cache.

The current replication protocol cannot deal with LOAD DATA INFILE and line termina-
tor characters of more than 1 character.

The following problems are known and will be fixed in due time:

When using SET CHARACTER SET, one can’t use translated characters in database, table,
and column names.

If you have a DECIMAL column with a number stored in different formats (+01.00, 1.00,
01.00), GROUP BY may regard each value as a different value.

DELETE FROM merge_table used without a WHERE will only clear the mapping for the
table, not delete everything in the mapped tables.

You cannot build the server in another directory when using MIT-pthreads. Because
this requires changes to MIT-pthreads, we are not likely to fix this. See Section 2.3.6
[MIT-pthreads], page 89.

BLOB values can’t “reliably” be used in GROUP BY or ORDER BY or DISTINCT. Only
the first max_sort_length bytes (default 1024) are used when comparing BLOBs in
these cases. This can be changed with the -0 max_sort_length option to mysqld. A
workaround for most cases is to use a substring: SELECT DISTINCT LEFT (blob,2048)
FROM tbl_name.

Calculation is done with BIGINT or DOUBLE (both are normally 64 bits long). It depends
on the function which precision one gets. The general rule is that bit functions are done
with BIGINT precision, IF, and ELT() with BIGINT or DOUBLE precision and the rest
with DOUBLE precision. One should try to avoid using unsigned long long values if they
resolve to be bigger than 63 bits (9223372036854775807) for anything else than bit
fields! MySQL Server 4.0 has better BIGINT handling than 3.23.

All string columns, except BLOB and TEXT columns, automatically have all trailing
spaces removed when retrieved. For CHAR types this is okay, and may be regarded as a
feature according to ANSI SQL92. The bug is that in MySQL Server, VARCHAR columns
are treated the same way.

You can only have up to 255 ENUM and SET columns in one table.

safe_mysqld redirects all messages from mysqld to the mysqld log. One problem with
this is that if you execute mysqladmin refresh to close and reopen the log, stdout and
stderr are still redirected to the old log. If you use --log extensively, you should edit
safe_mysqld to log to ‘’hostname’ .err’ instead of ‘’hostname’ .1log’ so you can easily
reclaim the space for the old log by deleting the old one and executing mysqladmin
refresh.

In the UPDATE statement, columns are updated from left to right. If you refer to an
updated column, you will get the updated value instead of the original value. For
example:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

This will update KEY with 2 instead of with 1.

42

MySQL Technical Reference for Version 4.0.3-beta

e You can’t use temporary tables more than once in the same query. For example, the

following doesn’t work:
mysql> SELECT * FROM temporary_table, temporary_table AS t2;
RENAME doesn’t work with TEMPORARY tables or tables used in a MERGE table.

The optimiser may handle DISTINCT differently if you are using ’hidden’ columns in a
join or not. In a join, hidden columns are counted as part of the result (even if they are
not shown) while in normal queries hidden columns don’t participate in the DISTINCT
comparison. We will probably change this in the future to never compare the hidden
columns when executing DISTINCT.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and
SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case you may in MySQL Server 3.23.x get two identical rows in the result
set (because the hidden id column may differ).

Note that this happens only for queries where you don’t have the ORDER BY columns
in the result, something that you are not allowed to do in ANSI SQL.

Because MySQL Server allows you to work with table types that don’t support transac-
tions, and thus can’t rollback data, some things behave a little differently in MySQL
Server than in other SQL servers. This is just to ensure that MySQL Server never
needs to do a rollback for a SQL command. This may be a little awkward at times
as column values must be checked in the application, but this will actually give you a
nice speed increase as it allows MySQL Server to do some optimisations that otherwise
would be very hard to do.

If you set a column to an incorrect value, MySQL Server will, instead of doing a
rollback, store the best possible value in the column:
— If you try to store a value outside the range in a numerical column, MySQL Server
will instead store the smallest or biggest possible value in the column.
— If you try to store a string that doesn’t start with a number into a numerical
column, MySQL Server will store 0 into it.

— If you try to store NULL into a column that doesn’t take NULL values, MySQL Server
will store 0 or ?? (empty string) in it instead. (This behaviour can, however, be
changed with the -DDONT_USE_DEFAULT_FIELDS compile option.)

— MySQL allows you to store some wrong date values into DATE and DATETIME
columns (like 2000-02-31 or 2000-02-00). If the date is totally wrong, MySQL
Server will store the special 0000-00-00 date value in the column.

— If you set an ENUM column to an unsupported value, it will be set to the error value
empty string, with numeric value 0.

— If you set a SET column to an unsupported value, the value will be ignored.

Chapter 1: General Information 43

e If you execute a PROCEDURE on a query that returns an empty set, in some cases the
PROCEDURE will not transform the columns.

e Creation of a table of type MERGE doesn’t check if the underlying tables are of compatible
types.

e MySQL Server can’t yet handle NaN, -Inf, and Inf values in double. Using these will
cause problems when trying to export and import data. We should as an intermediate
solution change NaN to NULL (if possible) and -Inf and Inf to the minimum respective
maximum possible double value.

e LIMIT on negative numbers are treated as big positive numbers.

e If you use ALTER TABLE to first add a UNIQUE index to a table used in a MERGE table
and then use ALTER TABLE to add a normal index on the MERGE table, the key order
will be different for the tables if there was an old key that was not unique in the table.
This is because ALTER TABLE puts UNIQUE keys before normal keys to be able to detect
duplicate keys as early as possible.

The following are known bugs in earlier versions of MySQL:

e You can get a hung thread if you do a DROP TABLE on a table that is one among many
tables that is locked with LOCK TABLES.

e In the following case you can get a core dump:
— Delayed insert handler has pending inserts to a table.
— LOCK table with WRITE.
— FLUSH TABLES.

e Before MySQL Server Version 3.23.2 an UPDATE that updated a key with a WHERE on
the same key may have failed because the key was used to search for records and the
same row may have been found multiple times:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;
A workaround is to use:
mysql> UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

This will work because MySQL Server will not use an index on expressions in the WHERE
clause.

e Before MySQL Server Version 3.23, all numeric types where treated as fixed-point
fields. That means you had to specify how many decimals a floating-point field shall
have. All results were returned with the correct number of decimals.

For platform-specific bugs, see the sections about compiling and porting.

1.8 MySQL and The Future (The TODO)

This section lists the features that we plan to implement in MySQL Server.

Everything in this list is approximately in the order it will be done. If you want to affect
the priority order, please register a license or support us and tell us what you want to have
done more quickly. See Section 1.4 [Licensing and Support|, page 15.

44 MySQL Technical Reference for Version 4.0.3-beta

The plan is that we in the future will support the full ANSI SQL99 standard, but with
a lot of useful extensions. The challenge is to do this without sacrificing the speed or
compromising the code.

1.8.1 Things That Should be in 4.0

All done. We now only do bug fixes MySQL 4.0.

1.8.2 Things That Should be in 4.1

The following features are planned for inclusion into MySQL 4.1. Note that because we have
many developers that are working on different projects, there will also be many additional
features. There is also a small chance that some of these features will be added to MySQL
4.0. Some of the work on MySQL 4.1 is already in progress.

e Subqueries.

SELECT id FROM t WHERE grp IN (SELECT grp FROM g WHERE u > 100);

e New table definition file format (‘.frm’ files). This will enable us to not run out of bits
when adding more table options. One will still be able to use the old ‘. frm’ file format
with 4.0. All newly created tables will, however, use the new format.

The new file format will enable us to add new column types, more options for keys,
and possibly to store and retrieve FOREIGN KEY definitions.

e SHOW COLUMNS FROM table_name (used by mysql client to allow expansions of column
names) should not open the table, only the definition file. This will require less memory
and be much faster.

e Foreign keys for MyISAM tables, including cascading delete.

e Fail-safe replication.

e Replication should work with RAND() and user variables @var.

e Online backup with very low performance penalty. The online backup will make it easy
to add a new replication slave without taking down the master.
e Derived tables:
SELECT a.coll, b.col2
FROM (SELECT MAX(coll) AS coll FROM root_table) a,
other_table b
WHERE a.coll=b.coll;
This could be done by automatically creating temporary tables for the derived tables
for the duration of the query.
e ROLLUP and CUBE OLAP (Online Analytical Processing) grouping options for data
warehousing applications.
e Allow DELETE on MyISAM tables to use the record cache. To do this, we need to update
the threads record cache when we update the ‘.MYD’ file.
e When using SET CHARACTER SET we should translate the whole query at once and not
only strings. This will enable users to use the translated characters in database, table,
and column names.

Chapter 1: General Information 45

Add record_in_range () method to MERGE tables to be able to choose the right index
when there are many to choose from. We should also extend the info interface to get
the key distribution for each index, if analyze is run on all subtables.

Resolving the issue of RENAME TABLE on a table used in an active MERGE table possibly
corrupting the table.

A faster, smaller embedded MySQL library (compatible with the old one).

Stable OpenSSL support (MySQL 4.0 supports rudimentary, not 100% tested, support
for OpenSSL).

Add support for sorting on UNICODE.
Character set casts and syntax for handling multiple character sets.
Help for all commands from the client.

New faster client/server protocol which will support prepared statements, bound pa-
rameters, and bound result columns, binary transfer of data, warnings...

Add database and real table name (in case of alias) to the MYSQL_FIELD structure.

Add options to the client/server protocol to get progress notes for long running com-
mands.

Implement RENAME DATABASE. To make this safe for all table handlers, it should work
as follows:

e Create the new database.

e For every table do a rename of the table to another database, as we do with the
RENAME command.

e Drop the old database.
Add true VARCHAR support (there is already support for this in MyISAM).
Optimise BIT type to take 1 bit (now BIT takes 1 char).

New internal file interface change. This will make all file handling much more general
and make it easier to add extensions like RAID. (the current implementation is a hack.)

Better in-memory (HEAP) tables:
e Support for B-tree indexes
e Dynamic size rows

e Faster row handling (less copying)

1.8.3 Things That Must be Done in the Near Future

Atomic multi-table updates:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

Don’t allow more than a defined number of threads to run MyISAM recover at the
same time.

Change INSERT ... SELECT to optionally use concurrent inserts.
Return the original field types() when doing SELECT MIN(column) ... GROUP BY.

46

MySQL Technical Reference for Version 4.0.3-beta

Multiple result sets.

Make it possible to specify long_query_time with a granularity in microseconds.
Link the myisampack code into the server.

Port of the MySQL code to QNX.

Port of the MySQL code to BeOS.

Port of the MySQL clients to LynxOS.

Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that we can grace-
fully recover if the index file gets full.

If you perform an ALTER TABLE on a table that is symlinked to another disk, create
temporary tables on this disk.

Implement a DATE/DATETIME type that handles time zone information properly so that
dealing with dates in different time zones is easier.

FreeBSD and MIT-pthreads; do sleeping threads take CPU time?

Check if locked threads take any CPU time.

Fix configure so that one can compile all libraries (like MyISAM) without threads.

Add an option to periodically flush key pages for tables with delayed keys if they
haven’t been used in a while.

Allow join on key parts (optimisation issue).

INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a concurrent insert
at the end of the file if the file is read-locked.

Server-side cursors.

Check if lockd works with modern Linux kernels; if not, we have to fix lockd! To test
this, start mysqld with ——enable-locking and run the different fork* test suits. They
shouldn’t give any errors if lockd works.

Allow SQL variables in LIMIT, like in LIMIT @a, @b.
Allow update of variables in UPDATE statements. For example: UPDATE TABLE foo SET
@a=atb,a=0@a, b=0a+c.

Change when user variables are updated so that one can use them with GROUP BY, as
in the following example: SELECT id, @a:=COUNT (%), SUM(sum_col)/@a FROM table_
name GROUP BY id.

Don’t add automatic DEFAULT values to columns. Give an error when using an INSERT
that doesn’t contain a column that doesn’t have a DEFAULT.

Fix ‘libmysql.c’ to allow two mysql_query() commands in a row without reading
results or give a nice error message when one does this.

Check why MIT-pthreads ctime () doesn’t work on some FreeBSD systems.

Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and AUTO_
INCREMENT fields.

Added LOAD DATE INFILE ... UPDATE syntax.

e For tables with primary keys, if the data contains the primary key, entries match-
ing that primary key are updated from the remainder of the columns. However,
columns missing from the incoming data feed are not touched.

Chapter 1: General Information 47

e For tables with primary keys that are missing some part of the key in the incoming
data stream, or that have no primary key, the feed is treated as a LOAD DATA INFILE
... REPLACE INTO now.
e Make LOAD DATA INFILE understand syntax like:
LOAD DATA INFILE °’file_name.txt’ INTO TABLE tbl_name
TEXT_FIELDS (text_fieldl, text_field2, text_field3)
SET table_field1=CONCAT(text_fieldl, text_field2),
table_field3=23
IGNORE text_field3

This can be used to skip over extra columns in the text file, or update columns based
on expressions of the read data.
e LOAD DATA INFILE ’file_name’ INTO TABLE ’table_name’ ERRORS TO err_table_

name. This would cause any errors and warnings to be logged into the err_table_name
table. That table would have a structure like:

line_number - line number in datafile
error_message - the error/warning message
and maybe

data_line - the line from the datafile

e Automatic output from mysql to Netscape.
e LOCK DATABASES (with various options.)
e Functions: ADD_TO_SET (value,set) and REMOVE_FROM_SET (value,set).

e Add use of t1 JOIN t2 ON ... and t1 JOIN t2 USING ... Currently, you can only use
this syntax with LEFT JOIN.

e Many more variables for show status. Records reads and updates. Selects on 1 table
and selects with joins. Mean number of tables in select. Number of ORDER BY and
GROUP BY queries.

e If you abort mysql in the middle of a query, you should open another connection and
kill the old running query. Alternatively, an attempt should be made to detect this in
the server.

e Add a handler interface for table information so that you can use it as a system table.
This would be a bit slow if you requested information about all tables, but very flexible.
SHOW INFO FROM tbl_name for basic table information should be implemented.

e NATURAL JOIN.

e Allow SELECT a FROM crash_me LEFT JOIN crash_me2 USING (a); in this case a is as-
sumed to come from the crash_me table.

e Fix so that ON and USING works with the JOIN join type.

e Oracle-like CONNECT BY PRIOR ... to search hierarchy structures.

e mysqladmin copy database new-database; requires COPY command to be added to
mysqld.

e Processlist should show number of queries/threads.

e SHOW HOSTS for printing information about the hostname cache.

e DELETE and REPLACE options to the UPDATE statement (this will delete rows when one
gets a duplicate key error while updating).

48

MySQL Technical Reference for Version 4.0.3-beta

Change the format of DATETIME to store fractions of seconds.
Add all missing ANSI92 and ODBC 3.0 types.
Change table names from empty strings to NULL for calculated columns.

Don’t use Item_copy_string on numerical values to avoid number->string->number
conversion in case of: SELECT COUNT (*)* (id+0) FROM table_name GROUP BY id

Make it possible to use the new GNU regexp library instead of the current one (the
GNU library should be much faster than the old one).

Change so that ALTER TABLE doesn’t abort clients that execute INSERT DELAYED.

Fix so that when columns are referenced in an UPDATE clause, they contain the old
values from before the update started.

Add simulation of pread() /pwrite() on Windows to enable concurrent inserts.

A logfile analyser that could parse out information about which tables are hit most
often, how often multi-table joins are executed, etc. It should help users identify areas
or table design that could be optimised to execute much more efficient queries.

Add SUM(DISTINCT).

Add ANY(), EVERY (), and SOME() group functions. In ANSI SQL these work only on
boolean columns, but we can extend these to work on any columns/expressions by
applying: value == 0 -> FALSE and value <> 0 -> TRUE.
Fix that the type for MAX(column) is the same as the column type:

mysql> CREATE TABLE t1 (a DATE);

mysql> INSERT INTO t1 VALUES (NOW());

mysql> CREATE TABLE t2 SELECT MAX(a) FROM t1;
mysql> SHOW COLUMNS FROM t2;

Come up with a nice syntax for a statement that will UPDATE the row if it exists and
INSERT a new row if the row didn’t exist (like REPLACE works with INSERT / DELETE).

1.8.4 Things That Have to be Done Sometime

Implement function: get_changed_tables(timeout,tablel,table2,...).

Change reading through tables to use memmap when possible. Now only compressed
tables use memmap.

Make the automatic timestamp code nicer. Add timestamps to the update log with
SET TIMESTAMP=#;.

Use read/write mutex in some places to get more speed.

Full foreign key support in for MyISAM tables, probably after the implementation of
stored procedures with triggers.

Simple views (first on one table, later on any expression).

Automatically close some tables if a table, temporary table, or temporary files gets
error 23 (not enough open files).

When one finds a field=#, change all occurrences of field to #. Now this is only done
for some simple cases.

Chapter 1: General Information 49

e Change all const expressions with calculated expressions if possible.

e Optimise key = expression. At the moment only key = field or key = constant are
optimised.

e Join some of the copy functions for nicer code.

e Change ‘sql_yacc.yy’ to an inline parser to reduce its size and get better error mes-
sages (5 days).

e Change the parser to use only one rule per different number of arguments in function.

e Use of full calculation names in the order part (for ACCESS97).

e MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION [in 4.0] and LEFT OUTER
JOIN are supported.)

e SQL_OPTION MAX_SELECT_TIME=# to put a time limit on a query.

e Make the update log write to a database.

e Add to LIMIT to allow retrieval of data from the end of a result set.
e Alarm around client connect/read/write functions.

e Please note the changes to safe_mysqld: according to FSSTND (which Debian tries
to follow) PID files should go into ‘/var/run/<progname>.pid’ and log files into
‘/var/log’. It would be nice if you could put the "DATADIR" in the first decla-
ration of "pidfile" and "log", so the placement of these files can be changed with a
single statement.

e Allow a client to request logging.

e Add use of z1ib() for gzip-ed files to LOAD DATA INFILE.

e Fix sorting and grouping of BLOB columns (partly solved now).
e Stored procedures. Triggers are also being looked at.

e A simple (atomic) update language that can be used to write loops and such in the
MySQL server.

e Change to use semaphores when counting threads. One should first implement a
semaphore library to MIT-pthreads.

e Don’t assign a new AUTO_INCREMENT value when one sets a column to 0. Use NULL
instead.

e Add full support for JOIN with parentheses.

e As an alternative for one thread/connection manage a pool of threads to handle the
queries.

e Allow one to get more than one lock with GET_LOCK. When doing this, one must also
handle the possible deadlocks this change will introduce.

Time is given according to amount of work, not real time.

1.8.5 Things We Don’t Plan To Do

e Nothing; we aim toward full ANSI 92/ANSI 99 compliancy.

50 MySQL Technical Reference for Version 4.0.3-beta

1.9 How MySQL Compares to Other Databases

Our users have successfully run their own benchmarks against a number of Open Source
and traditional database servers. We are aware of tests against Oracle server, DB/2 server,
Microsoft SQL Server, and other commercial products. Due to legal reasons we are re-
stricted from publishing some of those benchmarks in our reference manual.

This section includes a comparison with mSQL for historical reasons and with PostgreSQL
as it is also an Open Source database. If you have benchmark results that we can publish,
please contact us at benchmarks@mysql.com.

For comparative lists of all supported functions and types as well as measured op-
erational limits of many different database systems, see the crash-me web page at
http://www.mysql.com/information/crash-me.php.

1.9.1 How MySQL Compares to mSQL

Performance
For a true comparison of speed, consult the growing MySQL benchmark suite.
See Section 5.1.4 [MySQL Benchmarks|, page 336.
Because there is no thread creation overhead, a small parser, few features, and
simple security, mSQL should be quicker at:

e Tests that perform repeated connects and disconnects, running a very sim-
ple query during each connection.

e INSERT operations into very simple tables with few columns and keys.

e CREATE TABLE and DROP TABLE.

e SELECT on something that isn’t an index. (A table scan is very easy.)
Because these operations are so simple, it is hard to be better at them when you

have a higher startup overhead. After the connection is established, MySQL
Server should perform much better.

On the other hand, MySQL Server is much faster than mSQL (and most other
SQL implementations) on the following:

e Complex SELECT operations.

e Retrieving large results (MySQL Server has a better, faster, and safer pro-
tocol).

e Tables with variable-length strings because MySQL Server has more effi-
cient handling and can have indexes on VARCHAR columns.

e Handling tables with many columns.

e Handling tables with large record lengths.
e SELECT with many expressions.

e SELECT on large tables.

e Handling many connections at the same time. MySQL Server is fully multi-
threaded. Each connection has its own thread, which means that no thread

Chapter 1: General Information 51

has to wait for another (unless a thread is modifying a table another thread
wants to access). In mSQL, once one connection is established, all others
must wait until the first has finished, regardless of whether the connection is
running a query that is short or long. When the first connection terminates,
the next can be served, while all the others wait again, etc.

e Joins. mSQL can become pathologically slow if you change the order of
tables in a SELECT. In the benchmark suite, a time more than 15,000 times
slower than MySQL Server was seen. This is due to mSQL’s lack of a join
optimiser to order tables in the optimal order. However, if you put the
tables in exactly the right order in mSQL2 and the WHERE is simple and uses
index columns, the join will be relatively fast! See Section 5.1.4 [MySQL
Benchmarks|, page 336.

e (ORDER BY and GROUP BY.

e DISTINCT.

e Using TEXT or BLOB columns.

SQL Features

e GROUP BY and HAVING. mSQL does not support GROUP BY at all. MySQL
Server supports a full GROUP BY with both HAVING and the following func-
tions: COUNT(), AVG(), MIN(), MAX(), SUM(), and STD(). COUNT(*) is
optimised to return very quickly if the SELECT retrieves from one table,
no other columns are retrieved, and there is no WHERE clause. MIN() and
MAX () may take string arguments.

e INSERT and UPDATE with calculations. MySQL Server can do calculations
in an INSERT or UPDATE. For example:

mysql> UPDATE SET x=x*10+y WHERE x<20;
e Aliasing. MySQL Server has column aliasing.

e Qualifying column names. In MySQL Server, if a column name is unique
among the tables used in a query, you do not have to use the full qualifier.

e SELECT with functions. MySQL Server has many functions (too many to
list here; see Section 6.3 [Functions|, page 406).

Disk Space Efficiency

Stability

That is, how small can you make your tables?

MySQL Server has very precise types, so you can create tables that take very
little space. An example of a useful MySQL datatype is the MEDIUMINT that is
3 bytes long. If you have 100 million records, saving even 1 byte per record is
very important.

mSQL2 has a more limited set of column types, so it is more difficult to get small
tables.

This is harder to judge objectively. For a discussion of MySQL Server stability,
see Section 1.2.3 [Stability], page 7.

We have no experience with mSQL stability, so we cannot say anything about
that.

52 MySQL Technical Reference for Version 4.0.3-beta

Price Another important issue is the license. MySQL Server has a more flexible
license than mSQL, and is also less expensive than mSQL. Whichever product
you choose to use, remember to at least consider paying for a license or e-mail
support.

Perl Interfaces
MySQL Server has basically the same interfaces to Perl as mSQL with some
added features.

JDBC (Java)
MySQL Server currently has a lot of different JDBC drivers:

e The mm driver: atype 4 JDBC driver by Mark Matthews mmatthew@ecn.purdue.edu.
This is released under the LGPL.

e The Resin driver: this is a commercial JDBC driver released under open
source. http://www.caucho.com/projects/jdbc-mysql/index.xtp

e The gwe driver: a Java interface by GWE technologies (not supported
anymore).

e The jms driver: an improved gwe driver by Xiaokun Kelvin ZHU X.Zhu@brad.ac.uk
(not supported anymore).

e The twz driver: a type 4 JDBC driver by Terrence W. Zellers zellert@voicenet. com.
This is commercial but is free for private and educational use (not sup-
ported anymore).

The recommended driver is the mm driver. The Resin driver may also be
good (at least the benchmarks look good), but we haven’t received that much
information about this yet.

We know that mSQL has a JDBC driver, but we have too little experience with
it to compare.

Rate of Development

MySQL Server has a small core team of developers, but we are quite used to
coding C and C++ very rapidly. Because threads, functions, GROUP BY, and so
on are still not implemented in mSQL, it has a lot of catching up to do. To
get some perspective on this, you can view the mSQL ‘HISTORY’ file for the last
year and compare it with the News section of the MySQL Reference Manual
(see Appendix D [News|, page 675). It should be pretty obvious which one has
developed most rapidly.

Utility Programs
Both mSQL and MySQL Server have many interesting third-party tools. Because
it is very easy to port upward (from mSQL to MySQL Server), almost all the
interesting applications that are available for mSQL are also available for MySQL
Server.

MySQL Server comes with a simple msql2mysql program that fixes differences
in spelling between mSQL and MySQL Server for the most-used C API functions.
For example, it changes instances of msqlConnect () to mysql_connect (). Con-
verting a client program from mSQL to MySQL Server usually requires only
minor effort.

Chapter 1: General Information 53

1.9.1.1 How to Convert mSQL Tools for MySQL

According to our experience, it doesn’t take long to convert tools such as msql-tcl and
msqljava that use the mSQL C API so that they work with the MySQL C APIL.

The conversion procedure is:

1. Run the shell script msql2mysql on the source. This requires the replace program,
which is distributed with MySQL Server.

2. Compile.

3. Fix all compiler errors.

Differences between the mSQL C API and the MySQL C API are:

e MySQL Server uses a MYSQL structure as a connection type (mSQL uses an int).

e mysql_connect() takes a pointer to a MYSQL structure as a parameter. It is easy to
define one globally or to use malloc() to get one. mysql_connect() also takes two
parameters for specifying the user and password. You may set these to NULL, NULL for
default use.

e mysql_error() takes the MYSQL structure as a parameter. Just add the parameter to
your old msql_error () code if you are porting old code.

e MySQL Server returns an error number and a text error message for all errors. mSQL
returns only a text error message.

e Some incompatibilities exist as a result of MySQL Server supporting multiple connec-
tions to the server from the same process.

1.9.1.2 How mSQL and MySQL Client/Server Communications
Protocols Differ

There are enough differences that it is impossible (or at least not easy) to support both.

The most significant ways in which the MySQL protocol differs from the mSQL protocol are
listed here:

e A message buffer may contain many result rows.

e The message buffers are dynamically enlarged if the query or the result is bigger than
the current buffer, up to a configurable server and client limit.

e All packets are numbered to catch duplicated or missing packets.

e All column values are sent in ASCII. The lengths of columns and rows are sent in
packed binary coding (1, 2, or 3 bytes).

e MySQL can read in the result unbuffered (without having to store the full set in the
client).

o If a single read/write takes more than 30 seconds, the server closes the connection.

e If a connection is idle for 8 hours, the server closes the connection.

54 MySQL Technical Reference for Version 4.0.3-beta

1.9.1.3 How mSQL 2.0 SQL Syntax Differs from MySQL

Column types

MySQL Server
Has the following additional types (among others; see Section 6.5.3 [CREATE
TABLE|, page 469):

e ENUM type for one of a set of strings.
e SET type for many of a set of strings.
e BIGINT type for 64-bit integers.

MySQL Server also supports the following additional type attributes:
e UNSIGNED option for integer and floating-point columns.
e ZEROFILL option for integer columns.

e AUTO_INCREMENT option for integer columns that are a PRIMARY KEY. See
Section 8.4.3.30 [mysql_insert_id ()], page 580.

e DEFAULT value for all columns.

mSQL2 mSQL column types correspond to the MySQL types shown in the following
table:
mSQL type Corresponding MySQL type
CHAR(len) CHAR(len)
TEXT(len) TEXT(len). len is the maximal length. And LIKE works.
INT INT. With many more options!
REAL REAL. Or FLOAT. Both 4- and 8-byte versions are available.
UINT INT UNSIGNED
DATE DATE. Uses ANSI SQL format rather than mSQL’s own format.
TIME TIME
MONEY DECIMAL(12,2). A fixed-point value with two decimals.

Index Creation

MySQL Server
Indexes may be specified at table creation time with the CREATE TABLE state-
ment.

mSQL Indexes must be created after the table has been created, with separate CREATE
INDEX statements.

To Insert a Unique Identifier into a Table

MySQL Server
Use AUTO_INCREMENT as a column type specifier. See Section 8.4.3.30 [mysql_
insert_id ()], page 580.

mSQL Create a SEQUENCE on a table and select the _seq column.

To Obtain a Unique Identifier for a Row

Chapter 1: General Information 55

MySQL Server
Add a PRIMARY KEY or UNIQUE key to the table and use this. New in Version
3.23.11: If the PRIMARY or UNIQUE key consists of only one column and this is
of type integer, one can also refer to it as _rowid.

mSQL Use the _rowid column. Observe that _rowid may change over time depending
on many factors.

To Get the Time a Column Was Last Modified

MySQL Server
Add a TIMESTAMP column to the table. This column is automatically set to the
current date and time for INSERT or UPDATE statements if you don’t give the
column a value or if you give it a NULL value.

mSQL Use the _timestamp column.
NULL Value Comparisons

MySQL Server
MySQL Server follows ANSI SQL, and a comparison with NULL is always NULL.

mSQL In mSQL, NULL = NULL is TRUE. You must change =NULL to IS NULL and <>NULL
to IS NOT NULL when porting old code from mSQL to MySQL Server.

String Comparisons

MySQL Server
Normally, string comparisons are performed in case-independent fashion with
the sort order determined by the current character set (ISO-8859-1 Latinl by
default). If you don’t like this, declare your columns with the BINARY attribute,
which causes comparisons to be done according to the ASCII order used on the
MySQL server host.

mSQL All string comparisons are performed in case-sensitive fashion with sorting in

ASCII order.
Case-insensitive Searching

MySQL Server
LIKE is a case-insensitive or case-sensitive operator, depending on the columns
involved. If possible, MySQL uses indexes if the LIKE argument doesn’t start
with a wildcard character.

mSQL Use CLIKE.
Handling of Trailing Spaces

MySQL Server
Strips all spaces at the end of CHAR and VARCHAR columns. Use a TEXT column
if this behaviour is not desired.

mSQL Retains trailing space.

WHERE Clauses

56 MySQL Technical Reference for Version 4.0.3-beta

MySQL Server
MySQL correctly prioritises everything (AND is evaluated before OR). To get
mSQL behaviour in MySQL Server, use parentheses (as shown in an example
later in this section).

mSQL Evaluates everything from left to right. This means that some logical calcu-
lations with more than three arguments cannot be expressed in any way. It
also means you must change some queries when you upgrade to MySQL Server.
You do this easily by adding parentheses. Suppose you have the following mSQL
query:
mysql> SELECT * FROM table WHERE a=1 AND b=2 OR a=3 AND b=4;
To make MySQL Server evaluate this the way that mSQL would, you must add
parentheses:

mysql> SELECT * FROM table WHERE (a=1 AND (b=2 OR (a=3 AND (b=4))));
Access Control

MySQL Server
Has tables to store grant (permission) options per user, host, and database. See
Section 4.2.6 [Privileges|, page 197.

mSQL Has a file ‘mSQL.acl’ in which you can grant read/write privileges for users.

1.9.2 How MySQL Compares to PostgreSQL

When reading the following, please note that both products are continually evolving. We
at MySQL AB and the PostgreSQL developers are both working on making our respective
databases as good as possible, so we are both a serious alternative to any commercial
database.

The following comparison is made by us at MySQL AB. We have tried to be as accurate
and fair as possible, but although we know MySQL Server thoroughly, we don’t have a full
knowledge of all PostgreSQL features, so we may have got some things wrong. We will,
however, correct these when they come to our attention.

We would first like to note that PostgreSQL and MySQL Server are both widely used
products, but with different design goals, even if we are both striving toward ANSI SQL
compliancy. This means that for some applications MySQL Server is more suited, while
for others PostgreSQL is more suited. When choosing which database to use, you should
first check if the database’s feature set satisfies your application. If you need raw speed,
MySQL Server is probably your best choice. If you need some of the extra features that
only PostgreSQL can offer, you should use PostgreSQL.

1.9.2.1 MySQL and PostgreSQL development strategies

When adding things to MySQL Server we take pride to do an optimal, definite solution.
The code should be so good that we shouldn’t have any need to change it in the foreseeable
future. We also do not like to sacrifice speed for features but instead will do our utmost to

Chapter 1: General Information 57

find a solution that will give maximal throughput. This means that development will take
a little longer, but the end result will be well worth this. This kind of development is only
possible because all server code are checked by one of a few (currently two) persons before
it’s included in the MySQL server.

We at MySQL AB believe in frequent releases to be able to push out new features quickly
to our users. Because of this we do a new small release about every three weeks, and a
major branch every year. All releases are thoroughly tested with our testing tools on a lot
of different platforms.

PostgreSQL is based on a kernel with lots of contributors. In this setup it makes sense to
prioritise adding a lot of new features, instead of implementing them optimally, because one
can always optimise things later if there arises a need for this.

Another big difference between MySQL Server and PostgreSQL is that nearly all of the
code in the MySQL server is coded by developers that are employed by MySQL AB and
are still working on the server code. The exceptions are the transaction engines and the
regexp library.

This is in sharp contrast to the PostgreSQL code, the majority of which is coded by a
big group of people with different backgrounds. It was only recently that the PostgreSQL
developers announced that their current developer group had finally had time to take a look
at all the code in the current PostgreSQL release.

Both of the aforementioned development methods have their own merits and drawbacks.
We here at MySQL AB think, of course, that our model is better because our model gives
better code consistency, more optimal and reusable code, and in our opinion, fewer bugs.
Because we are the authors of the MySQL server code, we are better able to coordinate
new features and releases.

1.9.2.2 Featurewise Comparison of MySQL and PostgreSQL

On the crash-me page (http://www.mysql.com/information/crash-me.php) you can
find a list of those database constructs and limits that one can detect automatically with
a program. Note, however, that a lot of the numerical limits may be changed with startup
options for their respective databases. This web page is, however, extremely useful when
you want to ensure that your applications work with many different databases or when you
want to convert your application from one database to another.

MySQL Server offers the following advantages over PostgreSQL:

e MySQL Server is generally much faster than PostgreSQL. MySQL 4.0.1 also has a query
cache that can boost up the query speed for mostly-read-only sites many times.

e MySQL has a much larger user base than PostgreSQL. Therefore, the code is tested
more and has historically proven more stable than PostgreSQL. MySQL Server is used
more in production environments than PostgreSQL, mostly thanks to the fact that
MySQL AB, formerly TCX DataKonsult AB, has provided top-quality commercial
support for MySQL Server from the day it was released, whereas until recently Post-
greSQL was unsupported.

e MySQL Server works better on Windows than PostgreSQL does. MySQL Server runs
as a native Windows application (a service on NT/2000/XP), while PostgreSQL is run

58

MySQL Technical Reference for Version 4.0.3-beta

under the Cygwin emulation. We have heard that PostgreSQL is not yet that stable
on Windows but we haven’t been able to verify this ourselves.

MySQL has more APIs to other languages and is supported by more existing programs
than PostgreSQL. See Appendix B [Contrib], page 653.

MySQL Server works on 24/7 heavy-duty systems. In most circumstances you never
have to run any cleanups on MySQL Server. PostgreSQL doesn’t yet support 24/7
systems because you have to run VACUUM once in a while to reclaim space from UPDATE
and DELETE commands and to perform statistics analyses that are critical to get good
performance with PostgreSQL. VACUUM is also needed after adding a lot of new rows to
a table. On a busy system with lots of changes, VACUUM must be run very frequently, in
the worst cases even many times a day. During the VACUUM run, which may take hours
if the database is big, the database is, from a production standpoint, practically dead.
Please note: in PostgreSQL version 7.2, basic vacuuming no longer locks tables, thus
allowing normal user access during the vacuum. A new VACUUM FULL command does
old-style vacuum by locking the table and shrinking the on-disk copy of the table.

MySQL replication has been thoroughly tested, and is used by sites like:
— Yahoo Finance (http://finance.yahoo.com/)
— Mobile.de (http://www.mobile.de/)
— Slashdot (http://www.slashdot.org/)

Included in the MySQL distribution are two different testing suites, ‘mysql-test-run’
and crash-me (http://www.mysql.com/information/crash-me.php), as well as a
benchmark suite. The test system is actively updated with code to test each new
feature and almost all reproduceable bugs that have come to our attention. We test
MySQL Server with these on a lot of platforms before every release. These tests are
more sophisticated than anything we have seen from PostgreSQL, and they ensure that
the MySQL Server is kept to a high standard.

There are far more books in print about MySQL Server than about PostgreSQL.
O’Reilly, SAMS, Que, and New Riders are all major publishers with books about
MySQL. All MySQL features are also documented in the MySQL online manual because
when a new feature is implemented, the MySQL developers are required to document
it before it’s included in the source.

MySQL Server supports more of the standard ODBC functions than PostgreSQL.
MySQL Server has a much more sophisticated ALTER TABLE.

MySQL Server has support for tables without transactions for applications that need
all the speed they can get. The tables may be memory-based, HEAP tables or disk based
MyISAM. See Chapter 7 [Table types], page 494.

MySQL Server has support for two different table handlers that support transactions,
InnoDB, and BerkeleyDB. Because every transaction engine performs differently under
different conditions, this gives the application writer more options to find an optimal
solution for his or her setup, if need be per individual table. See Chapter 7 [Table
types], page 494.

MERGE tables gives you a unique way to instantly make a view over a set of identical
tables and use these as one. This is perfect for systems where you have log files that
you order, for example, by month. See Section 7.2 [MERGE], page 501.

Chapter 1: General Information 59

e The option to compress read-only tables, but still have direct access to the rows in the
table, gives you better performance by minimising disk reads. This is very useful when
you are archiving things. See Section 4.7.4 [myisampack|, page 279.

e MySQL Server has internal support for full-text search. See Section 6.8 [Fulltext
Search|, page 485.

e You can access many databases from the same connection (depending, of course, on
your privileges).

e MySQL Server is coded from the start to be multi-threaded, while PostgreSQL uses
processes. Context switching and access to common storage areas is much faster be-
tween threads than between separate processes. This gives MySQL Server a big speed
advantage in multi-user applications and also makes it easier for MySQL Server to take
full advantage of symmetric multiprocessor (SMP) systems.

e MySQL Server has a much more sophisticated privilege system than PostgreSQL. While
PostgreSQL only supports INSERT, SELECT, and UPDATE/DELETE grants per user on a
database or a table, MySQL Server allows you to define a full set of different privileges
on the database, table, and column level. MySQL Server also allows you to specify the
privilege on host and user combinations. See Section 4.3.1 [GRANT], page 212.

e MySQL Server supports a compressed client/server protocol which improves perfor-
mance over slow links.

e MySQL Server employs a “table handler” concept, and is the only relational database
we know of built around this concept. This allows different low-level table types to
be called from the SQL engine, and each table type can be optimised for different
performance characteristics.

e All MySQL table types (except InnoDB) are implemented as files (one table per file),
which makes it really easy to back up, move, delete, and even symlink databases and
tables, even when the server is down.

e Tools to repair and optimise MyISAM tables (the most common MySQL table type). A
repair tool is only needed when a physical corruption of a datafile happens, usually
from a hardware failure. It allows a majority of the data to be recovered.

e Upgrading MySQL Server is painless. When you are upgrading MySQL Server, you
don’t need to dump/restore your data, as you have to do with most PostgreSQL up-
grades.

Drawbacks with MySQL Server compared to PostgreSQL:

e The transaction support in MySQL Server is not yet as well tested as PostgreSQL’s
system.

e Because MySQL Server uses threads, which are not yet flawless on many OSes, one must
either use binaries from http://www.mysql.com/downloads/, or carefully follow our
instructions on http://www.mysql.com/doc/I/n/Installing_source.html to get an
optimal binary that works in all cases.

e Table locking, as used by the non-transactional MyISAM tables, is in many cases faster
than page locks, row locks, or versioning. The drawback, however, is that if one doesn’t
take into account how table locks work, a single long-running query can block a table for
updates for a long time. This can usually be avoided when designing the application.

60

MySQL Technical Reference for Version 4.0.3-beta

If not, one can always switch the trouble table to use one of the transactional table
types. See Section 5.3.2 [Table locking], page 355.

With UDF (user-defined functions) one can extend MySQL Server with both normal
SQL functions and aggregates, but this is not yet as easy or as flexible as in PostgreSQL.
See Section 9.2 [Adding functions], page 616.

Updates that run over multiple tables are harder to do in MySQL Server. This will,
however, be fixed in MySQL Server 4.0.2 with multi-table UPDATE and in MySQL Server
4.1 with subselects. In MySQL Server 4.0 one can use multi-table deletes to delete from
many tables at the same time. See Section 6.4.6 [DELETE], page 459.

PostgreSQL currently offers the following advantages over MySQL Server:

Note that because we know the MySQL road map, we have included in the following table
the version when MySQL Server should support this feature. Unfortunately we couldn’t do
this for previous comparisons, because we don’t know the PostgreSQL roadmap.

Feature MySQL version
Subselects 4.1

Foreign keys 4.1

Views 5.0

Stored procedures 5.0

Triggers 5.0

Unions 4.0

Full join 4.1

Constraints 4.1 or 5.0
Cursors 4.1 or 5.0
R-trees 4.1 (for MyISAM tables)
Inherited tables Not planned
Extensible type system Not planned

Other reasons someone may consider using PostgreSQL:

Standard usage in PostgreSQL is closer to ANSI SQL in some cases.
One can speed up PostgreSQL by coding things as stored procedures.

For geographical data, R-trees make PostgreSQL better than MySQL Server. (note:
MySQL version 4.1 will have R-trees for MyISAM tables).

The PostgreSQL optimiser can do some optimisation that the current MySQL opti-
miser can’t do. Most notable is doing joins when you don’t have the proper keys in
place and doing a join where you are using different keys combined with OR. The
MySQL benchmark suite at http://www.mysql.com/information/benchmarks.html
shows you what kind of constructs you should watch out for when using different
databases.

PostgreSQL has a bigger team of developers that contribute to the server.

Drawbacks with PostgreSQL compared to MySQL Server:

VACUUM makes PostgreSQL hard to use in a 24/7 environment.
Only transactional tables.
Much slower INSERT, DELETE, and UPDATE.

For a complete list of drawbacks, you should also examine the first table in this section.

Chapter 1: General Information 61

1.9.2.3 Benchmarking MySQL and PostgreSQL

The only Open Source benchmark that we know of that can be used to benchmark
MySQL Server and PostgreSQL (and other databases) is our own. It can be found at
http://www.mysql.com/information/benchmarks.html.

We have many times asked the PostgreSQL developers and some PostgreSQL users to
help us extend this benchmark to make it the definitive benchmark for databases, but
unfortunately we haven’t gotten any feedback for this.

We, the MySQL developers, have, because of this, spent a lot of hours to get maximum
performance from PostgreSQL for the benchmarks, but because we don’t know PostgreSQL
intimately, we are sure that there are things that we have missed. We have on the benchmark
page documented exactly how we did run the benchmark so that it should be easy for anyone
to repeat and verify our results.

The benchmarks are usually run with and without the --fast option. When run with
--fast we are trying to use every trick the server can do to get the code to execute as
fast as possible. The idea is that the normal run should show how the server would work
in a default setup and the --fast run shows how the server would do if the application
developer would use extensions in the server to make his application run faster.

When running with PostgreSQL and --fast we do a VACUUM after every major table UPDATE
and DROP TABLE to make the database in perfect shape for the following SELECTs. The time
for VACUUM is measured separately.

When running with PostgreSQL 7.1.1 we could, however, not run with --fast because
during the INSERT test, the postmaster (the PostgreSQL deamon) died and the database
was so corrupted that it was impossible to restart postmaster. After this happened twice,
we decided to postpone the --fast test until the next PostgreSQL release. The details
about the machine we run the benchmark on can be found on the benchmark page.

Before going to the other benchmarks we know of, we would like to give some background
on benchmarks.

It’s very easy to write a test that shows any database to be the best database in the world, by
just restricting the test to something the database is very good at and not testing anything
that the database is not good at. If one, after doing this, summarises the result as a single
figure, things are even easier.

This would be like us measuring the speed of MySQL Server compared to PostgreSQL
by looking at the summary time of the MySQL benchmarks on our web page. Based on
this MySQL Server would be more than 40 times faster than PostgreSQL, something that
is, of course, not true. We could make things even worse by just taking the test where
PostgreSQL performs worst and claim that MySQL Server is more than 2000 times faster
than PostgreSQL.

The case is that MySQL does a lot of optimisations that PostgreSQL doesn’t do. This is,
of course, also true the other way around. An SQL optimiser is a very complex thing, and
a company could spend years just making the optimiser faster and faster.

When looking at the benchmark results you should look for things that you do in your
application and just use these results to decide which database would be best suited for
your application. The benchmark results also show things a particular database is not good

62 MySQL Technical Reference for Version 4.0.3-beta

at and should give you a notion about things to avoid and what you may have to do in
other ways.

We know of two benchmark tests that claim that PostgreSQL performs better than MySQL
Server. These both where multi-user tests, a test that we here at MySQL AB haven’t had
time to write and include in the benchmark suite, mainly because it’s a big task to do this
in a manner that is fair to all databases.

One is the benchmark paid for by Great Bridge, the company that for 16 months attempted
to build a business based on PostgreSQL but now has ceased operations. This is probably
the worst benchmark we have ever seen anyone conduct. This was not only tuned to only
test what PostgreSQL is absolutely best at, but it was also totally unfair to every other
database involved in the test.

Note: We know that even some of the main PostgreSQL developers did not like the way
Great Bridge conducted the benchmark, so we don’t blame the PostgreSQL team for the
way the benchmark was done.

This benchmark has been condemned in a lot of postings and newsgroups, so here we will
just briefly repeat some things that were wrong with it.

e The tests were run with an expensive commercial tool that makes it impossible for
an Open Source company like us to verify the benchmarks, or even check how the
benchmarks were really done. The tool is not even a true benchmark tool, but an
application/setup testing tool. To refer to this as a “standard” benchmark tool is to
stretch the truth a long way.

e Great Bridge admitted that they had optimised the PostgreSQL database (with VACUUM
before the test) and tuned the startup for the tests, something they hadn’t done for
any of the other databases involved. They say “This process optimises indexes and
frees up disk space a bit. The optimised indexes boost performance by some margin.”
Our benchmarks clearly indicate that the difference in running a lot of selects on a
database with and without VACUUM can easily differ by a factor of 10.

e The test results were also strange. The AS3AP test documentation mentions that the
test does “selections, simple joins, projections, aggregates, one-tuple updates, and bulk
updates.”

PostgreSQL is good at doing SELECTs and JOINs (especially after a VACUUM), but doesn’t
perform as well on INSERTs or UPDATEs. The benchmarks seem to indicate that only
SELECTs were done (or very few updates). This could easily explain the good results
for PostgreSQL in this test. The bad results for MySQL will be obvious a bit down in
this document.

e They did run the so-called benchmark from a Windows machine against a Linux ma-
chine over ODBC, a setup that no normal database user would ever do when running
a heavy multi-user application. This tested more the ODBC driver and the Windows
protocol used between the clients than the database itself.

e When running the database against Oracle and MS-SQL (Great Bridge has indirectly
indicated the databases they used in the test), they didn’t use the native protocol but
instead ODBC. Anyone that has ever used Oracle knows that all real applications use
the native interface instead of ODBC. Doing a test through ODBC and claiming that
the results had anything to do with using the database in a real-world situation can’t be

Chapter 1: General Information 63

regarded as fair. They should have done two tests with and without ODBC to provide
the right facts (after having gotten experts to tune all involved databases, of course).

e They refer to the TPC-C tests, but they don’t mention anywhere that the test they
did was not a true TPC-C test and they were not even allowed to call it a TPC-C
test. A TPC-C test can only be conducted by the rules approved by the TPC Council
(http://www.tpc.org/). Great Bridge didn’t do that. By doing this they have both
violated the TPC trademark and miscredited their own benchmarks. The rules set by
the TPC Council are very strict to ensure that no one can produce false results or make
unprovable statements. Apparently Great Bridge wasn’t interested in doing this.

o After the first test, we contacted Great Bridge and mentioned to them some of the
obvious mistakes they had done with MySQL Server:

— Running with a debug version of our ODBC driver
— Running on a Linux system that wasn’t optimised for threads
— Using an old MySQL version when there was a recommended newer one available

— Not starting MySQL Server with the right options for heavy multi-user use (the
default installation of MySQL Server is tuned for minimal resource use)

Great Bridge did run a new test, with our optimised ODBC driver and with better
startup options for MySQL Server, but refused to either use our updated glibc library
or our standard binary (used by 80% of our users), which was statically linked with a
fixed glibc library.

According to what we know, Great Bridge did nothing to ensure that the other
databases were set up correctly to run well in their test environment. We are sure,
however, that they didn’t contact Oracle or Microsoft to ask for their advice in this
matter. ;)

e The benchmark was paid for by Great Bridge, and they decided to publish only partial,
chosen results (instead of publishing it all).

Tim Perdue, a long-time PostgreSQL fan and a reluctant MySQL user, published a com-
parison on PHPbuilder (http://www.phpbuilder.com/columns/tim20001112.php3).

When we became aware of the comparison, we phoned Tim Perdue about this because there
were a lot of strange things in his results. For example, he claimed that MySQL Server
had a problem with five users in his tests, when we know that there are users with similar
machines as his that are using MySQL Server with 2000 simultaneous connections doing
400 queries per second. (In this case the limit was the web bandwidth, not the database.)

It sounded like he was using a Linux kernel that either had some problems with many
threads, such as kernels before 2.4, which had a problem with many threads on multi-CPU
machines. We have documented in this manual how to fix this and Tim should be aware of
this problem.

The other possible problem could have been an old glibc library and that Tim didn’t use
a MySQL binary from our site, which is linked with a corrected glibc library, but had
compiled a version of his own. In any of these cases, the symptom would have been exactly
what Tim had measured.

We asked Tim if we could get access to his data so that we could repeat the benchmark
and if he could check the MySQL version on the machine to find out what was wrong and
he promised to come back to us about this. He has not done that yet.

64 MySQL Technical Reference for Version 4.0.3-beta

Because of this we can’t put any trust in this benchmark either. :(

Over time things also change and the preceding benchmarks are not that relevant anymore.
MySQL Server now has a couple of different table handlers with different speed/concurrency
tradeoffs. See Chapter 7 [Table types|, page 494. Tt would be interesting to see how the above
tests would run with the different transactional table types in MySQL Server. PostgreSQL
has, of course, also got new features since the test was made. As these tests are not publicly
available there is no way for us to know how the database would perform in the same tests
today.

Conclusion:

The only benchmarks that exist today that anyone can download and run against MySQL
Server and PostgreSQL are the MySQL benchmarks. We here at MySQL AB believe that
Open Source databases should be tested with Open Source tools! This is the only way to
ensure that no one does tests that nobody can reproduce and use this to claim that one
database is better than another. Without knowing all the facts it’s impossible to answer
the claims of the tester.

The thing we find strange is that every test we have seen about PostgreSQL, that is impos-
sible to reproduce, claims that PostgreSQL is better in most cases while our tests, which
anyone can reproduce, clearly show otherwise. With this we don’t want to say that Post-
greSQL isn’t good at many things (it is!) or that it isn’t faster than MySQL Server under
certain conditions. We would just like to see a fair test where PostgreSQL performs very
well, so that we could get some friendly competition going!

For more information about our benchmark suite, see Section 5.1.4 [MySQL Benchmarks]
page 336.

We are working on an even better benchmark suite, including multi-user tests, and a better
documentation of what the individual tests really do and how to add more tests to the suite.

Chapter 2: MySQL Installation 65

2 MySQL Installation

This chapter describes how to obtain and install MySQL:

For a list of sites from which you can obtain MySQL, see Section 2.2.1 [Getting MySQL],
page 69.

To see which platforms are supported, see Section 2.2.2 [Which OS], page 69. Please
note that not all supported systems are equally good for running MySQL on them.
On some it is much more robust and efficient than otherssee Section 2.2.2 [Which OS]
page 69 for details.

Several versions of MySQL are available in both binary and source distributions. We
also provide public access to our current source tree for those who want to see our most
recent developments and help us test new code. To determine which version and type
of distribution you should use, see Section 2.2.3 [Which version|, page 71. When in
doubt, use the binary distribution.

Installation instructions for binary and source distributions are described in Sec-
tion 2.2.7 [Installing binary|, page 77, and Section 2.3 [Installing source|, page 80.

Each set of instructions includes a section on system-specific problems you may run
into.

For post-installation procedures, see Section 2.4 [Post-installation|, page 91. These
procedures apply whether you install MySQL using a binary or source distribution.

2.1 Quick Standard Installation of MySQL

2.1.1 Imstalling MySQL on Linux

The recommended way to install MySQL on Linux is by using an RPM file. The MySQL
RPMs are currently being built on a RedHat Version 6.2 system but should work on other
versions of Linux that support rpm and use glibc.

If you have problems with an RPM file, for example, if you receive the error “Sorry, the
host ’xxxx’ could not be looked up”see Section 2.6.1.1 [Binary notes-Linux|, page 109.

The RPM files you may want to use are:
e MySQL-VERSION.i386.rpm

The MySQL server. You will need this unless you only want to connect to a MySQL
server running on another machine.

MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to install this pack-
age.

MySQL-bench-VERSION.i386.rpm

Tests and benchmarks. Requires Perl and msql-mysql-modules RPMs.

66 MySQL Technical Reference for Version 4.0.3-beta

e MySQL-devel-VERSION.i386.rpm
Libraries and include files needed if you want to compile other MySQL clients, such as
the Perl modules.
e MySQL-VERSION.src.rpm
This contains the source code for all of the previous packages. It can also be used to
try to build RPMs for other architectures (for example, Alpha or SPARC).
To see all files in an RPM package, run:
shell> rpm -qpl MySQL-VERSION.i386.rpm
To perform a standard minimal installation, run:
shell> rpm -i MySQL-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm
To install just the client package, run:
shell> rpm -i MySQL-client-VERSION.i386.rpm
The RPM places data in ‘/var/lib/mysql’. The RPM also creates the appropriate entries
in ‘/etc/rc.d/’ to start the server automatically at boot time. (This means that if you

have performed a previous installation, you may want to make a copy of your previously
installed MySQL startup file if you made any changes to it, so you don’t lose your changes.)
After installing the RPM file(s), the mysqld daemon should be running and you should now
be able to start using MySQL. See Section 2.4 [Post-installation], page 91.

If something goes wrong, you can find more information in the binary installation chapter.
See Section 2.2.7 [Installing binary|, page 77.

2.1.2 Installing MySQL on Windows

The MySQL server for Windows is available in two distribution types:

1. The binary distribution contains a setup program which installs everything you need
so that you can start the server immediately.

2. The source distribution contains all the code and support files for building the executa-
bles using the VC++ 6.0 compiler. See Section 2.3.7 [Windows source build], page 90.

Generally speaking, you should use the binary distribution.
You will need the following:

e A 32-bit Windows Operating System such as 9x, Me, NT, 2000, or XP. The NT family
(NT, Windows 2000 and XP) permits running the MySQL server as a service. See
Section 2.6.2.2 [NT start], page 114.

If you want to use tables bigger than 4G, you should install MySQL on an NTFES or
newer filesystem. Don’t forget to use MAX_ROWS and AVG_ROW_LENGTH when you create
the table. See Section 6.5.3 [CREATE TABLE], page 469.

e TCP/IP protocol support.

e A copy of the MySQL binary or distribution for Windows, which can be downloaded
from http://www.mysql.com/downloads/.

Note: The distribution files are supplied with a zipped format and we recommend the
use of an adequate FTP client with resume feature to avoid corruption of files during
the download process.

Chapter 2: MySQL Installation 67

e A ZIP program to unpack the distribution file.

e Enough space on the hard drive to unpack, install, and create the databases in acco-

randance with your requirements.

e If you plan to connect to the MySQL server via 0DBC, you will also need the MyODBC

driver. See Section 8.3 [ODBC], page 546.

2.1.2.1 Installing the Binaries

If you are working on an NT'/2000/XP server, logon as a user with with administrator
privileges.
If you are doing an upgrade of an earlier MySQL installation, it is necessary to stop
the server. If you are running the server as a service, use:

C:\> NET STOP MySQL
Otherwise, use:

C:\mysql\bin> mysqladmin -u root shutdown
On NT/2000/XP machines, if you want to change the server executable (e.g., -max or
-nt), it is also necessary to remove the service:

C:\mysql\bin> mysqld-max-nt --remove

4. Unzip the distribution file to a temporary directory.

6.

Run the ‘setup.exe’ file to begin the installation process. If you want to install into
another directory than the default ‘c:\mysql’, use the Browse button to specify your
preferred directory.

Finish the install process.

2.1.2.2 Preparing the Windows MySQL Environment

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the
MySQL-Max server binaries. Here is a list of the different MySQL servers you can use:

Binary Description

mysqld Compiled with full debugging and automatic memory allocation check-
ing, symbolic links, InnoDB, and BDB tables.

mysqld-opt Optimised binary with no support for transactional tables.

mysqld-nt Optimised binary for NT /2000/XP with support for named pipes. You

can run this version on Windows 9x/Me, but in this case no named
pipes are created and you must have TCP/IP installed.

mysqld-max Optimised binary with support for symbolic links, InnoDB and BDB

tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

Starting from 3.23.50, named pipes are only enabled if one starts mysqld with —-enable-
named-pipe.

All of the preceding binaries are optimised for the Pentium Pro processor but should work
on any Intel processor >= i386.

68 MySQL Technical Reference for Version 4.0.3-beta

You will need to use an option file to specify your MySQL configuration under the following
circumstances:

e The installation or data directories are different from the default locations (‘c:\mysql’
and ‘c:\mysql\data’).

e You want to use one of these servers:
e mysqld.exe
e mysqld-max.exe
e mysqld-max-nt.exe

e You need to tune the server settings.

Normally you can use the WinMySQLAdmin tool to edit the option file my.ini. In this case
you don’t have to worry about the following section.

There are two option files with the same function: ‘my.cnf’ and ‘my.ini’. However, to avoid
confusion, it’s best if you use only of one them. Both files are plain text. The ‘my.cnf’ file,
if used, should be created in the root directory of the C drive. The ‘my.ini’ file, if used,
should be created in the Windows system directory. (This directory is typically something
like ‘C: \WINDOWS’ or ‘C:\WINNT . You can determine its exact location from the value of the
windir environment variable.) MySQL looks first for the my.ini file, then for the ‘my.cnf’
file.

If your PC uses a boot loader where the C drive isn’t the boot drive, your only option is
to use the ‘my.ini’ file. Also note that if you use the WinMySQLAdmin tool, it uses only the
‘my.ini’ file. The ‘\mysql\bin’ directory contains a help file with instructions for using
this tool.

Using notepad.exe, create the option file and edit the [mysqld] section to specify values
for the basedir and datadir parameters:

[mysqld]

set basedir to installation path, e.g., c:/mysql
basedir=the_install_path

set datadir to location of data directory,

e.g., c:/mysql/data or d:/mydata/data
datadir=the_data_path

Note that Windows pathnames should be specified in option files using forward slashes
rather than backslashes. If you do use backslashes, you must double them.

If you would like to use a data directory different from the default of ‘c:\mysql\data’, you
must copy the entire contents of the ‘c:\mysql\data’ directory to the new location.

If you want to use the InnoDB transactional tables, you need to manually create two new
directories to hold the InnoDB data and log filese.g., ‘c:\ibdata’ and ‘c:\iblogs’. You
will also need to add some extra lines to the option file. See Section 7.5.2 [InnoDB start],
page 507.

If you don’t want to use InnoDB tables, add the skip-innodb option to the option file.

Now you are ready to test starting the server.

Chapter 2: MySQL Installation 69

2.1.2.3 Starting the Server for the First Time

Testing from a DOS command prompt is the best thing to do because the server displays
status messages that appear in the DOS window. If something is wrong with your configu-
ration, these messages will make it easier for you to identify and fix any problems.

Make sure you are in the directory where the server is located, then enter this command:
C:\mysql\bin> mysqld-max --standalone
You should see the following messages as the server starts up:

InnoDB: The first specified datafile c:\ibdata\ibdatal did not exist:
InnoDB: a new database to be created!

InnoDB: Setting file c:\ibdatalibdatal size to 209715200

InnoDB: Database physically writes the file full: wait...

InnoDB: Log file c:\iblogs\ib_logfileO did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280

InnoDB: Log file c:\iblogs\ib_logfilel did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfilel size to 31457280

InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280

InnoDB: Doublewrite buffer not found: creating new

InnoDB: Doublewrite buffer created

InnoDB: creating foreign key constraint system tables

InnoDB: foreign key constraint system tables created

011024 10:58:25 InnoDB: Started

For further information about running MySQL on Windows, see Section 2.6.2 [Windows],
page 113.

2.2 General Installation Issues

2.2.1 How to Get MySQL

Check the MySQL homepage (http://www.mysql.com/) for information about the current
version and for downloading instructions.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

For a complete upto-date list of MySQL web/download mirrors, see http://www.mysql.com/downloads/mi
There you will also find information about becoming a MySQL mirror site and how to report
a bad or out-of-date mirror.

2.2.2 Operating Systems Supported by MySQL

We use GNU Autoconf, so it is possible to port MySQL to all modern systems with working
Posix threads and a C++ compiler. (To compile only the client code, a C++ compiler is

70

MySQL Technical Reference for Version 4.0.3-beta

required but not threads.) We use and develop the software ourselves primarily on Sun
Solaris (Versions 2.5 - 2.7) and SuSE Linux Version 7.x.

Note that for many operating systems, the native thread support works only in the latest
versions. MySQL has been reported to compile successfully on the following operating
system/thread package combinations:

AIX 4.x with native threads. See Section 2.6.6.4 [IBM-AIX], page 131.

Amiga.

BSDI 2.x with the MIT-pthreads package. See Section 2.6.4.5 [BSDI], page 126.
BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.6.4.5 [BSDI|, page 126.
DEC Unix 4.x with native threads. See Section 2.6.6.6 [Alpha-DEC-UNIX], page 132.
FreeBSD 2.x with the MIT-pthreads package. See Section 2.6.4.1 [FreeBSD|, page 124.
FreeBSD 3.x and 4.x with native threads. See Section 2.6.4.1 [FreeBSD], page 124.
HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.6.6.2
[HP-UX 10.20], page 129.

HP-UX 11.x with the native threads. See Section 2.6.6.3 [HP-UX 11.x], page 129.

Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+. See Section 2.6.1 [Linux]
page 106.

Mac OS X Server. See Section 2.6.5 [Mac OS X], page 127.

NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (Requires GNU make). See Section 2.6.4.2
[NetBSD], page 125.

OpenBSD > 2.5 with native threads. OpenBSD < 2.5 with the MIT-pthreads package.
See Section 2.6.4.3 [OpenBSD], page 125.

0S/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.6.7 [OS/2],
page 138.

SGI Irix 6.x with native threads. See Section 2.6.6.8 [SGI-Irix|, page 135.

Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.6.3 [So-
laris], page 120.

SunOS 4.x with the MIT-pthreads package. See Section 2.6.3 [Solaris|, page 120.
Caldera (SCO) OpenServer with a recent port of the FSU Pthreads package. See
Section 2.6.6.9 [Caldera], page 136.

Caldera (SCO) UnixWare 7.0.1. See Section 2.6.6.10 [Caldera Unixware], page 138.
Tru64 Unix

Windows 9x, Me, NT, 2000 and XP. See Section 2.6.2 [Windows|, page 113.

Note that not all platforms are suited equally well for running MySQL. How well a cer-
tain platform is suited for a high-load mission-critical MySQL server is determined by the
following factors:

General stability of the thread library. A platform may have excellent reputation
otherwise, but if the thread library is unstable in the code that is called by MySQL,
even if everything else is perfect, MySQL will be only as stable as the thread library.
The ability of the kernel and/or thread library to take advantage of SMP on multi-
processor systems. In other words, when a process creates a thread, it should be
possible for that thread to run on a different CPU than the original process.

Chapter 2: MySQL Installation 71

e The ability of the kernel and/or the thread library to run many threads which ac-
quire/release a mutex over a short critical region frequently without excessive context
switches. In other words, if the implementation of pthread_mutex_lock() is too anx-
ious to yield CPU time, this will hurt MySQL tremendously. If this issue is not taken
care of, adding extra CPUs will actually make MySQL slower.

e General filesystem stability /performance.

e Ability of the filesystem to deal with large files at all and deal with them efficiently, if
your tables are big.

e Our level of expertise here at MySQL AB with the platform. If we know a platform
well, we introduce platform-specific optimisations/fixes enabled at compile time. We
can also provide advice on configuring your system optimally for MySQL.

e The amount of testing of similar configurations we have done internally.

e The number of users that have successfully run MySQL on that platform in similar
configurations. If this number is high, the chances of hitting some platform-specific
surprises are much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are
x86 with SuSE Linux 7.1, 2.4 kernel, and ReiserF'S (or any similar Linux distribution) and
SPARC with Solaris 2.7 or 2.8. FreeBSD comes third, but we really hope it will join the
top club once the thread library is improved. We also hope that at some point we will
be able to include all other platforms on which MySQL compiles, runs okay, but not quite
with the same level of stability and performance, into the top category. This will require
some effort on our part in cooperation with the developers of the OS/library components
MySQL depends upon. If you are interested in making one of those components better, are
in a position to influence their development, and need more detailed instructions on what
MySQL needs to run better, send an e-mail to internals@lists.mysql.com.

Please note that the preceding comparison is not to say that one OS is better or worse
than the other in general. We are talking about choosing a particular OS for a dedicated
purposerunning MySQL, and compare platforms in that regard only. With this in mind,
the result of this comparison would be different if we included more issues into it. And in
some cases, the reason one OS is better than the other could simply be that we have put
forth more effort into testing on and optimising for that particular platform. We are just
stating our observations to help you decide on which platform to use MySQL on in your
setup.

2.2.3 Which MySQL Version to Use

The first decision to make is whether you want to use the latest development release or the
last stable release:

e Normally, if you are beginning to use MySQL for the first time or trying to port it
to some system for which there is no binary distribution, we recommend going with
the stable release (currently version 3.23). Note that all MySQL releases are checked
with the MySQL benchmarks and an extensive test suite before each release (even the
development releases).

72

MySQL Technical Reference for Version 4.0.3-beta

e Otherwise, if you are running an old system and want to upgrade, but don’t want to

take chances with a non-seamless upgrade, you should upgrade to the latest in the same
branch you are using (where only the last version number is newer than yours). We
have tried to fix only fatal bugs and make small, relatively safe changes to that version.

The second decision to make is whether you want to use a source distribution or a binary
distribution. In most cases you should probably use a binary distribution, if one exists for
your platform, as this generally will be easier to install than a source distribution.

In the following cases you probably will be better off with a source installation:

e If you want to install MySQL at some explicit location. (The standard binary distribu-

tions are “ready to run” at any place, but you may want to get even more flexibility).
To be able to satisfy different user requirements, we are providing two different binary
versions: one compiled with the non-transactional table handlers (a small, fast binary),
and one configured with the most important extended options like transaction-safe
tables. Both versions are compiled from the same source distribution. All native MySQL
clients can connect to both MySQL versions.
The extended MySQL binary distribution is marked with the -max suffix and is config-
ured with the same options as mysqld-max. See Section 4.7.5 [mysqld-max|, page 285.
If you want to use the MySQL-Max RPM, you must first install the standard MySQL
RPM.
If you want to configure mysqld with some extra features that are not in the standard
binary distributions. Here is a list of the most common extra options that you may
want to use:

e ——with-innodb

e ——with-berkeley-db

e —--with-raid

e —-with-libwrap

e —-with-named-z-1ib (This is done for some of the binaries)

e —-with-debug[=full]
The default binary distribution is normally compiled with support for all character sets
and should work on a variety of processors from the same processor family.
If you want a faster MySQL server you may want to recompile it with support for only
the character sets you need, use a better compiler (like pgcc), or use compiler options
that are better optimised for your processor.
If you have found a bug and reported it to the MySQL development team you will
probably receive a patch that you need to apply to the source distribution to get the
bug fixed.
If you want to read (and/or modify) the C and C++ code that makes up MySQL,
you should get a source distribution. The source code is always the ultimate manual.
Source distributions also contain more tests and examples than binary distributions.

The MySQL naming scheme uses release numbers that consist of three numbers and a suffix.
For example, a release name like mysql-3.21.17-beta is interpreted like this:

e The first number (3) describes the file format. All Version 3 releases have the same file

format.

Chapter 2: MySQL Installation 73

e The second number (21) is the release level. Normally there are two to choose from.
One is the release/stable branch (currently 23) and the other is the development branch
(currently 4.0). Normally both are stable, but the development version may have
quirks, may be missing documentation on new features, or may fail to compile on some
systems.

e The third number (17) is the version number within the release level. This is incre-
mented for each new distribution. Usually you want the latest version for the release
level you have chosen.

e The suffix (beta) indicates the stability level of the release. The possible suffixes are:

— alpha indicates that the release contains some large section of new code that hasn’t
been 100% tested. Known bugs (usually there are none) should be documented
in the News section. See Appendix D [News|, page 675. There are also new
commands and extensions in most alpha releases. Active development that may
involve major code changes can occur on an alpha release, but everything will be
tested before doing a release. There should be no known bugs in any MySQL
release.

— Dbeta means that all new code has been tested. No major new features that could
cause corruption on old code are added. There should be no known bugs. A
version changes from alpha to beta when there haven’t been any reported fatal
bugs within an alpha version for at least a month and we don’t plan to add any
features that could make any old command more unreliable.

— gamma is a beta that has been around a while and seems to work fine. Only minor
fixes are added. This is what many other companies call a release.

— If there is no suffix, it means that the version has been run for a while at many
different sites with no reports of bugs other than platform-specific bugs. Only
critical bug fixes are applied to the release. This is what we call a stable release.

All versions of MySQL are run through our standard tests and benchmarks to ensure that
they are relatively safe to use. Because the standard tests are extended over time to check
for all previously found bugs, the test suite keeps getting better.

Note that all releases have been tested at least with:

An internal test suite
This is part of a production system for a customer. It has many tables with
hundreds of megabytes of data.

The MySQL benchmark suite
This runs a range of common queries. It is also a test to see whether the latest
batch of optimisations actually made the code faster. See Section 5.1.4 [MySQL
Benchmarks|, page 336.

The crash-me test
This tries to determine what features the database supports and what its capa-
bilities and limitations are. See Section 5.1.4 [MySQL Benchmarks|, page 336.

Another test is that we use the newest MySQL version in our internal production environ-
ment, on at least one machine. We have more than 100 gigabytes of data to work with.

74 MySQL Technical Reference for Version 4.0.3-beta

2.2.4 Installation Layouts

This section describes the default layout of the directories created by installing binary and
source distributions.

A binary distribution is installed by unpacking it at the installation location you choose
(typically ‘/usr/local/mysql’) and creates the following directories in that location:

Directory Contents of directory

‘bin’ Client programs and the mysqld server
‘data’ Log files, databases

‘include’ Include (header) files

‘1ib’ Libraries

‘scripts’ mysql_install_db

‘share/mysql’ Error message files
‘sql-bench’ Benchmarks

A source distribution is installed after you configure and compile it. By default, the instal-
lation step installs files under ‘/usr/local’, in the following subdirectories:

Directory Contents of directory

‘bin’ Client programs and scripts
‘include/mysqllnclude (header) files

‘info’ Documentation in Info format
‘lib/mysql’ Libraries

‘libexec’ The mysqld server
‘share/mysql’ Error message files
‘sql-bench’ Benchmarks and crash-me test
‘var’ Databases and log files

Within an installation directory, the layout of a source installation differs from that of a
binary installation in the following ways:

e The mysqld server is installed in the ‘libexec’ directory rather than in the ‘bin’
directory.

e The data directory is ‘var’ rather than ‘data’.

e mysql_install_db is installed in the ‘/usr/local/bin’ directory rather than in
‘/usr/local/mysql/scripts’.

e The header file and library directories are ‘include/mysql’ and ‘lib/mysql’ rather
than ‘include’ and ‘1ib’.

You can create your own binary installation from a compiled source distribution by executing
the script ‘scripts/make_binary_distribution’.

2.2.5 How and When Updates Are Released

MySQL is evolving quite rapidly here at MySQL AB and we want to share this with other
MySQL users. We try to make a release when we have very useful features that others seem
to have a need for.

Chapter 2: MySQL Installation 75

We also try to help out users who request features that are easy to implement. We take note
of what our licensed users want to have, and we especially take note of what our extended
e-mail supported customers want and try to help them out.

No one has to download a new release. The News section will tell you if the new release
has something you really want. See Appendix D [News|, page 675.

We use the following policy when updating MySQL:

e For each minor update, the last number in the version string is incremented. When
there are major new features or minor incompatibilities with previous versions, the
second number in the version string is incremented. When the file format changes, the
first number is increased.

e Stable-tested releases are meant to appear about 1-2 times a year, but if small bugs
are found, a release with only bug fixes will be released.

e Working releases/bug fixes to old releases are meant to appear about every 1-8 weeks.

e Binary distributions for some platforms will be made by us for major releases. Other
people may make binary distributions for other systems but probably less frequently.

e We usually make patches available as soon as we have located and fixed small bugs.
They are posted to bugs@lists.mysql.com and will be added to the next release.

e For non-critical but annoying bugs, we will add them the MySQL source repository
and they will be fixed in the next release.

e If there is, by any chance, a fatal bug in a release we will make a new release as soon
as possible. We would like other companies to do this, too.

The current stable release is Version 3.23; we have already moved active development to
Version 4.0. Bugs will still be fixed in the stable version. We don’t believe in a complete
freeze, as this also leaves out bug fixes and things that “must be done.” “Somewhat frozen”
means that we may add small things that “almost surely will not affect anything that’s
already working.”

MySQL uses a slightly different naming scheme from most other products. In general it’s
relatively safe to use any version that has been out for a couple of weeks without being
replaced with a new version. See Section 2.2.3 [Which version], page 71.

2.2.6 MySQL Binaries Compiled by MySQL AB

As a service, we at MySQL AB provide a set of binary distributions of MySQL that are
compiled at our site or at sites where customers kindly have given us access to their ma-
chines.

These distributions are generated with scripts/make_binary_distribution and are con-
figured with the following compilers and options:

SunOS 4.1.4 2 sundc with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors" ./configure —-
prefix=/usr/local/mysql --disable-shared --with-extra-charsets=complex
--enable-assembler

76 MySQL Technical Reference for Version 4.0.3-beta

SunOS 5.5.1 (and above) sundu with egcs 1.0.3a or 2.90.27 or gec 2.95.2 and newer
CC=gcc CFLAGS="-03" CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-
exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --with-
low-memory --with-extra-charsets=complex —-enable-assembler

SunOS 5.6 i86pc with gcc 2.8.1
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql -
-with-low-memory —-with-extra-charsets=complex

Solaris 2.8 sparc with gcc 2.95.3
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
—fno-omit-frame-pointer -felide-constructors -fno-exceptions -fno-
rtti" ./configure --prefix=/usr/local/mysql "--with-comment=0fficial
MySQL binary" --with-extra-charsets=complex "--with-server-suffix="
--enable-thread-safe-client --enable-local-infile --enable-assembler
--disable-shared

Linux 2.0.33 i386 with pgcc 2.90.29 (egcs 1.0.3a)
CFLAGS="-03 -mpentium -mstack-align-double" CXX=gcc CXXFLAGS="-03 -
mpentium -mstack-align-double -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --enable-assembler
--with-mysqld-ldflags=-all-static -—-with-extra-charsets=complex

Linux 2.2.x with x686 with gcc 2.95.2
CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro -felide-
constructors —fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--enable-assembler ——with-mysqld-ldflags=-all-static -—disable-shared
--with-extra-charset=complex

SCO 3.2v5.0.4 i386 with gcc 2.7-95q4
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql -
-with-extra-charsets=complex

AIX 2 4 with gcc 2.7.2.2
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql -
-with-extra-charsets=complex

OSF/1 V4.0 564 alpha with gcc 2.8.1
CC=gcc CFLAGS=-0 CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

Irix 6.3 IP32 with gcc 2.8.0
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex

BSDI BSD/OS 3.1 1386 with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS=-0 ./configure —--prefix=/usr/local/mysql —-
with-extra-charsets=complex

BSDI BSD/OS 2.1 i386 with gcc 2.7.2
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —--prefix=/usr/local/mysql -
-with-extra-charsets=complex

Chapter 2: MySQL Installation 7

FreeBSD 4.4-stable 1386 with gcc 2.95.3
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions -fno-
rtti" ./configure --prefix=/usr/local/mysql "--with-comment=0fficial
MySQL binary" --with-extra-charsets=complex "--with-server-suffix="
—-—enable-thread-safe-client ——enable-local-infile —-enable-assembler
--with-named-z-libs=not-used --disable-shared

Anyone who has more optimal options for any of the preceding configurations listed can
always mail them to the developer’s mailing list at internals@lists.mysql.com.

RPM distributions prior to MySQL Version 3.22 are user-contributed. Beginning with
Version 3.22, the RPMs are generated by us at MySQL AB.

If you want to compile a debug version of MySQL, you should add --with-debug or --
with-debug=full to the preceding configure lines and remove any -fomit-frame-pointer
options.

For the Windows distribution, please see Section 2.1.2 [Windows installation], page 66.

2.2.7 Installing a MySQL Binary Distribution

See also Section 2.1.2.1 [Windows binary installation], page 67, Section 2.1.1 [Linux-RPM],
page 65, and Section 8.4.7 [Building clients], page 604.
You need the following tools to install a MySQL binary distribution:

e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Sun tar is
known to have problems.

An alternative installation method under Linux is to use RPM (RedHat Package Manager)
distributions. See Section 2.1.1 [Linux-RPM], page 65.

If you run into problems, please always use mysqlbug when posting questions to mysql@lists.mysql. com.
Even if the problem isn’t a bug, mysqlbug gathers system information that will help others

solve your problem. By not using mysqlbug, you lessen the likelihood of getting a solution

to your problem! You will find mysqlbug in the ‘bin’ directory after you unpack the
distribution. See Section 1.6.2.3 [Bug reports|, page 26.

The basic commands you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql

shell> useradd -g mysql mysql

shell> cd /usr/local

shell> gunzip < /path/to/mysql-VERSION-O0S.tar.gz | tar xvf -
shell> 1n -s full-path-to-mysql-VERSION-0S mysql
shell> cd mysql

shell> scripts/mysql_install_db

shell> chown -R root

shell> chown -R mysql data

shell> chgrp -R mysql .

shell> bin/safe_mysqld --user=mysql &

78

MySQL Technical Reference for Version 4.0.3-beta

or
shell> bin/mysqld_safe --user=mysql &
if you are running MySQL 4.x

You can add new users using the bin/mysql_setpermission script if you install the DBI
and Msql-Mysql-modules Perl modules.

A more detailed description follows.

To install a binary distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 91, for post-installation setup and testing:

1.

Pick the directory under which you want to unpack the distribution, and move into
it. In the following example, we unpack the distribution under ‘/usr/local’ and
create a directory ‘/usr/local/mysql’ into which MySQL is installed. (The following
instructions, therefore, assume you have permission to create files in ‘/usr/local’. If
that directory is protected, you will need to perform the installation as root.)

Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 69.

MySQL binary distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION-0S.tar.gz’, where VERSION is a number (for example, 3.21.15),
and 0S indicates the type of operating system for which the distribution is intended
(for example, pc-linux-gnu-i586).

If you see a binary distribution marked with the -max suffix, this means that the
binary has support for transaction-safe tables and other features. See Section 4.7.5
mysqld-max|, page 285. Note that all binaries are built from the same MySQL source
distribution.

Add a user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.

Change into the intended installation directory:
shell> cd /usr/local
Unpack the distribution and create the installation directory:

shell> gunzip < /path/to/mysql-VERSION-0S.tar.gz | tar xvf -
shell> 1n -s full-path-to-mysql-VERSION-0S mysql

The first command creates a directory named ‘mysql-VERSION-0S’. The second com-
mand makes a symbolic link to that directory. This lets you refer more easily to the
installation directory as ‘/usr/local/mysql’.

Change into the installation directory:
shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important
for installation purposes are the ‘bin’ and ‘scripts’ subdirectories.

Chapter 2: MySQL Installation 79

10.

11.

12.

‘bin’ This directory contains client programs and the server You should add the
full pathname of this directory to your PATH environment variable so that
your shell finds the MySQL programs properly. See Appendix F [Environ-
ment variables|, page 770.

‘scripts’ This directory contains the mysql_install_db script used to initialise the
mysql database containing the grant tables that store the server access
permissions.

If you would like to use mysqlaccess and have the MySQL distribution in some non-
standard place, you must change the location where mysqlaccess expects to find the
mysql client. Edit the ‘bin/mysqlaccess’ script at approximately line 18. Search for
a line that looks like this:

$MYSQL = ’/usr/local/bin/mysql’; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system.
If you do not do this, you will get a Broken pipe error when you run mysqlaccess.

Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):
shell> scripts/mysql_install_db

Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true!

Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql/.
shell> chown -R mysql /usr/local/mysql/data
shell> chgrp -R mysql /usr/local/mysql/.

The first command changes the owner attribute of the files to the root user, the second
one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support|, page 139.

If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 98.

)

After everything has been unpacked and installed, you should initialise and test your dis-
tribution.

You can start the MySQL server with the following command:

shell> bin/safe_mysqld --user=mysql &

Now proceed to Section 4.7.2 [safe_mysqld|, page 274, and See Section 2.4 [Post-
installation], page 91.

2.3 Installing a MySQL Source Distribution

80 MySQL Technical Reference for Version 4.0.3-beta

Before you proceed with the source installation, check first to see if our binary is available
for your platform and if it will work for you. We put a lot of effort into making sure that
our binaries are built with the best possible options.

You need the following tools to build and install MySQL from source:
e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Sun tar is
known to have problems.

e A working ANSI C++ compiler. gcc >= 2.95.2, egcs >= 1.0.2 or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work. libg++ is
not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile
some perfectly legal C++ files, such as ‘sql/sql_base.cc’. If you only have gcc 2.7.x,
you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is also known to
have problems on some platforms, so it should be avoided if a new compiler exists for
the platform.

gcec >= 2.95.2 is recommended when compiling MySQL Version 3.23.x.

e A good make program. GNU make is always recommended and is sometimes required.
If you have problems, we recommend trying GNU make 3.75 or newer.

If you are using a recent version of gcc, recent enough to understand the ~fno-exceptions
option, it is very important that you use it. Otherwise, you may compile a binary that
crashes randomly. We also recommend that you use -felide-constructors and -fno-
rtti along with -fno-exceptions. When in doubt, do the following:

CFLAGS="-03" CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-exceptions \
-fno-rtti" ./configure --prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems this will give you a fast and stable binary.

If you run into problems, please always use mysqlbug when posting questions to mysql@lists.mysql. com.
Even if the problem isn’t a bug, mysqlbug gathers system information that will help others

solve your problem. By not using mysqlbug, you lessen the likelihood of getting a solution

to your problem! You will find mysqlbug in the ‘scripts’ directory after you unpack the
distribution. See Section 1.6.2.3 [Bug reports|, page 26.

2.3.1 Quick Installation Overview

The basic commands you must execute to install a MySQL source distribution are:

shell> groupadd mysql

shell> useradd -g mysql mysql

shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION

shell> ./configure --prefix=/usr/local/mysql
shell> make

Chapter 2: MySQL Installation 81

shell> make install

shell> scripts/mysql_install_db

shell> chown -R root /usr/local/mysql

shell> chown -R mysql /usr/local/mysql/var

shell> chgrp -R mysql /usr/local/mysql

shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> /usr/local/mysql/bin/safe_mysqld --user=mysql &
or

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &
if you are running MySQL 4.x.

If you want to have support for InnoDB tables, you should edit the /etc/my.cnf file and
remove the # character before the parameter that starts with innodb_. ... See Section 4.1.2
[Option files], page 186, and Section 7.5.2 [InnoDB start], page 507.

If you start from a source RPM, do the following:

shell> rpm --rebuild MySQL-VERSION.src.rpm

This will make a binary RPM that you can install.

You can add new users using the bin/mysql_setpermission script if you install the DBI
and Msql-Mysql-modules Perl modules.

A more detailed description follows.

To install a source distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 91, for post-installation initialisation and testing:

1.
2.

Pick the directory under which you want to unpack the distribution, and move into it.
Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 69.

If you are interested in using Berkeley DB tables with MySQL, you will need to obtain

a patched version of the Berkeley DB source code. Please read the chapter on Berkeley
DB tables before proceeding. See Section 7.6 [BDB], page 533.

MySQL source distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION.tar.gz’, where VERSION is a number like 4.0.3-beta.

Add a user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.

Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -
This command creates a directory named ‘mysql-VERSION’.
Change into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory.
You cannot build it in a different directory.

82

10.

11.

12.

MySQL Technical Reference for Version 4.0.3-beta

Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify some options. Run ./configure
--help for a list of options. Section 2.3.3 [configure options|, page 83, discusses some
of the more useful options.

If configure fails, and you are going to send mail to mysql@lists.mysql.com to ask
for assistance, please include any lines from ‘config.log’ that you think can help
solve the problem. Also include the last couple of lines of output from configure if
configure aborts. Post the bug report using the mysqlbug script. See Section 1.6.2.3
[Bug reports|, page 26.

If the compile fails, see Section 2.3.5 [Compilation problems|, page 87, for help with a
number of common problems.
Install everything:
shell> make install
You might need to run this command as root.
Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):
shell> scripts/mysql_install_db

Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true!

Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql
shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql

The first command changes the owner attribute of the files to the root user, the second
one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support|, page 139.

If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 98.

After everything has been installed, you should initialise and test your distribution:

shell> /usr/local/my